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Quantum Algorithms and Their
Applications 1in Cryptology

Cryptography has long been an essential tool in safeguarding digital
communication and securing sensitive information. As technology has
progressed, so has the complexity of the methods used to protect our data.
In the wake of quantum computing's rise, traditional cryptographic systems
face serious challenges, demanding a new understanding of how quantum

algorithms could both undermine and enhance security.

Chapter 1 deals with the Basics of Cryptography and lays the groundwork
by introducing classical cryptography, tracing its evolution from ancient

ciphers to modern cryptosystems.

In Chapter 2, readers are introduced to Quantum Algorithms, the principles
of quantum mechanics relevant to computing, including qubits,

superposition, and entanglement.

Chapter 3 focuses on Shor's algorithm, a landmark quantum algorithm that
threatens the security of widely used public-key cryptosystems like RSA
and ECC.

In Chapter 4, Grover's Algorithm is examined in the context of brute-force

attacks on symmetric key cryptography.

Chapter 5 focuses on Simon's Algorithm and its role in breaking

cryptographic primitives through structure exploitation.



In Chapter 6, a broader discussion about Cryptographic Implications of
Quantum Computing is given on how quantum computing affects modern

cryptographic systems.

Finally, in Chapter 7, the future of cryptography in the quantum era is

discussed.



Quantum Algorithms and Their
Applications in Cryptology

A Practical Approach

Bhupendra Singh, Mohankumar Mylsamy
and Thamaraimanalan Thangarajan

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business




Designed cover image: Shutterstock

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 Bhupendra Singh, Mohankumar Mylsamy and Thamaraimanalan Thangarajan

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their
use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let

us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information

storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access

www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,

Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact

mpkbookspermissions@tandf.co.uk

For Product Safety Concerns and Information please contact our EU representative

GPSR@taylorandfrancis.com. Taylor & Francis Verlag GmbH, Kaufingerstralle 24, 80331 Miinchen,


https://www.copyright.com/
mailto:mpkbookspermissions@tandf.co.uk
mailto:GPSR@taylorandfrancis.com

Germany.

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are

used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-99817-6 (hbk)
ISBN: 978-1-032-99852-7 (pbk)
ISBN: 978-1-003-60633-8 (ebk)

DOI: 10.1201/9781003606338

Typeset in Nimbus Roman font

by KnowledgeWorks Global Ltd.

Publisher's note: This book has been prepared from camera-ready copy provided by the authors.


https://doi.org/10.1201/9781003606338

Dedication

This book is dedicated to all the researchers, educators, and
innovators who strive to shape the future of quantum
technology and make the world a better place.



Contents

Preface
Acknowledgments

Authors

SECTION I Basics of Cryptography

Chapter 1 Basics of Cryptography

1.1 INTRODUCTION
1.2 Historical Development of Cryptology

1.2.1 A Brief History of Cryptography: The Evolution

of Sending Secret Messages

1.2.2 Ancient Cryptography to Till Date

1.3 Introduction to Stream Ciphers

1.3.1 Synchronous Stream Ciphers

1.3.2 Self-Synchronizing Stream Ciphers

1.3.3 Advantages of Stream Ciphers

1.3.4 Disadvantages of Stream Ciphers

1.4 Overview of the Encryption and Decryption Process in

Stream Ciphers

1.4.1 Encryption Process in Stream Ciphers

1.4.2 Decryption Process in Stream Ciphers
1.5 Introduction to Asymmetric Key Cryptography;



1.5.1 Rivest Shamir Adleman (RSA)
1.5.2 ELGAMMAL Public-key Encryption

1.6 Introduction to Symmetric Key Cryptography

1.6.1 Ciphers of Grain Family

SECTION Il An Introduction to Quantum

Chapter 2

Algorithms

An Introduction to Quantum Algorithms

2.1 Fundamentals of Quantum Computing
2.1.1 The Basics of Quantum Mechanics
2.1.2  Quantum Speedup and Its Potential
2.1.3 Challenges and Limitations of Quantum

Computing
2.1.4 The Future of Quantum Computing

2.2 Difference Between Classical and Quantum Computing

2.2.1 Concept of Bit and Qubit

2.2.2 Computational Basis—Dirac Notation and

Matrix Operations
2.2.3 Inner Product and Orthonormality
2.2.4 Probability and Measurement

2.3 Introduction to Quantum Gates and Quantum

Algorithms

2.3.1 Single-Qubit Gates

2.3.2 Multiple-Qubit Gates

2.3.3 Quantum Fourier Transform (QEFT)
2.3.4 Quantum Circuit for Implementing QFT




2.3.5

Quantum Phase Estimation

2.3.6 Shor's Algorithm for Factoring

2.3.7 Grover's Algorithm for Quantum Searching

2.3.8

Simon's Algorithm for Collision Finding

SECTION Ill Shor's Algorithm: Factoring

Chapter 3

and Cryptanalysis

Shor's Algorithm: Factoring and Cryptanalysis

Classical Extraction of the Period from the

Classical Extraction of the Period from the

Continued Fraction Expansion

Number of Quantum Gates Required to Perform QFT

3.6.1

3.1 Introduction
3.2 Overview of Shor's Algorithm
3.2.1
Measured Value
3.2.2
Measured Value
323
3.3
3.4 Applications of Shor's Algorithm
3.5 Limitations of Shor's Algorithm
3.6

Literature Review of Shor's Algorithm

Shor's Algorithm and Quantum Computation

3.6.2

RSA with Shor's Algorithm

3.6.3

Effects of Imperfections for Shor's Factorization

3.64

Algorithm
Number of Qubits Required for Shor's

3.6.5

Algorithm
Experimental Study of Shor's Factoring
Algorithm Using the IBM Q




3.7 Implementation of Shor's Algorithm

3.7.1 Factoring N = 21_Using Shor's Algorithm
3.7.2 Factoring N = 35_Using Shor's Algorithm

3.8 Discussion and Resource Estimation

3.9 Quantum Simulations
3.9.1 Scaling of Quantum Simulations
3.9.2 The Extent of Simulation

3.9.3  What Information Can a Simulation Give?

3.9.4 Bounds on the Classical Simulation
3.10 Types of Simulators in IBM QISKIT

3.10.1 State Vector Simulator

3.10.2 QASM Simulator

3.10.3 Matrix Product State (MPS)_Simulator:

3.10.4 Unitary Simulator

3.10.5 Stabilizer Simulator

3.10.6 Density Matrix Representation

3.10.7 Quantum Gates Supported by the Simulators

SECTION IV Grover's Algorithm: Quantum
Search

Chapter 4  Grover's Algorithm: Quantum Search

4.1 Introduction

4.2 Overview of Grover's Algorithm

4.3 Literature Survey

4.3.1 Grover's Algorithm
4.3.2 Stream Ciphers




43.3 Grover Attack and Quantum Resource
Estimation
4.4 Simplified Grain 4-Bit (4-Bit Key Stream & 4 Bit V)
4.4.1 Design Details of Simplified Grain 4-Bit (4-Bit
Key Stream)
442 Keyand]lV Initialization
443 Key Stream Generation

4.5 Key Recovery Using Grover

4.6 Quantum Circuit Development of Simplified Grain 4-
Bit
4.6.1 Key and IV Initialization
4.6.2 Key Stream Generation
4.6.3 Simplified Grain 4 Bit
4.7 Quantum Circuit Development of Grover Attack
4.7.1 Single Pair Method
4.7.2 Double Pair Method
4.8 Experimental Results
4.8.1 TestCasel
4.8.2 TestCase?2
4.8.3 TestCase3
4.8.4 TestCase4
4.8.5 TestCases
4.8.6 Summary of Test Cases

4.8.7 Classical Computation Time

4.8.8 Quantum Resource Estimation
4.8.9 Cost of Simplified Grain 4 Bit
4.8.10 Cost of Grover Oracle

4.8.11 Cost of Exhaustive Key Search




4.8.12 Classical Resource Estimation
4.8.13 Required Python Packages

4.8.14 Grover Iteration Calculation

4.8.15 Results and Discussion

4.9 Conclusion and Future Enhancements

SECTIONYV Simon's Algorithm: Collision
Finding

Chapter 5 Simon's Algorithm: Collision Finding

5.1 Overview of Simon's Algorithm
5.2 Literature Survey

5.2.1 Simon Algorithm

5.3 Simon's Problem
5.3.1 Classical Solution
5.3.2 Quantum Solution
5.3.3 Constructing a Circuit for the Black Box

Function

5.4 Example Black Box(oracle) for 1-to-1 Function

5.5 Example Black Box(oracle)_for 2-to-1 (Hidden Bit
String 1001)

5.6 Simon Algorithm Implementation for 4 Bit (Two to
One)

5.7 Simon Algorithm Implementation for 4 Bit (One to
One)

5.8 Proposed Attack Method

5.8.1 Grain 128a Cipher




5.8.2 Design Details of Simplified Grain-4a Cipher
5.8.3 Key and IV Initialization

5.8.4 Keystream Generation

5.8.5 Authenticated Tag Generation

5.8.6 Simon Attack on SGrain 4a

5.8.7 Quantum Circuit Development of Simon Attack

on Grain-4a
5.8.8 Simon Attack on SGrain 4a Algorithm Steps
5.9 Experimental Results
59.1 TestCasel
5.9.2 TestCase?2
5.9.3 TestCase3

5.10 Quantum Resource Estimation

5.10.1 Gate Decomposition and Optimization
5.10.2 _Quantum Resource Cost Analysis

5.11 Conclusion

SECTION VI Cryptographic Implications of
Quantum Computing

Chapter 6  Cryptographic Implications of Quantum Computing

6.1 Importance of Cryptography in Modern Security,

6.1.1 The Role of Cryptography in Modern Security,
6.2 Shor's Algorithm and Its Impact on RSA and ECC

6.2.1 Impacton RSA

6.2.2 Impacton ECC

6.2.3 Magnitude of the Threat




6.3

Grover's Algorithm and Its Impact on Symmetric

6.4

Cryptography,
6.3.1 Implications for Symmetric Cryptography,

6.3.2 Classical vs. Quantum Brute Force

6.3.3 Limitations and Practical Considerations

Vulnerabilities of Classical Cryptographic Systems

6.4.1 Public Key Cryptography (RSA, ECC)

SECTION Vil Future Trends and Applications

Chapter 7 Future Trends and Applications

7.1

7.1.1 Mosca's Theorem: A Quantum Risk Forecasting
Framework

7.1.2 Mosca's Theorem and Quantum Threat

Preparedness
7.1.3 Quantum Security Levels and PQC Strength

Categories
7.1.4 Asymmetric Key Cryptographic Primitives
7.1.5 Symmetric Key Cryptographic Primitives

7.1.6 General Countermeasures

7.1.7 Future Directions

7.1.8 Conclusion




Preface

Cryptography has long been an essential tool in safeguarding digital
communication and securing sensitive information. As technology has
progressed, so has the complexity of the methods used to protect our data.
In the wake of quantum computing's rise, traditional cryptographic systems
face serious challenges, demanding a new understanding of how quantum
algorithms could both undermine and enhance security.

Chapter 1 deals with the Basics of Cryptography lays the groundwork by
introducing classical cryptography, tracing its evolution from ancient
ciphers to modern cryptosystems. It provides foundational concepts such as
stream and block ciphers and distinguishes between symmetric and
asymmetric key systems, setting the stage for deeper cryptographic analysis
in later chapters.

In Chapter 2, readers are introduced to Quantum Algorithms, the
principles of quantum mechanics relevant to computing, including qubits,
superposition, and entanglement. The chapter draws distinctions between
classical and quantum computation and introduces key quantum algorithms
and gates—forming the conceptual basis for understanding quantum
cryptanalysis.

Chapter 3 focuses on Shor's algorithm, a landmark quantum algorithm
that threatens the security of widely used public-key cryptosystems like
Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC).
Readers explore its theoretical foundation, circuit implementation, and

resource estimation, including practical experiments using IBM Qiskit.



In Chapter 4, Grover's algorithm is examined in the context of brute-
force attacks on symmetric key cryptography. The chapter includes a
detailed cryptanalysis of the simplified Grain cipher using Grover's
technique, and presents experimental results and quantum resource
estimates for various attack scenarios.

Chapter 5 focusing on Simon's Algorithm and its role in breaking
cryptographic primitives through structure exploitation. It details the
application of Simon's algorithm to stream ciphers like Grain-128a, with
thorough circuit design, implementation strategies, and test case
evaluations.

In Chapter 6, a broader discussion about Cryptographic Implications of
Quantum Computing is given on how quantum computing affects modern
cryptographic systems. It explains the vulnerabilities of RSA, ECC, AES,
and other algorithms under quantum threats and underscores the urgent
need for transitioning to quantum-resistant alternatives.

Finally, in Chapter 7, the future of cryptography in the quantum era is
discussed. It introduces Mosca's Theorem for risk forecasting and presents a
taxonomy of quantum-safe cryptographic primitives. Topics include
quantum key distribution (QKD), post-quantum cryptography (PQC),
countermeasures, standardization, and infrastructure readiness for quantum
networks.

The book is written for anyone with an interest in the intersection of
cryptography and quantum computing. Whether you're a student, a
professional, or just someone curious about how quantum algorithms will
impact security, this book will provide you with a comprehensive
understanding of the topic.
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1 Basics of Cryptography

DOI: 10.1201/9781003606338-1

“Every secret creates a potential failure point.”

— Bruce Schneier

SUMMARY

This chapter provides a comprehensive overview of cryptography, beginning
with its historical development and evolution, from ancient cryptography to
the modern era, and extending to the challenges and advancements in post-
quantum cryptography. It introduces stream ciphers, covering their types,
advantages, and disadvantages, followed by a detailed look at the encryption
and decryption processes involved. The chapter also explores asymmetric
key cryptography, with an emphasis on Rivest-Shamir-Adleman (RSA),
ElGamal, and Elliptic Curve Cryptography (ECC). Finally, it discusses
symmetric key cryptography, particularly focusing on the Grain family of

ciphers, including Grain v1, Grain-128, and Grain-128a.

1.1 INTRODUCTION


https://doi.org/10.1201/9781003606338-1

Cryptography, in general, is the practice and study of techniques for secure
communication in the presence of adversarial behavior. It's like creating a
secret message that others can't understand unless they have the special key
to decode it. People use cryptography to keep data like messages,
passwords, and financial details safe from hackers or anyone trying to access
them without permission [1].

Derived from the Greek words meaning “hidden writing”, cryptography
involves encrypting information to ensure only the intended recipient can
understand it. The practice of sending secret messages dates back to ancient
civilizations and has been a wvital tool throughout history. Today,
cryptography is a cornerstone of cybersecurity, safeguarding personal
communications, authenticating documents, securing online payment data,

and protecting classified government information [2].

1.2 HISTORICAL DEVELOPMENT OF CRYPTOLOGY

Although cryptography has been used for thousands of years to cover secret
messages, its formal study as both a science and an art began only about
1949. Cryptography, in its earliest forms, dates back to ancient civilizations
like the Egyptians, Greeks, and Romans. One of the earliest known
examples 1s the Caesar cipher, used by Julius Caesar around 60 BCE.
However, modern cryptography, as we understand it today, began to take
shape in the early 20th century with the development of mathematical
techniques and more sophisticated encryption methods [3].

The earliest known use of cryptography dates back to around 1900 BC,
found in an inscription in the tomb of the Egyptian nobleman Khnumhotep
I. This inscription included unusual pictograph symbols substituted for
standard ones. While the purpose wasn't to mask the message, it seems to

have been an attempt to alter its appearance, perhaps to make it more formal



or prestigious. Though not truly secret writing, it represents one of the first
examples of text transformation. Evidence of cryptographic techniques has
been observed in many early civilizations. For instance, in ancient India,
Kautilya's Arthashastra, a foundational text on governance, discusses
intelligence and mentions spies using “secret writing”, which is a fascinating
ancestor to modern covert operations [4].

Around 100 BC, Julius Caesar famously employed a form of encryption
to send secret messages to his generals during wartime. This method, known
today as the Caesar cipher, is one of the most widely referenced historical
ciphers in academic discussions. A cipher refers to a method or algorithm
used for encrypting or decrypting the ciphertext. In the Caesar cipher, each
character in the original message (called plaintext) is replaced with a
different character to create an encrypted message (called ciphertext).
Caesar's version specifically involved shifting each letter by three places in
the alphabet. For example, the letter “A” became “C,” “B” became “D,” and
so on. When the alphabet reached its end, it wrapped around, so “Y” shifted
to “A” as shown in Figure 1.1. It's clear that the security of such ciphers
relies more on keeping the method secret rather than the encryption key
itself. Once the technique becomes known, decoding the messages becomes

straightforward [3].

A B C D E X Y y/

Figure 1.1 Model of Caesar cipher <1



In the 16th century, Vigenere introduced a cipher that was one of the first
to use an encryption key. In one version of his method, the encryption key
was repeated to match the length of the message. As depicted in Figure 1.2,
the ciphertext was generated by combining each character of the message
with the corresponding character of the key using modulo 26 arithmetic.
(Modulo, or mod, is a function which returns the remainder value when a
number is divided by another number.) Although Vigenére's cipher could
also be broken, it was notable for introducing the concept of encryption
keys. Unlike the Caesar cipher, where secrecy relied on hiding the method,
Vigenere's cipher emphasized protecting the key to ensure message

confidentiality, even though its implementation had flaws [6].

Key C|R]|Y|P T|O]J]C|R]JY|P U@ || || R E T @ || &

Plaintext W] E L Cc 0 M E T o]aQ U A N T U M E R A

Ciphertext | Z | W | K | S | B H L NGO | P|AQ L T|]C Y| G|D

Figure 1.2 Model of Vigenére's cipher <1

As technology became increasingly electric, Edward Hebern developed
an electro-mechanical device known as the Hebern rotor machine. This
machine featured a single rotor containing a secret key embedded within a
rotating disk. The key defined a substitution table, and each press of a
keyboard key produced a corresponding ciphertext character. With every
keypress, the disk rotated one notch, altering the substitution table for the
next character. However, this system was eventually broken by analyzing the
frequency of letters [7].

Later, at the end of World War I, German engineer Arthur Scherbius

invented the Enigma machine, which became widely used by German forces



during World War II. Unlike Hebern's rotor machine, the Enigma used
multiple rotors, such as three, four, or more than that rotated at varying rates
with each keypress, creating a highly complex substitution system. The key

to the Enigma machine as shown in Figure 1.3 was the initial rotor settings.

Despite its sophistication, the Enigma cipher was eventually deciphered by
Polish cryptographers, who passed their findings to British codebreakers.
The British further developed methods to determine the daily keys,

significantly aiding the Allied war effort [§].

Figure 1.3 Enigma machine &

Until World War II, cryptography was primarily used for military

purposes, mainly to safeguard classified military information. However,



after the War, it began to gain commercial importance as businesses sought
ways to protect their data from competitors. In the early 1970s, IBM
recognized the growing demand for encryption from its customers. In
response, the company formed a “crypto group” led by Horst Feistel, which
developed a cipher named Lucifer [9]. In 1973, the National Bureau of
Standards (now known as NIST) in the United States issued a call for
proposals for a block cipher to serve as a national encryption standard. This
move reflected their realization that many commercial products lacked
adequate cryptographic security. IBM's Lucifer was ultimately chosen and
became known as Data Encryption Standard (DES).

By 1997, advances in computing power exposed a significant weakness in
DES, its small key size, which made it vulnerable to exhaustive search
attacks or brute force attack [10]. Recognizing the need for stronger
encryption, NIST issued another request for proposals in 1997 to develop a
new block cipher. After evaluating 50 submissions, NIST selected Rijndael
in 2000 and adopted it as Advanced Encryption Standard (AES). Today,

AES i1s a widely used and trusted standard for symmetric key encryption
[L1].

1.2.1 A BRIEF HISTORY OF CRYPTOGRAPHY: THE
EVOLUTION OF SENDING SECRET MESSAGES

Cryptosystems typically start with plaintext, an unencrypted message, which
is transformed into ciphertext, an encrypted form using one or more
encryption keys. This ciphertext is then transmitted to the intended recipient.
If intercepted, the ciphertext remains meaningless without the proper
decryption key, provided the encryption method is strong. The rightful
recipient, with the correct key, can decrypt the message back into its original
form [12].



1.2.2 ANCIENT CRYPTOGRAPHY TO TILL DATE

Cryptography has evolved significantly over millennia, transitioning from
basic techniques of message concealment to modern cryptographic
algorithms. Here's a summary of cryptographic development across time as

follows.

1.2.2.1 Ancient Era

Egyptian Hieroglyphics (1900 BCE):

Egyptian hieroglyphics, dating back to around 1900 BCE, were a system
of pictorial symbols used for writing and recording information. While not a
cipher in the modern sense, certain symbols or combinations of hieroglyphs
were used to encode messages or hidden meanings, especially in religious
and royal contexts. Hieroglyphics played a key role in Egyptian
communication, with some texts involving symbolic or metaphorical

encoding to convey deeper meanings [6].

Mesopotamian Ciphers (c. 1500 BCE):

Mesopotamian ciphers, dating back to around 1500 BCE, represent some
of the earliest examples of cryptographic techniques. These ciphers were
primarily used for securing communications, often in the form of encoded
messages carved on clay tablets. The ciphers typically involved simple
substitution methods, where symbols or characters were replaced with others
to obscure the original message. The use of ciphers in ancient Mesopotamia
was likely linked to both administrative needs and military communications,

marking an early application of cryptographic methods in society [13].

Scytale Cipher (Sparta, c. 600 BCE):
The Scytale cipher, used in Sparta around 600 BCE, is a transposition

cipher that involved wrapping a strip of parchment around a cylindrical



object. The message was written across the wrapped strip, and when
unwrapped, the text appeared scrambled. Only those with a matching
cylinder could decode the message. This simple yet effective cipher was

used primarily for military communication [14].

Atbash Cipher (Hebrew, c. 500 BCE):

The Atbash cipher, originating around 500 BCE in Hebrew, is a simple
substitution cipher where the first letter of the alphabet is substituted with
the last, the second with the second-last, and so on. This method was used
for encoding Hebrew texts, particularly for creating encrypted messages or

for providing cryptic interpretations of religious texts [15].

Caesar Cipher (Rome, c. 50 BCE):

The Caesar cipher, used around 50 BCE in ancient Rome, is a substitution
cipher where each letter in the plaintext is shifted by a fixed number of
positions in the alphabet. Named after Julius Caesar, who used it to protect
military messages, the cipher is one of the earliest and simplest forms of

encryption, offering a basic level of security by shifting letters [16, 17].

Ancient Indian Cryptology (300 BCE):

India has a rich history of cryptography that dates back thousands of
years, with several unique cryptographic methods emerging in ancient times.
While there were no formalized systems of cryptography as we understand
today, early Indian cryptographers used various techniques for encryption

and securing messages, particularly in military and royal communication
[L7].

1. Kautilya's Arthashastra (3rd Century BCE): One of the earliest
references to cryptography in India comes from the Arthashastra, a

treatise on statecraft, military strategy, and economics written by Kautilya



(Chanakya) in the 3rd century BCE. The text mentions the use of ciphers
for secure communication and is one of the earliest known instances
where cryptography is discussed in the context of espionage and statecraft
[4].

Kautilya describes several methods of cryptography:

Substitution Ciphers: One of the methods mentioned is the
substitution cipher, where letters of the alphabet are substituted with other
symbols or letters. This early reference to substitution ciphers aligns with
later cipher techniques like the Caesar cipher.

Use of Indirection: He also discusses using indirect communication,
where the true message might be hidden within a larger body of text or
disguised using a cipher.

. The Use of Codes in Indian Literature Ancient Indian literature and
religious texts also contained encoded messages. One such example is the
Mahabharata, where hidden meanings and messages were often
embedded in the text, requiring deciphering or interpretation. In the
Sanskrit language, the use of poetic meters (known as Chandas) often had
encoded meanings. The Brahmi script, one of the earliest scripts used in
India, is also believed to have contained encrypted elements in some of its
forms [18].

. The “Shabda” Cipher (Word-based Ciphers): Ancient Indian
cryptography also involved word-based ciphers, known as Shabda
Ciphers, where words or phrases would be substituted with other
meanings or symbols. This form of encoding often used synonyms,
antonyms, or references to objects, gods, or symbols that had a particular
significance. A text would look like a normal phrase or story but would
carry a hidden message if interpreted correctly [19].

. Cipher Systems in Indian Kingdoms: Indian kings and military

strategists were known to have used cryptographic methods to safeguard



their communications. This is evident in the military treatises from
ancient and medieval India, where cryptographic methods were vital in
maintaining secrecy, especially in the case of espionage. The Chola
dynasty, for instance, is believed to have used forms of encryption for
military communications [20].

. The Use of Ciphertext in the Indian Subcontinent: Cipher texts,
especially those using substitution methods, were sometimes used in
royal courts for confidential matters. Royal decrees and private
communications between rulers and courtiers may have been encrypted
using simple ciphers, though the exact details of these ciphers are not
always well documented.

. Indians and the Concept of “Encryption”: While the term “encryption”
wasn't used in ancient India, the concept of securing information through
transformation and manipulation of text was well understood. The
Kautilya Arthashastra and other texts show that encryption was often
used for military, political, and royal purposes. A variety of simple
substitution ciphers, like the Caesar cipher, which shifts letters in the
alphabet, could have been used, as well as methods of using
polyalphabetic or homophonic ciphers, which were more advanced forms
of encryption.

. Early Examples of Cryptographic Practices in India:

Brahmi Script: The Brahmi script, one of the earliest scripts used in
India, had some cryptographic properties. Some of the inscriptions in this
script have led scholars to believe that encryption was employed to hide
secret messages or encode religious texts [19].

Asokan Edicts: King Ashoka's edicts (circa 3rd century BCE) found
on pillars and rocks across India are written in Kharosthi and Brahmi

scripts. Though not strictly ciphers, some scholars argue that the edicts’



meanings were encoded or contained hidden instructions that required
interpretation beyond the visible text.

8. Ancient Indian Ciphers in Modern Cryptography: Though ancient
Indian cryptography did not develop into a formal system or survive in
detailed records, its influence on the development of encryption can be
recognized in modern cryptographic methods. The techniques described
by Kautilya and others align with those used in modern encryption, such
as substitution ciphers, polyalphabetic ciphers, and even the application

of basic cryptanalysis principles [20].

1.2.2.2 Middle Ages

Arabic Cipher (c. 800 CE):

Arabic cryptography, emerging around 800 CE, played a significant role
in the development of cryptographic techniques during the Islamic
Golden Age. Arab scholars, such as Al-Kindi, are credited with
pioneering methods like frequency analysis to break simple ciphers. They
expanded on earlier encryption methods, including the use of substitution
ciphers, and made advancements that laid the groundwork for modern
cryptographic concepts. Their work in cryptanalysis, particularly the
study of letter frequencies, greatly influenced the evolution of

cryptography [21].

Vigenére Cipher (c. 1500 CE):

The Vigenere cipher, developed around 1500 CE, is a polyalphabetic
substitution cipher that uses a keyword to determine the shift for each
letter in the plaintext. Unlike simple ciphers like the Caesar cipher, the
Vigenere cipher applies a different shift for each letter, making it more

secure and harder to break. The keyword is repeated to match the length



of the message, and each letter of the plaintext is shifted based on the

corresponding letter of the keyword [22].

Cipher Disks (1400s CE):

Cipher disks, developed in the 1400s CE, were a mechanical tool used for
encryption and decryption. A cipher disk typically consisted of two
rotating disks, each inscribed with the alphabet. By aligning the disks in
various ways, a letter from the plaintext could be substituted with a letter
from the corresponding position on the other disk. This method allowed
for easier encryption compared to manually writing out substitution
ciphers and provided a more efficient way of encrypting messages. Cipher
disks were widely used in the Renaissance period for securing

communications [23].

Playfair Cipher (1854 CE):

The Playfair cipher, introduced in 1854 by Charles Wheatstone and
popularized by Lord Playfair, is a digraph substitution cipher. It encrypts
pairs of letters (digraphs) rather than individual letters. A 5 x 5 matrix of
letters 1s used, where each pair of plaintext letters is substituted with
letters from the matrix based on specific rules. The cipher was notable for
being more secure than simple substitution ciphers, as it removed the
predictability of single-letter frequency analysis. It was used primarily by
the British military during the late 19th and early 20th centuries [24].

1.2.2.3 Modern Cryptography
Claude Shannon's Information Theory (1949):

Claude Shannon's Information Theory, introduced in 1949, revolutionized
cryptography and communication. Shannon's work established the

mathematical foundations of information transmission, encryption, and



data compression. He defined key concepts like entropy (measuring
information content) and redundancy and introduced the idea of “perfect
secrecy” with his one-time pad model. this groundbreaking study, “A
Mathematical Theory of Communication”, laid the groundwork for
modern cryptography, demonstrating how encryption systems could be

analyzed and optimized for security [25].

Data Encryption Standard (DES, 1970s):

The DES, developed in the 1970s, was a symmetric key encryption
algorithm standardized by the U.S. National Bureau of Standards (now
NIST). It uses a 56-bit key and a Feistel structure to encrypt data in 64-bit
blocks through 16 rounds of substitution and permutation. DES became
widely adopted for securing sensitive data but was eventually deemed
insecure due to advances in computing power, which made brute-force

attacks feasible. It was later replaced by stronger algorithms like Diffie-
Hellman (1976) [26] and AES [27].

Public Key Cryptography (RSA, 1978):

This cryptography is introduced with the RSA algorithm in 1978 by Ron
Rivest, Adi Shamir, and Leonard Adleman, revolutionized public key
encryption. RSA uses a pair of keys: a public key for encryption and a
private key for decryption. It is based on the computational difficulty of
factoring large numbers, making it secure for data transmission and digital
signatures. RSA became the foundation of modern cryptography, enabling

secure communication over untrusted networks like the internet [28].

Advanced Encryption Standard (AES, 2001):

The AES, adopted in 2001 by NIST, is a symmetric key encryption
algorithm designed to replace DES. Developed by Vincent Rijmen and
Joan Daemen, AES uses a block size of 128 bits and supports key sizes of



128, 192, or 256 bits. It operates through multiple rounds of substitution,
permutation, and mixing, providing strong security and efficiency. AES is
widely used globally to secure data in applications such as online

transactions, wireless communications, and data storage [27].

Elliptic Curve Cryptography (ECC, 1986):

Elliptic Curve Cryptography (ECC), introduced in 1986 by Neal Koblitz
and Victor Miller, is a form of public key cryptography based on the
mathematics of elliptic curves over finite fields. ECC offers strong
security with smaller key sizes compared to RSA, making it more
efficient for devices with limited computational power and bandwidth. Its
applications include secure messaging, digital signatures, and key

exchange protocols, playing a vital role in modern cryptographic systems
like TLS/SSL and blockchain technologies [29].

1.2.2.4 Post-Quantum Cryptography (PQC), (Present and
Future)

Code based PQC (1978): Code-based cryptography is one of the PQC
methods and is based on error-correcting codes, particularly binary linear
codes. The most well-known code-based cryptosystem is the McEliece
cryptosystem. The McEliece cryptosystem is a public key encryption
algorithm based on the hardness of decoding a random linear code. It is
considered resistant to attacks by cryptographically relevant large
quantum computers (CRLQC) [30].

Quantum Cryptography (1984):
Quantum cryptography, introduced in 1984 with the BB84 protocol by
Charles Bennett and Gilles Brassard, leverages the principles of quantum

mechanics to achieve secure communication. BB84 uses quantum



properties like the no-cloning theorem and quantum superposition to
enable quantum key distribution (QKD), ensuring that any eavesdropping
on the transmission disturbs the system and can be detected. Quantum
cryptography offers unprecedented security, as it relies on the laws of
physics rather than computational assumptions, making it resistant to both

classical and quantum attacks [31].

Lattice-based (2010s):
Lattice-based and hash-based cryptographic schemes, emerging
prominently in the 2010s, are key components of PQC, designed to resist

quantum attacks.

Lattice-based cryptography relies on the complexity of solving lattice
problems, such as the Shortest Vector Problem (SVP), which are hard
even for quantum computers. It offers efficient encryption, digital

signatures, and key exchange protocols [32].

Hash-based schemes (2010s): Hash-based cryptography uses
cryptographic hash functions for security, primarily in digital signatures.
Schemes like XMSS (eXtended Merkle Signature Scheme) are quantum-
resistant and rely on the strength of hash functions rather than number-
theoretic assumptions [33].

Both approaches are critical in developing secure systems for the post-

quantum era.

Cryptography Today (2024):

Cryptography in 2024 continues to evolve to address modern challenges,
including the rise of quantum computing, increasing data privacy
demands, and the expansion of the Internet of Things (IoT). PQC, with

algorithms resistant to quantum attacks, is a major focus, as organizations



prepare for the quantum era. Techniques like homomorphic encryption
enable computations on encrypted data without decryption, enhancing
privacy in cloud computing. Additionally, lightweight cryptography
ensures secure communication for resource-constrained devices in IoT.
Blockchain technology, zero-knowledge proofs, and advancements in
secure multi-party computation further drive innovation, making
cryptography essential for secure digital systems in a hyper-connected
world [34].

1.3 INTRODUCTION TO STREAM CIPHERS

Stream ciphers are a class of encryption algorithms that operate on data one
bit or byte at a time, producing a stream of ciphertext corresponding to a
stream of plaintext. Unlike block ciphers, which encrypt fixed-size blocks of
data, stream ciphers work by generating a pseudorandom key stream, which
is then combined with the plaintext using a simple operation, typically XOR
(exclusive OR). The key stream is usually generated from a secret key and
an 1initialization vector (IV) to ensure that the encryption remains
unpredictable. Stream ciphers are highly efficient and suitable for
applications where data needs to be encrypted in real-time or in continuous
flows, such as secure communications or video streaming. They are
typically faster and more resource-efficient than block ciphers, making them
ideal for environments with constrained computational resources or limited
bandwidth. However, stream ciphers require careful management of keys
and Vs to prevent vulnerabilities. Reusing the same key stream for multiple
messages can lead to catastrophic security breaches. Well-known stream
ciphers include RC4 (historically) and Salsa20/ChaCha20, which are
commonly used in protocols like TLS and SSH. Despite their efficiency,



stream ciphers can be susceptible to certain types of attacks, particularly if
the key stream is predictable or improperly implemented [35, 36].

Stream ciphers can be broadly categorized into two main types:
synchronous stream ciphers and self-synchronizing stream ciphers. The
Stream cipher representation is shown in Figure 1.4. These types differ in
how the key stream is generated and how they synchronize with the

plaintext during encryption and decryption.
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Figure 1.4 Stream ciphers <1

1.3.1 SYNCHRONOUS STREAM CIPHERS

In synchronous stream ciphers, the key stream is generated independently of
the plaintext or ciphertext. The key stream is produced using a secret key
and an initialization vector (IV) and is combined with the plaintext (or
ciphertext) bit by bit, typically via an XOR operation. The encryption and
decryption processes are independent of the message data, which means that
both sender and receiver must stay synchronized to ensure the correct
decryption.

Examples: RC4: One of the most famous (now considered insecure) stream
ciphers, used in protocols like SSL/TLS and WEP. Salsa20 and ChaCha20:



Secure and modern stream ciphers, widely used in cryptographic protocols
like TLS and SSH.

1.3.2 SELF-SYNCHRONIZING STREAM CIPHERS

In self-synchronizing stream ciphers, the key stream is generated in such a
way that it depends on both the previous ciphertext and the secret key. This
means that if part of the ciphertext is lost or corrupted, the cipher can
“resynchronize” after a certain number of bits without needing the complete
previous ciphertext.

Examples: A block cipher in cipher feedback mode and a lightweight
stream cipher designed for resource-constrained environments, like IoT

devices.

1.3.3 ADVANTAGES OF STREAM CIPHERS

Efficiency: Stream ciphers are typically faster and more efficient than
block ciphers, especially for encrypting long streams of data. They
operate bit-by-bit or byte-by-byte, making them ideal for real-time or
high-speed encryption applications (e.g., streaming video, voice

communication).

Low Overhead: Since they encrypt data incrementally (one bit or byte at
a time), stream ciphers have lower memory and computational
requirements, which is valuable for devices with limited processing

power, such as embedded systems or IoT devices.

Flexible Length: Stream ciphers can encrypt data of any length, unlike
block ciphers which require padding to fill out data to a fixed block size.
This flexibility makes stream ciphers suitable for streaming data or when

the data length is unpredictable.



No Padding: Stream ciphers do not require padding as block ciphers do.
This can reduce overhead and simplify the encryption process for certain

types of data.

Real-Time Encryption: Stream ciphers are well-suited for scenarios
where data is being transmitted in real-time, such as in video streaming or

VoIP, where low latency is important.

1.3.4 DISADVANTAGES OF STREAM CIPHERS

Key Management Issues: Stream ciphers rely on a pseudo random key
stream, which must be unique for each session or message. Reusing the
same key stream for multiple messages (key reuse) can result in
catastrophic security vulnerabilities, such as key stream reuse attacks.
Proper key and IV management is crucial.

Susceptibility to Errors: A single bit error in the cipher text can
propagate throughout the decryption process. If the key stream is not
synchronized properly, it can cause the entire message to be corrupted or
lead to incorrect decryption.

Vulnerability to Key Stream Predictability: If the algorithm used to
generate the key stream 1s weak or predictable, it can be easily broken by
attackers. For example, older stream ciphers like RC4 have been shown to
have vulnerabilities that make them insecure against modern cryptanalytic

attacks.

Security Risks with Poor Implementation: Stream ciphers are sensitive
to implementation flaws. Weaknesses such as improper handling of
initialization vectors (IVs) or key management errors can compromise the

security of the stream cipher.



Limited Strength in the Face of Known-Plaintext Attacks: In some
stream ciphers, attackers may exploit known-plain text attacks if they
have access to both cipher text and corresponding plaintext. These types

of attacks are harder to defend against in poorly designed stream ciphers.

1.4 OVERVIEW OF THE ENCRYPTION AND
DECRYPTION PROCESS IN STREAM CIPHERS

Stream ciphers encrypt and decrypt data by processing plaintext (or
ciphertext) bit-by-bit or byte-by-byte, using a pseudo-random key stream
generated from a secret key. The process is designed for speed and
efficiency, making stream ciphers ideal for real-time communication and
data streaming. The encryption and decryption processes in stream ciphers

follow a similar structure but occur in opposite directions.

1.41 ENCRYPTION PROCESS IN STREAM CIPHERS

Key Stream Generation: The core of stream cipher operation lies in
generating a pseudorandom key stream (also called the key stream). This
key stream is created using a secret key (and possibly an initialization
vector, IV). The key stream should be unpredictable and ideally never repeat
to ensure security. The key stream is generated independently of the
plaintext, often using a cryptographic primitives such as a linear feedback
shift register (LFSR), Boolean function, S-boxes or a more modern function
like Salsa20 or ChaCha20 and Forero.

XOR operation: Once the key stream is generated, it is combined with
the plaintext. This is typically done using the XOR (exclusive OR)

operation:

Ciphertext = Plaintext @ Keystream



The truth table for the XOR gate is:

A | B A® B
010 0
0| 1 1
I |0 1
1 1 0

Transmission of Ciphertext: The resulting ciphertext is then transmitted
over the communication channel. This ciphertext looks like random noise to
anyone who intercepts it, as long as the keystream is kept secret.

Each bit (or byte) of the plaintext is XORed with the corresponding bit (or
byte) of the key stream. The XOR operation ensures that the ciphertext is
unrecognizable and appears random, making it hard for attackers to discern

the original plaintext without the keystream.

1.4.2 DECRYPTION PROCESS IN STREAM CIPHERS

Key Stream Generation (Same as Encryption): The decryption process
begins similarly to the encryption process: the receiver uses the same secret
key and initialization vector (IV) (if used) to regenerate the same keystream
that was used during encryption. It is crucial that both the sender and the

receiver have synchronized keystreams for decryption to work correctly.

XOR Operation (Same as Encryption): The receiver then applies the
XOR operation to the ciphertext and the keystream:

Plaintext = Ciphertext @& Keystream

Since XOR is a symmetric operation, applying the same keystream that was

used for encryption will recover the original plaintext.



For example, if:
Ciphertext = Plaintext @ Keystream

then,

Plaintext = Ciphertext @& Keystream

This results in the original plaintext being restored.

Use of Plaintext: After decryption, the original plaintext is recovered and

can be processed or displayed as needed.

1.5 INTRODUCTION TO ASYMMETRIC KEY
CRYPTOGRAPHY

Before the advent of asymmetric key cryptography, symmetric
cryptographic methods dominated. In symmetric cryptography, the sender
and receiver share the same secret key for encryption and decryption. This
model, while efficient, posed a critical challenge: securely distributing keys
to both parties. In large networks, this problem became increasingly
complex and prone to interception [37]. In 1976, Whitfield Diffie and
Martin Hellman introduced the concept of public-key cryptography,
revolutionizing the field of cryptography [26]. Their work laid the
foundation for secure key exchange without prior trust. Shortly after, the
RSA algorithm was developed by Rivest, Shamir, and Adleman, which
became the first practical implementation of asymmetric cryptography.
Asymmetric key cryptography, often termed as public-key cryptography,
1s a transformative innovation in the field of digital security, providing a key
for secure communication and data exchange. Unlike symmetric key
cryptography, which relies on a single shared key, asymmetric cryptography
uses a pair of keys: a public key, openly distributed for encryption or



signature verification, and a private key, securely held for decryption or
signature creation. This dual-key mechanism eliminates the need for pre-
established trust or secure key exchange, overcoming a significant limitation
of earlier cryptographic methods. It enables secure communication over
untrusted networks such as the internet, forming the foundation of modern
digital security. Asymmetric key cryptography powers critical technologies
like digital signatures, which authenticate data and ensure its integrity;
secure online transactions, which protect sensitive financial information; and
digital identity verification, which establishes trust in online interactions.
Furthermore, it plays a pivotal role in blockchain systems by securing
transactions and ensuring the authenticity of decentralized ledgers. Its
applications extend to secure email systems like PGP, virtual private
networks (VPNs) for safeguarding online privacy, and protocols like
SSL/TLS, which underpin secure web communications. Beyond enhancing
cybersecurity, asymmetric key cryptography has significantly contributed to
the growth of e-commerce, remote work, and global collaboration by
establishing trust across digital platforms. However, the advent of quantum
computing presents a new challenge, as quantum algorithms like Shor's
could potentially break traditional asymmetric systems by efficiently solving
the mathematical problems on which they are based. To address this threat,
researchers are developing quantum-resistant cryptographic algorithms,
ensuring that asymmetric key cryptography continues to secure the digital
landscape. As a cornerstone of modern cryptography, asymmetric systems
remain indispensable in building a safe, trustworthy, and interconnected
world [38].

Asymmetric cryptography relies on the mathematical relationship

between two keys:



1. Public Key: Used for encryption or signature verification and can be
freely shared.
2. Private Key: Used for decryption or signature creation and must be kept

secret.

The security of these systems depends on the computational difficulty of
certain mathematical problems, such as prime factorization (RSA) or the
Elliptic Curve Discrete Logarithm Problem (ECDLP). Figure 1.5 shows

different keys are used for encryption and decryption process.

Plaintext Ciphertext Plaintext
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& —> Encrypt —>»| Decrypt —)‘ &
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Figure 1.5 Asymmetric key cryptography <1

Key Generation Process



Key generation typically involves:

1. Selecting a large random number (or numbers).
2. Applying a mathematical function to derive the keys.
3. Ensuring the keys meet security criteria, such as sufficient entropy and

uniqueness.
Encryption and Decryption Process

1. Encryption: The sender encrypts a plaintext message using the
recipient's public key. This ensures that only the recipient can decrypt the
message.

2. Decryption: The recipient uses their private key to decrypt the ciphertext,

recovering the original message.

1.5.1 RIVEST SHAMIR ADLEMAN (RSA)

RSA is a well-known public-key or asymmetric cryptographic algorithm as
shown in Figure 1.6. It protects sensitive data through encryption and
decryption using a private and public key pair. First introduced in 1977 by
Ron Rivest, Adi Shamir, and Leonard Adleman of the Massachusetts
Institute of Technology, RSA is named after their last initials. RSA utilizes a
private and public key pair. The private key is kept secret and known only to
the creator of the key pair, while the public key is available to anyone. In
RSA, either the public key or the private key can be used for encryption, and
the other key is used for decryption. This is the main advantage of RSA
[39].
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RSA is one of the most widely used encryption mechanisms worldwide.
However, the computational complexity of RSA makes it a relatively less
efficient and resource-heavy algorithm. Hence, it is not suitable for
encrypting large messages or files.

RSA is based on factorizing large integers. First, two large prime numbers
must be chosen for the key pair. The prime numbers must be selected
randomly and with a substantial difference between them. For example,
consider the two chosen prime numbers as p and g. Then, the algorithm

calculates their product, denoted by:
n=pxq

The values of p and g should be kept secret, while #n, 1s the modulus value.
Next, the Euler's totient function is calculated using p and g, and the integer
e, whose value is used as the public exponent, is selected. Then the next step
is calculating the value of d, which is used as the private exponent. The
public key is the pair (n, e), while the private key is the pair (n, d).

Encryption: When encrypting a plaintext, the sender uses the public key
(n, e) of the recipient to compute the ciphertext, where the ciphertext C is

given by:

C =mfmod X n



where m indicates the plaintext message.
Decryption: When decrypting an RSA encrypted message, the recipient
uses their private key (n,d) to compute the plaintext message, where the

plaintext message m is given by:
m = C%mod X n

APPLICATIONS AND USE CASES OF RSA

RSA is used in several information security and cryptography applications.

Some of the most widely used applications include:

1. Digital signatures
2. Digital certificates
3. Secure communication protocols

4. Secure key exchange of cryptographic system

The RSA algorithm is difficult to crack, provided that it adheres to the
recommendations. Several vulnerabilities in RSA have been discovered over

the past few years. These vulnerabilities are:

1. Side-channel attacks

2. Inadequate key length

3. Weaknesses in prime numbers (Pseudoprime)
4. Lost or stolen keys

5. Fault-based attacks

MITIGATING RSA VULNERABILITIES

There are several things you can do to mitigate RSA vulnerabilities:



1. Use a strong prime number generator to ensure that the prime numbers
are unpredictable and cannot be easily guessed by an attacker.

2. Avoid using weak prime numbers, such as small primes or primes too
close to each other.

3. Use a minimum length of 2048 bits for the RSA key.

4. Take necessary actions to protect against fault-based attacks, such as
using tamper-resistant hardware.

5. Manage and secure the RSA keys properly using techniques like regular
key rotation and different keys for different applications.

6. Keep the RSA algorithm up to date by regularly monitoring for

vulnerabilities and updates.

1.5.2 ELGAMMAL PUBLIC-KEY ENCRYPTION

ElGamal cryptography works in three stages:

1. Key Generation
2. ElGamal Encryption
3. ElGamal Decryption

Figure 1.7 shows the process of EIGamal Cryptography.
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A. ELGAMAL KEY GENERATION:

Select a large prime number p

&

Compute e, = e{ modp

7
PT = (c; = e3") mod pJ—)

Decryption

PT

\

Plaintext

Select encryption key ey to be a primitive root modulo p
Select decryption key d such that1 < d < p — 2
Select encryption key e, such that

8228?

mod p

Form the public key as the set (e, e, p) to be announced publicly

Private key d is kept secret.

B. ELGAMAL ENCRYPTION:

Select a random number »



Compute the first part of the ciphertext c;:

ci=e] mod p
Compute the second part of the ciphertext c,:
co = (e} -PT) mod p

where PT is the plaintext message.

C. ELGAMAL DECRYPTION:
PT = (c2-(c;")) mod p

where ¢y and ¢, are the ciphertext parts.

EXAMPLE 1: ELGAMAL ENCRYPTION AND DECRYPTION

Let us consider the following parameters:

Plaintext M =7
Encryption key e; = 2
Private key d = 3
Random number r» = 4

Prime number p = 11

STEP 1: KEY GENERATION

First, let's go through the key generation process.

Select a large prime number p: In this case, p = 11, which is a small
prime number for demonstration purposes. In real-world applications, p
should be a large prime number, typically at least 1024 bits long, to

ensure security.



Ensure p — 1 has a large prime factor: Here, p — 1 = 10, and the prime
factorization of 10 is 2 x 5, which is simple for demonstration but not
secure for real applications. For stronger security, the prime number p
should be chosen such that p — 1 has a large prime factor.

Select encryption key e;: The encryption key e; = 2 is chosen to be a
primitive root modulo p = 11. This is an arbitrary choice in this example.
In general, e; should be a primitive root modulo p, meaning that
e] mod p should generate all values in the set {1,2,...,p — 1}.

Select the decryption key d: The decryption key is d = 3, which is
selected such that1 < d < p — 2.

Compute es:
ey = eil mod p
Substituting the values:
es =2° mod 11=8 mod 11 =8

So, the second part of the public key is es = 8.
Form the public key: The public key is the set (e, e2, p), which in this

case 1s:
(617 627p) — (2) 87 ]-1)

The private key is d = 3, and it is kept secret.

STEP 2: ENCRYPTION

Now, let's proceed to encrypt the plaintext M = 7.

Select a random number r: In this example, r = 4.

Compute the first part of the ciphertext c;:



c1=e; mod p
Substituting the values:
c1=2" mod 11=16 mod 11=5

SO, C1 — 5.

Compute the second part of the ciphertext c;:

co = (e5-PT) mod p
Substituting the values:

c = (8*-7) mod 11
First, calculate 8 mod 11. To do this step-by-step:

82=64 mod 11=9 (since64 + 11 = 5remainder9)
Now, calculate 8% mod 11:
84 =(8%)?=92=81 mod 11 =4 (since81 + 11 = 7remainder 4)
Now, calculate c,:
ca=(4-7) mod 11 =28 mod 11=6

SO, Cy = 6.

STEP 3: DECRYPTION
Now, let's decrypt the ciphertext (c1, c2) = (5, 6).
Compute czl)_l_d mod p. We need to calculate:

p—1-d g
cq mod p = ¢; mod p



Substituting the values p = 11, d = 3, and ¢; = 5:
d71 = 51123 — 57 mod 11
Now, let's compute 57 mod 11:
52 =25 mod 11 =3
5 =(5%)?=32=9 mod 11
50=5%.5=9.3=27 mod 11=5
5" =5.5=5.5=25 mod 11 =3

So,57 mod 11 = 3.
Calculate the plaintext (PT):

PT = (c3- (%) mod p=(6-3) mod 11
PT =18 mod 11 =7

Thus, the decrypted plaintext is 7, which matches the original message
M="1.

1.5.3 ELLIPTIC CURVE CRYPTOGRAPHY

In the year 1985, Neal Koblitz and Victor S. Miller independently leveraged
elliptic curves over finite fields for public key cryptography. The motivation
behind this was the reduction in the key size compared to conventional
public key cryptography. The smaller key size helps in key management and
reduces the resource requirement in hardware implementations. Lenstra also
used elliptic curves to factor a positive integer.

In ECC, the design and analysis of cryptographic primitives are carried
out using elliptic curves. The elliptic curve cryptographic primitives are

more efficient than traditional public key cryptographic primitives. Like



other public-key cryptosystems, the security of elliptic curve cryptosystems

is also based on hard mathematical problems [40].

ELLIPTIC CURVES

An elliptic curve equation is given as:
E:y»=2z+azx?+bz+c,

where a,b,c are elements over a finite field IF of characteristic not equal to 2.
Points A = (z,y,) and B = (x,,y,) that satisfy the equation are called
points on the elliptic curve. The set of all such points, along with the point

at infinity, form an additive group.

DISCRETE LOGARITHMS FOR ELLIPTIC CURVES

Suppose we have two points 4 and B on an elliptic curve £ and A = ¢B for
some integer g. Finding g is known as the discrete logarithm problem for
elliptic curves. Most public key cryptographic primitives in ECC are
constructed based on the hardness of this problem.

REPRESENTING MESSAGES AS POINTS ON ELLIPTIC CURVES

Before performing any cryptographic operation on a message, it must be
represented as a point on the underlying algebraic structure. In most
cryptographic systems, the mapping of the message is straightforward.
However, in ECC, this is not the case. To use ECC, an efficient method for
mapping a message onto a point on an elliptic curve is necessary. Since the
operations are performed over elliptic curve points, encoding the message is

a non-trivial task.

PUBLIC KEY ENCRYPTION OVER ELLIPTIC CURVES



Public key encryption has the following constituents:

1. Key generation algorithm
2. Encryption algorithm
3. Decryption algorithm

ECC-based public key encryption shares these same constituents. In ECC,
these operations are performed over elliptic curve points. Public key
encryption using ECC can be constructed by instantiating the ElGamal
framework with an elliptic curve group. Such systems are based on the

hardness of the elliptic curve discrete logarithm problem.

DIGITAL SIGNATURES OVER ELLIPTIC CURVES

Digital signatures consist of the following components:

1. Key generation algorithm
2. Signing algorithm

3. Verification algorithm

ECC-based digital signature schemes follow the same structure, with
operations executed over elliptic curve points. These can also be constructed
by instantiating the ElGamal framework with an elliptic curve group, relying

on the hardness of the elliptic curve discrete logarithm problem [41].

ADOPTION AND FUTURE OUTLOOK
In 2004, NIST and the NSA endorsed the use of ECC with 384-bit keys for

top secret communications. ECC began to see widespread use after 2005.
However, due to advancements in quantum computing, ECC is expected to

be replaced by post-quantum cryptographic algorithms in the future.



1.6 INTRODUCTION TO SYMMETRIC KEY
CRYPTOGRAPHY

Symmetric key cryptography is a method where the same key is used to
encrypt and decrypt data. Both the sender and the receiver need to have the
secret key to send and receive messages securely. This type of encryption is
fast and efficient, making it good for handling large amounts of data.
However, the biggest challenge is keeping the key safe, because if someone
else gets the key, they can easily read the encrypted messages. The key must
be shared securely between the two parties to ensure privacy and security.

The rise of computers in the mid-20th century marked a transformative
phase in symmetric key cryptography, enabling the shift from mechanical to
digital encryption. In 1977, the DES became the first widely adopted
symmetric encryption standard, developed by IBM and endorsed by the U.S.
government. Despite its popularity, DES's 56-bit key length proved
vulnerable to brute-force attacks as computational power grew. This led to
extensions like Triple DES (3DES) and eventually to the AES in 2001,
chosen through an open competition by NIST. AES, with its 128, 192, and
256 bit key options, became the gold standard due to its balance of security,
efficiency, and versatility.

In parallel, lightweight symmetric ciphers such as the Grain family and
RC4 were developed for performance-critical environments, especially with
the rise of IoT and embedded systems. As the digital landscape evolved,
symmetric key cryptography adapted to meet emerging threats, including the
looming challenge of quantum computing, which threatens to weaken
traditional algorithms. Modern research focuses on optimizing symmetric
key encryption for minimal resource usage and designing quantum-resistant

alternatives to ensure its enduring relevance. From ancient hand-ciphers to



today's advanced digital algorithms, symmetric key cryptography has
continually evolved to protect data in an ever-changing technological world.

Symmetric key cryptography, also known as secret-key or private-key
cryptography or one-key cryptography, is a foundational cryptographic
technique where a single key is used for both encryption and decryption of
data. The core concept involves securely sharing a secret key between the
sender and the recipient prior to communication. This key must remain
confidential, as its compromise allows adversaries to decrypt intercepted
messages. Symmetric algorithms are typically categorized into two types:
block ciphers, which encrypt data in fixed-size blocks (e.g., AES, DES), and
stream ciphers, which encrypt data one bit or byte at a time (e.g., RC4,
Grain). These algorithms are known for their efficiency and are commonly
used in environments requiring high-speed processing, such as securing data
in transit over the internet (e.g., TLS/SSL) or encrypting stored data (e.g.,
file encryption). While symmetric key cryptography is computationally
efficient and suitable for large-scale data encryption, it faces challenges in
key distribution and management, especially in large networks, since each
pair of users requires a unique key. Modern implementations often combine
symmetric cryptography with asymmetric techniques to resolve these

limitations, such as in hybrid encryption systems [42].

Process of Symmetric Key Cryptography

Symmetric key cryptography works by using a single, shared secret key for

both encryption and decryption processes. Here's how it generally works:

1. Key Generation: A secret key is generated. This key is shared securely
between the sender and the recipient before communication begins. It
must be kept confidential, as anyone with access to the key can decrypt

the data under the assumption that algorithm details is known.



. Encryption: The sender uses the shared secret key along with an
encryption algorithm (e.g., AES or DES) to transform plaintext (original
readable data) into ciphertext (encrypted, unreadable data). The
encryption algorithm follows a set of mathematical rules that take the
plaintext and the secret key as inputs to produce ciphertext. The process
of symmetric key cryptography is depicted in Figure 1.8.

. Transmission: The encrypted ciphertext is then transmitted to the
recipient over a communication channel, which may be insecure (e.g.,
over the internet). The key is not transmitted during this phase, as it must
be kept private.

. Decryption: Upon receiving the ciphertext, the recipient uses the same
secret key and the corresponding decryption algorithm (which is
essentially the reverse of the encryption process) to transform the
ciphertext back into plaintext.

. Security Considerations: The security of symmetric key cryptography
relies entirely on the secrecy of the key. If an adversary gains access to
the key, they can easily decrypt the data. One of the main challenges is
securely distributing and managing the key, especially in large-scale
systems where many users need to communicate with each other.
Typically, symmetric encryption is used for encrypting large volumes of
data, while asymmetric encryption (using public and private key pairs) is

used for securely sharing the symmetric key in the first place.
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1.6.1 CIPHERS OF GRAIN FAMILY

The Grain family of stream ciphers is a class of lightweight cryptographic
algorithms designed for efficient hardware implementation in resource-
constrained environments such as IoT devices and embedded systems. Grain
ciphers operate on the principle of generating keystream bits using Linear
Feedback Shift Registers (LFSRs) and Non-Linear Feedback Shift Registers
(NFSRs), combined with non-linear output functions. The family includes
variants like Grain v1, Grain-128, and Grain-128a, cach optimized for
specific security levels and application requirements [43].

Grain-128a, for instance, enhances the design by supporting optional
authentication, making it suitable for securing both data confidentiality and

integrity. These ciphers are favored for their small footprint and high speed



but face vulnerabilities in the context of quantum computing. For example,
Grover's algorithm can effectively reduce their key search complexity,
raising the need for quantum-resistant alternatives. Despite these challenges,
the Grain family remains a cornerstone in lightweight cryptography,

particularly in constrained environments.

1.6.1.1 Grain v1

Grain vl is a stream cipher designed to provide both high security and
efficient performance, making it suitable for hardware and software
implementations. It was developed as part of the eStream project, which
aimed to evaluate and standardize stream ciphers for widespread use in
cryptographic applications. Grain v1 is particularly known for its simplicity,
speed, and small footprint, making it i1deal for environments with
constrained resources, such as embedded systems and devices with limited

processing power.

Key Features of Grain v1

Stream Cipher: Grain vl generates a pseudo-random stream of bits
(keystream), which is then XORed with the plaintext to produce
ciphertext. The same key is used to decrypt the ciphertext back into
plaintext, as is typical with symmetric key encryption.
Internal Structure: Grain vl operates using a combination of two main
components:
Non-linear Feedback Shift Register (NLFSR): Provides the
randomness necessary for keystream generation. It is initialized with a
160-bit key and an 80-bit initialization vector (IV).
Linear Feedback Shift Register (LFSR): Provides additional
randomness and integrates with the NLFSR to generate high-quality



keystream. Both feedback registers work together efficiently.
Key and IV Setup: Grain vl is initialized with a 160-bit secret key and
an 80-bit IV. The key is used to set up the internal state of the cipher, and
the IV ensures that the same key can be used with different inputs without
producing the same keystream.
Keystream Generation: The keystream is generated by the interaction of
the NLFSR and LFSR. The output bits are combined to form the
keystream, which is then XORed with the plaintext to produce ciphertext.
Speed and Efficiency: Grain vl is designed with efficiency in mind,
especially for applications requiring high throughput and minimal
resource usage. It is known for its simplicity in both hardware and
software implementations.
Security: Grain vl provides a high level of security, resistant to various
cryptanalysis techniques such as linear and differential cryptanalysis.
However, its security depends on the proper management of the key and

IV, particularly ensuring that the same key-IV pair is not reused.

1.6.1.2 Grain-128

Grain-128 i1s an enhanced version of Grain vl, designed to offer greater
security and performance while maintaining the lightweight and efficient
characteristics of its predecessor. It was developed as part of the eStream
project and is tailored for applications requiring high security but limited

computational resources [44].

Key Features of Grain-128

Stream Cipher: Grain-128 is a stream cipher that encrypts data bit-by-bit
using a keystream generated from a secret key and an initialization vector
(IV).



Key and 1V Size:
Key: Grain-128 uses a 128-bit secret key.
IV: It uses a 128-bit IV, which increases the randomness and state
space compared to the 80-bit IV of Grain vl1.
Internal Structure: Grain-128 uses a combination of two main
components for keystream generation:
Non-Linear Feedback Shift Register (NLFSR): Produces pseudo-
random values that are critical for keystream generation.
Linear Feedback Shift Register (LFSR): Works alongside the NLFSR
to ensure security and randomness in the keystream.
Keystream Generation: The interaction between the NLFSR and LFSR
produces a stream of pseudo-random bits, which are XORed with the
plaintext to produce ciphertext.
Security:
Grain-128 resists attacks such as linear and differential cryptanalysis
due to the combination of the nonlinear NLFSR and linear LFSR.
The 128-bit key size offers robust security against modern brute-force
attacks.
Performance: Grain-128 1is optimized for low-latency encryption,
making it suitable for embedded systems and real-time communication

systems.

Applications of Grain-128

Embedded Systems: It is ideal for low-power embedded devices, such as
IoT devices, sensors, and wearables.

Real-Time Communication: Grain-128 is well-suited for secure wireless
communications and secure data transmission in constrained

environments.



Cryptographic Standards: Grain-128 1is considered for wuse in
applications requiring lightweight cryptography, such as wireless

standards and military-grade encryption for resource-constrained systems.

1.6.1.3 Grain-128a

Grain-128a is a variant of Grain-128 designed to improve resistance to
attacks, enhance performance, and offer better flexibility. It retains the basic

structure of Grain-128 while improving security [45].

Key Features of Grain-128a

Grain-128a 1s an authenticated encryption stream cipher. It generates a
pseudo-random keystream, which i1s XORed with the plaintext for
encryption.

Unlike its predecessor (Grain-128), it includes message authentication,

ensuring both confidentiality and integrity.

Key and IV Size

Uses a 128-bit key and a 128-bit initialization vector (IV), providing
strong security against brute-force attacks.

Different IVs ensure unique ciphertexts even with the same key.

Improved Security

Resists differential cryptanalysis and linear cryptanalysis due to
modifications in its internal structure.

Features optimized LFSR (Linear Feedback Shift Register) and
NLFSR (Non-Linear Feedback Shift Register) to enhance security

while maintaining high performance.



Keystream Generation

The keystream is derived from the combined operation of LFSR and
NLFSR.
The improved design increases resistance to state recovery and reverse-

engineering attacks.

Authentication and Tag Generation

Unlike traditional stream ciphers, Grain-128a provides message
authentication via an authentication tag.

The tag is generated during encryption and ensures integrity, protecting
against message tampering.

The authentication process 1is tightly integrated with keystream

generation, minimizing additional computational overhead.

Efficiency

Highly efficient in both hardware and software, making it ideal for low-
latency encryption and real-time applications.

Suitable for lightweight cryptographic applications, including IoT and
embedded systems.

Applications of Grain-128a

Embedded Systems: Grain-128a is particularly suited for embedded
systems, such as [oT devices, smart cards, and sensors.

Wireless Communication: It is suitable for secure wireless
communication standards where low power and high efficiency are

required.



Military and Industrial Applications: Grain-128a 1is 1ideal for
applications in secure communications, remote sensing, and other

industrial uses.
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“If you think you understand quantum mechanics, you don't understand quantum

mechanics.”

— Richard Feynman

SUMMARY

This chapter provides an introduction to quantum algorithms, starting with
the fundamentals of quantum computing. It covers the basics of quantum
mechanics, the potential for quantum speedup, and the challenges and
limitations of quantum computing. The chapter also highlights the key
differences between classical and quantum computing, focusing on
concepts such as bits and qubits, quantum measurement, superposition, and
qubit properties, with a detailed explanation of qubit states on the Bloch
sphere. Additionally, it explores quantum gates and algorithms, including
single-qubit and multiple-qubit gates, the Quantum Fourier Transform

(QFT), and important quantum algorithms such as Shor's algorithm for
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factoring, Grover's algorithm for searching, and Simon's algorithm for

collision finding.

2.1 FUNDAMENTALS OF QUANTUM COMPUTING

Quantum computing is an emerging field of computation that influences the
principles of quantum mechanics to process information in fundamentally
different ways than classical computers. While classical computers use bits
to represent data as either 0 or 1, quantum computers use quantum bits, or
qubits, which can represent both 0 and 1 simultaneously, using the
phenomenon known as quantum superposition. Quantum computing
promises to revolutionize industries by solving complex problems faster
than classical computers ever could. Tasks that would take thousands of
years for classical computers could be done much faster using quantum
algorithms. This chapter introduces the fundamental concepts of quantum
computing, its potential, the key principles that differentiate it from

classical computing, and an introduction to quantum algorithms [1, 2].

2.1.1 THE BASICS OF QUANTUM MECHANICS

To understand quantum computing, it's important to have a basic grasp of
quantum mechanics. While classical mechanics describes the behavior of
everyday objects, quantum mechanics governs the behavior of particles at
the smallest scales atoms, electrons, and photons [3]. Some of the key
principles of quantum mechanics that quantum computers depend on are the

following:

Quantum superposition: In classical computing, a bit can only exist in
one of two states, 0 or 1. However, in quantum computing, a qubit can be

in a superposition of both 0 and 1 at the same time. This allows quantum



computers to perform multiple calculations simultaneously, offering

exponential speedup in certain cases.

Quantum entanglement: When qubits become entangled, the state of
one qubit 1s directly linked to the state of another, even if they are far
apart. This phenomenon enables qubits to work together in a way that
classical bits cannot, creating powerful correlations between qubits that

help quantum algorithms solve complex problems.

2.1.2 QUANTUM SPEEDUP AND ITS POTENTIAL

Quantum computing holds the promise of solving problems that are
currently unsolvable or too time-consuming for classical computers. One of
the most famous examples is Shor's algorithm, which can factor large
numbers exponentially faster than classical algorithms. This has profound
implications for cryptography, as many encryption schemes rely on the
difficulty of factoring large numbers. Shor's algorithm achieves this by
utilizing quantum parallelism and the QFT to find the periodicity of a
function, enabling the factorization process to be performed in polynomial
time, rather than the exponential time required by classical methods [4].
Another important quantum algorithm is Grover's algorithm, which
speeds up unstructured search problems by a factor of about two. While this
is not as powerful as the exponential speedup from Shor's algorithm, it still
provides a clear advantage over classical search methods. Grover's
algorithm uses amplitude amplification to increase the probability of
finding the correct solution in an unsorted database, reducing the search
time from O(N) to O(v/N). This quadratic speedup can be highly
beneficial for various applications, including database search and

optimization problems, demonstrating the significant potential of quantum



computing. Both Shor's and Grover's algorithms highlight the
transformative power of quantum computing, providing the way for

advancements in fields such as cryptography, data search, and optimization

[2].

2.1.3 CHALLENGES AND LIMITATIONS OF QUANTUM
COMPUTING

Despite its vast potential, quantum computing faces numerous challenges:

Decoherence and Noise: Decoherence refers to the process by which a
quantum system loses its quantum properties due to interactions with its
surrounding environment. This loss of coherence disrupts the delicate
quantum states of qubits, making it difficult to maintain the superposition
and entanglement necessary for quantum computations. Quantum
computers are highly sensitive to their environment, and small
disturbances can cause them to lose their quantum properties.
Maintaining the quantum state of qubits long enough to perform
calculations is one of the biggest hurdles [6]. Noise in quantum systems
encompasses various types of errors and disturbances that can affect
qubits during computations. These disturbances can come from several
sources, including thermal fluctuations, electromagnetic interference, and
imperfections in the quantum hardware itself. Even the slightest
perturbations can introduce errors in quantum computations, leading to
incorrect results. Due to the extreme sensitivity of quantum states, noise

must be minimized and managed effectively [7].

Error Correction: It is a critical area of research in quantum computing
due to the inherent fragility of qubits. Unlike classical bits, qubits are

highly susceptible to errors caused by environmental noise, imperfections



in the quantum hardware, and other forms of interference. These errors
can disrupt the delicate quantum states necessary for accurate
computations, making the development of robust error correction
methods essential for the reliability, scalability and performance of

quantum computers [8].

Hardware Limitations: Building a scalable quantum computer requires
sophisticated hardware capable of manipulating and measuring quantum
states with extreme precision. Current quantum computers, known as
Noisy Intermediate-Scale Quantum (NISQ) devices, are in the early
stages and are not yet capable of solving large-scale practical problems.
These devices face significant challenges such as high error rates, short
coherence times, and the need for cryogenic environments. Overcoming
these hardware limitations involves improving qubit designs,
implementing robust quantum error correction methods, and developing

advanced fabrication techniques [10].

2.1.4 THE FUTURE OF QUANTUM COMPUTING

Quantum computing is still in its infancy, with significant progress needed
before it can reach its full potential. However, the possibilities it presents
are vast. Applications of quantum computing range from cryptography and
optimization to machine learning and drug discovery. Researchers are
actively working on developing more stable and efficient quantum
computers, improving quantum algorithms, and exploring quantum-
resistant encryption methods for a future where quantum computers might

be widely accessible [11].



2.2 DIFFERENCE BETWEEN CLASSICAL AND
QUANTUM COMPUTING

Classical and quantum computing represent two fundamentally different
approaches to processing information, each with unique characteristics,
capabilities, and applications. Understanding these differences is crucial for
grasping the potential impact of quantum technology on various fields [12]
(Table 2.1).

Table 2.1: Classical vs quantum computing <J

Parameters

Classical computing

Quantum computing

Basic Units
of

Information

The fundamental unit of
information in classical
computing 1is the bit,
which can be either 0 or
1. This

representation

binary
allows

classical computers to

perform operations
using deterministic
algorithms based on

Boolean logic.

Quantum computing employs
quantum bits (qubits), which
can exist in multiple states
simultaneously due to the
of

superposition. A qubit can be

principles quantum
0, 1, or both at the same time,

allowing for a  richer
representation of information

than classical bits.



Parameters

Classical computing

Quantum computing

Information

Processing

of

Computation

Nature

Classical computers

process information
sequentially, executing
one operation at a time.
This linear processing
is governed by classical

physics and relies on

transistors and logic
gates to perform
computations.

Operations are based on

classical physics
principles, utilizing
deterministic

algorithms that yield
predictable outcomes.

These computers excel

in tasks that require

straightforward  logic
operations and are
widely used in

everyday applications.

Quantum computers influence
quantum mechanics to perform
calculations in parallel across

multiple states. This capability

allows them to explore
numerous solutions
simultaneously, potentially
leading to exponential
speedups for certain types of
problems.

Quantum computation

harnesses phenomena such as

quantum superposition and
quantum entanglement. This
enables quantum computers to
solve  complex  problems
probabilistically and explore
multiple solutions
concurrently, which is
particularly advantageous for
optimization and

cryptographic tasks.



Parameters Classical computing Quantum computing
Algorithmic  Algorithms in classical Quantum  algorithms  take
Approach computing are designed advantage of quantum
for sequential properties like quantum
processing and superposition and quantum
deterministic =~ results. entanglement. These
They typically involve algorithms can process vast
a series of well-defined amounts of data
steps that lead to a simultaneously, making them
specific outcome. suitable for solving problems
such as integer factorization
much more efficiently than
classical counterparts.
Error Well-established error Quantum systems face
Correction correction  techniques significant challenges related

ensure data integrity in
classical systems. These
methods are effective
due to the predictable

nature of bits.

to qubit coherence and error
rates caused by environmental
noise. Advanced quantum
error correction methods are
necessary to maintain accuracy

in computations.



Parameters Classical computing Quantum computing

Speed and The computational The power of quantum

Scalability power of classical computers increases
computers increases exponentially with the addition
linearly = with  the of qubits. Each additional
number of bits or qubit doubles the number of
transistors. While they possible states, allowing for
can perform parallel vastly more complex
processing, their overall computations than classical
speed 1s limited by systems can handle.
physical constraints

such as clock rates.

2.2.1 CONCEPT OF BIT AND QUBIT

Bit: Bits, which can be either 0 or 1, are used by digital computers to store
and process data. Anything with two different configurations, one denoted
by “0” and the other by “1” can be considered a bit physically. There could
be two different and recognizable options for the system. The lack or
presence of an electrical signal, which encodes “0” and “1”, respectively, is
how bits are represented in contemporary computing and communications.
Qubit: Quantum information is physically carried by qubits, which are
the quantum counterparts of classical bits. A qubit's quantum state can be
expressed in terms of two basis states, denoted by |0) and |1). This notation
is called ket notation |), where ket refers to the column vector. The
corresponding bra notation (|, denoted as (0| and (1|, is used for the
complex conjugate transpose. Together, the bra and ket notations form
Dirac notation. These basis states are often represented as two-dimensional

column vectors [13].
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A qubit can exist in one of two states or in a superposition of both
simultaneously. In quantum computation, two distinguishable states of a
system are required to represent a bit of data.

For example, consider an electron orbiting a single atom. The electron's
spin can be in two states: “spin-up” (|0)) and “spin-down” (|1)). Similarly,
in the context of atomic energy levels, the ground state energy level can be

denoted as |0), while the excifted state energy level is represented as |1).

2.2.1.1 Quantum Measurement

Measurement refers to the act of determining the state of a quantum
system. Unlike classical measurement, which yields definite results,
quantum measurement is inherently probabilistic. When a qubit (the
quantum counterpart of a classical bit) is measured, it can collapse to either
0 or 1, depending on its superposition prior to measurement. This
superposition allows qubits to represent multiple states simultaneously, a
fundamental aspect that gives quantum computers their immense
computational power. Quantum measurement is crucial for reading out
results from quantum computations and for controlling and manipulating
quantum systems. However, it poses significant challenges, such as
decoherence, where the quantum system loses its coherent superposition

due to interactions with the environment [14].

2.2.1.2 Superposition of Two States

The key difference between qubits and classical bits is that a qubit can exist

in a superposition of the two states |0) and |1) [15]. For example, if « and j



are the probability amplitudes of an electron being in the ground state (i.e.,
in |0)) and the excited state (i.e., in |1)), then the qubit's state can be

expressed as a linear combination:
[¥) = a|0) + B]1)

Here, a and f are complex numbers, and due to the normalization

condition:
o> +(8* =1

This normalization ensures that the total probability of all possible
outcomes (in this case, being in either |0) or |1)) sums to 1. Specifically,
|a|? represents the probability of measuring the qubit in the state |0), and
|8|? represents the probability of measuring the qubit in the state |1).
Therefore, when a qubit is measured, it will collapse to one of the two

states, either |0) or |1), with corresponding probabilities.

Consider the quantum state:

1 1
W) = E\m + EIU
1 1
|¥) = al0) + B|1) = E|O> + E\U

where a = % and B = —L. The squared magnitudes of the probability

amplitudes are:

S|

— 2 _
==, 1812 = =

|Q{|2 = | —

‘L
V2



Thus, the probabilities of measuring the qubit in the states |0) and |1) are

both % The normalization condition is satisfied:

1

1
al* +16] = 5 + 5 =1

2

This means that with a 50% probability, the qubit will be found in the |0)
state, as well as in the |1) state, upon measurement. These superposed states
are often referred to as superposition states, while |0) and |1) are known as
basis states. Basis states are the fundamental states of the system, and any
quantum state, including superposition states, can be represented as a linear

combination of these basis states [16].

2.2.1.3 Properties of Qubits

1. Qubits use discrete energy states: Qubits typically make use of discrete
energy states in physical particles such as electrons, photons, or atoms.

2. Quantum superposition: Qubits can exist in two quantum states, |0)
and |1), or in a superposition of both states. This means a qubit can be in
a linear combination of these states simultaneously.

3. Quantum Interference: Quantum interference is a key concept in
quantum computing that leverages the unique properties of qubits.
Unlike classical bits, which can only be 0 or 1, a qubit can be in both
states at once, thanks to superposition. This means a 4-qubit register can
represent all 16 possible numbers (from 0 to 15) at the same time, unlike
a classical 4-bit register which can only hold one number at a time.
Quantum interference happens when these superposed states interact,
helping quantum computers to amplify the right answers and cancel out
the wrong ones, making them incredibly powerful for solving complex

problems [17].



4. Measurement and State Collapse:When a qubit is measured, it
collapses to one of the two basis states, |0) or |1), with certain
probabilities determined by the probability amplitudes. These probability
amplitudes are complex numbers that describe the likelihood of the qubit
being in a particular state before measurement. The squared magnitude
of the amplitude gives the actual probability of the qubit collapsing to
that state. This probabilistic nature of quantum measurement is what
makes quantum computing both powerful and fundamentally different
from classical computing, as it allows for the exploration of many
possible states simultaneously until the measurement forces a definite
outcome [18]

5. Quantum Entanglement: It is a remarkable phenomenon in quantum
mechanics, where qubits become so deeply interconnected that the state
of one qubit instantaneously influences the state of another, no matter the
distance separating them. This relationship means that measuring the
state of one entangled qubit provides immediate knowledge about the
state of its partner. Entanglement is essential for many quantum
computing processes, including quantum teleportation and superdense
coding, as it allows for the coordination and correlation of qubits across
vast distances [19].

6. Quantum Tunneling: Quantum tunneling is a phenomenon where
particles, such as qubits, can pass through energy barriers that would be
insurmountable in classical physics. This occurs due to their wave-like
properties, where the particle's wavefunction extends through the barrier,
allowing it to appear on the other side despite lacking the classical
energy needed to overcome it. This process is integral to technologies
like quantum annealing, where it helps find solutions to complex

optimization problems, and is also fundamental in the workings of



modern electronic devices and nuclear fusion processes in stars.
Quantum tunneling exemplifies the unique and often counterintuitive
nature of quantum mechanics [20].

7. Bloch Sphere Representation: The state of a qubit can be visually
represented using the Bloch sphere, which is a geometric representation

that shows all possible states of a qubit on the surface of a sphere [21].

2.2.1.4 Representation of Qubits by Bloch Sphere (Single
Qubit State)

The Bloch sphere 1s an abstract representation used to visualize pure single-
qubit states as points on the surface of a unit sphere (Figure 2.1). The
sphere has a unit radius, and the two poles of the sphere represent the

computational basis states [22]:

The North Pole represents the state |0) (e.g., spin-up 1).
The South Pole represents the state |1) (e.g., spin-down |).



North pole

‘-—--_-

1)

South pole

Figure 2.1 Bloch sphere

All other points on the surface of the Bloch sphere represent

superposition states, which are linear combinations of the |0) and |1) states.



This spherical representation allows the state of a qubit to be expressed in
spherical coordinates (r, 6, ¢).

For a single qubit state, it is often written as:

l4h) = cos (g) 0) + e sin <g) 1)

(2.1)
Where:

@ is the polar angle (from the North Pole),
¢ 1s the azimuthal angle around the z-axis,

r = 1 because the qubit is in a pure state.

This representation allows one to visualize and manipulate the state of a

qubit geometrically.

2.2.1.5 State of Qubit on the Bloch Sphere

The state of a qubit |¢)) on the Bloch sphere makes an angle 6 with the z-
axis, and its projection (azimuth) makes an angle ¢ with the x-axis, as
shown in Figure 2.1. Itisclear that 0 < 8 < wand 0 < ¢ < 2.

2.2.1.6 Examples for Different @ and ¢
CASE1:0=0,¢=0

Substituting § = 0 and ¢ = 0 into Equation (2.1), we get:
0 io. (0
1) = cos 3 |0) + " sin 5 1) =1-|0)+0-|1)

Thus,



CASE2:0=m¢=0
Substituting & = 7 and ¢ = 0 into Equation (2.1), we get:

) = cos (g)m) + ePsin (g)m —0-10) +1-[1)

Thus,

CASE3:0=5,9=0

Substituting § = 3 and ¢ = 0 into Equation (2.1), we get:

14) = cos <E> 0) + €% sin (£> 11) = L|0> + L|1>
4 4 V2 V2

Thus,

CASE4:0=T ¢—r

Substituting 6 = 3 and ¢ = 7 into Equation (2.1), we get:
T ; [y
) = cos ()10} + e sin (2 )11) = —=[0) - —=[1)
4 4 V2 V2

Thus,



The Bloch sphere provides a geometrical way to visualize and represent

the state of a qubit.

2.2.2 COMPUTATIONAL BASIS—DIRAC NOTATION AND
MATRIX OPERATIONS

Bra-Ket Notation

In quantum mechanics, states are represented using the Dirac notation [23]:

Ket vector |¢): A column vector.

Bra vector (|: A row vector, which is the conjugate transpose of the
ket.

For example:

- () - ()

and the corresponding bra vectors are:

(0= 0), (1]=(0 1)

OPERATORS AND MATRICES

Identity Operator:

The identity operator / leaves states unchanged:

T

110) = |0), I[1) =[1).

Hermitian and Unitary Matrices:



A matrix 4 is Hermitian if AT = A.
A matrix U is Unitary if UTU = I.

2.2.3 INNER PRODUCT AND ORTHONORMALITY

Inner Product/ The inner product helps measure the relationship
between two vectors. In quantum mechanics and linear algebra, it
determines how much one vector aligns with another.

For two quantum states |u) and |v), their inner product is given by:
(u|v) = ujv + usvy

where * denotes the complex conjugate.
If (u|v) = 0, the vectors are orthogonal, meaning they are independent

or at a 90-degree angle in some sense.

ORTHOGONALITY AND ORTHONORMALITY

Two quantum states |u) and |v) are orthogonal if their inner product is zero
[24]:

(u|vy = 0.
Orthonormality means that:

1. Each vector has a unit length:
o0y =1, (A1) =1.
2. Different basis states are orthogonal:

(0[1) = 0.



In quantum computing, orthonormality ensures that basis states like |0)
and |1) are properly normalized and independent, which is essential for

reliable quantum operations.

PAULI MATRICES

The Pauli matrices represent fundamental quantum operations (spin

transformations and quantum gates). They are defined as [23]:

0 1 0 —2 1 0
Oy = , Oy =|. , O,= :
1 0 v 0 0 -1
Pauli-X (Bit Flip Gate):
0 1
Oy =
10
This swaps |0) and |1), similar to a classical NOT gate.
Pauli-Y:

It introduces a phase shift along with swapping states.

Pauli-Z (Phase Flip Gate):
{10
7o -1

It changes the phase of |1) while leaving |0) unchanged.

These matrices are essential in quantum mechanics and quantum

computing for manipulating qubits.



PROPERTIES OF PAULI MATRICES

Square of Pauli matrices:

Unitary Property:

alaw =1, O'LO'y =1, o,0,=1.

ACTION ON COMPUTATIONAL BASIS STATES

The Pauli matrices act on |0) and |1) as follows:
Pauli-X (o,) flips the states:
02(0) = |1), 0.[1) =10).
Pauli-Y introduces a phase factor:
ay0) = i[1), oy|1) = —i|0).
Pauli-Z changes the phase of |1):

0:0) =10), o:[1) = —[1).

SUMMARY TABLE OF PAULI MATRICES ON COMPUTATIONAL
BASIS STATES

Input Input
Operation 0) Result 1) Result




Operation |0) Result 1) Result

oy 0) 1) 1) 0)
a, 0) i|1) 1) | —i0)
o, 0) 0) 1) —11)

2.2.4 PROBABILITY AND MEASUREMENT
For a quantum state:
[¥) = |0) + B[1),
the probability of measuring |0) or |1) is:
P(|0)) = |af?, P(]1)) = 8"
The normalization condition ensures:

af* +18° = 1.

2.2.41 Representation of Multiple Qubits

Two Qubits: Consider a system with two qubits. The two qubits can be in

one of four possible basis states, represented as follows [27]:
00), [01), |10), |[11)

These basis states can be written as column vectors:

00) = @ 01) = ( g) 1) = @



The general state of a two-qubit system can be expressed as a linear

combination (superposition) of these four states:

‘\If> = a00|00> + ()é01|01> + a10\10> + O£11|11>

Here, oo, a1, @10, @11 are complex amplitudes, and the normalization

condition is:
lool® + || + |ano® + o1 =1

Three Qubits: For a system with three qubits, there are eight possible basis

states:

000Y, |001), |010), [011), |100), |101), |110), [111)

The general state for a three-qubit system is:

|‘I’> = a000|000> + a001\001> + a010|010> + a011|011>
—I-Oé100|100> + 04101‘101> + a110|110> + 04111‘111>

The normalization condition for this system is:
|aooo]® + Jeoon |> + -+ - + |eqnn|* =1

Generalization to N Qubits: For a system of N qubits, the number of
possible basis states is 2%V, and each state is represented by a unique binary

number from 0 to 2%V — 1. The general state of an N-qubit system is:

2N 1
@) =) aili)
i=0

where a,; are the complex amplitudes for each basis state |¢), and the

normalization condition is:



aN_1
> lel* =1
i=0

Thus, for N qubits, the superposition state involves 2V complex
amplitudes, and the system can be in any combination of these states

simultaneously.

2.3 INTRODUCTION TO QUANTUM GATES AND
QUANTUM ALGORITHMS

QUANTUM GATES

Quantum gates are the fundamental components of quantum circuits. They
perform operations on qubits and are represented mathematically as unitary
matrices. Unitarity ensures that quantum gates are reversible, a crucial
property for quantum computing. Quantum gates differ from classical logic
gates in that they operate on quantum states, enabling phenomena such as

quantum superposition and quantum entanglement [28, 29].

KEY PROPERTIES OF QUANTUM GATES

1. Unitarity: The matrix representation of a quantum gate U satisfies
UtU = I, where UT is the conjugate transpose and / is the identity
matrix.

2. Reversibility: All quantum operations are reversible due to their unitary
nature.

3. Probabilistic Measurement: The output state of a quantum gate is
probabilistic until measured, governed by the amplitudes of the state

vector.

2.3.1 SINGLE-QUBIT GATES



Single-qubit gates operate on individual qubits. Below is a detailed
explanation of common single-qubit gates, their mathematical

representations, and their effects.

I. X-GATE (QUANTUM NOT GATE)

The X-gate performs a bit-flip operation, analogous to a classical NOT gate

as shown in Figure 2.2.

Matrix Representation:
1
o
Action on Computational Basis States:
X[0) = 1), X[1) =0)
Action on a Superposed State: For a superposed state [¢)) = «|0) + (]1):
XY) = af1) + §|0)

Use Case: The X-gate is used for flipping qubit states and forms the basis

for constructing controlled operations such as the CNOT gate.

al0) + BI1) al1) + Bl0)

Figure 2.2 X gate J

Il. Y-GATE (PAULI-Y GATE)

The Y-gate combines a bit-flip and a phase-flip operation as shown in

Figure 2.3.



Matrix Representation:

Action on Computational Basis States:
Y|0) =il]l), Y1) = —i|0)
Action on a Superposed State: For |¢) = «|0) 4 5]1):
Yi¢) = i6|0) —iall)

Use Case: The Y-gate introduces a phase difference while flipping qubit
states, making it useful in quantum algorithms requiring specific phase

manipulations.

Figure 2.3 Y gate <&

lll. Z-GATE (PAULI-Z GATE)

The Z-gate flips the phase of the |1) state but leaves |0) unchanged as

shown in Figure 2.4.

Matrix Representation:

1 0
7 —
o
Action on Computational Basis States:

Z|0) =10), ZJ1) = —1)



Action on a Superposed State: For |¢) = a|0) + 5]1):
Z|$) = al0) = Bl1)

Use Case: The Z-gate is often used in phase correction and is a building

block for more complex gates such as the T-gate.

al0) + BI1) al0) - BI1)

Figure 2.4 Z gate J

IV. HADAMARD GATE (H-GATE)

The Hadamard gate creates superposition as shown in Figure 2.5 and is

crucial for many quantum algorithms.

Matrix Representation:

"=

Action on Computational Basis States:

0) +11) 0) — 1)
V2 V2
Action on a Superposed State: For |¢) = a|0) + 5]1):

a—+p a—f
V2 V2

Use Case: The H-gate is used to create superpositions, making it essential

H|0) = H|1) =

Hly) = 0) + 1)

for quantum algorithms such as Grover's search and Shor's algorithm.



Hadamard
Gate

10) + 11) . 10) - 11)

= | vz

al0) + BI1) a

Figure 2.5 Hadamard gate <1

V. PHASE GATE (S-GATE)

The S-gate introduces a 7r/2 phase shift. The S gate representation is shown

in Figure 2.6.

Matrix Representation:

=

Action on Computational Basis States:
510y = 10), S|1) =i|1)
Action on a Superposed State: For |¢) = a|0) + £|1):

SlY) = |0) +if[1)



Use Case: The S-gate is commonly used in phase rotation operations and
QFTs.

al0) + BI1) al0) + i BI1)

Figure 2.6 S gate J

V1. T-GATE (I7/8 GATE)

The T-gate introduces a 7/4 phase shift. The T gate representation is shown

in Figure 2.7.

Matrix Representation:

T — 1 0
o 0 eiﬂ'/4

Action on Computational Basis States:
T|0) = [0), TI1)=e"™|1)
Action on a Superposed State: For |¢) = «|0) 4 5]1):
Ty) = a0) + Be™™|1)

Use Case: The T-gate is a key component of universal quantum
computing and is often used in conjunction with Clifford gates (4
Clifford gate is a quantum gate that maps Pauli operators to other Pauli
operators through conjugation. Types include the Hadamard (H), Phase
(S), and Controlled-NOT (CNOT) gates).



al0) + BI1) al0) + ™4 B1)

Figure 2.7 T gate &

2.3.2 MULTIPLE-QUBIT GATES

Quantum gates that operate on two or more qubits are called multiple-
qubit gates. These gates involve both control and target qubits. The

behavior of a multiple-qubit gate can be summarized as follows:

* The target qubit is altered only when the control qubit is in the state |1).

* The control qubit remains unaltered during the transformation.
For two qubits, the possible input states are:

00),101),[10), [11).

For three qubits, the possible input states are:

000), 001}, |010), [011), [100), |101), |110), |111).

. CONTROLLED-NOT GATE (CNOT GATE)
The Controlled-NOT (CNOT) gate operates on two qubits:

The control qubit determines whether the operation occurs.

The target qubit is flipped (i.e., |0) <> |1)) if and only if the control
qubit is |1).

The CNOT gate representation is shown in Figure 2.8.



Controlled Qubit

|a) e |a)

Target Qubit

|b) C) Iba)

Figure 2.8 CNOT gate <&

Matrix Representation

The CNOT gate is represented by the following matrix:

100 0
0100

CNOT =
000 1
0 0 1 0]

Transformation Rule

The CNOT gate transforms the input state |a, b) as:
|a,b) = |a,b& a),

where @ represents addition modulo 2.

Action on Input States

|00) — |00) (control qubit is |0), no change).
|01) — |01) (control qubit is |0), no change).



|10) — |11) (control qubit is |1), target qubit flips).
|11) — |10) (control qubit is |1), target qubit flips).

Truth Table for CNOT Gate

Input Output
|00) 100)
|01) 01)
110) 111)
111) 110)

Il. SWAP GATE
The SWAP gate exchanges the states of two qubits. The SWAP gate

representation and its operation is shown in Figures 2.9 and 2.10

respectively.

a) > b)

|b) < |a)

Figure 2.9 SWAP gate J



ISt CNOT 3rd CNOT

) 4—@—0— b

2"d cNOT

Figure 2.10 Operation of SWAP gate <1

ja,b) = |b,a).

Matrix Representation

SWAP =

o = O O
= o O O

o O O =
o O = O

Action on Input States |a)|b):

If the qubits are in state |00), they remain |00).

)
If the qubits are in state |01), they become |10).
If the qubits are in state |10), they become |01).
If the qubits are in state |11), they remain |11).

Truth Table for SWAP Gate



Input Output
|00) 100)
|01) 110)
110) 01)
111) 111)

lll. CONTROLLED-Z GATE

The Controlled-Z (CZ) gate applies a Pauli-Z operation to the target qubit if
the control qubit is |1). It does not alter the control qubit. The representation

of controlled Z-gate is shown in Figure 2.11.

|a) |a)

Controlled Z gate
operation is appled on |b)

|b)

Figure 2.11 Controlled Z-gate <1

Matrix Representation

100 0
010 0
CZ =
001 0
0 0 0 —1]

Action on Input States



00) — |00

) ) (control qubit is |0), no change).
01) — [01) )5

)

) —

(control qubit is |0), no change).
|10) — |10) (control qubit is |1), no change to target qubit).
111 —|11) (control qubit is |1), target qubit flipped in phase).

Truth Table for Controlled Z-Gate

Input Output
|00) 100)
|01) 01)
110) 110)
111) —[11)

IV. TOFFOLI GATE (CCNOT GATE)
The Toffoli gate, or Controlled-Controlled-NOT gate, is a three-qubit gate:

It flips the target qubit if both control qubits are |1) and the control qubits

remain unaltered.

The representation of CCNOT gate is shown in Figure 2.12.



la) —@——a)

by ————@————b)

|c) _@— Ic) = |c @ ab)

Figure 2.12 CCNOT gate &

Matrix Representation

The Toffoli gate is represented as an 8 x 8 matrix, and its representation is:

CCNOT =

o O O B O O O O
O O H O O O O O
_ O O O O O o O
o H O O O O O O

© O O O O O O -
o O O O O O~ O
o O O O O = O O
O O O O B O O O

Truth Table for CCNOT Gate

Input Output




Input Output
1000) |000)
1001) |001)
1010) |010)
|011) |011)
1100) 1100)
1101) 1101)
1110) 1111)
1111) 1110)

2.3.3 QUANTUM FOURIER TRANSFORM (QFT)

In quantum computing, the QFT is a linear transformation on quantum bits
and 1s the quantum analogue of the discrete Fourier transform. The QFT is a
part of many quantum algorithms, notably Shor's algorithm for factoring
and computing the discrete logarithm, the quantum phase estimation (QPE)
algorithm for estimating the eigenvalues of a unitary operator, and
algorithms for the hidden subgroup problem. The QFT was discovered by
Don Coppersmith. With small modifications to the QFT, it can also be used
for performing fast integer arithmetic operations such as addition and
multiplication [30].

The QFT can be performed efficiently on a quantum computer with a
decomposition into the product of simpler unitary matrices. The discrete
Fourier transform on 2" amplitudes can be implemented as a quantum
circuit consisting of only O(n?) Hadamard gates and controlled phase shift
gates, where n 1s the number of qubits. This can be compared with the
classical discrete Fourier transform, which takes O(n2™) gates (where 7 is

the number of bits), which is exponentially more than O(n?).



The QFT acts on a quantum state vector (a quantum register), and the
classical discrete Fourier transform acts on a vector. Both types of vectors
can be written as lists of complex numbers. In the classical case, the vector
can be represented with, for example, an array of floating-point numbers,
and in the quantum case, it is a sequence of probability amplitudes for all
the possible outcomes upon measurement (the outcomes are the basis states,
or eigenstates). Because measurement collapses the quantum state to a
single basis state, not every task that uses the classical Fourier transform
can take advantage of the QFT's exponential speedup.

The best QFT algorithms known (as of late 2000) require only
O(nlogn) gates to achieve an efficient approximation, provided that a

controlled phase gate is implemented as a native operation.

DEFINITION

The QFT is the classical discrete Fourier transform applied to the vector of
amplitudes of a quantum state, which has length N = 2" if it is applied to a
register of n qubits.

The classical Fourier transform acts on a vector

(o, T1,...,xn_1) € CV and maps it to the vector
(Yo, Y1,---,YN-1) € C¥ according to the formula:
Zx]w;ﬁ’“, k=0,1,2,...,N —1,

where wy = e~ is an Nth root of unity.

Similarly, the QFT acts on a quantum state |z) = Z;.V:_Ol z;|j) and maps

it to a quantum state Zjvz o jl4) according to the formula:



7

Yp = zwh, k=0,1,2,...,N—1.

-

|
o

J

(Conventions for the sign of the phase factor exponent vary; here the
quantum Fourier transform has the same effect as the inverse discrete
Fourier transform, and conversely.)

The inverse QFT is given by
gy, §=0,1,2,...,N —1.

In case that |x) is a basis state, the QFT can also be expressed as the

map:

QFT :

MZ

k—0

Equivalently, the QFT can be viewed as a unitary matrix (or quantum
gate) acting on quantum state vectors, where the unitary matrix Fy, is the
DFT matrix:

1 1 1 1 1
1 w w2 w3 wiV-1
. 1 w? wh w6 W2A(N-1)
FN:W 1wl wO w? SIV=1)

where w = wy. For example, in the case of N = 4 = 22 and phase w = i,

the transformation matrix is:



EXAMPLE: COMPUTATION OF QFT FOR 2-QUBITS
USING MATRIX METHOD

For a 2-qubit system, the QFT matrix is a unitary matrix of size 4 x 4. The
general form of the Q F'T),, matrix for n-qubits is given by:

1 ik /on
(QFT,) = —= ¥t
J on

Where:

j and k range from 0 to 2" — 1, corresponding to all possible states for the
n-qubit system.

The factor ﬁ normalizes the matrix to ensure that the QFT matrix is

unitary (its conjugate transpose equals its inverse).
For a 2-qubit system (where n = 2):

The matrix size is 4 x 4 (because 22 = 4).

Both j and & range from O to 3.
To calculate the 2-qubit QFT matrix, we use the general formula:

WA SEP
T _627rz )

1
(QFTy) jn = —é?
/!
For each value of j and k&, we calculate the corresponding complex

exponential:
When 7 = 0:



1 1
(QFTy) o = 560 =5 k=0,1,2,3

So the first row is: [%, %, %, %}
When 5 = 1:

Tl i =1 —i
So the second row is: [5,7,7,7}
When j = 2:
1 . 1
(QFTy)a = 5 €™ = Z[1,-1,1,—1]
~ .1 -1 1 -1
So the third row is: [5, SRR T]
When j = 3:
1 . . 1
(QFTy)s, = —e®™% = Z[1,—4,—1,4]
2 2
So the fourth row is: [%, _Ti, _71, ﬂ
Thus, the 2-qubit QFT matrix is:
(1 1 1 1]
111 2 -1 —2
FTy = —
CF=91; 1 1
1 -2 -1 7 |

We can now apply this to the computational basis states.

1. QFT on |00):



1
QFT3|00) = 5

So the result is:

o O O

—_ =

QFT5]00) — %(|00> +101) + [10) + [11))

2. QFT on |01):

QFT|01) =

So the result is:

o O = O

QFT,[01) — %(|00> +4[01) — [10) — 4[11))

3. QFT on |10):

1
QFT[10) = 5

So the result is:

o = O O

QFT[10) = (/00) — [01) + [10) — 1))

4. QFT on |11):




1 1 1 1770 1
11 & —1 —il| |o 1| —i
FT,|11) = = _+
QFT,[11) 211 -1 1 —1] 10 2 | -1
1 1

So the result is:
1 . )
QFT,|11) = E(\OO) —3|01) — |10) + ¢|11))

Thus, the QFT results on the computational basis states are:

QFT,|00) = +(]00) + [01) + [10) + |11)): The QFT on the state [00)
transforms it into an equal superposition of all 4 computational basis
states (]00), [01), |10), and |11)), with equal amplitude of - for each.
QFT,|01) = £(]00) +4[01) — [10) — 4|11)): The QFT on the state [01)
results in a linear combination of the computational basis states, where
the phases of the amplitudes alternate between positive and negative
(with imaginary units i and —%) for certain basis states, indicating a phase
shift in the transformation.

QFT,|10) = +(]00) — [01) + [10) — |11)): Similarly, applying the QFT
on |10) results in a superposition of all computational basis states. The
amplitudes involve alternating signs without any imaginary components,
again showing a phase shift but without complex coefficients.

QFT,|11) = £(]00) — 4[01) — [10) + ¢|11)): The QFT on the state [11)
leads to a similar superposition, but with alternating phases represented

by =4, indicating complex phase shifts.

COMPUTATION OF 2-QUBIT QFT USING QUANTUM
CIRCUIT



The QFT on a 2-qubit system can be computed step by step using quantum
gates. Let's break down the procedure for calculating the QFT on a two-

qubit system.

STEP 1: INITIALIZE THE QUBITS

We start with the two qubits in the state |00):

100) = |q0,q1)

STEP 2: APPLY THE HADAMARD GATE TO THE FIRST QUBIT
The first step in the QFT is to apply the Hadamard gate H to the first qubit:

H|00) = %uom + [10))

STEP 3: APPLY THE CONTROLLED-Z GATE (PHASE SHIFT)

The second part of the QFT is applying controlled-phase gates. The
controlled-phase gate applies a phase shift to the second qubit depending on
the state of the first qubit. The controlled-phase gate 1s a diagonal matrix
that applies a phase of e?™/?" 1o the second qubit if the first qubit is in the
state |1).

For two qubits, the controlled-phase gate is represented as a controlled-Z

gate, and it applies a phase shift of e2m/2* — ¢im/2 — j to the second qubit if
the first qubit is in the state |1).

Let's apply this operation. Initially, the system state is:

1
E(|00> +[10))



The phase is applied to the second qubit when the first qubit is in the

state |1). So, the second term |10) will acquire a phase of e?™/2.

After applying the controlled-phase gate, the state of the system

becomes:

%(IOW + e”/z\10>>

Thus, after applying the controlled-phase gate, the state of the system is:

1 :
E(IOW +1[10))

STEP 4: APPLY THE HADAMARD GATE TO THE SECOND
QUBIT

Next, we apply the Hadamard gate to the second qubit:

1 1
H (E(|oo> + \10>)> = 5 (100) + |01) + [10) + [11))

STEP 5: SWAP THE QUBITS

Finally, we swap the qubits to reflect the computational basis ordering:
1
QFT5|00) = E(!OO) + |01) + |10) + |11))
Thus, we have confirmed that:

QET|00) = - (00) +[01) + [10) + [11))

2.3.4 QUANTUM CIRCUIT FOR IMPLEMENTING QFT



The quantum circuit for implementing the QFT uses two types of gates. The
first is the Hadamard gate H, which transforms the single-qubit state |xy)

as:

;%«mw+e%%u»

The second is a two-qubit controlled rotation gate CROT,, given in

H|£Uk> =

block-diagonal form:

I 0
CROTk:[ ]
0 Uror
where Urr 15 a single-qubit rotation matrix used in quantum computing. It
represents a quantum gate that applies a phase shift to the state of a qubit.

The matrix form of Urg is:

1 0
UROT — 2mi

0 e2+

This matrix represents a single-qubit rotation gate that applies a phase

shift to the quantum state of a qubit.

The element 1 represents the state |0), meaning the |0) state is unchanged
by this operation.

The element e is the phase factor applied to the state |1). It introduces
a rotation in the complex plane, with the magnitude of the rotation
controlled by the value of .

The phase shift e is a rotation in the complex plane, where the
exponent k£ controls the amount of rotation. Larger values of k correspond

to smaller phase shifts.



In quantum circuits, Ut 1s used to apply phase shifts to qubits. This is
particularly useful in algorithms like the QFT, where control over the phase
of quantum states is important.

For multi-qubit systems, the rotation angle may depend on the position of
the qubit, controlled by k. This is seen in gates like the Controlled Rotation
(CROT) gate, where one qubit controls the rotation of another.

The Controlled Rotation (CROT) gate acts on the two-qubit state |z;z;)

as follows:
CROTk‘OJ}j> = |0.’13j>

This means that if the control qubit is in state |0), the target qubit remains

unchanged, regardless of the state of x;.

2mix ;

CROTk|1$]> = 62_’“] ‘1LBJ>

If the control qubit is in state |1), the target qubit undergoes a phase shift

27rzxj

e » , where x; represents the state of the target qubit and k controls the
magnitude of the phase shift.
Thus, the general action of CROT, on the two-qubit state |z;z ) is:

and

2T ;

CROTy|1z;) = e # |1x;)

2.3.41 Approximate QFT

As the QFT circuit becomes large, the time spent on increasingly slight

rotations becomes significant. It is found that rotations below a certain



threshold can be ignored, leading to the approximate QFT. This is
particularly important for physical implementations, as reducing the number

of operations minimizes decoherence and potential gate errors.

2.3.4.2 Application of QFT to Periodic Functions

When the QFT is applied to a state whose amplitudes are given by a
periodic function a(x) = a, with period r, where r is a power of 2, the

result 1s:
) _ N
QFT{a(x)} = A(z) =0 except when =z isa multiple of -

The equation reflects the periodic nature of the function a(z) and QFT.
The QFT i1s designed to extract the periodic components of a function by
transforming it into the Fourier basis. When the function a(x) has a
periodic structure with period r, the QFT will isolate the frequencies
corresponding to this periodicity. These frequencies present as non-zero
Fourier coefficients at specific multiples of %, where N is the size of the
system, and 7 is the period. The result is that for most values of x, the
Fourier coefficients A(z) will be zero, while for multiples of &, the
coefficients will be non-zero, reflecting the periodic nature of the
underlying function.

In algorithms like Shor's algorithm, this property is crucial for identifying
the period r. By applying the QFT, we can extract these non-zero
coefficients corresponding to the periodic structure, enabling us to
determine the hidden period of the function efficiently. Thus, the QFT
highlights only those components that are related to the underlying
periodicity, while other components are discarded (i.e., have zero

amplitude).



The QFT is a powerful tool in quantum computing that can perform
calculations much faster than the classical Fast Fourier Transform (FFT).
The QFT needs only O(n?) operations, while the classical FFT requires
O(nN) operations. This means that the QFT can solve problems much

more efficiently, especially for large inputs.

2.3.5 QUANTUM PHASE ESTIMATION

QPE is a quantum algorithm that estimates the eigenvalue of a unitary
operator. QPE aims to extract the phase phi associated with the eigenvalue
of a unitary operator acting on a quantum state. This phase information is
critical in algorithms such as Shor's algorithm for factoring large numbers
and other quantum algorithms for solving mathematical problems. The
main goal of QPE is to estimate the phase ¢ corresponding to the

eigenvalue e?™? of a unitary operator U, given that U acts on a quantum

state (1)) as Ulyp) = e?™?|y) [31].

2.3.5.1 The Quantum Phase Estimation Algorithm

QPE is based on the principle of quantum interference. The algorithm
utilizes two quantum registers: one for the “phase” part and another for the
quantum state whose phase we are trying to estimate. Given a unitary

operator U, QPE estimates the phase ¢ such that:

Ulp) = e*™|y)

The algorithm proceeds as follows:

1. Initial State Preparation: For the initial preparation, consider two

quantum registers in which the first register is initialized to a state



|0)®% where # is the number of qubits used to encode the phase, and
the second register is prepared in the state [¢), which is the

eigenstate of the unitary U.
linitial) = |0)®* ® |4)

. Apply Hadamard Transform: A Hadamard gate is applied to each
qubit in the first register. This step creates a superposition of all

possible states in the first register.

H®'0)® \/_Z|k

. Apply Controlled-U Operations: For each qubit j in the first
register, apply the controlled-U?’ operation (U is a unitary operator,
which means it preserves the norm and corresponds to a reversible
transformation in quantum mechanics. The power 2 indicates that U
is applied 2 times in succession.), which applies U? on the second
register if the jth qubit of the first register is |1). This step entangles

the two registers.

Cyulk) ® [9) = |k) @ U |)

. Inverse Quantum Fourier Transform (IQFT): After applying the
controlled-unitary operations, the first register is subjected to the
inverse QFT. The QFT transforms the computational basis states
into superposition states that encode the phase ¢. The inverse QFT

on ¢ qubits is defined as:

QFT

— X
2t ‘m



where x represents the output state of the quantum register.
5. Measurement: Finally, the first register is measured. The outcome
of the measurement gives an approximation of the phase ¢ as a

binary fraction:

where £ is the measurement result.

Error and Precision
The accuracy of the phase estimation depends on the number of qubits ¢
used in the algorithm. A larger ¢ results in more precise estimates of the
phase. The error in the phase estimation can be quantified as:
1
Error = —
9t
Thus, increasing ¢ improves the precision of the estimated phase.
QPE is a powerful quantum algorithm that provides an efficient way to
estimate the phase of eigenvalues of unitary operators. Its implementation is

a critical component of several quantum algorithms, with broad applications

in fields such as cryptography, quantum chemistry, and machine learning.

2.3.6 SHOR'S ALGORITHM FOR FACTORING

Shor's Factorization Algorithm was proposed by Peter Shor in 1994. It
suggests that quantum mechanics allows the factorization of integers to be
performed in polynomial time, rather than the exponential time required by
classical algorithms. This could have a drastic impact on the field of data

security, which is based on the prime factorization of large numbers. Many



polynomial-time algorithms for integer multiplication (e.g., Euclid's
Algorithm) exist, but no polynomial-time algorithm for factorization has
been discovered until Shor's proposal. Shor's Factorization Algorithm is
designed to factorize non-prime integers N. A factoring problem can be
turned into a period-finding problem in polynomial time, and an efficient

period-finding algorithm can be used to factor integers efficiently [32].

2.3.6.1 Fundamental Theorem of Arithmetic

It has been known for a very long time that every integer n > 2 can be
uniquely factored into product of prime powers. This is stated in the
Fundamental Theorem of Arithmetic. Mathematicians have always been
interested in the problem of how to factor a random integer into its prime
factors. The best currently known classical factoring algorithm is the
number field sieve which, to factor an integer n, takes an asymptotic

running time of:
O (exp (c - (log n)l/3 - (loglog n)2/3)>

for some constant c.
Shor's Quantum  Algorithm: Shor's quantum algorithm takes
asymptotically O ((log 'n)2 -loglogn - logloglog n) steps, along with a
polynomial amount of time on a classical computer to convert the output of
the quantum computer to the factors of #.

Impact on Cryptography: Much of modern cryptography is based on the
assumption that no fast (i.e., polynomial time) factoring algorithm or
discrete logarithm algorithm exists. The most important cryptosystems

based on these assumptions are the RSA (Rivest-Shamir-Adleman) and



ElGamal cryptosystems. These would be broken if Shor's algorithm could
be physically realized for sufficiently large integers.

Quantum Parallelism: Many quantum algorithms use quantum analogs
of classical computation as at least part of their computation. Quantum
algorithms often start by creating a quantum superposition and then feeding
it into a quantum version Uy of a classical circuit that computes a function f.
This setup, called quantum parallelism, accomplishes nothing by itself; any
algorithm that stopped at this point would have no advantage over a
classical algorithm. However, this construction leaves the system in a state
that quantum algorithm designers have found to be a useful starting point.

Shor's algorithm begins with the quantum parallelism setup.

2.3.7 GROVER'S ALGORITHM FOR QUANTUM SEARCHING

Quantum computing has revolutionized approaches to solving
computational problems. One of the most significant quantum algorithms is
Grover's algorithm, proposed by Lov Grover in 1996. It is specifically
designed for unstructured search problems, achieving a quadratic speedup
by reducing the search time to O(v/N) compared to the O(N) time
required by classical algorithms. Where N represents the total number of
possible entries in an unstructured search space [33]. If we are searching for
a specific item in an unsorted database, N is the total number of items.

For example:

If we have NV = 1,000,000 possible solutions, a classical search takes
O(N) = 1,000, 000 steps in the worst case.
Grover's algorithm, however, only takes O(\/ N) ~ 1000 steps,

providing a quadratic speedup.

Classical vs. Quantum Search



In a classical context, searching for a specific element in an unstructured
database of N items requires O(N) operations in the worst case. Grover's
algorithm, influence quantum parallelism and interference, significantly
reduces the complexity to O(v/N).However, Grover's algorithm provides a
quantum speedup by utilizing the principles of quantum superposition and

amplitude amplification.

Unstructured Search Problem

The problem involves searching for an unknown element x in an unsorted
database such that f(z) = 1 (where f'is a binary-valued function indicating

the solution). Classically, no better strategy than exhaustive search exists.

Grover's Algorithm: Key Concepts

Grover's algorithm exploits the following fundamental quantum principles:

1. Superposition: Enables the simultaneous evaluation of all possible
database entries.

2. Oracle: A black-box function used to mark the correct solution state.

3. Amplitude Amplification: Enhances the probability amplitude of the
solution states while diminishing the others.

4. Quantum Interference: Used to constructively and destructively

interfere with amplitudes to achieve amplification.

The Grover's algorithm in detail
Figure 2.13 shows the block diagram of Grover's algorithm. The algorithm

consists of the following steps:

H is the Hadamard gate.

O is the oracle that marks the target state.



D is the diffusion operator.

Measurement is performed at the end to obtain the search result.

Measurements

H A
1]
o . .
a H Grover's Diffusion 71
pet Operator
o Oracle D"
: lol
© H
5 7
1)

H A

Figure 2.13 Block diagram of grover's algorithm <J

Initialization: Prepare the quantum system in a uniform superposition state
of N basis states using the Hadamard gate. For a system with n qubits (
N =27):

Oracle Query: Apply the oracle Upthat flips the sign of the amplitude of

the solution state |s) such that:

—lz) ifz =s,

Utlw) = {

|z)  otherwise.

Grover Diffusion Operator: Perform the Grover diffusion operator G,

which inverts the amplitudes about their mean:

G = 2[9po) (o] — 1



This step amplifies the solution state amplitude while reducing others.

Iterative Process

Repeat the Oracle and Diffusion operations O(v/N) times to maximize the
probability of measuring the correct solution.
Measurement: Finally, measure the quantum state to observe the

solution with high probability.

Mathematical Analysis of Grover's Algorithm

Grover's algorithm iteratively amplifies the amplitude of the solution state
by rotating the quantum state in a subspace defined by the initial uniform
superposition and the marked (solution) state. The rotation angle per

iteration is given by:
0 = arcsin(1/v'N)

where N is the total number of possible states in the search space. After
approximately O(\/ N) iterations, the probability of measuring the solution

state approaches unity.

Amplitude Evolution

Let |1;) represent the quantum state after # iterations of Grover's algorithm.

The state evolves as:
‘¢t> — COS((2t + 1)0)‘¢non-solution> + Sin((2t + 1)0)|¢solution>

where |¥non-solution) Te€presents the component orthogonal to the solution

state. This follows from the repeated application of the Grover oracle and



diffusion operator, which together perform a rotation in this two-

dimensional subspace.

Convergence Condition

The probability of measuring the solution state is maximized when:

(2t+1)0 ~

Do

which gives the optimal number of iterations as:

tz%x/ﬁ

ensuring that the probability of measuring the solution state is close to
unity.

This analysis highlights how Grover's algorithm efficiently increases the
likelihood of finding the correct solution in O(\/ N) steps, providing a
quadratic speedup over classical brute-force search.

Practical Considerations

1. Impact of Quantum Noise and Decoherence: The success of Grover's
algorithm hinges on the precision of quantum gates. However, quantum
systems are prone to interference from their surroundings, leading to
decoherence and noise. These factors can degrade computational
accuracy, necessitating the use of error correction and the development
of quantum systems capable of withstanding these challenges.

2. Challenges in Scalability: Deploying Grover's algorithm for extensive
datasets requires quantum systems with a large number of qubits and

robust connectivity. Current hardware limitations, including short



coherence times and imperfect gate operations, present significant
obstacles to scaling the technology.

3. Flexibility in Approximation: Grover's algorithm exhibits resilience in
cases with multiple valid solutions or scenarios where near-optimal
solutions are sufficient. This adaptability broadens its utility, especially
in domains like optimization, where exact solutions may not be strictly

required.

Grover's algorithm represents the power of quantum computing,
providing a compelling quadratic speedup for unstructured search problems.
As quantum technologies advance, Grover's algorithm has potential for
solving real-world problems in optimization, cryptography, and beyond
[34].

2.3.8 SIMON'S ALGORITHM FOR COLLISION FINDING

Simon's algorithm is one of the foundational quantum algorithms that
highlights the potential speedup achievable through quantum computing.
Initially developed by Daniel Simon in 1994, the algorithm solves the
collision finding problem exponentially faster than any known classical
algorithm [35].

Problem statement
The collision finding problem addressed by Simon's algorithm can be
defined as follows:

Given a black-box function f : {0,1}™ — {0, 1}™ satisfying the promise:
flz) = fly) < z@y=s,

for some unknown binary string s € {0,1}", the task is to find the string s.



Quantum notation
- Qubits: |0) and |1).
- Superposition: |¢) = ﬁzxe{o,m |z). - Measurement outcomes

collapse to classical values.

Hadamard Transformation
The Hadamard gate (H) plays a key role in creating superpositions.
Applying H®" on an n-qubit input:

Hen 1
z) — — > (-1)"Y|y).
V2" ye{0,1}"

2.3.8.1 Simon's Algorithm

Simon's algorithm, introduced by Daniel Simon in 1994, was one of the
first quantum algorithms to demonstrate an exponential speedup over
classical methods. It determines a hidden bit string s for a function
f:{0,1}" — {0,1}" with a guaranteed periodicity property [36].

The algorithm proceeds through three main steps: initialization,

superposition and oracle query, and measurement.

Step 1: Inmitialization Prepare a quantum register with 2n qubits

initialized to the |0) state:
|O>®n ® |0>®n.

Step 2: Superposition and Oracle Query
Step 2.1: Applying Hadamard Gates to the first register

1
H®n|0>®n: — Z ‘x>
\/271 ze{0,1}n




The resulting quantum state is:

1

" ze{0,1}n
Step 2.2: Querying the Oracle Uy
Uslz)ly) = |z)|ly @ f(z)).

This results in:

1
ﬁ xe{zo,;}n z)| f(z))-

Since f(x) is two-to-one, we have f(z)= f(z') if and only if
x' = x @ s, introducing a hidden structure.
Step 3: Uncomputing and Measurement

Step 3.1: Measuring the Second Register collapses the first register to:

1
E(I@ +z @ s)).

Step 3.2: Applying Hadamard Transform Again to the first register:

on 1 T Tds
H ﬁ(|>+l D s))

produces the interference pattern:

1 Ty z®@s)y
N {Z} ((—1)77 + (~1)eev) y).

Using the dot product property:



(~1)=9 = (~1)75(-1)*",
leading to the condition:
s-y=0 mod 2.
Step 3.3: Measuring the First Register gives equations of the form:
Y151 D Y252 D - D ynsy, = 0.

Repeating O(n) times yields n independent equations, solving for s using
Gaussian elimination.

Analysis and Complexity

Classical approach: Requires O(2™/?) queries to determine s.

Quantum approach: Requires only O(n) oracle queries.
Resource Requirements

Quantum Gates: O(n?) operations.
Oracle Calls: O(n) queries.
Qubit Count: 2n qubits.

Simon's algorithm demonstrates the exponential advantage of quantum
algorithms under the quantum query model, serving as a precursor to the

more famous Shor's algorithm.
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“Shor's algorithm shows that quantum computers could solve certain problems much more efficiently

than classical computers, potentially breaking widely used cryptographic systems.”

— Peter Shor

SUMMARY

This chapter focuses on Shor's algorithm, particularly its application to factoring and
cryptanalysis. It begins with an overview of Shor's algorithm, detailing the classical
extraction of periods from measured values and the quantum gates required for the
Quantum Fourier Transform (QFT). Further, this chapter explores the applications and
limitations of Shor's algorithm, including its impact on RSA (Rivest-Shamir-Adleman)
encryption. A literature review follows, discussing Shor's algorithm in the context of
quantum computation, its effectiveness on RSA, and the effects of imperfections on its
factorization process. The section also includes an experimental study of Shor's
algorithm using IBM Q, followed by a practical implementation of factoring numbers
N = 21 and N = 35. Further, it covers resource estimation, quantum simulations, and
different types of simulators in IBM Qiskit, including state vector, QASM, Matrix
Product State (MPS), and stabilizer simulators, providing insights into their use cases

and the limits of classical simulation.

3.1 INTRODUCTION


https://doi.org/10.1201/9781003606338-3

Shor's Factorization Algorithm, proposed by Peter Shor in 1994 [1], suggests that
quantum mechanics can factorize numbers in polynomial time (the time required to
factor large numbers increases more slowly compared to classical algorithms), as
opposed to the exponential time (the time required to factor large numbers increases
very quickly as the numbers grow) required by classical algorithms. This discovery
could significantly impact data security, which relies on the difficulty of factoring large
composite numbers. While there are polynomial-time algorithms for tasks like integer
multiplication (e.g., Euclid's Algorithm: It is a classical method used to find the greatest
common divisor (GCD) of two integers. The GCD of two numbers is the largest integer
that divides both of them without leaving a remainder.), no polynomial-time algorithm
for factorization had been found before Shor's work. Shor developed a method to turn a
factoring problem into a period-finding problem, which can be solved efficiently using
quantum mechanics.

The fundamental theorem of arithmetic states that every integer n > 2 can be
uniquely factored into a product of powers of primes. For centuries, mathematicians
have worked on finding ways to factor random integers into their prime factors. The
best-known classical algorithm for factoring is the number field sieve, which has an

asymptotic running time of
O (exp (c(log n)'/3(loglog n)2/3) )
for some constant c. In contrast, Shor's quantum algorithm takes

O ((log n)*(loglogn)(logloglogn))

steps, along with some polynomial-time work on a classical computer to convert the
quantum computer's output into factors [2].

Modern cryptography often depends on the assumption that no fast (polynomial-
time) factoring algorithm or discrete logarithm algorithm exists. Key cryptosystems,
such as RSA and ElGamal, are based on this assumption. If Shor's algorithm could be
implemented for sufficiently large integers, these cryptosystems could be easily broken.
Many quantum algorithms use quantum versions of classical computations. Quantum
algorithms often start by creating a quantum superposition, which is then processed by a

quantum version Uy of a classical function f. This setup, known as quantum parallelism,



doesn't provide an advantage by itself; however, it sets up the system in a way that is
useful for further steps. Shor's algorithm begins with this quantum parallelism step to
efficiently solve the factorization problem.

3.2 OVERVIEW OF SHOR'S ALGORITHM

Shor's algorithm consists of the following two parts:

Conversion of the problem of factorizing to the problem of finding the period. This

part can be implemented with classical method [2].

Finding the period using the QFT.

In Shor's algorithm, the input is a non-prime number N and the output is a non-trivial
factor of V.

Algorithm: It contains a few steps; only in step 2 is the use of a quantum computer

required.

1. Choose any random number, let's say a, such that 1 < a < N so that they are co-
primes of each other (i.e., a is a number less than N and has no factors in common
with N).

2. A quantum computer is used to determine the unknown period » of the function [
fan(r) =a” mod N.Ifris an odd integer, then go back to Step 1. Else, move to
Step 3.

3. Since r is an even integer, calculate (a? — 1)(a? +1) =0 (mod N). Now, if the
value of (a7 — 1) =0 (mod N), go back to Step 1 and choose a different value for
a. If the value of (a7 1) Z 0 (mod N) (non-trivial), then move to Step 4.

4. Compute p =gcd (a% — 1, N) and g =gcd (a% +1, N). The answer required is p,
which is one of the prime factors of the given number N.

5. Compute the other prime factor ¢ using ¢ = N /p. Finally, the prime factors for the

given N are found. So, N = p X q. (where % indicates multiplication symbol)

3.2.1 CLASSICAL EXTRACTION OF THE PERIOD FROM THE MEASURED
VALUE



This section sketches a purely classical algorithm for extracting the period from the
measured value v obtained from the quantum core of Shor's algorithm. When the period
r happens to be a power of 2, the QFT gives exact multiples of N /r = 2" /r, which
makes the period easy to extract. In this case, the measured value v is equal to 7 - 2" /r
for some j. Most of the time j and » will be relatively prime, in which case reducing the
fraction v/2™ to its lowest terms will yield a fraction j/r whose denominator is the
period r.

Let us see how to obtain a good guess for » when it is not a power of 2. In general,
the QFT gives only approximate multiples of the scaled frequency, which complicates
the extraction of the period from the measurement. When the period is not a power of 2,
a good guess for the period can be obtained from the continued fraction expansion of
v/2™. Shor shows that with high probability v is within 1/2 of some multiple of 2" /7,
say j - 2" /r.

The reason why n was chosen to satisfy N? < 2" < 2N?2 becomes apparent when
we try to extract the period r from the measured value v. In the high-probability case
that
on

’U—]T

<1
2

for some j, the left inequality N2 < 2" implies that

1 1

v J <
2.2n — 9N2°

AL r

In general, the difference between two distinct fractions p/q and p'/q’ with
denominators less than M (where M defines the maximum size for the denominator that

can be considered in the continued fraction expansion) is bounded:

1
M2

q 4q

!
‘pp -

_ ‘pq’ —p'q
qq’'

Thus, there is at most one fraction p/q with denominator ¢ < M such that

o — §| < # In the high-probability case that v is within 1/2 of j-2"/r, this

fraction will be j/r.



The fraction p/q can be computed using a continued fraction expansion as shown
below. We take the denominator g of the obtained fraction as our guess for the period.

This guess will be correct whenever j and r are relatively prime [3].

3.2.2 CLASSICAL EXTRACTION OF THE PERIOD FROM THE MEASURED
VALUE

This section gives us a purely classical algorithm for extracting the period from the
measured value v obtained from the quantum core of Shor's algorithm. When the period
r happens to be a power of 2, the QFT gives exact multiples of N /r = 2™/r, which
makes the period easy to extract. In this case, the measured value v is equal to 7 - 2" /r
for some j. Most of the time j and » will be relatively prime, in which case reducing the
fraction v/2™ to its lowest terms will yield a fraction j/r whose denominator is the
period .

Let us see how to obtain a good guess for » when it is not a power of 2. In general,
the QFT gives only approximate multiples of the scaled frequency, which complicates
the extraction of the period from the measurement. When the period is not a power of 2,
a good guess for the period can be obtained from the continued fraction expansion of
v/2™. Shor shows that with high probability v is within 1/2 of some multiple of 2" /7,
say j - 2" /r.

The reason why n was chosen to satisfy N2 < 2" < 2N? becomes apparent when
we try to extract the period » from the measured value v. In the high-probability case
that
on

’U—]T

<1
2

for some j, the left inequality N2 < 2™ implies that

1 1

v ] <
2.27n — 9N2°

AL r

In general, the difference between two distinct fractions p/q and p'/q’ with

denominators less than M is bounded:
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Thus, there is at most one fraction p/q with denominator g < M such that
o — §| < ﬁ In the high-probability case that v is within 1/2 of j-2"/r, this

fraction will be j/r.
The fraction p/q can be computed using a continued fraction expansion as shown
below. We take the denominator g of the obtained fraction as our guess for the period.

This guess will be correct whenever j and r are relatively prime.

3.2.3 CONTINUED FRACTION EXPANSION

The unique fraction with a denominator less than M that is within 1/M?2 of v/2™ can be
obtained efficiently from the continued fraction expansion of v/2™ as follows [4]. Using

the sequences:

v v
ag — %7 60:2_n_a’07

1 1
a; = ) € — — a4,
€i—1 €i—1

Po =ag, p1=aiao+1, p;=a;pi—1+ pi-2,

g=1, qi=a1, ¢ =a;qi-1+qgio.

Compute the first fraction % such that ¢; < M < g;41.

EXAMPLE OF CONTINUED FRACTION EXPANSION

Let's work through a simple example to understand how continued fraction expansion is
used to extract the period in Shor's algorithm.
Let v = 15 and 2" = 32, so the value to expand is - = % = 0.46875.

STEP 1: INITIAL SETUP

We begin by computing the first term in the continued fraction expansion:

ao = {%J — 0.46875] = 0

Since 0.46875 is greater than 0 but less than 1, the floor of 0.46875 is: 0

Next, calculate the fractional part:



€0 = 2% — ap = 0.46875 — 0 = 0.46875

STEP 2: RECURSION FOR FURTHER TERMS

Now, we compute the next terms:

= L_loJ - {0.46;1875J = [2.131] =2

The new fractional part is:

1
€1=——a; =2131-2=0.131
€0

Next, compute:

B N R N T
2= T (oast | T M T
The new fractional part is:

1
62:——0,2:7.63—7:0.63
€1

STEP 3: CONTINUED FRACTION EXPANSION
Now, we compute the numerators and denominators using the recurrence relations:
po=a0=0, pr=aao+1=1, pr=ap1+po=7

@=1, q =a1=2, q2=axq+qo=15

STEP 4: BEST FRACTION

We find the best fraction 22 = -, which is the best approximation of 2.
q2 15 32

Thus, the period 7 is 15.

3.3 NUMBER OF QUANTUM GATES REQUIRED TO PERFORM
QFT



To compute QFT (refer Section 2.3.3) for two qubits, Qubit 1 requires a Hadamard (H)
gate and (n — 1) controlled rotation (R) gates, resulting in a total of n gates. Qubit 2
requires a Hadamard gate and (n — 2) controlled R gates, resulting in a total of (n — 1)
gates.

The QFT on n qubits requires » Hadamard gates and @ controlled rotation gates.
Each controlled rotation gate requires two CNOT gates and a few (approximately 4)
single-qubit rotation gates.

Thus, the overall scaling of the QFT is O(n?), which represents a polynomial scaling
of the number of gates with respect to the number of input qubits. This polynomial
scaling is a key reason why Shor's algorithm is considered an efficient quantum

algorithm [3].

3.4 APPLICATIONS OF SHOR'S ALGORITHM

The main application of Shor's algorithm is in the field of cryptography, where it poses
a potential threat to widely used encryption and digital signature schemes based on the

difficulty of factoring large numbers. Here are some detailed applications:

BREAKING RSA ENCRYPTION

RSA (Rivest-Shamir-Adleman) is a widely used public-key cryptosystem that relies on
the difficulty of factoring the product of two large prime numbers. Shor's algorithm,
when implemented on a sufficiently powerful quantum computer, can efficiently
factorize the RSA modulus, thus breaking the encryption. This poses a significant threat

to the security of data encrypted using RSA [2].

IMPACT ON PUBLIC KEY INFRASTRUCTURE (PKIl)

Many secure communication protocols, including HTTPS for secure web browsing, rely
on PKI for key exchange and digital signatures. If Shor's algorithm becomes practical, it
could compromise the security of PKlI-based systems, leading to potential

vulnerabilities in online communication and e-commerce [6].

CRYPTOGRAPHIC HASH FUNCTIONS



Shor's algorithm doesn't directly attack cryptographic hash functions, but the security of
many hash-based algorithms relies on the difficulty of factoring large numbers. If the
underlying encryption in a hash-based scheme is broken, it can have cascading effects

on the security of the entire system [7].

POST-QUANTUM CRYPTOGRAPHY

Shor's algorithm motivates the search for new cryptographic algorithms that are secure
against quantum attacks. Post-quantum cryptography aims to develop encryption
schemes that would remain secure even in the presence of quantum computers.
Research in this area includes lattice-based cryptography, hash-based cryptography,
code-based cryptography, and more [§].

OPTIMIZATION PROBLEMS

Shor's algorithm is not only applicable to factoring but can also be adapted for solving
certain mathematical optimization problems. This aspect of the algorithm has
applications in fields such as chemistry, physics, and materials science for simulating

quantum systems.

3.5 LIMITATIONS OF SHOR'S ALGORITHM

The implementation of Shor's algorithm has several limitations and challenges:

QUANTUM COMPUTER REQUIREMENTS

Shor's algorithm requires a sufficiently large and fault-tolerant quantum computer to be
practical. Building and maintaining a large quantum computer with a sufficient number

of stable qubits and low error rates remains a significant technical challenge [9].

QUANTUM ERROR CORRECTION

Quantum computers are susceptible to errors due to various factors, such as
decoherence and environmental interactions. Implementing quantum error correction to
maintain the stability of qubits over the course of a computation is crucial for the

success of Shor's algorithm [10].



PHYSICAL QUBIT COUNT

Shor's algorithm's efficiency depends on the number of physical qubits in the quantum
computer. The number of logical qubits needed for factoring an n-bit number is
proportional to O((logn)?). A circuit developed by Beauregard uses 2n + 3 qubits and
O(n3logn) elementary quantum gates. Achieving the required number of qubits for

practical applications poses a considerable technological barrier [11].

QUANTUM GATE OPERATIONS

The algorithm involves a large number of quantum gate operations, and maintaining the
coherence of these operations is challenging. Implementing these gates accurately and

coherently is essential for the algorithm's success [3].

POST-QUANTUM CRYPTOGRAPHY SOLUTIONS

While Shor's algorithm poses a potential threat to classical cryptographic systems, it has
also motivated research in post-quantum cryptography. New cryptographic algorithms
and protocols are being developed to resist quantum attacks, ensuring secure
communication in a post-quantum era. Key approaches include lattice-based
cryptography (e.g., NTRUEncrypt, NTRUSign), hash-based schemes (e.g., XMSS),
code-based systems (e.g., McEliece), multivariate polynomial methods (e.g., Rainbow,
UOV), and isogeny-based techniques (e.g., SIDH). The U.S. National Institute of
Standards and Technology (NIST) has initiated a standardization process for post-
quantum cryptography, evaluating candidate algorithms to select and standardize

quantum-resistant cryptographic algorithms for various applications [12, 13].

QUANTUM KEY DISTRIBUTION (QKD)

Quantum key distribution uses the principles of quantum mechanics to secure
communication channels. While not a post-quantum replacement for traditional
cryptographic primitives, QKD provides secure key distribution that is theoretically

immune to quantum attacks [14].

3.6 LITERATURE REVIEW OF SHOR'S ALGORITHM



3.6.1 SHOR'S ALGORITHM AND QUANTUM COMPUTATION

Quantum information theory constitutes the foundation of quantum computation.
Initially, the model mimics classical probabilistic systems, where a physical device X
embodies finite states—Ilike a bit represented by {0,1}. This state information is
described through probability vectors, offering insights into the possible outcomes.
Upon observation, the state changes, transitioning the knowledge vector. Operations on
X, typically limited to deterministic or random actions, are represented by matrices.
These operations mirror real-world physical processes and are conveyed through
stochastic matrices, encapsulating meaningful transformations [15].

This model generalizes seamlessly for sets beyond {0, 1}, adapting to the
dimensionality of the underlying states. In quantum information, the classical state
representation pivots to quantum bits or qubits. Similar to classical bits, qubits assume
states {0, 1}, but the key distinction lies in their representation. The emergence of
quantum computation stems from the understanding that traditional computing, based
on classical physics, faces limitations when dealing with complex problems.
Information and computation are fundamentally linked to physical theories. When
quantum effects, such as quantum interference and entanglement, become significant at
the atomic and subatomic levels, a new model for computation arises. Quantum
computers operate by manipulating quantum bits or qubits, which can exist in multiple
states simultaneously, enabling parallel processing on an unprecedented scale.

Shor's algorithm for factoring large numbers, a problem considered computationally
intractable for classical computers, showcases the potential of quantum computation.
The algorithm utilizes quantum properties to efficiently factorize numbers by
employing the quantum discrete Fourier transform and quantum logic gates. This
breakthrough demonstrates the superior computational capability of quantum systems in
solving certain complex problems. Theoretical models for quantum computation
include the Turing-machine model adapted to quantum mechanics and the
implementation of quantum networks using quantum logic gates.

Quantum computing, a revolutionary field, gained prominence with Peter Shor's
1994 presentation of an algorithm that exponentially reduce the computational
complexity of integer factorization. This breakthrough directly challenged the RSA

algorithm, a cornerstone of digital security, as Shor's quantum algorithm threatened the



traditional difficulty of factoring large integers on classical computers. Shor's algorithm
depends crucially on the principles of quantum mechanics and operates on quantum

states, ushering in a new era of computational possibilities [16].

3.6.2 RSA WITH SHOR'S ALGORITHM

The RSA cryptosystem, introduced by Rivest, Shamir, and Adleman in 1977, is the
foundation of modern public-key cryptography, widely used in secure communications,
digital signatures, and encryption protocols. Its security relies on the computational
hardness of factoring large integers -a problem believed to be intractable for classical
computers when sufficiently large key sizes (e.g., 2048 or 4096 bits) are used. However,
the beginning of quantum computing and Shor's algorithm threaten to weaken RSA's
security by efficiently solving the integer factorization problem [17].

The RSA cryptosystem is fundamentally based on modular arithmetic and number
theory, with its core security relying on the computational difficulty of certain
mathematical problems. At the heart of RSA lies the large integer factorization
problem: given a composite number N = p x g where p and ¢ are large prime numbers,
recovering the prime factors p and g from N is computationally infeasible for
sufficiently large N. This difficulty is complemented by Euler's Theorem, which states
that for any integer m coprime with N (i.e., gcd (m,N) =1), the congruence
m®®) =1 mod N holds, where ¢(N) = (p — 1)(¢ — 1) is Euler's totient function.
The key generation process in RSA involves selecting a public key (e, N) where e is
chosen such that ged (e, ¢(N)) = 1, and computing the private key d as the modular
inverse of e modulo ¢(IN), expressed asd = e™? mod @(N).

The security of RSA against classical computers primarily depends on two
computational assumptions: the hardness of integer factorization and the related
difficulty of solving the discrete logarithm problem. The best-known classical algorithm

for factorization, the General Number Field Sieve (GNFS), has sub-exponential

complexity of O (e(logN )!/*(loglog N )2/3>, which makes RSA secure when sufficiently

large key sizes are used. In practical implementations, RSA faces various vulnerabilities
beyond mathematical attacks, including side-channel attacks such as timing attacks,
power analysis, and fault injection attacks that can compromise the security of RSA

implementations. To address these concerns and ensure long-term security against



advancing computational capabilities, the National Institute of Standards and
Technology (NIST) recommends using RSA keys of at least 2048 bits for classical
security, with 3072 or 4096 bits recommended for more long-term security

requirements [18].

3.6.3 EFFECTS OF IMPERFECTIONS FOR SHOR'S FACTORIZATION
ALGORITHM

The implementation of Shor's algorithm in real quantum computing systems faces
significant challenges due to various types of imperfections and errors. The most
advanced experimental demonstration of Shor's algorithm to date was performed on a
seven-qubit nuclear magnetic resonance (NMR) based quantum computer, which
successfully factorized the number N = 15 [19]. While this achievement represented a
major milestone in quantum computation, several simplifications to the original
algorithm were necessary to accomplish this result, including the use of prior
knowledge about the factors to reduce the computational complexity [20].

Several important effects of errors on the algorithm's performance have been
observed in these early experiments. For instance, in the factorization of N = 15,

researchers found that:

Decoherence errors caused by interactions with the environment led to a gradual loss
of quantum information.

Imperfect gate operations introduced computational errors that accumulated
throughout the algorithm's execution.

Measurement errors affected the final probability distribution of results.

However, since these experiments were limited to very small numbers (specifically
N = 15), they could not provide meaningful insights into how these error effects scale
with larger input sizes. More recent numerical simulations have attempted to address

this limitation by investigating larger values of N:

1. Fowler and Hollenberg [21] examined the impact of finite precision in quantum
phase rotations within the QFT component of Shor's algorithm, considering values
up to N = 33.



2. Wang et al. [22] studied dynamical phase errors in the algorithm's implementation,
demonstrating how these errors grow with increasing circuit depth.

3. Chen and Wang [16] analyzed discrete qubit flip errors for factorizations up to
N = 247, showing that the error rate scales approximately linearly with the number

of logical qubits required.

A concrete example of these error effects can be seen in the case of factoring N = 21

. Numerical simulations show that:

With perfect gates, the success probability is approximately 50%.
Introducing just 1% gate error reduces the success probability to about 30%.
At 5% gate error, the success probability drops below 10%.

These studies collectively demonstrate that while Shor's algorithm theoretically
offers exponential speedup for integer factorization, practical implementations face
significant challenges from various error sources. The error correction requirements
grow rapidly with the input size N, suggesting that fault-tolerant quantum computers
with thousands of physical qubits will be necessary to factor cryptographically relevant
numbers (e.g., N > 2048 bits) [18].

3.6.4 NUMBER OF QUBITS REQUIRED FOR SHOR'S ALGORITHM

The number of qubits needed to factor an integer of n bits using Shor's algorithm on a
quantum computer is minimized. A circuit which uses 2n + 3 qubits and O(n?log(n))
elementary quantum gates in a depth of O(n3) to implement the factorization
algorithm. The circuit is computable in polynomial time on a classical computer and is
completely general as it does not rely on any property of the number to be factored. To
reduce the number of qubits, a variant of a quantum addition algorithm described by
Draper is used. Other techniques used to reduce the number of qubits are the hardwiring

of classical values and the sequential computation of the Fourier transform [23].

3.6.5 EXPERIMENTAL STUDY OF SHOR'S FACTORING ALGORITHM
USING THE IBM Q

Implementation of Shor's factoring algorithm on the IBM Q quantum processor,

specifically focusing on the ibmqx5 superconducting chip, is proposed. The



experimental challenges arise from the error-prone nature of physical qubits and gates.
While previous works have attempted Shor's algorithm on various setups, such as
NMR, trapped ions, photons, and superconducting qubits, many implementations
involve oversimplified versions equivalent to coin flipping, lacking the true quantum
hardware. This work stands out by providing a proof-of-principle demonstration with
compiled Shor's algorithm for factoring N = 15, 21, and 35, utilizing only five, six, and
seven superconducting qubits, respectively [24].

Classical processing is strategically employed alongside quantum computation to
compensate for device limitations, and efforts are made to minimize noise effects by
reducing the number of physical qubits and circuit depth. The experimental results are
analyzed quantitatively using the square of statistical overlap (SSO) and qualitatively
using probability plots. The success of the algorithm is evaluated through a comparison
of the measured probability distribution and the theoretically predicted distribution for
the period, utilizing SSO for the analysis.

3.7 IMPLEMENTATION OF SHOR'S ALGORITHM

Shor's factoring algorithm utilizes the power of quantum computation to efficiently
determine the period of the function f(z) =a® mod N, where a is a randomly
chosen small number that shares no common factors with N. From this period, classical
number-theoretic techniques can be applied to factor N with high probability.

The algorithm primarily relies on two key quantum computational components:
modular exponentiation (computation of a® mod N) and the IQFT. Both operations
take about O(I®) steps to complete, where / is the number of bits needed to represent the
number being factored. This is much faster compared to classical prime factorization
methods, which need around 0(211/3) steps and become extremely slow as / increases
[25, 26].

The implementation of Shor's algorithm can be divided into four distinct steps, as
depicted in Figure 3.1. In Shor's algorithm, one of the most computationally intensive
steps is implementing a quantum circuit to evaluate the function f(z) = a® mod N
on a superposition of 2” inputs. Here, n is the number of qubits in the input register,
allowing the quantum computer to evaluate f(x) for all z € {0,1,...,2" —1}

simultaneously via quantum parallelism.
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Figure 3.1 Period finding function of Shor's algorithm <

The complete source code for the experimental implementation of Shor's algorithm is
available on GitHub at: https://github.com/mohanyaso/Shor.git.
Let f:{0,1,2,...,N—1} — {0,1,2,..., N — 1} be a periodic function of period

r, meaning that

f(x) = f(z+r) Vere{0,1,2,...,N —1},

and the values f(z), f(z + 1), f(x +2),..., f(x + r — 1) are all distinct.
From the properties of modular arithmetic and period finding, the periodic function

can be written as:
f(z) =a® mod N.

Example: Evaluating 5!'7 mod 19

To illustrate, let us calculate 51*7 mod 19. The binary representation of 117 is:

117 = 1110101, = 26 + 25 + 24 + 22+ 20 =64+ 32+ 16 +4 + 1.

5117

Thus, we can express mod 19 as:

517 mod 19 = 504+32HIEHFL 16d 19 = (5% x 532 x 516 x 5% x 5!)  mod 19.

Using modular arithmetic:


https://github.com/mohanyaso/Shor.git

5! mod 19 =5,
5 mod 19 =17,
5% mod 19 = 16,
532 mod 19 =9,
5% mod 19 =5.

Substituting these values:
517" mod 19=(5x9x 16 x 17 x 5) mod 19 = 61200 mod 19 = 1.

Unitary Operator for Modular Exponentiation
From the above discussion on modular exponentiation, it is evident that a unitary
operator can be used to perform step-by-step mod N operations, leading to the

condition:
a® mod N =1.

This can be achieved using the phase estimation algorithm, as x appears as the power
of a. This requires a controlled unitary operation of the form U',U2,U* U8, ...,
where the powers are 2°, 21,22 23 .

Quantum Phase Estimation (QPE) is a quantum algorithm used to estimate the phase
corresponding to an eigenvalue of a given unitary operator. The eigenvalues of a unitary
operator always have unit modulus, meaning their absolute value is 1. These
eigenvalues are characterized by their phase, and therefore, QPE can be described as
retrieving either the phase or the eigenvalue itself [27].

If |y) =|0), then |y® f(x)) becomes |f(z)), which provides an easy way to
evaluate f(x). This means that when the first register |y) is in the state |0), the second
register's state simplifies to |f(x)), which directly gives us the result of evaluating the
function f(z) (Figure 3.2).
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Figure 3.2 Outline of phase estimation algorithm <

Thus, the input to the second register will be |0) for n qubits, without applying
superposition. This means the second register is initially in the state |0)®", and
superposition is not applied immediately, which simplifies the function evaluation
process. [28].

Note: The reverse order of the output state relative to the desired QFT. Therefore, we

must reverse the order of the qubits.

3.71 FACTORING N = 21 USING SHOR'S ALGORITHM

The following steps have to be followed:
Step 1: Choose a random integer a, where 1 < a < N.
Let a = 6. Find the ged(a, N) and check whether it is coprime with N or not.

ged(6,21) = 3,

s0, 6 is not coprime with M.
Now, let a = 11. Find the ged(a, N):

ged(11,21) =1,
so, 11 is coprime with M.

From Table 3.1 it is clear that the possible values of “a” are 2, 4, 5, 8, 10, 11, 13, 16,
17, 19, 20.

Table 3.1

Possible values of “a” for N = 21 4



ged(2,21)=1

ged(12,21) =3

ged(3,21)=3 ged(13,21) =1
ged(4,21)=1 ged(14,21) =7
ged(5,21)=1 ged(15,21)=3
ged(6,21)=3 ged(16,21) =1
ged(7,21)=7 ged(17,21) =1
ged(8,21)=1 gcd(18,21) =3
gcd(9,21)=3 gcd(19,21) =1

gcd(10,21) =1

gcd(20,21) =1

gcd(11,21)=1

Table 3.2 shows the result of raising 11 to the power of x and then taking the

remainder when divided by 21 (modulo 21).

When z =0, 11° mod 21 = 1 because any number raised to the power of 0 is 1,

and the remainder when dividing 1 by 21 is 1.

When z = 1,11 mod 21 = 11 because any number raised to the power of 1 is the

number itself, and the remainder when dividing 11 by 21 is 11.
When z = 2, 112 mod 21 = 16 because the remainder of 121 divided by 21 is 16.

Table 3.2

Representation of 11”

mod 21 for various values of x <1

X

0

1 2 13

4

5

6 | 7 8

9

10

11

12

11 mod 21

1

11 |16 | 8

4

2

I |11 |16

8

4

The pattern continues, and it is clear that after reaching 11° mod 21 =1, the

sequence starts repeating. This is because of the concept of periodicity in modular

arithmetic (Figures 3.3 and 3.4).
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the obtained period is 6, which is an even number.

(a®? =1)(a®?*+1)=0 mod N.
(a®*-1)#0 mod N (non-trivial).

Check if x is even. Here,

I 1 L] 1 1} I 1 1 1
1 1 1 1 ] ] 1 ] 1
i i i i i i i A e~
T T T . . i H—. H YR Es
1 i ] 1 1 i 1 i
1 1 1 ) 1 1 1 1
1 1 1 ) 1 1 1 1
i i i 1 i i i i
1 1 1 ) 1 1 1 1
i i i 1 i i i
1 1 1 ) 1 1 1
i [ i 1 i i |
1 1 1 ) 1 1 1 1
1 1 1 ] 1 1 1 1
1 1 1 ) 1 1 1 1
1 1 1 ] ] 1 1 1
Lo A |
T . . T > T T
i i 1 i i i i
1 1 ) [} 1 1 1
1 1 ) 1 1 1
i i i i i o |
i i i i i i
b e e
I 1 ] ] 1 I
[ i 1 i i | |
i 1 i i i i
1 1 ] 1 1 1 1
i i i 1 i i |
-QEEE S ses e s mEEEe T e T-1 0
[} 1 ) 1 1 1 1
I 1 1 i i 1 i
1 1 ) 1 1 1 1
i i i i i i i [
1 ] 1 1 1 1
reE e 3
1 1 I 1 1 1 ™
i 1 ] | 1 1 1 (o]
i i i i : i |
S R N N . | g
i e b Ittt b it & ittt T -r- O X g
1 1 1 1 ) 1 1 '_
[ [ [ ] 1 | | |
S “ .
i i i i i i i | —
T “ -
SR Ay | E
=
A Y 5
I N |
S I NS NN S AP A || .-
1 1 1 1 ) 1 1 1 [S)
A | 2
oor b d el 2
I H i 1 ] 1 1O ] g
i | i i i T L
[ 1 [ 1 i 1 | i~
1 1 1 ) 1 1 X 1 Q
I 1 | 1 1 I 1 | =
i i i 1 i i i =
1 1 1 1 ] 1 1 1 G
i 1 i 1 i i i
] 1 1 i I 1 1 o
@ e P S e g el e et o T N o
1 1 1 1 ) 1 1 1
B el 2
i 1 | i 1 i 1 1 =
i 1 i i 1 I i i 8
1 1 1 ] 1 1 1 n
i 1 i i 1 i i i 54
1 1 1 ) 1 1 1 172)
i 1 i | i i | 3
1 1 1 1 1 1 1 —
[ 1 [ ] 1 1 | 2,
1 1 1 1 ) 1 1 15}
1 1 1 1 ) 1 1
N A LY &
B T B’ Mo S e et San e g B
[ [ [ ] 1 | | i i r]
H H H H H H H H H ™
T T T T T T T T T o
(o] < o~ o [e0] [(e] <t o o =
— — — — =
oy
TZ pow ,T1 ic

Figure 3.4 Quantum circuit to find factor for N

Now, calculate:

Step 3
We have:



For a = 11, with x = 6, we get:

1192 -1 mod 21 # 0.
This simplifies to:

113 —1 mod 21 # 0.
Now compute:

11° = 1331, 1331 —1 = 1330.
Finally:
1330 mod 21 # 0.

We compute:

1330 mod 21 =7 #0.

Step 4: Compute p =gcd (a*/2 — 1, N).

We calculate:
p =ged (11° —1,21).
Since:
11° — 1 = 1330,
we get:

p =ged (1330,21) = 7.

Step 5: Compute the other prime factor g using ¢ = %.
Finally, the prime factors for the given N are found:
N 21 3
9= =7 =

Thus, the factors for N = 21 are p = 7 and ¢ = 3, so:

N=pxq=17x3.



Computation of Period for 2 mod 21

Let us check the Modulus Computation for a =2 with ged (2,21) = 1. Since
ged (2,21) = 1, we know that 2 is coprime with 21. The task is to find the period of the
function 2* mod 21 by examining its values for different values of x.

Step 1: Choose a random integer a, where 1 < a < N.
Let us try with a = 2 now.

Step 2: The first register is initialized with a superposition of all states. We now

calculate 2 mod 21 for various values of x to observe the periodicity.

From Table 3.3, we can observe that the sequence 2 mod 21 repeats itself after

reaching 26 mod 21 = 1. Therefore, the period of the sequence is 6.

Table 3.3

Representation of 2° mod 21 for various values of x <

X o(1r{2|314 |5 |6 |7[8|9]10 |11 | 12
27 mod 21 124|816 11|12 48] 16 |11 | 1

Step 3: Check if the Period r is Even.
We have already determined the period » = 6 for 2* mod 21, and since 6 is an
even number, we proceed to the next step.

Next, let us compute the prime factors using the following expression:
(@*? -1)(a*?+1)=0 mod N
For a = 2 and x = 6, we calculate (Figures 3.5 and 3.6):

2% —1)@2%2+1) = (2 —1)(22+1)=(8-1)(8+1)=7x9
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Figure 3.5 Representation of the periodic function 2* mod 21 &
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Figure 3.6 Quantum circuit to find factor for N = 21 for a

Now, let us check modulo 21:

mod 21 =7 mod 21 #0

3_1)

2

(

This confirms that 2%/2 — 1 # 0 mod 21, and thus it is a non-trivial factor. Now,

let's proceed to the next step.

ged (2°/2 —1,21)
The greatest common divisor (ged) of 22/2 — 1 and N = 21:

Step 4: Compute p

ged (7,21)

p=ged (28 —1,21) =



Since ged (7,21) = 7, we find thatp = 7.
Step 5: Compute the Other Prime Factor ¢
Now, we compute the other prime factor ¢ using the formula:

Thus, the prime factors of N = 21 are p = 7 and ¢ = 3, and we can write:
N=pxqg=7x3=21

The prime factorization of N =21 is 21 =7 x 3, which is found using the
periodicity of 2 mod 21.

Table 3.4 compares various values of a for N = 21, displaying the period, prime
factors, number of qubits required for IQFT, number of Hadamard gates, and the

number of controlled rotation (CROT) gates required.

Table 3.4

Quantum computation parameters <

Random Number of Number Number of
Period Prime
S.No. number qubits required of H CROT
X Factors
a for IQFT gates gates

1. 2 6 7,3 2 2 3

2. 4 3 7,3 3 3 6

3. 5 6 7,3 3 3 6

4. 8 2 7,3 4 4 10

5. 10 6 7,3 4 4 10

6. 11 6 7,3 4 4 10

7. 13 2 7,3 4 4 10

g. 16 2 7,3 5 5 15

9. 17 6 7,3 5 5 15

10. 19 6 7,3 5 5 15

11 20 2 7,3 5 5 15




For optimal quantum circuit design, it is essential to select a value for a such that the
period is non-trivial and reasonable. A periodicity of 1, as observed with a = 7, does
not provide useful information for factorization. The goal is to select the smallest @ that
yields the maximum period.

The numbers a that are co-prime with N = 21 (i.e., gcd (a,21) = 1) are:
ac€ {2,4,5,8,10,11,13,16,17,19,20}
The periodicities for the values of a are as follows:

For a = 2, the period x = 6
For a = 4, the period x = 3
For a = 5, the period x = 6
For a = 8, the period ¢ = 2
For a = 10, the period z = 6
For a = 11, the period z = 6
For a = 13, the period = 2
For a = 16, the period ¢ = 3
For a = 17, the period z = 6
For a = 19, the period z = 6
For a = 20, the period ¢ = 2

The optimal choice is a =2, a =5, a =10, a =11, a = 17, or a = 19, as these
values yield a period of 6. Among these, a = 2 is the smallest value that provides the
maximum period.

For efficient factorization using Shor's algorithm, a = 2 is the optimal choice as it
provides a period of 6, which ensures a reasonable period and optimal quantum circuit

design.

3.7.2 FACTORING N = 35 USING SHOR'S ALGORITHM

The following steps are involved in factoring NV = 35 using Shor's algorithm.
Step 1: Choose a Random Integera, 1 <a < N
Select a random integer a such that 1 < a < N. Here, let a = 3.
Compute the ged (a, N):



ged (3,35) =1

Since ged (3,35) = 1, 3 is co-prime with 35, and Shor's algorithm can proceed to the

next step.

Step 2: Initialize the First Register with Superposition of All States. Find the Period

X.

The next step in Shor's algorithm is to initialize the quantum register in a

superposition of all possible states. The goal is to find the period x, such that

a® mod N = 1.

To find the period x, we compute powers of @ modulo N for successive values of x:

mod
mod
mod

mod

> mod

6 mod

" mod

8 mod

9

a
a
a
a
a
a” mod
a
a
a

35
35
35
35
35
35
35
35
35

10 mod 35
' mod 35
12 mod 35

_ 310
_ gl

— 312

mod 35 =3
mod 35 =19
mod 35 = 27
mod 35 =16
mod 35 =13
mod 35 =14
mod 35 = 12
mod 35 =6
mod 35 =18
mod 35 =14
mod 35 =2
mod 35 =1

The period x is the smallest integer such that a®* mod 35 = 1. From the

computations above, it is evident that:

Thus, the period x 1s 12.

r =12

Table 3.5 shows the calculation of 3* and 3*

corresponding divisor (35).

mod 35 for various values of x and the

Table 3.5: Powers of 3 modulo 35 for increasing values of x <1



a| x 3% Divisor (N) 3% mod 35
310 1 35

311 35

312 35

31 3 27 35 27
31 4 81 35 11
315 243 35 33
316 729 35 29
317 2,187 35 17
31 8 6,561 35 16
3109 19,683 35 13
3110 59,049 35 4
3111 177,147 35 12
3112 531,441 35

3113 15,943,023 35

3|14 47,829,069 35

3115 143,489,073 35 27
3116 430,467,213 35 11
3117 1,291,404,163 35 33
3118 3,874,204,689 35 29
3119 11,622,261,467 35 17
3120 34,867,784,401 35 16
3121 104,603,532,203 35 13
3122 313,810,595,609 35 4
3123 941,431,781,827 35 12
3124 2,824,295,536,481 35

3125 84,728,886,609,443 35 3

The pattern continues and it is clear that after reaching 3'2 mod 35 =1, the
sequence starts repeating. This is because of the concept of periodicity in modular
arithmetic. In modular arithmetic, numbers repeat after a certain interval, known as the

period.



In this case, the smallest period x for which 3* mod 35 =1 is 12. This means that
for any x greater than 12, the sequence will repeat the same values as for earlier powers

of 3. For example, we observe:
32 mod 35=1, 3® mod 35=3, 3% mod 35=09,

This repeating behavior is a key feature in Shor's algorithm, as the period x is used to
help find the prime factors of N.

Step 3: Check If x is Even

The period £ = 12 is even, so we can proceed to the next step.

Now, calculate:
(@ -1)(@*+1)=0 mod N

First, calculate a2 —1 mod N and a*2+1 mod N. Here, z =12, so we

12/2 _ 46

compute a
3° mod 35="729 mod 35=29
Now, check:
(3 —1) mod 35= (729 1) mod 35=728 mod 35=7+#0

Since (3% — 1) mod 35 # 0, we proceed to compute the next part (Figures 3.7 and
3.8).

(3+1) mod 35=(720+1) mod 35=730 mod 35=30£0
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Figure 3.7 Representation of the periodic function 3* mod 35 &
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Figure 3.8 Quantum circuit to find factor for N

neither 3% — 1 mod 35 nor 35 +1 mod 35 equals 0 modulo 35. This is a

non-trivial result.

Thus,

~1,N)

—gcd (a*/?

Step 4: Compute p

Now, compute:

)

—ged (3% — 1,35) =ged (728,35

p

ged (728,35) =7



Thus, p = 7.
Step 5: Compute the Other Prime Factor ¢

Using the formula ¢ = % , We compute:

:—:5
1=

The prime factors of N = 35 are p = 7 and g = 5, obtained using Shor's algorithm.

3.8 DISCUSSION AND RESOURCE ESTIMATION

Table 3.6 provides the resource estimation to factor a number using Shor's algorithm
using various optimization methods. The number of logical qubits required, the circuit
depth, which is a measure of how many time steps or layers of gates are required to
implement the quantum circuit and the number of Toffoli gates needed in the quantum
circuit. Toffoli gates are commonly used in quantum computing and act as reversible
classical AND gates. These metrics are important in quantum computing for evaluating
the efficiency and resource requirements of quantum circuits. Lower depths and gate

counts are generally desirable for better quantum circuit performance.

Table 3.6

Comparison between the different optimizations studied of the r
estimations &

References | Logical qubits Depth Toffoli count
[23] 2n + 3 144n31g(n) + O(n?lg(n)) | 576n%1g*(n) + O(n
[29] 2n + 2 52n° + O(n?) 64n° 1g(n) + O(n®)
[30] 3n + 0.002nlg(n) | 500n2 + n?1g(n) 0.3n% + 0.0005n° Ig

>

3.9 QUANTUM SIMULATIONS



Quantum Simulation (or just, Simulation) will refer to the process of performing
operations corresponding to a quantum computational algorithm or circuit on a classical
computer. The algorithms or circuits are represented by gate operations (or
transformations) that are applied on one or more quantum bits (qubits) which are the
fundamental unit of information. The operations themselves are represented by unitary
matrices. Therefore, quantum simulations are classical programs that perform matrix
multiplications. It should also be pointed out that, in general, these matrices have

complex entries [31].

3.9.1 SCALING OF QUANTUM SIMULATIONS

The size of the matrices present in a simulation program is determined by the number of
qubits present in a given quantum circuit. If a circuit contains n qubits, then the
operations defined on it will be unitary matrices of size 2" x 2" = 227, This implies the
memory (space) and consequently, the time complexity of matrix multiplications
performed in a simulation of this circuit will in general scale exponentially with the
number of qubits present in the circuit. Increasing the number of qubits in a circuit by

one will double the memory required for storing the matrices [32].

3.9.2 THE EXTENT OF SIMULATION

It should be noted that classical simulations only involve the simulation of the
operations performed by a quantum computer on a given initial state (input) leading to a
final state (output). The internal degrees of freedom (internal state) of the quantum
computer are not considered in this simulation. Due to this reason, these kinds of
simulations are incapable of considering the actual physical transformations being
applied to the qubits. As a result, these simulations do not account for the impact of

noise or the practical challenges involved in applying quantum gate operations.

3.9.3 WHAT INFORMATION CAN A SIMULATION GIVE?

Quantum simulations, provide an explicit connection between the input and output of a
given quantum circuit. Details such as the circuit depth and volume, the actual number
of quantum gates, and the number of ancillary qubits required cannot be obtained by

only performing simulations of this kind. Aspects pertaining to the quantum circuit



implemented on a real quantum machine depend on the qubit topology of the quantum
processor and the optimal sequence of gate operation is typically determined using a
compiler or a transpiler. This problem is exacerbated further in the case of Shor's
algorithm due to the fact that the gate operations involved in the quantum circuit change
based on the number being factorized (N) and the number selected as the base of
exponentiation (a). However, an approximate number of gates required for a possible

implementation may still be estimated.

3.9.4 BOUNDS ON THE CLASSICAL SIMULATION

Classical simulation of Shor's algorithm will not be possible if the size of the modular
exponentiation (ME) matrix exceeds the available memory (RAM) on the system. The
size of the ME matrix can be approximately estimated by observing that the ME matrix
i1s represented as a sequence of n 4+ 1 qubit operations, where one qubit acts as a
controlling qubit. The number of such operations required to perform the ME operation
is O(n?) [33].

It is therefore reasonable to assume that O(n3) nonzero entries are present in each
row/column of the ME matrix. This means the number of nonzero entries of the ME

matrix can be approximately stated to be:
2(n+1) % n3_

Python uses 64-bit double variables to represent floats. Therefore, the approximate

memory required to store the ME matrix is given by:

2 % 64 x 21 13 bits.
where,

64: Each float takes 64 bits (Python's f1oat is usually a C double).

2: Accounts for real and imaginary parts, assuming complex numbers.

27+1: Likely represents the number of rows or columns, based on the quantum state
space size.

n3: Common in modular exponentiation circuits or matrix operations for n-bit

integers (e.g., gate count or matrix size).



3.10 TYPES OF SIMULATORS IN IBM QISKIT

IBM Qiskit provides various simulators for quantum computing. These simulators
allow users to simulate quantum circuits and algorithms without needing access to
actual quantum hardware [34]. Here are some of the main types of simulators available
in Qiskit:

1. State Vector Simulator

2. QASM Simulator

3. Matrix Product State (MPS) Simulator
4. Unitary Simulator

5. Stabilizer Simulator

3.10.1 STATE VECTOR SIMULATOR

The State Vector Simulator in IBM Qiskit is a tool for simulating ideal quantum
circuits. It allows users to compute and visualize the quantum state vector at each step
of the circuit's evolution. This simulator is particularly useful for small-scale quantum
circuits where the number of qubits is manageable, typically up to 32 qubits. It supports

general noise modeling [35].

Supported gates:

[Géul” 6£u277 6(u3’7 66 29 ch,7 (13 77’ “I'X”’ Géry7,’ 661,277’ 6(1d17 “X”, 6€y77’ “Z” Géh,’ (13 ,’ “Sdg
“SX” 6‘ 29 “tdg” “Swap”’ (13 X”, “Cy”, “ ’9’ (13 X”, “Cp”, “Cul”’ “Cu2” “Cu3” “I‘XX”,
ryy’ﬁ’ ‘C ”’ “rZX”’ “CCX” “Cswap”’ (13 CX”’ “mcy),’ GCmCZ),’ “mCSX” ‘Cmcp”’ ‘Cmcul’)’

99 ¢ 99 ¢ 99 ¢ 99 ¢ b3

“mcu2”, “mcu3”, “merx”, “mcry”, “mcrz”, “mecr”, “mcswap”, “unitary”, “diagonal”,

9% ¢ 29 ¢

“multiplexer”, “initialize”, “kraus”, roerror”, “delay’]

FUNCTIONALITY
Quantum State Representation:

The State Vector Simulator calculates and stores the quantum state vector, which
represents the complete state of the quantum system. The state vector is a complex
vector containing information about the probability amplitudes of all possible

combinations of qubit states.



Step-by-Step Evolution:

As the quantum circuit is executed, the State Vector Simulator tracks the evolution of
the quantum state vector at each step. It applies the quantum gates in the circuit to the

current state vector to compute the resulting state after each gate.

Visualization:

The simulator provides tools to visualize the quantum state vector at any point during
the simulation. Users can inspect the probability amplitudes of individual quantum

states and analyze the behavior of the quantum system.

3.10.1.1 Use Cases
Education and Learning:

The State Vector Simulator is an invaluable tool for teaching and learning quantum
computing concepts. Students can experiment with quantum circuits and observe how
different gates and operations affect the quantum state. Visualizing the state vector
helps in understanding quantum superposition, entanglement, and other fundamental

principles.

Small-Scale Simulations:

For small-scale quantum computations where the number of qubits is limited, the State
Vector Simulator provides an accurate and efficient way to simulate the quantum
system. It is particularly useful for exploring quantum algorithms on systems with a

manageable number of qubits.

LIMITATIONS
Exponential Resource Requirements

The amount of memory required to store the state vector grows exponentially with the
number of qubits in the system. As a result, the State Vector Simulator becomes
impractical for simulating circuits with a large number of qubits, typically beyond a few

dozen qubits.



In quantum mechanics, the state of a quantum system consisting of n qubits can be
represented by a complex vector of size 2", where each element of the vector
corresponds to the probability amplitude of a particular quantum state.

Mathematically, the size of the state space S for n qubits is given by S = 2™. This
shows that the state space grows exponentially with the number of qubits. For example,
with just 20 qubits, the state space already has 220 = 1,048, 576 dimensions, and with
50 qubits, the state space has 2°0 ~ 1.125 x 10'® dimensions.

When simulating a quantum circuit using the state vector approach, the simulator
needs to store and manipulate this entire state vector at each step of the computation.
Therefore, the amount of memory required for simulation also grows exponentially with
the number of qubits.

To calculate the amount of memory required to store the state vector for a quantum
system with n qubits, we need to consider the size of the state space, which is 2", and
the size of each complex number representing the probability amplitude. The size of
each complex number depends on the precision used to represent it. Typically, each
complex number requires 16 bytes for the real part and 16 bytes for the imaginary part,
resulting in a total of 32 bytes per complex number.

Therefore, the amount of memory M required to store the state vector in bytes is
given by:

M =2"x 32

In terms of gigabytes (GB), this can be expressed as:

Let's consider an example: Suppose we want to simulate a quantum system with 20

qubits. Then, the amount of memory required in bytes is:
M = 2% x 32 = 33, 554, 432 bytes
And in gigabytes:

33,554, 432

Mgp = 530

~ 0.031GB



This calculation shows that even for a relatively small number of qubits, such as 20,
the amount of memory required for storing the state vector is significant, around 0.031
GB. As the number of qubits increases, the memory requirement grows exponentially.
For example, with 50 qubits, the memory requirement would be on the order of
terabytes [36].

Idealized Simulation:

The State Vector Simulator assumes ideal conditions without any noise or errors in the
quantum computation. In reality, quantum systems are susceptible to noise,

decoherence, and other sources of errors, which are not captured by this simulator.

Computational Complexity:

While the State Vector Simulator provides accurate results for small-scale quantum
circuits, the computational complexity increases rapidly with the size of the circuit. As
a result, simulating large circuits can become computationally intensive and time-

consuming.

3.10.2 QASM SIMULATOR

The QASM (Quantum Assembly Language) Simulator in IBM Qiskit is a tool for
simulating quantum circuits by generating classical instructions that mimic the behavior
of the quantum gates in the circuit. Unlike the State Vector Simulator, which directly
computes and stores the quantum state vector, the QASM Simulator simulates the
execution of a quantum circuit by generating a sequence of classical instructions that
emulate the behavior of the quantum gates. This approach allows for the simulation of
larger circuits and is particularly useful for simulating noisy quantum circuits and for

performance analysis.
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FUNCTIONALITY
Classical Emulation:

The QASM Simulator emulates the behavior of quantum gates using classical
instructions. It maintains a classical state vector that represents the state of the quantum

system and applies classical operations to simulate the effects of quantum gates.

Stochastic Simulation:

In addition to deterministic simulation, the QASM Simulator supports stochastic
simulation, where noise and errors can be introduced to mimic the behavior of real
quantum hardware. This feature allows users to study the effects of noise and

decoherence on quantum algorithms and error mitigation techniques.

Measurement and Sampling:

The simulator supports measurement operations, which collapse the quantum state and
produce classical outcomes. Users can perform measurements and sample from the
resulting classical probability distribution to observe the outcomes of quantum

computations.

Gate Decomposition:

Quantum gates that are not directly supported by classical computers, such as controlled
gates and multi-qubit gates, are decomposed into sequences of elementary gates that
can be simulated classically. This decomposition allows the QASM Simulator to handle

a wide range of quantum circuits efficiently.

Use Cases:
Noisy Circuit Simulation:

The QASM Simulator is used to simulate noisy quantum circuits by introducing random

errors and noise into the simulation. This allows users to study the effects of noise on



quantum algorithms and to develop error mitigation strategies.

Performance Analysis:

Researchers and developers use the QASM Simulator to analyze the performance of
quantum algorithms and circuits. By simulating large-scale circuits and measuring their

execution times, users can identify bottlenecks and optimize their implementations.

Algorithm Development:

Quantum algorithm developers use the QASM Simulator to prototype and debug
quantum algorithms before running them on actual quantum hardware. The simulator
provides a flexible and efficient environment for testing and refining quantum

algorithms.

LIMITATIONS
Classical Resource Limits

Despite its ability to simulate larger quantum circuits compared to the State Vector
Simulator, the QASM Simulator still faces significant limitations when it comes to
classical computational resources. Although the QASM Simulator does not require the
storage of the full quantum state vector, the resources needed to simulate quantum
circuits with increasing numbers of qubits and gates can become prohibitively
expensive.

Simulating very large circuits requires significant computational resources in terms
of both time and memory. The complexity of simulating a quantum circuit depends on
several factors, including the number of qubits, the types of gates, and the structure of
the quantum algorithm. For circuits with many qubits or highly complex gate
operations, the classical resources required for simulation may exceed the capabilities
of typical classical computing systems.

Suppose we want to simulate a quantum circuit with n» qubits using the QASM
Simulator. The computational complexity of simulating this circuit depends on its

specific properties:



Polynomial Complexity: If the quantum circuit exhibits polynomial complexity, the
memory and processing power required for simulation will grow polynomially with
n. For example, a circuit with a complexity of O(n?) means that as the number of
qubits increases, the memory and processing power requirements will grow
quadratically with n. Such circuits are generally easier to simulate on classical
hardware compared to exponentially complex circuits, but they still impose

significant resource demands for larger systems.

Exponential Complexity: If the quantum circuit has exponential complexity, the
memory and processing power required to simulate it will grow exponentially with 7.
A circuit with complexity O(2™) will require exponentially more resources as the
number of qubits increases. For large values of n, simulating such circuits becomes
infeasible due to the exponential growth of resource requirements. This means that
even for relatively small quantum circuits with, for example, 50 or more qubits,
classical simulation using the QASM Simulator becomes unmanageable due to the
sheer amount of computational power and memory required.

In practice, classical resource limits often constrain the size and complexity of
quantum circuits that can be effectively simulated. As the number of qubits increases,
the simulator's performance degrades, and simulations may become prohibitively

slow or even infeasible on standard classical hardware.

Approximate Simulation

While the QASM Simulator can simulate quantum circuits with a variety of gates and
quantum operations, it does so through classical emulation of quantum gates. This
process can introduce approximation errors, which can become noticeable, especially in

circuits involving large numbers of qubits or when noise is introduced into the system.

Approximation Errors: Classical emulation of quantum gates cannot capture the
full fidelity of a real quantum system. Although the QASM Simulator provides
accurate results for many quantum circuits, especially those with a relatively small
number of qubits, the approximation errors can become significant when simulating
larger and more complex systems. The simulator relies on classical methods for

representing quantum states and applying quantum operations, which can lead to



discrepancies between the simulated results and what would occur on a true quantum

computer.

Noise and Errors: The QASM Simulator is capable of simulating quantum circuits
with noise models to some extent, but it may not fully replicate the quantum noise
present in actual quantum hardware. In real quantum devices, noise such as
decoherence and gate errors plays a crucial role in the system's behavior. The QASM
Simulator might not perfectly capture the impact of such noise, potentially leading to
inaccurate predictions in noisy quantum systems. For circuits involving quantum
error correction or complex noise models, the QASM Simulator may be limited in its

ability to provide realistic simulations.

Lack of Realistic Quantum Interactions: Some aspects of quantum behavior, such
as quantum entanglement and superposition, can be difficult to model accurately in a
classical simulator. While the QASM Simulator can perform accurate calculations for
circuits without noise and with ideal gates, its ability to simulate real-world quantum
interactions that involve imperfections and noise is inherently limited by the classical

nature of the underlying simulation.

Limitations in Quantum Gate Modeling

Another limitation of the QASM Simulator arises in how it models certain quantum
gates. While it supports a wide range of quantum gates, some advanced quantum
operations may be difficult to simulate with high accuracy or require additional
approximations. The modeling of quantum gates such as multi-qubit operations,
entangling gates, or non-trivial quantum circuits could become computationally
expensive. Simulating these gates accurately requires sophisticated methods that may
not always be feasible with classical resources.

The QASM Simulator is a powerful tool for simulating quantum circuits on classical
hardware, but it is subject to limitations in terms of computational resources,
approximation errors, and noise modeling. These limitations are particularly important
when simulating large-scale quantum circuits with many qubits or circuits that involve
complex interactions between qubits. As quantum computing hardware continues to

advance, the QASM Simulator serves as an important tool for testing and validating



quantum algorithms, but it cannot fully replicate the behavior of a real quantum
computer. Users must be mindful of these limitations when using the simulator for

research or educational purposes.

3.10.3 MATRIX PRODUCT STATE (MPS) SIMULATOR:

The MPS Simulator is a specialized tool for simulating one-dimensional quantum
systems using MPS representations. It is particularly efficient for simulating one-
dimensional quantum circuits or chains of interacting qubits. MPS are a tensor network
representation that can capture the entanglement structure of quantum states in a
compact form, making them suitable for simulating large quantum systems with limited

computational resources.

Supported Gates:

29 ¢¢ 99 €6, 99 Ce_ .9 (9 Cch”
b

[“unitary”’ 6(t’7, “tdg”’ C‘id”’ ‘ch,” G‘ul’,, ‘Cu2’7, 6‘u3’,, G6u7’, “CX , CZ , X , y , Z ,

€6 9% ¢¢ 29 ¢ 9% 66 9% <6 9% €6

s”, “sdg”, “sx”, “swap”, “p”, “ccx”, “delay”, “roerror”

Efficient Operations and Representations

The MPS Simulator can efficiently perform operations such as applying quantum gates,
computing expectation values, and simulating time evolution. These operations can be
implemented using algorithms tailored for MPS, which exploit the locality of
interactions in one-dimensional quantum systems.

Consider a one-dimensional chain of N qubits, where each qubit can be in a
superposition of states |0) and |1). We aim to simulate the quantum state of this system
using the MPS representation. In this representation, the quantum state of the entire
system is expressed as a tensor network of matrices, where each matrix represents the
state of one qubit conditioned on the states of its neighboring qubits. The number of
parameters required to represent the state grows polynomially with the size of the

system, as opposed to exponentially, as seen in the full state vector representation.

MPS Representation

In the MPS representation, the quantum state of N qubits is represented as a tensor

network composed of N matrices. Each matrix corresponds to the state of one qubit



conditioned on the states of its neighboring qubits. Specifically, each matrix in the MPS

tensor has dimensions D;, X D X D, where:

D;, is the input dimension, representing the number of incoming connections (from
the previous qubit),

D, 1s the output dimension, representing the number of outgoing connections (to the
next qubit),

D is the bond dimension, which characterizes the entanglement between neighboring

qubits.

In the case of a one-dimensional chain of qubits with nearest-neighbor interactions,
as in the provided example, each qubit is connected to its two neighboring qubits.
Therefore, for each qubit in the chain (except the first and last qubits), we have
D;, = Dgyy = 2. Additionally, the bond dimension D determines the entanglement
capacity of the MPS representation and is typically chosen to be small to ensure
efficiency.

Thus, for a chain of N qubits, the dimensions of the MPS tensor representation would
be 2 x 2 x N, where 2 corresponds to the input and output dimensions for each qubit.
N corresponds to the number of qubits in the chain. The MPS tensor is then contracted
along the chain to compute expectation values, simulate time evolution, or perform

other operations on the quantum state.

Example: 10 Qubit System

For a 10-qubit system (/N = 10) using a tensor network with only 2 x 2 x N =40
parameters, this is significantly smaller than the 2% = 1024 parameters required for the
full state vector representation. This demonstrates the advantage of using the MPS
representation for simulating large quantum systems, offering both computational

efficiency and a reduced memory footprint.

ENTANGLEMENT HANDLING:

While MPS inherently limit the entanglement between neighboring qubits, the
simulator can handle entanglement across longer distances by employing techniques
such as matrix product operators or higher-order tensor networks. Entanglement

handling in MPS simulations involves techniques to efficiently represent and



manipulate entanglement across qubits in a quantum system. One common approach is
to use Matrix Product Operators (MPOs) or higher-order tensor networks. Here, is an
equation to illustrate how MPOs can be used for entanglement handling in MPS
simulations. Let's consider a one-dimensional chain of N qubits with nearest-neighbor
interactions. The quantum state of this system can be represented using an MPS tensor
network. We can express the quantum state 1) of the system as:

The quantum state |¢)) of a one-dimensional system of N qubits can be expressed in
the MPS form as:

Wy= Y AgAD ... A7)S:1S;...SN)
51,59, . .,SN

Where:

Al is the matrix associated with the ith qubit, with dimensions D x D, where D is
the bond dimension. (The bond dimension, denoted by D, is a parameter that
determines the size of the matrices Ag] in the MPS representation. Specifically, each
matrix has dimensions D x D. The bond dimension controls the amount of
entanglement that the MPS can capture: a larger D allows for the representation of
more entangled quantum states, while a smaller D restricts the expressiveness to
states with limited entanglement.)

S, represents the state of the ith qubit, which can be either |0) or |1).

In this representation, each matrix Al encodes the information about the state of the
ith qubit, and the product over all Al 's represents the full quantum state of the system.
The bond dimension D controls the amount of entanglement between neighboring
qubits.

To handle entanglement across longer distances in quantum systems, we introduce
Matrix Product Operators (MPOs). MPOs are higher-dimensional analogs of MPS
tensors and represent operators instead of quantum states.

Consider an MPO I that describes a two-qubit interaction between qubits i and ¢ + 1
. The MPO W can be expressed as:

W =) WagslaB) (vl
a,B3,7,0



Where:

W, are the elements of the MPO tensor.
o and y represent the states of qubit i.

[ and o represent the states of qubit ¢ 4 1.

To apply the MPO W to the MPS tensor network representing the quantum state, we
contract the MPO tensor W with the MPS tensors associated with qubits i and ¢ + 1.
This results in a new MPS tensor network that represents the entangled state of qubits i
and 7 4 1.

Mathematically, the contraction of the MPO W with the MPS tensors can be

expressed as:

i] 4 li+1 il i+l
AGASL = D WamsAgaAjs,),

a?ﬂﬂﬂy75
Where:
Ag and Agi] are the updated MPS tensors after applying the MPO W.

By introducing MPOs and performing contractions with MPS tensors, the MPS
simulator can efficiently handle entanglement across longer distances in the quantum
system. This enables the simulation of more complex quantum states and dynamics,

where entanglement is distributed over a broader range of qubits.

LIMITATIONS:
Limited to 1D Systems:

The MPS Simulator is designed specifically for simulating one-dimensional quantum
systems. It may not be suitable for simulating higher-dimensional systems or systems

with complex spatial structures.

Limited Entanglement:

MPS inherently limit the entanglement between neighboring qubits. While this makes
them efficient for simulating certain types of quantum systems, it also restricts their

applicability to systems with strong entanglement.



3.10.4 UNITARY SIMULATOR

A unitary simulator is a type of quantum simulator designed to simulate the unitary
evolution of quantum systems. In quantum mechanics, unitary evolution refers to the
evolution of quantum states under the action of unitary operators, which preserve the
norm and inner product of quantum states. These unitary operators are foundational in
quantum computing, as they represent reversible transformations on quantum states,

such as quantum gates.

Advantages of Unitary Simulators
Exact Simulation

Unitary simulators provide an exact simulation of quantum systems by directly
applying unitary operators to quantum states. This ensures accurate results without any
approximation errors.

A unitary operator U is defined by the property that its adjoint (or conjugate

transpose) U is equal to its inverse:
Ulu=0U"=1

where [ is the identity operator. This property guarantees that the norm and inner
product of quantum states are preserved under the action of the unitary operator, which

is crucial for maintaining the consistency and integrity of quantum information.

Schrodinger Equation and Time Evolution

In quantum mechanics, the time evolution of a quantum state |1(t)) is governed by the

Schrédinger equation:

L d
ihi— [9(t)) = HIy(t))

where H is the Hamiltonian operator that represents the total energy of the quantum
system. The solution to this equation is given by the unitary time evolution operator
U(t):

[%(2)) = U(#)|4(0))



where U(t) = e~"h is the unitary time evolution operator generated by the
Hamiltonian H. In a unitary simulator, the time evolution of a quantum system is
simulated by discretizing time and applying small time steps of the unitary operator

U (4t) repeatedly. This process is mathematically represented as:
|9(t + 6t)) = U(dt)[4(2))

where 0t represents a small time step. The accuracy of the simulation depends on the
fidelity of the unitary operators used during the simulation. Since unitary operators are
exact representations of quantum transformations, applying them to quantum states

ensures accurate simulation results without introducing any approximation errors.

Reversibility

A key property of unitary operations is that they are reversible. This feature enables
unitary simulators to allow for backward simulation, providing the ability to reverse
quantum operations and compare states at different times. Reversibility in unitary
simulations is important for various tasks, including debugging, state verification, and
backward time evolution in quantum systems.

In a unitary simulator, backward simulation refers to the ability to simulate the
evolution of a quantum state in reverse time, effectively “undoing” the quantum
operations that were previously applied. This is achieved by applying the inverses of the
unitary operations in reverse order.

For example, let's consider a quantum state |¢)) at some initial time #,, and let U(¢)
represent the unitary time evolution operator from time ¢, to time z. The state |(t)) is

given by:
[%(¢)) = U(t)|9(to))

Now, suppose we want to simulate the evolution of the state backward from time ¢ to
to- We can achieve this by applying the inverse of each unitary operator in reverse order.

Mathematically, this is represented as:

[%(to)) = U(to — )U(to — t1) ... U(to — ta-1)[%(2))



where U(tg —t), U(to — t1), etc., represent the inverse of the unitary evolution
operators corresponding to each time step, applied in reverse order. This process
“reverses” the effect of the unitary evolution, allowing us to recover the quantum state

at the earlier time #,.

Applications of Unitary Simulators

Unitary simulators are essential for simulating quantum systems that undergo reversible
transformations, such as quantum circuits where quantum gates represent unitary
operations. Their ability to accurately simulate the evolution of quantum states over
time makes them invaluable tools in the study of quantum dynamics, quantum
chemistry, and quantum algorithms.

Furthermore, the reversibility property of unitary simulators has significant
applications in areas like quantum error correction, where simulating the effects of
noise and corrections requires both forward and backward simulations. Similarly,
unitary simulators are used in quantum tomography, where one needs to reverse
quantum evolution to compare the simulated and actual quantum states for error
analysis.

Unitary simulators provide an exact and efficient way to simulate the evolution of
quantum systems by applying unitary operators. Their key advantages include the
preservation of quantum state properties through exact simulation, reversibility that
enables backward simulation, and the ability to simulate complex quantum dynamics
with high accuracy. These characteristics make unitary simulators powerful tools for

quantum computing and the study of quantum systems.

Efficiency for Circuit Simulation:

Unitary simulators are efficient for simulating quantum circuits composed of a small to
moderate number of qubits. They can handle various types of quantum gates and circuit
structures. Unitary simulators operate by directly applying sequences of unitary
operators to the initial quantum state. This direct application allows for efficient
simulation without the need for explicit state vector representations. Instead of storing
the entire state vector, the simulator only needs to keep track of the current quantum

state and apply unitary operations as needed.



LIMITATIONS OF UNITARY SIMULATORS:
Memory Requirements:

Unitary simulators require memory resources proportional to the size of the quantum
state space, which grows exponentially with the number of qubits. This limits their
scalability for simulating large quantum systems.

The memory requirements of a unitary simulator grow exponentially with the number
of qubits N, as each qubit requires two complex amplitudes (real and imaginary parts)
to represent its quantum state. Therefore, the total memory requirement M can be
expressed as:

M = 2N Where: M is the total memory requirement. N is the number of qubits.

Computational Complexity

The computational complexity of a unitary simulator is primarily determined by the
number of operations required to simulate the quantum circuit. The complexity of
simulating a quantum system depends on several factors, including the number of
qubits, the type of gates used, and the overall structure of the quantum circuit.

For a quantum circuit with N qubits, the number of quantum gates G typically scales
with N or a polynomial function of N. The quantum gates are the fundamental building
blocks of quantum circuits, and the number of gates G required to simulate a circuit
depends on the complexity of the circuit itself. Thus, the computational complexity C

can be approximated as:
C =0O(G)
Where:

C is the computational complexity of the simulation.

G 1s the number of gates in the quantum circuit.

In a unitary simulator, each quantum gate is applied to the quantum state, and the
simulation must compute the resulting quantum state after each operation. The time
required for each gate application depends on the type of gate and its matrix

representation. For example, single-qubit gates require applying a 2x2 matrix to the



quantum state vector, while two-qubit gates require applying a 4x4 matrix. The total

number of operations increases as the number of gates in the quantum circuit increases.

3.10.4.1 Efficient Simulation for Small to Moderate Numbers of Qubits

Unitary simulators are generally considered efficient for simulating quantum circuits
with a small to moderate number of qubits, where both memory requirements and
computational complexity are manageable on classical computers. This means that the
total memory requirement and computational complexity should be polynomial or
quasi-polynomial functions of », allowing for efficient simulation.

For example, the state vector representation of a quantum system with N qubits
requires storing 2V complex amplitudes, which grows exponentially with N. However,
by using efficient simulation methods, such as the MPS representation or other tensor
network-based methods, unitary simulators can reduce the memory complexity and
enable the simulation of larger quantum systems with fewer resources.

In practice, unitary simulators are most effective for quantum systems where the
number of qubits N is not too large (typically N < 30 to 40, depending on the specific
simulation method). For larger systems, alternative approaches, such as quantum-
inspired classical simulations or approximate methods, may be necessary to overcome

the exponential growth of computational complexity.

Computational Complexity of Different Quantum Gates

The computational cost for simulating a quantum circuit also depends on the types of
quantum gates used in the circuit. The basic gates, such as single-qubit gates (e.g., X, ¥,
Z, H) and two-qubit gates (e.g., CNOT, CZ, SWAP), typically have polynomial
complexity. For each gate, a matrix operation is performed, and the size of the matrix

depends on the number of qubits involved in the operation.

Single-qubit gates typically require O(1) operations.
Two-qubit gates, such as CNOT, require O(IN2) operations to simulate a circuit of N

qubits.

This means that while single-qubit gates can be simulated efficiently, two-qubit gates

(which are essential for quantum entanglement) require more resources. As a result,



simulating circuits with a large number of two-qubit gates can lead to significant
increases in computational complexity.

The computational complexity of unitary simulators is primarily determined by the
number of gates in the quantum circuit, which typically scales polynomially with the
number of qubits. Unitary simulators are efficient for simulating quantum circuits with
a small to moderate number of qubits, where both memory and computational
complexity are manageable on classical computers. However, as the number of qubits
increases, the exponential growth of computational resources required becomes a
significant challenge, particularly for circuits with a large number of two-qubit gates.
For larger quantum systems, alternative methods or approximations may be necessary

to handle the computational complexity efficiently.

3.10.5 STABILIZER SIMULATOR

The stabilizer simulator is a quantum simulator designed specifically for simulating
stabilizer circuits, which are a special class of quantum circuits that can be efficiently
simulated classically. These circuits are especially useful for studying quantum error
correction codes and fault-tolerant quantum computing schemes. The stabilizer
simulator is an efficient simulator of Clifford circuits and can simulate noisy evolution

if the noise operators are also Clifford gates.

Supported Gates

The stabilizer simulator supports the following gates that are part of the Clifford group
and other stabilizer operations:

Gates = {cx, ¢y, ¢z, id, x, y, 7, h, s, sdg, sx, swap, delay, roerror}

Where:
- cx, cy, cz are controlled gates (such as CNOT, CY, CZ).

- idis the identity gate.

- x,y, z are Pauli gates.

- his the Hadamard gate.

- s, sdg are phase gates (S and ST).

- sx 18 the square root of X gate (i.e., \/X).



- swap 1S the SWAP gate.
- delay represents a time delay in the quantum circuit.
- roerror simulates readout errors.

These gates are sufficient to simulate quantum circuits that use stabilizer operations,
which include most quantum error correction protocols and fault-tolerant quantum

computing schemes.

Stabilizer Operations

Stabilizer operations are operations that belong to the Clifford group, a subgroup of
unitary operations that can be efficiently simulated classically. These operations include
Pauli gates (X, Y, Z), Hadamard gates (H), and controlled-NOT (CNOT) gates, all of
which are crucial for error correction and fault-tolerant quantum computation.

The key feature of stabilizer circuits is that their state evolution can be efficiently
tracked using classical computational resources. This property makes stabilizer circuits
particularly useful for classical simulations of quantum error correction and fault

tolerance.

Stabilizer Simulator Features
Error Correction

Stabilizer simulators are often used to simulate quantum error correction protocols, such
as the surface code, which rely on stabilizer operations for error detection and
correction. By simulating the behavior of stabilizer-based error correction codes, these
simulators enable researchers to study and optimize error correction strategies.

The surface code is a two-dimensional array of qubits arranged in a grid, with
stabilizer measurements performed on plaquettes and vertices of the grid. These
measurements are used to detect and correct errors that occur on the qubits.

The stabilizer generators for the surface code consist of products of Pauli operators
(X and Z) associated with the qubits on each plaquette and vertex of the grid. For

example, for a single vertex, the stabilizer generator might be represented as:

S:HZi

qubits



Where Z; represents the Z operator acting on the ith qubit in the stabilizer.

Errors in the quantum circuit can be represented as Pauli operators (X, Y, Z) acting
on the qubits. These errors occur randomly during the execution of quantum gates due
to noise and imperfections in the quantum hardware. After applying the stabilizer
measurements, researchers extract syndrome information from the measurement
outcomes. The syndrome information indicates the presence of errors and their
locations on the grid.

Based on the syndrome information obtained, error correction procedures are applied
to deduce and correct the errors that occurred during the quantum computation. This
typically involves determining the most likely error configuration consistent with the

observed syndrome and applying corrective operations to rectify the errors.

Memory Requirement

The memory requirement of a stabilizer simulator depends on the size of the quantum
system being simulated, which is determined by the number of qubits and the size of the
stabilizer grid. For the surface code, the memory requirement can be approximated by

the number of qubits N in the system:
M = O(N)

Where:
- M is the memory requirement.
- N is the number of qubits in the system.
This linear scaling with N makes stabilizer simulators highly efficient in terms of
memory usage, particularly for error correction protocols that involve a large number of

qubits.

Computational Complexity

The computational complexity of a stabilizer simulator primarily arises from two

factors: performing stabilizer measurements and executing error correction procedures.

Stabilizer Measurements



Stabilizer measurements involve performing Pauli measurements on the qubits in the
stabilizer grid. The computational complexity of stabilizer measurements scales with

the size of the stabilizer grid, which is typically proportional to the number of qubits N:
C'measurement = O(N )

This linear scaling with N ensures that stabilizer measurements can be performed

efficiently, even for large numbers of qubits.

Error Correction Procedures

Error correction procedures involve decoding the syndrome information obtained from
stabilizer measurements to determine the error locations and types. The complexity of
error correction algorithms depends on the specific decoding method used and can vary.
However, it typically scales polynomially or logarithmically with the number of qubits

N. A general representation of the computational complexity for error correction is:
C’correction = O(f(N))

Where f(IN) represents the complexity function for error correction algorithms.

Total Computational Complexity

The overall computational complexity of a stabilizer simulator is determined by the sum
of the complexities of stabilizer measurements and error correction procedures.

Therefore, the total computational complexity is:

C1total - C’measurement + C’correction

Ctotal = O(N) + O(f(N))

The exact computational complexity may vary depending on the specific
implementation of the stabilizer simulator and the error correction algorithm used.
However, the linear scaling of stabilizer measurements and the typically polynomial or
logarithmic scaling of error correction make stabilizer simulators much more efficient
than general-purpose simulators for circuits using stabilizer operations.

The stabilizer simulator is a powerful and efficient tool for simulating quantum

circuits that use stabilizer operations, particularly those involved in quantum error



correction and fault-tolerant quantum computing. By efficiently simulating circuits

made up of Clifford gates, the stabilizer simulator offers a classical alternative for

studying complex quantum error correction schemes like the surface code. With linear

memory requirements and computational complexity that scales efficiently with the

number of qubits, stabilizer simulators provide an effective means of simulating and

optimizing quantum error correction protocols. Table 3.7 shows the comparison of

various quantum simulators advantages and limitations.

Table 3.7: Comparison of various simulators <J

Density Matrix
L. State vector QASM .
Criterion . . matrix Product State
simulator simulator
simulator Simulator
. . Tracks state ,
Simulation ) Tracks gate Tracks density  Tracks MPS
vector
Model . operations matrix parameters
evolution
Qubits 32 32 — 100
Supported . . .
. Unitary gates Quantum gates  Unitary gates Unitary gates
Operations
Error
. No Yes No No
Modelling
Noise Model No Yes No No
Memory 2V complex Depends on 22N complex 22V
Requirement amplitudes circuit size numbers parameters
Computational O(2%) Depends on O(23) 0(22)
Complexity operations circuit size operations operations




Density Matrix
L State vector QASM .
Criterion . . matrix Product State
simulator simulator . .
simulator Simulator
Limited to Limited to Limited to Limited to
Scalability small/moderate small/moderate small/moderate small/moderat
N N N N
Circuit
. Quantum state )
Suitable ) execution, Small system Quantum state
o evolution, . . .
Applications o algorithm dynamics representation
small circuits )
testing
. IBM Qiskit's IBM Qiskit's
IBM Qiskit's . . .
Examples _ QASM density matrix ~ QuTiP, ITenso
Aer simulator ) )
simulator simulator

3.10.6 DENSITY MATRIX REPRESENTATION

In quantum mechanics, the state of a quantum system can be described by a density
matrix, denoted by p. For a pure state |¢), the density matrix is given by the outer

product of the state vector with itself:

p =) (¥

For a mixed state, which is a statistical ensemble of pure states, the density matrix is

a weighted sum of the outer products of the constituent pure states.

Supported Gates

99 ¢ 9% ¢

[“cx™, “cy”,

99 66,9 €69 “h” “S” 113 9% ¢ 99 ¢
9 b

cz”, “id”, “x”, “y”, “z , “sdg”, “sx”, “swap”,

99 ¢

delay”, “roerror”

Functionality:



Density matrix simulators provide functionality for simulating various quantum
operations and measurements on quantum systems represented by density matrices.

This includes:

Unitary Evolution: Simulating the time evolution of quantum systems under unitary
operations, such as quantum gates and Hamiltonian evolution.

Measurement: Calculating probabilities and expectation values of measurement
outcomes for different measurement bases.

Noise and Decoherence: When simulating quantum systems, it's often essential to
account for the effects of noise and decoherence, which can arise from various
sources such as imperfect control operations, environmental interactions, and
hardware imperfections. Lindblad operators offer a framework for modeling such

noise and decoherence effects in quantum simulations.

Lindblad operators, named after the physicist Goran Lindblad, are a set of operators
used to describe the effects of noise and decoherence in open quantum systems. These
operators represent the interactions between the quantum system of interest and its
surrounding environment, leading to irreversible processes that cause the system to lose
coherence and deviate from its ideal evolution.

In density matrix simulations, Lindblad operators are added to the Hamiltonian
evolution of the quantum system to simulate the effects of noise and decoherence. The
Lindblad master equation, also known as the Lindblad equation, describes the time
evolution of the density matrix p of an open quantum system under the influence of

Lindblad operators.

Use Cases

Density matrix simulators are used in various applications in quantum computing and
quantum information science. Simulating the behavior and performance of quantum
algorithms, including those designed for quantum computation, quantum cryptography,
and quantum error correction. The DM simulator can be effectively used for analyzing
the properties of quantum states, such as entanglement, coherence, and purity. It is used
for studying the effects of noise and errors on quantum systems and developing error

mitigation strategies.



Limitations

While density matrix simulators provide a powerful tool for studying a wide range of

quantum phenomena, they have limitations:

Computational Complexity: Simulating quantum systems using density matrices
can be computationally intensive, especially for large systems, due to the exponential

growth of the matrix size with the number of qubits.

In quantum mechanics, the density matrix p representing the state of an N-qubit
quantum system is a 2% x 2% matrix. Each element of the density matrix is a complex

22NV complex numbers to store and manipulate. Storing a

number, leading to a total of
2N x 2N density matrix requires O(22") memory space. For example, simulating a 10-
qubit system requires storing a 20 x 219 = 1024 x 1024 matrix, which contains
220 — 1,048, 576 complex numbers.

Performing operations on density matrices involves matrix multiplication, addition,
and other linear algebra operations. Multiplying two 2 x 2% density matrices has a
computational complexity of O(23Y). As the number of qubits increases, the
computational complexity grows exponentially, making simulations impractical for
large systems.

Density matrix simulators are inherently classical algorithms and are limited by
classical computational resources, making them inefficient for simulating large

quantum systems beyond the capabilities of classical computers (Table 3.8).

Table 3.8
Memory requirement for various number of qubits <
Memory

Number of requirement Computational
qubits (N) 2N x 2N complexity O(23")
1 4 8
2 16 64
3 64 512
4 256 4096




Memory
Number of requirement Computational
qubits (N) 2N x 2N complexity O(23")
5 1,024 32,768
6 4,096 262,144
7 16,384 2,097,152
8 65,536 16,777,216
9 262,144 134,217,728
10 1.05 x 10° 1,073,741,824
20 1.10 x 1012 1.15292 x 1018
30 1.15x 108 1.23794 x 10%7
40 1.21 x 10%4 1.32923 x 1036
50 1.27 x 1030 1.42725 x 10%

3.10.7 QUANTUM GATES SUPPORTED BY THE SIMULATORS

Single-Qubit Gates:

Pauli-X Gate (X): Represents a rotation of the qubit state around the X-axis of the

Bloch sphere by 7 radians.

Pauli-Y Gate (Y): Represents a rotation of the qubit state around the Y-axis of the

Bloch sphere by 7 radians.

Pauli-Z Gate (Z): Represents a rotation of the qubit state around the Z-axis of the

Bloch sphere by 7 radians.

Hadamard Gate (H): Creates superposition by rotating the qubit state by - radians
about the axis that is the sum of the X and Z axes.

Phase Gate (S): Introduces a phase shift of 7 radians to the |1) state.
7/8 Gate (T): Introduces a phase shift of 4 radians to the |1) state.

Multi-Qubit Gates:

Controlled-NOT Gate (CNOT or CX): Flips the target qubit if and only if the

control qubit is in the |1) state.




Controlled Phase Gate (CP): Applies a phase shift to the target qubit depending on
the state of the control qubit.

Swap Gate (SWAP): Exchanges the states of two qubits.

Toffoli Gate (CCNOT or CCX): Flips the target qubit if and only if both control
qubits are in the |1) state.

Arbitrary Rotation Gates:

Arbitrary Single-Qubit Rotation Gate (R,(0), R,(6), R.(0)): Performs rotations
about the X, Y, or Z axis of the Bloch sphere by an angle 6.
Arbitrary Two-Qubit Rotation Gate (U (0, ¢, \)): Represents a general two-qubit

unitary transformation.

Measurement and Initialization Gates:

Measurement Gate (M): Measures the state of a qubit in the computational basis.

Initialization Gate: Initializes a qubit to a specified state (|0) or |1)).

Identity Gate:

Identity Gate (I): Performs no operation and leaves the qubit state unchanged.

These gates provide the necessary operations to manipulate and transform quantum
states, allowing for the implementation of various quantum algorithms and protocols
(Tables 3.9 and 3.10).

Table 3.9: Performance metrics of Shor's algorithm (number factoring) &1

S.No. Given Number of Random  Period P Q
number binary bits number (a) (r)
(N)

1 10 4 2 4 2
2 15 4 2 4 3
3 21 8 2 4 7
4 221 8 3 8 13 17
5 247 8 3 8 13 19



S.No. Given Number of Random  Period P Q
number binary bits number (a) (r)
N)

6 289 12 4 8 17 17
7 301 12 2 8 43 7
8 437 12 7 8 23 7
9 581 12 2 8 83 7
10 667 12 6 8 23
11 1147 12 4 8 31 37
12 2773 12 3 8 47 59
13 8633 16 6 8 89 97
14 11573 16 12 8 71 163
15 14351 16 4 8 127 113
16 25777 16 17 8 149 173
17 40991 16 66 8 179 229
18 62059 16 28 8 271 229
19 64807 16 44 8 283 229
20 65473 16 13 8 233 281
21 96503 20 2 9 11,31 283
22 96983 20 32 331 293
23 144377 20 32 409 353
24 214369 20 15 32 463 463
25 77087 20 12 4 157 491
26 268951 20 30 449 599
27 350239 20 24 577 607
28 477157 20 34 673 709
29 667397 20 39 16 761 877
30 1980179 24 4 24 1321 1499
31 2377933 24 15 16 1489 1597
32 2652931 24 26 30 1567 1693
33 2755321 24 2 34 1721 1601
34 3138463 24 10 32 1811 1733
35 3571571 24 119 16 1913 1867



S.No. Given Number of Random  Period P Q
number binary bits number (a) (r)
(N)
36 32 1951 2063
4024913 24 76
37 4694593 24 43 36 2131 2203
38 97713221 28 118 42 0883 9887
39 98089207 28 10 16 9901 9907
40 98525467 28 462 16 9929 9923
41 98724071 28 33 16 9941 9931
42 99161683 28 351 16 9949 9967
43 99799811 28 240 16 10007 9973
44 100460333 28 3 90 10037 10009
45 101002379 28 79 88 10061 10039
46 101364623 28 356 32 10067 10069
47 101707189 28 6 80 10091 10079
48 101969579 28 23 92 10103 10093
49 102454763 28 37 32 10133 10111

Table 3.10: Quantum resource utilization in Shor's algorithm simulation <J

S.No. Given No. of Clifford T T- Full
number (N) qubits gates gates depth depth
1 10 5 225 160 108 290
2 15 5 225 160 108 290
3 21 5 225 160 108 290
4 221 7 682 492 336 882
5 247 7 682 492 336 882
6 289 7 682 492 336 882
7 301 7 682 492 336 882



S.No. Given No. of Clifford T T- Full

number (N) qubits gates gates depth depth
437 7 682 492 336 882
581 7 682 492 336 882

10 667 7 682 492 336 882
11 1147 7 682 492 336 882
12 2773 7 682 492 336 882
13 8633 7 682 492 336 882
14 11573 7 682 492 336 882
15 14351 7 682 492 336 882
16 25777 7 682 492 336 882
17 40991 7 682 492 336 882
18 62059 7 682 492 336 882
19 64807 7 682 492 336 882
20 65473 7 682 492 336 882
21 96503 7 682 492 336 882
22 96983 11 4423 3228 2232 5764
23 144377 11 4423 3228 2232 5764
24 214369 11 4423 3228 2232 5764
25 77087 9 2997 2172 1488 3904
26 268951 11 7525 5484 3780 9825
27 350239 10 3710 2700 1860 4834
28 477157 10 6076 4412 3024 7935
29 667397 10 2145 1564 1080 2789
30 1980179 10 3710 2700 1860 4834
31 2377933 10 2145 1564 1080 2789
32 2652931 11 7525 5484 3780 9825
33 2755321 10 6076 4412 3024 7935
34 3138463 11 4423 3228 2232 5764
35 3571571 10 2145 1564 1080 2789
36 4024913 11 4423 3228 2232 5764
37 4694593 10 6076 4412 3024 7935
38 97713221 15 42120 30860 21420 55075



S.No. Given No. of Clifford T T- Full

number (N) qubits gates gates depth depth

39 1564 1080
98089207 10 2145 2789
40 98525467 10 2145 1564 1080 2789
41 98724071 10 2145 1564 1080 2789
42 99161683 10 2145 1564 1080 2789
43 99799811 10 2145 1564 1080 2789
+4 100460333 13 18070 13212 9144 23618
45 101002379 13 18070 13212 9144 23618
46 101364623 11 4423 3228 2232 5764
47 101707189 13 18070 13212 9144 23618
48 101969579 13 18070 13212 9144 23618
49 102454763 11 4423 3228 2232 5764

50 300673199 10 Overflow error

The test cases used to validate Shor's algorithm on a MPS simulator are tabulated
here. Each entry includes the composite number A, its binary representation length, a
co-prime a, the computed period r, the prime factors P and Q, along with circuit
resource metrics including the number of qubits, Clifford gates, T gates, T-depth, and
full depth. For smaller values of N (such as 10, 15, and 21), the algorithm requires
relatively few resources, with qubit counts ranging between 4 and 8, and minimal gate
and depth requirements. This demonstrates that the algorithm is efficient and
manageable on classical simulators for small composite numbers.

As N increases, particularly beyond 1000, the number of required qubits stabilizes
around 12 to 16 in most cases. This group shows a consistent pattern in quantum
resource usage, suggesting a predictable scaling behavior of the algorithm for mid-
range input sizes. Despite the increase in number size, the T gate count and circuit
depths remain largely constant across many entries, indicating the MPS simulator can
handle these inputs effectively. When N enters the range of large integers (greater than
10°), there is a marked increase in quantum circuit complexity. For example, numbers
around the 28-bit size, such as 97713221 or 101969579, show a dramatic rise in



resource requirements, with T gate counts exceeding 13,000 and full depths reaching
above 55,000 in some cases. This highlights the computational limitations and
increasing overhead involved in simulating large quantum circuits classically.

The final test case involving N = 300673199 results in an overflow error. This likely
arises due to limitations in the simulation environment's memory or processing
capability, signifying a boundary beyond which classical simulation using MPS
becomes infeasible. Overall, the data demonstrates that Shor's algorithm, when
executed on an MPS simulator, is efficient for small and medium-sized inputs but
encounters scalability challenges for very large integers. The test cases provide valuable
benchmarks for understanding the resource demands of Shor's algorithm and the

performance of classical quantum circuit simulators.
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4 Grover's Algorithm: Quantum
Search

DOI: 10.1201/9781003606338-4

“Grover's algorithm provides a quadratic speedup for unstructured search problems, reducing

the number of steps from O(N) to O(V'N).”

— Lov Grover

SUMMARY

This chapter explores Grover's algorithm in the context of quantum search,
beginning with an overview of its mechanics. The section includes a literature
survey that covers Grover's algorithm, stream ciphers, and the Grover attack, as
well as quantum resource estimation. The section then introduces a simplified 4-
bit Grain cipher (with a 4-bit key and 4-bit V), detailing its design, initialization,
and key stream generation. Following this, the section dives into key recovery
using Grover's algorithm, with an emphasis on quantum circuit development for
the simplified Grain 4-bit cipher. It outlines key steps in the circuit, such as
executing the Boolean function and XORing the NFSR's fourth bit. Further, the
section details the development of a Grover attack quantum circuit, describing
both single and double pair methods. Experimental results are provided across
multiple cases, with a summary of test cases and classical computation times.

Quantum resource estimation, including the costs associated with the simplified


https://doi.org/10.1201/9781003606338-4

Grain 4-bit cipher and the Grover oracle, is analyzed. The section concludes with
a discussion on the results, classical and quantum resource estimations, and the

potential for future enhancements to the approach.

4.1 INTRODUCTION

Quantum computing is a revolutionary paradigm that exploits the principles of
quantum mechanics to solve problems more efficiently than classical computing.
Among the various algorithms that highlight the power of quantum computation,
Grover's algorithm stands out as a groundbreaking approach to unstructured
search problems. Classically, searching an unsorted database or solving a

problem where the solution has no specific structure requires linear time. For a
N
2
queries, and in the worst case, N queries. Grover's algorithm significantly

database containing N elements, finding a specific item requires, on average,

improves this by leveraging quantum superposition, quantum interference, and
measurement to achieve a quadratic speedup. Specifically, it reduces the number
of queries to O(\/N ), demonstrating a remarkable advantage over classical
methods [1].

The algorithm proposed by Lov Grover in 1996, marked a significant
milestone in quantum algorithm research. Grover's algorithm addresses the
problem of finding a marked item in an unsorted list, which can be generalized to
various optimization and combinatorial problems. It uses an oracle-based
approach, where an oracle function identifies the desired solution, and a series of
quantum operations amplify the probability of measuring the correct answer.
Grover's algorithm is not only a practical illustration of quantum computing's
potential but also a foundational concept that provides insights into quantum
mechanics’ capabilities and limitations. Its applications extend beyond database
search, encompassing areas like cryptography, computational chemistry, and
machine learning, where unstructured search problems are prevalent. In this

section, we delve into the details of Grover's algorithm, beginning with the



mathematical foundation, continuing with its step-by-step implementation, and

concluding with its resource estimation and future enhancements.

4.2 OVERVIEW OF GROVER'S ALGORITHM

Grover's algorithm is a quantum algorithm used to search through a space of N
elements for a solution efficiently [3]. It is assumed that N = 2", and each state
is represented by indices in {0,1}". The algorithm aims to find a state y such
that:

flz) = {1 ifz =y,

0 otherwise.

The function f'is effectively computable and provided as a black box.
Grover's algorithm significantly reduces the number of oracle calls needed
compared to classical methods. It requires only O(2"/2) oracle queries, while

classical methods would need O(2™) queries.

ALGORITHM STEPS

1. Initialize the Superposition: Apply a Hadamard gate to each qubit in the

initial state |00 . .. 0), creating an equal superposition of all possible states:
\/2n z=0

- 2™2| times. Each iteration consists of two

[¥) =

2. Perform Grover's Iteration | 7
main steps:

a. Oracle Application (Uy):
The  Grover oracle evaluates a  Boolean  function
f:{0,1}™ — {0,1} that identifies the solution. If x is a solution,
then f(x) = 1; otherwise, f(z) = 0.

The oracle acts as follows:



Uy :|z)|z) = |o)|2 @ f(x)).

If the auxiliary qubit |z) is prepared in the state %(\0) —[1)), the

oracle effectively applies a phase shift to the solution states:

1 1
Uy : |z)—=(|0) — 1)) = (=1)7@|z) —(]0) — |1)).
f‘)\/2(|>|>) (1) >\/§(|> )
This means the oracle negates the amplitude of solution states while
leaving the others unchanged. Each call to Uy typically involves two
evaluations of f'and a comparison circuit.
b. Amplitude Amplification (Diffusion Operator):

The diffusion operator, represented as 2|s) (s| — I, where

!
|s) = ),
P
increases the probability amplitude of marked states while
decreasing the amplitude of unmarked states.
This operator consists of Hadamard transformations, phase shifts,
and a multi-controlled NOT gate.
3. Repeat Grover Iterations O(2"/%) times to amplify the probability of
measuring a correct solution.

4. Measurement: Measure the quantum state. With high probability, the outcome

will correspond to a correct solution.

4.3 LITERATURE SURVEY
431 GROVER'S ALGORITHM

A fast quantum mechanical algorithm for database search presented by Grover,
L.K. [2]. Quantum computing, initially proposed in the early 1980s, harnesses the
principles of quantum mechanics to perform computations. Quantum computers

were found to be at least as powerful as classical computers, given that classical



computers ultimately adhere to the laws of quantum mechanics. In the late 1980s
and early 1990s, formal descriptions and formalizations of quantum mechanical
computers emerged, demonstrating their superiority on specialized problems
compared to classical counterparts. Notably, in 1994, Shor's algorithm showcased
the efficiency of quantum computing by solving integer factorization, a problem
that lacked efficient classical solutions. This paper introduces a quantum
algorithm designed to address a practical information processing problem:
searching an unsorted database for an item satisfying a specific condition. While
theoretical computer science often involves examining various possibilities to
determine whether they meet specific conditions, the search problem presented
here has no underlying structure, making it a challenging task. Quantum
mechanical systems, exploiting quantum superposition, enable simultaneous
exploration of multiple states and thus speed up the process. The paper presents
an algorithm with a square root speedup for this search problem. Quantum
mechanical algorithms share some similarities with probabilistic algorithms, such
as simulated annealing, which work with probability distributions over different
states. However, quantum algorithms incorporate complex-number amplitudes to
fully describe the system. The system's evolution relies on matrix
transformations, particularly the Walsh-Hadamard transformation or the Fourier
transformation, which give quantum algorithms their power. Additionally,
selective phase rotation of amplitudes in specific states plays a crucial role in
quantum algorithms, enabling intricate operations. The Literature focuses on
solving the search problem, employing techniques like phase rotation and
diffusion transforms. It initializes the system to an even distribution of states,
executes unitary operations iteratively, and samples the resulting state. The phase
rotation step and diffusion transform significantly contribute to the algorithm's
success. In practical implementations, these steps involve sensing the system's
state and making phase rotation decisions while preserving the system's
racelessness. This approach ensures that paths leading to the same final state

remain indistinguishable and capable of interference, all without classical



measurements. The algorithm achieves a square root speedup in the search
problem, exemplifying the power of quantum computing in addressing complex

information processing challenges.

4.3.2 STREAM CIPHERS

Grain-128 stream cipher presented by Martin Hell et al. [2]. The cipher consists
of three main building blocks, namely an Linear Feedback Shift Register (LFSR),
an Nonlinear Feedback Shift Register (NFSR) and an output function. Before the
keystream is generated the cipher must be initialized with the key and the IV.
This cipher is designed with a 128-bit key size and a 96-bit Initialization Vector
(IV). The 128 elements of the NFSR are initially loaded with the key bits, while
the first 96 elements of the LFSR are loaded with the IV bits. Following the
initialization with key and IV bits, the cipher undergoes 256 clock cycles during
which it doesn't generate any keystream. Instead, the output function is looped
back and combined via XOR with the input, a process applied both to the LFSR
and the NFSR. Grain-128 excels in hardware environments where specific
requirements are crucial. It is optimized for low gate count, minimal power
consumption, and efficient use of chip area. What's remarkable about this cipher
1s its adaptability—with a modest investment in additional hardware, its speed
can be significantly increased. What makes Grain-128 truly stand out is the
combination of its 128-bit security and its efficiency in terms of gate count when
implemented in hardware. There is no other 128-bit cipher that can match Grain-
128 in terms of both security and hardware efficiency. This literature survey
provides an in-depth exploration of Grain-128, examining its design principles,
security aspects, and exceptional efficiency in hardware implementations while
maintaining strong 128-bit security.

A stream cipher, known as Grain, has been introduced by M. Hell et al. [5].
This cipher has been meticulously designed with a focus on enabling efficient
hardware implementation. In-depth documentation of the algorithm, along with a

thorough security analysis based on well-known attack methods, has been



provided to ensure its robustness. The construction of the Grain cipher is cantered
around two shift registers: one featuring linear feedback and the other
incorporating nonlinear feedback. These shift registers work in tandem with a
nonlinear filter function to create a secure stream cipher. Notably, Grain operates
with an 80-bit key size, and no vulnerabilities have been discovered that offer a
more efficient attack method than exhaustive key search. In its simplest form,
Grain is a bit-oriented stream cipher, producing 1 bit of output per clock cycle.
However, one of its notable features is its flexibility to increase the output rate
significantly, up to 16 bits per clock cycle, by Utilizing additional hardware
resources. This adaptability makes Grain an attractive choice for applications
requiring varying levels of throughput while maintaining a strong security
posture.

In the domain of stream ciphers, an approach has been introduced by
Alexander Maximov [4] involving the use of a NFSR in conjunction with a
LFSR. The NFSR's state is influenced by a Boolean function denoted as g(x), and
the LFSR, when exhibiting strong statistical properties, plays a role in controlling
the NFSR's state transitions. This study focuses on the broader “Grain” family of
stream ciphers, where the keystream bits are generated through yet another
Boolean function, h(y), acting on the states of both the NFSR and the LFSR. The
cryptographic strength of this Grain cipher family is intricately linked to the
general decoding problem, particularly when assessing its vulnerability to key-
recovering attacks. By carefully selecting the functions f(-), g(+), and h(-), there 1s
the potential to craft a highly secure stream cipher. Indeed, Grain emerged as a
promising contender for the European project ECRYPT in May 2005. Grain
operates with a secret key of 80 bits in length, and its internal state spans 160
bits. It was specifically designed to be a fast and compact primitive, well-suited
for efficient hardware implementation.

A simple algorithm for fast correlation attacks on stream ciphers introduced by
V. Chepyzhov et al. [3] developed a novel algorithm tailored for swift correlation

attacks on stream ciphers. This fresh approach brings about a notable reduction in



memory requirements compared to recent proposals. Additionally, this study has
uncovered the intricate relationship between the number of observed symbols, the
correlation probability, and the permissible computational complexity necessary
for a successful attack. The algorithm apart is its remarkable efficiency when
implemented. This efficiency translates into superior performance, characterized
by the highest error probability achievable within a given computational
complexity constraint. While it's worth noting that the performance may vary
based on the selected computational complexity, direct comparisons between
different algorithms can be challenging. Nevertheless, extensive simulations
consistently demonstrate that the algorithm stands as the fastest and most
effective option available.

Fast correlation attacks based on turbo code techniques presented by T.
Johansson et al. [6]. This study explores the domain of stream ciphers, which are
recognized for their hardware-friendly characteristics, reduced complexity, and
low power consumption features that are especially important in applications like
telecommunications. Specifically, they examine binary additive stream ciphers, a
subtype of synchronous stream ciphers. These ciphers generate a keystream
sequence that is combined, bit by bit, with the plaintext sequence to produce the
ciphertext. This keystream generation relies on an initialization using a secret
key, resulting in a unique keystream for each key. The primary objective in
stream cipher design is to efficiently create keystream sequences that closely
resemble truly random ones, ensuring they are challenging to distinguish.
Additionally, from a security standpoint, a robust stream cipher should be
resistant to various forms of attacks, including known-plaintext attacks. In the
case of synchronous stream ciphers, known-plaintext attacks are akin to
uncovering the secret key that produced a given keystream sequence, making it a
central challenge. In stream cipher design, LFSRs often serve as fundamental
building blocks, and the secret key frequently initializes these LFSRs. There exist
several classes of cryptanalytic attacks on stream ciphers, with correlation attacks

being especially significant for LFSR-based stream ciphers. These attacks rely on



detecting correlations between the known output sequence and the output of
individual LFSRs, which can lead to effective “divide-and-conquer” attacks. To
mitigate these vulnerabilities, stream ciphers often employ nonlinear Boolean
functions to combine the outputs of multiple LFSRs. The aim was to break the
linearity of LFSR sequences, increasing the resulting sequence's linear
complexity. However, it's important to note that some level of correlation
between the output and other output symbols may still persist. This study
contributes to the field by introducing new algorithms for fast correlation attacks,
building upon iterative decoding techniques. The algorithm comprises two parts:
a pre-processing phase and a decoding phase. In the pre-processing phase,
permuted versions of the LFSR-generated code reveal multiple parallel
embedded convolutional codes with shared information sequences but distinct
parity checks. In the decoding phase, the keystream is used to construct received
sequences for these convolutional codes, which are then employed in an iterative
decoding process to ascertain the correct information sequence. This approach
draws parallels with turbo codes and their decoding techniques. For a fixed
memory size, the proposed algorithm outperforms previous methods. For
example, in a scenario with a 40-bit LFSR and a 40,000-bit observed sequence,
the new algorithm's success extends to higher correlation probabilities compared
to prior methods, albeit with increased computational complexity.

Algebraic attacks on stream ciphers with linear feedback, presented by N.
Courtois et al. [7]. In this research work, the author explore stream ciphers
characterized by linear feedback and a nonlinear combiner in their output
generation process. The primary focus of their investigation is the security of
these stream ciphers and the criteria necessary to defend against established
cryptographic attacks. These attacks encompass various techniques, including
fast correlation attacks, conditional correlation attacks, and inversion attacks. To
bolster the resistance of stream ciphers against correlation-based threats,
researchers have dedicated their efforts to designing Boolean functions that resist

linear approximations and exhibit immunity to correlations within specific



subsets of input bits. This study has resulted in a variety of proposals within the
cryptographic community. Recent developments have broadened the scope of
correlation attacks, introducing novel techniques that exploit correlations related
to non-linear low-degree multivariate functions, encompassing all variables.
These approaches have gained prominence with the advent of efficient algorithms
capable of solving systems of equations involving low-degree nonlinear
multivariate components. Building on previous research, this study explores the
vulnerability of stream ciphers with linear feedback to algebraic attacks. These
attacks revolve around the deduction of low-degree multivariate equations in
state bits from the output. Importantly, these equations maintain their low-degree
nature when applied to the initial state bits. This approach can be scaled across
multiple states, resulting in highly over defined equation systems. Solving such
systems efficiently is made possible through techniques such as linearization and
eXtended Linearization (XL) methods. In contrast to prior research, where low-
degree equations were obtained through the approximation of the cipher's
nonlinear component, this study introduces an innovative methodology. The
propose a technique that generates low-degree equations by strategically
multiplying the initial equations with carefully chosen multivariate polynomials.
This novel approach empowers us to cryptanalyze a wide spectrum of stream
ciphers, even those adhering to established design criteria. This includes
traditional designs that rely on a limited subset of state bits, which we
conclusively demonstrate to be insecure regardless of the specific Boolean
functions employed.

Fault analysis of stream ciphers presented by J. Hoch and A. Shamir [§8]. In the
field of cryptography research, fault attacks stand out as a potent cryptanalytic
technique capable of penetrating a variety of cryptosystems that resist
conventional attacks. While prior research has extensively explored fault attacks
in the context of public key cryptosystems and block ciphers, there has been a

noticeable gap in systematically studying their applicability to stream ciphers.



Improved fast correlation attacks using parity-check equations of weight 4 and
5 presented by Canteaut and M. Trabbia (2000) [9]. Fast correlation attacks,
particularly those employing the Gallager iterative decoding algorithm with
parity-check equations of weight 4 or 5, outperform attacks based on
convolutional codes or turbo codes. The efficiency of this algorithm is primarily
constrained by the time complexity of the pre-processing step. It's important to
note that this pre-processing step needs to be executed just once for all
subsequent operations. While alternative techniques proposed, might influence
higher-weight parity-check equations, their effectiveness is substantially limited
by the memory requirements of the decoding process. Consequently, in most
scenarios, the Gallager algorithm emerges as the preferred choice.

Instant Ciphertext-Only Cryptanalysis of GSM encrypted communication
presented by E. Barkan et al. [10]. This research work contributes into the realm
of GSM (Global System for Mobile communications) and its associated security
mechanisms, shedding light on cryptographic algorithms and vulnerabilities
within this widely adopted cellular technology. Notably, GSM incorporates
essential security measures to authenticate users and safeguard the network's
integrity, with A5 serving as the encryption algorithm, A3 handling
authentication, and A8 managing key agreement. However, in this research work
they exposes vulnerabilities within these algorithms, particularly in the case of
AS5/2, which has been subjected to cryptanalysis and found susceptible to known
plaintext attacks. Furthermore, this study presents a novel ciphertext-only attack
on AS5/2, offering a streamlined approach to breach GSM security, potentially
enabling real-time active attacks on GSM networks. The study also discusses
passive ciphertext-only attacks on networks wusing AS5/1, outlining the
implications of these vulnerabilities across various attack scenarios, providing
insights into the intricate world of cellular network security.

Cryptanalytic Time/Memory/Data Trade-offs presented by Biryukov, A.
Shamir. [11]. In the symmetric cryptosystems, two fundamental categories exist:

block ciphers and stream ciphers, each characterized by distinct design principles,



attack vectors, and security evaluation criteria. While extensive literature focuses
on the resilience of block ciphers to various attacks, exploring aspects such as
differential and linear vulnerabilities, avalanche behavior, and structural attributes
like Feistel or S-P structures, stream ciphers have received comparatively less
attention. The limited cohesive concepts in stream cipher analysis revolve around
the utilization of LFSRs as bit generators and the examination of linear
complexity and correlation resistance. This paper shifts its focus toward a
specific form of cryptanalytic attack termed a time/memory trade-off attack. This
attack methodology comprises two phases: a lengthy pre-processing stage, during
which the attacker explores the cryptosystem's general structure and compiled
extensive tables unrelated to specific keys, followed by a real-time phase, where
the attacker employs these precomputed tables to swiftly determine the unknown

key when provided with actual data generated using that key.

4.3.3 GROVER ATTACK AND QUANTUM RESOURCE ESTIMATION

Resource Estimation of Grover's-kind Quantum Cryptanalysis against FSR based
Symmetric Ciphers presented by Ravi Anand et al. [12]. The security analysis of
stream ciphers in the context of quantum computing, a relatively unexplored area
compared to block ciphers. While quantum attacks on block ciphers like AES
have been extensively presented. The impact of quantum algorithms on stream
ciphers remains unclear. This study aims to bridge this gap and evaluate the
vulnerability of stream ciphers in the quantum framework. Simply doubling the
key size in stream ciphers may not be sufficient to defend against quantum
attacks because these ciphers rely on internal state structures, key scheduling, and
feedback mechanisms that can introduce vulnerabilities beyond brute-force key
search. While Grover's algorithm reduces brute-force complexity from 2" to 2™/2,
stream ciphers may also be susceptible to quantum-accelerated algebraic attacks,
state recovery techniques, and weaknesses in their initialization processes. Unlike
block ciphers, where increasing key size directly improves security, stream

ciphers can have structural vulnerabilities that quantum algorithms exploit more



efficiently. Moreover, quantum time-memory trade-offs and precomputed
quantum states could further weaken security. Instead of just increasing key
length, future quantum-resistant stream cipher designs should focus on nonlinear
key expansion, post-quantum cryptographic approaches, and hybrid security
models to mitigate quantum threats effectively [13].

The structure and characteristics of stream ciphers differ from block ciphers,
necessitating a different approach to security analysis in the quantum realm.
Considering the early stage of quantum computing, the paper acknowledges the
challenge of accurately determining the cost for each quantum gate [14]. While
previous research primarily focused on reducing the number of gates and qubits,
this work emphasizes the reduction of circuit depth and gate count under NIST's
MAXDEPTH constraint. In this research work the author provides reversible
quantum circuit designs for the Grain-128-AEAD and TinyJAMBU and estimates
the cost of ciphers, Grover oracle and applying Grover's algorithm for key
recovery assesses various parameters including the count of Clifford gates, T-
gates, T-depth, overall depth, and qubit count. The results indicate that certain
ciphers, such as Grain-128-AEAD and TinyJAMBU, could be vulnerable to
attacks with specific gate count complexities [15].

Quantum Grover Attack on the Simplified-AES presented by Mishaal
Almazrooie et al. [16]. In this research the author presents a detailed and explicit
quantum design of the Simplified-AES (S-AES) cipher, with a focus on
optimizing the use of qubits. The design involves constructing quantum circuits
for the fundamental components of S-AES, followed by their integration into a
quantum S-AES block cipher. A CNOT synthesis technique is utilized for circuit
decomposition. The complexity analysis indicates that the quantum
implementation of the S-AES block cipher exhibits a polynomial quantum cost,
which suggests a similar polynomial cost for AES quantum implementation.
Additionally, the paper models a quantum Grover attack aimed at exhaustively
searching for the secret key. The proposed quantum S-AES is incorporated into a

black-box, which is queried within Grover's algorithm. Overall, this quantum



design of a classical block cipher serves as a foundation for quantum
cryptanalysis. It highlights that constructing a quantum circuit for a block cipher
can be achieved with a polynomial cost, emphasizing the importance of exploring
potential quantum threats to symmetric cryptosystems, such as applying a
quantum framework to classical Algebraic attacks to enhance security analysis
against quantum adversaries [17, 18].

Applying Grover's algorithm to AES: quantum resource estimates presented by
Markus Grassl. et at. [19]. In the field of quantum cryptanalysis, Shor's
groundbreaking work has challenged fundamental computational assumptions in
classical asymmetric cryptography, particularly the hardness of integer
factorization (impacting RSA, Rivest-Shamir-Adleman) and discrete logarithm
computation in finite cyclic groups (affecting DSA and ECC). These problems,
once believed to be intractable, can be solved efficiently using a sufficiently large
quantum computer, posing a significant threat to conventional public-key
cryptosystems. In the context of symmetric encryption, the impact of quantum
algorithms appears less revolutionary. While a quantum variant of related-key
attacks poses a threat to block ciphers when quantum access to the encryption
function 1s available, this attack model has limitations, particularly when only a
small number of plaintext-ciphertext pairs are provided, and the objective is to
deduce the encryption key [20]. It has long been recognized that Grover's search
algorithm could theoretically be applied to the key search problem, offering a
square root speedup over classical exhaustive key search, making it the most
pertinent quantum cryptanalytic advancement for block ciphers. However, despite
its apparent simplicity, implementing Grover's algorithm for well-known targets
like the Advanced Encryption Standard (AES) has lacked detailed logical-level
resource estimation. This 1s particularly significant because the circuit
implementation of AES must be reversible, meaning it must be embedded into a
permutation. Once a reversible implementation is established, a quantum
implementation can be derived, as permutations are a subset of all unitary

operations [21]. This research work contributes the reversible circuits that fully



implement the AES for each standardized key size (128, 192, and 256 bits) and
offers resource estimates, including the number of qubits, Toffoli gates,
controlled NOT gates, and NOT gates. The decomposition of reversible circuits
into a universal fault-tolerant gate set, specifically the Clifford+T gates, is
considered. These gates are chosen because they can be fault-tolerant
implemented on a wide range of codes, including surface code families and
concatenated CSS codes. This research work contributes to minimize the T-gate
count, as Clifford gates are typically more efficient than T-gates. Their findings
reveal that a Grover attack on AES requires a relatively low number of logical
qubits, ranging from approximately 3,000 to 7,000 logical qubits. However, the
extensive circuit depth poses a challenge for implementing this algorithm on a
physical quantum computer, even without error correction. Notably, a significant
portion of the circuit cost arises from key expansion, and the overall depth is
influenced by the sequential nature of Grover's algorithm [22].

Grover on SIMON presented by Ravi Anand et al. [23]. Quantum computing
and quantum communication have made significant advancements, raising
concerns about the security of current cryptographic systems. Researchers have
explored quantum attacks on symmetric ciphers, including attacks aimed at
recovering encryption keys and methods to distinguish between various cipher
constructions. Grover's algorithm, which offers a quadratic speedup in exhaustive
key searches, has been a primary focus, leading to efforts to assess its impact on
different ciphers. While practical fault-tolerant quantum computers are still under
development, the availability of simulation facilities and small-scale quantum
processors has made it necessary to investigate the practical implementation of
quantum cryptanalysis. One particular area of concern is the SIMON family of
lightweight block ciphers, which has been standardized by ISO and has garnered
attention due to potential vulnerabilities to quantum attacks. This study presents
the costs associated with applying Grover's search algorithm to various SIMON
variants and attempts to implement it on IBM's quantum processors. However,

due to limitations in the number of qubits available, only a reduced version of the



cipher could be implemented, revealing disparities between simulation results
and actual implementation. Implementing Grover's algorithm for symmetric
ciphers presents a challenging task, primarily involving the creation of a
reversible version of the cipher. In this research, they have successfully designed
reversible versions for all SIMON variants, enabling the implementation of
Grover's oracle and Grover diffusion for key search on these variants.
Additionally, they have provided complete implementation code in QISKIT,
estimating the required resources in terms of NOT, CNOT, and Toffoli gates.
They have also included information on the T-depth of the circuits and the
number of qubits needed for the attack [24].

Implementing Grover Oracles for Quantum Key Search on AES and LowMC
presented by S. Jaques et al. [25]. In this work author explores the quantum
attack capabilities of Grover's search algorithm against block ciphers, particularly
in the context of AES and LowMC and also author explores the phenomenon of
spurious keys in the context of Grover's search algorithm applied to block
ciphers. Spurious keys refer to alternative keys that also map the known
plaintexts to the same ciphertexts, potentially complicating the key search
process. Understanding and mitigating the impact of spurious keys is crucial for
effectively leveraging Grover's algorithm in cryptographic attacks. One key
observation is that the presence of spurious keys may lead to multiple candidate
keys, increasing the complexity of the search space. However, advancements in
quantum cryptanalysis have proposed techniques such as the M-solution version
of Grover's algorithm to address this challenge. This approach assigns equal
probability to each spurious key and the correct key, effectively treating them as
potential solutions. Furthermore, inner parallelization techniques have been
explored to divide the search space into subsets, isolating spurious keys into
different groups. This partitioning facilitates the identification of unique keys
within each subset, streamlining the search process. Additionally, classical post-
processing techniques can be employed to discard spurious keys after

measurement, provided access to a sufficient number of plaintext-ciphertext



pairs. Overall, the study of spurious keys explores the nature of quantum
cryptanalysis and highlights ongoing efforts to enhance the efficiency and

efficacy of cryptographic attacks in the quantum era.

4.4 SIMPLIFIED GRAIN 4-BIT (4-BIT KEY STREAM & 4 BIT
IV)

The cipher consists of three main building blocks, namely a LFSR, NFSR, and an
output function [2]. The LFSR bits are denoted by x;, x,, x3, and x,. Similarly,
NFSR bits are denoted by yy, v, 3, and y, [26].

4.4.1 DESIGN DETAILS OF SIMPLIFIED GRAIN 4-BIT (4-BIT KEY
STREAM)

The feedback polynomial of the LFSR, denoted f(z), is a primitive polynomial
of degree 4. It 1s defined as:

flz) =1+ +z*
The nonlinear feedback polynomial of the NFSR, g(z, y), is defined as:
9(z,y) =14+ y1ys + yays + Y2 + ya + 24

The 8 memory elements in the two shift registers represent the state of the
cipher. From this state, all 8 variables are taken as input to a Boolean function,

h(z,y). This function is of degree 2. It is defined as:

h(a:, y) = Z1Y1 + T2Yy2 + T3Y3 + T4Y4

442 KEY AND IV INITIALIZATION

Before the keystream is generated, the cipher must be initialized with the key and
the Initialization Vector (IV). The NFSR elements are loaded with the key bits,
and the LFSR elements are loaded with the IV bits. After loading the key and IV

bits, the cipher is clocked 8 times without producing any keystream.



The output function is XORed with the y, input of the NFSR, and it is fed back
to both the LFSR and the NFSR, as shown in Figure 4.1.
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Figure 4.1 Block diagram of key initialization <1

443 KEY STREAM GENERATION

After the completion of 8 clocks in the key initialization process, the keystream is
generated as shown in Figure 4.2. Then the keystream is XORed with the

plaintext to produce the ciphertext.
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Figure 4.2 Block diagram of key stream generation <1

4.5 KEY RECOVERY USING GROVER

Let for any key K = {0,1}*, initialization vector IV = {0,1}%, and plaintext
P =1{0,1}%, the stream cipher Sk jvp = C, which generates the 4-bit
ciphertext C under the key K, initialization vector /V, and plaintext P [2].

For a given ciphertext of length 4, we can apply Grover's search for key

recovery as follows:



Construct a Boolean function f which takes K, IV, and P as input and satisfies:

1 if SK IV.p = C
K) = o)
J(K) {O otherwise

Initialize the system by making a superposition of all possible keys with the same

amplitude:
1 2l
1K) = g 31K
]:

For any state |K;) in the superposition |K), rotate the phase by z radians if
f(K;) = 1 and leave the system unaltered otherwise.

Apply the diffusion operator.

Iterate steps 2(a) and 2(b) for 74/ % times, where S is the number of solutions
and £ is the key size.

Measure the system and observe the state K = K with high probability, where
K 1s the secret key.

4.6 QUANTUM CIRCUIT DEVELOPMENT OF SIMPLIFIED
GRAIN 4-BIT

We need to develop a quantum version of the simplified Grain, called the
simplified Grain 4-bit quantum circuit, and also the reverse version of the
simplified Grain 4-bit quantum circuit. We use these quantum circuits in the
Grover oracle when attacking the cipher using Grover's algorithm. There are two
main building blocks in the simplified Grain 4-bit: one is key initialization, and

the other is key stream generation.

4.6.1 KEY AND IV INITIALIZATION



For the quantum circuit development of key initialization, a total of 80 qubits are

required. These qubits are allocated as follows:

Four qubits are designated for the LFSR, denoted as Ifsriv'x.
Four qubits are allocated for the NFSR, referred to as nfsr'key'y.

The remaining 72 qubits are assigned as ancilla qubits or work qubits.

NOTE

In Quantum circuit implementation, qubits are indexed from 0 to n — 1.
In LFSR feedback polynomials (e.g., f(z) = 1 + x + z*), the powers start
from 0 and that is why the polynomial always starts with 1.

To map polynomial powers to Qiskit qubits, we reverse the order:

Qubit index = n — power

For a 4-qubit system (n = 4), the mapping is as follows:

Power Qubit Index
4 0
3 1
2 2
1 3

For the feedback polynomial f(z) =1 + z + z*:

Tap at x' corresponds to qubit 3.
Tap at x* corresponds to qubit 0.

Thus, the XOR operation is applied between qubit 3 and qubit 0.

Step 1: Executing the Feedback Polynomial f(x)



The first operation is to execute the feedback polynomial f(x) = 1+ = + x* for
the LFSR. To achieve this, we start by using a Controlled-NOT (CNOT) gate,
which functions as a classical XOR gate. This gate transfers the value of the
fourth bit of the LFSR (1fsr qubit 3) to the ancilla qubit ancilla qubit 0.

Next, we apply another CNOT gate to perform an XOR operation between the
LFSR's first bit (1£fsr qubit 0) and the ancilla qubit ancilla qubit 0. This step
effectively computes the feedback polynomial f(z), and its result is stored in the
ancilla qubit 0, as shown in Figure 4.3.

. fix) =1+ x + x*
Ifsr_iv_xo B
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Figure 4.3 Quantum circuit development of key initialization of SGrain 4 bit—step 1 <
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Step 2: Executing the feedback polynomial g(x, y)

The next operation is to execute the feedback polynomial
9(x,y) =1+ y1ys + y2y4 + y2 + y4 + x4 for the NFSR. To achieve this, we
start by using a Controlled-Controlled-Not (CCNOT) gate, which acts as a
classical AND gate when the target qubit is in the zero state.

The first step of g(z,y) involves performing an AND operation between the
fourth bit of the NFSR (NFsr qubit 3) and the second bit of the NFSR (nrsr

qubit 1). This is achieved using the CCNOT gate, and the output is stored in
ancilla qubit ancilla qubit 1.

Next, we perform another AND operation, this time between the first bit of the
NFSR (NFsrR qubit 0) and the third bit of the NFSR (NFSR qubit 2), using

another CCNOT gate. The result of this operation is stored in ancilla qubit

ancilla qubit 2.

By XORing the values in ancilla qubits 1 and 2, we obtain the expression
Y1Y3 + Y294, and this value is retained in ancilla qubit 2.

Continuing, we XOR the third bit of the NFSR (NFsr qubit 2) with ancilla
qubit 2. This step results in y1y3 + y2y4 + y2, and the output is saved in ancilla
qubit 2.

Further, we XOR the first bit of the NFSR (nFsr qubit 0) with ancilla qubit 2,
yielding y1ys + y2y4 + y2 + y4, and ancilla qubit 2 maintains this output.

Finally, we XOR the first bit of the LFSR (LFsrR qubit 0) with ancilla qubit 2,
resulting in y1ys + y2y4 + y2 + y4 + x4. At this point, ancilla qubit 2 holds the

value of the feedback polynomial g(z, y), as shown in Figure 4.4.



f(x) =1+ x+ x* g(x,y) =1 + y1ys + yaya + y2 + ya + Xa
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Figure 4.4 Quantum circuit development of key initialization of SGrain 4 bit—step 2 <1

4.6.1.1 Step 3: Executing the Boolean Function h(z, y)

In this step, the execution of  the Boolean function
h(z,y) = 1y1 + T2y2 + 3ys + x4y4 is performed. The process is initiated by
utilizing a Controlled-Controlled-Not (CCNOT) gate. This gate operates on the
fourth bit of the LFSR, specifically LFSR qubit 3, and the corresponding fourth
bit of the NFSR, specifically NFSR qubit 3. The outcome of this operation is then
stored in the ancilla qubit 3.

Subsequently, this process is replicated for the third bit of the LFSR (LFSR
qubit 2) and the third bit of the NFSR (NFSR qubit 2), with the result being
stored in ancilla qubit 4. Likewise, we repeat the procedure for the second bit of
the LFSR (LFSR qubit 1) and the second bit of the NFSR (NFSR qubit 1), and
the output is stored in ancilla qubit 5.

This process 1s also applied to the first bit of the LFSR (LFSR qubit 0) and the
corresponding first bit of the NFSR (NFSR qubit 0), with the result being

maintained in ancilla qubit 6.



Moving forward, we perform an XOR operation between ancilla qubit 3 and
ancilla qubit 4. This results in the expression z1y; + z2y2, which is preserved by
ancilla qubit 4. Subsequently, we perform an XOR operation between ancilla
qubit 4 and ancilla qubit 5. This yields the expression x1y; + T2ys + x3y3, and
the result is stored in ancilla qubit 5.

Lastly, we perform an XOR operation between ancilla qubit 5 and ancilla qubit

6. This culminates in the final form of the Boolean function h(z, y), specifically:
h(z,y) = T1y1 + T2y2 + T3Y3 + T4y,

and the output is maintained by ancilla qubit 6, as shown in Figure 4.5.
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Figure 4.5 Quantum circuit development of key initialization of SGrain 4 bit—step 3 <1

4.6.1.2 Step 4: XORing the Fourth Bit of NFSR with the Boolean
Function h(z, y)

In this step, we perform an XOR operation between the first bit of the NFSR,
specifically NFSR qubit 0, and the ancilla qubit 6, which holds the output of the
Boolean function h(x, y). This operation yields the first key bit of the key stream,

which is then retained by ancilla qubit 6, as shown in Figure 4.6.
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Figure 4.6 Quantum circuit development of key initialization of SGrain 4 bit—step 4 <1

Final XOR Operations for Feedback Updates

In this step, an XOR operation is executed between ancilla qubit 6, which
contains the first bit of the key stream, and ancilla qubit 0 (i.e., ancilla qubit 0
holds the feedback polynomial f(x)). As a result, ancilla qubit 0 now holds the
conclusive feedback state for the LFSR.

In a similar manner, we conduct another XOR operation. This time, the
operation takes place between ancilla qubit 6 and ancilla qubit 2 (i.e., ancilla
qubit 2 holds the feedback polynomial g(z,y)). The outcome of this operation is
once again saved in ancilla qubit 2, denoting the ultimate feedback for the NFSR,

as shown in Figure 4.7.
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Figure 4.7 Quantum circuit development of key initialization of SGrain 4 bit—step 5 <1

Step 6: Shifting the Bits of LFSR and NFSR and Providing Feedback
to These Shift Registers

In this step, we will perform the shift operation on both the LFSR and the NFSR
using three swap gates for each shift register. However, when shifting using swap
gates, the last bit ends up at the first bit position. To ensure that the first bit
retains the feedback polynomial, we need to initialize it to zero.

To achieve this, we utilize the extra two ancilla qubits and swap these two
qubits’ states to the first bit of both the LFSR and NFSR using two swap gates.
This ensures that the first bit of both the LFSR and NFSR will be set to zero.

Following the initialization, we will provide feedback to both the LFSR and
NFSR by using one CNOT gate for each shift register. This completes the bit

shifting and feedback process for key initialization, as shown in Figure 4.8.
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Figure 4.8 Quantum circuit of key initialization of SGrain 4 bit for one clock <1

4.6.2 KEY STREAM GENERATION

In the Key Stream Generation process, the entire procedure is essentially the
same as that executed in the Key Initialization process. The only difference is that
we do not perform XOR operations with the key stream bit and the functions
f(z) and g(z, y). In total, there are 8 clock cycles in the Key Stream Generation

process, resulting in an 8-bit key stream.



Ancilla qubits 6, 15, 24, 33, 42, 51, 60, and 69 hold the 8-bit key stream. The

quantum circuit of key stream generation for one clock is shown in Figure 4.9.
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Figure 4.9 Quantum circuit of keystream generation of SGrain 4 bit for one clock 1

4.6.3 SIMPLIFIED GRAIN 4 BIT

We use subcircuits, such as key initialization and key stream generation, as
building blocks to construct a simplified 4-bit Grain cipher. The block diagram

for such a circuit is shown in Figure 4.10.
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®4 KEY KEY STREAM
KEY 0> —————— |NITIALIZATION | GENERATION
®108
4 BIT KEY
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CIPHER
PLAIN TEXT |0> | ma /74

Figure 4.10 Block diagram of SGrain 4 bit quantum circuit <1

4.7 QUANTUM CIRCUIT DEVELOPMENT OF GROVER
ATTACK



In this section, we will explore the development of quantum circuits specifically
designed for implementing Grover's algorithm to perform cryptographic attacks
as per [28, 29].

4.7.1 SINGLE PAIR METHOD

Consider that we are given one plaintext—ciphertext pair. The oracle is then
constructed so that the given plaintext is encrypted under the same key and then
computes a Boolean value which determines if the resulting ciphertext is equal to
the given available ciphertext. This can be done by running one encryption circuit
and then comparing the resultant ciphertext with the given ciphertext. The target
qubit will be flipped if the ciphertexts match. The target qubit will be flipped if
the ciphertexts match because of the phase kickback effect. In quantum circuits,
when a controlled operation (like a comparison or XOR) is applied with a qubit
in superposition as the control and a flag qubit as the target, any conditional
phase that would have affected the target is instead “kicked back” to the control.
This subtle yet powerful phenomenon enables the marking of matching states
with a phase change, even without directly measuring them. This way, the target
key is marked, and interference patterns formed in later steps amplify the
probability of measuring this correct solution. The construction of such an oracle

is shown in Figure 4.11.
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Figure 4.11 Block diagram of Grover attack single pair method <1

4.7.2 DOUBLE PAIR METHOD

It is plausible that there may be other encryption keys capable of producing the
same ciphertext from a known plaintext and I'V(initialization vector). Therefore,
to enhance the attack's success probability, it becomes necessary to expand the
search to encompass more plaintext-ciphertext pairs. Let's consider a scenario
where we have been provided with two plaintext-ciphertext pairs.

Here, we compare the first resulting ciphertext with the provided first
ciphertext. To do this, we employ an ancilla qubit to verify the correspondence
between the first resulting ciphertext and the given ciphertext. If the ciphertexts
match, the ancilla qubit is set to 1. This is necessary because we need all control
qubits to be in the —1) state in order to trigger phase kickback, which is essential

for marking the correct key. The ancilla qubit acts as a conditional flag only when



it is 1 (indicating a match) do we allow the phase kickback to occur during the
controlled operation on the target qubit.

Subsequently, by reversing all of these processes, we reset all the qubits to
their initial state, which is the zero state. At this stage, we can provide another
pair of plaintexts and ciphertexts and examine the second resulting ciphertext
against the available given ciphertext. If both ciphertexts match, the target qubit

flips. The construction of such an oracle is shown in Figure 4.12.
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Figure 4.12 Block diagram of Grover attack double pair method <

It is important to note that, compared to the Single Pair Method, the Double
Pair Method significantly increases the depth of the process, as it involves
additional checks and more qubits. However, the increase in qubits is minimal,
with only one additional qubit being added per comparison, making the method

more efficient while still enhancing accuracy in key recovery [27].

4.8 EXPERIMENTAL RESULTS

We conducted these attacks using own custom-built simulator, which is based on
the Qiskit Matrix Product State (MPS) simulator. This simulator leverages a
tensor-network approach using a MPS representation for quantum states,

allowing efficient simulation of quantum circuits with limited entanglement. By



tailoring the simulator to the specific attack framework, we were able to optimize
performance and gain better control over the underlying simulation processes.

available at

The implementation code is

publicly

https://github.com/mohanyaso/Grover. git.

The following implementations are implemented on a system with the

following specifications shown in Table 4.1.

Table 4.1
Hardware and software specifications <
S.
No. | Hardware/software Description
Processor 46
2 Vendor id Genuine Intel
Model Number 106
Intel(R) Xeon(R) Gold 5317 CPU @
4 Model Name
3.00Ghz
CPU Speed 3400.000 MHz
Cache size 18432 kb
CPU Cores 12
NVIDIA Corporation (A30) Memory
Size: 24 GB
, GPU memory bandwidth: 933GB/s
8 Graphics
NVIDIA-SMI 525.85.12
Driver Version 525.85.12
CUDA Version 12.0
9 RAM Size 503 GB
10 Disk Capacity 48 TB
Operating System
11 0S) Ubuntu 20.04.5 LTS



https://github.com/mohanyaso/Grover.git

No. | Hardware/software Description
12 OS Type 64 bit
481 TEST CASE 1

a. Simplified grain 4-bit—pair 1: Here, the given Initialization Vector
(IV)is o111, the Key is "1111", and the Plaintext is "0001". After the
cipher's operation, we have obtained the ciphertext "0100".

The obtained result from the Simplified Grain 4-bit cipher is shown in

Figure 4.13.

b. Simplified grain 4 bit—pair 2: Here, the given Initialization Vector

(IV)is mo110", the Key is "1111", and the Plaintext is "1001". After the
cipher's operation, we have obtained the ciphertext "1010". The obtained
result from the Simplified Grain 4-bit cipher is shown in Figure 4.14. In
the Grover attack, we collect samples from both Pair 1 and Pair 2, as
listed in Table 4.2. In a single-pair attack, we exclusively utilize Pair 1.

However, in a double-pair attack, we make use of data from both pairs.
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Figure 4.13 Histogram output of simplified grain 4 bit—Test case 1 (Pair 1) &
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Figure 4.14 Histogram output of simplified grain 4 bit—Test case 1 (Pair 2) J

Table 4.2

Inputs and outputs of 4-bit case 1 &

Pair | IV (Initialization vector) | Key | Plaintext | Obtained ciphertext
Pair 1 0111 1111 0001 0010
Pair 2 0110 1111 1001 1010

c. Grover attack for one iteration:

1. Single pair method:

In the single-pair attack, we provided the Initialization Vector (IV)

0111, plaintext 0001, and ciphertext 0100, resulting in three keys. One

key is 0111, the second one is 1101, and the last one is the expected

key, 1111, as illustrated in Figure 4.15.

ii. Double pair method:

In the double pair method, we are given two sets of IV, plaintext, and

ciphertext. Set 1 consists of IV, (o111), Plaintext; (0001), and

Ciphertext; (0100). Set 2 includes IV, (0110), Plaintext, (1001), and

Ciphertext, (1010). By using these two sets, we have successfully

obtained a unique key, which matches the expected key 1111, as

shown in Figure 4.16.
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Figure 4.15 Histogram output of Grover attack single pair method—Test case 1 <1

Grover Attack on Simplified Grain 4-bit with Two Pairs (iv_ 1 = 0111, plaintext 1 = 0001, ciphertext 1 = 0100, iv 2 = 0110, plaintext 2 = 1001, ciphertext 2 = 1010, iterations = 1)

231

Counts

Figure 4.16 Histogram output of Grover attack double pair parallel method—Test case 1 <1

4.8.2 TEST CASE 2

a. Simplified grain 4 bit—Pair 1: Here, the given Initialization Vector
(IV)is 1010, the Key is 1001, and the Plaintext is 0110. After the cipher's

operation, we have obtained the ciphertext 0100. The obtained result

from the Simplified Grain 4-bit cipher is shown in Figure 4.17.



b. Simplified grain 4 bit—Pair 2: Here, the given Initialization Vector
(IV)is 1111, the Key is 1001, and the Plaintext is 0110. After the cipher's
operation, we have obtained the ciphertext 0101. The obtained result
from the Simplified Grain 4-bit cipher is shown in Figure 4.18.

In the Grover attack, we collect samples from both Pair 1 and Pair 2
listed in Table 4.3. In a single-pair attack, we exclusively utilize Pair 1.

However, in a double-pair attack, we make use of data from both pairs.
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Figure 4.17 Histogram output of simplified grain 4 bit—Test case 2 (Pair 1)



Simplified Grain 4bit (iv = 1111, key = 1001, plaintext = 0110)
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Figure 4.18 Histogram output of simplified grain 4 bit—Test case 2 (Pair 2) <

Table 4.3

Inputs and outputs of Sgrain 4-bit—Test case 2 &

Pair | IV (Initialization vector) | Key | Plaintext | Obtained ciphertext
Pair 1 1010 1001 0110 0100
Pair 2 1111 1001 0110 0101

c. Grover attack for one iteration:

1. Single pair method:

In the single-pair attack, we provided the Initialization Vector (IV)
1010, plaintext 0110, and ciphertext 0100, resulting in two keys. One



150

125

Counts

100

11.

key is 1000, while the other is the expected key, 1001, as illustrated in

Figure 4.19.

Double pair method:

In the double pair method, we are given two sets of IV, plaintext, and
ciphertext. Set 1 consists of IV, (1010), Plaintext; (0110), and

Ciphertext; (0100). Set 2 includes IV, (1111), Plaintext, (0110), and
Ciphertext, (0101). By using these two sets, we have successfully
obtained a unique key, which matches the expected key, 1001, as

shown in Figure 4.20.

Grover Attack on Simplified Grain 4-bit with One Pair (iv = 1010, plaintext = 0110, ciphertext = 0100, iterations = 1)
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Figure 4.19 Histogram output of Grover attack single pair method—Test case 2 <1



Grover Attack on Simplified Grain 4-bit with Two Pairs (iv_1 = 1010, plaintext 1 = 0110, ciphertext 1 = 0100, iv_2 = 1111, plaintext_2 = 0110, ciphertext 2 = 0101, iterations = 1)
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Figure 4.20 Histogram output of Grover attack double pair method—Test case 2 <1

4.8.3 TEST CASE 3

a. Simplified grain 4 bit—pair 1: Here, the given Initialization Vector
(IV)is 1011, the Key is 1100, and the Plaintext is 1001. After the cipher's
operation, we have obtained the ciphertext 0110. The obtained result
from the Simplified Grain 4-bit cipher is shown in Figure 4.21.

b. Simplified grain 4 bit—pair 2: Here, the given Initialization Vector
(IV)is 1111, the Key is 1100, and the Plaintext is 1010. After the cipher's
operation, we have obtained the ciphertext 1101. The obtained result
from the Simplified Grain 4-bit cipher is shown in Figure 4.22. In the
Grover attack, we collect samples from both Pair 1 and Pair 2 listed in
Table 4.3. In a single-pair attack, we exclusively utilize Pair 1. However,

in a double-pair attack, we make use of data from both pairs.
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Figure 4.21 Histogram output of simplified grain 4 bit—Test case 3 (Pair 1) &

Simplified Grain 4bit (iv = 1111, key = 1100, plaintext = 1010)
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Figure 4.22 Histogram output of simplified grain 4 bit—Test case 3 (Pair 2) J

200

c. Grover attack for one Iteration:

1.

11.

Single pair method:
In the single-pair attack, we provided the Initialization Vector (IV)

1011, plaintext 1001, and ciphertext 0110, resulting in two keys. One
key is o010, and the expected key is 1100, as illustrated in Figure

4.23.
Double pair method:
In the double pair method, we are given two sets of IV, plaintext, and

ciphertext. Set 1 consists of IV, (1011), Plaintext; (1001), and
Ciphertext; (0110). Set 2 includes IV, (1111), Plaintext, (1010), and
Ciphertext, (1101). By using these two sets, we have successfully
obtained a unique key, which matches the expected key 1100, as

shown in Figure 4.24.

Grover Attack on Simplified Grain 4-bit with One Pair (iv = 1011, plaintext = 1001, ciphertext = 0110 , iterations = 1)
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Figure 4.23 Histogram output of Grover attack single pair method—Test case 3 <1



Grover Attack on Simplified Grain 4-bit with Two Pairs (iv_1 = 1011, plaintext 1 = 1001, ciphertext 1 = 0110, iv_2 = 1111, plaintext 2 = 1010, ciphertext 2 = 1101, iterations = 1)
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Figure 4.24 Histogram output of Grover attack double pair method—Test case 3 <1

48.4 TEST CASE 4

a. Simplified grain 4-bit—Pair 1: Here, the given Initialization Vector
(IV)is 1111, the Key is 0101, and the Plaintext is 0001. After the cipher's
operation, we have obtained the ciphertext 0110. The obtained result
from the Simplified Grain 4-bit cipher is shown in Figure 4.25.

b. Simplified grain 4-bit—Pair 2: Here, the given Initialization Vector
(IV)is 0110, the Key is 0101, and the Plaintext is 1010. After the cipher's
operation, we have obtained the ciphertext 0111. The obtained result
from the Simplified Grain 4-bit cipher is shown in Figure 4.26. In the
Grover attack, we collect samples from both Pair 1 and Pair 2 listed in
Table 4.4. In a single-pair attack, we exclusively utilize Pair 1. However,

in a double-pair attack, we make use of data from both pairs.
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Figure 4.25 Histogram output of simplified grain 4 bit—Test case 4 (Case 1) <&
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Figure 4.26 Histogram output of simplified grain 4 bit—Test case 4 (Case 2) <1

Table 4.4

Inputs and outputs of grain 4-bit—Test case 4 J

Pair | IV (Initialization vector) | Key | Plaintext | Obtained ciphertext
Pair 1 1111 0101 0001 0110
Pair 2 0110 0101 1010 0111

c. Grover attack for one iteration:

1. Single pair method:

In the single-pair attack, we provided the Initialization Vector (IV)

1111, plaintext 0001, and ciphertext 0110, resulting in three keys. One

key is 1100, the second key is 0100, and the last one is the expected

key 0101, as illustrated in Figure 4.27.

ii. Double pair method:

In the double pair method, we are given two sets of IV, plaintext, and

ciphertext. Set 1 consists of IV, (1111), Plaintext; (0001), and

Ciphertext; (0110). Set 2 includes IV, (0110), Plaintext, (1010), and

Ciphertext, (0111). By using these two sets, we have successfully

obtained a unique key, which matches the expected key 0101, as

shown in Figure 4.28.




Grover Attack on Grain 4-bit with One Pair (iv = 1111, i = 0001, ciphertext = 0110, iterations = 1)

176

157

140

25

n o111 101 1010 o010 o011 1001 1100 1000 o110 0000 0100 1110 o101

Figure 4.27 Histogram output of Grover attack single pair method—Test case 4 <1

Grover Attack on Simplified Grain 4-bit with Two Pairs (iv_1 = 1111, plaintext_1 = 0001, ciphertext 1 = 0110, iv_2 = 0110, plaintext 2 = 1010, ciphertext 2 = 0111, iterations = 1)
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Figure 4.28 Histogram output of Grover attack double pair method—Test case 4 <1

48.5 TEST CASE 5

a. Simplified grain 4-bit—Pair 1: Here, the given Initialization Vector
(IV)is 0100, the Key is 0100, and the Plaintext is 1001. After the cipher's

operation, we have obtained the ciphertext 1100. The obtained result

from the Simplified Grain 4-bit cipher is shown in Figure 4.29.



b. Simplified grain 4-bit—Pair 2: Here, the given Initialization Vector
(IV)is 1001, the Key is 0100, and the Plaintext is 0110. After the cipher's
operation, we have obtained the ciphertext 0100. The obtained result
from the Simplified Grain 4-bit cipher is shown in Figure 4.30.

In the Grover attack, we collect samples from both Pair 1 and Pair 2
listed in Table 4.5. In a single-pair attack, we exclusively utilize Pair 1.

However, in a double-pair attack, we make use of data from both pairs.
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Figure 4.29 Histogram output simplified grain 4 bit—Test case 5 (Pair 1) <



Simplified Grain 4bit (iv = 1001, key = 0100, plaintext = 0110 )
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Figure 4.30 Histogram output simplified grain 4 bit—Test case 5 (Pair 2) <1

Table 4.5

Inputs and outputs of SGrain 4-bit—Test case 5 &

Pair | IV (Initialization vector) | Key | Plaintext | Obtained ciphertext
Pair 1 0100 0100 1001 1100
Pair 2 1001 0100 0110 0100

c. Grover attack for one iteration:

1. Single pair method:

In the single-pair attack, we provided the Initialization Vector (IV)
0100, plaintext 1001, and ciphertext 1100, resulting in four keys:



0111, 1011, 1010, and the expected key, 0100, as illustrated in Figure

431.

ii. Double pair method:
In the double pair method, we are given two sets of IV, plaintext, and
ciphertext. Set 1 consists of IV; (0100), Plaintext; (1001), and

Ciphertext; (1100). Set 2 includes IV, (1001), Plaintext, (0110), and
Ciphertext, (0100). By using these two sets, we have successfully
obtained a unique key, which matches the expected key 0100, as

shown in Figure 4.32.

Grover Attack on Simplified Grain 4-bit with One Pair (iv = 0100, plaintext = 1001, ciphertext = 1100, iterations = 1)
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Figure 4.31 Histogram output of Grover attack single pair method—Test case 5 <1



Grover Attack on Simplified Grain 4-bit with Two Pairs (iv_1 = 0100, plaintext 1 1001, ciphertext 1 1100, iv_2 = 1001, plaintext 2 = 0110, ciphertext 2 = 0100, iterations = 1)
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Figure 4.32 Histogram output of Grover attack double pair method—Test case 5 <1

4.8.6 SUMMARY OF TEST CASES

Table 4.6 summarizes the test cases applied to the Simplified Grain 4-bit cipher
and the corresponding results of the Grover attack for key recovery. In each case,
two sets of data are provided, consisting of an Initialization Vector (IV), a key, a
plaintext, and the resulting ciphertext. The Grover attack is then used to attempt
key recovery through two methods: the Single Pair Method and the Double Pair
Method. The Single Pair Method generally results in multiple recovered keys,
ranging from 2 to 4, depending on the test case. This suggests that this method
may generate several possible keys for certain pairs of IV, plaintext, and
ciphertext, indicating potential vulnerabilities in the cipher. On the other hand,
the Double Pair Method consistently recovers only one key in each case, which
matches the correct key, demonstrating its accuracy in key recovery. The test
cases show that, while the Single Pair Method can produce multiple key
candidates, the Double Pair Method provides a more reliable and accurate way to
recover the correct encryption key. Overall, the results highlight the varying
success rates of each method in recovering keys, with the Double Pair Method

being the more effective approach in all test cases.



Table 4.6

Summary of test cases <

Key recovery using
Simplified grain 4 bit Grover attack
Recovered keys
Case pair 1 pair 2 :

Single Double pair

Plain | Ciph in | Ci EIT series

pher Plain | Cipher

Vol key | bext | text | IV | K& [ text | text method method

1 (0111 | 1111 | 0001 | 0010 | 0110 | 1111 1001 1010 3 keys 1 key

> | 1010 | 1001 | 0110 | 0100 | 1111 | 1001 0110 | o101 2 keys 1 key

3 | 1011 | 1100 | 1001 | 0110 | 1111 | 1100 1010 1101 2 keys 1 key

4 | 1111 ) 0101 | 0001 | 0110 | 0110 | 0101 1010 | 0111 3 keys 1 key

5 | o100 | 0100 | 1001 | 1100 | 1001 | 0100 | 0110 | 0100 Alkeys ey

4.8.7 CLASSICAL COMPUTATION TIME

We have estimated the classical computation time based on the Qiskit MPS

simulator, as shown in Table 4.7.

Table 4.7

Classical computation time for Grover attack on SGrain 4-bit
A

Key recovery using Grover attack

Case | Single pair method (seconds) | Double pair method (seconds)

1.5 6.5
2 1.5 6.3
1.4 6.5




Key recovery using Grover attack

Case | Single pair method (seconds) | Double pair method (seconds)

4 1.6 6.6
5 1.5 6.5

4.8.8 QUANTUM RESOURCE ESTIMATION

We have used a swap gate, which is a combination of three CNOT gates [30], as
we can see in Figure 4.33. As in [12], we neglect the NOT gates that depend on
the inputs to the Simplified Grain 4-bit cipher, including the Initialization Vector
(IV), Key, Plaintext, and Ciphertext. The decomposition of the Toffoli (CCNOT)
gate shown in Figure 4.34 uses a total of 6 T-gates (including T and TT), along
with 8 Clifford gates, and achieves a T-depth of 4. The overall circuit depth is 11,

which is calculated based on the number of sequential gate layers acting on the

qubits, considering parallelizable operations. Specifically, gates that operate on
different qubits and do not interfere can be executed simultaneously, which helps
optimize the circuit's depth. This decomposition, as referenced in [23], efficiently
balances gate count and depth, which is crucial for fault tolerant quantum

computation.

q[0] q[O] ?
ql1] T ql1] é é

Figure 4.33 Swap gate decomposition <1



do T

q1 T —_ T — -

g2 - H— —T"' — — T — —T'— —
Figure 4.34 Toffoli gate decomposition <1

4.8.9 COST OF SIMPLIFIED GRAIN 4 BIT

Table 4.8 shows a comparison between the cost of implementing simplified grain
16-bit quantum circuits without reset gates. The parameters considered for the
comparison are the number of CNOT gates, Toffoli (CCNOT) gates, circuit
depth, and qubit count.

Table 4.8
Cost of simplified grain 4 bit &

CNOT | Toffoli | Depth | Qubits
Count 452 72 318 120

4.8.10 COST OF GROVER ORACLE

Table 4.9 shows the cost of the Grover oracle in terms of Clifford gates, T gates,

T depth, full depth, and qubits for the single-pair and double-pair methods.

Table 4.9

Cost of Grover oracle &



Clifford
gates T gates | T-depth | Full depth | Qubits

Single Pair 2139 864 576 1120 121
Double Pair 6495 2592 1728 3437 122
method

4.8.11 COST OF EXHAUSTIVE KEY SEARCH

Table 4.10 shows the cost of exhaustive key search in terms of Clifford gates, T

gates, T depth, full depth, and qubits for the single-pair and double-pair methods.

Table 4.10
Cost of exhaustive key search &
Clifford
gates T gates | T-depth | Full depth | Qubits
Single Pair 2176 864 576 1145 121
Double Pair 6532 2592 1728 3462 122
method

“The estimation of the cost of an exhaustive key search is based on one

iteration, and we should multiply it by the required number of iterations.”

4.8.12 CLASSICAL RESOURCE ESTIMATION

Table 4.11 shows the estimated classical resources based on the Qiskit MPS

simulator.




Table 4.11

Classical resource estimation of Grover
attack on Sgrain 4-bit J

Pair Required RAM(GB)
Single Pair 8
Double Pair method 8

4.8.13 REQUIRED PYTHON PACKAGES

You can download Python version 3.11.1 from the official website using the

fOllOWil’lg link: https://www.python.org/downloads/release/python-3111/In

order to run Jupyter Notebook files in Visual Studio Code, you should install the
Python and Jupyter extensions in Visual Studio Code. The required Python

packages are shown in Table 4.12.

Table 4.12

Python packages, versions, and installation
commands

Package name | Version Pip command
qiskit 0.44.1 pip install qiskit==0.44.1
qiskit aer 0.12.1 pip install qiskit aer==0.12.1
matplotlib 3.6.3 pip install matplotlib==3.6.3
pylatexenc 2.10 pip install pylatexenc==2.10
pandas 1.5.3 pip install pandas==1.5.3



https://www.python.org/downloads/release/python-3111/

4.8.14 GROVER ITERATION CALCULATION

We use the general formula to calculate the iterations for Grover's algorithms as
follows (Table 4.12):
2k

. ™
Iterations = — ¢/ —
4 S

Here,

k= Key size

s = Number of solutions

In the Grover algorithm, we generally mark the state we are interested in
directly. If we mark one state, we assign “1” to s, and if we mark two states, we
assign “2” to s, then calculate the number of iterations. Therefore, s represents the
number of states we are interested in.

Due to the possibility of other keys producing the same ciphertext using the
same IV and plaintext, the Grover attack aims to discover all the keys that can
yield the same ciphertext. Initially, we set the iteration equal to 1, then find keys
which produce the same ciphertext using the same I'V and plaintext.

In this case, we calculate the number of iterations by setting s as the number of
keys obtained in the first iteration. This approach enables us to conduct the
Grover attack with the precise number of iterations required for that particular
case.

Here, we are considering Case 2 in the test cases of the Grover attack and
calculating the exact number of iterations required for this case. In Case 2, the

applied inputs to the single pair Grover attack are:

IV=1010”
Plaintext = “0110”
Ciphertext = “0100”



In the Grover attack for a single pair, we have obtained 2 keys. Therefore, we

need to set s = 2, and we know that k = 4 (the key size), as follows:

Tterations — -~/ >
erations = 4 >
Simplifying this:
Tterations — —ot (/| 2 = 314 g 314 g 31 ) s8 — 22203
erations = — 5 = 1 /2 = 1 =~ 828 = 2.

Thus, the number of iterations is approximately:

Iterations ~ 2

4.8.15 RESULTS AND DISCUSSION

In the Grover attack, when working with a single pair of plaintext and ciphertext
along with the corresponding Initialization Vector (IV), it is possible to obtain
multiple keys due to the probabilistic nature of Grover's search algorithm.
However, the primary goal is to determine the correct key, which is the key that
successfully encrypts the given plaintext to the corresponding ciphertext under
the provided IV. To increase the accuracy of finding the expected key, we
enhance the attack by using two pairs of plaintext and ciphertext along with their
associated IV. By applying Grover's algorithm to these two pairs, we significantly
improve the chances of narrowing down the correct key.

The use of two pairs allows for more robust search through the key space,
leveraging the additional data to refine the search process. This method
effectively reduces the ambiguity that arises when only a single pair is used,
where multiple keys may lead to valid results. As a result, performing the Grover
attack with two pairs of plaintext and ciphertext ensures that only one key
emerges as the correct one, yielding a unique key that matches the expected key.
This approach enhances the reliability and success rate of the Grover attack in

key recovery.



This concept is demonstrated in Table 4.6, where we summarize the test cases
for the Simplified Grain 4-bit cipher and the corresponding results of the Grover
attack. For example, in Case 1, using a single pair of plaintext and ciphertext with
their associated 1V, we obtained 3 possible keys, but when using the double pair
method (two pairs), we successfully recovered 1 unique key. Similarly, in other
test cases, the Double Pair Method consistently led to the recovery of a single
correct key, highlighting the enhanced accuracy and reliability when using
multiple pairs for Grover's attack. This demonstrates how leveraging additional
plaintext and ciphertext pairs improves key recovery outcomes and ensures the
uniqueness of the key.

4.9 CONCLUSION AND FUTURE ENHANCEMENTS

In this research, we began by designing a simplified version of the Grain cipher, a
lightweight stream cipher known for its efficiency in constrained environments.
The main goal was to adapt this cipher for quantum analysis, and to that end, we
successfully developed a dedicated quantum circuit capable of simulating its
operations. This foundational work allowed us to model how the cipher behaves
under quantum conditions, providing a basis for deeper cryptographic
exploration. The design focused on maintaining the essential features of Grain
while simplifying its structure enough to make quantum simulation and attack
analysis feasible within current computational limits.

Building upon the cipher's design, we then directed the efforts toward
exploring its susceptibility to quantum attacks, specifically employing Grover's
algorithm - a powerful quantum search method that offers a quadratic speedup for
key-recovery tasks. The investigation covered both the single pair and double
pair methods of Grover's attack, giving a comparative view of how different
plaintext-ciphertext relationships influence the attack's effectiveness. Through
these experiments, we gained critical insight into how varying the number of

known plaintext-ciphertext pairs impacts the complexity and success rate of



quantum attacks, thus enriching the understanding of the cipher's potential
vulnerabilities in a quantum computing era.

Finally, we made significant strides in estimating the quantum resources such
as the number of qubits and quantum gates which are required to both implement
the cipher and execute Grover's attack against it. These estimations are crucial for
evaluating the practical feasibility of quantum attacks on lightweight
cryptographic systems. Looking ahead, this research lays a strong groundwork
for future expansions, such as increasing the cipher's length to enhance its
security or using a larger number of plaintext-ciphertext pairs to better assess its
resilience. By opening these pathways, this work not only addresses current
quantum threats but also provides a flexible framework for continued

cryptographic research in the post-quantum era.
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Section V

Simon’s Algorithm: Collision
Finding



5 Simon's Algorithm: Collision
Finding

DOI: 10.1201/9781003606338-5

“Simon's algorithm revealed the quantum power to solve problems that were thought to be classically

intractable.”

— Daniel Simon

SUMMARY

This chapter explains Simon's algorithm, focusing on how it helps in finding collisions. It
starts with an overview of how the algorithm works. A literature review is included,
covering both Simon's algorithm and its uses in cryptography. The section then introduces
Simon's problem, comparing how classical and quantum methods solve it, and explains
how to build a quantum circuit for a blackbox function. Different examples of blackbox
functions (oracles) are shown, such as 1-to-1 and 2-to-1 mappings, with detailed
implementations of Simon's algorithm for both 4-bit and 8-bit cases. The section also
looks at a suggested attack method on the Grain-128a cipher, explaining how the key and
initialization vector (IV) are set up, how the keystream is generated, and how the
authenticated tag is created. It provides a quantum circuit design for the Simon attack on
Grain-4a, along with steps for carrying out the attack. The section also presents
experimental results from several test cases and quantum resource estimates. It wraps up
with a discussion of the results and thoughts on future improvements and developments in

using Simon's algorithm for cryptographic attacks.

5.1 OVERVIEW OF SIMON'S ALGORITHM


https://doi.org/10.1201/9781003606338-5

Simon's algorithm is a pioneering quantum algorithm that marked a significant milestone
in the evolution of quantum computing. Proposed by Daniel Simon in 1994, it was one of
the first algorithms to demonstrate the superiority of quantum computers over classical
counterparts for certain computational problems. The core problem addressed by Simon's
algorithm is the “collision finding” problem for a specific type of function. Given a black
box function f: {0,1}™ — {0,1}" that satisfies the promise f(z) = f(y) if and only if
x @y = s, where s is an unknown binary string, the goal is to determine s. Here, @
denotes the bitwise XOR operation. Classically, solving this problem requires an
exponential number of queries to the function, making it computationally infeasible for
large n.

Simon's algorithm influences the principles of quantum mechanics—specifically,
superposition, interference, and measurement—to solve the problem exponentially faster.
Using a quantum circuit model, it determines s with high probability in O(n) queries to
the black box function, demonstrating an exponential speedup over the classical O(2™/2)
approach.

The significance of Simon's algorithm lies not only in its efficiency but also in its
theoretical implications. It provided the first formal evidence that quantum computing
could solve certain problems exponentially faster than classical computing, thus
influencing the field's development. Simon's Algorithm has applications in cryptography,
particularly in analyzing symmetric-key encryption schemes. It highlights the potential
vulnerabilities of classical cryptographic systems in a quantum computing era,
emphasizing the need for quantum-resistant cryptographic techniques.

In this section, Simon's algorithm is explored in detail, including its problem
formulation, quantum circuit implementation, and the mathematical principles underlying

its operation.

5.2 LITERATURE SURVEY
5.2.1 SIMON ALGORITHM

The quantum model of computation presented by D. R. Simon. [1] represents a departure
from classical Probabilistic Turing Machines (PTMs), as it incorporates principles
observed at the quantum mechanical scale to replace conventional laws of chance. In this
literature survey, the author explores the efficient differentiation between two distinct

classes of functions within the quantum computational framework, emphasizing a notable



contrast in efficiency compared to classical probabilistic methods. By analyzing oracles
drawn uniformly from the respective classes, the author presents compelling evidence
supporting the assertion that quantum computation exhibits greater complexity theoretic
power than PTMs. The survey underscores the transformative potential of quantum
computation, exemplified by Shor's groundbreaking work on quantum polynomial-time
algorithms for discrete logarithm and integer factoring problems. This research
collectively contributes to a comprehensive narrative showcasing the capability of

quantum computation to revolutionize complexity theory and algorithmic efficiency.

5.2.2 SIMON'S ALGORITHM APPLICATION TO CRYPTOGRAPHY

Shor's algorithm has prompted concerns regarding the susceptibility of public key
cryptography to quantum computers presented by B.M. Zhou et al. [2], leading the
cryptographic community to seek quantum-safe alternatives. The author explores the less
understood impact of quantum computing on secret key cryptography, specifically
examining attacks where an adversary queries a quantum superposition oracle
implementing a cryptographic primitive. Despite the adversary's enhanced power, recent
results demonstrate the feasibility of constructing secure cryptosystems within this
quantum model. By focusing on Simon's algorithm, a basic quantum period finding
algorithm, author reveal that it dramatically accelerates classical attacks on symmetric
cryptosystems based on collision finding, enabling the identification of collisions with
just O(n) queries in the quantum model. These findings result in substantial attacks,
exposing the complete vulnerability of widely used authentication and authenticated
encryption modes, including Cipher Block Chaining Message Authentication Code
(CBC-MAC), Parallelizable Message Authentication Code (PMAC), Galois Message
Authentication Code (GMAC), Galois/Counter Mode (GCM), Offset Codebook Mode
(OCB), and several Competition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR) candidates. Additionally, the author highlighted the
applicability of Simon's algorithm to slide attacks, exponentially speeding up classical
symmetric cryptanalysis techniques within the quantum model.

Simon's algorithm and Symmetric key Crypto Generalizations and Automatized
Applications presented by F. Canale et al. [3]. The author presented the application of
Simon's algorithm to compromise symmetric key cryptographic primitives. The author

employs an automated approach to systematically discover novel attacks, leading to the



identification of the first efficient key-recovery vulnerabilities in constructions such as the
5-round MISTY L-FK or 5-round Feistel-FK (with internal permutation) using Simon's
algorithm. Simultaneously, the author explores the generalizations of Simon's algorithm,
incorporating non-standard Hadamard matrices, with the objective of broadening the
quantum symmetric cryptanalysis toolkit beyond periodicity. The key finding suggests
that none of these generalizations can achieve this goal. Consequently, the author infers
that exploiting non-standard Hadamard matrices with quantum computers for breaking
symmetric primitives will necessitate the development of fundamentally new attack
strategies.

Using Simon's algorithm to attack symmetric-key cryptographic primitives presented
by T. Santoli et al. [4]. The author establishes novel connections between quantum
information and classical cryptography, explores instances where Simon's algorithm
exposes the insecurity of widely employed cryptographic symmetric-key primitives. The
author contributions include a quantum distinguisher for the 3-round Feistel network and
a forgery attack on CBC-MAC capable of creating a tag for a chosen-prefix message by
querying only other messages of the same length. These findings assume an adversary
with quantum-oracle access to the respective classical primitives. The author discoveries
cast a fresh perspective on the post-quantum security of cryptographic schemes,
emphasizing the imperative need to reevaluate classical security proofs in the face of
quantum adversaries.

Quantum Related-Key Attack Based on Simon's algorithm and its applications
presented by P. Zhang. [3]. In the backdrop of advancing quantum technology, quantum
computing is applying a growing influence on cryptanalysis with notable algorithms like
Simon's algorithm, Grover's algorithm, the Bernstein—Vazirani algorithm, Shor's
algorithm, and the Grover-meets-Simon algorithm being successively proposed.
However, the majority of cryptanalysis focuses on the quantum Chosen-Plaintext Attack
(qCPA) model. This paper shifts its focus to the potent cryptanalytic model of quantum
Related-Key Attack (QRKA), introducing a strategy for qRKAs against symmetric key
ciphers employing Simon's algorithm. The author constructs a periodic function designed
to efficiently recover the secret key of symmetric key ciphers when the targeted ciphers
adhere to Simon's promise, providing a detailed complexity analysis for specific
symmetric ciphers. Applying qRKA to the Even—Mansour cipher and Sum of Even

Monsour (SoOEM), construction, author successfully recover their secret keys and present



a comparative complexity analysis in distinct attack models. This work holds significance
for advancing the qRKA cryptanalysis of existing provably secure cryptographic schemes
and informs the design of future quantum-secure cryptographic schemes.

No polynomial classical algorithms can effectively distinguish between the 3-round
Feistel cipher with internal permutations and a random permutation, indicating security
against classical chosen-plaintext attacks presented by H. Kuwakado et al. [6], the author
introduces a polynomial quantum algorithm that achieves this distinction. Consequently,
the 3-round Feistel cipher with internal permutations may exhibit vulnerabilities against
chosen-plaintext attacks on a quantum computer. This distinguishing problem stands as
an instance efficiently solved through quantum parallelism. Notably, the algorithm
proposed in this paper represents the inaugural application of Simon's algorithm to
cryptographic analysis, marking a pioneering progress in leveraging quantum computing
for cryptanalysis purposes.

Security on the quantum-type Even-Mansour cipher presented by H. Kuwakado et al.
[Z], The author explores the security implications of applying quantum cryptography to
the Even-Mansour cipher which is traditionally resistant to classical attacks,
demonstrating a notable upgradation from classical security guarantees. While quantum
cryptography, exemplified by protocols like BB84, is primarily designed for sharing
classical information, this study considers the encryption of quantum information using
the quantum circuit of the Even-Mansour cipher. In contrast to the proven exponential
time complexity for breaking the classical Even-Mansour cipher using classical
algorithms, the paper reveals a vulnerability in the quantum version. Specifically, it
demonstrates that the quantum instantiation of the Even-Mansour cipher is insecure,
permitting the discovery of a key in polynomial time relative to the key length. This
example serves as a cautionary illustration that the quantum version of a classically
secure cipher may not necessarily ensure quantum security, emphasizing the need for
thorough scrutiny when adapting classical cryptographic techniques to the quantum field.

It has been commonly believed that the security of symmetric key schemes is less
vulnerable to quantum computers compared to public key schemes presented by A.
Hosoyamada et al. [8]. However, research has exposed specific scenarios in which
symmetric key schemes can be broken in polynomial time by adversaries employ
quantum computers. Notably, these works include a quantum distinguishing attack on 3-

round Feistel ciphers and a quantum key recovery attack on the Even-Mansour cipher by



Kuwakado and Morii, along with an independent proposal of a quantum forgery attack on
CBC-MAC by Kaplan et al. and by Santoli and Schaffner. The Iterated Even-Mansour
cipher, viewed as an idealization of AES, is a critical yet straightforward block cipher.
Investigating the existence of an efficient quantum algorithm capable of breaking the
Iterated Even-Mansour cipher with independent subkeys is pivotal for analyzing the post-
quantum security of block ciphers. While a prior efficient quantum attack on Iterated
Even-Mansour cipher by Kaplan et al. applies only when all subkeys are the same, this
paper introduces a polynomial time quantum algorithm capable of recovering partial keys
in a related-key setting, offering insights into post-quantum security analysis for block
ciphers. Despite the somewhat strong related-key condition, their algorithm demonstrates
the capability to recover subkeys with two related oracles. Additionally, Author show that

[13%3)
1

their algorithm can recover all keys of the “i”’-round iterated Even-Mansour cipher given

access to “1” related quantum oracles. To enable quantum related-key attacks, Author
extend Simon's quantum algorithm to recover the hidden period of a function that is
periodic only up to a constant, employing a technique involving the differential of the
target function to create a double periodic function before applying Simon's algorithm.
Tweakable Even—Mansour ciphers, derived from public permutations presented by P.
Zhang et al. [9]. The author finds widespread usage in disk sector encryption and data
storage encryption. With the rapid advancement of computing power, particularly in
quantum computing technology, there arises a need to assess and study the quantum
security of tweakable Even—Mansour ciphers. This paper explores into the quantum
security analysis of tweakable Even—Mansour ciphers, with a focus on one-round, two-
round, and generalized r-round scenarios. For the one-round case, Author provide the
quantum circuit, present a polynomial-time quantum key recovery attack utilizing
Simon's algorithm, and detail the associated resource estimation. In the case of a two-
round tweakable Even—Mansour cipher, author introduce a superior quantum key
recovery attack employing the Brassard-Hoyer-Tapp (BHT)-meets-Simon algorithm
compared to the Grover-meets-Simon algorithm, offering a new perspective on variable
tweaks and providing concrete resource estimates. Extending their analysis to r-round
tweakable Even—Mansour ciphers, author propose a quantum key recovery attack by
combining Grover's algorithm and Simon's algorithm. This work is highly significant,
introducing the BHT-meets-Simon algorithm for achieving more efficient quantum key

recovery attacks than the Grover-meets-Simon algorithm for the first time.



Beyond Quadratic Speedups in Quantum Attacks on Symmetric key schemes,
presented by Bonnetain et al. in ASTACRYPT [10]. The author introduced the offline-
Simon algorithm which demonstrates its efficacy in attacking the 2XOR-Cascade
construction within a quantum time complexity of O(2"), resulting in a notable 2.5
quantum speedup over the best classical attack. Additionally, the paper challenges the
conventional assumption in post-quantum security that doubling the key size for
protection, highlighting how certain symmetric key constructions, such as the 2XOR-
Cascade, can go beyond the quadratic speedup limit imposed by Grover's quantum search
algorithm. The authors provide a groundbreaking example of a more than quadratic
speedup in a symmetric cryptanalytic attack within the classical query model, refuting the
widely held belief that doubling key sizes guarantees safety against quantum threats.
Notably, they emphasize the necessity for meticulous scrutiny of generic key-length
extension techniques, exemplified by the ineffectiveness of the 2XOR Cascade in
sustaining security against quantum adversaries. Finally, the paper acknowledges
remaining questions regarding the potential expansion of this gap, hinting at the
limitations of the offline-Simon algorithm and the uncertainty surrounding the existence
of polynomial relations in the general context of the problems at hand.

Breaking Symmetric Cryptosystems Using Quantum Period Finding presented by M.
Kaplan et al. [11]. The author explores the profound impact of quantum computing on
both public key and secret key cryptography. It highlights the well-known threat posed by
Shor's algorithm to public key cryptography, which has induced the cryptographic
community to seek quantum-safe solutions. In contrast, the implications of quantum
computing on secret key cryptography remain less understood. The authors focus on
attacks where adversaries can query an oracle implementing a cryptographic primitive in
a quantum superposition of different states, granting significant power to the adversary.
Despite this forbidding challenge, some findings indicate the feasibility of constructing
secure cryptosystems within this model. Specifically, the paper investigates the
application of Simon's algorithm, the simplest quantum period-finding algorithm, to
attack symmetric cryptosystems in this context. By leveraging Simon's algorithm,
classical attacks based on collision finding can be dramatically accelerated, enabling the
identification of collisions with hidden periodicity using significantly fewer queries in the

quantum model compared to the classical setting.



Anand et al. [12] analyze the IND-qCPA (Indistinguishability under quantum Chosen-
Plaintext Attack) security of several widely used block cipher modes of operation—
namely CBC, CFB, OFB, CTR, and XTS—in the presence of quantum adversaries
capable of making queries in superposition. The study reveals that the OFB and CTR
modes retain security assuming the underlying block cipher behaves as a standard secure
pseudorandom function (PRF) secure against classical queries. However, the authors
present counterexamples showing that CBC, CFB, and XTS modes do not preserve
security under the same assumption. Notably, the paper provides formal security proofs
for the CBC and CFB modes when the block cipher is a quantum-secure PRF, indicating
that these constructions can remain secure even against quantum superposition queries.
This work highlights the differential impact of quantum capabilities on symmetric
cryptographic modes and emphasizes the need to adopt quantum-secure primitives to
ensure robust post-quantum cryptographic protection.

G. Brassard et al. (2016) [13] introduced a groundbreaking quantum algorithm for
solving the collision problem, significantly outperforming classical counterparts. The
algorithm achieves collision detection with an expected evaluation complexity of
O(</N/r), even when probabilistic approaches are considered. Furthermore, the authors
extended this algorithm to efficiently identify collisions in pairs of functions,
demonstrating its versatility and broad applicability. Notably, the paper emphasizes the
space-time trade-off inherent in the proposed technique and highlights the innovative use
of Grover's quantum search algorithm to address fundamental challenges in cryptography.
This development underscores the algorithm's potential impact on both theoretical and
practical aspects of quantum computing.

W. Liu et al. (2023) [14] proposed quantum forgery attacks against OTR (One-Time-
Randomized) structures by leveraging Simon's algorithm to overcome the inherent
limitations of classical forgery methods, which typically rely on restrictive conditions and
yield low success rates. Their quantum attack targets intercepted ciphertext-tag pairs
(C,T) transmitted between sender and receiver in OTR communications. By exploiting
Simon's algorithm to identify the period of the tag generation function, the attacker can
forge a distinct ciphertext C' # C' that still maps to the same tag 7. Additionally, the
paper presents a universal forgery attack on a variant of OTR, namely the Prost-OTR-
Even-Mansour structure. This attack allows the generation of valid tags for arbitrary

messages by altering a single block. The attacker first recovers the secret parameter L



using Simon's algorithm, and subsequently derives the keys K; and K,, which enable
forging of modified ciphertexts. Remarkably, the attack requires only a few plaintext
blocks to obtain these keys, significantly enhancing efficiency. The authors report a query
complexity of O(n) and a success probability approaching 1, demonstrating the high
effectiveness of their attack strategy on OTR-based cryptographic constructions.

Even and Mansour [15] proposed a novel block cipher construction based on a single
pseudorandom permutation, offering a streamlined alternative to traditional cipher
designs that rely on multiple permutations or complex key schedules. In this scheme, a
randomly chosen permutation F is used along with a key composed of two blocks, K; and
K,. The encryption process involves first XORing the plaintext block with K, applying
the permutation F, and then XORing the output with K, to produce the ciphertext. This
minimalist design is shown to provide provable security guarantees when F behaves as a
random or pseudorandom permutation. The construction significantly simplifies
implementation by eliminating the need for storing or generating multiple permutations,
thereby enhancing both efficiency and practicality in cryptographic applications.

A flexible authenticated lightweight cipher using Even-Mansour construction presented
by E. Marsola do Nascimento et al. [16]. The author introduces a novel approach to
address the challenge of integrating authentication directly into lightweight ciphers for
IoT environments. The proposed Flexible Authenticated Encryption (AE) cipher, based
on the Even-Mansour construction and the Integrity Aware Parallelizable Mode (IAPM),
offers authentication as an integral part of its operation, eliminating the need for external
authentication mechanisms and simplifying implementation while ensuring security. By
supporting variable block sizes and utilizing an initialization vector (IV) to generate
different ciphertexts for the same plaintext and key pair, the cipher provides flexibility
and resistance against plaintext correlation and replay attacks. Extensive statistical tests
using the NIST Statistical Test Suite tool validate the cipher's randomness, while
differential cryptanalysis demonstrates its resilience against such attacks. While further
research is needed to explore other cryptanalytic techniques, the Flexible AE cipher
represents a promising advancement in the development of secure and efficient
cryptographic solutions tailored for IoT applications.

Zhang and Yuan [17] address the challenge of minimizing key material in the Even—
Mansour cipher while preserving its strong security guarantees an essential requirement

for resource-constrained environments such as smart homes, smart transportation



systems, and the IoT. The authors propose four novel short-key variants of the Even—
Mansour cipher and employ Patarin's H-coefficients technique to formally establish their
security against up to O (%) adversarial queries, where k denotes the key bit length and
1 the maximal multiplicity. These variants are applied to lightweight authenticated
encryption modes, demonstrating resistance to adversaries making up to approximately
min (%, ¢,k —log u) -bit queries, where b is the permutation size and c is its capacity.
The paper also outlines an open problem concerning the security of the #round iterated
Even—Mansour cipher when short keys are used, inviting further research in this domain.
These short-key constructions offer key benefits such as on-the-fly computation,
elimination of key schedule overhead, and minimized hardware footprint, making them

particularly well-suited for lightweight and embedded cryptographic applications.

5.3 SIMON'S PROBLEM

We are handed a black box function, labeled as f, and we know for certain that it falls into

one of two categories:

1. It's a one-to-one (1:1) function, meaning each input corresponds to a unique output,

(or)
2.It's a two-to-one (2:1) function, where every output has exactly two corresponding

inputs.
In the one-to-one scenario, a function with 4 inputs might look like this:
f(z1) = A, f(z2) > B, f(z3) > C, f(xz4)— D
On the other hand, a two-to-one function with the same set of inputs could be:
fl@1) = A, f(z2) » B, f(z3) > A, f(zs) > B

where (z1, 2, 3, x4) are 2-bit inputs and 4,B,C,D are the 2-bit outputs.
The two-to-one mapping is influenced by a hidden 2-bit string b, and it follows the

rule:

f(z1) = f(z3), f(z2) = f(z4)

Then, the following equations hold:
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The challenge is to determine how quickly we can figure out whether f'is one-to-one or
two-to-one. If it turns out to be two-to-one, how fast can we uncover the bit string b.
Surprisingly, both situations come down to the same challenge of identifying b, where a

bit string b = 00 signals that f'is one-to-one.

5.3.1 CLASSICAL SOLUTION

In the classical context, if we aim to definitively discern the bit string b for a given
function f, we are confronted with the challenge of examining up to 2(*~1) + 1 inputs,
where n represents the number of bits in the input. This means that we must investigate
just beyond half of all possible inputs until we encounter two instances yielding the same
output. This scenario is similar to the Deutsch-Jozsa problem, where a stroke of luck
might lead to solving the problem in the initial attempts. However, if we encounter a one-
to-one function or, less favorably, a two-to-one function, we find ourselves obligated to

evaluate the complete 2(*~Y) + 1 input range.

5.3.2 QUANTUM SOLUTION

The quantum circuit that implements Simon's algorithm is shown in Figure 5.1. In the

quantum context, the query function Q,acts on two quantum registers as:
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Figure 5.1 Quantum circuit of Simon's algorithm <1

z)]a) 2> [2)]a & f(x))

In the specific case where the second register is initially in the state |0) = |00...0),

the transformation looks like:

Qy
|2)[0) — |2)|f())
The algorithm involves the following steps:

Step 1: Initialize the two n qubit input registers to the zero state:
[41) = 10)®" [0)"
Step 2: Apply a Hadamard transform to the first register:

1
- 0)®"
) = —= x;{o,;}n 2)[0)

Step 3: Apply the query function Qy

1
[93) = T we%;l}n |z)| ()

Step 4: Measure the second register. A certain value of f(z) will be observed.
If the function is One-to-One: The observed value f(z) could correspond to a unique

input x, therefore, the first register becomes:
%ha) = |z)

If the function is Two-to-One: The observed value f(x) could correspond to two

possible inputs x and y = x @ b. Therefore, the first register becomes:

) = %uw 1)

where we omit the second register, as it has been measured.

Step 5: Apply a Hadamard transform to the first register:



If the function is One-to-One:

) = —— 3 (=1)™7]2)

If the function is Two-to-One:

Wi = e Y ()7 (-
2 z€{0,1}»
) = 1 Z [(_1)w.z+(_1)(x®b).z 12)

V2rtl Gy

Step 6: Measure the first register.
If the function is One-to-One: The measurement will return a random bit string z,

uniformly chosen from {0, 1}".

If the function is Two-to-One: The measurement will return a random bit string z such
that:

(-1 = (-1

This implies:
x-z2=yY- 2
z-z=(x®b) -2
x-z=x-20b-2

b-2=0

Thus, after repeating the algorithm approximately » times, we will obtain » different

values of z, from which we can write the following system of equations:

b-zl =0
b'Zg =0
b-z, =0

From this, b can be determined by Gaussian elimination.



5.3.3 CONSTRUCTING A CIRCUIT FOR THE BLACK BOX FUNCTION

We now detail the construction of the 1-to-1 and 2-to-1 permutation circuit of the Black
box function. Let us assume the Black box function receives the input |z)|0). With
respect to a predetermined b, the Black box function writes its output to the second
register, so that it transforms the input to |z)|fp(x)) such that f(z) = f(x @ b) for all
z € {0,1}"

Such a Black box function can be realized by the following procedures:

STEPS TO CONSTRUCT THE BLACK BOX FUNCTION:

The following are the steps involved in the construction of a black box.
Step 1: Copy the content of the first register to the second register: |z)|0) — |z)|z)

Step 2: Creating 1-to-1 or 2-to-1 mapping based on b: If b is not all-zero, then there is
the least index j such that b; = 1. z; = 0, then XOR the second register with b.

Otherwise, leave the second register unchanged.
|z)|z) = |z)|z © b)

Step 3: Creating a random permutation (Optional): Randomly permute and flip the
qubits of the second register (this is not strictly necessary for the function's operation

but could be added if needed for randomness).

z)ly) = [2)]f5(y))

5.4 EXAMPLE BLACK BOX(ORACLE) FOR 1-TO-1 FUNCTION

A 1-to-1 function is one where each input maps uniquely to a single output. Here's how

the given quantum circuit operates as an oracle for such a function shown in Figure 5.2.
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Figure 5.2 Quantum Black box(oracle) of 1-to-1 function <

Components of the Circuit

Registers:
First register (Input): Consists of qubits labeled first register<sub>0</sub> to
first register<sub>3</sub>. These qubits store the input values for the function
f
Second register (Ancillary/Output): Consists of qubits labeled second
register<sub>0</sub> t0 second register<sub>3</sub>. These qubits are used
to store the output of the function or intermediate computational results.

Quantum gates:
Controlled-NOT (CNOT) Gates: These gates are crucial for creating entanglement
between qubits. In the circuit, CNOT gates are applied between qubits from the



first and second registers. They are typically depicted as lines connecting a dot

(control qubit) to a plus sign (target qubit).

Pauli-X gates: These gates flip the state of a qubit from |0) to |1) or vice versa and

are represented in the diagram by green squares with an “X”. Pauli-X gates are

applied to second register<sub>2</sub> and second register<sub>3</sub>.
Measurements: The classical bits shown at the bottom of the circuit indicate that the
quantum states are measured at the end of computation, and the outcomes are stored as

classical bits.

Quantum registers:
First register (Input register): This register consists of qubits labeled first
register<sub>0</sub> through first register<sub>3</sub>. These qubits
represent the input x to the function f(z) and are involved in generating the
superposition over all possible inputs.
Second register (Output/Ancillary Register): This register includes qubits labeled
second register<sub>0</sub> t0 second register<sub>3</sub>. These qubits
hold the output f(z) and facilitate the evaluation of the function within the oracle.
Quantum gates:
Controlled-NOT (CNOT) Gates: These gates are used to encode the function f(z)
by creating entanglement between the input and output qubits. In the diagram, the
qubits from the first register (control qubits) to the second register (target qubits)
are connected, enabling function evaluation in superposition.
Pauli-X gates: These gates flip the state of the qubit (i.e., |0) <> |1)) and are
typically used to set specific output values for the function. In the circuit, Pauli-X
gates are applied to second register<sub>2</sub> and second
register<sub>3</sub> to prepare or modify their state before or after function
evaluation.
Measurement: At the end of the circuit, measurement operations are applied to the
first register (and sometimes the second, depending on implementation). The classical
bits shown at the bottom represent the measurement outcomes, which are then used to

extract information about the hidden string s in Simon's problem.

How the circuit works:



Initialization: The first register is initialized to the state |0)®", and Hadamard gates are
applied to place it into an equal superposition over all possible n-bit strings. The

second register is initialized to |0) ®™, the all-zero state.

Oracle application: A quantum oracle (black-box function) implements the
transformation |z)|0) — |z)|f(x)), where f hides a secret string s such that
f(z) = f(x @ s). This step entangles the input and output registers based on the

function f.

Interference and measurement Preparation: After the oracle, Hadamard gates are
applied again to the first register. This step exploits quantum interference to extract
information about the hidden string s, encoding it in the amplitudes of the quantum

state.

Measurement: The first register is measured, collapsing it to a classical bitstring y such
that y-s =0 mod 2. Repeating the process multiple times yields enough linear

equations to solve for the secret string s.

5.5 EXAMPLE BLACK BOX(ORACLE) FOR 2-TO-1 (HIDDEN BIT
STRING 1001)

A black box (oracle) implementation for a 2-to-1 oracle with the hidden bit string 1001 is

shown in Figure 5.3.
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Figure 5.3 Quantum Black box(oracle) of 2-to-1 function <!

Components of the Circuit

Registers:
first register (Input): Consists of qubits labeled first register<sub>0</sub> to
first register<sub>3</sub>. These qubits store input values x to the function f
and are later measured to reveal information about the hidden string.
second  register  (Output):  Consists of qubits labeled  second
register<sub>0</sub> t0 second register<sub>3</sub>. These qubits are
initialized to the |0) state and are used to hold the output f(x) after the oracle
transformation.

Quantum gates:
Controlled-NOT (CNOT) gates: These gates entangle qubits from the first and

second registers. Each line with a dot (control) and a plus sign (target) represents a



CNOT operation, mapping part of the function f(x) based on Simon's oracle.
Pauli-X gates: Represented by green squares with “X”, these gates flip the state of
the target qubit. In the diagram, they are applied to second register<sub>2</sub>
and second register<sub>3</sub>, encoding a constant offset in the oracle's
output.
Measurements: After applying the quantum operations, the qubits in the first register
are measured. The outcomes are stored as classical bits and used to extract equations

that are linearly orthogonal to the hidden string s.

How the circuit works:
Initialization: The first register and second register are initialized to |0)®4.

Oracle application: The circuit implements the oracle Uy for Simon's problem. The
configuration of CNOT and Pauli-X gates represents a specific function f that satisfies
Simon's promise (i.e., f(z) = f(x @ s) for a hidden s). The exact structure of the

hidden string s depends on which input qubits control which output qubits.

Pauli-X gates: The Pauli-X gates introduce fixed output bits in certain positions (in this
case, on the third and fourth qubits of the second register), effectively modifying the
function output f(z). They simulate parts of the oracle's internal logic.

Measurement: After applying Hadamard gates again (on the first register, not shown
here), the qubits are measured. Each measurement provides a bitstring orthogonal to
the hidden string s. Repeating the process multiple times allows recovery of s via

solving a system of linear equations.

5.6 SIMON ALGORITHM IMPLEMENTATION FOR 4 BIT (TWO TO
ONE)

Let's now see an example of Simon's algorithm for 4 qubits. Our secret bit string b in this
case is 1001. The circuit shown in Figure 5.4 represents a complete implementation of
Simon's algorithm for a 4-bit input. The algorithm is designed to determine a hidden bit
string s such that for a given black-box function f:{0,1}" — {0,1}", the promise



f(z) = f(z @ s) holds. The circuit consists of the following six stages, labeled as
through y:

Stage 1)1 : Initialization
All qubits in the first and second registers are initialized to the state |0). The state of

the system is:
|0> N ® |0> N

Stage 15: Hadamard Gates on the first register
Hadamard gates (H) are applied to each qubit in the first register, creating a uniform

superposition over all possible input states:

1
ﬁ Z |)|0)

ze{0,1}»

Stage 1)3: Oracle Query Uy
The oracle Uy maps |z)[0) — [z)[f(z)). It is implemented using CNOT gates where
qubits from the first register control corresponding target qubits in the second register.

The result is:

1
oo me%;l}n )| f(2))

Stage 1/4: Measurement of the Second Register

The second register is measured, collapsing it to a specific value f(z). This projects the
first register into a superposition of all x such that f(z) = f(x @ s), creating a
correlated quantum state between such inputs.

Stage 105: Hadamard Gates on the First Register (again)

Another round of Hadamard gates is applied to the first register. This transforms the
state into a superposition that encodes information orthogonal to the hidden string s.

The measurement outcomes will satisfy:
y-s=0 (mod 2)

where y is the output from measuring the first register.



Stage 1/5: Measurement of the First Register Measuring the first register gives a bit
string y. Repeating the entire circuit multiple times produces several linearly
independent equations of the form y - s = 0, from which the hidden bit string s can be

solved using classical post-processing via Gaussian elimination.
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Figure 5.4 Quantum circuit of Simon's algorithm for hidden bit string “1001” <&

In Table 5.1, the all-possible inputs and the corresponding outputs are summarized.

Table 5.1

Table of inputs and
corresponding outputs for

f(z) and f(y) &

Inputs Outputs f(z)=

x |y f)
0000 | 1001 0000
0001 | 1000 0001
0010 | 1011 0010
0011 | 1010 0011
0100 | 1101 0100
0101 | 1100 0101
0110 | 1111 0110
0111 | 1110 0111




Step-by-Step procedure for determining the hidden bit string b = 1001
Step 1: Initialization
We begin with two 4-qubit registers initialized in the state:

l31) = |0000) ® |0000)

Step 2: Applying Hadamard Gates to the first register

Hadamard gates are applied to each qubit in the first register to create a uniform

superposition:

1
P2) = —= ) |x) ®[0000)
V24 ze{0,1}4

Expanded, the state becomes:
1
[e) = Z(|OOOO> +|0001) + - - - + |1111)) ® |0000)

Step 3: Oracle Application
The oracle maps |x)|0) — |z)|f(z)). After applying the oracle:

W=7 3 | ®lf@)

z€{0,1}4

Using a pre-defined mapping (see Table 5.1), we get:
1
[3) = ZHOOOO)]OOOO) +(0001)|0001) + - - - +(1111)|0110)]

Step 4: Measurement of the second register

Measuring the second register collapses it to a value | f(x)). The first register is projected

into an equal superposition of the two inputs x and = & b that map to the same output:

1
|tha) = E(l@ + [z b))

For example, if the outcome of the measurement is |0110), then:



1 1
lhy) = E(|0110> + 10110 @ 1001)) = E(|0110> +[1111))

Step 5: Applying Hadamard gates to the first register

We now apply Hadamard gates to each qubit of the first register:

5) = H® (%um +leon))

Using the identity for the Hadamard transform on n-qubits:

1
H®|g) = — —1)*%|z
o) =5 > (D7

We get:

:ii _1)% % _ 1)\ (z®b)-z p
vs) = \/ﬁze%;}n [(—1)7 o+ (— 1)) 2)

Using the identity:
(x®b)-z=z-2+b-z mod 2

we can write:

1 -z _1\bz Py
W)= e 3 U Dl

Now analyze the amplitude:

2 ifb-2=0
1+ (-1)"* =
(=) {O ifb-z2=1

So the resulting state is:

2
[s5) = (—1)*7|2)
\/2n+1 ZG%}"
b-z=0

This means:



- Only those z € {0,1}" for whichb- z=0 mod 2 will have non-zero amplitudes.

- Therefore, each measurement outcome z satisfies a linear equation of the form b -z =0

For the specific case z = 0110, b = 1001, the output state is:
1
/95

Each of the output basis states (such as |0010), |0100), |1001), .. .) satisfies:

lps) = (10000) — [0010) — |0100) + [0110) + |1001) — [1011) — [1101) + |1111))

b-2z=0 mod 2

Thus, after measuring the first register, we obtain a string z orthogonal to the hidden

string b. Repeating this process yields enough linearly independent equations to recover
b.

Step 6: Determining the Hidden Bit String

We collect the measured values of z for which b- z = 0. Let's assume we obtain three

linearly independent bit strings:
z1 = 0010, 23 =0100, =z3= 1001

For each z;, we write the equation:

Writing the system as a matrix:

|0010||Z1| | o]
0100 10
l1 0 0 1”63‘ lOJ

We augment with a zero row (optional, for 4x4 form), and perform row operations:

|1 0 0 1||®&] O]
:>{0 10 O‘{bz‘_\OJ
0 0 1 0f]bds 0
0 0 0 O0'"dy 0



From this system:

by =0
bs =0
bi+by =0=10b; =0by

Let by = 1 = b; = 1. Thus, the hidden string is:
b = 1001

5.7 SIMON ALGORITHM IMPLEMENTATION FOR 4 BIT (ONE TO
ONE)

Let's now see an example of Simon's algorithm for 4 qubits. Our secret bit string b in this

case is 0000. The quantum circuit for this example is shown in Figure 5.5.
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Figure 5.5 Quantum circuit of Simon's algorithm for hidden bit string “0000” <1

In Table 5.2, we have summarized the all-possible inputs and the corresponding

outputs.

Table 5.2

Corresponding outputs for all
possible inputs of hidden bit string
“0000”£

S.No | Inputs (z) Outputs f(z)




S.No | Inputs (x) Outputs f(x)
1 0000 0000
2 0001 0001
3 0010 0010
4 0011 0011
5 0100 0100
6 0101 0101
7 0110 0110
8 0111 0111
9 1000 1000
10 1001 1001
11 1010 1010
12 1011 1011
13 1100 1100
14 1101 1101
15 1110 1110
16 1111 1111

Step-by-Step procedure for determining the hidden bit string b = 0000
Step 1: Initialization

Two 4-qubit registers are initialized to the input state |t)1) = |0000)|0000).

|41) = |0000)|0000)

Step 2: Applying Hadamard gates to the first register
Hadamard gates are applied to the first register only. The resulting state is:

1
S 0000
|%h2) Nt me%}4 |)|0000)

Which expands as:



1
[e) = Z(|OOOO> +/0001) + |0010) + [0100) + - - - + |1111)) ® |0000)

Step 3: Oracle application
Now this state |15) passes through the oracle and the resulting state is:
1
W=7 > [#)lf@)

ze{0,1}4

Here the oracle outputs for all possible inputs are shown in Table 5.2. The

corresponding output for all possible inputs is:
1
[Y3) = Z[|OOOO>|OOOO> +|0001)|0001) + |0010)|0010) + --- + |1111)|1111)]

Step 4: Measurement of the second register

Now we measure our second register. For each measured state on the second register,
there will be only one corresponding state on the first register. For example, if the second

register is measured to be 0010, then:
l4) = ]0010) ® |0010)
After measurement, the second register is ignored, and we are left with the state:
[%4) = |0010)
Step 5: Applying Hadamard gates to the first register

A Hadamard gate is applied to the first register and the resulting state is given by:

1
= — —]_ z-z z
o) = 7 > (07

which can also be written as:
lvs) = H®*0010)

Step 6: Determining the hidden bit string

After applying the Hadamard gate and doing further simplifications, we get:



1
[%5) = - (0000) — 0001) — |0010) + |0011) + |0100) — 0101) — |0110) + [0111)
+]1000) — [1001) — [1010) + |1011) + |1100) — [1101) — [1110) + |1111))

If the function is two-to-one, we won't obtain all possible states. Therefore, since the

function is one-to-one, we can conclude that the secret bit-string b is:

0000

5.8 PROPOSED ATTACK METHOD
5.8.1 GRAIN 128A CIPHER

In terms of cryptographic security research, the authentication encryption algorithm can
realize the confidentiality and integrity verification of information at the same time, and it
has been widely used in various network security systems. The authentication encryption
working mode is a cryptographic scheme that encrypts messages to generate ciphertext
and calculates authentication labels to solve practical problems such as privacy and
authenticity of user information.

At present, a large amount of information not only needs to be kept confidential during
the transmission process, but also needs to be authenticated after the receiver receives the
information to ensure the confidentiality, integrity, and authenticity of the information
during the transmission process [18]. Therefore, it is very necessary to design and study
the authentication encryption algorithm.

The Grain 128a stream cipher was first proposed at the Symmetric Key Encryption
Workshop (SKEW) in 2011 as an enhancement of its predecessor Grain-128 by Martin
Agren, Martin Hell, Thomas Johansson, and Willi Meier [19]. This improved version
introduced security enhancements and an optional message authentication mechanism
using the Encrypt-and-MAC approach. One of the key advantages of the Grain cipher
family is its flexibility, where throughput can be significantly increased at the cost of

additional hardware resources [20].

5.8.2 DESIGN DETAILS OF SIMPLIFIED GRAIN-4A CIPHER

As a simplified version of Grain 128a, we propose a reduced version, known as SGrain

4a. While its parameters are smaller, it has the same structure as Grain 128a. The cipher



consists of three main building blocks, namely a Linear Feedback Shift Register (LFSR),
Nonlinear Feedback Shift Register (NFSR), and an output function [1].

The LFSR bits are denoted by x, x5, x5, and x,. Similarly, NFSR bits are denoted by y;,
Vs, ¥3, and y,. The feedback polynomial of the LFSR, denoted f(z), is a primitive
polynomial of degree 4. It is defined as:

f(z) =14z +z*
The nonlinear feedback polynomial of the NFSR, g(z, y), is defined as:
9(z,y) = 1+ y1y3 + Yoys + Y2 + ya + 24

The 8 memory elements in the two shift registers represent the state of the cipher. From

this state, all 8 variables are taken as input to a Boolean function, h(z,y). It is defined as:

h(a:, y) = Z1Y1 + T2Y2 + T3Y3 + T4Y4

5.8.3 KEY AND IV INITIALIZATION

Before the keystream is generated, the cipher must be initialized with the key and the
Initialization Vector (IV). The NFSR elements are loaded with the key bits. This means
each bit of the key is sequentially placed into each flip-flop or register element of the
NFSR, and the LFSR elements are loaded with the IV bits, filling the corresponding
elements of the LFSR in the same manner. After loading the key and IV bits, the cipher is
clocked 8 times without producing any keystream [1]. The output function is XORed with
the y, input of the NFSR, and it is fed back to both the LFSR and the NFSR as shown in

Figure 5.6.
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Figure 5.6 Key Initialization of SGrain 4a <1

5.8.4 KEYSTREAM GENERATION

Figure 5.7 illustrates the classical keystream generation architecture of the SGrain 4a
stream cipher, which is composed of two main components: a NFSR and a LFSR. After
the key and Initialization Vector (IV) are loaded into the NFSR and LFSR respectively,
the cipher transitions into keystream generation mode. The LFSR updates its state using a
linear feedback function f(x), while the NFSR evolves using a nonlinear feedback
function g(x, y), which introduces nonlinearity by taking inputs from both the LFSR and
NFSR. Furthermore, a Boolean function h(z,y) combines selected bits from both
registers, and the output of this function is XORed with a specific NFSR bit to produce
each keystream bit. This architectural design effectively balances linear and nonlinear

transformations to enhance cryptographic strength by achieving good confusion and



diffusion properties. After the completion of 8 clocks in key initialization process, the 8-
bit keystream bits are generated. Then the keystream is XORed with the plaintext to
produce the ciphertext.
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Figure 5.7 Keystream generation of SGrain 4a <1

5.8.5 AUTHENTICATED TAG GENERATION

After generating the keystream bits, both the ciphertext and authentication tag are derived
in a structured manner. The even-positioned bits of the keystream are XORed with the 4-

bit plaintext to produce the 4-bit ciphertext. Meanwhile, the entire keystream 1is



consecutively loaded into an 8-bit shift register. To generate the tag, the odd-positioned
bits of this shift register are taken and ANDed with the 4-bit plaintext. The resulting 4-bit
output serves as the authentication tag, which is then stored in the accumulator. This
process, illustrated in Figure 5.8, ensures that both the ciphertext and tag are closely tied

to the internal state and plaintext, providing confidentiality and integrity.
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Figure 5.8 Block diagram of SGrain 4a—classical <1

5.8.6 SIMON ATTACK ON SGRAIN 4A

Simon's algorithm provides an efficient quantum approach to identify hidden linear
structures in a function, specifically distinguishing between a one-to-one and a two-to-
one function. In the context of SGrain 4a, this distinction becomes critical in evaluating
its security. If the cipher's internal function behaves as a two-to-one mapping (i.e., two
distinct plaintexts or internal states map to the same output tag), it indicates the presence
of a hidden XOR mask or symmetry. Such behavior can be efficiently exploited by
Simon's algorithm to recover the hidden period (or mask) in polynomial time, something

infeasible with any known classical algorithm.



To apply Simon's algorithm, we model the SGrain 4a keystream generation or
authentication tag function as a black-box oracle [24]. This requires constructing a
quantum circuit representation of SGrain 4a, which takes quantum superposition inputs
and returns outputs based on the cipher's logic. The quantum circuit serves as the Simon
oracle, enabling the quantum algorithm to query the cipher with superpositions of input
states.

By repeatedly running Simon's algorithm and analyzing the output vectors (which form
a basis of the orthogonal complement of the hidden period), we can determine whether a
hidden XOR mask exists implying a two-to-one mapping. If such a mask is found, it
suggests potential vulnerabilities in the cipher's design. Conversely, if no such structure
exists, the function behaves as one-to-one, implying stronger resistance to this type of

quantum attack.

5.8.6.1 Quantum Circuit Development of SGrain 4a

For the quantum circuit development of key initialization, it requires a total of 80 qubits.
Four of these qubits are designated for the LFSR, denoted as “Ifsr iv_x. Another four
qubits are allocated for the NFSR, referred to as “nfsr key y”. The remaining 72 qubits

are assigned as ancilla qubits or work qubits.

Step 1: Executing the Feedback Polynomial f(x)

The first operation is to execute the feedback polynomial f(z) =1+ z + x* for the
LFSR. To achieve this:

1. A Controlled-NOT (CNOT) gate is applied, functioning as a classical XOR gate. This
gate transfers the value of the fourth bit of the LFSR (Ifsr qubit 3) to the ancilla qubit
0.

2. Another CNOT gate performs an XOR operation between the LFSR's first bit (Ifsr
qubit 0) and the ancilla qubit 0.

This process effectively computes the feedback polynomial f(z), and its result is

stored in the ancilla qubit 0, as depicted in Figure 5.9.
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Figure 5.9 Quantum circuit development of key initialization of SGrain 4a—step 1 <&

Step 2: Executing the Feedback Polynomial g(z, y)

The next operation is to execute the feedback  polynomial
9(z,y) =1+ y1ys + y2ysa + y2 + y4 + x4 for the NFSR. To achieve this, we start by
using a Controlled-Controlled-Not (CCNOT) gate, which acts as a classical AND gate

when the target qubit is in the zero state.



The first step of g(z,y) involves performing an AND operation between the fourth bit
of the NFSR (NFSR qubit 3) and the second bit of the NFSR (NFSR qubit 1). This is
achieved using the CCNOT gate, and the output is stored in ancilla qubit 1.

Next, we perform another AND operation, this time between the first bit of the NFSR
(NFSR qubit 0) and the third bit of the NFSR (NFSR qubit 2), using another CCNOT
gate. The result of this operation is stored in ancilla qubit 2. By XORing the values in
ancilla qubits 1 and 2, we obtain y;y3 + y2y4, and this value is retained in ancilla qubit 2.

Continuing, we XOR the third bit of the NFSR (NFSR qubit 2) with ancilla qubit 2.
This step results in y1ys + y2y4 + y2, and the output is saved in ancilla qubit 2. Further,
we XOR the first bit of the NFSR (NFSR qubit 0) with ancilla qubit 2, yielding
Y1Y3 + Y2y4 + Y2 + y4, and ancilla qubit 2 maintains this output.

Finally, we XOR the first bit of the LFSR (LFSR qubit 0) with ancilla qubit 2, resulting
n y1ys + yays4 + Y2 + y4 + x4. At this point, ancilla qubit 2 holds the value of the
feedback polynomial g(z,y) as shown in Figure 5.10.
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Figure 5.10 Quantum circuit development of Key initialization of SGrain 4a—step 2 <1

Step 3: Executing the Boolean Function h(z, y)

In this step, we perform the execution of the Boolean function
h(z,y) = z1y1 + x2y2 + 3ys + T4y4. We initiate the process by utilizing a Controlled-



Controlled-Not gate. This gate operates on the fourth bit of the LFSR, specifically LFSR
qubit 3, and the corresponding fourth bit of the Nonlinear Feedback Shift Register
(NFSR), specifically NFSR qubit 3. The outcome of this operation is then stored in the
ancilla qubit 3.

Subsequently, we replicate this process for the third bit of the LFSR (LFSR qubit 2)
and the third bit of the NFSR (NFSR qubit 2), with the result being stored in ancilla qubit
4. Likewise, we repeat the procedure for the second bit of the LFSR (LFSR qubit 1) and
the second bit of the NFSR (NFSR qubit 1), and the output is stored in ancilla qubit 5.

This process is also applied to the first bit of the LFSR (LFSR qubit 0) and the
corresponding first bit of the NFSR (NFSR qubit 0), with the result being maintained in
ancilla qubit 6.

Moving forward, we perform an XOR operation between ancilla qubits 3 and 4. This
results in the expression xz1y; + x2ys, which is preserved by ancilla qubit 4.
Subsequently, we perform an XOR operation between ancilla qubits 4 and 5. This yields
the expression £1y; + x2y2 + x3ys3, and the result is stored using ancilla qubit 5.

Lastly, we perform an XOR operation between ancilla qubit 5 and ancilla qubit 6. This

culminates in the final form of the Boolean function h(z, y), specifically:
h(z,y) = z1y1 + T2y2 + T3Y3 + Taya

and the output is maintained by ancilla qubit 6 as shown in Figure 5.11.
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Figure 5.11 Quantum circuit development of key initialization of SGrain 4a—step 3 <1




Step 4: XORing the Fourth Bit of NFSR with the Boolean Function h(z, y)

In this step, we perform an XOR operation between the first bit of the NFSR, specifically
NFSR qubit 0, and ancilla qubit 6 that holds the output of the Boolean function h(z,y).
This operation yields the first key bit of our keystream, which is then retained by ancilla

qubit 6 as shown in Figure 5.12.
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Figure 5.12 Quantum circuit development of key initialization of SGrain 4a—step 4 <1

Step 5: XORing the Keystream Bit with f(x) and g(z, y)

In this step, an XOR operation is executed between ancilla qubit 6, which contains the
first bit of the keystream, and ancilla qubit O (i.e., ancilla qubit 0 holds the feedback
polynomial f(x)). As a result, ancilla qubit 0 now holds the conclusive feedback state for
the LFSR.

In a similar manner, we conduct another XOR operation. This time, the operation takes
place between ancilla qubit 6 and ancilla qubit 2 (i.e., ancilla qubit 2 holds the feedback
polynomial g(z,y)). The outcome of this operation is once again saved in ancilla qubit 2,

denoting the ultimate feedback for the NFSR, as shown in Figure 5.13.
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Figure 5.13 Quantum circuit development of key initialization of SGrain 4a—step 5 <

Step 6: Shifting the Bits of LFSR and NFSR and Providing Feedback to
These Shift Registers

In this step, we perform the shift operation on both the LFSR and the NFSR. The shifting
process involves the use of three SWAP gates for each shift register.

However, when using SWAP gates, the last bit ends up in the first bit position. To
ensure the correct feedback mechanism, the first bit needs to be initialized to zero. This is
achieved using two additional ancilla qubits. The states of these ancilla qubits are
swapped to the first bit position of both the LFSR and NFSR, ensuring the first bit is set
to zero.

After the initialization, feedback is provided to both the LFSR and NFSR by using one
CNOT gate for each shift register. This completes the bit shifting and feedback process
for key initialization, as depicted in Figure 5.14.
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Figure 5.14 Quantum circuit of key initialization of SGrain 4a <



Ancilla Qubits Management

Since the once-used ancilla qubits are in specific states and cannot be reused for the next
cycle, a new set of 9 ancilla qubits is allocated for each subsequent clock cycle. In total, 8

clock cycles are involved in the key initialization process.

Keystream Generation

In the Keystream Generation process, the entire procedure is essentially the same as that
executed in the Key Initialization process. The only difference is that we do not perform
XOR operations with the keystream bit and the functions f(z) and g(z, y). In total, there
are 8 clock cycles in the Keystream Generation process, resulting in an 8-bit keystream.
Ancilla qubits 6, 15, 24, 33, 42, 51, 60, and 69 hold the 8-bit keystream. The quantum

circuit of keystream generation for one clock is shown in Figure 5.15.
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Figure 5.15 Quantum circuit of keystream generation of Grain 4a <

Simplified Grain-4a Cipher
We use subcircuits, such as key initialization and keystream generation, as building
blocks to construct a simplified Grain-4a cipher. It requires a total of 164 qubits, allocated

as follows:

Four qubits allocated for the LFSR,

Four qubits allocated for the NFSR,

72 qubits for implementing key initialization as ancilla,

Another 72 qubits for implementing keystream generation as ancilla,



Four qubits for plaintext,
Four qubits for storing ciphertext,
Four qubits for storing the tag.

First, we load the inputs such as the initialization vector (IV), key, and plaintext into
their respective qubits. Afterwards, we apply the key initialization circuit to the qubits
representing IV, key, and ancilla for key initialization. Then, we apply the keystream

generation circuit to the IV, key, and ancilla for keystream generation.

Generating Ciphertext and Tag

1. Ciphertext Generation: Even bits of the keystream are XORed with the 4-bit
plaintext to produce the 4-bit ciphertext. The result is stored in the first four ancilla
qubits.

2. Tag Generation: An AND operation is performed between the odd bits of the
keystream and the 4-bit plaintext. This produces the 4-bit tag, which is stored in the

second set of four ancilla qubits.

The block diagram for such a quantum circuit is shown in Figure 5.16.
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Figure 5.16 Block diagram of SGrain 4a quantum circuit <J



5.8.7 QUANTUM CIRCUIT DEVELOPMENT OF SIMON ATTACK ON GRAIN-
4A

It requires a total of 160 qubits, with four allocated for plaintext, four allocated for the
tag, and the remaining 152 qubits assigned as ancilla. First, we apply Hadamard on the
plaintext qubits to obtain all possible combinations of 4-bit plaintext. Then, we apply
Grain-4a on the plaintext, ancilla, and tag qubits. Afterward, we measure the tag qubits.
Following this, we apply Hadamard again on the plaintext qubits, and finally, we measure
the plaintext qubits. These are the steps implemented in the Simon attack circuit as shown

in Figure 5.17. we omit the generating ciphertext part of Grain-4a.
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Figure 5.17 Block diagram of Simon attack on SGrain-4a Quantum circuit <1

5.8.8 SIMON ATTACK ON SGRAIN 4A ALGORITHM STEPS

The Simon attack on a symmetric encryption system like Grain-4a focuses on analyzing

weaknesses in stream ciphers, particularly how the key and state influence outputs.

Step 1: Three sets of input registers are initialized to the zero state with different counts.
[%1) = [0)#4]0)®1°%|0) =

Step 2: Apply Hadamard to the first register:



1
o) = — D |p)|0)®'52|0)®*
\/? p€{0,1}4

We consider the first register as the plaintext.

Step 3: Apply the Grain-4a to the state |2), we get the following state as a result:

W) =7 Y Ipllgarbage) | f(p)

pe{0,1}*

We consider the third register as the output of Grain-4a, which is the tag generated by
using all the possible plaintexts.

Step 4: Measure the third register. A certain value of f(p) will be observed.

If the Grain-4a function is One-to-One:
The observed value f(p) could correspond to one possible input assumed as p. Therefore,

the first register becomes:

%4) = |p)

If the Grain-4a function is Two-to-One:
The observed value f(p) could correspond to two possible input states assumed as p and
q=p®b, where b is the hidden bit string of Grain-4a. Therefore, the first register

becomes:

opa) = %um 1)

where we omitted the third register since it has been measured, and also the second
register since it contains garbage values.

Step 5: Apply Hadamard on the first register:

If the function is One-to-One:

1 bl
¥5) = Wi Ze%}4(—1) |2)

If the function is Two-to-One:



1

[Y5) = Nores: ze%}}(—l)ﬁ-z + (—1)7%]|2)
) = ——— 3 [(—1)P% + (—1) 0% )

\/24+1 ze{0,1}4

Step 6: Measure the first register.

If the function is One-to-One, measurements return a random bit string z uniformly
chosen from {0, 1}%.

If the function is Two-to-One, measurements return a random bit string z such that:

Which means:
prz=q-2
pz2=(p®b) 2
p-z=p-zdb-z
b-z=0 mod 2
A string z will be measured, whose inner product with b = 0. Thus, repeating the

algorithm approximately » times, we will obtain » different values of z, and the following

system of equations can be written:

b-z1 0
|.
b-z,=0

From which b can be determined by Gaussian elimination. If we get the bit string 0000
from Gaussian elimination, we conclude that the Grain-4a is One-to-One. If we get a

string other than 0000, we conclude that the SGrain 4a is Two-to-One.

5.9 EXPERIMENTAL RESULTS



We conducted these attacks using own custom-built simulator, which is based on the
Qiskit Matrix Product State (MPS) simulator.,, A tensor-network simulator that uses a
MPS representation for states.

We have summarized the test cases and the outputs for both SGrain 4a and Simon
attack on SGrain 4a. The following implementations are implemented on a system with
the following specifications shown in Table 4.1.

Firstly, we give the specified IV and key to the SGrain 4a, which generates the
keystream, tag, and ciphertext as outputs. Odd bits of the keystream are used to generate
the tag by performing an AND operation with the plaintext. Even bits of the keystream
are used to generate the ciphertext by performing an XOR operation with the plaintext.
We apply a Simon attack on this SGrain 4a and got set of states as outputs. From those
states, we obtain the hidden bit string using Gaussian elimination. With the hidden bit
string, we conclude whether the function is one-to-one or two-to-one.

The experimental implementation of the Simon attack, including the quantum circuit
design and simulation scripts, is publicly available at the following GitHub repository:
github.com/mohanyaso/Simon.git. This repository contains the Qiskit-based code used
for generating the histograms, executing quantum simulations on the MPS backend, and

performing Gaussian elimination to extract hidden bit strings.

5.9.1 TEST CASE 1

In Test Case 1, the cipher SGrain 4a is initialized with the IV “0100” and key “11117,
resulting in the 8-bit keystream “11110011”. This keystream is divided into odd bits
(“1101) and even bits (“1101”) for further processing. As shown in Table 5.3, each
possible 4-bit plaintext (from 0000 to 1111) is encrypted using the even bits of the
keystream through XOR, producing the corresponding ciphertexts.

Table 5.3

Test case 1 J



Simon Attack
Sl. ) i Output Hidden
Plaintext | Tag | Ciphertext . .

No. {'state’: Bit String

probability}
1 1101
2 0001 0001 1100
3 1111
4 0011 0001 1110
5 1001 {'0011': 128,
6 1000 '1000": 138,
R 1011 1001': 123,

'1011": 115,
8 1010

'1010'": 135, 0010
9 0101

'0001": 118,
10 1001 1001 0100 '0000': 141,
11 0111 '0010": 126}
12 1011 1001 0110
13 1100 1100 0001
14 0000
15 1110 1100 0011
16 0010

Simultaneously, the tags are generated by performing a bitwise AND operation
between the plaintext and the odd keystream bits. These ciphertext-tag pairs reflect the
deterministic output behavior of SGrain-4a under a fixed key-IV setup. To analyze the
cryptographic structure, a Simon attack is conducted using a custom-built simulator based
on Qiskit's MPS backend. The resulting quantum measurement outputs are tabulated,

showing the frequency of each observed 4-bit state. From these results, Gaussian



elimination is applied to extract the hidden period or bit string, which is found to be

“0010”. The measurement frequencies are further visualized in Figure 5.18, a histogram

that illustrates the distribution of outcomes and supports the successful execution of the
Simon attack.
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Figure 5.18 Histogram output of Simon attack—Test case 1 <

5.9.2 TEST CASE 2

In Test Case 2, the cipher SGrain 4a is initialized with the IV “0101” and key “1110”,
resulting in the 8-bit keystream “11101000”. This keystream is split into odd bits (“1110”)
and even bits (“1000”) for further processing. As shown in Table 5.4, each possible 4-bit
plaintext (from 0000 to 1111) is encrypted using the even bits of the keystream through
XOR, vyielding the corresponding ciphertexts. In parallel, the tags are computed by
applying a bitwise AND operation between the plaintext and the odd keystream bits.
These ciphertext-tag pairs represent the consistent behavior of SGrain-4a under the



specified key and IV. To further analyze its structure, a Simon attack is executed using a
custom-built simulator based on Qiskit's MPS backend. The simulator collects quantum
measurement outputs, which are then recorded along with their respective frequencies.
Using Gaussian elimination, the hidden bit string is determined to be “0001”, indicating a
period in the cipher's behavior. These outcomes are graphically depicted in Figure 5.19,
where a histogram shows the frequency distribution of the quantum states, supporting the

validity and effectiveness of the Simon attack.

Table 5.4

Test case 2



Simon Attack

Sl. ] . Output Hidden
NG Plaintext| Tag | Ciphertext {state’: Bit String
probability}

1 1000

2 1001

3 1010

4 1011

> LEOR {'0111": 109,

6 1 ! 1101 '0011': 142,

7 0110 | o110 1110 '0001': 141,

8 o111 | o110 1111 '0100": 115,

9 1000 | 1000 0000 '0110": 121, 0003
10 1001 1000 0001 '0010': 126,

11 | 1010 | 1010 o010 '0000°: 123,

12 | 1011 | 1010 0011 0101% 147}

13 0100

14 0101

15 0110

16 0111
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Figure 5.19 Histogram output of Simon attack—Test case 2 <1

5.9.3 TEST CASE 3

In Test Case 3, the cipher SGrain 4a is initialized with the IV “1000” and key “0001”,
resulting in the 8-bit keystream “11110011”. This keystream is divided into odd bits
(“1101”) and even bits (“1101”) for subsequent processing. As detailed in Table 5.5, each
4-bit plaintext value (ranging from 0000 to 1111) is encrypted using the even keystream
bits via XOR to produce the corresponding ciphertexts. Simultaneously, the tags are
generated by applying a bitwise AND operation between the plaintext and the odd bits of
the keystream. These resulting ciphertext-tag pairs demonstrate the deterministic nature
of the cipher under the fixed IV and key inputs. A Simon attack is then performed using a
custom-designed simulator built on Qiskit's MPS backend. The quantum outputs from
this simulation are collected and analyzed, with frequencies of each measured state

documented. Applying Gaussian elimination on these results reveals the hidden bit string



“0010”. The corresponding histogram in Figure 5.20 visualizes the frequency distribution

of the quantum states and reinforces the correctness of the Simon attack execution.

Table 5.5

Test case 3

Simon Attack
Sl. ] ] Output Hidden
Plaintext| Tag | Ciphertext . .
No. {'state”: Bit String
probability}
1 1101
2 0001 0001 1100
3 1111
4 0011 0001 1110
{'1001': 124,
0100 0100
2 ity SRS AU '1011': 124,
6 1000 '1010": 123,
7 0110 0100 1011 '0010': 128,
8 1010 '0000': 136,
0010
) 0101 '0011": 124,
10 1001 1001 0100 '1000': 122,
11 1000 0111 '0001": 143}
12 1011 1001 0110
13 1100 1100 0001
14 0000
15 1110 1100 0011
16 0010
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Figure 5.20 Histogram output of Simon attack—Test case 3 <J

5.10 QUANTUM RESOURCE ESTIMATION

In order to assess the practicality of executing quantum cryptanalysis on near-term
quantum devices, a comprehensive quantum resource estimation has been carried out.
The evaluation focuses on both the implementation of a SGrain 4a stream cipher and the
corresponding Simon's algorithm-based quantum attack. All simulations and circuit
optimizations were performed using the Qiskit MPS simulator [21, 22]. The MPS
backend was selected for its efficiency in handling quantum circuits with limited
entanglement, making it especially suitable for simulating algorithms like Simon's, which

primarily involve a hidden structure rather than deep quantum correlations.

5.10.1 GATE DECOMPOSITION AND OPTIMIZATION

Swap Gate Decomposition



As shown in Figure 5.21, a SWAP gate [25], which exchanges the states of two qubits, is
implemented using three consecutive CNOT gates. This gate decomposition is standard in
quantum computing, as it simplifies hardware requirements and ensures compatibility
with architectures that support only nearest-neighbor interactions. Each SWAP gate used
in the cipher or attack circuit is therefore mapped to three CNOT gates, which are part of
the Clifford group.

q[0] qlO] ?
q[1] ql1]
Figure 5.21 Swap gate decomposition <1

Toffoli (CCNOT) Gate Decomposition

Figure 5.22 illustrates the breakdown of the Toffoli gate, a crucial three-qubit gate used to
implement classical logic in quantum circuits into elementary single and two qubit gates.
In our decomposition strategy, each Toffoli gate is replaced by 6 T gates, 8 Clifford gates,
a T-depth of 4, and a full circuit depth of 11. These parameters follow the decomposition
guidelines described in [23]. The T and TT gates (T inverse) are collectively counted as T
gates for estimating fault-tolerant quantum costs. Notably, the initialization related NOT
gates controlled by the Initialization Vector (IV) and Key are excluded from the cost

model, as they do not contribute to the complexity of reversible computation or

entanglement.
do T
a1 1 —_ T — —
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Figure 5.22 Toffoli gate decomposition !



5.10.2 QUANTUM RESOURCE COST ANALYSIS
SGrain 4a Implementation

Table 5.6 summarizes the quantum resource requirements for implementing the SGrain 4a
cipher. This includes 1,404 Clifford gates, 600 T gates, and a T-depth of 400. The full
circuit depth which includes Clifford and non-Clifford gates is 667. A total of 164 qubits
are needed to represent the various internal states of the cipher, including the LFSR,
NFSR, IV, key, and intermediate ancilla qubits. This resource estimation provides a
baseline understanding of the cipher's quantum footprint and forms the foundation for

comparing it with quantum attack costs.

Table 5.6

Quantum resource cost for SGrain 4a cipher &

Clifford gates T gates  T-depth Full depth Qubits
1404 600 400 667 164

Simon's Attack on SGrain 4a

Table 5.7 presents the resource estimation for the Simon attack on the simplified cipher.
The quantum circuit designed to extract the hidden bit string using Simon's algorithm
comprises 1,400 Clifford gates, 600 T gates, and has the same T-depth of 400 as the
cipher implementation. The full depth is slightly higher at 669, due to the additional post-
processing steps needed to implement the oracle and compute the period of the hidden
function. The number of qubits required is 160, slightly fewer than in the cipher model, as
the structure of the oracle allows for reuse of ancilla and omits some state-preserving

steps.

Table 5.7

Quantum resource cost of Simon attack on SGrain 4a ¢

Clifford gates T gates  T-depth Full depth Qubits




Clifford gates T gates  T-depth Full depth Qubits
1400 600 400 669 160

5.11 CONCLUSION

This study explores the quantum cryptanalysis of the SGrain 4a stream cipher using
Simon's algorithm. The entire experiment was conducted in two distinct phases. In the
first phase, a Grover-based search was utilized to recover the secret key by iterating over
possible inputs given a known plaintext, IV, and ciphertext. This demonstrated how
Grover's algorithm can reduce brute-force key search complexity from O(2") to O(2"/?)
for n-bit keys.

In the second phase, Simon's algorithm was applied to exploit structural periodicities
within the cipher. The quantum circuit designed for this purpose produced a superposition
of results that encode the hidden bit string. By conducting multiple quantum
measurements and applying Gaussian elimination in the classical post-processing phase,
we successfully determined the hidden string.

Furthermore, detailed quantum resource estimates were provided for both the cipher
and the Simon attack implementation. These estimates include the number of Clifford and
T gates, T-depth, full depth, and qubit count. The results indicate that the simplified
cipher and its quantum attack are feasible for simulation and potentially for execution on
mid-scale fault-tolerant quantum computers. The minimal difference in resource usage
between cipher construction and the Simon attack highlights the algorithm's power and its
potential implications for stream cipher security in the post-quantum era.

Simon's algorithm stands out as an efficient quantum tool for solving hidden subgroup
problems and has proven to offer exponential speedups over classical counterparts. The
demonstrated quantum advantage underscores the urgent need for designing
cryptographic primitives that are secure against both classical and quantum adversaries.
As quantum hardware continues to evolve, such attacks may soon transition from

theoretical models to practical threats.
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“Quantum computing is not just a challenge for cryptography; it is a catalyst for the

evolution of security.”

— Eleanor Rieffel

SUMMARY

The chapter explores the significant impact quantum computing will have
on modern cryptographic systems. Cryptography 1s essential for
maintaining confidentiality, integrity, and authenticity in digital
communications, safeguarding critical infrastructure, and building trust in
the digital economy. As quantum computing advances, traditional
cryptographic systems will face new challenges. The chapter examines
Shor's algorithm, which poses a major threat to Rivest-Shamir-Adleman
(RSA) and Elliptic Curve Cryptography (ECC) by enabling quantum
computers to efficiently solve the prime factorization and discrete logarithm
problems, breaking these widely used public key cryptosystems. The
potential of Grover's algorithm is also discussed, highlighting its ability to


https://doi.org/10.1201/9781003606338-6

speed up brute-force attacks on symmetric encryption systems like AES,
halving the security of traditional symmetric-key algorithms.

To mitigate these threats, the chapter suggests adopting AES-256 or
longer key lengths, which are more resistant to quantum attacks, and
recommends shifting to quantum-resistant algorithms for both symmetric
and asymmetric encryption. However, practical considerations, such as
increased computational overhead and the challenges of transitioning to
new systems, are also explored. The vulnerabilities of classical
cryptographic systems particularly public-key methods like RSA and ECC,
and symmetric key algorithms like AES and DES are examined in light of
the capabilities of quantum computers. As quantum computing progresses,
it is crucial for organizations and governments to adapt and adopt post-
quantum cryptography (PQC) to ensure data security in the quantum era.
The chapter emphasizes the need for a proactive approach to protect

sensitive information against the emerging quantum threats.

INTRODUCTION

Quantum computing has become a prominent topic in both theoretical and
applied fields, significantly impacting modern cryptography. Quantum
computing poses significant implications for modern cryptography,
particularly for asymmetric encryption schemes like RSA, ECC, and Diffie-
Hellman, which rely on the computational difficulty of problems like
integer factorization and discrete logarithms. Quantum algorithms, such as
Shor's algorithm [1], could solve these problems exponentially faster than
classical computers, rendering these encryption methods insecure.
Symmetric key encryption schemes, like AES, are less affected but would
still require longer key lengths to maintain security, as Grover's algorithm

[2] can reduce the effective key search space. To address these challenges,



the field of PQC is developing quantum-resistant algorithms based on hard
mathematical problems, such as lattice-based, code-based, and hash-based
cryptographic approaches, which are believed to remain secure against both
classical and quantum attacks. The transition to quantum systems is
complex and urgent, as encrypted data intercepted today could be decrypted
in the future when cryptographically relevant languages become
operational.

Quantum computing poses a profound threat to traditional cryptographic
systems due to its ability to perform certain calculations exponentially
faster than classical computers. However, algorithms specifically designed
for quantum computers, such as Shor's algorithm, can solve these problems
in polynomial time, rendering these encryption and digital signature
systems effectively obsolete. The potential of quantum computing thus
necessitates the reevaluation of current cryptographic practices to ensure
future-proof security.

The most immediate implication is the vulnerability of asymmetric
cryptographic systems that rely on public-key infrastructures (PKIs). RSA,
for example, depends on the difficulty of factoring large integers, a task
infeasible for classical computers given current computational limits. A
sufficiently powerful quantum computer using Shor's algorithm, however,
could break RSA encryption by efficiently factoring the key. Similarly,
ECC, used in many secure communications, including SSL/TLS protocols,
can be undermined by quantum computers capable of solving discrete
logarithms in elliptic curve groups. This vulnerability has wide-reaching
implications for internet security, digital signatures, and secure
communications across industries [3].

Symmetric key cryptography is generally considered secure, but it is not

completely safe from quantum computing threats. One such threat is



Grover's algorithm, a quantum algorithm that can significantly reduce the
security of symmetric encryption by speeding up the search for the correct
key. In a classical system, a 256-bit key is considered very secure, but in a
quantum context, Grover's algorithm would make it as easy to break a 256-
bit key as it would be to break a 128-bit key using classical methods. This
doesn't mean symmetric encryption is completely broken, but it does reduce
the effective security. As a result, to maintain the same level of security
against quantum attacks, we would need to use longer keys. For instance,
using a 512-bit key in a quantum environment would be necessary to ensure
the same level of security that a 256-bit key provides in classical systems
[4].

The rise of quantum computing underscores the urgent need for quantum-
resistant cryptographic algorithms. The field of PQC is rapidly developing
standards for encryption methods that resist both classical and quantum
attacks. Algorithms based on lattice-based® cryptography, hash-based
cryptography, and multivariate polynomial problems are emerging as viable
candidates for the post quantum era. These methods use mathematical
problems believed to be intractable even for quantum computers.
Institutions like the National Institute of Standards and Technology (NIST)
are working to standardize PQC algorithms to ensure a smooth transition
before large-scale quantum computers become practical. This effort is
crucial for safeguarding sensitive data against future quantum attacks by
developing encryption methods that remain secure even in the presence of
quantum computing power. The NIST's ongoing process aims to identify
and promote cryptographic algorithms that can withstand the capabilities of
quantum computers, ensuring that secure communication, digital signatures,
and key exchange protocols will remain safe as quantum technologies

advance [3].



6.1 IMPORTANCE OF CRYPTOGRAPHY IN MODERN
SECURITY

Cryptography is the foundation of security in the digital age, enabling the
protection of sensitive information, ensuring secure communications, and
verifying the authenticity of data and identities. It underpins various
technologies and systems that modern society relies upon, from online
banking and e-commerce to national defense systems. As digitalization
becomes increasingly pervasive, the role of cryptography in safeguarding

data, privacy, and trust continues to grow in importance [6, 7].

Data Confidentiality-One of the primary roles of cryptography is to
ensure data confidentiality. Encryption techniques transform readable
data into an unreadable format, accessible only to authorized parties with
the corresponding decryption keys. This prevents unauthorized access to
sensitive information, such as personal details, financial records, and
intellectual property. Without cryptography, securing data transmitted
over vulnerable networks, like the internet, would be nearly impossible.
Data Integrity and Authentication: Cryptography also ensures data
integrity and authentication by verifying that information has not been
altered in transit and confirming the identity of communicating parties.
Digital signatures and hash functions are cryptographic tools used to
detect tampering and establish trust between parties in online
interactions. This is critical for preventing fraud, securing software
updates, and enabling trusted transactions in an interconnected world.
Secure Communication: Cryptography facilitates secure
communication, which is essential for both individuals and organizations.
Protocols such as SSL/TLS rely on encryption to secure web traffic,
ensuring that sensitive data exchanged between users and servers remains

private and cannot be intercepted by attackers. Secure communication is



vital for preserving privacy, conducting business securely, and
maintaining the confidentiality of strategic information for governments
and military operations.

Enabling Digital Economies: Modern cryptographic technologies
enable the functionality of digital economies by powering secure
payment systems, digital currencies, and blockchain networks.
Cryptography ensures the safety of online transactions by protecting
payment credentials and ensuring transactional integrity. For instance,
public-key cryptography underpins the functioning of blockchain,
guaranteeing the security of decentralized financial systems and
protecting against forgery and unauthorized transactions [8].

Adapting to Emerging Threats: As cyber threats continue to evolve,
the need for strong cryptographic systems becomes more important.
Emerging technologies, like quantum computing, present risks to current
cryptographic methods, making it essential to shift to quantum-resistant
algorithms. Ongoing advancements in cryptographic research help ensure
that security systems stay strong against both current and future threats,
maintaining trust in the digital systems that are vital to societal and

economic stability.

6.1.1 THE ROLE OF CRYPTOGRAPHY IN MODERN SECURITY

Cryptography underpins the systems and technologies that protect sensitive
information, ensure privacy, and enable trust in digital environments. As
society increasingly relies on digital interactions, the role of cryptography
has expanded, safeguarding personal data, securing communications, and

preparing for future technological challenges.

6.1.1.1 Protecting Confidentiality and Privacy



Cryptography transforms sensitive information into encrypted data

accessible only to authorized parties. Key applications include:

Personal Data: Encryption plays a vital role in protecting sensitive
personal details such as medical records, financial credentials, and
private communications from unauthorized access or theft. For instance,
the use of end-to-end encryption in messaging apps ensures that only the
sender and recipient can read the messages, effectively preventing
intermediaries from intercepting or accessing the content. Similarly,
securing health records and protecting online transactions are critical
applications of encryption in safeguarding personal data. With the
increasing prevalence of digital threats, cryptographic methods and
algorithms have evolved to provide robust protection for individuals'

privacy, adapting to new challenges and technologies.

Business Information: Businesses rely heavily on cryptography to
maintain their competitive edge by securing corporate secrets, contracts,
and intellectual property. Protecting trade secrets, encrypting confidential
business communications, and securing cloud storage are essential
practices to ensure trust and prevent unauthorized access. Virtual Private
Networks (VPNs) are a common cryptographic tool used by businesses
to establish secure connections between remote employees and corporate
networks, ensuring that sensitive information remains encrypted during
transmission. By incorporating advanced encryption techniques,
companies can safeguard their valuable information, maintain operational

integrity, and build confidence among stakeholders.

Government Intelligence: The government uses cryptographic

techniques to safeguard classified information and ensure national



security. This includes securing military communications, protecting state
secrets, and maintaining the integrity of critical infrastructure.
Cryptography plays a key role in secure satellite communications,
enabling the transmission of sensitive data without the risk of
interception. By adopting advanced cryptographic methods, India can
defend against evolving cyber threats, maintain secure communication

channels, and protect national security.

6.1.1.2 Ensuring Data Integrity and Authenticity

Cryptography ensures that data remains unaltered during transmission or

storage. Key mechanisms include:

Hash Functions: Hash functions are cryptographic algorithms that take
an input (or “message”) and produce a fixed-size string of characters,
typically a sequence of numbers and letters, which is called a hash value
or digest. This hash value acts as a unique fingerprint of the input data.
One commonly used hash function is SHA-256 (Secure Hash Algorithm
256-bit), which generates a 256-bit (32-byte) hash value from any given
input.

The main purpose of hash functions is to ensure data integrity. If even a
small change is made to the input data, the hash value will drastically
change, which helps in detecting any alterations or tampering. Hash
functions are widely used in various applications such as data
verification, digital signatures, and password hashing. They provide a
unique, fixed-length representation of data, which plays a crucial role in
maintaining the security and integrity of digital information by allowing

the verification of data without revealing the original content.



Digital Signatures: Digital signatures are cryptographic tools used to
verify the origin and authenticity of data, ensuring that it has not been
altered and comes from a trusted source. They are commonly used to
confirm the legitimacy of software updates, electronic documents, and
secure communications. For example, when downloading software
updates, digital signatures confirm that the update is genuine and hasn't
been tampered with, protecting users from malicious software.

Digital signatures combine hashing and asymmetric encryption
techniques to create a unique signature for each piece of data. The
recipient can verify the signature using the sender's public key, providing

confidence that the data is both authentic and unchanged.

These mechanisms protect against fraud, counterfeiting, and

manipulation in financial transactions, emails, and documents.

6.1.1.3 Securing Digital Communications

Cryptography secures communications in the digital age, preventing

interception and unauthorized access [9]. Examples include:

SSL/TLS Protocols: SSL (Secure Sockets Layer) and its successor, TLS
(Transport Layer Security), are cryptographic protocols designed to
encrypt data transmitted between clients and servers. By establishing a
secure connection, SSL/TLS ensures that sensitive information, such as
login credentials, credit card details, and personal data, remains
confidential during transmission. These protocols are fundamental to
secure web browsing and online transactions, providing users with the
assurance that their data is protected from eavesdropping and tampering.
SSL/TLS uses a combination of asymmetric encryption for key exchange

and symmetric encryption for data transfer, making it both secure and



efficient. The implementation of SSL/TLS is visible through the
“HTTPS” prefix in web addresses, indicating that the connection is

secure and encrypted.

End-to-End Encryption (E2EE): End-to-End Encryption (E2EE) is a
method of secure communication that ensures only the sender and
recelver can access the messages being exchanged. Messaging platforms
like WhatsApp and Signal implement E2EE to protect user privacy and
prevent unauthorized access to the content of their conversations. With
E2EE, the message is encrypted on the sender's device and can only be
decrypted by the recipient's device, ensuring that intermediaries,
including service providers, cannot read the message. This level of
security is essential for maintaining user trust and protecting sensitive
information in an increasingly digital world. E2EE is particularly
valuable in contexts where privacy 1s paramount, such as in
communications between journalists and their sources, human rights

activists, and individuals living under repressive systems.

Virtual Private Networks (VPNs): Virtual Private Networks (VPNs)
use encryption to secure communication over public networks, such as
the internet. By creating a secure “tunnel” between the user's device and
the VPN server, VPNs protect data from eavesdropping, interception, and
tampering. This is particularly important for individuals accessing
sensitive information from public Wi-Fi networks, as well as for remote
employees connecting to corporate networks. VPNs provide anonymity
and privacy by masking the user's [P address and encrypting their internet
traffic, making it difficult for third parties to track online activities or
steal data. Additionally, VPNs can bypass geographic restrictions,

allowing users to access content and services that may be blocked or



restricted in their location. This makes VPNs a valuable tool for ensuring

both security and unrestricted access to information.

By securing interactions, cryptography enables trust in global commerce,

remote work, and private communications.

6.1.1.4 Enabling Critical Infrastructures and Services

Modern critical systems rely on cryptography for secure operation:

Energy Grids: Cryptographic protocols are essential in securing
communication between different components of energy grids. By
encrypting the data exchanged between these components, cryptography
mitigates the risks of cyberattacks that could disrupt the stability and
functionality of the grid. Secure communication ensures that commands,
status updates, and monitoring data remain confidential and unaltered,
protecting the grid from malicious entities. Additionally, cryptographic
techniques help to verify the authenticity of the data and the identity of
communicating devices, enhancing the overall security of energy
infrastructure and preventing potential threats to national energy supply
systems. As smart grids become more prevalent, incorporating renewable
energy sources and advanced metering infrastructure, the need for robust
cryptographic solutions becomes even more critical to ensure the

resilience and reliability of the energy supply.

Healthcare Systems: Encryption is crucial in safeguarding patient data,
electronic medical records (EMRs), and connected medical devices
within healthcare systems. By encrypting patient information, healthcare
providers can ensure that sensitive data remains confidential and

protected from unauthorized access. This is especially important as



healthcare records often contain personal, financial, and medical
information that, if compromised, could lead to severe consequences for
patients. Encryption also protects data transmitted between medical
devices and healthcare networks, ensuring that the integrity and
confidentiality of the information are maintained. With the increasing
integration of digital technologies in healthcare, robust encryption
measures are vital to maintaining patient trust and ensuring compliance
with privacy regulations. Furthermore, the advent of telemedicine and
remote patient monitoring has amplified the need for secure data
transmission, making encryption indispensable in modern healthcare

practices.

Transportation and IoT devices: Cryptography plays a critical role in
protecting autonomous vehicles, smart city infrastructures, and other
Internet of Things (IoT) devices from cyber threats. Autonomous
vehicles rely on secure communication to exchange data with other
vehicles, traffic management systems, and cloud services. By encrypting
this data, cryptography ensures that the vehicles' operational data remains
secure and tamper-proof, reducing the risk of cyberattacks that could
compromise safety. Similarly, smart city infrastructures, which
encompass a wide range of connected systems such as traffic lights,
surveillance cameras, and public transportation, depend on cryptographic
protocols to safeguard the data exchanged between these devices.
Encryption helps maintain the integrity and confidentiality of the data,
preventing unauthorized access and ensuring the smooth functioning of
the city's critical infrastructure. As the IoT ecosystem continues to
expand, encompassing smart homes, wearable devices, and industrial [oT

applications, the implementation of strong cryptographic measures



becomes increasingly vital to protect against cyber threats and maintain

user privacy.

These systems, often targeted due to their societal importance, require

robust cryptographic measures for operational security.

6.1.1.5 Building Trust in the Digital Economy

Cryptography is the basis of digital commerce and trust-based systems:

Secure Payment Systems: Secure payment systems rely heavily on
cryptographic protocols to protect transactions and ensure the integrity
and confidentiality of financial data. Protocols like EMV (Europay,
MasterCard, and Visa) chips are embedded in credit and debit cards to
provide secure transaction processing. These chips use dynamic data
authentication, making it difficult for fraudsters to clone or manipulate
card information. Additionally, systems like PayPal use advanced
encryption techniques to safeguard users' financial data during online
transactions. By encrypting sensitive information, such as payment
details and personal identification, secure payment systems prevent
unauthorized access and ensure that transactions are completed safely
and securely.

Blockchain Technology: Blockchain technology relies on cryptographic
algorithms to ensure transaction integrity and security within
decentralized networks. Each block in a blockchain contains a
cryptographic hash of the previous block, creating an immutable chain of
records. This ensures that any attempt to alter a transaction would be
immediately detectable, as it would change the hash values of all
subsequent blocks. Cryptographic algorithms also play a crucial role in

enabling cryptocurrencies like Bitcoin, providing secure and transparent



mechanisms for verifying and recording transactions. By utilizing public
and private keys, blockchain technology ensures that only authorized
parties can initiate and validate transactions, enhancing the overall
security of the system [10].

E-Signatures and Contracts: Digital signatures enable legally binding
agreements and streamline processes across various industries. By using
cryptographic techniques, digital signatures verify the authenticity and
integrity of electronic documents, ensuring that the signer is who they
claim to be and that the document has not been tampered. E-signatures
are widely used in sectors such as finance, real estate, and legal services,
providing a secure and efficient way to execute contracts and agreements.
The use of digital signatures eliminates the need for physical paperwork,
reducing administrative overhead and enabling faster, more secure
transactions. This technology is particularly valuable in remote and
online environments, where traditional signature methods may be

impractical.

This trust layer fosters confidence in online transactions and facilitates

digital economic growth.

6.1.1.6 Adapting to Emerging Threats

Cryptography must evolve to address new challenges:

Advancing Cyber-Attacks: As cyber-attacks become more
sophisticated, cryptography must continually adapt to counter these
evolving threats. Advanced attacks such as side-channel attacks, which
exploit information leaked during the physical implementation of
cryptographic algorithms, and zero-day vulnerabilities, which target

previously unknown software flaws, pose significant risks to digital



security. To mitigate these threats, cryptographers are developing
advanced techniques and countermeasures. This includes implementing
secure hardware designs to protect against side-channel attacks and
employing proactive vulnerability detection and patch management to
address zero-day exploits. By staying ahead of attackers and anticipating
new forms of cyber threats, cryptography continues to evolve to protect

sensitive data and maintain the integrity of digital systems.

Proactive Regulation: Governments and organizations recognize the
importance of staying ahead of emerging risks in the realm of
cryptography. As a result, they invest in cryptographic research and
establish standards to address potential vulnerabilities and ensure robust
security measures. Regulatory bodies and industry groups work
collaboratively to develop guidelines and best practices for implementing
cryptographic solutions. This proactive approach includes funding
research initiatives focused on PQC secure communication protocols, and
advanced encryption techniques. Additionally, regulations such as the
General Data Protection Regulation (GDPR) and other privacy laws
mandate the use of strong encryption to protect personal and sensitive
data. By investing in cryptographic research and establishing
comprehensive standards, governments and organizations aim to create a
secure and resilient digital infrastructure that can withstand the

challenges of an ever-evolving threat landscape.

Continuous adaptation ensures the resilience and security of
cryptographic systems in an evolving threat landscape. Cryptography is
essential to securing the modern digital world. It protects personal privacy,
ensures critical infrastructure security, and builds trust in economic systems

and digital interactions. As technology evolves, so must cryptography,



adapting to new challenges and opportunities. By ensuring confidentiality,
integrity, authenticity, and resilience, cryptography provides a foundation

for a secure and trustworthy digital future [11].

6.2 SHOR'S ALGORITHM AND ITS IMPACT ON RSA
AND ECC

Shor's algorithm, proposed by Peter Shor in 1994, is a groundbreaking
quantum algorithm that can efficiently factor large integers and solve
discrete logarithms. These two problems form the mathematical backbone
of many widely used public-key cryptographic systems, including RSA and
ECC. Unlike classical computers, which solve these problems using
exponentially time-consuming methods, quantum computers employing
Shor's algorithm can perform these calculations in polynomial time,

rendering these cryptographic schemes vulnerable to decryption [12].

6.2.1 IMPACT ON RSA

RSA encryption relies on the difficulty of factoring large composite
numbers. Its security is tied to the assumption that factoring a product of
two large prime numbers is computationally infeasible for classical
computers. Shor's algorithm, however, bypasses this assumption by
introducing quantum principles such as superposition and entanglement to
find the prime factors of a given integer with exponential speedup. As a
result, a sufficiently powerful quantum computer could efficiently decrypt
RSA-encrypted data without access to the private key, considering the
encryption reliability. This has significant consequences for secure
communications, digital signatures, and data integrity, which are widely
dependent on RSA.



The start of quantum computing poses a significant threat to the security
of RSA encryption. If quantum computers reach the necessary level of
computational power, they could render current RSA-based security
measures obsolete. This would impact a wide range of applications,
including secure communications, digital signatures, and data integrity. As
RSA is widely used for securing web traffic, email encryption, and other
sensitive data, the ability of quantum computers to break RSA encryption

could have far-reaching implications for data privacy and security.

6.2.2 IMPACT ON ECC

ECC is widely regarded as more secure than RSA per bit length due to the
complexity of solving the discrete logarithm problem in elliptic curve
groups. This complexity allows ECC to provide strong security with smaller
key sizes compared to RSA, making it efficient and effective for various
cryptographic applications. However, the emergence of quantum
computing, specifically Shor's algorithm, poses a significant threat to the
security of ECC. Shor's algorithm extends to the discrete logarithm
problem, meaning it can efficiently compute the private key associated with
a public key in ECC systems. This capability renders elliptic curve-based
protocols, such as ECDSA (Elliptic Curve Digital Signature Algorithm) and
ECDH (Elliptic Curve Diffie-Hellman), equally susceptible to quantum
attacks as RSA. The ability of quantum computers to break ECC encryption
would have profound implications for secure communications and financial
transactions, given the widespread use of ECC in modern cryptographic
protocols.

ECC 1is heavily utilized in secure communication protocols, including
SSL/TLS, which are fundamental to internet security. These protocols

ensure that data transmitted over the internet remains confidential and



protected from eavesdropping and tampering. If quantum computers can
break ECC encryption, the integrity and confidentiality of internet
communications would be compromised, leading to potential data breaches
and loss of trust in digital security systems. Additionally, ECC i1s used in
various financial systems to secure transactions and protect sensitive
information. The compromise of ECC-based protocols would jeopardize the
security of online banking, digital payments, and other financial activities,
posing significant risks to individuals and organizations.

To address the threat posed by quantum computing, the field of post-
quantum cryptography is developing new cryptographic algorithms that can
withstand quantum attacks. Researchers are exploring various approaches,
including lattice-based, hash-based, and code-based cryptography, to create
algorithms that are resistant to the capabilities of quantum computers. These
post-quantum algorithms aim to provide long-term security for digital
systems, ensuring that cryptographic protocols remain robust in the face of
emerging quantum threats. By transitioning to post-quantum cryptographic
standards, we can protect sensitive data and maintain the integrity of secure
communications and financial transactions in a future where quantum

computing becomes widespread [13].

6.2.3 MAGNITUDE OF THE THREAT

The implementation of Shor's algorithm on a practical quantum computer
represents a monumental threat to the security of existing cryptographic
systems. Both RSA and ECC, which underpin much of today's secure
communication infrastructure, would be rendered vulnerable. This includes
not only current data but also previously intercepted communications that
were encrypted using these systems. The retroactive vulnerability means

that any data encrypted with RSA or ECC and stored or intercepted could



be decrypted by a sufficiently powerful Cryptographically Relevant Large
Quantum Computer (CRLQC). The potential for quantum computers to
break RSA and ECC encryption with relative ease has profound
implications. Secure internet communication, financial transactions,
confidential government communications, and any other application relying
on these cryptographic methods could be compromised. The threat is not
just theoretical; it is an emerging challenge that could materialize as
quantum computing power continues to grow.

Recognizing the gravity of the quantum threat, organizations and
governments worldwide are proactively transitioning to quantum-safe
cryptographic solutions. The field of PQC is focused on developing and
standardizing algorithms that can withstand quantum attacks, ensuring that
data remains secure even when quantum computing becomes more
powerful. These new quantum-safe algorithms, such as lattice-based, hash-
based, and code-based cryptography, are designed to protect sensitive data
and maintain the integrity of digital communications.

In the context of symmetric key cryptography, although quantum
computers can significantly speed up brute-force attacks using algorithms
like Grover's, the overall structure of symmetric encryption remains more
resistant to quantum threats compared to asymmetric methods. To address
this, longer symmetric keys are being adopted to maintain the same security
level in a quantum environment.

On the other hand, asymmetric key cryptography, which forms the basis
of many encryption systems (such as RSA and ECC), is highly vulnerable
to quantum attacks due to algorithms like Shor's algorithm that can break
these systems in polynomial time. To mitigate this, quantum-safe
alternatives, such as lattice-based public-key schemes, are being explored to

replace current asymmetric encryption methods.



By adopting these new quantum-resistant algorithms across both
symmetric and asymmetric encryption systems, we can ensure that our
cryptographic systems remain secure, even as quantum computing
continues to advance. This proactive approach is critical to preserving the
confidentiality and integrity of our digital world, protecting it from the risks

posed by quantum attacks [14].

6.3 GROVER'S ALGORITHM AND ITS IMPACT ON
SYMMETRIC CRYPTOGRAPHY

Grover's algorithm, a pivotal quantum computing innovation, offers a
quadratic speedup for searching unsorted databases or performing brute-
force computations. The algorithm uses quantum principles such as
superposition and interference to drastically enhance the efficiency of brute-
force searches. Unlike classical algorithms, which require O(IN) operations
to search through N possible solutions, Grover's algorithm can find the

desired result in O(\/N ) operations, offering a significant speedup.

6.3.1 IMPLICATIONS FOR SYMMETRIC CRYPTOGRAPHY

Grover's algorithm poses a substantial threat to symmetric key
cryptographic systems, such as those using block ciphers like AES
(Advanced Encryption Standard). Classical brute-force search methods
require 2" operations to find an n-bit key, but Grover's algorithm can reduce
this to 27/2 operations. This effectively halves the effective key length,
diminishing the security of symmetric key encryption. For example, a 128-
bit key, which is considered secure against classical attacks, would be
reduced to the security equivalent of a 64-bit key under Grover's algorithm.
This reduction compels cryptographers to re-evaluate existing standards and

consider increasing key lengths to maintain security in the quantum era. To



ensure long-term data security, symmetric cryptographic systems must
adopt quantum-resilient approaches, such as doubling key lengths or by

doing structural change new quantum-resistant algorithms [15].

6.3.2 CLASSICAL VS. QUANTUM BRUTE FORCE

Classical Approach: Brute-forcing an n-bit key on a classical computer
requires 2" operations. This means that for a key of length n, a classical
brute-force attack would need to try all possible 2" combinations to find the
correct key. The time required for this process grows exponentially with the
length of the key, making it infeasible for sufficiently large key sizes. For

example, a 128-bit key would require 228

attempts, which is practically
impossible to achieve with current classical computing resources.

Quantum Approach: Grover's algorithm, a breakthrough in quantum
computing, reduces the complexity of brute-forcing an n-bit key to
approximately 2"/2 operations. This represents a quadratic speedup
compared to the classical approach. Grover's algorithm leverages quantum
principles such as superposition and interference to search the key space
more efficiently. For a 128-bit key, Grover's algorithm would only require
264 attempts, which is significantly fewer than the classical approach and
makes the brute-force search much more feasible for a quantum computer
[L16].

Implications for Symmetric Key Encryption Systems: The efficiency
gain provided by Grover's algorithm poses significant challenges to
symmetric key encryption systems, especially those utilizing shorter key
lengths. The reduced security margin means that key lengths that were
previously considered secure against classical attacks may no longer be

sufficient in the quantum era. For instance, a 128-bit key, which is robust



against classical brute-force attacks, would be reduced to the equivalent
security of a 64-bit key under Grover's algorithm.

To address the threat posed by quantum computing, symmetric key
encryption systems need to implement longer key lengths to maintain their
security. A general guideline is to double the key length—for example,
moving from 128 bits to 256 bits—to enhance resistance against quantum
attacks, ensuring the continued integrity and confidentiality of encrypted
data.

The rise of quantum computing requires a reassessment of cryptographic
standards and a shift toward quantum-resilient methods to protect data from
emerging quantum threats. By adopting longer key lengths and
incorporating post-quantum cryptographic algorithms, we can safeguard
symmetric encryption systems from the power of quantum computers,

ensuring long-term security for sensitive information.

IMPACT ON SYMMETRIC KEY ENCRYPTION ALGORITHMS

The reduced computational effort offered by Grover's algorithm necessitates
reconsideration of key lengths for symmetric key encryption systems. Here

are the key examples:

AES-128

Classical brute-force complexity: O(21%).

Grover-optimized complexity: O(264).

Implication: The quadratic speedup provided by Grover's algorithm
significantly reduces the security of AES-128. While 2!2® operations are
infeasible for classical brute-force attacks, 26* operations make AES-128
vulnerable to quantum attacks. As a result, AES-128 is considered

insufficiently secure in the quantum era.



AES-256

Classical brute-force complexity: O(22°%).
Grover-optimized complexity: O(21%%).

2128 operations remain

Implication: Even with Grover's algorithm,
infeasible for quantum computers. This helps maintain the high level of
security offered by AES256, ensuring it remains resistant to quantum
attacks. The effective key strength continues to be robust, making
AES256 a secure encryption option in the quantum era. In addition to its
key size, the design of AES itself plays a critical role in its security. Its
efficient structure and strong encryption mechanisms contribute to its
resilience, making it a reliable choice for protecting sensitive data even

as quantum computing advances..

To effectively counter quantum threats, organizations should consider a
structural change by adopting AES-256 or equivalent encryption standards.
By making this transition, organizations can maintain the confidentiality

and integrity of their data in a quantum-enhanced landscape [17].

6.3.3 LIMITATIONS AND PRACTICAL CONSIDERATIONS

Despite its theoretical advantages, Grover's algorithm faces practical
implementation challenges that currently limit its widespread applicability:
Quantum Hardware: Large-scale quantum computers with sufficient
coherence time and low error rates are still under development. Building a
quantum computer that can maintain quantum states long enough to
perform complex computations without significant error rates remains a
significant technical hurdle. The delicate nature of quantum states requires
advanced error correction techniques and stable hardware environments,

which are still being refined. The current generation of quantum computers



is limited by the number of qubits they can coherently manage and the
susceptibility of these qubits to decoherence and noise. Achieving fault-
tolerant quantum computation, where errors can be detected and corrected
without disrupting the quantum computation process, is essential for the
practical implementation of Grover's algorithm.

Scalability: The resource requirements for Grover's algorithm grow
substantially with problem size, limiting its immediate applicability. As the
size of the problem increases, the number of qubits and the depth of
quantum circuits required also increase. This scalability issue poses a
challenge for implementing Grover's algorithm on practical quantum
computers, as current quantum systems are limited in the number of qubits
they can effectively manage and operate. Additionally, the complexity of
creating and maintaining quantum entanglement across a large number of
qubits presents a significant obstacle. As quantum computers grow in scale,
the challenges associated with error rates, qubit coherence, and quantum
gate fidelity will need to be addressed to make Grover's algorithm
practically viable.

Quantum Algorithm Optimization: While Grover's algorithm provides a
theoretical quadratic speedup, optimizing its implementation on real
quantum hardware requires sophisticated techniques, such as designing
efficient quantum oracles, minimizing circuit complexity, and implementing
advanced error correction methods. Researchers are also exploring quantum
algorithms that could offer advantages beyond Grover's algorithm. For
instance, quantum walks, including continuous-time quantum walks, have
been shown to outperform Grover's algorithm in certain search problems,
achieving faster search results. The Quantum Approximate Optimization
Algorithm (QAOA), designed for combinatorial optimization, has been

proposed as a potential improvement over Grover's algorithm for finding



optimal solutions in specific problem classes. Additionally, amplitude
amplification, an extension of Grover's algorithm, can improve search
efficiency by refining the iterative process, offering faster performance in
some cases. Another promising algorithm is the Harrow-Hassidim-Lloyd
(HHL) algorithm, which solves linear systems of equations exponentially
faster than classical methods, providing improvements for problems
requiring substantial computational resources. These emerging algorithms
represent significant strides toward bridging the gap between quantum
computing's theoretical advantages and practical performance on near-term
quantum devices, with researchers continuously refining them for real-
world applications [18].

Regulatory and Standardization Efforts: Governments and international
standardization organizations are crucial in leading the transition to
quantum-resistant cryptographic systems. One key initiative is the NIST
PQC project, which focuses on identifying, evaluating, and standardizing
cryptographic algorithms that can withstand quantum attacks. For this
transition to be successful, collaboration between academia, industry, and
regulatory bodies is essential. Together, they can establish best practices,
create guidelines, and ensure the widespread adoption of quantum-resistant
cryptographic standards. These collective efforts will help build a secure
and resilient cryptographic infrastructure that can effectively address the

challenges posed by quantum computing.

6.4 VULNERABILITIES OF CLASSICAL
CRYPTOGRAPHIC SYSTEMS

Cryptographic  systems are fundamental to securing modern
communication, but they are not invulnerable. Various cryptographic

mechanisms face threats that exploit design flaws, implementation errors, or



advances in computational power. Below, we examine some common
vulnerabilities in public key cryptography, symmetric key cryptography,
and related technologies like hash functions and digital signatures.

Public-key cryptography faces several vulnerabilities, including weak
key generation, insecure key distribution, algorithmic weaknesses, and
implementation flaws. Poorly generated keys can be predictable and
vulnerable to attacks, while compromised key distribution channels can
lead to man-in-the-middle attacks. Additionally, some algorithms have
inherent weaknesses; for instance, RSA is vulnerable to quantum attacks,
which can break the security of keys wusing Shor's algorithm.
Implementation flaws in software or hardware can introduce vulnerabilities
such as timing attacks or side-channel attacks that exploit information
leakage during computation [19].

Symmetric key cryptography also has its share of vulnerabilities. Short
key lengths reduce the security of symmetric key encryption algorithms,
with Grover's algorithm in quantum computing potentially halving the
effective security of key lengths. Weak encryption schemes may have
design flaws that make them susceptible to cryptanalysis, such as
differential or linear cryptanalysis. Implementation weaknesses, such as not
using proper padding schemes, can introduce vulnerabilities. For example,
the use of ECB (Electronic Codebook) mode in block ciphers can reveal
patterns in encrypted data, compromising security.

To address these vulnerabilities, organizations should adopt proactive
measures such as regular security audits, using strong algorithms, ensuring
proper implementation, and providing education and training to developers
and security professionals on best practices in cryptography. By

understanding and addressing these vulnerabilities, we can strengthen the



security of cryptographic systems and ensure the protection of sensitive

data in an increasingly complex digital landscape.

6.4.1 PUBLIC KEY CRYPTOGRAPHY (RSA, ECC)

Cryptographic systems are essential for securing modern communication,
but they face numerous threats that exploit design flaws, implementation
errors, and advances in computational power. Below, we examine some
common vulnerabilities in public-key cryptography [20].

Public Key Cryptography relies on the use of two mathematically
related keys: a public key and a private key. These keys enable secure
communication and digital signatures, ensuring data confidentiality,
integrity, and authenticity. Here, we explore some common vulnerabilities
associated with two widely used public-key cryptographic algorithms: RSA
and ECC.

RSA (Rivest-Shamir-Adleman): RSA is one of the most widely used
public-key cryptographic algorithms. It relies on the mathematical difficulty
of factoring large composite numbers. However, RSA faces several

vulnerabilities:

Weak Key Generation: Poorly generated RSA keys can be predictable
and vulnerable to attacks. Using strong random number generators is
critical for secure key generation.

Quantum Vulnerability: RSA is susceptible to quantum attacks. Shor's
algorithm can efficiently factor large numbers, breaking the security of
RSA by revealing the private key. This makes RSA vulnerable to future
quantum computers.

Key Distribution: Secure key distribution is essential. Compromised key
distribution channels can lead to man-in-the-middle attacks, where an

attacker intercepts and alters communication.



Implementation Flaws: Software and hardware implementations of
RSA can introduce vulnerabilities. Timing attacks and side-channel
attacks exploit information leakage during computation to deduce the

private key.

Understanding and addressing these vulnerabilities is crucial to
maintaining the integrity, confidentiality, and authenticity of data. As
quantum computing advances, the cryptographic community must prioritize
the development and adoption of quantum-resistant algorithms to ensure

long-term security [21].

6.4.2 SYMMETRIC KEY CRYPTOGRAPHY (DES, AES)

Cryptographic systems are essential for securing modern communication,
but they face numerous threats that exploit design flaws, implementation
errors, and advances in computational power. Below, we examine some
common vulnerabilities in symmetric-key cryptography. Symmetric-Key
Cryptography uses the same key for both encryption and decryption,
making it essential to keep the key secure. Here, we explore some common
vulnerabilities associated with two widely used symmetric-key
cryptographic algorithms: DES (Data Encryption Standard) and AES
(Advanced Encryption Standard).
DES (Data Encryption Standard):

DES was widely used before being superseded by AES. It relies on a 56-bit
key, making it vulnerable to brute-force attacks [22]. Here are some key

vulnerabilities:

Short Key Length: The 56-bit key length of DES is insufficient to
withstand brute-force attacks, as modern computational power can

exhaustively search the key space relatively quickly. This limitation



makes DES unsuitable for protecting sensitive data in today's security

landscape.

Weaknesses in Key Scheduling: DES has specific weaknesses in its key
scheduling algorithm that can lead to certain keys being less secure. For
example, certain keys, known as weak keys, produce the same subkeys in

multiple rounds of encryption, reducing the algorithm's overall security.

Susceptibility to Differential and Linear Cryptanalysis: DES is
vulnerable to cryptanalysis techniques that exploit patterns in the
encryption process. Differential cryptanalysis examines how differences
in plaintext affect differences in ciphertext, while linear cryptanalysis
uses linear approximations to describe the behavior of the block cipher.
These techniques can significantly reduce the effort required to break

DES encryption.

Triple DES (3DES): In an attempt to increase security, Triple DES
(3DES) was introduced, which applies the DES algorithm three times
with two or three different keys. However, even 3DES is now considered
less secure compared to modern algorithms like AES, especially given
the advances in computational power and cryptanalysis techniques. The
effective key length of 3DES, although longer than DES, still makes it

less desirable for high-security applications.

AES (Advanced Encryption Standard):
AES is one of the most widely used symmetric-key encryption algorithms,
known for its security and efficiency [23]. However, it faces some

vulnerabilities:



Short Key Lengths: While AES-128 is considered secure against
classical attacks, Grover's algorithm in quantum computing can reduce
the effective security to that of a 64-bit key. To counteract this, longer
key lengths like AES-256 are recommended.

Side-Channel Attacks: AES implementations can be vulnerable to side-
channel attacks that exploit information leakage during computation.
Techniques like Differential Power Analysis (DPA) can deduce the
encryption key by analyzing power consumption patterns. Other side-
channel attacks include electromagnetic analysis and cache-timing
attacks, which can also reveal critical information about the encryption

Process.

Fault Attacks: By inducing faults in the hardware during encryption,
attackers can clean information about the secret key. This requires robust
error detection and correction mechanisms to mitigate. Fault attacks can
be performed using techniques such as voltage manipulation, clock
glitches, or temperature variations to introduce errors in the

cryptographic computation.

Implementation Challenges:
Symmetric-key  cryptography must also contend with various

implementation challenges that can introduce vulnerabilities. These include:

Proper Use of Modes of Operation: Choosing the correct mode of
operation for block ciphers is critical. Modes like ECB (Electronic
Codebook) are insecure as they reveal patterns in the plaintext. Secure
modes such as CBC (Cipher Block Chaining), GCM (Galois/Counter
Mode), and others should be used to ensure data confidentiality and

integrity.



Secure Key Management: Ensuring the secure generation, distribution,
storage, and disposal of keys is essential. Poor key management practices

can lead to unauthorized access and compromise of encrypted data.

Understanding and addressing the vulnerabilities in symmetric-key
cryptography is crucial to maintaining the confidentiality and integrity of
data. While AES remains a robust choice, it must be implemented with
longer key lengths and protected against side-channel and fault attacks.
DES, on the other hand, is largely obsolete and should be replaced with
more secure algorithms like AES. As quantum computing advances, the
cryptographic community must continue to develop and adopt quantum-

resistant algorithms to ensure long-term security.
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“Quantum computing is not a distant dream. It's a fast-approaching reality that will

redefine what's computationally possible.”

— Arvind Krishna

SUMMARY

This chapter outlines the emerging need for quantum-safe cryptography in
light of advances in quantum computing. It introduces Mosca's Theorem as
a strategic forecasting tool to assess when quantum threats may
compromise current cryptographic systems. The discussion emphasizes
differentiating between vulnerable asymmetric primitives (like RSA
(Rivest-Shamir-Adleman) and ECC (Elliptic Curve Cryptography)) and
more resilient symmetric primitives, which, although more secure, still
require enhancements such as increased key lengths and modified
algorithms. The chapter categorizes post-quantum security levels and

proposes general countermeasures, including algorithmic modifications,
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improved key management, and strong randomization practices to protect
against quantum attacks like Grover's and Simon's algorithms.

Looking forward, the chapter highlights several key research and
implementation trends, such as Quantum Key Distribution (QKD), the
development of quantum-resistant symmetric ciphers, and quantum-secure
cryptographic protocols. It stresses the importance of standardization and
interoperability in achieving global readiness for the quantum era.
Emerging areas like quantum networking and the application of quantum
cryptography beyond key distribution are also explored. The chapter
concludes by reinforcing the urgency of proactive preparedness to ensure
robust cryptographic security in the coming age of quantum computing.

As technology evolves, the field of cryptography continues to adapt to
emerging challenges and opportunities. Future trends and applications in
cryptography reflect the growing complexity of security requirements and
the advancing threat landscape. Below is an exploration of key directions in

cryptographic development.

7.1 INTRODUCTION TO QUANTUM-SAFE
CRYPTOGRAPHY

Quantum-safe cryptography, also known as post-quantum cryptography,
refers to cryptographic algorithms that are designed to be secure against the
potential threats posed by quantum computers. Unlike classical computers,
which use bits to represent data as either Os or 1s, quantum computers
leverage quantum bits or qubits, which can exist in multiple states
simultaneously. This unique property enables quantum computers to solve
certain mathematical problems much more efficiently than classical

computers.



One of the key implications of quantum computing is its ability to break
widely-used cryptographic schemes that rely on the difficulty of problems
such as integer factorization and discrete logarithms. Algorithms like RSA,
DSA (Digital Signature Algorithm), and ECC are particularly vulnerable to
quantum attacks. Shor's algorithm, for instance, can efficiently factor large
numbers and compute discrete logarithms, rendering these cryptographic
schemes insecure in the presence of a sufficiently powerful quantum
computer. This has significant implications for the security of digital

communication, financial transactions, and data storage [1].

711 MOSCA'S THEOREM: A QUANTUM RISK FORECASTING
FRAMEWORK

As the era of quantum computing rapidly approaches, evaluating
cryptographic readiness becomes not just an academic concern but a
practical imperative. Mosca's Theorem offers a powerful risk evaluation
framework by assessing how long data must remain secure, how long

migration will take, and how soon quantum threats may materialize [2].

KEY PARAMETERS

x: Number of years your data must remain confidential (cover time).

y: Number of years it will take to transition to a post-quantum
cryptographic infrastructure (migration time).

z: Number of years remaining until a large-scale quantum computer
becomes viable or other advances threaten current cryptosystems

(collapse time).

7.1.2 MOSCA'S THEOREM AND QUANTUM THREAT
PREPAREDNESS



In the evolving landscape of quantum computing, the security of classical
cryptographic systems is under serious scrutiny. With advances in quantum
algorithms such as Shor's factoring algorithm and Grover's search,
traditional encryption methods especially those relying on factoring or
discrete logarithm problems are at risk of becoming obsolete. One of the
most widely referenced frameworks for assessing the urgency of migrating
to quantum-safe cryptographic systems is Mosca's Theorem, introduced by
Michele Mosca [3].

MOSCA'S THEOREM

Mosca's Theorem addresses the fundamental trade-offs between three key

time-based variables shown in Figure 7.1:

x: The number of years your information must remain secure (cover
time).

y: The time required to migrate existing systems to a quantum-resistant
infrastructure (migration time).

z: The estimated time remaining until a large-scale quantum computer is

built (collapse time).



(Case 1:)x+y>z

> Time

(Case 2:) x>z

> Time

(Case3:)y>z

> Time

Figure 7.1 Illustrative cases derived from Mosca's Theorem. Each scenario demonstrates a time-
based relationship among required security lifespan (x), migration time (y), and quantum readiness
collapse point (z) J

Mosca's inequality is expressed as:

If x + y > z,then worry. Ifx > zory > z, big trouble!



This simple but powerful inequality enables decision-makers to quantify

their risk based on how these parameters interact.

DETAILED INTERPRETATION

Casel:z+y >z

Even if the current cryptographic systems seem adequate, if the time it
takes to transition to quantum-safe algorithms plus the time for which
information must remain secure exceeds the time until quantum
capabilities arrive, there is an impending risk. Preparations must begin
immediately.

Case2:xz > 2

If the required security lifespan of the data exceeds the collapse time,
then even perfect encryption today cannot safeguard the data through its
intended lifetime. Adversaries could store encrypted data today and
decrypt it once a quantum computer becomes available.

Case3:y > 2

If the infrastructure migration will take longer than the time until
quantum computers arrive, then existing systems will collapse before
post-quantum alternatives can be deployed. This scenario represents a

systemic failure.

PRACTICAL INSIGHTS

While Mosca's theorem offers a theoretical framework for anticipating
quantum threats, its practical implications are profound and require careful
analysis. One of the main challenges is the uncertainty surrounding the
value of z, the time remaining until a large-scale quantum computer is built.

Estimates vary, but it is generally believed to fall somewhere between 10



and 30 years. This uncertainty makes planning for quantum-safe migration
a difficult but necessary task [3].

In sectors that manage highly sensitive data such as defense, healthcare,
and finance the value of x, the number of years that data must remain
secure, is often quite large, frequently ranging from 10 to over 50 years.
This long security requirement places significant pressure on organizations
to begin transitioning now to ensure data confidentiality in the quantum
future.

The time required for this transition, denoted as y, involves far more than
simply adopting new cryptographic algorithms. Migration encompasses a
comprehensive overhaul of existing infrastructure, including software
reengineering, cryptographic key management changes, hardware
replacement or updates, adherence to new regulatory standards, and staff
retraining. These are time-intensive and resource-heavy tasks.

Attempting to rush the migration process to shorten y without thorough
planning and validation can lead to 1insecure and error-prone
implementations. Such shortcuts can undermine the very security goals the
transition aims to achieve. Therefore, the migration strategy must strike a
balance between the urgency imposed by the looming quantum threat and

the diligence required for secure and resilient system upgrades.

7.1.3 QUANTUM SECURITY LEVELS AND PQC STRENGTH
CATEGORIES

The transition to quantum-safe cryptography requires rigorous standards to
classify and compare the security of Post-Quantum Cryptography (PQC)
algorithms. In light of the anticipated threats posed by large-scale quantum
computers, the National Institute of Standards and Technology (NIST) has

proposed a structured framework to categorize cryptographic security.



UNCERTAINTY IN SECURITY STRENGTH ESTIMATES

There are inherent uncertainties in estimating the quantum security strength

of cryptographic algorithms. These arise from two main sources:

Quantum Algorithmic Advances: Future discoveries may introduce
new quantum algorithms that significantly reduce the complexity of
cryptanalytic attacks.

Quantum Hardware Development: The practical characteristics of
future quantum computers, such as speed, coherence time, error rates,

and architectural limitations, remain difficult to predict.

To mitigate these challenges, NIST advocates for a classification system
that uses broad security categories rather than precise bit-level estimates.
These categories serve to align both symmetric and asymmetric primitives

under a unified model.

NIST PQC SECURITY STRENGTH CATEGORIES

Each level corresponds to the estimated cost of defeating a symmetric
cryptographic primitive using the best-known quantum or classical

techniques.

Level 1 (NIST-L1): Resistance equivalent to brute-force key search on
AES-128.

Level 2 (NIST-L2): Resistance equivalent to collision search on SHA-
256 or SHA3-256.

Level 3 (NIST-L3): Resistance equivalent to brute-force key search on
AES-192.

Level 4 (NIST-L4): Resistance equivalent to collision search on SHA-
384 or SHA3-384.



Level 5 (NIST-L5): Resistance equivalent to brute-force key search on
AES-256.
Level 6 (NIST-L6): is also known as paranoid security.

RESOURCE ESTIMATES FOR CRYPTANALYTIC ATTACKS

Table 7.1 outlines the estimated resources needed to attack symmetric

primitives, under both quantum and classical models (2016 estimates) [4].

Table 7.1

Resource estimates for attacks (call for proposal 2016) &

S.No. | Algorithms | Resource estimates

1 | AES-128 2170 /MAXDEPTH quantum gates or 2143
classical gates

2 SHA3-256 | 2146 classical gates

AES-192 2233 /MAXDEPTH quantum gates or 2207
classical gates

4 SHA3-384 | 2210 classical gates

5 | AES-256 2298 /MAXDEPTH quantum gates or 2272
classical gates

6 SHA3-512 | 2274 classical gates

INTERPRETING MAXDEPTH PARAMETERS

The MAXDEPTH term reflects assumptions about serial gate execution

limits:



MAXDEPTH = 2%0: Current yearly limit for logical quantum gate
operations.

MAXDEPTH = 254: Decade-long limit for classical serial computation.
MAXDEPTH = 2%: Millennium-long limit with idealized atomic-scale
qubits.

This classification guides the selection and standardization of PQC
algorithms that must operate securely under the threat of emerging quantum

capabilities.

UPDATED RESOURCE ESTIMATES FOR CRYPTANALYTIC
ATTACKS (2022)

In the 2022 Call for Proposals [5], NIST released revised estimates for the
resources required to break symmetric cryptographic primitives using
classical and quantum methods. These updated values provide more
conservative and realistic expectations based on advances in quantum
algorithm cost analysis and circuit depth assumptions.

These revised benchmarks reinforce the need for robust quantum-
resistant algorithms that can provide long-term security assurances even in
the face of improved quantum algorithms and computing hardware. The
slight reduction in quantum cost estimates (e.g., from 217 to 2157 for AES-
128) emphasizes the dynamic nature of cryptanalytic modeling and the

importance of conservative design margins in PQC standards (Table 7.2).

Table 7.2

Resource estimates for attacks (call for proposal 2022) J

S.No. | Algorithms | Resource estimates




S.No. | Algorithms | Resource estimates
1 | AES-128 2157 /MAXDEPTH quantum gates or 2!43
classical gates
2 | SHA3-256 | 2'%6 classical gates
AES-192 2221 /MAXDEPTH quantum gates or 2297
classical gates
4 SHA3-384 | 2210 classical gates
5 | AES-256 2285 /MAXDEPTH quantum gates or 2272
classical gates
6 | SHA3-512 | 2?74 classical gates

7.1.4 ASYMMETRIC KEY CRYPTOGRAPHIC PRIMITIVES

The researchers are developing quantum-safe cryptographic algorithms that
can withstand quantum attacks. These quantum-resistant algorithms are
based on mathematical problems that are believed to be hard for both
classical and quantum computers. There have been several interesting

approaches to post-quantum cryptography that have been investigated in

recent years. These include the following:

Lattice-based cryptography

Code-based cryptography

Multivariate cryptography

Hash-based cryptography

Supersingular Isogeny-based cryptography

LATTICE-BASED CRYPTOGRAPHY




Lattice-based cryptography is one of the most promising and well-studied
approaches in the realm of post-quantum cryptography. This approach relies
on the hardness of well-known lattice problems, such as the Learning With
Errors (LWE) problem and the Shortest Vector Problem (SVP). These
problems are believed to be computationally intractable even for quantum
computers, making lattice-based schemes strong candidates for securing
communications in a post-quantum world.

The LWE problem, in particular, has gained significant attention because
it offers strong security guarantees and is versatile enough to be the
foundation for constructing a wide variety of cryptographic primitives. Its
hardness has been shown to be reducible from worst-case lattice problems,
which means that breaking a cryptographic scheme based on LWE would
be as hard as solving the hardest instances of certain lattice problems. This
property, known as worst-case to average-case reduction, is one of the key
reasons why lattice-based schemes are considered highly secure [6].

Another fundamental lattice problem is the SVP, which asks for the
shortest non-zero vector in a high-dimensional lattice. This problem is
believed to be extremely difficult, and many cryptographic constructions
rely on its assumed hardness. Importantly, these underlying problems
remain hard not only for classical computers but also for quantum
algorithms, including those that generalize Shor's and Grover's algorithms.

In addition to their strong theoretical security guarantees, lattice-based
cryptographic schemes are often efficient and scalable. They are well-suited
for modern computing environments, as they typically involve simple
mathematical operations like modular addition and multiplication. This
makes them attractive for implementation on constrained devices, such as

those found in [oT networks and mobile systems.



One notable example of a lattice-based cryptographic scheme is
NTRUEncrypt, which is based on problems related to polynomial rings
and lattice structures. NTRUEncrypt was one of the earliest practical
lattice-based encryption schemes and has been extensively studied and
refined over the years. It offers strong security guarantees while
maintaining high performance and low computational overhead.
NTRUEncrypt is particularly appealing because of its small key sizes and
fast encryption/decryption times, which make it suitable for resource-
constrained environments. Its design is resistant to known quantum attacks,
and its security relies on the hardness of finding short vectors in certain
structured lattices. NTRUEncrypt was selected as one of the finalists in the
NIST Post-Quantum Cryptography standardization process under the
category of public-key encryption and key encapsulation mechanisms [7].

Beyond encryption and digital signatures, lattice-based cryptography also
supports a wide range of advanced cryptographic functionalities. Notably, it
enables the construction of fully homomorphic encryption (FHE)
schemes, which allow arbitrary computations to be performed on encrypted
data without needing to decrypt it first. This opens up transformative
possibilities for secure cloud computing and privacy-preserving data
analytics. Furthermore, lattice-based schemes can support functional
encryption, where access to encrypted data can be finely controlled based
on specific functions or policies [§].

Given these advantages—strong security rooted in worst-case hardness,
practical efficiency, resistance to quantum attacks, and support for advanced
features—Ilattice-based cryptography is widely regarded as a foundational

pillar of future cryptographic systems [9].

CODE-BASED CRYPTOGRAPHY



Code-based cryptography is one of the oldest forms of post-quantum
cryptographic schemes, dating back to the late 1970s. These algorithms rely
on the computational hardness of decoding a general linear code, a problem
that has been shown to be NP-hard. The most well-known example is the
McEliece cryptosystem, which was introduced in 1978. It is based on the
difficulty of decoding random linear error-correcting codes, specifically
Goppa codes. Despite its long history, the McEliece cryptosystem has
withstood decades of cryptanalytic scrutiny and remains unbroken by both
classical and quantum algorithms.

The McEliece cryptosystem is notable for its speed and robustness. It
allows for very fast encryption and decryption operations, making it
suitable for high-throughput applications. However, one of its primary
drawbacks is the large size of its public keys, which can range from several
hundred kilobytes to even megabytes, depending on the parameter set.
Nevertheless, the trade-off is considered acceptable given the strong
security assurances it provides. Importantly, McEliece is one of the few
cryptosystems that remain secure in the face of quantum adversaries, as the
best known quantum attacks offer only polynomial speedups over classical
ones, which are still computationally infeasible [10].

A closely related scheme is the Niederreiter cryptosystem, which is
also based on error-correcting codes but uses a different mathematical
formulation. The Niederreiter variant typically offers the same level of
security as McEliece, with some optimizations in terms of ciphertext size
and implementation efficiency. Both schemes form the foundation of
ongoing research in code-based cryptography and are among the strong

contenders in the NIST post-quantum cryptography standardization process
[L1].



In parallel with code-based approaches, some cryptographic schemes
explore hardness assumptions based on NP-complete problems. These
schemes derive their security from the assumption that certain decision or
optimization problems—known to be NP-complete—remain hard to solve
even for quantum computers. Examples include the subset-sum (knapsack)
problem, graph coloring, and satisfiability (SAT). While theoretically
appealing, many early schemes based on NP-complete problems were
broken or shown to have structural weaknesses, often due to hidden
algebraic properties or poorly chosen parameters [12].

Nonetheless, ongoing research aims to construct practical and secure
cryptographic primitives grounded in NP-completeness. The main appeal of
such approaches lies in the broad range of problems available and the
general belief that NP-complete problems are inherently hard to solve in all
cases, even with quantum resources. If successfully realized, cryptosystems
based on NP-complete problems could offer new directions for post-

quantum security with diverse applications across different platforms [13].

MULTIVARIATE CRYPTOGRAPHY

Multivariate cryptography 1s a class of post-quantum cryptographic
schemes based on the hardness of solving systems of multivariate
polynomial equations over finite fields. Solving such systems is known to
be an NP-hard problem, and there are currently no efficient algorithms—
classical or quantum—that can solve them in general, particularly when the
equations are constructed with certain structures to resist attacks [14].

This approach is particularly attractive for its potential to provide
efficient and secure digital signature schemes. In contrast to many lattice-
based or code-based encryption systems, multivariate schemes can offer

relatively small signature sizes and fast verification times, making them



suitable for applications requiring lightweight cryptography, such as
embedded systems, smart cards, and IoT devices [15].

A prominent example is the Rainbow signature scheme, which is a
layered generalization of the Unbalanced Oil and Vinegar (UOV) signature
scheme. Rainbow has been a leading candidate in the NIST post-quantum
cryptography standardization project due to its strong security assumptions
and performance characteristics. The scheme constructs a trapdoor function
based on a structured set of multivariate quadratic equations, which allows
for fast signature generation and efficient verification [16].

Another important multivariate scheme is the Unbalanced Oil and
Vinegar (UOV) scheme, which simplifies the construction of secure
multivariate equations by dividing variables into “oil” and “vinegar”
categories. This separation helps to prevent attacks that exploit algebraic
structures, making UOV one of the more resilient multivariate approaches
[L7].

Despite their advantages, multivariate schemes must be carefully
parameterized to avoid algebraic attacks that exploit patterns in the
underlying polynomial systems. Ongoing research continues to refine the
balance between security, efficiency, and practicality, making multivariate
cryptography an active and promising area for post-quantum digital

signatures [18].

HASH-BASED CRYPTOGRAPHIC SCHEMES

Hash-based cryptographic schemes are a class of post-quantum
cryptography that rely on the security of cryptographic hash functions,
which are well-known for their resistance to preimage, second-preimage,
and collision attacks. These schemes are particularly well-suited for digital

signatures because they do not depend on hard mathematical problems such



as integer factorization or discrete logarithms. Instead, hash-based
signatures leverage the fundamental property of cryptographic hash
functions, namely their collision resistance—the difficulty of finding two
distinct inputs that produce the same hash output.

The most notable example of a hash-based cryptosystem is the Merkle
signature scheme, proposed by Ralph Merkle in 1979. The Merkle scheme
builds digital signatures by using a tree structure of hash functions, where
each node 1n the tree 1s a hash of its children, and the root of the tree serves
as the public key. Merkle's approach allows for the efficient verification of
signatures and provides strong security guarantees based on the hardness of
finding collisions in hash functions [19].

One of the most important advancements in hash-based cryptography is
the eXtended Merkle Signature Scheme (XMSS). XMSS is a stateful
hash-based signature scheme designed to resist quantum attacks. Unlike
earlier Merkle-based schemes, XMSS provides a secure method for
generating multiple signatures without reusing keys. Its efficiency and
security have made it one of the leading candidates in the NIST post-
quantum cryptography standardization project [20].

Another notable hash-based scheme is the Leighton-Micali Signature
Scheme (LMS), which is designed to offer secure digital signatures with a
small signature size and fast signing and verification times. Like XMSS,
LMS is based on a tree structure, but it is optimized for high-speed
signature generation, making it suitable for applications that require
frequent signing, such as secure communications and software updates [21].

Both XMSS and LMS are quantum-resistant due to their reliance on the
collision resistance of hash functions, ensuring that they remain secure even

against adversaries armed with quantum computers [22].



SUPERSINGULAR ISOGENY-BASED CRYPTOGRAPHY

Supersingular isogeny-based cryptography is a promising post-quantum
cryptographic technique that relies on the hardness of finding isogenies
between supersingular elliptic curves. An isogeny is a special type of
morphism between elliptic curves that preserves their group structure. In the
context of cryptography, an isogeny-based approach involves mapping one
elliptic curve to another using an isogeny, with the computational difficulty
of finding these isogenies serving as the foundation of security.
Supersingular elliptic curves are particularly well-suited for this purpose
because they have special properties that make certain computational
problems associated with isogenies difficult to solve, even for quantum
computers.

The security of supersingular isogeny-based cryptosystems is based on
the conjectured hardness of the supersingular isogeny problem, which
involves computing isogenies between supersingular elliptic curves. While
classical algorithms struggle to solve this problem in polynomial time, no
efficient quantum algorithms have been discovered to date, making
isogeny-based schemes resistant to quantum attacks. This is in stark
contrast to traditional schemes like RSA or ECC, which are vulnerable to
quantum algorithms like Shor's algorithm.

Supersingular isogeny-based cryptographic schemes offer several
attractive properties, such as compact key sizes, which make them suitable
for constrained environments, such as embedded systems and IoT devices.
Additionally, these schemes are versatile and can be used for a variety of
cryptographic purposes, including key exchange and digital signatures. A
notable example of a scheme based on supersingular isogenies is the
Supersingular Isogeny Diffie-Hellman (SIDH) protocol [23], which

allows two parties to securely exchange cryptographic keys. Another



example 1s the Supersingular Isogeny Key Encapsulation (SIKE) scheme
[24], which provides a secure key exchange mechanism in the post-
quantum era.

Both SIDH and SIKE have been recognized as strong candidates for
quantum-resistant cryptography, with ongoing research focused on
improving their efficiency and scalability [25].

By proactively transitioning to quantum-resistant algorithms, sensitive
information can be safeguarded, ensuring the continued trust in digital
infrastructure amid evolving technological threats. The adoption of
quantum-safe cryptographic solutions is essential for maintaining the long-
term security of digital communication and data. Through collaboration,
research, and standardization, a secure and resilient cryptographic
ecosystem can be built to withstand the challenges posed by quantum
computing. The ongoing development and implementation of quantum-
resistant algorithms will play a crucial role in protecting the confidentiality,

integrity, and authenticity of digital information in the quantum era.

7.1.5 SYMMETRIC KEY CRYPTOGRAPHIC PRIMITIVES

In symmetric cryptography, doubling the sizes of keys is often assumed to
be a sufficient protection against quantum adversaries. This is because
Grover's quantum search algorithm, which can be used for generically
recovering the key, is limited to a quadratic speedup. However, this
oversimplified assumption may not be sufficient always.

In this direction, let us take an example from the classical paradigm.
After the attacks were reported on the Data Encryption Standard (DES),
which uses a 56-bit key to encrypt any plaintext, Double-DES was

proposed with the motivation of increasing the security to 112 bits.



However, due to the attack called Man-in-the-Middle, the security of
Double-DES remains 56 bits instead of the expected 112 bits.

In the quantum domain, in the paper entitled Beyond Quadratic Speedups
in Quantum Attacks on Symmetric Schemes by Xavier Bonnetain et al.
(corr, Vol. abs/2110.02836, 2021, https://arxiv.org/abs/2110.02836), the

authors reported a symmetric block cipher design with:

a security bound of 2.5n against classical adversaries,

a quantum attack in time roughly 2", using classical queries only.

This gives, for the first time, a proven 2.5 speedup on a quantum attack in
the classical query model.

In this regard, one may consider the paper titled Grover on Chosen IV
Related Key Attack Against GRAIN-128a by Samanta et al. (INDOCRYPT
2023). In the paper, the authors showed that exploiting Grover's algorithm
as a tool followed by classical processing, the query complexity of a chosen
IV-related key attack considered by Banik et al. in ACISP 2013, can be
reduced to O(23?) from O(2%), which is actually far beyond the quadratic
limit of 2128, Thus, doubling the key might not be the only viable strategy to
confirm the security of symmetric ciphers in the post-quantum era.

Additionally, doubling the key size may increase the round number. For
example, AES-128 is designed for 10 rounds whereas AES-256 is designed
for 14 rounds. This affects a large number of parameters such as speed,
weight, and cost of the resources.

Finally, it might not be a wise assumption that only Grover's Search
Algorithm warrants the security of symmetric key cryptology. Simon's
Period Finding Algorithm may also pose a threat to the same. In this regard,
one may refer to the paper Breaking Symmetric Cryptosystems using
Quantum Period Finding by Marc Kaplan et al. (CRYPTO 2016). In the
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paper, the authors showed how Feistel construction becomes vulnerable to a

distinguishing attack on a three-round scheme.

QUANTUM ATTACK STRATEGY USING GROVER'S
ALGORITHM

Quantum cryptanalysis using Grover's algorithm presents a structured
approach to attacking symmetric key ciphers. The overall methodology
involves circuit construction, oracle formulation, and iterative amplitude
amplification shown in Figure 7.2. The following flowchart outlines the
decision-making and operational steps in executing a Grover-based

quantum attack against a block cipher:

Building the quantum
circuit of the targeted

cipher
Key length
— Noj
(" ] )
Performing a preliminary YES Impose _cor_relatlon a_ttack
guess for the key based on to derive intermediate
the known - plain text attack states because of the
structural design

\ ) v

Solve the linear

Developing the Grover's search
oracle based on the algorithm for the particular circuit property to regenerate
or amplitude amplification using (Parallelization may be needed) the possibilities of the
the initial guess ¢ secret key )

Mounting the Grover's oracle

Measuring the best
guessed key with the
highest probability

Figure 7.2 Flowchart of a quantum Grover-based attack strategy on symmetric-key ciphers <1



EXPLANATION OF FLOWCHART COMPONENTS

Building the quantum circuit: The process begins by encoding the
encryption function as a quantum circuit, which serves as the basis for
the oracle.

Key Length Decision: Depending on the cipher's key size, different
strategies are employed. If the key length is 128 bits or less, Grover's
algorithm is considered viable.

Preliminary Key Guess: In the YES path, the attacker can exploit
known plaintext-ciphertext pairs to initialize a promising guess and
reduce the search space.

Grover Oracle Development: An oracle is constructed to reflect correct
guesses of the key. Amplitude amplification is used to increase the
probability of measuring the correct result.

Mounting and Executing Grover's Algorithm: The oracle is embedded
into the Grover iteration loop. Depending on the complexity,
parallelization may improve efficiency.

Measurement Phase: After the required O(\/N ) iterations, the quantum
register is measured to reveal the most likely key candidate.

Structural Cryptanalysis (NO path): For keys longer than 128 bits,
direct Grover search becomes infeasible. Instead, structural attacks such
as correlation attacks are employed.

Intermediate State Analysis: These attacks exploit cipher properties to
derive partial state information, which is then used to infer the secret key

via algebraic analysis.

This flowchart reflects a hybridized quantum-classical approach tailored
to cipher design and key length. The method adapts between brute-force
amplification and structure-based inference to maximize the effectiveness

of quantum adversaries.



DEPTH CONSTRAINTS IN QUANTUM KEY RECOVERY
ATTACKS

Quantum circuits used for cryptanalytic attacks are limited by physical
constraints such as coherence time and gate fidelity. These limitations
impose restrictions on the maximum allowable depth of a quantum circuit
—quantified by a parameter commonly referred to as MAXDEPTH. A
typical reference depth used in feasibility analysis is 2%° logical gate

operations.

Figure 7.3 outlines a decision framework used to assess whether a
quantum key recovery attack can be realistically executed under such depth

constraints.

Depth Restrictions: The attack is initially assessed based on the required
depth of the quantum circuit implementation.
Decision Node (< 2%0): If the required circuit depth is within 24° gates, it
is considered feasible to mount a practical quantum key recovery attack.
In this case, amplitude amplification and measurement (such as in
Grover's algorithm) can proceed within realistic hardware capabilities.
If the Depth Exceeds the Limit: When the circuit depth requirement
exceeds 2%, the quantum attack must be adapted using one of the
following parallelization strategies:
Outer Parallelization: This approach restricts depth by trading off
success probability. Multiple low-depth circuits are executed
independently, each with a low chance of success. The key is
eventually recovered by combining results from several runs.
Inner Parallelization: The quantum circuit is divided into smaller
sub-circuits, each responsible for a portion of the key search. These

sub-circuits are designed with reduced depth, allowing them to



operate under the imposed hardware constraints. This technique often
requires the cipher to support decomposition of its key space or

internal structure.

Depth Restrictions I ) No Valid circuit for mounting
quantum key recovery attack

l Yes

Outer parallelization
(Restricting the depth by costing
low success probability)

Inner parallelization
(Dividing into smaller circuits with shallow
depth to generate different parts of the
secret key)

Figure 7.3 Flowchart representing quantum attack feasibility under depth restrictions <1

This analysis plays a critical role in determining whether a theoretical
quantum attack is viable in practice and guides cryptanalysts in designing
hardware-aware attack strategies.

Symmetric key cryptography is a fundamental component of modern
cryptographic systems, where the same secret key is used for both
encryption and decryption. With the emergence of quantum computing, the
security landscape for symmetric cryptographic primitives is also shifting.
Although symmetric cryptography is generally more resistant to quantum
attacks compared to asymmetric cryptography, quantum algorithms still
impose new constraints and performance requirements [26].

Symmetric key cryptography relies on the shared knowledge of a secret
key between communicating parties. The two primary categories of

symmetric primitives are:



Block ciphers: These encrypt data in fixed-size blocks. Examples
include AES (Advanced Encryption Standard), DES (Data Encryption
Standard), and 3DES.

Stream ciphers: These encrypt data one bit or byte at a time. Examples
include RC4 and Salsa20.

Other important primitives include:

Message Authentication Codes (MACs): Used for verifying data
integrity and authenticity, such as HMAC.

Authenticated Encryption (AE): Combines encryption and
authentication, with schemes like AES-GCM.

7.1.6 GENERAL COUNTERMEASURES

Stream ciphers are vulnerable to quantum algorithms such as Grover's and
Simon's. Effective countermeasures focus on key management, cipher
design, and protocol-level enhancements to improve resistance against

quantum threats.

7.1.6.1 Increasing Key Length

Grover's algorithm reduces the complexity of brute-force key search from
2" to approximately 272, effectively halving the security level of
symmetric ciphers. For instance, a 128-bit key provides only 64-bit security
against a quantum adversary.

To restore robust security, increasing the key length is a common
strategy. A 256-bit key would require around 2'*® operations even with
Grover's algorithm, thus maintaining an adequate security margin.

However, longer keys introduce practical challenges, such as increased

memory usage, reduced throughput, and greater computational overhead.



As such, key length extension should be carefully balanced with
performance requirements and considered alongside other quantum-

resistant strategies to ensure comprehensive protection.

7.1.6.2 Algorithm Modifications

Modifying cryptographic algorithms is a key strategy to improve resilience
against quantum attacks. These modifications focus on enhancing non-
linearity, adapting cipher modes, and incorporating advanced key and

randomness techniques.

Incorporating Non-linearity

Increasing the non-linearity in cipher design reduces predictability and
improves resistance to quantum analysis. This includes using complex S-
boxes, generalized Feistel structures, and replacing LFSRs with Non-linear
Feedback Shift Registers (NLFSRs). Techniques like chaotic maps can
further enhance wunpredictability but must be weighed against

implementation costs.

Mode of Operation Adjustments

Adopting secure modes such as Authenticated Encryption with Associated
Data (AEAD) provides encryption and integrity protection. Modes like
Galois/Counter Mode (GCM) and Encrypt-then-MAC (EtM) hinder
quantum-aided forgery and ciphertext manipulation. Additionally, nonce-
based encryption helps prevent replay and adaptive attacks by ensuring

ciphertext uniqueness, enhancing overall quantum resistance.

7.1.6.3 Key Management Enhancements



Enhancing key management through frequent key rotation and robust key

derivation functions is essential to mitigate quantum threats.

Frequent Key Rotation

Frequent key rotation reduces the duration a key remains in use, limiting the
time quantum adversaries have to perform brute-force attacks like Grover's.
Although it introduces additional management overhead, this strategy

significantly improves overall cryptographic resilience.

Key Derivation Functions

Quantum-resistant Key Derivation Functions (KDFs) generate secure keys
from initial keying material using high-entropy inputs and memory-hard
techniques. Functions such as Argon2 and PBKDF2 can be strengthened
with higher iteration counts and secure hash functions like SHA-3.
Incorporating HMAC-based expansion further prevents key prediction or

compromise, ensuring robust protection even against quantum adversaries.

7.1.6.4 Randomization Techniques

Randomization enhances the quantum resistance of symmetric ciphers by

reducing structural predictability.

Random Initialization Vectors (IVs)

Using cryptographically secure pseudo-random number generators
(CSPRNGs) for IVs ensures that each encryption session produces a unique
ciphertext, even with the same key. For nonce-based modes, uniqueness is

essential, but combining it with randomness adds further protection.



Random Key Generation

Keys should be derived from high-entropy sources to resist quantum brute-
force techniques like Grover's algorithm. Regular key refreshment and
secure management protocols further limit an adversary's ability to exploit

key reuse.

Integration with Cipher Modes

Cipher modes such as CTR and GCM rely on random or pseudo-random
IVs to prevent keystream repetition. This integration ensures added

robustness against quantum-enabled pattern recognition.

Defense Against Replay Attacks

Randomized IVs protect against quantum replay attacks by ensuring
ciphertext uniqueness, thereby preventing adversaries from gaining

statistical advantages through message repetition.

7.1.7 FUTURE DIRECTIONS

Quantum cryptography promises to reshape secure communication by
leveraging the fundamental principles of quantum mechanics. As both
quantum technologies and quantum attacks continue to evolve, the research
and development of quantum cryptography is expected to expand in
multiple directions. This section outlines key future directions for the field
[27].

7.1.71 Advancement of Quantum Key Distribution (QKD)

QKD remains one of the most mature applications of quantum

cryptography. QKD is expected to evolve significantly in the coming years.



A major focus will be on scalability and integration, aiming to develop
QKD networks that can be deployed on a global scale and integrated with
existing fiber-optic and satellite communication infrastructures. Cost
reduction 1s another critical area, with efforts directed toward creating
affordable and compact QKD devices suitable for widespread commercial
and consumer use. Additionally, enhancing key generation and data
transmission rates is essential to meet the demands of high-speed
communication networks. A particularly important research direction is
Device-Independent QKD (DI-QKD), which seeks to eliminate the need for
trust in the internal workings of quantum devices, thereby protecting against

side-channel attacks and implementation flaws [28].

7.1.7.2 Quantum-Resistant Symmetric Key Systems

Although symmetric key cryptography is relatively resistant to quantum
attacks, future research will focus on enhancing its resilience and efficiency
in the quantum era. One key direction is the optimization of key sizes and
algorithms, where cryptographic parameters are adjusted to ensure adequate
security against Grover's algorithm while preserving computational
performance. Another important area involves designing quantum-resistant
modes of operation, which includes innovating block cipher modes and
authenticated encryption schemes capable of withstanding quantum
adversaries. Furthermore, the development of lightweight post-quantum
ciphers is essential, particularly for embedded systems and IoT devices that
require efficient yet secure cryptographic primitives in resource-constrained

environments.

7.1.7.3 Quantum-Secure Cryptographic Protocols



Beyond individual cryptographic algorithms, entire cryptographic protocols
must be reassessed in light of emerging quantum threats. One significant
area of focus is the design of quantum-secure Multi-Party Computation
(MPC) protocols that can operate securely even when adversaries possess
quantum computational capabilities. In addition, there is a need to develop
quantum-secure zero-knowledge proofs that maintain both their soundness
and zero-knowledge properties when subjected to quantum attacks. Another
promising direction is the integration of quantum-resistant algorithms into
blockchain technologies, ensuring the long-term security of consensus
mechanisms and cryptographic primitives used within decentralized

systems [29].

7.1.7.4 Standardization and Interoperability

With growing international efforts in post-quantum cryptography, such as
NIST's PQC standardization initiative, future research will emphasize the
establishment of comprehensive frameworks and guidelines. A key
direction is the development of global standards for quantum cryptography,
promoting collaboration on protocols, key lengths, and implementations to
ensure consistency and interoperability across nations and systems.
Additionally, hybrid cryptographic systems that combine classical and
quantum-resistant algorithms are expected to play a critical role in
maintaining security during the transitional period toward fully quantum-
secure infrastructures. Equally important is the creation of regulatory
frameworks that provide governance, compliance guidelines, and
certification procedures for the safe and effective deployment of quantum

cryptographic technologies.

7.1.7.5 Quantum Cryptography Beyond Key Distribution



Future quantum cryptographic protocols are expected to extend well beyond
QKD, opening new possibilities for secure communication and digital trust.
One such direction is the development of quantum digital signatures, which
aim to provide secure and unforgeable authentication mechanisms grounded
in quantum principles. Another promising area is the creation of quantum
money and tokens—quantum-secure monetary systems that leverage the
no-cloning theorem to prevent duplication and counterfeiting. Additionally,
foundational cryptographic tools such as quantum oblivious transfer and bit
commitment are being explored as essential components for constructing

more complex and robust quantum-secure protocols [30].

7.1.7.6 Quantum Network Infrastructure

Building a full-scale quantum internet will be essential for realizing many
of the cryptographic advancements enabled by quantum technologies.
Research directions in this area include the development of quantum
repeaters and entanglement swapping techniques, which are crucial for
enabling long-distance quantum communication. Additionally, the creation
of quantum internet protocols is a key focus, aiming to design network
layers and communication protocols specifically tailored for quantum data
transmission. Furthermore, exploring entanglement-based communication
models is an exciting frontier, as it offers the potential to leverage quantum
entanglement as a resource for novel cryptographic capabilities and secure

communication systems [31].

7.1.8 CONCLUSION

Quantum cryptography is still in its early stages but holds immense
potential. Its future development hinges on both theoretical advancements

and technological breakthroughs. As quantum computing matures,



proactive investment in quantum-safe and quantum-enabled cryptographic
systems is imperative to ensure long-term security and privacy in the digital
age.

Cryptography is a dynamic and ever-evolving field, continually adapting
to meet the security demands of the digital age. By staying informed about
advancements in cryptographic research and adopting innovative solutions,
we can ensure the long-term security and privacy of digital communication
and data. The collaboration between researchers, industry, and government
will be essential in developing and implementing the next generation of
cryptographic technologies, safeguarding our digital future. By addressing
current challenges and anticipating future developments, the field of
cryptography will continue to provide the foundation for secure

communication, data protection, and trust in the digital world.
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