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Preface

Since I was a student, I always wished for a single, comprehensive book to
revisit previously learned subjects that tend to fade over time. Motivated by
this desire, I aimed to write a book that consolidates essential physical
concepts and fundamental laws of physics, enriched by deeper conceptual
explanations than typically found in undergraduate textbooks.

The primary purpose of this book is to provide an accessible
introduction for incoming graduate students, guiding them through the
evolution of quantum field theory, in particular, quantum electrodynamics
(QED). It emphasizes the conceptual growth of the theory within the
broader human quest to unravel the mysteries of the universe. To fulfill this
long-standing ambition, I have reviewed crucial topics comprehensively,
presenting fundamental equations alongside their conceptual significance in
the context of QED. This text serves as a practical resource, helping
beginners refresh their existing knowledge and bridge any gaps in their
understanding. Essential mathematical relationships are revisited to
establish a solid technical foundation, complemented by reviews of
electromagnetism, quantum mechanics, relativity, and high-energy physics,
all crucial for grasping quantum field theory.

Following the exploration of quantum field theory’s development and a
brief introduction to QED, this book further highlights the significance of
QED in applied physics, illustrating its importance in technological
advancement and innovation.
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Chapter 1

Vectors and tensors

1.1 Introduction
Vector quantities are defined by their magnitudes and directions. A complete set of orthogonal unit
vectors or basis vectors generate a vector space. Each vector in a vector space is expressed as a
linear combination of all the components represented by the orthogonal basis vectors. Vector
spaces are generated by a complete set of mutually independent basis vectors and the components
of vectors along the basis vectors are called coordinates. Each component of a vector corresponds
to a basis vector of the corresponding vector space, whereas the same vector in another vector
space (coordinate system) is described with a different set of components in terms of the
corresponding basis vectors without changing the magnitude of the original vector. Therefore,
vectors can be transformed from one coordinate system to another coordinate system by
transformation of each and every component without changing their magnitudes. The magnitude of
a vector can always be calculated from the square root of the sum of squares of each component in
a particular vector space.

These vectors can be transformed to other vectors when operated or multiplied with an
appropriate transformation square matrix. Multiplication with a square matrix transforms one
vector into another vector (e.g., rotation) or transforms from one to another vector space (e.g.,
Cartesian to spherical polar coordinates). Properties of the transformation matrices determine the
properties of the vector space as well. A set of all the transformation matrices of a vector space can
make a group if it makes a closed set including an identity matrix and if every matrix has an
inverse. A group of unitary matrices corresponds to a fundamental interaction as it satisfies the
requirements of conservative forces as well.

1.2 Vector calculus
A vector is usually represented in bold face letter V (or 

→
V ) in a three-dimensional space,

generated by three orthogonal basis vectors (ê1; ê2; and, ê3), which are also called unit vectors.
The corresponding components of any vector along these basis vectors are identified as V1, V2 and 
V3. For example, the well-known unit vectors of Cartesian coordinates ( î, ĵ, k̂) and the spherical
polar coordinates, (r̂, θ̂ , ϕ̂) are the basis vectors generating the corresponding three-dimensional
coordinate spaces, respectively. The coordinates, associated with these basis vectors are sometimes
identified as generalized coordinates. A unit vector along the direction of a vector V is represented
as:

V̂ =
V

∣ V ∣



(1.2)

A vector can then be expressed as a linear combination of all its components along the direction of
its basis vectors as:

The dot product of a vector with its basis vectors ên in an n-dimensional space, gives the
projection of the vector along the nth basis vector and may be called the nth component of the
vector along the unit vector ên. These components of a vector Vn lie along the basis vectors ên
and determine the direction of orientation of the vector in space. The direction cosines of a vector
V are the ratios of the components of a vector with the magnitude of the vector. The direction
cosine of the nth basis vector ên for each n is defined as V⋅en

∣V ∣
. The dot product of two vectors can

be seen as a projection of one vector along the other or vice versa, whereas the cross product gives
a vector (as a normal vector) coming out of the plane of two vectors (generated by the Kronecker
product of both vectors) in the perpendicular direction.

1.2.1 Vector identities
Some of the common vector identities in three-dimensional vector spaces are given as:

where i, j, k are the unit vectors in x-, y- and z-directions, respectively. A product of two vectors
in the same vector space can produce a symmetric and an antisymmetric combination of two
vectors. A symmetric combination or a dot product is a projection of any one of these vectors on
the other vector. It is a scalar quantity and can be considered as a scalar relation of two vectors.
The antisymmetric combination or the product of two vectors gives a vector perpendicular to the
plane generated by both vectors and the direction of the vector depends on the order of
multiplication of vectors and is named as a vector product. Therefore, the product of two vectors is
expressed in two terms that give a sum of a dot product and a cross product. The dot product gives
the sum of the product of parallel components calculated from a sum of diagonal elements, called
the trace of a diagonalized matrix, and the cross product gives the antisymmetric combination of
perpendicular components in the given space.

A cross product of three-dimensional vectors (in three-dimensional space) is written as a
product of three vectors Â × (B̂ × Ĉ) in the direction of a unit vector ê in the Cartesian
coordinates. Three-dimensional volume of a parallelepiped (in three-dimensional space) is
expressed as a determinant of the resultant square matrix in three dimensions Â ⋅ (B̂ × Ĉ). The

V = (V ⋅ e1)ê1 + (V ⋅ e2)ê2 + (V ⋅ e3)ê3

= V1ê1 + V2ê2 + V3ê3

A ⋅ B = B ⋅ A

A × B = −B × A

A ⋅ (B + C) = A ⋅ B + A ⋅ C

A ⋅ B = A1B1 + A2B2 + A3B3

A × (B + C) = A × B + A × C

A × (B × C) = B(A ⋅ C) − C(A ⋅ B)
A ⋅ (B × C) = B ⋅ (C × A) = C ⋅ (A × B)
(A × B) ⋅ (C × D) = (A ⋅ C)(B ⋅ D) − (A ⋅ B)(B ⋅ C)
A × B = (A2B3 − A3B2) + (A3B1 − A1B3) + (A1B2 − A2B1),



(1.3)

diagonal elements of this matrix give various terms of a scalar product. Off-diagonal elements of
this matrix represent components of a cross product, and a matrix M shows all the component in
higher dimensions.

while,

(B × A = −A × B)

M is a square matrix and M T  is its transpose.
In linear algebra, the diagonalization procedure is used to find the basis vectors. Vanishing of

off-diagonal components insures the orthogonality of basis vectors. Antisymmetric vector products
are associated with the product of two vectors perpendicular to the plane generated by two
multiplying vectors in a three-dimensional coordinate system. Angular momentum L=r×p is a
combined effect of moment arm →r  and three-dimensional momentum →p  perpendicular to a plane
generated by a cross product of both vectors. Similarly, torque is generated by a product of →r  (i.e.
the distance between the point of application of the force and the axis of rotation) and the applied
force →

F  perpendicular to →r . The antisymmetric nature of a vector product is related to the order
of multiplication of two vectors. Scalar quantities are produced by the dot product of two vectors,
and the vectors lose directionality in a dot product.

The variation of vectors in a vector space is described as a vector itself. The components of a
vector are written as a sum of projections of the vector along the corresponding coordinates (basis
vectors). These components contribute to the magnitude of a vector and cannot be changed
independently because the total magnitude of vectors is related to all components and has a fixed
ratio of each component as a direction cosine with the total magnitude. However, the derivatives
and integrals of vectors measure the change in magnitude and may just occur along one basis
vector without affecting the ratios of the other components. Orthogonality of basis vectors allows a
vector to change along one basis vector while keeping every other component constant. This is
mathematically given as a partial derivative (e.g., moving just along a straight line).

The vector operator 
→
∇  then describes the variation of vectors along each basis vector in the

form of partial derivatives and is expressed in the components form, calculating the change of
vector along each direction and expressing it as a linear combination of all basis vectors. The
vector operator →∇  can operate on a vector to describe its change in space in terms of the variation
in every component in the corresponding basis vector and is treated as a vector in itself. In
commonly used three-dimensional coordinate systems (Cartesian, polar and cylindrical), 

→
∇  or

simply ∇ is defined as:

AB = A⋅B+A×B + M

and BA = A⋅B+B×A + M T



(1.4)
in the usual notation of these coordinate systems, respectively. These vectors can be expressed in
any three-dimensional commonly known vector spaces such as the Cartesian coordinate, the
spherical polar coordinates and the cylindrical coordinates in terms of the corresponding basis
vectors of the coordinate systems. →∇  is a three-dimensional vector operator and is only defined in
the three particular forms of equation (1.4). These forms are obtained using the total derivative of a
function; using a general form of coordinates x1,x2,x3 instead of x, y, z coordinates such that:

df(x, y, z) ≡ df(x1,x2,x3) =
∂f
∂x1

dx1 +
∂f
∂x2

dx2 +
∂f
∂x3

dx3

This relation can be used to evaluate a total derivative with respect to any general variable z, such
that

df(x, y, z)
dz

=
∂f
∂x1

dx1

dz
+

∂f
∂x2

dx2

dz
+

∂f
∂x3

dx3

dz

 
Differentiation or integration of vectors could either be a scalar or a vector operation

depending on its operation along a particular component or in the entire vector space, evaluated as
the orientation along each of the basis vectors, respectively. It is scalar if it treats components as
variables, related to the magnitude of the components and ignoring the variation of other
components. The scalar form of differential operations extracts the contribution of one component
at a time, keeping the rest unchanged. It may therefore isolate the variation in one coordinate of
interest, getting rid of the contribution of all other variables due to orthogonality.

The three-dimensional differential operator is a vector operator and is written in terms of its
basis vectors and its components are partial derivatives of vectors with respect to one component
at a time, keeping every other component constant, This three-dimensional vector operator of
vectors is represented as the ‘del’ operator, which is a mathematical operation describing the
variation of a vector in the vector space. All the components of vectors and the components of
differential operators are in the same vector space. Due to the vector nature of this operator, it
affects the vector properties. Therefore, the vector operation 

→
∇  on a vector changes the magnitude

as well as the orientation of the vector in the same vector space. The vector product of two vectors
gives an array of elements due to the product of one vector on another and changes its direction if
the operated vector is changed.

The application of a vector operator on a scalar imposes vector behavior on a scalar function of
spacial coordinates. This operation called a gradient is a vector operator that changes a scalar into a
vector function, e.g., (

→
∇ϕ) makes a scalar field ϕ(x) vary differently in different directions and

the variation of function in space induces a vector characteristic. A few well-known examples are

∇ =
∂

∂x
î +

∂
∂x

ĵ +
∂

∂x
k̂ . . . . . . . . . . (a)

∇ = ê1
∂
∂r

+ ê2
1
r

∂
∂θ

+ ê3
1

r sin θ

∂
∂ϕ

. . . . . . . . . . (b)

∇ = ê1
∂

∂ρ
+ ê2

1
ρ

∂
∂ϕ

+ ê3
∂
∂z

. . . . . . . . . . (c)



gradients of temperature, pressure and density as these scalars change in space depending on their
direction. These gradients are very useful mathematical operators to determine the dynamics of
many-body systems such as fluids.

Differential operation on vectors can be performed in more than one way. A simple vector
operation given as a dot product of ∇ with a vector is called the divergence of a vector and is
similar to the dot product of two vectors. However, this product is written in a particular order and
the differential operator should be operated from the left-hand side and is given in the components
form as:

∇ ⋅ V =
∂V1

∂x1
+

∂V2

∂x2
+

∂V3

∂x3
= ∇1V1 + ∇2V2 + ∇3V3

It basically takes away the vector nature and extracts the magnitude of variation of a vector in
space as a gradient of the vector and represents it as a scalar which gives the net variation of all the
components of the vector parallel to all the basis vectors. The components of a del operator ∇1, 
∇2 and, ∇3 are components of the differential operator along the three basis vectors. In a way, this
operation is opposite to the gradient operation and extracts the net variation of the vector in space.
On the other hand, the divergence operator is just like a dot product of ∇ with another vector.
However, like other dot products, the divergence operator does not commute due to the non-
commuting nature of the differential operator, ∇ ⋅ A ≠ A ⋅ ∇. Therefore, the order of differential
operation is always important. Similarly, the vector product of ∇ with a vector is not
antisymmetric due to the non-commuting nature of the components of the differential operator.

∇ × A ≠ −A × ∇

 

The cross product of 
→
∇  with a vector is called the curl of a vector and gives a resultant vector.

The curl operation rolls a vector in three-dimensional space. Every component is associated with a
net effect of the perpendicular components of all other components of force along each basis
vector as a force is needed to roll it over. The following differential forms of vectors correspond to
the (a) gradient, (b) divergence and (c) curl of vectors. These vectors can always be represented in
the form of three components of a vector in the corresponding coordinate system and can be
expressed in a general form of the components of a vector in the relevant coordinates 
Ai = (A1,A2,A3) as:

A few commonly-used vector identities with a vector differential operator are:

∇ϕ =
∂ϕ
∂x1

ê1 +
∂ϕ
∂x2

ê2 +
∂ϕ
∂x3

ê3. . . . . . . (a)

∇ ⋅ A = ∇1A1 + ∇2A2 + ∇3A3. . . . . . . (b)
∇ × A = (∇2A3 − ∇3A2)ê1 + (∇3A1 − ∇1A3)ê2 + (∇1A2 − ∇2A1)ê3. . . . . . . (c)



(1.5)

(1.6)

Integration of vectors is much more complicated than the integration of scalar functions. All three-
dimensional vector operations are associated with the ∇ operator and are expressed in component
forms that are scalars in themselves and the directional effect is studied separately. The integration
of vectors is only possible in the presence of another vector such that either the variable of
integration is a magnitude of a vector and its direction is separated as a unit vector or we take a dot
product of this unit vector with another integrating vector to integrate the components. Basically,
differential and integration operations are meant for scalar functions of variables. The vector
nature remains unchanged by the spatial variation. The vector coponents of these operators appear
as unit vectors which describe how these operations will be seen in different directions.

The cross product of a vector emerges as parallelepiped, perpendicular to the plane generated
by two vectors. Now to understand the curl, imagine a three-dimensional flexible object and
stretch it with an independent vector force that has different components along each axis and give
it a random shape. This is basically what a curl operation does. Since it indicates different
components of a force, its volume integral can be related to a line integral because stretching by a
three-dimensional perpendicular force modifies its shape for a closed volume.

1.2.2 Integral identities
Both of these operations do not change the orientation of a vector. Some of the helpful integral
theorems of vector calculus can be listed as:

The unit vector n̂ is perpendicular to the area element da. A positive unit n̂ vector is coming out
of the area, while a negative unit vector goes inward. L(x, y) and M(x, y) are two functions in an 
xy-plane. The closed integrals indicate the wrapping of the area by a counterclockwise loop. If it is
wrapped clockwise, it will give a negative sign making area a vector quantity.

∇ × ∇ϕ = 0

∇ ⋅ (∇ × A) = 0

∇ ⋅ (ϕA) = A ⋅ (∇ϕ) + ϕ(∇ ⋅ A)

∇ × (∇ × A) = ∇(∇ ⋅ A) − ∇2A

∇ × (A + B) = ∇ × A + ∇ × B

∇ × (ϕA) = ∇ϕ × A + ϕ(∇ × A)
∇(A ⋅ B) = (A ⋅ ∇)B + (B ⋅ ∇)A

∇ ⋅ (A × B) = B ⋅ (∇ × A) − A ⋅ (∇ × B)
∇ × (A × B) = A(∇ ⋅ B) − B(∇ ⋅ A) + (B ⋅ ∇)A − (A ⋅ ∇)B

∮ [L(x1 ⋅ x2)dx1 + M(x1 ⋅ x2)dx2] = ∬ [ ∂M

∂x1
−

∂L

∂x2
] ⋅ n̂da

∫ (∇ϕ)dV = ∫ ϕda = ∫ ϕ ⋅ n̂da

∮ A ⋅ da = ∫ (∇ ⋅ A)dV = ∫ (A ⋅ n̂)da

∮ A ⋅ dl = ∫ (∇ × A) ⋅ da = ∫ (∇ × A) ⋅ n̂da



The above equations are describing the key principles of vector calculus for physical
applications. Equation (1.6) is usually referred to as Green’s theorem and is very useful in
describing the fluid equations and relates the line and surface integrals in two-dimensional space.
The second and third equations of equations (1.6) relate the volume integral with the surface
integral, and the third equation is known as Gauss's divergence theorem. The last equation of (1.6)
relates the surface integral to the volume integral as well and is known as Stokes’ theorem. These
integral operations are considered to be very helpful in vector calculus because they help to reduce
the order of integration or let you convert the integral into known variables. The angular area just
like the circular area element of a conical section at a given distance r is given for the variation in
angle between θ and θ + dθ and for small dϕ as dΩ = sin θdθdϕ and the volume of the cone is
given as:

dV ≡ r2drdΩ

where

dΩ = sin θdθdϕ

such that

o ⩽ ϕ ⩽ π/2, o ⩽ θ ⩽ 2π

 
Vector quantities are described as an array in space. The generalization of vectors can be

described as tensors. Scalars are zero-rank tensors, vectors have rank 1 and matrices have rank 2.
Matrices have two-dimensional arrays and can be shown on paper. Three-dimensional arrays or
studies of higher dimensional arrays cannot be written on paper and a mathematical way to define
them is evolved using the index form borrowed from the component form of matrices. Tensors
provide an easy way to conceptually develop higher dimensional arrays and develop complicated
algebra. At this point a collective notation can be introduced to handle higher-dimensional algebra.
For this purpose vectors can be expressed in matrix notation and then those matrices can be written
in a compact form in tensor notation.

The next section is devoted to the discussion of tensors. The matrix representation of vectors
makes it convenient to describe tensors in matrix representation. Tensors basically emerge from
transformation properties of vectors. Scalars are tensors of rank 0 due to their invariance from one
coordinate space to another coordinate space. Three-dimensional coordinate space is the same
space generated by three well-known sets of generalized coordinates or basis vectors, described as
Cartesian coordinates, spherical polar coordinates and cylindrical coordinates. A vector in three-
dimensional space can essentially be expressed by any set of three basis vectors in the
corresponding coordinate space.

Vectors need a transformation matrix to go from one coordinate system to another coordinate
system and are identified as tensors of rank 1. Scalars need no transformation matrix and remain
invariant as zero-rank tensors. Matrices need two transformation matrices to change rows and
columns independently and are tensors of rank 2. A product of two vectors can have a rank 2 or
less. A tensor that can be reduced to lower rank tensors is called a reducible tensor, whereas one
with a fixed rank is classified as an irreducible tensor. A combination of two vectors needs two
transformation matrices (for two rank 1 tensors). As mentioned earlier, in reference to scalar and
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(1.8)

vector products, the gradient operator increases the rank of a tensor by one and divergence reduces
it by one as divergence can be considered as a dot product of two vectors, which converts two
vectors into a scalar quantity. The curl operation gives the effect of variation of a vector along its
normal vector.

1.2.3 Generalization of vectors into matrices
Vectors are represented by arrays in a vector space giving all the components of a vector as
elements of the array. All vector operations can be described in matrix notation. If we consider an
n-dimensional vector space generated by a set of n number of basis vectors, a vector in this vector
space is represented as an array of n matrix elements. Transformation of a vector from one vector
space to another vector space of the same dimensions occurs through multiplication with a
transformation (square) matrix. Tensors can therefore be considered as the most general
transformation of a vector with n number of arrays and each array needs a transformation matrix to
transform from one vector space to another. A general expression of a vector with a finite number
of required (n × n) transformation matrices is called a tensor. We can understand tensors
considering the generalization of vector transformation.

A vector is expressed in terms of the generalized coordinates qj (for j = 1, 2, 3, …) in a vector
space. For example, a small displacement vector dx in a three-dimensional space can be written in
the component form as:

where, i, j and k are indices in three-dimensional space and have the integral values i, j = 1, 2 and
3. All the above relations can be generalized to n basis vectors, just giving the variation to these
indices as 1, … ,n. In the general form, we can construct two matrices, the identity matrix δij for 
i = j and antisymmetric matrix gij = 0 for i ≠ j such that gii = h2

i
 and the shortest distance

between two points is given as

d(s⋅s) = ds2 = ∑
i

δijhihjdqidqjêiêj

and can be written in the component form in equation (1.8) as:

This same expression, in the matrix form, becomes

ds ≡ dsi = ∑
j

hijdqjêj

dxi = ( ∂xi

∂q1
)dq1ê1 + ( ∂xi

∂q2
)dq2ê2 + ( ∂xi

∂q3
)dq3ê3

hij =
∂xi

∂qj

ds2 = g11dq
2
1 + g12dq1dq2 + g13dq1dq3

+ g21dq2dq1 + g22dq
2
2 + g23dq2dq3

+ g31dq3dq1 + g32dq3dq2 + g33dq
2
3
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=

which attains the compact matrix notation as:

ds2 = ∑
ij

gijdqidqj = ∑h2
i dq

2
i = h2

1dq
2
1 + h2

2dq
2
2 + h2

3dq
2
3

where, indices is and js determine the matrix elements of the transformation matrix gij and
can be expressed as:

gij =
∂x
∂qi

∂x
∂qj

+
∂y
∂qi

∂y
∂qj

+
∂z
∂qi

∂z
∂qj

= ∑
l

∂xl

∂qi

∂xl

∂qj
= ∑

l
hilhjl

 
If we consider an incoming state as a column vector and an outgoing state as a row vector, the

transformation of a row vector will be a conjugate matrix of the required transformation for the
column vector. A conjugate matrix here is defined as a transpose matrix with all the elements as
complex conjugates of the corresponding elements(aji = a

*
ij

). So we can talk about inverse
transformation for row and column vectors as the transpose of each other for square matrices.
Every vector needs a transformation matrix like gij and is therefore a tensor of rank 1.

These transformations are not limited to the coordinate systems only. Within the same
coordinate system, the change of reference points or rotation around a fixed point gives practically
a different set of basis vectors. Therefore, a transformation matrix is required to see the
transformation of components. Rotation matrices provide a simple example of tensors. They tell us
how the rotation about an axis by certain angle affects the components of a vector such that

[ ] = [ ][ ]

This equation tells us about the required factors associated with each of the components 
(x, y) when a vector is rotated by an angle θ. The inverse transformation tells if the primed
components are known, how we can figure out where they have rotated from by an angle −θ. Then
we need to simply find an inverse rotation matrix, which when multiplied by the original matrix
gives the identity matrix.

 

⎡⎢⎣ d→x1

d→x2

d→x3

⎤⎥⎦ ⎡⎢⎣ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤⎥⎦ ⎡⎢⎣ d→q 1

d→q 2

d→q 3

⎤⎥⎦x′
y′

cos θ sin θ

− sin θ cos θ

x

y

[ ] = [ ][ ]

= [ ][ ][ ]

= [ ][ ] = [ ]

x

y

cos θ′ − sin θ′
sin θ′ cos θ′

x′
y′

cos θ − sin θ

sin θ cos θ

cos θ sin θ

− sin θ cos θ

x

y

1 0
0 1

x

y

x

y
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So the inverse transformation matrix is the matrix of the same form but it takes the vector back
to the original reference frame. Another way to describe the inverse transformation is that the basis
vectors are inverted for that purpose. A transformation which gives an identity by multiplying with
the inverse transformation is called a unitary transformation.

When a vector is transformed from one vector space to another vector space preserving its
magnitude, the transformation is called a covariant transformation, whereas the inverse
transformation that can take back the transformed vector to the original vector space is called a
contravariant transformation.

Tensors exhibit the transformation properties of different quantities associated with the
inherited transformation of vector space in terms of transformation of its basis vectors
corresponding to two vector spaces. A matrix is composed of all the elements represented by c-
numbers where a tensor has the information based on how each and every individual basis vector
transforms as a linear combination of all the basis vectors of the transformed vector space.

The rotation of a three-dimensional vector transformed in 2D space around a fixed axis, for all
three components xj, for i = 1, 2 and 3 can be written as

The rotation of the xy-plane about the z-axis in matrix form can be written as:

=

and the most general form of three-dimensional matrix transformation is:

=

We can say that x′ is a transformed vector in primed coordinates that has been obtained by the
rotation of the same vector from the un-primed coordinate space as x, represented in tensor
notation in a compact form as:

and reads as the transformation of vector x into the vector x′ under rotation around an axis. The
rotation matrix aml  and one of its examples is in equation (1.11) as a rotation about the z-axis by an
angle θ. The transformation matrices aml  are always square matrices. A dummy index like ‘m’ in
the above equation is always summed whenever it appears in the superscript and the subscript of
two terms in a product. The dummy indices do not need to be next to each other. A dummy index
is a repeated index that cannot be used more than once in the same term. Therefore, a dummy
index can always be changed without affecting the results. For example,

j

x′1 = x1 cos(θ) + x2 sin(θ)
x′2 = −x1 sin(θ) + x2 cos(θ)

x′3 = x3

⎛⎜⎝x′1

x′2

x′3

⎞⎟⎠ ⎛⎜⎝ cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎞⎟⎠⎛⎜⎝x1

x2

x3

⎞⎟⎠⎛⎜⎝x′1

x′2

x′3

⎞⎟⎠ ⎛⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎠⎛⎜⎝x1

x2

x3

⎞⎟⎠x′l = ∑m aml xm = aml xm (summation is understood)
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anm = cimc
j
ic

n
j = crmc

s
rc

n
s = crmc

s
rc

n
s .

Dummy indices are summed up and cancel each other and they do not appear in the reult. They are
repeated as contravariant and covariant index and cancel each other. A successive transformation
of the same vector x into x′′ is then given by

x′′l =

In tensor notation, it is written as:

x′′l = aml x′m = aml (anmxn) = aml a
n
mxn = bnl xn

where,

bnl = aml a
n
m,

and m is a dummy index and a summation over m gives matrix elements of the new matrix bn
l
. So

a column vector basically needs one transformation matrix. This transformation can be a single
step transformation or takes in two or more steps. However, at the end, all those transformations
can be represented as a single transformation given by bn

l
 in the above equation.

This process can be continued through identifying tensors by their rank. The rank can be
defined by how many independent transformation matrices (with no dummy indiex) are needed to
transform. The rank of matrices can be easily linked by the transformation indices associated with
tensors such that we can consider a scalar quantity as a tensor of rank 0 as it is not described in
terms of its components in the form of basis vectors in a vector space. The number of rows and
columns of the transformation matrices depend on the number of basis vectors required to generate
the given vector space.

Scalars are zero-rank tensors and are moved within the vector space without transformation of
its components so they are just represented by their magnitude and not the direction. Vectors are,
on the other hand, a tensor of rank 1, basically because their movements within the vector space
are described in terms of a transformation matrix am

l
 and every element of the matrix element can

be defined as a direction cosine of the basis vector of one vector space to the basis vectors of the
other corresponding vector space.

A well-known example of a transformation matrix of a vector in Cartesian coordinates can be a
rotation of a vector about one axis. All of the successive rotations can be combined together as a
single rotation. We show two successive rotations of the same vector with a positive and negative
angle of rotation. We can continue this process by multiplication of the transformation matrices. If
we can multiply two matrices to one matrix, the rank of the tensor is reduced to 1.

aml a
n
m =

⎛⎜⎝a′11 a′12 a′13

a′21 a′22 a′23

a′31 a′32 a′33

⎞⎟⎠⎛⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎠⎛⎜⎝x1

x2

x3

⎞⎟⎠
⎛⎜⎝ cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0
0 0 1

⎞⎟⎠⎛⎜⎝ cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

⎞⎟⎠
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=

 
When θ + ϕ = 0 or θ = −ϕ we obtain the identity rotation

anl ≡ δnl =

 
The matrices aml  and anm are two successive rotation matrices about the z-axis (x3) by an angle

θ and ϕ, respectively, such that the net rotation appears to be a sum of those rotations. The
combination of these rotation angles helps to develop trigonometric identities such that the net
rotation comes out to be the sum of or difference of successive rotation angles, given in equation
(1.15). As a special case, we consider both rotations are by the angle of the same magnitude but
different direction giving an overall identity transformation given in equation (1.16). The identity
matrix in any vector space with any number of basis vectors has all the diagonal elements as unity
and off-diagonal elements as zeros. It is also worth mentioning that the transformation matrices
have to be square matrices as they transform vectors from one to the other coordinate space
without changing its dimensions. The same rule follows for tensors also.

1.2.4 Transformation of coordinates
Transformation matrices help to relate various coordinate systems. The most comonly used three-
dimensional coordinate systems are Cartesian coordinates (X) and the spherical polar coordinates 
(R). It is therefore important to know the transformation between the Cartesian and spherical polar
coordinates. Spherical coordinates get special importance due to the spherical nature of both long
distance fundamental forces, namely gravity and electromagnetic interactions. Both of them follow
the inverse square law of force and are represented by radial potential. The third commonly used
coordinate system is the cylindrical coordinate system (P). In this section we will express
transformation equations for these coordinate systems and we will use them to solve differential
equations later. We can express x, y, z coordinates in terms of spherical polar coordinates r, θ and 
ϕ for r2 = x2 + y2 + z2 as:

x = r sin θ cos ϕ

y = r sin θ sin ϕ

z = r cos θ

where θ is the polar angle and ϕ is the azimuthal angle. The three-dimensional coordinate
transformation can be written in the matrix form of direction cosines expressed as:

⎛⎜⎝ cos(θ + ϕ) sin(θ + ϕ) 0
− sin(θ + ϕ) cos(θ + ϕ) 0

0 0 1

⎞⎟⎠⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠
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(1.22
)(1.23
)

(1.24
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=

dXi = h
j
idRj

dX = HdR

and the small volume element transformation used for the transformation of integration
variable between two coordinate systems can be written as:

dxdydz = det Hdrdθdϕ = r2 sin θ cos ϕdrdθdϕ

The cylindrical coordinates P  are produced by a generalization of plane polar coordinates
such that we can express x, y, z coordinates in terms of cylindrical coordinates ρ, θ and the length
of a cylinder z for ρ2 = x2 + y2 as:

x = ρ cos θ

y = ρ sin θ

z = z

where θ is the polar angle and ϕ is the azimuthal angle. The three-dimensional coordinate
transformation can be written in the matrix form of direction cosines is written as

=

dXi = M
j
i dPj

dX = MdP

and the small volume element transformation used for the transformation of integration
variables between two coordinate systems can be written as:

and the volume element is given by

1.3 Generalization of matrices into tensors
Matrices are generalized to tensors. Matrices, as two-dimensional arrays, can be expressed on
paper and the higher-dimensional algebra is developed as a generalization for matrices as a part of

⎡⎢⎣ dxdydz⎤⎥⎦ ⎡⎢⎣ sin θ cos ϕ r cos θ cos ϕ − r sin θ sin ϕ

sin θ sin ϕ r cos θ sin ϕ − r cos θ cos ϕ

cos θ − r sin θ 0

⎤⎥⎦ ⎡⎢⎣ drdθdϕ⎤⎥⎦⎡⎢⎣ dxdydz⎤⎥⎦ ⎡⎢⎣ cos θ − ρ sin θ 0
sin θ ρ cos θ − r cos θ

0 0 1

⎤⎥⎦ ⎡⎢⎣ dρdθdz⎤⎥⎦dxdydz = detHdrdθdϕ

= r2 sin θ cos ϕdrdθdϕ

dxdydz = detMdρdθdz

= ρdρdθdz.
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linear algebra. However, three- or higher-dimensional arrays cannot be described on a piece of
paper. So a generalized form of higher-dimensional algebra is required to accommodate higher-
dimensional mathematics. Tensor algebra can be considered a straightforward generalization of the
matrix algebra. Vector algebra and matrix algebra can be derived from tensor algebra.

Vectors of tensors of rank 1 can be written as a single array. Matrices are tensors of rank 2
because they are two-dimensional arrays which can vary by two indices, one along the horizontal
side and the other along the vertical direction. Every element in the matrix is identified by a
corresponding row and column. Rotation of vectors can be described by one transformation matrix
equation (1.11) or as a rotation, expressed by the transformation matrix of rotation, given by
equation (1.14). This transformation can be expressed in the compact form by equation (1.15).
Second-rank tensors need two transformation matrices to transform each index and equation (1.15)
can be generalized as:

T ′lm= ∑
i
∑

j
aila

j
mTij = ∑

i,j
aila

j
mTij

where, i, j, … , k is a set of indices in one vector space and l,m, … ,n are in the other vector
space, all are three-dimensional indices. We can generalize these indices to any dimensions and the
rank of a vector can be determined independently. In the most general form, we can write a tensor
of rank N  in this form:

Tensors involve summation of dummy indices, which actually correspond to multiplication of
matrices and cause the reduction of the rank of a tensor. Matrix multiplication is only possible if
the number of rows of one matrix matches with the number of columns of the multiplying matrix.
It can be seen from linear algebra as Mlm × Mmn =Mln. In matrix form it reads:

=

The transformation matrix in n-dimensional form can be generalized to any larger dimension
matrix bln as:

bln =

 
Transformation of matrices occurs in the same vector space or from one space to another space

only if the dimensions of vector space remain unchanged. The requirement of the matching

T ′i,j,…,k= ∑l∑m ⋯∑n a
l
ia

m
j ⋯ ankTlm…n

= ∑l,m,…,n a
l
ia

m
j ⋯ ankTlm…n

⎛⎜⎝a′′11 a′′12 a′′13

a′′21 a′′22 a′′23

a′′31 a′′32 a′′33

⎞⎟⎠ ⎛⎜⎝a′11 a′12 a′13

a′21 a′22 a′23

a′31 a′32 a′33

⎞⎟⎠⎛⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎠⎛⎜⎝x1

x2

x3

⎞⎟⎠⎛⎜⎝a11 a12 ⋯ a1n

a21 a22 a2n

⋮

⋮‘
al1 al2 aln

⎞⎟⎠
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number of rows and columns of transformation vectors are obviously related to the dimension of
the vector space as the index of a tensor corresponds to the number of basis vectors defining a
vector space. All of the transformation matrices are always square matrices. Keeping in mind the
matrix multiplication requirement, the number of columns of the first matrix should be equal to the
number of rows of the second matrix and the resultant matrix has the number of rows of the first
matrix and number of columns of the second matrix. In the general form, we can write:

b(rows×columns) = a(rows×n)a(n×columns)

A dot product provides a good example as

a(1×3)a(3×1) = ( )

is given as a scalar or tensor of rank 0, which can just be a c-number.

b(1×1) = x1y1 + x2y2 + x3y3 ≡ (c-number)

However, a three-dimensional square matrix is produced as a matrix product of two vectors:

a(3×1)a(1×3) = ( )

 
The multiplication of transformation matrices requires the representation of rows as lower

indices and columns as upper indices to explain their ability to be able to multiply to give one
matrix instead of two, such that the above multiplication can be written as:

bcolumns
rows = anrowsa

columns
n ,

and n is called the dummy (or summed) index. In the tensor notation, a summation over a
dummy index is also called the contraction of indices that shows the multiplication of two
matrices.

1.3.1 Tensors
Tensors are defined in terms of the transformation from one frame of reference to another. Scalars
are tensors of rank 0 as they remain unchanged from one system to another. Vectors are tensors of
rank 1 or a single array (row or column) as they can transform from one coordinate system to
another coordinate system. One transformation matrix can only transform one array (vector) from
one frame of reference to another one and is identified as a tensor of rank 1. Matrices are defined
by n-dimensional arrays as a product of n-rows and n-columns (or n × n elements). Therefore,
two transformation matrices are needed to transform a matrix from one frame to another and they
are identified as second-rank tensors. Tensor representation becomes very useful as we can
generalize them to higher ranks easily, even if we cannot write them on two-dimensional sheets.
For this purpose, we generalized vector and matrix algebra to tensor algebra as well.

x1 x2 x3

⎛⎜⎝y1

y2

y3

⎞⎟⎠⎛⎜⎝y1

y2

y3

⎞⎟⎠ x1 x2 x3
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1.3.2 Covariant and contravariant tensors
Covariant vectors are written in terms of an array of its components or a column matrix. These
vectors can be transformed from one coordinate system to another coordinate system using
transformation matrices. And these transformation matrices are called tensors. Tensors give the
transformation of the vector space in terms of its basis vectors. So the transformation of a vector
from one coordinate system to the other systems occurs due to the transformation of basis vectors
and the projection of a vector along the transformed basis vectors is changed. The complete set of
basis vectors preserves the magnitude of the vector. This multiplication of two matrices to give one
matrix is required for transformation matrices and is indicated by representing rows as lower
indices and columns as upper indices to explain their ability to be able to multiply. Equation (1.29)
provides an example. The dummy index n indicates that the multiplication is only possible if the
number of columns of the first (left-hand side) matrix is equal to the number of rows of the second
(right-hand side) matrix. Quantum mechanically, outgoing conjugate states are represented as row
matrices and incoming states are represented as column matrices, and the product is just a number
equal to the probability. The column vectors or the tensors that have the same number of rows in
the dummy index are covariant tensors and the row vectors are called contravariant tensors or in
three-dimensional space the original vector x is a covariant vector and is transformed to a rotated
space as x′ through a rotation matrix as shown in equation (1.13). The rotated vector x′ is a
contravariant vector that can be rotated back to the original vector x, using the inverse
transformation. Similarly, in a four-dimensional formalism, we can consider a vector in stationary
frame as a covariant vector and in the moving frame as contravariant vector. Covariant vectors will
use Lorentz transformations and contravariant vectors can be transformed back to the stationary
frame by inverse transformation. To identify covariant vectors, we wrote equation (1.27) as:

T ′i,j,…,k= ∑
l,m,…,n

alia
m
j ⋯ ankTlm…n

where i → j → k changes counterclockwise for the antisymmetric tensor εijk. It is symmetric
under the change of sign counterclockwise and it creates an extra negative sign for a clockwise
change of indices. The benefit of tensor notation is that we can write any higher-order tensors in a
given space. The variation of indices indicates the dimensionality as i, j, k, … vary from 1 to 3 in
three-dimensional space and 1–4 (or sometimes 0–3) in four-dimensional space. Even the n-
dimensional generalization is straightforward making the variation of indices from 1 to n.
However, just for convenience, Latin indices are used for two and three-dimensional indices and
Greek indices are used for four-dimensional coordinates. Another convenience lies in the fact that
the order of their operation and multiplicity is indicated by the repeated indices and not how the
matrices are written. Covariant transformation does not change the magnitude of a vector even if
the basis vectors are transformed. A well-known example is the transformation of a scalar from
one coordinate system to another one without changing its magnitude. If a vector is brought from
an outside vector space to the previous vector space, it transforms using contravariant
transformation, that is the inverse of the covariant transformation and can be written as:

∂f
∂xi

=
∂f

∂x′l
∂x′l

∂xi
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l is summed over three coordinates, being a dummy index, such that the transformation of basis
vector can be given as

e′i=
∂xl

∂x′i
el

and the corresponding coordinate transformation can be written as:

dx′i=
∂x′i

∂xl
dxl

The covariant and contravariant transformations are the same in three-dimensional
coordinates. However, we can still define the contravariant transformation as:

dxi =
∂xi

∂x′l
dx′l

Covariant transformation of matrices, as second-rank tensors, can be written as:

A′ij=
∂xl

∂x′i
∂xm

∂x′j
Alm

The corresponding inverse transformation, called a contravariant transformation of matrices,
can be described as:

A′ij=
∂x′i

∂xl

∂x′j

∂x′m
Alm

If there is a combination of covariant and contravariant transformation, it could be written as:

A′i
j =

∂x′i

∂xl

∂xm

∂x′j
Al

m

If the mixed covariant and contravariant transformation reduces the rank of a tensor by two, it
is the inverse transformation. In this case we can write

δij =
∂x′i

∂xl

∂xl

∂x′j

and A is the measurable quantity, which is physically observable. Kronecker delta in equation
(1.37) insures the contraction of tensors and helps to remove a dummy index, changing it into an
identity matrix. A will be identified as an invariant quantity. The product of two vectors can
generate a tensor of rank 2 or a tensor lower than rank 2, if the product is taken in the same vector
space. Such a product is called a reducible tensor, and can then be written in terms of the
symmetric and antisymmetric product of two vectors of equation (1.3) and can then be written as
three possible terms of vector multiplication as
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which can then be represented as:

which is also called a reducible tensor as it can produce a sum of all possible tensors of lower-rank
terms. Here we have all of i, j and k indices in three-dimensional space. The difference between
covariant and contravariant indices in three-dimensional space is not possible, so all of the three-
dimensional transformations are covariant (real space) and directly related to each other by very
simple transformations. The four-dimensional space clearly distinguishes between the covariant
and contravariant transformations and the difference between them is clearly specified as the
measurable changes can be seen with respect to three-dimensional space.

1.3.3 Four-dimensional tensors
The four-dimensional space represents the coordinate space in relativity and instead of measurable
length of an object, it can describe an event in the physical sense. The four-dimensional analogue
of length is indicated as spacial length at a given time. Four-dimensional tensors or four-vectors
are expressed by three spatial coordinates and time as the fourth coordinate represented as

(x, y, z, ict) = (x1,x2,x3,x4)

where space is real and time is an imaginary coordinate such that the fourth coordinate x4 = ιct.
Four-dimensional tensor indices are usually Greek indices such as (α,β,μ, v,) etc. So the four-
vector transformation is given as xμ ≡ (ct,x, y, z) and μ runs from 1 to 4 as four-dimensional
transformation, x′μ, which is given by:

x′μ=
3

∑
v=0

avμxv

AB → A ⋅ B + A × B + M

AiBj = ∑
j

δijAiB
j +∑

j≠k

εijkA
jBk + AiBj

⟶ [ ]

+ (A2B3 − B2A3) + (A3B1 − A1B3) + (A1B2 − A2B1) +

⎡⎢⎣ A1

A2

A3

⎤⎥⎦ ⎡⎢⎣ B1

B2

B3

⎤⎥⎦ A1 A2 A3
⎡⎢⎣ B1

B2

B3

⎤⎥⎦ ⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠⎛⎜⎝ ⎡⎢⎣ 1
0
0

⎤⎥⎦ ⎡⎢⎣ 0
1
0

⎤⎥⎦ ⎡⎢⎣ 0
0
1

⎤⎥⎦ ⎞⎟⎠⎡⎢⎣ A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3

⎤⎥⎦
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avμ =

 
Since xμxμ = x2 = x2

0 − x2
1 − x2

2 − x2
3 is defined as the magnitude in four-dimensional space

we can write an infinitesimal transformation dx′2 as dx′2 = ημvdxμdxv with the metric tensor ημv
in Minksowski space for real time given by:

ημv =

 
To develop an intuition for covariant transformations, we can consider that a covariant

transformation is a transfer of information from the observer’s frame to a distant frame and the
inverse transformation is called the contravariant transformation and is responsible for
transformation of the event from a distant frame to the frame of observer. We can show that the
covariance requires that the transformation matrices are the inverse of each other for the covariant
and contravariant transformations and the above matrix is given as:

η′μv= aαμηαβa
β
v .

Now consider the inverse transformation, and using x′α = aαμx
μ, we can write

η′αβx′βx′α = ηαβa
β
μx′μaαvx′v= ηαβa

β
μa

α
vx′μx′v

such that we rewrite the above relations as:

η′αβx′βx′α = ηαβx
αxβ

or plugging in the values of inverse transformation, we can show that:

ηαβ(aβμa
α
v )x′μx′v= ημvx

μxv

Subtracting the right-hand term from both sides:

(aβμηαβa
α
v − ημv)x

μxv = 0

⎛⎜⎝ 1

√1 −
v2

c2

−v/c

√1 −
v2

c2

0 0

−v/c

√1 −
v2

c2

1

√1 −
v2

c2

0 0

0 0 1 0
0 0 0 1

⎞⎟⎠⎛⎜⎝1 0 0 0
0 − 1 0 0
0 0 − 1 0
0 0 0 − 1

⎞⎟⎠
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This leaves us only with

aβμηαβa
α
v − ημv = 0

and finally the invariance of the transformation matrix in the same vector space can be shown as:

 
All of the vector identities can be expressed in the convenient way in the tensor notation and

the vector algebra can be performed in a much more convenient way in the tensor notation. The del
operator is simply treated as a vector with its covariant and contravariant components by
transforming ∇i → ∂μ in four-dimensional space. Moreover, four-dimensional vectors are not
represented as bold face vectors. Therefore, we express a few useful vector indentities in tensor
notations, giving divergence and curl operators in the same notation as given below.

All of the vector identities and then vector operations in three-dimensional space can also be
obtained using three-dimensional letters as tensor indices instead of Greek letters as four-
dimensional indices. This is how conveniently a complete set of three-dimensional vector
identities can be transformed into four-dimensional identities or even transformations to different
vector spaces can be expressed using tensors. It is not only a compact notation, it simplifies the
vector calculus more conveniently by tremendous simplifications in its cumbersome calculations.
It happens because we do not need to write complete vector terms and simply use indices plus the
order of operation is easy to maintain due to the assigned indices. The covariant and contravariant
tensors are practically associated with the reference point. Therefore, within the same vector space,
contravariant and covariant transformations are almost similar so the mixing of upper and lower
indices does not matter in three-dimensional vector space. Tensors give a general description of
vectors and their products that lead to measurable quantities in physics and are used as an excellent
mathematical description of complicated quantities.

We live in three-dimensional space and all lab measurements are made in space at certain
times, so classical physics is studied in three-dimensional flat space. However, special relativity
includes time as an imaginary coordinate to understand relative motion of fast-moving objects.
Special relativity provides an excellent tool in high-energy physics and quantum field theory is
developed incorporating the relativistic motion of individual particles such that the lab
measurements can be translated into the individual particle properties using the appropriate frame
of reference.

All of the physical measurements are only a part of the full information, and they are possible
in four-dimensional space only. Most quantities in physics can be written as a combination of two

ημv = aβμηαβa
α
v

A ⋅ B = ∑
i

AiB
i

∇ ⋅ B = ∑
i

∂iB
i

(A × B)i = εijkA
jBk

(∇ × B)i = εijk∂ jBk



vectors with a dot or cross product. Scalar products represent the physical parameters that are
generated by a combination (e.g., dot product) of two vectors such as area that is generated by the
projection of one vector along another vector. A cross product gives a pseudo-vector and both of
them can be expressed in terms of tensors very well. The products of vectors are related to their
dimensionality such that a two-dimensional vector can give a scalar or a vector.

1.3.4 Application of tensors
Tensor relations are the same expressions that describe the algebra of scalars, vectors, matrices,
and multiple arrays all at one place in a very compact form differentiating them by rank only.
Scalars are tensors of rank 0, vectors have rank 1, and matrices are tensors of rank 2. However,
tensors of rank 3 and more can only be written in mathematical form. The most well-known
tensors are associated with coordinate space. The simplest vectors in three-dimensional space can
be transformed from one coordinate system to another one using direction cosines. Another
example of transformation matrices is a rotation matrix that transforms a spatial vector from an
initial state to a final state.

Tensors are effective tools to describe dynamics of many-body systems where individual
particle properties have to be integrated together and multiple parameters affect differently
different particles. It then becomes possible to express the transformation of a state of the system
into another state. A many-particle system composed of n particles can be considered as an array
of n components. This system is initially giving an n-dimensional vector and its final state is
another vector in n-dimensional state. Inter-particle interactions among these particles are
identified as a (n × n) transformation matrix. n then corresponds to the dimensionality of a tensor.

Each index of a tensor is transformed from the initial state to the final state of the system by
multiplying with a transformation matrix. The number of transformation matrices needed to
change the state of a system is called the rank of a tensor. In other words, the rank of a tensor is
defined by the number of indices associated with a tensor. Each index corresponds to an array in
one direction. As a rank 2 tensor, matrices correspond to a combination of initial and final states. A
transformation matrix indicates how to transform a column of initial state into a row of final state
or vice versa. This is what is related to contraction of an index.

The contraction of tensors by the presence of dummy indices leads to the reduction of their
rank, whereas their multiplication can lead to increase or decrease in their rank depending on how
the multiplication is done. Tensor calculus describes the variation of tensors in four-dimensional
space and geometric algebra takes care of the tensor operations in its own parameters. The rank of
a tensor cannot be greater than its dimensionality. Therefore, we can only express a tensor up to
rank 2 (matrix) in two-dimensional space. Since we can write a matrix in block representation, this
can help to express the four-dimensional space as a two-dimensional space–time sheet.

A connection between matter and energy can be established in Euclidean geometry in four-
dimensional coordinate space that relates space and time together. This four-dimensional
representation is the only way to describe the energy–momentum as interchangeable coordinates
and show the relationship between electric and magnetic fields via Maxwell’s equation. The
conjugate variables of position and momentum are related to the uncertainty principle or the
concept of wave–particle duality in quantum mechanics. Similarly, energy and time are shown to
be conjugate variables just as momentum and spacial coordinates can be related as conjugate
variables. These conjugate variables relate to quantum mechanics and help to develop a powerful
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mathematical technique of Fourier transformation that is a very powerful mathematical technique
for electrical engineers.

All of the physical measurements are only a part of the full information, and they are possible
in four-dimensional space only. Most quantities in physics can be written as a combination of two
vectors with a dot or cross product. Scalar products represent the physical parameters that are
generated by a combination (e.g., dot product) of two vectors such as area that is generated by the
projection of one vector along another vector. A cross product gives a pseudo-vector and both of
them can be expressed in terms of tensors very well. The products of vectors are related to their
dimensionality such that a two-dimensional vector can give a scalar or a vector.

1.4 Geometric algebra
Geometric algebra provides a tool to describe all kinds of combinations of vectors and defines
multivectors instead of giving dot and cross product. Higher combinations of vectors can be
defined in this way as well. In three-dimensional space, we define tensors of rank 0 as scalars, rank
1 as vectors and rank 2 as matrices. In four-dimensional space, tensors of rank 3 can also be
defined. So the rank of a tensor has to be lower than the dimensionality of a space to be expressible
in that space.

Three-dimensional space with real spatial components is known as Euclidean space and the
inner product of two vectors in this vector space is defined as (a,b) = a⋅b. The symmetric part of
the geometric inner product is written as:

a⋅b =
1

2
(ab + ba) =

1

2
[(a + b)2 − a2 − b2]

Inner product satisfies commutative and associative laws and is linear and reduces the rank of
combined vectors by one or contracting the same index of tensors. So the dot product produces a
zero rank tensor. It can be considered as area swiped by a vector to project on the other vector. This
area is the same if vector 1 approaches vector 2 or 2 approaches 1 and is a scalar quantity. Its
orientation does not matter.

The outer product of two vectors, on the other hand, maintains the same rank and therefore can
even be defined in two-dimensional space. It is an antisymmetric combination and gives a so
called pseudo-vector instead of a vector and is then defined as:

a ∧ b =
1
2

(ab − ba) =
1
2

[(a − b)(b − a) + a2 + b2]

Thus, the geometric product of two vectors (bi-vectors) is a mathematical quantity that
describes the antisymmetric combination of two vectors and is defined in exterior algebra or
geometric algebra. At this stage, we define outer product as:

ab = a ⋅ b + a ∧ b =
1
2

(ab + ba) +
1
2

(ab − ba)

In the component form in three-dimensional space, a bivector is completely defined as:

ab = a1b1 − a2b2 + c1c2 + (a1b2 − b1a2)e1e2 + (b1c2 − c1b2)e2e3 + (a1c2 − c1a2)e1e3
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Now we already know that we can write the product of two basis vectors in three-dimensional
space as:

ei ⋅ ej = 𝛅ij + 𝛆ijkek

This is exactly equivalent to the definition of bivector for basis vectors in 3D space, such that

a.b = a1b1 − a2b2 + c1c2 + (a1b2 − b1a2)

and

a∧b = (b1c2 − c1b2)e2e3 + (a1c2 − c1a2)e1e3

and that is exactly equal to the cross product in three-dimensional space.
If the bi-vectors are required to satisfy associative law:

a ∧ (b ∧ c) = (a ∧ b) ∧ c =
1

2
(abc − cba)

The outer product of three vectors is called a trivector. The concept of inner product and outer
product is much more used in higher dimensions. In three dimensions, wedge product and cross
product simply mean the same thing. Geometric algebra is much more needed for higher
dimensions since the applied physics are related to the measurement in Euclidean geometry.

1.5 Group theory
Finally, we introduce groups which provide useful tools to understand interaction theory in
relativistic quantum mechanics. Groups are a special type of sets which provide a very useful tool
to describe some physical problems in physics. We just give a very brief introduction of the topic
to familiarize the reader to be able to fully apply it to physical problems. Otherwise, group theory
in itself is a complicated subject and it requires a detailed independent study of the topic in itself.

A group is a complete set of elements which is a closed set under a (certain) binary operation.
Group theory in itself is a very specialized topic in mathematics and provides an efficient tool
when we need to study the physics of extended dimensions or the many-particle systems. Group
theory is not applied to physics. It is extensively used in several other fields of study. We are not
discussing group theory as a topic of mathematics but, just for completion, we give a brief
description of a group as the interaction theories can be understood without using the
representation of groups, especially the unitary groups. We will therefore include the definition of
groups and briefly introduce the representation of unitary groups only.

A group is a complete set of elements which is defined under a particular binary operation and
satisfies the following properties:

1. Closure property: This is a property which states that each and every binary operation
between two elements of a group produces an element of the same group. If * is the binary
operation of a group then

A*B = C

such that C is always a member of the same group.



2. Associative property: This states that the multiple of an element with a sum of two elements
is equal to the sum of the product of that element with individual multiplication of two sums
such that three elements (A, B, C) of a group satisfy the following relation

A*(B + C) = A*B + A*C

3. Identity element: The set has to have an identity element e for a defined binary operation
such that the application of binary operation of a group between the identity element and any
other element of the group gives back the same element of the group

A*e = A

4. Inverse: In a group every element of the group has an inverse of another element such that
the binary operation between the elements and the inverse gives the identity element, such
that

A*A−1 = e = A−1*A

Unitary groups are special type of group which are used to describe interaction theories and
provide frameworks for the extension of coordinate space along with the scalar particles
themselves. Unitary groups are the groups that include all the elements which consist of all the
square matrices and a product of these matrices with its own conjugate matrix results in an identity
matrix. Therefore, if we have M matrices as the elements of these groups then

M †M = MM −1 = I

where I is the identity element such that the determinant gives unity

det[M †M = MM −1] = 1

Rotation matrices provide a good example of unitary matrices as they give a unit determinant if
multiplied with its inverse. Unitary matrices give different angles of rotations if we can rotate a
system by a different angle. Rotation is physically facilitated by the angular momentum, so angular
momentum is called the generator of the rotation group. The generator is an operation which can
produce various elements of a set. A generator uses all possible operations (by an angle θ) which
generate a complete set of elements which make a group. If this set satisfies the conditions of a
group, then the generator of a group describes the useful properties of a group with a great physical
significance.

A detailed discussion of unification of forces using group theory, the associated extended
dimensions and the corresponding particle sector is relatively more technical and group theory
background is required. A discussion of the representation of groups is out of the scope of this
book. Any upper-level graduate book on high-energy physics can be used to study the unification
of gauge theories and the standard model.
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Chapter 2

Differential equations and the Lagrangian formalism

2.1 Differential equations
The dynamics of a physical system are associated with the applied force and conditions under
which the force is applied. Response of the system towards the applied force then depends on the
nature of the force and the structure and properties of the system. Dynamical behavior is
described in terms of the change in properties of a system in the presence of a potential or in
response to an applied force. For this purpose, symmetries and conservation rules of the
interaction are incorporated to reduce the number of unknowns.

Classical physics mainly deals with the overall behavior of a system in space with time under
the presence of an applied force like gravity and electromagnetic interaction, whereas quantum
mechanics deals with tiny systems and is used to study the detailed structure of a system at the
atomic and nuclear level. Relativity is applied to the study of mechanics of spatial objects from
large distances at cosmic scales. The combination of relativity and quantum mechanics can be
used to develop quantum field theory (QFT), which can be applied to study individual particle
dynamics including processes at the subatomic and sub-nuclear level. Fundamental interactions
play an important role in this. In short, the dynamics of everything is expressed in terms of
differential equations and their solution can give the path of the underlying mechanism.

Physical processes take place due to the effect of a force produced due to interaction with
other objects (particles) and is expressed in terms of differential equations which tell you the
behavior of the system at every measurable moment of time and a solution of this equation can
tell the trajectory of motion. Solution of these differential equations describes the dynamics of a
physical system. Integration of the differential equations gives the state of a system at any given
instant of time and helps to determine the trajectory of motion of the system. Understanding of
the dynamics of a system depends on the proper solution of the equation of motion. Therefore, we
devote the rest of this chapter to summarizing various methods of solving differential equations in
reference to the particular form of equations.

Second-order differential equations (SDEs) such as Newton’s laws of motion in classical
mechanics, the Poisson and Laplace equations of electrodynamics and Schrödinger’s equation in
quantum mechanics are good examples of equations of motion of the relevant systems and the
nature of the corresponding interactions. It is therefore important to briefly review basic
techniques of solving differential equations. Some of the standard techniques for solving standard
differential equations describe the dynamics of their systems.

2.1.1 Linear differential equations with constant coefficients
A linear differential equation is an equation comprised of a linear combination of various orders
of differential operators of a coordinate that operates on a function of the same variable. A
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standard linear differential equation of x related to a function f(x) is a polynomial equation of a
differential operator D, defined as D ≡ d

dx
 in powers of n such that, Dn = dn

dxn
, is written as:

(a0 + a1D(x) + a2D
2(x) + ⋯ + anD

n(x))y(x) ≡ Ly(x) = f(x)

Alternatively, we can rewrite the above equation as:

Ly(x) = f(x)

and

L ≡ (a0 + a1
d

dx
+ a2

d2

dx2
) + a3

d3

dx3
+ ⋯ + an

dn

dxn
.

The highest powers of D in the above equations, given by the index ‘n’, defines the order of
differentiation of the equation. The number of possible solutions of a differential equation depend
on the value of n, which is the highest-order derivative in this equation. Solutions of first-order
differential equations (FDEs) are possible by usual methods of integration. We do not discuss
higher-order equations here. However, higher-order equations can also be converted to lower-
order equations and similar procedures can be followed. Every nth-order differential equation
generally has n independent solutions and all of their linear combinations are also solutions of the
same equation. x here could be a one-dimensional variable or could even correspond to a
complete set of orthogonal variables; for example, in four-dimensional space it corresponds to a
complete set of coordinates as (x, y, z; ict).

A tensor representation of the most general differential equation in terms of the most general
coordinate system is:

∑ ∂ny(qi) = 0

where n is the order of the differential equation for finite n and qi is a set of generalized
coordinates for i number of mutually orthogonal coordinates, such that we can write:

y(qi) = y(q1)y(q2) ⋯ y(qi)

The easiest way to solve a higher-order differential equation is to convert it into a lower-order
equation, preferably an FDE. Quadratic equations and change of variables can lead to reducing
the order of differential equations. The number of possible solutions is related to the order of the
differential equation. An nth-order differential equation has n independent solutions. A linear
combination of these solutions is a solution of the same equation as well. This rule can be proved
by writing the Wronskian in terms of all the possible solutions to prove linear independence of
various solutions. Using this rule, a SDE gives two independent solutions and the linear
combinations of independent solutions can give more solutions.

The simplest form of the equation of motion of a system is obtained by taking f(x) = 0. In a
homogeneous SDE y(x) indicates the basic properties of a system. The general equation of
motion is written as:
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(a0 + a1D(x) + a2D
2(x) + ⋯ + anD

n(x))y(x) = 0

which represents a situation where the operator describes the dynamics of the system without
changing the fundamental properties of a system. The solution of the SDE generally describes
dynamics of such a system without changing its basic properties. A higher-order differential
equation typically can be converted into a lower-order equation, which can in turn be solved by
using standard integrals.

SDEs are the most common equations of motion and are usually used to describe the
dynamics of physical systems. The easiest method to solve a SDE is to convert it into an FDE and
solve it, if possible. There are various methods to solve the FDEs. There are basically two kinds
of equations, homogeneous and inhomogeneous equations. The most general homogeneous
equation is then written as:

D2y(x) + P(x)Dy(x) + Q(x)y(x) = 0

where the coefficients of the differential operator may depend on x. When it is not possible to
express the equation in a complete square for derivatives or the quadratic equation may be more
complicated, a series solution as an analytical function is a second option assuming that the
equation is solvable. Both solutions can be provided within the series solution as even and odd
functions. A general solution y(x) for a SDE has two values y1 and y2 such that a linear
combination of both solutions y = Ay1 + By2 is also a solution, for constant coefficients A and
B. The functions y1 and y2 are obtained as solutions of the first-order equation. Conversion of a
SDE to two FDEs is done using various methods including quadratic equations or making a
complete square. Solutions of a first-order equation are usually found using standard integrals. In
physics, sometimes a complicated first-order equation can be converted into an approximate
form.

2.1.2 Second-order differential equations
We will study in detail a homogeneous SDE for:

Ly(x) ≡ (a0 + a1
d

dx
+ a2

d2

dx2
)y(x) = 0

where a0, a1, a2 represent constant coefficients. In a homogeneous SDE, a differential operator L
has two roots given as:

L = L1L2,

which can produce two mutually independent solutions y1(x) and y2(x). These roots can be
obtained by representing L as a complete square and find two first-order forms of L, such that:

Ly(x) = 0 = (L1y1)(L2y2).

Since y1(x) and y2(x) are independent of each other, the two corresponding equations are 
L1y1(x) = 0 and L2y2(x) = 0. Using the partial fraction method, making a complete square of 
L or finding roots of SDE by solving the quadratic equation can be used to find L1 and L2 (two
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independent values) to be able to easily solve the corresponding first-order equations using
standard integrals. Homogeneous differential equations give a purely conserved system that
obeys certain conservation rules during dynamical changes. The dynamics of such systems are
related to the conservation rules of the relevant conserved forces.

2.1.3 Inhomogeneous equations
Another type of differential equations are inhomogeneous equations that cannot be converted into
a first-order equation. A general inhomogeneous SDE is written as:

Ly(x) ≡ (a0 + a1
d

dx
+ a2

d2

dx2
)y(x) = f(x)

One of the simplest methods to solve an inhomogeneous SDE of a physical system is to use an
analytical function as an infinite series solution that can be expressed as:

y(x) = ∑∞

n=0
cnx

n

where cn are the constant coefficients. Substitution of equation (2.7) into equation (2.6) gives a
solution of the inhomogeneous as an infinite series. An infinite series solution is the most
convenient method that can be used to find an analytical function. This methods gives two
solutions of differential equation (2.5) as infinite series and their linear combination will be a
solution as well. At this point a recurrence relation can be found among the coefficients of the
infinite series given by equation (2.4). It is also worth mentioning that we have been assuming the
existence of analytical solution of a differential equation to be able to write a series-solution. This
approach has to be used in detail for every particular case.

Every differential equation does not have an analytical solution always, especially the
inhomogeneous equation. Then various other methods can be used to solve these equations. Some
of the very well-known equations can give rise to the known form of solution and special
functions are constructed to solve such equations. Examples of a few well-known special
functions and the relevant special equations will be discussed in the text wherever those known
equations appear. These special functions are specially constructed for particular equations and
are used wherever those types of equations can be written.

An inhomogeneous second-order differential equation (2.6) can also be solved in two parts.
For every inhomogeneous equation one can write the homogeneous equation, that gives a
solution for the region where f(x) = 0. We call this solution a complimentary solution written as 
yC  and the other inhomogeneous part can be called yP  and the total solution is written as:

y(x) = yC + yP .

Another method to calculate a particular solution can be found around the region where the effect
of the L on the function can be maximized in terms of delta function. This method is called the
Green’s function method and it will be discussed later under a special topic.

Single variable equations are relatively straightforward equations, whereas the actual
dynamics of a physical system is not fully described by a single variable. Even ordinary objects
move in three-dimensional space and the applied force is not always parallel to the direction of
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motion. Therefore, the three-dimensional motion is studied in space and the change of
coordinates may be needed to solve such equations.

A one-dimensional equation of motion is a totally differential equation, whereas
multidimensional differential equations are expressed in terms of partial differential equations.
Solutions of total differential equations or one-dimensional equations are usually possible using
standard integrals tables, however. However techniques are needed to convert partial differential
equations of various coordinate systems to multiple single variable (total) differential equations,
which can be solved using standard integrals.

2.2 Differential equations with several variables
Movement of a physical system cannot be easily constrained in one direction only. Actual
dynamics is described in space. Physical space can be considered a vector space expressed as a
complete set of three basis vectors (mutually independent orthogonal coordinates) related to the
movement in three-dimensional space. In this situation a differential operator becomes a vector in
the coordinate space, which can be expressed as:

→
∇ ≡

∂

∂x

→
i +

∂

∂y

→
j +

∂

∂z

→
k

For mutually independent x, y and z coordinates. The partial derivatives give the opportunity to
integrate the function with respect to each individual variable, assuming all other variables
remain constant for that purpose. Special techniques are used to solve partial differential
equations in various coordinates. We discuss below some of the commonly used techniques.

2.2.1 Partial differential equations
Partial differential equations can also be either homogeneous or inhomogeneous. Second-order
partial differential equations are used to indicate the motion of an object in space; three-
dimensional for non-relativistic motion and four-dimensional for relativistic motion.
Homogeneous equations have a complete solution and nonhomogeneous behavior of equations of
motion indicates some special behavior. The homogeneous equations of motion in the absence of
any external force have standard solutions. They are relatively easy to solve as the separation of
variables can be done in each coordinate and then each variable can be handled separately. So
each solution can easily be expressed as a product of the independent solution in each coordinate
system. The standard form of a three-dimensional second-order partial differential equation is
written as:

[a2∇2 + a1∇ + a0] f(x, y, z) = 0

The simplest form of a SDE is obtained from a1 = 0, such that:

[a2∇2 + a0] f(x, y, z) = 0

and using the form of ∇2 in various coordinates obtained by squaring equation (2.8) of
chapter 1, the trajectory of motion can be studied in various coordinate systems. We use equation
(2.10) as an example and the equation of motion in Cartesian coordinates can be given as:
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∇2f(x, y, z) = ( ∂ 2

∂Z 2
+

∂ 2

∂y2
+

∂ 2

∂z2
) f(x, y, z) = 0

with the solution:

f(x, y, z) = X(x)Y (y)Z(z) = Ae±ι(kxx+kyy+kzz)

for positive values of (a0) where the coefficients kx, ky and kz are all determined from actual
equations and the constant A is evaluated from the initial conditions. The positive exponential is
for positive momentum and negative exponential for a negative momentum for an incoming
particle.

For relativistic motion, time is added as the fourth dimension and we define the differential
operator in four-dimensional (→

x , ict) space as

(
→
∇, ι

d

cdt
)f(

→
x , t) ≡ ( ∂

∂x

→
i +

∂

∂y

→
j +

∂

∂z

→
k + ι

d

cdt
)f(x, y, z; t) = 0

and the corresponding second-order equation in four-dimensional space is written as:

∇2f(x, y, z) −
d2f(x, y, z)

c2dt2
= ( ∂ 2

∂Z 2
+

∂ 2

∂y2
+

∂ 2

∂z2
−

d2

c2dt2
) f(x, y, z; t) = 0

 
The solution of this equation will give the propagation of the wave in three-dimensional space

where the time dependence corresponds to the change in phase with time and the familiar form of
the four-dimensional differential equation. Using e∓ E

h̸
t as a time-dependent solution gives

f(x, y, z; t) ≡ X(x)Y (y)Z(z)T (t) = Ae±(kxx+kyy+kzz)e
∓ι E

h̸
t

For well-known classical wave equations f(x, y, z; t) is the wavefunction and k is its solution,
where k corresponds to the wave number defined as (k = 2π

λ
) for λ the wavelength and ω = E

h̸

the angular frequency, ω = 2πf with f as the frequency of the wave, and ω corresponds to the
phase of the wave at a given time.

A solution of a differential equation in an appropriate coordinate system is more convenient
than other choices. The most well-known fundamental forces are electromagnetism and gravity,
which are both central forces and obey the inverse square law. For these two forces, spherical
coordinates in particular are the most useful coordinates for gravity and electromagnetically-
bound systems. Classical rotational motion is properly described by polar coordinates. It is
always convenient to study circular motion (or rotation) in polar coordinates, whereas Cartesian
coordinates are appropriate to study linear motion in flat space.

A general scheme of calculation of second-order easily solvable differential equations can be
expressed as:

1. Separation of variables (if possible).
2. Express a solution in terms of a product of individual variable solutions.
3. Solve individual variable SDEs as independent equations.
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4. Convert SDEs to first-order equations using the partial fraction method, making a complete
square or treating derivatives as a function in the quadratic equation.

5. First-order equations are solved using the well-known standard techniques. If needed, we
can define a complete solution of the equation as a linear combination of two solutions.

6. These solutions can be evaluated using initial conditions or boundary conditions.

If the SDE cannot be converted into an FDE easily, then we can write the solution of each
variable (assuming an analytical solution) as an infinite series of functions of every involved
single variable:

1. Write an infinite series solution of each variable.
2. Differentiate these series solutions twice and insert them back into the SDE.
3. Compare coefficients of the same power of the variable and find the relationship among

various coefficients. We can find out two solutions from the same function's solutions as
even or odd coefficients.

4. Sometimes, these series can be summed up and expressed as a single function.
5. A series solution can also be used to solve general differential equations with analytical

solutions.

For an analytical solution of a differential equation, the Wronskian method can then be used
to relate two solutions as well. If we cannot separate variables in one coordinate system, we can
try another more appropriate coordinate system and separate variables. On the other hand, if a
completely analytical solution is not possible, then we have to use completely different methods
to solve such equations. We will discuss those solutions later. However, we need to give a quick
review on multivariable equations in polar coordinates.

2.2.2 Differential equations in polar coordinates
We begin with the substitution of equation (1.4b) from chapter 1 into equation (2.10) and, after
some algebra, separation of variables is possible in the following form in spherical coordinates
that are obtained by squaring the differential equation in spherical polar coordinates:

∇2y(r, θ,ϕ) = ( 1

r2

∂

∂r
(r2 ∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2sin2θ

∂ 2

∂ϕ2
)y(r, θ,ϕ) = 0

and the general solution of the above equation in spherical polar coordinates can be
expressed as:

y(r, θ,ϕ) ≡ R(r)Θ(θ)Φ(ϕ)

where R(r), Θ(θ) and Φ(ϕ) give three independent solutions. Circular motion is always an
accelerated motion, and the effect of angular momentum and acceleration produced due to the
centrifugal force cause the separation of the variables to be much more complicated as compared
to the Cartesian coordinates in (2.13). Spherical coordinates are not easy to separate out. Special
functions are then the solution of these equations which are expressed in the form of summations.
Therefore, the function f can be expressed in the form of special indices n, l, m such that:

f ≡ RnlP
m
l eιmϕ
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These equations are relevant to understand the orbital motions of planets in classical mechanics
and are used to solve Schrödinger’s equation in spherical polar coordinates. These equations,
incorporating Coulomb potential, give the distribution of electrons in atoms. Since these solutions
lead to very important equations, we will solve them in detail when we come across such
equations in a physical system.

Solution of differential equations in cylindrical coordinates is even more complicated.
Maxwell’s equations indicate the existence of a electromagnetic solenoid and the motion of a
charged particle in an electromagnetic field can sometimes be described well in cylindrical
coordinates. In such cases, we need to use the square of equation (1.4c) from the first chapter for
the same differential operator, and the equation of motion in three-dimensional space can be
written in cylindrical coordinates as:

∇2y(ρ, θ, z) = ( 1

ρ

∂

∂ρ
(ρ ∂

∂ρ
) +

1

ρ2

∂

∂θ2
+

∂ 2

∂z2
)y(ρ, θ, z) = 0

and:

y(ρ, θ, z) ≡ P(ρ)Θ(θ)Z(z)

Other physical systems of cylindrical shapes include examples of motion of liquids in pipes
or movement of current in cables, which can be described in cylindrical coordinates. However,
the solution of a cylindrical equation may not always be too complicated. It may even be
relatively much simpler under certain approximations. Once we learn the techniques of solving
basic differential equations, we can apply those techniques to any complicated physical situation
and some valid approximations for long transmission lines and long pipes may make it much
simpler.

2.2.3 Nonhomogeneous partial differential equations
A general inhomogeneous equation of motion in three-dimensional space can be written as:

[a2∇2 + a1∇ + a0]y(x, y, z) = f(x, y, z)

In the presence of an external force, an equation of motion for a system can be written in
terms of a SDE. Well-known equations of motion in three-dimensional space are Newton’s
second law of motion, the Poisson or Laplacian equation and Schrödinger’s equation for a
stationary state. These common SDEs are written in the form of differential operator ∇2,
representing the kinetic energy expressed in appropriate coordinate systems. The choice of
coordinates depends on the nature of the force. We mainly discuss the equations of motion related
to fundamental forces. For central forces, the potential depends on the radial distance and angular
dependence can be separated out as an independent variable. So the angular part of the equation
may be solved by using spherical polar coordinates.

Gravity and electromagnetic forces are both radial forces and the associated potential is radial
potential. Our main topic in this book is tiny objects and electromagnetic force dominates over
gravity at small distances. We will therefore discuss electromagnetism as an example at small
scales. In quantum electrodynamics (QED), due to the radial nature of the electromagnetic
interaction, spherical coordinates in three dimensions are usually chosen to understand spatial
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behavior of QED in spherically symmetric potentials. Right now, we do not need to consider
more complicated coordinate systems such as curvilinear coordinates because they do not have
any natural global basis. All coordinate systems are mutually independent and their unit vectors
are written in terms of basis vectors. The solution of such equations is expressed as a product of
three independent functions f in the relevant coordinates such that:

f ≡ f(x, y, z) = X(x)Y (y)Z(z)

in Cartesian coordinates, whereas:

f ≡ f(r, θ,ϕ) = R(ρ), Θ(θ), Φ(ϕ)

in spherical polar coordinates and:

f = f(ρ, z,ϕ) = P(ρ)Z(z)Φ(ϕ)

in cylindrical coordinates.
For a completely solvable equation, the correct form of the solution can be obtained using

initial conditions of the system and the nature of the applied force. Considering a single starting
equation may not be enough to find all of the unknown parameters of a system. If boundary
conditions are not enough to find all unknown parameters of a system, then with the help of
detailed boundary conditions, we can write more than one equation of motion for a system.

We will take an example of simple radial potential that appears in quantum mechanics and
electrodynamics. The functions of the corresponding variables can be simplified and converted
into a form that can be integrated easily. Then each of the definite integrals can be solved by
using standard integrals. A typical example of central potentials could be:

d2f

dx2
+

d2f

dy2
+

d2f

dz2
=

f

r

In such systems, changing Cartesian coordinates into polar coordinates can help to solve
such equations which may make it possible to use the separation of variables, and then we can get
three independent integrals. This type of radial potential is expressed in a three-dimensional
equation of spherical coordinates by integrating over the polar and the azimuthal angle as
homogeneous equations. The radial part is the only part where various integration techniques can
be applied for the corresponding radial potential. A general partial differential equation in
spherical polar coordinates can be written as:

(∇2 + a1∇ + a2)y(
→
r ) = ( k1

r
+ k2)f(r)

→
r

where k1 and k2 are some constants associated with the potential. Such equations cannot be
easily solved in Cartesian coordinates as the radius of a sphere is defined as:

r2 = x2 + y2 + z2

and they depend on all three coordinates so they are solvable in spherical polar coordinates where
every coordinate is an independent coordinate. Such equations cannot be easily solved in



Cartesian coordinates as the radius of a sphere is defined as a coordinate independent of any
angular coordinate. In general, an integral in Cartesian coordinates can be converted into
spherical polar coordinates and cylindrical coordinates by using an appropriate choice of
coordinates for ∇ as given in the last chapter:

The equation of motion in Earth’s gravitational field is relatively simple as we can always treat
gravitational pull in the z-direction. This type of gravitational radial potential is expressed in a
three-dimensional equation below as:

d2f

dx2
+

d2f

dy2
+

d2f

dz2
=

f

z

If the length of the four-momentum is represented as P 2
tot, such that:

p2
x + p2

y + p2
z −

E 2

c2
= P 2

tot

These differential equations are usually so specific to the physical system that the solutions of
such equations will be discussed when they appear in real physical systems. The only specific
case of an inhomogeneous equation is related to an infinite source and their solutions are given by
Green’s function as will be discussed later.

2.3 Lagrangian formalism
The applied force is known to navigate the motion of a system. The effect of force is measured
from the applied potential. In moving fundamental particles, the effect of fundamental force is
determined from the potential due to the presence of other particles in the system. Force applied
due to the presence of another particle in the system is determined from the impact of the force
due to another interacting object and creates potential for an incoming object. The total energy of
the system is then called the Hamiltonian which includes all forms of energy including the kinetic
and potential energy and is required to be conserved. However, dynamics is controlled by the
energy that is available to perform an action. This available energy depends on the kinetic energy
of the object in the presence of the applied potential. The total energy available to perform any
work is determined by subtracting the potential energy V  out of its kinetic energy T . This net
energy L is classically defined as the Lagrangian of a system. This net energy is available to
perform an action and can be identified as the energy of a system which can be used to perform a
work (or instantaneous action) at any given instant of time.

∫
∞

−∞
f(X)dX = ∫

∞

−∞
X(x)dx∫

∞

−∞
Y (y)dy∫

∞

−∞
Z(z)dz

= ∫
∞

0
f(R)dR∫

+1

−1
f(cos θ)d(cos θ)∫

2π

0
f(ϕ)dϕ

= ∫
∞

0

f(ρ)ρ2dρ∫
π

0

f(θ)dθ∫
π/2

0

f(ϕ) sinϕdϕ
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Particles are identified by their intrinsic properties like mass and charge, and they acquire
kinetic energy and momentum if affected by any external force. The dynamics of a system is
determined by the applied force and the nature of the object and the Lagrangian gives the net
effect of the interaction by including both the kinetic and potential energy. So, the Lagrangian
formalism indicates the impact of interaction (potential). At the microscopic level, this interaction
is related to fundamental forces which are associated by the intrinsic properties of particles.
Therefore, the invariance of the Lagrangian under certain transformations is analyzed in the
Lagrangian formalism using Hamilton’s variational principle for dynamic equations of a system
to determine the symmetries and define the related conservation rules. The Lagrangian of each
interaction is expressed in terms of its potential and the invariance of the Lagrangian gives the
symmetries of the Lagrangian, which is associated with its conservation rules. This Lagrangian
formalism is derived from the constant action principle using the variational principle for many
coordinate systems.

2.3.1 Invariance of the Lagrangian and conservation rules
The Lagrangian is defined as the difference between the kinetic and potential energy and
determines the net energy of a system which determines the action of a system as a net response
of a system. For this purpose, we can define the Lagrangian of a system in terms of kinetic and
potential energy. For example, if we consider a hypothetical satellite of mass m revolving around
Earth and ignore any other effect for the moment, the Lagrangian L is expressed in terms of the
position vector R ≡ R(r, θ,ϕ) in spherical coordinates and in the gravitational field. The
Lagrangian as a function of spacial coordinates, spatial velocities and time is written as:

L ≡ L(r, θ,ϕ, ṙ, θ̇, ϕ̇; t) =
1

2
mṘ

2
− mgR(r)

because the kinetic energy is a function of spatial velocities, whereas the potential energy
depends on spacial coordinates. If the system is in dynamical equilibrium, the variation in the
Langrangian is written as:

δL =
∂L

∂r
δr +

∂L

∂θ
δθ +

∂L

∂ϕ
δϕ +

∂L

∂ṙ
δṙ +

∂L

∂θ̇
δθ̇ +

∂L

∂rϕ̇
δϕ̇ +

∂L

∂t
δt

At this point, we can write the above equation in a compact form using generalized
coordinates q that indicate any set of independent coordinates, in any coordinate system or a
vector space:

δL =
∂L

∂q
δq +

∂L

∂q̇
δq̇ +

∂L

∂t
δt

The Lagrangian can then give the information of interaction and can easily be used to
understand the dynamics of a system. It is also worth mentioning that general information about
the applied force and the nature of the force can be determined from the properties of the
Lagrangian. In other words, the impact of a force or its potential on a physical system can tell the
nature of the applied force including the symmetries and conservation rules associated with the
applied potential.
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2.3.2 Symmetries and conservation rules
The principle of least action tells us that the minimum energy required to perform an action is
equal to the difference of energy between the initial and final state. Quantum mechanics of a
single particle is in no way similar to the classical description of single-particle mechanics.
However, we can use the principle of least action (or stationary-action principle) and the
Lagrangian formalism of classical mechanics to solve problems of more complicated quantum
mechanical systems. Before the discussion of this approach, we need to define a system by a set
of n degrees of freedom called generalized coordinates qj where j = 1, 2, 3, … ,n. All of these
coordinates are mutually independent. We can define dynamics of such a system by a function of
generalized coordinates qj and generalized velocities q̇j (the time derivative of qj) as: f(qj, q̇j; t)

and q̇j =
∂qj
∂t

 The energies of a system can be defined in this form. Any action performed by a
system is determined in terms of the available energy at a given time t. Just to understand the
dynamics of a system, we define a quantity called Lagrangian L such that:

δL(qj, q̇j; t) = δ(T (q̇j) − V (q, q̇j)) = 0

V  can be a function of both qj or q̇j or even a constant. Net energy L can perform an action 
S in a given interval of time dt as δS = Ldt. The Lagrangian can also be the ability to perform
an action at any given instant of time, whereas the total action is calculated from a Lagrangian as:

S = ∫
t

0
Ldt

Now the ability of a system to be able to perform an action at a given time t can be
calculated using the principle of least action as:

δS = δ∫
t

0
Ldt = 0

such that the principle of least action shows that the variation in Lagrangian δL at a given
time t satisfies the relation:

δL = δ[ ∂L

∂qj
+

d

dt

∂L

∂q̇j
] = 0

This condition is only satisfied if the term in parenthesis vanishes such that the minimum
action remains constant:

∂L

∂qj
+

d

dt

∂L

∂q̇j
= constant

Equation (2.27) is identified as the famous Euler–Lagrange equation which gives a set of
equations corresponding to each generalized coordinate qj as a separate conservation rule. These
equations can then be solved as independent equations. This equation provides a powerful tool to
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study dynamics of a physical system in general including the low-energy classical limit to
relativistic energy. It is also important to note if V ≠ V (qj, q̇j) then equation (2.27) reads as:

d

dt

∂L

∂q̇j
= constant

then qj is called a cyclic coordinate and it implies that:

∂L

∂q̇j
= constant.

Physical coordinates associated with q̇j represent a set of conserved coordinates. For example, if 
qj represents the displacement in the x-direction, then the velocity in that direction or the
associated momentum px is conserved. A linearly moving object with a constant potential
exhibits spatial symmetry and leads to the conservation of linear momentum.

Since qj’s make a set of generalized coordinates, they are required to be orthogonal to be
mutually independent of one another. This formalism can even be applied to quantum mechanical
systems and various techniques can be applied to solve these equations. Basic concepts of
quantum mechanics are discussed and applied to understand the Euler–Lagrange equations.

We deal with tiny systems and individual particle interactions in QED and the majority of
such systems exhibit relativistic motions. Therefore, the interactions among particles are studied
in four-dimensional space. These interactions take place at certain time in space. Dynamics of
such systems is described by four-momentum (energy–momentum together) in four-dimensional
coordinate space (space and time). Instead of talking about energy and moment conservation
separately, we discuss the four-momenta conservation and the mass–energy transformation is
incorporated following Einstein’s theory of relativity. Einstein’s equation of relativity, E = mc2,
defines a relationship between energy and mass. It further tells us that the energy of the incoming
states is transformed into the momenta of outgoing particles and the transformation of momenta
occurs via transformation matrices. Energy can either be converted into mass or vice versa.
Properties of these transformation matrices help us to understand the nature of interactions.
Contraction of tensors assures the existence of interactions through the assignment of covariant
and contravariant vectors to incoming and outgoing particle states. Interaction is an action of
force and Lagrangian formalism describes the mechanism of interaction. The Euler–Lagrange
equations can be rewritten as:

∂L

∂qj
= −

d

dt

∂L

∂q̇j

which states that the variation in L with respect to the generalized coordinates qj is equal
and opposite to the rate of change of the derivative of the Lagrangian L with respect to q̇j. Since
the kinetic energy T is just a function of generalized velocities q̇j and V ≠ V (qj) we find:

d

dt

∂L

∂q̇j
= 0
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showing that the conservation of the Lagrangian is associated with the concept of a cyclic
coordinate. Cyclic coordinates describe the symmetries of the Lagrangian under certain operation
and it corresponds to a conserved quantity. For example, a translational invariance of the
Lagrangian is written as:

L(x1,mẋ1; t) = L(x2,mẋ2; t)

and it states that the Lagrangian or ability to perform an action for a system remains unchanged
even if a system is moved from point 1 to 2, giving:

d

dt
( dL

dp1
) =

d

dt
( dL

dp2
)

which leads to the conservation of linear momentum dp
dt

= 0. Linear momentum P corresponds to
a cyclic coordinate in this case and it has to be conserved during translation to satisfy the above
equation. We rephrase it as the invariance of the Lagrangian under translation or translation
symmetry of the system which leads to the conservation of linear momentum. This simple
example is generalized in terms of a relation between symmetries and conservation rules and
plays a big role in understanding the various interactions.

2.3.3 Unitary symmetries
A group of symmetries is called unitary symmetries and is more relevant for fundamental
interactions. Classically, conservation rules are associated with the equations of constraints such
as momentum conservation which can only be employed if the linear translation is constrained to
the objects with constant mass or the conservation of momentum is imposed to define elastic
collisions. A detailed discussion of the representation of unitary groups and its symmetries is out
of the scope of this book.

2.3.4 Lagrangian formalism and various interactions
In this section, we discuss the role of Lagrangian formalism in describing the nature of an
interaction. Lagrangians of various interactions describe all the properties of the related
interaction. Invariance of the Lagrangian under certain transformations describe symmetries of
the interaction which is described by the Lagrangian. The corresponding Euler–Lagrange
equation leads to rules related to the cyclic coordinates of the Lagrangian, defining conservation
rules of the interaction. Every interaction is described by a particular Lagrangian and the
symmetries and conservation rules of the Lagrangian define the nature of the relevant interaction.

Euler–Lagrange equations as equations of motion of a system are SDEs and are commonly-
appearing differential equations in various fields of physics including quantum mechanics and
electrodynamics. A linear differential equation is a one-dimensional polynomial equation defined
as:

a0 + a1(x)y + a2y
/ + a2(x)y// + ⋯ + an(x)yn = 0

It is known that dynamics of most of the physical systems can be described as SDEs.
Poisson’s and Laplace’s equations of electrodynamics describe the properties of interacting
charges and their dynamics. Schrödinger’s equation in quantum mechanics, on the other hand,
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describes the equation of motion of tiny objects at the quantum scale using wave–particle duality.
So Schrödinger’s equation along with Poisson’s and Laplace’s equations are equations of motion
of an electromagnetically interacting quantum mechanical system. The dynamics of such a
system can be understood from the solution of the relevant differential equations along a line, on
a surface or in a three-dimensional space.

General solutions of SDEs describe the equation of motion of these objects using various
interactions. We can look at a couple of generic equations in various coordinate systems. Starting
with a one-dimensional general differential equation, the dynamic behavior of a function f(x)
can be understood by the following equation. We consider a general one-dimensional equation for
k as a constant of motion:

d2f

dx2
= k2f

this equation can be reduced to two FDEs by rewriting it as:

( df

dx
− ik)( df

dx
+ ik)x = 0

giving two solutions:

f1(x) = C1e
ikx = C1[cos(kx) + i sin(kx)]

and

f2(x) = C2e
−ikx = C2[cos(kx) − i sin(kx)]

whereas a general solution can be written as:

f = A1 cos(kx) + A2 sin(kx).

This type of approach can even be used in two- or three-dimensional space as well. If the
separation of variables can be managed to the level of rewriting ‘f’ as a combination of three
independent functions:

f = X(x)Y (y)Z(z)

Thus, one obtains three independent equations which satisfy the individual wave equations in
each coordinate for zero potential:

f = eι(kxx+kyy+kzz)

The same solution can become way more complicated in polar coordinates and we have to use
special functions as a solution. These solutions even lead to the concept of quantization and
describe atomic orbitals discussed later in the quantum mechanics chapter. Application of
boundary conditions on these equations along with these solutions help to evaluate these
unknown constant C’s in quantum mechanics and associated conservation rules. This technique is
further extended to understand the dynamics of various physical systems as well. Assuming that
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these function f’s are analytical functions, they are considered to be single-valued differentiable
analytical functions. They possess the same value inside and outside the boundary as a single
solution and their derivatives are equated for at boundaries to find the correct solution of the
equation.

2.3.5 Equations of motion in quantum field theory
The study of dynamics of particles moving at high energy involves relativity with quantum
mechanics. We start with the Schrödinger equation again and express energy E in terms of the
fourth coordinate of momentum, as discussed in chapter 1:

(x, y, z; ct) → (px, py, pz;E/c)

where c is the speed of light. The operator formalism of quantum mechanics is translated
into four-dimensional space by representing the energy operator as a derivative of time. If time
and energy are taken as imaginary coordinates, we call this natural coordinate space with real
space and imaginary time Euclidean space. However, Minkowski, for convenience, rotated this
coordinate system by an angle 3π

2
 clockwise to obtain a coordinate system with real time or

energy and then the spatial coordinates (x, y, z) or corresponding three-momentum coordinates
are imaginary components of the four-vector. This rotated space is called Wick’s rotation and the
new space with real time and imaginary space is called Minkowski space. It became a useful
coordinate system as energy and time measurements for relativistic systems was more convenient
than measurements of location and momentum simultaneously. The four-dimensional coordinate
space (→

x ; ct) and the four-dimensional momentum space (→
p ; e/c) are conjugate spaces and the

uncertainty principle relates →x  and →
p  as ΔxiΔpi ∼ h̸. Similarly, ΔEΔt ∼ h̸ indicates set of

conjugate variables. Basic concepts of quantum mechanics and relativity, in reference to QFT,
will be discussed in later chapters.

2.4 Green’s functions
Green’s functions are special functions that appear as mathematical solutions to differential
equations which have an infinite source. For the discussion of Green’s functions, we need to
understand the properties of the Dirac delta which can represent an infinite potential source.
However, sometimes, more complicated situations may arise. Toroidal and poloidal motion are
good examples of such unusual situations but they are not our focus right now. However, before
going to Green’s functions we first need to define a very important function, called the Dirac
delta function. Green’s functions give the ability to find a solution around an infinite potential
source and the Green’s function equation is written in terms of the delta function.

2.4.1 Dirac delta
We can start with the second-order derivation of the radial potential which is related to a function
called the Dirac delta such that:

∇2 1

r
= −4πδ(x, y, z)
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The Dirac delta is an infinite function. The most well-known form of the one-dimensional form is
written as:

δ(x − a) =
1

2π
∫

∞

−∞
eιkxdk

This k is a conjugate variable to x. The Dirac function is equal to infinity at x = 0, and this
infinity is related to the presence of a real source. Therefore, delta functions exhibit a specific
nature and are very useful functions in quantum mechanics. For finite values of the limits of
integration, this relation is also satisfied, giving:

δn(x) =
sin(nx)

πx
=

1

2π
∫

n

−n

eιxqdq

However, it has other representations as well and corresponds to infinite distributions.
Before getting into properties the of delta function, we can look at a few other representations of
the delta function which can be related to the above representation as well:

where Θ(x) is a usual step function. This delta function has very peculiar properties that can
easily be checked:

δ(x) =
1

2

d2

dx2
∣ x ∣

δ(x) =
1

π2
∫

∞

−∞

dk

k(k − x)

δ(x) =
1

π
lim
ε→0

ε

x2 + ε2

δ(x) = lim
N→∞

SinNπ

xπ

δ(x) = lim
ε→0

1

√2πε
e

− x2

2ε2

δ(x2 − a2) =
1

2 ∣ a ∣
[δ(x + a) + δ(x − a)]

δ(x) = lim
ε→0

1

2ε
[Θ(x + ε) − Θ(x − ε)]
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When we have a delta function for a higher-dimensional variable such as →
R = (x, y, z) and a

constant vector 
→
A = (ax, ay, az), then a delta function attains the form:

δ(R − A) ≡ δ(x − ax)δ(y − ay)δ(z − az)

and can be generalized to n-dimensional vectors. For example, if R is a four-dimensional vector
then we can express it in terms of four-vectors rμ = (R, t) and the constant vector 4 has a
constant time aμ = (A, t0), such that:

δ(rμ − aμ) = δ(R − A)δ(t − t0)

and so on.

2.4.2 Solution of differential equations using Green’s functions
Electromagnetic interaction between two particles can be described as the equation of one particle
in the presence of the potential of another particle. If these two particles undergo no changes and
only the trajectory of motion is changed, we can treat it as a constant interaction or a finite radial
potential where the minimum distance between two particles is maintained. However, when
scattering processes take place, then they generate a nonhomogeneous equation as the energy and
momentum conservation involve interconversion of energy into mass and vice versa.

A general form of the inhomogeneous SDE (in radial direction) can be written as:

d2y(r)

dr2
+ a1

dy(r)

dr
+ a2

1

r
y(r) = f(r)

where a1 and a2 are some unknown constants. The corresponding homogeneous equation is
written as:

d2yc(r)

dr2
+ a1

dyc(r)

dr
+ a2

1

r
yc(r) = 0

where yc is a complementary solution for the above equation. Since the radial potential ≃ (1/r)
goes to infinity at r = 0, it gives an inhomogeneous solution where the response of the system

δ(−x) = δ(x)

(x − a)nδ(x − a) = 0

∫
∞

−∞
δ(x − a)f(x) = f(a)

∫
∞

−∞
δ(αx) = ∫

∞

−∞
δ(u)

du

∣ α ∣

∫
c

b

f(x)δ′(x − a) = −f′(a)

∫
∞

−∞
δ(η − x)δ(x − ζ)dx = δ(ζ − η)
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due to the existence of this radial potential can be found. The right-hand side of the
inhomogeneous equation then reads f(r) = δ(r). We can therefore rewrite the above
inhomogeneous equation as:

d2G(r)

dr2
+ a1

dG(r)

dr
+ a2

1

r
G(r) = δ(r)

and its solution G(r) is called Green’s function. In the case of a general source, the solution of
the equation u(r) can be written as:

u(r) = ∫ f(r′)G(r′, r)dr′

For a general source, the solution of the initial value problem, the convolution of (G(r)*f(r)),
gives a solution of the equation Ly(r) + f(r) = 0 in the presence of a potential V (r). If we have 
Ly(r) = f(x), then y(x) is determined by the convolution of two functions (G(x), f(x)). A
three-dimensional Green’s function can be written as:

G(
→
r −

→
r ′) =

1

(2π)3
∫ eιkq(

→
r −

→
r ′)

k2 − q2
d3q

=
1

(2π)3
∫ eιkq(

→
r ′−

→
r )G(

→
q )d3q

The above equation satisfies:

(∇2 + k2)G(
→
r −

→
r ′) = δ(

→
r −

→
r ′)

which is a well-known equation in quantum mechanics and will be discussed in chapter 6.

2.4.3 Retarded and advanced Green’s functions
The solution of equation (2.36) has a double pole at k2 = q2. This integral can be solved using
complex integration methods to solve this equation. The denominator of the right-hand side of
equation (2.36) can then be written as:

1

(k2 − q2)
=

1

(k − q)(k + q)
=

1

2k
( 1

k + q
+

1

k − q
)

which will help to change a double pole into two simple poles such that it has two simple poles at
k = q and the other one at k = −q. Complex variables can be used to solve the integral of
equation (34) which has two pole points. These two poles can be removed using Cauchy–
Riemann integration. We can then evaluate two forms of Green’s function as:

G±(
→
r −

→
r ′) =

e±ιk∣
→
r −

→
r ′∣

4π ∣
→
r −

→
r ′∣
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The Green’s function G+(
→
r −

→
r ′) corresponds to the outgoing wave, whereas G−(

→
r ′−

→
r )

corresponds to the retarded Green’s functions. Both of these functions converge onto the
source point r′. Outgoing waves skip the interaction with the source, whereas the incoming wave
is going to interact with the source and is the only wave that will have an effect from the source.
These forms of Green’s function are called the advanced Green’s function G+(

→
r −

→
r ′)

corresponding to the outgoing wave, and the retarded Green’s function G−(
→
r ′−

→
r ′)

corresponding to the incoming wave. The incoming wave is going to interact with the source and
its dynamics will be affected by the source.

In relativistic quantum mechanics, the four-dimensional formalism is used. In this case, the
time-dependent part of the Green’s function plays a big role in understanding the effect of
interaction. In this case the physical interpretation of Green’s functions is possible as the
advanced Green’s function gives a wave that has already passed by the source and the retarded
Green’s function is the wave that is about to interact, which correspond to outgoing and incoming
waves in the interaction range, respectively. It is physically more important to find out the change
in a wave after going through the interaction.
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Chapter 3

Computational tools

3.1 Introduction
Computation provides a very efficient tool for the precise calculation to find
practical solutions for physical problems. The computer is an electronic
device built on switching circuits developed by digital electronics. Current
computers use Boolean algebra based on these switching circuits. In the
language of computer scientists, it can be described in terms of bits and
bytes. Bits are written in terms of 0 and 1, whereas a byte is defined as a
unit made up of 8 bits incorporating all possible combinations of 2 bits and
has a combination of eight digital circuits such as 10110011. Now bits are
commonly used to describe the rate of data transfer, whereas bytes give the
size of storage and memory of a computer device. The efficiency of
computer devices and the storage capacity of computers has been increased
significantly with the development of nanotechnology and its size has been
reduced tremendously with the use of microchips and so on.

Microchips are included in all commonly used computer devices, such
as smart phones, smart cars, digital projectors and small appliances. Now
there is a next step in the development of computer technology which is
using quantum mechanical phenomena of physics to develop quantum
computing. This newer technology will increase the efficiency of computers
almost exponentially. A quantum computer will increase all of the
computational skill and the precision of calculation by tremendously
reducing the required computational time and allowing huge data sets to be
processed quickly. Understanding of quantum entanglement and other
quantum phenomena helps in encryption and quantum teleportation as well.

Computers have developed graphing skill which led to the development
of digital images and digital videos later on. These imaging techniques and



video creation capabilities led to the development of digital media as a
modern branch of media created by digital technology. On the other hand,
the latest development of artificial intelligence (AI) is not just a technology,
it is also a transformation of realities and facts into digital realities
described using AI as a tool. AI provides machines which can understand
the needs of users and then choose the most appropriate commands to work
with. This new development is now being incorporated in computer
programming at all different levels. However, the discussion of all these
recent developments of computers using quantum computation and the
development of AI are out of scope of this book. But they will be relevant
for scientific computation ultimately.

3.1.1 Operating systems
Science is developed through experimentation, whereas mathematics and
computational techniques provide effective tools to extract information
from scientific data. Before getting into the computational tools, it is
important to understand the basic operating system (OS) in the
computational world. An operating system is a combination of hardware
and software. Each operating system has its own hardware and software
specifications. These operating systems are all built on the basis of system
requirement and the relevant software which are particularly developed for
the relevant operating system. The hardware part of an operating system is a
subject of electronics and is out of scope of this book. However, all the
operating systems have to be introduced to discuss the scope of scientific
computing in relation to the operating system. We will just discuss those
operating systems which are commonly used for scientific computing.

The most commonly known computers are personal computers (PCs).
We call the associated OS Windows. Microsoft is the developer of
windows. They are common and affordable. However, being so common,
they are easily accessible for public use and can be hacked easily as well.
The Android OS of cell phones and tablets is an offshoot of windows as
well. A Windows-based OS is relatively more user-friendly and mainly
based on graphic user interface (GUI)-based tools.

The second relatively less common well-known system is Macintosh
(Mac). It has its own OS and is distinctly different from Windows.



However, most of its applications are free and its working ability is
stronger. It creates a set of file formats different than Windows. However,
now Mac files can be transformed in a certain way in Windows and vice
versa. iPhones, iPads and other Apple products use an offshoot of this OS.
These two operating systems are run on two different machines. Mac
machines are relatively difficult to hack. Their graphing card is especially
very good and is a powerful system for visual applications. However, it is a
little more expensive and its file transformation to Windows may not be a
direct transformation. You may need to modify files properly to make them
readable during transformation and before saving into a newer format in
new OS. The scope of both systems is slightly different and they are
distinguishable clearly.

There is a third OS known as UNIX with totally different scope. It has
totally command-based OS and almost comes from the original version of
the computer when basic computer users started typing in text file and
began perfoming computation. This OS has more technical importance and
handles more serious group computing than commercial uses. UNIX is the
OS for powerful computing and helps in parallel computing or in the
construction of supercomputers. It has the ability to handle large programs
which can be run for days and a huge set of data can be analyzed using data
mining and other much more advanced special methods. UNIX-based
programs provide the most effective computational tools for researchers, as
especially scientists and engineers have to use it. However, these days,
several UNIX-based programs can be commanded by windows or Mac
systems as well. Unix has a totally unique set of file formats. The only
transferable files are mainly Portable Document Files (PDFs).

Linux was developed to make UNIX easily understandable for users.
However, graphic files have several common formats. Linux is a GUI-based
version of UNIX and is becoming popular among users. Some of the
UNIX-based programs can be run on Windows or Mac, after transforming
them into a Linux version. Linux generates simple Unix files and creates
small files, which considerably saves computer space. We will introduce
some commonly used computational tools and the associated environment
or software in this chapter without getting into details of OS.

Since most of the commonly used computers are Windows-based, all
the software and languages are integrated with Windows or Mac. Most of



the computer languages are command based. These commands are very
well understood by UNIX or Linux easily. But they are translated to any OS
using relevant drivers. Usually all the packages have different drivers or
installers for different OSs. Just for installation of software a relevant
installer for every system has to be installed using the correct executing
program. All the languages are translated using a compiler which can
translate a high-level code into a low-level language to be understood and
executed by any OS. Android and Windows have compatible files, and
similarly, iPhone and MAC have compatibility. Now programs are
developed to translate and read files from other OSs. There is now a lot of
success in this direction.

3.1.2 Computational tools
Integration of experimental study with mathematical and computational
techniques is behind all the scientific discoveries and inventions. However,
the proper choice of required approach is extremely helpful. In fact, all
three approaches provide a certain level of accuracy about scientific
realities which leads to new explorations and improvement in existing
information as well. Mathematics emphasizes the generalization of results
which helps to make rules and understand basic principles, whereas
computational techniques provide accuracy and precision. In short,
experiments, mathematical calculations and computational analysis all play
a crucial role in understanding scientific principles and their applications,
which lead to new discoveries and inventions. It is a commonly known fact
that the proper choice of appropriate tools at correct time provides great
help in creating a high-quality project with maximum utility. Similarly,
confirmation of any phenomenon depends on the confirmation of results
using various approaches and reproducing the same results more than once.
Actual findings have to be reproducible and independent of space and time.
These findings are accepted after reproducing them using various
approaches and techniques.

Analytical solutions are always preferred because they can give exact
results which can easily be applied anywhere with the proper definition of
variables. Analytical calculations are extremely important if the relevant
equations are solvable exactly. However, mathematics has its own



limitations. Several well-known equations describing dynamics of a system
such as quadratic equations and regular differential equations may not be
solvable analytically and alternate methods are developed to obtain the best
possible solutions. However, every physical problem cannot be expressed
by a set of equations that can be solved analytically to find an exact solution
of the problem. These complicated equations usually have a large number
of parameters. An exact solution of these equations is only possible if the
number of parameters matches the number of equations. Otherwise, all
equations are evaluated for various sets of the unknown parameters to
generate mathematical data and that data can be analyzed to find the most
probable solution. These results can then be compared with the
experimental/observational results or an experiment is designed to test the
theoretical results. In case of disagreement between experiment and theory,
an experimental design is modified to be able to find a better agreement
between theory and experiments. In this way, going back and forth between
calculations and experiments is done to find an agreement between theory
and experiments.

A graph of computer-generated data can then be interpreted and
extrapolated to physical phenomena outside the experimental range as well.
It helps to design further experiments and develop hypotheses for physics
beyond the range of existing technology. So a computational approach not
only understands the current form of a system, but also its past and future
behavior. A combination of mathematical equations and the computational
data analysis then describe the basic mechanism behind the creation of a
system and its dynamical behavior. These equations cannot be analytically
solved for each system and sometimes the calculations become very long
and complicated due to the presence of several terms and a large number of
unknown parameters.

Computational methods can perform large calculations in less time,
more accurately, and in a more foolproof way. We do not have to worry too
much to recheck the calculation, which saves a lot of time. There are
several commonly used examples for computational methods, which
include solutions of complicated differential equations or multiplication of a
large set of matrices, we can still solve it by substitution methods. If there
are more unknown parameters than the number of equations, we can still
obtain a relatively easily solvable equation and choose one or a minimum



number of unknown parameters. Then as a next step, we can solve these
equations numerically. Sometimes some of the unknown parameters can be
fixed with the experimentally determined range to provide a cutoff for
unknown parameters.

Mathematics itself has a natural limitation due to its complexity and the
required human concentration and calculational skill. Moreover, a variation
in magnitude of working scale of various systems and complexity of the
behavior makes analytical calculations more challenging. The computer has
provided tremendous help to develop parallel methods of calculations.
Computers can solve equations precisely from nanoscale to the cosmic
scale. Calculations of single equations at various scales may sometimes
require us to choose a different set of approximations to solve equations.

Computers can be very helpful when calculations become too
challenging and data analysis is required to understand the behavior of
physical systems. This is especially true when numerical values are needed,
as computation becomes more helpful. Numerical data can be generated
with computers and dynamical behavior is understood by plotting this data.
It does not take away the need for analytical calculations. Numerical data is
easily generated by insertion of numerical values and can even be done by
hand but not so efficiently. On the other hand, computers help to analyze
the existing data and generate working models for the dynamical behavior
of complex systems just based on the actual experimental or observational
data. This is how computers are used for building models of existing or
under-construction machines. Mathematical tools are required to investigate
their properties and working ability. These mathematical/computational
models with their relevance for natural objects provide the biggest learning
tool and can later be used in various ways in the development of new
technology.

Mathematical equations can cover a large range of sizes and measure
times from nanoseconds to millions and billions of years, whereas
computed parameters may have their own ranges which may not match with
the mathematical range. Nature has a great variation in sizes and shapes
with a long range of variation in time. However, much more specialized
mathematical or computational tools may be needed to reach the detailed
study of extremely large and infinitely small systems. Technology
requirements may vary for differing measurements. Regular units are more



relevant for our daily life, whereas the scope of a machine is not limited to
standard units. For detailed structure analysis, extremely minute
observations are needed, whereas to look at the cosmos, we have extremely
large separations in space and we talk about huge distances and the time
scale is much longer than our own lifetime. Scales range from nanometers (
10

−9 m) to billions (10
9) of meters or even beyond this range.

When the detailed calculations seem to be too cumbersome to manage
easily and further details become out of scope of mathematics, a parallel
computational branch is developed to understand continuous behavior by
using numerical approximations. Using numerical methods, we can solve
much more complicated problems. Especially long expressions are solved
in a relatively convenient method using numerical approximation. For
example, multiplication of several gamma matrices can be done by
incorporating the properties of gamma matrices, multi-dimensional
integrals and complicated calculations with several steps. Some of the
simple existing packages such as Mathematica, Mapple and MATLAB are
very commonly used for mathematical calculations. They are used to solve
complicated integrals as well. These packages are successfully used by
engineers or scientists. Almost every graduate student of mathematical
sciences has to use these computational methods.

Numerical analysis and computational techniques are also used to get
help in analytical calculations including integration, differentiation, matrix
multiplication and other complex mathematical calculations. Computational
methods are also used in model building based on the experimental data or
observational results. These methods are not limited to a single academic
discipline. One computational method including data analysis or data
mining techniques could prove equally good in entirely different disciplines
like economics, bio-science, astronomy or even sociology. However, they
are needed to solve complicated problems and definitely increase the scope
of application of physics to complicated physical systems studied with
totally different approaches.

Numerical methods and other computational techniques need a very
long discussion as we can use alternate methods to obtain required results.
Available software packages can help to some extent and can be modified to
an extent but they have their own limitations. On the other hand, original



codes can be written using a relevant computer language. All these methods
are so specific that describing each and every package or including the
discussion of any suitable language needs practical experience. We will just
discuss the names of computer languages and only a few software
packages.

3.1.3 Programming languages
Programming languages are the languages which are used to communicate
with computers. The choice of the language depends on the fact of what it is
needed for. These languages are translated in terms of the combination of
bits and bytes to give commands to computers to operate the way a
programmer wants. These languages work in different OSs such as
Windows and Mac, which are commonly used these days. Other smart
devices such as iphones and Androids for phones and cars and other devices
have their own OSs and have specially developed Apps to communicate
with computers. There are a large number of programming languages
including Python, Pascal, Fortran, Basic, C++ and machine language that
are used to set up a computer. All of the software packages are developed
based on these languages.

3.2 Mathematical typing
Mathematics is a language of communication which has its own vocabulary,
consisting of mathematical symbols and Latin and Greek indices to
represent parameters, whereas its sentences are written in the form of
equations, indicating the rules and principles which describe the behavior of
a system. Therefore, the clarity of mathematical symbols and equations is
extremely important to study a physical system. In physics mathematics
becomes even more important when we do not have direct access to a
system. It provides a kind of tool to virtually access a system and
mathematically describes the behavior controlled by certain principles.
Therefore, the correct appearance and clear representation of equations is
very important in mathematics.

Mathematical symbols and equations are not easy to type within English
or any other language alone because they include particular mathematical



symbols in addition to Greek indices, whereas moving equations around or
alignment of more complicated (summations, integration, subscripts,
superscripts, etc) equations with text as well as among its own terms
becomes challenging and it becomes difficult to represent them in a
readable way. At this point, LaTeX provides particular tools needed to
represent equations in a well-organized way with symbols written clearly.
Microsoft Office also includes symbols and a template of equations to be
able to write simple equations in Microsoft Word and other applications
now. MS Word also has an add-on for math typing called MathType which
provides a lot of symbols, but still does not cover each and every symbol.
MS Word provides convenient visual tools to format regular typing and it is
very easy to learn. However, when it comes to large and complicated
equations, LaTeX is needed to overcome the limitations and challenges of
Word. Another inconvenience is that Word does not move symbols and text
around together and editing of a file can become very time-consuming.

Mathematical typing packages are usually developed in a Linux
environment using LaTeX. Now even Windows-based LaTeX packages are
available and math-typing packages can be included to Microsoft as well.
Mathematical computation is still considered to be more convenient in
Linux or UNIX environments. Linux and mathematical programming can
be done in Mac as well. However, now Windows-based LaTeX packages
are available and online resources can be used in Windows for
programming. Moreover, Microsoft Word and LaTeX files can now be
copied and pasted into each other. Tables and figures can be saved as usable
files in LaTeX. Mathematical symbols are part of Microsoft Office as well.
Typing of simple mathematical equations is now very convenient even in
Microsoft, especially Word and PowerPoint. However, complicated
mathematical expressions are not easy to write in Microsoft Office. Now
Windows-based LaTeX packages are available online as a free download
and are easy to learn with a little practice. We introduce basic parts of
LaTeX programming briefly, but it can be easily learned using online
resources. LaTeX provides many mathematical symbols, which helps to
write well-organized equations.

LaTeX files use regular keyboard and mathematical symbols and Greek
letters are typed as words in English usually. Even online sources are
available. In a way, LaTeX is a type of package which has its own syntax



like a language. It is added as software that is associated with a repository
which can convert LaTeX commands into mathematical symbols or
organize them in the required format. A repository is a central location in
which data is stored and then organized. This is how the mathematical
commands are converted from LaTeX to PDF format that can be read
properly.

LaTeX files start with a class file with the first statement describing the
document class. These files include all formatting information and connect
to the required packages from the repository. A LaTeX file includes a
‘usepackage’ command in the beginning to use various packages from a
repository. LaTeX files are then executed to give a log file and may produce
PostScript files or PDF files. Using appropriate packages in LaTeX, the
mathematical equations and symbols can be easily typed and organized
following proper methods. It includes special self-directed tutorials for
typing mathematics in LaTeX. A list of commands to type symbols or
organize equations is available online along with others. On the other hand,
a few online resources are available for using the LaTeX commands in an
appropriate way.

LaTeX is originally a UNIX-based program, which is totally a
command-based language. It uses commands to type math and compile the
mathematical commands into equations. It has been accepted as the most
convenient method to type long complicated equations. Therefore, LaTeX
packages are developed for other operating systems such as Windows and
Macintosh. A GUI-based package for Windows called Scientific Work
Place or Word Scientific was created, but it could not get enough popularity
due to its cost and certain limitations. Almost all packages are mainly
designed for high-energy physics and have built-in Feynman diagrams and
have the ability to reduce gamma matrices.

As mentioned earlier, LaTeX generates a log file that can be converted
into a PostScipt file and/or the more commonly used PDF format. It can
also be opened as a text file in any operating system. They can be converted
into any acceptable file format there. It is also worth mentioning that LaTeX
gives an option to create presentations as well. However, they are created in
PDF format. Regular English can be easily copied from MS Word and
pasted into LaTeX or the other way around. Text can now be transported by



copying from one file type and pasting into another file type from even a
different operating system.

3.2.1 Typing of equations
Mathematical equations and symbols can be typed and formatted in the
math mode only. Mathematical symbols are usually defined in LaTeX in a
particular form. They are case sensitive. Lowercase Greek symbols start
with lowercase English letters and uppercase Greek symbols start with
uppercase English letters. In a way, LaTeX is a language of mathematics in
itself and expresses mathematics in a special way. Subscript, superscript,
summation, equality sign and other mathematical symbols are written in a
particular way in math mode and executed in PDF in the form of actual
mathematical symbols very nicely. LaTeX is almost the only way to
accommodate all mathematical symbols, nicely and properly aligning them
with text and other symbols. Once mathematical equations are typed, their
formatting can be easily modified by using appropriate commands for
writing symbols and equations. This way we can copy the entire equation
and paste it again and even modify them according to need. Text from the
LaTeX file can be copied and pasted from or into Microsoft Office files or
any other relevant file format as well.

In the math mode of LaTeX, mathematical equations are typed and
arranged in an easily readable format. Matrices and determinants are typed
in a convenient way. Even mathematical symbols can be included in
matrices. Mathematical symbols and operations are also possible to type
inside the matrices. Matrix equations can be typed and fitted in a proper
way. Numbering of equations can be controlled very well by gathering
several equations under one command and numbering it individually. A
group of equations may carry just one number or each equation in a group
can be numbered individually or left un-numbered. There are methods to
control the orientation of equations. They can be written in the next line,
along with the text and then control their orientation and alignment in a
group of equations, their location in the center of left or right. Numbering
can also be employed using various popular methods.

Matrices typing is a little challenging in several typing programs and
fitting them properly in the text is an even bigger challenge. LaTeX allows



matrices of any size in a proper way, using special command. However,
they fit very well in equations in a properly lined way, as it appears in most
of the modern mathematical books. For a complicated long equation, the
mathematical terms can be managed properly and arranged in a proper
order with LaTeX only. It is true that LaTeX learning may take a little time
which may be very quick because even with the basic knowledge and
downloading free LaTeX programs from the web, it is very easy to type
anything using the internet sources which give a correct set of commands,
packages needed to use those commands, and even their appearance in PDF
format or PostScript files.

3.2.2 Figures and tables
Figures and tables are inserted in LaTeX easily. LaTeX generates PostScript
files and figure files can be created or managed in PostScript format as
well. These PostScript files can be fitted very nicely in the document.
However, LaTeX allows figures and tables in several commonly known
figure formats such as JPEG, PNG, TIFF, PS, and PDF. These figures can
be labeled and a caption can be included during the figure insertion.
PostScript files of figures can be converted in any size without
compromising their pixel density. Unlike Word documents, labels always
stay aligned with the figures. Tables can be added in a similar way with
appropriate referencing. These figures and tables can also be resized.

LaTeX works in a Linux environment and it can import figures and
tables from Linux-based programs even in PostScript format. It becomes
very convenient to pick data, figures and tables from mathematical
packages. An additional benefit of LaTeX is that we can directly type tables
in LaTeX in a chosen format and label them properly. The labels and
numbering stay there properly. Tables and figures can be imported from any
other program by saving them in well-known figure formats. Excel data can
be copied and saved as tables in PDF files and added as PDF file-like
figures as well. In addition to all that, numerical results and plots can
directly be inserted from mathematical programming.

3.2.3 Including a bibliography



Citations in LaTeX are typed in a separate file and numbered using special
commands. Bibliography files can even be typed separately and added to
any LaTeX file. Then the numbering of references can be manually
included in the text as required. This usual process is the same as is adopted
in Word. However, a very convenient way to use a bibliography in LaTeX is
that each reference can be assigned an individual label. Numbering of
references in bibliography files becomes foolproof and extremely
convenient as LaTeX takes care of numbering automatically from its label
and cannot be incorrect. There is no need to do individual numbering of
references. It might appear to be a little more complicated but this is a very
convenient method because later on these labels can be used everywhere
without worrying about forgetting the numbering of references or their
format or appearance in the text.

LaTeX is very helpful in organizing references and has an ability to
convert their appearance according to any publishers’ requirements just
using the provided class files by publishers. This numbering and referring
style is applicable to equations, tables and figures as well. All of the
equations can be automatically numbered and labeled in a way that their
referencing can be handled through labels as well. Equation numbering
occurs automatically as they appear in the text. This is one of the very
convenient features of LaTeX.

3.3 Scientific programming
Mathematical programming makes use of numerical methods, related
algorithms, and specific codes for the problems under consideration. It
incorporates the related algorithms based on the required principles and
symmetries of the theory relevant for the physical systems. The scientific
code under discussion is based on numerical methods needed to solve the
mathematical part of the problem. Meanwhile, the other type of scientific
programming involves data analysis and model building as well. This part
of scientific computation is as important as mathematical calculations.

Scientific study and development is based on theoretical study,
experimental observation and scientific data collected by various
observations or experiments. Computational methods are developed to
analyze all the collected data and analyze it thoroughly to understand the



behavior of physical systems. This scientific data analysis leads to the
understanding of mechanisms involved in the production of data. Choosing
the correct computer language for a particular purpose is important, as some
can be more useful than others.

If we just concentrate on two basic goals for scientific study,
mathematical computation and data analysis are very different from each
other. Mathematical computation needs distinct tools to analyze a particular
type of data. Various computational packages are developed for different
purposes based on main languages such as Fortran and C. Alternatively,
data analysis involves statistical analysis and every package has its own
scope which can make it better or worse based on the application. In fact, a
correct and timely choice of an appropriate program or efficient language
gives quicker and better results.

3.3.1 Scientific languages
There are various computer languages that can be used to write a computer
code for mathematical computing. A very well-known language is Fortran
(that was originally developed for formula translation). Fortran has its own
syntax. A large number of physics labs and complicated computational
research groups use Fortran as it has some very useful features which
makes it a common language in the scientific community.

There are several other languages, developed afterwards, that can be
used to create codes for mathematical computation. C++ and Python are the
two important examples. Python is a relatively simple and modern language
that is easy to understand. The syntax of various languages overlap but they
use different compilers and they work under different logic. The choice of
languages depends on the purpose of calculation. Big labs or large theory
groups using mathematics and physics still prefer Fortran or C++. They are
the most popular scientific computing languages, compared with some of
the modern languages such as Pascal and Python and even the machine
language. AI makes use of various languages to develop codes for
particular tasks, and now there are methods to go into deep study as well.

Improved computer technology and programming techniques are
regularly updating the computational techniques. However, some of the
special tools related to a field of research have been around for a long time



and continue going through upgrading to be able to accommodate the needs
of recent developments in the field. Most of the mathematical packages
used to use Fortran or C++. They are commonly used in the form of newer
versions. Python is relatively more user-friendly language and it is more
commonly adopted for coding. However, based on the requirements of the
field, usually multiple languages are learned and used according to the
need. However, there is a part of syntax which is adopted by every scientific
language. Therefore, knowledge of one language makes the learning of
others much easier due to the overlap of syntax and logic in every language.
However, the difference of accuracy in calculational approach may change
the preference to use one package over the other.

3.3.2 Software packages
In the current era of technology, big scientific developments are related to
the group work performed in big international labs and large collaborations
and interdisciplinary expertise are required to discover and invent new
technology. Therefore, well-developed, communication becomes extremely
important. For this purpose workstations are used as a common working
environment for a working group where software, data and any other
information can be shared among the group from distance as well. A much
more developed form of workstation with a huge computational capacity is
called a supercomputer and it can be shared by a huge group of people.

Much of the academically used software is available as free downloads
as its developers get credit for the development. Almost every field has
specialized tools that are learned while starting working in the field. A few
well-known codes and packages are available for scientific study. Some
software programs are commonly used in certain fields of study like the
Cactus framework which provides resources for different fields of research
regarding many-body problems. Its standard toolkit like the Einstein toolkit
provides tools for the calculation of complex problems of numerical
relativity and fluid dynamics. Cactus provides the ability for parallel
computing, data distribution, and checkpointing. Additionally, Gaussian is a
popular chemical physics program and is used to study rates of chemical
reactions, making it a great tool to study molecular behavior. It is based on



density functional theory and helps solve problems with a supercomputer or
on a workstation as well.

Similarly, Mathematica, MATLAB and Maple are commonly available
packages used for relatively simple scientific calculations. Some other
particular packages are also available for special types of work. For
example, FeynCalc is used for the calculation of Feynman diagrams or the
reduction of gamma matrices, and QuantumATK is used to study molecular
properties and nanostructures. Amber, NAMD, and Visual Molecular
Dynamics are programs for the study of molecular dynamics and most of
them are GUI-based, while others are command-based only. Computer-
aided designing (CAD) software programs are available for engineers and
are developed for various engineering fields and modified according to their
needs.

There are several other programs based on special codes written for a
particular type of calculation in various fields of research. Computational
tools are more commonly used in theory and tremendously increase the
scope of calculation and accuracy of results. We obviously cannot list all
the existing tools for every field of study because it is a very long list.
Moreover, software development is an ongoing process which involves
upgrading and an increase in efficiency of existing packages in newer
versions and improvement in the scope of computation. Newer software
programs with new features are always introduced for more detailed
scientific investigations or replacement of existing software.

Data analysis plays a crucial role in the study of complicated systems
and is required to develop natural sciences, human sciences and social
sciences. Computer scientists and engineers develop required machines to
be able to analyze statistical data, and analysis methods were developed and
learned and applied as needed. Similarly, by developing relevant statistical
techniques, medical, biological, environmental, agricultural and
astronomical data can be analyzed. Astrophysics, condensed matter physics,
plasma physics and many other branches of applied sciences infer results
from data analysis. Existing data provides a starting point for theoretical
investigation as well. In other words, the approaches of theory, observation,
and experimentation all play their roles, interchangeably, to understand
physical behavior and develop science and technology. Computation can
then invariably be used in every stage of development and common



languages provide a means of communication among computers as well as
among scientists, especially if common framework or various features of
the same software can serve the purpose at different stages of investigation.
This is usually a motivation behind an upgrade or different version of the
same software.

Most of these packages provide their own list of commands. So there
are several modified languages to develop particular tasks in given
languages. The Printer Command Language (PCL) was developed by
Hewlett-Packard specifically to allow computers and printers to
communicate with each other. The PCL files consist of commands. HP
printers parse and decode those commands. The PCL format also supports
HPGL plotter files (PLT). These languages are specifically used to
communicate with certain devices for the same purpose and not for
computational purposes. It is also important to mention that these days self-
learning tutorials and workable examples of several packages are available
to learn software. These tutorials and examples are presented by software
developers and work with the package very well. They usually come for
free with the packages and some of them may be developed for more
specific needs and can be purchased. Online training and troubleshooting
tools may also be available.

3.3.3 Scope of various software
We live in a huge ocean of knowledge and quick learning ability is required
to stay up to date. It may be possible to become deeply involved in the field
of research without quick learning, but it works very well to develop
widespread knowledge for a sound background. Most software is designed
to provide results in various forms such as numerical results. We can ask the
computer to give that result which we need and ignore any other unwanted
information regardless of its importance. Therefore, the same software can
be used for various purposes. Even the change of parameters may make it
usable by several disciplines.

Most commonly used output formats are numerical data in the form of
tables, graphs, figures and videos. Simple programming can be considered
as an improved version of scientific calculators. Computation becomes
important as it involves a series of different steps and solves several



mathematical equations simultaneously to generate theoretical data in the
form of a table or create a graph of data for the given range of variables. Its
cosmetics include color, thickness, shape of data points and so on. We
ignore cosmetics for now and focus on the purpose of data generation. This
tabulated data can be put in the form of a graph, which may be possible to
plot manually as well. But the accuracy level may not be the same.
However, computers graphs can be organized in several forms, as needed.

Computer graphics is a multipurpose tool. It highlights the special
features of data in a graphical form and it can easily show special features
of the functional behavior for a particular range. We can look into the
highlighted feature in more detail by exploring numerical data or re-
evaluate for smaller variation of input parameters to get more detail. So
graphical analysis provides a quick way to reach into detailed analysis of
the behavior of a system. Now we can create graphs very quickly with a
small change of data to understand the behavior of data in more detail to
uncover the hidden features.

Computers can create figures instead of graphs as well, which can be
considered as an extension of graphing. Figures can be based on equations
instead of their particular values. We can change data quickly and multiple
figures can be created quickly. We know that the quick change of figures
can create motion pictures and turn them into videos. This is how we can
create digital videos in addition to optical videos as well. When we get the
ability of creating video format from equations, this is where design enters
computing and gives birth to graphic design as well. We will not be able to
discuss these topics here.

Development of visual output ability of a computer has started an
extremely new feature of powerful computing. Now the dynamics of
physical systems can be visualized from a set of equations in the form of
videos. This visual simulation of data is a very powerful way to learn
dynamics of a physical system. The computational method creates
computer models for complex systems using a set of equations. Simulation
is a very powerful tool of computing and is more related to understanding
the dynamics and visualizing it.

3.4 Mathematical computing



Mathematical computing in itself is a branch of computer science that helps
in developing programs for computing. Due to the complexity of
mathematics in detailed study of physics problems, computational methods
are developed to solve using computers. Initially to solve several equations
simultaneously, even knowing mathematical techniques, computer
programs save time and increase the scope of calculation. Just based on the
mathematical logic, an algorithm is developed using a set of equations and
computationally performs all the required mathematical steps to reach the
result relatively quickly and solve it on the first attempt, once you test the
accuracy of the code to your satisfaction. This code may be designed to
incorporate various approximations as needed. The choice of variables and
their ranges are always related to the physical system being studied and
choose a set of allowed approximations without compromising the required
information to an unacceptable level.

Mathematical logic, numerical methods and an algorithm work together
to solve a mathematical equation on computer. A computational approach
looks different but it works very well to solve definite integrals and
equations in a physical range. Another built-in requirement is the existence
of an analytical solution. An equation or a set of equations can only be
solved for a definite problem using a finite set of parameters with the
analytical range only. Computers cannot yet handle several mathematical
issues, and infinities is one of them. Therefore, the solution of indefinite
integrals is not possible as they may have infinities. Moreover, any
singularities of a theory have to be removed manually. Some of the other
rules such as the correct order of multiplication of matrices or fixing the
order of various binary operations or other special rules for solving a given
set of equations for a particular purpose require special commands to be
provided to the computer through its algorithm to perform the required
process properly.

3.4.1 Numerical methods
Numerical methods provide a set of computational techniques which are
developed to solve mathematical equations by computer for physical
systems. Numerical methods are based on the simple form of calculational
processes which are used to solve these equations in a simpler way,



adoptable by computer. It may adopt a longer but simpler method.
Analytical methods give a complete solution with or without physical
approximations. Numerical methods are efficient when correct analytical
solutions are not possible. Step-by-step evaluation of a series of numerical
values of a function corresponding to the limited required range of the
given parameters, helps to understand the behavior of a function based on
the computer-generated data within the given range. It does not give a
complete solution of equations but it can tell the behavior obtained for a
given range of variables and can be used and even compared with
experimental or observational results to validate the original equation for a
given range. Regardless of the fact that a theoretical equation may not be
correct to describe the behavior of a system, in general, it could
nevertheless still be adopted for the given region of interest. For the range
of values for parameters in the region of physical interest, an approximate
solution can be obtained. Therefore, the numerical methods evaluate
equations for a particular range and a numerical solution can be found for
the given range of values only and not a complete solution which can be
used for any system.

Numerical methods develop some mathematical steps that can be
translated to computers to solve mathematical equations. This method is
very helpful to develop effective tools to understand the system in a
workable way. Unknown parameters are usually estimated by solving a
comparable number of equations and a computer can even help to solve a
large number of equations in less time, which can be solved by hand but
take much less time and do not need to be rechecked multiple times after
making sure that it is working properly. Since several problems (in physics
and engineering) cannot be solved analytically due to their complexity,
practical solutions can be found using such techniques.

Numerical computing uses simple analytical mathematics based on
arithmetic operations using any suitable programming languages such as
Python, Fortran, C, C++, or available mathematical packages such as
MATLAB, Mathematica or Maple. All these packages have their built-in
logic and help to solve a set of equations quickly. However, these packages
may come with certain limitations and the logic behind the operations may
not be fully known for these packages; this may sometimes lead to a result
which is more approximate or oversimplified than desired. Therefore,



scientists have to develop a more customized code instead of using
packages for more detailed investigations. Sometimes other kind of
problems can create limitations such as using well-known coordinate
systems because of their unusual shape and size or an unusual complex
behavior which can be described properly using well-known laws. Such
issues can conveniently be resolved by choosing valid approximation which
leads to a calculable solution.

Numerical calculations can be done by evaluating equations for given
values of variables and plotting various functions (quantities)
simultaneously. The behavior of unknown parameters can then be extracted
from their plots and even compared among themselves. Simultaneous
solutions of equations can be obtained from numerical solution of a set of
equations for relevant variables. This way, a computer helps to solve
problems for a particular system even if a general solution cannot be found
and figure out the behavior within the particular situation.

3.4.2 Algorithm development
Programming languages are used to develop computer algorithms for the
purpose of developing a computational technique to solve a particular
research problem incorporating the underlying assumptions and relevant
approximations. An algorithm is based on a complete sequence of required
equations obtained for a specific problem using all the relevant conditions
and approximations. It is used as a step-by-step evaluation of a set of
relevant equations to get a particular solution in the form of quantitative
results

An algorithm describes a step-by-step method based on basic principles
to understand the behavior of a system by solving a mathematical problem
incorporating basic principles and related symmetries and conservation
rules. The constraint equations provide restrictions or segregate between
allowed and forbidden approaches to solve problems. When needed,
constraint equations provide extra equations to evaluate more unknowns
from the given set of equations, solving equations simultaneously as the
conservation rules provide additional relationships between various
variables and help to solve a problem for more unknown parameters. An
algorithm has the ability to incorporate all valid approximations when



applied to a particular system. A good algorithm should not use any
approximation and leave it to the user while a code is written for a given
system.

A simple form of an algorithm may be graphically represented as a
flowchart and describe the logic behind the computational process. A
flowchart is useful for simple calculations, whereas an algorithm describes
the logic behind complicated processes as well. In other words, a flowchart
can be generalized to an algorithm and can included more details of the
involved process. Therefore, an algorithm provides logic behind a
computational process and is applied to solve physical problems.

In an algorithm, one can develop a generic program which can be
altered according to physical systems and correct descriptions of required
parameters. It has more room to change parameters going from one to
another physical problem. It is not too specific to be useful for only one
system. It is generally applicable to a certain type of problem with
substitution of correct variables. The logic of an algorithm is based on basic
principles. Then using an algorithm, a code can be written for particular
problems. These codes are written in one particular computer language and
are based on the logic which is suitable for particular tasks.

3.4.3 Code development
A practical computer code is then developed according to the proposed
algorithm. A general algorithm is a set of commands which describe all the
steps involved in computation in the same language. It may leave the option
to leave the initial values of parameters open and get the results for a
particular problem where all the parameters are evaluated corresponding to
the independent variable. Moreover, an algorithm is converted to a code in
an understandable computer language. In case needed, sometimes the
syntax of various mathematical languages may be close enough to let a
short code convert from one language to another and use it for different
applications with minimal effort.

An algorithm has a basic logic needed to write a computer program. It
refers to the logic behind the computational technique. A code, on the other
hand, is a set of commands that tells a computer exactly what to do and how
to solve a given problem. A computer code can specifically may be more



appropriate for a specified range and can be modified for a different range.
Numerical algorithms can then be developed to visually describe the
processes in the form of graphs or diagrams. A set of diagrams can be
converted into videos as well. A salient feature of a code is that it includes
all commands for a computer to give the results in an understandable
human language and printable format.

Results obtained by a code can be altered for various values and ranges
of the parameters and graphs and videos can be obtained as required. In
addition to just printable numerical results or even mathematical forms, it is
also to be mentioned that sometimes the content of the algorithm and code
can be interchangeable. Numerical methods are used to develop algorithms
to solve a particular set of equations. A set of equations in an algorithm can
be solved with minimum possible approximation, if not exactly. Some of
the algorithms are already based on some approximations to avoid getting
into the situation where equations are not solvable any more. Therefore, the
choice of the applied approximation has to be done carefully.

Once an algorithm is developed, various computer languages can be
used to write a code to communicate with the computer. The entire code has
to be written in the same language. The execution of mathematical
operation directed by the code is used to generate theoretical data involving
the results corresponding to the provided parameters as controlled variables.
A code may have the ability to give the result in the form of an equation, if
chosen. Computer-generated numerical data appear in the form of tables or
graphs as well.

Depending on the language and the available equations, numerical
results can be obtained in the form of a table including the provided
parameters and the corresponding results in the form of a table. A detailed
format of the table can be chosen giving appropriate commands. This data
can be plotted for a required range of variables or can be obtained for
various ranges. We can choose to plot graphs for various ranges of
parameters in chosen colors. These graphs can be plotted in various forms
More elaborated forms of results could be figures, movies or even
simulations. However, these results can only be generated based on the
scope of the code, computer efficiency, appropriate algorithm and proper
language.



3.4.4 Data analysis
We had been discussing theoretical computation and undoubtedly
computers are extensively used in theoretical study. Theoretical physics is
now heavily based on computation. Special branches of physics such as
known numerical relativity, high-energy physics, fluid mechanics, plasma
physics, material science and many other theoretical physics branches are
fully tied up with computational study. The same is true for other science
disciplines and engineering designing. Development of science is fully
indebted to computational tools, these days. However, the computer has
provided a totally new approach in research which is called data analysis.

Data analysis provides a very effective tool to understand the behavior
of a physical system from experimental measurement. Data analysis is an
efficient tool to deduce results from the experimental data. It is almost the
only way to understand physical systems that are either too complex to
unfold the detailed behavior like a living system or totally out of reach,
such as heavenly bodies or nuclear matter. In other words, where
experimentation is not possible and it is too risky. For these out of reach
complex systems, experimental data provides a working tool to understand
the behavior closely. Based on the experimental or observational data,
various models can be constructed to describe the dynamics of a system.
This approach is called data analysis.

Statistical analysis and small tools are provided to make data analysis as
effective as possible. For this process a few underlying data processing
methods are applied such as removal of noise, optimization of data, curve
fitting and study of the logarithmic behavior, etc. Data analysis is an
extremely powerful technique in medical science where it can help to learn
about the behavior of the human body under life-threatening situations,
connection with the environment, astronomical model building to learn
about the cosmos and getting deep into the nature and behavior of nuclear
matter.

Various data analysis techniques are used for complex systems. Like
other software, various data analysis packages are developed to study
special classes of systems. Special packages are available to use a particular
strategy, which is more relevant for an under-consideration system to obtain
correct results. Astronomical Data Analysis, an interface description



language or interface definition language (IDL), is used to communicate
with the computer. This is a generic term for a language that lets a program
or object written in one language communicate with another program
written in an unknown language. IDLs are usually used to describe data
types and interfaces in a language-independent way, for example, between
those written in C++ and those written in Java.

Statistics is the discipline that concerns the collection, organization,
analysis, interpretation, and presentation of data. In applying statistical
methods to scientific, industrial, or social data, it is conventional to begin
with a statistically acceptable approach and a working statistical model is
applied for such studies. Regression is a set of statistical modeling that is
applied to statistical processes for estimating the relationships between a
dependent variable and one or more independent variables. Quantitative
analysis is a complex topic, and it deals with several steps like medians,
modes, correlation and regression.

In statistics, special packages are available for data analysis. A few
popular ones are Excel (MS Office), Origin and Tableau. Some of the
computer languages have their own software in their own languages. R is an
open source program for data analysis. Python has the ability to analyze
data. Jupyter Notebook (Linux), Cactus, and even C++ have their own
packages for data analysis. Now data analysis itself is merging as a new
computational field as data science. It gives an approach to analyze existing
data collected from various sources and summarize their trends and main
characteristics, often using statistical graphics and other data visualization
methods. Almost all common regularly used software now have the ability
to analyze data and get different forms.

It is worth mentioning that the development of computational
techniques is so fast these days that it is very hard to describe them in small
sections or in a chapter. We can just recommend interested students to look
for specialized literature for detailed study and practical experience is even
more important. Moreover, all the modern big research facilities develop
their own computer codes and share their own software to protect their
intellectual property and secure their own findings. These extremely
specific packages are only developed for big labs and specifically designed
research facilities. They can choose one of the available languages and the
start to develop a package, just for convenience. These packages continue



for decades and usually remain in the same language. However, knowing
one language properly and having enough experience moving around
various languages allows one to choose appropriate software and receive
comparable results.

Analyzed data can then be put in a model through graphing the data and
performing error analysis and statistical approach. Once a simulation
provides a technique to visual understand the visual behavior of available
data on an observable scale. Rescaling may reduce cosmic scales to a
computer screen or expand the micro-scale to a computer screen and
convert billions of years or nanoseconds to minutes. This way we can
visualize extremely small and short-term processes and cosmic processes of
billions of light years away objects to visible scale.

Simulation can be considered as one of the output forms of data
analysis. It is the most convenient form of the output to virtually visualize
the output similar to what you can get in real time. However, it takes much
more computer time as compared to the simplest form of the output as a
single numerical value. We can get more data through programming for
various sets of input parameters and get results tabulated in a printable
form.

A graphic card helps to create various forms graphs of data and plot
data into two-dimensional forms as contour graphs as well. On the other
hand, media cards can be used to generate videos based on figures obtained
from data analysis. These graphic cards and video cards employ special
programs themselves. A larger set of data helps to develop better pictures
with more pixel density and better-quality videos can be made such as high-
definition videos. Visual output is a very effective source of information
and helps to conceptually visualize the dynamics of a system.

Simulation helps a lot when we try to create scientific theoretical
models for practically unreachable physical systems as small as subatomic
or sub-nuclear systems or genetic modification. Examples are large systems
such as the weather-related spacial models which can be created using a set
of fluid equations or more complicated systems such as the merging of
stars, supernova explosions, or the Big Bang model. It simply helps to
uncover the secrets of inaccessible physical systems. Simulating a larger
data set helps to explore the physical systems in much more detail. Human
beings are now getting more into data science and data mining. Quantum



computation and AI are newly emerging computer-based resources to
handle much more complicated computation for this purpose. All of these
techniques are more efficient than all the existing technology and going
through further development to be able to store even more data and analyze
larger data packages quickly to reach new results and applications. More
data statistically gives more accurate results.

On the other hand, to protect your own intellectual property, security of
personal information and safety measures become more important and
challenging due to its vulnerability. Therefore, data encryption becomes
equally important and is continuously developed to fulfill the needs of large
data. So a common language for a facility is protected by developing their
own programs for big facilities and the efficiency in computation within
shared facilities is obtained by developing a powerful shared common
computational system utilizing devices such as supercomputers. Smaller
organizations can develop a relatively simpler system by developing a
common workstation that can have the ability to run a code as a shared
cyber-physical system (CPS) from different PCs at the same time. However,
development of password, image scanning, teleportation and encryption
have become a part of computational research. Now even quantum
computing is being developed to improve computational scope.

In the end we will conclude by saying that computer technology is
advancing through two ways. One is the development of computational
methods including numerical analysis, algorithm development and code
writing. Newer approaches such as data science, AI and quantum
computing are also advanced versions of computational techniques. On the
other hand, hardware development is joining hands with software
development to advance computer technology. Newer graphics cards,
quantum computers, and media developers are going through development
swiftly. Computer technology advanced from semiconductors to liquid
crystals, and now nanotechnology is helping further the development from
improved equipment and newer codes.
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Chapter 4

Electromagnetism

4.1 Introduction
Matter is found as an electrically neutral macroscopic bulk material around
us. It consists of various compounds as a collection of molecules, which can
hardly be found in their pure state. These molecules are made up of atoms
which are considered to be the fundamental building blocks of matter and
represent the chemical properties of elements. Atoms are electrically neutral
and participate in each and every chemical reaction to make all the matter
around us. Molecules, on the other hand, are the smallest units of
compounds which can exist independently and carry all the properties of
compounds. They are made up of atoms but physical properties of atoms
are not recognized in molecules.

Atoms and molecules are electrically neutral but they are composed of
charged particles called electrons and protons, and electromagnetic
interaction plays a fundamental role in all chemical processes which helps
to facilitate all material modifications. Some of the complex molecules can
be decomposed into ions or radicals under certain conditions with nonzero
charges. Atoms and molecules are spinless neutral electrical particles. All
the chemical processes are governed by a specific form of electromagnetic
interaction and describe the chemical bonding and molecules formation.
Ionic motion, inter-atomic and inter-molecular forces are described in the
form of Van der Waals force and several other chemical phenomena can be
described in terms of the motion of charged particles. Basic electromagnetic
theory is the interaction between charges which are pretty well-known at
the macroscopic level and is a long-range force just like gravity.

Electromagnetism is the only successful fundamental theory which
works perfectly at the microscopic and macroscopic levels simultaneously



and takes part in all chemical reactions. The molecular form of all matter is
made up of atoms and ions or radicals. It acquires different forms to
facilitate various kinds of processes including organic and inorganic
chemical processes, and even the biochemical processes. This is the only
interaction in which fundamental principles of electromagnetism are
indebted to the properties of charges and the related fields. The electric field
is intrinsically associated with charges and the magnetic field is
dynamically generated from moving charges. Some of the fundamental
principles of electromagnetism are introduced in undergraduate textbooks in
one-dimensional form and it is relatively easy to understand basic concepts
adequately. Solution of three-dimensional equations is much more
complicated, especially in spherical polar coordinates as spherical
symmetry works better with the central force. Cylindrical shapes are more
complicated due to different symmetry, whereas irregular distributions of
charges are even more complicated to understand the overall effect.
Dependence of electromagnetic force on charge distribution makes the
shapes of electric components much more relevant to study the macroscopic
form of electromagnetism.

4.1.1 Detection of charge and electromagnetism
In 1791, Luigi Galvani discovered that a charge can travel through muscles
because when frogs touched the metallic surfaces, their muscles are
contracted, indicating that the electric charge travels through muscles and
causes the contraction of muscles. Not only that, the attraction between
oppositely charged surfaces and repulsion between the same charges was
noticed without knowing the reason behind it. Alessandro Volta then started
the study of properties of charge through a series of experiments using
different metals like iron, lead, tin, zinc, silver and graphite, etc, and study
the flow of charge through the common metals.

History of electromagnetism starts from 600 BC when Greeks (probably
Thales of Miletus, a mathematician) found that a yellow translucent mineral
called amber develops the ability to attract tiny and lightweight objects such
as feathers and hair, when rubbed with fur. The name ‘Elektron’ is actually
amber in Greek. However, the concept of two charges and the interaction
between charges was not known at that point or the information was not



probably documented for another 23 centuries. Since this phenomenon
involves rubbing, it is also called triboelectric effect. This shows the
relevance of electromagnetic interaction in life and material properties.

In the 18th century, Benjamin Franklin established the conventional use
of two types of charges, negative and positive charges. It was discovered
that opposite electrical charges attract each other, whereas similar charges
repel each other. The interaction of charges plays a key role in creating the
macroscopic form of matter. Charles Coulomb, afterwards, started to
quantify charge in a standard unit called the coulomb. Today we know that
the fundamental unit of electric charge is the electron, and one coulomb is
made up of 6.24 × 1018 electrons. Conventionally, electron charge is
considered negative and proton has an equal and opposite positive charge 
e = 1.6 × 10−19 coulombs. The smallest independently existing
fundamental particle is the electron which has a negative charge, set as a
unit charge.

Electromagnetism describes the combined effects of electricity and
magnetism which were found to be related to each other and were unified
via Maxwell’s equations. This is a unique force which is equally important
at all the observable scales from the microscopic to the macroscopic world.
Moreover, it plays a crucial role in the existence of life and development of
technology at large scale and maintains the structure of the fundamental
building blocks of matter: atoms and molecules.

Electricity is a commonly observed phenomenon which gives a
description of several well-known natural observations. It explains the
theory behind lightning (produced when two oppositely charged regions
happen to interact to destroy their charge to light), St. Elmo’s fire (a space
weather phenomenon of creation of luminous plasma due to coronal
discharge), electric discharge due to a group of torpedo fish (type of
cartilaginous fish, commonly known as electric ray) the amber effect
(amber when rubbed with a feather, can attract lightweight objects), etc. All
of these observations were not understood until the discovery of electric
charge and the interaction between them was discovered. Equation (4.1)
describes a relation of magnetic field generated by a constant electric
current which is produced by moving charges. It relates the magnetic field
to the magnitude, direction, length, and proximity of the electric current.



Moreover, though the electromagnetic force is spherical in nature, the
distribution of electric and magnetic fields will depend on the geometry of
charged objects or the geometry of the electromagnetic setup.

Later on, it was found that an isolated electric charge could propagate
through certain metals which were identified as conductors later. Charge
may be stored in a capacitor. The first charge-storage device was designed
as an early form of a parallel plate capacitor and called Leyden jar, named
after its designer (figure 4.1). It was basically a glass jar, containing a few
sheets of metal foils. A pierced cork was used to close the top of the jar.
Figure 4.2 represents the creation of magnetic field from current The
exposed end of the wire is brought in contact with a friction device to
charge the jar. This charge will be collected and stored between the inside
and outside of the glass jar under high potentials. Invention of the charge-
storage device was a very important discovery in electromagnetism and
played a key role in the development of technology, especially information
technology.



Figure 4.1. Leyden Jar the first charge-storage device.



Figure 4.2. dB is the magnetic field realized at point P from the
current element IdL.

Energy can be converted from one form into another form and when
human beings learned how to make use of this conversion, new devices
were made. Batteries were invented to convert chemical energy into
electrical energy. They can be considered as a small chemical reactor that
can store chemical energy in between two electrodes. These chemicals
produce highly energetic electrons that can flow as current through external
devices and current is defined as the rate of flow of charge. The discovery
of static charge and the knowledge of the flow of current led to the
invention of the incandescent lamp, which opened a gateway to technology.

This process did not stop here. Batteries provided an external source of
energy that could be used to run different devices. When batteries were
available to initiate a process in a machine, we were able to construct
several machines by converting electrical energy into mechanical energy.
Further investigation of properties of charge and the flow of current led to
the discovery of the basic principles of electromagnetism and Maxwell’s



equations then introduced the phenomenon of electromagnetic waves.
These electromagnetic waves are used to define visible matter.

4.1.2 Basics of electromagnetic theory
Classical electromagnetism deals with the properties of electric charge and
its ability to do work, which is associated with electric field E. Later on,
with the discovery of electromagnetic waves, a relationship between
electric field E and magnetic field B was discovered. Electric fields are a
vector and can either be attractive or repulsive. A positive charge exerts a
pulling force and a negative charge has the ability to exert pushing force but
the net force depends on the polarity of both charges. Same charges repel
each other due to competing forces and opposite charges attract each other
as they support each other. Properties of static charges, net effect of charge
due to their geometric arrangement and the overall effect of charges
enclosed in a geometrical arrangement by a hypothetical surface is another
interesting topic of electromagnetism.

Basic principles of electromagnetism were discovered from the detailed
study of properties of static charge and the flow of charge as current. Basic
principles were discovered relating the electric and magnetic field.
Properties of static charges were related to electrostatics, whereas the
magnetostatics deals with the properties of magnets created by certain
arrangements of magnetic dipoles. Magnetic dipoles are a combination of
two magnetic poles defined as south pole and north pole. Magnetic field
lines coming out of the north pole and going into the south pole represent
the magnetic force of attraction. The density of this magnetic flux B is
called the magnetic field, in common language. The magnetic field lines
between two opposite poles move in a circle indicating attraction, whereas
the field lines between the same poles never overlap and result in repulsion.
It was later found that magnets are produced due to the alignment of
charges and are always arranged in the form of dipoles. North and south
poles are generated together so the poles are always broken into dipoles.

Opposite electric charges and opposite magnetic poles are attracted to
each other and similar charges and similar poles repel each other based on
the strength of charges and poles and the separation between them. The
similarity of electric charges and magnetic poles (charges) indicate a



similarity between electricity and magnetism. The only obvious difference
is that the electric charges are separable and one kind of charge can be
found flowing as it is just as negatively charged electrons can flow in the
form of current from positive to negative charge or higher to lower
potential. However, magnetic poles are not separable. Magnets are always
found as a dipole. This difference is related to the fact that charge is the
intrinsic property of matter and cannot be removed from particles, whereas
magnetic poles are not intrinsically associated with matter. Magnetic field is
created by moving charges, instead, and can be switched off by stopping the
motion of charge. However, some naturally existing materials may show
magnetism due to the material structure.

The electric and magnetic forces are proportional to the strength of the
corresponding charges (electric charges or magnetic charges) and inversely
proportional to the square of the distance between them. The inverse square
law of force between two charges and two poles is similar to the inverse
square law of force between masses, named as gravity. Electric force,
magnetic force and gravity are all spherical in nature and vary with the
square of the distance between two relevant objects. Magnitude of gravity
and electromagnetic force are proportional to the product of two masses and
two charges, respectively. The constant of proportionality of these forces is
different in both cases and determines the relative strength of forces.

However, these forces can be differentiated by their degrees of freedom.
Gravity deals with masses and it has only one degree of freedom and
produces an attractive force only. Charges and magnetic poles participate in
electromagnetic interaction with individual degrees of freedom and can be
attractive or repulsive in nature. Opposite charges attract each other and
same charges repel each other. Electric fields are polarized whereas gravity
is not polarized at all. Gravity acts from lighter to heavier mass as light
objects are always attracted to heavy objects and tend to reduce the distance
between masses. However, both of these forces are central forces and cause
orbital formation at entirely different scales. Planetary orbitals are produced
in space due to a competition between gravity and angular momentum,
whereas the atomic orbitals are created due to a competition between
electromagnetic force with the intrinsic angular momentum at subatomic
scale.



Central forces are symmetric around the center of the sphere. One of the
charges or the mass of the above-mentioned forces should be situated at the
center. So the central forces discuss the motion of an object around another
object exhibiting circular motion. The electric and gravitational forces are
both central forces, which are uniform on the surface of a sphere as the
magnitude goes with the square of the distance and not the direction. Both
of these forces are spherically symmetric in nature and are responsible for
orbital motion under favorable conditions. This spherical nature makes
spherical polar coordinates as the most suitable coordinate system to
properly understand these forces. With electromagnetism we study the
overall properties of net charges which may not necessarily be the unit
charges. Electromagnetism is more like a macroscopic version of
electrodynamics and does not dig deep into the individual behavior of
charges where the quantum mechanical approach becomes more relevant.

Gravity is always attractive but electromagnetic fields and potentials
have two degrees (positive or negative) of freedom each. It deals with static
charges and their properties. Dynamics of gravity work with basic
conservation rules of physics and Newton’s laws of motion. Kepler’s laws
of planetary orbitals also involve gravity. Electrodynamics is developed as a
formalism to study the movement of charges with respect to one another in
three-dimensional space and relate it to the external coordinate system. This
technique develops a set of basic rules to study electrodynamics that is
usually described as fundamental principles of electrodynamics and can
relate electric and magnetic fields with respect to other charges which
describe the relationship between them and their dependence on the rate of
flow of charge or current.

Current is defined as the rate of flow of charge. The electromagnetic
theory of radiation indicates that the moving charges have a time-varying
electric field associated with them. Moreover, the moving charge may
create a magnetic field perpendicular to the direction of motion. The
magnetic field generated due to the current distribution involves a vector
product between the direction of the flow of current along the current-
carrying conductor and the distance from the current to the field point. The
magnetic field of a current element d →B can be expressed as:
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d →B =

μ0Id→L × →l r

4πr2

d→L is the infinitesimal length of current-carrying conductor and →l r indicates
the distance to the field point. The above relation between the magnetic
field and its source of magnetic field is called Biot–Savart’s law of
electromagnetism. This law is expressed in terms of the distance from the
current. The direction of the magnetic field is determined using the right-
hand rule which states that if the fingers of the right hand are rolled around
the thumb along the magnetic field, the thumb indicates the direction of the
current.

Basic principles of electromagnetic theory are developed using
measurable parameters of the theory and their relationship. Most of the
features of the theory are studied and discussed at the macroscopic level in
the lab environment and are related to the collective behavior of charge or
the current flowing through certain materials and the impact of
electromagnetic forces on the formation of electromagnetically-interacting
systems. Classical electrodynamics is a slightly more complicated theory of
an electromagnetically-interacting fluid but can still be considered parallel
to fluid mechanics because the basic difference of nature is the main
difference between them. Fluid mechanics considers mass of fluid
molecules and gravitational force plays a pivotal role in the flow of liquid.
Electromagnetic interaction is a much stronger force and surpasses gravity
for light particles, whereas electrically neutral heavy particles are still under
the dominant influence of gravity. The result of the competition between
gravity and electrodynamics is what is a deciding feature to choose a better
approach comparing fluid mechanics or electrodynamics.

Several rules are related to the collective behavior of charge. These
well-known rules that we call fundamental principles are either found
during empirical investigation or derived theoretically and then tested
experimentally. Some of the fundamental laws of electromagnetism such as
Gauss’s law, Faraday’s law of electromagnetic inductions, and Ampère’s
circuital law were initially discovered as behavior of charge and related the
magnetic field with electric field. The relationship of fields with current
was also mainly the motion of charge and the generation of electric and



magnetic fields. Some of the other important relations like this were derived
out of the fundamental principles as well. However, these fundamental
principles led to the development of Maxwell’s equations to understand the
electromagnetic waves. These laws of electrodynamics are discussed in
detail in the next section.

Electromagnetism is the only theory which has equal relevance for
single-particle dynamics and appears as a collective theory of large
macroscopic objects. Current is essentially defined as the rate of flow of
electrons but it can be measured when a stream of electrons flows through a
conductor, which could be a microscopic or a macroscopic object, and the
the principles of electromagnetism are translated to macroscopic systems in
terms of current and voltage.

4.1.3 Electromagnetic waves
In the presence of moving charges, electric and magnetic fields change with
time and time-dependent fields are found to satisfy the wave equations:

∂ 2E

∂x2
−

1

c2

∂ 2E

∂t2
= 0

and

∂ 2B

∂x2
−

1

c2

∂ 2B

∂t2
= 0

and the solution of the above equations gives the form of electromagnetic
waves as

Ex = Em sin(kx − ωt)

and

Bx = Bm sin(kx − ωt)

where ω is the oscillating angular frequency of the electromagnetic wave
given as ω = 2πf. F  is the frequency of waves such that Em

Bm
= c for c the
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speed of light which is similar to x = v t where v is the velocity in the
direction of x. The energy associated with the electromagnetic waves is
indicated by a Poynting vector →S given as:

→S =
1

μ0

→E × →B

The energy transport with electromagnetic waves is a vector perpendicular
to both fields and its magnitude can be given as:

S =
1

μ0
EB =

1

cμ0
E 2

m sin2(kx − ωt)

where we can use the wave forms of the electromagnetic field in terms of
sinusoidal waves and the average of sine of the angle gives the net amount
of energy as:

S =
1

2cμ0
E 2

m.

4.2 Flow of charge and electronics
Conservative forces do no work along a closed path and have to obey the
relevant conservation rules. Mathematically, this means that any
conservative force can be expressed as a gradient of a potential as →F = →∇V

. Just as the gravitational potential describes the motion under gravity, mass
always moves from higher to lower potential. Similarly, charge moves from
high potential to low potential. However, the work done by the electric
potential is zero. The study of electromagnetism is related to a stream of
electrons as current and the difference of voltage (defined as per unit
charge) and is defined in units of volts in SI. Voltage is a quantity that is
related to the energy associated with a single charge and is directly related
to the electron charge. The dynamics of current flow can only be
understood in terms of current and voltage. Since current flows through
materials and is used more in macroscopic systems, the relation between the
current and voltage is integrated with the properties of materials and a
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whole new field of study has emerged as electronics which controls the
technology and the industrial applications of electromagnetism.
Fundamental laws of electronics control the flow of current in an electric
circuit and several electric components have been developed to convert
electrical energy into mechanical work or other circuits dealing with the
close path of current that follow the basic conservation rules.

The rate of flow of charge defines the electric current I, which is used
to transfer electric energy from one place to another place. This flow of
current is facilitated by the difference of electric potential V  defined as
electric energy per unit charge. However, when the current flows through a
medium, the properties of the medium affect the movement of electrons.
Therefore, the rate flow of current significantly depends on the conducting
properties of the medium. These materials are generally categorized as
superconductors, conductors, semiconductors and insulators. Every material
can be put in one of these four groups with its characteristic value of
resistance. Ideally speaking, superconductors have zero resistance and the
insulator has infinite resistance. Each solid and liquid material can have a
measurable resistance R, which tells us how much current is allowed to
pass through for a given potential difference.

Electronics uses electromagnetism to understand the flow of current for
the applied voltage depending on the structure and properties of various
materials. Commonly found resistors are usually Ohmic resistors which are
directly related to the properties of conducting materials such as metals and
electrolytes. However, the current and voltage are always proportional to
each other and the ratio between the current and voltage remains constant
for a given medium. This principle is called Ohm’s law which is the basic
principle of flow of current. If voltage V is measured in volts, and current I
is measured in amperes then the ratio between the voltage and current is
called resistance and is expressed in units of ohms (Ω), in standard SI units.
Proportionality between current and voltage is called Ohm’s law and can
then be expressed as:

V = IR

An understanding of the dynamics of charge plays a pivotal role in the
development of applied physics and technology and it is studied in physical
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electronics. It is based on the understanding of the flow of current due to a
given difference of potential. It was discovered that the flow of charge
induces a magnetic field which is associated with a perpendicular force
called electromotive force (EMF) and is created by voltage supplies or
electrochemical batteries. It can be expressed in terms of the magnitude of
the perpendicular distance from the current-carrying wire or the path of the
flow of current.

Efficiency of electronic components and their design is based on these
basic principles. However, engineers use various combinations of circuits
and several additional factors to choose the right material, size and shape to
make it practically beneficial and cost-effective. A detailed calculation of
EMF involves the basic principles of electromagnetism and will be
discussed in detail wherever it will be more relevant. Principles of
electronics developed another branch in electronics named circuit
electronics, which overlaps with electric engineering and starting from
developing small electronic gadgets and devices. Designing of the
electronic appliances and complicated equipment is mainly done by
engineers who have specialization in certain areas. An efficient design may
be created considering material properties, electronics, market trends and
appropriate use of available tools along with the creative skill.

The flow of current follow certain laws and provide a strong basis to
develop circuit electronics and modern technology. Kirchhoff’s rules are
based on the principle of conservation of current in a closed loop and the
conservation of voltage across nodes. They are called Kirchhoff’s laws and
are the basic principles of closed circuits. These laws tell that the loop
currents are conserved to conserve the total charge. The flow of current
towards a junction is equal to the flow of current outside the junction and
the law is also called junction rule which can be written as the vanishing
sum of incoming and outgoing currents. The Kirchhoff’s junction rule states
that the sum of all currents entering a junction is equal to the sum of all the
outgoing currents:

ΣiIi = 0

On the other hand, the conservation of electric energy demands that the
total energy per unit charge or the sum of the potential difference around a
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loop remains unchanged or the change in potential around a closed loop is
zero and is also known as the loop rule which can be written as:

ΣkVk = 0

These two rules are basic principles of circuit electronics and they are
applied to transfer electric energy into the required form. However, the
electronic components such as resistors, capacitors, transistors, power
supplies or electronic meters are designed using the concepts of
electromagnetic materials. The same basic principles of electromagnetism
are used to make power supplies, batteries, oscilloscopes, etc, and describe
the mechanism of working of the basic components. The principles of using
electromagnetism are studied to define the working of electronic
components.

Development of modern technology is largely indebted to the flow of
current through a combination of simple and complicated circuits which
involve a variety of electronic components. Electronics is one of the basic
applications of electromagnetism and plays a crucial role in the
development of various forms of technology. Physical electronics deals
with the mechanism behind the working of electronic components and the
basic rules followed by these circuits, which help engineers to design
electronic devices using circuit electronics. Conversion of electrical energy
into mechanical energy is used in making mechanical tools and is very
helpful in household appliances and small tools, whereas the conversion of
electrical energy into other forms, which makes various kinds of tools and
equipment, is a large part of technology. Digital circuits are also designed
using circuit electronics, which is associated with the development of
computers and information technology. Electronics itself is a vast topic and
its detailed discussion is out of the scope of this book. However, the
knowledge of physical electronics and electrodynamics has a big overlap. In
this book we will skip the electronics part and move to electromagnetism
now.

4.2.1 Electromagnetism and electronics



A static charge has an electric field →E which can be defined as the ability of
a charge to apply a force on a unit charge. Another associated field with a
charge is created when a charge moves through a conductor. The associated
field with a moving charge is defined as a displacement vector field →D, such
that →E and →D are related to each other through the electric permittivity ε
and →D = ε →E. The electric permittivity of a medium ε = ε

*
0εr, where ε0 is

the permittivity of free space and εr is the dielectric constant of a medium.
On the other hand, a moving charge creates a magnetic field of strength →H
and the magnetic flux density →B, perpendicular to the direction of the
moving charge. →B and →H are related through the magnetic permeability μ
such that μ →H = →B. The magnetic permeability of free space is given as μ0.

Before getting into the discussion of laws of electromagnetism, we have
to define a few more quantities such as the electric permittivity ε and the
magnetic permeability μ. Electric permittivity is the property of a material
to allow the electric field lines to pass through it. In other words, it
measures the characteristic of a material and measures the opposition
offered by a material against the flow of current. On the other hand,
magnetic permeability is related to an imaginary porous material which can
be described as an imaginary permeable surface which allows the magnetic
field lines to pass through it. Magnetic permeability can then be related to
the number density of those imaginary pores which allow the number of
lines of magnetic force passing per unit area. For calculation purposes the
electric permittivity in free space is defined as ε0 and the magnetic
permeability in free space as μ0.

Electric permittivity and magnetic permeability are related to the
properties of a medium. It is also important to notice that there are four
fields altogether: electric field →E, electric displacement field →D, magnetic
field →H and magnetic flux density →B. Flux is defined as the number of lines
of force passing through a unit area per unit time and →B corresponds to the
magnetic flux density. The electric field →E is related to electric flux ϕ as 
→E = − →∇ϕ.

4.2.2 Current–voltage relationship



The discovery of Maxwell’s equations describes the role of moving charges
in creating the electromagnetic energy in terms of electromagnetic waves.
Non-relativistic motion of charge can transfer energy to materials to
produce radiation and that gives a beginning to the modern technology
which helps to convert electrical energy into mechanical energy. Ampère’s
circuital law with the conservation of electrical energy helped to develop
the laws of electronics which are described as the conservation of nodal
current and loop voltage in Kirchhoff’s rules.

There are four fundamental laws of electrodynamics which make up
Maxwell’s equations and express electromagnetic waves in terms of electric
and magnetic fields. Four basic principles of electrodynamics are briefly
discussed here to develop Maxwell’s equations. These laws include Gauss’s
law of electric and magnetic fields and then Faraday’s law and Ampère’s
law. All of the other equations of electrodynamics can be derived from
basic principles of electromagnetism and are found through experiments.

4.3 Electromagnetic theory
Electrostatics deals with static charges and Coulomb force is the force
between static charges. There is an electric potential and an electric field
associated with static charges. Moving charges can produce magnetic field
and there are four basic principles of electrodynamics which are represented
by Maxwell’s equations. These laws include Gauss’s law of electric and
magnetic fields and then Faraday’s law and Ampère’s law. All of the other
equations of electrodynamics can be derived from these four basic
principles of electromagnetism and are found through experiments.

Electromagnetism is a combined theory of electricity and magnetism
and is defined in terms of electric charges, magnetic dipoles, electric and
magnetic fields and electromagnetic forces, including Coulomb force and
Lorentz force. Coulomb force is the force exerted by a charge, intrinsically,
whereas, Lorentz force is the forces associated with the moving charges and
helps to define the magnetic field. Faraday’s law and Ampère’s law
establish the relationship between the variation of electric and magnetic
fields. These principles of electromagnetism provide a foundation to build
electromagnetism which can further be developed into classical
electrodynamics. The classical electrodynamics along with relativity and



quantum mechanics gives a description of quantum field theory which
makes it a successful quantum theory and it works simultaneously at large
scales as a long-range theory such as gravity. It will be discussed in detail,
later in this chapter.

Faraday’s law and Ampère’s law allow us to discuss electricity and
magnetism as a manifestation of the same phenomenon. Moving electric
charges inside a wire create a magnetic field around it. A moving magnet
can also produce electric field. Electromagnetism then describes the
properties of charges and deals with the associated electric and magnetic
fields. It is a perfectly testable theory at the macroscopic level and usually
deals with charges at the macroscopic level.

The fundamental interaction known as electromagnetism competes with
gravity and is not only used to describe the atomic and molecular binding,
but also plays a crucial role in the formation of large material structures and
multi-particle complex systems. Electromagnetism alone describes the
collective behavior of matter along with gravity and identified with
different labels due to its role in the behavior of matter in all different
situations. Properties of matter in various phases including solids, liquids
and gases are distinguished by the strength of the interactions between
atoms and molecules depending on the separation among them. Classical
electromagnetism plays a big role in atomic and molecular physics and
explains their bonding and structure in detail.

This interaction is basically the interaction between charged particles
and is based on the basic principles of classical electromagnetism that can
later be summarized as Maxwell’s equations and are discussed in detail later
in this chapter. Electromagnetism deals with the moving charges and the
study of accelerated charges indicates that the nonlinear motion of charges
can produce a magnetic field that contributes to the electric force
perpendicular to the direction of motion of the charge and magnetic field. It
means that the electric field (force), magnetic field and direction of motion
of the charges are three mutually perpendicular vectors and provide a three-
dimensional space for the propagation of electromagnetic waves.

Electrodynamics is the study of time-varying electric and magnetic
fields. It involves a detailed study of electromagnetic interaction for
different kinds of charge distributions and study of the interaction of current
with electric and magnetic fields. The basic laws of electromagnetism
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known as Gauss’s law, Faraday’s law and Ampère’s law are written together
as Maxwell’s equations using the electromagnetic wave theory. Maxwell
could write the wave equation for electromagnetic fields using these laws
and the study of electromagnetic fields and waves is discussed in classical
electrodynamics. Propagation of waves through electromagnetic-interaction
media is studied in detail accordingly.

4.3.1 Coulomb’s law
Electromagnetic force between charges (Coulomb force) is a conservative
force and the net work done by this force always vanishes. Charge is an
intrinsic property of matter, which is responsible for electromagnetic
interaction. Charge has two degrees of freedom; positive and negative
charges. One Coulomb charge is defined as a charge which exerts one
Newton force on another unit charge when they are at a distance of one
meter from each other. This force between two charges is called Coulomb
force. Independent charge (of an electron) exists in units of electronic
charge which is 1.6 × 10−19 coulombs. Direction of the force is parallel or
anti-parallel to the line joining the two charges and depends on the polarity
of both charges. Magnitude of the Coulomb force is calculated in terms of
the charges and the separation between them, however, the work done by
this force or the motion resulting due to the application of the force depends
on the mass of the affected particles. In other words, the Coulomb force has
an impact on the movement of a charged body, which is controlled by
Newton’s laws of motion. Coulomb force is defined as:

r̂  is a unit vector and can be written as r̂ = →r

∣→r∣
. The Coulomb constant 

k = 1
4πε0

 in SI units, where ε0 is the electric permittivity in free space and
is given as ε0 = 8.854 287 82 C (Nm) −2. The speed of light in free space
is related to electric permittivity as c = 1

√(ε0μ0)
 such that μ0 = 4π × 10(−7)

→F ∝
q1q2

r2
r̂

→F = k
q1q2

r2
r̂
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newton per square ampere or μ0 = 1.26 × 10(−6) weber per ampere-meter
(= newton/square ampere). Weber is the unit of electric flux in SI units
defined as tesla per meter square. Magnetic flux is the number of lines of
magnetic field per unit area. Electric field is a property of charge and is
always associated with charge. It can be interpreted as the ability of a
charge to exert a force on a unit charge situated at a distance r. An electric
field associated with a charge is expressed as a function of distance r and is
given in units of newton per coulomb (N C−1) as:

→E = k
q

r2
→r̂

There is another vector field associated with a moving charge called the
magnetic field B (usually) which actually corresponds to the magnetic flux
density. This flux is associated with a moving charge q, exhibiting an
accelerated motion which produces a corresponding magnetic force, the
Lorentz Force. This force is generated by a moving charge perpendicular
to the direction of motion of the charge and is given as:

→F B =
q

c
(→v × →B)

The Coulomb force, associated with the electric field, is exerted by the
charge, intrinsically, whereas the Lorentz force is created by the moving
charges and vanishes as soon as it is put to rest. Therefore, the total
electromagnetic force generated by a moving charge is a combination of
electric force due to the static charges and the parallel component of the
Lorentz force generated by the motion of the charge. This is given as:

→F = q →E +
q

c
(→v × →B)

The velocity →v in the Lorentz force is a group velocity and corresponds to
the velocity of the wave packet. Electric and magnetic fields are usually
referred to as classical fields because they are three-dimensional fields and
they can acquire any value as long as they satisfy the condition →E ⊥ →v ⊥ →B
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demanded by a vector product. The unit of magnetic field in SI units is the
tesla (T), which is equal to newton/(coulomb × meter/sec).

Electromagnetic wave equations for classical fields is associated with
apparent wave velocity which is the observable velocity related to the
motion of wave from a single point. The propagation of electromagnetic
waves in free space takes place by using the constant speed of light which
corresponds to the group velocity and is used in obtaining the Lorentz force.
and then the group velocity is replaced by c in free space such that 
c2 = 1

μ0ε0
. Therefore, at the macroscopic scale, the electromagnetic signal

speed is always taken as c and the above equations attain the above form.
The electrostatic energy is usually identified as U and is defined as the

energy required to move a charge by the electrostatic force to a unit distance
r:

U = k
q1q2

r

The SI unit of force is the newton and the unit of energy is the joule which
can also be expressed as a newton-meter. There is another important
quantity in electromagnetism, commonly known as voltage. Voltage is
related to the amount of work done by an applied force towards a unit
charge. Generally, u = →F ⋅ →r , whereas V = →E ⋅ →r . Electric field is force per
unit charge and the voltage is the amount of work done by the electric field
to move a unit charge to a unit distance. Voltage can then be written as:

V = k
q

r

Another important parameter is current which can be defined as the
rate of flow of charge. Current is another important parameter in
electromagnetism. It is more like a bulk property of charge indicating the
rate of change of the amount of charge per unit time.

4.3.2 Principles of electromagnetic theory
Electromagnetic fields →E and →B are continuous fields and are represented as
waves. Both of these fields satisfy the wave equations:
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(v2
ϕ∇2 −

∂ 2

∂t2
)E=0

(v2
ϕ∇2 −

∂ 2

∂t2
)B=0

Hence, the electromagnetic fields are considered as continuous
variables because they are associated with the flow of charge and their
phase changes as a perpendicular component of each other in a plane
perpendicular to the propagation vector →v. The change of phase in the
electromagnetic fields varies with the movement of individual charges and
changes corresponding to the phase velocity vϕ. The phase velocity vϕ is
the velocity of the phase of the electromagnetic waves corresponding to the
velocity of the individual state of a wave (every state of the wave packet)
and cannot be measured, whereas the group velocity is the overall velocity
of the wave and is measurable. Electromagnetic wave equations for
classical fields are three-dimensional equations and watch the motion of the
individual particles.

This form of wave equation helps to develop a four-dimensional system
for electromagnetic waves. By defining four-vectors in the coordinate
system (x, y, z; ct), the four-dimensional differential operator de’
Alembertian □ ≡ ∂μ∂μ is defined as:

□ =
→
∇2 −

1

c2

∂ 2

∂t2

and the three-dimensional coordinate system (x, y, z) takes the four-
dimensional form (x, y, z; ct), whereas ct is the positive imaginary
coordinate that cannot be expressed in three-dimensional state and three-
dimensional momentum operator of quantum mechanics (p̂∕x, p̂/y, p̂ z)
attains the four-dimensional form −p̂x, −p̂ y, −p̂ z;E / c and E/c is the
imaginary coordinate in this case.

Charge has two degrees of freedom and exhibits force in two forms as
attraction and repulsion. Attractive force is directed from a positive to a
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negative charge, whereas the repulsive force exerted by a charge is moving
it away from the other charge in the neighborhood. There are altogether
four combinations by two charges and two types (attractive and repulsive)
of force. That makes it much more convenient to use the frame of reference
of one particle and for most of the calculations, one of the particles is
situated at the origin and the displacement vector is defined as separation of
charges along the line joining the two charges instead of the spatial
coordinates with a randomly chosen frame of reference. Some of the
parameters were associated with geometrical arrangement of charge such as
dipole moment, quadruple moment and other arrangements.

4.3.3 Gauss’s law
Gauss’s law for electricity relates the electric field to the total electric
charge enclosed by a closed surface. It states that the electric flux through a
closed surface is proportional to the total charge enclosed. Electric charge is
associated with the electric field and the amount of charge per unit volume
is defined as electric charge density. Since we do not observe the magnetic
monopoles, the magnetic charge density is always zero. If ρ is defined as
free charge density then the variation in the electric field vector is given in
terms of Gauss’s law and is written as:

→∇ ⋅ →E = 4πρ

the corresponding expression for the magnetic field is expressed as:

→∇ ⋅ →B = 0

Due to the vanishing of magnetic free charge density magnets are
always found as magnetic dipoles, and magnetic monopoles do not exist.
However, Gauss’s law is defined to be vanishing as we cannot separate both
magnetic charges (or magnetic poles). This indicates the major difference
between electricity and magnetism. Charge is the intrinsic property of
matter, whereas magnetic poles are associated with the motion of charge
and the phenomenon of magnetism is associated with the dynamics of
charges.
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4.3.4 Faraday’s law of magnetic induction
A variation in the magnetic field induces a voltage in the circuit. If this
variation takes place in a coil, the voltage induced in the coil of wire is
called induced EMF that increases or decreases the voltage in the coil. The
amount of induced voltage depends on the frequency of variation of the
field. This change in voltage depends on the strength of the magnetic field
as well as the change in the field.

→∇ × →E = −
1

c

∂ →B

∂t

This equation describes how a changing magnetic field induces an
electric field. It states that the induced EMF around a closed loop is equal to
the rate of change of magnetic flux passing through the loop. If a constant
electric current passes through a coil, the strength of the magnetic field will
depend on the number of turns in the coil. Any change in the magnetic
environment of a coil of wire will produce a voltage (induced EMF) in the
coil. This change could be produced by changing the magnetic field such as
moving a magnet towards or away from the coil, into or out of the magnetic
field, rotating the coil relative to the magnet, etc. Faraday’s law serves as a
succinct summary of the ways a voltage (or EMF) may be generated by a
changing magnetic environment. The induced EMF in a coil is equal to the
negative of the rate of change of magnetic flux times the number of turns in
the coil. It involves the interaction of charge with magnetic field. When an
EMF is generated by a change in magnetic flux according to Faraday’s Law,
the polarity of the induced EMF is such that it produces a current whose
magnetic field opposes the change which produces it. The induced magnetic
field inside any loop of wire always acts to keep the magnetic flux in the
loop constant. If it is decreasing, the induced field acts in the direction of
the applied field to try to keep it constant.

4.3.5 Ampère’s circuital law
The integral form of Ampère’s circuital law for magnetostatics relates the
magnetic field perpendicular in a circular wire with the rate of change of
electric field and along a closed path to the total current flowing through
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any surface bounded by that path. This law can be considered as a
complementary law to Faraday’s law that relates that the variation in
electric field and current both contribute to produce some magnetic fields:

→∇ × →B =
4π

c
→J +

1

c

∂ →E

∂t

 
This equation relates the magnetic field to the electric current and the

rate of change of electric field. It states that the circulation of the magnetic
field around a closed loop is equal to the sum of the electric current passing
through the loop and the displacement current, which is proportional to the
rate of change of electric field. →∇ × →B = μ0

c
→J  ( →J  is the current density).

Lenz’s law is a magnetism version of Ampère’s law. The current
induced in a circuit due to a change in a magnetic field is directed to oppose
the change in flux and to exert a mechanical force which opposes the
motion of charge. ε = −N

∂ϕB

∂t
 (ε = induced EMF and ϕB = magnetic

flux).

4.4 Development of classical electrodynamics
It has been mentioned that among the four fundamental interactions known
as gravity, electromagnetism, weak and strong interaction, the most well-
understood theory is electrodynamics. It is the only fundamental interaction
which works both at the microscopic and macroscopic levels
simultaneously. Electromagnetism deals with overall behavior of a
composite system of charges macroscopically and the flow of charge
through neutral objects as current. A detailed study of classical behavior of
individual charges or composite structures combining with the wave nature
of electromagnetic waves is identified as classical electrodynamics.
Electrodynamics is then considered a combined study of interaction of
charged particles with radiation, describing it in terms of electromagnetic
radiation. Classical electrodynamics is the study of dynamics of charges and
describes the interaction of radiation with matter.



Electrodynamics and electromagnetism are similar fields with relatively
different classical approaches. Electromagnetism is usually a study of the
overall charge of the body and behavior of charge in its totality, whereas
electrodynamics deals with the behavior of individual charges. Both of
them obey the same rules of electromagnetism and both of these terms are
sometimes used interchangeably. However, electrodynamics applies it to
individual charges and then integrates the behavior of individual charges to
understand the detailed structure of matter. Electromagnetism is a broader
concept and deals with the properties of net charges and their relative
location to understand the overall behavior of charged objects. It is used to
discover laws of electromagnetism to compute the electromagnetic
properties of material. Moreover, electromagnetism encompasses the study
of electromagnetic phenomena, including static and dynamic electric and
magnetic fields, electromagnetic radiation, transmission lines, waveguides,
and antennas.

Electrodynamics uses the physics of motion of charges in combination
with the electromagnetic radiation which gave rise to Maxwell’s equations.
It describes the bulk properties of materials integrating the individual
properties of charges. However, electromagnetism has a broader scope
because it encompasses the study of static and dynamic electric and
magnetic fields. It covers electricity and magnetism separately and studies
the magnetic properties of materials which has broader application in
technology. Electromagnetic phenomena have applications to more charge
and current flow and help in creating simple components such as
transmission lines, antennas and other basic electric components.

Electrodynamics is used for the detailed study of interacting fluids
including plasma and bulk properties of materials in a more precise way.
Electrodynamics includes the dynamics of charged particles in electric and
magnetic fields, the electromagnetic induction, and the generation of
electromagnetic waves. It is extensively used in the study of plasma which
can be considered an electromagnetically-interacting fluid with certain
density and is electrically neutral. Electrodynamics provides tools to study
the electrodynamics of individual charges with quantum mechanics.
Electrodynamics deals with electromagnetic fields and waves and translates
fundamental laws of electrodynamics using Maxwell’s equations.
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4.4.1 Maxwell’s equations and principles of electrodynamics
The most important fundamental laws of electrodynamics are combined
together as Maxwell’s equations. These equations were used to develop the
electromagnetic wave theory and showed that the laws of electromagnetism
satisfy a wave equation. A detailed study of electromagnetic signals was
prompted at this point which led to the four-dimensional representation of
Maxwell’s equations and finally helped in the development of quantum
electrodynamics.

We first describe Maxwell’s equations in free space where ε0 and μ0

give the electric permittivity and magnetic permeability of free space with
its constant values. This also gives the constant value to the speed of light
as c = 1

√ϵ0μ0
 The differential form of Maxwell’s equations in free space (in

the standard SI units) is written as:

∇. B = 0

∇. E =
ρ

ε0

∇ × E = −
∂B

∂t

∇ × B = μ0 (J + ε0

∂E

∂t
)

The corresponding integral form of Maxwell’s equations in free space
(SI units) is written as:

∮E⋅dS =
1

ε0
∬∬

Ω

ρdV

∮B⋅dS = 0

∮E⋅dl = −
d

dt
∬ B⋅dS
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∮B⋅dl = μ0 ∬ J⋅dS + ε0

d

dt
∬
Σ

E⋅dS

The two systems of units in metric systems are, however, very similar
and easily translated in metric notation, but the values of constants are very
convenient in a Gaussian system or CGS (centimeter gram second) units
because we can set the Coulomb constant k = 1/4πε0 = 1 and then the
integral form of Maxwell’s equations in Gaussian units attains the form:

∮E⋅dS = 4π∬∬
Ω

ρdV

∮B⋅dS = 0

∮E⋅dl = −
1

c

d

dt
∬ B⋅dS

∮B⋅dl =
4π

c
∬ J ⋅ dS +

1

c

d

dt
∬ E⋅dS

and the corresponding differential form can be written as:

∇ ⋅ B = 0

∇ ⋅ E = 4πρ

∇ × E = −
1

c

∂B

∂t

∇ × B =
4π

c
J +

1

c

∂E

∂t

These units become very convenient when we translate Maxwell’s
equations in a medium and define the displacement vector D corresponding
to D = ε0εrE in terms of relative permittivity εr. Similarly, the magnetic
field in the medium is defined as H and H = B/μ0. This helps to
conveniently define magnetization, polarization and other vectors in a more



convenient way and SI units can be retrieved easily, whenever needed.
Some of the important units are tabulated, at the end, for comparison and
make the transformation of units easy for calculation.

Electric and magnetic fields are usually referred to as classical fields
because they are three-dimensional fields and can attain any value. So these
fields are considered as continuous variables because they are associated
with charges which are composite charges and can be considered
continuous variables. This property of electromagnetic fields is a specialty
of classical electrodynamics. Maxwell’s equations have significant
implications that extend beyond their mathematical form. Understanding
these equations enables us to comprehend and manipulate electromagnetic
phenomena more effectively. Here are some important features of
Maxwell’s equation which gave birth to electrodynamics which could later
be extended to quantum electrodynamics.

Unifying electricity and magnetism: Maxwell’s equations unified the
previously separate phenomena of electricity and magnetism, revealing
that they are two aspects of the same underlying electromagnetic force.
This unification led to important technological advancements, such as
the development of electric generators and motors.
Predicting the existence of electromagnetic waves: From his equations,
Maxwell deduced the existence of electromagnetic waves, which travel
through space at the speed of light. These waves include radio waves,
microwaves, infrared radiation, visible light, ultraviolet radiation, x-
rays, and gamma rays. The discovery of electromagnetic waves laid
the foundation for wireless communication and the field of optics.
Quantifying the speed of light: Using his equations, Maxwell was able
to calculate the speed of light, which he found to be approximately
299 792 458 meters per second. This precise calculation established
the speed of light as a fundamental constant and provided strong
evidence for the wave nature of light.

Individual particles have distinct behavior from large masses, especially
light ones like electrons. These particles move very fast and acquire
relativistic energies that may not be ignorable. Discussion of highly-
energetic particles suggests incorporating relativistic contributions at the
quantum mechanical scale. For this purpose, the Schrödinger equation of
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motion has to be updated with relativistic corrections. Maxwell’s equations
in electrodynamics allow us to describe electromagnetic fields in the form
of wave equations. Using the conservation of charge and current, the
continuity equation can be written to relate the rate of flow of charge with
the divergence of electric current for flowing charges:

∇ ⋅ J +
∂q

∂t
= 0

which is similar to the equation of continuity for fluids that states that
the inflow of a liquid in a given volume is equal to the outflow of fluid from
the same volume. Another way to say this is then given as:

∇ ⋅ (𝛒u) +
∂ρ

∂t
= 0

where ρ represents the mass density of fluid and the fluid current is ρu
just like the electric current density J = ρv. This equation shows the
conservation of amount of liquid in a unit volume. Similarly, the continuity
equation in electrodynamics ensures the conservation of net charge in a unit
volume.

The equation of motion for fluids represents the flow of fluid mass and
mass density works to determine the number of molecules to a good
approximation, whereas for charges the number of particles cannot be
determined from the net charge. Polarity of individual particles changes the
net charge. On the other hand, the direction and speed of the motion of
charge depends on the strength of charges, their polarity and mass. For
relativistic systems, spin statistics have to be incorporated that evolve two
different equations of motion from Schrödinger’s equation for half-integral
spin (of fermions) and integral spin (of bosons) as a relativistic theory of
quantized fields. Bosons and fermions follow different spin statistics.

In many-particle systems, the equation of motion of charged particles
includes spin as well because spin statistics allow bosons to stay in one state
with all the same quantum numbers but only one fermion can acquire a
particular state at a time. Therefore, the equation of motion of individual
charges incorporates spin to determine the right statistics. This difference of
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spin statistics of fermions and bosons leads to two different equations of
motion for bosons and fermions in four-dimensional formalism. This
relativistic generalization is not straightforward due to the complexity of
mathematics.

4.4.2 Maxwell’s equations in four dimensions
Maxwell’s equations are the fundamental equations of electromagnetism
and they are used to describe the dynamics of charge at non-relativistic
energy. Equations (4.18) and (4.19) are three-dimensional forms of
Maxwell's equations which are applicable to daily life. These equations
work at non-relativistic energies. However, as we know that change of
position potentially incorporates the use of time and we add time as an
imaginary component, similarly, every charge has the ability to create a
magnetic field so we can define a four-dimensional field associated with
charge. This field has three real components →E and one imaginary
component →B ⊥ →E as a vector field. Its vector property is associated with
the vector nature of the electric field.

The relation between electric and magnetic field is expressed in terms of
Maxwell’s equations. Equations (4.18)–(4.21) are forms of Gauss's law
together give a set of differential forms of Maxwell’s equations, and uses all
the important laws of electromagnetism that gave us the birth of modern
technology. Equation (4.18) leads to

→B = →∇ × →A

where A is called a vector potential.
Differential form of Maxwell's equations (4.18)–(4.21) tell us how the

variations in the electric and magnetic field depend on each other. The time
dependence of magnetic and electric field, in reference to Faraday’s law and
Ampère’s circuital law, relate the time-varying electric and magnetic field
to generating electric and magnetic flux. Without getting into detailed
discussion of Maxwell’s equations, we can look into the corresponding
integral form of these equations given in equations (4.27)–(4.30).

Classical electrodynamics works perfectly fine at the macroscopic level
just as classical mechanics works perfectly fine at the same scale where we



are constrained on the overall behavior of physical systems. Classical
mechanics uses Newton’s laws of motion for linear systems, the dynamics
of orbital motion of rotating systems incorporates Kepler’s laws for rotation
of bound systems by gravity and fundamental laws of electrodynamics for
electromagnetically interacting systems. Gravity and electromagnetic force
are both central forces and create gravitationally-interacting orbits in space
and electromagnetically interacting orbits in atoms. We just consider
dominant force and the angular momenta for the formation of orbits.

The equation of motion of classical mechanics for linear motion is
written in terms of the rate of change of linear momentum, whereas the rate
of change of angular momentum in circular motion describes the equation
of motion for rotation. Net linear force is related to the linear acceleration
and net torque on a body is related to the angular momentum. Classical
physics deals with continuous variables of a system, in principle, and can
attain any value and net force has no restriction on how much acceleration
can be produced.

The major difference between gravity and electromagnetism is
associated with the basic properties of matter. Mass has only one degree of
freedom and gravity is always an attractive force that depends on the
quantity of mass and the shape of the objects. Conversely, electric charges
have polarity and could be either positive or negative, which gives two
types of behavior to the force, either attractive or repulsive. Charged
particles still have mass and the mechanical forces are still there along with
the electromagnetic force.

Gravity generates orbital motion by competing gravitational attraction
with the centrifugal force generated by the angular momentum.
Gravitational orbits have no limit on the amount of mass, they just need a
large enough force between two masses to ignore any other external force,
even gravitation pull of the other objects. Electrodynamics does not produce
orbital motion at the macroscopic scale as matter does not carry enough net
charge to move large masses measurable distances. In neutral matter,
gravity dominates over electromagnetic force at large distances, due to the
electrical neutrality of independently existing matter. Neutral matter can
only carry partial induced charge, which is not only weak but also
temporary. Independently existing neutral matter can be generated by
collecting all the positive charges in the center and letting an equal number



of negatively charged light particles revolve around it inside the atoms.
Therefore, the electromagnetic forces can only generate orbitals of electrons
in atoms.

Atoms are electrically neutral and are composed of an equal number of
electrons and protons. Protons reside with neutrons in the central part of
atom in the nucleus. Neutrality of atoms is indebted to the polarity of
charges as an equal amount of charges can balance out to give overall
neutral matter. However, the polarity of charge makes it more complicated
because opposite charges cancel each other and net charge vanishes.
Repulsion between similar charges has to be managed in orbital motion of
electrons and the repulsion between protons in the nucleus is controlled by
strong interaction between protons and neutrons. Without getting into the
details of atomic structure, the nucleus can be considered a single positively
charged center and electrons revolve around that center. Almost all the mass
of an atom resides in the nucleus while extremely light electrons revolve
around it and gravitational interaction is easily ignorable in atoms.

The formation of orbitals of charged particles can occur in the special
configuration of atoms only where electrons can revolve around the nucleus
but repel one another as well. Moreover, revolving charges exhibit a small
magnetic field due to their rotational motion. So electronic orbits not only
maintain balance by matching the electromagnetic force and the angular
moment, but they also balance the magnetic moment of electrons due to the
orbital motion of electrons. This situation is managed by the quantization of
angular momentum in atoms, discrete energy levels defined although all of
the electrons are identical particles, and considering the size of the nucleus
to be small enough to be treated as just a central point.

Electrons are extremely light particles and revolve around the nucleus
as well as spin around their own axis of rotation in clockwise or
counterclockwise manner. The spin degrees of freedom add correction
terms to the orbital angular momentum; these are called spin angular
momentum such that the total angular momentum →J  is a vector sum of
orbital angular momentum →L and spin angular momentum →S which
becomes more complicated with the increase in number of particles.
Electronic orbitals deal with individual particles so have to incorporate
individual particle properties like spin as well. That is the reason that the



electron orbits are much more complicated and cannot be described by
some laws similar to Kepler’s laws of orbital motions (based on central
force and angular momentum).

On the other hand, due to the light mass of electrons and tiny size of
atoms, classical physics is not enough to describe the electronic motion.
Quantum mechanics is needed to understand the motion of electrons inside
the atoms. Additionally, electrons move too fast (comparable to the speed of
light) to ignore relativity. A detailed study of atomic structure is made
possible using quantum mechanics. The key concepts of quantum
mechanics are developed using uncertainty principle in the light of wave–
particle duality and the operator formalism is instrumented for this purpose.
The probabilistic nature of quantum theory, due to the limitations in precise
measurements, does not allow us to easily discriminate among different
possible states of electrons. The equation of motion of electrons in quantum
mechanics is the Schrödinger equation and its solution in spherical polar
coordinates leads to the discrete value of angular momenta. This
quantization of angular momentum and energy is called the first
quantization associated with the quantization of state variables. These
quantized variables are identified as quantum numbers and the particles are
represented as state functions that are described by the particles as well as
wave properties. An overview of quantum mechanics is presented in
chapter 1.

Light particles such as electrons, due to small masses, easily acquire
relativistic velocities and non-relativistic study may not give the correct
information. Even the speed of electrons inside atoms is large but still non-
relativistic quantum mechanics works fine. However, electrons can acquire
very high velocities at high energies and even other particles may need
relativistic treatment. Therefore, special relativity is incorporated into
quantum theory, which leads to the second quantization or quantization of
fields instead of quantization of variables. Relativistic quantum mechanics
evolves into quantum field theory that replaces the first quantization by the
second quantization and shows the quantization of fields instead of
variables. Therefore, at relativistic energies, particle states are attributed by
fields instead of variables. Quantum field theory needs to incorporate spin
of the particles in its analysis. However, quantum field theory opens new



venues in physics, and acquires a more effective approach to study
interaction as a local gauge theory using Lagrangian formalism.

We therefore give an overview of all the relevant theories to identify
their scope and then link together all the apparently different approaches in
the form of quantum electrodynamics that becomes a standard gauge theory
and provides a framework to study all of the fundamental interactions as
gauge theories with their inherent properties at the individual particle level.
In quantum field theory, the particle spin has to be incorporated and the
Schrödinger equation, the equation of motion of quantum mechanics, gives
rise to two different equations of motion—namely, the Klein–Gordon
equation for particles with integral spin or spin zero and the Dirac equation
for half integral spins. The gauge invariance requirement of the Lagrangian
led to the discovery of several more quantum numbers.
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Chapter 5

Thermodynamics and statistical mechanics

5.1 Introduction
The universe is defined as the sum total of all the matter and energy that we
can think about. Matter is identified by its shape, size, color or appearance.
It is defined as anything which acquires mass and occupies space, whereas
energy is an imaginary quantity and we can only realize through its impact
on matter and requirement to do work. Energy is required to apply force to
move matter. In this case, mass can be defined as the ability of material
objects to resist motion against an applied force, whereas energy is used to
change the position of an object in space. We can observe the behavior of
matter or the effect of force through experiments. Physics as a subject uses
mathematical and computational tools to understand the behavior of matter
against the applied force. Mechanical forces are produced in between
objects and controlled by operators of forces. These forces can be
controlled by various mechanical methods and are used to develop
technology.

Modern technologies have emerged from human control on the hidden
energy of matter and have the ability to transform one form of energy into
another form to use for human benefits. This energy, after conversion into
the required form, can produce the required force to perform the required
work. Therefore, the study of interaction is relevant for all aspects of
scientific and technological development such that the required energy can
be created to produce enough force to access the individual particles to
study their properties. Force is used to transfer energy in between material
objects as well.

A force between material objects can be indirectly realized by the
change in its properties and location. Collective properties of matter and its



phase may change when it interacts with other matter or goes through the
transfer of energy. Scattering allows the change of nature of particles by
transferring or sharing energies and momenta and follows certain rules.
Collective properties of matter depend on the strength and nature of these
interactions and follow certain rules determined by interaction theories and
checked by experimental results. The overall energy of macroscopic objects
may be an integrated form of all the energies, and external force may be
added or subtracted out of it. This macroscopic form of energy of
macroscopic objects can change from one form into another form and does
not depend on the intrinsic properties of matter only. However, for the
integrated form of the constituent particles, energy contributes to different
forms of macroscopic energy including kinetic and potential energy. Mass is
basically affected by kinetic energy and other properties contribute potential
energy.

5.1.1 Bulk properties of materials
Matter is not visible in the form of individual particles and we only see a
many-particle system. Individual atoms and molecules exhibit kinetic and
potential energy. Average kinetic energy of molecules is defined as
temperature T of a system of particles, averaged macroscopic properties or
bulk properties of materials include temperature, volume, internal energy
and number of particles, etc, and are governed by thermodynamics and their
detailed study is managed by statistical mechanics. We briefly discuss both
of these theories as they are one of the fundamental approaches to studying
physical objects. Thermodynamics overlaps with the field of physical
chemistry as these bulk properties handle all the chemical properties to
begin with.

A many-particle system exhibits some macroscopic properties such as
temperature, pressure, volume, internal energy and some of their special
characteristics are defined in terms of the individual particle dynamics of
the system. In other words, bulk properties of materials and their overall
behavior are expressed as the integral form of individual behavior. Material
properties are categorized as intensive and extensive parameters. Extensive
properties change with the quantity of matter and depend on mass and
volume of the material. The intensive parameters are averaged properties



and do not depend on mass and volume or quantity of the material.
Temperature and pressure are good examples of the intensive properties,
whereas number of particles is an extensive parameter. However, extensive
and intensive parameters are related to each other. Therefore, most of the
extensive parameters can be redefined as intensive parameters, such as
specific heat, specific entropy and molar entropy.

5.1.2 Thermodynamic variables
Three well-known states of matter are called solids, liquids and gases. They
are identified by temperature, pressure and specific entropy as intensive
parameters. Temperature is defined as the average kinetic energy and
pressure is the force exerted per unit area at the surface. Energy, number of
particles and volume are examples of extensive properties. In addition to
the common parameters such as temperature, pressure, volume, mass and
energy, there are certain properties that are specifically defined for the
thermodynamic behavior of many-particle systems. Thermodynamic
parameters can be defined in terms of the existing parameters. Internal
energy of a system, enthalpy and entropy are a few important
thermodynamic parameters that are needed to describe statistical properties
of a thermodynamic system. Statistical properties are related to the average
of individual particle behavior of a system to move in multiple directions
and lead to randomness. However, before the discussion of statistical
mechanics, we summarize a few relevant concepts and parameters of
thermodynamics.

Thermodynamics deals with the dynamics of a bulk material using its
bulk properties involving thermal energy. Thermodynamics works with the
study of kinetic behavior of a many-particle system and overall properties
of bulk material including temperature and other important parameters of
the theory. In the case of solids, the thermodynamic quantities of interest
may be different than the interesting parameters of fluids. This difference is
based on the kinetic behavior of atoms or molecules in a material based on
difference of their concentration. Thermal properties of solids are studied as
a part of material properties called thermal properties. Thermodynamics
provides a better approach to understanding the dynamical properties of
fluids due to an increase in degrees of freedom of individual particles. The



energy change in fluids is easily measured from their temperature that may
cause a change in phase of the material as well.

Temperature is the most conveniently measurable property of a material
and is used to define and determine various phases of matter like ice being
cold, water having intermediate temperature and vapor temperature being
extremely high. Temperature relates to the heat energy of a system and
describes the dynamics of the system showing the change in internal energy
in terms of the change in temperature. The chemical processes are discussed
in terms of the change in temperature or heat energy of a system. The
kinetic theory of gases is based on the thermodynamic behavior of gases.
However, the study of thermodynamics of systems of particles with some
freedom in movement introduces new parameters to describe a many-
particle system. We will define a few important parameters here to start
with the thermodynamic approach. Bulk properties of matter are used to
distinguish between various phases of matter, and density and pressure are
the most important parameters. Thermodynamics investigates the concepts
of heat and other bulk parameters at the macroscopic level.

5.1.3 Energies in thermodynamics
In addition to the bulk properties such as temperature T, pressure P and
volume V, there are some other parameters which are specifically defined
for the study of a many-particle system. Temperature is defined as the
average kinetic energy and is easily measured and used to differentiate
among various thermal systems, whereas pressure and volume are easily
measurable bulk parameters as well. Other parameters can be measured in
terms of temperature and pressure as well. Some of the other important
quantities in thermodynamics are internal energy U, Gibbs free energy G,
Helmholtz free energy F and enthalpy H of a system. For this purpose, we
need to first understand what is meant by heat Q. Heat can be understood as
the amount of energy needed to move a system of particles due to the
individual movement (kinetic energy). Heat is the net energy, whereas
temperature is the average energy of the system. Total energy of a
thermodynamic system is a sum of kinetic energy, potential energy and
includes the internal energy such that

E = K.E + P.E + U



The internal energy U is related to other quantities such as enthalpy as well.
Enthalpy H is a thermodynamic quantity that is used to calculate the heat
content Q of a chemical reaction such that it measures the heat flow. The
units are usually kJ mol−1. The enthalpy of elemental compounds is zero. It
can be considered (another) form of energy and is described as a sum of
internal energy and work, whereas internal energy is a measure of kinetic
and potential energy only. The difference in all various forms of energies
corresponds to the nature of a system and the type of work it performs,
which leads to a particular change in thermodynamic quantity.

Free energy is needed to perform work by a system. We, therefore, need
to define a couple of other commonly used forms of energies for a
thermodynamic system such as Helmholtz free energy F and Gibbs free
energy G to understand the important forms of usable energies in terms of
internal energy and heat. Helmholtz free energy (F) can be defined as: 
F = U − TS. This relation is defined as δQ = δW − δU . It corresponds to
the working ability of a closed system without changing temperature at all.
On the other hand, Gibbs free energy (G) is defined as G = H − TS. This
way, Gibbs free energy is related to the enthalpy of the system. These
parameters can be defined as:

F = U − TS

G = H − TS

H = U + PV .

5.2 Laws of thermodynamics
Thermodynamics discusses the comparison of temperature and an average
kinetic energy of a many-body system. Thermodynamics deals with the
transfer of heat or management of the temperature between two systems.
Matter can allow the transfer of thermal energy (heat) via conduction,
convection or radiation. Movement of particles from one place to another is
not possible in solids but particle transfer is possible in fluids (liquids or
gases). Therefore, we do not need to worry about the change in composition
of connected solids. Fluids on the other hand allow the transformation of
molecules among themselves when they are connected to each other



through an opening which may allow the transition of particles among
themselves. At this point we need to define thermodynamic variables such
as temperature, pressure, density, chemical potential, internal energy,
entropy and so on. The flow of thermal energy between two systems or the
transfer of temperature is understood by thermodynamics and is based on a
few basic principles.

When two systems are in thermal contact with each other, they are said
to acquire thermal equilibrium when they reach the same temperature and
further flow of heat stops. Flow of heat and movement of particles from one
system to another system takes place through the flow of heat in the form of
kinetic energy of the particles in fluids. Two systems do not allow the flow
of heat between them if they are in thermal equilibrium. Two systems at
thermal equilibrium have the same temperature and do not allow the
transfer of heat. Thermodynamic equilibrium means that two
thermodynamic systems have all the matching parameters where further
transfer of energy between two systems is not possible.

There are four fundamental laws of thermodynamics. These laws
describe the relationships among different thermodynamic parameters such
as temperature, internal energy, and entropy of the system. These laws are
used to study the total work done by a thermodynamic system including the
work done by the heat and other thermodynamic parameters. Two systems
are defined to be in thermal equilibrium if there is no net flow of heat
between them.

Every physical many-body system is called a thermodynamic system
when it can be defined in terms of its bulk properties including temperature,
density, volume, mass and chemical composition, etc. All these properties
contribute to the thermodynamic potential. The flow of material between
two thermodynamic systems takes place from high potential to low
potential along with thermodynamic parameters. They are all related to the
fact that the heat flow into or out of a thermodynamic system affects the
internal energy of the system according to the law of conservation of
energy.

5.2.1 Zeroth law of thermodynamics



If two mutually independent systems A and B are in thermal equilibrium
with each other, and system A is in thermal equilibrium with a third system
C, then C will also be in thermal equilibrium with B. This is called the
zeroth law of thermodynamics. It means that if two systems are in thermal
equilibrium with each other and one of the systems is in equilibrium with a
third system, then all three systems are in thermal equilibrium. It is
equivalent to say if two bodies are in thermal equilibrium with a third body,
then they are said to be in equilibrium with each other.

5.2.2 First law of thermodynamics
If two systems are in thermal contact with each other, the flow of energy
can take place but the total amount of energy between two systems remain
unchanged. The second law of thermodynamics can be considered as
another form of law of conservation of energy which is relevant in
thermodynamics. In other words, the law of conservation of energy between
thermally connected systems, are put in isolation.

5.2.3 Second law of thermodynamics
This law describes the mechanism of flow of heat without breaking any
other law of physics. The second law simply states that the flow of heat is
always directed from a hotter to a colder region unless this flow is
interrupted by any other stronger force. Spontaneous flow of heat from a
hotter to a colder region can more easily be related to the entropy of the
system. However, all of the heat cannot be transformed into energy to
perform work.

It can also be described in terms of heat energy of a system. If an
amount of heat is added to a system, that heat is either used by the system
or it is released out of the system in one manner or another. It means that
the change in thermal energy of a system can be accounted for in terms of
the internal energy δU and the work done by a system called δW. We can
write:

δE = δQ − δW



where Q represents heat of the system and W represents the work done by
the system or work on the system. δxi gives the measurable change in
thermodynamic variables during a thermodynamic process.

The second law of thermodynamics ensures the entropies of two
interacting systems manage the flow of heat until a thermodynamic
equilibrium is established and the entropy of the two systems reaches the
optimum value and stops the flow of heat. It just provides the limitation of a
thermodynamic behavior that it cannot be fully reversible. Or in other
words, when an equilibrium is established between two systems, a quantity
called entropy is maximized. Entropy S is defined as a measure of disorder
and the flow of heat Q can be related to change in entropy as:

δS =
δQ

δT .

The rate of change of entropy is directly related to the change of
temperature. As soon as the entropy reaches the maximum disorder
(equilibrium), the flow of heat stops which prevents the irreversible
processes after an isolated system of two small systems acquire an
equilibrium. So, the flow of heat is not possible as soon as a system reaches
the condition:

δS ≥
δQ

δT .

This is the condition which never lets the heat flow in a backward direction
and prevents reversibility. Entropy helps to define another law of
thermodynamics. However, we need to develop a better understanding of
entropy before getting into the third law of thermodynamics.

5.2.4 Entropy
Entropy is another quantity that is introduced in thermodynamics as well. It
is a physical parameter that can be considered as a measure of intrinsic
disorder in a material. It gives the amount of energy that is used to produce
randomness and is not available for the mechanical work on individual
particles. Entropy can be defined in reference to certain measurements as



Shannon entropy, Neumann entropy and so on. Entropy is constant at
absolute zero only, which is an ideal situation that is physically impossible.
For example, the entropy of a perfect crystal at zero temperature (zero
Kelvin) is zero.

Entropy is represented by S and keeps on changing in active materials
and can be considered as a measure of the dispersal of energy. It can be
considered as a thermodynamics quantity that measures the disorder in a
closed system, which is related to the randomness and uncertainty of a
thermodynamic system. Entropy of an isolated system remains constant for
reversible processes. However, the combined entropy of systems and their
environment must increase for irreversible processes. It is directly related to
the microstates. Increase in a microstate is related to the increase in entropy
and increased entropy cannot decrease automatically.

As soon as we understand the concept of entropy, we can redefine
second law of thermodynamics in terms of entropy as the entropy is always
increasing and cannot be decreased spontaneously. This means that heat
cannot flow from a colder to a hotter system spontaneously. However, a
closed system can stay at its maximum value of entropy or at the same
temperature until it is in contact with a colder (hotter) system.

5.2.5 Third law of thermodynamics
The third law of thermodynamics is based on the fact that every chemical or
physical process is associated with a change in entropy. It can sometimes be
related to the Nernst theorem as the entropy of a system approaches a
constant value at absolute zero temperature and is related to the nature of a
system as:

lim
T→0

ΔS = 0

It shows that the entropy at equilibrium reaches a constant value.

lim
T→0

(System in Equilibrium) = 0

The third law sometimes can simply be stated as the entropy of a closed
system always tends to approach its maximum value. This maximum value



(5.1)

(5.2)

(5.3)

is obtained at equilibrium. Whereas its entropy approaches a minimum
value as soon as the temperature of a system approaches zero.

5.2.6 TdS equations
A set of important equations of thermodynamics using various forms of
energy are called TdS equations relating temperature T and the related
change in entropy dS keeping various other thermodynamic quantities
constant (one at a time). These TdS equations are derived from the
following initial relations:

TdS = dU + PdV

A set of more useful relations using thermodynamic parameters also called
TdS equations can be derived from equation (5.1). For this purpose, we
define β = 1

T
 and κ = 1

T
( ∂T

∂P )
v

Cv and Cp are specific heats at constant volume and specific heat at
constant pressure, respectively.

Cp =
(TdS + PdV )

dT
= T( ∂S

∂T
)

p

+ P( ∂V

∂T
)

p

Specific heat can be defined as the amount of heat required to increase the
temperature of a unit mass of material measured in grams by 1 Kelvin such
that Cp > Cv always.

5.2.7 Kinetic theory of gases

TdS = dH − V dP

TdS = dE = dQ − PdV

TdS = CvdT + T( ∂P
∂T )vdv = CvdT + βT

κ
dv

TdS = CpdT − T( ∂v
∂T )pdP = CpdT − βvTdP

TdS = Cp( ∂T
∂v )pdv + Cv( ∂T

∂P )vdP = Cvκ

β
dP +

Cp

βv
dV



The kinetic theory of gases is a simple classical model for the study of the
thermodynamic behavior of gases. Gases are considered as non-interacting
multiparticle systems. This basic version is associated with non-interacting
gases and gives a relationship between temperature T , pressure P , and
volume V . The proportionality relation among T , P  and V  is given as the
ideal gas law such that:

PV

T
= constant.

It also relates other macroscopic parameters or bulk properties of gases.
Transport properties of gases in terms of the transport parameters such as
viscosity, thermal conductivity and diffusion are studied.

1 gram-mole of an element or a compound is expressed in terms of its
atomic weight or molecular weight expressed in grams, respectively. 1 mole
has 6.022 1415 × 1023 particles and this number is called Avogadro’s
number. Even a small amount of material is a collection of a very large
number of particles and statistical treatment is the only way to study the
internal behavior of the system. Thermodynamics gives an overall behavior
of a multiparticle system derived from a statistical approach. Most of the
thermodynamic quantities are averaged quantities. A few important
thermodynamic quantities are introduced above and will be understood in
terms of statistical variables in detail later. For a better understanding of
statistical mechanics, we need to define and understand commonly used
parameters of treating many-body systems using the probability theory of
statistics.

5.3 Introduction to statistical mechanics
Dynamics of single-body or two-body problems can be understood by
simple mathematical techniques. As soon as we come across a many-
particle system, we have to treat it using the concept of probability and
statistical mechanics. The ideal gas treatment of a non-interacting system is
pretty simple and can be applied to a large system with a countless number
of non-interacting particles. The kinetic theory of gases is used for an ideal
gas where atoms and molecules exhibit random motion and have



sufficiently low density. It is a system of a very large number of particles
moving freely in a large space of a gaseous system. Phase is determined by
standard definition of various phases and properties of material.

In statistical mechanics we deal with particles that are chemically
identical and where all of them can stay in the same state together which
can create a bulk of material in solid, liquid or gaseous states. These
particles may be distinguishable due to some other properties such as
momenta and energies. However, they can randomly move in three-
dimensional space. Due to this random motion we can treat a non-
interacting gas as a random-walk problem analogous to random motion in a
system of non-interacting identical particles. It is known in chemistry that a
physical system composed of many identical particles seems to exhibit
random motion described as Brownian motion, which is random motion in
a fluid.

Precision and predictability are basic needs of science and single-
particle behavior at microscopic level is predictable and precise
measurements are possible to an acceptable level if the initial conditions are
known. However, the predictability is replaced by probability when more
than one outcome is possible and a system is not physically accessible.
Many-particle systems have several possibilities in their mutual behavior
and the impact of the applied force may not be fully predictable due to
some missing information or due to too many possible outcomes.
Probability theory works when there is some information that cannot be
accessed due to extremely small objects or a very large number of samples
and the missing information is incorporated by averaging over all the
possible theoretical or experimental outcomes based on the known and
tested laws of the corresponding theory.

Before getting involved in the study of statistical behavior of matter we
need to define a few important statistical terms such as statistical
ensemble, canonical ensemble, grand canonical ensemble and other
statistical terms. Ensemble is a collection (group) of a large number of
particles that share their individual properties in a system. A
thermodynamic system is defined as a statistical ensemble of a very large
number of particles in a closed system. It is defined for a collection of
material with uniform composition where all the particles are identical and
behave in the same way. In statistical mechanics a statistical ensemble is a



complete set of states that may be occupied by identical particles.
Sometimes, it may be described as a set of possible states for the same
particle. Certain conditions can identify this set of states differently. A
statistical ensemble is an infinite number of identical particles which are
indistinguishable and exhibit random motion for a non-interacting system
which can be treated as virtual copies of the same system (or multiple
copies of the same particle with all the same parameters). Thermodynamic
ensembles are a special type of systems that are in statistical equilibrium
among themselves. Therefore, the statistical properties of a system can be
derived using classical or quantum mechanics. Out of the general definition
of ensemble, specific cases can be derived.

A canonical ensemble is an ensemble which is recognized by a large
number of similar particles, and this system may weakly be connected to a
heat bath. The energy of such a system may not be fully known. However,
the temperature is specified for such a system and the system is a fully
closed system in a way that particles cannot move in or out of the system.
However, in a grand canonical ensemble even the number of particles is
not constant. It can be described as an open system which is in thermal
contact with a reservoir which allows the flow of energy, number of
particles, and the associated change due to electrical contact, radiative
contact, chemical or thermal contact and so on. An ensemble average is an
averaged quantity which is an average of probability of existence of
microstates because a statistical ensemble could be defined locally.

5.3.1 Entropy
Entropy is another important quantity which is introduced in
thermodynamics but it acquires various forms in statistical mechanics. It is
a measure of intrinsic disorder within a closed system. It gives the amount
of energy that is used to produce randomness and that thus is not available
for mechanical work on intrinsic particles. Entropy can be defined in
reference to certain measurements as Shannon entropy, Neumann entropy
and so on. Entropy is statistically constant at absolute zero and it keeps on
changing in active materials. Various states in a physical system can be
described in terms of n number of discrete states which can be converted
into a continuous set of states. However, reversibility and conservation of



information can be required. Statistical mechanics deals with probabilities
and is used differently at the quantum scale and the states of the particles
are expressed in terms of probabilities. Therefore, entropy becomes a
parameter related to all possible numbers of states. In an identical particle
system, the entropy is used in the form of probability of various quantum
states and the entropy is described in terms of quantum numbers.

5.3.2 Probability
Probability theory in statistical mechanics considers all states with the
possibility of finding a particle in a certain state. All of these states can be
equally probable or not. Probability theory is one of the key concepts of
statistics, and it is used exclusively in statistical physics to be able to deal
with a large number of states with a sufficiently large number of particles.
The probability of finding an object is related to the availability of a state,
which depends on the distribution of various states. The concept of
probability is very simple if we have enough information about the
available state and all states are equally probable. The example of rolling a
six-sided cubic dice is an appropriate example of an unbiased probability. If
a dice has six equally probable sides, then the probability of getting a
specific side (identified by a particular number) is equal to the number of
observed sides (which is always 1 at a time) is divided by the total number
of states, giving P = 1

6
. We can translate this concept of probability into

statistical mechanics. We can have biased or unbiased distributions of
states. The most general definition of unbiased probability for n particles
can then be found by defining a probability of existence of a state with n
particles defined N  such that:

N ≡
number of particles n

total number of states
=

n

N

for randomly distributed N  states where every state is equally available to
each and every particle and only one particle can be found in one state at a
time. However, this concept of simple discrete probability becomes much
more complicated when the states become biased or incoming particles
have their own priorities.



We can easily distinguish between the discrete and continuous
distribution of states. The above definition corresponds to discrete states
and can be easily evaluated. Total number of states can then be expressed as
(N = ∑N

i=1 i) for discrete states and for continuous distribution of states (
ρ = ∫ ρ

1 dx). Then the probability of finding a continuous set of states f(x)

in this region ρ is written as:

p(ρ) = ∫
ρ

1

f(x)dx.

If the probability distribution of a state i, ρi, can contribute to the total
distribution of probability it is normalized as (∑i ρi = 1). If we look for a
state with maximum entropy at thermodynamic equilibrium:

S = −k∑
i
ρilnρi.

Total number of available microstates can be defined in terms of energies of
the individual states Ei with i = 1, 2, 3, …. These states make a complete
set of states Ω(E) to apply statistical mechanics properly. Most of the
important parameters of a thermodynamic system such as the density of
states, average energy of the system, partition function and entropy are
related to the number of states and partition function.

5.3.3 Maxwell’s relations
Maxwell’s relations are derived from the conservation of the second
derivatives of thermodynamic potential with respect to two natural variables
of thermodynamics like temperature T , Pressure P , volume V  and entropy 
S. All other parameters such as the coefficient of thermal expansion α,
compressiblity κ, heat capacity at constant volume CV  and heat capacity at
constant pressure CP  are imported from thermodynamics as it is. It uses the
general form of Schwarz’s theorem for any two variables i and j which are
not necessarily thermodynamic variables such that:



∂

∂xj

( ∂Φ

∂xi

) =
∂

∂xi

( ∂Φ

∂xj

)

where Φ is a function including a statistical function and xi and xj are
statistical variables. Maxwell’s relations in thermodynamics are derived
using functional forms of internal energy U = U(S,V ), enthalpy 
H = H(S,P), Helmholtz free energy F = F(T ,V ) and Gibbs free energy 
G = G(T ,P). These relations are derivable from the symmetry of second
derivatives using the definition of thermodynamics potential. It is also
noticeable that all thermal variables are defined in terms of simple relations
among various thermal variables, whereas the statistical parameters are a
simultaneous function of various statistical variables. It is therefore
important to discuss the rate of change of one parameter as a partial
derivative of other parameters keeping everything else constant.
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= ( ∂P
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∂T
)
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= ( ∂ 2G

∂T∂P
)

All of these equations can be rewritten using the properties of partial
derivatives:

( ∂y

∂x
)

z

= 1/( ∂x

∂y
)

z

where all of the statistical relations are evaluated in terms of partial
derivatives instead of a simple change in thermodynamic parameters.



5.3.4 Gibbs free energy
All the concepts of statistical parameters are related to quantum mechanical
concepts. We can relate all these parameters in terms of quantum
mechanical operators. The Gibbs entropy of a macroscopic classical system
is a function of probability distribution over the phase space of an ensemble
and can be written in terms of the partition function as:

S = −λ2U + klnZ,

whereas:

dS

dU
= −λ2 ≡

1

T

Calculation of probability in statistical mechanics is not so straightforward
because it depends on how the possible states depend on the properties of
particles and their behavior as a many-particle system. Therefore, statistical
mechanics goes way beyond the simple calculation of probability. We need
to define several statistical functions in terms of statistical properties which
are defined in terms of the available state of the system.

5.3.5 Relation between statistical mechanics and
thermodynamics
Mathematical development of statistical mechanics is based on the
generalization of thermodynamic concepts. The system of identical particles
is expressed in terms of distribution of velocities or in other words, their
kinetic energies. Statistical mechanics generalizes the concept of energies
for statistical systems. Energy is used as a parameter to distinguish between
various identical particle states and various quantum numbers are used to
distinguish between energies. Entropy, density of states and the particle
distribution f(x) are all related to the number of available states with all
identical parameters.

5.3.6 Partition function



(5.4)

Partition function is used to describe thermodynamic variables as statistical
quantities in terms of the set of states. A partition function is constructed
incorporating the properties of a statistical ensemble. Therefore, partition
functions correspond to the properties of an ensemble, which could be a
canonical ensemble, a grand canonical ensemble, or even a micro-canonical
ensemble.

Z = ∑
i
e−βEi = ∑

E
Ω(E)e−βE

So Z can be related to the number of states Ω(E) of a micro-canonical
ensemble between energies E and E + δE and their average over energy is
related to energy E, where δE is much smaller than the size of the
corresponding canonical ensemble. It is related to the density of states, such
that:

Ω(E) = W (E)δE,

where W (E) is called the density of states. The probability distributions ρi
and entropy S are then expressed as:

ρi =
1

Z
e−βEi

and finally, the entropy is defined as derivatives of entropy keeping one or
the other parameter constant such as:

We could relate the entropy with Z such that:

S ≡ k(lnZ + βE)

or using

dS = dQ

T
=

dE+pdV

T

( ∂S
∂E )V ,N

= 1
T

( ∂S
∂V )E,N

= p

T

¯
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(5.6)

(5.7)

(5.8)

S ≡
U

T
+ klnZ

we obtain:

Other parameters such as entropy S and chemical potential μ of the theory
are expressed in terms of the partition function. Partition functions are
linked with the number of states of a system and most of the physical
quantities can be defined in terms of partition functions:

Pi =
e−βEi

∑i e
−βEi

μi = ( ∂E

∂Ni

)
S,V ,N

= ( ∂F

∂Ni

)
T ,V ,N

= ( ∂G

∂Ni

)
T ,P ,N

such that:

dG ≡ d(E − TS + pV ) = −sdT + V dp +∑
i
μidNi

Another way to define chemical potential is:

μ = kTln
Nx

V qx/λ3
x

where G is the Gibbs free energy and F is the Helmholtz free energy. Using
the functional forms of energy is to understand dependence of various
energy variables to the parameters of the system (depending on the type of
ensemble, under consideration) as:

dS = 1
T
dE + p

T
dV − ∑i

μi

T

dE = TdS − pdV + −∑i μidNi
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(5.10
)

Applications of various equilibrium conditions, based on the phase of the
system corresponding to the type of ensemble, helps to describe various
types of energy with basic statistical variables. They help us evaluate
various parameters of every system in equilibrium. This is how equilibrium
statistical mechanics works. Application of non-equilibrium statistical
mechanics to a physical system is much more challenging technically and
numerical methods have to be used usually to solve problems of non-
equilibrium physics for some valid approximations, according to the
requirement of information.

Various distribution functions are expressed in terms of various
properties of states depending on quantum statistics. The Maxwell–
Boltzmann distribution function f is given as:

f(x) ∝ e
−x2

2a2

with a positive constant ‘a’ and x can be any distribution variable. It can be
normalized by a factor 2a√ 2

π
, giving:

f(x) = 2a√ 2

π
e

−x2

2a2 .

In a canonical ensemble, the probability distribution in ‘i’ number of states
can be given as eβEi , and the average energy of the system is defined as:

E = −
∑i e

βEiEi

∑i e
−βEi

=
1

Z

∂lnZ

∂β

where Z = ∑i e
−βEi  and Ei = ∑i e

− −∂
∂β Z. So the average of a

measurable parameter is calculated in terms of all the states of a system. So

S = S(E,V ,N1,N2,N3, …)

G = G(T ,P ,N1,N2,N3, …)

E = E(S,V ,N1,N2,N3, …)

F = F(T ,V ,N1,N2,N3, …)

¯



the canonical distribution is given by:

Pi =
e−βEi

∑i e
−βEi

whereas the partition function is defined as a statistical function that
describes the statistical properties of a physical system while it stays in
thermodynamic equilibrium. ‘i’ corresponds to a state in an ensemble and is
given by:

Z = ∑
i
e−β(n1ε1+n2ε2+⋯ )

The upper limit of ‘i’ will be the maximum number of available orthogonal
states in a system. The total number of possible ways the N particles can be
distributed in available states is N !

n1!n2!n3!⋯
 The variable β is a statistical

variable defined as β = 1
kT

. k = 1.380649 × 10−23 J K−1 is the
Boltzmann constant. It is also expressed as 
k = 8.617 333 262 × 10−5 eV K−1. e−βEi  is called the Boltzmann factor,
otherwise.

5.4 Introduction to quantum statistical mechanics
Quantum mechanics and statistical mechanics are both based on probability
theory to understand the dynamical behavior of matter. Single-particle
quantum mechanics looks at the probability of the presence of that particle
in a set of a certain number of equally probable states which is called an
ensemble. However, in statistical mechanics we deal with a many-particle
system and the particle states are identified by their energies. Therefore,
quantum mechanics can be applied to statistical mechanics to study the
dynamics of many-particle systems using quantum mechanics. The effect of
spin and other quantum numbers on particle dynamics can be incorporated
to distinguish between the particles’ behavior.

A straightforward generalization of kinetic theory of gases gives the
statistical mechanics of bosons or spinless particles. Non-interacting gas
particles can be dealt with as spin zero particles (bosons) in quantum



mechanics. Quantum statistical mechanics is a generalization of a statistical
approach to quantum mechanics and finds a way to include fermions along
with bosons. Quantum mechanics has a distinct feature of quantization of
angular momentum and includes spin to identify a group of identical
particles which exhibit different dynamical behavior due to different spin.

A complete partition function for bosons can be written as:

Z = ∑
n1,n2,…

N !

n1!n2!n3! ⋯
e−β(n1ε1+n2ε2+⋯ )

Quantum mechanics then has another class of particles called fermions with
an antisymmetric wavefunction. Fermions have to obey the Pauli exclusion
principle, which states that none of the quantum mechanical states can let
two particles reside simultaneously unless they have opposite spins (spin up
versus spin down). Two fermions with opposite spins can share the same
orbital or energy level. Therefore, quantum statistical mechanics differs
from the classical version of classical mechanics in that it can be applied to
a system of particles which can be distinguishable due to their spin. So due
to the presence of distinguishable particle collections, we can define new
parameters to apply quantum statistical mechanics.

In quantum statistical mechanics, we define a statistical ensemble by a
density operator which is a non-negative self-adjoint operator in Hilbert
space H, which describes the quantum mechanical system with fermionic or
bosonic states. The concept of a quantum mechanical system is discussed in
detail in a separate chapter but the difference in the behavior of quantum
states due to spin is identified as spin statistics. Bose statistics allows any
number of particles to occupy the same state such that all the atoms and
molecules can be found with the same energy and its partition function
reads as:

Z = (∑
i
e−βεi)

N

=
1

(1 − eβε)

In this partition function the individual particle energies εi are classically
summed and average energy is calculated for the system. Quantum
mechanically, all these energies follow the distribution of energies using



quantum statistics and it leads to the generalization of velocities for the
Maxwell distribution to incorporate Fermi statistics and Boson statistics and
ends up getting two different particle distribution functions for fermions and
bosons. At this point we have to mathematically develop quantum statistical
physics for physical applications.

5.4.1 Formulation of quantum statistical physics
Particle states are defined by ψi(xa), which represents an ith particle with 
xa coordinates. Fermi statistics indicates that two particles can be
represented by an antisymmetric combination of two particles and gives a
negative sign if both particles are interchanged such that the two particle
states can get the following combination of two states as:

ψi(x1)ψi(x2) − ψi(x2)ψi(x1).

On the other hand, boson statistics can lead to two particle states where
interchange of particles has no effect on the combined state and is
mathematically represented as:

ψi(x1)ψi(x2) + ψi(x2)ψi(x1).

Obviously, the difference between fermions and bosons is distinguishable
when we have more than one particle. It becomes more relevant for
multiparticle systems and the density of states will be determined by the
spin statistics.

For a many-particle system, if we have ni as the number of particles in
the ith state with energy εi and N  as the total number of particles of a
system:

N = ∑k

i=1
ni

and the total energy of N  particles system is given as:

E = ∑k

i=1
niεi = n1ε1 + n2ε2 + ⋯ + nkεk.
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In order to calculate statistical parameters such as the average number of
particles in the ith state with energy εi, we use:

ni = −
1

β

∂lnZ

∂εi
=

∑nie
−βniεi

∑ e−βniεi

This leads to the total number of particles as:

N = ∑∞

0
e−βniεi

and the particle distribution for the bosons is the Bose–Einstein
distribution of bosons, given as:

n ==
e−βε

(1 − e−βε)
=

1

(eβε − 1)

This is called the Planck distribution. The Bose–Einstein distribution
corresponds to the partition function:

Z = e−β(n1ε1+n1ε2+n2ε1+⋯+niεi)

for the same state i number of particles allowed in quantum states due to
quantum statistics. We discuss the statistical formulation of various
statistical ensembles and their mathematical formulation. Various statistical
ensembles are defined by another hypothetical source of heat (thermal
reservoir) called a heat bath.

5.4.1.1 The canonical ensemble
A canonical ensemble is composed of two thermal systems (in mutual
equilibrium) which are in contact with a heat bath as well. In this case, the
two systems are able to exchange energy while maintaining a constant
temperature. Meanwhile the exchange of particles or the change in volume
is not allowed. Pi is the probability at a given time t, that we will find the
system to be in a state characterized by energy value Ei. Such a system is a

¯

¯



member of a canonical ensemble which is defined by (N ,V ,T ) where N
identical systems {ni}, constitute the ensemble that shares an energy E .

where U is the average energy per system in the ensemble. A set of possible
states {ni} satisfies the above conditions in a possible mode of distribution
of the total energy E  among the N  members of the ensemble. Each mode
can be realized in various ways with distinct permutations, denoting it with
the symbol W {ni}:

W {ni} =
N !

n0!n1!n2! ⋯
=

N !

∏r(ni)!

for an ensemble with equally probable conditions. In this case, the
frequency at which the distribution set {ni} appears is directly proportional
to W {ni}. Therefore, W is maximized for the most probable mode of
distribution. Probability of a canonical distribution can be found as:

Pi ≡
⟨ni⟩

N
=

e−βEi

∑
r
e−βEi

The average energy is then given by:

U =
∑rEie

−βEi

∑ re−βEi
= −

∂

∂β
ln{∑

i

e−βEi}

Now, we look to extract the information of the macroscopic properties of a
given system to relate to our statistical formulation. Using Helmholtz free
energy, we find the following relation:

∑i ni = N

∑i niEi = E = N U



Here we find a close relation between the quantities in the statistical
formulation and the thermodynamic relations β = 1

kT
:

ln{∑
i
e−βEi} = −

A

kT
.

This gives us the most fundamental result of the canonical ensemble theory,
written in the form:

A(N ,V ,T ) = −kTln ZN(V ,T )

where:

QN(V ,T ) = ∑
i
e−βEi

The quantity QN(V ,T ) is known as the partition function. The partition
function is also known as the sum-over-states. While the dependence on T
is explicitly seen, the dependence on N and V comes from the energy
eigenvalues Ei. The partition function is a particularly important result, as it
relates the macroscopic thermodynamic quantities of a system to its
microscopic details.

5.4.1.2 The grand canonical ensemble
A grand canonical ensemble is a further generalization of the canonical
ensemble. In this ensemble, particles are allowed to move in between two
systems. However, we use the same approach as we used in the
mathematical description of a canonical ensemble and try to develop a
partition function for a grand canonical ensemble. If ni,j at a time t
corresponds to a system with Ni particles and Ej energy, then the set of
numbers {ni,j} represents a possible mode of distribution of energy Ej and

U = A + TS = A − T( ∂A
∂T

)
N ,V

= −T 2[ ∂
∂T

( A
T
)]

N ,V

= [ ∂(A/T )

∂(1/T )
]
N ,V

= [ ∂
∂β (

A
kT
)]

N ,V



particles Ni among the N  members of the ensemble. This set must follow
the following conditions:

At this point, we use the most probable mode of distribution in the
canonical ensemble, which correspond to distinct permutations, such that:

W {ni,j} =
N !

∏i(ni,j)

However, the parameters α and β will be determined using the equations
which calculate average quantities in a given ensemble and its partition
function:

We can now establish a connection between the grand canonical ensemble
and thermodynamics by defining a parameter q. By taking a derivative of q,
and using the previously derived equations for averages of ⟨N⟩ and ⟨E⟩, as
well as the most probable mode of distribution, we can take the differential
of q:

∑i,j ni,j = N

∑i,j ni,jNi = N ⟨N⟩

∑i,j ni,jEj = N ⟨E⟩

⟨ni,j⟩

N
= e

−αNi−βEj

∑i e
−αNi−βEj

⟨N⟩ =
∑i,jNie

−αNj−βEj

∑i,j e
−αNi−βEj

≡ − ∂
∂α{ln∑

i,j
e−αNi−βEj}

⟨E⟩ =
∑i,jEse

−αNi−βEj

∑i,j e
−αNi−βEj

≡ − ∂
∂β{ln∑

i,j
e−αNi−βEj}

dq = − ⟨N⟩dα − ⟨E⟩dβ − β

N
∑
i,j

⟨ni,j⟩dEi

d(q + α ⟨N⟩ + β ⟨E⟩) = β( α
β
d ⟨N⟩ + d ⟨E⟩ − 1

N
∑
i,j

⟨ni,jdEj⟩)



We can interpret this by comparing it to the statement of the first law of
thermodynamics:

δQ = d ⟨E⟩ + δW − μd ⟨N⟩

This gives us the following result:

Since β is obtained by integrating over the change in heat δQ, then β must
be inversely proportional to absolute temperature T and β = 1/kT  with k,
the Boltzmann constant and α = −μ/kT  where μ is the chemical potential.
Given that δQ = TdS, then we can solve for q such that:

The term μ ⟨N⟩ is equal to the Gibbs free energy of the system, which is
given by G = ⟨E⟩ − TS + PV :

q ≡ {ln∑
i,j

e−αNi−βEj} =
PV

kT

This is the essential link between the statistics of the grand canonical
ensemble and the thermodynamics of the system, a relationship with central
importance to the formalism. Now, we introduce a parameter z, defined as
the fugacity of the system and given by:

z ≡ e−α = eμ/kT

The q-potential now takes the form:

q ≡ {ln∑
r,s
zNie−βEs} = {ln∑

i,j

zNiQNi
(V ,T )} (withQ0 ≡ 1)

δW = − 1
N

∑r,s ⟨nr,s⟩dEs, μ = − α/β

d(q + α ⟨N⟩ + β ⟨E⟩) = βδQ

q = βTS − α ⟨N⟩ − β ⟨E⟩

q =
TS+μ⟨N⟩−⟨E⟩

kT



(5.13
)

(5.14
)

 
Now, defining a new parameter Q as the natural logarithm of the q-

potential, we now have:

q(z,V ,T ) ≡ lnQ(z,V ,T )

thus:

Q(z,V ,T ) ≡ lnQ(z,V ,T ) = ∑
r,s

zNiZNi
(V ,T ) (withQ0 ≡ 1)

This parameter Q is the grand partition function.

5.4.2 Application of quantum statistical physics
The partition function is the most important quantity to study the statistical
properties of a material. All the statistical parameters can be evaluated from
the partition function of a system which carries all the information about the
statistical distribution of energy among the particles in various states. The
simplest definition of classical probability is a ratio of favorable conditions
divided by the total number of possibilities as:

favorable states

total states

These states could indicate anything including an event, a process, or
an arrangement or any occurrence starting from a rolling dice to a single
particle representing as a quantum state.

The average number of particles in a state can be calculated from the
dispersion relation obtained by the partition function Z. This dispersion
relation is given as:

ni =
Number of states with particular energy

Total number of states in an ensemble
=

eβεi

Z

ni = −
1

β

dlnZ

lnεi

¯

¯



(5.15
)

(5.16
)

(5.17
)

(5.18
)

(5.19
)

Using this relation (in equation (5.14)) for the dispersion relation, we can
find the distribution functions for various kinds of particles. Later on,
various thermodynamic parameters which contribute to particle energies
can be calculated using the appropriate partition function. We can use the
partition function to evaluate the averages energy of the system for a given
ensemble by averaging it over the partition function. Starting with the
calculation of average energy of the system as:

E = −
∂lnZ

∂β

and

E
2

= −kT( 1

Z

∂ 2Z

∂β2
)

 
We can calculate the average parameters in a statistical ensemble. In

general:

X = −kT
∂ ln Z

∂x

such that the average pressure can be calculated as:

p̄ = −kT
∂ ln Z

∂V

and the chemical potential is written as:

μi =
∂F

∂Ni
= −kT( ∂ ln Z

∂Ni
)

T ,Vi

5.4.3 Quantum statistics of ideal gases
Kinetic theory of ideal gas gives equal distribution of velocities of particles
in each direction, which is related to the temperature, pressure and volume
of the gas, depending on the number of particles.

¯

¯

¯



5.4.3.1 Maxwell–Boltzmann statistics
Classical distribution of an ideal gas of N identical particles is represented
by the partition function involving a sum of nr for all R states:

Z = ∑
r
e−β(n1ε1+n2ε2+n3ε3+⋯ )

where for a total of N molecules, the number of permutations is:

rCn
=

N !

n1!n2!n3! ⋯
.

The average number of particles in energy state εi can be calculated as:

ni = −
1

β

∂lnZ

∂εi
= −

1

β
N

−βe−βεi

∑i e
−βεi

which gives the Maxwell–Bolzmann distribution. It is worth noticing that
the limit β → ∞ leads to ne → N . If temperature tends to zero kelvin, an
infinite number of particles can stay in the same energy state. This indicates
a multiparticle classical system which does not put any restriction on the
number of particles in a state. On the other hand, it can be easily seen that
for β → 0 or for large values of T the number of particles is proportional to
N.

The second moment of n or dispersion of number of particles is given
by:

(Δni)
2 =

N

∑
i

P(ni)(ni − ni)
2 = −

1

β

∂ni

∂εi

 
Quantum statistics requires one to include the intrinsic spin of particles.

Fermions with a half-integral spin obey Fermi statistics and spinless scalars
and bosons with integral spins obey boson statistics which does not put any
restriction on the number of particles in any state. The photon, as a vector
boson with spin one, is a massless particle and is quantum mechanically

¯

¯

¯̄
¯



treated as a wave as well as a particle. Its statistics can be discussed
individually.

5.4.3.2 Photon statistics
For photons, the following functions are defined Z = (∑∞

1 e−βεi)
N  which

leads to:

ni
γ =

1

eβni − 1

which goes to infinity because in the limit of large T where β → 0, an
infinite number of particles can be found at any temperature. The only
difference between photons and other bosons is that they always have zero
chemical potential because photons are massless.

5.4.3.3 Boson statistics
For a general boson with nonzero mass, the above relations can be
generalized by including another parameter α such that:

Z = (
∞

∑
0

e−(α+βεi))
N

which leads to:

ni
B =

1

e(α+βεi) − 1

which goes to infinity because in the limit of large T where β → 0, an
infinite number of particles can be found at any temperature. The parameter
α can be evaluated using the relation:

α = −β
∂F

∂N
= −βμi

¯

¯

¯



where μi is the chemical potential, which depends on the number of
particles and mass. It is defined as the energy needed to remove a particle
from a system. Chemical potential is obviously zero for photons. The
photon itself is a quanta of energy.

5.4.3.4 Fermion statistics
Fermions obey the Pauli exclusion principle due to their half-integral spin
and more than one particle cannot stay in the same quantum state. However,
due to the half-integral spin, a spin up particle can stay in the same state as
a spin down particle. In this case, the particle distribution depends on
whether another particle is already there in a state or not and the partition
function is written as:

Z = (∑∞

1
e−(α+βεi))

N

which leads to the particle distribution function of fermions as:

ni
F =

1

e(α+βεi) + 1

which goes to infinity because in the limit of large T where β → 0, an
infinite number of particles can be found at any temperature. The parameter
α can be evaluated using the relation:

α = −β
∂F

∂N
= −βμi

where μi is the chemical potential of fermions and is related to the number
of particles through their mass.

¯
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Chapter 6

Quantum mechanics

6.1 Introduction
Quantum mechanics provides the most suitable framework for a detailed investigation
of atomic and molecular structures considering all of the available options about the
states of individual particles in a system. For this purpose, the concept of probability
is employed from statistical mechanics. In other words, quantum mechanics and
statistical mechanics commonly use probability to study the dynamics of non-
interacting individual particles. However, a statistical mechanics approach does not go
beyond the classical scale, whereas quantum mechanics works well on smaller scales.
It defines a connection between probabilities and relates it to the compact form of
realities. Probabilities are associated with states which may be considered as waves or
particles and when probability collapses into reality, it creates observable particles
with definite measurable realities.

Quantum mechanics deals with very tiny compact objects at the molecular and
atomic scale. It can also be applied at a subatomic scale and size. It provides tools for
a detailed study of atomic and molecular structures. Detailed understanding of the
atomic structure and molecular formation along with the ability to do the precise
calculation of energies of electrons and atoms can explain the probability and
preferences among various chemical processes. Atoms, as part of molecules or by
themselves, can release or gain electrons and exhibit an overall positive or negative
charge and produce positive and negative ions, respectively. This happens during
chemical reactions and these charged atomic or molecular components are called ions
or radicals and facilitate chemical reactions through ionic bonding.

Quantum mechanics is constructed on the basis of the uncertainty principle, which
is introduced to mechanics along with the concept of wave–particle duality to
incorporate the probabilistic nature into quantum mechanics. Particles are then
identified as states and exhibit particle and wave properties simultaneously. These
states are indicated by wavefunctions which carry intrinsic properties such as mass,
charge and other physical properties of particles, yet they are still identified by wave
properties such as wavelength and frequency as well. The concept of a de Broglie
wave is associated with matter waves when particles in motion acquire wave



properties due to periodic motion. These waves are expressed in terms of frequency
and the wavelength λ such that the magnitude of the three-momentum p is p =∣ p ∣.
These matter waves are indicated as state functions ∣ ψ⟩ which can simultaneously
behave as a particle and a wave and the state functions are described in terms of
particle and wave properties.

The quantum mechanical study of tiny objects at the individual particle level
indicates that another parameter is associated with charged particles to explain the
stability of atoms and explain why charged electrons in atoms are not accelerated due
to circular motion and do not cause atomic disintegration or the emission of radiation.
It must explain the unsolved mystery of atomic stability. Particles can be classified as
either fermions or spin half (or half integral spin) particles, or they can be classified as
bosons that have spin zero (or integral spin).

The identification of fermions is very important as they have antisymmetric
wavefunctions in contrast to boson states which are symmetric in nature. The
antisymmetric nature of the wavefunction gives an explanation of the stability of
atoms in terms of the Pauli exclusion principle. This principle states that two fermions
with exactly the same properties (quantum numbers) can reside in the same state,
which explains why electrons are distributed as pairs with opposite spins in atoms,
justifying the stability of atoms. This also defines the orthogonality of quantum states.
Atoms are then composed of mutually orthogonal states of quantum mechanics.

Atoms are bound together through electromagnetic interactions. A detailed study
of atomic structure is made possible using quantum mechanics. The key concepts of
quantum mechanics are developed using uncertainty principle in the light of wave–
particle duality and the operator formalism is instrumented to determine the
parameters of quantum states. The probabilistic nature of quantum theory and
limitations in precise measurements do not allow discrimination among different
possible states of electrons. The Schrödinger equation is used as the equation of
motion of electrons in atoms and its solution in spherical polar coordinates for
electromagnetic potential leads to the quantization of angular momentum and energy,
called the first quantization. These quantized variables are identified as quantum
numbers and the particles are represented as state functions that are described by the
particles as well as wave properties. The properties of states are determined by the
operators and the eigenvalues associated with these operators.

However, orbital formation takes place at the individual particle level in atoms
with the help of the Pauli exclusion principle and electrodynamics. Atoms are
electrically neutral and are composed of an equal number of electrons and protons.
Neutrality of atoms is indebted to the polarity of charges as an equal amount of
charges can balance out to give overall neutral matter. However, the polarity of charge
makes it more complicated because opposite charges cancel out the net charge but
similar charges repel each other as well. The formation of orbitals of charged particles



can occur in the special configuration of atoms only where electrons can revolve
around the nucleus but maintain certain distance due to Coulomb repulsion.
Moreover, revolving charges have an associated magnetic field as well. The electronic
orbits not only balance the electromagnetic force and angular moment but also take
care of the magnetic field generated by the orbital motion of electrons.

A detailed structure of atoms and the dynamics of particles at subatomic level has
to be studied in terms of quantum mechanics, which is primarily based on the
uncertainty principle or wave–particle duality. Quantum mechanics works on the basis
of probability theory and prefers to incorporate all possible states of a system in this
study. Therefore, the particles are represented as state functions that simultaneously
use the particle and wave properties. However, the probability may compromise on
precision in finding the exact location and describe a system as a linear combination
of various states along with the corresponding probabilities.

On the other hand, the microscopic form of electromagnetic interaction has the
same behavior for individual charges at small scales. Quantum mechanics deals with
dynamics of individual electrons inside atoms and molecules. However, simultaneous
applications of relativity, quantum mechanics and electrodynamics, without ignoring
the basic principles of classical physics, shape up quantum mechanics with its distinct
features. Such a complete theory which fully describes the electromagnetic interaction
of relativistic systems at quantum scale is called quantum electrodynamics (QED),
which is a gauge theory and can be treated as quantum field theory of an
electromagnetically-interacting system.

6.2 A brief overview of quantum mechanics
Quantum mechanics is a theory of microscopic systems, which is based on the
uncertainty principle due to the wave–particle duality. All particle states are
considered to exhibit wave properties such as mass and charge and the wave
properties as frequencies and wavelength simultaneously. The particle momenta and
energies are related to wavelengths and frequencies using the concept of de Broglie
waves. Every particle in quantum scale is described as a wave, as well.

Wave–particle duality does not allow simultaneous measurement of position and
momentum precisely. This unusual behavior of individual particles is called the
uncertainty principle, which leads to the quantization of momentum and hence the
theory is labeled as quantum mechanics. The uncertainty principle makes it difficult
to precisely identify the state of a particle as a wavefunction that carries properties of
waves and particles. These states are labeled in terms of state variables like position,
momentum and energy. Quantum mechanics cannot distinguish between identical
particles and identifies them by their intrinsic properties such as mass, charge and
spin. Identical particle states are distinguished by state variables such as momentum,



energy and spin, etc, and are distinguished by the set of state variables. This is
because more than one state could exist with the same values for a few or more
parameters, but they can be distinguished by even one differing parameter. Therefore,
the uncertainty principle as a manifestation of probability theory and quantum
mechanics keeps all the probable states as orthogonal states so that if a particle
acquires any of these states, it implies that it cannot be found in any other state.

Particles are identified by state functions or wavefunctions of incoming state ψ
and its conjugate matrix is represented as a row vector or an outgoing state ψ†. All of
these state functions are labeled by state variables. This wavefunction ψ completely
describes a state of the system and bears all the properties of particles and waves.
Some of these properties are not even recognized in classical mechanics such as
individual particle spin and parity. It is therefore called the state function. It does not
even have any physical interpretation unless the incoming and outgoing states are
both found to be the complex conjugate of each other, in the effort to track the correct
transition. This is mainly because we cannot be certain about the existence of a state
at a particular position or its momentum as the position and momentum cannot be
measured simultaneously due to the uncertainty principle.

The state functions are defined as vectors in the corresponding vector space.
Components of the wavefunction are complex numbers. If the incoming state is a
column vector with complex components the outgoing state is represented as a row
vector with all the complex conjugates of incoming state components. We define a
state ψ as a linear combination of several mutually independent state vectors such that
the state of the system can be written as ψ = a1ψ1 + a2ψ2 + ⋯. The probability of
finding a particle in a state ψ is defined as:

P =∣ a1ψ1 ∣2 + ∣ a2ψ2 ∣2 + ⋯

and all ∣ an ∣2 correspond with the probability of each corresponding state ∣ ψn ∣2

such that ∣ a1 ∣2 + ∣ a2 ∣2 + ⋯ = 1. Normalization of probability is a requirement
for the existence of a physical system and we can only find the relative probability of
different states after normalizing the wavefunction such that total probability is
calculated as:

P = ⟨ψ ∣ ψ⟩ = ∫ ψ(x)†ψ(x)dx = ∑
n
⟨ψn ∣ ψn⟩ = 1

In the matrix notation, the probability can be expressed as a product of a row vector
and a column vector as:



(6.1)

(6.2)

(6.3)

P = [ ]

 
The uncertainty principle and the probabilistic behavior due to limitations in

measurement led to establishing an operator formalism for quantum mechanics. The
properties of state functions are checked individually by operating an operator on the
state functions. These operators are matrix operators and give the information about
the state. When an operator operates on a state and gives a precise value without
changing the state itself, the operator is called an eigenvalue operator, which can
identify the properties of a state without modifying the state itself. Any equation
represented as a general operator Ô, gives an eigenvalue λ. Ô is called an eigenvalue
operator and ψ is called an eigenfunction. Quantum mechanically, the measurable
eigenvalues are real. They could be the only measurable value of the corresponding
property of a state. The general form of the eigenvalue equation is written as:

Ô ∣ ψ⟩ = λ ∣ ψ⟩

where ∣ ψ⟩ is the incoming state in the above equation. The corresponding eigenvalue
equation for the outgoing state ψ† can be written as:

⟨ψ ∣ Ô
†

= λ*⟨ψ ∣

and the eigenvalue λ can only be measured for a Hermitian operator Ô
†

= Ô that has
a real eigenvalue λ = λ*, and the symbol † corresponds to the complex conjugate and
the transpose of the operator Ô.

The normalization of a state is required for the correct information of the physical
state. For a wavefunction corresponding to an incoming state ∣ ψ(x)⟩ as a function of
position x, the physical interpretation of the wavefunction requires information about
the outgoing state at the same point ⟨ψ(x) ∣ as well. The total probability P of the
existence of a state for any value anywhere in space is given as:

P = ⟨ψ(x) ∣ ψ(x)⟩ = ∫ ψ(x)†
ψ(x)d3x

ψ
*
1 ψ

*
2 ⋅ ⋅ ⋅

⎡⎢⎣ψ1

Ψ2

⋅

⋅

⋅

⎤⎥⎦



(6.4)

(6.5)

(6.6)

and it is normalized to unity to find the distribution of probability among different
states. The average or mean value of an operator is calculated as

⟨Ô⟩ =
∫ ψ†Ôψd3x

∫ ψ†ψd3x

The eigenvalue equation of the Hamiltonian operator is called the Schrödinger
equation. The most general form of the Schrödinger equation is given in terms of the
Hamiltonian H. The equation of motion in quantum mechanics is written in terms of
energy. Total energy of a system is calculated to figure out the state of a system and
its behavior. Classically, total energy of a system is expressed in terms of the
Hamiltonian H = T + V  where T is the kinetic energy and V is the potential energy
of the system. Exact measurements of position and momentum makes it possible to
separate the kinetic energy and potential energy from each other. Quantum
mechanically, this measurement is not possible due to wave–particle duality and the
uncertainty principle. Therefore, the operator formalism is used. The Hamiltonian is
an operator and is operated on a state giving the total energy of the system in the
corresponding state. This is represented by the Schrödinger equation as an eigenvalue
equation such that Ĥ is an eigenvalue operator giving a measurable energy E as the
real eigenvalue of the operator Ĥ in state ψ:

Ĥ ∣ ψ⟩ = E ∣ ψ⟩

 
The Hermitian operator Ĥ

†
= Ĥ corresponds to the energy operator that can only

find out the energy of the state ψ with the real eigenvalue of energy E that is
physically measured for a normalized state. Quantum mechanics tells us that the
eigenvalue of a Hermitian operator is real, meaning that hermiticity is required for the
operators that correspond to physically measurable quantities. The general form of the
Hamiltonian Ĥ is written in terms of kinetic and potential energy of a system giving 
Ĥ = p̂

2

2m + V  and the general form of the Schrödinger equation in non-relativistic
quantum mechanics attains the form:

( p̂
2

2m
+ V̂)ψ(x, t) = Eψ(x, t)

Quantum mechanics deals with wave–particle duality and can explain the wave
behavior of a particle, considering them as de Broglie waves of matter particles such
that the particle waves are written as:



(6.7)

λ =
h

p

in the usual notation where λ corresponds to the wavelength and p the magnitude of
momentum. Planck’s constant h is the scale of quantization in quantum mechanics
and is used to express the uncertainty in the measurement of conjugate variables. First
quantization in quantum mechanics expresses some of the state variables as an
integral multiple of h. It is actually a unit in phase space and is associated with the
uncertainty between a pair of conjugate variables such as energy and time and the
position and momentum. On the other hand, electromagnetic light waves are
described in terms of massless quanta of their energy called photons, which could be
treated as particles as well.

The initial application of quantum mechanics and its development is associated
with atomic and subatomic physics. A detailed study of the hydrogen atom was
performed by solving the Schrödinger equation in three-dimensional space. This study
was not possible without developing specialized mathematical tools, but it described
the quantization of angular momentum in the bound electromagnetic system and the
existence of discrete orbitals in atoms and discrete energy states. Energy associated
with different orbitals of atoms was calculated in terms of the Bohr radius as:

En =
n2h2

8π2a2

where a corresponds to the Bohr radius of the hydrogen atom, n is the state index and 
En gives the energy of the nth state.

The probability of transition of quantum states from one state into another state
can be represented as

⟨ψ′(x) ∣ ψ(x)⟩,

which indicates the transition of state ∣ ψ(x)⟩ to ⟨ψ′(x) ∣. Since

∑
n

∣ ϕn(x)⟩⟨ϕn(x) ∣= 1,

a complete set of intermediate states can be introduced as a path of transition from the
initial to the final state such that:

∑
n

⟨ψ′(x) ∣ ϕn(x)⟩⟨ϕn(x) ∣ ψ(x)⟩.

 



(6.8)

The basic equation of motion of quantum mechanics is called the Schrödinger
equation, given by:

Ĥ ∣ ψ⟩ = E ∣ ψ⟩

which can be expressed in detail as:

(−p̂
2

2m
+ V̂)ψ >= E ∣ ψ⟩

The Schrödinger equation of motion is the main equation of motion and is used to
study all quantum mechanical systems in different coordinates with the relevant
boundary conditions and helps to evaluate the behavior of the state functions in the
given potential under the given physical conditions. However, the laws of motion of
classical mechanics do not work directly because the particle’s position becomes
uncertain due to its wave behavior. Also, the exact dynamical behavior is described in
terms of one of the possible states. Therefore, the state function in quantum
mechanics represents the probability of finding a particle in that state and not the
exact values of all the relevant parameters.

The probabilistic nature of quantum mechanics leads to the development of an
operator formalism in quantum mechanics to find the most probable values of those
parameters. In the operator formalism, the component of x corresponds to 
p̂x = −ιh̸ ∂

∂x
, which can be written in the form of a vector operator as →

p = −ιh̸∇̂.
The the total energy operator, the Hamiltonian, can be written as:

Ĥ =
−p̂

2

2m
+ V̂ .

In quantum mechanics, all of the state variables are defined as operators. The real
measurable eigenvalues are obtained by the hermitian operator only. Therefore, the
Hamiltonian needs to be a hermitian operator to give a physically measurable value of
energy as the eigenvalue.

The Lagrangian of classical mechanics is translated into a quantum mechanical
operator to evaluate the action of force and is expressed in terms of quantum
mechanical operators. The total energy of the system is also expressed as the
Hamiltonian operator such that the Lagrangian and the Hamiltonian of the system are
written as:



(6.9)
Almost all the physical states in quantum mechanics can be discussed by solving the
Schrödinger equation using the correct potential and defining the relevant boundaries.

6.3 Examples of quantum mechanical systems
A few examples of quantum mechanical calculations are discussed here just to give an
idea of how quantum mechanics could be applied to physical systems for very simple
cases of constant potential. The standard problems of quantum mechanics treat bound
states as potential wells and forbidden states as potential barriers. A few well-known
cases are:

Infinite square well potential: This potential may provide a permanent trap and a
particle can never move out of it.
Finite square well potential: This potential shows a bound particle state inside a
potential box. A particle cannot come out of this box as long as the particle’s
energy cannot overcome the box potential.
Step potential: This infinite potential barrier corresponds to a totally forbidden
state.
Finite potential barrier and tunneling. that is used to calculate reflection,
refraction and transmission probabilities of electromagnetic signals. Leakage is
also understood using this type of potential.
Scattering is not described by a single potential. However, scattering can produce
a pair of particle and antiparticle which can be represented as the creation and
annihilation of the particle, respectively. Deep inelastic scatterings processes
may identify the structure of the target particles as well. It will be discussed in
the next chapters.

We discuss the above cases with constant potential V0 to begin with. However, these
potentials are not constant for actual physical systems. So the solution of Schrödinger
equations for all the above cases depend on the nature of potential. We discuss the
simple one-dimensional Schrödinger equation in Cartesian coordinates only. In actual
physical situations, the three-dimensional Schrödinger equations should be solved
using the proper form of the potential with the spatial variation and time. In many
cases, we may need spherical potentials and the three-dimensional differential
equations can be solved using the techniques described in the second chapter. Here we
just demonstrate the application of boundary conditions to solve the Schrödinger
equation for simple one-dimensional forms of each of the above potentials. These

H = T + V = −p2

2m + V

L = T − V = −p2

2m − V
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techniques lead to a much more involved mathematical approach for actual physical
systems.

6.3.1 Potential well
The potential well represents a potential that is lower inside the boundaries as
compared to the outside potential. So it could either be constructed with positive or
negative potentials. We are considering square-shaped wells in one-dimensional space
in Cartesian coordinates. A positive potential can be a potential well between for the
higher outside potentials, usually taken as infinite walls. The potential well with
positive outside potentials is similar to a classical box that has a particle trapped
inside and the trapped particle cannot come out. If this box is made up of infinite
boundaries, it is called an infinite potential box and a particle inside the box can never
come out and anything from outside the box cannot enter due to the infinite
boundaries. In this case, the infinite potential walls of the well are similar to classical
rigid walls. A particle in such a box under a constant potential exhibits sinusoidal
waves, creating standing waves in different modes.

The most common potential well represents a bound state with negative potential.
Considering the simplest case of constant potential, we can write a square well
potential, as shown in figure 6.1:

V = −V0, for − a ≤ x ≤ a

V = 0, otherwise

The wavefunction ψ1,ψ2,ψ3 in various regions of the square well are given as:

with:

k2 =
2m(E + V0)

h̸2
, and k′2= −

2mE

h̸2

for E < 0. The corresponding boundary conditions (B.C.) are given as:

ψ1 = A1e
k′x + A2e

−k′x

ψ2 = B1e
ιkx + B2e

−ιkx

ψ3 = C1e
k′x + C2e

−k′x
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Using equation (6.11) in equation (6.12), we can obtain with a little algebra:

for ψ → 0 when x → ±∞. The two possible solutions of the above equations
are:

The required solution may be formed for the relevant potential in a suitable
coordinate system.

Figure 6.1. Potential well for a constant negative potential.

The potential well with finite potential walls holds the particle inside, and requires
higher energy than the barrier potential to move the particle out of the well. So the
walls of the potential well act like a barrier for a particle inside the well. The stability

ψ1(−a) = ψ2(−a)

ψ2(a) = ψ3(a)

ψ′1(−a) = ψ′2(−a)

ψ′2(a) = ψ′3(a)

ψ1 = A1e
k′x

ψ2 = B1e
ιkx + B2e

−ιkx

ψ3 = C2e
−k′x

(ka) tan(ka) = (k′a)

(ka)2 + (k′a)2 = ( 2mV0

h̸2
)



(6.15
)

(6.16
)

(6.17
)

of bound states depends on the depth of the barrier. Barrier depth represents the
stability of the bound states, whereas the height of the potential barrier indicates the
energy required to cross the barrier. Atoms are just like a potential well for electrons
and ionization potential is similar to barrier potential.

6.3.2 Potential barrier
Bound states of particles behave as potential barrier. An energy greater than V0 is
needed for particles to cross the barrier. The infinitely high potential barrier
corresponds to classical rigid walls which can never be crossed. For the potential
barrier, width of the barrier is also important to study the behavior inside the barrier.
A very general example of potential barrier is in figure 6.2.

with

k2 =
2m(E − V0)

h̸2
, and, k′2=

2mE

h̸2

for E < V0. The corresponding boundary conditions for figure (6.2) is given as:

Another example of barrier potential is given in figure (6.3) and the related boundary
conditions will change to:

We can then write a general form of boundary conditions for E < V0 (or V0) in
the barrier as:

ψ1 = A1e
ιk′x + A2e

−ιk′x

ψ2 = B1e
ιkx + B2e

−ιkx

ψ3 = C1e
ιk′x + C2e

−ιk′x

ψ1 (0) = ψ2 (0)

ψ2 (2a) = ψ3 (2a)

(ψ′)1 (0) = ψ′
2 (0)

ψ′
2 (2a) = ψ′

3 (a)

ψ1(−a) = ψ2(−a)

ψ2(a) = ψ3(a)

ψ′1(−a) = ψ′2(−a)

ψ′2(a) = ψ′(a)
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for ψ → 0 when x → ±∞. The two possible solutions of the above equations
are:

The required solution may be formed for the relevant potential in a suitable
coordinate system. Another example of potential barrier is given in figure 6.3. All the
results of calculations depend on the choice of origin of coordinate or location of the
potential. We cannot cover all the possible examples of potential wells or barriers, but
it is important to know that the boundary conditions are changed for the location of
these potentials. The comparison of the magnitude of total energy E with that of the
potential V help to determine the waveform inside a potential. We just give an
example to demonstrate the scheme of calculations.

Figure 6.2. Potential barrier for a constant positive potential of width 2a.

ψ1 = A1e
ιk′x

ψ2 = B1e
−kx + B2e

kx

ψ3 = C2e
−ιk′x

(ka) tan(ka) = (k′a)

(ka)2 + (k′a)2 = ( 2mV0

h̸2
)



Figure 6.3. Another example of the potential barrier for a constant positive
potential of width 2a.

A barrier with infinite potential indicates a stable bound state that cannot be easily
accessed by the external particles unless they have high enough energy to cross the
potential barrier created by the binding energy or ionization potential. Classical
systems have infinite barriers but quantum mechanics allow tunneling due to finite
potential walls. Infinite potential barrier does not allow particles to enter the barrier
and the width of the barrier does not matter. So, the infinite barrier can be described
as an infinite potential step, and though there is nothing on the other side it creates a
step that cannot be overcome, unlike for barriers with limited boundaries.

6.3.3 Step potential
The calculation of probability of reflection and transmission is possible using the step
potential as shown in figure 6.4. It is worthwhile to know that the simple case of the
one-dimensional Schrödinger equation to infinite potentials (wells or barriers) is not
particularly interesting physically. However, it gives the scheme of calculations
applied to physical systems. Actual physical systems are much more complicated and
all the physical constraints have to be applied. However, all the calculations are
needed to understand the behavior of an individual system. A few important steps for
extending these calculations to a physical system are:



Finite potential is compared with the energy of the system. It has to be noted
whether the energy is large or small. Classically, energy of the system is always
small or large enough to either ignore E or V. A comparison of the energy with
potential can let us decide if it qualifies to apply a limit of V → 0 or V → ∞.
Depending on the shape of the system, the three-dimensional Schrödinger
equation is solved. For this purpose, we can choose ∇2 from a relevant
coordinate system, as discussed in chapter 1. The calculations become much
more complicated in various coordinate systems. For irregular shapes, the closest
shape can be used for approximate results.
Choice of the correct B.C. is extremely important to understand the appropriate
behavior of a system. They depend on the type of potential and its value
compared to its energy.
The choice of B.C. also depends on the origin of the coordinate system and can
have a direct impact on the complexity of calculations.

Figure 6.4. Step potential for a constant positive potential of width 2a.

6.3.4 Harmonic oscillator
A general form of the one-dimensional Schrödinger equation for a harmonic oscillator
uses Hooke’s law in the Lagrangian such that:

L =
p2

2m
− 1/2mω2(x − x0)2

such that the Schrödinger equation can be written as:

[−
h̸2

2m

∂ 2

∂x2
+

1

2
mω2(x − x0)2]ψ = Eψ ≡

1

2m
[p̂

2
+ (mωx̂)

2
]ψ
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At this point with a little bit of algebra, we can express the Hamiltonian in terms of
the raising (â†

≡ â+) and lowering operator(a ≡ a−) such that:

â± =
1

√2mh̸ω
(∓ιp̂ + mωx)

while these operators satisfy the relations:

The last equation provides an alternate way to define the various quantum states
which defines a second quantization, and allows us to use the Schrödinger equation
for many-particle systems, providing a gateway to quantum field theory as discussed
later.

6.3.5 Approximation methods in quantum mechanics
Many physical systems have Hamiltonians that cannot be reduced to an exactly
solvable part plus a small correction using regular mathematical techniques. In such
situations we may use the variational method to develop a perturbative series which
increases with slowly varying energy. The first term in this Hamiltonian H0

corresponds to the unperturbed energy which remains there with the system.
Perturbation theory in quantum mechanics provides an important tool to solve such
problems. We can write the perturbation Hamiltonian which is much smaller than the
actual potential, such that the total Hamiltonian of the system H is written as a
summation of unperturbed and perturbed Hamiltonian.

The Hamiltonian of a system is written in terms of:

H = H0 + Hp.

This expression of H helps to expand the probability of an effect of energy as a
function of energy or Hamiltonian operator. The series expansion will only be helpful
to solve physics problems if the expansion parameter Hp is sufficiently smaller than 
H0 to be able to ignore higher-order contributions. The perturbative part of the
Hamiltonian can then be written as Hp ≡ ∑n

i=1 λiW
i which provides the

perturbative energy which is affecting the system. This perturbation grows with time

â−â+ = 1
2h̸mω

[p2 = (mωx)2 − ι(x̂p̂ − p̂ x̂)]

â−â+ = 1
2h̸mω

[p̂
2

= (mωx̂)
2

+ 1/2]

h̸ω(â±â∓ ± 1
2 )ψ = Eψ

≡ Ĥψ = Eψ
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and the system is being perturbed repeatedly such that the wavefunction keeps on
changing and the application of this Hamiltonian on ∣ ψ(x)⟩ is represented as:

ψn = ϕn + λ1ϕ1
n + λ2ϕ2

n + λ3ϕ3
n + ⋯

giving:

En = E 0
n + λ1E 1

n + λ2E 2
n + λ3E 3

n + ⋯

[(H0 + λHp)] ∣ ψ⟩ = [E0 ∣ ψ⟩ + En ∣ ψ⟩n]

such that:

ϕn = Enψn.

This perturbation can continue to apply so En can be evaluated accordingly. We can
write:

Hp ∣ ψ⟩ = ∑n

1
λnW n ∣ ψ⟩ = E0ψ + E1ϕ1 + E2ϕ2 + ⋯ + Enϕn.

In the most general form, we can express it as a perturbative series as:

∣ ψn⟩ =∣ ϕn⟩ +∑
m≠n

⟨ϕm ∣ Ĥp ∣ ϕm⟩

E 0
n − E 0

m

and:

En = E 0
n + ⟨ϕn ∣ Ĥp ∣ ϕn⟩

The perturbative Hamiltonian can have a constant value identified as a time-
independent perturbation theory. There could be a small perturbative potential Hp

which can perturb the system and this perturbation will affect the system every time it
is perturbed; for example, if an oscillating system is perturbed after an oscillation and
continues to oscillate and accelerate or decelerate after each rotation. This
perturbation will keep growing even if the perturbation is independent of time. So the
wavefunction ∣ ϕn⟩ will grow into the wavefunction ∣ ψn⟩ after n successive
perturbations.

Perturbative expansion is one of the most effective approaches to find solutions to
quantum mechanical problems. And for sufficiently small perturbation, we can just
include the first-order perturbation and ignore all the higher-order effects because of
negligible contribution, giving:



∣ ψn⟩ =∣ ϕn⟩ + ⟨ϕn ∣ Ĥp ∣ ϕn⟩

All the higher-order terms from equation (6.23) can be ignored in this case. If the
perturbation is not that small, a second-order term can also be included. However, the
smaller it is the more effective this method of perturbative approach is. For large
perturbation we will have to include additional potential in the unperturbed
Hamiltonian as H = H0 + HI , and variational principle or perturbation theory
cannot be used. However, a small variation in potential can be treated with time-
dependent perturbation theory where potential is a function of time and its variation
with time are evaluated to find the energy of the system.

Perturbation theory can be used to solve the equation of motion (differential
equation) of a slowly-varying dynamical system. The Wentzel–Kramers–Brillouin
(WKB) approximation is a mathematical approach to find an approximate solution
to linear differential equations with spatially-varying coefficients. It is a semi-
classical solution of the Schrödinger equation in quantum mechanics. The
approximate form of the wavefunction is an exponential function which can be
expanded around small values of semi-classical expansion considering a slowly-
varying amplitude or the phase of the wave. So the perturbative expansion of equation
(6.23) is actually useful for small perturbations and the variational method is
particularly useful in estimating the energy eigenvalues of the ground state and the
first few excited states of a system. WKB approximation is applicable for slowly-
varying potentials and is sometimes used in solving equations in classical plasma.

Quantum mechanics is applied to tiny objects and their dynamics are usually
controlled by electromagnetic interactions. Tensors and their transformations have
been discussed in the first chapter. When we use tensors for a physical system, we can
relate their transformation with the dynamics of the system and express their
transformation in terms of potential because the dynamics of the system is controlled
by the applied force which is monitored by the change in energy.

It is easy to understand that electromagnetism is much more relevant than gravity
at quantum scale due to the extremely small mass of tiny objects and the dominance
of electromagnetic interaction over gravity at short distances. However, the
interaction between charges, identified as electromagnetic interaction, is spherical in
nature. So we have to study the dynamics of an electromagnetically-interacting
system in spherical coordinates. One of the required tools to study dynamics of
quantum mechanical systems is provided by using three-dimensional tensors in
spherical polar coordinates. However, the components of a transformation matrix of
tensors in spherical coordinates will depend on the direction cosines of spherical
coordinates. The physical interpretation of transformation of spherical tensors is the
angular momentum in a spherically symmetric environment.
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The Wigner–Eckart theorem then states that the transformation of a tensor
operator T̂

k

q
 in spherical coordinates is transformed using the quantized value of

angular momentum, written as:

⟨j′,m′
j⟩ ∣ T̂

(k)

q ∣ j,mj⟩ = ⟨j, k;mj, q ∣ j′,m′⟩⟨j′∣∣ T̂
(k)

∣∣ j⟩

where j, m are angular momentum eigenstates and the factor 

⟨j′,m′j⟩ ∣ T̂
(k)

q ∣ j,mj⟩ called the reduced matrix element depends on the numbers j′,
m and k.

The simplest application of the Wigner–Eckart theorem is seen for scalars where 
k = 0 = q. Equation (6.26) then reduces to:

⟨j′,m′
j ∣ B̂ ∣ j,mj⟩ = ⟨j = 0,mj = 0 ∣ j′,m′⟩⟨j” ∣∣ B̂ ∣∣ j⟩ = ⟨j′∣∣ B̂ ∣∣ j⟩δjj′δmm′

The most general solution of Schrödinger equations leads to the quantization of
angular momentum which can be used to describe dynamics of electromagnetically-
interacting systems with rotation of charge in the field of another charge.

In the case of vector operators we can look at a tensor of rank 1: T (1) = A(1) = Â

with A(1)
0 = A0 = Az and A(1)

±1 = A±1 = ∓(Âx ± Ây)/√2 Inserting these values in
equation (6.26), we obtain:

⟨j′,m′
j ∣ Âq ∣ j,mj⟩ = ⟨j, 1;mj, q ∣ j′,m′

j⟩⟨j′∣∣ Â ∣ j⟩

Operator A can be simply replaced by operator J. The quantum mechanical
approximations are not limited to time-independent perturbations which can be solved
using the variational principle and WKB approximation.

Time-dependent perturbation theory deals with the perturbations and changes with
time. In this situation, the perturbative potential may be a function of time as well.
However, additional constraints can be applied such that we can study adiabatic
approximation or sudden approximation. The transition of states and interaction of
radiation with matter can also be treated as time-dependent perturbation theory and
most graduate-level quantum mechanics books cover this topic. A detailed description
of these topics and the relevant mathematical approach is out of the scope for this
book.

6.4 Decay rates and scattering theory
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Quantum mechanics describes everything in the form of probability. This probabilistic
nature is incorporated into the calculation of decay rates by incorporating the
probability of finding the correct states of incident particles and the decay products or
scattered particles. Therefore, the decay rates and scattering cross-sections become
probability distributions.

6.4.1 Decay rates
We can define the decay rate in terms of the original number of particles N0 and the
decay width dΓ as the change in number of particles N per unit time t. Each particle
has a characteristic value of the decay time τ . The decay rate τ  is defined as τ = h̸

Γ

and corresponds to how long a particle can survive. The rate of change in number of
particles depends on the original concentration and the nature of particles such that:

dN

dt
= −

N0

τ
=

Γ

h̸
N

which has a solution as:

N(t) = N0 exp( −Γt

h̸
).

This relation is used in any decay process such as low energy nuclear physics or
radioactive decays. We can define the decay width Γ(p) of a particle and write it as
the probability of decay of X particle into two particles A and B such that 
X → A + B:

Γ(X → A + B) =
(2π)

2Ei
∫ ΠNb

n=i

dp3
n

2En
∣ Mfi ∣2 δ4(pf − pi)

This decay width in terms of the probability decides if particle X will decay into 
(A + B), (A + C), (B + C) or any other combination of particles. The sum of the
probabilities of all possible decay modes should be normalized to one to get the
relative probability of various decay modes. It can include the two-body decay rate, or
three-body decay rate, etc as well. The ratio of one decay mode with the sum of all
decay rates is defined as branching ratio (BR), such that:

BR(X → A + B) =
Γ(X → A + B)

Γ(X)



where Γ(X) is the total decay rate of particle X which is the sum of all decay rates
from all modes.

6.4.2 Scattering cross-section
Scattering is a classical concept which is almost similar to two-body collision. Its
quantum mechanical version in terms of point particles is discussed as scattering in
three-dimensional space. Scattering theory of quantum mechanics uses the
Schrödinger equation to discover the type of interaction in a lot of processes and
unveil the structure of targets in scattering processes knowing the incident particles.
The elastic scattering obeys a complete set of conservation rules based on the nature
of interacting particles. Unlike classical mechanics, quantum mechanical scattering
does not conserve the energy and momentum of particles before and after collision.
Elastic nature is identified if the incident and final states remain unchanged. Elastic
scattering occurs between the same initial and final states, whereas inelastic scattering
may occur among different particle states and initial and final states can vary just
keeping the required symmetries of the interaction and satisfying the conservation
rules among quantum numbers of initial and final states. However, energy-mass
conversion can take place using Einstein’s famous relation of E = mc2 and
invariance of quantum numbers is related to symmetries of the Lagrangian
corresponding to the interaction potential or the invariance of the Lagrangian under
certain transformations. Conservation rules in quantum mechanics are related to the
invariance of the corresponding interaction Lagrangian and its symmetries that define
the conservation rules of that Lagrangian.

Before moving further, it is important to understand that quantum mechanics
always deals with probabilities. Therefore, all the calculations have a built-in
probabilistic approach. The scattering cross-section and decay rates correspond to the
probability of scattering or decay, respectively. Therefore, it can deal with the
probability of staying inside the potential well or crossing through the barrier. That
supports the fact that part of the light reflects and a part is transmitted. All of the
above calculations calculate the probability of finding particles in certain states from
the modulus square of the wavefunction and integrating it over the corresponding
region.

The most interesting scattering is the inelastic scattering which can be visualized
as something similar to classical impact physics. However, in quantum mechanics,
this is related to the structure of the target and is used to understand the behavior and
composition of unknown targets. It is something similar to classical impact physics,
but due to quantum mechanical behavior, it gives the information about the compact
targets. Depending on the direction of incoming particles, the outgoing particles will
move in the opposite direction. However, they can scatter with different angles in the
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plane perpendicular to the direction of incoming particles and are hence called cross-
sections.

The scattering cross-section σ depends on the flux of incident particles and the
number of particles in the final states. The small area of cross-section in the
perpendicular plane is dσ

dΩ
, named the differential cross-section. The total cross-

section of scattering can be obtained by integrating the differential cross-section over
the solid angle dΩ = d(cos θ)dϕ. The total scattering cross-section is then given as:

σ = ∫ dσ

dΩ
dΩ = d(cos θ)dϕ.

We will discuss the scattering cross-section and decay rates after introducing the
relativistic quantum mechanics in later chapters.

Calculation of the scattering cross-section provides mathematical tools to find the
structure of the target also. To study scattering theory we look at two-body problem
such that the Schrödinger equation for two spinless particles with mass m1 and m2 is
written as:

−
h̸2

2m1

→
∇

2

1 −
h̸2

2m2
∇2

2 + V (
→
r1 ,

→
r2 )Ψ(

→
r1 ,

→
r2 ) = ETΨ(

→
r1 ,

→
r2 )

where V (r1, r2) is the potential and ET  is the total energy. If μ is the reduced mass 
μ = m1m2

(m1+m2)
 of two particles, we can write it as:

(−
h̸2

2μ

→
∇2 + V (

→
r ))Ψ(

→
r ) = EΨ(

→
r )

The incident wave has potential zero V = 0 and satisfies the equation:

(∇2 + k2
0)ϕinc(

→
r ) = 0

where k2
0 = 2μE

h̸
2

, with a solution:

ϕinc(
→
r ) = eik0

→
r

whereas the scattered wave interacts with nonzero potential.

6.4.3 Form factors

−→
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A form factor is a function in quantum mechanics which encapsulates the particular
properties of the interacting particles without going into details of other properties.
This function is used to distinguish between a single particle as a point particle and a
composite system of particles. Form factor of a point particle is 1, whereas the form
factor of any other particle is less than 1. Form factors are identified as structure
functions as well. In contrast, the scattered wave has a solution:

ϕsc(
→
r ) = Af(θ,ϕ)eik0

→
r

where f(θ,ϕ) gives the structure of the target or form factor which can change
the scattered wave to deviate from plain wave behavior. The total wavefunction of a
scattering wave can be expressed as a linear combination of ϕinc  ϕsc such that:

Ψ(
→
r ) = ϕinc + ϕsc

Form factors give the actual description of scattering as how incoming states are
changed into the outgoing states giving the probability of scattering or the scattering
cross-sections in the end.

6.4.4 Born approximation
One of the most popular approaches to determine the scattering cross-section is the
Born approximation. When incident energies are sufficiently high, probabilities for all
transitions, except elastic scattering, are much less than unity. If, in addition, the
initial state is not much changed during the collision, the Born approximation, which
employs unperturbed initial and final states, applies. The exact transition amplitude
for the transition from eigenstate i to eigenstate n is given by T = ⟨ϕn ∣ Vf ∣ ψi⟩

where ψi is the exact initial state for the combined system of target and incident
particles. The Born approximation gives the scattering cross-section as a Fourier
transform of the corresponding potential as:

f(θ) = ∫ d3r′e−i(k−k′)V (r′)

Apart from this quantitative disagreement, the Born approximation fails to give
an exact result as it does not satisfy the optical theorem because it gives the real
contribution only and does not satisfy:

Imf(0) =
k

4π
σtotal
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where:

f(0) = ∫ d3r′V (r′)

However, f(θ) makes it possible to generalize this approach for all fundamental
interactions.

6.4.5 Distorted wave theories
To include both the Rutherford phase and continuum capture, one may employ
continuum states of the projectile rather than the target in the final state. As first
discussed by Briggs in the context of electron capture by highly charged ions, a
consistent theory emerges by considering expansions of the full amplitude in powers
of the small parameter ZT/ZP . This theory has been developed over the year and is
known as the distorted wave strong potential Born (DSPB).

6.4.6 Coupled channel approximation
As pointed out in the previous sections, perturbative approaches, like the Born
approximation, provide an accurate enough description of ionization processes in fast
ion–atom collisions. However, even the Born calculations considerably overestimate
total ionization cross-sections, and the difference between calculations and
experimental data sharply increases with decreasing collision energy.

Due to their small masses, individual particles can easily acquire relativistic
energies. The relativistic effects are incorporated in quantum theory and are extended
by quantum field theory that replaces the first quantization by the second quantization
that leads to quantization of fields instead of variables. The states are then described
by the associated fields instead of the variables of mechanics. Therefore, at relativistic
energies, particle states are attributed by fields instead of variables. However,
quantum field theory opens new venues in physics, and is a more effective approach
to study all interactions as gauge theories, using the Lagrangian formalism.

We therefore give an overview of all the relevant theories to identify their scope
and then link together all the apparently different approaches in the form of QED that
becomes a standard gauge theory and provides a framework to study all of the
fundamental interactions as gauge theories with their inherent properties at the
individual particle level.

Generally, in scattering theory, and in particular in quantum mechanics, the Born
approximation consists of taking the incident field in place of the total field as the
driving field at each point in the scatterer. The Born approximation is named after
Max Born who proposed this approximation in the early days of quantum theory
development. It is the perturbation method applied to scattering by an extended body.



It is accurate if the scattered field is small compared to the incident field on the
scatterer. For example, the scattering of radio waves by a light styrofoam column can
be approximated by assuming that each part of the plastic is polarized by the same
electric field that would be present at that point without the column, and then
calculating the scattering as a radiation integral over that polarization distribution.

6.5 Lagrangian formalism and fundamental interactions
V  can be any kind of potential and the theory can be applied to any type of interaction
potential. All of the quantum mechanical theories with a microscopic potential can be
accommodated in this theory. The action can be calculated as:

S = ∫ Ldt.

Total action has to be conserved like in classical physics such that:

δL = 0.

This principle is a basis for the variational principle. The equation of motion can be
solved for every interaction potential for the relevant boundary conditions and the
suitable coordinate system. Writing an equation of motion is the most important step
to understanding the dynamics of a system.

Non-relativistic quantum mechanics works for regular subatomic physics and
nuclear physics. However, the individual particle processes take place at extremely
high energies, and relativistic effects have to be incorporated. However, before getting
into the relativistic quantum mechanics, we need to review the basic concepts of
relativity. Among the four fundamental interactions, namely gravity,
electromagnetism, and the weak and strong interactions, electromagnetism is the most
well-understood theory both at the microscopic and macroscopic level. Gravity is not
fully understood at the microscopic level, whereas the weak and strong interactions
are extremely short-ranged and are not realized outside the nuclear size.
Electrodynamics can then be compared with gravity at large scale. Gravity deals with
mechanics of all matter and cannot be ignored in the study of dynamics of any
material, whereas classical electrodynamics is the study of dynamics of charges and
describes the interaction among currents and magnetic fields. Current is basically the
rate of flow of charge and has an associated electric and magnetic field. Quantum
mechanics is a technique to study the mechanics of tiny objects that simultaneously
exhibit the properties of waves and particles.

Atomic and molecular structures can only be studied quantum mechanically. The
structure of atoms was the first successful application of quantum mechanics. The



interaction of atoms, formation of molecules, and configuration of different
microscopic structures of atoms and molecules can be understood very well by
quantum mechanics. A large portion of subatomic physics as bound states of electrons
and nuclei is well described by quantum mechanics. However, when the dynamics of
constituents of atoms like electrons, protons or neutrons are studied as individual
particles, their relativistic motion cannot be ignored as light objects. Electrons are
especially the lightest form of charged matter and are usually moving with relativistic
energies. So relativistic electromagnetism is developed by incorporating relativity into
quantum mechanics.

Quantum mechanical study is based on fundamental interactions and discovering
the symmetries and conservation rules which are hidden in the potential of
interactions. Invariance of a Lagrangian under certain transformations of potential is
used to determine the conservation rules of an interaction, which are then associated
with the relevant symmetries. This invariance technique also leads to exploring the
need to find new symmetries for the identification of the scope of an interaction,
which leads to introduction of new symmetries (or quantum numbers). However,
these symmetries may not be relevant for other interactions, and the Lagrangian
formalism is derived from the constant action principle using the variational principle.

Electromagnetism works at the individual particle level regardless of the scale of a
system. It is realized through the charge and the distance between charged objects at
any scale. At the microscopic level, however, the quantum mechanical approach is
needed to correctly describe it. This generalization of the electromagnetic theory is
identified as QED and can be used as the most general theory which can be treated as
scale-independent fundamental interaction theory. Among the other three fundamental
interactions, we have not yet succeeded in properly generalizing gravity to quantum
scale, whereas the weak and strong interactions are not defined beyond the nuclear
scale.

Combining quantum mechanics with the quantization of fields (described in
quantum field theories), QED emerges as a local theory where each and every field is
a function of the four-vector xμ, which depends on both space and time coordinates
and can be transformed into the energy–momentum coordinate system as well.
Mathematically, these transformations are represented in terms of unitary groups
which identify the nature of the corresponding interaction in terms of its symmetries
and the corresponding conservation rules. However, QED has the ability to
completely reproduce classical electrodynamics in the classical limit of the Planck’s
constant tending to zero, which makes it possible to simultaneously measure the
position and momentum together or find energy and momentum of a physical system.
Moreover, it converts the quantized variables of quantum mechanics and quantum
field theory into the corresponding continuous variables of classical mechanics.
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Chapter 7

High energy physics and relativity

7.1 Brief overview of particle physics
Fundamental particles are the particles which cannot be divided further at
any energy. They are the basic building blocks of matter identified as point
particles. They are totally invisible and they are identified by their distinct
properties and behavior. Interaction between particles is associated with the
intrinsic properties of particles that are called quantum numbers and are
defined mainly in quantum field theory at high energy. Most of the quantum
numbers describe intrinsic particle behaviors and symmetries lead to the
conservation rules. There are only a few fundamental particles, interacting
among themselves by four fundamental interactions that are mediated by at
least twelve known particles at the subatomic level (or quantum scale). We
need to understand fundamental interactions and classify particles
according to their properties and their participation in various interactions.

It is worthwhile to mention that all the fundamental particles are
fermions and combine together to make atoms. Atomic nuclei are made up
of protons and neutrons (called nucleons) and quarks make nucleons.
Interaction between quarks is always a nuclear interaction, whereas
electromagnetic interaction binds electrons with nuclei to make atoms at
quantum scale. Individual properties of particles are hidden in atoms just as
individual atoms may not be recognized by their appearance in the
molecular form. However, at high energies, individual particles are found
independently and their reactions are responsible for the interchange of
energy and mass.

All of the fundamental particles are recognized by the ability to realize a
particular interaction. Table 7.1 lists the participation of a group of particles
in the corresponding interactions. They are identified by their intrinsic



properties. The major identification is based on their spin statistics and is
used to classify particles in two major groups: fermions (with half-integral
spin) and bosons (with integral spin). There are altogether 12 fundamental
fermions and 12 known fundamental vector bosons (spin 1 particles). There
are six light mass fermions (or leptons) and there are six heavy fundamental
fermions (or quarks). Leptons have an associated lepton flavor called lepton
number which corresponds to each charged lepton (electron e, muon μ and
tau τ) and their corresponding neutrinos (ν) exist in all three different
flavors. Heavy particles (or hadrons) have their own six different flavors
and are called quarks. These flavors are called down, up, strange, charm,
bottom and top represented as (d, u, s, c, b, and t, respectively). All of these
along with some other defining properties are listed in table 7.1. All the
fundamental particles are bound through sharing their intrinsic properties
using conservation rules and the related quantum numbers. Therefore, the
dynamics of fundamental particles cannot be understood without a detailed
understanding of fundamental forces.

Table 7.1. Properties of fundamental particles including the mediators. Their charges are
given in units of electron charge e, spin in units of h ̸, with the abbreviation: QED = quantum
electrodynamics, EWI = electroweak interaction, S.I = strong interaction and grav. = gravity.

Particles Charge mass Type Spin Interaction

e,μ, τ −e me,mμ,mτ leptons 1/2 em, weak

νe, νμ, ντ 0 0 leptons 1/2 weak

quarks(u, c,
t)

+2/3e mu,mc,mt baryons 1/2 em, strong

quarks(d, s,
b)

−1/3e md,ms,mb baryons 1/2 em, strong



Particles Charge mass Type Spin Interaction

Photon(γ) 0 0 mediate
QED

1 em

W ±,Z 0 ±1, 0 mW ,mZ mediate
EWI

1 electroweak

8 gluons 0 0 mediate
S.I

1 strong

graviton
????

0 unknown mediate
grav.

2
??

gravity

7.1.1 Fundamental interactions and fundamental particles
Dynamics of these particles are defined by fundamental forces which are
associated with intrinsic properties of the particles. These forces are always
associated with fundamental particles and perform no net work. All of the
fundamental forces are conservative in nature and the net amount of work
done by these forces is related to the intrinsic properties of matter and is
expressed in terms of quantum numbers at the subatomic level except
gravity. None of these forces are a contact force and they cannot be turned
off in any case. The electromagnetic force is a unique force that is well-
understood at the subatomic quantum scale as well as at large macroscopic
scale. This is the only tested fundamental interaction at the macroscopic
level that has a very well-understood quantum-scale description and its
relativistic quantum field theory is known as quantum electrodynamics
(QED), which is the most well-developed quantum field theory as well.

The universe is bound together through four fundamental interactions
that lead to the formation of large structures. Their shapes and sizes are
determined by balancing among multiple forces that have different natures,
but their impact may be similar. All of the fundamental forces are
conservative in nature and the net work done by these conservative forces
always vanishes. They are expressed in terms of intrinsic properties of



matter and they obey certain conservation rules and their associated
quantum numbers at the individual particle level. All the fundamental
forces except gravity are well-behaved at individual particle scale and their
integrated effect is observed, directly or indirectly, in a laboratory. The
masses of particles are simply added together and observed at the
macroscopic scale. At subatomic level, interactions are proposed to be
mediated through the exchange of specific mediators which take care of
certain gauge symmetries. These mediating particles exhibit particle
properties and have all the associated quantum numbers that follow the
conservation rules of the corresponding interaction. They are identified by
charge, mass and all the relevant quantum numbers for the corresponding
theory. Mediating particles for interaction theories are named as
intermediate vector bosons and may be created and absorbed virtually
during an interaction and can interact with other particles via their
individual properties.

There are four fundamental forces in nature. Weak, strong and
electromagnetic interactions are observed on quantum scale as gauge
theories. Weak and strong nuclear forces are only defined at sub-nuclear
scale as gauge theories. However, electromagnetism is described
successfully both at the classical and quantum scales. It is dealt with as a
gauge theory at quantum scale, whereas it can be defined as a classical
theory like gravity and is applicable to the macroscopic level successfully.
However, gravity is a well-understood theory at the macroscopic level only.
It is still not clearly understood as a quantum theory. If we could describe
gravity with quantum theory, we will probably need to describe it with the
help of a mediator called the graviton. However, if we succeed in
developing a quantum theory of gravity, it will bring more particles in the
picture and it will not be observed directly in the visible universe.

There are 12 fundamental particles and there are 12 known mediators of
three fundamental interactions which are vector particles in themselves. The
theory of mediators (the Yukawa theory) is associated with gauge theories
and we have gauge theories of three interactions of strong and electroweak
theories. Just to understand it, mediators of electromagnetic interaction are
electromagnetic waves that are made up of photons and are represented in
the particle form as energy quanta or photons or γ, whereas W ± and Z 0



correspond to intermediate bosons for weak interaction and eight gluons
which make a group of 12 particles altogether and mediate all three
fundamental interactions at quantum scale. It is difficult to write a gauge
theory of weak interaction. So, we have electroweak theory as a gauge
theory. Similarly, if gravity can successfully be described as a gauge
interaction, it will be realized by all the massive particles and will have an
associated mediator as the graviton. This will have to be a spin 2 particle
and will be different from any other mediator.

QED uses the quantization of electromagnetic fields at quantum
mechanical scale at relativistic energies to describe electromagnetic
interacting of particles locally. So, the study of QED and its scope cannot be
determined without a detailed understanding of special relativity, quantum
mechanics and electromagnetic interaction. The classical concept of fields
and their quantization describes the nature of electromagnetic interaction at
the individual particle level and explains how the local theory of QED can
be integrated at the macroscopic level. Therefore, a brief introduction of the
required theories is included in this book for the relevant background and
references for further study are included for convenience.

Particles lose energy during bonding and stay in bound states due to the
lack of enough energy to move away from each other and exist separately.
The bonding between matter particles can always be broken by a stronger
force that can compete with the binding energy to break it apart or convert
the particles into energy or convert energy into matter following Einstein’s
equation. All matter is composed of twelve fundamental particles. Gauge
interactions are locally defined and mediators communicate through their
specific attributes (or quantum numbers) to mediate all specific interactions.
Photons mediate electromagnetic interaction. Weak interaction is mediated
by W ± and Z 0 and the strong interaction is mediated by eight gluons. If we
succeed in writing the quantum theory of gravity, then the graviton will be
its mediator and will carry spin 2.

Classical electrodynamics deals with electromagnetism using
electromagnetic fields and calculates the detailed structure of atoms and
molecules. It leads to the bonding of electrons using interaction theory of
non-relativistic quantum mechanics. Atomic structure can be described
using the classical electrodynamics that deals with electromagnetic waves



and particles, using Maxwell’s equations. Fundamental principles of
electromagnetism are then described as electromagnetic waves and lead to
the four-dimensional description of electric and magnetic fields. The
relativistic quantum mechanics leads to the quantization of electromagnetic
fields and then is described as quantum field theory (QFT) of
electromagnetism and is identified as a short name QED.

Gravity and electromagnetic forces are two macroscopic interactions
and can be tested directly in laboratories, whereas the weak and strong
forces are sub-nuclear range forces and contribute in the formations of
nucleons (protons and neutrons). Strong interaction is the strongest known
force, whereas weak force is the weakest force at even smaller scale. It is
interesting to notice that all the fundamental interactions are governed by
radial potential and vary with the separation between interacting particles 
(r). A comparison of strength and variation of forces with distance are
tabulated in table 7.2.

Table 7.2. The relative strength and range of different interactions is given with respect to
gravity (or strong interaction and its variation in magnitude with respect to distance r).

Interaction Relative
Strength

Range (in
m) Scale Variation

Strong 1 1 Nuclear r

Weak 1 1 Nuclear 1

Electromagnetic 1035(10−3) ∞ Entire
space

1
r

gravity 1 (10−38) ∞ Entire
space

1
r

The range of all interactions is given in table 7.2. Some of the universal
conservation rules like charge and four-momentum are obeyed by all



interactions. Some of the symmetries and conservation rules are called
universal rules and are true for all interactions such as four-momentum
(energy–momentum) conservation. Other rules are associated with
particular interactions and the study of conservation rules identifies the
interaction itself. A few rules are commonly used to distinguish between
different interactions and are given in table 7.3.

Table 7.3. Fundamental interactions and participating particles and mediators.

Interaction Participating particles Mediator Violates

Weak leptons, quarks, Z, W ± Z, W ± several

Strong quarks, gluons gluons nothing

Electromagnetic charges, photon photons isospin

Gravity masses graviton ?? unknown

Each of these forces follow particular symmetries and conservation
rules which are mathematically expressed in terms of the invariance of the
corresponding Lagrangian under the change of certain parameters or
quantum numbers. Strong interaction, being the strongest, respects all
known symmetries and conserves all known parameters of the related gauge
theory. Weak interaction holds minimum symmetries and violates
maximum number of the known quantum numbers associated with the
participating particles, making it the weakest among all gauge interactions.
Every quantum number, except isospin, is conserved in electromagnetic
interaction and it is the second strongest force after the strong nuclear
interaction. Since we do not fully know that how to describe gravity as a
quantum theory, we do not know about its behavior at quantum scale.

7.2 A brief overview of special relativity



(7.1)

Relativity is originally introduced and developed as a macroscopic theory
of fast-moving objects and applied to celestial bodies in space. The relative
motion in the cosmos is controlled by gravity. However, the study of the
entire universe requires discussing curved space–time and general relativity
is incorporated to understand a spherically-bound universe that is studied in
the light of gravity, and obeys the inverse square law of force. However, the
dynamics of individual particles and their interaction is studied in special
relativity, which is described by the relativistic motion of a particle in its
own frame of reference that is identified as Lorentz inertial frame that
exhibits constant linear motion with respect to other particles with relative
velocities. A summary of special relativity with its important results is
given as a brief review of the theory so that we can understand how to treat
particles at high energies where transformation between mass and energies
is possible. We learn from special relativity that we need to develop four-
dimensional formalism to study such processes.

Relative motion of linearly moving objects is a classical concept and the
relative velocities are simply calculated using the laws of vector addition.
Galilean transformation is the conversion of spatial coordinates from one
frame to another frame, keeping length and time unchanged. One-
dimensional motion in the x-direction in a stationary frame, under Galilean
transformation, is described in a linearly-moving (primed) coordinate
system moving with a speed u in the x-direction. The one-dimensional
Galilean transformation is given as:

Special relativity is a generalization of Galilean transformation and
maintains the invariance of events in terms of spatial length and time
interval as the fourth dimension. Then a four-coordinate system is
introduced and an event defined in terms of four-dimensional space–time
coordinates. Special relativity was developed to incorporate the
transformation of electromagnetic signals. This development was based on

x′= x − ut

y′= y

z′= z

t′= t



(7.2)

the inertial frames, which were defined to protect all the laws of classical
physics and were named as Lorentz frames. It was also found that the speed
of light is constant in all inertial frames. The transformation of
electromagnetic processes from the rest frame to the fast-moving frames
(with the speed u comparable to the speed of light) is only possible if the
transformation of time is also incorporated. So the Galilean transformations
were generalized to Lorentz transformations as:

where γ = √(1 − β2) and β = u
c

. An important criterion is to check the
validity of transformation that we need to define the conditions where
classical results can be reproduced. For this purpose, we insert u = 0 in the
above transformation to reproduce classical results. However, with the
development of space technology, the indirect test of relativity is now
possible through its application to space science. Another application of the
special theory of relativity was observed in high energy physics.

Basic postulates of relativity include the fact that light is used as a
source of information and the effect of relative motion on light is different
than for material objects. Light moves much faster than everything else in
the universe. Light has the maximum speed and is the main source of
information.

Speed of light remains the same in all frames of reference.
Laws of physics remain invariant in all frames of reference that exhibit
linear motion with respect to each other.

Inertial frames or Lorentz frames are then defined as the frames that keep
the laws of physics invariant under Lorentz transformation. Such frames are
moving with a uniform linear velocity with respect to each other and the
relative speed is always lower than the speed of light. Lorentz frames
exhibit linear motion under Lorentz transformations (7.2) and guarantee the
invariance of four-dimensional length instead of three-dimensional length.

x′= γ(x − ut)

y′= y

z′= z

t′= γ(t − ux
c

)



(7.3)

Four-dimensional length can be related to an event which occurs in a given
space for a given interval of time and is described as:

The fourth coordinate is an imaginary coordinate (x4 = ιct) and its square
is subtracted instead of addition. Four-dimensional length of a four-vector
physically corresponds to an event. The invariance of three-dimensional
length indicates difference between two points in three-dimensional
coordinates and is given as:

L2 = ΔX 2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

where x, y and z are the regular spatial coordinates. The three spatial
coordinates (x, y, z) are generalized to four-dimensional space with 
(x, y, z; ιct) coordinates in flat space–time system in special relativity.
Four-dimensional change in length is a straightforward generalization of the
above relation and is given as:

L2 = ΔX 2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 − c2(t2 − t1)2

 
It is noticed that the relative motion causes the length contraction for an

observer in a frame outside the rest frame of the object that is moving with
a speed comparable to the speed of light. On the other hand, the time
dilation is observed as the event appears to slow down for the relatively
moving observer. The length contraction and time dilation between two
frames moving with the relative speed u is given as:

Δx′= γΔx

where the event is taking place in the rest frame represented as unprimed
frame S and the observer is in a moving frame S′ that is moving with a
uniform velocity u with respect to S. Both S and S′ frame are inertial
frames as they obey the law of inertia, which states that a frame at rest will

x′2= x2 = x2
1 + x2

2 + x2
3 − (ct)2

= (x′1)2 + (x′2)2 + (x′3)2 − (ct′)2



(7.4)

remain at rest and a moving frame will keep on moving with uniform
relativistic speed in the absence of external force. The time span of the
event is transformed as:

Δt′=
Δt

γ

The correspondence principle between special relativity and classical
physics can be easily verified when u ≪ c, with ’c’ the speed of light. For
nonzero speed c is conserved for c = Δx

Δt
= Δx′

Δt′
 such that the contraction

in length is balanced by the dilation of time. Using the above
transformations, the invariance of laws of physics can be checked.

The failure of the Galilean transformation was associated with
electromagnetism mainly because the laws of electrodynamics could not be
proved invariant under Galilean transformation. When simultaneous
measurements are possible for both the rest frame and the moving frame,
then Galilean transformation works. However, that simultaneity is only true
for a single point in space. Otherwise, synchronization of clocks in the rest
frame are not necessarily synchronized in the observer frame in a moving
frame.

Light, as an electromagnetic wave, moves at a constant speed which
depends on the electric permittivity ε0 and magnetic permeability μ0 in free
space such that:

c =
1

√ε0μ0
,

and the speed of light is accepted as a universal constant as its measurable
value in free space is independent of the frame of reference.

The four-dimensional formalism of special relativity is evolved through
the Lorentz transformation and describes the invariance of an event in
different frames of reference. Galilean transformation kept time constant in
all frames of reference as if simultaneous measurement of events was
possible in all frames. The Lorentz transformation addresses the time
transformation along with the transformation of spatial coordinates such



(7.5)

(7.6)

that a compensation between length contraction and time dilation take place
to conserve the four-dimensional length. Lorentz transformation between
two frames S and S′ moving in the x-direction with respect to each other is
given as:

Lorentz transformation shows the space–time invariance of event's location
and duration (four-dimensional length). In compact form, these
transformations are represented as:

The Lorentz invariance can relate length contraction and time dilation to
develop a correspondence between relativity and classical mechanics such
that the invariance of laws of mechanics in four-dimensional formalism is
fully satisfied. However, the large scale application of special relativity is
not relevant for slowly moving objects (u ≪ c) such that the Lorentz
invariance cannot be tested due to the simultaneous measurement of
different points. In regular daily events or in most labs, the relativistic
effects are negligible even if simultaneous measurements are not possible.
The Lorentz transformation and postulates of relativity show some
interesting results which are not described without using relativity. It
includes the law of transformation of velocities that depends on the
direction of motion, as expected. Some of the important results of relativity
are listed below:

(x′1−x′2) = γ(x1 − x2)

(y′2−y′1) = (y1 − y2)

(z′2−z′1) = (z1 − z2)

(t′2−t′1) =
(t2−t1)

γ

dt = γ(dt′−udx′/c2)

dx(dx′+udt′)

dy = dy′

dz = dz′



(7.7)

(7.8)

(7.9)

(7.10
)

These equations lead to the velocity transformation relations for the
corresponding components of velocities in a moving frame in the x-
direction and are observed from the corresponding rest frame as:

where v is the velocity of the object in the Lorentz frame S and v ′ is the
transformed velocity of the object in the S′ frame. Transformation of
velocities leads to the change in kinetic energy which appears in the form of
change of frequencies and wavelength. The change in frequency and
wavelength associated with the change of velocities is called the Doppler
effect. This effect states that a decrease in wavelength takes place when
objects move towards each other and is called a blue shift, whereas an
increase in wavelength, or red shift, can occur when the source and
observer are moving away from each other. If u is the velocity of the object
carrying light of frequency f, the observed frequency fobs is given by:

fobs = f√ 1 − u/c

1 + u/c

whereas for blue shift the source is moving towards the observer such that:

fobs = f√
1 + u/c

1 − u/c

dx
dt

= γ(dx′+udt′)
γ(dt′−vdx′/c2)

dy

dt
= dy′

γ(dt′−udx′/c2)

dz
dt

= dz′
γ(dt′−udx′/c2)

vx = v′
x+u

1+uv′
x/c2

vy =
v′
y×γ

1+uv′
x/c2

vz = v′
z×γ

1+uv′
x/c2



(7.11
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Until now, relativity is applied to macroscopic level and the concept of
Lorentz frames is applicable to non-accelerated frames of reference and this
approach is called special relativity. Accelerated frames can be ignored for
normal use of physical systems in a laboratory. However, for the study of
cosmology, accelerated frames are essential to incorporate curved space–
time. General relativity cannot be neglected for celestial bodies. However,
we are not including general relativity here as it is only applicable at large
scale and we deal with tiny objects at quantum scale.

Special relativity is one of the approaches which makes the study of
fast-moving tiny objects more accurate. There is no way to restrict an
individual particle motion to a non-relativistic scale. The particle energies
in nuclear processes always indicate relativistic velocities. Even in atoms,
electrons are moving with sufficiently high energies where relativity cannot
be separated from quantum mechanics. Special relativity actually provides a
framework to study all the individual particle processes from the rest frame
of a particle. This is how the birth of relativistic quantum mechanics led to
the development of quantum field theory as a framework of particle
interaction theory. A physical interaction theory is developed as a gauge
theory and the invariance (symmetries) of the Lagrangian of interaction
under certain transformation leads to defining the conservation rules of a
theory.

Einstein’s theory of special relativity points out that even mass is not a
constant of motion for relativistic systems. The mass–energy relation
indicates that a mass can convert into energy if it moves with relativistic
speed. On the other hand, energy can be converted into mass by absorption
of radiation. Relativity states that mass can be converted into energy if it
moves with the speed of light, and the energy created by the movement of
mass creates the energy such that:

E = mc2

Equation (7.7) is the most relevant relation of relativity for individual
particles moving with extremely high energies and can be tested in labs as
well. Conservation of energy allows the change of the form of energy so the
kinetic energy of particles with large velocities can be converted into
potential energy and vice versa. Kinetic energy of particles can then



(7.12
)

contribute to potential energy in the form of mass and kinetic energy of
relativistic particles can add mass on slowing down such that the total
energy satisfies a relation:

E 2 = p2c2 + m2c4

Equation (7.12) assigns two values of energies to particles: positive
energies corresponding to incoming states or particles and negative energies
corresponding to outgoing states as antiparticles. Most of the other quantum
numbers are inverted for antiparticles as well. In a simple way, if an
incoming state is added to a system as a particle then an outgoing particle is
considered as a subtraction of a particle or an addition of antiparticle. This
means that any additional quantum number is subtracted and the
momentum of an antiparticle is opposite to the momentum of particle.

This book is comprised of a comprehensive review of
electromagnetism, developed in the twentieth century and its role in the
development of modern technology. This work is still in progress and
understanding of gravity as a quantum theory is the most challenging part.
However, several competing theoretical models are in place to understand
quantum gravity, but experimental justification still has a long way to go
and the existing models are going through improvement in the light of
observational data and experimental results. However, before incorporating
relativity in quantum mechanics to develop QFT, we need to briefly
introduce particle physics as a subject to be able to use various types of
matter particles to justify relativistic description of particles at the quantum
scale. For this purpose, electrodynamics can be represented as QED.

7.3 Interaction theory
Among all of the fundamental interactions, electrodynamics is the most
well-understood theory, both at the microscopic and macroscopic levels.
Gravity is not fully understood at nuclear scale, whereas the weak and
strong interactions are extremely short-ranged and are not realized outside
the femtometre (10−15 m) scale. Electrodynamics can then be compared
with gravity at a large scale. Gravity deals with mechanics of all matter and
is relevant in context with the study of dynamics of matter, whereas



classical electrodynamics is only relevant for the dynamics of charges and
describes the interaction among moving charges in the form of currents
with magnetic fields. Current is basically the rate of flow of charge and has
an associated electric and magnetic field. Quantum mechanics is a
technique to study the dynamics of tiny objects that exhibit the properties of
waves and particles simultaneously.

Electrons are extremely light particles and rapidly revolve in the
nucleus as well as spin around their own axes of rotation in clockwise or
counterclockwise direction to create a stable system. The spin degrees of
freedom add correction terms in the angular momentum, which becomes
more complicated with the increase in number of particles. Electronic
orbitals deal with individual negative charges in the vicinity of other
revolving negatively-charged electrons, incorporating their individual spin
and obeying certain selection rules. That is the reason that atomic orbits are
much more complicated and cannot be described without quantum
mechanics.

Individual particles, due to their tiny masses, can easily acquire
relativistic energies and relativity has to be incorporated with quantum
mechanics which leads to the quantization of associated fields that can be
considered as canonical variables. However, relativity needs to extend the
ordinary three-dimensional analysis to four-dimensional canonical variables
including space and time in coordinate space. Four-dimensional coordinate
space has three spatial coordinates and one time coordinate as:

xμ = (ict,
→
x )

whereas the corresponding set of four-dimensional (conjugate) momentum
space combines three components of a momentum vector with one
component of energy E such that:

pμ = (iE/c,
→
p )

 
The wavefunction of quantum mechanics is now dependent on four

coordinates and due to the relativistic motion of particles, the wavefunction



is now treated as a field where the quantized form of the field represents a
particle in a phase space. Now the four-dimensional parameters work as
field operators and corresponding coordinates are expressed as fields. This
phenomenon is called second quantization or canonical quantization.
The state vectors of quantum mechanics are then replaced by canonical
fields instead of the relativistic variables of mechanics.

The fermions vector field ψ in itself has two components (spinors) as 
u(p) for particles and v(p) for antiparticles. Each one of these spinors has
two components as spin-up (+1/2) and spin-down (–1/2). Quantum field
theory uses the Lagrangian formalism that gives a description of
fundamental interaction in gauge theories by specific potential and
symmetries and conservation rules of the theory are derived from the
invariance of the Lagrangian.

It is very important to note that particle physics studies the dynamics of
fast-moving individual particles in terms of fundamental interactions. For
this purpose, quantum field theory is used, which employs relativistic
quantum mechanics, and the particles in the theory are described in terms of
quantized fields and not space- and time-dependent wavefunctions. Fields
are four-dimensional vectors and they are operated by four-dimensional
operators to describe the dynamics of particles. A combined theory of
quantized field operators and quantized wavefunctions is QFT.

7.4 Relativistic quantum mechanics
A detailed structure of matter and the dynamics of particles at subatomic
level has to be studied in terms of quantum mechanics that is primarily
based on the wave–particle duality or the uncertainty principle. Quantum
mechanics incorporates all possible states of a system with the help of
probability at the expense of precision and prefers to know about all
possible states. For this reason, particles are represented as state functions,
describing the particle and wave properties simultaneously.

On the other hand, the microscopic form of electromagnetic interaction
has to coordinate with the same behavior for individually charged particles
at relativistic energies and describe composite charges and the associated
laws of classical electromagnetism. Individual charges require a quantum



mechanical approach for such systems. However, at high energies,
simultaneous application of relativity, quantum mechanics and
electrodynamics without ignoring the basic principles of either one of these
theories develops some new features. Such a complete theory which fully
describes the electromagnetic interaction of relativistic systems at quantum
scale is called quantum electrodynamics and is a gauge theory and can be
treated as QFT of an electromagnetically-interacting system.

Motion of material objects in three-dimensional space takes place with
time and it is studied in terms of material properties and energy of the
system. Fundamental forces provide energy to do work and transfer energy
without particles touching each other. Electromagnetic energy is transferred
by radiation. The kinetic energy of motion may be provided by the applied
force, which could be mechanical, electromagnetic or any other kind of
force. Energy is measured by the changing behavior of matter and it can
change its forms as well. Mass can be converted into energy by relativistic
motion and energy converts into mass by the loss of energy into mass and
slows down, whereas the electromagnetic waves correspond to
electromagnetic energy and wave–particle duality proves that it corresponds
to a massless particle.

At the macroscopic level, electromagnetism deals with current and
charge and obeys certain laws of electromagnetic theory. This form of
electromagnetism gives measurable principles in the lab and deals with the
macroscopic objects directly. This is called classical electrodynamics that
plays a key role in the development of modern technology. This technology
includes basic motors, home appliances, digital circuits, supercomputers,
electric cars, airplanes and space shuttles, which all work under the
principle of electrodynamics in a way.

The development of QED is done for a single particle like any other
theory, but the application of the theory needs a generalization to many-
particle systems. QED deals with identical particle systems which are
identified by different states that can be distinguished, mainly by spin.
Therefore, the application of statistical mechanics is naturally justified.
Probability theory is inherited in QED from quantum mechanics.
Probability theory and statistical analysis is obviously convenient for an
ensemble of identical particles residing in different identical states which
can accommodate identical particles indistinguishably. However, QED



deals with two different classes of particles for relativistic systems such that
the integral spin bosons and the half-integral spin fermions obey different
spin statistics and have to be described by two entirely different equations
of motion named as the Klein–Gordon and Dirac equations, respectively.
Both of these equations are derived in the next chapter and discussed in
detail.

Relativistic quantum mechanics studies the dynamics of charges that
move with relativistic energies. Electrons move with high speed due to light
mass and move with high enough speed, comparable to the speed of light.
At high energies, inter-conversion of mass and energy can take place.
Relativity requires the study of particle dynamics in four-dimensional space
and treats energy and momentum as components of the four-vectors in
momentum space and they are related to each other using Einstein’s
equation as E = mc2. In this case, total energy attains the relativistic form
as:

E 2 = p2c2 + m2c4

The above equation has two solutions to describe the dynamics of highly-
energetic systems with positive and negative energies. The concept of
antiparticles is brought in relativistic theories from negative energies.
Antiparticles have all the quantum numbers with opposite polarity and
correspond to outgoing states as compared to incoming particle states.
Condensed matter physics uses the concept of holes for the absence of
electrons or vacant states where electrons can reside inside atoms,
indicating the available states for incoming electrons, but antiparticles are
particles with negative energies and are defined by all the associated
quantum numbers. Therefore, relativistic processes involve particles with
positive energies and antiparticles with negative energies. This concept of
positive and negative energy solutions can only be accommodated at
relativistic energies, where we can look at the process from different inertial
frames such that an outgoing particle can be treated as a particle with all the
inverted quantum numbers and is identified as antiparticle. However,
antiparticles are real particles with opposite properties.

Electrons are the lightest known type of matter with a negative charge.
These charged particles are highly energetic but have dominant



electromagnetic interaction over gravity. Electrons need relativistic
contributions in quantum mechanics and ignore gravity. For a proper
development of QED, we need to have a good understanding of quantum
mechanics, electrodynamics and relativity. However, we first need to know
special relativity and Einstein’s mass–energy relation to develop four-
dimensional formalism in quantum mechanics. There follows a brief review
of basic principles of electromagnetism, key concepts of quantum
mechanics and basic concepts of relativity to get ready to develop QFT of
electrodynamics interaction, named quantum electrodynamics.

7.4.1 Relativity and electrodynamics
Atomic and molecular structures can only be studied quantum
mechanically. Structure of atoms was the first successful application of
quantum mechanics. Interaction of atoms, formation of molecules, and
configuration of different microscopic structures of atoms and molecules
can be understood very well by quantum mechanics. A large portion of
subatomic physics is bound states of electrons and nuclei and is well
described by quantum mechanics. However, when the dynamics of
constituents of atoms like electrons, protons or neutrons is studied as
individual particles, their relativistic motion cannot be ignored as light
objects. Electrons are especially the lightest form of charged matter and are
usually moving with relativistic energies. So relativistic electromagnetism
is developed by incorporating relativity in quantum mechanics.

Relativistic quantum mechanics adopts the four-dimensional formalism
of relativity. However, in this four-dimensional formalism particles are
treated as fields and fields are used as variables. The quantization of fields
is called second quantization and this form of relativistic quantum
mechanics is called QFT. Since relativity and quantum mechanics both
reproduce the results of classical mechanics so QFT is the most generalized
theory to describe dynamics of material objects and is the perfect theory for
all interactions at extremely small scale. This theory gives the most detailed
description of fundamental forces at the individual particle level. All the
fundamental forces are conservative in nature and QFT is a proper
description of all the fundamental interactions except gravity.



QED deals with the study of electromagnetic interaction of individual
particles and it is developed as a gauge theory. However, for a detailed
understanding of this approach, a brief overview of quantum mechanics and
classical electrodynamics is required to develop some special mathematical
tools with their physical interpretation to make this theory more effective.

7.4.2 Four-dimensional formalism as a roadway to QED
Maxwell’s equations use fundamental laws of electromagnetism, which
indicate that light, electricity and magnetism are really a manifestation of
the same phenomenon. Maxwell’s equations provide a way to write the
wave equation for electromagnetic waves. Maxwell’s equations provide a
way to express electromagnetic field in the form of waves and for the first
time introduce electromagnetic waves, opening up a gateway to modern
technology. This is where the four-dimensional formalism of
electrodynamics starts that leads to the development of QFT.

QED is a combined theory of quantum mechanics and electrodynamics
of highly energetic particles moving with relativistic velocities. Classical
electrodynamics is a classical description of the dynamics of
electromagnetically-interacting charges. It deals with continuous (electric
and magnetic) fields that are associated with charge and its motion.
Relativity deals with the motions of systems moving with speeds
comparable with the speed of light. However, the solution of the equation of
motion of non-relativistic quantum mechanics of microscopic objects gives
the quantization of angular momentum and other variables due to wave–
particle duality, whereas the quantum mechanics of highly energetic
particles with relativistic velocities leads to the quantization of fields and is
called second quantization.

For a proper understanding of QED, we need to have a good
understanding of quantum mechanics, electrodynamics and relativity.
However, we only need special relativity and Einstein’s mass–energy
relation to develop four-dimensional equation mechanics as a relativistic
theory of quantized fields. In this chapter, there is a brief overview of the
basic principles of electromagnetism, key concepts of quantum mechanics
and basic concepts of relativity to get ready to develop QFT quantum field
theory of electrodynamics interaction, named QED.
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QED uses the quantization of electromagnetic fields at quantum
mechanical scale at relativistic energies to describe an electromagnetically-
interacting particle. The understanding of quantum electrodynamics and its
scope cannot be determined without a detailed understanding of special
relativity, quantum mechanics and electromagnetic interaction. The
classical concept of field and its quantization describes the nature of
electromagnetic interaction at the individual particle level and explains how
QED can be integrated at the macroscopic level. Therefore, a brief
introduction of all the fundamental theories is included in this book for the
relevant background and references for further study are included for
readers’ convenience.

A combined theory of relativity and quantum mechanics was called
relativistic quantum mechanics, which could incorporate spin into quantum
mechanics. Discovery of the intrinsic spin of particles led to the
classification of particles based on spin. Particles with integral spin are
called bosons and with half-integral spin are called fermions. Bosons and
fermions were found to follow different spin statistics at high energies, and
the Schrödinger equation had to be rewritten in two different equations in
relativistic quantum mechanics: namely, the Klein–Gordon equation and the
Dirac equation, respectively.

7.4.3 Four-dimensional representation of Maxwell’s equations
The vector nature of both fields has to be expressed in terms of a matrix so
the electromagnetic field can be fully represented as a matrix in four-
dimensional space as Fμν  in terms of vector potential:

Fμν =
∂Aμ

∂xν
−

∂Aν

∂xμ

Fμν =
1

c

⎛⎜⎝ 0 E1 E2 E3

− E1 0 − cB1 cB2

− E2 cB1 0 − cB3

− E3 − cB2 cB3 0

⎞⎟⎠
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In Minkowski space, where we take time real and space imaginary, we can
represent:

∂μ = ( ∂

∂(ct)
;

∂

∂(x1)
,

∂

∂(x2)
,

∂

∂(x3)
)

The electromagnetic field tensor is an antisymmetric tensor such that 
Fμν = −Fνμ at relativistic energies, and it leads to a simple set of four
Maxwell’s equations in a compact form in four-dimensional space as:

∂μFμν = 0

A detailed look at these equations together gives:

∂μFμν = ∂μ(
∂Aμ

∂xν
−

∂Aν

∂xμ
) ≡

jν

c

such that the four-current conserves in physical systems.

7.4.4 Maxwell’s equations in four dimensions
Maxwell’s equations are the fundamental equations of electromagnetism
and they are used to describe the dynamics of charge at non-relativistic
energy. Equations (7.15) and (7.16) are the four-dimensional forms of
Maxwell’s equations which are applicable to daily life. These equations
work at non-relativistic energies. However, we know that change of
position potentially incorporates the use of time and we add time as an
imaginary component. Similarly, every charge has the ability to create a
magnetic field, so we can define a four-dimensional field associated with
charge with three real components of electric field 

→
E  and an imaginary

component as the magnetic field vector 
→
B  which is always perpendicular to

the electric field. The relation between electric and magnetic field is
expressed in terms of the Maxwell’s equations. Equations (7.13)–(7.16)
together give a set of differential forms of the Maxwells’equations and use
all the important laws of electromagnetism that give birth to modern
technology. Equation (7.15) leads to:
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→
B =

→
∇ ×

→
A

where A is called a vector potential.
The differential form of Maxwell’s equations, in free space, then read:

These relations tell us how the variations in the electric and magnetic
field depend on each other. The time dependence of the magnetic and
electric fields, in reference to Faraday’s law and Ampère’s circuital law,
relate the time-varying electric and magnetic fields to the electric and
magnetic flux. Without getting into detailed discussion of Maxwell’s
equations, we can look into the corresponding integral form of these
equations as:

 
Classical electrodynamics works perfectly fine at macroscopic level just

as classical mechanics works perfectly fine at the same scale where we put
a constraint on the overall behavior of physical systems. Classical
mechanics uses Newton’s laws of motion for linear systems, Kepler's laws
for the dynamics of orbital motion of rotating systems bound by gravity,

→
∇ ⋅

→
B = 0

→
∇ ⋅

→
E = 4πρ

→
∇ ×

→
E = − 1

c
∂

→
B

∂t

→
∇ ×

→
B = 4π

c

→
J + 1

c
∂

→
E

∂t

∮∂Ω

→
E ⋅ d

→
S = 4π∬∬ ΩρdV

∮∂Ω

→
B ⋅ d

→
S = 0

∮∂Σ

→
E ⋅ d

→
l = 1

c
d
dt
∬Σ

→
B ⋅ d

→
S

∮∂Σ

→
B ⋅ d

→
l = 1

c
(4π∬Σ

→
J ⋅ d

→
S + d

dt
∬Σ

→
E ⋅ d

→
S )



and fundamental laws of electrodynamics for electromagnetically-
interacting systems. Gravity and electromagnetic force are both central
forces and create gravitationally-interacting orbits in space and
electromagnetically-interacting orbits in atoms. We just consider the
dominant force and the angular momenta for the formation of orbits.

The equation of motion of classical mechanics for linear motion is
written in terms of the rate of change of linear momentum, whereas the rate
of change of angular momentum in circular motion describes the equation
of motion for rotation. Net linear force is related to the linear acceleration
and net torque on a body is related to the angular momentum. Classical
physics deals with continuous variables of a system, in principle, and can
attain any value and net force has no restriction on how much acceleration
can be produced.

A major difference between gravity and electromagnetism is associated
with the basic properties of matter. Mass has only one degree of freedom
and gravity is always an attractive force that depends on the quantity of
mass and the shape of the objects, whereas electric charges have polarity
and could be either positive or negative, which gives two types of behavior
to the force, either attractive or repulsive. Charged particles still have mass
and the mechanical forces are still there along with the electromagnetic
force.

Gravity generates orbital motion, gravitational attraction competing
with the centrifugal force generated by the angular momentum.
Gravitational orbits have no limit on the amount of mass, it just need a large
enough force between two masses to ignore any other external force, even
the gravitational pull of other objects. Electrodynamics does not produce
orbital motion at macroscopic scale as mass does not carry enough net
charge to even move to a measurable distance with large mass. In neutral
matter, gravity dominates over electromagnetic force at large distances due
to the electrical neutrality of independently existing matter. Neutral matter
can only carry partial induced charge, which is not only weak but also is not
permanently there. Independently existing neutral matter can be generated
by collecting all the positive charges in the center and letting an equal
number of negatively-charged light particles revolve around it inside the
atoms. Therefore, the electromagnetic forces can only generate orbitals of
light electrons in atoms.



Atoms are electrically neutral and are composed of an equal number of
electrons and protons. Protons reside with neutrons in the central part of the
atom in the nucleus. Neutrality of atoms is indebted to the polarity of
charges as an equal number of charges can balance out to give overall
neutral matter. However, the polarity of charge makes it more complicated
because opposite charges cancel each other and net charge vanishes.
Repulsion between similar charges has to be managed in orbital motion of
electrons and the repulsion between protons in the nucleus is controlled by
strong interaction between protons and neutrons. Without getting into the
details of atomic structure, the nucleus can be considered a single
positively-charged center and electrons revolve around that center. Almost
all the mass of an atom resides in the nucleus and light electrons revolve
around it; gravitational interaction is easily ignorable in atoms.

The formation of orbitals of charged particles can occur in the special
configuration of atoms only where electrons can revolve around the nucleus
but repel one another as well. Moreover, revolving charges exhibit a small
magnetic field due to their rotational motion. So the electronic orbits not
only keep the balance by matching the electromagnetic force and the
angular moment, but they also take care of the magnetic moment of electron
due to the orbital motion of electrons. This situation is managed by the
quantization of angular momentum in atoms and discrete energy levels are
defined although all of the electrons are identical particles and the size of
the nucleus is small enough to be treated just as a central point.

Because electrons are light particles that revolve around the nucleus and
spin around their own axes of rotation, their spin degrees of freedom add
correction terms to the orbital angular momentum that are called spin
angular momentum such that the total angular momentum 

→
J  is a vector

sum of orbital angular momentum 
→
L  and spin angular momentum 

→
S

which becomes more complicated with the increase in number of particles.
Electronic orbitals deal with individual particles so it has to incorporate
individual particle properties like spin as well. That is the reason that the
electron orbits are much more complicated and cannot be described by
some laws similar to Kepler’s laws of orbital motions (based on central
force and angular momentum).



Due to the light mass of electrons and tiny size of atoms, classical
physics is not enough to describe the electronic motion. Quantum
mechanics is needed to understand the motion of electrons inside the atoms.
The light and tiny electrons move too fast to ignore relativity as well. A
detailed study of atomic structure is made possible using quantum
mechanics. The key concepts of quantum mechanics are developed using
the uncertainty principle in the light of wave–particle duality and the
operator formalism is instrumented for this purpose. The probabilistic
nature of quantum theory, due to the limitations in precise measurements,
does not allow easy discrimination among different possible states of
electrons. The equation of motion of electrons in quantum mechanics is the
Schrödinger equation and its solution in spherical polar coordinates leads to
the discrete value of angular momenta. This quantization of angular
momentum and energy is called the first quantization associated with the
quantization of state variables. These quantized variables are identified as
quantum numbers and the particles are represented as state functions that
are described by the particles as well as wave properties, as discussed in the
chapter of quantum mechanics.

Light particles such as electrons, due to their small masses, easily
acquire relativistic velocities. Non-relativistic studies may not give
complete information. Even though the speed of electrons inside atoms is
large, non-relativistic quantum mechanics works fine. However, the
electrons acquire very high velocities at high energies and even the other
particles need relativistic treatment. Therefore, special relativity is
incorporated in quantum theory which leads to the second quantization or
quantization of fields instead of quantization of variables. Relativistic
quantum mechanics evolves into QFT that replaces the first quantization by
the second quantization and shows the quantization of fields instead of
variables. Therefore, at relativistic energies, particle states are attributed by
fields instead of variables. QFT needs to incorporate spin of the particles in
its analysis. However, QFT opens new venues in physics and acquires a
more effective approach to study interaction as a local gauge theory using
Lagrangian formalism.

We therefore give an overview of all the relevant theories to identify
their scope and then link together all the apparently different approaches in
the form of QED that becomes a standard gauge theory and provides a



framework to study all of the fundamental interactions as gauge theories
with their inherent properties at the individual particle level. In QFT, the
particle spin has to be incorporated and the Schrödinger equation, the
equation of motion of quantum mechanics, gives rise to two different
equations of motion, namely, the Klein–Gordon equation for particles with
integral spin or spin zero and the Dirac equation for half-integral spins. The
gauge invariance requirement of the Lagrangian leads to the discovery of
several more quantum numbers.
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Chapter 8

Development of quantum electrodynamics

8.1 Introduction
Quantum electrodynamics (QED) is a theory which incorporates relativity into quantum
mechanics to study fundamental interactions at the individual particle level. The
generalization of the Schrödinger equation in a four-dimensional relativistic coordinates
system leads to the quantization of interacting fields at relativistic energies. The classical
form of the total energy E is written as a sum of the kinetic and potential energy which is
generalized to the relativistic energies E expressed in terms of the kinetic energies and the
potential energies of particles which has the ability of interconversion between the mass
and energy such that:

E 2 = p2c2 + m2c4 ≡ Ĥ
2
.

This equation has two values of energies as solutions. Solution of this equation gives two
values of energies; positive and negative. Positive energies, obtained as a solution of this
equation, correspond to particle energies as classical solutions of this equation. One
positive energy solution is the ordinary total energy solution for particles, but negative
energy solutions in relativistic quantum mechanics are identified as antiparticles. This
simply doubles the particle sector in quantum field theory (QFT). These negative energy
solutions may determine the outgoing states which reduce the mass or potential energy of a
state. This description of the antiparticle is used to understand the concept at low energy or
in non-relativistic quantum mechanics. However, the existence of antiparticles as real
particles is now well-tested at relativistic energies. This simply expands the particle section
to double in four-dimensional formalism. It simply shows that the expansion of coordinates
is always associated with the expansion of the particle sector.

8.2 Relativistic generalization of the Schrödinger equation
The notion of particles and antiparticles provides a method to write a complete
wavefunction with four-components combining particles and antiparticles in a single state.
The fermionic states are composed of two-dimensional particles and antiparticles as two
spinors. In this way, the four-dimensional formalism combines relativity and quantum
mechanics together. In addition to incorporating antiparticles, we need to introduce spin to
develop the four-dimensional generalizations. Therefore, the spin statistics play a crucial



role in the relativistic generalization of the Schrödinger equation. However, we have to
develop separate equations for bosons and fermions, which are identified as the Klein–
Gordon equation or the Dirac equation corresponding to the particles with integral spins
(bosons) and with half-integral spins (fermions), respectively. Understanding the derivation
of these equations is what describes the need of spin in relativistic formalism combining the
incoming and outgoing states of particles. The relativistic equations of motion at relativistic
energies lead to the quantization of fields and mostly are applied in the rest frame of the
individual particle at quantum scale.

8.2.1 Klein–Gordon equation
The Klein–Gordon equation (K–G equation) is used as an equation of motion of bosons and
the spin statistics of bosons does not impose any limit on the number of particles in a single
state. Starting with the relativistic equation of energy and substituting the energy and
momentum operators from non-relativistic quantum mechanics allows us to write this
equation in the form of four-vectors. This gives the K–G equation in four-dimensional
space–time or energy–momentum coordinates. For this purpose, we use p̂μ = −ι∂̂ μ for 
h̸ = c = kB = 1 in Euclidean space by using the three-momentum operator as:

→̂
p = −ih̸

→
∇ ≡ −ih̸∂̂ i

and the energy operator as:

Ê = i
∂

∂t

≡ i∂̂ t

for c = 1. These operators are then rearranged in a relativistic equation as:

p2 −
E 2

c2
= (mc)2

which gives a simple form of the K–G equation. In this equation, particles increase energy
when added to a system and decrease energy when they are removed, with relativistic
energies and mass related through the Einstein’s equation for potential energy E = mc2

giving a common solution for positive and negative energy states.
The K–G equation describes the dynamics of relativistically-moving scalar particles of

mass m as:

−∂μ∂μϕ = m2ϕ

such that ϕ is a wavefunction of scalar particles and the square of total kinetic energy
operator ∂μ∂μ gives the square of the particle’s mass which corresponds to potential energy
of a relativistic mass for c = 1. The constant mass can then be interpreted as the



(8.1)
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conservation of four-momentum and this mass changes its sign for antiparticles. Now if ϕ
represents an incoming particle (or outgoing antiparticle) with mass m, then ϕ† corresponds
to an incoming antiparticle (or outgoing particle) with the same mass. The K–G equation is
a combined equation in the four-momentum (energy–momentum) formalism which gives
two solutions as a scalar doublet of say ϕ1 and ϕ2. An equation uses ϕ1 as a particle
solution with a positive mass and ϕ2 as antiparticles with a negative mass. Einstein’s
equation can actually be rewritten using this new four-dimensional d’Alembertian operator
written as:

□ ≡ ∂μ∂μ = (∂i∂
i − ∂ 2

t ) =
∂ 2

∂x2
1

+
∂ 2

∂x2
2

+
∂ 2

∂x2
3

+
∂ 2

∂x2
4

for h̸ = c = 1, where (x1,x2,x3,x4) are the four coordinates of the space–time coordinate
system. A four-vector formalism is written in the form of d’Alembertian operator as a
single K–G equation:

(□ + m2)ϕ = 0,

namely the K–G equation, which simply reproduces Einstein’s equation E = mc2 for a
particle at rest. We will not define a massless and spinless scalar in nature. However, if we
had one, the K–G equation for massless scalars would attain the form ∂μ∂μϕ ≡ □ϕ = 0,

which will not contribute any energy to a system at rest. Hence it cannot be a real particle.
The K–G equation typically describes the dynamics of spinless scalars and the solution

of this equation is represented as a four-component scalar field which represents scalar
particles such as Higgs and other massive scalars which may have to be added to a theory
in the effort of combining various interactions in the framework of group theory. The
existence of Higgs is associated with the unification of gauge theories. In these gauge
theories, the interaction is described as Yukawa theory and its mediators are gauge bosons
corresponding to every gauge theory. Photons, W ±, z0 and gluons are all examples of
gauge bosons. Most of the gauge bosons are massless except W ±, z0. The masslessness of
a photon is a requirement of gauge invariance which makes it an antiparticle of itself just as
indicated in the K–G equation for massless scalars. However, the photon field is a vector
field so we develop special equations for photons due to their special characteristics.

Mediators are vector bosons and every vector particle has an associated vector field.
The photon with its own vector field is described as a vector potential in three-dimensional
space which describes photons as the quanta of energy of electromagnetic signals. The
electromagnetic waves combined with electric and magnetic fields help to develop
Maxwell’s equations. This formalism allows us to rewrite a compact form of all four
Maxwell equations in Cartesian coordinates as a single equation:

∂μFμν = □Aν − ∂ ν(∂μA
μ),



The K–G equation can fully describe the dynamics of spinless scalar bosons and the
solution of this equation is represented as a four-component scalar field. Vector nature is
induced by the charge of a particle. This equation includes scalar particles such as Higgs
and other massive scalars which appear in various interaction theories and their existence
depends on the models of unification theories. During the unification of gauge theories,
high energy physicists are compelled to extend the particle sector which is only possible by
adding unknown massive scalar particles which disappear at low energies due to breaking
of the gauge symmetries. These new scalars are added by hand for extended dimensions of
unified theories. Unitary groups provide frameworks for the extension of coordinate space
along with the scalar particles themselves. At this point, high energy physics becomes too
technical to be discussed here. Additionally, special mathematical tools are required to
understand it. This discussion is out of the scope of this book and hence postponed for now.

8.2.2 Equation of motion of vectors
Spin-zero particles, like photons, may have a specific direction and are indicated as spin-1
vector bosons. They satisfy the K–G equation but its solution is not a scalar field. The
vector particle solution as a four-vector Aμ corresponds to a four-dimensional field with

three components of electric field (→
E ) and one imaginary magnetic field (→

B ) component

such that Aμ = (
→
E ; i

→
B /c). The vector particle may or may not have a mass m. QED and

quantum chromodynamics (QCD) have massless vector bosons as photons or gluons,
whereas the electroweak theory is mediated by massive gauge bosons as (W +, W − and Z 0

). We mainly consider a photon field which is only a vector particle in QED. The
antisymmetric nature of this vector field allows us to define a transformation matrix as:

Fμν = ∂μA
ν − ∂ νAμ

and all the Maxwell’s equations can be expressed by a single equation:

∂μFμν = 0,

which obviously summarizes the most important laws of classical electrodynamics
including Ampère’s law, Faraday’s Law, and Gauss’s Law using electric and magnetic
fields. These laws play a fundamental role in describing the dynamics of
electromagnetically-interacting systems at macroscopic level and inevitably contribute to
the implementation of dynamics of charge in modern technology, integrating electric and
magnetic fields along with electromagnetic radiation. The antisymmetric function εμ
ensures the antisymmetric nature of the photon field, describing the vector nature of a
photon.

However, it is worth mentioning for completion that the given set of equations is
applicable with the relevant modifications due to the nature of various interactions and they
are used to describe a gauge theory. Description of an interaction theory in the form of a
gauge theory is related to the vector nature of the mediators of a gauge theory. The nature



of interaction and the corresponding symmetries of a gauge theory are represented by the
corresponding spin-1 fields (states) of the mediators (vector bosons) like photons
(electrodynamics), the electroweak interaction mediators (γ,W +,W − and Z 0) and gluons
as mediators of QCD. There are other possible vector bosons which are created as short-
lived intermediate states at very high energies and are usually model-dependent.
Resonances are examples of such states. However, a detailed discussion of high-energy
gauge theories such as QCD and electroweak theories is out of the scope of this book.
Moreover, it is worth mentioning that a true gauge theory of gravity is still not fully
developed. Since we cannot yet formulate a successful gauge theory of gravity at the
quantum scale which is fully applicable to both microscopic and macroscopic level, we do
not fully understand the nature of the mediator of gravity, if it is possible to exist. As of
now, we model the mediator of gravity as a mediator with spin 2.

8.2.3 Equation of motion of photons
We now generalize the K–G equation for vector particles like photons (vector bosons) to
obtain vector fields as a solution of the K–G equation and describe the corresponding
interaction theory in four-dimensional formalism. We need to incorporate the direction of
motion of the corresponding vector field which describes the direction of the corresponding
interaction as well. Then we write a four-dimensional vector field as:

Aμ = εμe
ik⋅r

where εμ indicates the four-dimensional antisymmetric vector representing a block
representation of two-dimensional particle and two-dimensional antiparticle states
comprised of incoming and outgoing states. This four-vector field Aμ corresponds to a
four-dimensional field with three electric field components and one imaginary magnetic
field component such that Aμ = (

→
E ; i

→
B /c). The direction of B is dependent on the

direction of E and is not treated as an independent variable. The direction of E determines
the direction of the polarization vector. Remember that the electric and magnetic fields are
both vectors which are related in Cartesian coordinates as:

→
B ∝ (

→
∇ ×

→
A ).

Its analogue in classical electrodynamics can be seen in terms of the three-dimensional
Cartesian vector field 

→
A  and a corresponding scalar electromagnetic field ϕ. This

expression of Maxwell’s equations provides a missing link between classical
electrodynamics and the relativistic version of electrodynamics ensuring the application of
fundamental laws of electrodynamics to relativistic quantum mechanics of electrodynamics
known as QED.

8.2.4 Dirac equation
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The most generalized relativistic form of the equations of motion of fermions is developed
combining the regular Schrödinger equation of quantum mechanics and the total energy
equation of relativity along with the fermions spin statistics. It is not a straightforward
generalization such as the K–G equation. The spin statistics of fermions at relativistic
energies is called Fermi–Dirac statistics. It gives a block representation of two-component
wavefunctions of spin 1/2 and spin –1/2 basis vectors which can provide a set of four-
components basis vectors. Two-dimensional wavefunctions with incoming and outgoing
states are replaced by a four-dimensional wavefunction which includes two spin vectors
altogether, which can be expressed in two doublets corresponding to spin half fermions
(particles and antiparticles). This formalism was formulated by Paul Dirac in 1928, and it
plays a fundamental role in the development of QFT. Its derivation is also based on
generalization of the Schrödinger equation in the matrix form. Now, we start writing the
relativistic equation in natural units (c = ℏ = 1) as:

E 2 =∣ p̄ ∣2 +m2

Using the operator formalism, it leads to the equation:

∂ 2ψ

∂t2
=

→
∇

2

ψ − m2ψ

This is a second-order equation in spatial as well as time derivatives. For the plane-wave
solutions:

−E 2ψ = − ∣
→
p ∣2 ψ − m2ψ

such that:

E = ±√∣
→
p ∣2 +m2

However, the fermions can contribute to either positive or negative energy states and may
have two spin states as well. The same argument of particles and antiparticles is not so
simple for fermions. Particle and antiparticle substitute each other, but the addition and
subtraction in finding the probability of particles cannot be accepted directly. This problem
was realized by Dirac and motivated him to incorporate fermion spin into the particle
(incoming) and antiparticle (outgoing particle) wavefunctions. Two-component individual
spinors were introduced as u(p) for particles and v(p) for antiparticles as solutions of
individual equations of motion for fermions in quantum field theory. Two separate spinors
were needed to solve two different equations, one for particles and the other for
antiparticles. In addition, two-dimensional spin operators were associated with spinors to
distinguish their spin contribution to the total spin of the system. A combination of two-
dimensional u(p) and v(p) together provided a four-dimensional wavefunction represented
as a block representation of particle-antiparticle doublet.
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Dirac’s proposed solution and not only utilized u(p) and v(p) (corresponding to
particle and antiparticle states), but also two-dimensional Pauli spin matrices. Pauli spin
matrices are only two-dimensional. Dirac used them to develop four-dimensional
wavefunctions and spin operators to incorporate particles and antiparticles together. He
proposed a common solution as:

Ĥψ = (
→
α ⋅

→
p + βm)ψ = i

∂ψ

∂t

where Ĥ is the Hamiltonian operator. Expanding it:

(−iαx

∂

∂x
− iαy

∂

∂y
− iαz

∂

∂z
+ βm)ψ = i

∂

∂t
ψ

A free particle with a mass m must always satisfy the condition E 2 = p̄ 2 + m2. However,
the Dirac equation has to be consistent with the K–G equation but still satisfy the properties
of these equations as:

α2
x = α2

y = α2
z = β2 = 1

αjβ + βαj = 0

αjαk + αkαj = 0, ( j ≠ k)

such that the block representation of these matrices is that:

β = ( ), αj = ( )

where three components of σi from quantum mechanics along with a 2 × 2 identity matrix
gives a set of four-vectors given as:

I = ( ), σx = ( ), σy = ( ), σz = ( )

These conditions require αj and β to be four mutually anti-commuting matrices. The
wavefunction must be four-component Dirac spinors:

ψ = .

I 0

0 − I

0 σj

σj 0

1 0

0 1

0 1

1 0

0 − i

i 0

1 0

0 − 1

⎛⎜⎝ψ1

ψ2

ψ3

ψ4

⎞⎟⎠
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A consequence of the first-order equations in spatial and time coordinates is that the
wavefunction has new degrees of freedom. This is how we import three-dimensional Pauli
spin matrices into Dirac matrices (α and β) to introduce the spin statistics which works for
both particles and antiparticles altogether. The Pauli spin matrices were considered to write
the four anti-commuting matrices. The probability density is then expressed by introducing
a compact representation of matrices to write a single equation in four-dimensional space
incorporating the Fermi statistics expressed as the Dirac equation which satisfies the basic
conditions of probability density:

ρ = ψ †ψ

ρ =∣ ψ1 ∣2 + ∣ ψ2 ∣2 + ∣ ψ3 ∣2 + ∣ ψ4 ∣2

The Dirac equation has probability densities that are always positive. The solutions to the
Dirac equation are Dirac spinors which give rise to the intrinsic spin property of the
particles. To rewrite it in a relatively general way with particular properties, let us introduce
Dirac gamma matrices:

γ 0 ≡ β; γ 1 ≡ βαx; γ 2 ≡ βαy; γ
3 ≡ βαz

such that the Dirac equation can be written as a single equation in compact form as:

iγ 1 ∂ψ

∂x
+ iγ 2 ∂ψ

∂y
+ iγ 3 ∂ψ

∂z
+ mψ = −iγ 0 ∂ψ

∂t

This can be expressed as a compact equation as:

(iγμ∂μ − m)ψ = 0,

which is a four-dimensional version of the Schrödinger equation which can fully describe
relativistic quantum mechanics. In this equation, γμs are commonly known as gamma
matrices of QFT. ∂μ denotes the four-dimensional gradient, m is the rest mass of a fermion,
and ψ is a wavefunction, which in this case is a four-component wavefunction which is
made up of a block of two-dimensional spinors. Now the wavefunction ψ is a four-
dimensional column vector ψ in a block representation of particle u and antiparticle v
doublets. These spinors describe the spin degrees of freedom for fermions, which are
essential for the correct relativistic treatment of spin-1/2 particles such that the complete
wavefunction can be given as:

ψ = u(x)e−ipx/h̸ + v(x)eipx/h̸,

Another notation is commonly used here that we define as:

iγμ∂μ = γμpμ ≡ ip̸



(8.9)

(8.10
)

and a combined Dirac equation in four-dimensional space is written as:

(p̸ − m)ψ = 0

which can even be decomposed a two-dimensional equation for particles and antiparticles
separately:

ψ = ( ) = ( )

such that the two different equations that are satisfied by two incoming and outgoing
particles are:

(p̸ − m)u(p) = 0

and:

u†(p)(p̸ − m) = 0

The corresponding equations for incoming and outgoing antiparticles can be written as:

(p̸ + m)v(p) = 0

and:

v†(p)(p̸ + m) = 0

Each of these equations has two solutions for each doublet. The set of four different Dirac
equations for particles u(p) and antiparticles v(p) correspond to particle and antiparticle
spinors [u(p) and v(p)], respectively. These spinors further satisfy the conditions:

u†
r(p)ur(p) = v†

r(p)vr(p) =
Ep

m
.

One of the most significant features of the Dirac equation is that it predicts the existence of
antimatter both for fermions and bosons. This equation naturally yields solutions
corresponding to both positive and negative energy states. This duality was initially
perplexing, but it was later understood to imply the existence of particles identical in mass
but opposite in charge to the known fermions. These antiparticles, such as positrons, were
later experimentally confirmed, marking a major triumph for the theory. However, later on
this equation became a general equation for fermions in any interaction theory and
accommodated all types of particles with all types of quantum numbers including additive
and multiplicative eigenvalues or even the projection operators.

Gamma matrices have very specific properties and gamma algebra is a special type of
matrix algebra which can later be used in every gauge interaction theory in QFT. In

u(p)

v(p)

particle

antiparticle



particular, it allows us to calculate the decay rates and scattering cross-sections in all
fundamental interactions at high energies. Some of the useful well-known properties of
gamma matrices are included in the appendix so that a reader can easily use it without
going into the proof of identities every time. It therefore provides an effective approach
with sufficient mathematical tools which can be applied to any local interaction theories
including local short-ranged theories such as weak and strong interactions. In various
interaction theories, the participating particles are not all similar in nature and their
behavior depends on their intrinsic properties or the associated quantum numbers. They
may not always exist as free independent particles due to their participation in short-ranged
nuclear interactions only. Quarks provide a good example of such strongly- and weakly-
interacting particles with fractional charges which are always found in bound states and
these quarks with fractional charges cannot participate in electromagnetic interaction unless
they are bound together to give integral charges like protons.

On the other hand, for multiparticle systems, the second quantization (discussed
previously) allows us to identify states by the number of particles instead of defining an
individual particle state. Such states represent the quantized states that exist in the form of
quantized fields instead of the point particles. This is how the idea of quantization of fields
is introduced in high-energy physics and developed as QFT. This field quantization allows
us to define all quantum states and operators as quantized fields and gives birth to the most
generalized interaction (gauge) theories in QFT. This theory shows discreteness in fields
associated with particles instead of state variables and the field operators leading to the
invariance of the system due to the exchange of identical particles.

Spinless particles have scalar fields and remain invariant in space. Scalar particles may
have just one degree of freedom. However, its representation in four-dimensional space is
possible even if it has only one nonzero component. It just ensures the invariance of its
four-dimensional magnitude, which can be identified as a quantization of the four-
dimensional field associated with a particle, and we find a way to represent particles as
quantized fields which represent the regions of its interactions. The Dirac equation lets us
rewrite the Hamiltonian and Lagrangian of an interaction theory and the kinetic energy and
the potential energy or both of them are now expressed in four-dimensional space.

8.3 Development of quantum field theory
Difference in the spin statistics of fermions and bosons led to the derivation of two different
equations of motion for fermions and bosons. Their dynamic behavior is not the same
either. The kinetic energy of fermions and bosons is then inserted in the Lagrangian as two
separate terms, and the different terms are used to indicate interactions between fermions
and bosons. Once a complete Lagrangian of a theory is written, it has to be proven invariant
even if certain transformations of coordinates or the corresponding fields are changed.
These transformations which keep the Lagrangian and then the corresponding action
unchanged are called gauge invariant. The basic principle which requires the invariance of
the Lagrangian for a physically acceptable interaction theory is called gauge theory. An



interaction theory cannot be accepted as a correct physical theory until it satisfies the gauge
invariance.

8.3.1 Gauge theories
Gauge invariance basically requires that the fundamental nature of the corresponding
interaction is preserved by the assurance of the invariance of Lagrangian if certain
transformations take place. These transformations are called gauge transformations. The
invariance of the Lagrangian under gauge transformations is called gauge invariance and
the conservation rules obtained as a result of these transformations are called gauge
transformations. This invariance of the Lagrangian is used to determine the various
conservation principles of interaction theories and allowed transformations of the
Lagrangian, which does not affect the behavior of the interaction or dynamics of a system.

Lagrangian formalism helps to determine the conservation rules of the corresponding
theory. All the particles with certain required characteristics can realize or participate in the
same interaction if they can follow the required conservation rules obtained from the gauge
invariance. Then the unitarity of the transformation matrices requires the Lagrangian to be
invariant under certain transformations. These transformations make a group and the
generator of this group determines the number of mediators of the interaction, and the
matrix elements of the group determine the number of particles needed to make a complete
set of the group which can participate in the given interaction. All these conditions are
needed for a physical theory. Every interaction is only a physical interaction if it is gauge
invariant and all the fundamental interactions should be represented in terms of the gauge
group. This gauge group provides a set of transformations which satisfy the gauge
invariance. The generators of these groups correspond to mediators of a theory which are
also identified as gauge particles like photons and gluons. Mediators are responsible for the
interaction and connect various elements of the gauge group or indicate the transition
among various elements managed by the interactions between particles which indicates the
probability of production of various particles.

8.3.2 Lagrangian formalism in QFT
QFT is a generalized form of gauge theories which is locally defined at a very small scale
which could be applicable to nuclear interactions at higher energies. Quantum field theories
use local gauge theories to develop the four-dimensional Lagrangian formalism. This local
form of the Lagrangian is defined at a given point of space and time which corresponds to
the action at a given time at a certain point in space for a rapidly changing energy. This is
called Lagrangian density (L ) in four-dimensional space. The classical Hamiltonian

H = pi(t) ⋅qi(t) − L

of such a system locally attains the form of H  at a given instant of time t which is written
as:

H = Σipi(t) ⋅qi(t) −L .
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In QFT theories, we do not need to quantize the spatial variables as measurement in space
becomes difficult due to the wave nature of particles and the momentum space is
considered to be more reasonable for measurements. QFT works more in the Fourier-
transformed coordinates which could be converted into real space–time coordinates at any
point through the inverse Fourier transform. The idea of generalized coordinates allows us
to discuss the field quantization, such that the total Lagrangian is defined as:

L = ∫ L d3qi

for the action due to the scalar field in terms of generalized coordinates qi instead of the
spatial or momentum coordinates. We define the quantized field in space as ϕ(qi, t). Let us
define the canonical conjugate (or conjugate) momentum in space as:

π(qi, t) :=
∂L

∂
⋅
ϕ(qi, t)

The field ϕ(qi, t) ≡ ϕ(x) now depends on x (a four-dimensional space–time
coordinate) and is considered as a local field which is required by the field quantization.
The corresponding Hamiltonian density H  is then defined in terms of the Lagrangian
density L  which gives the total Hamiltonian as:

such that:

π(t, qi) =
⋅
ϕ(t, qi) ≡ π(qμ)

where qμ are the four-dimensional generalized coordinates (qi, t) such that q becomes a
four-dimensional variable just like the four-dimensional x. Therefore, the total Hamiltonian
of a system can be written as:

H = ∫ d3qi[
⋅
ϕ

2
(qμ) −

1

2
(∂μϕ)(∂μϕ) +

1

2
m2ϕ2(qμ)]

H = ∫ d4qμ[
1

2
(□ϕ(qμ)2 +

1

2
m2ϕ2(qμ))]

H = ∫ d3qiH

= ∫ d3qi[π(t, qi)
⋅
ϕ(t, qi) −L ]

H = Σiqi
⋅qi − L
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The time independent form of this equation describes the corresponding dependence on
three-dimensional generalized coordinates ϕμ and πμ, which correspond to stationary states
and are self-adjoint with canonical commutation relations:

[ϕ(q1i),π(q2i)] = iδ(3)(q1i − q2i), [ϕ(q1i),ϕ(q2i)] = 0 = [π(q1i),π(q2i)]

Using Fourier transformation on the fields as:

ϕ(qi) = ∫ d3pi

(2π)3
ϕ̃(pi)e

ipiq
i

π(qi) = ∫ d3pi

(2π)3
π̃(pi)e

ipiq
i

where ϕ†(qi) = ϕ(−qi). To compute H in Fourier space, we use these expressions as:

1

2
∫ d3qi(∇ϕ(qi))2 =

1

2
∫ d3qi(∫

d3pi

(2π)3
∇eipiqiϕ̃(qi))

2

1

2
∫ d3qi(∇ϕ(qi))2 =

1

2
∫ d3qi(∫

d3pid
3qi

(2π)3
∇eipiqiϕ(qi))

2

The four-dimensional version of kinetic and potential energies gives the complete
Lagrangian in relativistic quantum mechanics in terms of four-dimensional generalized
coordinates qμ and their conjugate momenta pμ = ±ih̸ ∂

∂qμ ≡ ±iDμ. An interaction theory
is then written in the form of generalized coordinates as:

LQFT = ih̸cψγμDμψ − mc2ψψ − V (xμ)

where the simplest form of the four-dimensional generalization represented by 
qμ = (

→
x , ict) or its conjugate moment pμ = (

→
p , iE/c) starting with a scalar stationary

field ϕ(xμ) denoted and obeys the K–G equation which is derived from the Schrödinger
equation. Four-dimensional Lagrangian formalism is identified as canonical formalism as it
incorporates the canonical transformation and can lead to finding the conservation rules of
the theory using equation (8.11). For that purpose, let us switch from the Lagrange
formalism to canonical formalism of the classical theory, which can include all
transformations conserving the Hamiltonian. These canonical transformations keep the
action conserved as well. The canonical momentum conjugate to generalized coordinates 
(qi) is written as:

¯̄



pi(t) =
∂L

∂qi

which can be generalized to:

pμ =
∂L

∂qμ

where L  corresponds to the Lagrangian density because in four-dimensional formalism,
the particle fields ϕ(x),ψ(x) appear to be local fields, whereas the classical Hamilton 
H = Σipi(t) ⋅qi(t) − L into the Legendre transformation of the Lagrange function is:

H = Σipi(t) ⋅qi(t) −L

Kinetic energy is calculated in the same way from each interaction theory and is related to
the mass of interacting particles and their dynamics. However, the potential representing
each fundamental interaction depends on the intrinsic properties of particles and the range
and nature of the interaction and their strength and its behavior (as well as symmetries). We
will discuss QED formalism in detail to describe the local form of QFT in electrodynamics
at the quantum scale at relativistic energies.

Classical Lagrangian theory mainly deals with gravitational interactions and works on
the macroscopic scale at large distances which covers the scope of gravity. QFT, on the
other hand, addresses the problems at microscopic level or can be generalized to the
individual particle scale. This general formalism therefore addresses all the fundamental
interactions described using quantum theory, or more precisely in the most general form of
QFT. This QFT is developed in a general way to accommodate all interaction theories such
that even the local Lagrangian has to be written as:

L = L0 +LI

and the Hamiltonian as:

H = HI +HJ

at relativistic energies. L  and H  can accommodate all the information about the
corresponding interaction in terms of its potential. A canonical transformation theory gives
the information about the fundamental interactions and a general formalism is obtained to
be able to accommodate all fundamental interactions.

8.3.3 Quantum field theory
Hideki Yukawa initially developed a theory to describe nuclear interaction as an interaction
between fermions, taking place through the exchange of undetectable scalars. The
exchange of a virtual boson or a gauge boson is required to describe an interaction between
fermions, which has been generalized as a gauge theory and gauge bosons are represented
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as the generator of a group mathematically. We will concentrate on QED in this book
mainly as the most successful gauge theory due to its unique ability to be generally
applicable from individual particles to the cosmic scale.

Electromagnetic interactions are realized due to the exchange of virtual photons and are
represented by the vector fields Aμ. Photon fields are quantized as quanta of energy which
have all the characteristics of particles which have been found to be massless to maintain
the gauge invariance, which is a basic requirement of any physically acceptable gauge
theory. However, photons are treated as massless particles during the study of interaction
processes. A virtual exchange of the photon field in a way describes the electromagnetic
interaction. These mediators are responsible for every gauge interaction theory and
generate a complete set of the unitary operators of an interaction which has to be unitary
operators for conservative forces of a gauge theory. These unitary operators make a group
which is a complete set of unitary matrices which satisfy the criteria of a group. The
exchanging particles in interactions virtually were mathematically incorporated as vector
fields (e.g., Aμ) in the Lagrangian and are identified as propagators (of the mediators).

Group theoretic representation of interaction theories miraculously provided a complete
description of fundamental interactions as gauge theories with their symmetries and
conservation rules. Gauge invariance is a mechanism which identifies the symmetries of
the Lagrangian and the associated conservation laws of a theory. The gauge transformations
along with the invariance of the Lagrangian and the relevant conservation rules altogether
help us to understand the hidden features of every fundamental interaction. One of the
greatest outcomes of gauge theories is to develop models of unification of gauge theories.
Among them the electroweak theory as a unified gauge theory has been now tested and
work is ongoing to test the standard model. However, a direct experimental verification
seems to be out of the scope of existing technologies.

Electromagnetic current is associated with the flow of charged particles. The gauge
current is a generalization of the same concept, which is not necessarily related to charged
particles only. Gauge current density in defined as the difference between the net flow of
particles between the incoming and outgoing states. The total current J μ is defined in terms
of the probability of flow of a particle jμ and is related as J μ ≡ Njμ by a comparison
between the probability of inflow and outflow of charged particles and is determined as:

jμ ≡ Njμ = ιeN(ϕ*∂μϕ − ϕ∂μϕ*)

The total current can then be obtained by the integration of the current density and the
rate of flow of each particle is multiplied by the total number of scalar particles. Scalar
particles have no restrictions on the number of particles occupied by the same state. Net
current is the probability of flow of current in a particular direction multiplied by the total
number of particles in the same state. However, this definition cannot be applied to the
charged fermions where each particle has to occupy a different state. The current produced
by fermion fields is then written as:

J μ = ιe(ψγμψ − ψγμψ )̄̄
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The rate of flow of a stream of electromagnetically-interacting charged particles (or
current) and the interaction of current with charges is also discussed in
electrodynamics within the classical range of energies. Classical electrodynamics deals
with electric and magnetic fields as the continuous classical fields that are associated with
moving charges and satisfy the wave equation. The combined form of antisymmetric
classical electromagnetic fields is given as Fμν . This classical field matrix is directly
borrowed in QED and is perfectly relating the classical and QED making QED the most
successful and observable fundamental interaction. Classical electrodynamics works
perfectly at the macroscopic level with the flow of current through the medium. Study of
the mediating field corresponds to a fundamental interaction. Exchange of a field between
two interacting particles is then represented by a propagator which can be considered as a
mathematical description of fundamental interactions. We can use a general term of
Feynman propagator to understand the nature of interaction in terms of the associated
fields. Obviously, we can find all the conservation rules for an interaction theory using the
gauge invariance of the Lagrangian of the theory.

8.3.4 Feynman propagator
Interaction between two particles is mathematically interpreted as a response of a particle
due to the potential of the interacting particle that is named as the propagator representing
the transfer of mediator from one particle to another particle. In normal space–time
coordinates, a Feynman propagator DF (x − y), describes the propagation of a scalar
particle from point y to point x as a two-point function of the quantum fields which
describes an incoming state and an outgoing state relative to the observation point and is
mathematically represented as a retarded Green’s function mathematically. By definition,
the retarded Green’s function is distinguished from the advanced Green’s function by a
comparison due to different time ordering. The advanced Green’s function basically gives
the information of the interaction which the incoming state had come across before
detection, whereas the retarded one will tell us about what interaction potential is expected
to be experienced. The propagator theory is associated by virtual exchange of a scalar or
vector boson or a fermion and is represented by Green’s function mathematically. A scalar
boson propagator is then given as:

DF (x − y) = ⟨0 ∣ T(ϕ̂(x)ϕ̂(y)) ∣ 0⟩,

where T is the time-ordering operator that orders the fields according to their time
arguments to keep it a retarded Green’s function and gives assurance that the Green’s
function truly indicates the response to (or effect of) a potential. The advanced Green’s
function is the one which is not relevant. The T operator therefore is defined to
automatically arrange the fields to see the response and ignore the irrelevant part such that:
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T(ϕ̂(x)ϕ̂(y)) = {

In the standard notation of QFT, ∣ 0⟩ represents the vacuum state (with no particle in
it) and ϕ̂(x) is the quantized scalar field operator. The propagator DF (x − y) gives the
probability amplitude for a scalar particle to propagate from point yμ = (ty, y) to point 
xμ = (tx, x). This concept of virtual exchange of a particle can be expressed in terms of
raising and lowering operators as a scalar field (particle) leaves its original state and moves
to another state. It indicates that the scalar field changes when an incoming state is added or
an outgoing state is stopped by increasing the number of particles in the initial states. An
increase in the number of particles by one in the initial states with the field operator ϕ̂(x) in
terms of the corresponding creation and annihilation operators can be written as:

ϕ̂(x, t) = ∫ d3p

(2π)3/2

1

√2ωp̄

(a(p̄)eip̄⋅x−iωp̄t + a†(p̄)e−ip̄⋅x+iωp̄t),

The time-ordered product of two field operators in a vacuum is known as the vacuum
expectation value (VEV) of the field and is defined as:

⟨0 ∣ T(ϕ̂(x)ϕ̂(y)) ∣ 0⟩ = ∫ d4p

(2π)4

i

p2 − m2 + iε
e−ip⋅(x−y).

This is the Feynman propagator in momentum space. DF (x − y) is the space–time
representation of a scalar particle propagator, whereas its VEVs can be considered in a
momentum representation of the same propagator as VEV is mathematically a field theory
of DF (x − y) in momentum space.

Considering ty > tx, we have:

⟨0 ∣ ϕ̂(y)ϕ̂(x) ∣ 0⟩ = ∫ d3p

(2π)3

1

2ωp̄
eip̄⋅(x−ȳ)−iωp̄(ty−tx).

whereas, for tx > ty, it gives:

⟨0 ∣ ϕ̂(x)ϕ̂(y) ∣ 0⟩ = ∫ d3p

(2π)3

1

2ωp̄

eip̄⋅(x−ȳ)−iωp̄(tx−ty).

Then the general form of the time-ordered propagator in coordinate space as a Fourier
transform is written as:

DF (x − y) = ∫ d3p

(2π)3

1

2ωp̄
(eip̄⋅(x−ȳ)−iωp̄ ∣tx−ty∣).

ϕ̂(x)ϕ̂(y) if tx > ty,

ϕ̂(y)ϕ̂(x) if ty > tx.

¯¯̄

¯

¯

¯
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A four-dimensional generalization of the three-dimensional propagator relates the
propagator in four-dimensional space–time coordinates with the energy–momentum
propagator, expressed as:

DF (x − y) = ∫ d4p

(2π)4

i

p2 − m2 + iε
e−ip⋅(x−y).

The direction of momentum along with the positive or negative values of energy in
four-momentum representation is maintained by time ordering of four-momentum. The
standard Feynman propagator in position coordinates is then represented by equation
(8.26). The ιε term in the denominator ensures the correct boundary conditions for the
causal propagation of particles, avoiding divergences by pushing the poles in the
propagator slightly off the real axis. This Feynman propagator can be considered as a
standard form of a retarded Green’s function between incoming and outgoing states. 
DF (x − y) represents the amplitude for a particle to travel from space–time point 
yμ = (ty, ȳ) to xμ = (tx,x).

The Feynman propagator DF (x − y) as a Green’s function for the K–G equation for a
free scalar field ϕ(x) with mass m can also be expressed as:

DF (x − y) = ∫ d4p

(2π)4

i

p2 − m2 + iε
e−ip⋅(x−y).

which provides an integral representation of Green’s function as a solution of the K–G
equation for a source potential given in terms of a Dirac delta function such that the
following operation is satisfied as:

(□ + m2)DF (x − y) = −δ(4)(x − y).

However, the QFT works better in momentum–energy coordinates. A natural
coordinate system with real spatial coordinates and imaginary time is identified as
Euclidean space in imaginary-time formalism, especially in quantum statistical field
theories. In contrast, another more efficient coordinate system proposed by Minkowski is
called Minkowski space or real-time formalism which can be obtained by simple rotation
of space–time coordinates in four-dimensional space (Wick’s rotation) and obtains time as a
real coordinate and spacial coordinates as imaginary coordinates. Minkowski space is more
natural and useful in QFT as for the experimental observation of particle processes, energy
becomes an easily measurable parameter as compared to three-momentum and provides
more effective tools in the four-dimensional formalism in momentum space. A Fourier
transform is used to convert imaginary time into real-time formalism and provides a very
effective tool in various applied fields including signal processing and other calculations in
electrical engineering. All the four-momentum results can be converted into real-time
results through the inverse Fourier transform at any time.

¯



QFT provides a framework to calculate the individual particle processes including
decay rates and scattering crossections of all particles. However, for this purpose, we need
to extend the formalism to develop a few more rules for all calculations to study the particle
processes in QFT. Since we deal with conservative forces, all of the processes are therefore
elastic processes and obey the energy–momentum conservation rules. However, at
relativistic energies, conservation of three-momentum and total energy cannot be
individually applied in QFT. Here we need to incorporate the relativistic energy equation 
E 2 = p2 + m2 which is equivalent to a four-momentum expression pμpμ = m in natural
units. This relativistic relation then allows us to merge the energy–momentum conservation
into four-momentum conservation and allows the conversion of energy into mass and vice
versa.

The four-momentum conservation rules play a crucial role in developing techniques to
estimate the decay rates of particles and scattering cross-sections. Probability of finding
fundamental particles in various initial and final quantum states is incorporated with the
classical approach for the calculation of decay rates and scattering cross-sections. And the
language of probability is employed in the expressions of decay rates and scattering cross-
sections as the fundamental particles due to various intrinsic properties can undergo decays
and scatterings in various modes obeying various conservation rules. The integration of
probability of statistical physics and quantum mechanics with QFT along with relativistic
high energy particle physics introduces a notion of probability in particle processes. The
probability of a particular process (channel) compared to the probability of other particles
is called a branching ratio of the corresponding decay rate or the scattering cross-section.
Summation over all the final states provides the lifetime of a particle under consideration.
Similarly, the integration over the solid angle after taking the summation over all the
incoming states and the average over the final states gives the total scattering cross-section.

Mass–energy conversion is allowed in relativity and lets heavier particles decay into
two or more particles with lower mass. However, at high energies, matter and energy can
be used interchangeably. This is the only reason that heavier particles can be produced from
light ones as long as all the other required conservation rules are obeyed. The scattering and
decay processes are not necessarily elastic processes as the initial and final states involved
in a process are not always the same. Various factors contribute to the probability of these
processes, and we can look at it more carefully. For this purpose, we define a
transformation matrix (called S-matrix) which describes the multiparticle processes also
and is not required to be a unitary matrix. The S-matrix gives the account of incoming and
outgoing states which is a kind of generalization of the wavefunction. The decay mode or
scattering channel given in terms of S-matrix describes a process such that the modulus
square of the S-matrix gives the probability of that process under given conditions. In
general, it needs to be integrated to calculate the probability of the given process.

8.3.5 S-matrix
Starting with the regular Hamiltonian H, the full Hamiltonian includes the interaction
Hamiltonian as:
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H = H0 + H int .

The scattering matrix, or S-matrix, connects the incoming and outgoing states of a
process by providing a mathematical tool to describe the transition of an initial state into a
final state under the effect of the relevant interaction. An S-matrix is an operator that
transforms the incoming states ∣ ψ⟩ into an outgoing state ⟨ψ ∣ such that the S-matrix gives
the probability of transition as:

∣ ⟨ψ ∣ S ∣ ψ⟩ ∣2.

It is formally defined as:

S = lim
t→∞

eiH0te−iHte−iH0t,

In practice, the elements of the S-matrix give the transition amplitudes between the
initial and final states in a scattering process. For example, the probability amplitude for
transitioning from an initial state ∣ α⟩ to a final state ∣ β⟩ is given by the S-matrix element,
defined as:

⟨β ∣ S ∣ α⟩ = ⟨β, out ∣ α, in⟩.

 
The transition between an incoming and an outgoing state could take place in a single

step or it may involve several small steps (discrete or continuous). The S-matrix can
therefore be expanded in a series called the Dyson series. The perturbation theory demands
these steps to be small enough to be represented as a convergent series. If we denote the
interaction Hamiltonian in the interaction picture as H int (t), the Dyson series for S-matrix
is written as:

S = T exp(−i∫
∞

−∞

dt H int (t)),

where T  represents the time-ordering operator. A perturbative expansion of this
expression yields:

S = 1 − i∫
∞

−∞

dt H int (t) −
1

2
∫

∞

−∞

dt∫
∞

−∞

dt′ T (H int (t)H int (t′)) + ⋯ .

The Feynman amplitude M  for the transition from initial state ∣ i⟩ to final state ∣ f⟩ is
defined as:

Sfi = δfi + (2π)4
δ4(∑ p′

f −∑ pi)∏i
( 1

2πEi
)

1/2

( 1

2πEf ′
)

1/2

∏
i
(2mi)

1/2M
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The In and Out states provide a rigorous way to calculate scattering amplitudes in
interacting QFTs. By assuming free-particle behavior at t → ±∞, we can relate
interacting theory calculations to observable quantities. Specifically, the elements of the S-
matrix give the probabilities of transition between various particle states, allowing us to
calculate cross-sections and decay rates:

∑
f

∣ Sfi ∣2= 1

S = ∑∞

n=0
(−1)n ∫

∞

−∞

dt1 ∫
t1

−∞

dt2 ⋯∫
t(n−1)

−∞

dtnH1(t1)H1(t2) ⋯H1(tn)

S = ∑∞

n=0

(−1)n

n!
∫

∞

−∞

dt1 ∫
∞

−∞

⋯∫
∞

−∞

dtnT [H1(t1)H1(t2) ⋯H1(tn)]

8.4 Calculation of decay rates and cross-sections
The time-ordered product gives the assurance that we use propagators as retarded Green’s
functions and they contribute to the particle processes. However, there is more than one
possibility of occurrence of physical processes and various modes. One particle may decay
into a group of various modes which are observed through different channels, depending on
the project and the available equipment. The identification of decay rates may be due to the
initial state or the final product. Similarly, scatterings may be categorized by the mediators
corresponding to the initial and final states and the relevant conservation rules.

8.4.1 Decays
All the individual particle decay rates incorporate quantum mechanics at any level.
However, a real detailed study is not possible without using QFT. Radioactive decay is the
simplest example of decays which are detected at macroscopic scale but they cannot be
fully understood without incorporating quantum mechanics at the individual particle level
and further details can only be investigated using QFT at high energies. However,
radioactive decays are identified from their products or the final states and we can generally
express the nuclear decays and they are written in terms of general nuclei X and Y for the
atomic number as Z (number of protons) or the atomic weight A corresponding to the sum
of protons and neutrons. Some of the examples of well-known decay rates are:

(i) Alpha decay
Processes such as:

XA
Z → He4

2 + Y A−4
Z−2 .

These processes are identified as alpha decay, where a helium nucleus with two protons and
two neutrons (He4

2) is called an alpha particle.
(ii) Beta decay



Processes such as:

n → e + p + ν̄ e

are an underlying process which is expressed as a generalized nuclear process which causes
the production of an electron.

XA
Z → −1e

0 + Y A
z+1

 
(iii) Gamma decay
Photons are also called gamma particles and a general form of gamma decay can be

written as:

XA
Z → Y A

Z + γ

 
(iv) Positron decay
These decay processes are not very common but they produce a positron instead of

electron. This process can be considered as a different channel of the same process and is
given as:

XA
Z → +1e

0 + Y A
z−1

 
(v) Electron capture
Another channel of the same beta process can be identified as electron capture:

XA
Z + −1e

0 → Y A
z+1

where the electron capture can be considered as a scattering process. In general, all particle
processes including both the decays and scattering due to a particular interaction can be
written as:

⟨ f ∣ Ŝ ∣ i⟩

which shows the incoming initial state ∣ i⟩ changes into the outgoing final state < ⟨ f ∣ in
the presence of the interaction represented by S-matrix (Ŝ) as an operator. This operator
matrix Ŝ describes the interaction of incoming and outgoing states.

When there is a possibility of several incoming states and several outgoing states, then 
⟨ f ∣ Ŝ ∣ i⟩ represents a matrix element for a particular process. Every process is written in
terms of a matrix M . Before we write the matrix element for a given process, we need to
first understand if we can visualize how these processes take place. Generally, in scattering
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theory and in particular in quantum mechanics, the Born approximation takes the incident
field in place of the total field as the driving field at each point in the scatterer. The Born
approximation is named after Max Born who proposed this approximation in the early days
of quantum theory development. It is the perturbation method applied to scattering by an
extended body. It is accurate if the scattered field is small compared to the incident field on
the scatterer. For example, the scattering of radio waves by a light styrofoam column can be
approximated by assuming that each part of the plastic is polarized by the same electric
field that would be present at that point without the column, and then calculating the
scattering as a radiation integral over that polarization distribution.

It is also worth mentioning, processes that span from high energy to low energy can
decay into smaller masses (from larger ones) within inelastic processes. In high-energy
relativistic physics, due to the interconversion of mass and energy, high-mass particles can
be produced from lower mass, increasing the number of possibilities to a large value. In this
case, a complete study of decay rates may involve more than one interaction unless we
separate them energetically. QED processes can take place on almost all energies, whereas
for weak and strong interaction we need a much smaller scale of study and high enough
energies for the relevant interactions.

8.4.2 Decay rates
The matrix element for a decay rate can be written as:

M = u(p)ieγμu(p)

dΓ

dθ
= ∫ dθ∣ M ∣2

 
θ is the scattering angle and the above equation reads that the scattering probability

between the angle θ and θ + dθ for the given decay mode is represented by the matrix M .
Integration over the angle θ will give the total decay probability for the given mode.

The lifetime of a particle can only be obtained if we can take a sum of all possible
decay processes. In the calculation of the decay rate we might be interested to know the
probability of a particular mode as compared to the lifetime of the particle.

8.4.3 Scattering cross-sections
The scattering from a point source is a quantum mechanical phenomenon which can only
occur at quantum scale. However, it is a much more complicated phenomenon where we
need to incorporate the possibility of various decay modes including the variation in target
particles and discussing different modes of scattering or different channels among the same
particles. The matrix element or an S-matrix for a scattering process can be written
incorporating multiple initial states and summing over all possible final states. We also
needed to incorporate all channels of scattering processes.

¯
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M = u(p1)ieγμu(p2)Dμν(k)u(p′
1)ieγνu(p′

2)

For the solid angle Ω:

dσ

dΩ
= ∑

i
∫ dk∣ M ∣2

Averaging over the initial state and summing over the final states is also required. An
integration over the solid angle dΩ gives the total scattering cross-section. Scattering
amplitude is then obtained by summation over all the initial states and averaging over final
states. Some of the examples of QED elastic scattering are very well-known and their
calculations provide a good exercise to understand the calculation method. These examples
are Rutherford scattering (e−p+ → e−p+), Compton scattering (e−γ → e−γ), Bhabha
scattering (e−e+ → e−e+), Mott scattering (e−e− → e−e+), etc. An interested reader can
calculate them for practice as most of them are part of every introductory particle physics
book.

8.4.4 Radiative corrections
At sufficiently high energies, all the particles have the ability to create and reabsorb a
virtual particle which may not be detectable at all. These virtual loops are indicated as
radiative corrections and could include both fermion loops and boson loops. A study of
these virtual loops is made in the perturbation theory of gauge theory. Another requirement
of a physically acceptable gauge theory is that it can be renormalized by taking a sum of all
the perturbation diagrams of the same number of loops. Renormalization of gauge theories
requires the cancellation of singularities contributed by all the loops. As of now, QED is the
only perfectly renormalizable gauge theory as it has been tested that it is renormalizable
even if we add a large number of loops. The reason of getting a successful perturbative
series is that its coupling constant α ∼ 1

137
 and the perturbative expansion in the order of

perturbation as α = e2

4π
 is a coupling constant which gives a convergent perturbative series.

8.5 A common language of field theory
The calculations of particle processes become very complicated as they may involve
several particles and these processes can go through various channels. It makes keeping
account of all the information a little too complicated. Feynman in 1948 proposed a very
convenient way to create a pictorial representation of particle processes in two-dimensional
space, known as Feynman diagrams. Not only that, but he could also develop a general
method to represent every portion of the diagram in a standard way to conveniently write
the matrix element for a Feynman diagram which basically describes a particle process. His
method became so popular that it is now adopted as a standard technique by all high energy
physicists as a common language. It may be drawn in two ways. We can use time as a real
component and space on the imaginary axis as (→x , t) or taking time real and space

¯̄



imaginary (t, →x ). The imaginary-time presentation is called Euclidean space and the real-
time space generated by Wick’s rotation is called Minkowski space.

The QFT provides a framework to calculate the decay rates and evaluate the scattering
amplitudes from Green’s functions by computing of incoming and outgoing states and
focusing on the possible interaction dynamics of the QFT. However, calculating the Green’s
functions for interacting fields can be complex. To simplify this, we use Feynman
diagrams, which offer a visual and calculational method for evaluating these Green’s
functions, organized according to the structure of the Lagrangian of the theory.

8.5.1 Feynman diagrams
Feynman diagrams represent the dynamics of interacting particles. Each diagram
incorporates all the incoming and outgoing states along with the mediators or the
corresponding interaction. To construct Feynman diagrams, we need the Feynman rules,
which are derived from the interaction Lagrangian. For an interacting scalar field theory
with a typical interaction term L int = − 1

4 F
μνFμν .

A standard method to draw Feynman diagrams in four-dimensional space–time
coordinates was drawn in which an incoming state to the point of interaction is drawn from
left to right and an outgoing state coming out of the same point of interaction. At the point
of interaction, incoming state changes into the outgoing state with the emission or
absorption of a mediator. The point of intersection of a mediator with the incoming and
outgoing state is called the vertex. An incoming spinor for a particle is represented as u(p1)

and outgoing fermion state as u(p2), whereas an incoming antiparticle is represented as 
v(p′1) and an outgoing fermion state as v̄(p′2). An incoming photon (a vector boson) is
associated with the vector field Aμ such that the mediator heads to another vertex on the
other end. Since the mediator emits and is absorbed and skips detection we call it a virtual
particle.

Basic conservation rules of four-momentum coordinates are obeyed by these particles
and a mediator can only communicate between two vertices if those conservation rules are
protected. A vertex is represented by the interaction at the vertex and keeps the relevant
information. The QED vertex is indicated as ieγμ, whereas, for a complete process, the
second vertex can then be indicated by ieγ ν . The matrix element for this process is
indicated by applying the conservation rules including a matrix gμν  such that the 
g
μ
νγμγ

ν = γ 2 = 4.

This transformation matrix can be represented as gμν  has two different representations.
The Euclidean matrix, with imaginary time, can be then be written in the form:

gμν =

¯

⎡⎢⎣− 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎦
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whereas the same matrix in Minkowski space with real-time and imaginary spacial
coordinates attains the form as:

gμν =

whereas the virtual boson propagator in momentum space is written as:

Dμ
ν =

g
μ
ν

k2 − M 2

where k is the momentum transfer at the vertex defined as 
→
k =

→
p −

→
p ′ and M is the

rest mass of the boson, which is zero for a photon. However, the fermion propagator for the
fermion momentum p is written as:

SF (p) =
p̸ − m

p2 − m2

where p is the e-momentum of a fermion and m its mass.

8.5.2 Feynman rules for Feynman diagrams
The K–G equation and the Dirac equation give the relativistic equation of motion of a
single particle. While discussing the particle processes, the individual equation of every
particle is incorporated to determine the probability of a particular process. Feynman came
up with a graphical representation of particle processes to develop a very convenient
approach to determine the probability of occurrence of various processes using a Feynman
diagram. This approach provided an excellent and manageable way to determine the
probability of these processes using Feynman diagrams. We just present here the Feynman
diagrams and Feynman rules to demonstrate how to use the Feynman rules to evaluate the
Feynman diagrams.

These Feynman diagrams provided a convenient way to write the S-matrix which is an
initial step to calculate the decay rates and scattering processes. Before getting into further
detail, we write a general approach to drawing Feynman diagrams. A general diagram is
represented by initial and final states as external lines and the exchanging particles as
internal lines such that:

1. Propagators: Represent the probability amplitude for a particle to propagate from
one point to another. Each internal line in the Feynman diagram corresponds to a
propagator. The mathematical form of the propagator depends on the type of particle and
the field it represents. For a scalar field of mass m, the propagator in momentum space is
given by:

⎡⎢⎣1 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 − 1

⎤⎥⎦



i

p2 − m2 + iε
,

whereas the vector boson propagator is given as:

gμν

k2 − m2 + iε
.

 
2. Vertices: They are the points that represent where three particles gather at the same

points where actual field interactions occur. Each vertex in the Feynman diagram
corresponds to a factor derived from the interaction terms in the Lagrangian. For an
interaction term of the form −λϕn, where λ is the coupling constant, each vertex
contributes a factor of −iλ and connects n lines.

3. External legs: Representing the incoming and outgoing particles, which correspond
to the asymptotic states in the S-matrix element. Each external line contributes a
wavefunction, e+ip⋅x for an incoming particle and e−ip⋅x for an outgoing particle, where p is
the particle’s momentum and x is the position. For calculations involving scattering
amplitudes, the external particles are often placed on-shell, meaning their momenta satisfy
the requirement of real particles p2 = m2.

To calculate a scattering amplitude M  for a given process, follow these steps:
1. Identify all possible diagrams: Draw all distinct Feynman diagrams with the

specified number of external particles and interaction vertices for the given order in
perturbation theory.

2. Assign momenta to each line: Assign momenta p to each external line and assign
momenta to internal lines, ensuring conservation of momentum at each vertex.

3. Apply Feynman rules: For each element in the diagram, apply the Feynman rules:
Assign a propagator factor to each internal line.
Assign a vertex factor to each interaction vertex.
Include a wavefunction for each external line, if applicable.

4. Integrate over internal momenta: For each independent loop in the diagram,
integrate over the loop momentum with a phase factor ∫ d4q

(2π)4
.

5. Combine and simplify: A matrix element M  is comprised of all factors from
propagators, vertices, and external lines.

Symmetry factors: If there are identical particles or symmetries in the diagram,
divide by a symmetry factor S to account for over-counting equivalent configurations.
Coupling constants and interaction strengths: The coupling constants in the
Lagrangian, such as λ in a ϕ4 theory, appear as multiplicative factors in the final
amplitude, representing interaction strengths.

For a typical field theory:



Each internal line contributes a propagator.
Each vertex contributes a factor based on the interaction term.
Each external line is associated with an initial or final state wavefunction.
Integrate over each independent loop momentum.

Thus, the Feynman rules provide a structured method to compute scattering amplitudes,
reducing the complex dynamics of quantum fields into manageable mathematical terms

8.5.3 Perturbation in gauge theories
Feynman diagrams and Feynman rules provide a mechanism to calculate the perturbative
series in gauge theories. The perturbation theory of QED (see figure 8.1), for example,
redefines the basic parameters of the theory as the electron mass gets perturbative
representation as:

mR = m + δm = m(1 + a1α + a2α
2 + a3α

3 + ⋯ ) = ∑
i=0

m(aiα
i)

eR = e + δe = e(1 + a1α + a2α
2 + a3α

3 + ⋯ ) = ∑
i=0

e(aiα
i)

whereas mR and eR correspond to the renormalized mass and charge of electron. The
electron wavefunction is also renormalized using the self-mass corrections δm. The
calculation of perturbative contribution becomes possible using Feynman rules and
Feynman diagrams only. Now the renormalization techniques are developed for every
fundamental interaction theory. Electroweak renormalization and the renormalization of
QCD can be proved using special techniques such as the effective potential of perturbative
expansion. A brief summary of Feynman rules of QED is included in the appendix for
convenience. These Feynman rules can help us write a Feynman diagram for decay or
scattering processes in QED. These Feynman rules provide a mechanism to calculate the
perturbative calculations and prove the renormalizability of gauge theories.



Figure 8.1. First order perturbative diagrams of QED.
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Chapter 9

Applications of quantum electrodynamics

9.1 Introduction
Quantum electrodynamics (QED) is the only known interaction theory which is equally applicable from
quantum mechanical scale to cosmic scale. It studies individual particle behavior and integrates it into
the large-scale description of classical electrodynamics using proper approximations. It is therefore
possible to consolidate the three-dimensional classical electrodynamics and four-dimensional QED to
cover the entire range of coordinate space. QED is therefore considered to be the most successful
fundamental interaction theory which establishes a correlation between principles of QED and classical
electrodynamics (just like the correlation between classical physics and quantum mechanics or the
correspondence between relativity and non-relativistic classical physics). QED can therefore be
considered to be a single working theory of interaction between charges all the way from the
independent individual particle level to the macroscopic world. Its classical forms provide a working
framework for the same system at different energies. Electromagnetism works perfectly at the lowest
energies and classical electrodynamics provides all the needed information about the dynamics of
charges in the macroscopic world, whereas QED is needed to integrate the individual particle behavior
into the many-body system.

QED is developed for electromagnetic interactions using relativistic quantum mechanics and the
calculational techniques of quantum field theory (QFT) at the individual particle level. A detailed
investigation of the properties of materials is performed by integrating the behavior of individual
particles using the relevant physical conditions. These techniques provide resources to reveal the hidden
secrets of matter in given conditions. They provide very effective tools to study the material properties in
different phases. Additionally, this leads to significant improvement in technology and opens new
directions of technical usage of material to develop it significantly. The application of materials research
opens new venues of innovative research to reveal the hidden secrets of life and understand the universe.
Its possible impact in space technology and biomedical physics cannot be ignored either. It increases the
scope of technology and leads to new directions of research and development in various disciplines in
science.

Material properties play a fundamental role in the development of technology. These materials can
be identified by their physical, chemical or electromagnetic properties. Most of the material properties at
the macroscopic level are experimentally measured and then used in the development of technology.
Engineering development significantly depends on the choice of proper materials while scientists
continue to explore the properties by digging deeper and deeper into materials using theoretical and
experimental resources even at the subatomic and nuclear level. The mathematical tools become much
more efficient in quantum mechanics where atomic and molecular behavior can be related to atomic
structure and chemical processes can be understood in terms of movement of electrons incorporating
their spin in the framework of quantum mechanics.

However, for the rapidly-moving electrons and nuclear matter at higher energies, relativistic effects
are not negligible anymore and we have to incorporate QFT to study the correct dynamics of matter.
Mathematical tools of QFT in a four-dimensional relativistic space are much more efficient and have the
ability to dig deeper and deeper into material formation and study the structural impact. For this purpose,
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we can apply QED in its many-body formalism to incorporate the interaction among the particles at high
energies. This appears as a modification to QED in many-body systems incorporating the interaction of
the propagating particles through the interacting medium.

The wave–particle duality of individual particle waves and the spin statistics of quantum mechanics
are now used extensively to determine the physical, thermal and electromagnetic properties of materials.
So quantum mechanics is now incorporated and its utility has been established very well. However,
QED was never considered to be important until its relevance for technology was established. However,
it is now understood that the many-body theories need to use the raising and lowering operators and the
second quantization helps to develop an oscillator model for a many-body system. These raising and
lowering operators for bosons are defined as the operators associated with the increase or decrease in
energy corresponding to the energy level of the system. These raising and lowering operators correspond
to transitions between spin states for fermions.

Investigation of material properties in reference to astrophysics and cosmology is extensively studied
using QED or even other high-energy theories of QCD and the standard model which are clearly out of
scope of this book. This approach is relatively new and still in the developmental stage. However, the
importance of development of technology for space exploration cannot be ignored at all. Most of the
existing technology is now based on the quantum mechanical description of a material which provides
methods to understand the electromagnetic properties of materials including spin and the interaction of
spin with its surroundings. However, for the moment, we bypass this discussion and first investigate the
relevance of QED with materials and dig deeper into material properties.

9.2 QED and materials
Classical electrodynamics gives a classical description of the behavior of electromagnetic interaction of
charges, individually or collectively. Classical description of charge is related to the overall charge on an
object (individual particle or a group of particles) as long as the collective net charge inside a large
charged object is exhibiting a non-relativistic motion and contained inside without crossing the
boundaries of a system which is unable to interact independently. The simplest form of a QED
Lagrangian is then given as:

LQED = ιψ(γμ∂μ − m)ψ −
1

4
FμνF

μν

QED is now accepted as a fully established gauge theory of charged particles from the individual particle
scale to the macroscopic level. It is therefore possible to integrate individual particle behavior distributed
at various energy levels to give a detailed description of electromagnetically interacting systems. The
collective behavior of materials is determined from the individual particle behavior to discover some of
the relatively unexpected features of materials. In this way, it helps to unfold some hidden properties of
materials contributing to the development of technology in a more efficient way. We cannot provide a
comprehensive list of all the possible applications of QED in technology, astrophysics and cosmology or
summarize the usage of materials for energy storage, environment protection and proper usage of
materials to develop medical science to protect human life. We only include a qualitative summary of
possible applications. It is very hard to cover each and every possibility because materials science is a
multi-disciplinary field of study in itself with numerous applications in technology. However, its various
features are being explored in physics, chemistry and engineering directly. The possible applications to
food science, space technology, medical science, biotechnology, and in almost all disciplines of
engineering is being explored regularly.

QED uses a framework of second quantization which has the ability to accommodate the many-body
form of electrodynamics without losing the properties of individual particles. For this purpose, the
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many-body Hamiltonian in quantum mechanics is described as an oscillator with the lowest energy:

H = H0 +
n

∑
n=0

(n +
1

2
)h̸ω

where n = 0 corresponds to the ground state energy of the system which helps to investigate the detailed
structure and behavior of matter at the individual particle level. Larger energy sources are required to
look deeper into matter at the subatomic level. A detailed study of the material requires the interaction of
matter with radiation and QED provides the most efficient theory to describe the interaction of radiation
with matter. A lot of current development of technology has led to sophisticated technologies such as the
storage of energy, quantum computing or development of low-cost lasers. Various models are also
developed to investigate the details of various properties of materials. It is very hard to put a complete
list of all many-body QED models. A different Hamiltonian or various potentials are used to
theoretically describe various properties of systems which cannot be ignored at any level. We just
present one model as an example to give an idea that QED provides a framework for the study of
materials. It provides resources for ab initio calculation of the properties of materials. This detailed
information will potentially help to design more effective structures as well. We are considering here the
term ’material’ for the hard materials or crystals for now. Soft materials or other condensed matter
phases will be discussed later.

9.2.1 Materials and technology
Hard matter is made up of atoms which have electrons revolving around nuclei. These atoms are
contributing to the formation of materials including nano-structures, solid rocks or powders. Massive
objects made up of nanoparticles, crystalline structures or a composite material with very heavy mass
may be sitting at rest in the lab frame or anywhere else at macroscopic level. However, they are made up
of atoms and molecules that have at least mechanical vibrations and these vibrations which may not be
necessarily negligible and may change their physical properties. However, we extend the study of
materials to condensed matter physics to include interacting fluids or generally many-body systems
which are somehow confined in a given volume. Fluid is a form of condensed matter with significant
relative motion among the constituent particles with respect to one another and stays confined in a fixed
volume due to mutual interaction among its constituents. In liquids or well-known fluids or plasmas
equations of motion and the mutual interaction is limited to gravity. We generalize these fluid systems to
small scales and extremely high energies. Electrons inside atoms are moving fast and may acquire higher
energies at higher temperatures and be treated relativistically to find significant corrections. We can
extend fluid mechanics for interacting fluids to quantum statistical field theories where the dominant
interaction is QED which takes over gravity.

While talking about materials or crystals even at lower energies, we have to consider the vibrational
motion of particles. This motion is slow but still it produces some energy. The quanta of this energy are
identified as phonons, which have properties like photons. Basically, we find electrons and phonons in
solid materials. Phonons can be considered as discrete units of energy associated with the vibrational
mechanical energy. They are emitted and absorbed internally. For a thin metal sheet, excessive energy of
electrons can be created in the form of plasmons which is related to plasma oscillation of electrons
where we consider electron–phonon plasma. Surface plasma resonance (SPR) provides suitable
techniques, which pushes the limits for detection of sensitive interaction of biomolecules and leads to
development of low-cost and high-flexibility materials for biosensors. All these material descriptions
involve quantum mechanics and the concept of second quantization for high energies.

Condensed matter physics at non-relativistic temperatures is dealt with using statistical mechanics
and thermodynamics incorporating gravity, as long as the solids and fluid particles stay in non-



relativistic motion among themselves. Study of the phase transition which uses the Ising model to
understand the formation of crystals using the two-dimensional lattice type of structures created by the
interaction of spin to create bulk materials. The Ising model is a two-dimensional model which is
generalized to the three-dimensional Potts model, which is a generalized form of Ising model which
incorporates gravity. The role of second quantization cannot be ignored for that purpose either. This
four-states Potts model is sometimes called the Ashkin–Teller model, which was considered to be
equivalent to the Potts model as well. In addition to the conventional models which are used to study the
phase transition, there are other generalized models such as the Heisenberg model and the flux tube
model which helped to describe confinement in QCD as well. In addition, QCD uses lattice gauge
theories. This is how condensed matter physics can sometimes provide a framework for strongly-
interacting particles, and a connection between high-energy physics, materials science and technology is
established. Various approaches are used to apply to every physical system.

A detailed study of materials at high energies needs QED and many-body high-energy systems need
to use the concepts of condensed matter physics. These theoretical models are then incorporated into
computer simulations to understand the properties of matter for fixed structures in condensed matter.
These models use non-relativistic quantum mechanics to incorporate spin in material study, especially
for hard matter. These models are used in force fields in simulation programs based on density functional
theories in various environments. These model-dependent force fields could incorporate many different
types of interaction terms or include specific model-dependent terms using the Ising model or the Potts
model. However, at higher energies or higher temperatures, relativistic effects have to be incorporated.

Some of the examples of QED models in materials science include the density functional theory
extensively used to calculate the electronic structure of materials using the Hamiltonian incorporating
second quantization in the force fields. It helps to develop computer programs for materials study
including some of the combinations of very well-known programs such as Nanoscale Molecular
Dynamics (NAMD), Gaussian, QuantumATK, Amber and various other programs used in physical
chemistry or materials science to study particular features of polymers, nanomaterials and proteins or
other biomolecular structures and the processes involved in molecular dynamics. The study of quantum
materials extensively uses QED to understand the behavior of exotic materials such as topological
insulators, superconductors and superfluids. The most important part of application of QED comes
through the understanding of radiation with matter. This quantum mechanical model has to be extended
to QED to understand the charge particle behavior incorporating spin effect as well as the relativistic
energy of electrons. This interaction provides information to study quantum optics and lasers.

The perturbation theory and some of the structural details at high energies involve QED to combine
classical and quantum physics and QED is used for this purpose as well. The most important application
of QED is found in studying the interaction of radiation with matter which is the basis for the
development of materials for very important applications including laser industry and energy production
and storage techniques. Of course, it also extends to studying spatial objects including Solar System
debris, and other cosmic bodies. Its applications to understand geological and environmental impacts are
also being explored. Just as an example, we describe an extensively used model, called the Jaynes–
Cummings (JC) model to demonstrate how various approximations are used for various models. The
correct choice of the model will therefore depend on the purpose of calculations.

9.2.2 Jaynes–Cummings model
QED deals with particles which are not necessarily in bound states. To incorporate the spin statistics, the
lowering and raising operators of quantum mechanics are needed to define the second quantization. The
spin statistics play a big role in describing many-particle dynamics of unbound states which are
distributed based on energies and follow spin statistics. One of the commonly used models in condensed
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matter physics is called the Jaynes–Cummings model. Starting with the definition of a number of
particles in a spin state as:

σ̂z =∣ e⟩⟨e ∣ − ∣ g⟩⟨g ∣

where ∣ g⟩ corresponds to the ground state and ∣ e⟩ to the excited state of atoms or bosons. It gives the
total Hamiltonian as:

where evaluating the number operator Nj:

Nj = a
†
jaj

we can find the number of particles in a state j. However, considering the oscillator model, the frequency
of oscillation is determined in terms of energies of two consecutive states i and j such that we can write
the Hamiltonian of the system and the interaction Hamiltonian for the jth particle is given by:

Hj = h̸ωj(Nj +
1

2
)I +

1

2
Ejσzj + h̸κj(a

+
j σ−j + ajσ+j).

In the Jaynes–Cummings model, we consider a model system consisting of two identical atoms in two
separate cavities encountering a photon exiting a beam-splitter, which allows non-zero probabilities for
the photon to enter each cavity. We consider both atoms in their ground states initially. The Jaynes–
Cummings model uses the rotating-wave approximation which describes the coupling of each atom with
the radiation field. This rotating-wave approximation makes it more relevant for atoms where electrons
are revolving around the nucleus. In this two-atoms model, we can even compute the atom–atom
entanglement using von Neumann entropy S in terms of ρ the density of states as a measure and is
expressed as:

S = Tr(ρlnρ)

We can also consider a case in which the two atoms–two photons systems have identical properties, but
allow time-independent entanglement for non-resonant conditions in the sum of the atom–atom and
photon–atom mode. Detuning is one of the methods used to decrease the strength of the largest
entanglement and shorten the time of entanglement. The results support the fact that the state of the
photons after emergence from the beam-splitter is entangled which does not let us treat the entangled
state as a single particle. The Hamiltonian of the Jaynes–Cummings model in the rotating-wave
approximation corresponds to an atom (as j = A,B) and its interaction with mode j such that:

Hij = h̸ωj(a†
jaj +

1

2
) +

1

2
Ejσzj + h̸gj(a

+
j σ−j + ajσ+j).

In this Hamiltonian, the first term on the right-hand side corresponds to the unperturbed Hamiltonian for
particles in state j. As mentioned previously, a† and a correspond to creation and destruction operator
for atoms in ground state or in the excited states. Here σ†

+j= = σxj + σyj and σ+j= = σxj − σyj. The
total wavefunction of the state can be written as:

∣ ψ(t = 0)⟩ = c1 ∣ 01⟩ + c2 ∣ 01⟩

Htotal = h̸ωc + h̸ωa + Hint

H0 = Hfield + Hatom



which gives the probability of atoms going from a ground state ∣ e⟩ ≡∣ 0⟩ to the excited state ∣ e⟩ ≡∣ 1⟩.
The time evolution of a state can be considered as a two-atom system with atoms in state A =∣ 0⟩

and atoms in state B =∣ 1⟩. In this case, an extension of this model is used which is called the double
Jaynes–Cumming model. Usually, we can write a master equation for a cavity such that, for the given
density ρj in state j, the time evolution can be determined by using the master equation, e.g.:

dρj

dt
= −

i

h̸
[Hj, ρj] + γ[ajρja

†
j − (1/2)a

†
jajρj − (1/2)ρja

†
jaj]

 
Moreover, the choice of a right material for each and every machine, equipment, tool or even simple

container, etc depends on material properties and the industrial usage. It also helps in material designing
and its durability depending on its shape, size and intended use of a container. Nanomaterials may now
be added to increase the usage and keep the cost affordable. Detailed information of the properties of
materials is very important to improve the performance and opens doors to increase the utility of
materials. Detailed information about the properties of liquids or fluids helps to figure out the long-term
properties of materials and the effect of their presence on the other materials as well. The properties and
behavior of gases at unusually high temperatures and in unusual cosmological conditions is determined
to understand cosmological objects.

9.2.3 QED in condensed matter physics
A detailed study of chemical processes is also possible if second quantization is incorporated to study
interacting fluids. This second quantization allows us to incorporate the spin statistics along with the
quantum mechanical description of electrodynamics. However, the interaction of radiation with matter
and a study of secondary processes is made possible using QED formalism which can be generally
applied from fundamental particles to all the way to individual charged particles. QED is the most
generalized description of electrodynamics which incorporates relativity, quantum mechanics and
statistical mechanics in a single theory. We identify this framework as a quantum statistical field theory
which brings all the mathematical tools together.

QED can then be equally applied to relativistic electrons and non-relativistic ions or protons and is
successfully applied to particle processes. QED is an abelian gauge theory as we learn its nature from
classical electrodynamics. It follows a particular symmetry of the (magnitude of) electromagnetic
interaction and the abelian nature is typically related to the fact that two interacting particles feel the
same amount of force at the same distance. However, it lays down a foundation for the development of
gauge theories in terms of the Lagrangian formalism. Its generalization to non-abelian gauge theory
demands a non-abelian group representation of the symmetries of a Lagrangian. However, we accept the
gauge invariance as a basic requirement of a physical theory. Gauge theories and the group
representations together provide basic tools to describe the dynamics of fundamental particles. Non-
abelian theories are not the topic of this book so we will just concentrate on QED here.

Cosmological description of the universe requires the space–time coordinates to describe the
fundamental contents of the universe in the form of mass and energy. Relevance of QED in particle
physics, astrophysics and cosmology is relatively more obvious and can be discussed in detail.

9.3 Quantum statistical field theories
Quantum field theories can be extended to many-body systems to apply fundamental interaction theories
at relativistic energies. However, QED has more physical applications to use many-body approaches in a
quantum statistical background. Many-body QED is extensively used in materials science and
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technology along with its applications to technology. Its implications to develop remote techniques to
explore deeper into astrophysics and cosmology cannot be ignored either. However, due to the larger
number of unknown parameters of the theory, the development of exact mathematical expressions
becomes much more complex and computational tools are developed to help out the calculations.

On the other hand, specific mathematical tools are used in the quantum statistical theories to solve
complex many-body equations. Specific mathematical techniques such as functional methods and path-
integral techniques are used and even special modified forms of mathematical techniques are developed
to solve complex statistical problems. Quantum statistical field theories are used incorporating the
distributions of energies using spin statistics in four-dimensional space of multiparticle systems.

Quantum statistical theories of fundamental interactions cannot be adopted for physical applications
unless they pass the test of gauge invariance and are proved to be renormalizable as well. The QED
Lagrangian can successfully pass the gauge invariance requirement for particular gauges such as
Feynman gauge, Lorentz gauge and Coulomb gauge. Gauge theory is in itself an interesting subject and
specific gauges seem to be more relevant for specific problems. QED is therefore considered to be a very
interesting subject for practical applications in applied science and technology as well. Skipping all the
complex technical details, we can give a brief overview of the statistical formalism used to develop this
approach and include a few relevant references at the end of the book for further reading for interested
readers. It is also worth mentioning that this theory is still in the developmental stage and a
comprehensive book on the topic with all the updated information may not be available in a book form
yet.

Many-body (statistical) formulation of QED in an interacting medium with charged particles and
electromagnetic radiation background incorporates the statistical parameters like temperature, density
and phase space along with the defining parameters of the interaction theory of electromagnetism.
Thermal variation in space is related to the variation in the Euclidean matrix. The study of particle
propagation in Euclidean space is identified as imaginary-time formalism (or Matsubara formalism).
Addition of probabilities of interaction of the propagating particles seems to give an option to examine
every individual state and the properties which a system acquires going through a dynamical process.
However, a detailed study of dynamics of every intermediate state is not practically possible for a
highly-energetic system in the presence of various unknown parameters. The same treatment can be used
for bosons and fermions using Bose–Einstein and Fermi–Dirac distribution functions. These techniques
are developed in Euclidean space or imaginary-time formalism and then transformed to Minkowski
space, giving a framework for real-time formalism through Wick’s rotation. Distinguishing features of
both formalisms and a brief comparison of both models are given here. Thermal equilibrium is always an
underlying assumption.

9.3.1 Imaginary-time formalism
The development of statistical QFT started from the statistical representation of Green’s function in
coordinate space in a statistical system as:

Gβ(x1, … ,xj) =
Tr e−βHT ϕ(x1) ⋯ϕ(xj)

Tr e−βH
,

where (β = 1
kBT

) is the reciprocal of temperature T, and Boltzmann constant kB = 1 giving β = 1/T . H
is defined as the Hamiltonian for the self-interacting field ϕ(x) and its existence is incorporated in any
relevant fundamental interaction theory. The finite-temperature effective action, Γ(ϕ) is a generating
functional for a single-particle field expressed as:
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Γ(ϕ) = W β(J) − ∫ d4xϕ(x)J(x).

which gives an irreducible Green’s function and is defined by the following equations such that:

ϕ(x) =
δW β(J)

δJ(x)
,

where:

W β(J) = −i ln Z β

and the partition function z attains the form:

Z β(J) = Tre−βHT exp [i∫ d4xϕ(x)J(x)]Tre−βH ,

Now, the J(x) dependence can be eliminated by expressing J(x) in terms of the effective potential ϕ(x)
such that:

δΓ(ϕ)

δϕ(x)
= J(x),

where ϕ(x), evaluated at J(x) = 0, gives the thermodynamic average of the field ϕ(x) such that:

ϕ(x) ∣J=0=
Tre−βHϕ(x)

Tre−βH
.

The generating functional is helpful in studying the spontaneous symmetry breaking. It was assumed that
a symmetry is possessed by the Hamiltonian of the system under normal conditions, such that we get 
ϕ = 0 at J = 0. Alternatively, the symmetry breaking is implied for ϕ = 0 ̸ and:

δΓβ(ϕ)

δϕ(x)
= 0.

This shows that the above equation should be independent of x and we do not expect spontaneous
violation of translational invariance. Therefore, the function Γβ(ϕ) can be studied for constant ϕ . The
finite-temperature effective action Γ(ϕ) is a generating functional for a single-particle field, and an
irreducible Green’s function can be defined by the following equations. When the generating potential
reaches its unique minimum value:

δΓβ

eff
(ϕ)

δϕ(x)
= 0.

This effective potential can be used in the equation of motion and replace the non-interacting
potential. A single-particle irreducible Green’s function is then generated for a particle at rest. This helps
to write the statistical propagators for fermions and bosons which can depend on statistical parameters.
The periodic boundary conditions are imposed on the statistical equation of motion which can be derived
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for the two-point Green’s functions. The free scalar field in the presence of the heat bath is known to
satisfy:

(□ + m2)Dβ(x − y) = −iδ4(x − y),

where the two-point temperature-dependent function of spinless fields Dβ(x − y) is obtained as a
solution of this equation from the corresponding Green’s function equation as:

Dβ(x − y) =
Tre−βHTϕ(x)ϕ(y)

Tre−βH
= ⟨Tϕ(x)ϕ(y)⟩,

The boundary conditions are required to solve the above equation in coordinate space. We use
imaginary time such that the time argument for Dβ is continued to stay in the imaginary-time interval 
0 ≤ −i(x − y)0 ≤ −iβ and the time ordering for the imaginary time is defined, for ix0 > iy0, as:

⟨Tϕ(x)ϕ(y)⟩ = ⟨ϕ(x)ϕ(y)⟩ => Dβ(x − y)

and for ix0 < iy0:

ϕ(x)ϕ(y) >= D<
β (x − y)

and the imaginary-time interval is given as ∣ 0, −iβ ∣ and the corresponding state is given by:

ei(−iβ)H ϕ(0,
→
x )e−i(−iβ)H = ϕ(−iβ,

→
x ).

such that:

Now, using the periodic boundary conditions, we can obtain:

Dβ(x − y) ∣x0=0= Dβ(x − y) ∣x0=−iβ.

In the imaginary-time domain, Dβ may be represented by Fourier series:

Dβ(x − y) =
1

−iβ
∑
n

e−iωnx0 ∫ d3p

(2π)3

1

(−iβ)
∑
n

eiωn′x0 ∫ d3p′

(2π)3
Dβ(ωn,

→
p ,ω

n′,
→
p ′

), (1.22)

where:

Dβ(ωn, p,ωn′, p′) = −iβδnn′(2π)3δ3(
→
p −

→
p ′)Dβ(ωn,

→
p ),

which in its diagonalized form gives the Matsubara frequencies (energies) as:

ωn =
2πn

−iβ
,

for n = 0 ± 1. Hence:

> Dβ(x − y) ∣x0=0= Dβ(x − y) ∣x0=−iβ,

(Tr e−βH)D<
β

(x − y) ∣x0=0 = Tr e−βH >Dβ(x − y) ∣x0=−iβ
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for:

D<
β (x − y) ∣x0=0= Dβ(x − y) ∣x0=0,

gives:

Dβ(x − y) ∣x0=−iβ=> Dβ(x − y) ∣x0=−iβ.

Now, combining the above equations, we obtain:

Dβ(x − y) ∣x0=0= Dβ(x − y) ∣x0=−iβ,

which indicates that the required boundary conditions are imposed on the corresponding solution.
For the development of many-body field theory in Euclidean space (or imaginary-time formalism),

we start from the partition function:

Z = Tr(eβH )= ∏
r
e−(βE)

where β = 1
kBT

 for kB the Boltzmann constant which is set to be equal to 1 and T is the
temperature and E = ∑nEn such that:

H = H0 + H′.

Then the Hamiltonian density from Dirac equation is written as:

H (x, t) = ψ†(x, t)(p̸ − m)ψ(x, t)

where H ′ is the interaction Hamiltonian density expressed as the sum over n states in the physical
system and contributes to the energies of the particle such that the frequencies of the propagating
particles are given by Matsubara formalism. Particle propagators are then modified and are contributed
to the four-momentum of particles as ω = ω0 + ω′ such that ω′= ∑n

E ′
n

h̸
. The modification in

frequencies due to the thermal background ω′ keeps an account of the interaction of propagating
particles with a thermal medium and are called Matsubara frequencies. These modified frequencies
contribute to the particle propagators through their four-momenta. Spin statistics is used to study the
distribution of energy and contribute to phase space.

This summation in energies corresponds to the summation of the interaction potential of particles
with each and every intermediate state. The availability of intermediate potential depends on the fact of
how many intermediate states are interacted with the propagating particles. Keeping an account of all
intermediate particles is tricky so in the Hamiltonian, one can simply add an effective potential instead
based on all the interacting frequencies. This is how we define the effective potential. The effective
potential is constructed in a way that the physically acceptable theory can be formulated by the proper
choice of the effective potential. This choice of the effective potential makes this theory a model-
dependent theory based on the choice of the relevant potential. These potentials may need modifications
with the change of statistical conditions.

The imaginary-time formalism apparently has the ability to track all the intermediate steps showing
the dynamics of the development of the system in detail. However, this summation is not possible as all
the intermediate states are not even known. So the path-integral methods are used as mathematical
techniques to solve these problems. The choice of the effective potential and the path-integral techniques
hide a lot of necessary details of intermediate states and the theory and several competitive forms of



effective potentials are used to solve physical problems in an acceptable way. However, this approach
introduces some shortcomings in the theory as well.

First of all, thermal effects cannot be written in terms of four-dimensional parameters at the
individual particle level. Therefore, the statistical background just affects the relative momentum which
is changed due to the particle energies and the interaction with other particles. In this situation, the gauge
invariance is broken as the entire integrand cannot show the variation in four-momenta at the individual
particle level. The relative momentum and energy of the system is then expressed in terms of the
effective potential only. We can generally give a list of some of the major shortcomings associated with
the imaginary-time formalism.

1. Gauge invariance is broken in this formalism because single-particle momentum is not affected by
temperature, whereas total energy is affected due to the change in relative motion. However, the Lorentz
invariance is established at the individual particle level.

2. Using the effective potential approach, the order-by-order cancellation of singularities cannot be
proved, which is one of the basic requirements of a perfect gauge theory. However, a suitable potential
can be found where some approximations can be applied to find an acceptable way to renormalize the
theory, if nothing else works. The validity of QED from microscopic to macroscopic scales should be
proved by showing the perfect renormalizability of the theory at all energies.

3. Effective potential is used to calculate the effective parameters of the theory to a good
approximation. However, a positive feature is that the choice of appropriate potential at high energies
can take an overall effect without tedious calculation at each level of interaction separately.

Matsubara formalism works very well for perturbative QCD as the renormalization is already a
known issue in QCD. Quarks can participate in electroweak and strong interactions simultaneously. A
large coupling constant of QCD makes it difficult to handle the renormalizability of the theory. In
addition, several unknown parameters may be required to understand rather strange behavior of QCD
whose sources are still not very clear. A good approximate potential gives a working scheme of
calculation to acceptable approximation within our limitations and a more successful computational
model provides the workable scheme.

9.3.2 Real-time formalism
A calculational scheme of finite-temperature field theory was still needed to check the validity of the
theory and understand the validity of various calculational schemes. For this purpose, Minkowski space
or the real-time formalism is a more appropriate approach. This approach helped to re-establish gauge
invariance at the cost of Lorentz invariance by choosing the rest frame of the heat bath, through which
the propagation of particles is studied. This is a totally acceptable physical condition because it just gives
the calculation of a system at the given instant of time when thermal equilibrium can be safely applied.

The Fourier series can then be converted into integral form by using continuation of energies from
the corresponding discrete energies of imaginary-time formalism. In other words, the overall change in
energy is considered instead of looking at each individual particle’s energy. In this way, it can hide some
details about the dynamical path but the overall changes can be calculated. One defines the density of
states as:

ρ(k) = Dβ(k0 + iε,
→
k ) − Dβ(k0 − iε,

→
k ).

and ignore the intermediate stages by evaluating integrals in between the boundaries of the entire
parameter space.

Dβ(ωn,
→
k ) = ∫

−iβ

0

dx0e
−(2nπβ)x0 ∫ d3xe−i

→
k

→̇
xDβ(x),
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In this case, the Fourier transform of Green’s function in momentum space is expressed as:

Dβ(p) =
1

p2 − m2
,

and the density of states can then be represented as:

ρ(k) = 2πε(k0)δ(k2 − m2),

which gives the probability of interaction with real particles indicated by δ(k2 − m2) for all the particles
within the entire momentum space which allows us to represent the boson propagator as:

Dβ(p) =
i

k2 − m2 + iε
+

2π

eβE − 1
δ(k2 − m2),

with:

E =
√→

k
2

− m2.

A similar analysis can be done for fermions to obtain the fermion Green’s function as:

S β(p) =
i

p̸ − m + iε
−

2π(p̸ + m)

eβEp + 1
δ(p2 − m2).

The fermion and boson propagators in the real-time formalism are defined by the propagators with
bars given as D

β
(p) and S

β

F (p) which correspond to boson and fermion propagators, respectively.
These propagators are used in conjunction with ordinary Feynman rules to calculate Feynman diagrams.
Alternatively, one may use the functional techniques to calculate a Feynman amplitude in finite-
temperature perturbation theory of any order of perturbation. It is one of the accepted facts that at higher
energies where energy–momentum (momentum–space) becomes more convenient as compared to the
space–time coordinate (coordinate–space). Fourier transform is the most convenient mathematical
relation to transform everything from coordinate space to momentum space and convert it back using the
inverse Fourier transform. However, Minkowski space is definitely preferable for thermal study as time
and energy are both directly measurable (observable) in Minkowski space as compared to the real
position and momentum of relativistic particles in Euclidean space. Gauge invariance is re-established in
this theory by the choice of a preferred frame of reference. Since the integration is performed over all the
phase space, a choice of the preferred frame of reference can be made. In the real-time formalism, all the
calculations can be done in the rest frame of a hypothetical heat bath. This heat bath is conceptually
equivalent to a phase space which is created by the entire range of four-momenta and the four-coordinate
space. Taking the rest frame of the heat bath we reincorporate the gauge invariance at the cost of Lorentz
invariance. And the breaking of Lorentz invariance is acceptable for a physical system. Therefore, some
of the salient features of the real-time formalism are worth mentioning and we briefly summarize them
here to be able to compare both formalisms.

1. Gauge invariance of the theory is re-established at the expense of Lorentz invariance. All the
calculations are done in the rest frame of the heat bath. However, the scale of the heat bath is not limited.
It just corresponds to the entire phase space associated with the system.

2. Using the effective potential approach, the order-by-order cancellation of singularities cannot be
proved, whereas it can be shown easily using the real-time formalism. The most interesting feature of the
real-time formalism is that the temperature-independent part of the propagator appears isolated from a
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temperature-independent regular term, especially at the first loop level. So we can simply evaluate the
additive contribution which is clearly seen in equations (9.17) and (9.18).

3. Renormalization constants are calculated individually at any loop level. Order-by-order
cancellation of singularities can be checked at every loop or those conditions are found where the
singularities are removed to find the physically possible conditions. Thermal contributions can be
compared with temperature-independent contributions at various loop levels.

The real-time formalism is the only formalisms to understand the renormalizability and the
renormalization constants give the physically measurable values of the parameters of the theory and can
substitute the effective parameters.

Therefore, both real-time and imaginary-time formalism have their own pluses and minuses.
Moreover, the perfect matching of results obtained from both calculations is not always as found during
the integration in real-time or summation in imaginary-time formalism: some underlying approximations
are involved. Also, the Lorentz invariance and gauge invariance may affect the results as well. One of
the drawbacks of real-time formalism is that due the breaking of Lorentz invariance, the order of
integration between energy and momentum do not commute. However, the detailed comparison or the
working knowledge of both of these approaches is out of the scope of this book. In addition, finite-
temperature formalism is a relatively new field and it is still developing with the discovery of cosmic
objects where its applications are unavoidable. Therefore, a detailed study of the current literature is
required to understand the theory in detail with its applications.

9.3.3 Perturbation theory in QED
Real-time formalism plays a very effective role in QED. It becomes more relevant because it proves the
renormalization of QED for physically acceptable ranges of statistical parameters providing very
effective tools to understand the physics of many-body systems beyond the collective behavior. A
renormalization scheme of QED provides a framework to calculate all the effective parameters of QED
in context with the hot and dense media. The renormalization constants of QED depend on the
temperature and chemical potential of electrons (or other relevant charged particles) which are in thermal
equilibrium with the heat bath. The interaction of radiation with charged particles in the physical systems
is the basic source of energy in the heat bath and is used extensively in the early universe and superdense
stars due to relevant ranges of temperatures and densities. In an ultra-relativistic electron–photon system,
termed the QED system, the renormalization constants of QED computed over different temperature and
chemical potential ranges are considered as the physically measurable parameters of the theory.

For the purpose of renormalization of QED, standard Feynman rules are employed by incorporating
the Bose–Einstein distribution for bosons and the Fermi–Dirac distribution for fermions. This
substitution allows for the incorporation of temperature and density effects from the quantum statistical
background of the interacting fluid. The QED Lagrangian, using the typical field theory notation, is then
formulated with the renormalization constants of QED denoted by δm or Z1, Z2 and Z3 called mass,
wavefunction and charge renormalization constants, typically calculated for electrons considering them
the lightest form of charged matter that exhibits relativistic motion easily. A complete Lagrangian of
QED with the renormalization constants can then be written as:

where:

F μν = ∂μAμ − ∂ νAν

L = − 1
4 F

μνFμν − ψ [γμ∂μ + m]ψ − ieAμψγ
μψ − 1

4 (Z3 − 1)F μνFμν

− (Z2 − 1)ψ [γμ∂μ + m]ψ + Z2δmψψ − ie(Z2 − 1)Aμψγ
μψ



with Ei = cF0i and Bi = 1
2 εijkF

jk. The renormalization constants of electron mass, wavefunction and
charge are δm, Z2 and Z3, respectively. Quantum statistical field theory provides a calculational scheme
for finite temperature and density corrections using relativistic distribution functions of Bose–Einstein
distribution for the possible interactions with bosons and Fermi–Dirac distributions for the possible
interactions with fermions. These background contributions are incorporated as the perturbative
contributions due to the interaction with the background.

These particles interact with the medium while propagating through the medium due to the virtually-
emitted particles that perturb the medium. These perturbative interactions take place in the medium and
contribute to modify the effective mass, charge and wavefunction of the propagating particles.
Temperature and chemical potential and the high-energy radiations in the medium can produce
singularities that need to be canceled out to establish the renormalization of a physically acceptable
theory. For this purpose, order-by-order cancellation of singularities is required by the Kinoshita–Lee
and Nauenberg (KLN) theorem and makes it possible to calculate the renormalization constant of QED.
These are physically measurable parameters of the theory at each level of perturbation and contribute to
electron mass, wavefunction and charge, respectively. The QED coupling is proportional to the square of
electron charge, and therefore, has a measurable effect on the electromagnetic properties of the medium
itself.

As discussed earlier, real-time formalism is the only way to produce the convergent perturbative
series in QED. During the calculations of the renormalization conditions, we can find that QED may not
work at extremely high temperatures as the incorporation of nuclear interactions is no longer
unavoidable. Therefore, at high temperatures, the renormalizability of QED is not fully accepted as a
standalone theory. However, the effective potential approach can incorporate some contributions which
may not be pure QED contributions and show the renormalizeability. During this study, it has also been
noticed that the QED is perfectly renormalizeable up to 1 billion Kelvin. Afterwards, some other
contributions are needed beyond neutrino decoupling temperature which is around 2 MeV in the early
universe. This remormalizeability can be re-established in QED in the presence of extremely high
densities of superdense stars such as neutron stars. However, in the presence of large chemical potential,
thermal effects can be counterbalanced and renormalizeabilty is re-established. However, these latest
research results can only be seen in new literature and further technical details are out of the scope of
this book.

At extremely high energies, the behavior of electromagnetic waves is also worth studying. The
electromagnetic signal carries the information about the electromagnetic properties of the medium which
may later be used to collect all the information about the stellar interiors and the early universe. The
spherical nature of light is associated with the fact that electromagnetic waves satisfy the equation of a
sphere created by three coordinates of electric field E, magnetic field B and the propagation vector k. For
the given value of the angular velocity ω, E, B and k vectors are all perpendicular to one another in
natural units such that E 2 + B2 + k2 = ω2. The propagation of longitudinal and transverse components
in space is associated with the angular frequencies as the fourth component can change the energy
because the massless energy quanta may be modified in an interacting medium and is worth studying.

9.3.4 Propagation of electromagnetic waves in QED media
The electrodynamics and quantum mechanics cannot go to the detailed study of subatomic physics for
single-particle dynamics. When electromagnetic waves propagate through an interacting medium, they
interact through the physical parameters of the system such as the renormalized values of electron mass,
wavefunction and charge in the given statistical background. The electromagnetic waves in free space
exhibit only the transverse components, moving with a speed of 2.99 × 108 m s −1, and have zero
longitudinal components, whereas the speed of light changes due to the interaction with the medium and
the refraction of light is noticed. Modifications in the properties of light in extremely hot and dense



media, as observed before, should be incorporated to determine the accurate structure and composition
and interpret the observational data in astronomy. The system under observation is best described by
QED, which is an ultra-relativistic electron–photon system. It allows the coexistence of variable phases
of fluids in astrophysical systems, locally. QED fluids are electromagnetically-interacting fluids at
extremely high temperatures and densities.

9.3.5 Future application of QED in materials
QFTs are needed to describe the physics and dynamics of fundamental particles. Quantum mechanics
cannot fully describe the dynamics of individual particles, especially when dealing with the light mass of
electrons which can exhibit relativistic motion at very low energies. Therefore, the role of QFT in the
study of high-energy physics, astrophysics and cosmology is undeniable. Actually, high-energy physics
compelled scientists to develop QFT in the first place. A detailed study of nuclear physics is not possible
without QFT, especially to explore the sub-nucleon level starting with the discovery of quarks.
Meanwhile, heavy-ion collisions are studied using the finite temperature and density form of QCD.
Understanding of radioactive decays and a detailed study of nuclear processes, even deep inelastic
scattering, cannot be studied without QFT, so the development of QFT was a natural consequence of in-
depth exploration of matter. Study of deep inelastic scattering, discovery of quarks and the development
of QCD was impossible without QFT.

Many-body effects, quantum computing, quantum simulations, hardware development for quantum
computing, quantum entanglement and the remote study of space are still challenging and QED provides
a potential resource for the development of artificial intelligence to be able to study extremely large data
in manageable time to understand the details. Nuclear forces may not be relevant for the study of
chemical processes. However, for a detailed study of matter such as nuclear chemistry and nuclear
research contribution to materials, especially to understand superconductivity, superfluidity and the
existance of metamaterials, we cannot ignore nuclear forces altogether. However, it has to be
remembered that gravity is not ignorable at all at macroscopic level, but it is considered ignorable at
micro- and nano- scales (as of today) for all practical purposes. Once a better understanding of gravity at
extremely high energies is understood, its relevance to physical problems can be investigated. It may be
incorporated in the study of materials at quantum scale as well. We can expect the study of quantum
materials or application of quantum field theories. Finally, we give a list of some of the well-known
problems of physics and technology where QFT has to be used for better results:

1. Applications of QED in technology.
2. Energy storage.
3. Quantum optics and LASERs.
4. Quantum computing.
5. Microfluidics.
6. Biochemical physics.
7. Quantum computing and artificial intelligence.
8. System biology.
9. Heavy-ion collisions.

10. Applications to nuclear physics.
11. Astronomical study.
12. Cosmology.

However, there is still a long way to go into a detailed study of materials. The more we dig into matter,
the more techniques that are needed and development of technology and mathematics will keep
progressing. This is almost a continuous process and it may keep on developing as long as human
interest does not shift. However, growth and development is the nature of human beings and is
associated with the survival of life and may never stop.



IOP Publishing

Conceptual Approach to Quantum
Electrodynamics

Samina S Masood



Part IV

Appendices



IOP Publishing

Conceptual Approach to Quantum
Electrodynamics

Samina S Masood

Appendix A

A.1 Fundamental units and their relations
There are basically three commonly-known systems of units and we briefly
discuss them, one by one. Time is a quantity which remains the same in
each and every coordinate system of units. It is usually measured in
seconds, but measurements of certain quantities can use any unit such as
minutes, hours, days or years. However, different quantities of time
measurement are related in a standard way, even the metric units such as
milliseconds and nanoseconds, whenever needed.

Mass and length are the basic fundamental units and almost all of the
other quantities are derived from these basic units. The quantities used in
the book will be defined mainly in well-known systems of units, including
SI or MKS (m, kg, s), CGS (cm, g, s), and British Thermal Units or BTS
(foot, pound, s). All the other units could be derived from three basic units
of length, mass and time. The British system is distinctly different in
quantum mechanics and thermodynamics. It is sometimes called the foot–
pound system as the unit of distance is feet (plural of foot) and pounds are
the unit of force, called pound-force. Units of the British system and metric
system (SI or CGS) are converted among themselves individually. There is
no standard way to relate them. The complicated mixed units involve the



conversion of each individual unit correctly. For example, the mass
conversion occurs as:

and the basic units of length can be related as:

The unit of energy is called BTU and temperature is defined in Fahrenheit
that is set to 32 for the freezing point of water and 212 for the boiling point,
and the relation between Celsius or centigrade with Fahrenheit is defined
as:

whereas, the units for power and energy are related in different ways as
follows:

1 BTU (British Thermal Unit) = 1.055 × 103 Joules

 
Another relatively common distinct unit of the British system is called

horsepower. It is the power needed to pick up 550 pounds to a height of 1
foot in one second. The British system defines every individual unit for the
same quantity in a different way so there was a lot to remember when more
parameters were defined. Several countries including the United States use
the British system in their daily life. However, the scientific community is
mainly using the metric system as common units. MKS (meter–kilogram–
second) is used for larger systems and CGS (centimeter–gram–second)

1 kg (kilogram) = 2.2046 lbs (pounds)

1g = 0.035 274 ounces

1 lb = 16 ounces

1 m (meter) = 3.280 84 ft (feet)

1 km = 0.621 37 mile

1 mile = 5280 ft

100°C = 180°F

0°C = 32°F; 100°C = 212°F

°C = 100(°F − 32)/180



system is used for tiny systems, but the conversion among different units
for the same quantity can be done by multiplying factors in powers of ten,
which are tabulated in table A.1.

The metric system is much simpler, as compared to the British system.
The connection between the small and large quantities is defined
individually in this system and each quantity has a different name. Just to
give an example: inch, foot, yard, furlong and mile are all units of length
and are connected through individual conversion factors. We will not
discuss these units in further detail. The international common units are
metric units. They are convenient and are related together through a
standard conversion system. Just a prefix is used to relate all quantities
through the metric system for the same quantity. All of these prefixes are
listed in table A.1 and are expressed in powers of ten, hence named as a
metric system.

Table A.1. Prefixes in metric systems.

Prefix Metric small unit Prefix Metric big unit

Yocto 10−24 Yotta 1024

Zepto 10−21 Zeta 1021

Atto 10−18 Exa 1018

Femto 10−15 Peta 1015

Peco 10−12 Tera 1012

Nano 10−9 Giga 109

Micro 10−6 Mega 106

Mili 10−3 Kilo 103



Prefix Metric small unit Prefix Metric big unit

Centi 10−2 Hecta 102

Deci 10−1 Deca 101

Actual Unit 1 Actual Unit 1

The commonly called SI (Systeme Internationale) system is the
international system of measurement. It uses the meter as the unit for
length, whereas the mass is measured in kilograms, and time in seconds. SI
units are the convenient units and are adopted in several countries as a
daily-life measurement system instead of the British system. It is also called
the meter–kilogram–second (MKS) system. Another form of metric system
is called Gaussian units or the centimeter–gram–second (CGS) system. The
CGS system is more convenient to handle small quantities and conversion
in between two metric systems is conveniently done using the powers of
ten. The metric system develops a direct relationship among small and big
quantities through powers of ten and general prefixes are used for that
purpose. Table A.1 shows these prefixes and they can be attached to any
quantity to express any small and big quantities in terms of one standard
unit.

The Gaussian system or CGS system of units gives another set of units
for small scale quantities in metric system and can be directly converted to
SI units at any stage by multiplying with powers of ten at any point. SI units
are a straightforward extension of Gaussian units. Electromagnetism mainly
uses the metric system at the international level. Coulomb’s force and the
electric and magnetic fields are related to the intrinsic behavior of charge.
Electric and magnetic fields are dependent on the displacement and the
velocity of charge. Dynamics of charges cannot be described without
current, the flow of charge, which may be defined as the product of charge
and the velocity of charge. So, the rate of flow of charge or current
describes the dynamics instead of velocity as it can incorporate the variation
of associated electric and magnetic fields with charge as well. Basic



principles of classical physics are based on mass, velocity, acceleration and
force, whereas additional parameters of the theory appear in
electromagnetism without getting rid of the basic parameters of mechanics
and make the theory much more complicated.

The main parameters of electromagnetism include charge, electric and
magnetic field, resistance, current and voltage. A few more complex
parameters such as capacitance, conductance, voltage are for the measure of
potential energy per unit charge and their unit is called volts or joules per
coulomb. There are several other parameters of electromagnetic theory that
are expressed in terms of the basic units of electromagnetism. Some of the
well-known parameters are related to properties of materials through which
the flow of charge takes place in the form of current. Electromagnetic
properties of materials such as conductivity, resistivity, electric permittivity,
magnetic permeability, dielectric constant and refractive index are defined
in terms of the known quantities.

For example, the Coulomb constant k = 1
4πε0

 is given in SI units, where

ε0 is the electric permittivity in free space and is given as 
ε0 = 8.854 287 82 C (Nm) −2. The speed of light in free space is related
to electric permittivity as c = 1

√(ε0μ0)
 such that μ0 = 4π × 10−7 newton

per square ampere or μ0 = 1.26 × 10−6 weber per ampere-meter
(newton/square ampere). Weber is the unit of electric flux in SI units
defined as tesla per meter square. Magnetic flux is the number of lines of
magnetic field per unit area. Table A.2 gives a few well-known quantities in
various systems of units.

Table A.2. Quantities in different system of units ESU (electrostatic unit).

Quantities SI (MKS) Gaussian (CGS) British (FPS)

Distance meter (m) centimeter
(cm)

foot (ft)



Quantities SI (MKS) Gaussian (CGS) British (FPS)

Mass kilogram
(kg)

gram (g) slug

Time second (s) second (s) second (s)

Velocity m s−1 cm s−1 ft s−1

Acceleration m s−2 cm s−2 ft s−2

Force newton (N) dynes (Dy) pound-force

Energy joule (J) ergs (ergs) pound-
energy

Heat joule calorie BTU

Temperature Celsius centigrade Fahrenheit

Absolute
temperature

kelvin Kelvin Rankine

Charge coulomb statcoulomb *ESU

Voltage volt statvolt …

Electric current ampere statampere …

Conductance mho statmho …

Resistance ohms statohms …

Magnetic flux weber maxwell …

Amount of
substance

gram-mole gram-mole pound-mole



All of the above systems of units work well, in general. For scientific
purposes, the metric system is considered much more convenient and is
accepted internationally to share scientific discoveries and technological
development.

Table A.3 can be used to convert each of the individual units.

Table A.3. Values of a few parameters in SI units.

Quantities Symbol SI (MKS)

Charge of electron e 1.602 × 10−19

Speed of light in
space

c 2.998 × 108 m s −1

Planck constant h 6.626 × 10−34 J s

Boltzmann
constant

kB 1.381 × 10−23 J K −1

Coulomb constant k 8.987 × 109 kg m 3 s−2 C−2

Electric
permittivity

ε0 8.854 C2 N m2

Magnetic
Permeability

μ0 4π × 10−7 = 1.256 × 10−6 Tm A −1

A.1.1 Natural system of units
In high energy physics, the relativistic velocities and high energies lead to
another more convenient system where we can reduce the commonly used
constants by setting them equal to 1 to define a new set of working units



(A.1
)

(A.2
)

(A.3
)

(A.4
)

(A.5
)

that are directly related to the extremely high energy. In this system of units,
the commonly appearing constants are absorbed in the newly defined units
for practical purposes. When conversion into well-known coordinates is
needed, the values of coefficients can be included back. So, we keep all the
values of coefficients set to unity in the standard units as h̸ = c = kB = 1,
where h (or h̸) is Planck’s constant, c is speed of light and kB is the
Boltzmann constant.

In the natural system of units, distances are measured in femtometers
(fm) and energy in million electronvolt (MeV). Distance and energy are
considered to be two fundamental units to describe most of the quantities.
Then, relativity allows one to use the relationship between energy,
momentum and mass. The conversion units can be used in the end to
change energy into joules for SI or any other known energy unit. Particle
physics uses relativity and quantum mechanics, in the rest frame of
particles, simultaneously. Therefore, wave–particle duality allows treating
particles’ motion as wave propagation along with the energy–momentum
relations of relativity. A few fundamental relativistic relations are used to
convert the coordinates properly:

E 2 = p2c2 + m2c4

E = mc2 = pc

E = h̸ω

p = mc = h̸k =
h

λ

k =
2π

λ

in usual notation of wave mechanics, and taking h̸ = c = kB = 1,
energy, momentum, and mass can all be expressed in units of MeV. Even
the length comes out to be an inverse of mass and is sometimes expressed
as the reciprocal of energy 1/MeV. This length is related to the femtometer
scale as well. Standard values of a few well-known constants are given in
table A.4.



Table A.4. Values of a few important constants.

Quantity Values (SI units) Values (natural units)

h̸ 1.055 × 10−34 J S 1

kB 1.38 × 10−23 J K −1 1

c 2.99 × 108 m s −1 1

Energy Joules MeV

MeV 1.6 × 10−13 J 1

Mass kg MeV/c2

Momentum kg m s−1 MeV/c

Electron mass 9.109 × 10−31 kg 0.511 MeV/c2

Proton mass 1.673 × 10−27 kg 938.272 MeV/c2

Neutron mass 1.675 × 10−27 kg 939.565 MeV/c2

α e2

4πε0 h̸c
e2

4π

A.2 Laws of electromagnetism
There are four basic laws of electrodynamics which make up Maxwell’s
equations that allow one to express electromagnetic waves in terms of
electric and magnetic fields. Four basic principles of electrodynamics are
briefly discussed here to develop Maxwell’s equations. These laws include
Gauss’s law of electric and magnetic fields and then Faraday’s law and
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Ampère’s law. All of the other equations of electrodynamics can be derived
from these four basic principles of electromagnetism and are found through
experiments.

A.2.1 Gauss’s law
Electric charge is associated with the electric field and the amount of charge
per unit volume is defined as electric charge density. Since we do not
observe magnetic monopoles, the magnetic charge density is always zero. If
ρ is defined as free charge density then the variation in the electric field
vector is given in terms of Gauss’s law and is written as:

∇⋅E = 4πρ

the corresponding expression for the magnetic field is expressed as:

∇⋅B = 0

due to the vanishing of magnetic free charge density as magnets are
always found as magnetic dipoles, and magnetic monopoles do not exist.
This indicates the major difference between electricity and magnetism.
Charge is the intrinsic property of matter, whereas magnetic poles are
associated with the motion of charge and the phenomenon of magnetism is
associated with the dynamics of charges.

A.2.2 Faraday’s law of magnetic induction
The variation in the magnetic field induces a voltage in the circuit. If this
variation takes place in a coil, the voltage induced in the coil of wire is
called induced electromotive force (emf) that increases or decreases the
voltage in the coil. The amount of induced voltage depends on the
frequency of variation of the field. This change in voltage depends on the
strength of the magnetic field as well as the change in the field.

∇×E = −
1

c

∂B

∂t



(A.9
)

If a constant electric current passes through a coil, the strength of magnetic
field will depend on the number of turns in the coil. The magnetic flux in
the loop constant is the induced magnetic field inside any loop of a wire.
Faraday’s law: Any change in the magnetic environment of a coil of wire
will cause a voltage (emf) to be ‘induced’ in the coil. No matter how the
change is produced, the voltage will be generated. The change could be
produced by changing the magnetic field strength, moving a magnet
towards or away from the coil, moving the coil into or out of the magnetic
field, rotating the coil relative to the magnet, etc. Faraday’s law is a
fundamental relationship which comes from Maxwell’s equations. It serves
as a succinct summary of the ways a voltage (or emf) may be generated by
a changing the magnetic environment. The induced emf in a coil is equal to
the negative of the rate of change of magnetic flux times the number of
turns in the coil. It involves the interaction of charge with magnetic field.
When an emf is generated by a change in magnetic flux according to
Faraday’s Law, the polarity of the induced emf is such that it produces a
current whose magnetic field opposes the change which produces it. The
induced magnetic field inside any loop of wire always acts to keep the
magnetic flux in the loop constant. In the examples below, if the field B is
increasing, the induced field acts in opposition to it. If it is decreasing, the
induced field acts in the direction of the applied field to try to keep it
constant.

A.2.3 Ampère’s circuital law
The integral form of Ampère’s circuital law for magnetostatics relates the
magnetic field perpendicular in a circular wire with the rate of change of
electric field and along a closed path to the total current flowing through
any surface bounded by that path. This law can be considered as a
complimentary law to Faraday’s law where the variation in electric field
and the current both contribute to produce some magnetic fields.

∇×B =
4π

c
J +

1

c

∂E

∂t

A.3 Maxwell’s equations
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The most important fundamental laws of electrodynamics are combined
together as Maxwell’s equations. These equations were used to develop the
electromagnetic wave theory and showed that the laws of electromagnetism
satisfy a wave equation. A detailed study of electromagnetic signals was
prompted at this point which led to the four-dimensional representation of
Maxwell’s equations and finally helped in the development of QED.

We first describe Maxwell’s equations in free space where ε0 and μ0

give the electric permittivity and magnetic permeability of free space with
its constant values. This also gives the constant value to the speed of light
as c = (√1/(ε0μ0)). The differential form of Maxwell’s equations in free
space (in the standard SI units) is written as:

∇⋅B = 0

∇⋅E =
ρ

ε0

∇×E = −
∂B

∂t

∇×B = μ0 (J + ε0
∂E

∂t
)

The corresponding integral form of the Maxwell’s equations in free
space (SI units) is written as:

∮ E ⋅dS =
1

ε0
∬∬

Ω

ρdV

∮ B⋅dS = 0

∮ E ⋅dl = −
d

dt
∬ B⋅dS

∮ B⋅dl = μ0 (∬ J ⋅dS + ε0
d

dt
∬

Σ

E ⋅dS)
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The two systems of units in metric systems are very similar and easily
translated in metric notation. The SI system is more generalized and its
scope is big. It works from the largest to the smallest scale at the same time.
It covers from micro or nano scales to cosmic scales. However, the values
of constants in classical electrodynamics are very convenient in the
Gaussian or CGS system because we can set the Coulomb constant 
k = 1/4πε0 = 1 and then the integral form of Maxwell’s equations in
Gaussian units attain the simpler form as:

∮ E ⋅dS = 4π∬∬
Ω

ρdV

∮ B⋅dS = 0

∮ E ⋅dl ⋅ −
1

c

d

dt
∬ B.dS

∮ B⋅dl =
4π

c
∬ J ⋅ dS +

1

c

d

dt
∬ E ⋅dS

and the corresponding differential form can be written as:

∇ ⋅ B = 0

∇ ⋅ E = 4πρ

∇ × E = −
1

c

∂B

∂t

∇ × B =
4π

c
J +

1

c

∂E

∂t

These units are very convenient when we translate Maxwell’s
equations in a medium and define the displacement vector D, which
corresponds to D = ε0εrE in terms of the relative permittivity (εr) and
permittivity in free space (ε0) such that they together indicate the total
permittivity ε of a medium. Similarly, the magnetic field in the medium is
defined as H and H = B/μ0. This helps to conveniently define



magnetization, polarization and other vectors in a more convenient way and
SI units can be retrieved easily, whenever needed. Some of the important
units are tabulated at the end for comparison, and make the transformation
of units easy for calculation.

Electric and magnetic fields are usually referred to as classical fields
because they are three-dimensional fields and can attain any value. So,
these fields are considered as continuous variables because they are
associated with charges which are composite charges (quantized) which
produce the continuous values of fields due to the continuous variation of
the separation of charges.

A.4 Properties of γ-matrices
The Pauli matrices are a special case in the Clifford algebra, which is the
algebra generated by the product of vector spaces. Going from quadratic to
linear vector space, an extra factor is used to identify the quadratic form
distinguished by unital associative algebra. It represents the physical space, 
C(3, 0), which is called Pauli algebra. The two-dimensional representation
of a Lorentz group corresponds to spin s = 1/2. These matrices are the 
2 × 2 unitary matrices with a unit determinant I and can be expressed as:

U = eiθ
iσi/2

where θi are three arbitrary parameters and σi are the Pauli spin matrices.
The γ-matrices are the four-dimensional generalization of the two-
dimensional Pauli matrices σi discussed and they are significant in the
formulation of the Dirac equation.

There are two important requirements for the Dirac equation. The first
is that it has to be a first-order equation in space and time coordinates. The
second requirement is that it has to eliminate the negative probability
density arising from the Klein–Gordon equation. So the Klein–Gordon
equation was modified as:

(∂μ∂μ + m2)ψ = 0
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Applying iγ ν∂ν  on both sides to the first-order equation gives

−γ νγμ∂ν∂μψ = imγ ν∂νψ = m2ψ

Due to the tensor properties, this can be written as

−
1

2
(γ νγμ + γμγ ν)∂ν∂μψ = m2ψ

The term in the parenthesis is the anticommutator 
{γ ν, γμ} = γ νγμ + γμγ ν . If we consider a plain wave ψeipμxμ  and since 
pμp

μ = m2, the Dirac equation is

1

2
{γ ν, γμ}pνpμ = m2.

We can clearly see that the anticommutator {γ ν, γμ} = 2ηνμ, where ηνμ are
the components of a 4 × 4 matrix, Minkowski metric, and therefore the four
quantities γμ also have to be 4 × 4 matrices. From the obtained relation, we
can observe some properties of the gamma matrices, also known as Dirac
matrices.

(γ 0)
2

= η00 = 1, (γ i)
2

= −1

γ 0γ i + γ iγ 0 = 0,

γ iγ j + γ jγ i = 2δij

and γ j ≡ iσj. For ν ≠ μ:

γμγ ν = −γμγ ν

Now set ν = 0 and μ = i:

γ 0γ i = 2gμν − γ iγ 0

Multiplying by γ i on both sides and using the identity γ iγ i = δii = 1:
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γ 0 = γ iγ 0γ i

Using cyclic rotation of tensors, the trace of the results can be
observed as:

Tr(γ 0) = Tr(γ iγ 0γ i) = Tr(γ 0) = 0

The matrix representations are:

γ 0 = ( )

where I is the 2 × 2 unit matrix.

γ i = ( )

This representation is known as Weyl or Chiral representation.

A.5 Feynman rules in QED
QED lagrangian is given as

LQED = −
1

4
FμνF

μν + ψ̄(iγμ∂μ − m)ψ + ψ̄(−ieγμ)ψAμ

A.6 Feynman propagators
Feynman propagators are defined differently for charges of fermions and
photons:

For each vertex, write a factor γα.

I 0

0 I

0 σi

− σi 0



Figure A.1. Feynman rules of QED. Black dot indicates the
target.

For each internal photon line, labeled by the momentum k, write a
factor

iDFαβ
(k) = i

−gαβ

k2 + iε

A boson line is represented as a wavy line and arrow distinguishing
between the incoming and the outgoing boson. Even the propagating
boson is also represented by a straight wavy line. A summary of
Feynman rules is shown in figure A.1. The fermion line is represented
as a straight line as virtual fermion or an incoming or outgoing
fermion.
For each internal fermion line, labeled by the momentum p, write a
factor

1



iSF (p) = i
1

p̸ − m + iε

where p and k denote the three-momenta of the external particles and
r (= 1, 2) label their spin and polarization states.
The spinor factors (γ-matrices, SF -functions, four-spinors) for each
fermion line are ordered so that, reading from right to left, they occur
in the same sequence as following the fermion line in the direction of
its arrows.
For each closed fermion loop, take the trace and multiply by a factor 
(−1).
The four-momenta associated with the three lines meeting at each
vertex satisfy energy-momenta conservation. For each four-momenta q
which is not fixed by energy–momentum conservation, carry out the
integration (2π)−4 ∫ d4q. One such integration with respect to an
internal momentum variable q occurs for each closed loop.
Multiply the expression by a phase factor δp, which is equal to 
+1(−1) if an even (odd) number of interchanges of neighboring
fermion operators is required to write the fermion operators in the
correct normal order.
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Further reading

NOTE: Most of the material in this book can be partially found in various
standard textbooks in more details and is summarized here. Students can
use their own graduate textbooks of the relevant courses study. However,
for detailed develop technical skill. Designated books are not available for
the last chapter. Therefore, a few journal articles and relatively recent
publications are suggested to start literature survey and familiarize with the
new approach to study the application of quantum electrodynamics and
quantum statistical electrodynamics.

It is also worth-mentioning that a couple of physics books which comes
in series are very helpful for conceptual development (e.g., Feynman
lectures) in various topics of physics and practicing problem solving (e.g.,
Schaum’s Outline series). Berkley Series and Landau and Lifshitz’s sets of
books are also worth-mentioning to develop or review various topics of
physics or improve the understanding.
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