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This introduction to quantum computing from a classical programmer’s perspective
is meant for students and practitioners alike. About 50 fundamental algorithms are
explained with full mathematical derivations and classical code for simulation, using
an open-source code base developed from the ground up in Python and C++. New
material throughout this fully revised and expanded second edition includes new chap-
ters on Quantum Machine Learning, State Preparation, and Similarity Tests.

After presenting the basics of quantum computing and the software infrastructure
used for simulation, a section on modeling classical logic with quantum gates prepares
for the quantum supremacy experiment. With this background, the following sec-
tions discuss, derive, and implement with working code algorithms exploiting entan-
glement, blackbox algorithms, algorithms for state preparation and state similarity
tests, algorithms based on amplitude amplification, the quantum Fourier transform
and phase estimation, several quantum optimization algorithms, quantum walks, and
a short section on foundational quantum machine learning algorithms. The list of
algorithms includes Shor’s algorithm, Grover’s algorithm, SAT3, graph coloring, the
Solovay—Kitaev algorithm, Moéttonen’s algorithm, quantum mean, median, and min-
imum finding, Deutsch’s algorithm, Bernstein—Vazirani, quantum teleportation and
superdense coding, and the CHSH game. From the field of quantum machine learning,
the book discusses Euclidean distance, principal component analysis, and the HHL
algorithm. The book also addresses issues around programmer productivity, including
quantum noise, error correction, quantum programming languages, compilers, and
techniques for transpilation.

Robert Hundt is a distinguished engineer at Google. He has led many compiler and
performance projects, including an open-source CUDA compiler and the high-level
synthesis toolchain XLS. He is the senior tech lead for Google’s low-level machine
learning software infrastructure, which includes the OpenXLA compiler for CPU,
GPU, and TPU. He has more than 25 scientific publications, holds more than 35
patents, and is a senior member of the Institute of Electrical and Electronics Engineers.



“There is a great deal of interest in quantum computing today. What many would like is
a book that explains quantum computing to people who already know how to program
conventional computers. This book successfully fills that need.”

— David Patterson, 2017 ACM A.M. Turing Award Laureate

“There is a critical need for quantum software engineers in the emerging quantum com-
puting industry. Robert Hundt is a classical software engineer who presents quantum
computing as simply as possible to others with a similar background. This book could
be the perfect vehicle for many interested in this emerging area.”

— Fred Chong, Seymour Goodman Professor, University of Chicago

“Quantum mechanics, the century-old theory underlying modern physics and chemistry,
has a reputation for being incomprehensible. Professional physicists have a standard
approach to this conundrum: ‘Shut up and calculate!” This book provides an alternative
much better suited to the programmers of the twenty-first century interested in quantum
computing: ‘Shut up and program!™’

— Sergio Boixo, Google

“This book strikes just the right balance between theory and practice. Exploring quantum
computing from the perspective of a classical programmer, using software and simulators
to explain all concepts and algorithms, leads to an intuitive, accessible, yet deep learning
experience. I highly recommend this book!”

— Kunle Olukotun, Cadence Design Professor, Stanford University

“This book takes a unique approach of introducing quantum computing with a combination
of precise but manageable mathematics, open-source code, and detailed derivations of
many core quantum algorithms, which makes it an ideal learning resource for the com-
munity of software programmers, including both students and professionals, to explore the
fascinating land of quantum computing.”

— Jason Cong, Volgenau Chair for Engineering Excellence, UCLA
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Introduction

I think I can safely say that nobody understands quantum mechanics.
Feynman (1965)

I have been impressed by numerous instances of mathematical theories that are really about
particular algorithms; these theories are typically formulated in mathematical terms that are
much more cumbersome and less natural than the equivalent formulation today’s computer
scientists would use.

Knuth (1974)

This book is an introduction to quantum computing from the perspective of a classical
programmer. All major concepts and algorithms are explained with code, based on
the insight that much of the complicated-looking math typically found in quantum
computing books may look quite simple in code. For many programmers, reading
code is faster than reading complex mathematical derivations. Coding also allows
experimentation, which helps build intuition and understanding of the fundamental
mechanisms of quantum computing. I believe that this approach will make it efficient
and fun to get started.

Contrary to other learning resources, we will not use available software frameworks
in this book, such as the well-developed Qiskit toolkit from IBM or Google’s Cirq. The
goal is to learn about quantum computing without being burdened by the complexities
of these frameworks. Instead, we build our own infrastructure from the ground up,
based initially on Python’s numpy library. It turns out that, to learn the fundamentals,
only a few hundred lines of code are required. This initial code is slow but easy to
debug and experiment with, making it an excellent learning vehicle.

We also improve this infrastructure, accelerate it with C++, and detail an elegant
sparse representation. We introduce basic compiler concepts that allow for the tran-
spilation of our circuits to platforms like Qiskit, Cirq, and others. This enables the
use of these systems’ advanced features, such as scale-out performance and advanced
error models.

Typically, an introduction to quantum computing is preceded by a sizable rein-
troduction of complex linear algebra. We will not follow this pattern here. Many
programmers have a solid foundation in linear algebra, but others lack the background
or interest in this topic. It is my goal to produce an attractive learning resource for
both groups without getting too deep into linear algebra. Hence, I only assume basic
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familiarity with complex numbers, vectors, and matrices. Some core concepts are
reviewed in Chapter 1. These basics will be sufficient for most of the book.

Nevertheless, this second edition of the book goes deeper into the mathematical
foundation and adds a dedicated section on more advanced topics. Although those
will only be needed for a few algorithms, the book would not be complete without
them. I hope that this format will be helpful to the linear algebra-challenged and not
be too shallow for the cognoscenti.

The book is organized into 16 chapters plus an appendix. To get started, it is rec-
ommended to read the first three chapters on the fundamentals of quantum computing
and the code base that we use throughout the book. Chapters 4 and 5 are the bridge to
the remaining chapters on various classes of algorithms, which can be read in almost
any order. The book closes with a discussion of quantum programming languages,
compilation techniques, and other aspects of productivity in Chapter 16. Some of
the later chapters may reuse insights from earlier chapters, but the references and
extensive index will allow you to find any missing information.

Chapter 1 The Mathematical Minimum This brief chapter discusses the
minimum mathematical background required to fully understand the derivations in
this text. Basic familiarity with matrices and vectors is assumed. The chapter
reviews key properties of complex numbers, the Dirac notation with inner and
outer products, the Kronecker product, unitary and Hermitian matrices,
eigenvalues and eigenvectors, the matrix trace, and how to construct the Hermitian
adjoint of matrix-vector expressions.

Chapter 2 Quantum Computing Fundamentals This chapter introduces the
fundamental concepts and rules of quantum computing. In parallel, it develops an
initial, easy-to-understand Python code base for building and simulating
small-scale quantum circuits and algorithms. The chapter details single qubits,
superposition, quantum states with many qubits and operators, including a sizable
set of important single-qubit gates and controlled gates. The Bloch sphere and the
quantum circuit notation are introduced. Entanglement follows, that fascinating
“spooky action at a distance,” as Einstein called it. The chapter then discusses
maximally entangled Bell states, the no-cloning and no-deleting theorems, local
and global phases, and uncomputation. The quantum postulates are discussed
briefly in preparation for the discussion on measurements.

Chapter 3 Simulation Infrastructure This chapter builds a more complete
software framework, including a high-performance simulator. It discusses
transpilation, a powerful compiler-based technique that allows seamless porting of
circuits to other frameworks. The methodology further enables implementing of
key features found in quantum programming languages, such as automatic
uncomputation or conditional blocks. The chapter also introduces an elegant
sparse representation.

Chapter 4 Quantum Tools and Techniques This chapter details the mathematical
tools and techniques required by some of the advanced algorithms. Beginners may
choose to skip this section and refer back to it as needed. The chapter discusses the
spectral theorem, density matrices, the partial trace, Schmidt decomposition, state
purification, and various operator decompositions.
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Chapter 5 Beyond Classical This chapter serves as a bridge from the introductory
material to the sections on quantum algorithms. We start by implementing a
classical circuit using quantum gates and show that quantum computers are at least
as capable as classical computers. Then we discuss the term “beyond classical,”
which is now the preferred term to describe a computation that can be run
efficiently on a quantum computer but would be intractable to run on a classical
computer. For this, we discuss Google’s seminal quantum supremacy paper in
detail.

Chapter 6 Algorithms Exploiting Entanglement This chapter presents the first
real algorithm — a quantum “Hello World” program, a simple random number
generator. The chapter then details quantum teleportation, superdense coding,
entanglement swapping, and the CHSH game. This game is a simplified version of
the Bell inequalities, which established that classical theories assuming hidden
states cannot explain quantum entanglement.

Chapter 7 State Similarity Tests This chapter discusses the terms overlap and
similarity between quantum states and introduces the important swap test, as well
as the Hadamard test, and the inversion test. The mathematical derivations in this
chapter are still very detailed.

Chapter 8 Black-Box Algorithms The algorithms presented in this chapter were
the first to establish a query complexity advantage for quantum algorithms. The
list includes the Bernstein—Vazirani algorithm, Deutsch’s algorithm, and
Deutsch—Jozsa algorithm. Quantum oracles and their construction are introduced.

Chapter 9 State Preparation Quantum algorithms operate on inputs encoded as
quantum states. Preparing these input states can be quite complicated. The chapter
discusses the trivial basis and amplitude encoding schemes, as well as
Hamiltonian encoding. It also discusses smaller circuits for two- and three-qubit
states. Then, this chapter presents two of the most complex algorithms in this
book, the general state preparation algorithms from Mottonen, and the
Solovay—Kitaev algorithm for gate approximation. Beginners may decide to skip
these two algorithms on a first read.

Chapter 10 Algorithms Using Amplitude Amplification This chapter discusses
the fundamental Grover’s algorithm, which enables searching over a domain of N
elements with (’)(\/]V ) complexity. Several derivative algorithms and applications
are being discussed, including amplitude amplification, amplitude estimation,
quantum counting, Boolean satisfiability, graph coloring, and quantum mean,
median, and minimum finding.

Chapter 11 Algorithms Using Quantum Fourier Transform The quantum
Fourier transform is another fundamental quantum algorithm. The chapter begins
with a simple phase-kick circuit and expands to quantum phase estimation before
detailing the quantum Fourier transform itself. A short section on arithmetic in the
quantum domain introduces techniques that are used in a final elaborate section on
Shor’s famous algorithm for number factorization.

Chapter 12 Quantum Walk Algorithms A quantum walk algorithm is the
quantum analog to a classical random walk with potential applications in search
problems, graph problems, quantum simulation, and even machine learning. In
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this section, we describe the basic principles of this class of algorithms on a
simple one-dimensional topology.

Chapter 13 Optimization Algorithms This chapter details several optimization
algorithms. The variational quantum eigensolver is presented, which allows
finding a minimum eigenvalue for a given Hamiltonian. This chapter also includes
extensive notes on performing measurements in arbitrary bases. After a brief
introduction to the quantum approximate optimization algorithm, the chapter
further discusses the quantum maximum cut algorithm and the quantum subset
sum algorithm in great detail.

Chapter 14 Quantum Machine Learning Quantum machine learning is an
exciting field that explores the intersection of quantum computing and machine
learning. It aims to leverage the principles of quantum computing to enhance
machine learning algorithms and potentially revolutionize how we analyze data
and solve complex problems. This chapter begins with a simple algorithm for
computing the Euclidean distance between vectors. We discuss the quantum
principal component analysis and, finally, detail the complex but beautiful HHL
algorithm for solving systems of linear equations.

Chapter 15 Quantum Error Correction This chapter discusses quantum noise
and techniques for quantum error correction, which is necessary for quantum
computing. It discusses bit-flip errors, phase-flip errors, and their combinations.
The formalism of quantum operations is introduced, along with the operator-sum
representation and the Kraus operators. With this in mind, the chapter discusses
the depolarization channel and imprecise gates, as well as (briefly) amplitude and
phase damping. For error correction, repetition codes are introduced to motivate
Shor’s 9-qubit error correction technique.

Chapter 16 Quantum Languages, Compilers, and Tools We have introduced a
compact infrastructure for exploration and experimentation, at the level of
individual gates. Higher levels of abstraction are needed to scale to larger
programs. The chapter discusses several quantum programming languages,
including their specific tooling, such as hierarchical program representations or
entanglement analysis. General challenges for compilation are discussed as well as
compiler optimization techniques.

Appendix The appendix contains a detailed description of the sparse simulation
infrastructure.

Notes on the 2nd Edition

This second edition is a substantial rewrite and edit of the first edition. No page has
been left untouched.

« The book is now organized into 16 chapters, compared to the 8 chapters before.
Much of the material from the first edition had to be compacted to make space for
the new material.

« The didactic flow has been substantially improved. Several sections have been
rearranged to provide a better learning experience.
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« Many graphical elements have been modified to be more clear and visually
appealing. Pointers to the code are now clearly marked (with hyperlinks in the
online editions).

« More attention is now given to the mathematical foundation. This is based on
reader feedback. For some, even the limited math of the first edition was already
too much, while for many others the math was too shallow. The additional focus
on the math may not help the first group, but will make the second group much
happier.

A lot of new content has been added:

« Chapter 2 adds content on the W state, the Uz gate, and how it can be used to
make other gates, a section on the No-Deleting Theorem, and a short exercise
section on the practice of tensor expressions.

« Chapter 3 condenses the previous sections on various pieces of software
infrastructure and acceleration into a single section.

« Chapter 4 is a new chapter on mathematical tools and techniques. It includes
discussions of the spectral theorem, density matrices, the Schmidt decomposition
and state purification, maximal entanglement, and several operator
decompositions, such as the Pauli, ZYZ, and XYX decompositions. The previous
section on the partial trace has been moved here as well.

« Chapter 6 on algorithms using entanglement adds the entanglement swapping
algorithm and a discussion of the CHSH game.

« Chapter 7 is a new chapter on similarity tests and adds the Hadamard test, the
inversion test, and a new multi-qubit swap test, to the previous swap test.

« Chapter 9 is a new chapter on state preparation. It discusses the basis, amplitude,
and Hamiltonian encoding, adds material on effective initialization of 2-qubit and
3-qubit states, and an elaborate section on Méttonen’s algorithm for general state
preparation. The material on Solovay—Kitaev’s algorithm has been moved here as
well.

« Chapter 10 is an extended chapter on algorithms using quantum amplitude
amplification. It has previous sections on Grover’s algorithm, amplitude
amplification, and quantum counting, and it adds new sections on amplitude
estimation, Boolean satisfiability, graph coloring, quantum mean, median, and
minimum finding.

« Chapter 11 on the quantum Fourier transform and Shor’s algorithm is a rewrite
and restructuring of prior material with more emphasis on detailed mathematical
derivations. The section on arithmetic now adds multiplication in the Fourier
domain.

« Chapter 14 on quantum machine learning algorithms is new and includes a
discussion of the Euclidean distance, the principal component analysis, and a very
detailed discussion of the HHL algorithm for solving systems of linear equations.

A significant number of problems and inaccuracies in the first edition were cor-
rected during the writing of this second edition. It is my sincere hope that I fixed more
problems from the first edition than I introduced in this second edition. Naturally, the


https://doi.org/10.1017/9781009548519.001

Introduction XVii

inevitable remaining errors are solely my own responsibility, and I apologize for all of
them.

Source Code

Much of the content of this book is explained with both math and code. However, to
avoid turning this book into a giant code listing, we abbreviate less interesting or repet-
itive code with constructs such as [. . .]. Scaffolding code, such as Python import
statements or #include directives for C++, as well as many redundant comments, are
typically omitted.

To run the code, as a minimal setup, a working Python interpreter is required
with the Python packages absl, numpy, and scipy. Without the C++ acceleration
described later in the book, some of the algorithms will continue to work but run
rather slowly. The complete sources are hosted under a permissive Apache license on
GitHub, along with instructions on how to download, build, and run:

www.github.com/gccdcp/gcc

I will maintain the errata on this site as well. Contributions, comments, and sugges-
tions are always welcome. The code typesetting may have introduced errors, but the
source of truth is the working code in the online repository. The code may also have
evolved beyond what is published here.


http://www.github.com/qcc4cp/qcc
https://doi.org/10.1017/9781009548519.001
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1.1

The Mathematical Minimum

In this first chapter, we briefly discuss the minimum mathematical background
required to follow this text. This section is quite compact, as it is mainly meant
as a reference. Readers who are familiar with the concepts may skip this section.
Readers easily discouraged by even basic math may proceed to the next chapters and
refer back to here as needed.

Complex Numbers

Quantum computing runs on complex numbers (Penrose R., 2021). Let us start by
briefly recalling the most important properties of complex numbers. A complex num-
ber z is of the form

7 =x+Iy.

The x is called the real part of z, and y is the imaginary part. The imaginary number i
is defined as i = v/—1, the solution to the equation

2+1=0.

The conjugate of a complex number is created by replacing i with —i. The conjugate
is often denoted by z or z*. For example, for z = 5 + 2i, the conjugate is simply z* =
5 — 2i. The conjugate of a product of complex numbers is equal to the product of the
conjugates of the complex numbers. This tongue twister translates to the simple rule

(ab)* = a*b*.

The norm of a complex number z, denoted by |z|, is calculated by multiplying z
with its conjugate z* and taking the root, the result being a real number. The norm is
commonly referred to as the modulus or absolute value:

lz| = Vz*z, or, equivalently, |z|* = z*z.

A complex number z = x + iy can be drawn in the 2D plane' where the x and y
give the coordinates. If you think of a complex number as a vector from the origin to
the coordinate (x,y), the norm of a complex number is the length of this vector. It is a
real number and can be computed using Pythagoras’ theorem as

1" Also called the complex plane.
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1.2

2| =[x+ iy =V (x — iy) (x + iy) = /32 + )7

Note the difference between the square of a complex number and its squared norm.
The square is computed as

2= (x+iy)? = (x+iy)(x + iy) = x> + 2ixy — y*.
Complex exponentiation is defined by Euler’s famous formula:
re'® = r(cos ¢ +isin d))
Complex numbers with norm |z| = r = 1.0 are on a unit circle:
7= = cos ¢ + isin ¢.

In Python, complex numbers are conveniently a part of the language. However, note
that the imaginary i is written as j in Python, which is commonly used in electrical
engineering. For the example of x = 1 + %, we write in Python:

x =1.0 + 0.5]
x.real # returns 1.0
x.imag # returns 0.5

To conjugate, you can use the built-in conjugate () function for complex data
types or use numpy’s conj () function. For example:

x_conj = x.conjugate() # Python builtin, or
x_conj = np.conj (x) # via numpy

Dirac Notation, Bras, and Kets

In quantum computing, we think of qubits and states as column vectors of n complex
numbers, where n is typically a power of 2. We will soon learn why this is the case. A
vector with n elements is also called an n-dimensional vector. In the so-called Dirac
notation, or bra—ket notation, a column vector is called a ket and written as |x) with

X0

X1
|x) = . |, withx; € C and |x) € C".

Xn—1
Recall that to transpose a matrix A, we take the column i of A and make it row i of the
transpose A7, or Ag = Aji. The Hermitian conjugate of a column vector |x), denoted

by a dagger |x>T, is the transpose of the vector with each element conjugated. This is
also called the adjoint of the vector. We write it as (x|, changing the direction of the
angle bracket and indicating that now we have a row vector:

\x)T = (\x)*)T = (x| = (xg xf ... xZ?l).
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In Dirac notation, this row vector (x| is called a bra or the dual vector of ket
|x). Transposition and conjugation go both ways — applying the transformation twice
results in the original ket. In other words, the dagger operation is its own inverse, a
property called involutivity:

0 = (xl,
' =1,
("' =)
There is the potential for confusion around conjugates. Conjugates in a bra are not
explicitly marked with x or x!, as in (x} x' ... x’_,|. Converting a ket to a bra

already implies conjugation of all vector elements.

Inner Product

The inner product of two vectors, which is also called the scalar product or the
dot product, is computed as a matrix product of a bra and a ket, which simplifies
to the product between a row vector and a column vector — an element-wise vector
multiplication and summation, which produces a single number. It is written in the
following forms, with the dot (-) denoting a scalar product:

-y = () = &ly)-

For a ket |x) and its dual bra vector (x|, the inner product with another ket |y) is
defined as

X0 Yo
X1 Y1
|x) = : , (x]= (x;; xf ... x,’;fl), and |y) = : ,
Xn—1 Yn—1

(xly) = x5yo +x7y1 + -+ X, 1Yot

The inner product is how the vectors in this notation get their names because they form
the product of a bra and a ket, a bra(c)ket. Naming is difficult in general, and quantum
computing is no exception. The inner product of complex vectors can result in a
complex value. Note that (x|y) generally does not equal (y|x). For example, consider
two kets |x) and |y):

-1 1
X)=12i], y=10]. (1.1
1 i
We construct the corresponding bras as Hermitian conjugates (transposition, and nega-
tion of the imaginary parts):

(xl=(-1 =2 1), GI=(1 0 —i).
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We then compute the two inner products as

(xy) = (=1)1 — (20)0 + 1
(ylx) = 1(=1) + 0(2i) — 1i

—1+i,
—1—i

The two inner products are different. The second result is the conjugate of the first,
which points to the general rule:

()™ = ().

Two vectors are orthogonal if and only if their scalar product is zero. For 2D or 3D
vectors, we can visualize orthogonal vectors as being perpendicular to each other.

(xly) =0 < x,y are orthogonal.

A set of vectors is called linear independent if no vector in the set can be expressed
as a linear combination of other vectors in the set. A set is called orthogonal if the
scalar product of any pair of distinct vectors is 0.

A set of vectors forms a basis for the (vector) space of all vectors that can be
constructed from linear combinations of the vectors.> The basis for a given vector
space is not unique, as we shall see later in this book. Typically, only orthogonal basis
vectors are considered.

Related to the way we compute the norm of a complex number, the norm of a
complex vector® is the root of the scalar product of the vector with its dual vector. A
vector is normalized if its norm (or just its inner product) is 1:

|lX)| = V{xlx) =1 = |x) is normalized.

State vectors in quantum computing represent probability distributions that must
add up to 1 by definition. Hence, as we will see shortly, normalized vectors play an
important role in quantum computing.

Outer Product

Where there is an inner product, there should also be an outer product. We can con-
struct the outer product between a ket |x) and a bra (y| by changing the order of the
operands of the inner product. Instead of (y|x), we write

* * *
X0 X0Yo X0Y1 e X0Y,—1
X1 X1Yg XYy e Xy
_ * * * _
Wol= . |05 » - )=
An—1 B S S R U A

2 Vector spaces and their properties are an important topic in linear algebra. However, in this book, we
will not go into great depth on this topic.

3 This norm is also called the Euclidean norm or L? norm. Vector norms are often written with two bars
on each side, such as ||x|| or || |x) ||. However, for ease of readability, we will only use single bars in this
book.
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In the example given by Equation (1.1), |x) is a 3 x 1 vector, |y) is a 1 x 3 vector,
and (y| is a 3 x 1 vector. According to the rules of matrix multiplication, their outer
product will be a 3 x 3 matrix. Again, if the vector elements are complex, we conjugate
the vector elements when converting from bra to ket and vice versa.

1.5 Tensor Product
To denote the tensor product4 of two vectors, which can be either bras or kets, we use
the ® operator symbol and may use one of the following shorthand notations for kets
[x) @ [y) = [x) |y) = |xy) = |xy), (1.2)
and bras
(@ ol = &l = (xyl = (ol

In a tensor product, each element of the first constituent is multiplied by the whole
of the second constituent. Therefore, an n X m matrix tensored with a £ x [ matrix
will result in an nk x ml matrix. For example, to compute the tensor products of the

following two kets:
1 0
0= (y). =)

0 0
: 1 1
0) @ |1) = |01) = =
0 0 0
1
You can see that the tensor product of two kets is a ket, the tensor product of two

bras is a bra, and the tensor product of two diagonal matrices is a diagonal matrix.
Of course, tensor products are also defined for general matrices. Here we show an

example of two 2 X 2 matrices being tensored together:
oo (boo bm) o (boo bm)
(aoo am) ® (boo bm) _ by bi bio by
app a bio by 1o (boo bm) 1 (boo b01>
b]() b]] blO bll

agoboo  acobor  aoiboo  aoibor

=)

apobio  awbii  aoibio  aoibi

aioboo  aiobor  aibo  aiibor

apbio awbii anbio anbu

For multiplication of scalars a and § with a tensor product, these rules apply:

a( @y) =al@ly) =x)@aly),

4 I .am ignoring the differences between the tensor product and the Kronecker product and will use these
terms interchangeably.
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(@+p)(0) @) =alx) @[y) +Bx) @)

Assume that we have a tensor product of two matrices A and B, and another tensor
product of two vectors |a) and |b). If the two products are multiplied with standard
matrix multiplication, the very important mixed-product rule applies, which is used in
many places in this text:

(A®B)(la) ® |b)) = Ala) @ B|b). (1.3)
Transposition and conjugation distribute over the tensor product:
A2 BT =AT @ B,
(A®B)" =A" ®B".

Because the adjoint consists of the transpose and the complex conjugate, the adjoint
is distributed as well:

(A®B)' = A" @ BT, and similarly (1.4)
(19) ® 1) = (p] ® (x].

With this, we find that for two composite kets

1) = 1) @ [X1) and  [P2) = [P2) ® |X2),

and with Equation (1.3), the inner product between [11) and |¢,) is

Wil2) = (o) ® 141)) (1) © [X2))
= ((¢1] @ (X)) (|92) @ [X2))
= (Q1]P2) (X1|X2). (1.5)

It follows that the tensor product of two unit vectors (with norm 1) also has the unit

IlOI'l’l’l.5

Eigenvalues and Eigenvectors

There is a special case of matrix-vector multiplication where the following equation
holds, where A is a square matrix, |¢) aket, and A a complex scalar:

Alp) = AlY).

Applying A to the special vector |{) only scales the vector with a complex number, it
does not change its orientation. We call A an eigenvalue of A. There can be multiple
eigenvalues for a given matrix. The corresponding vectors for which this equation
holds are called eigenvectors. In quantum mechanics, the synonym eigenstates is also
used. Zero vectors are generally excluded from the exclusive club of eigenvectors.

For a diagonal matrix, finding the eigenvalues is trivial. Given a diagonal matrix of
the form

5 Discussed in http:/quantumcomputing.stackexchange.com/a/32146.
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Ao
Al

/\n—l

we can pick the eigenvalues right off the diagonal. The corresponding eigenvectors are
(1,0,0,...)7,(0,1,0,.. )7, ..., (0,0,...,1)7, a set that is also called computational
basis. Note that any multiple of an eigenvector is also an eigenvector for a given
eigenvalue.

Generally, eigenvalues for a given (smaller) matrix U can be found by solving® the
characteristic equation det(U—AI) = 0. In this text, we keep it simple and use numpy
to find the eigenvalues of a given matrix:

import numpy as np

[...]

umat = ... # some matrix

eigvals, eigvecs = np.linalg.eig(umat)

Hermitian Matrices

A square matrix A is a Hermitian matrix if it is equal to its transposed complex
conjugate AT. As such, the diagonal elements must be real numbers, and the elements
mirrored along the main diagonal are complex conjugates of each other. For example,
the following matrix A is Hermitian:

1 3+4+iV2
3—iV2 0

Similarly to the way we compute Hermitian conjugates for vectors in Section 1.2, to
construct the Hermitian conjugate of a square matrix, you have to transpose the matrix
and conjugate its elements. A Hermitian conjugate is also called Hermitian adjoint, or
just adjoint for short. The terms adjoint and Hermitian conjugate are synonymous and
can be used interchangeably.

The eigenvalues of Hermitian matrices are always real. A perhaps surprising prop-
erty of Hermitian matrices is that their eigenvectors are orthogonal for distinct eigen-
values. A Hermitian matrix M is positive semidefinite if all its eigenvalues A; are
positive, denoted by M > 0. Similarly, M is positive semidefinite if (v|M|v) > 0 for all
vectors |v). This will become clear later in Section 4.1 on the spectral decomposition.

A=At =

Unitary Matrices

A square matrix A is normal if AAT = ATA. It is unitary if its conjugate transpose is
equal to its inverse, with ATA = AAT = I. Both Hermitian and unitary matrices are

6 With det being the determinant of a matrix. See, for example: http://en.wikipedia.org/wiki/Determinant.
The matrix / is the identity matrix which has 1s on the diagonal and Os everywhere else.
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normal. Unitary matrices are norm-preserving. Multiplying a unitary matrix with a
vector might change the orientation of the vector, but it will not change its norm. The
columns of a unitary matrix form an orthonormal basis in C". In general, a matrix is
unitary if it transforms any orthonormal basis in C” into another orthonormal basis.

The eigenvectors of a unitary (square and complex) matrix are orthonormal. We
can prove’ that the eigenvalues of a unitary matrix are unimodular; they have a mod-
ulus of 1.

Proof We know that eigenvalues are defined as
Ulu) = Au).

Assume a normalized eigenvector |u) with an inner product of 1. By computing the
norm on both sides, we have

(uU'|Uu) = (ur*|Au).

We know that UTU = I because U is unitary. We pull the factor (1*|A) = |A|? in front
of the inner product:

(U Uu) = (A*A)(uu),
(ulu) = |AJ> ulu),
= AP =1 O

Since |A2| = 1, we can write the complex eigenvalues as A = ¢'*. In the following
example, the matrix Y is both unitary and Hermitian. The matrix S is unitary, but not

Hermitian:
0 i 1 0 1 O
Y=Y (—i O) and S (O i) # (0 —i) St

Hermitian Adjoint of Expressions

Here are the rules for conjugating expressions of matrices and vectors. We use these
rules extensively throughout this book. Previously, we learned how to convert between
bras and kets as |1,D>Jr = (] and <1,IJ\T = |i). To compute the adjoint of a matrix scaled
by a complex factor a, we use

(aA)Jr =a*AT =ATa",

For matrix—matrix products, the order reverses (this is an important rule used often
in this book):

(AB)" = BTAT. (1.6)

Note that this differs from the rule for the tensor product shown in Equation (1.4).
To compute the adjoint for products of matrices and vectors, the order reverses as well:

7 This simple proof showcases a few of the tricks used later in this book.
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Alp))T = (plAt,
(AB|p))" = (p|BTAT.

For matrices in outer product notation, this rule follows from Equation (1.6) (by
taking |¢) as the A in Equation (1.6) and (¢| as the B):

A=)l = AT =|o)yl.

And finally, the adjoint of a sum of two operators is

(A+B) =AT + BT,

Trace of a Matrix

The trace of an n X n matrix A is defined as the sum of its diagonal elements:

n—1

tr(A) = Zan‘ =dae +ap +-+ ap_ip—1-
i=0

The following are basic properties of the trace, where c is a scalar, and A and B are
square matrices:

tr(A + B) = tr(A) + tr(B),
tr(cA) = ctr(A),
tr(AB) = tr(BA).

In general, the trace operation is cyclic (as long as the dimensions of the matrices
allow it). For example, for a product of three matrices,

tr(ABC) = tr(BCA) = tr(CAB).
For the trace of tensor products, this important relation holds:
tr(A ® B) = tr(A) tr(B).

The next relation is important for quantum measurements, as we will discover soon.
Suppose we have two kets |x) and |y):

X0 Yo
X1 Y1
=] " | ad =
Xn—1 Yn—1

The trace of the outer product |x){y| is equal to the inner product of the operands in
reverse order:

tr(lx) o) = o). (1.7)
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We can see this directly from writing the outer product as

Xo XoYg Xoyy ... Xoyi_,
xi X1y xyy ... Xy
* * * _
05 i - i) = . . .
Xn—1 xn_lyé b AT O VA VA

— tr(jx)(y)) = Zx,y, ().

We will use Equation (1.7) often in this book for expressions like the following:

tr((x|Ax)) = tr(Alx){x]) = tr(|x)(x[A).

Finally, the trace of a matrix A is the sum of its n eigenvalues A;, counted with
multiplicity:3

n—1
A) =) A (1.8)
i=0

We will use this property in several places in this book as well, but for a proof we have
to wait until Section 4.1 on the spectral decomposition.

8 Which means that identical eigenvalues are counted multiple times.
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Quantum Computing Fundamentals

This chapter outlines the basic principles and rules of quantum computing. In parallel,
we develop an initial, easy-to-understand, easy-to-debug code base for building and
simulating smaller-scale algorithms.

The chapter is structured as follows. First, we introduce our basic underlying data
type, the Python Tensor type, which is derived from numpy’s ndarray data type.
Using this type, we construct single qubits and quantum states composed of many
qubits. We define operators that allow us to modify states and describe a range of
important single-qubit gates. Controlled gates, which play a similar role to control
flow in classical computing, come next. We detail how to describe quantum circuits
via the Bloch sphere and in quantum circuit notation. A discussion of entanglement
follows, that fascinating “spooky action at a distance,” as Einstein called it. In quantum
physics, measurement might be even more problematic than entanglement (Norsen,
2017). In this text, we avoid philosophy and conclude the chapter by describing a
simple way to simulate measurements.

Tensors

Quantum computing is expressed in the language of linear algebra, with vectors,
matrices, and operations such as the inner product. Quantum algorithms are, to a large
degree, algorithms based on linear algebra. Because of that, some of the mathematics
is unavoidable. A very compressed summary of necessary mathematical concepts was
already presented in the previous chapter. However, since this book has “programmer”
in the title, we balance the mathematical development of the algorithms with working
code for experimentation.

Let us start by describing a Python data structure that will serve as the basis for all
the code in this book. Python may be slow to execute but is fast to develop.! It also
has the vectorized and accelerated numpy numerical library for scientific computing.
We make great use of this library and avoid implementing standard numerical linear
algebra operations ourselves. In general, we follow Google’s coding style guides for
Python (Google, 2021b) and C++ (Google, 2021a).

One of the insights here is that it only takes a little bit of code to implement
and simulate the algorithms. Of course, there are many existing frameworks and

! To be fair, only for programs up to moderate size.
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libraries available. The advantage of quickly developing our own framework is that
you can focus on learning quantum computing and not be distracted by having to
learn another complex framework. Learning quantum computing is already hard
enough.

The core data types, such as states and operators, are all vectors and matrices of
complex numbers. It is good practice to base the types on one common array abstrac-
tion and hide the underlying implementation. The typical benefits are an improved
development speed and a smaller jump from experimentation on your laptop to run-
ning on a distributed supercomputer. The data type for all subsequent work will be our
Python Tensor class.

We derive Tensor from the ndarray array data structure in numpy. It will behave
just like a numpy array, but we can augment it with additional convenience functional-
ity. For example, for ease of debugging, we allow a tensor to have a descriptive name.
There are several complex ways to instantiate an ndarray. The proper way to derive
a class from this data type is complicated but well documented.”

Py Find the code
In file src/1ib/tensor.py

import numpy as np

class Tensor (np.ndarray) :
def _ new__ (cls, input_array, op_name=None) -> Tensor:
cls.name = op_name
return np.asarray (input_array, dtype=tensor_type()) .view(cls)

def _ array finalize_ (self, obj) -> None:
if obj is None:
return
# If new attributes are needed, add them like this:
# self.info = getattr(obj, 'info', None)

Note the use of tensor_type () in this code snippet: It abstracts the floating-point
representation of complex numbers. The choice of which complex data type to use
is an interesting question. Should we use complex numbers based on 64-bit doubles,
32-bit floats, or perhaps something else, for example, a TPU 16-bit bfloat® format?
Smaller data types may be faster to simulate due to lower memory bandwidth require-
ments, but they come at the cost of reduced numerical precision. The numpy package
supports np.complex128 (consisting of two 64-bit doubles) and np.complex64
(with two 32-bit floats). We define a command line flag that holds the width of the
type and functions to return the corresponding numpy data type and the number
of bits:

2 Refer to http://numpy.org/doc/stable/user/basics.subclassing.html.

3 TPU stands for Google’s “Tensor Processing Unit,” a hardware accelerator for machine learning
algorithms. It also introduced the bfloat data type, which is a standard fp32 data type but without the
lower 16 bits.
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from absl import flags
flags.DEFINE_integer ('tensor_width', 64, 'Width of complex (64, 128)")

def tensor_width():
return flags.FLAGS.tensor_width

def tensor_type():
assert tensor_width() == 64 or tensor_width() == 128
return np.complex64 if tensor_width() == 64 else np.complexl128

As we shall see in our discussion of quantum states in Section 2.4, the Kronecker
product of tensors is an important operation. As mentioned in Section 1.5, this product
is commonly referred to as the tensor product, which is also the term we will use.* We
implement it by adding the member function kron to the Tensor class. This function
delegates to the function of the same name in numpy.

We will use this operation in many places, so we additionally overload the Python
multiplication operator = for convenience. There is the potential to confuse this  oper-
ator with simple matrix multiplication. However, in Python and in numpy, matrix mul-
tiplication is done with the ar operator @. We conveniently inherit this multiplication
operator from numpy and do not have to implement it ourselves:

def kron(self, arg: Tensor) -> Tensor:
return self._ class__ (np.kron(self, arg))

def _ mul__ (self, arg: Tensor) -> Tensor:
return self.kron(arg)

We will often construct larger matrices by tensoring together many identical matri-
ces, which corresponds to calling the kron function multiple times. To tensor together
n matrices A, we will use a notation similar to raising the matrix to the power of n, but
add the ® operator in the notation:

n n
ARA® - ®A=A%" +£ A"=AA.-.-A.
n n

It looks like a power function, but instead of matrix multiplication, it uses Kro-
necker products. Naming is hard, but this function names itself: We should call it
the Kronecker power function, or kpow (pronounced ‘“Kah-Pow”). We handle cases
where the exponent is 0 as a special case with x = 1. As expected, numpy correctly
computes tensor products with scalars.

def kpow(self, n: int) -> Tensor:
if n ==
return self._class_ (1.0)
t = self

for _ in range(n - 1):

4 Tensoring states rolls off the tongue much more easily than Kroneckering states.
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t = np.kron(t, self)
return self._ class_ (t) # Return a Tensor type

Often, especially during testing, we want to compare a Tensor with another tensor.
We are working with complex numbers based on floating-point data types. Direct
comparison of values of these types is considered bad practice due to issues with
floating-point precision. Instead, for equality, we have to check that the difference
between two numerical values is less than a given ¢.

Fortunately, numpy comes to the rescue and offers the function allclose(),
which compares full tensors, so we do not have to iterate over dimensions and
compare real and imaginary parts. Here, and in almost all other places, we use a
tolerance of 107% and add the is_close method to our Tensor type.’ Python’s
math module has an isclose() function. However, we follow Google’s coding
style, which requires us to name functions with a trailing underscore after is, as in
is_close():

def is_close(self, arg) -> bool:
return np.allclose(self, arg, atol=le-6)

In Section 1.8, we learned about Hermitian and unitary matrices. The two helper
functions below check for these properties:

def is_hermitian(self) -> bool:
if len(self.shape) != 2 or self.shapel[0] != self.shapell]:
return False
return self.is_close(np.conj(self.transpose()))

def is_unitary(self) -> bool:
return Tensor (np.conj (self.transpose()) @ self).is_close(
Tensor (np.eye (self.shape[0])))

Another interesting matrix type is a permutation matrix, which has a single 1
in each row and column. Multiplying a column vector by such a matrix allows
us to permute the vector elements. The Tensor class offers the member function
is_permutation () to verify this matrix property:

def is_permutation(self) -> bool:
x = self
return (x.ndim == 2 and x.shape[0] == x.shapel[l] and
(x.sum(axis=0) == 1).all() and
(x.sum(axis=1) == 1).all() and
((x == 1) or (x == 0)).all())

5 Note that for scalars, math. isclose is significantly faster than np.allclose. We will use it in
performance-critical code.
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Qubits

In classical computing, a bit can have the values O or 1. It is off or on, like a switch.
You could say that a bit is in the off state (0 state) or in the on state (1 state). Quantum
bits, which we call gubits, can also be in a 0 or a 1 state. What makes them quantum
is that they can be in superposition of these states: They can be in the O-state and the
1-state at the same time. What exactly does this mean?

First, we must distinguish between a qubit and state of a qubit. Physical qubits,
developed for real quantum computers, are real physical entities, such as ions captured
in an electric field or Josephson junctions in an ASIC. The state of a qubit describes
some measurable property of that qubit, such as the energy level of an electron.

In quantum computing, at the level of programming abstractions, the physical
implementation does not matter; we are only concerned with the measurable state.
This is analogous to classical computing, where very few people care about the
quantum effects that enable transistors at the level of logic gates. In this text, we will
use the terms qubit and state of the qubit interchangeably.

The state of one or more qubits is often denoted by the Greek symbol |¢/) (“psi”).
The standard notation for the O-state of a qubit is |0) in the Dirac notation and |1)
for the 1-state. You can think of these as physically distinguishable states, such as the
energy levels of electrons. Superposition now means that the state of a qubit is a linear
combination of the orthonormal basis® states, for example, the |0) and |1) states, as

¥) = a|0) + Bl1)

where a and f are complex numbers, called the probability amplitudes. We further
require that

laf? + B =1, 2.1

for reasons explained below. Using the basis vectors (1, 0)7 and (0, 1)7, we define
the state of a qubit elegantly as

[y) = al0) + 1) =a (3) th @ - @ '

The choice of (1, 0)” and (0, 1) as orthonormal basis vectors, which is also called
the computational basis, is intuitive and simplifies many of the calculations. The basis
vectors are orthogonal with a scalar product of (0|1) = 0 and normalized with scalar
products of (0|0) = (1|1) = 1.

Other bases are possible, especially those resulting from rotations, which are com-
monplace in quantum computing. For example, the Hadamard basis consists of the
two orthonormal vectors |+) and |—), which are defined as

6 To be rigorous, one would say superposition can be the linear combination of any two distinct, not
necessarily orthogonal states.
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=B ()

For the superposition [¢)) = a|0) + B|1), we required |a|> + |B]> = 1. As will
become clear later, this follows from one of the fundamental postulates of quantum
mechanics, which states that on measurement, the state collapses to |0) with probabil-
ity |a|?, or to |1) with probability |8|%. The state has to collapse to one of the two. The
probabilities must add up to a real value of 1. Since amplitudes are complex numbers
in general, we use the absolute value of the inner product to calculate the real physical
probabilities.

Let us look at a standard example. Suppose we have a qubit in the state

0= L0+ L,

For a single complex number c, the conjugate c* is the same’ as the Hermitian
adjoint ¢'. The probability p|oy of measuring [0) is the norm squared:®

) E)- ()0

2
To compute the probability pj;y of measuring |1), we take the norm squared of the

amplitude i/2 as
ROJORCIOR

You can see that the two probabilities of 3/4 and 1/4 add up to 1.

The following code will translate these concepts into a straightforward implemen-
tation. As a forward reference, we use the type State, which we will discuss in
Section 2.4. In simple terms, State is a vector of complex numbers implemented
using Tensor.

To construct a qubit, we need « or §, or both. If only one is provided, we can easily
compute a candidate’ for the other one since their squared norms must add up to 1.
To compute the squared norms of the complex numbers a and f, we multiply each
by its complex conjugate (using np.conj). The result will be a real number.' To
avoid generating a type error from numpy, we have to explicitly convert the result to
np.real (). We compare the results to 1.0, and if it is within tolerance, we construct
and return the qubit as a State.

Ploy =

i

pny = 5

7 We will often use the dagger for simplicity.

8 We are really computing a projection |(0[¢)
2.13.2 on measurements.

9 Here, we ignore a possible local phase, which we will learn about in Section 2.3.

10" We could also use np . abs (alpha) * 2, but I prefer it this way; it is more explicit. You will find this
construction in many places in this book.

\2, but for more details we will have to wait for Section
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Py Find the code
Infile src/1lib/state.py

def qubit(alpha: complex = None, beta: complex = None) -> State:

if alpha is None and beta is None:

raise ValueError ('alpha, beta, or both, need to be specified’)
if beta is None:

beta = np.sqgrt(1.0 - np.real (np.conj(alpha) * alpha))
if alpha is None:

alpha = np.sqgrt (1.0 - np.real (np.conj(beta) * beta))

norm2 = np.real (np.conj(alpha) * alpha) + np.real (np.conj(beta) =* beta)
assert math.isclose(norm2, 1.0), 'Qubit probabilities not equal to 1.'
return State([alpha, betal)

Bloch Sphere

We now introduce the Bloch sphere, a 3D visualization of the state of a qubit, named
after the famous physicist Felix Bloch, even though it was first introduced by Feynman
(1957). It may be especially useful for visual learners. We will use it in the following
sections to visualize the effect of operators on qubits. To begin, let us introduce some
basic trigonometry and an angle 6. Using
0 .

@ =cos > and p =sin -,

we meet the requirement from Equation (2.1) that

0 0
la|* + |B|* = cos® ) + sin? 5= 1.

Now we introduce a second angle ¢ as a phase ¢ between |0) and |1). This phase
is called a local phase and it plays an important role in many algorithms. We must not
ignore it, and, more importantly, Equation (2.1) still holds with it. With this, we can
write a qubit in the alternative form

) = e (cosg 0) + €/ sing |1>) . (2.2)

The parameters y and ¢ are real numbers in [0,277) and 6 in [0,7). The first term
¢V in Equation (2.2) is called a global phase. Multiplying a state by such a complex
coefficient does not have an actual physical meaning because the expectation value of
the state with or without the coefficient does not change. This is also related to what
physicists call phase invariance.

The expectation value for an operator A on state |¢) (which we will develop in Sec-
tion 2.13 on measurement) is (¢/|A|y). The Hermitian adjoint of (¢ [¢))T = (¢|c*. We
can see that the expectation value with and without a global phase remains unchanged.
States with or without a global phase cannot be distinguished:

(Yle A ) = (Yle e PAY) = (PIA[Y).
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(a) Sphere with axes x, y, and z. (b) Basis states on the sphere.

Figure 21 The Bloch sphere representation.

The two parameters 0 and ¢ are sufficient to specify a qubit. This leads to a
representation as a point on a three-dimensional sphere with unit radius as shown in
Figure 2.1(a), where a qubit |1) lies on the surface of the sphere. With some trigonom-
etry, we see that this point is specified by a vector 7 = (cos ¢ sin 0, sin ¢ sin 6, cos 9),
the so-called Bloch vector.

Let us explore where we can find specific states on the sphere, as shown in
Figure 2.1(b). The position at the sphere’s north pole has & = 0 and ¢ = 0 (other
values for ¢ will still land the qubit on the north pole, but let us ignore this case for
now). With this, the state becomes

cosg |0) +ei¢sing [1) =11]0) +0][1) =10).
The state |0) sits at the top. Similarly, for 6 = 7, state |1) sits at the south pole:
cosg |0) +e‘¢sin§ [1) =010) + 1[1) = |I).
The points where the positive and negative x-axes intersect with the sphere have

angles 0 = 7/2 with ¢ = 0 and ¢ = 7. This is where we find the Hadamard bases
|+) and |—) with

cos 77'(/2 €% sin /2 ! =
510+ 1= f\0> \f2|1> 1+
/2 i T2 0 -

cos ——[0) + €™ sin —= >—ﬁ\0> \f|> =)

Finally, the points that intersect the positive and negative y-axis have angles 6 =
nt/2 with ¢ = 7/2 and ¢ = 37/2. These states form another basis which is affec-
tionately, and sometimes confusingly, denoted as |i) and |—i):
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/2 . Tt/2 1 o1 .
cos L2 |0) + €™ sin L= 1) = — [0) +i— [1) = |i) = |+y),
Z10) 211 = 210 +i—=1) =11) = [+

cosnT/2 |0) —i—e3"/2sinﬂT/2 1) = % |0) — i% 1) =|—i) = |-y).

The term |i) can be confusing because it is often used to denote arbitrary compu-
tational basis states. Instead of |i) and |—i), we will also use the terms |+y) and |—y)
for these basis states. To add to the confusion, note that states with anti-parallel Bloch
vectors are orthogonal. Orthogonal states do not have orthogonal Bloch vectors.

Another interesting question is how to compute the x,y,z coordinates for a given
state |1) on a Bloch sphere. We will have to make more progress before we can answer
this question in Section 2.7.3. Bloch spheres are only defined for single-qubit states.
You can visualize the Bloch sphere of an individual qubit in a multi-qubit system
by tracing out all the other qubits in the state. This is done with the partial trace
procedure, a useful tool we introduce in Section 4.3.

States

As we saw in Section 2.2, the possible quantum state of a qubit is a vector of complex
numbers that represent probability amplitudes. We should use our trusty Tensor class
to represent states in code and inherit the State class from Tensor. In this way, we
also conveniently inherit the Python __repr__and __str__ functions from the base
class.

Py Find the code
Infile src/lib/state.py

class State(tensor.Tensor):

"mrclass State represents single- and multi-qubit states."""

So far, we have learned how to construct a single-qubit state. But what about a state
that consists of multiple qubits? The state of two or more qubits is defined as their
tensor product. To compute it, we added the = operator to the underlying Tensor
type in Section 2.1 (implemented as the corresponding Python _ mul__ member
function). Given this definition, the quantum state of n qubits is a Tensor of 2"
complex probability amplitudes. And we already know, from Equation (1.2), that
for two qubits |¢) and |X') we can write the combined state as

) = o) @ |X) = [9)|X) = [, X) = [PX).

For two qubits, there are four basis states, and we can write the state |1/J> as!!

! By convention, computational basis states are often denoted as ;). Basis states for a general state [¢))
may also be written as |¢o), ..., |{,—1), which is a convention we will use often.


http://www.github.com/qcc4cp/qcc/blob/main/src/lib/state.py
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o 1 0 0 0

|al 0 1 0 0

|¢> = | = o 0 +c1 0 + 1 +c3 0
3 0 0 0 1

= co leg) + i |e1) + ¢ lex) + 3 es)

co [ho) + 1 [P1) + c2[P2) + c3 [¢hs)
3

> cilpi).

i=0

We already learned in Section 1.5 that the norm of a tensor product of vectors with
unit norm is also 1, which is exactly what we need for state vectors to represent prob-
abilities. Probability amplitudes are complex numbers. To compute the inner product,
we multiply by the complex conjugates and exploit the fact that the basis states are
normalized with an inner product of 1:

(W) = cg (ol co[ho) + cf (Yl e [P1) + -+ ¢, (Yut] ca [Pu—1)
= c5co (Yol o) + crer (Yil ) + -+ cren (Yuor| Ynr)
=chco+cier+ -4 ch_icu
=1.

We can extract an individual value ¢; by computing the inner product of the state
with the corresponding computational basis vector |e;). For example, to extract ¢, (you
can get ¢; by reversing the order of the inner product):

lp)=0 0 1 0)(co c1 e c3) =ea 2.3)

Tensoring States

To build systems of multiple qubits, the individual states of the participating qubits are
tensored together. Given our definition of the tensor product in Section 1.3, this was
easy to understand when the states were expressed as vectors:

a (C> ac
a ¢ d ad
9-0-[Y)-[) e
d bd
But what if a state |{) is written as an expression, such as
) = (al0) +b[1)) @ (c|0) +d][1)).

Similarly, and sometimes confusingly, the product is often written without the operator
®, as

(alo) +b|1)) ® (c|0) +d|1)) = (a]0) +b[1)) (c|0) +d|1)).
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This can be confusing because it may look like a matrix product or dot product. It
is important to be aware of the context. We can “multiply out” the expression, just like
a normal product of two terms. As we multiply the two bracketed terms, the scalar
factors turn into simple products, and the qubit states are tensored together. For scalar
products, the order of their operands does not matter. For qubit states, the ordering
must be maintained:

I

~

= (al0) +b[1)) (c|0) +d|1))
=al0) (c[0) +d[1)) +b1) (c[0) +d]1))
= ac|00) + ad |01) + be [10) + bd [11) .

.. . . T
Writing this state as a vector results in the same state vector (ac ad bc ba’)
as in Equation (2.4). To make the required ordering clear, individual qubits sometimes

get a subscript, indicating who they belong to, such as Alice or Bob:!?

[§) = (al04) +b[14)) (¢ |08) +d[15))
=ac |0AOB> + ad |0AIB> + be ‘1A03> + bd|1A13> .
The multiplication procedure can be reversed; we can factor out individual qubits.
This should not be surprising, but it may be helpful to see it at least once:
|¥) = ac |00) + ad |01) + bc|10) + bd |11)
0) (ac|0) + ad [1)) + [1) (bc |0) + bd 1))
=al0) (c[0) +d|1)) +b]1) (c[0) +d]1))
= (a0) + b 1)) (c|0) +d|1)).

You will find these types of state manipulations in several places in this book.

Qubit Ordering

As we compose states of multiple qubits, we must consider the issue of endianness.
Consider how the bits in a typical byte are numbered, with the least significant
bit O on the right, as shown in Figure 2.2(a). However, when we think of arrays,
we typically have element O at address O at the top of the array, as shown in
Figure 2.2(b).

Classical binary numbers are combinations 0s or 1s, which we interpret as an n-ary
number. In quantum computing, we can also combine multiple qubits in the basis
states |0) and |1) with the tensor product and interpret the resulting state as a classical
binary number. There are two distinct conventions:

1. In the little-endian convention, the least significant part of a data structure is
placed at the lowest address. The Intel x86 family of CPUs follows this
convention. The hexadecimal value 0x1234 is stored in a 16-bit memory space as
0x3412, with the least significant byte 0x34 at the lower byte address.

12 Alice and Bob are widely used as stand-ins to denote two distinct systems A and B.
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27 26 [ 25 |2t |23 22| 2 |20 16
20

7 6 5 4 3 2 1 0
(b) Array addresses go from top

(a) In a byte, bits are numbered from right to left. to bottom or left to right.

Figure 2.2 Ordering conventions for most/least significant parts.

2. On the other hand, in the big-endian convention, the most significant part of a data
structure comes first. The IBM Power CPU family follows this convention,
representing the hex value 0x1234 as the 16-bit integer 0x1234, with the
higher-order byte 0x12 at the lower byte address.

As you can see, it depends on convention, how entries are numbered in an underlying
array-like structure, and what endianness convention is used. In this book, we primar-
ily use the big-endian convention. We number the qubits from 0 to » — 1 and place the
most significant qubit first at index 0. In this way, when we see a tensor product such
as |0) ® |1) ® |1), we know to interpret it as binary 0b011 or decimal 3.

There is no standard convention, and major software frameworks use different
conventions. Some of the algorithms in this book are based on reference implementa-
tions. In such cases, we may switch to the little-endian convention. The key points to
internalize are:

« As qubits are added to a circuit, they are added from left to right (in a binary
string), from the high-order qubit to the low-order qubit.

« In Dirac notation, a two-qubit state is written as |x,y), for example, as |0,1) or
|01). The most significant qubit is the first to appear in big-endian notation:

0) ® - ® [0)
~—
High-order Low-order

« We will see in Section 2.9 that the circuits are drawn as a vertical stack of qubits,
and the top qubit is considered the most significant in big-endian notation.

« We will soon learn about simple functions to construct composite states from |0)
and |1) states. In these functions, the first qubit to appear will be the most
significant qubit, similar to the circuit notation. For example, we call
state.bitstring(l, 1, 0) to generate the state [) = |1) ® [1) ® |0).

« When we print a state, the most significant bit will also be on the left.
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Binary Interpretation

We can write tensor products of the basis states |0) and |1) as in this three-qubit
example:

|0) ® 1) ®|1) = |011).

For brevity, when interpreting the bit strings as binary numbers, we can simplify the
notation and write out the binary numbers as decimals, as in this example:

011) = [3).

Be aware of the potential for confusion between the state |000), the corresponding
decimal state |0), and the state |0) of a single qubit. How does the decimal interpreta-
tion of the sequence of basis states relate to the state vector?

« State |00) is computed as ((1)> ® (3)) =(1 0 0 O)T, also called |0).

. State |01) is computed as (é) ® (?) =0 1 0 O)T, also called |1).
. 0 1 T

o State |10) is computed as <1> ® <O) =(0 0 1 0),alsocalled [2).
. 0 0 T

« State |11) is computed as ] ® )= (0 0 0 1) ,alsocalled|3).

To find the probability amplitude for a given state, we can use binary addressing.
The state vector for the three-qubit state |011) is the following, where we indicate the
index into the state vector as i,, underneath each vector element:

Interpreting the rightmost qubit in [011) as the least significant bit with a classical
bit value of 1 - 29, the middle qubit with a classical bit value of 1 - 2! and the leftmost
qubit with a classical value of 0 - 22, the state |011) corresponds to the decimal value
3 or state |3).

When we store and manipulate state vectors in Python, we index the vector as
an array from left to right, from O to n — 1. For state |011), the element at index
iz will be set to 1. Using this simple binary addressing scheme, the amplitudes for
each basis state in the state vector can be quickly found. Note that the tensor product
representation of this 3-qubit state contains the amplitudes for all eight possible states,
but seven states have an amplitude of 0. This already hints at a potentially more
efficient sparse representation, which we explore in Section 3.9.

We add a few helper functions to support the conversion back and forth between
numbers and their bit representations. Note that you can use the array slice operator
[::-1] toreverse the order of elements in a Python list.
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Find the code
In file src/1lib/helper.py

def bits2val(bits: List[int]) -> int:
return sum(v * (1 << (len(bits)-1i-1)) for i, v in enumerate(bits))

def val2bits(val: int, nbits: int):
return [int(c) for c in format(val, '0{}b'.format (nbits))]

To iterate over all bit strings of a given length nbits, we use the following function
(note the use of Python’s yield construct, which allows usage of this function in
Python for loops):

def bitprod(nbits: int) -> Iterablel[int]:
for bits in itertools.product ([0, 1], repeat=nbits):
yield bits

Binary bits can also be interpreted as binary fractions. For example, using big-
endian convention, for individual qubits x; in state
) = Ixox1 -+ Xn—2%u—1),

we introduce this big-endian notation, where the most significant fractional part comes
first:

X0 1

ET :ZXOQT ZIOHX&

X X 1

2—(1) + 2—]2 = Xo57 +x1? = 0.xox1,

X0 X1 X2 1 1

5T 4 5 + 3 = X057 +x1? +x2? = 0.xpx1x2,

In little-endian notation, xy would be the least significant fractional part of the
binary fraction, as in 0.x,_; - - - x;xo. The function bits2frac computes the fraction
for a given big-endian string:

def bits2frac(bits: Iterable) -> float:
return sum(bit * 2 xx (-idx - 1) for idx, bit in enumerate(bits))

Here are a few examples and results from printing val. You can see how bits 0 and
1 are interpreted as 27! = 0.5 and 272 = 0.25, respectively:

val = helper.bits2frac((0,))

>> 0

val = helper.bits2frac((1,))
>> 0.5

val = helper.bits2frac((0, 1))
>> 0.25

val = helper.bits2frac((1, 0))


http://www.github.com/qcc4cp/qcc/blob/main/src/lib/helper.py
https://doi.org/10.1017/9781009548519.003

2.4 States 25

244

>>0.5
val = helper.bits2frac((1, 1))
>>0.75

To approximate a given floating point number x < 1.0 with binary fractions, we
add the routine frac2bits:

def frac2bits(val: float, nbits: int):
assert val < 1.0, 'frac2bits: value must be strictly < 1.0’
res = []
while nbits:
nbits -=1
val x= 2
res.append (int (val))
val -= int(val)
return res

State Member Functions

Now that we understand the order of qubits and state vector indexing, we can add
functions to State to return the amplitude and probability of a given state. The
probability is a real number, but we still have to convert it to an actual real number
with np.real () to avoid a type conflict and a warning message.

Find the code
Infile src/1ib/state.py

def ampl (self, *bits) -> np.complexfloating:

return self[helper.bits2val (bits)]

def prob(self, *bits) -> float:
amplitude = self.ampl (*bits)
return np.real (amplitude.conj () * amplitude)

We use Python parameters (such as bits above) that are decorated with the aster-
isk «. This means a variable number of arguments is allowed. In Python parlance,
the parameters are packed into a tuple. To unpack the tuple, you have to prefix any
accesses with a x again, as shown in the function prob above. As an example, for a
four-qubit state, you can get the amplitude and probability for the state |1011) in the
following way:

psi.ampl(1, 0, 1, 1)
psi.prob(l, 0, 1, 1)

The following snippet iterates over all possible states and prints the probabilities
for each state:


http://www.github.com/qcc4cp/qcc/blob/main/src/lib/state.py
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for bits in helper.bitprod(4):
print (psi.prob(*bits))

Given a state, we often want to know the number of qubits it consists of. We
could maintain this length as an extra member variable to State, but it is easy to
compute from the length of the state vector (which is already maintained by numpy ).
Because this property is required for all classes derived from Tensor (e.g., States
and Operators), we add the nbits property to the Tensor base class:

@property
def nbits(self) -> int:
return int (math.log2 (self.shape[0]))

When developing an algorithm, we often want to find the state with the highest
probability. For this, to find the largest (absolute) element in an array and its index,
we add the convenience function maxprob, which uses the clever numpy function
argmax (). Then we use a helper function to convert the found index into a binary bit
string:

def maxprob(self) -> (List[float], float):
idx = np.abs(self).argmax()
maxprob = np.real(self[idx].conj() * self[idx])
maxbits = helper.val2bits(idx, self.nbits)
return maxbits, maxprob

It can become necessary to renormalize a state vector. This is done with the
normalize member function. This function asserts that the dot product is not equal
to O to avoid a division by zero exception:

def normalize(self):
dprod = np.conj(self) @ self
assert not dprod.is_close(0.0), 'Normalizing to O-probability state’
self /= np.sqgrt(np.real(dprod)) # modify object in place.

return self

The phase of a basis state is the angle obtained by converting the state’s complex
amplitude to polar coordinates. We only use this during printouts and convert the phase
to degrees here:

def phase(self, xbits) -> float:

amplitude = self.ampl (*bits)
return math.degrees (cmath.phase (amplitude))

Finally, to assist in debugging, it is always helpful to have a function dump () that
lists all relevant state information. By default, this function only prints the basis states
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that have a nonzero probability (set parameter prob_only to False to see all basis
states). An optional description string can also be passed in:

def dump(self, desc: str = Nome, prob_only: bool = True) -> None:

[...1

The output from the dumper may look like the following, showing all basis vectors
with nonzero probability:

|OOl> (|1>): ampl: +0.50+0.00j prob: 0.25 Phase: 0.
|Oll> (|3>): ampl: +0.35+0.35j prob: 0.25 Phase: 45.
[101> (|5>): ampl: +0.00+0.50j prob: 0.25 Phase: 90.
|111> (|7>): ampl: -0.35+0.35j prob: 0.25 Phase: 135.

o O O o

2.4.5 State Constructors

Using the methods described so far, let us define standard constructors to create com-
posite states. The first two functions are for states consisting of only |0) and |1). The
state vector for these vectors is all zeros, except for a 1 at index O for a state of all |0),
or a | at the last index for a state consisting of all |1):

def zeros_or_ones(d: int = 1, idx: int = 0) -> State:
assert d > 0, 'Need to specify at least 1 qubit'
t = np.zeros(2+*d, dtype=tensor.tensor_type())
tlidx] = 1
return State(t)

def zeros(d: int = 1) -> State:
return zeros_or_ones(d, 0)

def ones(d: int = 1) -> State:
return zeros_or_ones(d, 2*xxd - 1)

The function bitstring allows the construction of states from a defined sequence
of |0) and |1) states. As noted above, the most significant bit comes first:

def bitstring(xbits) -> State:
arr = np.asarray(bits)
assert len(arr) > 0, 'Need to specify at least 1 qubit'
assert ((arr == 1) | (arr == 0)).all(), 'Bits must be 0 or 1'
t = np.zeros(l << len(bits), dtype=tensor.tensor_type())
t[helper.bits2val (bits)] = 1
return State(t)
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Sometimes, especially for testing or benchmarking, we want to generate a tensor
product of n random |0) and |1) states:

def rand_bits(n: int) -> State:

bits = [random.randint (0, 1) for _ in range(n)]
return bitstring(*bits)

While the canonical single-qubit states |0) and |1) are used often, we should not
define global variables for them.'? Global variables are bad style. Must. Resist. Temp-
tation.

Can we initialize a state with a given normalized vector? Yes, we can. We will see
this pattern later in Section 11.2.1 on phase estimation, where we directly initialize a
state as the eigenvector of a unitary matrix:

umat = scipy.stats.unitary_group.rvs (2xxnbits)
eigvals, eigvecs = np.linalg.eig(umat)
psi = state.State(eigvecs[:, 0])

Representing States as Matrices

In Section 4.2 we will learn that there are questions in quantum computing that cannot
be answered by representing states as simple vectors. To address this, we will intro-
duce the so-called density matrix formalism to represent states as matrices. We briefly
mention these matrices here, as we will use one of their properties later in this chapter.

For a given state |¢’), we can construct its density matrix by computing the outer
product of a state with itself. For convenience, we add the function density () to our
State class. Typically, the Greek letter p (“rho”) is used to denote a density matrix

as p = [P)(Pl:

def density(self) -> tensor.Tensor:

return tensor.Tensor (np.outer (self, self.conj()))

Given how this matrix is being constructed, the diagonal elements are the probabilities
of measuring one of the basis states for [} = a |0) + B |1):

aa*| af*
pa” |BB”

For a pure state, the vector and matrix representations contain the same information.
This density matrix has a rank'# of 1. Its trace must also be 1 because it represents the
sum of the probabilities. We will discuss density matrices in more detail in Section 4.2.

= (5) (@ )=

13" As some commercial systems do. Tsk tsk tsk.
14 See also http://en.wikipedia.org/wiki/Rank_(linear_algebra). The rank of a matrix is the maximal
number of its linearly independent columns.
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Operators

Now that we have learned about qubits and states, how are these states modified in
quantum computing? Classical bits are manipulated through logic gates such as AND,
OR, XOR, and NAND. In quantum computing, qubits and states are manipulated with
unitary matrices that we call operators. It seems appropriate to think of operators as
the Instruction Set Architecture (ISA) of a quantum computer. It is a different ISA
from that of a typical classical computer, but it is nonetheless an ISA that enables
computation. This section discusses operators, their structure, properties, and how to
apply them to states.

Unitary Operators

Any unitary matrix of dimension 2" can be considered a quantum operator. Operators
are also called gates, in analogy to classical logic gates. Unitary matrices are norm
preserving; that is, when multiplied with a state vector, they do not change the mod-
ulus of the vector. A state vector represents probabilities as probability amplitudes.
Applying an operator to this state might change the amplitudes of individual states but
must not change the fact that all probabilities must still add up to 1. This is important
enough to warrant a brief proof.

Proof To show that a unitary U is norm-preserving, we need to show that (Uv|Uw) =
(v|w). This is to show that if U preserves the structure of the inner product, it must
also preserve the norm:

(Uv|UW) = (VTUTY(Uw) =vI(UTU)w.

Now, v (UTU)w = viw = (v,w) implies that (UTU) = I. Any operator that
preserves the norm must be unitary. [

An example of a single-qubit unitary gate is the Pauli X gate which we describe in
Section 2.7.2. It swaps the probability amplitudes of a qubit:

=1 0) (5)=(2):

We detail many standard gates later in this section. Note that because UUT = I,
unitary matrices are necessarily invertible simply by using the conjugate transpose.
Hermitian matrices, on the other hand, are not necessarily unitary. In Section 2.13, we
will see that the Hermitian operators used for measurements are neither unitary nor
reversible.

Base Class

Since operators are matrices, we derive them from the Tensor base class and inherit
the _ repr_ and _ str__ functions from the underlying numpy array data struc-
ture. We also add a convenience function to compute the adjoint. A simple dump
function allows us to print the state with a given number of digits using the underlying
functionality of numpy.
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Find the code
Infile src/1ib/ops.py

class Operator (tensor.Tensor) :
"mnOperators are represented by square, unitary matrices."""

def _ new__ (subtype, input_array, name=None) :

obj = super().__new__ (subtype, input_array)

obj.name = name
return obj

def adjoint (self) -> Operator:
return self._ class_ (np.conj(self.transpose()))

def dump (self, desc = None, digits = 3) -> None:
np.set_printoptions (precision=digits)
if desc:
print (f'{desc} ({self.nbits}-qubit(s) operator)')
print (self)

2.6.3 Operator Application

To apply an operator to a state vector, we have to compute the matrix—vector product
between the operator matrix and the state vector. In Python, we define the function
call operator () for this purpose. For example, to apply a gate X to a state psi, we
simply call ops.X(psi). The __call__ function wraps the apply function, which
we define next. For convenience, we will make the call operator accept a state or an
operator as its argument.

def _ call_ (self,
arg: Union[state.State, ops.Operator],
idx: int = 0) -> state.State:
return self.apply(arg, idx)

In the following, we gradually build up the apply function. The initial versions
will be fairly incomplete. We apply an operator to a state vector using numpy’s matrix
multiplication function np .matmul:

def apply(self,
arg: Union[state.State, ops.Operator],
idx: int) -> state.State:
[...]
assert isinstance(arg, state.State), 'Error, expected State.')
[...]

return state.State(np.matmul (self, arg))
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2.6.4

We can also apply an operator to another operator. In this case, the application
results in a matrix—matrix multiplication. This raises the question of the order of the
matrices when multiple operators are applied in sequence. Assume that we have an
X gate and a Y gate (to be explained later) that will be applied in sequence. We can
write this in Python the following way, where gates are applied to a state and return
the updated state:

X (psi_0)
psi_2 = Y(psi_1)

psi_1

These are Python assignments, not to be confused with a mathematical notation like
x = y, which expresses an equivalence. In Python, variables are mutable. We could
omit the indices and overwrite a single state variable psi.

In function call notation, we write symbols from left to right, but function parame-
ters are evaluated first before the actual invocation of a function. This means that the
parameters are applied first:

# A function call means that X is applied before Y.
Y (X)

If we express the combined operator as a product of matrices, we must reverse their
order (recall that the operator @ is the matrix multiply operator in Python):

# In a combined operator matrix, X is applied first:
(Y @ X) (psi)

This leads to the following (still incomplete) implementation of apply, assuming that
the sizes of the operator and the state vector match:

def apply(self,

arg: Union[state.State, ops.Operator],
idx: int) -> Union[state.State, ops.Operator]:
if isinstance(arg, Operator):
assert self.nbits == arg.nbits, 'Mismatched dimensions.'
return arg @ self

assert isinstance(arg, state.State), 'Error, expected State.'
# Note the reversed parameters.
return state.State(np.matmul (self, arg))

Multiple Qubits

The code above makes it possible to apply a gate to a single qubit. How does this
work if we have a state of two or more qubits and want to apply a 2 x 2 gate to just
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one qubit in the tensor product? The key property of the tensor product that enables
handling this case is Equation (1.3), replicated here:

(A® B)(la) ® |b)) =Ala) @ B|b).

We can utilize this equation by using the identity gate / (see also Section 2.7.1), since
applying / to a qubit leaves the qubit intact:

(1) 91(5)- ()

As an example, for a given three-qubit state, Equation (1.3) allows us to apply the
X gate (discussed earlier) to the second qubit only by tensoring together the identity /
with the X gate and another identity / to obtain an 8 x 8 operator matrix:

psi = state.bitstring(0, 0, 0)

op = ops.Identity() * ops.PauliX() % ops.Identity()
psi = op(psi)

psi.dump ()

When interpreting the state |(g) = |0) ® |0) @ |0) = |000) as the binary number
0 (recall that by our big-endian convention, the least significant bit is to the right),
element O of the state vector of 8 elements should contain the value 1.0, which we can
confirm by dumping the state:

(r.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0]

Applying the X gate to qubit 1 in this way

Y1) = T @X 1) [Yho)
becomes, again according to Equation (1.3),

Y1) = 1]0) © X|0) @ 1]0).

Since we are in the computational basis,' the X gate flips the probability ampli-
tudes. Another way to say this colloquially is that it flips a state from |0) to |1) (or
from |1) to |0)). As a result, we managed to apply the gate X to qubit 1 only and the
modified state 1) becomes

Y1) =0) @[1) @10).

Interpreting |010) as the binary number 2, we should find the value 1.0 in the state
vector at index 2, and indeed, there it is:

(6.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0]

15 Recall that in the computational basis, we represent |0) as ((1)) and |1) as (?)


https://doi.org/10.1017/9781009548519.003

2.6.5

2.6 Operators 33

To apply multiple operators in sequence, their individual expanded operators can
be multiplied to build a single combined operator. For example, to apply the X gate to
qubit 1 and the Y gate to qubit 2, we write the following:

psi state.bitstring (0, 0, 0)

opx = ops.Identity() * ops.PauliX() x ops.Identity()
opy = ops.Identity() * ops.Identity() * ops.PauliY()
big_op = opy (opx)

psi = big_op(psi)

We can use a shorthand notation for this. To indicate that gate A should be applied
to a qubit at a specific index i, we write A;. This notation means that this operator is
padded on both sides with identity matrices. For the example above, to apply the X
gate to qubit 1 and the Y gate to qubit 2, we write X, Y>.

Of course, in terms of performance, building the full combined operator up front
for n qubits can be the worst possible case, as we have to perform full matrix multi-
plication with matrices of size (2")?. Matrix multiplication is of cubic!® complexity
@) (ng) Since a matrix—vector product is of complexity O (n2) , it can be faster to apply
the gates individually, depending on the number of gates. In this particular example,
instead of applying the gates one by one:

psi = state.bitstring(0, 0, 0)

opx = ops.Identity() * ops.PauliX() x ops.Identity()
psi = opx(psi)

opy = ops.Identity() * ops.Identity() * ops.PauliY()
psi = opy(psi)

We could have simply combined the gates in one step:

psi = state.bitstring(0, 0, 0)
opxy = ops.Identity() * ops.PauliX() * ops.PauliY()
psi = opxy(psi)

Operator Padding

Having to “pad” operators with identity matrices on the left and right is annoying and
error-prone. It is more convenient to apply an operator to a qubit at index idx and let
the infrastructure do the rest for us. This is what operator padding does, which we
will implement next. To apply a given gate, say the X gate, to a state psi at a given
qubit index idx, we write:

X = ops.PauliX()
psi = X(psi, idx)

16 This is an approximation to make a point, which we will use in several places. More efficient
algorithms are known, such as the Coppersmith—Winograd algorithm with complexity (’)(22‘3752477).
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To achieve this, we augment the function call operator for Operator. If an index
is provided as a parameter, we pad the operator up to this index with identity matrices.
Then, we compute the size of the given operator, which can be larger than 2 x 2, and
if the resulting matrix dimension is still smaller than the state to which it is applied,
we pad it further with identity matrices. In the above example, instead of writing:

psi = state.bitstring(0, 0, 0)

opx = ops.Identity() * ops.PauliX() * ops.Identity()
psi = opx(psi)

We can now write the more compact code:

psi = state.bitstring(0, 0, 0)

psi = ops.PauliX() (psi, 1)

This syntax may need to be clarified. The first pair of parentheses to PauliX ()
returns a 2 X 2 Operator object. The parentheses (psi, 1) are parameters passed
to the operator’s function call operator __call__, which delegates to the apply
function. This is where the automatic padding magic happens.

We can now finalize the implementation of apply:
def apply(self,

arg: Union[state.State, ops.Operator],
idx: int) -> Union[state.State, ops.Operator]:
if isinstance(arg, Operator):
arg_bits = arg.nbits
if idx > 0:
arg = Identity () .kpow(idx) =* arg
if self.nbits > arg.nbits:
arg = arg * Identity () .kpow(self.nbits - idx - arg_bits)
assert self.nbits == arg.nbits, 'Mismatched dimensions.'
return arg @ self

assert isinstance(arg, state.State), 'Error, expected State.'

op = self

if idx > 0:

op = Identity().kpow(idx) =* op
if arg.nbits - idx - self.nbits > 0:
op = op * Identity() .kpow(arg.nbits - idx - self.nbits)
return state.State(np.matmul (op, arg))
2.7 Single-Qubit Gates

In this section, we list single-qubit gates that are commonly used in quantum com-
puting. These gates are analogous to logic gates seen in classical computing in that
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2.7.1

2.7.2

a full understanding of the basic gates is needed to construct more sophisticated cir-
cuits. However, while quantum gates share similarities with their classical computing
counterparts, their functions are quite different.

We start with simple gates and then discuss the more complicated roots and rota-
tions, including the important Hadamard gate, which maps computational basis states
to superpositions of basis states. For each gate, we define a constructor function and
allow passing a dimension parameter d, which allows the construction of a multi-qubit
operator from the same underlying single-qubit gate. As an example, to compute the
tensor product of two identity matrices and a Y gate, we write

L,=IIY=I1’xY.

Note again the subscript in Y,, which indicates that the Y gate should only be applied
to qubit 2. With this, we have two ways to apply the identity gates:

# Explicit way:

v2 = ops.Identity() * ops.Identity() * ops.PauliY()
# Compact way:

v2 = ops.Identity(2) % ops.PauliY()

Identity Gate

The general identity matrix is a square matrix with 1s on its diagonal and Os every-
where else. As a single-qubit operator, the operator / is the matrix

1 0
= V)
Applying this gate to a state leaves the state intact:
I 0\ [/a\ (a
0 1)\p) \B/)°

It is easy to construct. We will use the following code pattern for most gate constructor
functions:

def Identity(d: int = 1) -> Operator:
return Operator ([[1.0, 0.0], [0.0, 1.0]], 'Id').kpow(d)

Pauli Matrices

The three Pauli matrices play an essential role in quantum computing and have many
uses, some of which we will discover as we go along. Pauli matrices are usually
denoted with the greek o (“sigma”) as o,,0y,0., alternatively as 0y,07,03, or simply
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as X, Y, and Z, which is the notation we will use most often. Sometimes, the identity
matrix / is added as a first Pauli matrix oq:

(1O (o1 (0 =\ (1 0
= %o 1) "1 o) i o) T \o -1/

The Pauli gate o, is also known as the X gate, the quantum Not gate, or just X for
short. It is called a Not gate because it seemingly “flips” basis states in the following
17
way:

X|0)=1[1) and X|1)=0).

This can be confusing, especially for beginners. To clarify, the computational basis
states remain unmodified as they represent physical states. The X gate only swaps the

probability amplitudes:
= (1 0) (5)-(2)

It changes [¢) = «|0) + B|1) to [¢') = B|0) + «|1), for all possible values of a
and f, including the cases where a or § is 0 and the other is 1. In code:

def PauliX(d: int = 1) -> Operator:

return Operator ([[0.0, 1.0], [1.0, 0.0]], 'X').kpow(d)

The Z gate is also known as the phase-flip gate. It inverts the sign of the qubit’s 3

factor: Yo - ((1) _01) (g) = (—aﬁ>.

This gate changes the state from |¢y) = «|0) + |1) to [¢') = a|0) — B|1). Again,
the basis states remain unchanged; only the sign of the coefficient B changes. The
choice of basis matters because, for example, in the Hadamard basis, the Z gate acts
as a bit-flip gate, with Z|+) = |—) and Z |—) = |4). In code:

def PaulizZ(d: int = 1) -> Operator:

return Operator ([[1.0, 0.0], [0.0, -1.0]], 'Z').kpow(d)

The action of the Pauli Y gate on a state |¢) is

=0 0) ()= ()

def PauliY(d: int = 1) -> Operator:

return Operator ([[0.0, -1.03j], [1.0j, 0.011, 'Y').kpow(d)

17" Again, in the computational basis.
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Applying the Y gate to the standard basis states leads to both a bit flip and a
phase flip:

Y |0) = iXZ|0) = iX|0) = i|1),
Y1) =iXZ|1) = —iX|1) = —i|0) .

Some useful mathematical properties of the Paul matrices are as follows. Pauli
matrices are Hermitian with eigenvalues 41 and —1. Their trace is tr 0; = 0 and the
determinants (for X, Y, and Z) are det 0; = —1. On the Bloch sphere, the X gate
rotates the state about the x-axis, the Y gate rotates the state about the y-axis, and the
Z gate rotates the state about the z-axis, all by 180° (7t in radians, or half a circle).

Together with the identity matrix, the Pauli matrices form a basis for the vector
space of 2 x 2 Hermitian matrices.'® Any 2 x 2 Hermitian matrix M can be constructed
using a linear combination of Pauli matrices as

I+xX+yY+zZ
5 .

M — (2.5)

Pauli matrices are involutory:
IN=XX=YY=Z7ZZ=1.
We can use the basis states to construct the Pauli matrices as follows:
X=[|+)(+ = [=) (=]
Y = |+y) (=] = -9 (P,
Z=10)(0] — [1)(1].
The effects of the Pauli matrices on the computational and Hadamard basis states
can be summarized as follows:
X|0)=[1), XI[1)=]0), X|+) =1+), X|=)=-1-),
Z[0)=10), Zz[1)=—]1), Zl+)=1-), Zl-)=1[4),
Y|0)=ill), Y[l)=-il0), Y[+)=-i]-), Y[-)=il+).

Bloch Sphere Coordinates

With Equation (2.5) we can compute the Cartesian coordinates for a given state |¢’) on
the Bloch sphere.!® The Pauli matrices form a basis for the space of 2 x 2 Hermitian
matrices. The outer product p = [i) (| is such a Hermitian matrix. Hence we can
write

I4+xX+yY+z2Z 1 [(1+z x—i
_ +xX+yY+z _1 y . (2.6)
2 2\x+iy 1—z

18 To be precise, any 2 X 2 matrix can be constructed from the Pauli matrices. However, if the matrix is
Hermitian, the coefficients to the Pauli matrices are necessarily real.
19 Found in http:/quantumcomputing stackexchange.com/a/17180.
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If we think of p as a matrix (i Z), then

2a=1+4z and 2c=x+1iy.

Consequently, x = 2Re(c), y = 2Im(c), and z = 2a — 1. In code, we can do this
in two simple steps:

1. Compute the outer product of the state |{) with itself as p = |¢)(i|. This matrix
p is a special case of a density matrix, as discussed in Section 2.5.

2. Apply the helper function density to_cartesian (rho), shown below, which
returns the corresponding coordinates x, y, and z.

Py Find the code
In file src/1lib/helper.py

def density_to_cartesian(rho: np.ndarray) -> Tuple[float, float, float]:

= rho[0, 0]

= rho[l, 0]

= 2.0 * c.real

= 2.0 » c.imag

=2.0*a-1.0

return np.real(x), np.real(y), np.real(z)

N K X Qo

Rotations

When we say that we apply a rotation we mean applying a unitary operator on a
quantum state or, equivalently, a rotation operator on a Bloch vector for a single-qubit
state. We define rotations about the orthogonal axes x, y, and z, with help of the Pauli
matrices as

R.(0) = ™2,
Ry(e) = eiliya
R.(0) = e 7%,

While seeing an exponential function with a matrix in the exponent may seem unfa-
miliar, the process is not overly complex. Here, we provide a proof for the following
statement, which explains the mechanics of matrix exponentiation through a simple
power series expansion.

THEOREM: Ifan operator A is involutory (which means it is its inverse), then

"% = cos(0)I + isin(0)A.
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Proof The exponential function ¢* has the power series expansion
A% A At
eA_1+A+—+§+—+

94 this becomes

(64)? _ .(6A)°  (6A)*

Z TR TRER Y
If the operator is involutory and satisfies A> = I, then we can reorder the terms into
the Taylor series for sin(-) and cos(+):

6% B3A 04

For the specific function e

A =1+i0A -

—I+l9A 2| *74*?4"" (27)
6 64 . 6 6’
<1~— §T<+ 4|‘—"') I—Fl <9 3!‘+'5!‘—"'> A
= cos OI + isin OA. U
Since the Pauli matrices are involutory, with Il = XX = YY = ZZ = I, we can write:
, 0 0
R.(0) = e™7X = cos <2> I —isin <2> X (2.8)
_ cos (g) —isin (g)
~ \ —isin (%) coS (g) ’
. 0 0
R,(0) = e~i7Y = cos <2> I —isin (2) Y (2.9)
_ (cos(5) —sin(5)
~ \sin (%) cos (g) ’

R.(0) = 777 = cos (Z) [ — isin (g) z (2.10)

We will learn more about rotations and how to compute the axis, coordinates, and
rotation angles in Section 9.4.3. For now, we implement rotations about the standard
Cartesian x, y, and z axes with these functions:

def Rotation(vparm: List[float], theta: float) -> Operator:
Vv = np.asarray (vparm)
[...] # error handling
return Operator (np.cos(theta / 2) *» Identity() - 1j * np.sin(theta / 2)
* (v[0] % PauliX() + v[1l] = PauliY() + v[2] * PauliZ()))

def RotationX(theta: float) -> Operator:
return Rotation([1.0, 0.0, 0.0], theta, 'Rx')

def RotationY(theta: float) -> Operator:
return Rotation([0.0, 1.0, 0.0], theta, 'Ry"')
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def RotationZ(theta: float) -> Operator:
return Rotation([0.0, 0.0, 1.0], theta, 'Rz')

In general, rotations are defined about any arbitrary axis 1 = (ny,ny,n3) as

1
Ry = —ibn=a6 | .
exp( i nzo)

We will see an advanced example of this in Section 9.4 on the Solovay—Kitaev algo-
rithm for gate approximation.

275 Hadamard Gate

As the final rotation gate, we now discuss the all-important Hadamard gate, which is

defined as
1 1
-] v:(@ @)
V2 \1l -1 %5

If you look at this definition carefully, you can see that it is made up of the X and Z
gates, representing a rotation about the axis (¥ 4 Z)/+/2. Let us apply this gate to |0)
and |1) respectively to obtain

m=3 )0~ 0)- 2

=35 )0)- ()

Both results can be stated as the sum or difference of the |0) and |1) bases, scaled by
1/4/2. As we have seen earlier, these basis states are so common they get the symbolic
names |+) and |—):

0) + |1 0)—11
mjoy =000 g gy = 02y
V2 V2
The Hadamard gate is important because it maps the computational basis states to
an equal superposition. For a general state |{y) = «|0) + 1), the Hadamard operator

yields:
H|y) = H(al0) + I1))
= aH|0) + BH|1)
_ 0+ L10) 1)

2 Pa
—alt)+B]-)

_atp L a—p
= 510+ =),

In code, the operator is defined using our standard template:
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def Hadamard(d: int = 1) -> Operator:
return Operator (1l / np.sqgrt(2) % np.array([[1.0, 1.0], [1.0, -1.011),
'H'") .kpow (d)

A Hadamard gate is its own inverse with H = H~' and HH = I. It is Hermitian
and also involutory, just like the Pauli matrices:

wi=2:(0 o)l o)z 2) = 1)

A common operation is the application of Hadamard gates to several adjacent
qubits. If those qubits were all in the |0) state, the resulting state becomes an equal

superposition with amplitudes %

Xn
H®"|0)® \ﬁz

xe{0,1}

This construction is used in many of our algorithms and examples. Let us spell it out
explicitly for two and three qubits, which also illustrates some of the notations we will
be using:

(Ho H)(]0)®0)) = %(\om +101) + |10) + [11)),

(H®H®H)(]|0)®[0)®(0))

= %(\000) +1001) 4 010) + |011) + [100) + [101) + [110) + [111))
=%5(\o>+\ Y 12) 4 [3)+ [4) + 15) +16) + 7))

Ly -y

\/273 x=0 N \/273x6{0,1}2

Phase Gate

The phase gate, also called the S gate, P gate, or Z90 gate, represents a phase of 90°
around the z-axis for the |1) part of a qubit. Because this rotation is quite common, it

gets its own name:
1 0
S = .
(o )

The phase gate can be derived using Euler’s formula for the angle ¢ = m/2:
¢ = cos(¢) + isin(¢),
¢™/? = cos(m/2) + isin(n/2) = i.

In code, we construct this gate using our standard recipe:
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def Phase(d: int = 1) -> Operator:
return Operator ([[1.0, 0.0], [0.0, 1.0311, 'S').kpow(d)

def Sgate(d: int = 1) -> Operator:
return Phase(d)

Note the effect this gate has on the basis states |0) and |1), the gate only affects the |1)
part of the qubit state:

s|0) = (é) —10) and S|1)= (?) —ill).

You can spot a potential source of errors: the direction of rotations, especially
when porting code from other infrastructures that might interpret angle directions
differently. For much of this text, we are shielded from this problem. However, it
may be one of the first things to look for when the results do not meet expectations.

Finally, remember the Z gate and how similar it is to the phase gate? The relation-
ship is easy to see — applying two phase gates, each affecting a rotation of 71/2, yields
a rotation of 77, which we get from applying the Z gate:

e 9690 %)

2.7.7 Flexible Phase Gates

There are other, more flexible versions of phase gates. The general U;(A) gate is also
known as the phase shift or phase kick gate:

Ui(A) = (é e?A) .

It has no restrictions on the phase to use and its implementation is straightforward:

def Ul (lam: float, d: int = 1) -> Operator:
return Operator ([(1.0, 0.0),
(0.0, cmath.exp(1j * lam))], 'Ul').kpow(d)

The derived discrete phase gate (also known as the R; gate) performs rotations
about the z-axis by fractional powers of 27t /2 for k > 0, such as 7t, 71/2, 71/4, and so
on:

def Rk(k: int, d: int = 1) -> Operator:
return Ul (2 * math.pi / (2**k)) .kpow(d)
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For integer powers of 2, the relationship between Ry and U, is

Rk(n) = U1 (27‘[/2") .

Some of the named gates are just special cases of R; (and therefore of Uj). In par-
ticular, the identity gate I, the Z gate, the S gate, and the T gate (which we define in
Section 2.7.9 below) can be constructed with these flexible phase gates. This test code
may help to clarify:

def test_rk(self):

self.assertTrue(ops.Rk(0) .is_close(ops.Identity()))
self.assertTrue(ops.Rk(1l) .is_close(ops.Pauliz()))
self.assertTrue(ops.Rk(2).is_close(ops.Sgate()))
self.assertTrue(ops.Rk(3).is_close(ops.Tgate()))

U; gate

Physical quantum computers may implement other types of gates. IBM machines
specify the general Us gate with real angles 0, ¢, and A:

cos(6/2 —etsin(0/2
00.6.0) =  goioniors) ¢0re) mio)2))

This gate is quite versatile, as it can be used to construct several other standard gates.?°
The likely simplest form generates the identity gate as

U(0,0,0) = ((1) (1’) _ 1.

To construct the flexible phase gate U, (with which we can generate Z, S, and T gates),

we set
B cos(0) —e sin(0)\ (/1 0
Us(0,0,4) = <e°i sin(0) % cos(0)) — \O €] bt
To make an X gate, we set 6 = 71, resulting in cos(6/2) = 0 and sin(6/2) = 1:
0 —ét
U A)=1 . . 2.11
3(71,(?, ) (6“7) 0 ) ( )

The lower left term must be 1, which we get with ¢ = 0. The upper right term must
be 1 as well, which we get with A = 7

Us(mt,0,11) = <? (1)> =X.

Using Equation (2.11) we can derive the Pauli Y gate as

D= o)-r

20 Found in http:/qiskit.org/textbook/ch-states/single-qubit- gates.html, section 7.

U3(T(7

S


http://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://doi.org/10.1017/9781009548519.003

44 Quantum Computing Fundamentals

We can create more complex gates. For example, to construct a Hadamard gate,

we set
N .« cos(m/4) —(—1)sin(rt/4)
w0 =Fo=0r=m = (i)~ i)

With cos § = sin § = %7 the result is a Hadamard gate:

T 1 /1 1

We can even construct rotation gates:

T T
U3(67 _575)

U3(0,0,0) = R,(0).

= Rx(e)a

Similarly to the other standard gates, we add this constructor to src/1ib/ops.py:

def U3 (theta: float, phi: float, lam: float, d: int = 1) -> Operator:
return Operator (
[ (np.cos(theta / 2),
-cmath.exp(1lj * lam)*np.sin(theta / 2)),
(cmath.exp(1j * phi)+*np.sin(theta / 2),
cmath.exp(1lj » (phi + lam))=*np.cos(theta / 2))1, 'U3').kpow(d)

279 Square Roots of Gates

What is the square root of a classical NOT gate? There is no such thing. There is no
classical gate that, when applied twice, flips a bit. However, it is possible to find a
matrix V = v/X in quantum computing.

When asked what the root is of 4, the usual answer is 2. However, there are actually
two roots, namely 2 and —2. Similarly, matrices can have multiple roots; in particular,
if X = V2, then also X = (—V)2. As we shall see later in Section 2.10.2, roots play an
important role in the construction of efficient two-qubit gates.

The root of the X gate is the V gate. V is unitary,?! with VV! =1, but also V> =X.
It can be defined in the following ways?? (we only implement the first option):

l+i  1—i U iy
= = = X
V=X <l—i 1+i) 78 Ui,
IR e T

“a2\-14i —1-i) T T2

def Vgate(d: int = 1) -> Operator:

— N | —

™A1 — iX).

return Operator (0.5 % np.array([(1 + 13, 1 - 13),
(1 - 13, 1 + 13)1), 'V') .kpow(d)

21 Any root of a unitary gate is also unitary. We omit the proof here.
22 Found in http://quantumcomputing.stackexchange.com/a/30216.
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The root of a rotation by an angle ¢ is a rotation about the same axis, in the same
direction, by the angle ¢/2. Two half-rotations result in one full rotation. This is
obvious from the exponential form

Veid = (£9)1/? = ¢0/2,

The root of the S gate is called the 7 gate. The S gate represents a phase of 90°.
Consequently, the T gate is equivalent to a 45° phase:

1 0
T= \fSZ (O ein/4> .

def Tgate(d: int = 1) -> Operator:
return Operator ([[1.0, 0.0],
[0.0, cmath.exp(cmath.pi * 13 / 4)]1]) .kpow(d)

The T gate is sometimes called the 7t/8 gate, which seems counterintuitive since
the gate has a factor of 71/4 in it! The name may come from the fact that pulling out a
factor makes the gate appear symmetric:

1 0 ‘ e~im/8
T = (O ei‘l‘l/4> = em/8< 0 eiTl/S) .

The root of the Y gate has no special name (which we know of), but is required
later in the text, so we introduce it here as Yroot. It is defined as

1/1+i —1—i
Yoot = = 3 . )
(= VY 2(1+1 1+l>

which translates to this code:

def Yroot(d: int = 1) -> Operator:
return Operator (0.5 * np.array([(1 + 13, -1 - 13),
(1 + 13, 1 + 13)1), 'YRoot') .kpow(d)

There are other interesting roots, but these are the main ones we will encounter in
this text. We can test for correct implementations with code like this:

def test_gates_roots(self):
t = ops.Tgate()
self.assertTrue(t(t).is_close(ops.Phase()))
v = ops.Vgate()
self.assertTrue(v(v) .is_close(ops.PauliX()))
yr = ops.Yroot ()
self.assertTrue(yr(yr) .is_close(ops.PauliY()))

Finding a root in closed form can be cumbersome. In case of analytical problems,
you can use the scipy function sqrtm() to compute the root of a gate. For this to
work, scipy must be installed:
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from scipy.linalg import sgrtm

[...]

computed_yroot = sqgrtm(ops.PauliY())

self.assertTrue (ops.Yroot () .is_close(computed_yroot))

Projection Operators

A projection operator for a given basis state, or projector for short, is the outer product
of a basis state with itself.?> The term projector comes from the fact that applying a
basis state’s projector to a given state extracts the amplitude of the basis state. The state
is projected on the basis state, similar to how the cosine function is a projection of a

two-dimensional vector on the x-axis. The projectors for the states |0) and |1) are?*

Pyoy =) = <(1)) (1 0)= <(1) g>,
Py =1y = (?) 0 1= (8 ?)

Applying the projector for the |0) state to a random qubit yields the probability
amplitude of the qubit being found in the |0) state (and similar for the projector to the
|1) state):

Pioy[) = [0)(0(a |0) + B[1)) = «[0).

Projection operators are Hermitian, hence P = P, but note that the projection
operators are not unitary or reversible. Their two eigenvalues are 0 and 1. If the basis
states of a projection operator are normalized, the projection operator is equal to its
square P = P2 it is idempotent. We will use this result below in Section 2.13 on
measurement. Similar to basis states, two projection operators are orthogonal if and
only if their product is 0, which means that for each state

PioyP ) = 0.

The sum of all projection operators for any given orthonormal basis {;} adds up to
the identity operator. This is also known as the completeness relation. You can try this
out, for example, with the Hadamard basis:

ZPM) =1,
) G+ 1) (] =

In general, when writing an outer product as |r)(c|, you can think of this as a
two-dimensional index [row,col] into a matrix. This is also called the outer product
representation of an operator:

23 Strictly speaking, it does not have to be a basis state, but this is what we will typically use.
24 Often the symbol IT (“Pi”) is used to denote projectors. In this book, we will use a slant P.
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A=(ZZ>=M®®+bma+qw@+ﬂwaL

This also works for larger operators. For example, for this two-qubit operator U with
just one nonzero element a,

00) [01) [10) [11)

00y /0 0 0 0
y_lonj o o o o |
moy[ o o o o
m\o a 0 0

the outer product representation for the single nonzero element « in this operator
would be a|11) (01|, an index pattern of [row){col|. For derivations, this representation
can be more convenient than having to deal with full matrices. For example, to express
the application of the X gate to a qubit, we would write

x= (] ) =oar+ ol

X(al0) +pI1))

= (1] + 10 (@ [0) + B 1)

— [0){1]a 10) + [0)(1IB 1) + 1)0la[0) + [1)(0]B 1

= a|0) (1]0) +p|0) (1]1) +a(1) (0]0) +p[1) (0[1)
i e A
= B0) + al1).

We add the following helper functions to construct the common n-bits projectors
for the basis states [00...0) and |11... 1), where we exploit the fact that the resulting
matrices have a singular 1 in either the top left or bottom right corner of the matrix:

def ZeroProjector (nbits: int) -> Operator:
zero_projector = np.zeros((2+«*nbits, 2x*nbits))
zero_projector[0, 0] =1
return Operator (zero_projector)

def OneProjector (nbits: int) -> Operator:
dim = 2*xnbits
zero_projector = np.zeros((dim, dim))
zero_projector[dim - 1, dim - 1] =1
return Operator (zero_projector)

At this point, we have made good progress in learning about single-qubit gates and
how to construct multi-qubit states. Yet, a key ingredient to computing is still missing:
What are the control-flow constructs that are ubiquitous in classical computing? The
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quantum equivalents of these constructs are called controlled gates, which we will
discuss next.

2.8 Controlled Gates

Quantum computing does not have classic control flow with branches around con-
ditionally executed parts of the code. As described earlier, in a quantum circuit, all
qubits are active at all times. The quantum analog of control-dependent execution is
achieved with controlled gates. Controlled gates are always applied but show an effect
only under certain conditions. At least two qubits are involved: a controller qubit and
a controlled qubit. Note that 2-qubit gates in this form cannot be decomposed into
single-qubit gates.

REMARK: Before we continue, we have to agree on naming (which is hard). Shall
we call a controlled not gate a, well, controlled not gate, a controlled-not gate, or
Controlled-Not gate, or even a Controlled-Not-gate? Should it be X-gate or X gate?

We will follow the convention of using uppercase gate names and no hyphens, such
as controlled Not gate, X gate, or Hadamard gate. In mathematical notation, gates
are referred to by their symbolic names, such as X, Y, and Z.

Let us explain the function of controlled gates by example. Assume that we have
two qubits, numbered qubit 0 and qubit 1, and we somehow want qubit O to influence
the effect of qubit 1. Consider how the following two-qubit controlled Not matrix
(abbreviated as CNOT, or CX ), spanning both qubits, operates on combinations of the
|0) and |1) basis states:

CXy,) =

]

SO O =
S O = O
- o O O
S = O O

Eagle-eyed readers will find the X gate in the lower right quadrant of this matrix
and the identity matrix in the upper left. This can be misleading. The important thing
to note is that a controlled Not gate is a permutation matrix. Applying this matrix to
states |00) and |01) leaves the states intact:

100 0\ /1 1
0 100](o0 0

CX()J |00>: 00 0 1 0 = 0 :|00>’
00 1 0/\0 0
10 0 0\ /0 0
01001 1

CXorloh =100 0 1llol=1o] =100
00 1 0/ \0 0
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Application to |10) however flips the second qubit to a resulting state of |11):

1 0 0 0\ /0 0
010 0ffo 0

Xl =10 o o 111 [=1o]=10
001 0/ \o 1

Similarly, application to |11} flips the second qubit to a resulting state of |10:

1 0 0 0\ /0 0
01 00]]fo0 0
CXorllh =100 o 1llol=17]="0
001 0/ \1 0

The CX matrix flips the second qubit from |0) to |1), or from |1) to |0), but only
if the first qubit is in state |1). In this example, the X gate on the second qubit is
controlled by the first qubit, but any 2 x 2 quantum gate can be controlled this way.
We can control Z gates, rotations, or any other 2 x 2 gate.

The CX gate is usually introduced, as we did here, by its effects on the |0) and
|1) states of the second qubit where both qubits are adjacent. What if the controller
and the controlled qubit are farther apart or in inverted order? The following shows a
general way to construct a controlled unitary operator U with the help of projectors.
In the tensor products below, the projectors Pjgy and P);y are at the position of the
controlling qubit and U is at the position of the controlled qubit:

CUo,y = Pjoy @I+ Py @ U. (2.12)

With this recipe, we can construct a controlled Not gate CX; ¢ from 1 to 0. Note
that in this gate, you won’t find the original X gate or the identity matrix in the operator,
but it is still a permutation matrix:

100 0
000 1
CXo=14 0 1 0
0100

If there are n qubits between the controlling and controlled qubits, » identity matri-
ces must also be tensored between them. If the index of the controlling qubit is higher
than the index of the controlled qubit, the positions of the gates and the projectors
change in the tensor product in Equation (2.12). Here is an example of qubit 2 con-
trolling gate U on qubit O:

CL&J)::I@Qlégfq@ +-L7@DIQ§iﬂU.

The corresponding code is straightforward. We have to make sure that the right
number of identity matrices are being added to pad the operator:

def ControlledU(idx0: int, idxl: int, u: Operator) -> Operator:

assert idx0 != idxl, 'Controller / Controlled must not be egual.'
p0 = ZeroProjector (1)
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pl = OneProjector (1)

# space between qubits
ifill = Identity(abs(idxl - idx0) - 1)

# 'width' of U in terms of Identity matrices
ufill = Identity() .kpow(u.nbits)

if idx1l > idx0:

op = p0 » 1fill % ufill + pl % ifill = u
else:

op = ufill % ifill » p0 + u * ifill * pl
return op

With this code, we can control operators larger than 2 X 2 matrices. We can also con-
struct controlled—controlled gates, controlled—controlled—controlled gates, and even
longer sequences of controlled-. .. gates, which are required for many interesting algo-
rithms.

The code creates one large operator matrix. This can be a problem for larger cir-
cuits, e.g., for a circuit with 20 qubits, with qubit O controlling qubit 19 (or any other
padded operator). The operator would be a matrix of size (22°)?, multiplied by the size
of a Python complex data type, which could amount to a total of 8 or 16 terabytes®
of memory. Building such a large matrix in memory and applying it via matrix—vector
multiplication can become intractable. Since this is how we express operators at this
point, we are limited by the number of qubits we can experiment with. Fortunately,
there are techniques to significantly improve scalability, which we will discuss in
Chapter 3.

Also, note that we allow the controller and controlled qubits to be at arbitrary
distances from each other in our simulations. In a real quantum computer, there are
topological limitations to the possible interactions between qubits. Mapping an algo-
rithm on a concrete physical topology introduces another set of interesting problems.
IBM (2021b) shows several examples, which we will touch on in Section 16.4.

Controlled Not Gate

The controlled Not gate (CNOT) is a key ingredient in introducing entanglement into
a circuit, as we shall see shortly. It deserves its own constructor function. We already
discussed this gate at the beginning of Section 2.8:

def Cnot (idx0: int = 0, idxl: int = 1) -> Operator:

return ControlledU(idx0, idxl, PauliX())

The Controlled-by-0 Not gate (CNOTO) is similar to the CNOT gate, except that it
is controlled by the |0) part of the controlling qubit. This is accomplished by inserting
an X gate before and after the controlling qubit:

25 tebibytes, to be precise.
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def CnotO(idx0: int = 0, idxl: int = 1) -> Operator:
if idxl > idxO0:
x2 = PauliX () = Identity(idxl - idx0)

else:
x2 = Identity (idx0 - idxl) * PauliX()
return x2 @ ControlledU(idx0, idxl, PauliX()) @ x2

Of course, this construction to control a gate by |0) works for any target gate. We
will see several examples of this in later sections.

2.8.2 Swap Gate

The Swap gate is another important gate. Just as its name suggests, it swaps two qubits.
Concretely, for two qubits go = (a b)T and ¢ = (¢ d)7, their product state is
g0 ® q1 = (ac ad bc bd)". The swap gate will swap the elements at indices 1 and 2
in the state vector and turn it into (ac bc ad bd)"T = q; ® qo. As a matrix, the gate is
a permutation matrix:

100 0
0010
SWAPo =101 0 o
000 1

Using Equation (2.12) to construct controlled gates cannot produce this gate. How-
ever, it turns out that a sequence of three CNOT gates swaps the probability amplitudes
of the basis states, which compounds to a Swap gate. To swap qubits 0 and 1, you apply
the three gates CX 9, CXo1, and CX . This is analogous to classical computing,
where a sequence of three XOR operations can be used to swap classical bit values.
These techniques do not require additional temporary storage, such as a temporary
variable or a helper qubit.

There are many other ways to construct Swap gates, specifically for cases where
the participating qubits are not adjacent. Several interesting alternatives are given in
Gidney (2021b). Here is a standard implementation using the three CNOT gates:

def Swap (idx0: int = 0, idxl: int = 1) -> Operator:
return Cnot (idxl, idx0) @ Cnot (idx0, idxl) @ Cnot (idxl, idx0)

2.8.3 Controlled Swap Gate

Like any other unitary operator, Swap gates can also be controlled. A controlled Swap
gate is also known as the Fredkin gate. Similarly to the Toffoli gate, the Fredkin gate
is a universal gate in classical computing, but not in quantum computing.?® As a black

26 There is no single universal gate in quantum computing, only sets of gates. We will not expand on this
further. See, for example, www.scottaaronson.com/qclec/16.pdf for more details.
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A — — A
B— F —("AAB)®(ANC)
C — — (FAANC) @ (AAB)

Figure 2.3 Block diagram for the Fredkin gate, which is a controlled Swap gate.

box, it represents the logic shown in Figure 2.3, which may be difficult to reason
about in isolation (with A as logical AND and — as logical NOT). However, the logic
is simple. If qubit A is |1), qubits B and C are swapped in the tensor product of the
three qubits:

CSWAP |A,B,C) = |A,C,B), ifA=]1).

The first physical quantum Fredkin gate was built relatively recently (Patel et al., 2016)
and used to construct GHZ states, which we describe in Section 2.11.4.

Controlled Phase Gate

Phase gates can also be controlled. They are especially interesting because they are
symmetric: the controller and controlled qubits for a controlled phase gate can be
swapped without changing the resulting operator matrix. With Equation (2.12) in
Section 2.8 on controlled gates we saw how to construct controlled unitary gates as

CU(),] =P|o> ®I+P\1) ® U,
CUy, = I®P‘0> + U®P|1>.
Let’s use the controlled Z gate as an example and compute the operator matrices.

This will work for all phase gates derived from the U, gate, but we use the Z gate here;
it is the easiest to read:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
“Z1=19 0o o o|lTlo o 1 o
0 0 0 0 0 0 0 -1
Swapping the indices from 0,1 to 1,0 results in
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
“Zw=1o o 1 oo 0o o o
0 0 0 0 0 0 0 -1
In both cases, the identical result is
1 0 0 0
0 1 0 0
CZa=Clo=1s o 1 o
0 0 0 -1
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def test_controlled_z(self):
z0 = ops.ControlledU(0, 1, ops.PauliZ())
z1l = ops.ControlledU(l, 0, ops.Pauliz())
self.assertTrue(z0.is_close(zl))

Quantum Circuit Notation

Circuits will soon become quite sophisticated; we need an effective graphical circuit
visualization, which we detail in this section. Qubits are drawn from top to bottom. In
our big-endian convention, qubits are depicted from the most significant qubit to the
least significant qubit. In equations, the top qubit will be on the left of a state, such
as the 1 in |¢) = [1000). Another way to visualize this order may be to imagine |¢)
as a vector. Transposing this vector will move the leftmost qubit to the top spot in the
transposed vector.

Graphically, the initial states of the qubits are drawn to the left of horizontal lines
that go to the right, as shown in Figure 2.4. Lines indicate how the state changes over
time as operators are applied. Again, note the absence of any classical control flow. All
qubits are active at all times in the combined state. By convention, qubits are always
initialized in state |0). However, because it is trivial to insert X or Hadamard gates, we
sometimes take shortcuts and draw circuits as if they were present.

The application of a Hadamard gate (or any other gate) to a qubit is drawn with the
gate symbol (H in this case) on the line corresponding to the qubit. To describe the
state at a given point during the execution of the circuit, we add dotted vertical lines
and mark the states at that point with a subscript, like |¢o) and |i1) in Figure 2.5a.

|0)
)
+)

Figure 2.4 The structure of a quantum circuit. Qubits are initialized, and computation flows
from left to right. This circuit has no gates yet.

|tho) li1) 1) |12)
I I I I
. .
) — o) —{pp———
I I I I
\ \ \ 1
10) — | 0) AT
| | | |
(a) A Hadamard gate on the first qubit (b) A Z gate to the right of the H gate.

Figure 25 Applying a Hadamard gate and a Z gate in sequence.
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Recall that the state of the circuit is the combined state of all the qubits in the state.
For example, the initial state before the Hadamard gate is |¢g) = |0) ® |0) = |00),
indicated by a dotted vertical line marked with |¢o). The Hadamard gate puts the top
qubit in superposition (|0) + [1))/v/2 = |+). As a result, the state |¢/;) in Figure 2.5a
is the tensor product of the top qubit with the bottom qubit |0):

0) +[1) 1

|¢1>=\+>®|0>=T®|0>=ﬁ

Applying a Z gate to qubit 1 after the Hadamard gate results in the circuit shown in
Figure 2.5b. The fact that the Z gate is to the right of the Hadamard gate indicates that
this operator should be applied after the Hadamard gate (although, in this case, their
order would not matter).

Controlled X gates are indicated with a solid circle for the controller qubit and the
addition-modulo-2 symbol & for the controlled qubit (though not to be confused with
the symbol for the tensor product ®). In some instances, we may still want to denote
an X gate, but these two are identical:

Lk

Any single-qubit gate can be controlled in this way. The controlled Z gate is sym-
metric (as are all other phase gates; see Section 2.8.4). It is quite common and gets its
own graphical representation:

1

I —

The Controlled-by-0 Not gate can be built by applying an X gate before and after
the controller. It is drawn with an empty circle on the controlling qubit:

T:

™
L

(100) + |10)).

Swap gates are marked with two connected X symbols, as in the circuit diagrams
below. Like any other gate, swap gates can also be controlled:

If a gate is controlled by more than one qubit, it is drawn with multiple black or
empty circles, depending on whether the gates are controlled by |1) or |0). In the
example in Figure 2.7, qubits 0 and 2 must be |1) (have an amplitude for this base
state), and qubit 1 must be |0) to activate the X gate on qubit 3.
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Figure 2.6 Measurement and flow of classical data after measurement, which is indicated with
double lines.

46%

Figure 2.7 An example multi-controlled Not gate. The first and third qubit are controlled by |1),
and the second qubit is controlled by |0).

We will learn more about measurements in Section 2.13. Measurement gates pro-
duce real, classical values and are indicated with a meter symbol. Classical informa-
tion flow is drawn with double lines. In the example in Figure 2.6, measurements are
being made, and the real, classical measurement data may then be used to build or
control other unitary gates, U and V in the example.?’

Multi-controlled Gates

Now that we know how to create controlled gates, the logical next step is to devise
mechanisms to control gates with multiple controllers. In this section, we will first
show how to create a controlled—controlled Not operator. Next, we introduce the
Sleator—Weinfurter construction, which uses only 2-qubit gates and enables efficient
simulation. We will conclude with a mechanism for creating gates that are controlled
by an arbitrary number of qubits.

Controlled—Controlled Not Gate

The full matrix construction for the controlled gates works in a nested fashion, extend-
ing the control to already controlled gates. A double-controlled X gate is also called the
Toffoli gate or, for short, the CCX gate. This gate is interesting in classical computing
because it is a universal gate — every classical logic function can be constructed using
just this gate. As mentioned before, this universality attribute does not hold in quantum

27" All circuit diagrams in this book were created using the excellent IATEX package quantikz, with a
few custom settings.
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A — — A
B — — B
C — - (AAB)®C

Figure 2.8 Block diagram for the Toffoli gate.

computing. In quantum computing, there are only sets of universal gates (see also
Section 9.4).

This is how the Toffoli gate works: If the first two inputs are |1) it flips the third
qubit. This is often shown as a logic block diagram (with A as the logical AND), as in
Figure 2.8. In matrix form, we can describe it using block matrices, with 0, as ann x n
null matrix. Note that changing the indices of the controller and controlled qubits may
destroy these patterns, but the resulting 8 x 8 matrix will still be a permutation matrix:

L 0, 0, 0,
1y 04 . 0, L 0, 0
(04 CX> “lo, 0, L 0,
0, 0 0, X

The constructor code is fairly straightforward and is a good example of how to con-
struct a double-controlled gate:

def Toffoli(idx0: int, idxl: int,

idx2: int) -> Operator:
cnot = Cnot(idxl, idx2)

toffoli = ControlledU(idx0, idxl, cnot)

return toffoli

We observe that because we are able to construct quantum Toffoli gates and because
Toffoli gates are classical universal gates, it follows that quantum computers are at
least as capable as classical computers.

Sleator—Weinfurter Construction

For a given unitary matrix U and one of its square roots R = /U, we can construct a
double-controlled U gate using only two-qubit gates with the pattern shown in Figure
2.9. This is important for simulation performance because two-qubit gates can be
simulated very efficiently, as we will show in Chapter 3. Furthermore, building gates
consisting of more than two qubits for physical machines can be a major challenge, if
not impossible.

An example of a double-controlled gate is the Toffoli gate from Section 2.10.1,
which is a double-controlled X gate, as shown in the quantum circuit notation on
the left side of Figure 2.9. The Toffoli gate can be built with the Sleator—Weinfurter
construction (Barenco et al., 1995), which is illustrated on the right-hand side of
Figure 2.9.
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o) —— 94— o)
lg1) ———— = |q1) G &
) ————— ) —| vx | Jx! N

Figure 2.9 The Sleator—Weinfurter construction for a double-controlled X gate.

Uncompute
1
|
FanY FanY
do %) %) ;
|
FanY FanY

a NP2 NP2 §
|

Jany !

@ %) NP
|

|

g ————o——

cf ——————— =

C —————

3 —————

C4 —————

Figure 210 A multi-controlled X gate.

]

We know that the square root of the X gate is the V gate, and we also have the
adjoint () function to compute the adjoint of a tensor. This construction works for
any single-qubit gate and its root, so we can construct double-controlled X, Y, Z, T,
and any other controlled 2 x 2 gates. We show the implementation in Section 3.3.5.

Multi-controlled Gates

Building on the efficient two-qubit construction introduced in Section 2.10.2, an ele-
gant construction for a gate controlled by n controlling qubits requires n — 2 ancillary
qubits. To see how this works, let us examine the first half of the circuit in Figure
2.10. This circuit has three ancilla qubits ag, a;, and a,. It has the five controller
qubits ¢y to ¢4 and the controlled qubit gg. The circuit builds a cascade of Toffoli gates
to ultimately control the qubit gy. First, the controllers ¢y and c; control the ancilla a;.
The next control qubit ¢, is then connected to a, with a Toffoli gate, controlling the
ancilla a,. Finally, the control qubit c3 connects a Toffoli gate to ancilla a; to control
the top ancilla ay. This is also the top of the cascade. From here, we use a final Toffoli
gate to control the X gate at the bottom, on qubit gg, with both ¢4 and ay. This X gate
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will have an effect only if all the controlling qubits and the topmost ancilla qubit were
in state |1).

This construction can be used to control other single-qubit gates. A potential prob-
lem is that the system’s state is now entangled with the ancillary qubits. A solution
to this problem, which we detail in Section 2.12, is to uncompute the cascade of
Toffoli gates by computing the adjoints of the gates and applying them in reverse
order. By doing this, as shown in the right-hand half of Figure 2.10, the ancillary
qubits return to their initial state. The state can then again be expressed as a product
state, as all entanglement with the ancilla qubits has been eliminated. We detail an
implementation of multi-controlled gates that may have 0, 1, or more controllers and
that can be controlled by |0) or |1) in Section 3.3.6.

Other constructions are possible. Mermin (2007) proposes multi-controlled gates
that trade additional gates for lower numbers of ancillae, as well as circuits that do not
require the ancillae to be in |0) states (which may save a few uncomputation gates).

Entanglement

Entanglement is one of the most fascinating aspects of quantum physics. When two
qubits (or systems) are entangled, measurement results are strongly correlated, even
if the states are physically separated, be it by a millimeter or across the universe! This
is the effect that Albert Einstein famously called “spooky action at a distance.” If we
entangle two qubits in a specific way (described below), and qubit 0 is measured to be
in state |0), qubit 1 will always be in state |0) as well.

Why is this truly remarkable? Assume that we took two coins, placed them heads
up in two boxes, and shipped one of the boxes to Mars. Regardless of how we shipped
the boxes or in which order we opened the boxes, when we opened them, both coins
showed heads. So, what is so special about the quantum case? In this example, the
coins have a hidden state. We have placed them in the boxes before shipment, knowing
which side to place on top in an initial, defined, non-probabilistic state. We also know
that this state will not change during shipment.

If there were some form of a hidden state in quantum mechanics, then the whole
theory would be incomplete. The quantum mechanical wave functions would be insuf-
ficient to describe a physical state fully. This was the point that Einstein, Podolsky, and
Rosen attempted to make in their famous EPR paper (Einstein et al., 1935).

Howeyver, a few decades later, it was shown that there cannot be a hidden state in an
entangled quantum system. A famous thought experiment, the Bell inequalities (Bell,
1964), proved this and it was later experimentally confirmed. We will detail a variant
of the inequalities in Section 6.5 about the CHSH game.

Qubits collapse probabilistically during measurement to either |0) or |1).28 This is
equivalent to placing the coins in the boxes while they spin on their edges and shipping
one of them to Mars. Let’s assume that the long and likely bumpy journey by a rocket
does not disturb their twirling. Only when we open the boxes will the coins fall to

28 This is true as long as we measure in this computational basis. We talk about measurements in different
bases in Section 13.1.3.
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one of their sides. Perfect coins would fall on each side 50% of the time. Similarly,
if we prepare a qubit in the |0) state and apply a Hadamard gate to it, this qubit will
measure either |0) or |1), with a probability of 50% for each outcome. The magic of
quantum entanglement is that both qubits of an entangled pair will measure the same
value, either |0) or |1), 100% of the time. This is equivalent to the coins falling to the
same side 100% of the time on Earth and Mars!

There are profound philosophical arguments about entanglement, measurement,
and what they tell us about the very nature of reality. Many of the greatest physicists
of the last century have argued over this for decades, including Einstein, Schrodinger,
Heisenberg, and Bohr. These discussions have not been resolved to this day; there is
no agreement. Many books and articles have been written solely on this topic and go
into much more detailed and nuanced explanations than we are able to do here. We
are not even going to try it. Instead, we take the laws of nature (as postulated) and use
them as rules that we can use for computation.

This sentiment might put us in the camp of the Copenhagen interpretation of
quantum mechanics (Faye, 2019). Ontology is a fancy term for questions like “What
is?” or “What is the nature of reality?” The Copenhagen interpretation refuses to
answer all ontological questions. To quote David Mermin (Mermin, 1989, p. 2): If
I were forced to sum up in one sentence what the Copenhagen interpretation says to
me, it would be “Shut up and calculate!”

The key here is that progress can be made, even if ontological questions remain
unanswered.?

Product States

Consider a two-qubit system. Constructing the tensor product between the pure states
of two qubits leads to a state where each qubit can still be described without reference
to the other. There is no correlation between the two states.

There is an intuitive (though not general) way to visualize this. The state can be
expressed as the result of a tensor product with the result (a,b,c,d)”. If two states are
not entangled, they are said to be in a product state. This is the case if ad = bc. If the
states are entangled, this identity will not hold.

Proof As a quick proof, assume two qubits go = (i,k)” and ¢; = (m,n)". Their Kro-
necker product is go ® g = (im,in,km,kn)”. Multiplying the outer elements and the
inner elements, corresponding to the ad = bc form above, we see that

im kn =imkn=inkm= in km . O
a C

Entangler Circuit

The circuit in Figure 2.11 is the quintessential quantum entangler circuit. We will see
many uses of it in this text. Let us discuss in detail how the state changes as the gates
are applied.

29 My colleague Sergio Boixo modified this quote to “Shut up and program” for this book.
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10)
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Figure 2.11 A simple circuit to entangle two qubits.
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The initial state |1) before the Hadamard gate is the tensor product of the two |0)
states, which is |00) with a state vector of (1, 0, 0, 0)7. The Hadamard gate puts the
first qubit in superposition of the |0) and |1) basis states and the state |;) becomes
the tensor product of the superpositioned first qubit with the second qubit:

_ 10 +[D RS
|¢”> - \/§ \/i

In code, we compute this with the snippet below. The resulting state has nonzero
entries at indices 0 and 2, corresponding to the states |00) and |10):

10) = —=(/00) + [10)).

>>

[0

psi = state.zeros(2)

op = ops.Hadamard() =* ops.Identity()
psi = op(psi)

print (psi)

.70710677+0.5 0. +0.3 0.70710677+0.5 0. +0.5]

Now we apply the controlled Not gate. The |0) part of the first qubit in superposition
does not affect the second qubit, and the |00) part remains unchanged. However, the
|1) part of the superpositioned first qubit controls the second qubit. It will flip the qubit
to |1) and change the |10) part of the state to |11). The resulting state |(,) after the
controlled Not gate thus becomes

~100) + |11)

|17b2> - Ta

which corresponds to the state vector

1

[ha) = 7

—_—O O =
QUL O & Q

This state is now entangled because the ad = bc identity in the above rule does not
hold. The product of elements 0 and 3 is /2, but the product of elements 1 and 2 is 0.
The state can no longer be expressed as a product state.

In code, we take the state psi we computed above and apply the controlled Not
gate. As we print the entangled 2-qubit state vector, we can see that vector elements 0
and 3, which correspond to the basis states [00) and |11), hold the value 1/v/2:
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psi = ops.Cnot (0, 1) (psi)
print (psi)
>>
[0.70710677+0.5 0. +0.5 0. +0.5 0.70710677+0.5]

Only states |00) and |11) can now be measured. The other two basis states have a
probability of 0. If qubit 0 is measured as |0), the other qubit will also be measured as
|0}, since the only nonzero probability state with a |0) as the first qubit is |00).

This explains the correlations (that spooky action at a distance), at least mathe-
matically. The measurement results of the two qubits are 100% correlated. We don’t
know why, what physical mechanism facilitates this effect, or what reality is. Perhaps
another famous Einstein quote applies: “Reality is just an illusion, albeit a very per-
sistent one.” At least for simple circuits and their respective matrices, we now have a
means to express this unreal feeling of reality.

2.11.3 Bell States

Bell states are named after the great physicist John Bell (Burke et al., 1999), whose
thought experiment using standard probability theory proved that entangled qubits
could not have a hidden state or hidden information (Bell, 1964). This discovery was
one of the defining moments for quantum mechanics, in particular, because a few years
later, a physical experiment was devised that confirmed the theory.

We saw the first of four possible Bell states above, constructed with the entangler
circuit and |00) as input. There are a total of four Bell states, resulting from the four
inputs |00), |01), |10), and |11). We denote |B,y) as the state resulting from the inputs*
|x) and |y). In the literature, you will also find the symbols |®) and | ') to denote these
states:

ooy 411y 1

1Boo) = |@F)

V2 V2

—_—0 O =

1
) = o) = S —
1

0
01 0

o) = [we)y = LU0 %M:é i)

0
0
ol _\Ol>—|10>_L 1
|ﬁ11>_|\I’ >_ ﬁ _\@ —1
0

30 We should interpret these indices themselves as little-endian.
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Py Find the code
Infile src/1ib/bell .py

def bell_state(a: int, b: int) ->state.State:

assert a in [0, 1] and b in [0, 1], 'Bell bits must be 0 or 1.'
psi = state.bitstring(a, b)

psi = ops.Hadamard() (psi)

return ops.Cnot () (psi)

The four Bell states form an orthonormal basis for two-qubit states, which are com-
plex vectors in C*. Any two-qubit state [1) can be expressed as a linear combination
of these four basis states:

[¥) = co|Boo) + c1[Bor) + c2|Bro) + 3 |Bur) -

Similarly to Equation (2.3), we can derive the individual factors ¢; simply by com-
puting the inner product of |¢/) with the four Bell states ¢; = (Byy|(). A simple
example of this can be found in file bel1l_basis.py in the open-source repository.

Py Find the code
In file src/bell_basis.py

Bell states are the simplest forms of entangled states. We will encounter them
in Chapter 6 on entanglement-based algorithms, such as quantum teleportation or
superdense coding. There are other entangled states with very interesting properties,
namely the GHZ state and the W state, which we discuss next.

GHZ States

A generalization of Bell states is the GHZ state of three or more qubits, named after
Greenberger, Horne, and Zeilinger (Greenberger et al., 2008). It can be constructed
with a circuit as shown in Figure 2.12, which propagates the superposition from the top
qubit to all other qubits via cascading controlled Not gates. Note that, as an alternative
way to construct the circuit, instead of a cascade of controlled Not gates, we could
instead connect the top qubit 0 with each of the lower qubits with a controlled Not gate.

This construction can be extended to more than three qubits, generalizing the GHZ
states to (|00...0)4[11...1))/+/2. Only one of two possible states can be measured
in the computational basis, each with a probability of 1/2.

|000)+|111)
V2

2
4R\
P

=)
=
Jany

™
L

Figure 2.12 Circuit to construct a GHZ state.


http://www.github.com/qcc4cp/qcc/blob/main/src/lib/bell.py
http://www.github.com/qcc4cp/qcc/blob/main/src/bell_basis.py
http://www.github.com/qcc4cp/qcc/blob/main/src/bell_basis.py
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0) 7

Figure 213 Circuit to construct a W state with ¢»3 = 2 arccos %

def ghz_state(nbits: int) -> state.State:
psi = state.zeros (nbits)
psi = ops.Hadamard () (psi)
for offset in range(nbits-1):
psi = ops.Cnot (0, 1) (psi, offset)
return psi

GHZ states are considered maximally entangled (see Section 4.4 for a definition
of this term), even though no standard metric seems to exist for multipartite systems.
The GHZ state is interesting because it is no longer entangled after “losing” a single
qubit. We can simulate this with the partial trace routine we introduce in Section 4.3.
For example, by tracing out the third qubit (at index 2) from the state density matrix,
we obtain

) [(|000> + |111>) <<000| + (111|>] _ |00) (00| + |11) <1l|.
V2 V2 2
The result is an unentangled mixed state, a statistical ensemble of pure states. We will
learn more about these terms in Section 4.2.

2115 W State

There are two typical ways to entangle three qubits. The above GHZ state is one way,
and the W state, named after Wolfgang Diir (Diir et al., 2000), is the other. The GHZ
and W states are inequivalent, meaning they cannot be transformed into each other by
standard unitary transformations. The W state has the form

1
V3
This state is interesting because it is more robust against the loss of a qubit. After
losing one, the remaining state is still entangled. We will experiment with this in

Section 4.3 on the partial trace. Following the circuit diagram in Figure 2.13, the W
state can be generated with this corresponding code:

|[W) = —(]001) + [010) + [100)).

def w_state() -> state.State:
psi = state.zeros(3)
phi3 = 2 % np.arccos(l / np.sqgrt(3))
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psi = ops.RotationY(phi3) (psi, 0)

psi = ops.ControlledU(0, 1, ops.Hadamard()) (psi, 0)
psi = ops.Cnot(1l, 2) (psi, 1)

psi = ops.Cnot (0, 1) (psi, 0)

psi = ops.PauliX() (psi, 0)

return psi

No-Cloning Theorem

There is another profound difference between classical and quantum computing. In
classical computing, it is always possible to copy a bit, a byte, or any memory many
times. This is verboten in quantum computing. It is generally impossible to clone the
state of an unknown arbitrary qubit. This inability to copy is expressed with the so-
called No-Cloning Theorem (Wootters and Zurek, 1982). This restriction is related to
the topic of measurements and the fact that it is impossible to create a measurement
device that does not impact (entangle with) a state.

THEOREM: Given an arbitrary unknown quantum state |) = |p)|0), there cannot
exist a unitary operator U such that U|) = |$)|P).

Proof Assume that such an operator U exists. This means that U would take an
arbitrary state |¢) |0) and transform it into

Ulp)10) = 1) [¢) -

The state |¢) is an unknown arbitrary state, which means that the operator U should
also work for another such unknown state |i)):

Ulp)10) =) [¥) -

We know that U must be unitary, and unitary matrices preserve the inner product. Let
us take the inner product of these multi-qubit states before and after cloning. Before
cloning, we calculate the inner product as

({1 ¢0D) - (1) [0)),

which, according to Equation (1.5), is

(ely) (010) = (@1).
=

However, after cloning, the inner product becomes

(@l (@l) - ([¥) [¥)) = (Plw)Dly) = Kply) P

Since we expect U to preserve the inner product, it must be true that (¢p|¢) =
|(¢|¢)|*. However, this only holds if (¢|¢)) = 0 or (¢|1) = 1. This is not true in the
general case and for arbitrary states. It follows that an unknown arbitrary state cannot
be cloned. O
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Arbitrary states can be moved but not cloned. Obviously, this leads to interesting
challenges in quantum algorithm design and the design of quantum programming
languages.

Note the special cases of the basis states |0) and |1). These states can be cloned
as long as they are not in superposition. This is easy to see for a state of the form
|¢) = a|0) + B |1). With one of & or B being 1 and the other being 0, only one term
can remain after applying U:

U|9)|0) = a?|00) + Ba|10) + aB|01) + B2|11)
= a|00) + B|11).

No-Deleting Theorem

Similarly to the just described No-Cloning Theorem, which states that in general
an unknown quantum state cannot be cloned, the No-Deleting Theorem (Pati and
Braunstein, 2000) proves that for two qubits in an unknown but identical state |¢),
there cannot be a unitary operator to delete or reset only one of the two qubits back to
state |0).

THEOREM: Given a general quantum state |))|()|A), with two qubits in an iden-

tical state | ) and an ancilla |A), there cannot be a unitary operator U, such that
U ) [W)|A) = |) |0) |A"), where A’ is the ancilla’s state after the application of U.

Proof Assume we had an operator U that is capable of performing the deletion
operation:

U0} [0) |A) = 10) [0) |A"),
U 1) 1) [A) = [1)10) |A").

As before, we calculate the application of U to state |i)|¢)|A) in two different
ways. First, for an individual qubit in state a [0) + 8 |1) with |a|*> + |8|> = 1 and with
the operator U as defined above, we get

Ul) [p) |A) = [¢) ]0) |A")
= («]0)[0) + B[1)[0)) |A"). (2.13)

Now let’s compute the state as the tensor product of the qubits and apply the hypo-
thetical operator U:

Ulp) [9) |A) = U((a]0) +B11))(a|0) + B[1)) |A))

U(a?|00) + aB|01) + Bar[10) + B> [11)) |A)

a’U |00) |A) + B2U [11) |A) + apU |01) |A) + BaU [10) |A)
a®|00) [A") + B2 |10) |A") + aBU(|01) + |10)) |A).
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This form is different from Equation (2.13) because it has an additional (entangled)
component (|01) + [10)), which we can abbreviate as |®). The final form becomes

(a?]00) + B*[10)) |A") + apU | @) |A) . (2.14)

In general, Equation (2.13) is different from Equation (2.14), a contradiction that
proves that no such operator U can exist. O

Note that if « = 0 or § = 0, we again deal with the equivalent of classical bits. For
these cases, the final term in Equation (2.14) disappears, and thus, an operator U for
these classical states is feasible.

Uncomputation

In the last sections, we learned about the No-Cloning Theorem and the No-Deleting
Theorem. We have also seen how qubits entangle with ancilla qubits and themselves
during the construction of complex circuits. How are we supposed to extract clean,
high-probability results if resulting states are just hairballs of all-entangled qubits?
This is where the technique of uncomputation comes to the rescue, which we discuss
in this section.

The question of logical reversibility of computation was raised by Bennett (1973).
That paper was an answer to Landauer, who is also known for Landauer’s principle
(Landauer, 1973). That principle states that the erasure of information during comput-
ing must result in heat dissipation.3! Truly reversible computing would use almost no
energy (in theory), but reversing a computation would also undo any obtained result.
Therefore, the question was whether it was feasible to construct a reversible circuit
from which any meaningful result could be obtained. Given that quantum computing is
reversible by definition, it would be utterly useless if we did not answer this question.
Fortunately, Bennet found an elegant construction to resolve this issue.

Bennet’s paper is formal and based on a three-tape Turing machine.?? The proposed
mechanism would compute a result, then fan out the result to a new tape, before
uncomputing the result via reverse computation of one of the Turing machine’s tapes.
The goal at the time was to mitigate heat dissipation. In quantum computation, our
goal is to break undesirable entanglement with ancillary qubits. Bennet’s approach
works for both.

We mentioned ancillary qubits before. Let us quickly define the relevant terms:

« For constructions like the multi-controlled gate from Section 2.10.3, we need
additional qubits to perform the computation correctly. You may think of these
qubits as temporary qubits or helper qubits, which play no essential role for the
algorithm. They are equivalent to the stack space allocated by a classical compiler
to mitigate register pressure. These qubits are called ancilla qubits, or the plural
ancillae. You will also see the term ancillary qubits.

3

Landauer’s principle does contribute to modern CPU’s heat dissipation, but the effect is very small
when compared to leakage current and other more dominant effects (Bérut, A. et al., 2015).
32 See also en.wikipedia.org/wiki/Multitape_Turing_machine.
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Figure 2.14 Typical structure of a quantum computation.
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Figure 2.15 Computation of a result with Uy, followed by the transfer of the results to ancilla
qubits, followed by uncomputation with UfT .

« Ancilla qubits may start in state |0) and also end up in state |0) after a construction
such as the multi-controlled gate. In other scenarios, however, the ancillae may
remain entangled with a state, potentially destroying a desired result. In this case,
we call these ancillae junk qubits, or simply junk.

The typical structure of a quantum computation looks like the one shown in
Figure 2.14. All quantum gates are unitary, so we can pretend that we have packed
them all up into one giant unitary operator Uy. There are the input state |x) and some
ancillary qubits, all initialized to |0). The result of the computation will be |f(x)) and
some leftover ancillae, which are now junk; they serve no purpose; they just hang
around, intent on messing up our results. The problem is that the junk qubits may still
be entangled with the result, nullifying the intended effects of quantum interference
upon which quantum algorithms are based.

Here is the uncomputation procedure, as shown in Figure 2.15. After computing
a solution with operator Uy, we have to apply the inverse unitary operation UfT to
completely undo the computation. We say we “uncomputed” the effect of Ur. We can
either build giant combined unitary operators as shown in the figure or, if we have
constructed Uy as a circuit using individual gates, we apply the inverses of the gates in
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reverse order to undo the computation. This works because the operators are unitary
and UTU = 1.

The problem is that in this way, we will lose the result |f(x)) that we were trying to
compute. Here is the “trick” to work around this problem (which is similar to Bennet’s
recipe). After the computation, but before the uncomputation with U, T, we fan out the
result qubits to a set of ancillary qubits with the help of controlled Not gates, as shown
in the middle part of Figure 2.15. With this circuit, the result of |f(x)) will be in
the upper ancillae, and the uncomputation restores the other registers to their original
state, eliminating all unwanted entanglement!

How does this work? We start in the state composed of an input state |x) and a
working register initialized with |0). The first Uy transforms the initial state |x)|0)
into |f(x))|g(0)), with some algorithm-dependent, likely entangled |g(0)). To extract
the result, we add an ancillary register at the top to manufacture the product state
)l ())[(0))-

Suppose that, when expressed as basis states, |f(x)) = > . ¢; |i). As we now connect
the result register to the ancilla register with controlled Not gates, we obtain the state
> cili)|i) |g(0)). Fortunately, this does not violate the no-cloning theorem because
the result is not a product state.>? The two registers cannot be measured independently
and give the same result.

We apply U; to the two lower registers to uncompute Uy and obtain [f(0))|x)|0).
The final result is now in the top register, the bottom registers have been successfully
restored, and we have succeeded in extracting the result. This is one of the fundamental
techniques of quantum computing and we make use of it in many places in this book.

Measurement

We have almost reached the end of this introductory chapter. The remaining task is
to discuss measurements. This is a complex subject with many subtleties and layered
theories. We will keep it simple and stick to projective measurements only.

Postulates of Quantum Mechanics

The rules of quantum mechanics are different from the typical observed physical laws
of nature in that they are postulates. Depending on the author and context, you may
find between four and six of them, presented in a different order and with different
focus and rigor. In keeping with the spirit of our text, we present them here in a more
informal way that conveys just enough information to understand the essence of the
postulates:

1. The state of a system is represented by a ket, which is a unit vector of complex
numbers representing probability amplitudes.

33 In fact, writing the state incorrectly as |f(x))|f(x))|g(0)) would have violated the cloning theorem.
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2. A state evolves as the result of unitary operators operating on the state (in a closed
system) as [¢') = U|y). This is derived from the time-independent Schrédinger
equation. To describe the evolution of a system in continuous time, this postulate
is expressed with the time-dependent Schrodinger equation (which we mostly
ignore in this text).>*

3. Quantum measurements are described by measurement operators. Measurement
means obtaining a singular measurable value, which is a real eigenvalue of a
Hermitian observable. The probability amplitudes and the corresponding
probabilities determine the likelihood of a specific measurement result. This may
sound more scary than it actually is and will be the focus of this section.

4. After measurement, the state collapses to the measurement result. This is also
called the Born rule. We will explain the implications of this postulate and the
need for renormalization.

5. The state space of a composite physical system is the tensor product of the
individual state spaces of components of the system. We already used this
postulate in Section 2.4, where we discussed multi-qubit states.

The postulates are postulates, not standard physical laws. As noted above, they also
have been the subject of almost a century of scientific disputes and philosophical
interpretation. See, for example, Einstein et al. (1935), Bell (1964), Norsen (2017),
Faye (2019), and Ghirardi and Bassi (2020), and many more. As we have stated before,
we will avoid philosophy and focus on how the postulates enable interesting forms of
computation.

Projective Measurements

The class of projective measurements is easy to understand and is the only method
we will use in this text. Given a system in a superposition of two states, the idea
behind making a projective measurement is simply to determine the probability that
the system is in one state or the other. If we measure along the z-axis, we may wonder
if a qubit was more likely to be in the |0) state or in the |1) state. The measurement
returns only one of the two with a given probability. After measurement, according to
Born’s rule, the state collapses to the measured state (postulate 5). The qubit will now
be in basis state |0) or |1) and will remain in this state for all future measurements.
To obtain the probabilities of a state |i) in the computational basis, we compute
the norm of the inner product of the state with the computational basis vectors. We
project the state onto the basis vectors to obtain the probabilities of a measurement
outcome as
2

Py = [(O19) = \(1 ) (E)

p|1>—|<1|1#>|2—‘(0 1)(;‘)

34 This is expressed as postulate 2’ in Nielsen and Chuang (2011).
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If we apply a Hadamard gate to state [0) = (1 0)7, the resulting state |[¢) =
|+) is located on the x-axis of the Bloch sphere. If we measure this state along the
perpendicular z-axis, there should be a 50/50 chance that the result will be the |0) or
[1) state. We will see that this is the basic idea of the random number generator we
will discuss in Section 6.1. Using the same expressions from above for |+), measured
in the computational basis, we get the expected probabilities as

Ploy = [(0[y)* = ‘(1 0) % G) T _ %
Py = (1) = ‘(0 1) \% G) " ’\2 t %

How do we measure in a different basis? For example, can we measure the state
along the x-axis, in the Hadamard basis {|+), |—)}? In this case, we would expect
a probability of 1 for state |) = |+). We can follow the same projection recipe as
above, but this time using the Hadamard basis vectors:

otttk 1250

o=l = |0 -0 55 ()

We will detail general measurements in other bases in Section 13.1.3. But let us
return to the computational basis. We can perform a similar computation as above to
extract probabilities using the projection operators Py and P|yy:

Po>=|0><0|=<é> (1 o):((l) g),
P == (Yo n-(g 7).

Applying a projector to a qubit “extracts” a subspace and reveals its probability ampli-
tude. For example, for Poy:

Piy|¢) = 10){0[(a|0) + B[1))
(6 0) (3) =)
—a <é> — al0).

To compute the probability p|;y of finding the ith basis state, we square the norm of the
probability amplitude, as stated in the fourth postulate:

Py = [Py l9)[*
= (P [¥)) " (Piy19))
= (Y|P}, Py |9).

2
=1

)

2
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The probabilities must add to 1 in
Zm ) = Z (WIPf, Py l9) =
which leads us directly to the completeness relation for projection operators:
Z Pl Py =1.
Projectors are Hermitian and hence equal to their adjoint:

Py = Q[P Py |9)
(W|PYy W)

For projectors of normalized basis vectors, we also know that

2
This leads us to the final form for the probabilities as

y = (YIPy[P).

The term (i |P;y 1)) is also called the expectation value of the operator P);, which
is the quantum equivalent of the average of P);. It is often denoted with square
brackets as [P);y]. Now, from Equation (1.7) we know that

r(|x)(y|) Zx,yl (y]x). (2.15)

By rearranging terms and, using Equation (2.15) and interpreting (¢| as (y| and Py; |¢)
as |x), we arrive at the form we will use in our code:

y = (WP ) = tr (P |¥) (). (2.16)

You can intuitively understand this form. The density matrix of the state |¢) (1| has
the probabilities p; for each basis state |x;) on the diagonal, as shown in Section 2.5.
The projector zeros out all diagonal elements that are not covered by the projector’s
basis state. What remains on the diagonal are the probabilities of states that match the
projector. The trace then sums up all these remaining probabilities.

After measurement, the state collapses to the measured result. Basis states that
disagree with the measured qubit values get a resulting probability of 0. As a result,
the remaining states’ probabilities no longer add up to 1 and need to be renormalized,
which we achieve with the following complicated-looking expression (no wotries, in
code, this will look quite simple):

35 From here, it is only a small step to generalized measurements in the POVM (positive operator-valued
measure) formalism, which we will not pursue in this text. In this formalism, our projectors are special
cases of general measurement operators M;, which also obey the completeness equation. The positive
operator Ey, = M[.TM is a POVM element and the complete set of operators {E, } is called POVM. For
each of the M;, the Kraus operator representation is a set of matrices such that M; = AIT A;. The A; are
called the Kraus operators. Since for our projectors P‘]Ll.> = P};y and P‘TDP‘ iy = P|;, the projectors are
also Kraus operators.
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As an example, let us assume we have the state
1
) = 5(|00> +|01) + [10) + |11)).

Each of the four basis states has the same probability (1/2)? = 1/4 of being mea-
sured. In addition, assume that qubit O is measured as |0). This means that the only
choices for measuring the final full state are |00) or |01). The first qubit is “fixed” at
|0) after measurement. This means that the states where qubit 0 is |1) now have a zero
probability of ever being measured. The state collapses to the unnormalized state

) = %(I00> +01)) +0 (]10) + [11)).

In this form, the norms squared of the probability amplitudes no longer add up to 1.
‘We must renormalize the state following Equation (2.17) and divide by the square root
of the expectation value (which was 1/2):
_ L

V2

This normalization step might be surprising. How does Mother Nature know when

¥) (100) + [01)).

and if to normalize? Given that we adhere to the Copenhagen interpretation and have
decided to “Shut up and program,” a possible answer is that the need for renor-
malization is simply a remnant of the mathematical framework, nothing more and
nothing less.

Implementation

The function to measure a specific qubit has four parameters. The state to be measured
is passed as parameter psi. The qubit to measure, indexed from the top/left, is passed
as parameter idx. Whether to measure the probability that the state collapses to |0)
or |1) is controlled by parameter tostate. Finally, whether the state should collapse
after measurement is controlled by parameter collapse. In the physical world, mea-
surement destroys superposition, but in our simulation we can just take a peek-a-boo
at the probabilities without affecting the superposition of states.

The way this function is written, if we measure and collapse to state |0), the state
is made to collapse to this state independently of the actual probabilities. There are
other ways to implement this, for example, by selecting the measurement result based
purely on probabilities. At this early point in our exploration, the ability to force a
result works quite well; it makes debugging easier. Care must be taken not to force the
state to collapse to a result with probability 0. This would lead to a division by 0 with
likely very confusing subsequent measurement results.

The function returns two values: the probability of measuring the desired qubit state
and a state. The returned state is the collapsed post-measurement state if collapse
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was set to True, or the unmodified state otherwise. In the implementation, the func-
tion first computes the density matrix and the padded operator around the projection
operator. The probability is computed from a trace over the matrix resulting from
the multiplication of the padded projection operator with the density matrix, as in
Equation (2.16):

def Measure(psi: state.State, idx: int,
tostate:int=0, collapse:bool=True) -> (float, state.State):
rho = psi.density()
op = ZeroProjector(l) if tostate == 0 else OneProjector (1)

if idx > 0:
op = Identity () .kpow(idx) =* op
if idx < psi.nbits - 1:
op = op * Identity().kpow(psi.nbits - idx -1)

# Probability is the trace.
prob = np.trace(np.matmul (op, rho))

If state collapse is required, we update the state and renormalize it before returning
the updated (or unmodified) probability and state.

if collapse:
mvmul = np.dot(op, psi)
divisor = np.real(np.linalg.norm(mvmul))

assert divisor > le-10, 'Measurement collapses to p 0'
normed = mvmul / divisor

return np.real (prob), state.State(normed)

# Return original state, enable chaining.
return np.real (prob), psi

To clarify one more time, the measurement operators are projectors. They are
Hermitian and positive semidefinite with eigenvalues 0 and 1, and an eigenvector |1).
A measurement will produce |0) or |1), corresponding to the probabilities of the basis
states. Measurement will not measure, for example, a value of 0.75. It will measure
one of the two basis states with a probability of 0.75. This can be a source of confusion
for novices. In the real world, we have to measure several times to estimate the
probabilities with statistical significance.

2.13.4  Examples

Let us look at a handful of examples to see measurements in action. In the first
example, let us create a 4-qubit state and look at the probabilities:
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psi = state.bitstring(1l, 0, 1, 0)
psi.dump ()

[|1010> (|10>): ampl: +1.00+0.00j prob: 1.00 Phase: 0.0

There is only one state with nonzero probabilities. If we just measure the second qubit,
the probability of finding basis state |0) is 1:

p0, _ = ops.Measure(psi, 1)
print (p0)

>>
1.0

But if we tried to measure this second qubit to be in the basis state |1), which is a state
that it cannot be in, we would expect an error:

pl, _ = ops.Measure(psi, 1, tostate=1)
print (pl)

>>

AssertionError: Measurement collapses to 0.0.

Here is an example with a collapsing measurement. Let us create a Bell state:

psi = bell.bell_state(0, 0)

psi.dump ()

>>
[00> (]0>): ampl: +0.71+0.00j prob: 0.50 Phase: 0.0
|11> (|3>): ampl: +0.71+0.00j prob: 0.50 Phase: 0.0

This state has only two possible measurement results, |00) and |11). Let us measure
the first qubit to be |0) without collapsing the state:

psi = bell.bell_state(0, 0)
p0, _ = ops.Measure(psi, 0, 0,
print ('Probability: ', pO0)
psi.dump ()

collapse=False)

Probability: 0.49999997
|00> (]0>): ampl: +0.71+0.00j prob:

0.50 Phase: 0.0
[11> (|3>): ampl: +0.71+0.00j prob:

0.50 Phase: 0.0

This shows the correct probability of 0.5 of measuring |0), but the state is still unmod-

ified. Now let’s change this and collapse the state after the measurement, which is
more reflective of making an actual, physical measurement:
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>>

psi = bell.bell_state(0, 0)

p0, psi = ops.Measure(psi, 0, 0, collapse=True)
print ('Probability: ', p0)

psi.dump ()

Probability: 0.49999997

[00> (]0>): ampl: +1.00+0.00j prob: 1.00 Phase: 0.

Now only one possible measurement outcome remains, the state |00), which from now

on will be measured with 100% probability.
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3.1

The basic infrastructure we have implemented so far, with its tensors, states, and
operators implemented as large matrices, is sufficient to explore many small-scale
quantum algorithms. It is great for learning and experimentation. However, more
complex algorithms typically consist of much larger circuits with many more qubits.
For these, the matrix-based infrastructure becomes unwieldy, error-prone, and does
not scale. In this chapter, we develop an improved infrastructure that easily scales to
larger problems. If you are not interested in infrastructure, you may only skim this
content for now. Most of the remainder of the book is understandable without the low-
level details presented here. However, we are building an initial high-performance
quantum simulator. You don’t want to miss it!

First, we give an overview of various levels of infrastructure with the correspond-
ing computational complexities and levels of performance. We introduce quantum
registers, which are named groups of qubits. We describe a quantum circuit model,
where most of the complexity of the base infrastructure is hidden elegantly. To handle
larger circuits, we need faster simulation speeds. We detail an approach to applying
an operator with linear complexity rather than the methods with quadratic or even
cubic complexities that we started with. We further accelerate this method with C++,
attaining a performance improvement of up to 100 times over the Python version. For
a specific class of algorithms, we can do even better with a sparse state representation,
which we detail at the end of this chapter.

Simulation Complexity

This book focuses on algorithms and how to simulate them efficiently on a classical
computer. The key attributes of the various implementation strategies are computa-
tional complexity, resulting performance, and the maximum number of qubits that
can be simulated in reasonable time with reasonable resource requirements. To some
extent, this whole endeavor seems doomed from the start. You will need a quantum
computer to effectively run quantum algorithms, as a classical computer can only go
so far. However, luckily for us, our techniques will take us far enough to learn the
principles.

The size of the state vector grows exponentially with the number of qubits. For a
single qubit, we only need to store two complex numbers, which amount to 8 bytes
when using float or 16 bytes when using double as the underlying data type.
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Two qubits require four complex numbers, and n qubits require 2" complex numbers.
Simulation speed and the ability to fit a state into memory are typically measured by
the number of qubits at which a given methodology is still tractable. By tractable,
we mean a result that can be obtained in less than roughly an hour. At the time of
writing, the world record for storing and simulating a full wave function was 48 qubits
(De Raedt et al., 2019).

Due to the exponential nature of the problem, improving the performance by a
factor of eight means that we can handle only three more qubits (2° = 8). If we see a
speed-up of 100 times, this means that we can handle six or seven additional qubits. In
the following, we use n to count qubits and N = 2" for the size of the corresponding
state vector. These are the five different approaches we describe in this book:

« Worst. Implementing gates as potentially huge matrices and constructing
operators using matrix—matrix products is of complexity O(N 3). This is how we
started in the previous chapter, and it is the worst case; avoid it if possible. It
becomes intractable even with a relatively small number n of qubits, around n ~ 8.

« Bad. We can apply a gate to a state one at a time as a matrix x vector product with
complexity O(Nz), which is already a substantial improvement. We can simulate
roughly n ~ 12 qubits.

« Good. In Section 3.5, we will learn that one- and two-qubit gates can be applied
by linearly iterating over the state vector, which is a massive improvement. We
should be able to simulate roughly n ~ 18 qubits with this technique.

« Better. We started our journey with Python but can accelerate it using C++. In
Section 3.6 we will implement the previous apply functions in C++, extending
Python with its foreign function interface (FFI). The performance gain of C++
over Python is about 100 for these types of problems, and we may be able to
simulate n ~ 25 qubits, depending on the problem.

« Best. In Section 3.9, we will change the underlying representation to a sparse one.
This approach is still C’)(N) in the worst case, but it can and does win over other
implementations by a significant factor. Improvements are possible because, for
many circuits, the number of nonzero probability states is less than 3% or even
lower. With this, we may reach n ~ 30 qubits or more for some algorithms.

We could further improve our techniques (which are also called Schroedinger full-
state simulations) with well-known techniques from the field of high-performance
computing (HPC), such as vectorization (which adds one or two qubits) or paralleliza-
tion (64 cores could add log,(64) = 6 additional qubits). We could employ machine
clusters with 128 or more machines and the corresponding additional qubits to reach
a simulation capability of around 45 qubits using 512 TB of memory. Today’s largest
supercomputers would add another handful of qubits (if they were fully dedicated to
a simulation job, including all their secondary storage).

These techniques do not add much to our material, and we will not discuss them
further. We list a range of open-source solutions in Section 16.4.9, several of which
support distributed simulation. The transpilation techniques detailed in Section 3.4.7
allow the targeting of several of these simulators. What these numbers demonstrate
is how quickly the simulation hits the limits. Improving performance or scalability
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by 10° only gains about 10 qubits. Adding 20 qubits results in 10° higher resource
requirements.

There are other important simulation techniques. For example, there is the so-called
Schrodinger—Feynman simulation technique, which is based on path history (Rudiak-
Gould, 2006; Frank et al., 2009). This technique trades performance for reduced
memory requirements. Other simulators work efficiently on restricted gate sets, such
as the Clifford gates (Aaronson and Gottesman, 2004; Anders and Briegel, 2006).
Furthermore, there is ongoing research on improving the simulation of specific circuit
types (Markov et al., 2018; Pan and Zhang, 2021).) as well as circuit cutting, which
breaks a large circuit into smaller subcircuits and combines their simulation results
classically (Piveteau and Sutter, 2024).

Quantum Registers

For larger and more complex circuits, we want to make algorithms more readable by
addressing qubits in named groups. For example, the circuit in Figure 3.1 has a total
of eight qubits. We want to group the first four as data, the next three as ancilla,
and the bottom one as a single control qubit. On the right side, the figure shows the
global qubit number as g; and the local offset into the named groups. For example, the
global qubit index 5 for qubit gs corresponds to the local offset 1 for qubit ancilla;.
These named groups of adjacent qubits are called quantum registers.

The full state of the system is the tensor product of eight qubits, numbered g to g7.
We want to address data with indices ranging from 0 to 3, which should produce the
same global qubit indices 0 to 3 in the combined state. We want to index the ancilla
qubits from O to 2, resulting in global qubit indices 4 to 6. Finally, we want to address
control at index 0, resulting in global qubit index 7. In code, a simple list of indices
will do the trick.

. datag

o0
S

: data;

9o

data
. datap

o9
S

: dataj

oq
[y

: ancillag

ancilla : ancilla;

oq
[

: ancillay

)
=)

esstine

o9
~

control H : controly

Figure 3.1 Quantum registers data, ancilla, and control.
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The initial implementation is a bit rough. No worries, we will wrap this code up
nicely in Section 3.3. We introduce a Python class Reg (for “Register”) and initialize
it by passing the size of the register file that we want to create and the current global
offset, which must be manually maintained for this interface. In Figure 3.1, the first
global offset is 0, for the second register it is 4, and for the last register it is 7.

We derive this class from the Python built-in 1ist type, which means that we get
functions like __len__ or __getitem__ for free. This enables the use of the Python
len function and standard array indexing. In addition to the indices, we also want
to maintain the potential initial values for each qubit, which we hold in the member
array val.

By default, all qubits are assumed to be |0), but an initializer, init, can be pro-
vided. If init is an integer, it is converted to a string with the binary number repre-
sentation. If init is a string (including after the previous step), tuple, or list, the val
array is initialized with Os and 1s according to the binary numbers passed.

class Reg(list):

def _ init_ (self, size: int, init=None, global_reg=0) -> None:

super()._ _init_ ([global_reg + idx for idx in range(size)])
self.val = [0] * size
if init:

if isinstance(init, int):
init = format(init, 'O{}b'.format(size))
if isinstance(init, (str, tuple, list)):
for idx, val in enumerate(init):
if val == '1' or val ==
self.vallidx] = 1

For example, to create and initialize data with |1011) and ancilla with |111)
(decimal 7), and to access global qubit 5, we can write:

data = state.Reg(4, (1, 0, 1, 1), 0) # 0b1011
ancilla = state.Reg(3, 7, 4) # 0b111
# Access global qubit[5] == ancilla[l] as:

. = ancillal[l]

Only two additional functions are needed. To give a textual representation of the
register with the initial state, we write a short string conversion function __str___
to print the register in state notation. To produce a quantum state from this register,
the member function psi may be called once after the initialization is complete.
All other typically required functionality to manage a list of indices, including slice
management, is conveniently handled by the underlying 1ist class.

def _ str_ (self) -> str:
return '/’ + ''.join([f'{val}' for val in self.vall) + '>'

def psi(self) -> State:
return bitstring(*self.val)



https://doi.org/10.1017/9781009548519.004

80

3.3

Simulation Infrastructure

Now, let’s move on to discuss a more convenient abstraction and interface for
quantum circuits that will utilize our quantum register implementation.

Circuits

So far, we have used full-state vectors and operator matrices to learn about the fun-
damentals and to implement small circuits. This infrastructure is easy to understand
and works quite well for algorithms with a limited number of qubits. It is helpful
for learning, but the representation is very verbose and explicit. It also exposes the
underlying data structures, and that can cause problems like the following:

« Describing states and operators explicitly at a very low level of abstraction
requires a lot of typing, which is inconvenient and error-prone.

« The representation exposes the implementation details. Changing aspects of the
implementation would be challenging — all users of the base infrastructure would
have to be updated.

« A minor point to make is that this style of representation differs from that
commonly found in existing frameworks such as Qiskit (Gambetta et al., 2019) or
Cirq (Google, 2021c).

The second problem is especially important in our context, as we want to develop
faster ways to apply gates in Python and C++-accelerated Python. We might want
to change the representation of states themselves from storing a full state vector to
a sparse representation. The current level of abstraction does not allow that without
changing all dependent client code.

To remedy these problems, we create a data structure called a quantum circuit gc.
It nicely wraps up all the functions that we have discussed so far. The naming
convention is to use all lower case to distinguish from the explicit representation
discussed in Chapter 2. Importantly, this data structure enables quite sophisticated
functionality:

« Gates can be executed as the circuit is being constructed, similar to the initial
infrastructure above. This is also called eager execution.

« It also enables non-eager circuit construction, where gate sequences are simply
recorded in an internal data structure that we call intermediate representation (IR),
following the typical compiler phraseology.

« Using this IR, we can do several advanced things. We can execute a circuit
multiple times, execute it in reverse for uncomputation using adjoint gates, and
even control a whole circuit using another qubit.

« We can also transpile the IR to target other simulators or commercial frameworks.
In this book, we used this technique in a few places to produce circuit diagrams in

IATEX.

The first thing we need is a circuit constructor that accepts a string argument to assign
a name to the circuit. This name is used in printing and debugging. The internally
stored quantum state psi is initialized to 1.0, indicating that there are no qubits in this
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circuit immediately after creation. The parameter eager controls whether the circuit
is executed eagerly during construction or whether all gates should be stored in the
IR for later execution. For convenience, the IR object itself is always constructed,
but the IR construction is controlled by the Boolean build_ir. We only enable IR
construction in non-eager execution mode.

class gc:
"nrWrapper class to maintain state + operators."""

def _ init_ (self, name=None, eager: bool = True):
self.name = name
self.psi = state.State(1.0)
self.ir = ir.Ir ()
self.eager = eager
self.build_ir = not eager
self.global_reg = 0

3.3.1 Qubits

The circuit class supports quantum registers. As they are constructed with the
functions detailed below, they are immediately tensored to the circuit’s internal full
state, using the helper function _tprod. This function maintains the global register
count, hiding the rough interface of the underlying Reg class. Together, adding support
for the qubit constructors discussed above is straightforward. We add the functions
rand_bits () to create a random bit string of n qubits and arange () to build a
non-quantum vector of values 0 to n — 1 (used for debugging only).

def _tprod(self, new_state, nqubits: int):
self.psi = self.psi * new_state
self.global_reg = self.global_reg + nqubits

def reg(self, size: int, it=0, %, name: str = None) -> state.Reg:
ret = state.Reg(size, it, self.global_reg)
self._tprod(ret.psi(), size)
return ret

def qubit(self, alpha: np.complexfloating = None,
beta: np.complexfloating = None) -> None:
self._tprod(state.qubit (alpha, beta), 1)

# and similar for these functions.
def zeros(self, n: int) -> None

def ones(self, n: int) -> None

def bitstring(self, xbits) -> None
def arange(self, n: int) -> None
def rand_bits(self, n: int) -> None
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3.3.2 Gate Application
To apply gates to qubits, assume that there are functions apply1 for single-qubit gates
and applyc for controlled two-qubit gates. We will develop their implementations in
the following sections. Let us pretend that these functions will apply gates at index
idx, with the control qubit at index ctl for controlled gates. In Python, optional
function parameters can be specified after a single parameter x. Gates that need a
parameter, such as rotations, get their optional value as val.
def applyl(self, gate: ops.Operator, idx: int,
name: str = None, x, val: float = None):
[...]
def applyc(self, gate: ops.Operator, ctl: int, idx: int,
name: str = None, *, val: float = None):
[...]
3.3.3 Standard Gates

With these two apply functions in place, we can now wrap all standard gates and make
them member functions of the circuit. But how should we apply adjoint gates? There
are a variety of implementation strategies in Python, but we keep it simple in this
book. If a gate is invoked with gate_name, we will add a corresponding function to
apply the adjoint as gate_name_dag.

For non-parameterized single-qubit gates, we add the following code to the circuit
constructor to add member functions to apply the gate (for example, as gc . s for the S
gate, the adjoint gate (as gc . s_dag), the controlled gate (gx . cs), and the controlled
adjoint gate (gc.cs_dag). These functions are added as object attributes that hold a
lambda function. This way, we can add an optional parameter cond to the lambda for
conditional gate application.

self.simple_gates = [

['h', ops.Hadamard()], ['s', ops.Sgate()], ['t', ops.Tgate()],
['v', ops.Vgate()], ['x', ops.PauliX ()], ['y', ops.PauliY ()]
['z', ops.PauliZ()], [ 'yroot', ops.Yroot()],

1
for gate in self.simple_gates:
self.add_single(gate[0], gate[l])
self.add_single(gate[0] + 'dag', gatel[l].adjoint())
self.add_ctl('c' + gate[0], gate[ll])
self.add_ctl('c' + gate[0] + 'dag', gate[l].adjoint())
.
def add_single(self, name: str, gate: ops.Operator):
setattr(self, name, lambda idx, cond = True:
self.applyl (gate, idx, name) if cond else None)

def add_ctl(self, name: str, gate: ops.Operator):
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setattr(self, name, lambda idx0, idxl, cond = True:
self.applyc(gate, idx0, idxl, name) if cond else None)

Parameterized Gates

For parameterized gates requiring a value, such as an angle, we add simple wrapper
functions. Again, you can see how we call the apply1 function for standard gates and
the applyc function for controlled gates. The value is passed as parameter val to
these functions.

def ul(self, idx: int, val):
self.applyl (ops.Ul(val), idx, 'ul', val=val)

def cul (self, idx0: int, idxl: int, value):
self.applyc(ops.Ul (value), idx0, idxl, 'cul', val=value)

def rx(self, idx: int, theta: float):
self.applyl (ops.RotationX (theta), idx, 'rx', val=theta)

def crx(self, ctl: int, idx: int, theta: float):
self.applyc(ops.RotationX (theta), ctl, idx, 'crx', val=theta)

# ... and similar for ry, cry, rz, crz

Controlled—Controlled Gates

For general single-qubit gates, we add functions for controlled and controlled—con-
trolled gate applications, using the Sleator—Weinfurter construction outlined in Sec-
tion 2.10.2. We add the alias ccx for the double-controlled Pauli X gate, a common
abbreviation. The helper function _ctl_by_ 0(ctl) checks whether the index of
the controlling qubit is passed as an integer or a single-element list (as in [idx]),
indicating that the control qubit should be used as a Controlled-by-0 qubit.

def _ctl_by O(self, ctl):

if isinstance(ctl, int):
return ctl, False
return ctl[0], True

def cu(self, idx0: int, idxl: int, op: ops.Operator, desc: str = None):
assert op.shape[0] == 2, ’'cu only supports 2x2 operators'
self.applyc(op, idx0, idxl, desc)

def ccu(self, idx0: int, idxl: int, idx2: int,
op: ops.Operator, desc="'"):
nnngleator-Weinfurter Construction for general operators."""
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# Enable Control-By-0 (if idx is being passed as [i1dx])
10, cO0_by_0 = self._ctl_by_0(idx0)
i1, cl_by 0 = self._ctl_by 0(idx1)

with self.scope(self.ir, f'cc{desc} ({idx0}, {idx1l}, {idx2})'):
self.x (10, cO_by_0)
self.x(il, cl_by_0)

v = ops.Operator (sgrtm(op))

self.cu(i0, idx2, v, desc + '"1/2")

self.cx (10, 11)

self.cu(il, idx2, v.adjoint(), desc + '~t')
self.cx(i0, il)

self.cu(il, idx2, v, desc + '*1/2")

self.x(il, cl_by_0)
self.x (10, c0_by_0)

def ccx(self, idx0: int, idxl: int, idx2: int):
self.ccu(idx0, idxl, idx2, ops.PauliX(), 'ccx')

Multi-Controlled Gates

To build multi-controlled gates as outlined in Section 2.10.3, we use the approach
outlined here and make it quite fancy:

« For the controlling gates, we distinguish the special cases of 0, 1, 2, and more
controllers.

« We allow for Controlled-by-1 gates and Controlled-by-0 gates. To mark a gate as
Controlled-by-0, the index idx of the controller is passed as a single element list
item [idx].

Let us use the example in Figure 3.2, which has a controlled X gate on qubit g4. This
gate is controlled by By-1 and By-0 control qubits, marked as solid and hollow circles.
To produce this controlled gate, we make the following function call, where the By-1
gates are passed as indices 0 and 3 and the By-0 gates as single-list elements [1]
and [2]:

q0
qi
q2

q3 ——o—

4 —r—

Figure 3.2 A multi-controlled X gate.
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gc.multi_control ([0, [11, [2]1, 31, 4, aux, ops.PauliX(), 'multi-X'))

Of course, we have to make sure that we have reserved enough space for the ancillae
in the aux register. For our implementation, n control qubits require n — 1 ancilla
qubits. For the full implementation, we also modified the function applyc to enable
Controlled-by-0 gates by adding an X gate before and after the controller qubit (not
shown here).

def multi_control (self, ctl, idxl, aux, gate, desc: str):
"mrMulti-Controlled gate, using aux as ancilla."""

with self.scope(self.ir, f 'multi({ctl}, {idx1}) # {desc})'):
if len(ctl) ==
self.applyl (gate, idxl, desc)
return
if len(ctl) == 1:
self.applyc(gate, ctl[0], idx1l, desc)
return

# Compute the predicate.
self.ccx(ctl[0], ctl[l], aux[0])
aux_idx = 0
for i in range(2, len(ctl)):
self.ccx(ctl[i], aux[aux_idx], aux[aux_idx+1])

aux_idx = aux_idx + 1

# Use predicate to single-control gqubit at idxl.
self.applyc(gate, aux[aux_idx], idxl, desc)

# Uncompute predicate.

aux_idx = aux_idx - 1

for i in range(len(ctl)-1, 1, -1):
self.ccx(ctl[i], aux[aux_idx], aux[aux_idx+1])
aux_idx = aux_idx - 1

self.ccex(ctl[0], ctl[l], aux[0])

Swap Operations

We also add implementations of the Swap gate (swap) and the controlled Swap gate
(cswap), as described earlier in Sections 2.8.2 and 2.8.3. The cswap gate will be used
later in Section 11.7 on quantum order finding, which is part of Shor’s algorithm.
It is easy to implement by simply changing the cx gates in a Swap gate to double-
controlled ccx gates.
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def swap(self, idx0: int, idxl: int) -> None:

self.cx(idx1l, 1idx0)
self.cx(idx0, idxl)
self.cx(idx1l, idx0)

def cswap(self, ctl: int, idx0: int, idxl: int) -> None:

self.ccx(ctl, idx1, 1dx0)
self.cex(ctl, idx0, idx1)
self.ccx(ctl, idxl, 1dx0)

Measurement

As the final construct, we have to wrap the measurement operator, which is done in
this straightforward way:

def measure_bit(self, idx: int, tostate: int = 0,

collapse: bool = True) -> (float, state.State):
return ops.Measure(self.psi, idx, tostate, collapse)

Note that here, we construct a full-matrix measurement operator, meaning that this
method of measuring will not scale. Fortunately, in many cases, we don’t have to
perform an actual measurement to determine a most likely measurement outcome. We
can just look at the state vector and find the one state with the highest probability — we
say we perform measurement by peek-a-boo.

Intermediate Representation (IR)

As mentioned above, adding the ability to represent a circuit in an internal data struc-
ture enables useful capabilities, which we will study in this brief section. We start by
outlining the IR data structure and show how it can be used in various flexible ways
to deal with subcircuits. Then, we show how to use it to transpile a circuit to other
quantum frameworks in Section 3.4.7.

IR Nodes

An IR node holds all the information that defines an individual operation, such as the
gate type, control qubit, target qubit, and values such as rotation angles. Nodes are
represented by a Python class that holds all these values. A single class type is suffi-
cient to represent all possible node types — we keep it simple. To make working with
this basic implementation more comfortable, we add functions to check for specific
properties. We also add a notion of sections to aid with debugging (but we will not
elaborate on this feature here).
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3.4.2

Find the code
Infile src/1lib/ir.py

class Op (enum.Enum) :

SINGLE = 1
CTL = 2

class Node:

def _ init_ (self, opcode, name, idx0=0, idxl1=None, val=None) :
self._opcode = opcode
self._name = name
self._idx0 = idx0
self._idxl = idxl
self._val = val

def is_single(self):
return self._opcode == Op.SINGLE

def is_ctl(self):
return self._opcode == Op.CTL

This simple node implementation contains all the information needed to specify
single-qubit and controlled gates, as well as gates with an optional parameter. The
trivial function is_single checks whether a node represents a single-qubit gate, and
is_ctl checks for controlled gates.

IR Base Class

The Ir class maintains a single list of nodes and has member functions to add single-
qubit gates and controlled gates. It also offers the function reg to create a quantum
register.

class Ir:
def _ init_ (self):

self. ngates = 0 # gates in this IR
self.gates = [] # [] of gates
self.regs = [] # [] of tuples (global reg index, name, reg index)
self.nregs = 0 # number of registers

self.regset = [] # [] of tuples (name, size, reg) for registers

def reg(self, size, name, register):

self.regset.append((name, size, register))
for i in range(size):

self.regs.append((self.nregs + i, name, 1i))
self.nregs += size

def single(self, name, idx0, wval=None):

self.gates.append (Node (Op.SINGLE, name, idx0, None, val))
self._ngates += 1
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def controlled(self, name, i1dx0, idxl, val=None) :
self.gates.append (Node (Op.CTL, name, idx0, idxl, wval))
self._ngates += 1

@property
def ngates(self):
return self._ngates

Circuits of Circuits

Using this simple IR we can now introduce the notion of a subcircuit, which can
be stored, combined, and executed later in flexible ways. The member function sub
creates a completely independent new circuit. The member sub_circuits is only
used for printing and debugging.

def sub(self, name: str = ''):
sub = gc(f'inner {self.sub_circuits}{name}', eager=False)
self.sub_circuits += 1
return sub

To execute a circuit in the context of another circuit, the member function gc is
used. For a main circuit main and a subcircuit sub, the subcircuit can be invoked with
main.qc (sub). The gc function simply replays all the gates in the subcircuit in the
parent circuit at an optional offset. For example, we can create a main circuit and a
subcircuit and replay this subcircuit three times with this code:

main = circuit.gc('main circuit, eager execution')
[... add gates to main, eager]

subl = circuit.sub('subcircuit')
[... add gates to subl, non-eager]

# Now add three copies of subl to main (eager),
# all at different offsets 0, 1, and 2:
main.qgc (subl, 0)

main.qgc (subl, 1)

main.qgc (subl, 2)

To reiterate, in non-eager mode the subcircuit is only being constructed, not exe-
cuted. The gates and their order are only recorded for replay later. This behavior is
controlled by setting parameter eager to False in the sub function.

Uncomputation with Inverse Circuit

A second useful capability of the IR makes the uncomputation from Section 2.12 easy
and error-free. To obtain the inverse of a gate sequence, we reverse the stored list of
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gates in the IR and replace each gate with its adjoint. To aid debugging, we decorate
the textual gate names with a '« '. The implementation is simple and elegant:

def inverse(self):
"""Return, but don't apply, the inverse circuit."""

newgc = gc (self.name, eager=False)

for gate in self.ir.gates[::-1]:
val = -gate.val if gate.val else None
if gate.is_single():
newqgc.applyl (gate.gate.adjoint (), gate.idx0, gate.name + '=*',
val=val)

if gate.is_ctl():
newqc.applyc (
gate.gate.adjoint (), gate.ctl, gate.idxl, gate.name + '*'
val=val
)

return newqc

In the example from the prior section, to reverse the application of the three subcircuits
in the code example, we can now use the following code:

# Create an inverse copy of subl (which is still non-eager)
subl_inv = subl.inverse()

# Now add three copies of subl_inv to main (eager),
# at the reverted 1list of offsets:

main.gc (subl_inv, 2)

main.qgc (subl_inv, 1)

main.gc (subl_inv, 0)

3.4.5 Controlling Subcircuits

Another useful feature of the IR is that it allows controlling a whole subcircuit by
another qubit with function control_by. This function iterates over all gates in the
circuit. Individual single-qubit gates are converted to a controlled gate, and controlled
gates are converted to multi-controlled gates, as shown in this implementation:

def control_by(self, ctl: int):
res = ir.Ir()
for _, gate in enumerate(self.ir.gates):
if gate.is_single():
gate.to_ctl(ctl)
res.add_node (gate)
continue
if gate.is_ctl():
sub = gc('multi', eager=False)
sub.multi_control (
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[ctl, gate.ctl], gate.idxl, None, gate.gate, gate.desc
)
for gate in sub.ir.gates:
res.add_node (gate)

self.ir = res

Inverting a Register

The individual qubits in a register can be inverted, or flipped vertically, by inverting
the indices of the gates applied to the register. For example, assume that a register has
four qubits with local indices (O, 1,2,3) and global indices (2,37475). Further, assume
a single gate is applied to local qubit O in the register (global qubit 2) and a controlled
gate from the register’s local qubit 1 to qubit 3. The invert procedure will change
the ordering and apply the single gate to local qubit 3 in the register (global qubit 5)
and change the controlled gate to go from local qubit O to qubit 2.

def invert(self, reg):
def swap_bits(reg, idx):
d = int(len(reg) - idx - 1)
tmp = reglidx]
reg[idx] = regld]
reg[d] = tmp

for gate in self.ir.gates:
swap_bits(reg, gate.idx0, reg.size)
if gate.is_ctl():
swap_bits(reg, gate.idxl, reg.size)

Transpilation

Finally, the IR can be used to output a circuit in a format that can serve as input
to other frameworks. For example, to produce a simple QASM format (Svore et al.,
2006), the code traverses the list of nodes and outputs the nodes with their names
as found. Fortunately, the names chosen for the operators already match the QASM
specification.!

Typically, one needs a few helper functions to make the output more readable.
For example, the code below uses helper.pi_fractions to convert values into
fractions of 7t. There are several other transpilers in the file src/1ib/dumpers.py,
including transpilers to IBM’s Qiskit, Google’s Cirq, a rudimentary IATgX converter,’
a transpiler to our own 1ibg implementation, which is detailed in Section 3.9, and a
minimal text generator.

! This is not a coincidence.
2 ‘We used this transpiler quite often in this book to typeset larger circuits.
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Py Find the code
In file src/1lib/dumpers.py

def gasm(ir) -> str:
res = 'OPENQASM 2.0;\n'’
for regs in ir.regset:

res += f'qreg {regs[0]}[{regs[1]}];\n’

res += '\n’

for op in ir.gates:
if op.is_gate():
res += Op.name

if op.val is not None:

res += '({})'.format (helper.pi_fractions(op.val))

if op.is_single():

res += f' {reg2str(ir, op.idx0)};\n’

if op.is_ctl():

res += f' {regl2str(ir, op.ctl)},{reg2str(ir,

return res

op.idx1)};\n’

That’s it! It is really that simple. It is just an iteration over all gates, where each gate
is printed according to its type. Here is an output example. It shows a few quantum
registers at the top, a few Hadamard gates on register g1, a couple of controlled U,

gates followed by measurement operators:

OPENQASM 2.0;
greg q2[4];
areg ql([8];
areg q0[6];
creg c0[8];

h ql[0];

h glf[l];

h glf[2];

[...]

cul (-pi/64) ql[7]1,ql[1l];
cul (-pi/128) ql[71,ql[0];
h ql(7]1;

measure gl[0] -> c0[0];
measure gl[l] -> c0[1];
[...]

QASM is fairly simple and supported by several other infrastructures. It is very
useful for debugging complex algorithms, as it allows for direct comparisons with

results obtained by other infrastructures.’

3 Tused it extensively during the development of the algorithms.
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35 Fast Gate Application

Up to this point, we have applied a gate by first tensoring it with identity matrices
and then applying the resulting large matrix to a full state vector. As described in
Section 3.1, this does not scale well beyond a small number of qubits. For ten qubits,
the operator matrix is a 1024 x 1024 matrix, which requires 1024’ multiplications
and additions for a matrix—vector multiplication (10243 if you want to multiply it with
another operator of this size). Can we devise a more efficient way to apply gates? Yes,
we can.

Let us analyze what happens during gate application. To start the analysis, we create
a pseudo state vector containing a sequence of numbers. We do not normalize the
vector because this makes it easier to visualize what happens to the vector elements as
the gates are applied to the individual qubits.

gc = circuit.qgc('test’)
gc.arange (4)
print (gc.psi)
>>
[ 0.+0.J 1.+0.3 2.40.jJ 3.+0.j 4.+0.j 5.40.J 6.+0.3 7.+40.3
8.+0.J 9.+0.j 10.+40.j 11.40.J 12.+0.3j 13.+40.j 14.40.3 15.+0.3]1

Now we apply the X gate to qubits O to 3, one by one, always starting with a freshly
created vector. The X gate is interesting because it multiplies the entries in the state
vector by 0 and 1, causing the appearance of values being swapped. This is similar to
the application of the X gate to a regular qubit, which seems to “flip” |0) and |1):

# Let's try this for qubits 0 to 3.
for idx in range(4):
gc = circuit.qgc('test’)
gc.arange (4)
gc.x (idx)
print ( 'Applied X to qubit {}:\n {}'.format(idx, gc.psi))

We start by applying the X gate to qubit 0 and get:

Applied X to qubit O0:
[ 8.+0.jJ 9.+0.j 10.40.j 11.+0.3j 12.+40.j 13.+0.j 14.+0.3j 15.40.3
0.+0.3 1.+0.3 2.40.j 3.+0.j 4.+0.j 5.40.J 6.+0.3 7.+0.31]

The right half of the vector was swapped with the left half. Let us try the next qubit
index. Applying the X gate to qubit 1 results in the following:
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Applied X to qubit 1:
[ 4.+0.7 5.40.7 6.+4+0.J 7.+0.3 0.40.3 1.40.jJ 2.+0.3 3.40.3
12.+0.5 13.+0.9 14.+40.F 15.40.5 8.+40.5 9.40.5 10.+0.3 11.+0.5]

Now chunks of four vector elements are being swapped. The elements 4—7 swap
position with elements 0-3, and the elements 12—15 swap position with elements 8—
11. A pattern is emerging. Let us apply the X gate to qubit 2:

Applied X to qubit 2:
[ 2.40.3 3.+40.3 0.40.3 1.40.j 6.+0.j 7.+0.J 4.+0.J 5.+0.3
10.+0.9 11.+0.5 8.+0.3 9.+0.F 14.+0.3 15.+40.F 12.+0.9 13.+0.5]

The pattern continues; now groups of two elements are swapped. And finally, for
qubit 3, we see that individual qubits are being swapped:

Applied X to qubit 3:
[ 1.+0.3 0.+40.3 3.+0.jJ 2.+0.j 5.40.3 4.+0.j 7.+0.j3 6.40.3
9.40.3 8.+0.j 11.+40.j 10.+40.j 13.+0.3j 12.+40.j 15.+40.3 14.+0.73]

We recognize a clear “power-of-2” pattern. The state vector for four qubits and
2% = 16 elements. To express the numbers from 015, we need four classical bits:
b3byb1by. Recall that we enumerate qubits from left to right and classical bits from
right to left. Also, remember that we are using the X gate, which is a permutation
matrix and multiplies with values of 0 and 1, leaving the impression of swapping
elements. The mechanism works for all single-qubit gates; we just use the X gate for
effective visualization.

« Qubit 0. Applying the X gate to qubit O swaps the first half of the state vector with
the second half. If we interpret vector indices as binary numbers, the state
elements with indices that had bit 3 set (most significant bit) switched position
with the indices that did not have bit 3 set. Positions 8—15 had bit 3 set and
switched with positions 0—7, which did not have bit 3 set. Two blocks of eight
elements were switched.

« Qubit 1. Applying the X gate to qubit 1 swaps the second quarter of the state
vector with the first quarter and the fourth quarter with the third. Consequently, the
vector elements with indices that had bit 2 set switched with those that had bit 2
not set, “bracketed” by the bit pattern in bit 3. What does it mean that an index is
bracketed by a higher-order bit? It simply means that the higher-order bit did not
change, it remained O or 1. Only the lower-order bits switch between 0 and 1.
Here, four-element blocks were switched. There are four such blocks for qubit 1 —
two blocks where binary bit 3 was 0 and another two blocks where bit 3 was 1.4

4 This is admittedly confusing. It doesn’t help that qubits are numbers from O to 3 and the binary bits from
3t00.
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« Qubit 2. Applying the X gate to qubit 2 swaps the second eighth of the state
vector with the first, the fourth with the third, the sixth with the fifth, and the
eighth with the seventh. As above, the vector elements with indices with bit 1 set
switched places with those that did not have bit 1 set. This swapping is bracketed
by the bit pattern in bit 2 and further bracketed by the bit patterns of bit 3.

« Qubit 3. Finally, applying the X gate to qubit 3 now swaps single elements:
element O with element 1, element 2 with element 3, and so on.

We can put this pattern in a closed form by looking at the binary bit pattern for the
state vector indices (Smelyanskiy et al., 2016). Let us introduce this bit index notation
for a state with a classical binary bit representation (where we omit the state kets |-)
for ease of notation):

lljﬁn—lﬁn—Z --Bo*

If we expect a specific O or 1 at a given bit position k, we specify this bit value with
this notation:

VB 1Bueer-Open o
LY S P

Applying a single-qubit gate to qubit k in an n-qubit state (qubits 0 to n — 1) applies
the gate to a pair of amplitudes whose indices differ in bit (n — 1 — k) in binary
representation. In our first example, we have four qubits. Qubit O translates to classical
bit 3 in this notation, and qubit 3 corresponds to classical bit 0. We apply the X gate to
the probability amplitudes that correspond to the states where the bit index switches
between 0 and 1, thus swapping chunks of the state vector.

Suppose we want to apply a single-qubit gate G to a qubit of a system in state |¢),
where G is a 2 x 2 matrix. Let us name the four elements of the matrix Gy, Goi, Gio,
and G, corresponding to the top left, top right, bottom left, and bottom right.

Applying a gate G to the kth qubit corresponds to the following recipe. This notation
indicates looping over the full state vector. All vector elements whose indices match
the specified bit patterns are multiplied by the gate elements Gyy, Go1, G1o, and Gy,
as specified in this recipe:

Y 1Buze O fo = G00 Yp_ 1By .0 .po T GO1 Yo 1fus i pos
Ygy 1Bzt fo = G10 VB 1Bu—s. O fo T G11 Wy 1Bucs.. i fo-
For controlled gates, the pattern can be extended. We have to ensure that the control
bit c is set to 1 and only apply the gates to states for which this is the case:
VB iBoze e O po = G00 Wp 1Bzl O fo T GO1 VB, 1B a1 T B
Y, iy aetedinfo = G10 Y 1y aete 0 fo T G11 Yp 10 niler 1ien o

In the implementation, we have to be mindful of the bit orderings. Qubit O is the
topmost qubit, but for the classical bits, as is common, bit 0 is the least significant bit.
This means that in the implementation we have to reverse the bit indices.
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To apply a single gate, we add this function to our implementation of states in file
src/lib/state.py (With 1<<n as an optimization for 2« xn):

Find the code
Infile src/1ib/state.py

PY

def apply(self, gate: ops.Operator, index: int) -> None:
# To maintain qubit ordering in this infrastructure,
# index needs to be reversed.
index = self.nbits - index - 1
pow_2_index = 1 << index

for g in range(0, 1 << self.nbits, 1 << (index + 1)):
for i in range(g, g + pow_2_index):
tl = gate[0, 0] %= self[i] + gate[0, 1] * self[i + pow_2_index]
t2 = gate[l, 0] % self[i] + gate[l, 1] * self[i + pow_2_index]
self[i] = tl
self[i + pow_2_index] = t2

The implementation for controlled gates is very similar, but note the additional if
statement in the code, which checks for the control bit.

def applyc(self, gate: ops.Operator, ctrl: int, target: int) -> None:

index = self.nbits - target - 1
ctrl = self.nbits - ctrl - 1
pow_2_index = 1 << index

for g in range(0, 1 << self.nbits, 1 << (gbit+1)):
idx_base = g * (1 << self.nbits)
for i in range(g, g + pow_2_index):
if (idx_base + 1) & (1 << ctrl):

tl = gate[0, 0] *= self[i] + gate[0, 1] * self[i + pow_2_index]
t2 = gate[l, 0] * self[i] + gate[l, 1] * self[i + pow_2_index]
self[i] = tl
self[i + pow_2_index] = t2

We could now go ahead and add these routines to the quantum circuit class, but
wait — we can do even better and accelerate these routines with C++! This will be the
topic of Section 3.6.

Accelerated Gate Application

We now understand how to apply gates to a state vector with linear complexity, but
the code is written in Python, which is known to run slower than C++. In order to
add a few more qubits to our simulation capabilities, we need to accelerate the gate
application further. To achieve this, we implement the gate application functions in
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C++ and import them into Python using standard extension techniques. The overhead
of calling these C++ functions from Python is minimal, which means we can continue
to program in Python but with the execution speed of C++.

This section contains a lot of C++ code. For these routines, the C++ code executes
about 100x faster than the Python code, giving us the ability to simulate six or seven
additional qubits. The basic principles are shown in Section 3.5. We detail this code
because it might be useful to readers without experience extending Python with C++.
The implementations of applyl and applyc are quite similar, so we only show the
code for the former.

In the code, <path> to numpy must be set correctly to point to a local setup. The
open-source repository will have the latest instructions on how to compile and use
this Python extension. We also want to support both float and double complex
numbers and use C++ templates to specialize the code for these two types. Since build-
ing C++ extensions can be difficult on some platforms, we provide Python fallback
implementations. This enables all our open-source algorithms to run correctly, if at
slower execution speed.

Find the code
In file src/1ib/xgates.cc

PY

// Make sure this header can be found:
#include <Python.h>

#include <stdio.h>
#include <stdlib.h>
#include <complex>

// Configure the path, likely found in the BUILD file:

#include "<path>/numpy/core/include/numpy/ndarraytypes.h”
#include "<path>/numpy/core/include/numpy/ufuncobject.h"”
#include "<path>/numpy/core/include/numpy/npy._3kcompat.h"

typedef std::complex<double> cmplxd;
typedef std::complex<float> cmplxf;

// applyl applies a single gate to a state.
// 2x2 gates are flattened to a 1x4 array:
// a b
// c d -> abcd
template <typename cmplx_type>
void applyl (cmplx_type *psi, cmplx_type gatel4d],
int nbits, int tgt) {

tgt = nbits - tgt - 1;

int g2 = 1 << tgt;

for (int g = 0; g < 1 << nbits; g += (1 << (tgt+l))) {

1< g+ g2; ++1) {

gate[0] » psi[i] + gate[l] * psil[i + q2];
gate[2] * psi[i] + gatel[3] * psil[i + q2];

for (int i = g;

cmplx_type tl

cmplx_type t2
psi[i] = t1;
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psi[i + g2] = t2;

To extend Python and make this extension loadable as a shared module, we add
standard Python bindings for single-qubit gates. Function applyl_python obtains
C++ pointers to the arguments and calls the C++ applyl function. The function
applyl_call verifies the type of state parameter param_psi, which is identified by
parameter bit_width, and calls the correctly typed flavors of the templatized C++
function:

template <typename cmplx_type, int npy_ type>

void applyl python (PyObject xparam_psi, PyObject *param_gate,

int nbits, int tgt) {
PyArrayObject *psi_arr =
PyArrayObject*) PyArray FROM OTF (param_psi, npy type, NPY_IN_ARRAY) ;
cmplx_type *psi = ((cmplx_type *)PyArray GETPTRI1 (psi_arr, 0));

PyArrayObject *gate_arr =
PyArrayObject*) PyArray FROM_OTF (param_gate, npy_type, NPY_IN_ARRAY) ;
cmplx_type *gate = ((cmplx_type =)PyArray_ GETPTRI1 (gate_arr, 0));

applyl<cmplx_ type>(psi, gate, nbits, tgt);
Py_DECREF (psi_arr) ;
Py_DECREF (gate_arr) ;

static PyObject xapplyl_call (PyObject *dummy, PyObject =*args) {

PyObject xparam_psi = NULL;
PyObject *param_gate = NULL;
int nbits, tgt, bit_width;

if (!PyArg_ParseTuple(args, "00iii", &param_psi, &param_gate,
&nbits, &tgt, &bit_width))
return NULL;
if (bit_width == 128) {
applyl python<cmplxd, NPY_CDOUBLE> (param_psi,
param_gate, nbits, tgt);
} else {
applyl python<cmplxf, NPY_CFLOAT> (param_psi,
param_gate, nbits, tgt);
}
Py_RETURN_NONE;

This is followed by the standard functions that the Python interpreter will call when
importing a module. We register the Python wrappers in a module named xgates with
standard boilerplate code:
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// Python boilerplate to expose above wrappers to programs.
static PyMethodDef xgates_methods[] = {

{"applyl", applyl_call, METH_VARARGS,

"Apply single-qubit gate, complex double"},

{NULL, NULL, 0, NULL}};

// Give a name to the module (xgates) and register above array.
static struct PyModuleDef xgates_definition = {

PyModuleDef_ HEAD_INIT,

"xgates",

"Python extension to accelerate quantum simulation math",

-1,

xgates_methods

Y

// Standard registering function, identified by Python by name (xgates).
PyMODINIT_FUNC PyInit_xgates (void) {

Py_Initialize();

import_array () ;

return PyModule_Create (&xgates_definition);

Python typically finds extensions with the help of an environment variable. For exam-
ple, on Linux:

export PYTHONPATH=path_to_xgates.so

Alternatively, you can extend Python’s module search path programmatically with
code like this (of course, this will make code changes necessary to adjust the path):

import sys
sys.path.append( '/path/to/search")

Circuits Finally Finalized

With our accelerated implementation, we can finally finish the gate application func-
tions in the quantum circuit gc class. Single-qubit gates can be applied to an indi-
vidual qubit, a whole register, or a list of qubits. For each of these sets of indices,
gates are added to the IR and, in eager mode, directly applied using the accelerated

routines:?

5 In the code in the repository, you will find another indirection to ensure that everything runs
successfully, even if xgates could not be built or found. In that case, a message will warn about
potentially degraded execution speed.
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def applyl (self, gate: ops.Operator, idx_set, name: str = None, =,
val: float = None):
indices = []
if isinstance(idx_set, int):
indices.append (idx_set)
if isinstance(idx_set, state.Reg):
indices += i1dx_set.reg
if isinstance(idx_set, list):
indices += idx_set

for idx in indices:
if self.build_ir:
self.ir.single(name, idx, gate, val)
if self.eager:
xgates.applyl (self.psi, gate.reshape(4), self.psi.nbits, idx,
tensor.tensor_width())

Controlled qubits can be applied to an individual qubit or single-qubit register.
When the controlling qubit is specified as a single-element list (as above), the gate
will be a Controlled-By-0 gate. Similarly to the above, the IR is constructed, and the
gates are applied in eager mode only.

def applyc(self, gate: ops.Operator, ctl: int, idx: int,
name: str = None, *, val: float = Nome):
if isinstance(idx, state.Reg):
assert idx.size == 1, 'Controlled n-gbit register not supported'
idx = 1dx[0]

ctl_qubit, by 0 = self._ctl_by 0(ctl)
self.x(ctl_qubit, by_0)
if self.build_ir:
self.ir.controlled(name, ctl_qubit, idx, gate, val)
if self.eager:
xgates.applyc (self.psi, gate.reshape(4), self.psi.nbits, ctl_qubit,
idx, tensor.tensor_width())
self.x(ctl_qubit, by_0)

You can refer back to Figure 3.2 and the corresponding code to see an example of
how this code can be invoked from Python.

3.8 Premature Optimization, First Act

Looking at the standard gates, we find many Os and 1s, which means that several gate
applications may run faster if we optimize for these special cases. Emphasis on should.
Let us run an experiment to verify this assumption.

We start by constructing a benchmark to compare the general and fast gate appli-
cation routines from Section 3.5 with a specialized function for the X gate, which
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Table 3.1. Benchmark results (program output), comparing hand-optimized and nonoptimized gate
application routines.

Benchmark Time (ns) CPU (ns) Iterations
BM_apply_single 116403527 116413785 24
BM_apply_single_opt 132820169 132829412 21
BM_apply_controlled 81595871 81600200 34
BM_apply_controlled_opt 89064964 89072559 31

has two Os and two 1s. Multiplications by O can be replaced by just 0, additions of
0 and multiplications by 1 can also be removed. For fast gate application routines
specialized in this way for the X gate, a total of four multiplications, two additions,
and some memory accesses per single qubit should be saved. This is the original inner
loop:

g; 1< g+ g2; ++i) {

gate[0][0] » psi[i] + gate[0][1l] = psi[i + q2];
cmplx t2 = gate[l][0] * psi[i] + gate[l][1l] * psil[i + qg2];
psi[i] = t1;

psi[i + Q2] = t2;

for (int 1

cmplx tl

And this is the optimized version of the loop:®

for (int i = g; 1 < g + g2; ++1) {
cmplx tl = psil[i + qg2];
cmplx t2 = psil[i];
psi[i] = t1;
psil[i + g2] = t2;

The results of comparing the two implementations are in Table 3.1. Recall our
hypothesis that the optimized version would be faster because it executes fewer mul-
tiplications and additions. The column Iterations shows iterations per second;
higher is better. Surprisingly, you can see that the specialized version runs about
10% slower! For the given x86 platform, the compiler was able to vectorize the
unspecialized version, leading to a slightly higher overall throughput.’

In summary, we found a way to apply gates with linear complexity over the size of
the state vector and accelerated it by a significant factor with C++. This infrastructure
is sufficient for all the algorithms in this book.

6 T wonder whether classical compilers can be made smart enough to perform this transformation
“automagically.”

7 To riff on a quote that is (potentially incorrectly) ascribed to Lenin: Intuition is good, but verification is
better.
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There are other ways to simulate quantum algorithms (Altman et al., 2021), as we
discussed at the end of Section 3.1. A specifically interesting methodology represents
states sparsely. Indeed, for many circuits, this is the most efficient representation. We
give a brief overview of it in Section 3.9 and a full implementation will be provided
in the Appendix.

Sparse Representation

So far, our data structure for representing quantum states is a dense array that holds
all the probability amplitudes of the superimposed basis states, where the amplitude
for a specific basis state can be found via binary indexing. However, for many circuits
and algorithms, a high percentage of states can have a probability equal to or very
close to zero. Storing these 0-states and applying gates to them will have no effect
and is wasteful. This fact can be exploited with a sparse representation. An excellent
reference implementation of this principle can be found in the venerable open-source
library 1ibguantum (Butscher and Weimer, 2013).

Find the code
In file src/1libg

We reimplement the core ideas of that library as they relate to this book; 1ibguantum
addresses other aspects of quantum information, which we do not cover. Therefore, we
name our implementation 1ibq to distinguish it from the original. The original library
is in plain C, but our implementation was moderately updated with C++ for improved
readability and performance. We maintain some of the C naming conventions for key
variables and functions to help with direct code comparisons.

Here is the core idea: Assume that we have a state of n qubits, all initialized to be in
the state |0). The dense representation stores 2" complex numbers in the state vector,
where only the very first entry is a 1 and all other values are 0, corresponding to state
|00...0).

The 1ibq library turns this on its head. Basis states are encoded as simple binary
bits in an integer (currently up to 64 qubits, but this can be extended), where the
binary digits Os and 1s correspond to states |0) and |1). Each of these bit combinations
stored in the integer variable is paired with a probability amplitude. Only states with
nonzero amplitudes are being stored. In the above example, 1ibg would store the
basis state |00. .. 0) with amplitude 1 as the only Python tuple (0b00...0, 1.0),
indicating that the only state with nonzero probability is |00. .. 0). For 53 qubits, the
full-state representation would require 72 petabytes of memory. In contrast, the sparse
representation only requires a total of 16 bytes if the amplitude is stored as a double
precision value (only 12 bytes are needed if we use 4-byte floating point values).®

Applying a Hadamard gate to a qubit will put the state in superposition. In 1ibq,
there will now be two states with nonzero amplitudes. For example, applying the
Hadamard gate to the right-most qubit will lead to the two basis states with equal
amplitudes:

8 15 orders of magnitude — Is that all you got?
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[00...00) with probability 50%, and
[00...01) with probability 50%.

Consequently, 1ibg now stores two tuples, each with a probability amplitude of 1/+/2,
using 32 bytes (or 24 bytes with 4-byte floats).

During the execution of a circuit, superposition is generated and destroyed. Indi-
vidual states become probable and no longer probable. A key aspect of 1ibquantum
is that gates are recognized as producing or destroying superposition and handled
accordingly. Furthermore, it filters out all states with amplitudes close to O after the
application of superposition generating gates. This reduces the number of stored tuples
and accelerates future gate applications.

The gate application itself becomes very fast. For example, assume that we need to
apply the X gate to the least significant qubit. In the dense case, the entire state vector
needs to be traversed and modified, as described in Section 3.6 on accelerated gate
application.

In 1ibg, only a bit flip is needed. In the example above, assuming an initial state
of all |0), applying the X gate to the least significant qubit means that we only have to
flip the least significant bit in the bit mask; the tuple (0x00...00, 1.0) becomes
(0x00...01, 1.0).Thisis dramatically faster than having to traverse and modify
a potentially very large state vector, especially if the number of nonzero probability
states is low. To maintain the state tuples, we need to support two main operations:

« [terate over all available state tuples.
« Find or create a specific state tuple.

The original 1ibguantum implements a hash table to manage the tuples, and, as we
will see, despite the favorable performance characteristics of hash tables, it ultimately
remains the performance bottleneck in the implementation. Our 1ibg moderately
improves this core data structure.

The implementation of libg consists of just about 500 lines of C++ code. A
detailed, annotated description, which also includes optimization wins and fails, can
be found in the Appendix.

This design also has downsides, which may prevent it from scaling to very large
numbers of qubits or circuits with a high percentage of nonzero probabilities. Indi-
vidual states are efficiently encoded as tuples of a bit mask to encode a state and a
probability amplitude. However, there are additional data structures, such as the hash
table, to maintain existing states. The memory requirement per individual basis state
is higher than that in a full-state representation. This means there is a crossover point
where the sparse representation becomes less efficient than the full state representa-
tion. In particular, it appears to perform poorly for the quantum random algorithms
that we discuss in Section 5.3.2.

Another downside might arise from the way the hash table is used to store the
states. At some size threshold, the hash table’s random memory accesses will
be outperformed by linear memory accesses, which benefit from caches and can
be prefetched effectively. Furthermore, hash table entries might be distributed
unpredictably across machines in a distributed computing environment. The gate
application might thus incur prohibitively high communication costs.
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Benchmarking

Here, we provide anecdotal evidence for the efficiency of the sparse representation.
A full performance evaluation is ill-advised in a book like this — the results will be out
of date and no longer relevant by the time you read this.

The most complex algorithm in this book is Shor’s integer factorization algorithm
(Section 11.6). The quantum part of the algorithm is called order finding. Factoring
the number 15 requires 18 qubits and 10,533 gates; factoring 21 requires 22 qubits
and 20,671 gates, and factoring 35 requires 26 qubits and 36,373 gates. We run this
circuit in two different ways:

« Run it as is, using the accelerated quantum circuit implementation.

« Construct the circuit non-eagerly and transpile it to 1ibg. We described the
transpilation in Section 3.4.7. The output is a C++ source file, which is compiled
and linked with the 1ibg library to produce an executable.

Both versions will compute the same result; the textual output differs and shows the
maximum number of nonzero states reached during execution. Factoring the number
21 with 22 qubits, we get the following output. A maximum of only 1.6% of all
possible states ever obtained a nonzero probability at one point or the other during
execution.

# of qubits : 22

# of hash computes : 2736

Maximum # of states: 65536, theoretical: 4194304, 1.562%
States with nonzero probability:

0.499966 +0.0000001|4> (2.499658e-01) (|00 0000 0000 0000 0000 0100>)

0.000001 -0.0000001i|32772> (6.14857e-13) (|00 0000 1000 0000 0000 0100>)
-0.499970 +0.0000001|65536> (2.4997e-01) (|00 0001 0000 0000 0000 0000>)
0.499966 +0.000000i|65540> (2.49966e-01) (|00 0001 0000 0000 0000 0100>)
0.000001 -0.0000001i]|98308> (6.14856e-13) (|00 0001 1000 0000 0000 0100>)

0.499970 -0.0000001|0> (2.4997e-01) (|00 0000 0000 0000 0000 0000>)

The 1ibg version runs in less than five seconds on a modern workstation, while
the circuit version takes about 2.5 minutes, a speed-up of roughly 25 times. Factoring
the number 35 with 26 qubits, the 1ibg version runs for about 3 minutes, while the
full-state simulation takes about an hour. Again, another solid acceleration of about 20
times. We ignore the compilation times for the generated C++ code, which we would
have to include in an actual scientific evaluation.’

9 Which this is not.
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In quantum computing, there are several standard techniques for working with states
and operators and to assist with debugging of computational processes. In this section,
we detail several of these mathematical tools. Some of the material may be confusing
for novices. If you fall into this group, do not be discouraged. Many of the algorithms
presented in this book can be understood without this material. However, if you seek
a deeper understanding of the relevant linear algebra, this material is for you.

Spectral Theorem for Normal Matrices

This section discusses the important spectral theorem in an informal and code-based
manner. We will use it in several algorithms in this book. Recall from Section 1.8
that the Hermitian and unitary matrices are special cases of normal matrices for which
AAT = ATA. The complex spectral theorem states that any normal matrix is diagonal-
izable by some unitary matrix. Since we are not going too deeply into linear algebra,
we will use a more targeted version of this theorem for Hermitian matrices:

THEOREM: (Spectral Theorem) For any Hermitian matrix H,

o All eigenvalues of H are real.

« The eigenvectors corresponding to distinct eigenvalues are orthogonal.!

o The eigenvectors form a basis for the vector space of H (we mostly ignore the
linear algebra of vector spaces; we also ignore this part of the theorem).

Furthermore, for any Hermitian? matrix H there exists a unitary matrix U with
HU = UA,

where the matrix A is a diagonal matrix with the real eigenvalues A; of H on the
diagonal. The columns of U are the eigenvectors |v;) of H (not of U). This means that
we can write H in the spectral decomposition as

H =" Alvi)(vil. “.1)

! Which we can normalize to get an orthonormal basis.
2 The general spectral theorem states that this holds for any normal matrix.
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If H is a unitary matrix, then all eigenvalues have the absolute value of 1. We
already proved this in Section 1.8 on unitary matrices. The proofs for the other parts of
the theorem can be found in existing material on linear algebra, for example, in Nielsen
and Chuang (2011), so we will not repeat them here. Instead, we play with code to
convince ourselves of these results. We create a unitary® operator U in the Python
variable umat using scipy and make it Hermitian by computing H = (U + UT)/2
and storing the result in variable hmat:

Find the code
In file src/spectral_decomp.py

PY

def spectral_decomp (ndim: int):
u = scipy.stats.unitary_group.rvs (ndim)
umat = ops.Operator (u)

hmat = 0.5 * (umat + umat.adjoint())
assert np.allclose(hmat, hmat.adjoint()), 'Something is wrong'

We compute eigenvalues and eigenvectors using numpy and check that the eigenvalues
are real and that the eigenvectors are orthonormal:

w, v = np.linalg.eig(hmat)
for i in range(ndim) :
assert np.allclose(w[i].imag, 0.0), 'Non-real eigenvalue!'

for i in range(ndim) :
for j in range(i + 1, ndim):
dot = np.dot(v[:, 1], v[:, jl.conj())
assert np.allclose(dot, 0.0, atol=le-5), 'Not orthogonal'’

for i in range (ndim) :
dot = np.dot(v[:, il], vI[:, i]l.conj())
assert np.allclose(dot, 1.0, atol=le-5) 'Not orthonormal'’

Now we can write the matrix in the form of Equation (4.1) and verify that the decom-
position is correct:

X = np.matrix(np.zeros((ndim, ndim)))
for i in range(ndim) :
x = x + w[i] * np.outer(v[:, il, vI[:, il.conj())
assert np.allclose(hmat, x, atol=le-5), 'Spectral decomp failed.'

Spectral decomposition is powerful for many reasons. In particular, if we look at
Equation (4.1) and squint our eyes, we can see that the matrix trace is independent
of a chosen basis. It depends only on the eigenvalues. In fact, as we have already
stated in Equation (1.8), the trace is the sum of the eigenvalues. We can also compute

3 Note that this works for any square matrix.
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the inverse of an invertible matrix (with nonzero eigenvalues) simply by using the
reciprocals of the eigenvalues:

H= Z/\,-\v,-)(v,-\ s H'= ZAI-_I‘V,'><V,".

x = np.matrix(np.zeros((ndim, ndim)))
for i in range(ndim) :
x =x+ 1 / wl[i] * np.outer(v[:, il, vI[:, i]l.conj())
assert np.allclose(np.linalg.inv(hmat), x, atol=le-5), 'Inverse Error.'

Density Matrices

So far, we have explored pure states which represent a single well-defined state of a
quantum system. This formalism will carry us through most of the remainder of this
book. However, the formalism is insufficient to answer the following questions.

« First, assume that we have an apparatus that does not just produce a single state
but a statistical mixture of different states. Having a single mathematical
formalism to describe such a system would be nice.

« Secondly, assume that we have an EPR pair 45 of qubits as described in Section
2.11.3, where the qubit A may be physically separated from B. We should have a
way to describe the individual qubits without having access to the other.

We need a better methodology for these cases, and the trick will be to describe states
not just as vectors but as matrices. As hinted in Section 2.5, for a state vector [¢),
we construct a density matrix p by computing the outer product of the state |) with
itself as

p =)l

The density matrix for a pure state has a rank of 1 and also a trace of 1. If we
measure a state 1) in a basis with a basis vector |b), we already know that the
probability of measuring |b) is

[{bl) > = (bly) (¥ Ib)
= (blplb).
Let us assume that we have an apparatus that produces a state |(o) with probability
po and another state |i;) with probability p;. The machine produces a statistical

mixture of states. To represent the full system, we add the individual density matrices
of the states weighted by their system-level probabilities as

p = polto) (Yol + p1lP1) (P1l.
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We can generalize this to any mixture of states as
p=>_nlva Wi
i

This may look similar to the spectral decomposition from Section 4.1, but it is dif-
ferent, as the |1);) are not necessarily basis states here. Any matrix with the following
two properties can be considered a density matrix:

1. The matrix must be positive semidefinite with eigenvalues A; > 0.
2. The trace of the matrix must be 1.

A set of density matrices with their probabilities {(p;,p;)} is called an ensemble
of states. Density matrices are not unique and can result from different ensembles.
For example, the matrix I/2 (with I being the identity matrix) is a valid density
matrix. Suppose an apparatus generates states |0) and |1) with equal probability and
a second apparatus generates states |[+) and |—) with equal probability. In that case,
their density matrices are the same and physically indistinguishable:

(1) (+H =+ =) =)

= S(0)0] + [1)(11).

[ =N =

As mentioned above, if the rank of matrix p is 1, then p is a pure density matrix.
Otherwise, it is a mixed density matrix. Furthermore, the trace operation gives us
another mathematical definition of mixed and pure states with

tr(p?) = 1 : Pure state,
tr(p?) < 1 : Mixed state.

This term tr(pz) as a metric is also known as the purity of a state. For a single
qubit, it can be visualized on the Bloch sphere. The Bloch vector for a pure state is
located on the surface of the Bloch sphere, while for a mixed state, the Bloch vector
is somewhere in the sphere’s interior.

We apply an operator U with |i)’) = Ul|y) to modify a state vector. To apply an
operator U to a state expressed as a density matrix, we must apply U from the left and
U' from the right, as p’ = Up U™,

Reduced Density Matrix and Partial Trace

The density matrix formalism allows us to reason about physically separated qubits
and their subspaces. For this, we will use what is called a reduced density operator,
which we can derive with the help of a procedure called a partial trace. Recall how
we defined the trace of a matrix in Section 1.10 as the sum of the diagonal elements as
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n—1

tr(A) = Zaii =agp +an+-+a_1a-1. “4.2)
i=0

The trace of a matrix is independent of the basis used to represent the matrix, as
we hinted in Section 4.1 on the spectral decomposition. We also know from the above
that the trace of a density matrix is 1. This means that we can write the trace of an
operator as

n—1

tr(4) =) _(ilAld),

i=0

where |i) are the basis vectors of an orthonormal basis. For a product state of two
qubits expressed as a density matrix, we take the trace over the subsystem B as follows.
The states |i) are the basis states of an orthonormal basis for pg. From Equation (4.2),
we know that the sum over the terms (i|pp|i) is 1. Hence:

trp( pAB ZpA ® tr( PB ZpA ® l|p3‘l 4.3)
z )

We say that subsystem B is being “traced out”. In general, the state does not need
to be a product state for this procedure to work. We can also generalize it and use
identity matrices to leave subspaces untouched. This is quite similar to what we do
during general operator applications.

To see how this works, let us first consider a two-qubit state and trace out qubit 0
as subsystem A. We construct the special operator matrices |04) and |14) below by
tensoring the basis states |0) and |1) with an identity matrix /, resulting in matrices
of size 4 x 2. The order of basis state and identity matrix depends on which specific
qubit we intend to trace out. Here we want to trace out qubit 0, so the |0) and |1) states

come first.
= (e )-[3 2], 1a-()< -

Then we use |04) and |14) and compute the partial traces as shown in Equation (4.3)
with

S O O =
oS O = O
S = O O
— O O O

pa = tra(pag) = (08|pas|0s) + (15|pas|15),
pp = tra(pas) = (0alpas|0a) + (1alpas|la)-

The partial trace is a dimension-reducing operation. For example, let us assume
that we have a system of two qubits A and B (at indices 0 and 1) with a 4 x 4 density
matrix, and we want to trace out qubit 0. Multiplying the 4 x 4 density matrix from
the right with a 4 x 2 matrix results in a 4 X 2 matrix. Multiplying this matrix from
the left with a (now transposed) 2 x 4 matrix results in a 2 X 2 matrix.


https://doi.org/10.1017/9781009548519.005

4.3 Reduced Density Matrix and Partial Trace 109

Find the code
In file src/1ib/ops.py

def TraceOutSingle(rho: Operator, index: int) -> Operator:
nbits = int (math.log2 (rho.shape[0]))
assert index <= 0 < nbits, 'TraceOutSingle: Invalid index.'

eye = Identity ()
zero = Operator([1.0, 0.0])
one = Operator ([0.0, 1.01)
p0 = pl = tensor.Tensor (1.0)
for idx in range(nbits):
if idx == index:
p0 = p0 * zero
pl = pl * one
else:
p0 = p0 * eye
pl = pl * eye

rho0 = p0 @ rho @ pO.transpose()
rhol = pl @ rho @ pl.transpose()
return rho0 + rhol

If we have a state of n qubits and are interested in the state of just one of the qubits,
we must trace out all other qubits. For this, we add a convenience function to file
src/lib/ops.py:

def TraceOut (rho: Operator, index_set: List[int]) -> Operator:
for idx, val in enumerate (index_set) :
nbits = int(math.log2 (rho.shape([0]))
rho = TraceOutSingle(rho, wval)
for i in range(idx+1l, len(index_set)):
index_set[i] = index_set[i] - 1
return rho

Experiments

Let us see this procedure in action. We start by producing a state from two well-defined
qubits (assuming a local phase of 0, which means the factors are real), with

1 V3 V3 1
40f§|0>+7|1> and 41f7\0>+§|1>-

g0 = state.qubit (alpha=0.5) # sqrt(0.25)
gl = state.qubit (alpha=0.8660254) # sqrt(0.75)
psi = g0 » gl
>>> psi
State([0.433+0.3j, 0.25 +0.3j, 0.75 +0.3j, 0.433+0.3j], dtype=complex64)


http://www.github.com/qcc4cp/qcc/blob/main/src/lib/ops.py
http://www.github.com/qcc4cp/qcc/blob/main/src/src/lib/ops.py
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>>> psi.density ()

Tensor ([[0.188+0.5, 0.108+0.5, 0.325+0.5, 0.188+0.5],
[0.108+0.9, 0.062+0.5, 0.188+0.5, 0.108+0.5],
[0.325+0.9, 0.188+0.3, 0.562+0.3, 0.325+0.31,
[0.188+0.9, 0.108+0.5, 0.325+0.5, 0.188+0.5]], dtype=complex64)

Tracing out one qubit should leave the other in the resulting density matrix, with
the top left matrix element having the value |&|? and the bottom right matrix element
having the value | ﬁ|2 for the remaining qubit. For the example, tracing out qubit ¢,
should result in a value of 0.5> = 0.25 in the top left matrix element, which is the
norm squared of & = 0.5 for qubit go.

reduced = ops.TraceOut (psi.density (), [11)
self.assertTrue (math.isclose (np.real (np.trace(reduced)), 1.0))
>>> reduced
Tensor ([[0.25 +0.3j, 0.433+0.3j],
[0.43340.3, 0.75 +40.31]1, dtype=complex64)

Tracing out qubit go should leave 0.8660254> = (.75 at the top left:

reduced = ops.TraceOut (psi.density (), [01)
self.assertTrue (math.isclose(np.real (np.trace(reduced)), 1.0))
>>> reduced
Tensor ([[0.75 +0.3, 0.433+0.31,
[0.433+0.J, 0.25 +0.j]], dtype=complex64)

As an example of an entangled state, let us take the first Bell state Bo. For this
state, the square of the trace of the density matrix is 1. After tracing out qubit 0, the
square of the trace is just 0.5% 4+ 0.5% = 0.5.

psi = bell.bell_state(0, 0)

reduced = ops.TraceOut (psi.density(), [0])

self.assertTrue (math.isclose(np.real (np.trace(reduced)),
1.0, abs_tol=le-6))

self.assertTrue (math.isclose (np.real (reduced[0, 01),
0.5, abs_tol=1le-6))

self.assertTrue(math.isclose(np.real (reduced[1l, 11]),
0.5, abs_tol=1le-6))

This already hints at the methodology to distinguish pure and mixed states, which we
elaborate upon further in Section 4.4.
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Maximal Entanglement

A maximally mixed state is a state that exhibits maximum uncertainty, or randomness,
in its outcome when measured. When represented by a density matrix, a maximally
mixed state is proportional to the identity matrix.

For two-qubit states, we define maximally entangled as follows. The partial trace
allows us to reason about a subspace of a state. Tracing out a subspace leaves a reduced
density matrix. We call a two-qubit state maximally entangled if the remaining reduced
density matrices are maximally mixed after tracing out individual qubits.

For example, in Section 4.3, we saw that the density matrix of a Bell state was 1/2
after tracing out a single qubit. The diagonal elements are all identical, and the off-
diagonal elements are 0, meaning it is a maximally mixed state. This also means that
Bell states* are maximally entangled states. The trace of the reduced density matrix
is 1, as required for a density matrix. However, the trace squared of the reduced and
maximally mixed state is 0.5:

tr(1/2) =1,
tr (1/2)>=05< 1.

This result is as expected for an entangled state. The joint state of the two qubits is
a pure state, which means that we know everything there is to know about the state.
However, looking at the individual qubits of the entangled Bell state with the help of
density matrices, we find that those are in a mixed state.

In general, maximal entanglement is defined as maximizing a specific entanglement
measure. Our bipartite two-qubit case above was easy to reason about. For multipartite
states, things become considerably more complicated and are beyond the scope of this
book. A good discussion can be found in Plenio and Virmany (2006).

Schmidt Decomposition

For a given state, determining whether the state is separable or entangled can be of
great interest. For a two-qubit state, we derived a simple entanglement test in Section
2.11.2, but this test was not general. In this section, we introduce the Schmidt decom-
position, a well-known linear algebra technique that is useful in quantum computing,
as it provides a general test for entanglement. Furthermore, it even points to a measure
of the entanglement strength.

Assume we have a pure state i) in the composite bipartite quantum system AB. For
simplicity, assume that A and B have the same dimensionality n. The Schmidt decom-

position states that there exists an orthonormal basis {ug,u1, . .. ,u,—;} for system A
and a basis {vo,vy, . ..,v,—1 } for system B, such that
n—1
) = Ailu), @ Vi) (4.4)
i=0

4 As well as GHZ states.
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The A; are called the Schmidt coefficients. They are real positive numbers with
> A7 = 1. We can use these coefficients to test for separability: A state [¢) is
separable if and only if the number of distinct coefficients is 1 exactly.

This description may seem somewhat abstract; it will be helpful to look at two
examples. First, consider a separable state of two qubits in equal superposition, where
the first qubit belongs to system A and the second qubit to system B:

1 1 1 1
) = 5100) 4 3101) + 7 10) + 7 [11).
We know from Section 2.4.1 that we can factor this state into

1
) = 7(|0>A+|1>) \/5(|0>B+|1>B)
(| >A®|+>B)+0'(|_>A®‘_>B)'

Since there is only a single nonzero Schmidt coefficient, the state |¢) is separable.
For an example of an entangled state, let us look at the |W) state from Section 2.11.5
and separate it into two systems, one containing the first two qubits and the other
having the third qubit:

—

IW) = —=(]001) + [010) + |100)).

=&l
[O8)

|WAB> = ‘OO>A ‘1>B + ‘01>A ‘O>B + ‘10>A |O>B)'

e

We set the basis for system A as {|00), [01), [10), |11)} and the basis for system B as
{]0), |1)}. With this and a little algebra to separate A and B, we manually decompose
the state into

2 1 1
|WAB> 7 (|00> ® |1>B) +£ <\/§ |01>A + ﬁ |10>A> ® |O>B

/\0 A

to find the two Schmidt coefficients A = 1/1/3 and A; = /2/3. The basis vectors
for A are |up) = |00) and the more complex |u;) = %(|01>A + [10),). In general,
any bipartite state can be written as

n—1 n—1

as) =Y > i [Xi)y @ |dj)-

i=0 j=0

The Schmidt decomposition reduces this by introducing new bases such that

‘EDAB ZAI |“ 0y |V,

The question is how to derive the A; from the c;. There are two ways to approach
this. The first method is based on the singular value decomposition (SVD) (Strang
(2016), page 364). Let us again use the example of the |W) state from above, with the
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basis states for system A of {|00), |01), [10), |11)} and {|0), |1)} for B. We can write
any state in the combined basis as

[Wan) = coo [00) |0) + co1 [01) [0) + coz [10) [0) + co3 [11) |0)
+¢10]00) [1) + ¢11 |01) |1) 4+ ¢12 [10) 1) 4 c13 [11) |1) .
In general, we can arrange the coefficients as a matrix C4p, where we index the

rows with the basis states |1) from system A and the columns with the basis states |¢)
from system B:

‘¢0> ‘¢1> |¢nfl>
[Yo) oo ot .- Con—1
|4’1> €10 C11 Cln—1
Cap = "
|lpn—l> Ch—1,0 Cnp—1,1 -+ Cnp—1n—1

Now we make use of the SVD, which is a standard technique in linear algebra with
many great resources discussing it. We will not discuss it any further here. What the
SVD does is decompose a square matrix C4p into

Cag = UDVT,

where both U and V' are n x n unitary matrices.’ Recall that a unitary matrix is
a matrix with orthonormal columns. This is exactly what we need for the Schmidt
decomposition. After the SVD, the columns of U will be the orthonormal basis ;.
The rows of V1 will have the adjoints of the orthonormal basis v;. The diagonal matrix
> will have the Schmidt coefficients A; on its diagonal.

We can also look at the Schmidt decomposition from a different angle using the
partial trace. For a bipartite pure state |{45) in Schmidt form and its density matrix
pas, we get the reduced density matrix p4 for subsystem A as

n—1
[Wap) = Z/\i |ui)y @ |vi)p and  pap = |Pap)(QPas|-

pa = tre(pas)

n—1
= trp Z)\z i)y ® [vidg DA (wily @ (vl
=0

We can reorder this and use the definition of the trace to pull it to the right. Also,
recall from Equation (1.7) that the trace over an outer product is equal to its reverse
inner product, which leads to

n—1 n—1
pa=trg [ DD Ay |u)(wila @ [vi) (vils
i=0 j

—0

5 In general, things get more complex if Cyp is an n X m rectangular matrix.
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n—1 n—1
= ZZ Aidj Jui) (ula ® tr(|"i><"j|3) :
i=0 j=0 N

=(vjlvi)
The v; and v; are orthonormal basis states. Their inner product is 0, except for i = j,

where it is 1. This allows us to write the final reduced density matrix as

n—1

pa =D A7 i) ui,

i=0

which is the spectral decomposition of p, with eigenvectors |u;) and eigenvalues A?.
We can do the same thing for the partial density matrix pp to arrive at

n—1
ps = A7 [vi)(vil.
i=0

Now we have the Schmidt coefficients, which are identical for both p, and pg, and
the bases for both A and B, which is what we needed for the Schmidt decomposition
in Equation (4.4). This is also what we implemented in the code below.

Find the code
In file src/schmidt_decomposition.py

PY

def compute_eigvals(psi: state.State, expected: int, tolerance: float):
rho = psi.density()

rho0 = ops.TraceOut (rho, [1])
eigvals0 = np.linalg.eigvalsh(rho0)
rhol = ops.TraceOut (rho, [0])
eigvalsl = np.linalg.eigvalsh(rhol)

assert np.allclose(eigvals0, eigvalsl, atol=le-6), 'Whaa’
assert np.allclose(np.sum(eigvals0), 1.0), 'Whaa’

# Count the number of nonzero eigenvalues and match against expected.
nonzero = np.sum(eigvals0 > tolerance)
if nonzero != expected:

print (f' Unstable math: {eigvals0[0]:.4f}, {eigvalsO0[1l]:.4f}")

# Construct the state from the eigenvalues and the new bases.

a0, d0, _ = np.linalg.svd(rho0)

al, _, _ = np.linalg.svd(rhol)

newpsi = (np.sqgrt(d0[0]) * np.kron(aO[:, 0], all0, :]1) +
np.sqgqrt(d0[1l]) » np.kron(aO[:, 1], alll, :1))

assert np.allclose(psi, newpsi, atol=le-3), 'Incorrect Schmidt basis'

return eigvalsO

Now we can run a few examples with entangled and non-entangled states to con-
vince ourselves that things work as expected!


http://www.github.com/qcc4cp/qcc/blob/main/src/schmidt_decomposition.py
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def main(argv) :

iterations = 1000

print ( '\tSchmidt Decomposition for seperable states.')

for _ in range(iterations):
psi = state.qubit(random.random()) * state.qubit (random.random())
compute_eigvals(psi, 1, 1le-3)

print ( '\tSchmidt Decomposition for entangled states.')
for _ in range(iterations):
psi = state.bitstring(0, 0)
psi = ops.Hadamard () (psi)
angle = random.random() * np.pi
psi = ops.ControlledU(0, 1, ops.RotationY (angle)) (psi)
compute_eigvals (psi, 2, 1le-9)

print ( '\tSchmidt Decomposition for max-entangled state.')
psi = state.bitstring(0, 0)
psi = ops.Hadamard() (psi)
psi = ops.Cnot () (psi)
eigv = compute_eigvals(psi, 2, 1le-9)
if abs(eigv[0] - eigv[1l]) > 0.001:
raise AssertionError( 'Wrong computation for max-entangled state.')

State Purification

When a pure state interacts with its environment, it can become a mixed state because
of noise and decoherence. State purification attempts to create a pure state from a
mixed state. We can think of it as a dual to the partial trace and ask the inverse question:
Given a mixed state ps for a quantum system A, is it possible to introduce another
system B such that the state |AB) is a pure state with partial trace ps = trz(|AB)(AB|)?

This is indeed possible with state purification, a mathematical procedure that is
generally considered to have no real physical relevance.® Here is how it works. Let us
assume that we have state A in its spectral decomposition form with the eigenvalues
A; and basis states |is) as

pa = Ailia)(ial.

We introduce another system B with the same state space as A and the correspond-
ing orthonormal basis states |iz). Then state

|AB) = Z V Ailia)ip)
is a pure state. We can check that taking the partial trace of system B will result in

exactly pa.

% Which may not be a correct statement (Kleinmann et al., 2006).
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Find the code
In file src/purification.py

Let us quickly verify this in code. We use the same eigenvectors for the subsystems A
and B:

def purify(rho: ops.Operator, nbits: int):
rho_eig val, rho_eig vec = np.linalg.eig(rho)

# Construct combined system, using same basis vectors.

psil = np.zeros((2+*(nbits * 2)), dtype=np.complexl28)
for i in range(len(rho_eig_val)):
psil += (np.sgrt(rho_eig_valli]) =
np.kron(rho_eig vec[:, i], rho_eig_vec[:, 1i1))

# Make sure it is a pure state.
mat = psil.reshape((2+*nbits, 2**nbits))
assert np.allclose(np.trace(mat@mat), 1.0, atol = le-5)

# Another way to compute the reduced density matrix:
reduced = ops.TraceOut (state.State(psil) .density (),
[x for x in range(int (nbits),
int (nbits*2))1])
assert np.allclose(rho, reduced), 'Wrong reduced density'

We test a variety of density matrices to ensure that this procedure works for entan-
gled and unentangled states:

def main(argv) :

print (' Single qubit.')
purify (ops.Operator ([ (0.22704306, 0.34178495),
(0.34178495, 0.77295694)1), 1)

print (' Bell states.')
purify(bell.bell_state(0, 0).density(), 2)
purify(bell.bell_state(0, 1).density (), 2)
print (' GHZ state.')
purify(bell.ghz_state(4) .density (), 4)
print (' Random 2 qubit states.')
for _ in range(1000):

psi = state.State(np.random.rand(4)) .normalize()

purify (psi.density (), 2)



http://www.github.com/qcc4cp/qcc/blob/main/src/purification.py
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Pauli Representation of Operators

In Section 2.7.2 on the Pauli operators X, Y, Z, and the identity operator I, we stated

that Pauli matrices form a basis for 2 x 2 matrices. This means that a density matrix

can be written as follows, which is also called the Pauli representation of an operator:7

I+ xX+yY+2Z

= 5 .

Let us derive this result. First, note that since we claim that the Pauli matrices

form an orthonormal basis for any 2 x 2 matrix, we should be able to write any such
matrix as

4.5)

A=cl+xX+yY +zZ. 4.6)

If A is Hermitian, all four factors c,x,y,z will be real. By simply adding up the four
matrix terms, we get
A= (C+,Z Xiy) :
X+ c¢c—z2

Comparing Equation (4.5) and Equation (4.6) leads to three questions:

1. Why is there no factor c in front of I in Equation (4.5)?
2. Where does the factor 1/2 come from?
3. Given a matrix, what are the factors x, y, and z, and maybe c?

To answer the second and third questions first, for a given state 1)) and its density
matrix p = [¢) (1|, we extract the individual factors by multiplying the density matrix
with the corresponding Pauli matrix and taking the trace.® Let’s see how this works.
To extract the factor x, we compute

Xp:X(C+Z le)
X+1y c¢—z2
(0 1 c+z x—1iy
-\l 0/ \x+iy c—z
_(x+iy c¢c—z
T \ce+z x—iy)
Taking the trace of this matrix as

tr(Xp) =x+iy +x— iy = 2x,

we are able to extract the factor x, but with a factor of 2. This is the reason why, in
Equation (4.5), we compensate with a factor of 1/2. Let’s derive this for the other
factors, starting with Y:

7 Here we implicitly assume that the trace of the operator is 1.
8 We are using the density matrix of a pure state here, but the same mechanism will work for any 2 x 2
matrix.
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szy<c+,z Xiy)
X+1y c¢c—z

(0 =i\ fc+z x—iy
\i 0)\x+iy c—z
_ (—ix+y —i(c —z2)
i(c+z) ix+y /)’
=tr(Yp) = —ix+y+ix+y=2y.

And similarly, for Z:

oz (S )
X+1y c¢c—2

(1 0 c+z x—iy
S \0 —1) \x+iy c—z

_f etz x—iy
S \=x—iy z—-¢)’
=>tr(Zp)=c+z+z—c=2z

Finally, for the identity /, the right side remains unchanged:
=r(CFE 17
x+iy c¢c—z2

_fct+z o x—iy
T \x+iy c—2z)’

=tr(lp) =c+z+c—z="2c

Now we use the fact that the trace of a density matrix must be 1. Since we already
applied a factor 1/2 in Equation (4.5), the factor ¢ in Equation (4.6) must be 1. This is

why we were able to omit a scalar factor to / in Equation (4.5).

Py Find the code
In file src/pauli_rep.py

This is easy to verify in code. We construct a random qubit and extract the factors
as described above. With these factors, we can verify that we calculated the correct
results simply by inserting them into Equation (4.5). We compute the factors c,x,y,z

in Equation (4.6) as the Python variables c, %, vy, and z.

gc = circuit.qgc('random qubit')
gc.random ()
rho = gc.psi.density/()

= np.trace(ops.PauliX() @ rho)
np.trace(ops.PauliY () @ rho)
= np.trace(ops.Pauliz() @ rho)

N K X O
1l

= np.trace(ops.Identity() @ rho) # not strictly needed.


http://www.github.com/qcc4cp/qcc/blob/main/src/pauli_rep.py
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new_rho = 0.5 % (c * ops.Identity() + x * ops.PauliX() +
y * ops.PauliY() + z * ops.PauliZ())
assert np.allclose(rho, new_rho), 'Invalid Paull Representation'

Decomposition with Projectors

With the factors x, y, and z from Equation (4.6), there is an interesting alternative
representation with application in the circuit-cutting technique (Tang et al., 2021). We
compute the projectors as usual:

Pioy = [0)(0], Pj1y = [1)(1], Piyy = [F)(+], Pl = [H2){+y].

With the following four matrices A; and the factors c,x,y,z calculated above, we can
decompose a density matrix p as’

Ay = (c+2)Py), A = (e = 2)Ppy,

Ay =x(2Piy) = Py = Ppy),  As=Y(2P1y — Py — Py),

A+ A+ A+ A
= 5 .

Two Qubits

So far, we have computed the density matrix of a single qubit with the Pauli matrices
0; as

1 3
p= EZC,-G,-.
i=0

This technique can be extended to two qubits by applying the same principles and
multiplying the density matrix by all tensor products of two Pauli matrices. Similar
to Equation (4.5), the density matrix can be constructed from the two-qubit bases in
the following way (note that the factor is now 1/4, or 1/2" in the general case for n
qubits):

3
1
P=7 > cij(0i®a)).

i,j=0
To generalize to any number of qubits: Generate n-dimensional tensors holding the

factors (c,-h___7,~n), tensor together n Pauli matrices of each kind, sum up all the terms,
and normalize:

3
1
P=17 Y Cinein (04, @ @ 7).

9 The corresponding code and test are in the open-source repository.


https://doi.org/10.1017/9781009548519.005

120 Quantum Tools and Techniques

But back to the two-qubit case. We compute the factors (c;;) in the same way as in
the single-qubit case. In the following code, we first create a state and corresponding
density matrix of two potentially entangled qubits:

gc = circuit.qgc('random qubit')
gc.random(2)

gc.h(0)

gc.cx (0, 1)

rho = gc.psi.density()

Now we multiply by all the Pauli matrix tensor products and compute the factors
from the trace. Since two qubits are involved, instead of a vector of factors (c;), we
will now get a matrix of factors (c;):

paulis = [ops.Identity (), ops.PauliX(), ops.PauliY (), ops.PauliZ ()]
c = np.zeros((4, 4), dtype=np.complex64)
for i in range(4):
for j in range(4):
tprod = paulis[i] * paulis[j]
c[1][j] = np.trace(rho @ tprod)

Note that in the computation of the trace above, we switched the order of rho and
tprod compared to the single-qubit case. We can do this because for two matrices A
and B, tr(AB) = tr(BA). Similarly to the above, we can now construct a new state and
verify that the computed factors are correct:

new_rho = np.zeros((4, 4), dtype=np.complex64)
for i in range(4):
for j in range(4):
tprod = paulis[i] * paulis[j]
new_rho = new_rho + c[i][j] * tprod
assert np.allclose(rho, new_rho / 4, atol=le-5), 'Invalid result'

4.8 ZYZ Decomposition

In this section, we will show and derive that any single-qubit unitary gate can be
decomposed (Nielsen and Chuang (2011), Theorem 4.1) into the form

U = e“R.(B)Ry(y)R.(0), 4.7

where R, and R; are the rotations about the y-axis and z-axis as described in Section

2.7.4:
—i8 0 . . 0
R,(0) = e 2" = cos (2> I —isin (2) Y

Q
g9
=)

NN
DD
S—
|
8 z.
n B
—~
DD
N —r
~
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_ie 0 .. (0
R(0)=¢e 2 = cos (2) I —isin (2> z
- et 0
N

Let’s find the values for these parameters and verify in code that we have calculated
the right results. First, we should think of a general single-qubit gate U as having the

form
- (a b
U=¢" .
“(c3)

To compute «, we consider the new unitary V = e~'*U with the special property
det V = 1. The determinant of a unitary'? is the product of the eigenvalues. For n-
qubit operators, we have k = 2" eigenvalues. If we multiply U by a constant ¢, then
each eigenvalue is multiplied by this constant, and det(cU) = c* det(U). Hence, for
this 2 x 2 matrix U, the determinant is det U = a'>*. Similarly to how we find the
angle of a phase of a complex number, we can find the angle o as the arctangent
between the imaginary part of the determinant and its real part:

a = 1arctan (Im@et(U))) .

2 Re(det(U))

To compute y, we multiply out Equation (4.7) and get

' —ilp—ils YN o —idprile oy
U — o (e 2 cos()z) e 2Pt20gin( )) 4.8)

RN

etiap—izd sin(%) etizPTiz0 cog(L)

From this we can compute y. We compute it from the upper left with 2 arccos |q]
or from the upper right with 2 arcsin |b|. For numerical stability, we choose the largest
of the two matrix elements a and b. For «, we use Python’s arctan2 to account for

all quadrants.

Py Find the code
In file src/zy_decomp.py

def zy_decompose (umat) :
a = umat[0][0]
b = umat[0][1]
c = umat[1][0]

det = np.linalg.det (umat)
alpha = 0.5 * np.arctan2 (det.imag, det.real)
if a >= b:

gamma = 2 * np.arccos(abs(a))
else:

gamma = 2 * np.arcsin(abs (b))

10 To be precise, the determinant of any diagonalizable matrix.
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When we look at the matrix elements a and ¢ in Equation (4.8) (top left and
bottom left elements), we can see that the sign differs for the /2 terms. Taking the
whole exponentiated term (before cos) as a rotation means that the whole f is the
phase difference between these matrix elements. Similarly, the angle 6 is the phase
difference between —b and c (though there are special cases for y = O or y = m,
which we omit here):!!

beta = cmath.phase(c) - cmath.phase(a)
delta = cmath.phase(-b) - cmath.phase(a)
return alpha, beta, gamma, delta

The code in file zv_decomp . py contains routines to construct the matrices from these
angles and to ensure correct calculations.

XYX Decomposition

Given the insights from Section 4.8, we can quickly derive an XYX decomposition
as well. Going from one coordinate system to another can be done with a unitary
transformation. In this case, the Hadamard gate allows us to change our frame of
reference in the following way:

HZH =X and HYH =-Y,

HR.(0)H =R.(0) and HR,(0)H = R,(—0).
If we assign U’ = HUH™' = HUH (the Hadamard gate is its own inverse), we can
apply the ZYZ decomposition as above on U’ = ¢*R,(B)R,(y)R;(5). The computed
angles will be the XYX decomposition we were looking for.
U=HUH
= ¢ (HR-(B)H) (HR,(y)H) (HR:(5)H)
= ¢ Re(B)Ry(=))Rx(3).

Py Find the code
In file src/zy_decomp.py

def make_u_xy(alpha, beta, gamma, delta):

[..

return (
ops.RotationX (beta) @ ops.RotationY(gamma) @ ops.RotationX(delta)
) * cmath.exp(1.0j * alpha)

-]

udash = ops.Hadamard() @ umat @ ops.Hadamard()

alpha, beta, gamma, delta = zy_decompose (udash)
unew = make_u_xy(alpha, beta, -gamma, delta)
if not np.allclose(umat, unew, atol=le-4):

raise AssertionError('X-Y decomposition failed')

" Found in http://quantumcomputing.stackexchange.com/a/16263.
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Quantum computing is of great interest because of its promise of being able to execute
certain tasks much faster than is possible with classical computers. We will soon learn
about the quadratic speed-up of search with Grover’s algorithm and even exponential
speed-up for integer factorization with Shor’s algorithm. One natural question to ask
is whether quantum computers are limited to a small set of specific tasks only.

In this chapter, we demonstrate how any classical digital circuit can be implemented
with a quantum circuit. This proves that quantum computers are at least as capable
as classical computers. Then we detail and discuss the seminal quantum supremacy
experiment, which, for the first time, seemed to demonstrate a true quantum advantage
for a specific type of algorithm. This result, however, did not come without contro-
versy, so buckle up, this will be interesting.

Classical Arithmetic

Let’s begin by implementing a standard classical logic circuit, the full adder, with
quantum gates instead of classical gates. The quantum circuit is very basic in that it
does not utilize any specific features of quantum computing (we detail arithmetic in
the quantum Fourier domain in Section 11.4).

A 1-bit full adder block is usually drawn as shown in Figure 5.1. The input bits are
A and B; their sum comes out as bit Sum. We only have 1 bit to represent the result, so
if both A and B are 1, their binary sum overflows back to 0, and we set a carry-out bit
Cout- You can see all bit combinations in Table 5.1.

Multiple instances of the full adder can be chained together in sequence to facilitate
the addition of multibit binary numbers. In this scenario, the potential carry-out bit of
a one full adder is chained to the next full adder as a carry-in bit Cj,.

A Sum
B 1-Bit Full Adder
Cin — C()u‘

Figure 5.1 The 1-bit full adder block diagram.
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Table 5.1. Truth table for the full adder logic circuit.

A B Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
A
B
Cin
Sum H—H B Sum
Cout C} C} C} Cout

Figure 5.2 Classical full adder, implemented with quantum gates. All input qubits are in one of
the basis states |0) or |1).

Classical circuits use, unsurprisingly, classical gates such as AND, OR, NAND,

and others. The task at hand is to construct a quantum circuit that produces the same
truth table as the classical circuit but only uses quantum gates. Classical Os and 1s are
represented by the basis states |0) and |1). With some thought (and experimentation),
we arrive at the circuit in Figure 5.2. Let’s walk through the circuit to convince
ourselves that it is working properly:

If A is |1), Sum will toggle to |1) (with the controlled Not from A to Sum).

If Bis |1), Sum will flip to |1) or back to |0) if it was already set to |1).

If Gy, is |1), Sum will flip again with the controlled Not on the right.

Cout Will toggle if both A and B are set, or both A and C;, are set, or both B and Cjj,
are set.

What happens if all A, B, and Cj, are set? Sum will start as |0) and go through
these states: [0), |1}, |0}, |1). Cou Will also start as |1) and go through these
states: [0), |1), |0), |1). The final results are |1) and |1) for both Sum and C,y, as
expected.

The implementation of the circuit is straightforward using controlled and double-

controlled Not gates. Measurements are probabilistic, but in this case, the probability

of the correct result is 100% in the computational basis. There will only be a single
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resulting state with nonzero probability. We apply each gate to the state in the order
shown in Figure 5.2.

Find the code
Infile src/arith _classic.py

PY

def fulladder_matrix(psi: state.State):
psi = ops.Cnot (0, 3) (psi, 0)
psi = ops.Cnot(1l, 3) (psi, 1)
psi = ops.ControlledU(0, 1, ops.Cnot(l, 4))
psi = ops.ControlledU(0, 2, ops.Cnot(2, 4)) (psi, 0)
psi = ops.ControlledU(l, 2, ops.Cnot(2, 4))
psi = ops.Cnot (2, 3) (psi, 2)
return psi

Next, we conduct experiments as follows. First, we construct the state from the
inputs (A,B,Ci,) and augment it with two |0) states for the expected outputs sum and
cout. Then, we apply the circuit we just constructed. We measure the probabilities of
the outputs being 1, which means we will get a probability of 0 if the state was |0) and
a probability of 1 if the state was |1):

def experiment_matrix(a: int, b: int, cin: int,
expected_sum: int, expected_cout: int):
psi = state.bitstring(a, b, cin, 0, 0)
psi = fulladder_matrix(psi)

bsum, = ops.Measure(psi, 3, tostate=1, collapse=False)

bout, _ = ops.Measure(psi, 4, tostate=1, collapse=False)
print (f'a: {a} b: (b} cin: {cin} sum: {bsum} cout: {bout}')
if bsum != expected_sum or bout != expected_cout:

raise AssertionError('invalid results')

Lastly, we check the circuit for all inputs and expected results:

def add_classic():
for exp_function in [experiment_matrix]:
exp_function(0, 0, 0, 0, 0)

exp_function(0, 1, 0, 1, 0)
exp_function(1l, 0, 0, 1, 0)
exp_function(1l, 1, 0, 0, 1)
[...]

def main(argv) :

add_classic()

>>

a: 0 b: 0 cin: 0 sum: 0.0 cout: 0.0

a: 0 b: 1 cin: 0 sum: 1.0 cout: 0.0

a: 1 b: 0 cin: 0 sum: 1.0 cout: 0.0

a: 1 b: 1 cin: 0 sum: 0.0 cout: 1.0

[
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Other classical circuits can be implemented and combined to build more powerful
circuits. We show a general construction below, but it is important to note that all
these circuits point to a general statement about quantum computers: Since classical
universal logic gates can be implemented on quantum computers, a quantum computer
is at least as capable as a classical computer.

However, this does not mean that a quantum computer performs better in the gen-
eral case. The circuit presented in Figure 5.2 may just be a very inefficient way to
implement a simple 1-bit adder. However, we will soon learn about algorithms that
perform significantly better on quantum computers than on classical computers by
some measure of complexity.

General Construction of Logic Circuits

This section briefly discussed how to construct general classical logic circuits with
quantum gates (Williams, 2011). This method uses only three quantum gates:

NOT

la) —B— lae 1)

@) —¢— la)

b) —@B— la®b)

CNOT

la) —o— la)
Toffoli = |b)y —e—— |b)

o) —@&— [(aAb)®c)

These gates are sufficient to construct quantum analogs to the classical gates AND
(A), OR (V), and, of course, the NOT gate. The AND gate is a Toffoli gate with a |0)
as its third input:

|a) —o— |a)
AND = |b) —e—— |D)
0) —D— lanb)

The OR gate is slightly more involved but still based on a Toffoli gate:

o
g

————laVb)
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|xo0)

i)

|x2) I

[0)o > lxo A x1)

0 X|— bt v x2)

10)2 > (0 Axr) A (x1 V x2))

Figure 5.3 A Boolean formula, expressed with quantum gates.

We know that with NOT and AND, we can build the classically universal NAND
gate, which means we can construct the quantum analog of any classical logic circuit
with quantum gates.

We might need fan-out to connect single wires to multiple gates for complex logic
circuits. Therefore, we need a fan-out circuit. Is this possible, or does fan-out violate
the no-cloning theorem? The answer is no, it does not because, in this scenario, logical
0 and 1 are strictly represented by qubits in the basis states |0) or |1). For these states,
cloning and fan-out are possible, as shown in Section 2.12.

@) —9— la)

0) —B— la)

With these elements, and knowing that any Boolean formula can be expressed as
a product of sums' we can build any logic circuit with quantum gates. Of course,
making this construction efficient would require additional techniques, such as ancilla
management, uncomputation, logic optimizations, and general minimization of gates.

An example of a quantum circuit for the Boolean formula (xo A x1) A (X1 V x2)
is shown in Figure 5.3. The top three qubits are the inputs |x;), and the bottom three
qubits are ancilla qubits initialized to state |0). In the circuit diagram, we do not show
the uncomputation following the final gate that would be required to disentangle the
ancillae from the state. The ability to uncompute ancillae in a large chain of logic
expressions can reduce the number of required ancillae. In this example, we could
uncompute |0) and |0); and make them available again for future temporary results.

Fan-out =

The Quantum Supremacy Experiment
The term Beyond Classical is now the preferred term over Quantum Advantage, which

in turn was the preferred term over the unfortunate term Quantum Supremacy. Prof.
John Preskill originally coined that term to describe a computation that can be run

! http://en.wikipedia.org/wiki/Canonical_normal_form
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efficiently on a quantum computer but would be intractable to run on a classical
computer (Preskill, 2012; Harrow and Montanaro, 2017).

Computational complexity theory is a pillar of computer science. A good introduc-
tion and extensive literature references can be found in Dean (2016). A large set of
complexity classes exists. The best-known big categories may be the following:

Class P, the class of decision problems (with a yes or no answer) with problem size
n that run in polynomial time O(n*), with x being of complexity O(1).

Class NP, which contains decision problems of size n that run in exponential time
O(x") and can be verified in polynomial time.

Class NP-complete,  which is a somewhat technical construction. It is a class of
NP problems that other NP-complete problems can be mapped to in polynomial
time. Finding a single example of this class that falls into P would mean that all
members of this class are also in P.

Class NP-hard, the class of problems that are at least as hard as the hardest
problems in NP. To simplify, this is the class of NP problems that may not be a
decision problem, such as integer factorization, or for which there is no known
polynomial-time algorithm for verification, such as the traveling salesperson
problem (Applegate et al., 2006).

There are dozens of complexity classes with various properties and inter-
relationships. The famous question of whether P = NP remains one of the great
challenges in computer science today.’

Interest in quantum computing arises from the belief that quantum algorithms fall
into the BQP class, the class of algorithms that can be solved by a quantum Turing
machine in polynomial time with an error probability of less than 1/3 (which is a
somewhat arbitrary bound). This group is believed to be more powerful than the BPP
class, the class of algorithms that can be solved in polynomial time by a probabilistic
Turing machine with a similar error rate. Put simply, there may be a class of algorithms
that can run exponentially faster on quantum machines than on classical machines.

From a complexity-theoretical point of view, since BQP contains BPP, this would
mean that quantum computers can efficiently simulate classical computers. How-
ever, would we run a word processor or a video game on a quantum computer?
Theoretically, we could, but today it appears that classical and quantum computing
complement each other. The term beyond seems to have been well chosen to indicate
that there is a complexity class for algorithms that run tractably only on quantum
computers.

To establish the quantum advantage, we will not take a complexity-theoretic
approach in this book. Instead, we will try to estimate and validate the results of the
quantum supremacy paper by Arute et al. (2019) to convince ourselves that quantum
computers do indeed reach capabilities beyond those of classical machines.

2 Tt can be answered jokingly with yes, if N = 1 or P = 0.
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10,000 Years, 2 Days, or 200 Seconds

In 2019, Google published a seminal paper claiming to finally have reached a quantum
advantage on their 53-qubit Sycamore chip (Arute et al., 2019). In their work, the
researchers used a quantum random algorithm. This type of algorithm assembles a
small set of gates randomly into a circuit, following only a small set of rules. The
resulting circuit is a valid circuit and computes something. However, the result itself
has no specific meaning. The researchers then sampled the result by performing a large
number of measurements. Since a random circuit introduces random superpositions, it
will produce probabilistic results. However, if the circuit is measured often enough, the
results will be correlated and not purely random, proving that an actual computational
process has occurred. In their paper, the researchers computed and sampled a random
circuit 1,000,000 times in just 200 seconds, producing a result that would take the
world’s fastest supercomputer 10,000 years to produce and which can only be obtained
by classically simulating the random circuit.

Shortly after that, IBM, a competitor in the field of quantum computing, followed
up with the estimate that a similar result could be achieved in just a few days, with
higher accuracy, on a classical supercomputer (Pednault et al., 2019). A few days
versus 200 seconds is a factor of about 1,000. A few days versus 10,000 years is
another factor of 1,000. Disagreements of this magnitude are exciting. How is it
possible that these two great companies disagree to the tune of a combined factor
of a million?

Quantum Random Circuit Algorithm

In order to make performance claims, you first need a proper benchmark. Typical
benchmark suites are SPEC (www.spec.org) for CPU performance and recent
MLPerf benchmarks (http://mlcommons.org) for machine learning systems. It
is also known that as soon as benchmarks are published, large groups embark on
efforts to optimize and tune their various infrastructures towards the benchmarks.
When these efforts cross into an area where optimizations only work for specific
benchmarks, these efforts are called benchmark gaming.

The challenge in setting benchmarks for quantum computing is, therefore, to build a
benchmark that is meaningful, general, and yet difficult to game. Google suggested the
methodology of using quantum random circuits (QRC) and cross-entropy benchmark-
ing (XEB) (Boixo et al., 2018). QRC observes that the measurement probabilities of a
random circuit follow certain patterns, which would be destroyed if there were errors
or chaotic randomness in the system. XEB samples the resulting bit strings and uses
statistical modeling to confirm that the chip performed a non-chaotic computation. The
math used here is beyond the scope of this text, and we refer to Boixo et al. (2018) for
further details.

How do you construct a random circuit? Initially, Google used a set of 2 x 2 opera-
tors and controlled Z gates. The choice of this particular set of gates and connectivity
restrictions was influenced by the capabilities of the Sycamore chip (Google, 2019).
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The problem size with a 53-qubit random circuit is huge. Assuming complex
numbers of size 23 bytes, a traditional Schrodinger full-state simulation of the random
circuit would require 2°° bytes or 72 PB of storage; twice that for 16-byte complex
numbers. Assuming that a full-state simulation would not be realistic, the Google
team used a hybrid simulation technique that combined full-state simulation with a
simulation technique based on Schrodinger—Feynman path history (Rudiak-Gould,
2006). This method trades exponential space requirements for exponential runtime.
The hybrid technique breaks the circuit into two (or more) chunks. It simulates each
half using the Schrodinger full-state method, and for gates spanning the divided
hemispheres, it uses path history techniques. The performance overhead of these
hemisphere-spanning gates is very high, but their numbers are comparatively small.
Based on benchmarking of the hybrid technique, as well as evaluation of full-state
simulation on a supercomputer (Hiner and Steiger, 2017), it was estimated that a full
simulation for 53 qubits would take thousands of years, even when run on a million
server class machines.

Soon after publication, methods were indeed found to game the benchmark with
targeted simulation techniques for this specific circuit type, exploiting some unfor-
tunate patterns in how the circuits were constructed. The benchmark needed to be
refined. Fortunately, relatively simple changes, such as introducing new gate types,
counter these techniques. Details can be found in Arute et al. (2020).

There are concerns that this choice of benchmark is a somewhat artificial
proposition — an algorithm of no practical use for which no other classically equivalent
algorithm exists other than quantum simulation. To play the devil’s advocate, let us
take a pendulum with a magnetic weight and have it swing right over an opposite
magnetic pole. The movement will be highly chaotic. Simulating this behavior
from some assumed starting conditions can theoretically be done in polynomial
time, but enormous compute resources are required to model the motion accurately
over a prolonged period of time. Even then, it is impossible to model all starting
conditions — the proverbial flap of a butterfly wing on the other side of earth will
eventually influence the motion. If we ran the simulations » times and sampled the
final positions, the results would be chaotically random and differ from equivalent
physical experiments. On the other hand, simply letting the pendulum swing as a
physical system “performs” (and does not compute) the problem in real-time, using
practically no computational resources and resulting in an equally chaotic random
outcome. Have we really proven the pendulum-swing computer advantage?

This is an intriguing argument but flawed. The pendulum-swing computer is a
chaotic, physical, analog, and, most importantly, non-repeatable process. The most
insignificant changes in the initial conditions will lead to different, unpredictable, and
unrepeatable outcomes. As such, it does not perform a computation (which is why we
used the term perform above).

A random quantum circuit, on the other hand, is a computation. A significant
change in the setup, such as modified sequences of different gates or starting from
a different initial state, will change the outcome in random ways. However, small
changes to parameterized gates, different noise levels, or modest exposure to errors
will not cause the resulting probabilities to change meaningfully; the deviations are
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bounded. In future machines, quantum error correction will make the results even
more robust and repeatable.

The key argument is now the following. A random but non-chaotic calculation was
computed efficiently on a quantum computer (a million runs in just 200 seconds).
Computing the same result on a classical machine runs dramatically less efficiently, to
the tune of thousands of years, thus proving a quantum advantage.

In all cases, it is just a matter of time until we can run something big and meaningful
on a quantum computer, perhaps Shor’s algorithm utilizing millions of qubits with
error correction. In the meantime, let us take a closer look at Google’s quantum circuit
and estimate how long it would take us to simulate it using our infrastructure.

Circuit Construction

There are specific constraints for the gates on the Google chip, as they cannot be
placed at random. We follow the original construction rules from Boixo et al. (2018).
The supremacy experiment uses three types of gates, each a rotation by 77/2 around
an axis on a Bloch sphere. Note that the following definitions of the gates are slightly
different from those we presented earlier:

X2 = Ry(r/2) = = < ! _11>

A
Y2 =R (n/2) = \i@ G D ,
W= =2 ().

There is also a list of specific constraints for circuits:

« For each qubit, the very first and last gates must be Hadamard gates. This is
reflected in a notation for circuit depth as /-n-1, indicating that n steps, or gate
levels, must be sandwiched between Hadamard gates.

P YD A SO BPRNC I S B

Figure 5.4 Patterns for applying controlled gates on the Sycamore chip.
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Figure 55 A smaller-scale, semi-random supremacy circuit.

Apply CZ gates in the patterns shown in Figure 5.4, alternating between horizontal
and vertical layouts.

Apply single qubit operators X'/2, Y'/2, and T (or W'/?) to qubits that are not
affected by the CZ gates, using the criteria below. For our simulation
infrastructure, which does not specialize for specific gates, the choice of gates
does not matter with respect to computational complexity: They are all 2 x 2
gates. For more sophisticated methodologies, such as tensor networks, the choice
of gates can make a difference.

If the previous cycle had a CZ gate, apply any of the three single-qubit unitary
gates.

If the previous cycle had a non-diagonal unitary gate, apply the T gate.

If the previous cycle had no unitary gate (except Hadamard), apply the T gate.
Otherwise, do not apply a gate.

Repeat the above steps for a given number of steps (which we call depth in our
implementation).

Measure after the final Hadamard gates.

This interpretation of the rules produces a circuit similar to the one shown in
Figure 5.5. Note that there have been refinements since the initial publication; Arute
et al. (2020) has the details. The main motivation for making changes was to make
it harder for the new circuits to be simulated by tensor networks, the most efficient
simulation technique for this type of network (Pan and Zhang, 2021). In our case, we
are looking for orders of magnitude differences, so we stick to the original definition®
and apply the corresponding fudge factors in the final estimation.

3 As we understand it.
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Estimation

In the implementation, it does not matter which gates are used specifically; the sim-
ulation time is the same for each gate in our infrastructure. Our estimation should be
reasonably accurate as long as the gate types and density are roughly aligned with the
Google circuit. Note that other simulation infrastructures, including Google’s gsimh,
do apply an additional range of optimizations to improve the simulation performance.

For example, we can construct a sample circuit with 12 qubits and a depth of 7-10-1
(a single Hadamard gate at the beginning and end, 10 random steps in the middle) and
print the circuit.

Find the code
In file src/supremacy.py

de

[..

>>

e
-

O W 0w J oUW N R O

f print_state(states, nbits, depth):
.1

o 1 2 3 4 5 6 7 8 910 11 12
h cz czu h
h t czu t cz cz h
h czu ¢t czu t czh
h t czu t cz czczczczu h
h czczczu t czczu czu t h
h t czu ¢t czu h
h czu t cz u t h
h t czu t czczczczczu h
h czczczu t czczu czu t h
h t czu t cz cz h
h czu t czu t cz h
h t czu czu h

The simulation is done with a function that iterates over the depth of the circuit
and simulates each gate one by one. To estimate the time it would take to execute this
circuit at 53 qubits, we make more assumptions:

« We assume that the single- and two-qubit gate application times are linear over the
size of the state vector.

« Performance is strictly memory-bound, which means that providing additional
compute units or ALUs would not help. The bandwidth with which we can bring
in data limits performance.

« For a very large circuit, we know that we would have to distribute the computation
over multiple machines, but we ignore the communication cost.

« We assume a number of machines and a number of cores on those machines. A
relatively small number of cores on a high-core machine can saturate the available
memory bandwidth, so we take a guess on what the number of reasonably utilized
cores would be (we assume 255, which is very likely too high and can be
adjusted).
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With these assumptions, we will use the metric Time per gate per byte in the state vec-
tor to extrapolate the results. It is remarkably stable across qubits and circuit depths,
and thus, we estimate the approximate performance of larger circuits by simulating
and measuring smaller circuits. To estimate how many gates there would be in a larger
circuit, we calculate a gate density, which is the number of gates in a circuit divided
by (nbits * depth). We present the key results in code as the following:

print ('\nEstimate simulation time on larger circuit:\n')
gate_ratio = ngates / nbits / depth
print ( 'Simulated circuit:')

print (' Qubits : {:d}'.format (nbits))
print (' Circuit Depth : {:d}'.format (depth))
print (' Gates : {:.2f}'.format (ngates))
print (' State Memory : {:.4f} MB'.format (
2 ** (nbits-1) * 16 / (1024 %% 2)))
print ( 'Estimated Circuit Qubits : {}'.format (target_nbits))
print ('Estimated Circuit Depth : {}'.format (target_depth))
print ( 'Estimated State Memory : {:.5f} TB'.format (
2 ** (target_nbits-1) * 16 / (1024 xx 4)))
print ( 'Machines used : {}'.format (flags.FLAGS.machines))

print ( 'Estimated cores per server: {}'.format (flags.FLAGS.cores))
print ( 'Estimated gate density : {:.2f}'.format (gate_ratio))

estimated_sim_time_secs = (
# time per gate per byte
(duration / ngates / (2x*(nbits-1) * 16))
# gates

target_nbits

E

gate ratio scaling factor to circuit size

*+ gate_density

# depth

* target_depth

# memory

* 2x* (target_nbits-1) * 16

# number of machines

/ flags.FLAGS.machines

# Active core per machine

/ flags.FLAGS.cores)

t('Estimated for {} gbits: {(:.2f} yv or {:.2f} d or ({:.0f} sec)'

.format (target_nbits,
estimated_sim_ time_secs / 3600 / 24 / 365,
estimated_sim_time_secs / 3600 / 24,

prin

estimated_sim_time_secs))

For the specific result, we assume that the target circuit has 53 qubits and is run on
100 machines, each with 255 fully available cores. The number of gates in our simu-
lation seems to roughly align with the number of gates published by Google, though
not exactly.* For the example parameters, the estimation results are the following:

4 There is a bit of ambiguity in the description of the algorithm to construct the circuit.
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Estimate simulation time for larger circuit:
Simulated smaller circuit:

Qubits : 20

Circuit Depth : 20

Gates : 320.00

State Memory : 8.0000 MB
Estimated Circuit Qubits : 53
Estimated Circuit Depth : 20
Estimated State Memory : 65536.00000 TB
Machines used : 100

Estimated cores per server: 255

Estimated gate density : 0.80

Estimated for 53 gbits: 0.01 yv or 4.81 d or (415780 sec)
Estimated sim for FULL experiment, 53 gbits: 13184.29 years

With all of our simplifying assumptions, we arrive at a simulation time of 4.81 days for
a single simulation of the 53-qubit circuit. Of course, these parameters could be made
more realistic. For example, how would we provision 72 PB of memory on just 100
machines? Assuming that we can provision 1 TB per server, we would need at least
72K hosts. At this scale, we cannot ignore communication costs. At the same time, we
are using our non-optimized infrastructure. You may want to experiment with more
realistic settings.

The supremacy experiment performed and sampled this circuit 1,000,000 times
in about 200 seconds. Given a duration of 4.81 days for a single run, we would
need about 13,184.3 years to simulate the circuit an equal number of times. For
comparison, let us look at the massive Summit supercomputer (Oak Ridge National
Laboratory, 2021). It can theoretically perform up to 10'7 single-precision floating-
point operations per second. Calculating 23 equivalents of 2 x 2 matrix multiplications
requires 2°° floating-point operations. At 100 percent utilization, it would take Summit
just a few seconds to simulate one of the iterations or perhaps a few months to take all
of the 1,000,000 samples!

To store a full state of 53 qubits, we need 72 PB bytes of storage. Summit has
an estimated 2.5 PB of RAM on all sockets and 250 PB of secondary storage. This
means we should expect the simulation to encounter high communication overhead
when moving data from permanent storage to RAM. Much of the permanent storage
would also have to be reserved for this experiment. The IBM researchers found an
impressive way to minimize data transfers, a major contribution by Pednault et al.
(2019). With this technique, a slowdown of about 500x was anticipated, leading to
the estimate that the full simulation could run in about two days.

Now let us answer the question that started this section: Where does the discrepancy
of 10,000 years versus days come from? This is a factor of about 1,000,000, after all.

The Google Quantum X team based their estimations on a different simulator
architecture (Markov et al., 2018), assuming that a full-state simulation is not realistic.
The simulation techniques were benchmarked on a smaller scale. The results of the
full-state simulation were evaluated on a supercomputer. From these data points, the
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computational costs were extrapolated to 1,000,000 machines, arriving at an estimate
of 10,000 years of simulation time for 53 qubits and a circuit depth of 20.

The IBM researchers, on the other hand, found an elegant way to squeeze the
problem into one of the biggest supercomputers in the world. The results are only esti-
mated; an experiment was not performed. It is difficult to determine how realistic the
estimates are in practice because, at petabyte scale, other factors have to be taken into
account, for example, disk error rates. This also assumes that most of the machine’s
secondary storage was committed to the experiment.

Is there a right or wrong? The answer is no because we compare apples to oranges.
The evaluated simulation techniques are different based on different assumptions of
what can realistically run on a supercomputer. The supremacy experiment was physi-
cally run, while the Summit paper was only estimated. Even if the physical simulation
took just a day on Summit, adding a handful of additional qubits will exhaust its
storage capacity. The simulation technique would have to change and trade storage
requirements for simulation time, similar to the Schrodinger—Feynman path history
technique (Rudiak-Gould, 2006). At that point, and only then would we be able to
make a more fair apples-to-apples comparison.

It is safe to anticipate that other clever simulation techniques will emerge. However,
as long as BPP C BQP is true, it is also safe to assume that additional qubits or
moderately modified benchmarks will again defeat attempts to simulate these circuits
classically.
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In this chapter, we further familiarize ourselves with the basics of gates and states
and study several entanglement-based algorithms. The calculations are explicit and
detailed since this is early in the book and we have yet to get used to the code and
mathematical formalism. We start with the “Hello World” of quantum computing,
a quantum random number generator. We quickly follow this with three algorithms
exploiting entanglement: quantum teleportation, superdense coding, and entanglement
swapping. We conclude with a discussion of the CHSH game, a variant of Bell’s
inequalities. The CHSH game may be the most complex of the algorithms presented
in this chapter. It will also lead us to philosophical aspects of quantum mechanics and
reality itself.

Quantum Hello World

Every programming system introduces itself with the equivalent of a “Hello World”
program. In quantum computing, this may be a random number generator. We are
ready to discuss it now using the material presented so far. It is the simplest possible
quantum circuit that does something meaningful, and it does so with just one qubit
and one gate:

|0)

=]
1

The Hadamard gate puts the state in an equal superposition of the basis states |0) and
|1), namely
0) + 1)
H|0) = ——— = |+).
10) 7 I+)
On measurement,! the state will collapse to either |0) or |1) with 50% probability
for each case. You can validate this with these two lines of code to make the state,
apply the Hadamard gate, and print the probabilities:

! In the computational basis.
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>>
0.
0.

psi = ops.Hadamard() (state.zeros (1))
psi.dump ()

70710678+0.000000001 |0> 50.0%
70710678+0.000000001i |1> 50.0%

Since we can construct a random number generator with just a single qubit, which
we interpret as a classical bit after measurement, bundling multiple qubits in parallel
or sequence allows the generation of random numbers of any bit width. By random,
we mean true, intrinsically quantum randomness, not classical pseudo-randomness.

This circuit can barely be called a circuit, not to mention an algorithm (even though
we call it that in Section 10.2 on amplitude amplification). It only has one gate, so
it is the simplest of all possible circuits. Nevertheless, it exploits crucial quantum
computing properties, namely superposition and probabilistic collapse of the wave
function on measurement. It is trivial, and it is not. Both at the same time. A true
quantum circuit.

Quantum Teleportation

We now describe the quantum algorithm with one of the most intriguing algorithm
names of all time — quantum teleportation (Bennett et al., 1993). This algorithm is a
small example of the fascinating field of quantum information, which includes encryp-
tion and error correction. This type of algorithm exploits entanglement to send a
quantum state between spatially separate locations without transmitting any physical
qubits, only information!

As is typical in quantum computing, the algorithmic story begins with our pro-
tagonists, Alice and Bob, the placeholders for the distinct systems A and B. At the
beginning of the story, they are together in a lab on Earth and create an entangled pair
of qubits, the Bell state |) = Bgo. Let us mark the first qubit as Alice’s and the
second one as belonging to Bob in obvious notation:

ot = 10408) + [1al5)
V2

As we tell the story, we will weave in code snippets to make the mathematical
concepts concrete and allow experimentation. After creating the state, they each take
one of the qubits and physically separate them. Alice goes to the Moon, and Bob
ships off to Mars. We should not worry about how they are getting their supercooled
quantum qubits across the solar system. No one said that teleportation was easy. In
code, we start with a call to create the Bell state psi:

Py Find the code
In file src/teleportation.py

def main(argv) :

# Step 1: Alice and Bob share an entangled pair and separate.
psi = bell.bell_state(0, 0)



http://www.github.com/qcc4cp/qcc/blob/main/src/teleportation.py
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Figure 6.1 Quantum teleportation in circuit notation.

Sitting there on the Moon, Alice happens to be in possession of this other qubit |¢),
which is in a specific state with probability amplitudes « and §:

|¢) = al0) + B[1).

Alice does not know what the values of a and f are and cannot measure them
because measuring the qubit would destroy their superposition.> Alice wants to com-
municate @ and f to Bob so that he will be in possession of the state of |¢). On
measurement, he will obtain a basis state of |¢) with the corresponding probabilities.
How can Alice “send” or “teleport” the state of |¢) to Bob? She can do this by
exploiting the entangled qubit she already has from the time before her Moon travel.

In code, we create the qubit |¢) with defined values for @ (0.6) and 8 to check later
whether Alice has teleported the state to Bob correctly. The combined state of the new
qubit |¢p) with the qubit [¢) she brought with her from Earth, the one that is entangled
with Bob’s qubit, is their tensor product that we store in combo:

Step 2: Alice wants to teleport a qubit [phi> to Bob
with [phi> = a[0> + b[1>, a*2 + b2 == 1:

= 0.6

= math.sqgrt (1.0 - a * a)

O O % %%

phi = state.qubit(a, b)
print ( 'Quantum Teleportation')
print (f 'Start with EPR Pair a={a:.2f}, b={b:.2f}")

# Produce combined state 'combo'.
combo = phi * psi

The state is now |¢, ®1). She continues and connects |¢) and |®*) with a con-
trolled Not gate, followed by a final Hadamard gate on qubit |¢). This reverse entan-
gler circuitry (see Section 2.11.2), with a first controlled Not gate followed by a
Hadamard gate, is also called making a Bell measurement since the circuit is the
adjoint of the circuit used to create Bell states. The whole procedure is shown in
Figure 6.1 as a circuit.

2 For this algorithm, it doesn’t matter whether either Alice or Bob knows these parameters.
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alice = ops.Cnot (0, 1) (combo)
alice = ops.Hadamard() (alice, idx=0)

Let’s analyze how the state progresses from left to right and explain the math in
detail. Starting in the lab, before the first Hadamard gate, the state is just the tensor
product of the two qubits:

o) = [04) @ |05) = |040p).
The first Hadamard gate creates a superposition of qubit |0, ):

B [04) + |14)
1) = — ® |0g).

The controlled Not gate entangles the two qubits and generates a Bell state, as we
have seen before in Section 2.11.2 on entanglement. Note that up to this point, Bob
and Alice are still at the same location in the lab on Earth:

040p) + [141p)
=ot = |—
|11b2> \6

Alice has now traveled to the Moon, where she has the other qubit |¢). The com-
bined state is the tensor product of her new qubit |¢p) with the qubit she brought with
her from Earth, resulting in state

|0408) + [1413)

) = (al0) + 1)) © =7
_ |0)(]0408) + [1a15)) + BI1) (10408) + [1415))
7 :

Now she applies the controlled Not from |¢) to her part of the entangled qubit (now
the middle qubit 1 in the circuit). The |1) component of |¢) will flip the controlled
qubit. As a result, qubits |04) and |14) flip in the right-hand side of the expression

[ih3) to

al0)(10408) + [1415)) + BI1) (|1405) + [0415))
75 .

Finally, we apply the Hadamard gate to |¢), resulting in

s} — a(0) + 1)) (10405) + [1a1s)) + B (10) — 1)) (|1408) + [0a15))
5) — ) .

We multiply out [s5) to get

1
[s) = 5 (@(100105) + 0 1415) + [10405) + 1 L415))

+ B(101405) +[00415) — [11405) — |1 OAlB>)>-

[a) =

We are almost there. Notice how all the last qubits in |i)s) are Bob’s. Alice has the
first two qubits in her possession. If we regroup the above expression and isolate the
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first two qubits, we arrive at our target expression. We can omit the subscripts as the
first two qubits are Alice’s, and the last is Bob’s.

19s) = 5 (100} (al0) + 1))
+|01>(5|0 + all) )

+[10) ([0} — /1))

) (= !

BI0) + al1)) ).

Alice can measure her first two qubits while leaving the superposition of Bob’s

{11

third qubit intact. On her measurement, the state collapses and leaves Bob’s qubit in a
state with a combination of parameters « and § that depends on Alice’s measurement
outcome. As the final step, Alice zells Bob about her measurement result over a classic
communication channel — she may be able to teleport a state, but she will not be able
to do it faster than the speed of light. If she measured:

|00) - Bob’s qubit is now in state |0) + B|1).

|01) - Bob’s qubit is now in state B|0) + «|1).

|10) - Bob’s qubit is now in state «|0) — B|1).
)

|11) - Bob’s qubit is now in state —f|0) + a|1).

At this point, Alice has teleported the state |¢p) to Bob successfully. For Bob to know
how to reconstruct the state of |¢) for his qubit, she still had to classically commu-
nicate her measurement results. However, the spooky action at a distance “modified”
Bob’s entangled qubit on Mars to obtain the probability amplitudes from Alice’s qubit
|¢p), which she created on the Moon. The spooky action is truly spooky.

The final step, depending on Alice’s classical communication, is to apply gates to
Bob’s qubit to put it in the desired teleported state of a|0) + B|1):

« If she sends 00, nothing needs to be done.

« If she sends 01, Bob must flip the amplitudes by applying the X gate.
« If she sends 10, Bob flips the phase by applying the Z gate.

« Similarly, for 11, Bob applies a Z gate and an X gate.

After this, Bob’s qubit on Mars will be in the state of Alice’s original qubit |¢) on the
Moon. Teleportation completed. Minds blown.

We perform four experiments corresponding to the four possible measurement
results. For each experiment, we pretend that Alice measured a specific result and
apply the corresponding decoder gates to Bob’s qubit. Then we measure Bob’s qubit
and confirm that it matches expectations.

def alice_measures(alice: state.State,
expect0: np.complexfloating, expectl: np.complexfloating,
qubit0: np.complexfloating, qubitl: np.complexfloating) :
_, alice0 = ops.Measure(alice, 0, tostate=qubitO)
_, alicel = ops.Measure(aliceO, 1, tostate=qubitl)
if qubit0 == 0 and qubitl ==
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pass
if qubit0 == and qubitl ==

alicel = ops.PauliX() (alicel, idx=2)
if qubit0 == 1 and qubitl == 0:

alicel = ops.Pauliz() (alicel, idx=2)
if qubit0 == 1 and qubitl == 1:

alicel = ops.PauliX() (ops.PauliZ() (alicel, idx=2), idx=2)
p0, _ = ops.Measure(alicel, 2, tostate=0, collapse=False)
pl, _ = ops.Measure(alicel, 2, tostate=1l, collapse=False)

# We sqgrt() the probability to get the (original) amplitude.

bob_a = math.sqgrt(p0.real)

bob_b = math.sgrt(pl.real)

print ( 'Teleported (/[:d}{:d}>) a={:.2f}, b={:.2f}'.format (
qubit0, qubitl, bob_a, bob_b))

if (not math.isclose(expect0, bob_a, abs_tol=le-6) or
not math.isclose(expectl, bob_b, abs_tol=le-6)):
raise AssertionError('Invalid result.')

As a final step, we run the four experiments and inspect the output:

# Alice measures and communicates the result to Bob.
alice_measures(alice, a, b, 0, 0)

alice_measures(alice, a, b, 0, 1)
alice_measures (alice, a, b, 1, 0)
alice_measures(alice, a, b, 1, 1)

>>

Quantum Teleportation

Start with EPR Pair a=0.60, b=0.80

Teleported (|00>) a=0.60, b=0.80

Teleported (|01>) a=0.60, b=0.80

Teleported (|10>) a=0.60, b=0.80
( )

Teleported (|11> a=0.60, b=0.80

Superdense Coding

Superdense coding, yet another algorithm with a super cool name, takes the core
idea from quantum teleportation and turns it on its head. It uses entanglement to
communicate classical bits with the help of a smaller number of qubits. This protocol
was suggested by Charles H. Bennett and Stephen Wiesner in 1970 and was later
published in Bennett et al. (1992).

We start with a familiar story. Alice and Bob again share an entangled pair of
qubits. Alice takes her qubit to the Moon, while Bob takes his qubit to Mars. Sitting
on the Moon, Alice wants to communicate two classical bits to Bob. Superdense
coding encodes two classical bits and transmits their values to Bob by physically
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Figure 6.2 Superdense coding in circuit notation.

shipping just a single qubit. Again, we don’t care how this is done in the real world
(nobody said superdense coding was easy). Two qubits are still needed in total, but the
communication itself is done with just a single qubit.

There exists no other classical compression scheme that would allow for the com-
pression of two classical bits into one. Of course, here we are dealing with entangled
qubits, which have two degrees of freedom (two angles define the position on a Bloch
sphere). The challenge is to exploit this fact to encode information. To understand how
this works, we begin with an entangled pair of qubits again.

Py Find the code
In file src/superdense.py

# Step 1: Alice and Bob share an entangled pair and separate.
psi = bell.bell_state(0, 0)

Alice manipulates her qubit on the Moon according to the rules of how to encode
two classical bits into a single qubit, as shown below. In a twist of events, she will
classically ship her qubit to Bob’s Mars station. There, Bob will disentangle and mea-
sure. Based on the measurement results, he can derive Alice’s original two classical
bits. Alice sent just one qubit to allow Bob to restore two classical bits.

To start the process, Alice manipulates her entangled qubit in the following way.
She wants to communicate the two classical bits by and b;.

« If classical bit by is 1, she applies the X gate.

« If classical bit b; is 1, she applies the Z gate.

« Of course, if both bits by and b; are 1, she applies both the X and Z gate.

« And, for completeness, if both bits by and b; are 0, nothing needs to be done.

The whole procedure is shown in circuit notation in Figure 6.2. In the code, the two
classical bits encode four possible cases 00, 01, 10, and 11. For experimentation, we
iterate over these four combinations in main below:

def alice_manipulates(psi: state.State,
bit0: int, bitl: int) -> state.State:
ret = ops.Identity(2) (psi)
if bit0:
ret = ops.PauliX() (ret)


http://www.github.com/qcc4cp/qcc/blob/main/src/superdense.py
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if bitl:
ret = ops.PauliZz() (ret)
return ret

def main(argv) :

for bit0 in range(2):
for bitl in range(2):
psi_alice = alice_manipulates(psi, bit0, bitl)
bob_measures (psi_alice, bit0, bitl)

Let’s work through the math. The entangled pair is initially in the Bell state

_ 1040p) + [1a15)

If the classical bit by is 1, Alice applies an X gate to her qubit, which turns the state
into the different Bell state |[¥T):

|27)

0010 I 0
000 1|1 [o] 1 [

XeI)|eT) = — =— =|wt).

Xen® =116 o ol lo| = |1]=1Y"
0100 1 0

If the classical bit b; is 1, Alice applies a Z gate, which changes the state and flips the
first subscript of the Bell state:

|0405) — [1415) _
ZeD)|0T) = 22 22 — |07).
(zo1)|eT) 7 27)
Finally, if both bits by and b; are 1, Alice uses an X gate and a Z gate and changes the
state to | U™ ):

0a15) — [1408) _ ).
V2

After receiving Alice’s qubit, Bob applies a reverse entangler circuit between his
entangled qubit and the qubit he just received, with a controlled Not gate followed
by the Hadamard gate. This is shown as the final two gates before the measurement
operator in Figure 6.2.

Going through the entangler circuit in reverse uncomputes the entanglement and
changes the state to one of the computational basis states |00),|01),|10), or |11),
depending on the value of the original classical bits. The probability of each result
will be 100%. With a measurement, Bob can reliably determine the classical bit values
Alice wanted to communicate.

Zehxel|dt)=iroI)|et) =

def bob_measures(psi: state.State, expect0O: int, expectl: int) -> None:

psi = ops.Cnot (0, 1) (psi)
psi = ops.Hadamard () (psi)

pO0, = ops.Measure(psi, 0, tostate=expectl)

pl, _ = ops.Measure(psi, 1, tostate=expect0)
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Figure 6.3 Entanglement teleportation circuit.

if (not math.isclose(p0O, 1.0, abs_tol=le-6) or
not math.isclose(pl, 1.0, abs_tol=le-6)):
raise AssertionError (f 'Invalid Result p0 {p0} pl {(pl}')
print (f 'Expected/matched: {expectO0}{expectl}.')

Based on how Alice manipulated the qubit, we should get the expected results:

Expected/matched: 00
Expected/matched: 01
Expected/matched: 10
Expected/matched: 11

Entanglement Swapping

Another algorithm of this type, which we only briefly mention here, is entanglement
swapping, also called entanglement teleportation (Berry and Sanders, 2002). In this
story, Alice and Bob each have a pair of entangled qubits. Unlike before, each keeps
their pair of qubits to themselves. This is illustrated in Figure 6.3. Alice has qubits g
and ¢;, Bob has ¢, and ¢g3. However, before physically separating, they entangle gg
with ¢, and g; with g3. Note that at this time, there is no entanglement between Bob’s
qubits ¢, and g3.

Now Alice performs a Bell measurement on her two qubits. Here is where the
magic happens: After measurement, Bob’s qubits ¢, and g3 will be in an entangled
Bell state! We simulate this miraculous effect in the open-source repository with just
a few lines of code similar to these:
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Py Find the code
In file src/entanglement_swap.py

def main(argv) :

gc = circuit.qgc('Entanglement swap')
gc.reg (4, 0)

# Alice has qubits 0, 1, Bob has qubits 2, 3. Entangle 0, 2 and 1, 3:
gc.h(0)

gc.cx (0, 2)
gc.h(l)
gc.cx (1, 3)

# Alice performs a Bell measurement between her qubits 0 and 1,
gc.cx (0, 1)
gc.h(0)

# Measure and check results (all combinations of 0 and 1).
gc.measure_bit (0, 0, collapse=True)
gc.measure_bit (1, 0, collapse=True)

[...]

The CHSH Game

The CHSH game, named after its authors (Clauser, Horne, Shimony, Holt, 1969), is
an implementation of their CHSH equality, a simplified form of the Bell inequalities
(Bell, 1964). The CHSH game is a powerful demonstration of the use of entanglement
as a resource to obtain results that go beyond what can be achieved classically.

In the game, Alice and Bob each receive a random classical bit. Alice receives
bit x, and Bob receives bit y, as indicated in Figure 6.4. Both x and y are drawn from
a random distribution. Alice and Bob cannot communicate during the game, but they
can agree on a strategy before the game starts. Based on the bit values they each
receive, Alice and Bob will respond with bit values a and b. The goal of the game is
to produce matching bits a and b, except when both x = y = 1. In this case, @ and b

Alice Bob
Input X y
Output a b
Goal xy=a®b

Figure 6.4 The CHSH Game.


http://www.github.com/qcc4cp/qcc/blob/main/src/entanglement_swap.py
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(a) Alice measures in bases {|0),|1)} or (b) Bob measures in bases {|ao),|ai)} or
{145 1-)}- {|bo),|b1)}, rotated by +7t/8.

Figure 6.5 Alice and Bob use different bases for measurement.

must differ. In closed form, the winning condition can be written as xy = a & b, with
@ being the usual addition modulo 2 (XOR).

A plausible classical strategy for Alice and Bob is to always respond witha = b =
0, a strategy with a success probability of 3/4. With some thought, you can convince
yourself that this is indeed the best possible outcome for the classical case.

Let us now explore how quantum entanglement can help improve their chances of
winning. Before the game starts, Alice and Bob create an entangled Bell state |Soo)
and each takes their qubit with them before physically separating:

~10408) + [141p)
==

Depending on the classical bits x and y they receive, Alice and Bob will measure
in specific bases. When Alice receives a classical bit x = 0, she measures in the
computational basis {|0),|1)}. If she gets bit x = 1, she measures in the Hadamard
basis {|+), |—)}, as shown in Figure 6.5(a).

If Bob receives his classical bit y = 0, he measures in the basis {|ao),|a1) }, which
is the computational basis rotated by 7t/8:

|Boo) = W)

lag) = cosg|0> + sing|1>7
la;) = —sing|0> +cos%|1>.

If Bob receives y = 1, he measures in the basis {|by),|b) }, which is the computa-
tion basis rotated by —7t/8, as shown in Figure 6.5(b):

|bo) = cos g|0> - Sin%|l>
Iby) zsin%|0>+cosg|1).

When measuring in these bases, the results for Alice and Bob will be correlated
because the qubits were entangled. In the four cases of the classical bits x and y, and
with a little bit of trigonometry, we find:
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x=0, y=0: The bases |0) and |ay) are separated by an angle of 7t/8. If Alice measures
|0), the probability that Bob will measure |ag) is cos® 71/8.

x=0, y=1: The bases |0) and |by) are separated by an angle of —7t/8. If Alice
measures |0), the probability that Bob will measure |b;) is also cos? 7t/8.

x=1, y=0: The bases |+) and |ay) are separated by an angle of —7t/8. If Alice
measures |1), the probability that Bob will measure |ay) is cos® 71/8 again.

x=1, y=1: The bases |+) and |b,) are separated by an angle of 37t/8. If Alice
measures |1), the probability that Bob will measure |by) is cos?(37/8). However,
in this case, we want the results to be different according to the rules of the game.
The probability that the results differ is
1 — cos?(3m/8) = sin?(31/8) = cos® 11/8.

In all four cases, entanglement improved the chances of winning to cos’ 7t/8 ~ 0.85,
or 85%. Recall that the best classical strategy had a maximum 75% chance of winning.
The entanglement led to a better outcome. It can also be shown that rotating the bases
by 7t/8 is the optimal choice (Tsirelson, 1980).

The key argument here is that since the classical bits and, hence, the measurement
bases are chosen at random, there cannot be any unexplained variables hidden in
the Bell state to predetermine the measurement result. This seems to confirm that
quantum physics is non-local, where entangled qubits can affect each other, even when
separated by vast distances.

Let us put philosophy aside and try this in code. We simulate a random mea-
surement in function measure and carry out the actual experiment in function

run_experiment.

Find the code
In file src/chsh.py

def measure(psi: state.State):

"mrSimulated, probabilistic measurement. """
r = random.random() - 0.001
total = 0
for i in range(len(psi)):
total += psi[i] * psi[i].conj()
if r < total:
psi = helper.val2bits (i, 2)
return psi[0], psi[l]

def run_experiments (experiments: int, alpha: float) -> float:
wins = 0
for _ in range (experiments) :
x = random.randint (0, 1)
v = random.randint (0, 1)
psi = bell.bell_state(0, 0)

if x ==
pass
if x ==

psi = ops.RotationY (2.0 * alpha) (psi, 0)


http://www.github.com/qcc4cp/qcc/blob/main/src/chsh.py
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if y ==

psi = ops.RotationY(alpha) (psi, 1)
if y == 1:

psi = ops.RotationY(-alpha) (psi, 1)

a, b = measure(psi)
if x x vy == (a + b) % 2:
wins += 1

return wins / experiments * 100.0

With these two functions in place, we can run two types of experiments. First, we
check the experimental winning percentage, which should be around 86%. Second, we
iterate over multiple angles and plot horizontal bars scaled to the winning percentages.
You can see this in the output below.

def main(argv) :
print ( 'Quantum CHSH evaluation.')
percent = run_experiments (1000, 2.0 * np.pi / 8)
print (f 'Optimal Angle 2 pi / 8, winning: {percent:.1f}%"')
assert percent > 80.0, 'Incorrect result, should reach above 80%'

# Run a few incremental experiments.

steps = 32

inc_angle = (2.0 » np.pi / 8) / (steps / 2)

for i in range(0, 66, 2):
percent = run_experiments (500, inc_angle * 1)
s = '(opt)' if i == 16 else ''
print (

f'{i:2d} » Pi/64 ={inc_angle * i:.2f}: winning: {percent:5.2f}%’'
f'{"#" x int (percent/3) }{s}'

>>

Quantum CHSH evaluation.

Optimal Angle 2 pi / 8, winning: 86.2%
[...]

10 % Pi/64 = 0.49: winning: 81.80% ####A#H##HAAHHAHHA#HH#HHRARY

12 x Pi/64 = 0.59: winning: 85.20% ###H##H#H#HBHEHHHHHHFHHFHRHHNY

14 * Pi/64 = 0.69: winning: 85.40% ##HA#F#FHHHHHHHHRHHBHHHHIHRS

16 * Pi/64 = 0.79: winning: 86.40% ########HHAHH#HHB#HH##H##H### (ODE)
18 x Pi/64 = 0.88: winning: 83.60% ##H#H##H#HHHHHAH#H#HBHBHHHHHHH

20 = Pi/64 = 0.98: winning: 84.40% ##H#A#EHFHHHHHHHHBHHBHHHHHHRS
[...]

36 « Pi/64 = 1.77: winning: 33.60% ###########

38 x Pi/64 = 1.87: winning: 29.40% #########
40 = Pi/64 = 1.96: winning: 24.40% ########
[...]

o
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This chapter discusses a few techniques that allow us to determine how close two
states are to each other. This is important in various algorithms, as we shall see later.
Sometimes we use the term overlap to make a statement about how close states are to
each other, and sometimes we use the term similarity. There are subtle differences
between the two:

« The overlap between two quantum states 1) and |¢) is defined as the absolute
value of the inner product |[(|¢)|. As we already know, this product is O if the
states are orthogonal and 1 if there is complete overlap.

« The similarity between two states is a more general notion than overlap. It can be
expressed in different ways, such as by the trace distance between the density
operators of two states. We can find an example of this in Section 9.4.4.

We will use the terms overlap and similarity interchangeably, but keeping this distinc-
tion in mind is helpful. Also, since we are still early in the book, the math here is still
very detailed to help us get used to some of the typical algebraic transformations in
quantum computing.

Swap Test

The quantum swap test measures the similarity between two quantum states without
directly measuring the two states (Buhrman et al., 2001). Instead, the trick is to intro-
duce an ancilla qubit and a controlled Swap gate and only measure the ancilla. The
two states were very different if the resulting measurement probability for the basis
state |0) is close to 0.5. A measurement probability closer to 1.0 means the two states
were very similar. In the physical world, we must run the experiment multiple times
to measure the probabilities. Our implementation will only look at the probabilities
encoded in the state vector.

The swap test is an example of a quantum algorithm that allows the derivation of
an indirect measure. It will not tell us what the two states are, which would constitute
a measurement. It also does not tell us which state has the larger amplitude in a given
basis. However, it does tell us how similar two unknown states are without measuring
them. The circuit to measure the proximity of the qubit states |) and |¢) is shown in
Figure 7.1.
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[Xo) [X1) |X2) |X3)
.
\ \ \ \
) — ? ? ?
| | | |
lp) — | | |
\ \ \ \

Figure 7.1 The basic swap test circuit.

Let us denote the state of the 3-qubit system by |X) and see how it changes going
from left to right. At the start of the circuit, the state |X¢) is the tensor product of the
three qubits:

[Xo0) = 10,4, ¢).
The Hadamard gate on qubit O superimposes the system to state
1
= 7(|0’¢7¢> + ‘177707(]5))'
\/i N—— \T/

The controlled Swap gate modifies the second half of this expression due to the
controlling |1) state of the ancilla qubit. In the part marked b above, |¢) and |¢) are
swapped and state |X,) becomes

X1)

|&w:§;mw@w+m¢¢»

The second Hadamard gate now superimposes further. The first part of state |X>)
turns into

1 1
\ﬁ\ﬁ(‘ovlpﬂm + |1,1,07¢>) +e

where the Hadamard superposition of the |0) state introduces a plus sign. On the other
hand, the second term in |X;) becomes

I 1
et ﬁ%(‘oﬂpv'ﬁb) - ‘17(?7"1[}))’

because the Hadamard superposition of |1) introduces a minus sign. Combined, this
results in state |X3) in Figure 7.1:

03) = 3 (10.9.9) + [1L$.6) + [0.6.9) ~ [1.6.4).
We can factor out the first qubit and simplify to
X3 = 5100 (19:6) +19.9)) +5 11 (9:6) ~ 16.9)),
Xy X

where we name the terms next to |0) and |1) as X and X_. Now we measure the first
ancillary qubit. We only consider measurements that result in state |0) for the ancilla
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and ignore all others. To compute the probability of measuring |0), we usually take the
probability amplitude and compute the squared norm. However, we don’t have just an
amplitude; we have the more complex states X' and X _.

To obtain the probabilities for |0) or |1), we first calculate the inner product of |X3)
with itself and then analyze the terms. We have

7 (100X X )+ (O (X4 X ) + (110} (X[ 1) + (11X [X_)).

The second and third terms are zero as (0|1) = (1|0) = 0. The surviving terms are

1
= (Xals) = 5 (010} (XX + (111X ).
The first term is the probability that the outcome of the measurement is |0), and
the second term is the probability of measuring |1). If we substitute that back in the
expression for [X; ), we get the probability pgy as

(Iw )+ lp,p))] (|¢,q>> + . 1))

Ploy =

>

= (.1 + (0.01) 3(19.6) +19.9)

= 3 (D010 + 3 016.9) + 3 (6010.0) + 5 (SI0).
—_——— —————

=1 =1

The inner product of a normalized state with itself is 1, which means that the first
and fourth terms each become 1 / 4, and the expression simplifies to

Ploy = <¢ ¢lo.h) + <<P,1P|¢,¢>>~ (7.1)

Now recall how to compute the inner product of two compound tensors from Equa-
tion (1.5) as

[P1) = |P1) ® |X1),
[1h2) = [P2) ® |X3),
= (W1]2) = (P1|2)(X1]X2).

This means we can rewrite Equation (7.1) (changing the order of the inner products;
they are just complex numbers) as

Ploy = <l[l (P‘(P l/}> <¢’¢|¢’¢>

{YlP)(Ply) + <¢|1P><¢|¢>
YlP)(oly) + <4J|¢><¢|¢>

I\)M—* N\»— I\JM—‘
-IM»—* -b\»—* -lk\
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1

+ 5 Wlo) (o)

+ 5 (@l (ly)

N = N =
=

1 1 5
=5+ 51l
The scalar product of the two states is the key to measuring similarity. The proba-
bility for basis state |0) will be close to 1/2 if the dot product of i) and |¢) is close
to 0, which means that these two states were orthogonal and maximally different. The
probability will be close to 1 if the dot product is close to 1, meaning the states were
almost identical.

Py Find the code
In file src/swap_test.py

In code, this looks quite simple. In each experiment, we construct the circuit shown in
Figure 7.1:

def run_experiment (al: np.complexfloating, a2: np.complexfloating,
target: float) -> None:
psi = state.bitstring(0) * state.qubit(al) x state.qubit (a2)
psi = ops.Hadamard() (psi, 0)
psi = ops.ControlledU(0, 1, ops.Swap(l, 2)) (psi)
psi = ops.Hadamard() (psi, 0)

Then we measure and calculate the probability that the ancilla qubit is in state |0).
That is all there is to it. The variable p0 will be the probability that qubit 0 will be
found in the |0) state. What is left to do now is to compare this probability with a
target and check that the results are valid. We allow for a 5% error margin (0.05).

p0, _ = ops.Measure(psi, 0)
if abs(p0 - target) > 0.05:
raise AssertionError (
'Probability {:.2f} off more than 5 pct from target {:.2f}'
.format (p0, target))
print ('Similarity of al: {:.2f}, a2: {:.2f} ==> \%: {:.2f}'
.format (al, a2, 100.0 = p0))

Lastly, we run experiments and verify that the results match our expectations:

def main(argv) :

print ( 'Swap test. 0.5 means different, 1.0 means similar')
run_experiment (1.0, 0.0, 0.5)
run_experiment (0.0, 1.0, 0.5)
run_experiment (1.0, 1.0, 1.0)
run_experiment (0.0, 0.0, 1.0)
run_experiment (0.1, 0.9, 0.65)


http://www.github.com/qcc4cp/qcc/blob/main/src/swap_test.py
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[...1]

>>

Swap test to compare state. 0.5 means different, 1.0 means similar

Similarity of al: 1.00, a2: 0.00 ==> %: 50.00
Similarity of al: 0.00, a2: 1.00 ==> %: 50.00
Similarity of al: 1.00, a2: 1.00 ==> %: 100.00
Similarity of al: 0.00, a2: 0.00 ==> %: 100.00
Similarity of al: 0.10, a2: 0.90 ==> %: 63.71

[...]

Swap Test for Multi-qubit States

We have learned how to use the swap test to compute the overlap of two single-
qubit states, but how could we make this work for multi-qubit states? The answer
is surprisingly simple. We just have to compose multiple swap tests, one for each pair
of qubits, all connected to the same ancillary, as shown in Figure 7.2.

We show a simple code snippet for two-qubit states. The code constructs two
random, entangled two-qubit states psi_a and psi_b and makes a final state by
tensoring them together with an ancillary qubit initialized as |0). This is followed by
two controlled swap gates, similar to what is shown in Figure 7.2. Finally, we measure
and ensure correct results:

Py Find the code
In file src/swap_test.py

def run_experiment_double(al: np.complexfloating,

al: np.complexfloating,

b0: np.complexfloating,

bl: np.complexfloating,

target: float) -> None:
psi_a = state.qubit(al) * state.qubit(al)

o 1] e

Figure 7.2 The swap tests for two three-qubit states |¢) and |¢)).
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psi_a = ops.Cnot (0, 1) (psi_a)
state.qubit (b0) * state.qubit (bl)
psi_b = ops.Cnot(0, 1) (psi_b)

psi_b

psi = state.bitstring(0) * psi_a * psi_b

psi = ops.Hadamard() (psi, 0)
psi = ops.ControlledU(0, 1, ops.Swap(l, 3)) (psi)
psi = ops.ControlledU(0, 2, ops.Swap (2, 4)) (psi)

psi = ops.Hadamard() (psi, 0)

# Measure once.
p0, _ = ops.Measure(psi, 0)
if abs(p0 - target) > 0.05:
raise AssertionError (
'Probability {:.2f} off more than 5% from target {:.2f}'
.format (p0, target))

To run the experiments, we drive this implementation with a simple loop:

probs = [0.5, 0.5, 0.5, 0.52, 0.55, 0.59, 0.65, 0.72, 0.80, 0.90]
for i in range(10):
run_experiment_double(1.0, 0.0, 0.0 + i = 0.1, 1.0 - i % 0.1,
[i1)

probs[i

Hadamard Test

In Section 7.1, we discussed the swap test to measure the similarity between two
unknown states |¢) and |¢) without having to measure the states directly. This section
presents another test of this nature, the Hadamard Test.

The swap and Hadamard tests can be visualized using an analogy with real-valued
vectors. The numbers show differently, but the principle is the same. Think about
how we compute the inner product of the sum (g + I;) of two normalized, real-valued
vectors @ and b (they have to be normalized, else the math doesn’t work out):

@+b)7@+b)=> (ai+b)?

::j{:a%4fzz:b%4F2§£:aﬂn

1 1

=2+42a’b. (7.2)

For the three extreme cases where @ and b point in the same direction, are orthogonal,
or are antiparallel, Equation (7.2) yields:

parallel: d = (é) and b = (é) then @’b = 1.
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0.

orthogonal: d = (?) and b = (é) then a@’b
. - -1 - 1 o
anit-parallel: ad = 0 and b = 0 then a'b = —1.

Now let us apply this principle to the Hadamard test. Recall how the swap test used
two quantum registers to hold the states |¢’) and |¢). The Hadamard test is different.
It uses only one quantum register that holds the superposition of the two states |a) and
|b) for which we want to determine the overlap. To simplify, let us focus on single-
qubit states. As a precondition, we need to prepare the initial state |{) as

1
|¢>=ﬁ

How can we generate such a state? First, let’s see how the partial expressions look as
state vectors:

(10)]a) + [1)[5)). (7.3)

a 0
o= ()2 2)- 3] w0 o= (0) ()2
0 by

As a vector, state |1) in Equation (7.3) would be

) = Z5(0)a) + 106 = =@ @ by b)".

We define the operators A and B to produce the states |a) and |b) when applied to
the state |0). Note how we arrange the matrix elements for A and B to produce the
desired output vectors:

wm=4(0)=( %) (0)=() ==
w0 =2(o) = (0 5) (0)-G) -

To construct the circuit, we use the top qubit as an ancilla and an initial Hadamard
gate to produce an equal superposition of |0) and |1) with which we control the gates
A and B on the bottom qubit, as shown in the circuit in Figure 7.3. In the literature, the
two controlled operators A and B are often referred to as a single combined operator U.

Operator U

2-(10)a) + [1)[6))

Figure 7.3 The base circuit for the Hadamard similarity test.
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Py Find the code
In file src/hadamard_test.py

Let’s verify this in code! We create random unitary operators A and B and apply
them to state |0) to extract the relevant state components dg,ay,bo, and by:

def make_rand_operator():
U = ops.Operator (unitary_group.rvs(2))
psi = U(state.bitstring(0))
return (U, psi[0], psi[l])

def hadamard_test():
A, a0, al = make_rand_operator ()
B, b0, bl = make_rand_operator()

With these parameters, we can construct the state in two different ways. First, we
compute it explicitly, following Equation (7.3):

psi = (1 / cmath.sqgrt(2) =
(state.bitstring(0) * state.State([a0, all) +
state.bitstring(l) * state.State([b0, bl]l)))

To compare, we construct the state with a circuit and confirm that the result matches
the closed form above:

gc = circuit.qgc('Hadamard test - initial state construction.')
gc.reg (2, 0)

gc.h(0)

gc.applyc(A, [0]1, 1) # Controlled-by-0

gc.applyc (B, 0, 1) # Controlled-by-1

# The two states should be identical!
assert np.allclose(gc.psi, psi), 'Incorrect result'

Now let’s add another Hadamard gate to the top ancilla qubit, as shown in
Figure 7.4. This changes the state to

1

ﬁH(l(DIa) +[1)|p)) =

(H|0)|a) + H|1)[b))
1

S-Sl
S

5 ([0)1a) + [1)la) + [0)[5) — [1)[5))

)+ [8)) + 5 1) (Ja) ~18)).

We calculate the probability pjgy of measuring state |0) in the same way as above
for the swap test:

10)

—

S

(la) + b))

| —

Ploy = %((a\ + (bl)
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Figure 7.4 The Hadamard similarity test circuit for the real part.

J;M—

= 7 ({a | ) +{alb) + (bla) + (b|b))
= =1
1 *

= Z(2+ (alb) + (alb)*). (7.4)
The two inner products are complex numbers. For a given complex number z, 7 +

7" =a+ib+ a— ib = 2a. We use this in Equation (7.4) and get the probability of

measuring |0) on the top qubit as

1 1
Py =5+ 5Re(<a\b>), and also

2pj0) — 1 = Re((alb))

We can quickly verify this in code as well:

[...]

gc.h(0)

dot = np.dot(np.array([a0, al]).conj(), np.array([b0, bll))

p0 = gc.psi.prob(0, 0) + gc.psi.prob(0, 1)

if not np.allclose(2 * pO0 - 1, dot.real, atol = le-6):
raise AssertionError ('Incorrect inner product estimation')

Can we also obtain an estimate for the imaginary part of the inner product? Yes, we
can. For this, we start with a slightly modified initial state:

1 .
) = ﬁ(l0>la> —i[1)|)).

The construction is similar to the one above, but we have to apply a factor of —i to
the |1) part of the state by adding an ST gate right after the initial Hadamard gate, as
shown in Figure 7.5. The final Hadamard gate changes the state to

H([0)]a) —il1)[b)) = — (H|0)|a) — Hi[1)|b))

1
V2
7(|0>|a> + [1)|a) — i|0)|b) + i[1)[b))
0) (Jla) —i|b)) + 7|1)(|a>+i|b>).

The probability pgy of measuring state |0) for the ancilla is then

*smw

Py =

(el + i ()5 (1) —18))

SN
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Figure 7.5 The Hadamard similarity test circuit for measuring the imaginary part.

= Y (ala) —italb) + itbla) + (bI1))
—— ~

=1 =1

= (2~ ifalb) + i{alb)*). 75)

~

The inner products are complex numbers. For any complex number z = a + ib, the
conjugate is z* = a — ib and these relations hold:

—iz = —i(a + ib) = —ia + b,
iz" =i(a—ib) =ia+b,
= —iz+ i7" = —ia+b+ia+b
=2b
= 2Im(z).

Substituting this into Equation (7.5), we obtain the final result as

1 1
Py =5 +3 Im((alb)), and also

2y 1 = Im({alb)).

This is also what we use in the code:

psi = (1 / cmath.sgrt(2) =*
(state.bitstring(0) =* state.State([al0, all) -
1.0j * state.bitstring(l) * state.State([b0, bl]l)))
gc = circuit.qgc('Hadamard test - initial state construction.')
gc.reg (2, 0)
gc.h(0)
gc.sdag (0) # <- this gate is new.
gc.applyc (A, [0], 1) # Controlled-by-0
gc.applyc(B, 0, 1) # Controlled-by-1
# The two states should be identical!
assert np.allclose(gc.psi, psi), 'Incorrect result'

# Now let us apply a final Hadamard to ancilla.
gc.h(0)

# And compute the dot product and pO0.
dot = np.dot(np.array([a0, all).conj(), np.array([b0, bl]l))

p0 = gc.psi.prob(0, 0) + gc.psi.prob(0, 1)

# Compare and verify results.
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if not np.allclose(2 * p0 - 1, dot.imag, atol = le-6):
raise AssertionError('Incorrect inner product estimation')

7.4 Inversion Test

So far, we have learned about the swap test, which utilized a register for each input
|a) and |b) combined with an ancilla. We also learned about the Hadamard test, which
uses an ancilla but only one register, assuming that there are operators A and B to
construct the states |a) and |b). A third way to calculate the similarity between two
states is the inversion test, which estimates the scalar product of the states.

The inversion test takes this one step further. It no longer needs an ancilla, just one
quantum register, but it needs the ability to construct Bf. We again assume operators
A and B produce states |a) and |b), with

w=2(5)= (o 2) ()= (@)=
wo=00) =G ) (0) = G2) -

and construct this simple circuit:

0)

The expectation value of the projective measurement M = |0)(0] is given by

({0la"B[0)) ((0]B"A|0)) = (0]A"B|0)(0|BA|0)
= |(0[B"A|0)
= | (0|B" A0) |
——
=({| =la)
= |(bla)[?
= {alb)[.

Note that the norm of the inner product is symmetric.! In code, we reuse the mech-
anism introduced in Section 7.3 on the Hadamard test to construct random unitaries
A and B with function make_rand_operator (). The inversion test itself is easy to
implement:

def inversion_test():
A, a0, al = make_rand_operator()
B, b0, bl = make_rand_operator()
Bdag = B.adjoint ()

! Found in http://quantumcomputing.stackexchange.com/q/26135.
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# Compute the dot product <a/b>:
dot = np.dot(np.array([a0, all).conj(), np.array([b0, bl]))

gc = circuit.qc('Hadamard test - initial state construction.')
gc.reg(l, 0)

gc.applyl(a, 0)

gc.applyl (Bdag, 0)

p0, _ = gc.measure_bit (0, 0)
assert np.allclose(dot.conj() % dot, p0), 'Error'
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In this chapter, we discuss several algorithms that fall into the class of the so-called
oracle algorithms, where a large black-box unitary operator performs a critical task.
As we discuss the algorithms, it is initially not clear ~ow the oracles are implemented.
However, what they intend to achieve can be described, and this will be sufficient to
demonstrate a quantum advantage.

You get the impression that there is some “trick” to construct the oracle, a magical
quantum way of doing this, which allows the oracle to answer specific algorithmic
questions. This can be confusing for novices. We will learn that to construct the oracle,
we need to consider all possible input states and build the oracle in a way that gives
the correct answers for all inputs. This means that, in order to construct the oracle, we
need to know the solution. However, a third party querying the oracle does not. This
will become clearer in the description of the algorithms in the following sections.

The oracle can be a circuit or a permutation matrix. What makes the oracle a
quantum oracle is that we can feed it states in superposition. This leads to quantum
parallelism, where all the answers are computed in parallel. Unfortunately, the state
will collapse during measurement, and only one result can be obtained. The challenge
for quantum algorithms is hence to amplify the probabilities of the states representing
solutions such that they can be reliably measured.'

A handful of oracle algorithms exist in the literature. We will visit 2% of them.
Although the Deutsch algorithm (Deutsch, 1985) historically came earlier, the
Bernstein—Vazirani algorithm (Bernstein, Vazirani, 1997) seems easier to understand.
We discuss it first. Then we discuss Deutsch’s algorithm and its extension to more
than two input qubits. We add another 1/2 algorithm by showing how to formulate the
previously discussed Bernstein—Vazirani algorithm in oracle form using the general
oracle constructor developed in these chapters.

These algorithms were the first to demonstrate a quantum advantage. Their guery
complexity? is lower than that for their equivalent classical algorithms. For example,
for n bits, a single query is sufficient to find the answer in the Bernstein—Vazirani
algorithm, whereas n queries are required in the classical case. Let us dive right in!

! Drawing an analogy to classical wave interference, you may also see the term quantum interference
being used.

2 Query complexity refers to the number of queries needed to solve a computational problem where an
input or internal state can only be accessed through queries.
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Bernstein-Vazirani Algorithm

Assume we have an input string b consisting of n bits. Further, assume that there is
another secret bit string s of the same length with the property that the scalar product
of the input and output bits modulo 2 equals 1. In other words, if the input bits are b;
and the secret string has bits s;, then this product should hold:

b'S:b()S()@blsl @~~«@bn_1sn_1 =1. (81)

The goal is to find the secret string s. For example, assume an input string
b = [1,1,1,0,0] and an example string s = [1,0,1,0,0]. The result of the product
would be

b-s=1-100-101-100-000-0
=100 01300 ©0
=1 =1
=19100
=0.

We would have to try n times on a classical computer to find the secret string. Each
experiment would have an input string of all Os, except for a single 1. Each iteration
for which Equation (8.1) holds identifies a single 1-bit in s at position ¢, one for each
trial ¢ € [0,n — 1]. For example, with the secret string from above, we would start with
an input string of b = [1,0,0,0,0]. With this input, Equation (8.1) becomes

b-s=1-100-001-000-000-0
=190000030
:17

as it should, as there was a 1 at the first position in the secret string.

In the quantum formulation, we will construct a smart circuit and perform a single
query to an oracle. After running the circuit, the output qubits will be in states |0) and
|1), corresponding to the bits of the secret string. In the example in Figure 8.1, the
secret string is 1010.

0) )
10) 0)
10) U )
0) 0)
) )

Figure 8.1 The oracle Uy for the secret bit string 101 0. The bottom qubit is an ancilla,
initialized to |1).
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10) — # —+)———+—{ H }—0)
10) — # f—+)——-)—{ H 1)
1) —{# - —@&—-— 5 }—I1)

Figure 8.2 A controlled Not gate from a state |+) to a state |—) changes the controller’s state
to |—).

To see how this works, we need to understand the mechanics of basis changes.

Recall how the |0) and |1) states are put in superposition with Hadamard gates:
H|0) = '0>\2“> —|+) and H|1) = O>ﬁ“> —|-).

As a first step, we create an input state of length n, initialized with all |0), with an
additional ancilla qubit in state |1). We apply a Hadamard gate to all qubits, resulting
in an equal superposition of |+) for the |0) input qubits and |—) for the |1) ancilla.

If we apply a controlled Not from a controlling qubit in the |+) state to a qubit in
the |—) state, the effect is that the controlling qubit flips into the |—) state! In closed
form, we can write this as CNOT |+) |—) = |—) |—). This is the crucial trick because
applying another Hadamard gate to each qubit at the end of the circuit will rotate the
bases from |+) back to |0) and from |—) back to |1). In other words, qubits that were
in state |—), which are the qubits corresponding to 1s in the secret string, will now be
in the resulting state |1).

We can visualize this effect with the circuit in Figure 8.2. In this figure, we abuse
the circuit notation a little and mark the states of the individual qubits on the horizontal
lines.

Let us write this in code. First, we create the secret string as a tuple of length nbits
of Os and 1s:

Py Find the code
In file src/bernstein.py

def make_c(nbits: int) -> Tuplelint]:

constant_c = [0] * nbits
for idx in range(nbits-1):

constant_c[idx] = int (np.random.random() < 0.5)
return tuple(constant_c)

Next, we construct the oracle, which in this case will be a simple circuit. As
described in the introduction to this chapter, an important aspect of all oracle
algorithms is that to construct the oracle, we have to know the solution. However,
once the oracle is constructed, a third party without knowledge of the solution only
needs a single query to the quantum oracle to find the solution.


http://www.github.com/qcc4cp/qcc/blob/main/src/bernstein.py
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o) ]
02 4] H
o) i}
02 4] H
0) H o—o—H}

Figure 8.3 The circuit for the Bernstein—Vazirani algorithm with secret string 1010.

This is the difference from classical computing. In classical computing, we would
also have to know the secret string and encode a function that matches an input against
this secret string. However, to find the entire secret string (which users of the function
cannot see), one has to call this function multiple times. The difference lies in the
query complexity.

The construction is simple: We apply a controlled Not for each qubit corresponding
to a 1 in the secret string. For example, for the secret string 1010, we build the
circuit in Figure 8.3. We construct the corresponding circuit as one big unitary matrix
operator U. This limits the maximal number of qubits we can still simulate but is
sufficient to explore the algorithm.

def make_u(nbits: int, constant_c: Tuplel[int]) -> ops.Operator:
op = ops.Identity(nbits)
for idx in range(nbits-1):
if constant_c[idx]:
op = ops.Identity(idx) * ops.Cnot(idx, nbits-1) @ op
assert op.is_unitary(), 'Constructed non-unitary operator.'
return op

For experimentation, we perform the following steps. First, we create a secret
string of length nbits-1 and construct the corresponding large unitary with function
make_u. Then we build a state consisting of nbits-1 states initialized as |0) and
tensor it with an ancilla qubit initialized as |1). After this, we sandwich the big unitary
between Hadamard gates and measure and compare the results as a final step:

def run_experiment (nbits: int) -> None:
c = make_c (nbits-1)
u = make_u(nbits, c¢)
psi = state.zeros(nbits-1) * state.ones(1)

psi = ops.Hadamard (nbits) (psi)
psi = u(psi)

psi = ops.Hadamard (nbits) (psi)
check_result(nbits, ¢, psi)
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To verify the results, we find all states with probability p > 0.1. There should only
be a single state with a higher probability, and that state should represent the secret
string. In the code below, we iterate over all basis states and only print the states with
high enough probability.

def check_result(nbits: int, c: Tuple[int], psi: state.State) -> None

print (f 'Expect:', c)
for bits in helper.bitprod(nbits):
if psi.prob(xbits) > 0.1:
print (f 'Found : {bits[:-1]1}, with prob: {psi.prob(xbits):.1f}")
assert bits[:-1] == ¢, 'Invalid result'

Running this program should produce output like the following, showing the secret
bit strings and the resulting probabilities (which should be very close to 1):

Expect: (1, 0, 1, 0, 0)
Found : (1, 0, 1, 0, 0), with prob: 1.0

Deutsch’s Algorithm

Deutsch’s algorithm is another, somewhat contrived, algorithm with no apparent prac-
tical use (Deutsch, 1985). However, it was one of the first to showcase the potential
power of quantum computers, and therefore, it is always one of the first algorithms to
be discussed in textbooks. Never fight the trend; let us discuss it right away.

Problem: Distinguish Two Types of Functions

Assume we have a function f that accepts a single bit as input and produces a single
bit as output, mapping an input of O or 1 to an output of 0 or 1:

f:{0,1} = {0,1}.

The four possible cases for this function fall into two categories, which we call con-
stant or balanced:

f(0)=0, f(1)=0 = constant,
f(0) =0, f(1)=1 = balanced,
f(0)=1, f(1)=0 = balanced,
f(0)=1, f(1)=1 = constant.

This function essentially performs a test for bit parity, which is why it is sometimes
called a parity detector. Deutsch’s algorithm answers the following question: Given
one of these four functions f, which type of function is it: balanced or constant?
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[Yo)  [¢) [P2)  [¢3)

Input |0) x [
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Ancilla |0) y  y@f() f
I I I

Figure 8.4 The circuit representation of Deutsch’s algorithm.

To answer this question with a classical computer, you must evaluate the function
for all possible inputs. We have to feed both a 0 and a 1 to the function and evaluate
the results to determine the type of the function. In the quantum model, we assume
that we have an oracle that, given an input qubit |x) and an ancilla |y), changes the
state to Equation (8.2) (again, with & as addition modulo 2).

lx,y) =[x,y @ f(x)). (8.2)

The input |x) remains unmodified and |y) is being XOR’ed with f(|x)). This is a
formulation that we will see in other oracle algorithms as well — there is always an
ancilla |y}, and the result of the evaluated function is XOR’ed with that ancilla. Recall
that quantum operators must be reversible; this is one way to achieve this.

Assuming that we have an oracle Uy representing and applying the unknown func-
tion f(x), the Deutsch algorithm can be drawn as the circuit shown in Figure 8.4. It is
a convention to start every circuit with all qubits in state |0). The algorithm requires
the ancilla qubit to be in state |1), which can be easily achieved by applying an X gate
to the lower qubit.

Let us go through the math in detail. Initially, after the X gate on qubit 1, the state is

[Yo) = [01).

After the first Hadamard gates, the state is in superposition:

0) +11) o 10) = 11)
V2 V2

We still don’t know how to construct Ur, but we know from Equation (8.2) that
applying Us to the second qubit (let’s not be confused by the use of @ and ®) yields
the state

Y1) = =[+H) o).

0) +11) o 0&f() — 1 &flx)

[p2) = 7 7
If f(x) = 0, then [{2) = [¢1):
|¢2>:|O>—|—\1> 0B 0) —|1®0)
V2 V2

V2 V2
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But if f(x) = 1, then (note the minus sign at the end)

_o+y en-fiel

|¢2> - \/E ﬁ
NI R

We can combine the two results into a single expression:

0)+ 1) _ 0) — 1)
V3 >® 2

Now we multiply the constant factor (—1) () into the first term, with x values of 0 and
1 corresponding to the basis states |0) and |1):

—1Y®10) + (~1)'™]1) 2 10—
V2 V2 o
We substitute the corresponding value for x as
~1Y@J0) + (1Y — 10
Y2) = Y
ﬁ \/i

Finally, applying the final Hadamard to the top qubit takes the state from the Hada-
mard basis back to the computational basis. To see how this works, let us quickly
remind ourselves that the Hadamard operator is its own inverse:

0) + 1)

o) = (—1Y® (

) =

(8.3)

H|O>ZM and H

7 7 = 10),
H1>_|O>ﬁ1> and H0>ﬂ|1>_1>.

If we look at Equation (8.3) and take f(0) = f(1) = 0, we get

(=1 ®10) + (=1 10) = 1)

_ (=D%0) + (=1)°[1) 2 10—
V2 V2
_o+) o) -h
V2 V2
Applying the final Hadamard gate to |i),) yields the state
_ 0+ (o) =1 0) — 1)
[fs) =H=Z— @ =5 =0 @ =5

For f(0) = f(1) = 1 we get the same expression, but with a minus sign in front of the
first qubit:

0) — 1)

3) = —|0) ® 7
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Back to |1)2), for a balanced function, f(0) = 0 and (1) = 1, we get
(1YO10) + (1Y) jo) — )

|17[}2> = \/i \/§
_ (D0 + (=D 10) —[1)
V2 V2
_o-m o-
V2 V2 o

Applying the final Hadamard gate to |1)2) now produces the state

~ L, 0) = 1) o) —|1) 0) — [1)
[W3) =H 7 ® 7 *|1>®7\@ .

Similarly, for £(0) = 1 and f(1) = 0, we get a similar expression, just with a minus
sign in front:?

0) = 11)
[p3) = -1 ® A

You can see that for a constant function f, we always have a |0) in the first qubit,
and in the balanced case, the first qubit will always be in the state |1). This means that
after a single run of the circuit, we can determine the type of f simply by measuring
the first qubit (it helps that |0) and |1) are orthogonal).

The superposition allows the computation of the results for both basis states |0) and
|1) simultaneously. As mentioned earlier, this is an example of quantum parallelism.
The XOR’ing to the ancilla qubit allows the math to add up in a smart way such that a
result can be obtained with high probability. The result does not tell us which specific
function it is out of the four possible cases, but it does tell us which of the two classes
it belongs to. In the classical case, two queries are required to determine the type of
function. Because the algorithm can exploit superposition to compute the results in
parallel, a single query is sufficient.

The mere saving of a single query may not look that impressive, but we will soon
learn about the Deutsch—Jozska algorithm in Section 8.3. This algorithm extends to
functions of the form £: {0,1} — {0,1}, with N = 2" for n qubits. Classically, this
algorithm requires 2" ! 4+ 1 queries,* but in the quantum case, still only a single query
is required. This represents an exponential speed-up. We can see that the algorithm
has a true query complexity advantage over its classical equivalent.

Construct U;

The math in Section 8.2.1 may seem quite abstract, but things become clear when
considering how to construct Uy. To reiterate, for a combined state of two qubits, the
four basis states are

00)=(1 0 0 0),

3 You may want to verify this yourself.
4 1If the results were all the same after checking half of all possible inputs, the next query will reveal
whether the function was constant or balanced.
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on=(@© 1 0 0,
1o)y=(0 o 1 0),
=0 o o 1"

We want to construct an operator that takes any linear combination of these input states
such that

x,y) = %y @ f(x)).

Constant Functions

The function f only modifies the second qubit as a function of the first. For the case
where f(0) = f(1) = 0, the truth table is shown in the left half of Table 8.1. The
columns x and y represent the input qubits. y is the ancilla and always 1, but we still
need to consider it to build a full permutation matrix. f(x) produces a constant 0 in
this first case.

The next column shows the result of XOR’ing the function’s return value with y,
which is y @ f (x). The last column finally shows the resulting new state, which leaves
the first qubit (x) unmodified and changes the second qubit (y) to the result of the
previous XOR. Similarly, for the case f(0) = f(1) = 1, the truth table is in the right-
hand half of Table 8.1.

We can express these cases with a 4 X 4 permutation matrix, where rows and
columns are marked with the four basis states. We use the combination of x and y
as a row index and the new state as column index. A permutation matrix is reversible,
which is what we need. In the case of f(0) = f(1) = 0, the old and new states are
identical, and the resulting Uy o matrix is simply the identity matrix /. The matrix U ;
for the case of f(0) = f(1) = 1 is more interesting:

00) [01) [10) |11) 00) [01) [10) |11)

00y / 1 0 0 0O 00y / 0 1 0 0
no= on | o 1 and Uy, = on| 1 0 0 o
moy[ o o 1 o 10y o 0o o 1
m\o o o 1 mm\o o 1 o0

Table 8.1. Truth table for constant functions.

f(0) =0,f(1) =0 f(0) =1f(1) =1
x y flx)=0 yar) new f) =1 y @ f(x) new
0 0 0 0 0,0 1 1 0,1
0 1 0 1 0,1 1 0 0,0
1 0 0 0 1,0 1 1 11
1 1 0 1 11 1 1 1,0
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Table 8.2. Truth table for balanced functions.

f(0) = 0f(1) =1 f(0)=1f(1)=0
x y ) y®f(x) new fx) y@f(x) new
0 0 0 0,0 1 1 0,1
0 1 0 1 0,1 1 0 0,0
1 0 1 1 1,1 0 0 1,0
1 1 1 0 1,0 0 1 1,1

Balanced Functions

The construction for the two balanced functions follows the same pattern as above,
with the truth tables shown in Table 8.2. The table translates to operators Uy, 1 and U :

|00) |01) |10) |11) |00) |01) |10) |11)

00) / 1 0 0 0 00) /0 1 0 0

U, D[ 010 and Upo— on| 1 0 0o 0
moy| o o o 1 moy| o o 1 o0

nmy\ o o 1 0 m\ o o o 1

8.2.3 General Oracle Operator

We can see that the operator depends only on the function f. A combination of basis
states is taken to another combination of basis states through a permutation matrix
(which has a single 1 per row and column), and the process is solely controlled by the
function and an XOR operation. So far, we have only considered one input qubit and
one ancilla qubit, but this can be easily generalized and extended to any number of
input qubits (as we find below in Section 8.3). Since the oracle can be used for other
algorithms, we add this constructor function to the list of operator constructors.

Find the code
In file src/1ib/ops.py

def OracleUf (nbits: int, f: Callable[[List[int]], int]):
dim = 2+xnbits

u = np.zeros (dimx*2) .reshape (dim, dim)
for row in range(dim) :
bits = helper.val2bits(row, nbits)
fx = f(bits[0:-1]) # f(x) without the y.
xor = bits[-1] ©~ fx # xor with ancilla (the last qubit)

new_bits = bits[0:-1]
new_bits.append (int (xor))


http://www.github.com/qcc4cp/qcc/blob/main/src/lib/ops.py
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# Construct new column.
new_col = helper.bits2val (new_bits)
ul[row] [new_col] = 1.0

op = Operator (u)
assert op.is_unitary (), 'Constructed non-unitary operator.'
return op

Experiments

For experimentation, we construct the circuit and measure the first qubit. If it collapses
to |0), f is a constant function according to the above calculations. If it collapses to
|1), f is a balanced function.

First, we define a function make_ f that returns a function closure object,5 according
to one of the four possible function flavors. We can call the returned function object as
f(0) orf(1) where the integer parameter indexes into one of the subarrays in f1lavors,
returning a single O or 1:

Find the code
In file src/deutsch.py

PY

def make_f (flavor: int) -> Callable[[int], int]:

flavors = [[0, 0], [0, 11, [1, 01, [1, 111
def f(bit: int) -> int:

return flavors([flavor] [bit]
return f

The full experiment first constructs this function object, followed by the oracle.
Hadamard gates are applied to each qubit in an initial state |0) ® |1), followed by the
oracle operator and a final Hadamard gate on the top qubit.

def run_experiment (flavor: int) -> None:

f = make_f (flavor)
u = make_uf (f)
h = ops.Hadamard()
psi = h(state.zeros(l)) * h(state.ones(1l))
psi = u(psi)

h(psi)
p0, _ = ops.Measure(psi, 0, tostate=0, collapse=False)

psi =

print (£ '£(0) = {(£(0)}, £(1) = {£(1)} -> ")
if math.isclose(p0O, 0.0):
print ( 'balanced’)

5 For readers not familiar with closures, in this context, it means that the returned function object £ still
has access to the local array f1lavors even though £ escapes the scope of the surrounding function
make_f.
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assert flavor im [1, 2], 'Invalid result, expected balanced.'
else:

print ( 'constant')

assert flavor im [0, 3], 'Invalid result, expected constant.'

Finally, we verify that we have the right answers for all four functions. To make this
more clear, we specify the inputs as binary numbers. The output should look like the
one printed below. The fact that we did not hit an assert means that the code produces
a valid result:

def main(argv) :

run_experiment (0b00)
run_experiment (0b01)
run_experiment (0b10)
run_experiment (0bll)

) = 0 £(1) = 0 constant
) = 0 £(1) = 1 balanced
) =1 £(1) = 0 balanced
) =1 £(1) = 1 constant

Bernstein—Vazirani in Oracle Form

As promised, we present the Bernstein—Vazirani algorithm in oracle form. Much of the
implementation remains the same, but instead of explicitly constructing a circuit with
controlled Not gates to represent the secret number, we write an oracle function and
call the OracleUf constructor from above. This also demonstrates how a multi-qubit
input can be used to build the oracle.

First, we construct the function to compute the dot product between the state and
the secret string:

def make_oracle_f (c: Tuple[bool]) -> ops.Operator:
const_c = ¢
def f(bit_string: Tuplel[int]) -> int:
val = 0

for idx in range(len(bit_string)):
val += const_c[idx] * bit_string[idx]
return val % 2
return f

Then we repeat the original algorithm, but this time using the oracle:

def run_oracle_experiment (nbits: int) -> None:

c = make_c (nbits-1)
f = make_oracle_f (c)
u = ops.OracleUf (nbits, f)
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psi = state.zeros(nbits-1) * state.ones(1)
psi = ops.Hadamard (nbits) (psi)

psi = u(psi)

psi = ops.Hadamard (nbits) (psi)
check_result (nbits, c, psi)

Lastly, we run the code and check that we implemented all this correctly:

Expected: (0, 1, 0, 1, 0, 0)
Found : (0, 1, 0, 1, 0, 0), with prob: 1.0

Deutsch-Jozsa Algorithm

The Deutsch—Jozsa algorithm is a generalization of the Deutsch algorithm to multiple
input qubits (Deutsch and Jozsa, 1992). The function to evaluate is still balanced or
constant, but over an expanded domain with multiple input bits:

f:{0,1}" — {0,1}.

The mathematical treatment of this case parallels the two-qubit Deutsch algorithm.
The key result is that we measure the state of n qubits. If we find qubits in the state |0)
only, the function is constant. If we find anything else, the function is balanced. We
only need a single query in the quantum case, whereas classically, this would again
require 2"~ + 1 queries. The circuit, shown in Figure 8.5, looks similar to the two-
qubit case, except that multiple qubits are used for both input and output. The single
ancilla qubit at the bottom will still be the key to the answer.

Implementation

The mathematical derivation of this result is sizable but does not provide much addi-
tional value. Let’s focus on the code, which is quite compact with our Uy operator.
First, we create the many-qubit function as either a constant function (all Os or all
1s with equal probability) or a balanced function (the same number of Os and 1s,
randomly distributed over the length of the input bit string). We create an array of
bits and fill it with Os and 1s accordingly. Finally, we return a function object that

0" ———H | x e H

Ur
R 7] S T

Figure 8.5 The Deutsch—Jozsa algorithm as a circuit diagram.
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returns one of the values from this prepopulated array, thus representing one of the
two function types.

Find the code
In file src/deutsch_jozsa.py

PY

def make_f (dim: int = 1,
flavor: int = exp_constant) -> Callable[[List[int]], int]:
power2 = 2x*xdim
bits = np.zeros(power2, dtype=np.uint8)
if flavor == exp_constant:
bits[:] = int(np.random.random() < 0.5)
else:

bits[np.random.choice (power2, size=power2//2, replace=False)] =1

def f(bit_string:List[int]) -> int:
idx = helper.bits2val (bit_string)
return bits[idx]

return f

To carry out an experiment, we construct the circuit shown in Figure 8.5 and mea-
sure. If the measurement finds that only the state |00. .. 0) has a nonzero probability
amplitude, then we have a constant function. If we measure anything else, then we
have a balanced function.

def run_experiment (nbits: int, flavor: int):
f = make_f (nbits-1, flavor)
u = ops.OracleUf (nbits, f)

psi = (ops.Hadamard (nbits-1) (state.zeros(nbits-1)) =*
ops.Hadamard () (state.ones (1))

psi = u(psi)

psi = (ops.Hadamard(nbits-1) * ops.Identity(1l)) (psi)

# Measure all of /0>. If allclose to 1.0, f() 1is constant.
for idx in range(nbits - 1):
p0, _ = ops.Measure(psi, 1dx, tostate=0, collapse=False)
if not math.isclose(p0, 1.0, abs_tol=le-5):
return exp_balanced
return exp_constant

Finally, we run the experiments on numbers of qubits ranging from 2 to 7 to run
reasonably fast and ensure that the results match the expectations. Note that we still
generate operators and oracles as full matrices, which limits the number of qubits we
can handle:

def main(argv) :
for qubits in range(2, 8):

result = run_experiment (qubits, exp_constant)


http://www.github.com/qcc4cp/qcc/blob/main/src/deutsch_jozsa.py
https://doi.org/10.1017/9781009548519.009

176 Black-Box Algorithms

assert result

== exp_constant, f'Want: {exp_constant}’

result = run_experiment (qubits,

exp_balanced)

assert result == exp_balanced, f 'Want: {exp_balanced}’

>>

Found: constant (2 qubits) (expected: constant)

Found: balanced (2 qubits) (expected: balanced)

Found: constant (3 qubits) (expected: constant)

Found: balanced (3 qubits) (expected: balanced)

[...]

Found: constant (7 qubits) (expected: constant)

Found: balanced (7 qubits) (expected: balanced)

Other algorithms of this nature are Simon’s algorithm and Simon’s generalized
algorithm (Simon, 1994). We will not discuss them here, but implementations can
be found in the open-source repository in files simon.py and simon_general .py.
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http://www.github.com/qcc4cp/qcc/blob/main/src/simon_general.py
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9.1.1

State Preparation

The question of how to encode and store data in a quantum machine is a complex
one. Algorithms often assume a specific initial state. For example, the optimization
algorithms that we will discover in Chapter 13, or the quantum machine learning
algorithms in Chapter 14, may all require a specific initial state for the algorithm
to work correctly. However, this state may be difficult to prepare. The preparation
overhead could potentially reduce the quantum advantage of an algorithm, or the
preparation may require gate types that are not available on a given machine. These
challenges are collectively referred to as the problem of state preparation, which is
the topic of this chapter.

We first describe typical ways to encode data in a quantum state. Then we explore
a few ways to prepare a quantum state. There are trivial techniques for states that
are initialized with just the basis states |0) and |1) and slightly more sophisticated
techniques for arbitrary two- and three-qubit states. To prepare an arbitrary multi-qubit
state, we implement Mottonen’s algorithm. However, this elegant algorithm requires
gates that may not be physically available on a given machine. The Solovay—Kitaev
algorithm addresses this problem. It is a seminal result in quantum computing as it
shows how to approximate any gate with sequences of tolerable lengths of standard
universal gate sets.

These last two algorithms are some of the most advanced algorithms discussed in
this book. They have the potential to completely frustrate novices and even advanced
readers.! Depending on your skill level, you may want to revisit these algorithms at a
later time.

Data Encoding

This section discusses a few typical ways of representing data in a quantum state.
We will discuss the trivial but qubit-intensive basis encoding, the potentially more
complex but qubit-efficient amplitude encoding, and methods that use Hamiltonian
operators to encode data.

Basis Encoding

Integers can be quantum-encoded with a scheme called basis encoding. In this scheme,
the binary bits of an integer are directly encoded as states |0) or |1), with a binary bit 0

! Including this author.
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mapping to the basis state |0) and a binary bit 1 mapping to the basis state |1). We
have already seen this in Section 2.4.3, where we also discussed bit ordering.

Similarly, floating point numbers can be encoded as binary fractions, with qubits
representing fractional powers of 2. The achievable accuracy depends on the number
of qubits that represent a value. With n qubits, the precision of the approximation is
1/2". For example, if we reserve 5 qubits to represent a binary fraction (1 sign bit, 4
bits to represent the value), the vector (0.1 —-0.7 1.0) can be approximated with a
maximum error of 1/16 = 0.0625 as

1 1

0.082 = [00001) = + <021 - 022 + 023 24> = +0.0625 (A =0.0195),
1,1

—0.7 ~ [11011) = ( 0— T+ 12) = —0.6875 (A =0.0125),
1]

1.0~ [01111) = ( I+ 124) = +0.9375 (A = 0.0625).

To represent vectors of values, we create a state that concatenates the states using
basis encoding. In the example, the encoded state would be the concatenation of the
three 5-qubit basis states:

) = (00001 1101101111).

With this type of encoding, the vector does not necessarily need to be normalized.
The largest fractional value that can be approximated asymptotically is 1.0, which
means that individual vector elements must be strictly scaled with |x;| < 1.0.

We will use this type of encoding in many places in this book. The main advantage
of this scheme is that state preparation is exceedingly trivial (at least in simulation).
Starting from a state of all |0), one only has to apply an X gate to the qubits that
have a corresponding 1 bit in the binary representation. The disadvantages are that a
potentially large number of qubits is required to represent data and that, similarly to
classical computing, the floating-point values are only approximated.

Amplitude Encoding

To represent an arbitrary vector V in amplitude encoding, we encode the individual
vector elements V; as probability amplitudes of basis states. Since the probabilities of
a state vector must sum up to 1, the vector vV may require normalization. Given that
state vectors have lengths that are powers of two, V is also padded to lengths that are
powers of two. Putting it all together, a vector V is encoded as a state i) with the
computational basis vectors |e;) as

| =
=

Vnormed = ‘ = . — |11D> :V0|eO>+V1 |el>+"‘+Vn71 |en71>-

=i

Vn—1
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As an example, we take the vector (0.1 —-0.7 1.0) from above, extend it to four
elements, and normalize it to (0.08 —0.57 0.82 0.0):

def amplitude_encoding() :
psi = state.State([0.1, -0.7, 1.0, 0.0])
psi.normalize ()

psi.dump() # only prints non-0 amplitudes.
>>
[|00> (]0>): ampl: +0.08+0.00j prob: 0.0l Phase: 0.0
|01> (|1>): ampl: -0.57+0.00j prob: 0.33 Phase: 180.0
|lO> (|2>): ampl: +0.82+0.00j prob: 0.67 Phase: 0.0

The advantage of this encoding is that only a small number of qubits are required to
encode a vector (only two qubits for this example, compared to 15 for basis encoding).
In addition, floating point values are stored with infinite precision in the system.?
However, the main disadvantage is that the physical preparation of the state can be
very difficult. State preparation is trivial in our code, as we simply assign amplitudes.
In an actual physical circuit, potentially very complex sequences of gates must be used
to prepare a state properly.

For the special case of a state with equal nonzero probabilities for a small
number of basis states, we discuss an algorithm based on amplitude amplification in
Section 10.2.1.

Encoding with Rotations

To encode a real value || < 1.0 with a single qubit, we ignore a potential local phase
and write the state in the form

[Wy=+vV1—-0a%|0)+a |1).

This is valid because adding up the norms of the probability amplitudes sums up to 1.
Because we compute the square root v/ 1 — a2 (and ignore complex values here), a
must be smaller than 1, which may require normalization of . From Equation (2.9)
we know that we can prepare this state with an R, operator performing a rotation about
the y-axis:

0 )
cos > —sin =
R. 6 — 2 2
)( ) sing cosg
1 cos%
R(0)0)=R(0) () = | 2
2

2 On a computer, analog values are still discretized using floating-point formats.
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With 6 = 2 arcsin(a), we get the result we were looking for as

Ry(6)10) = V1 - a2|0) + a|1).

We can easily verify this in code. For a given Python value alpha, we compute the
result in two different ways and make sure the results match:

factor_0 = np.sqgrt(l - 1.0 / (alpha % alpha))
factor_1 = 1.0 / alpha
theta = 2.0 » np.arcsin(1.0 / alpha)

psi = state.zeros (1)
psi = ops.RotationY(theta) (psi)

assert np.isclose(factor_0, psi[0], atol=0.001), 'Incorrect factor 0'
assert np.isclose(factor_1, psi[l], atol=0.001), 'Incorrect factor 1'

In the literature, this technique is sometimes called time-evolution encoding, for rea-
sons that will become clear in Section 9.1.4.

Hamiltonian Encoding

In Section 2.7.4 we write the R, operator as R,(0) = ¢~i%Y with an exponenti-
ated Pauli Y matrix. We can generalize this to other Hermitian matrices. In quantum
mechanics, a Hamiltonian H is an operator that corresponds to the energy of a system.
It is a Hermitian operator with #H = #'. Unitaries and Hamiltonians are connected

with the time-dependent Schrodinger equation, which states that
o N
h— |U) =H|¥P).
i W) = )

It has a solution |¥ (7)) = U(r)|¥(0)), with U(¢) being a time-dependent unitary
operator. The key to an encoding technique is that for a time-dependent Hamiltonian,
a unitary operator can be defined as

Ur) = e ™,
with the Hermitian 7{ and setting i = 1. Let us prove this identity. The proof uses the

important concept of an operator function, which we will also use later in the book.

Proof Since U is a normal matrix, the spectral theorem applies (as discussed in
Section 4.1). We can write U as

U= ZAi|xi><xi|,

where A; are the eigenvalues of U and |x;) its eigenvectors. Since U is unitary with
UUT = I, it follows that |A;]> = 1 and hence A; = ¢/ for some angle ;. Now we can
define H as
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=" 6ilx;)(xi.

To apply an operator function f(+) to a normal operator A, we spectrally decompose
A and apply f(-) to the eigenvalues of A:

fla) = Zf(Ai)lxi><xi|~

With f as the exponential function f(-) = exp(-) and A = i#{, we find that
M — Z 0

Pauli matrices can be used to represent Hamiltonians. This is why the rotational
encoding scheme from Section 9.1.3, which uses the R, gate, is sometimes called
time-evolution encoding.

We will learn more details in Section 11.2.1 on phase estimation and find a concrete
use case in the important HHL algorithm for matrix inversion in Section 14.3. We will
encounter a way to construct Hamiltonians inspired by the Ising model of ferromag-
netism in Section 13.3, with use cases in Section 13.4 on the max-cut problem and in
Section 13.5 on the subset-sum problem.

xi) (x| = ZAi|xi><xi| =U. O

State Preparation for Two- and Three-Qubit States

State preparation for a single qubit is trivial, at least in code. We have already seen in
Section 2.3 that any location on the surface of a Bloch sphere can be reached with just
two rotations, for example, a rotation around the y-axis and another around the z-axis.

Things get considerably more complicated for states of more than just a single
qubit. Specialized and optimized preparation mechanisms have been found for two-
and three-qubit circuits. For example, for 2-qubit states, Perdomo (2022) and the
corresponding video on YouTube (Perdomo, 2 qubits, YT, 2022), discuss the circuit
shown in Figure 9.1. The same authors also present a circuit for preparing a 3-qubit
state (Perdomo, 3 qubits, YT, 2022). This work presents improvements over the pre-
vious work by (Znidaric, 2008) and (Acin, 2000).

For the 2-qubit case, to compute the unitary operators wy, wp, and ws in Figure 9.1,
we follow the instructions on YouTube. The code transforms a given general state into
|0). Hence, to prepare a state, you must reverse the circuit.

o)
o)

Figure 9.1 Compact circuit to prepare a 2-qubit state.
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Py Find the code
In file src/state_prep.py

def run_experiment_2qubit() -> None:

def norm(x) :
return np.linalg.norm(x)

def u(x, y):
return (1 / np.sdgrt(norm(x)**2 + norm(y)**2) =*
ops.Operator([[x, y], [-np.conj(y), np.conj(x)11))
psi = np.random.random([4]) + 1j * np.random.random(4)

psi = psi / norm(psi)
print('Random input:', psi, ' -> [0>")

al = np.array([psi[0], psill1]])

]
]

a2 = np.array([psi[2], psi[3]1])
al2 = np.inner(al.conj (), a2)
if al2 ==
k = norm(a2) / norm(al)
else:
k = -norm(a2) / norm(al) x al2 / norm(al2)
wl = u(psi[3] - k » psi[l], (psi[2] - k * psi[0]).conj()).transpose()
psil = (ops.Identity() * wl) @ psi
psil = ops.ControlledU(0, 1, ops.PauliZ()) @ psil
w2 = u(psil[l].conj (), psil[3].conj())
psi2 = (w2 * ops.Identity()) @ psil
w3 = u(psi2[0].conj (), (-psi2[1l]).conj()).transpose()
psi3 = (ops.Identity () * w3) @ psi2
assert np.allclose(psi3[0], 1.0, le-6), 'Yikes'
Mottonen’s Algorithm

Now that we know how to prepare states with up to three qubits, what should we
do for larger, general circuits? An elegant algorithm for preparing general states was
given by Méttonen (2004,1). In this chapter, we review and implement these results.
For detailed derivations, refer to Mottonen (2004, 2) by the same authors.

This is one of the most complicated algorithms presented in this book. Novice
readers may have difficulty with this material. If you are in this group, we recommend
not reading this section linearly but returning to it later. At the high level, the algorithm
uses controlled rotations to explicitly “set” the amplitudes for all individual basis
states. However, since this would require a large number of gates and ancillas, the
algorithm improves by demonstrating an elegant way to reduce the required number
for both. Let’s see how this works.


http://www.github.com/qcc4cp/qcc/blob/main/src/state_prep.py
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Figure 9.2 The uniformly controlled rotation gate F, ,’ﬁl(a,a) with k controlling qubits and
angles a;.

Figure 9.3 A recursive implementation of the uniformly controlled rotation gate, shown for
three controlling qubits (k = 3).

First, let us introduce the concept of a uniformly controlled rotation F¥ (a,&), which
has k qubits that control rotations by angles {«;} about the axis a on the target qubit
m. Figure 9.2 shows the construction, which covers the 2% binary combinations of
control qubits controlling rotations by angles ¢;. In circuit diagrams, we indicate these
controlled gates with black-white shaded dots at the controlling qubits, as seen on the
left side of the figure.

This construction can prepare any desired state but requires many gates, espe-
cially with our implementation of multi-controlled gates. However, previous work
in Moéttonen (2004, 2) showed that this gate F¥ can be implemented with the
recursive construction shown in Figure 9.3 (for the example of k = 3). This
method represents significant savings in the amount of required gates and ancillary
qubits. The challenge is to derive the angles {6;} from the angles {a;}, which we
show next.

The construction is recursive. To add another qubit k, take the construction for k — 1
qubits, add a controlled Not to the new controlling qubit, and repeat the full sequence
twice. For the case of k = 0, there is no controlled gate, only the rotation gate. We
find the control qubit indices recursively in the following elegant way.>

3 It took me a while to figure this out. The secret to success is to “kill” the last token in the recursive call.
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Py Find the code
In file src/state_prep _mottonen.py

def compute_ctl (idx: int):

if idx == 0:
return []
side = compute_ctl(idx - 1)[:-1]
return side + [idx - 1] + side + [idx - 1]

The angles 0; in Figure 9.3 can be calculated from the angles a; with Equation
(9.1). To stay close to the reference in Mottonen (2004,1), we use 1-based indexing in
the mathematical formulation (this is Equation (3) in the reference):

91 23]
=M | : |, with My =2"F(-1)-rs-, ©.1)

sz Aok
Here, b; stands for the binary representation of integer j and g; is the binary
reflected Gray code* of integer i. We know how to get to a binary representation of
an integer. The Gray code uses a combination of XOR and shift operations to ensure

that subsequent numbers differ only by a single bit in their binary representation. We
compute the Gray code with a classic routine® and construct the matrix M as follows:

def gray_code(i: int) -> int:

return i ~ (i >> 1)

def compute_m(k: int):

n = 2x*k
m = np.zeros([n, n])
for i in range(n):
for j in range(n):
m[i, j] = (-1) *x bin(j & gray_code(i)).count('1') * 2 =** (-k)
return m

With these preliminaries in place, we can now discuss the algorithm for the prepa-
ration of the state. The reference paper takes an arbitrary state and constructs the gate
sequence required to reduce it to the first computational basis state |e;) = |00. .. 0).
To borrow the nomenclature, it assumes a state in the form

la) = (la) |, |asle’, . .. ,|an|e)". 9.2)

The transformation to |e;) then happens in two steps:
1. First, a cascade of uniformly controlled z-rotations to equalize the phases w; make

the vector real up to a global phase.

4 See http://en.wikipedia.org/wiki/Gray_code.
5 “Classic” as in “classic car.”
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R, R! ———¢—
RI? *"—ri R2 ‘4,7
R;ffl J R!
R R!

Figure 9.4 Cascades of R, and R; rotations to transform an initial state |00. . . 0) into any
desired state.

2. Rotate the resulting real vector to |e;) with a similar cascade of rotations around
the y-axis.

However, we want to achieve the opposite. We want to start from a ket |00. .. 0) and
transform it into the desired state. Hence, we perform this algorithm in reverse. We
start with a cascade of R, rotations, followed by a cascade of R; rotations, as shown in
Figure 9.4.

Mathematically, cascades (using R, or R, rotations) can be written as the product
of cascading gates, where we use the definition of F¥ (a,a):

n
y—1 z .
17 el ) @ by,
j=1

To implement the cascades, we need to calculate the various angles «; from the
phase angles w; in Equation (9.2). These are the phases that we want to eliminate. For
the R, rotations, the angles are (following Equation (5) in the reference):

2/(—]
@, = > (@4 = 0ap-i11) /27

=1

withj=1,2,...,2" % andk = 1,2,...,n.

def compute_alpha_z(omega, k: int, j: int):
# Since the mathematical notation is l-based but the
# Python code is 0-based, we have to add a correction
# term to the code: j becomes j+1:
m=2 xx (k - 1)

indl = [(2 » (J + 1) - 1) *m + 1 for 1 in range(m)]
ind2 = [(2 » (J + 1) - 2) * m + 1 for 1 in range(m)]
diff = (omegal[indl] - omega[ind2]) / m

return sum(diff)
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The expression to calculate the rotation angles around the y-axis is more compli-
cated, with j, k as above (this is Equation (8) in the reference).

2k—1 2k

O‘;k = 2arcsin Z laj—1yz-144%/ Z |ag—1y24l?
I=1 =1

As mentioned above, we also have to apply the correction term (3 becomes j+1)
here. The corresponding code is:

def compute_alpha_y(vec, k: int, j: int):

m =2 xx (k - 1)
enumerator = sum(vec[(2 * (j + 1) - 1) * m + 1] ** 2 for 1 in range(m))
m = 2xxk
divisor = sum(vec[j * m + 1] %% 2 for 1 in range(m))
if divisor != O:
return 2 * np.arcsin(np.sgrt(enumerator / divisor))
return 0.0

With all these building blocks in place, we can now compose the routine to perform
a uniformly controlled rotation. The procedure is the same for the R, and R, rotations,
which allows us to pass the actual rotation gate as a parameter. The following code
uses the functions compute_m and compute_ctl that were introduced above:

def controlled_rotation(gc, alpha_k, control, target, rotgate):

k = len(control)
thetas = compute_m(k) @ alpha_k
ctl = compute_ctl (k)
for i in range (2xx*k):
rotgate (target, thetas[i])
if k > 0:
gc.cx(control[k - 1 - ctl[i]], target)

Now we can implement the cascades of rotations as shown in Figure 9.3. Note that
the procedure still leaves a global phase in place. We will have to account for it later
in our experiments.

def prepare_state_mottonen(gc, gb, vector, nbits: int = 3):

"mrConstruct the Mottonen circuit based on input vector."""

# Ry gates for the absolute amplitudes.

avec = abs(vector)

for k in range(nbits):
alpha_k = [compute_alpha_y(avec, nbits - k, j) for j in range(2xx*k)]
controlled_rotation(gc, alpha_k, gbl:k], gblk], qc.ry)

# Rz gates to normalize up to a global phase. This is only
# needed for complex values.
omega = np.angle(vector)
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if np.allclose(omega, 0.0):
return

for k in range (0, nbits):
alpha_z = [compute_alpha_z (omega, nbits - k, j) for j in range(2xx*k)]
controlled_rotation(gc, alpha_z, gbl:k], agblk], gc.rz)

It is interesting to inspect the circuit structure for states with one, two, or three
qubits. For the circuits shown here, all values are taken from random inputs. It is
safe to ignore the actual values; we only want to show the structure of the generated
circuits. In the circuit diagrams, the gates Y, and Z; denote the rotations R, and R; by s
in radians. For a single-qubit state, we only need a single R, and R, gate:

-

For states with two qubits, the circuit looks like this:

For states of three qubits, the number of gates grows quite considerably. They
may be too small to decipher here, but you should be able to recognize the recursive
structure:

e I-i-iI ,

To convince ourselves that the whole procedure is correct, we run a set of experi-
ments. For each experiment, we consider an arbitrary state vector, apply the algorithm,
account for a possible global phase, and check for correctness. We then run this
procedure on circuits ranging from a single qubit to up to 10 qubits.

def run_experiment (nbits: int = 3):

"n"rprepare a random state with nbits qubits."""

vector = np.random.random([2x*nbits]) +
np.random.random( [2*«*nbits]) * 13j

vector = vector / np.linalg.norm(vector)

print (f' Qubits: {nbits:2d}, vector: {vector[:6]1}...")

gc = circuit.gc()
gb = gc.reg(nbits)
prepare_state_mottonen(gc, gb, vector, nbits)
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# For complex numbers, this algorithm introduces a global phase
# which we can account for (and ignore) here:
phase = vector[0] / gc.psi[0]
if not np.allclose(vector, gc.psi * phase, atol=le-5):
raise AssertionError('Invalid State initialization.')

def main(argv) :

print ("State Preparation with Moettoenen's Algorithm...")
for nbits in range(1, 11):
run_experiment (nbits)

Solovay—Kitaev Theorem and Algorithm

State preparation may require flexible quantum gates, such as specific rotation gates,
which may not exist on physical hardware. A given architecture may implement only
a smaller universal set of gates, such as the set of Hadamard and T gates. We know
that we can synthesize any gate from this universal set of gates.® However, we do
not want to destroy any quantum advantage. For example, if a quantum algorithm
has a theoretical complexity of O(\/N) but requires O(NZ) gates for its physical
implementation, the advantage would be nullified.

The Solovay—Kitaev (SK) theorem and corresponding algorithm (Kitaev et al.,
2002) are important results in quantum computing, as they address this problem.
The theorem shows that not only can any unitary gate be approximated from a finite
universal set of gates, but it can also be approximated quickly. A version of the theorem
that seems appropriate in our context is the following (even though it uses terminology
that we have not explained yet, such as SU(2) or (G)).

THEOREM: (Solovay—Kitaev theorem) Let G be a finite set of elements in SU(2)
containing its own inverses, such that (G) is dense in SU(2). Let € > 0 be given. Then

there is a constant ¢ such that for any U in SU(2) there is a sequence S of gates of
length O(log®(1/¢)) such that ||S — U|| < e.

In English, this theorem states that for a given unitary gate U, a finite sequence
of universal gates will approximate U up to any precision ¢. The important part:
The complexity scales only polylogarithmically, as a power of log(1/¢). This algo-
rithm is seminal and supremely elegant. Since its development in 1995, there have
been many improvements and also variations (Kliuchnikov et al., 2015; Ross and
Selinger, 2016, 2021).

We will study it following the pedagogical review from Dawson and Nielsen (2006)
as a guide. We start with a few important concepts and functions. Then, we outline the
high-level structure of the algorithm before diving deeper into the complex parts and
implementation. We will omit a small number of mathematical derivations that go well
beyond the scope of this book.”

6 Otherwise, the set would not be called universal.
7 And the comfort level of this author.
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9.4.1 Universal Gates

In quantum computing, unlike classical computing, there is no single universal gate
from which all other gates can be derived. Only sets of gates have this property. For
single qubits, one of such sets consists of the Hadamard gate H and the T gate. Any
point on a Bloch sphere can be reached by a sequence of only these two gates. We
prove this by showing that the SK algorithm, based on (minor adjustments of) just
these two gates, can approximate any 2 X 2 unitary matrix up to arbitrary precision
(hence the term dense in the theorem above).

942  SUQ)

One of the requirements of the SK algorithm is that the universal gates involved
are part of the SU(2) group, which is the group of all 2 x 2 unitary matrices with
determinant 1. The determinants of the Hadamard and T gates are not equal to 1 (you
may want to convince yourself of this). Since their determinants are not 0, we can
divide by the determinant and apply this simple transformation to make the gates

become members of SU(2):
U = 1/ ! U
VdetU

Using this simple adjustment, we compute the set of universal gates H' and T’ with
this routine:

Find the code
In file src/solovay_kitaev.py

def to_su2(U):
return np.sqgrt(l / np.linalg.det(U)) * U

We will not go deeper into SU(2) and the related mathematics. For our purposes,
we should think of SU(2) in terms of rotations. For a given rotation V, the inverse
rotation is VT, with VVT = I. For two rotations U and V, the inverse of UV is VIUT,
with UVVTU' = I. However, similar to how two perpendicular sides on a Rubik’s cube
rotate against each other, if we change the order of rotations, then UVUTVT #£ I. The
rotations do not commute; their order matters. This also means that the two rotations
can gradually move a state about the Bloch sphere, which is exactly what the SK
algorithm does.

94.3 Bloch Sphere Angle and Axis

Any 2 x 2 unitary matrix represents a quantum gate that can move a state about the
Bloch sphere. It rotates a state by an angle 6 around an axis 7 in a three-dimensional
coordinate system. To calculate this angle and axis, let us think of the gate U as being
of the form


http://www.github.com/qcc4cp/qcc/blob/main/src/solovay_kitaev.py
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a b
U= (c d) . 9.3)

We can also write the operator in the following way, where 7 refers to 3-dimensional
orthogonal axes and & refers to the Pauli matrices, using the Taylor expansion from
Equation (2.7):

U =7 = Jcos (0/2) + it - G sin (0/2).

We already know that any unitary matrix can be constructed from a linear combina-
tion of Pauli matrices. Applying the Pauli matrices one by one compounds to a single
rotation about an axis 72 by an angle 6. Elements on a rotation axis remain unmoved by
the rotation. With this insight, we can compute the angle and axis using the following
derivations.

U = 018 _ ,i0/20:
=1Icos(0/2)+n-id sin(6/2)
=TIcos(0/2) + nio; sin (8/2) + nyioa sin (0/2) + n3ioz sin (6/2)

_ [cos (8/2) 0 N 0 nyisin (6/2)
0 cos (0/2) nisin (6/2) 0

0 ny sin (6/2) nzisin (0/2) 0
* (—nz sin (6/2) 0 ) M ( 0 —n3isin (9/2))

_ cos (0/2) + n3isin (6/2) nysin (6/2) + nyisin (6/2) _ (@ b
—nysin (6/2) + nyisin (6/2)  cos(6/2) — n3isin (6/2) c d)’

We compute the relevant parameters with these algebraic transformations:

0 :2arccosa+d,
b+c

nl:m’
b—c

"= 2sin(0)2)
a—d

= 2isin(0/2)

and directly translate them into this code:

def u_to_bloch(U):

angle = np.real (np.arccos((U[0, 0] + U[1l, 11)/2))
sin = np.sin(angle)
if sin < le-10:
axis = [0, 0, 1]
else:
nx = (U[0, 1] + UIl1l, 0]1) / (2] % sin)
ny = (U[0, 11 - U1, 0]) / (2 % sin)
nz = (U[0, 0] - U[1l, 11) / (23 * sin)
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axis = [nx, ny, nz]
return axis, 2 * angle

Similarity Metrics

The trace distance® tells us how similar two states are. Typically, this concept is
applied for states expressed as density matrices, but we may as well adopt it here
to measure the similarity between operators. For two density operators p and o, the
trace distance is defined as

r(p.0) = 3 |\(p -0 (p =)

In code, we use this definition and pass two parameters U and V to the routine
trace_dist. Notice that we do not use np . sqgrt, which computes the root of indi-
vidual elements of the matrix, not the root of the matrix. Instead, we must use the
slower but correct scipy.linalg.sgrtm:

def trace_dist (U, V):

return np.real(0.5 x
np.trace(sp.linalg.sqrtm( (U - V) .adjoint() @ (U - V))))

Pre-computing Gates

The SK algorithm is recursive. At the innermost step, it maps a given unitary operator
U against a library of precomputed gate sequences, selecting the gate closest to U, as
measured by the trace distance.

To precompute gate sequences, we provide a trivial implementation that is slow
but has the advantage of being easy to understand. There are only two base gates H’
and 7", as shown in Section 9.4.2, which we hold in the simple two-element Python
list basegates. We generate all strings of bits up to a certain length, such as 0 and
1 for length 1, the bit strings 00, 01, 10, 11, for length 2, and so on. We initialize a
temporary gate as the identity gate / and iterate through the bits of each bit string,
multiplying the temporary gate by one of the two basis gates H' or T’, depending on
whether a bit in the bit string was set to 0 or 1 respectively. The function then returns
the list of all precomputed gates.

def create_unitaries(basegates, limit):

gate_list = []
for width in range(limit): # length of bit string
for bits in helper.bitprod(width) :
U = ops.Identity()
for bit in bits:

8 See also http://en.wikipedia.org/wiki/Trace_distance.


http://en.wikipedia.org/wiki/Trace_distance
https://doi.org/10.1017/9781009548519.010

192

9.4.6

State Preparation

Figure 9.5 Distribution of 256 generated gate sequences applied to state |0). The trivial method
used to generate these gates leads to many duplicates.

U = U @ basegates[bit]
gate_list.append (U)
return gate_list

To find the closest gate to a given gate U, we iterate over the list, compute the trace
distance of each gate in the list to U, and return the gate with the minimum distance.
There are ways to significantly accelerate this search, for example, with KD-trees
(Wikipedia, 2021a).

def find_closest_u(gate_list, u):

min_dist, min_u = le6, ops.Identity()
for gate in gate_list:
tr_dist = trace_dist(gate, u)
if tr _dist < min_dist:
min_dist, min_u = tr_dist, gate

return min_u

Note that our method of generating gate sequences results in duplicate gates. For
example, when plotting the effects of the generated gates on state |0) in Figure 9.5, we
see that the resulting distinct states are quite sparse on the Bloch sphere. Of course,
this is easy to optimize.

Algorithm

Now we are ready to discuss the algorithm, which we write in code and explain line
by line. The inputs are the unitary operator U, which we seek to approximate, the list
of precomputed gates, and the recursion depth 7.

def sk_algo (U, gates, n):

if n ==
return find_closest_u(gates, U)
else:
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Figure 9.6 A random gate U moves state |0) to state |¢7) (light gray dot). The closest
precomputed gate (gate 58) is on the x-axis (dark gray dot).

U_next = sk_algo(U, gates, n-1)

vV, W = gc_decomp (U @ U_next.adjoint())

V_next = sk_algo(V, gates, n-1)

W_next = sk_algo(W, gates, n-1)

return (V_next @ W_next @ V_next.adjoint() @ W_next.adjoint() @
U_next)

The recursion counts down from an initial value of n and stops when it reaches
the termination case with n==0. At this point, the algorithm looks for the closest
precomputed gate. If we specify a maximum recursion depth of 0, this gate will be
the result, as shown in Figure 9.6.

if n ==
return find_closest_u(gates, U)

Starting with this basic approximation, the following steps further improve the
approximation by applying sequences of other inaccurate gates. The first recursive
step tries to find an approximation U_next of U as U,_;. For example, if n==1, the
recursion with n-1 reaches the termination clause and returns the closest precomputed
gate as U_next.

U_next = sk_algo (U, gates, n-1)

Assume that U,_; is an approximation of U with error |U — U,_1| = €,_.
We define A = U U:LI (note the dagger) and try to find an approximation of A
with error €, < &,_;. Then we concatenate the sequence U ULl with the previous
approximation U,_ to get an approximation U, with error |U — U,| < ¢,,.

To approximate A, we decompose it as a group commutator, defined as A =
VWVTWT for some unitary gates V, W. There are an infinite number of such decompo-
sitions. In the following, we apply an accuracy criterion to get a balanced group com-
mutator. The underlying mathematics motivating this decomposition is beyond the
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Figure 9.7 The decomposed gates V and W (black dots) and their closest precomputed gates v
(gate 25) and w' (gate 2) as white dots.

scope of this book. We refer to Dawson and Nielsen (2006) and Kitaev et al. (2002) for
more details. Here, we accept the result and show how to implement gc_decomp (),
which we call in the algorithm to get the operators V and W:

v, W = gc_decomp (U @ U_next.adjoint())

The next recursive steps are to calculate improved approximations for V and W
using the same algorithm. Once we have those, the algorithm returns a new and
improved approximation:

Uy ::ZXLQ—4
= UU}_ Uy

= n—lwg—lvj_le_lLM—L

V_next = sk_algo(V, gates, n-1)

W_next = sk_algo(W, gates, n-1)

return (V_next @ W_next @ V_next.adjoint() @ W_next.adjoint() @
U_next)

For our example, we visualize the gates V and W and their closest precomputed
gates in Figure 9.7. The dot marked r; is the approximated gate (when applied to |0))
after one level of recursion.

Balanced Group Commutator

Now let us explore the definition of the balanced group commutator in more detail.
For a unitary operator U, an infinite number of group commutator decompositions
exists. We are looking for one for which VWVTWt = U, but for which the distance
between the identity / and both V and W is less than a specific error bound. The idea
is to continuously reduce the error in subsequent recursions. We apply more and more
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inaccurate gates to increase the accuracy of the final gate, which is quite miraculous.
Mathematically, the propagation of the error goes beyond the scope of this book. We
focus mainly on the implementation.

For our balanced group commutator, we consider V as a rotation by angle ¢ about
the x-axis of a Bloch sphere and W as a similar rotation about the y-axis. The group
commutator VWVTWT is a rotation about the Bloch sphere around the axis 7 by an
angle 0, satisfying Equation (9.4). This equation admittedly seems to come out of
the blue, but in the following paragraphs, we will derive this equation and then solve

for ¢:
sin (0/2) = 2sin? (¢/2) /1 —sin* (¢/2). (9.4)

Both V and W were defined as rotations about the x-axis and y-axis:

V= Rx(¢)a
VE=R(¢)" = Ri(~9),
U=VWVIWE = R(@)R($)R:(~))R,(— ).

From Equation (2.8) we know we can write rotations as

R.(¢) = cos (¢/2) I+ isin(¢/2) X,
Ry(¢) =cos(¢p/2) I+ isin(¢p/2)Y.

We can multiply out U and again think of the resulting matrix as being in the form
of Equation (9.3) with a, b, ¢, and d as stand-ins for the four matrix elements. We
evaluate the diagonal elements as above with cos (0/2) = (a + d) /2 and arrive at:

c0s (6/2) = cos* (¢/2) + 2 cos? (/2) sin® (¢/2) — sin’ (/2).
We factor out cos? (¢p/2) + sin® (¢p/2):
c0s (6/2) = cos* (¢/2) +2cos? (¢/2) sin® (¢/2) — sin* (/2)
= (cos” (¢/2) + sin’ (¢/2))” — 2sin’* (6/2)
=1—2sin*(¢/2).
Using the Pythagorean theorem, we get the form we are looking for:
sin? (6/2) = 1 — cos? (0/2)
=1 (1-2sin* (¢/2))’
— 4sin® (¢/2) — 4sin’ (¢/2)
=4sin’ (¢/2) (1 —sin’ (¢/2)),

= sin (0/2) = 2sin’ (¢/2) /1 —sin* (¢/2).

Now we solve for ¢. From what we have done so far, we know how to compute 0
for an operator. We eliminate the square root in Equation (9.4) by squaring the whole
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equation. For ease of notation, we substitute x for the left side as

(sin2 (¢/2) /1 — sin’ (<¢>/2))2

=sin* (¢/2) (1 —sin* (¢/2))

— sin' (9/2) — sin® (6/2),
= 0 =sin? (¢/2) — sin® (¢/2) — x
u* (/2) — sin* (§/2) +x.

This is a quadratic equation that we can solve:

Y —y+x=0,
= sin* (¢/2) =y = @7
sin (§/2) = /vy,
= ¢ = 2acsin ('/*). 9.5)
Expand y (and remember that cos?(¢) + sin®(¢) = 1):
1T &
B 2
1+ \/1 —4sin*(0/2) /4
- 2
~ 14cos(6/2)
==

Substituting this into Equation (9.5) leads to the final result for ¢. We ignore the +
case from the quadratic equation, as the goal was to arrive at Equation (9.4):°

b = 2arsn (1202

Let us write this in code. First, we define the function gc_decomp, adding a helper
function to diagonalize a unitary matrix. We compute 0 and ¢ as described above:

def gc_decomp (U) :

def diagonalize(U):
V = np.linalg.eig(U)

return ops.Operator (V)

axis, theta = u_to_bloch(U)
phi = 2.0 » np.arcsin(np.sqgrt(
np.sgrt((0.5 - 0.5 %* np.cos(theta) / 2))))

9 We recommend that rigor-sensitive readers please hold their noses here.
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After that, we compute the rotation angle and axis on the Bloch sphere as shown
above and construct the rotation operators V and W:

V = ops.RotationX(phi)
if axis[2] > O:

W = ops.RotationY (2 * np.pi - phi)
else:

W = ops.RotationY (phi)

Construction continues as follows. We calculated that U is a rotation by angle 6
about some axis 71. We defined V and W as rotations by an angle ¢ around a different
compound axis p. We align the axis p to axis 7 with the similarity transformation
U = S(VWVIWT)ST for some unitary matrix S, which we compute in the code below
as a change of basis matrix. We define V = SVS' and W = SWS' and obtain

U=Vvwviwt

In code, this may be a bit easier to read:

VWVdwd = diagonalize(V @ W @ V.adjoint() @ W.adjoint())
S = diagonalize(U) @ vVwvdwd.adjoint ()

V_hat = S @ V @ S.adjoint ()
W_hat = S @ W @ S.adjoint ()
return V_hat, W_hat

In Figure 9.8, we show how the approximation improves in our example as we
increase the recursion depth. Interestingly, the results at recursion levels 1 and 2 are
almost identical, but the accuracy improves further at deeper levels of recursion.

Evaluation

For a brief evaluation, we define key parameters and run a few experiments. The
number of experiments is given by num_experiments. The variable depth is the

Figure 9.8 Increasing the depth of recursion (ry) quickly leads to better accuracy.
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maximum length of the bit strings we use to precompute gates. For a depth value x,
2% — 1 gates are precomputed. The variable recursion is the depth of recursion of
the SK algorithm. It is instructive to experiment with these values and explore the
accuracy and performance you can achieve:

def main(argv) :

num_experiments = 10

depth = 8

recursion = 4

print ('SK algorithm - depth: {}, recursion: {}, experiments: {}'.
format (depth, recursion, num_experiments))

Next, we compute the SU(2) base gates from the Hadamard and T gates and gen-
erate the list of precomputed gates:

base = [to_su2 (ops.Hadamard()), to_su2(ops.Tgate())]
basegates = create_unitaries (base, depth)
sum_dist = 0.0

Finally, we run the experiments. In each experiment, we create a unitary gate
U from a randomly chosen combination of rotations. We apply the algorithm and
compute distance metrics for the results. We also compare the impact of the original
and approximate unitary gates on a state |0) and show how much the results differ,
measured in percent. This can give an intuitive measure of the remaining approxima-
tion errors.

for i in range (num_experiments) :
U = (ops.RotationX (2.0 * np.pi * random.random()) @
ops.RotationY (2.0 * np.pi * random.random()) @
ops.RotationZ (2.0 * np.pi * random.random()))

U_approx = sk_algo (U, basegates, recursion)
dist = trace_dist (U, U_approx)
sum_dist += dist

phil = U(state.zero)
phi2 = U_approx(state.zero)
print (' [{:2d}]: Trace Dist: {:.4f} State: {:6.4£f}%3'.
format (i, dist,
100.0 * (1.0 - np.abs(np.dot(phil, phi2.conj())))))
print ( 'Gates: {}, Mean Trace Dist:: {:.4f}'.
format (len (basegates), sum_dist / num_experiments))

This should result in output as shown below. With just 255 precomputed gates
(including duplicates) and a recursion depth of 4, the approximation error consistently
falls below 1%.
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SK algorithm, depth: 8, recursion: 4, experiments: 10
0]: Trace Dist: 0.0063 State: 0.0048%

1]: Trace Dist: 0.0834 State: 0.3510%

2]: Trace Dist: 0.0550 State: 0.1557%

L]

8]: Trace Dist: 0.1114 State: 0.6242%

9]: Trace Dist: 0.1149 State: 0.6631%

Gates: 255, Mean Trace Dist:: 0.0698

[
[
[
[.
[
[
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Algorithms Using Amplitude
Amplification

In this chapter, we explore algorithms associated with quantum amplitude amplifica-
tion. We introduce Grover’s algorithm, a fundamental technique that enables searching
over N elements in a domain with complexity of only O(v/N). In the following
algorithms, we represent the domain by the N = 2" computational basis states of
n qubits and consider one or more of these as special elements, or “solutions,” repre-
senting the elements we were searching for. Grover’s algorithm operates on states in
equal superposition. Its extension to unequal superposition is covered in the section
on quantum amplitude amplification. Quantum counting determines the total number
of solutions in states in equal superposition, whereas quantum amplitude estimation
extends this to states in unequal superposition.

After covering the necessary preliminaries, we explore how these methods apply to
algorithms such as graph coloring and Boolean satisfiability. The final three techniques
presented here, namely quantum mean finding, quantum median finding, and quantum
minimum finding, are frequently referenced but may rely on assumptions that may not
be physically realizable. We have much ground to cover!

Grover’s Algorithm

Grover’s algorithm is one of the fundamental algorithms of quantum computing
(Grover, 1996). It allows searching for a special element in a domain of N elements
in O(W ) time. We will represent the domain by the N = 2" basis states of n qubits,
so the space complexity is O(log N ) The special element is also called a “solution.”
In general, special elements form a set of solutions S. By “searching” we mean that
there is a function f(x) and one (or more) special element x” for which

I, xeS§ (orx=x),

) = {0, x¢S (orx#x).

The classical algorithm to find x" has complexity O(N) in the worst case since it
has to evaluate all possible inputs to f. Being able to do this with complexity O(\/IV )
is, of course, an exciting prospect and one of the main reasons for the interest in this
quantum algorithm.

To understand the algorithm, we first describe it at a high level in fairly abstract
terms. We need to learn two new concepts: phase inversion and inversion about the
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mean. Once these concepts are explained, we detail several variants of their imple-
mentation. Then we assemble all the pieces into the complete Grover’s algorithm and
run a few experiments.

High-Level Overview

At a high level, the algorithm performs the following steps given a domain encoded
with n qubits and a special element |x'):

1. Create an equal superposition state |+ 4 - - - +-) = |+)*" by applying Hadamard
gates to an initial state |00. .. 0) of n qubits.

2. Construct a phase inversion operator Uy around the basis state representing the
special input |x"), which is defined mathematically as

Up = 19" = 2]x") (']
3. Construct an inversion about the mean operator U | , defined as
UL = 2(|4) (+)®" — 12",
4. Combine U, and Uy into the Grover operator G:
G=U,U.

5. Repeat steps 2 to 4 a total of k times, applying G to the state in each iteration. We
derive the iteration count k below. The resulting state will be close to the special
state |x'):

G [+)*" ~ ).

This basically explains the whole procedure. Some of you may look at this, shrug
mildly, and understand it right away. For the rest of us, the following sections explain
this procedure in great detail and in multiple different ways. Grover’s algorithm is
foundational; we want to make sure we understand it completely.

Phase Inversion

The first new concept we need to learn is phase inversion. Assume a given state |i))
with probability amplitudes c, and the basis states |x) representing the elements in a
domain on N elements, with N = 2" for n qubits:

) = clx) withx e {0,1,...,2" = 1}.

For simplicity, assume equal ¢; = 1/+/N. Figure 10.1 shows a bar graph where the
x-axis enumerates the states |x;), and the y-axis plots the height of the corresponding
probability amplitudes c;. It is safe to ignore the actual values; we are just trying to
make a point.
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Figure 10.1 Equally distributed probability amplitudes.
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Figure 10.2 Probability amplitudes after phase inversion.

We also assume that one of these input states |x;) is the special element |x') men-
tioned above. Phase inversion converts the original state into a state where the phase
for the special element |x’) picks up a factor of e™ = —1, its phase is being “negated.”!

W)=Y k) > ) =3 ek - col).
X x#x!

In the graph in Figure 10.2, we negated the phase of state |4), which is our special
state |x’). To relate this back to the function f(x) that we are trying to analyze, we
use phase inversion to negate the phase for the special elements only, which we can
express in closed form as

) = Zcx|x> iy |P) = ZCX(—I)f(X)pc}. (10.1)

Similarly to the black-box algorithms of Chapter 8, a key aspect of this procedure
is that the function f must be known. Otherwise, we would not be able to build the
operators and circuits required by this algorithm. This is an important distinction:
Although an implementation must know the function, observers who try to construct
and measure the function still have to go through N steps in the classical case but only
/N in the quantum case. This will become clearer in Sections 10.5 and 10.6, where
we provide examples of applications of this algorithm.

! Note that in general, the ¢; can be complex.
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Figure 10.3 An example of random (real) data (black circles) and its inversion about the mean
(white circles). The lines connecting the dots have no meaning but help to visualize the mean
inversion.

Inversion about the Mean

The second new concept is inversion about the mean. In general, the probability
amplitudes c, are complex. However, for simplicity in the following paragraphs, we
assume only real probability amplitudes. We calculate the mean u (“mu”) of the
probability amplitudes c, of the original state as

U= (Zcx)/N.

X

Inversion about the mean is the process of mirroring each ¢, about the mean. To
achieve this, we take the distance of each value from the mean, which is u — ¢,, and
add it to the mean. For values above the mean, 1 — ¢, is negative, and the value is
reflected below the mean. Conversely, for values below the mean, u — ¢, is positive,
and the values are reflected up. Figure 10.3 shows an example with a random set of
values plotted as black dots and the reflected values as white dots. Again, note our
simplification, we only consider real coefficients. In closed form, we compute

¢ =+ (p—a) = (2u—c),
Z clx) — Z(Zy — ) |x). (10.2)

X

Simple Numerical Example

With these new concepts, we can now describe a single step in Grover’s algorithm
using the simple example with 4 qubits and 16 states, as shown in Figure 10.1. Here
is how it works:

1. Imitialization. As seen in Section 10.1.1, we put states in superposition and start
with all the states being equally likely with an amplitude of 1/ V/N.

2. Phase inversion. Apply phase inversion as shown in Equation (10.1). The
amplitude of the special element becomes negative, thus pushing the mean of all
amplitudes down. In our example with 16 states and amplitude 1/1/16 = 0.25, the
overall mean is roughly pushed down to (0.25 * 15 — 0.25)/16 = 0.22.
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Figure 10.4 Distribution of (real) amplitudes after phase and mean inversion. The amplitude for
the special element |x') = |4) has been amplified, and all other amplitudes have been lowered.

3. Inversion around the mean. This will reduce the amplitudes of 0.25 to
0.22 4 (0.22 — 0.25) = 0.19 but will amplify the special element to a value of
0.22 + (0.22 4 0.25) = 0.69.

For the general case, rinse and repeat steps 2 and 3. For our artificial amplitude exam-
ple above, a single step transforms the initial state into the state shown in Figure 10.4.

Two-Qubit Example

Let us make this even more concrete and visualize the procedure using an example
with two qubits, inspecting the operator matrices and state vectors. In a two-qubit
system, our special element shall be |x') = |11) with its corresponding outer product:

0 00 0O

AN _ O / o 0 0 0 0
|X>—|11>— 0 and |X><.x|— 00 0 O
1 0 0 0 1

The solution |x') corresponds to the solution space |B) in Figure 10.5. The phase
inversion operator Uy from step 2 in Section 10.1.1 then becomes the following
(note that in the implementation below, we use a different methodology to get this
operator):

1 0O 0 O
g0 0 0
o o0 0 -1
We know how to create an equal superposition state |s) = |++). The state |xT)

is the difference between |s) and |x’) and corresponds to the axis |@) in Figure 10.5,
which is the subspace of all non-solutions:

|s) = H®?|00) = [++) = =

e — —
Sl
(98]

O = = =
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B)

R

1¢/2 |
=

> |a)

Uly)

Figure 10.5 Geometric interpretation of a Grover rotation.

The state |x1) is orthogonal to |x') = |B), the subspace of solutions in Figure 10.5.
We can confirm this by computing the inner product (x*|x’) = 0. The state |x) is
also “close” to |s) when we think of closeness as how many 1s and Os are common in
the state vectors (this is also called Hamming distance).?

The state |¢) in the figure corresponds to the initial |s). It is easy to see how
applying the operator Uy inverts the phase of the |x’) component in |s) to

1
1| 1

Ulp)=Uls)=51 || (10.3)
—1

In Figure 10.5, this corresponds to a reflection of the state |¢) (which is our [s))
about the @-axis, drawn as the bottom vector marked as Uy |¢). The inversion about
the mean operator U | , as defined in step 3 above, is

Uy =2(1+) (+]) % - 122

= 2[s)(s| — 1%?
-1 1 1 1
R T S B
2 1 - 1
1 1 1 =1

This operator U reflects Ur|) from Equation (10.3) about the original state |s)
into the new state U, Us|¢) = [11):

-1 1 1
1 -1

=|11).
| )
1

N =

1
2

- O O O

1

1

-1 1
-1

2 See http://en.wikipedia.org/wiki/Hamming_distance.
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For this example with only two qubits, a single iteration is sufficient to move the
state |s) to the special state |x') = |11) that we were looking for. All of these steps
look very compact in code:

>>
|1

x = state.bitstring(l, 1)
s = ops.Hadamard(2) (state.bitstring (0, 0))

Uf = ops.Operator (ops.Identity(2) - 2 * x.density())
Ub = ops.Operator (2 * s.density() - ops.Identity(2))

(Ub @ Uf) (s) .dump ()

1> (|3>): ampl: +1.00+40.00j prob: 1.00 Phase: 0.0

The iteration count of 1 for this example agrees with the general iteration count in
Equation (10.7) below, which we will derive next.

Iteration Count
How many iterations & should we perform? How do we know when to stop? It turns
out we need exactly k iterations (with k rounded down to an integer), where

kz%\/le.

Let’s derive this result. First, we define two subspaces as indicated above: The space
|a) of all states that do not contain a special element and the space |B) of only special
states. Note that in Grover’s algorithm, we search for only one special element |x'),
but here we generalize this derivation to search for M solutions in a population of N
elements. As we are using Hadamard gates, all states are in equal superposition. The
two subspaces are

1 1 /
|“>=ﬁ2|x> and |5>=WZ|X>~

x¢S x'es

With this, we can define the whole state |¢’) as the composite of the two subspaces:

) = /i) M1, (10.4)

We can visualize this space in two dimensions, where the x-axis corresponds to state
space |a) and the y-axis to solution space |), as shown in Figure 10.5.

Application of phase inversion (with the corresponding operator Uy, as before)
reflects the state about the axis or subspace |«). This, in essence, negates the second
part of the superposition, similar to the effect of a Z gate on a single qubit, where a
and b are the probability amplitudes for the subspaces o and f3:

U (ala) +b|B)) = ala) — b|B).

In the figure, this is shown as the vector marked with |i) being reflected about the
axis marked as |@) to the final vector marked as Uy ).
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The inversion around the mean (with operator U | ) then performs another reflection
about the vector |¢). The two reflections compound to a rotation, which means that
the state remains in the space spanned by |a) and |B). Furthermore, the state rotates
incrementally towards the solution space |3). We have seen in Equation (10.4) that

) = i M)

We can geometrically position the state vector with simple trigonometry. We define
the initial angle between |¢) and |a) as ¢ /2. Moving forward, Equation (10.5) will
be important; we use it in Section 10.3 on quantum counting:

oo (3) - (T
sin <‘§> = \/ﬁ (10.5)

) = cos (f) ) + sin (‘5) B).

From Figure 10.7, we can see that after phase inversion and inversion about the
mean, the state has rotated by ¢ towards |S). The angle between |«) and |¢) is now
§¢> We call the combined operator the Grover operator G = U, Uy, which, after one
iteration, produces the state

Gty =eos (3 ) 10) +3in ()

We can see that repeated application of the Grover operator G will take the state to
2k+1 . (2k+1
) = cos (2320 ) o s (2o ) )

Now, to maximize the probability of measuring |B), the term sin (% ¢) should
be as close to 1 as possible. Taking the arcsin of the expression yields

2k +1
sm(qu)—
2%+ 1
2
1 |
L (S (10.6)

20 2742 2

Note that an iteration count must be an integer, so the question we face now is
what to do with the term —1/2. In our implementation, we simply ignore it. For our
examples below, the probabilities of finding solutions are around 40% or higher, and
this term seems to have no impact. Now let us solve for k. From Equation (10.5), we

know that
IM
sin <(§> = ﬁ
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Since we can assume that N >>M, we use the approximation that, for small angles,
sin(x) & x. Substituting in % = /M/N and M = 1 into Equation (10.6), we reach
the final result for the number of iterations & as the rounded down integer of

mm |N T
k= 4\/; = Z\/N. (10.7)

Phase Inversion Oracle Operator

We have already seen the mathematical way to compute the matrix operator Uy =
I —2|x'){x'|. As a second strategy, we will use an oracle operator, which, at this point,
we suspect can be implemented as a circuit (we also want to demonstrate the utility of
the oracle operator one more time).

The oracle structure, shown in Figure 10.6, is similar to the Deutsch—Jozsa oracle —
the input x is a whole register of qubits initialized as |0) and put in equal superposition
with Hadamard gates. The lower qubit y is an ancilla initialized as |1). The Hadamard
gate puts it in state |—).

Recall from Equation (10.1) that for Uy, the goal is to transform the input state as

) = Zcx|x,~> —inv [P) = Zcx(*l)f(x) |x).

X X
How does this work? State |—) is

0) — 1)
5

Since we use an oracle, all input values are computed in parallel. If f(x) = O,
the bottom qubit in state |—) is XOR’ed with |0), which means that its state remains
unmodified. However, if f(x) = 1, the ancilla qubit in state |—) is XOR’ed with |1),
which means the state gets negated as

1) —10)
V2

For the ancilla, the result in closed form is (—1)/®) |=). The tensor product of
input bits and the ancilla is

=)=

—_|4).

Yo a1 =),

|0y®" H®" x x HE"
U

) —{a} s ses

Figure 10.6 The Grover oracle is similar to the Deutsch—Jozsa oracle detailed in Section 8.3.
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) = [11010)

|x0) |x0)
x1) x1)

o o

x3) xs)
by —{X f——p——{x}— =)
Ancilla |y) @ ly&f(x))

Figure 10.7 Phase inversion circuit for the special element |x') = [11010) in the state space of
n =5 qubits. The controlled Z gate acts on the ancilla non-trivially only when the first five
control qubits are in state |x').

We slightly rearrange the terms, ignore the ancilla,® and arrive at the closed form we
are looking for:

) =D ex(=1Y W)

Phase Inversion Circuit

So far, we have constructed the phase inversion operator as a giant matrix, which is
inefficient for larger numbers of qubits. Here is a more efficient construction with a
multi-controlled Z gate. It will show better performance, even though n — 1 ancilla
qubits are required with our implementation, as outlined in Section 2.10.3. We are
trying to compute a unitary operator Ur such that

f@ =0, x#x,
O = |x x)), where
Urly) = Wl & £() {f(x)zl, r= .

The way to read this is that we only want to apply phase inversion for the special state
|x") for which f(x") = 1. This means we must multi-control the final qubit as shown
in Figure 10.7, ensuring that the control bits are all |1) only for the special state. We
will find more instances of this type of construction in other Grover-based algorithms
later in this book.

Inversion about the Mean Operator

To reiterate, inversion about the mean u is this procedure:
D ey = (2u - ).
X X

3 We can ignore the ancilla here, but in general, we should uncompute it.
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In matrix form, we can accomplish this by multiplying the state vector with a matrix
with values 2 /N everywhere, except for the diagonal elements, which are 2/N — 1. We
derive this matrix in the following paragraphs. The matrix can also be written as

UL = 2(14) () ="

This matrix is also called diffusion operator for a variety of reasons. The main
reason is that Lov Grover himself called it the diffusion operator because of how
probabilities seem to spread out with bias towards the special element(s). There are
similarities to diffusion in that values closer to the mean decrease, while values farther
away from the mean increase. This is the operator we aim to construct:

2/N-1 2N ... 2N
2/N 2/N—1 ... 2/N

U, = , , . . . (10.8)
2/N 2/N ... 2/N—1

Why do we look for this specific operator? Recall from Equation (10.2) that we
want to construct an operator that performs the transformation

Zcx|x) — Z(Zy — ¢ |x).

How does the operator U | work? Each row multiplies and adds each state vector
element by 2/N before subtracting the one element corresponding to the diagonal:

2/N-1 2/N ... 2/N co
2/N 2/N—1 ... 2/N ¢

(10.9)
2/N 2/N ... 2/N—1) \co

(26‘0/N+201/N+ e +2C,171/N) — Co
(2¢o/N +2¢i/N + -+ -+ 2¢ch—1/N) — ¢

(260/N+ 26‘1/N-‘r B 2cn_1/N) — Cp—1

2u — cp
2u—c¢y
2# — Cn—1

We derived the matrix from Equation (10.8) mathematically. But what procedure
and what operators should we use in practice to get this matrix as an operator? We
have seen the geometrical interpretation above. We can think of inversion about the
mean as a reflection around a subspace. Hence, a possible derivation consists of three
steps:
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n qubits H®" w H®"

1)

Figure 10.8 Inversion about the mean circuit for the operator U | . The diagonal matrix
W = 2(]0) (0))®" — I®" has a 1 in the top left element, and all remaining diagonal elements
are —1.

1. Ideally, we would like to rotate the space in equal superposition |+ + - - - +). But
it is hard to construct an operator to do this reflection in this basis. Therefore, we
use Hadamard gates to get into the computational basis and construct the
reflection there.

2. Leaving the Hadamard basis, the state |+ + - - - +) becomes the state |00. .. 0),
which seems like an obvious choice to reflect about. We could pick another state
for reflection, as long as that state is still almost orthogonal to the subspace «, but
for state |00. . . 0), the inversion operator has an elegant construction (which we
show in Section 10.1.10).

3. Transform the state back to the Hadamard basis with Hadamard gates.

These three steps define the circuit shown in Figure 10.8. For Steps 1 and 3, we
apply Hadamard gates to get in and out of the computational basis, as we are in the
Hadamard basis from the phase inversion before. For Step 2, we will want to leave
the state [00...0) alone but reflect all other states. If we think about how states are
represented in binary and how matrix—vector multiplication works, we can achieve
this by constructing the matrix W, which is easy to derive as

W = 2(J0) (0))" — 1"
2 1

= . . (10.10)

—1

Again, we could pick any state as the axis to reflect about, but the math is ele-
gant and simple when picking the state |00. .. 0). This will become clearer with the
derivation immediately below.
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Only the first bit in the state vector remains unmodified, and that first bit corre-
sponds to the state |00. .. 0), as indicated in Equation (10.10). Recall that the state
vector for this state is all Os, except the very first element, which is a 1. The projector
Pjgy = |0)(0| has a single 1 at the top left corner and Os everywhere else. Therefore,
using the matrix W, which has a —1 on all remaining diagonal elements, all other
states are negated. In combination, we want to compute

1

—1
H®nWH®n —_ H®n . H®n
—1
[ /2
0
— Ho®n . _ 7| ge®n
L 0
2
0
=H*" . H®" — H®"[H®".

0

Since the Hadamard operator is its own inverse, the second term reduces to the
identity matrix /. Multiplying in the left and right Hadamard gates as

2/VN 0 ... 0
2/VN 0 ... 0

= . . .. : H®n_1
2N 00
2/N 2/N ... 2/N
2/N 2/N ... 2/N

=1 _— |-t
2/'N 2/.N ... 2/N

Finally, subtracting the identity I produces a matrix where all elements are 2/N,
except the diagonal elements, which are 2/N — 1:

2/N—1 2/N ... 2/N

2/N 2/N—1 ... 2N
U, =

2/.N 2/.N 2/N.—1
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n qubits

Ancilla

179 %5
L

Figure 10.9 Inversion about the mean circuit (omitting leading and trailing Hadamard gates
applied to the top n qubits). We want to apply the X gate to state |00. .. 0) only. Hence all
control bits must be |0).

This is the matrix U; we were looking for. Applying this matrix to a state trans-
forms each element ¢, into 21 — ¢y, as shown in Equation (10.9).

Inversion about the Mean Circuit

As a third implementation strategy, we can construct a quantum circuit for the inver-
sion about the mean using reasoning similar to that for the phase inversion operator
(Mermin, 2007).

The main “trick” for building an operator for mean inversion is to realize that the
direction of the rotation for amplitude amplification does not matter; it can be negative
or positive. This means that instead of constructing W = 2(P|g))®" — I®" as before,
we construct

W' =1%" —2(Pj))®" = I®" — 2|00...0)(00...0].

We want to build a gate that leaves all states untouched, except |00. . . 0), for which
we want to flip the amplitudes. An X gate will do this for us. Because the X gate
must be controlled to apply only to |00. .. 0), we expect all inputs to be |0). Hence,
to control the X gate, we sandwich the controller qubits between the X gates, omitting
the left and right Hadamard gates from the construction in Equation (10.8), as shown
in Figure 10.9.

As a result, for the big inversion operator U | from Equation (10.8), the circuit in
Figure 10.9 corresponds to the closed form below (with (CX )"*! indicating a multi-
controlled X gate with n control qubits controlling the ancilla qubit at index n + 1),
which yields the operator

Uy = H¥"X®"(CX ) X2 He",

In the implementation shown below, we can verify that the order of rotation does
not matter by modifying this line in file grover.py:
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<<
reflection = op_zero * 2.0 - ops.Identity(nbits)
>>

reflection = ops.Identity(nbits) - op_zero * 2.0

10.1.11  Oracle Implementation of Grover’s Algorithm

Now let’s put all the pieces together. The complete Grover iteration circuit is shown
in Figure 10.10. In the code, we first define the function f we intend to analyze. The
make_f function creates an array of all Os, except for one or more special elements
randomly set to 1, corresponding to |x’). The function returns a lambda function object
that converts its parameter, a sequence of address bits, to a decimal index and returns
the value of the array at that index.

Find the code
PY
In file src/grover.py

def make_f(d: int = 3, solutions: int = 1):

answers = np.zeros(l << d, dtype=np.int8)

solutions = random.sample(range(l << d), nsolutions)
answers [solutions] = 1

return lambda bits: answers[helper.bits2val (bits)]

The initial state of the circuit is a register of |0) qubits with an additional ancilla
qubit in state |1). Applying the Hadamard gate to all of the qubits puts the ancilla into
the state |—).

# State initialization:
psi = state.zeros(nbits) * state.ones (1)
for i in range(nbits + 1):

psi.apply (ops.Hadamard (), i)

G = U Uy repeat Z+/N times

H®n — —
10)*" HE" W HE"
l]f | —
1) H Y

Figure 10.10 Full circuit for Grover algorithm with the Uy and U | operators. As drawn, the
circuit would only perform a single iteration.
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In order to implement phase inversion, we generate an oracle with the function
object we created above. To create the oracle itself, we use our trusty OracleUf
operator and give it the function object as a parameter. Using an oracle this way is
slow as it utilizes the full matrix implementation. Of course, any given operator can
be implemented with quantum gates, but this can be quite cumbersome.* Fortunately
for us, this is not the case here, as shown for the elegant phase inversion operator in
Figure 10.9.

f = make_f (nbits)
uf = ops.OracleUf (nbits+1, f)

Now we move on to mean inversion. We first construct an all-0 matrix with a single
1 in the top left element. This is equivalent to building an nbi ts-dimensional |0) (0]
projector (using the helper function zZeroProjector). With this, we construct the
2[00...0)(00...0| — I®" reflection matrix:

op_zero = ops.ZeroProjector (nbits)
reflection = op_zero * 2.0 - ops.Identity(nbits)

The full inversion operator U consists of the Hadamard gates surrounding the
reflection matrix W. We add an identity gate to account for the ancilla we added
earlier for the phase inversion oracle. We build the complete Grover operator grover
as the product of the mean inversion operator inversion with the phase inversion
operator uf. Finally, we iterate the desired number of times based on the size of the
state, as calculated with Equation (10.7):

hn = ops.Hadamard (nbits)

inversion = hn(reflection(hn)) * ops.Identity()
grover = inversion (uf)
iterations = int(math.pi / 4 x math.sgrt(2x*nbits))

for in range(iterations) :

psi = grover (psi)

To check whether we have computed the right result, we perform measurement by
peek-a-boo and compare the state with the highest probability to the intended result:

maxbits, maxprob = psi.maxprob()

result = f(maxbits[:-11)

print ( 'Got f({}) = {}, want: 1, #: {:2d}, p: {:6.4f}"'
.format (maxbits[:-1], result, solutions, maxprob))

assert result == 1, 'Something went wrong, invalid state'’

4 Perhaps more cumbersome than what we have shown so far.
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Experimenting with a few bit widths should produce a result similar to this:

def main(argv) :
for nbits in range(3, 8):
run_experiment (nbits)

Got f£((1, 0, 1)) =1, want: 1, #: 1, p: 0.3906

Got f£((1, 0, 1, 1)) =1, want: 1, #: 1, p: 0.4542

Got f£((1, 0, 1, 0, 0)) =1, want: 1, #: 1, p: 0.4485

Got f£((1, 0, O, 1, 1, 1)) =1, want: 1, #: 1, p: 0.4818
Got f((0, 1, 0, 1, 0, 0, 0)) =1, want: 1, #: 1, p: 0.4710

So far, we have operated with big matrices and projectors, which are easy to
construct mathematically. In order to implement Grover’s algorithm on a physical
machine, we need to implement the operators with gates. This is the topic of
Section 10.1.12.

Circuit Implementation of Grover’s Algorithm

Now, let us explore the implementation of Grover’s algorithm using gates instead of
big matrices. We will find similar constructions in many variants of the algorithm.
To start, we modify the function make_f£ from Section 10.1.11 to mark only a single
special element and additionally return the binary bit pattern for the special element:

def make_fl(d: int = 3):
answers = np.zeros(l << d, dtype=np.int8)
answer_true = np.random.randint (0, 1 << d)
answers [answer_true] = 1
return (lambda bits: answers[helper.bits2val (bits)],
helper.val2bits (answer_true, d))

We introduce a helper function multi-masked that applies a gate only if it matches
a specific mask and masking value:

def run_experiment_circuit(nbits: int) -> None:
def multi_masked(gc: circuit.gc, gate: ops.Operator, idx: List[int],
mask, allow: int):
for i in idx:
if mask[i] == allow:
gc.applyl (gate, i, 'multi-mask')

To construct the state, we add the input register, another ancilla initialized with |1),
and an additional aux register for the multi-controlled gates used later in the circuit:
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gc = circuit.gc('Grover')

reg = gc.reg(nbits, 0) # n bits for functions

gc.reg(l, 1) # ancilla.

aux = gc.reg(nbits - 1, 0) # auxiliary bits for multi_control

We create the function object, which gives us the bit pattern of the special elements
in variable bits. We also compute the number of iterations as in the oracle-based
implementation.

f, bits = make_fl(nbits)
iterations = int(math.pi / 4 * math.sqgrt(2**nbits))

In addition, we create a range of indices in the list variable idx. These are the
indices for the qubits to which we want to apply the Hadamard and X gates in the
diffusion circuit. At the start of the algorithm, we also have to apply Hadamard gates
to all qubits, including the ancillary qubit. We use a similar Python list comprehension
for this (similar to other single-qubit gates, the Hadamard function gc.h accepts a
single qubit index as well as a list of indices as input):

idx = [1 for 1 in range(nbits)]
gc.h([i for i in range(nbits + 1)])

With these pieces in place, we can now create the loop and construct phase inversion
and mean inversion circuits, as outlined above. For phase inversion, we apply Z gates
to the qubit indices that represent a O in the binary representation of the special
element. This is encompassed by passing bits with a mask of 0 to multi_masked.
For the mean inversion, we use the convenience of being able to pass lists of indices to
the single-gate functions and apply the controlled X gate to the ancilla, which resides
at index nbits:

for _ in range(iterations):
# Phase Inversion

multi_masked(gc, ops.PauliX(), idx, bits, 0)
gc.multi_control (reg, nbits, aux, ops.PauliZ (), 'Phase Inversion')
multi_masked(gc, ops.PauliX(), idx, bits, 0)

# Mean Inversion
gc.h(idx)
gc.x (1dx)
gc.multi_control (reg, nbits, aux, ops.PauliX(), 'Mean Inversion')
gc.x (idx)
gc.h(idx)
[...] # check results

All that is left now is to obtain the state with the highest probability and to ensure
that everything goes as planned. This code is almost identical to the equivalent code
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Figure 10.11 A 2-qubit Grover algorithm implementation with a bottom ancilla qubit. The
phase inversion subcircuit starts at [¢)o), and the mean inversion subcircuit starts at |11 ).
Measurement gates have been omitted.

in the oracle-based implementation, so we do not replicate it here. It is interesting to
compare the run-time behavior and performance of the matrix-based and circuit-based
implementations; you may want to run a few experiments. In Figure 10.11, we show
the full circuit for a 2-qubit Grover circuit.

Quantum Amplitude Amplification (QAA)

How should we modify Grover’s algorithm to account for a set of solutions S with
more than one special element? Naively, this is relatively easy to achieve: We have to
adjust the phase inversion, the inversion about the mean, and the iteration count. The
function make_f shown above already accepts parameter solutions to specify how
many elements to mark.

We derived the proper iteration count in the derivation for Grover’s algorithm in

Equation (10.7) as
N
k= %’/M’ with M < N.

In Section 10.1.6 we assumed M = 1. To account for multiple special elements, we
have to adjust the computation of the iteration count and divide by a larger M, which
is the parameter solutions in the code.

Find the code
PY
In file src/grover.py

iterations = int(math.pi / 4 » math.sqgrt(2+*nbits / solutions))

We add a test sequence to our main driver code to check whether any solution can
be found and with what probability. For good performance, we hold the number of
qubits at eight and gradually increase the number of solutions from 1 to 8:

for solutions in range(l, 9):
run_experiment (8, solutions)
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20 40 60

Figure 10.12 Probability of finding a special element when the total number of such elements
ranges from 5 up to 64 in a state space of 128 elements. The y-axis shows the probability; the
x-axis shows the number of special elements.

If we were to print the number of states with nonzero probability, we would find
that all of their probabilities are identical but that there are twice as many states with
nonzero probability as there are solutions! This is an artifact of our oracle construction
and the entanglement with the ancilla qubit.

As we run the experiment, and if all goes well, we should get output like the
following. Note how we increase the number of solutions (sols):

Got
Got
Got
Got

£(¢(1, 1, 0, 0, 1, 0, 0, 0)) =1, want: 1, sols: 1, found 1, p: 0.491
£(¢(1, 0, 2, 12, 1, 1, 0, 1)) =1, want: 1, sols: 2, found 1, p: 0.235
£((1, 1, 1, 0, 0, 1, 1, 0)) =1, want: 1, sols: 3, found 1, p: 0.162
£(¢(0, 0, 1, 0, 0, 0, 1, 0)) =1, want: 1, sols: 4, found 1, p: 0.120

In this experiment, the algorithm is able to find a single solution each time, but
the probability of finding a solution (p) decreases as the total number of solutions
increases. This is a limitation of Grover’s algorithm when dealing with multiple solu-
tions, and the results here are consistent with that theoretical understanding. As M
grows, the small-angle approximation used in Grover’s algorithm no longer holds.

Let us visualize the probabilities in the graph in Figure 10.12. On the x-axis, we
have the number of solutions ranging from 5 to 64. On the y-axis, we ignore the
first few cases with high probability and set a maximum of 0.1. We can see how
the probabilities decrease rapidly and drop to O after the total number of solutions
exceeds 40.

What if there are many more solutions, perhaps even a majority of the state space,’
or what if the solution probabilities are not all equal? To answer these questions,
Grover’s algorithm has been generalized by Brassard et al. (2002) as Quantum Ampli-
tude Amplification (QAA), which we discuss in this section.

5 Let us ignore that in this scenario, a random choice would give a correct solution with high probability.


https://doi.org/10.1017/9781009548519.011

220

Algorithms Using Amplitude Amplification

Grover expected only one special element and initialized the search with an equal
superposition of all inputs by applying the algorithm A = H®" to the input. Note the
unusual use of the term algorithm. In the context of this section, an algorithm can mean
just a single gate, as in Grover, with equal superposition states. But it can also mean
other, more complex algorithms with sequences of gates that may produce unequal
state probabilities. QAA supports any algorithm A to initialize the input and changes
the Grover iteration to the more general form:$

0 =AU ATU;. (10.11)

The operator Uy is the phase inversion operator for multiple solutions, and U is the
inversion about the mean operator that we saw in Grover’s algorithm. What changes is
the derivation of the iteration count k, which has been shown to be proportional to the
probability pg0q Of finding a solution (see Kaye et al., 2007, section 8.2). For QAA,
the iteration count shall be

k= [
Pgood

The square root in the formula for £ comes from Grover’s algorithm, where the
number of iterations needed to find a solution scales as the square root of the ratio
of the search space to the number of solutions. In Quantum Amplitude Amplifica-
tion (QAA), this idea is generalized: The number of iterations is proportional to the
inverse square root of the probability pgooq Of finding a solution. This reflects how the
algorithm amplifies the probability of success over time.

Let us see how the probabilities improve with this new and improved iteration
count. As an experiment, we keep A = H®" and compute the new iteration count
as the following, where we now divide by solutions to reflect the probability of
finding a solution:

iterations = int (math.sgrt(2+«*nbits / solutions))

Figure 10.13 shows the probabilities for the two iteration counts, where the thick
line represents the probabilities obtained with the new iteration count. We see that
the situation improves markedly, but the probabilities still drop to O for more than 64
solutions. When the ancilla qubit is used in Grover’s algorithm, it becomes entangled
with the other qubits. This entanglement effectively doubles the number of basis states
because the ancilla qubit can be |0) or |1). As a result, even though the number of
solutions (marked by the oracle) remains the same, there are now twice as many states
overall with nonzero probabilities due to the extra entanglement introduced by the
ancilla qubit.

When the number of solution states becomes half of the total state space, Grover’s
algorithm becomes inefficient and starts to fail because the amplitude amplification

6 You will also see this written as Q=AU J_A*1 Uy. However, the algorithm A is unitary and invertible;
this is why we can use the dagger.
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Figure 10.13 Probabilities for amplitude amplification finding 1 out of up to 64 solutions in a
state space with 128 elements: (thick black line) amplitude amplification, (light gray line) and
Grover’s search. The y-axis shows the probability; the x-axis shows the number of special
elements

starts to overshoot, reducing the probabilities of measuring a solution state. To
avoid this, adding another qubit effectively doubles the size of the state space,
providing more room for Grover’s algorithm to work efficiently again without
crashing. The additional qubit increases the total number of basis states, ensuring
that the number of solutions is no longer half the state space, thereby solving the
problem.

The technique of amplitude amplification requires knowledge of the number of
good solutions and their probability distribution. A general technique called amplitude
estimation can help with this (see Kaye et al., 2007, section 8.2). We detail this tech-
nique in Section 10.4. However, before that, in Section 10.3, we detail a special case of
amplitude estimation, called quantum counting, which assumes an equal superposition
of the search space with the algorithm A = H®", similar to Grover.

State Preparation with QAA

In Section 9.1.2 on amplitude encoding, we hinted at a way to initialize a state such
that specific states |x;) have a high probability of equal magnitude, while all other
states have a probability close to 0. With QAA in our arsenal of techniques, this is
now straightforward to implement. You create a function that marks all the elements
that should have high probability as special elements and run Grover’s algorithm.
After the correct number of iterations, the result will be exactly as expected. A short
implementation of this technique can be found in file state prep.py in the open-
source repository.

Py Find the code
In file src/state_prep.py


http://www.github.com/qcc4cp/qcc/blob/main/src/state_prep.py
http://www.github.com/qcc4cp/qcc/blob/main/src/state_prep.py
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Quantum Counting

Quantum Counting is an interesting extension of the search problems that we solved
with Grover’s algorithm and amplitude amplification. Combining these search algo-
rithms with phase estimation in an interesting way solves the problem of not knowing
how many solutions M exist in a population of N elements. Recall that amplitude
amplification requires knowledge of M to determine the proper iteration count. Quan-
tum counting is a special case of amplitude estimation that seeks to estimate this
number M. Because it expects an equal superposition of the search space, similar
to Grover with algorithm A = H®", we can reuse much of the Grover implementation
from Section 10.2 above.

As in Grover’s algorithm, we partition the state space into a space |a) with no
solutions and the space |) with only solutions as

) = 1)+ M.

Applying the Grover operator amounts to a rotation by an angle ¢ towards the
solution space |B). You may refer again to Figure 10.5 for a graphical illustration
of this process. Since this is a counterclockwise rotation, we can express the Grover
operator as a standard rotation matrix:

o= (28 ~ne).

Rotation matrices are unitary matrices with eigenvalues Ao | = e*®. In the analysis
of Grover’s algorithm, we found Equation (10.5), replicated here, with N being the
number of elements and M being the number of solutions:

o(3)-1F

If we had a way to find ¢, we would be able to estimate M because we already know
N. Fortunately, we will learn in Section 11.2.1 about phase estimation that will allow
us to find ¢ with a circuit as shown in Figure 10.14. Don’t worry about its function at
this point, it will become clear in Chapter 11.

Py Find the code
In file src/counting.py

Let us translate this circuit into code. We reuse the function make_f from Section
10.1.11. It returns 1 for a solution and 0 otherwise. Next, we build the Grover operator,
just as we did in Section 10.1 on Grover’s algorithm. The parameter nbits_phase
specifies how many qubits to use for phase estimation, and parameter nbits_grover
indicates how many qubits to use for the Grover operator itself. Since this code utilizes
the full matrix implementation, we can use only a limited number of qubits. Neverthe-
less, the more qubits we use for phase estimation, the more numerically accurate the
results will become.


http://www.github.com/qcc4cp/qcc/blob/main/src/counting.py
https://doi.org/10.1017/9781009548519.011
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Figure 10.14 Phase estimation for the Grover operator G.

In the code, we use Hadamard gates before and after the reflection operator. Later,
in Section 10.4, we will generalize and allow for other operators (algorithms) that may
result in unequal probability distributions.

def run_experiment (nbits_phase: int, nbits_grover: int,

solutions: int) -> None:

op_zero = ops.ZeroProjector (nbits_grover)
reflection = op_zero * 2.0 - ops.Identity(nbits_grover)

hn = ops.Hadamard (nbits_grover)

inversion = hn(reflection(hn)) * ops.Identity()
grover = inversion(u)
f = make_f (nbits_grover, solutions)

u = ops.OracleUf (nbits_grover + 1, f)

Now we build the circuit in Figure 10.14. The Grover operator needs an ancilla
in state |1), which we also add to the state (not shown in Figure 10.14). We apply
a Hadamard gate to the inputs and the ancilla and then apply the Grover operator
iterations times:

psi = state.zeros(nbits_phase + nbits_grover) * state.ones(1)
for i in range(nbits_phase + nbits_grover + 1):
psi.applyl (ops.Hadamard (), i)

iterations = int(math.pi / 4 * math.sgrt(2+«*nbits / solutions))
for _ in range(iterations):
psi = grover (psi)

Finally, we follow this with a sequence of exponentiated gates for phase estima-
tion and a final inverse QFT (again, the details are being explained in Chapter 11).
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For convenience, we also wrap this code for phase estimation in a helper function
PhaseEstimation (), which we will use later:

cu = grover
for inv in reversed(range (nbits_phase)):
psi = ops.ControlledU(inv, nbits_phase, cu) (psi, inv)
cu = cu(cu)
psi = ops.Qft(nbits_phase) .adjoint () (psi)

This completes the circuit. We measure and find the state with the highest probabil-
ity. Then we reconstruct the phase from the binary fractions and use Equation (10.5)
to estimate M, the number of solutions:

maxbits, maxprob = psi.maxprob()
phi_estimate = helper.bits2frac (maxbits)

m = round (2+*nbits_grover * math.sin(phi_estimate » math.pi) % 2, 2)
print (
f'Estimate: {phi_estimate:.4f} prob: {maxprob x 100.0:5.2f}% '
f'--> m: {m:5.2f}, want: {solutions:2d}'
)

assert np.allclose(np.round(m), solutions), 'Incorrect result.'

Let us run some experiments with seven qubits for phase estimation and four qubits
for the Grover operator. For N = 64, we let M range from 1 to 5:

def main(argv) :

for solutions in range(l, 6):
run_experiment (7, 4, solutions)

Running this code should produce output like the following:

Estimate: 0.9250 prob: 9.12% --> m: 0.87, want: 1
Estimate: 0.8843 prob: 4.73% --> m: 2.02, want: 2
Estimate: 0.1460 prob: 0.80% --> m: 3.14, want: 3
Estimate: 0.1714 prob: 0.73% --> m: 4.21, want: 4
Estimate: 0.8125 prob: 1.04% --> m: 4.94, want: 5

We can see that our estimates will round to the correct number of solutions. Also
note that the probability of a solution decreases significantly with higher values of M.

Amplitude Estimation

In Section 10.3 on quantum counting, we constructed the Grover operator using Hada-
mard gates as the “algorithm” to put the state in an equal superposition of basis states.
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Then we used phase estimation (details in Chapter 11) to calculate the operator’s
eigenvalue. From this value, given that there was an equal superposition, we could
count the number of solutions. However, equal superposition is really a special case.

Quantum Amplitude Estimation (QAE) is the generalization of this procedure to
unequal superpositions. In QAE, an algorithm A will put the state in a potentially
unequal superposition of special elements (x}) and regular elements (x;). QAE then
estimates the probability of finding a solution.

To recap, we have seen in Section 10.1 that for a population of N elements with M
solutions, we can write the state as the following, defining the initial angle between

|¢) and |@) as ¢/2:
) = ¥|(1> + \/¥|ﬁ>, and
) = cos (f) |a) + sin (q;) B). (10.12)

Taken together, QAE will estimate the probability of finding a solution as

sin? (‘3) = % (10.13)

In QAE, we can use any unitary matrix representing an algorithm for state prepa-
ration. Consequently, we change the code that constructs the Grover operator in the
same way as Equation (10.11) in Section 10.2 on amplitude amplification with an
algorithm A:

Q=AU AU,

Similarly to quantum counting, we apply phase estimation on Q. For a given eigen-
vector |u) with eigenvalue ¢>™¢, phase estimation gives us the value ¢. From Equation
(10.13) we know that we are looking for ¢»/2. Since ¢ is an angle and we work within
a trigonometric context, phase estimation typically returns a phase in units ranging
from O to 1, rather than O to 27t. To convert this phase into the correct trigonometric
angle, the phase is multiplied by 27. Since Equation (10.13) involves ¢ /2, multiplying
by 7 adjusts the phase correctly and eliminates the need to divide ¢ by 2 again. Once
we have that, we know the probability of finding at least one solution.

The implementation is quite similar to quantum counting. In the code snippet
below, we only highlight the few code changes required for this generalization. First,
we modify make_f again and add a parameter specifying the list of solutions we want
to mark as special elements.

Py Find the code
In file src/amplitude_estimation.py

def make_f (nbits: int, solutions: List[int]):

answers = np.zeros(l << nbits, dtype=np.int32)
answers [solutions] = 1
return lambda bits: answers[helper.bits2val (bits)]



http://www.github.com/qcc4cp/qcc/blob/main/src/amplitude_estimation.py
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We pass in the unitary representing the algorithm as parameter algo and construct
the Grover operator with it. We also pass in the specific solutions that should be
marked:

def run_experiment (nbits_phase: int, nbits_grover: int,
algo: ops.Operator,

solutions: List[int]) -> None:
[...]
inversion = algo.adjoint() (reflection(algo)) * ops.Identity()
grover = inversion(u)

[...]

As in quantum counting in Section 10.3, we perform phase estimation and apply
the inverse QFT. Using Equation (10.12), we calculate the amplitude ampl, print, and

return it.
psi = ops.PhaseEstimation(grover, psi, nbits_phase, nbits_phase)
psi = ops.Qft (nbits_phase).adjoint () (psi)

maxbits, _ = psi.maxprob()
ampl = np.sin(np.pi * helper.bits2frac (maxbits[:nbits_phasel))

print (' AE: ampl: {:.2f} prob: {:5.1f} % {}/{} solutions ({})'
.format (ampl, ampl * ampl * 100, len(solutions),
1 << nbits_grover, solutions))
return ampl

The code in the open-source repository explores a few examples of equal and
unequal state superposition with a varying number of solutions. In the first experiment,
we create an equal superposition state of n = 3 qubits with Hadamard gates. We range
the number of solutions from 0 to 2", selected at random. We compute the resulting
amplitude and ensure it is close to the expected amplitude. This is easy to calculate
because it must adhere to the equal superposition. For eight qubits, the probability
of finding a solution with zero marked elements must be zero. If all eight solutions
are marked, the probability of finding a solution must be 100%. For everything in
between, the probability should be a multiple of 1/8.

algorithm = ops.Hadamard(3)
for nsolutions in range(9):

ampl = run_experiment (7, 3, algorithm,
random. sample (range (2+«*3), nsolutions))
if not math.isclose(ampl, np.sqgrt(nsolutions / 2%%3), abs_tol=0.03):

raise AssertionError ('Incorrect AE.')
>>>
Algorithm: Hadamard (equal superposition)
AE: ampl: 0.00 prob: 0.0% 0/8 solutions ([1)
AE: ampl: 0.34 prob: 12.1% 1/8 solutions ([4])
AE: ampl: 0.47 prob: 22.7% 2/8 solutions ([0, 11)
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[...]
AE: ampl: 0.93 prob: 87.0% 7/8 solutions ([3, 6, 4, 5, 1, 2, 71)
AE: ampl: 1.00 prob: 100.0% 8/8 solutions ([6, O, 4, 5, 7, 3, 2, 11)

To experiment with other algorithms, we create a random operator that will produce
an unequal superposition of basis states. In the next experiment, we individually mark
a single basis state as a special element and ensure that the estimated probability
matches the amplitude of that state.

In the code snippet below, we dump the state as a reference to display the proba-
bility amplitudes for each basis state. Then we run the experiment, iterating over the
basis states and marking a single basis state by passing a single-element list [1]. As
we print the estimated probabilities, you can see that they match within the rounding
accuracy:

il = ops.Identity (1)

algorithm = (ops.Hadamard(3) @
(ops.RotationY (random.random()/2) * il * il) @
(i1 * ops.RotationY (random.random()/2) = il) @
(i1l * i1 * ops.RotationY (random.random()/2)))

psi = algorithm(state.zeros(3))

psi.dump ()

for i in range(len(psi)):

ampl = run_experiment (7, 3, algorithm, [i])
>>>

Algorithm: Random (unequal superposition), single solution

|000> (|0>): ampl: +0.53+0.00j prob: 0.28 Phase: 0.0
[001> (|1>): ampl: +0.39+0.00j prob: 0.15 Phase: 0.0
[...]

|lll> (|7>): ampl: +0.20+0.00j prob: 0.04 Phase: 0.0

AE: ampl: 0.53 prob: 28.6% 1 out of 8 solutions ([0])
AE: ampl: 0.38 prob: 14.3% 1 out of 8 solutions ([1])
[...]

AE: ampl: 0.20 prob: 3.8

o
=

out of 8 solutions ([71)

In a final experiment, we take the same unequal superposition state and vary the
number of marked solutions from O to 2". Again, for zero marked solutions, the
probability of finding a solution should be zero. If all states are marked, the probability
should be 100%. The probabilities for k marked solutions with k € [1,2" — 1] should
accumulate as the sum of the individual probabilities of the marked states:’

print ('Algorithm: Random (unequal superposition), multiple solutions')
for i in range(len(psi)+1):
ampl = run_experiment (7, 3, algorithm, [i for i in range(i)])
>>>
Algorithm: Random (unequal superposition), multiple solutions
AE: ampl: 0.00 prob: 0.0% 0/8 solutions ([])

7 I’'m pushing the limits with the list comprehension [i for i in range (i) ]. For clarity, the
rightmost 1 is from the outer loop.
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AE: ampl: 0.53 prob: 28.6% 1/8 solutions ([0])

AE: ampl: 0.65 prob: 43.2% 2/8 solutions ([0, 11)

[...]

AE: ampl: 1.00 prob: 100.0% 8/8 solutions ([0, 1, 2, 3, 4, 5, 6, 7])

With all these pieces in place, let’s explore a few practical applications of Grover’s
algorithm.

Boolean Satisfiability

The question of Boolean Satisfiability is the following: Given a Boolean formula in
Conjunctive Normal Form (CNF), does this formula have an assignment of values to
variables such that the formula is True? A CNF is defined as follows.

« A literal is a Boolean variable or its negation, written as x or —x.
« A clause is a disjunction (logical OR, V) of literals, for example

()C() V —x1 V ﬁ)Cz).
o A formula is a conjunction (logical AND, A) of clauses, for example
(XQ \Y X1 \Y —\Xz) A (—\)Co \Y —\Xz).

The goal is to find an assignment of the Boolean values True (T) and False (F) to
variables x; such that the formula becomes true. For example, for the clause (xo V
—x1 V —x3), an assignment of xo = 7 and any random Boolean value for x; and x, will
make the clause yield True, as the values are OR’ed together. Only one element of the
clause needs to yield True for the clause to become True.

Classically, this problem has an exponential run time and belongs to the class of
NP-complete algorithms. In fact, this problem was the first problem that Cook (1971)
found to belong to this complexity class. The good news for us quantum programmers
is that we can use Grover’s algorithm for this problem. Let us see how to do that. In
the implementation, we provide an oracle-based solution and a circuit-based solution
(we only describe the latter here; it is the more interesting one).

A 3SAT problem is a CNF where each clause has exactly 3 literals, each involving
a different variable. For example

()C() V —x; V ﬁXz) A\ (ﬁ)C() V —xy \/)C7).

The restriction to 3SAT standardizes the problem somewhat. To keep things simple
in our code, we further require that every clause contains all literals. We won’t allow a
clause like (xo V x1 V x3), as it misses the literal x,. We further simplify and only deal
with a single clause, but in exchange, we allow it to have more than three literals. This
is meant to simplify the implementation only; it does not restrict the generality of the
approach (as we can convert any CNF into a 3CNF).

We represent the clause with a simple list of Os and 1s, where a 1 means that the
literal is to be taken, well, literally, while a value of 0 means that the literal should
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be negated. In other words, the list [1, 0, 1] corresponds to the clause xo V —x; V
x,. The 0 at index 1 indicates that x; is to be negated. A formula is then just a list
of clauses. In code, to produce random clauses and formulas, we use the function
make_clause.

Find the code
In file src/sat3.py

def make_clause(variables: int):

return [random.randint (0, 1) for _ in range(variables) ]

def make_formula(variables: int, clauses: int):
return [make_clause(variables) for in range(clauses) ]

To evaluate whether a given list of bits satisfies a given clause, we check for every
bit whether it matches the bit in the list representing the clause. This makes it easy to
evaluate a complete formula for a given bit string:

def eval_formula(bits, clauses: List([List[int]]):
for clause in clauses:
res = [bit == clause[idx] for idx, bit in enumerate (bits)]
if not True in res:
return False
return True

Another simplification in our approach is that we need to find a negative solution.
We want to find a string of bits for which the formula is false. A clause is false if all
assigned literals evaluate to false, which, in effect, inverts the clause. Since we only
deal with a single clause, only one bit assignment will yield False. There is only one
solution and that makes things work nicely with Grover’s algorithm, as we shall see
shortly. To find negative solutions classically, we use this function:

def find_negative_solutions (variables: int, formula):
for bits in itertools.product ([0, 1], repeat=variables):
res = eval_formula(bits, formula)
if not res:
return bits

This is all we need for the classical scaffolding code. Now we can move to the
quantum part and the implementation of Grover’s algorithm for this problem. The
circuit is shown in Figure 10.15. We add a helper function for the inversion about the
mean operation, as discussed in Section 10.1.9. This is represented by the gate U and
a controlled X gate to the right of state |i3) in the figure. The corresponding code is:

def diffuser(gc: circuit.gc, reg, checker, aux):
gc.h(reg)
gc.x(reg)


http://www.github.com/qcc4cp/qcc/blob/main/src/sat3.py
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Figure 10.15 Initialization and a single step of the Grover algorithm to compute Boolean
satisfiability for the clause (xo V —x; V x2). The gate between states |¢2) and |i)3) represents
the phase inversion operator. The operator on the right represents the inversion about the mean
operator, which covers only the top three qubits. Gates required for uncomputation are not
shown in this figure.

gc.multi_control (reg, checker, aux, ops.PauliX(), 'Diffuser Gate')
gc.x(reg)
gc.h(reg)

To implement Grover’s algorithm for this problem, we first compute the single
clause we want to experiment with, find a solution classically, and compute the number
of required iterations in the default way by using the number of literals (variables):

def grover_with_circuit(variables: int = 3):

formula = make_formula(variables, 1)

clause = formula[O0]

solution = find_solutions(variables, formula)
iterations = int(math.pi / 4 * math.sqgrt(2+*variables))

To construct the circuit, we create a register reg to hold the initial values of the
clause. We create another register aux of the same size and copy the original or
negated values to it with controlled X gates. To verify the equality of two or more
values, we create another register w and use a cascade of Toffoli gates to accumulate
the final result in a single qubit register chk.

gc = circuit.gc('Outer')

reg = gc.reg(variables, 0)

aux = gc.reg(variables, 0) # can be optimized away.
w = gc.reg(variables - 1, 0)

chk = gc.reg(l, 0)[0]
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In code, following Grover’s algorithm, we apply Hadamard gates to the initial
register reg. Then we iterate i terations times and construct a subcircuit cc in each
iteration. We want to find an assignment to the clause that returns false. De Morgan’s
law tells us that to negate a clause, we have to negate each literal individually and
change the logical OR to a logical AND:

“(xVyVz)=-xA-yA-z

If a literal is already negated, we leave it alone and copy the corresponding qubit
from reg to aux with a controlled X gate. If it still needs to be negated, we negate
it explicitly by bracketing the controlled X gates with single X gates before and after.
This corresponds to the circuit to the left of state |¢;) in Figure 10.15. Using the
subcircuit (cc) makes the uncomputation below quite convenient:

gc.h(reg)
for _ in range(iterations):
cc = circuit.qc('Gates', eager=False)

# First we negate each literal if it was not already negated.
for idx in range(variables):
if clause[idx] ==
cc.x(reg[idx])
cc.cx(regl[idx], aux[idx])
cc.x(regl[idx])
else:
cc.cx(regl[idx], aux[idx])

To compute the logical AND between qubits, we compute a cascade of Toffoli
gates, using the w register to store temporary intermediate comparison results in the w;
ancilla qubits. This cascade is shown in Figure 10.15 as the gates between the states

1) and [¢2).

cc.toffoli(aux([0], aux[1l], w[O0])
for idx in range(2, variables):
cc.toffoli (aux[idx], w[idx - 2], wl[idx - 11])

Finally, we link this subcircuit (cc) to the main circuit. Then we use a controlled
Z gate to export the final result to the chk register. The gate between states |i,) and
|¢3) corresponds to the phase-inversion operator outlined in Section 10.1.8.

We have to uncompute the subcircuit, which we can do quite conveniently with
the inverse function of the subcircuit (the uncomputation gates are not shown in the
figure). As a final step, we add the mean-inversion circuit from above. Note that this
diffuser operator only connects the three input qubits and the final result qubit.

# Add and execute the subcircuit.
gc.gc (cc)
# Phase inversion - connect the result to the chk gqubit.
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gc.cz(w[idx - 1], chk)

# Uncompute the subcircuit.
gc.qgc(cc.inverse())

# Mean inversion.
diffuser(gc, reg, chk, aux)

This completes the implementation of the Grover algorithm for this problem. All
that is left to do is to find the state with the highest probability and compare it with the
expected results.

maxbits, maxprob = gc.psi.maxprob()

print (f'Circuit: Want: {list(solution[0])}, ', end="'")

print (f'Got: {list (maxbits[:variables])}, p: {maxprob:.2f}')
assert solution[0]) == maxbits|[:variables], 'Incorrect Result'

Lastly, we perform experiments with clauses of varying length and verify that this
works as expected:

def main(argv) :

for variables in range(4, 7):
grover_with_circuit (variables)

>>

Circuit: Want: [1, 1, 11, Got: [1, 1, 11, p: 0.44

Circuit: Want: [0, 1, 1], Got: [0, 1, 1], p: 0.44

Circuit: Want: [0, 1, 0], Got: [0, 1, 0], p: 0.44

Circuit: Want: [1, 1, 0, 0], Got: [1, 1, 0, 0], p: 0.38

Circuit: Want: (1, 1, 1, 1, 0], Got: [1, 1, 1, 1, 0], p: 0.35

Circuit: want: [0, O, O, 1, O, 11, Got: [O, O, O, 1, O, 1], p: 0.32
Graph Coloring

Graph coloring is the problem of assigning labels to vertices in a graph such that no
pair of vertices connected by an edge have the same label. Traditionally, those labels
are called “colors.” In our case, we use integers to represent colors. For example, in
Figure 10.16, you can see that only two colors are needed to color a line graph with
only one edge or a rectangular graph. For a triangle, on the other hand, you need three
colors.

If a maximum of k colors is required to color a graph, we call that k-coloring.
Graph coloring has many applications, such as map coloring or register allocation in a
compiler (Briggs, 1992). In the general case, the complexity of this problem appears
to be (’)(2.4423”) in time and space for a graph with n vertices (Lawler, 1976). Better-
performing solutions have been found for special types of graphs, such as constraint
graphs (Wikipedia, 2021e).

Let us see how we can use Grover’s algorithm for this problem. To simplify the
code, we turn the problem on its head and find solutions where all vertices have the
same color. This makes the code less complex without limiting generality.
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Figure 10.16 Coloring of graphs. A line and a rectangle only need two colors, while a triangle
needs three.

We use basis encoding to represent vertices and their colors. For example, to rep-
resent up to four colors, we will need two qubits to represent the coloring of a single
vertex. In general, if we have a graph with n vertices that require m colors, we will need
n [log,(m)] qubits (rounded up to the next integer). For example, for a graph with four
nodes and four colors, we can represent its state with eight qubits as follows, where
each vertex is represented by the two qubits specifying one of four possible colors.
The first two qubits, representing vertex vy, have color ¢y or binary 0b00. Vertex v;
has color ¢, or binary 0b10. Vertex v, has color c¢3 (0b11), and vertex v3 has color c;
(0b01):

00 101101
VoiCo  Viica  V2iC3  V3iCy

To define a graph in code, we build a simple Graph data structure. The edges of
the graph are tuples of two integers representing the from and to vertices.® We add a
member function to verify whether or not all colors in the state representing the graph
are equal. We restrict ourselves to four colors, represented by two qubits per color.

Py Find the code
In file src/graph_coloring.py

class Graph:
def __init__ (
self, num vertices: int, desc: str, edges: List[Tuplel[int, int]]

self.num = num_vertices
self.edges = edges
self.desc = desc

def verify(self, bits, n: int = 2):
for edge in self.edges:
if (bits[edge[0] * n: edgel[0] * n + n] !=
bits[edge[l] * n: edgel[l] * n + n]):
return True # different colors!
return False # all colors are the same.

8 We use these terms even though the edges are not directed.
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Table 10.1. Truth table for the controlled X gate. |¢)
is |0) for identical inputs.

) |P) = |9)
|0) 0) |0)
|0) 1) 1)
1) |0) 1)
1) 1) |0)

[¥) =10/1) —————

¢) = 10/1) ——B——10),if [)) = [$)

Figure 10.17 A single controlled X gate with inputs of |0) or |1). If |{) and |¢) are both |0) or
both |1), we will measure |0) on qubit |¢).

ja)
)

o) —— (X f—y—{x|—&——

)

) © 1), if|a) = |e)

Figure 10.18 Check two qubits a and c¢ for equality with a controlled Not gate. If they are equal,
qubit ¢ will be in state |0). We use a Controlled-by-0 X gate from ¢ to w to record this result as
a state |1) in the ancilla w. The final controlled X gate is for uncomputation.

To compare qubits, let’s look at the truth table of the controlled X gate in
Figure 10.17. As you can see in Table 10.1, the second qubit ¢ will be in state |0)
if the input qubits both are in the same state |0) or |1). In larger circuits, it is always
good practice to avoid entangling ancillary qubits. In order to compare two qubits, we
construct the circuit in Figure 10.18, which includes the uncomputation, and record
the result in an ancilla qubit. This scheme can easily be extended to compare arbitrary
tuples of qubits for equality, or even inequality, with just minor changes. Since we
restrict ourselves to only four vertices and colors, we must compare pairs of qubits.
For this, we build the circuit in Figure 10.19.

In code, we add the identical diffuser helper function for the standard mean
inversion operator from Section 10.5. To implement the circuit shown in Figure 10.19
to compare pairs of qubits, we add this function:

def compare_pairs(gc, a, b, c, d, w0, wl, chk):
gc.cx(a, c)
gc.cx0(c, wO0)
gc.cx (b, d)
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® - O
L

Figure 10.19 Compare pairs of qubits (a,b) = (c,d) for equality and record the result in the
ancillary qubit |chk). The first two gates compare |a) and |c) and record the result in [wp).
Gates three and four compare |b) and |d) and record the result in |w;). The double-controlled
Not gate then compares |wo) and |w;) and records the result in |chk). The remaining gates are
for uncomputation.

gc.cx0(d, wl)
gc.ccx (w0, wl, chk)
gc.cx0(d, wl)

gc.cx (b, d)

gc.cx0(c, wO0)
gc.cx(a, c)

With these preliminaries in place, we can now implement the whole circuit. To
represent all vertices, we create the register reg with two qubits per vertice. We use
the register chk to keep all the intermediate comparison results. A multi-controlled
gate over this complete register will place the final result in the register res. We will
have to connect chk with res in the phase inversion and reg with res in the mean
inversion. For proper uncomputation, we utilize a subcircuit in the construction below.

def build circuit(g: Graph):
gc = circuit.qgc('Graph Circuit')
reg = gc.reg(g.num * 2)
chk = gc.reg(len(g.edges))
res = gc.reg(l) [0]
tmp = gc.reg(g.num * 2 - 1)

iterations = int(math.pi / 4 * math.sqgrt(2**(g.num * 2)))
gc.h(reg)
for _ in range(iterations):
sc = gc.sub/()
for idx, edge in enumerate(g.edges) :
fr = edgel[0] * 2
to = edgel[l] * 2
compare_pairs(sc, fr, fr + 1, to, to + 1, tmp[0], tmp[l], chk[idx])
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# Phase inversion.

gc.qgc(sc)

gc.multi_control (chk, res, tmp, ops.Pauliz(), 'multi') # (!)
gc.qc (sc.inverse())

# Mean inversion.
diffuser(gc, reg, res, tmp)

To check the results, we test each basis state with nonzero probability. Since we
want all colors to be the same, we require that all pairs of qubits be the same. We
should find exactly four solutions for each input problem, one for each of the color
combinations (0,0), (0,1), (1,0), and (1,1).

# results, show all states with nonzero probability.
_, maxprob = gc.psi.maxprob()
for idx, val in enumerate(gc.psi):

if np.real(val.conj() * val) > (maxprob - 0.005):
bits = helper.val2bits(idx, gc.nbits)
print (' Color:', bits[0 : g.num * 2])
assert not g.verify(bits), 'Incorrect color assignment found.'

After that, we construct a few simple graph shapes and verify that the implementation
works as expected.

def main(argv) :

print ( "Graph coloring via Grover's Search. ", end='")

print ('Find identical colors (2 qubits each).')

build_circuit (Graph(2, 'simple line', [(0, 1)1))

build_circuit (Graph(3, 'simple triangle', [(0, 1), (1, 2), (2, 0)1))
build_circuit (Graph(4, 'star formation', [(0, 1), (0, 2), (0, 3)1))
build_circuit (Graph(4, 'rectangle', [(0, 1), (1, 2), (2, 3)1))

>>
Solving [simple line]: 2 vertices, 1 edges -> 9 qubits
Color: [0, 0, 0, 0]
Color: [0, 1, 0, 1]
Color: [1, 0, 1, O]
Color: [1, 1, 1, 1]
Solving [simple triangle]: 3 vertices, 3 edges -> 15 qubits
Color: [0, O, O, O, 0, 0]
Color: [0, 1, O, 1, 0O, 1]
Color: [1, 0, 1, 0, 1, 0]
Color: [1, 1, 1, 1, 1, 1]
[...]

, ’

’ ’ .
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Quantum Mean Estimation

Grover’s algorithm can find the mean of a set of values, as proposed in Terhal (1999).
A more straightforward way was described by Mosca (2008), which is the approach
we will discuss here. We assume that we have N = 2" values (represented by n qubits),
for which we want to calculate the mean. If the values do not sum up to 1.0, we must
normalize them. For an example vector of (1 3 6 7), we use the L, norm and
divide the vector by its norm to get normalized vector x,, and mean X, as

(1 3 6 7)

X, =
’ ]

= (0.103 0.308 0.616 0.718)7
X, = 0.436.

To calculate the original mean, we multiply the normalized mean by the norm.
We define the functions f(i) to return the ith original value and F(i) to return the
normalized value at index i. Recall from Section 9.1.3 that with a rotation about the
y-axis by an angle 6 = 2 arcsin(a), we can transform the basis state |0) into

0)=vV1-a?|0) +all).

For more than one qubit, the “trick” for quantum mean estimation is to construct a
circuit that applies specific controlled rotations to each basis state |i) in equal super-
position. We construct a circuit implementing a unitary U, such that

Uy 2 10)°"10) = 575 Z| 020) + F(i)[1)),

with |7) as the basis state representing the index of the ith value in binary. For example,
F(]|011)) would return the normalized value at index 3 (0b011).

For two qubits, the circuit looks like the one in Figure 10.20. First, we put the state
in an equal superposition with Hadamard gates. We use multi-controlled rotation gates
to rotate each basis state |i) in binary form by an angle 6; = 2 arcsin(F(i)). For a 0
in the binary representation of |i), we use a Controlled-by-0 rotation gate. For a 1,
we use a Controlled-by-1 gate. For two qubits, there are 2> = 4 bit patterns or four
multi-controlled rotation gates. After the rotations, we get out of the superposition
with another set of Hadamard gates. The resulting amplitude of measuring a |1) on

Ancilla |0)

Figure 10.20 Quantum circuit to compute the mean over 2 values, shown for N = 2.


https://doi.org/10.1017/9781009548519.011

238

Algorithms Using Amplitude Amplification

the ancilla qubit will then accumulate to the mean u with

F(i
ZE: 2£g =

i

The reason for the normalization by 2/? is related to the distribution of the
amplitudes across the states in superposition. Since the initial Hadamard gates create
2" states with the same amplitude 2% this factor appears in the calculation of the
final mean.

Let us explore this in code. In each experiment, we create a random array of
nbits positive and negative values and store the normalized vector in variable xn.
We construct a state consisting of input qubits, auxiliary ancilla qubits for the multi-
controlled rotations, and the extra ancilla for the rotations.

Find the code
In file src/quantum_mean.py

def run_experiment (nbits: int):

x = np.array([random.randint (0, 10) - 5 for _ in range(2*xnbits)])
xn = x / np.linalg.norm(x)

gc = circuit.gc('mean calculator')

inp = gc.reg(nbits, 0) # State input.
aux = gc.reg(nbits - 1, 0) # Aux qubits for multi-contrl. gates.
ext = gc.reg(l, 0) # Target 'extra' qubit.

Next, we apply the rotation gates using the bit patterns of the binary representations
of the basis states |i) to determine whether to use a Controlled-by-0 or Controlled-
by-1 gate. We use these bits to multi-control a y-rotation by the values stored in xn, as
explained above. We bracket the whole circuit with Hadamard gates:

gc.h(inp)
for bits in itertools.product ([0, 1], repeat=nbits):
idx = helper.bits2val (bits)
# Control-by-zero is indicated with a single-element 1ist.
ctl = [1 if bit == 1 else [i] for i, bit in enumerate(bits)]
gc.multi_control (ctl, ext, aux,
ops.RotationY (2 * np.arcsin(xn[idx])))
gc.h(inp)

Now, recall that the state vector for |00... 1) holds a single 1 at index 1 and Os
everywhere else. In other words, we can obtain the probability amplitude for this
state by looking at index 1 in the state vector. To obtain the original classical mean
aclas, we multiply this value by the vector norm, undoing the above normalization.
In the code below, we calculate these values, assert that they are equal, and run a few
experiments over a range of numbers of qubits:
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gmean = np.real(gc.psi[1])

gclas = np.real(gc.psi[l]

# Check results.
assert np.allclose(np.mean(xn), gmean, atol=0.001), 'Whaaa’

assert np.allclose(np.mean(x),

print (f 'Mean ({nbits} gb):

def main(argv) :

for nbits in range(2, 8):

>>
Mean
Mean
Mean
Mean
Mean
Mean

ab) :
gb) :
agb) :
ab) :
gb) :
agb) :

classic:
classic:
classic:
classic:
classic:
classic:

run_experiment (nbits)

0.500,
-1.125,
-1.688,
-0.500,
0.172,
0.227,

* np.linalg.norm(x))

gclas, atol=0.001), 'Whaaa’

classic: {np.mean(x):.3f}, g: {gclas:.3f}")

q:

q:
q:
q:

q:
q:

0.500
-1.125
-1.688
-0.500

0.172

0.227

Quantum Minimum Finding

We discussed black-box algorithms in Chapter 8. Sometimes, these algorithms appear
to push the reasoning about their quantum advantage a bit too far. A good example

may be the often-cited quantum minimum finding algorithm published by Durr and
Hoyer (1999). Since it utilizes Grover’s algorithm at its core, we discuss it here with
focus on a few important aspects of this algorithm.

To establish a quantum advantage, the algorithm makes several assumptions and

simplifications that may be impossible to implement on a real machine. However, as

long as we just pretend that some of the assumptions can be implemented at zero cost,
the algorithm does have a quantum advantage. The basic algorithm goes as follows,
with a short example shown in Figure 10.21.

found

}
01 2.4.6 71819 10.11 12]13 14.15 16/ - m

(a) In the range of 0. . . m, we want to find the minimum of the four elements marked

in gray. In the example, QAA found element 11.

found

|
lof1]2]3]4]5]6]7]8]0]w0]11][12]13]14]15]16]---| [ | [m]

(b) In a second step, only elements smaller than 11 are marked. In the example, QAA

found element 3, which is the minimum.

Figure 10.21 An example of the quantum minimum finding algorithm.
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1. First, we need to define the set of numbers for which we want to find the
minimum. In code, we create a set of num_vals random numbers in a given range
with function get_distro.

Py Find the code
In file src/minimum_finding.py

def get_distro(min_value: int, max_value: int, num _vals: int):

return sorted (np.random.choice (

np.arange (min_value, max_value), num_vals))

We should think of the whole range of numbers as the available state space and the
generated list of numbers as the special elements or the set of solutions S.

2. The goal is to find the smallest number in the set of special elements. We will use
Grover’s algorithm to achieve this goal. The number of elements in S should be
small compared to the whole range of numbers to ensure that we find a solution
with reasonably high probability. In the example in the figure, the range of
numbers goes from 0 to a maximum number m, all represented by basis states. We
only mark the four elements 3, 4, 11, and 15.

Similarly to the regular Grover algorithm, we construct a function in make_f
that returns a 1 for every marked number in the set. However, there is a twist: We
mark a value only if it is smaller than a given value M. This is easy to do in code’
and perhaps in a thought experiment. However, this may be impossible to
implement efficiently on a quantum computer. Again, here we pretend it would be
possible at zero cost. Note that we already know the minimum classically as we
construct the oracle and mark the values. Note that as we construct the oracle and
mark the values, we already know the minimum classically. In the example in
Figure 10.21(a), since we know that 15 is the largest value M, we would start by
picking M + 1 as the upper bound.

def make_f (d: int, numbers: List[int], max_value: int):
num_inputs = 2xxd
answers = np.zeros (num_inputs, dtype=np.int8)
answers[[i for i in numbers if i < max _value]] =1
return lambda bits: answers[helper.bits2val (bits)]

3. The third step is now identical to what is found in Grover’s algorithm. After
performing this algorithm, the marked special elements will have a higher
amplitude than the remaining elements in the list. We use this fact to measure and
find one of the marked values, which are all smaller than a given M.

4. In terms of measurement, we simulate measurement by simply picking one of the
found elements. All marked elements have a higher probability than the other

9 Note the clever loop comprehension used as index expression.
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states, so this approach is reasonably legitimate. In the example in the figure,
element 11 was found in the first iteration.

new_max = np.random.choice(results)

print (' -> New Max:', new_max)
result = f(helper.val2bits(new_max, nbits))
assert result == 1, 'something went wrong, measured invalid state'

return new_max

5. Now go back to step 2 and use the newly found upper bound 11 as the new
maximum M to mark the remaining special elements. In the example, we find
element 3 in the next step. Just by chance, this value is also the minimum.

6. As soon as we hit the smallest value, we are done. We have found the smallest
special element.

There are concerns with this approach and its claims of a quantum advantage:

« The oracle has to be constructed somehow. However, the paper assumes that this
construction is free and has zero cost. This point is moot if we only consider query
complexity.

« We terminate after finding the smallest number, but this requires knowing the
smallest number. Alternatively, we run Grover’s algorithm multiple times. If, at a
given step, Grover fails to find elements smaller than the current limit M, we may
have found the smallest element.

o We must know how many numbers remain below a current maximum to adjust the
Grover iteration number (even though there may be ways around this).

The last two points could be solved via quantum counting or perhaps other mecha-
nisms to find when there is no more solution to be marked. However, taken together,
this algorithm makes several critical assumptions. If all assumptions hold, the algo-
rithm would indeed demonstrate a quantum speed-up because of the use of Grover’s
algorithm. However, this author happens to believe that this algorithm, as stated, is
not implementable in a practical or efficient way.'? Depending on the use case,
combining classical and quantum computations may solve this particular problem
in a more assumption-free way.

Quantum Median Estimation

We can combine the estimation of the quantum mean and quantum minimum find-
ing to determine the median of an ensemble of data points (Brassard et al., 2011).
However, let us be cautious; besides the assumptions from the quantum algorithm
for minimum finding, this algorithm makes further assumptions that may not be
feasible to implement efficiently on a quantum computer.

10" Stated with the caveat that, as usual, [ might be wrong.
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The median z is the one value in an ensemble of n values for which the distance
to all other points in the set is the minimum. With a distance function dist(x,x;)
between an individual value x and the values x; at index i, we can write z in closed
form as

1
z=  min Z dist(x,x;).
xE{Q”qu4}i_0

To implement a feasibility study of this algorithm, we first create an array of
random, normalized values in the range of {0, ...,2" — 1} for n qubits.

Find the code
In file src/quantum_median.py

def run_experiment (nbits: int):
x = np.array([random.randint (0, 2+*nbits) for in range (2**nbits)])

xn = x / np.linalg.norm(x)

We then iterate over all the n individual values x; in the xn array and compute the
n difference vectors d; to x;, where the element dj; at index j will be the difference
of element dj; and x;:

d; = (|xo =il xr =l e —xiD-

In programming terms, you can think of this as a two-deep nested loop:

for idx, z in enumerate(xn) :
diff = [abs(xval - z) for xval in xn]

It is not clear how to compute the difference vector efficiently in the quantum
domain. It may be one of those cases where we assume it would be easily doable
and don’t really care or because we are only interested in the query complexity.

Assuming that we can use a quantum algorithm to compute the mean, as
described above, we compute the mean of this vector and store the result for each
value x;. In a quantum algorithm, we would store all the mean values in a new
vector and use the quantum minimum finding algorithm to find the smallest value.

In the code, we do not implement full quantum techniques to find the mean and
minimum. For the minimum specifically, we just maintain the smallest value as we
iterate over the elements in xn:

# Normalization (required for quantum, also improves
# accuracy by an order of magnitude).
diffnorm = np.linalg.norm(diff)

# Compute the mean (which we know how to do quantumly)
# for the element xn[idx].
mean = np.mean (diffnorm)
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# Find the minimum (which we would also know how to do quantumly).
# Here, classically, maintain the index of the smallest element.
if mean < min_mean:

min_mean = mean

median = idx

Finally, we compare the results and check for correctness, which should produce
an output like the one shown below. The quantum results are integer indices:

print (
f' Median ({nbits} gb): Classic: {np.mean(x):.3f},"'
f' Quantum: {x[median]:.0f}"'
)
if max(np.mean(x), x[median]) / min(np.mean(x), x[median]) > 1.02:
raise AssertionError ('Incorrect median computation.')
>>
Classic Sim of Quantum Median Computation.
Median (10 gb): Classic: 525.596, Quantum: 525
Median (10 gb): Classic: 487.644, Quantum: 487
Median (10 gb): Classic: 517.676, Quantum: 519
[...]
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Algorithms Using Quantum
Fourier Transform

The Quantum Fourier Transform (QFT) is a cornerstone of several quantum algorithms
because it leverages the principles of superposition and entanglement to perform a
Fourier transform on quantum data exponentially faster than classical algorithms.
This speed-up is crucial for algorithms like Shor’s algorithm, which uses the QFT
to factor large numbers efficiently, potentially breaking widely used encryption
schemes. Essentially, the QFT allows quantum computers to analyze the periodic
patterns in quantum states, revealing hidden information that would be intractable to
find classically. This ability to efficiently extract information from quantum systems
makes the QFT a fundamental tool for unlocking the power of quantum computation.

We start by describing the almost trivial phase kick mechanism that transfers
a phase from a controlled qubit to its controller. This mechanism is the basis for
quantum phase estimation (QPE), another fundamental quantum algorithm with
broad applications. It efficiently estimates the eigenvalues for known eigenvectors of
a unitary operator. This ability is used in numerous quantum algorithms, including
Shor’s algorithm, quantum simulations for material science, and quantum chemistry.

The QPE and QFT are inextricably linked, and one cannot be discussed without the
other. We first describe the QPE and make forward references to the QFT.

We follow these fundamental algorithms with a few applications. First, we explain
a cute way to estimate 7t. Then we describe the arithmetic operations of addition and
multiplication in the Fourier domain. With these tools in place, we finally describe
Shor’s famous algorithm for number factorization. It is a beautiful but complex
algorithm and one of the main reasons for the excitement in quantum computing.

Phase-Kick Circuit

First, we shall explore the phase-kick mechanism, which is the basis for algorithms
such as quantum phase estimation and the quantum Fourier transform, as we will see
shortly. Let us examine the simple phase-kick circuit in Figure 11.1. Why is this circuit
called a phase kick circuit? The state |{);) after the Hadamard gate is

1
72(|0>|1>+\1>|1>)-

After the controlled S operation, where only the |1) part of the state of the first qubit
triggers the S gate, the state |¢,) at the end of the phase-kick circuit is

HI0)@[1) =[+)@|1) =
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Figure 11.1 A simple phase-kick circuit.
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(10) +e™2|1)) [1).

You can see that the second qubit remains unmodified as |1). The trick is that |1} is
an eigenstate of the S gate, which allows us to kick the phase from one qubit to another
via controlled rotations. We will further elaborate on this in Section 11.2.1 on phase
estimation.

This mechanism also enabled the Bernstein—Vazirani algorithm, covered in
Section 8.1. We did not use rotation gates in that implementation, but rather controlled
Not gates on states in the Hadamard basis. But in this basis, a controlled Not gate
corresponds to a simple Z gate (see also Section 16.4.5), which manifests as a 180°
rotation about the z-axis.

Controlled rotation gates have the nice property that they can be used in an additive
fashion. An example of this basic principle is shown in Figure 11.2. Here, the two
top qubits are initialized as |0) and placed in superposition with Hadamard gates.
A bottom ancilla qubit starts in state |1). We apply the controlled S gate from the
top qubit to the ancilla, controlling a rotation by 90°. The T gate on the ancilla is
controlled by the middle qubit, which controls a rotation by 45°. Recall that these
gates only add a phase to the |1) component of a state:

swors 1=y )(3) = ()0 <o

Figure 11.2 A two-qubit phase-kick circuit. The individual phases add up.
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Py Find the code
In file src/phase_kick.py

This is easy to implement with just a few lines of code.

psi = state.bitstring(0, 0, 1)

psi = ops.Hadamard(2) (psi)

psi = ops.ControlledU(0, 2, ops.Sgate()) (psi)
psi = ops.ControlledU(1l, 2, ops.Tgate()) (psi, 1)

psi.dump ()

Due to superposition, the |1) part of each of the top two qubits triggers the rotation
of a controlled gate and adds a local phase to the controlling qubit. Having the top
qubit as |1) adds 90°, and the |1) part of the middle qubit adds another 45°. Here
we restrict ourselves to S and T gates, but we could use arbitrary rotations about the
z-axis. We can use this type of circuit to express additions or subtractions in terms of
phases as long as we normalize to 27t and avoid overflows. For the example:

« The rotation of 180° as a fraction of 27t is ¢2™i/?'
angle, this is —1.

« A rotation of 90° as a fraction of 27 is ¢2™/2" = ¢™/2 phase of i.

« The rotation of 45° as a fraction of 27t is ¢27i/2’ = ¢mi/4,

. Finally, a rotation by 135° = 90° + 45° as a fraction of 27 is €2™(1/2'+1/2")

= ™. Expressed as a phase

The resulting probability amplitudes and phases will be as follows:

[001> (|1>): ampl: +0.50+0.00j prob: 0.25 Phase: 0.0
|Oll> (|3>): ampl: +0.35+0.35j prob: 0.25 Phase: 45.0
|101> (|5>): ampl: +0.00+0.503j prob: 0.25 Phase: 90.0
|111> (|7>): ampl: -0.35+0.35j prob: 0.25 Phase: 135.0

This ability to add phases in a controlled fashion is a powerful mechanism and the
foundation of the quantum Fourier transformation, which we will explore shortly. The
detailed math for two or more qubits is more challenging, we detail it in Section 11.2.2
below.

Quantum Phase Estimation (QPE)

Quantum phase estimation (QPE) (Kitaev, 1995) is a key building block for several
advanced algorithms. It allows finding the unknown eigenvalues for known eigenvec-
tors of a given operator U. After going through the QPE circuit, the state will be in a
form closely related to the output of the quantum Fourier transform (QFT), which we
discuss in Section 11.4. In other words, QPE and QFT are inextricably linked, and one
cannot be discussed without the other. We start by discussing the QPE, but we must
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Figure 11.3 The first part of the phase estimation circuit.

make a few forward references to QFT. Once you are through with the section on the
QFT, you may want to refer back to this section and fill in the blanks.

Phase Estimation

For a given unitary matrix U with a known eigenvector |u) and corresponding
unknown eigenvalue 29 the quantum phase estimation (QPE) aims to estimate
the value of ¢ using a two-step procedure:'

1. Basis encode the unknown phase using a circuit that produces a result identical to
the result of a QFT, which we will discuss in Section 11.4 below.
2. Apply the adjoint QFTT operator to estimate the phase ¢ as a binary fraction.

In this section, we focus on the first task. To start, we define a result register with ¢
qubits representing the bits in a binary fraction, where ¢ is determined by the precision
we want to achieve. The more qubits, the more fine-grained fractions of powers of
2 will approximate the final result. We initialize the ¢ qubits in the first register with
|0) and put them in equal superposition with Hadamard gates, as shown on the left of
Figure 11.3.

We add a second register representing the known eigenvector |u). We connect the
top result register with controlled gates to a sequence of ¢ instances of U, each taken
to increasing powers of 2 (U,U?, ... ,U'~"), which we apply to the second register.

To achieve the powers of 2, we multiply U by itself and accumulate the results.
For example, we start with U itself, as Uy = USO = Uy. Next, we compute U; =
UyUy = U%l ,the UjUtoget U, = U U| = U(zz, and so on. The goal is to accumulate

! The literature distinguishes between quantum phase estimation and quantum eigenvalue estimation. The
eigenvalues of a unitary operator have unit modulus and are characterized by their phase. Hence, for
unitary operators, the algorithm can be used for both. Here, we interpret it as the estimation of an
eigenvalue, as that seems to be the majority opinion.
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phase information by repeatedly applying these unitaries to the eigenvector |u). The
entire procedure is shown in Figure 11.3 in circuit notation, and the math is detailed
in Section 11.2.2 below.

The first question to ask may be why |u) has to be initialized as an eigenvector.
Wouldn’t this procedure work for any normalized state vector |x)? The answer is no.
For one or more applications of a unitary U, the eigenvalue equation only holds for
eigenvectors:

U'lu) = A"|u).

This means we can apply U and any power of U to |u) as often as we want. Since
|u) is an eigenvector, it will only be scaled by a number, the corresponding power of
the complex eigenvalue A, which has a modulus of 1. Moreover, since we are using
controlled gates, “some” information will be transferred to the controllers. We develop
all the details in Section 11.2.2. If you are not interested in the math, jump to Section
11.2.3 on the implementation.

Detailed Derivation

First, recall from Section 1.8 that the eigenvalues of a unitary matrix have a modulus
of 1. Since |A| = 1, we can write an eigenvalue as

2mi
A,’ =e q),

with ¢ being a factor between 0 and 1. In Section 2.4.3, we used the following notation
for binary fractions with ¢ bits of resolution and the binary bits ¢, having values O or 1:

¢ =0.00Q1... Py
1 1 1
= (PO? +¢l?+"'+¢t—l§~
For example, a binary number written as 0.1101 has the decimal value of

1 1 1 1
A101 =141~ - +1—=0.8125.
0.110 2+ 4+08+ 6 0.8125

With these preliminaries, let us see what happens to the state in Figure 11.4, which is
a first small part of the phase estimation circuit. The state |#) may consist of multiple
qubits and must be an eigenstate of U. You may notice the similarity to the phase
kick circuit we discussed in Section 11.1. This circuit has only one qubit at the top,
which limits the precision of the approximated eigenvalue of U to a single fractional

0
Figure 11.4 An initial phase estimation circuit with a single U = U? operator.
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bit. However, once we understand how this works for a single fractional bit, we can
expand to two bits and generalize.

Let us start and assume U has the eigenvalue A = e>™0% with the term 0.¢y
representing a single binary fractional bit with the value of 1/2 = 27!, With this, the
estimated phase can only be calculated as having a value of 0 or 0.5. The state |¢;)
after the first Hadamard gate is:

1

Y1) = 14) ® [u) = —=(10) ) + 1) [u)).

S

2

After the controlled U gate, the state |,
of the state triggers the U gate:

<~

will be the following, as only the |1) part

3) = 7= (10) )+ 1)U )

(10) Jue) + &> [1) |u))

~5l- %

_ 7(|0> 4 eZni()Aq‘>0|1>) ‘Li> .

N

The state |u) remains unchanged, as it should be since it is an eigenstate of U. We
u) will remain the same. However, the eigenvalue
has become a local phase of the |1) part of the first qubit. We kicked the phase back to
qubit 0, as described in Section 11.1.

This concludes the first part of the single-qubit phase estimation algorithm. There

can apply U as often as we want,

is still the problem that, when measuring the first qubit, the state could still collapse
to |0) or |1) with the same probability of 1/2, regardless of whether the phase value is
0 or 0.5. Kicking the phase up does not change the probabilities.

To resolve this, we apply another Hadamard gate to the top qubit. In the next
section, we will learn that this is equivalent to a single-qubit inverse quantum Fourier
transform. After applying the final Hadamard gate, we obtain state |{/3) (omitting the
trailing qubit |u) for ease of notation), as shown in Figure 11.4:

Wﬁ=§gﬁ@+¥m%m)

_ % (1 + 62ni0.¢)0) |0> + % (1 o eZniOmpg) ‘1>

The term ¢y is a binary digit and can only be O or 1. If it is O, we have that the factor
e?™10:00 = % becomes 1, and |3) becomes

1 1 1 1
[93) = 210) + 210) + 211) — 21 = [0).
On the other hand, if the digit 9 = 1, then 1(27") = 1/2, the factor €*™*%0 becomes
¢*™/2 = —1 and |3) becomes

[95) = 5100 = 510) + 31 + 211y = 1),
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Figure 11.5 Phase estimation circuit with an accuracy of two binary digits (corresponding to %
and %) and the corresponding unitaries U' and U>. Here, the top two qubits with subscripts 0
and 1 are in little-endian.

Since |0) and |1) are orthogonal, we will now measure |0) or |1) with certainty,
depending on whether the bit ¢o was 0 or 1.

Now that we see how to compute a single digit let us move on and consider two
fractional parts for a phase with two decimal binary digits ¢ = 0.¢o¢,. With two
digits, we can approximate the phase with fractional values 0.0,0.25,0.5, and 0.75,
which is already better than a single digit. The corresponding quantum circuit uses
two exponentiated gates U' and U? as shown in Figure 11.5. From above, we know
that 1) will have the form

0) + (1)) @ (|0) + ™07 1)) @ |u)
~—~

qubit 0 qubit 1 qubit 2

1
|¢1>=ﬁ(

Let us study the effect of the controlled U2 on qubit 0. We know that squaring a
rotation means doubling the rotation angle as in

U*|y) = MO |y).

Looking at the fractional representation 0.¢oo¢; and the effect of U?, we can see
that the binary point shifts by one digit to the left:

2¢ =2(0.¢00¢1)
(o4 p2?)
= o+ P27
= ¢o-01 .

After shifting 0.0 to ¢o.¢1, we can split the exponent:
Q2T (20) _ 2mi(o.d1)
_ eZni((j)o—H).(p])

— e2ﬂi(¢o)62ﬂ[(0.(f)1)-
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Similarly to the single-digit case above, the term ¢y corresponds to a binary digit
and can only be O or 1. This means that the first factor corresponds to a rotation of 0
or 27, which has no effect. The final result is

e2ni (2¢9) — eZT(i (0.¢1) ,

where we shifted ¢p; to the left and eliminated ¢p9. We can generalize this for a phase
with ¢ fractional parts ¢ = 0.1 ... P, as
eZTLi(Zk(P) — 20 Pi i1 Pt

For our three-qubits circuit above, after the two controlled gates U' and U?, the
state 1, becomes

1 . .
) = —= (10) + ™ 1)) @ (|0) + ™ 1)) @ |u) (1L.1)
V22 ~~
qubit 0 qubit 1 qubit 2
1 il 20
= 55 (10 +m0In) ) @ (j0) +7 011 ) o ).

In Section 11.4 on the quantum Fourier transform, we will see that this form is
identical to the result from applying the QFT operator to a state of two qubits |¢g)
and |¢;) (ignoring the ancilla). This means that we will be able to apply the two-
qubit adjoint operator QF T' to retrieve the binary bits of ¢ = 0.¢o¢; as a state with
the qubits |¢o) and |¢;) in states |0) or |1), depending on how the digits ¢ and ¢,
were set:

QFT] | [92) = o) ® |¢p1) @ |u) .

Let us derive a closed form for the phase estimation. For two qubits, we ignore
qubit 2 in Equation (11.1) and multiply out the remaining terms:

1 Py i20
|M:V§WH%“WD®®Hﬁ”%0
1 A0 Al 19l 90
- |00> + 627112 ¢ |01> + eZmZ ¢ |10> + e2m(2 +27)¢ |11>)
5
1 : . ‘
- |00> +eZm1(f) ‘01> _|_62n12<j) |10> _|_82n13q‘)) |11>)7
7 (

To generalize, we connect the Oth power of 2 to the last qubit in the ¢ register and
the (¢ — 1)’s power of 2 to the first qubit,? as shown in Figure 11.3. The resulting state
becomes

1 i —1 i t—2 i 0
7 (100 + 79 1)) 0 (10) + 270 @@ (10) + 1))

Multiplying this out results in the important general form for a state |¢’) with basis
states {|k)}. Note that we reintroduce the final qubit |u) here, as the final state is the
superposition of the phase register and the unchanged |u):

2 You can also do this the other way around, depending on your bit ordering convention.
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2"—1
1 .
QPE|y) = - > &M k) @ |u) . (11.2)
k=0

We write ¢» with ¢ binary bits in the fractional notation (we will use the same form
in Section 11.4 on QFT) as

¢ = 0.0oP; - Ps—1.

Multiplying this angle with the powers of two shifts the digits of the binary repre-
sentation to the left, and the state after the circuit in Figure 11.3 is

1 )
57 (J0) + &*™0P=1 1)) (11.3)

® (]0) + 0P—20-11))

® (|0> +62m0.q50¢1...<7),_]|1>) )

Again, we will see shortly in Section 11.4 that this is also the result of a QFT
applied to a specific computational basis state. The final step of phase estimation is,
therefore, to reverse the QFT by applying the inverse QF il operator to reconstruct
the input, a representation of ¢ as a binary fraction in basis encoding. The almost
complete circuit is shown in Figure 11.6, where we have yet to measure the qubits.
You will find this step in the implementation.

A cautious word on endianness is in order. We can think of the qubits in the figure as
addresses from top to bottom, with the lowest address 0 at the top. The first controlled
U gate contributes the most to the binary fraction. It is the most significant qubit.
In the figure, the most significant qubit appears at the highest address, which means

'(7)[—1

|0) 4@ OFT!

0.1 - -

LI

|Lt> —] UZO UZI — UZI?I |u>

Figure 11.6 Full quantum phase estimation circuit.
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we are using the little-endian convention, where the least significant contributor to a
value resides at the lowest address. We will often switch between little-endian and
big-endian notations in this book;? this is something to be aware of.

Implementation

We drive the algorithm from main (), where we reserve seven qubits for 7 (this is
arbitrary and chosen for performance reasons only) and two qubits for the unitary
operator. You can experiment with these numbers to see how the probabilities change
with the size of the unitary operator.

Py Find the code
In file src/phase_estimation.py

def main(argv) :

nbits = 2
t =7
print ( 'Estimating {} qubits random unitary eigenvalue '
.format (nbits) + 'with {} bits of accuracy.'.format (t))
for i in range(10):
run_experiment (nbits, t)

In each experiment, we create a random operator and obtain its eigenvalues and
eigenvectors to verify the computed estimates:

def run_experiment (nbits: int, t: int = 8):

umat = scipy.stats.unitary group.rvs (2xxnbits)
eigvals, eigvecs = np.linalg.eig(umat)
u = ops.Operator (umat)

We choose the eigenvector at index 0 in the example, but the procedure works for all
other pairs of eigenvectors and eigenvalues. To verify the algorithm, we calculate the
angle phi to be estimated in advance. Since we assume that the eigenvalue is e>™?, as
discussed in Section 11.2.1, we divide by 2j+np.pi and correct for negative values.
Again, this angle does not participate in the algorithm. We only compute it upfront to
compare it against the approximated phase value later:

eigen_index = 0
phi = np.real (np.log(eigvals[eigen_index]) / (2j*np.pi))
if phi < 0:

phi += 1

In the construction of the circuit, we initialize the state psi with t qubits in state
|0) tensored to another state that is directly initialized with an eigenvector. Then we

3 Homework assignment: Count how often I am confusing the endianness.


http://www.github.com/qcc4cp/qcc/blob/main/src/phase_estimation.py
https://doi.org/10.1017/9781009548519.012

254

Algorithms Using Quantum Fourier Transform

perform the phase estimation (the code follows shortly) and the inverse QFT on the
resulting state:

psi = state.zeros(t) * state.State(eigvecs[:, eigen_index])
psi = phase_estimation(psi, u, t)
psi = ops.Qft(t).adjoint () (psi)

The heart of this circuit is the controlled connection of the operators taken to powers
of two, which is implemented in function phase_estimation (we also add a version
of it to the library file src/1ib/ops.py, as it is used in several other algorithms).
You can see that after the Hadamard gates have been applied to the t register, the code
iterates, and the u2 operator is repeatedly multiplied by itself to produce the powers
of two required by the phase estimation algorithm:

def phase_estimation(psi: state.State, u: ops.Operator, t: int):

psi = ops.Hadamard(t) (psi)

u2 = u

for inv in reversed(range(t)):
psi = ops.ControlledU(inv, t, u2) (psi, inv)
u2 = u2(u2)

return psi

All that is left to do is to simulate a measurement by picking the state with the
highest probability, computing the representation of the state as a binary fraction, and
comparing the result against the target value. Since we have limited bits to represent
the result, we allow an error margin of 2%. More bits for ¢ will make the circuit run
slower but also improve the error margins.

# Find state with highest measurement probability and show results.
maxbits, maxprob = psi.maxprob()
phi_estimate = helper.bits2frac (maxbits[:t])

delta = abs(phi - phi_estimate)
print ( 'Phase : {:.4f} ' .format (phi))
print ( 'Estimate: {:.4f} delta: {:.4f} probability: {:5.2f}%'
.format (phi_estimate, delta, maxprob * 100.0))
if delta > 0.02 and phi_estimate < 0.98:
print ('*+* Warning: Delta is large')

There is the potential for delta to be greater than the hard-coded 2% when an
insufficient number of bits was reserved for t. Another error case is when the eigen-
value rounds to 1.0. In this case, all digits after the dot are 0, and the estimated binary
fraction will also be 0 instead of the correct value of 1.0. The code warns about this
case. The results should look similar to this:
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Estimating 2 qubits random unitary eigenvalue with 7 bits of accuracy

Phase 0.5180

Estimate: 0.5156 delta: 0.0024 probability: 31.65%
Phase 0.3203

Estimate: 0.3125 delta: 0.0078 probability: 7.30%
[...]

Phase : 0.6688

Estimate: 0.6719 delta: 0.0030 probability: 20.73%

Estimating Multiple Eigenvalues

So far, we have explored the case of a single eigenvalue and eigenvector pair. What if
the initial state |#) was in a superposition of multiple eigenvectors? Can we derive mul-
tiple eigenvalues with this procedure? Yes, we can, with the caveat that measurements
are still probabilistic and obtaining all eigenvalues is subject to the usual probability
laws. We use this feature later in Section 14.3 on the HHL algorithm and provide
another detailed derivation there.

For experimentation, we mirror the code above very closely. To generate a super-
position of multiple eigenvectors, we again generate a random unitary and find its
multiple pairs of eigenvalues and eigenvectors. We calculate the eigenvalues as frac-
tions of 7t in the phi array and add 1 to any negative values. As a simplification, we
calculate the superposition of the eigenvectors as a simple addition of scaled vectors
in variable ini and use it to directly initialize the state.* All that is left to do is run the
phase estimation circuitry and apply the inverse QFT:

umat = scipy.stats.unitary group.rvs (2xxnbits)
eigvals, eigvecs = np.linalg.eig(umat)

phi = np.array([np.real(np.log(v) / (2j*np.pi)) for v in eigvals])
phi[phi < 0] += 1

fac np.sqgrt(l / 2%xnbits)

ini

np.sum(fac * eigvecs, axis=1)

# Make state and circuit to estimate phi (similar to above).
psi = state.zeros(t) * state.State(ini)

psi = phase_estimation(psi, u, t)

psi = ops.Qft(t).adjoint () (psi)

We collect the states with the highest probability (> 1%), as the eigenvalues
encoded in these states will have the highest amplitudes. The final step is to find
whether these states represent the eigenvalues. If an estimate has been found correctly,
we mark it as -> Found and as -> =** otherwise. Since we have set more or less
arbitrary limits for the required probability and precision, a small number of eigenval-
ues is expected to be marked as not found (= «), as shown in the output below.

4 We already saw in Chapter 9 that initializing a state with an actual circuit can be quite challenging.
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estimates = [helper.bits2frac(bits)
for bits in helper.bitprod(psi.nbits)
if psi.prob(xbits) >= 0.03]
for p in phi:
print (f 'Phase : {p:.4f} ', end="'")
est = [x for x in estimates if abs(p - x) < 0.01]
print('-> Found' if len(est) else '-> *#*x')
>>

Phase : 0.2342 -> Found
Phase : 0.9560 -> Found
Phase : 0.4984 -> Found
Phase : 0.6832 -> Found
Phase : 0.9660 -> *x*x*

Phase : 0.6609 -> Found
Phase : 0.2599 -> Found
Phase : 0.4468 -> Found

[...]

Approximating 7t

Phase estimation can be used in an interesting manner to approximate the value of
7t. As discussed in Section 11.2.1, when a unitary operator U is applied to one of its
eigenvectors such as |¢), its eigenvalues have unit norm:

Ulp) =™ ). (11.4)
We already know the U, (6) operator from Section 2.7.7:

ae = (5 )

This operator is a diagonal matrix and has its eigenvalues 1 and ¢’ on the diagonal. If
we apply U;(0) to its eigenstate [1)) = [1), as in
Ui(0) 1) = €91), (11.5)
and furthermore equate Equations (11.4) and (11.5), we get
Q2P _ 40

We smartly set & = 1, which leads to an approximation of 7t as

1
2npg=1 = m=_——.
¢ 26
Now we can estimate ¢ with the QPE. We define a function to run experiments
with a given number of qubits to represent the phase values — as usual, the more qubits
we use, the more accurate the estimation of 7= will be, but the slower the experiment
will run.
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First, we build a circuit with the given number of qubits to hold the results of the
phase estimation. We also have to add an ancilla for the phase estimation and apply an
X gate to turn it into eigenstate |1):

Find the code
In file src/estimate-pi.py

def run_experiment (nbits_phase) :
gc = circuit.qc('pi estimator')
gclock = gc.reg(nbits_phase)
gbit = gc.reg(l)
gc.x(gbit) # make it [1>

# Perform phase estimation.
gc.h(gclock)
for inv in range(nbits_phase) :
gc.cul (gclock[inv], gbit[0], 2% (nbits_phase - inv - 1))
gc.inverse_qgft (gclock)

# Compute pi (and the delta from it).

bits, _ = gc.psi.maxprob/()

theta = helper.bits2frac(bits[:nbits_phase][::-1])
pi =1 / (2 % theta)

delta = np.abs(pi - np.pi)

print (f'Pi Est: {pi:.5f} (gb: {nbits_phase:2d}) Delta: {delta:.6f}")
assert delta < 0.06, 'Incorrect Estimation of Pi.'

‘We run over an increasing number of qubits (you may have to adjust the upper limit
for performance reasons) to get increasingly more accurate approximations for 7:

def main(argv) :
print ('Estimate Pi via phase estimation...')
for nbits in range(7, 20):
run_experiment (nbits)
>>
Estimate Pi via phase estimation...
Pi Est: 3.20000 (gb: 7) Delta: 0.058407
Pi Est: 3.12195 (gb: 8) Delta: 0.019641
Pi Est: 3.16049 (gb: 9) Delta: 0.018901
[...]
Pi Est: 3.14159 (gb: 19) Delta: 0.000001

How scalable is this methodology for finding 7?7 At the time of writing, the world
record for classically estimating 7@ was 105 trillion digits. Observing the progression
of the results in our experiments, about three qubits are required to improve the esti-
mation accuracy by a factor of 10, gaining a single additional digit of precision. The
biggest classical chip at the time of writing was a full-wafer chip with about 4 trillion
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classical bits. In other words, let us not wait for a quantum computer to try to break
that world record.

However, there is also a related helpful result. A similar technique was presented
by Bochkin et al. (2020) to estimate the precision of individual qubits by estimating 7
and propagating the remaining error back to the qubits.

Quantum Fourier Transform (QFT)

In classical engineering, mathematics, and physics, the discrete Fourier transform
(DFT) is an analysis technique that, for a complex-valued function f(-), finds a series
of underlying periodic frequencies and amplitudes that combine to the original func-
tion f(+). It is written as

N—1

1 2mijk/N
= xje TR 11.6
" (o

where a sequence of N complex values x; is transformed into the sequence yj. The
computational complexity of DFT is O(Nz), which makes it impractical for large
problems or problems with fast latency requirements. The development of the fast
Fourier transform (FFT) reduced the complexity to O(N log N ) , amajor breakthrough
in classical computing.

The discovery of the quantum Fourier transform (QFT), which promises a further
reduction of a theoretical complexity of just O(log2 N ) N = 2" for n qubits, was
an exciting moment for quantum computing.> The QFT is one of the fundamental
algorithms of quantum computing. It enables important algorithms, such as phase
estimation, which we learned about in Section 11.2.1. As we shall see shortly, phase
estimation is also a key ingredient in Shor’s factoring algorithm.®

The QFT has a similar form as the DFT but is expressed as a unitary state evolution,
where for n qubits, an operator QFT of size 2" x 2" is applied to transform a state in
the computational basis |x) = Z?’;OI x; |i) into a state |y) = Zf.\:()l yi li):

QFT |x) = y). (11.7)
We define wy = ¢*™/N. The elements of the set {@” = 22™"/N} are called the Nth

roots of unity (the nth root of unity’ is a complex number z such that z* = 1). The
individual components of the state vector are transformed as

N—1
1 k

:—E x,wh, k=0,1,...,N—1.
Yk ﬁNn:O N

If the state |x) in Equation (11.7) is a basis state (which in our cases it always will
be), then we can write the closed form for the QFT operator as

5 The complexity of QFT was later refined to O (N log’> N ) to account for measurements (Musk, 2020).

6 Note that for historical reasons, the inverse DFT is often considered analogous to the QFT, but let’s not
get hung up on those details here.

7 See also http://en.wikipedia.org/wiki/Root_of unity.
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1 N—1 ) 1 N—1 B
OFTlx) = =7 d awhli) = N/ > Ny (11.8)
j=0 j=0

Note how similar this form is to the classical DFT in Equation (11.6). Sometimes,
authors put a minus sign in front of the exponent. This is a matter of convention. As
an example, to apply this formula to the two-qubit state |10) = |2), with N = 4 and
k=2, we get

N—
OFT|10) = Z )
=0
_ % (ezni0-2/4) |O> I Q2Ti12/4) |1> + £2mi2:2/4) |2> Jr62711'342/4) ‘3>)

= (0~ 1) +12)~ ).

To write the QFT as an operator for n qubits with N = 2" basis states, we define
the general and quite elegant form of the operator with w = wy as

1 1 1 1 1 1
1 ol W2 W’ Wh-1
Ll @ w Wb W2N—1)
QFTy = N w? b w’ w3V-1)
1 N1 2= 31 WwN=DN-1)

In fact, a simple mnemonic for the entry at row i and column j is

FT, = < i)l
ii= ——=|1 .
Q 5J \/N .]

For two qubits, this matrix is the following. Note that the factors in column 2,
(+1,—1,+1,—1), match the resulting signs in the above example, where we calculated
QFT|10) = 1 (+0) — [1) + |2) — [3)). We would get similar results for the other
basis states and their corresponding columns (specifically column 0, because applying
QFT to state |00) will result in all-zero exponents):

11 1 1
| N R S
OFfa=3 1y 1 1 _1
1 —i -1

To follow this line of reasoning to the smallest operator, for a single qubit, the QFT,
operator is the same as the Hadamard gate:

1 /1 1
QFTZ_H_\/E<1 _1>.

As we stated in Section 11.2.1, applying the QFT to a state will match the output
of a phase estimation circuit. Our mission in this chapter is to derive this form and the
circuit to produce it.
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QFT Circuit

Let us again consider a state in the binary interpretation ¢ = |po¢p; - - - P,—1) repre-
senting the decimal value

1 1 1
0.00P1... 1 = ¢0§ +¢1§ +... +¢n—1ﬁ7

with the ¢; representing the binary bits 0 or 1. Recall from Section 11.2.1 that the
result of phase estimation on |¢) was Equation (11.3), reproduced here as Equation

(11.9). We also claimed that this state was identical to the result of a QFT applied to
state |¢):

(|O>+ eZniO.(ﬁ,,l |1>) <|0>+ eZm‘O.gﬁ,,z@,] |1>) A (|0>+ 62711‘0.4)0(;51..4(1)/,[ ‘1>)
21/2

(11.9)
Let us derive this result. The arithmetic looks quite daunting, you may choose to
focus on the final result only.

N—-1

1 i
‘¢> _>2n/2 2 2TOk/N k)
k=0

1 1
1 . noye
:W g g eznl¢(21:12 1) |k0~'~knfl>
ko=0

kn—1=0
1 1 1 n—1
e S ey
k=0 ky_1=0 =0
1 n—1 1 .
=z & [Zez”"""’z |kl>]
=0 k=0

n—1
1 o
=5 @ [10) + e )]
=0

(10) + 200n=1]1)) (|0) + €2M0Pr—20n-1]1)) .. (|0) + €2Ti0Pob1-0n-1]1))
on/2 :

Depending on the endianness of the circuit, the terms may be in reverse order. Not
to worry, we can augment a QFT circuit with final Swap gates to reverse the order of
the terms. Alternatively, instead of hooking up the unitaries with control qubits going
from the bottom to the top, we can also build a circuit where the control qubits go
from top to bottom. In this book, we will find examples of both ways.

How would we build the circuit to produce this state? In the following, we will use
the Ry gate from Section 2.7.7:

1 0
Ry = <O ezm/zk> :

The following process closely mirrors what we have already learned from phase
estimation. For notation, we will write H, to indicate that a Hadamard gate is applied
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Figure 11.7 A QFT circuit for four qubits. This circuit uses little-endian convention (the least
significant qubit is at the lowest index, which is the top qubit). To produce a circuit in
big-endian convention, you can mirror the qubit indices about the middle with qubits 0 <+ 3
and 1 < 2.

to the qubit at index x. For the controlled Ry gates, we will write Ry, to indicate that
the Ry gate is applied to the qubit at index x. We follow the sequence of gates shown
in Figure 11.7. Note that this whole mechanism is an extended phase-kick circuit.

For the first qubit, we get a first digit ¢ by applying a Hadamard gate Hy. Applying
this gate results in the state

HoI8) = 3z (10) + ™%[1) 61+~ Bua).

If bit g = 1, then e2?0% = —1,if g = 0, then **%% = 1 and we get the
expected result from the Hadamard gate. We can append a second digit by applying a
controlled R, gate:

Ro0)Ho |9) = 1/2 (10) + X1 [po -+ o).

For the remaining digits, we follow this with a sequence of controlled R; gates,
k =3,...,n, resulting in

[91) = 515 (10) 4 m0mor-dur)

For the second qubit ¢; (atindex 1), we repeat an almost identical sequence of gates,
but it will be shorter by one rotation gate. We start again with a single Hadamard gate
to the second qubit

HlYy) = Han 10) - RooyHo | §)
22/2 (|0> +ezmo¢o¢1 P 1) (|O> +e2m’0.¢>1|1>) |¢2 . ..¢’171>7

and apply a controlled R, gate as above to get a second digit for the second qubit

RyyH\R,—1(0) - - - RagoyHo | )

1 )
_ 22/2 (|0> +eZmO(‘>od)1 n— 1) (|0> 27110.(7)1f(52|1>) |(‘-b3 . "¢n—l> .
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We continue this process for the remaining digits. We then use this methodology
for the remaining terms in Equation (11.9) and the corresponding qubits, with ever-
shorter gate sequences, until only a final Hadamard gate remains after |i3) (you may
recall the final Hadamard gate in Figure 11.4 in the section on QPE; this gate indeed
corresponded to a single-qubit QFT).

Note that the terms are in reverse order compared to Equation (11.9). We would
only have to invert the qubit indices to obtain a matching result, for example, by
starting the very first Hadamard gate on qubit 3 instead of qubit 0. We chose the
current order because it is easier to write. You will find that both the big-endian and
little-endian conventions are being used in this book and the literature.

Recall that controlled phase gates are symmetrical, as shown in Section 2.9, so
sometimes you may see a functionally identical circuit but with switched controlled
and controlling qubits.

As we have already stated in Section 11.2.1, the QF'T operator is a unitary operator,
as it should be because it is made up of other unitary operators. Since it is unitary, it has
an inverse, the Hermitian conjugate. To repeat what we have learned in Section 11.2.1
on QPE, this is how we get from the output of phase estimation to a state representing
binary bits:

1
2"/

OFT' —® (|0) + &¥™0P=1|1))

® (|0) + e OPr20n-11))

® (|O> +62ni0.¢oq§1-"¢n—l|l>)

=|do 1 -+ Pui). (11.10)

In many algorithms, we will apply the inverse QFT to remove the superposition
and obtain a result, as shown in Equation (11.10). An important aspect of QFT is
that, while it enables the encoding of (binary) states in superposition with phases, on
measurement in the computational bases, the state collapses to just one basis state.
All other information will be lost. The challenge for QFT-based algorithms is to use
tricks and transformations so that we can find a solution to a given problem with high
probability.

How many fractions do we need to achieve a reliable result for a specific algorithm?
This is an interesting metric to play with. Early work on the approximate quantum
Fourier transform indicates that, for Shor’s algorithm, you can stop adding rotation gates
as the rotation angles become smaller than 7t /n* (Coppersmith, 2002). This reduces the
complexity of the QFT circuit without affecting the accuracy of the results, making this
a viable optimization for practical implementations of quantum algorithms.

QFT Operator

In code, we implement the QFT operator as a full matrix. We put the input qubits in
superposition with Hadamard gates and apply controlled rotations for each fractional
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part. Be careful to put the indices in the right order.® We also provide an optional
facility to reverse the order of qubits with Swap gates:

Find the code
In file src/1ib/ops.py

PY

def Qft(nbits: int, swap: bool = True) -> Operator:
op = Identity(nbits)
h = Hadamard()
for idx in range(nbits):
op = op(h, idx)
for rk in range(2, nbits - idx + 1):
controlled_from = idx + rk - 1
op = op(ControlledU(controlled_from, idx, Rk(rk)), idx)
if swap:
for idx in range(nbits // 2):
op = op(Swap (idx, nbits - idx - 1), idx)
assert op.is_unitary (), 'Constructed non-unitary operator.'
return op

Calculating the inverse of the QFT operator is trivial. QFT is a unitary operator, so
the inverse is simply the adjoint:

Qft = ops.Qft(nbits)
[...]
InvQft = Qft.adjoint()

Suppose QFT is computed via explicit gate applications in a circuit. In that case,
the inverse has to be implemented as the application of the inverse gates in reverse
order, as outlined in Section 2.12 on reversible computing (we should also recall that
for a product of matrices, (AB)~! = B~'A~"). We add implementations of gft and
inverse_gft to the circuit class and will see examples of their use shortly.

Find the code
In file src/lib/circuit.py

PY

def gft(self, reg, with_swaps: bool = False) -> None:
for i in reversed(range(len(reg))):
self.h(reg[il])
for j in reversed(range(i)):
self.cul (regl[i], regljl, np.pi/2**(i - 3))
if with_swaps:
self.flip(reg)

def inverse_qgft(self, reg, with_swaps: bool = False) -> None:

if with_swaps:
self.flip(reg)

8 This is very easy to get wrong.
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for idx, r in enumerate(reg) :
self.h(r)
if idx != len(reg) - 1:
for y in range(idx, -1, -1):
self.cul (reglidx + 1], reglyl, -np.pi / 2 *x (idx + 1 - y))

Note that qubit ordering can be an issue, as discussed. Depending on whether the
big-endian or little-endian convention is used, the order in which gates are applied to
qubits may have to be inverted. Alternatively, the binary interpretation of qubits can
be reverted.

Online Simulation

It can be helpful to use one of the available online simulators to verify the results. Be
aware that the simulators might not agree on the qubit ordering. For experiments, we
can always add Swap gates at the end of a circuit to follow online simulators’ qubit
ordering. Alternatively, we can also add the Swap gates to the circuits in the online
simulators.

A widely used online simulator is Quirk (Gidney, 2021a). Let us construct a simple
two-qubit QFT circuit in Quirk, as shown in Figure 11.8. To the right of this graphical
representation, we can reconstruct the phases from the gray circles (blue on the web-
site). We see that the state |00) (top left) has a phase of 0 (the direction of the x-axis),
the state |01) (top right) has a phase of 180°, the state |10) (bottom left) has a phase
of —90°, and the state |11) has a phase of 90°.

In our infrastructure, we would construct the same circuit:

gc = circuit.qgc()

reg = gc.reg(2, [1, 11)
gc.gft(reg, True) # True, for the final swap gates.
gc.psi.dump ()

>>

[00> (|0>): ampl: +0.50+0.00j prob:
|01> (|1>): ampl: -0.50+0.00j prob:
[|10> (|2>): ampl: -0.00-0.50j prob:
[11> (|3>): ampl: +0.00+0.50j prob:

.25 Phase: 0.
.25 Phase: 180.
.25 Phase: -90.
.25 Phase: 90.

o O O O
o O O O

M4 H

)——— 8§ H H

Figure 11.8 A partial screenshot from http://algassert.com/quirk, showing a two-qubit QFT
operation with swap gates.
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Quirk agrees with our qubit ordering (or we agree with Quirk). Quirk also shows
the state of individual qubits on a Bloch sphere. How does this work, as we are dealing
with a two-qubit tensored state, and Bloch spheres only represent single qubits? We
discussed the partial trace in Section 4.3, which allows tracing out qubits from a state.
The result is a reduced density matrix. In Section 2.3, we showed how to compute the
Bloch sphere coordinates from a density matrix. For systems of more than two qubits,
all qubits that are not of interest must be traced out so that only a 2 x 2 density matrix
remains.

Let’s try this out. From the state shown in Figure 11.8, we trace out qubit 0 and
qubit 1 individually and compute the Bloch sphere coordinates:

>>

x0:
x1:

psi = state.bitstring(l, 1)

psi = ops.Qft(2) (psi)

rho0 = ops.TraceOut (psi.density (), [1])

rhol = ops.TraceOut (psi.density(), [0])

x0, yv0, z0 = helper.density_ to_cartesian(rho0)

x1, y1l, zl = helper.density to_cartesian(rhol)

print('x0: {:.1f} y0: {(:.1Ff} z0: {(:.1f}'.format(x0, yO0, z0))
print('x1: {:.1f} y1: {:.1f} z1: {:.1f}'.format(xl, yl, zl))

-1.0 y0: 0.0 z0: -0.0
-0.0 y1:-1.0 zl1l: -0.0

This result agrees with Quirk as well. The first qubit is located at —1 on the x-axis
of the Bloch sphere (the x-axis goes from the back of a page to the front), and the
second qubit is located at —1 on the y-axis (going from left to right).

Quantum Arithmetic

We saw in Section 5.1 how a quantum circuit can emulate a classical full adder, using
quantum gates without exploiting any of the unique features of quantum computing,
such as superposition or entanglement. All qubits were |0) or |1), which was equiv-
alent to classical computing. This was a nice exercise demonstrating the universality
of quantum computing but an inefficient way to construct a full adder. There was no
demonstrable quantum advantage.

In this section, we discuss another algorithm that performs addition and subtrac-
tion. Here, the math is being developed in the Fourier domain with a technique first
described by Draper (2000). Updated techniques can be found in Cuccaro et al. (2004),
Gidnay (2018), and Wang et al. (2023).

To perform addition, we apply a QFT, a sprinkle of magic, and a final inverse
QFT to obtain the desired numerical result. We explain this algorithm with just a
hint of math and a lot of code. This implementation uses a different direction from the
controller to the controlled qubit as in our early QFT operator. This is not difficult to
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Figure 11.9 A three-qubit QFT in big-endian convention (the least-significant qubit is at the
highest address, index 2).
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|ar) (7} /2 —
la2) b n/2 /4
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Figure 11.10 The evolve step for a three-qubit quantum addition in the Fourier domain.

o) —— (]

) H !
la2) | —n/a - -n/2

Figure 11.11 The inverse QFT for three qubits, also in big-endian convention.

follow; simply inverting the qubits in a register leads to identical implementations. We
use explicit angles and the controlled U, gate.

The algorithm performs three basic operations to compute a + b, for which we
show some numerical examples below:

« Apply QFT to the qubits that represent an input value a. This encodes the bits as
phases on states. The corresponding circuit for three qubits is shown in Figure
11.9.

« Evolve a by the value b to compute their addition. This cryptic-sounding step
performs another set of QFT-like rotations on a using the same controlled rotation
mechanism as regular QFT. However, it is not a full QFT. There are also no initial
Hadamard gates, as the states are already in superposition. We detail the steps in
the following; an example for three qubits is shown in Figure 11.10

« Perform an inverse QFT to decode phases back to bits. The three-qubit example is
in Figure 11.11
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In code, these key functions are implemented as the following:

Py Find the code
In file src/arith_quantum.py

def gft(gc: circuit.gc, reg: state.Reg, n: int) -> None:
gc.h(reglnl)

for i in range(n):
gc.cul(reg[n - (i + 1)], regln], math.pi / float(2 ** (i + 1)))

def evolve(gc: circuit.gc, reg_a: state.Reg, reg_b: state.Reg,
n: int, factor: float) -> None:
for i in range(n + 1):
gc.cul(reg_b[n - 1], reg_aln], factor x math.pi / float(2*=*1i))

def inverse_qgft(gc: circuit.gc, reg: state.Reg, n: int) -> None:
for i in range(n):
gc.cul (regli]l, reglnl, -1 x math.pi / float(2 ** (n - i)))
gc.h(reg([n])

To drive the algorithm, we first need to specify the bit width of the inputs a and b.
For n-bit arithmetic, we need (n + 1) bits to account for overflow.

The signature of our entry point will get the bit width as n and the two initial integer
values init_a and init_b, which must fit the available bits. The parameter factor
will be 1.0 for addition and —1.0 for subtraction. We will see shortly how this factor
applies. We instantiate the two registers with bit width n + 1. Because we interpret the
bits in reverse order, we have to invert the bits when initializing the registers:

def arith_quantum(n: int, init_a: int, init_b: int, factor: float = 1.0):
a = gc.reg(n+l, helper.val2bits(init_a, n)[::-1], name='a')
b = gc.reg(n+l, helper.val2bits(init_b, n)[::-1], name='b")

for i in range(n+1):
qft(gc, a, n-i)
for i in range(n+l):
evolve(gc, a, b, n-i, factor)
for i in range(n+l):
inverse_qgft(gc, a, 1)

Let us look at these three steps in detail, using the example of a two-qubit addition
using three qubits for both the a and b registers. The initial QFT is a standard three-
qubit QFT circuit. We can enumerate the qubits from 0 to 2 or 2 to 0; it does not make
areal difference as long as we remain consistent. After the first loop, we constructed a
standard QFT circuit. The middle loop in Figure 11.10 is where the magic happens —
we explain how this works in the following. The construction of the inverse QFT
circuit takes place in the third loop. All of the first QFT gates are inverted and applied
in reverse order.
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Figure 11.12 The addition circuit for single-qubit inputs, each with an additional overflow qubit.
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Figure 11.13 The addition circuit for two-qubit inputs, each with an additional overflow qubit.

Recall that the inverse of the Hadamard gate is another Hadamard gate, and the
inverse of a rotation is a rotation by the same angle but in the opposite direction.
For single-qubit registers a and b, the addition circuit, including the overflow qubit,
is shown in Figure 11.12. A corresponding circuit for two-qubit addition with an
overflow qubit is shown in Figure 11.13.

To elaborate further on the numerical results for the example in Figure 11.13, we
construct two two-qubit states holding the value 1 using the little-endian convention
(we have to revert the bits with [::-11). With the extra qubit for overflow, the state
after initialization is the following:

>>
|1

gc = circuit.qgc('gadd"')

a = gc.reg(n + 1, helper.val2bits(init_a, n)[::-1], name='a')
b = gc.reg(n + 1, helper.val2bits(init_b, n)[: —l] name='b"')
00100> (|36>): ampl: +1.00+0.003j prob: 1.00 Phase: 0.0

After QFT on the first qubit, represented by the first three digits in the textual repre-
sentation, the state becomes the following, where the bottom three qubits representing
the input b are still in state |100) (marked in bold in this snippet):

|0
|0
|0
[0
|1
|1
|1
|1

00100> (| ampl: +0.35+0.003j prob: 0.12 Phase: 0.0
01100> (|12>): ampl: +0.25+0.25j prob: 0.12 Phase: 45.0
10100> (|20>): ampl: +0.00+0.35j prob: 0.12 Phase: 90.0
11100> (|28> : ampl: -0.25+0.25j prob: 0.12 Phase: 135.0
00100> (|36>): ampl: -0.35+0.00j prob: 0.12 Phase: 180.0
01100> (|44>): ampl: -0.25-0.25j prob: 0.12 Phase: -135.0
10100> (|52> : ampl: -0.00-0.35j prob: 0.12 Phase: -90.0
11100> (|60>): ampl: +0.25-0.25j prob: 0.12 Phase: -45.0
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The state after the evolution step becomes a little harder to interpret:

|OOOlOO> (\ 4>) ampl: +0.35+0.00j prob: 0.12 Phase: 0.0
|001100> (\12>): ampl: +0.00+0.35j prob: 0.12 Phase: 90.0
|OlOlOO> (\20>): ampl: -0.35+0.00j prob: 0.12 Phase: 180.0
|OlllOO> (\28>): ampl: -0.00-0.35j prob: 0.12 Phase: -90.0
|100100> (\36>): ampl: +0.35-0.00j prob: 0.12 Phase: -0.0
|101100> (\44>): ampl: +0.00+0.35j prob: 0.12 Phase: 90.0
|llOlOO> (\52>): ampl: -0.35+0.00j prob: 0.12 Phase: 180.0
|111100> (\60>): ampl: -0.00-0.35j prob: 0.12 Phase: -90.0

The final state after the inverse QFT will have the correct result of binary 010 or
decimal 2 in the top three qubits (marked in bold):

|010100> (\20>): ampl: +1.00-0.00j prob: 1.00 Phase: -0.0

How does this work? Let us first try to explain it mathematically. First, remember
that QFT in little-endian takes this input state:

[¢) = |ap—1 an—2 --- a1 ap),

and transforms it to

1 i0.a a, <y
QFT|4’> = W (|O> + 2001812 0|1>)

® (|0> +62ni0.a,l,|a,,,2|1>)
® (|O> +62ni0.an,1|1>) )

Applying the rotations of the evolve step adds the binary fractions of b to a. For
example, let us look at the first term and apply the various controlled gates CR;.. Recall
from Section 2.7.7 that Ry(n) = U;(27/2"). Doing this for all the fractional parts in
the evolve step, the final state becomes

[ (a+b)) = (j0) + 0oz 1))
( 0> + eZm’O,an_lan_zu-ag%»().bn_] |1>)

(j0y + 200~ 18n—2"-a0+0.bn—1b1—2 | 1)) CR; gate on b,_»,

CR, gate on b,,_,

L

N (|0> 4 ezniOﬂn—1an72~~-ao+0-bn—1bn72---bo|1>) CRn—l gate on b0~

Given the insight that rotations in the Fourier domain facilitate addition, it is almost
too easy to implement subtraction — we add a factor of —1 to b to evolve the state in
the opposite direction. This is already implemented in the evolve function above.
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With the same line of reasoning, we can easily express multiplications of the form
a+cb, by just applying that factor to the rotation gates. We have to be careful with
numerical overflow and make sure to reserve enough qubits to hold the result.

The algorithm does not implement an actual multiplication, as recently proposed by
Gidney (2019), where the factor ¢ is held in another quantum register as input to the
algorithm. However, performing multiplication in this way has an important use case.
In Section 11.6 on Shor’s algorithm, we will multiply by constant integers for which
we can classically compute the rotation angles required for addition.

To test our code, we check the results with a routine that performs a measurement.
As usual, we do not actually measure but look up the state with the highest probability.
After the rotations and coming out of the superposition, the basis state representing
the sum a + b will have a probability close to 1.

def check_result(psi: state.State, a, b,
nbits: int, factor: float = 1.0) -> None:

maxbits, _ = psi.maxprob()

result = helper.bits2val (maxbits[0:nbits][::-1])
assert result == a + factor * b, 'Incorrect addition.'
Adding a Constant

Adding a known constant value to a quantum state representing a binary number does
not require a second quantum register, as in the general case of addition. We can
precompute the rotation angles and apply them directly as if they were controlled by
a second register that holds that constant. To precompute the required angles, we use
this function:

def precompute_angles(a: int, n: int) -> List[float]:

angles = [0.0] * n
for i in range(n):
for j in range(i, n):
if (a & (1 <<n -3 - 1)):
angles[n - i - 1] 4= 2 ** (-(j - 1))
angles[n - i - 1] *= math.pi
return angles

We modify the evolve step and add the precomputed rotation gates directly with U,
gates instead of using controlled gates, as shown in the following code snippet. We
will use this method later in Shor’s algorithm as well.

for i in range(n+1l):
agft(gc, a, n-i)

for idx, angle in enumerate (precompute_angles(c, n)):
gc.ul (al[idx], angle)

for i in range(n+l):
inverse_qgft(gc, a, 1i)
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/2 71/4| /4 ‘—n/4 —1/2

Figure 11.14 The circuit for a three-qubit addition of a constant value 1 to a quantum register.
The individual rotations are precomputed; no further controlled rotations are needed. The left
and right sides of the circuit are the QFT and inverse QFT operation, and the three rotations in
the middle by 7, 7t/2, and 7t/4 represent the evolve step.

HH™®/?2 71/4| /2 ‘—n/4 —n/2 HH
]

Figure 11.15 The circuit for a three-qubit addition of a constant value 2 to a quantum register.
The individual rotations are precomputed and differ from the case shown in Figure 11.14; they
are now 0, 7t, and 7t/2.

For example, for the three-qubit addition of a constant 1, the circuit without the
b register is shown in Figure 11.14. To compare, the corresponding circuit for the
addition of a constant 2 is shown in Figure 11.15. Notice the modified rotation angles
in the evolution step.

11.5.2  Multiplication

So far, our methodology allows us to compute a + cb, for a constant c. Using this
as a building block, we can implement full multiplication of two quantum registers
a and b. Observe that if we write « in its binary form a = a,_ja,—» - - - ap, we can
decompose the multiplication ab into

12"+ a,_ 22" b+ ...+ a;2'b + ap2°b.

This is helpful because we know how to implement each of the subterms as an
addition circuit with the terms 2"~ 12772 ... 2! 29 as the constant factor ¢ in the
partial term cb. The complete circuit is shown in Figure 11.16, starting with term ay.
In code, we define a nested function add_src_to_target () that replicates the code
above to calculate a + cb.

def arith_quantum_mult (nbits_a: int, init_a: int,
nbits_b: int, init_b: int) -> None:

def add_src_to_targ(gc, nbits: int, src, targ, factor: float = 1.0):
for i in range(nbits):
aft(gc, targ, nbits - 1)
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|an—1)
|a1)
|ao) ’
|b) ' — — — —
+a2% +ai2'b +an_12""'b
) — — — —

Figure 11.16 A multiplication circuit to calculate ¢ = ab. The individual qubits of |a),
interpreted as powers of 2, control additions of powers of 2 of the bit values of binary |). The
effects are accumulative, resulting in a multiplication.

for i in range(nbits):

evolve(qgc, targ, src, nbits - i, factor)
for i in range(nbits):

inverse_gft(gc, targ, 1)

The complete circuit instantiates three registers for a, b, and c, reserving enough
qubits for a full multiplication result. We build the circuit as a non-eager circuit. After
the registers are built, we iterate over all bits of a, generating a subcircuit to compute
a subterm. We use a subcircuit because we want to control the addition circuit with a
qubit in the a register. The convenience function control_by (), described in Section
3.4.5, makes this easy. Finally, in each iteration, we multiply factor by 2. Once
everything is constructed, a final gc.run() runs the entire circuit. We follow this
with our usual code to ensure that everything went according to plan.

gc = circuit.gc('gmult', eager=False)

gc.reg(nbits_a, helper.val2bits(init_a, nbits_a)[::-11)
gc.reg(nbits_b * 2 + 1, helper.val2bits(init_b, nbits_b)[::-11])
gc.reg(nbits_b » 2 + 1, 0)

a
b
c

factor = 1.0
for idx in range(nbits_a):
sc = gc.sub()
add_src_to_targ(sc, nbits_b * 2, b, ¢, factor)
sc.control_by(al[idx])
gc.qgc(sc)
factor x= 2

gc.run()
maxbits, _ = gc.psi.maxprob()
result = helper.bits2val (maxbits[c[0] : c[0 + nbits_b * 2]1]1[::-1])

assert result == init_a * init_b, 'Incorrect multiplication'’
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Shor’s Algorithm

Shor’s algorithm for number factorization sparked tremendous interest in quantum
computing (Shor, 1994). The Internet’s RSA (Rivest, Shamir, Adleman) encryption
algorithm (Rivest et al., 1978) is based on the assumption that number factoring is an
intractable problem. If quantum computers could crack this code, it would obviously
have severe implications.

Shor’s algorithm is complex to implement. Factoring small numbers like 15 or
21 already requires a large number of qubits and many gates, on the order of many
thousands. Despite this, there is still a quantum advantage. The best-known com-
plexity for classical order finding uses a general number field sieve with subexpo-
nential complexity O(exp(1.9(log N)!/3(loglog N)?/?)). The best known theoretical
quantum complexity is O((log N)*(loglog N)), which puts the algorithm in the BQP
complexity class (Wikipedia, 2024f). The algorithm has three main steps:

1. It has a classical part, grounded in number theory, which relies on modular
arithmetic, followed by a process called order finding.

2. Order finding is classically intractable, but an efficient probabilistic quantum
algorithm was discovered. This quantum part is at the heart of Shor’s algorithm.

3. Once the order has been found, the prime factors can be derived.

We split the description of the algorithm into two parts. The classical part is discussed
in this section. The quantum parts, including factoring, will be discussed in Section
11.7 on order finding.

Modular Arithmetic

Modular arithmetic is a complete arithmetic on integers that wrap around a given
number, called the modulus, and considers the remainder.” One definition is

a=bmod N = b=gN + a, for some q.
Equivalently,

a=bmod N = amodN =bmodN.
Simple algebraic rules hold:

(x+y) mod N = x mod N + y mod N, (11.11)
(xy) mod N = ((x mod N)(y mod N)) mod N. (11.12)

We can use Equations (11.11) and (11.12) to simplify computation with large num-
bers, for example:

(121 +241) mod 12 =141 =2,
(121-241) mod 12=(1-1) mod 12 = 1.

9 The modulus mirrors the C++ or Python percent operators.
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Greatest Common Divisor

We will need to calculate the greatest common divisor (GCD) of two integers. Recall
that we get that by decomposing the numbers into their prime factors and finding the
largest common factor. For example, the GCD of the integers 15 and 21 is 3, as

15=3-5,
20=3-7.

We compute the GCD with the famous Euclidean algorithm (Wikipedia, 2024f):

def gcd(a: int, b: int) -> int:

while b != 0:
t =Db
b=a%hb
a ==t

return a

Factorization

Now, let us see how to use modular arithmetic and the GCD to factor a large number.
We are only considering numbers that have exactly two prime factors. In general, a
number can potentially be factored into several prime factors p;, as

N =pepSt...pi,
but factoring is computationally most difficult if N has only two prime factors of

roughly equal length.'® This is the property upon which the RSA encryption mech-
anism is based. With p and ¢ prime, we assume that

N = pq.

We can restate the factorization problem in the following interesting and perhaps
surprising way. The problem of factoring the large number N into two primes is
equivalent to finding nontrivial solutions to the equation

x> =1 mod N. (11.13)

Below we will find that x will be of the form x = a’/? for a seed value a and an even
“order” r, but let us not get ahead of ourselves. The two trivial solutions for Equation
(11.13) are x = 1 and x = —1. But what about other solutions? For the example of
N = 21, we can find another solution by iterating over the values [1,...,N — 1] and
searching for a value x for which Equation (11.13) holds:

10 The typical reasons given for this are a) the absence of obvious weakness from the imbalance of factors,
b) the fact that the search space cannot be reduced, and c) the complexity of the known factorization
algorithms, which is measured in terms of the size of the factors.
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8:8=64= 1modN (Bingo!).
We find that Equation (11.13) holds for x = 8. Now, since
¥=1lmodN = x*—1=0modN,
we can factor the left side using the quadratic formula as
(x+ 1)(x—1) =0mod N.

The remainder of 0 means N divides the product on the left. This means we can find
the prime factors {p,q} with

p=gcd(N,x+ 1), and
g =gcd(N,x—1).

For the example of N =21 andx = 8, wefindp =3 and g = 7.

This seems easy but suffers from the “little technical problem” of having to find
that number x. In the classical case, our only options are to either iterate over all
numbers or pick random values, square them, and check whether we find a number
that, when taken modulo N, produces a 1. The choice of random values means that
the birthday paradox may apply.'! We would have a 50% chance of finding a positive
result after about /2N searches. This is intractable for the large numbers used in
internet encryption with lengths of 2048 bits, 4096 bits, and higher.

Period Finding

We saw above that we want to find the important even order r for a seed value a with
x=da/ 2 such that ¥ = 1 mod N. To find these values, we perform the following
three somewhat unexpected steps to find r. Later, we will find an efficient quantum
algorithm for the order finding part in Step 2:

Step 1 — Select Seed Number

We pick a random number a < N that does not have a nontrivial factor!? in common
with N. We also say that a and N are coprime. For example, the numbers 5 and 21 are
coprime, even though 21 by itself is not a prime number. This can be tested with the
help of the GCD. If two numbers are coprime they do not!? have a common factor and
their GCD is 1. If our initial selection of a divides N without a remainder, we were
lucky and found a factor already.

11 See also http://en.wikipedia.org/wiki/Birthday_problem.
12 Double negative. Perhaps it is better to say that @ and N have only trivial factors in common.
13 On the other hand, if the numbers are not coprime, their GCD will find a nontrivial factor of N.
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Step 2 - Find Order

Use the function f, y(x) = ¢* mod N and iterate over x in the sequence

a="mod N =1,
@ ' modN =...,

a=?modN =...,

Leonhard Euler showed (Euler, 1763) that for any coprime a of N (which again
means that a and N have no common factors), this sequence will result in 1 for some
nontrivial x < N. Since the sequence started with a*=% = 1, once it hits 1 for x > 0,
the sequence will repeat itself. For example, for a = 7 and N = 15, the sequence is

a®mod N = 7° mod 15 = 1,
a'mod N = 7' mod 15 =7,
@ mod N = 7> mod 15 = 4,
@ mod N = 7° mod 15 = 13,
a*mod N = 7*mod 15 = 1.

The length of the sequence r (4 in the example) is called the order, or period, of the
function. We can write this mathematically as

fan(s +1) = fan(s).

This is the problematic classical step. We do not know of a polynomial-time classi-
cal algorithm for it. In Section 11.7, we will learn about a quantum algorithm for this
task. For now, let us just pretend that we have an efficient way to compute the order
and learn how we can use it to factor a number.

Step 3 - Factor

If we find an order r that is an odd number, we give up, throw the result away, and
try again with a different initial value of a in Step 1. If, on the other hand, we find an
order r that is an even number, we can use what we discovered earlier. Namely, we
can get the factors if we can find the x in the equation

x> =1modN.
We just found in step 2 above that

a”"=1modN.
If r is even, we can rewrite this as

(a’/z)2 =1 mod N.
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In this form, we can compute the prime factors of N with the GCD as
p = ged (N,a’/2 + 1),
q = ged (N,a’/2 — 1).

There is another small (as in, actually small) caveat. We do not know whether a
given initial value of a will result in an even or odd order. We cannot use odd orders
because they would not lead to useful factors. It can be shown that the probability of
selecting an a that produces an even order r is 1/2. This means we might have to run
the algorithm multiple times until we find an even order.

The three steps of selecting a seed number, finding the order, and factoring are the
core of Shor’s algorithm. As mentioned, we develop a quantum algorithm for order
finding in Section 11.7. But before we get there, let us write some code and explore
the concepts developed so far.

Playground

Let’s use some random examples to experiment with what we have learned so far. We
classically compute the order and derive the prime factors from it. Since the numbers
are small, the problems are still tractable. Let us first develop some helper functions.
When choosing a random number num to play with, we must make sure that it is
not prime and can be factored. To check for primality,'* we iterate over all the odd
numbers starting at 3 and confirm that none of them divides the candidate number num.

Py Find the code
In file src/shor_classic.py

def is_prime(num: int) -> bool:

for i in range(3, num // 2, 2):
if num % 1 == 0:
return False
return True

The algorithm requires picking a random number seed, which must be coprime to
the larger number (no common factors).

def is_coprime(num: int, larger_num: int) -> bool:

return math.gcd(num, larger _num) == 1

We find a random, odd, and nonprime number in the range of numbers from f£r to
to. We also add a routine to find a coprime:

14 1t’s a word. I checked.
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def get_odd_non_prime(fr: int, to: int) -> int:
while True:
n = random.randint (fr, to)
ifn %2 == 0:
continue
if not is_prime(n):
return n

def get_coprime(larger_num: int) -> int:
while True:
val = random.randint (3, larger_num - 1)
if is_coprime(val, larger_num) :
return val

Finally, we will need a routine to compute the order of a given modulus. The code
below iterates until it finds a result of 1 (which is guaranteed to exist).

def classic_order (num: int, modulus: int) -> int:
order = 1
while 1 != (num x* order) % modulus
order += 1
return order

For the main experiments, we first select a random N and a coprime a, as described
above. N is the number to factorize; it must not be prime or divisible by 2. Once
we have the numbers, we classically compute the order. Once the order is found, we
compute the factors from it and check the results:

def run_experiment (fr: int, to: int) -> (int, int):
n = get_odd_non_prime(fr, to)
a = get_coprime (n)

order = classic_order (a, n)

factorl = math.gcd(a ** (oxrder // 2) + 1, n)
factor2 = math.gcd(a ** (order // 2) - 1, n)
if factorl == 1 or factor2 == 1:

return None

print ( 'Found Factors: N = {:4d} = {:4d} »* {:4d} (r={:4})"'.
format (factorl » factor2, factorl, factor2, order))

assert factorl * factor2 == n, 'Invalid factoring'

return factorl, factor2

We run a number of tests and should find results as follows. Even for small random
numbers of up to 9,999, the order can already be quite large.
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def main(argv) :

>>

print ( 'Classic Part of Shor\'s Algorithm. ')
for i in range(25):
run_experiment (21, 9999)

Classical Part of Shor's Algorithm.

Found Factors: N = 3629 = 191 =« 19 (r=1710)
Found Factors: N = 4295 = 5 x 859 (r=1716)
Found Factors: N = 9023 = 1289 =« 7 (r=3864)

[..

-1

In summary, we have examined how to factorize a number N into two prime factors
using order finding and modular arithmetic. However, we also find that classical order
finding for large numbers is intractable. Thankfully, an efficient quantum algorithm
has been discovered for this purpose, which we will discuss next.

Order Finding

So far, we have learned how finding the order of a specific function classically lets us
find two prime factors. In this section, we discuss an effective quantum algorithm to
improve on the classical task. We start by restating the objective in a slightly different
way: We want to find the phase of one particular operator. It may not be immediately
clear how this pertains to determining the order, but no worries, we will elaborate on
all the details in the subsequent sections.

Quantum order finding boils down to estimating the phase for the operator U,,
which is defined as

U,|ly) = |xy mod N). (11.14)

Here, x plays the role of the value a from Section 11.6.4, where we exponentiated
a with increasing integer exponents and computed the modulus until we found a
remainder of 1. We can also see that there is a modulus operation in the operator.
We will have to find a quantum way to implement this operation.

To begin, let us first find the form of the eigenvalues of this operator. We use a
process similar to the power iteration process from Section 11.6.4. We know that the
eigenvalues must have norm 1, otherwise the state probabilities would not sum up to
1. We also know that the eigenvalues are defined as U|v) = A|v). Hence, we can state:

Utly) = A% ),
and, substituting this into the operator of Equation (11.14), we get
U*ly) = |¥*y mod N).
If 7 is the order of x mod N, then x" = 1 mod N, and

U'ly) = A"ly) = |¥y mod N) = |y).
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In turn, this allows us to derive that A" = 1. This means that the eigenvalues of U
are rth roots of unity, which are complex numbers that yield 1 when raised to some
integer power n. They are defined as

Ay =¥ fors=0,...,r— 1.

Using phase estimation, we will find these eigenvalues. The final trick will be to get
to the order r from the fraction s/r.

There is, of course, an initialization problem. For the phase estimation circuit to
work, we need to know an eigenvector. In the following, we will show that the eigen-
vectors of the operator U with order 7, a value s with 0 < s < r, and a seed value a, are

r—1
vs) = \[Z kag/r‘a mod N).

However, because we do not yet know the order r, we do not know any of the
eigenvectors. Here comes another smart trick. We can see that the operator U from
Equation (11.14) is a permutation operator. How does this work? Following the pattern
of modular arithmetic, given states are uniquely mapped to different states with order
r. Let us interpret the states as integers, with state |1) representing decimal 1, and
state |1001) representing decimal 9. For all values less than r, this mapping is a 1:1
mapping — each input state maps to a unique output state, which ensures that no two
input states map to the same output state. For the operator

Uly) = |xy mod N),

we see that state |y) is multiplied by x mod N. As we iterate over exponents, this
becomes

U"ly) = |x"y mod N) .

For example, with x = 2 and N = 21, each application multiplies the state of the
input register by 2 mod N. We started with 2° = 1 = 1 mod N, which corresponds to
state |1). Then

Ul =),

U*|1) = UUI1) = UJ2) = |4)
U1) = 8),

Ut1) = [16),

U1y = [11),

Uty =U(1) = 1)

We still need to find an eigenvector but discover that the first eigenvector of this
operator is in superposition of all states. This may be surprising but is easy to under-
stand from another simple example.!> Let us take the unitary X gate, which only
permutes between the two states |0) and |1), with

15 http://quantumcomputing.stackexchange.com/a/15590.
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X|0) =]1) and X]|1) = |0).

Applying X to the superposition of these basis states leads to the following result with
an eigenvalue of 1:

¥ <0> + |1>> _ X]0) + X|1)

V2 V2
) o)+
V2 V2
oy
-

Now that we have found at least one plausible eigenvector, we can generalize the
operator in Equation (11.14) to multiple basis states. As shown, the superposition of
the basis states is an eigenvector of U with eigenvalue 1:

r—1
lur) = \% kz:; ’ak mod N).
We also found that the eigenvalues are
Ay =™/ fors=0,...,r— 1.
We can introduce a factor & to define eigenstates where the phase of the kth basis

state is proportional to k as

r—1
ur) = %Zez"”‘/ﬂak mod N). (11.15)

k=0

For our example, applying the operator to this eigenvector follows the permutation
rules of the operator U (|1) — |2),]2) — [4),...):

1 . . . . .
‘ul> — % (|1> _|_62m/6|2> _|_e4m/6|4> —|—€6m/6|8> —|—€8m/6|16> _|_610m/6|11>)’
1 . . . . .
U\u1> — % (|2> +62m/6|4> _|_e4m/6|8> —|-66m/6|16> +e$m/6|11> +elOm/6|1>) )

—2mi/6

We can pull out the factor e to arrive at:

~—

Uhr) = %eizm/ﬁ (% 12) + e 4) + €T 18) + €T 16) + V1) + ¢ F 1))
=1

— e—2m‘/6|u1>'

Note how the order r = 6 now appears in the denominator. To make this general
for all eigenvectors, we multiply in a factor s in the exponent, thereby obtaining:

r—1
|us> — % kZ:;eZTciks/r|ak mod N>
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Figure 11.17 Order finding circuit, which consists of phase estimation for the operator U
followed by an inverse QFT operation.

As a result, for our operator, we now get a unique eigenvector for each integer
s =0,...,r — 1, with the following eigenvalues (note that if we added the minus sign
to Equation (11.15), the minus sign here would disappear; we can ignore it):

e/ ). (11.16)

There is another important result here: If we add all these eigenvectors, the phases
cancel out except for |1) (not shown here; it is voluminous but not challenging). This
helps us because now we can use |1) as the eigenvector input to the phase estimation
circuit. There, phase estimation for any of the eigenvalues in Equation (11.16) will
give us the following result:

S

b=
But why can we use |1) to initialize the phase estimation? Here is an answer:'¢
Phase estimation should work for one eigenvector/eigenvalue pair. But in this case,
we initialize the circuit with the sum of all eigenvectors, which we can consider as
the superposition of all eigenstates. On measurement, the state will collapse to one
of them. We do not know which one, but we know from the above that it will have
a phase ¢ = s/r. This is all we need to find the order with the method of continued
fractions.

With all these preliminaries, we can now construct a phase estimation circuit as
shown in Figure 11.17. The big challenge is how to implement the large unitary
operator U. Our solution is based on a paper by Stephane Beauregard (Beauregard,
2003) and a reference implementation by Tiago Leao and Rui Maia (Leao and Maia
2021). The implementation is quite complicated. Fortunately, we are already familiar
with many of the building blocks.

16 http://quantumcomputing.stackexchange.com/q/15589.
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In our implementation, which is not highly optimized and far from theoretical
limits, we need 22 qubits and more than 20,000 gates to factor the number 21. Because
there are many QFTs and uncomputations, the number of gates increases rapidly. With
our accelerated implementation, we can still simulate this circuit tractably for smaller
numbers requiring about five classical binary bits. The overall implementation consists
of about 250 lines of Python code.

As with all oracles or high-level unitary operators, you might expect some quantum
trick, a specially crafted matrix that just happens to compute the modulo exponentia-
tion. Unfortunately, that magical matrix does not exist. Instead, we have to compute
the exponentiation explicitly with quantum gates by implementing addition and multi-
plication (by a constant) in the Fourier domain. We also have to implement the modulo
operation, which we have not seen before.

We describe the implementation as follows. First, we outline the main routine
driving the whole process. Then, we describe the helper routines, e.g., for addition.
We have seen most of these before in other sections. Finally, we describe the code that
implements the unitary operators, which we connect in a phase estimation circuit. We
finally get experimental results from the estimated phase with the help of continued
fractions.

Main Program

In the implementation, we get the number N to factor and the seed value a as
command-line parameters. From these values, we compute the required bit width and
construct three registers.

« aux for ancillae.

« up is the top register in the circuit shown in Figure 11.17. We will compute the
inverse QFT on this register to get the phase estimation.

« down is the register that will hold the unitary operators. We initialize it to state |1),
which we can think of as the superposition of all eigenvectors, as explained above.

Py Find the code
In file src/order_ finding.py

def main(argv) :

number = flags.FLAGS.N

a = flags.FLAGS.a

nbits = number.bit_length()

print('Shor: N = {}, a = {}, n = {} -> qubits: {}'

. format (number, a, nbits, nbits*x4 + 2))
ac = circuit.qgc('order_finding')
aux = gc.reg(nbits+2)
up = gc.reg(nbits*2)

down = gc.reg(nbits)
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We follow this with a one-to-one implementation of the circuit diagram in
Figure 11.17. We apply Hadamard gates to the up register and a single X gate to
the top qubit of the down register to initialize it as |1). Note that to stay close to the
reference implementation (Leao, 2021), we interpret down in reverse order. Then, we
iterate over the number of up bits (nbits x 2) and create and connect the unitary
gates with the controlled Multiply-Modulo routine cmultmodn. All of this is then
followed by a final inverse QFT:

gc.h(up)
gc.x(down[0])
for i in range(nbits=*2):
cmultmodn (gc, upl[i], down, aux, int(ax*(2*xi)), number, nbits)
inverse_qgft(gc, up, 2*nbits, with_swaps=1)

Finally, we check the results. For the example numbers given (N = 15, a = 4), we
expect the highest probability end states to correspond to a result of 128 or 0 in the up
register, corresponding to interpretations as binary fractions of 0.5 and 0.0. We will
detail the steps necessary to get to the factors from these fractions at the end of this
section. Note again that we again inverted the order of the qubits with [::-1].

for bits in helper.bitprod(nbits * 4 + 2):
prob = gc.psi.prob(*bits)
if prob > 0.01:
bitslice = bits[nbits + 2 : nbits + 2 + nbits » 2][::-1]
intval = helper.bits2val (bitslice)
phase = helper.bits2frac(bitslice)

[... compute fractions here]
total_prob += prob

if total_prob > 0.999:
break

As we measure, we will find the correct factors with a probability of 50% (or
less). The algorithm is probabilistic. On a real machine, we might find only factors
1 and N and have to run the algorithm multiple times until we find at least one of the
other prime factors. In our infrastructure, of course, we can just peek at the resulting
probabilities without the need to run multiple times.

[...]

Swap. . .

Uncompute. ..

Measurement. ..

Final x-value. Got: 0 Want: 128, probability: 0.250
Final x-value. Got: 0 Want: 128, probability: 0.250
Final x-value. Got: 128 Want: 128, probability: 0.250
Final x-value. Got: 128 Want: 128, probability: 0.250
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11.7.2  Support Routines

We use the variable a to compute a modulo number. Since we have to perform uncom-
putation, we need the modulo inverse of this number. The modulo inverse of x mod N
is the number x;,y, such that xxj,, = 1 mod N. We can compute this number with the
help of the extended Euclidean algorithm (Wikipedia, 2021c):

def modular_inverse(a: int, m: int) -> int:
"rmrCompute Modular Inverse. """

def egcd(a: int, b: int) -> (int, int, int):
if a ==
return (b, 0, 1)
else:
a)

g, v, x = egcd(b % a,
) * vy, ¥)

a
return (g, x - (b // a

# Modular inverse of x mod m is the number x"-1 such that

# x * x*-1 = 1 mod m
g, x, _ = egcd(a, m)
assert g == 1, f'Modular inverse ({a}, {m}) does not exist.'

return x $ m

Our implementation of the algorithm requires a large number of QFTs and inverse
QFTs. Many of these operations are part of adding a constant to a quantum register.
We saw in Section 11.5.1 on quantum arithmetic how to precompute the angles with
this routine:

def precompute_angles(a: int, n: int) -> List[float]:

angles = [0.0] * n
for i in range(n):

for j in range(i, n):

if (a & (1 <<n -3 - 1)):
angles[n - 1 - 1] += 2 *x (-(j - 1))

angles[n - i - 1] *= math.pi

return angles

We will need circuitry to compute addition, controlled addition, and double-
controlled addition. We implement constant addition in add using the ul gate. The
controlled addition in cadd uses the controlled gate cul, and the double-controlled
addition in ccadd uses the double-controlled gate ccul.

def add(gc, g, a: int, n: int, factor: float) -> None:
for idx, angle in enumerate (precompute_angles(a, n)):
gc.ul (gl[idx], factor * angle)

def cadd(gc, g, ctl, a: int, n: int, factor: float) -> None:
for idx, angle in enumerate (precompute_angles(a, n)):
gc.cul(ctl, gl[idx], factor * angle)
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def ccadd(gc, g, ctll: int, ctl2: int, a: int, n: int,

factor: float) -> Nomne:
for idx, angle in enumerate(precompute_angles(a, n)):
gc.ccul (ctll, ctl2, glidx], factor =* angle)

Using the fact that a subtraction circuit is the adjoint of an addition circuit,
Sub(a) = Add'(a), we get (b — a) if b > a, and (2"~' — (a — b)) if b < a. So
we can use this to subtract and compare numbers. If b < q, then the most significant
qubit will be |1). We will use this qubit to control other gates later.

|b—a> 1fb2a7
Sub o=
@_{ QFT% ub(a) QFT { [2"=! — (a— b)) ifb<a.

For QFT and inverse QFT operations, we reuse the qft and inverse_gft func-
tions that we implemented in Section 11.4.2 in the circuit class. We will perform
QFT on partial registers, so we provide wrappers to these functions that allow us to
specify how many qubits in a register to operate on. We use the Python slice operator
since our registers are conveniently just Python lists of indices.

def gft(gc, up_reg, n: int, with_swaps: bool = False) -> None:

gc.gft(up_regl:n], with_swaps)

def inverse_qgft(gc, up_reg, n: int, with_swaps: bool = False) -> None:

gc.inverse_qgft (up_regl:n], with_swaps)

Modular Addition

At this point, we know how to add numbers and check whether a value has turned
negative by checking the sign qubit. This means that we should have all the necessary
ingredients for modular addition: We compute a + b and subtract N if a + b > N.

We achieve this by adding an ancilla in the initial state |0). We start by adding a
and b as before. We also reserve an overflow bit. Then, we use the adjoint of the adder
to subtract N (a fancy way of saying that we apply a negative factor in the addition
routines above).

To get to the most significant qubit and determine if this result was negative, we
have to perform the inverse QFT. We connect the most significant qubit and the ancilla
with a controlled Not gate. It will only be set to |1) if a + b — N is negative. After
this, we go back to the Fourier domain with another QFT. If a + b — N is negative, we
use the ancilla qubit to control the addition of N to make the result positive again. The
circuit is shown in Figure 11.18.

There is a resulting problem that is not easy to solve — the ancilla qubit is still
entangled. It has turned into a junk qubit. We have to find a way to return it to its
original state of |0), otherwise it will mess up our results (as junk qubits have a habit
of doing).
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|b) { ——— +(a) — —=(N) — QFT" OFT — +(N) —

|0) s>

Figure 11.18 First half of the modular addition circuit.

— —(a) — oFT1t QFT — +(a) — | (a+ b) mod N

—_H B H -

<o |0)

Figure 11.19 Second half of the modulo addition circuit, disentangling the ancilla. Note that this
implementation uses the little-endian convention with the most significant qubit being at the
bottom.

To resolve this, we use an almost identical circuit again, but with a twist. We
observe that, after the modulo operation, if the remainder is larger than a, then

(a+b)modN>a = a+b<N.

‘We change the circuit and, this time, run an inverse addition to subtract a from the
above result and compute (a + b) mod N — a. The most significant bit will be |0) if
(a+b) mod N > a. We apply a NOT gate and use it as the controller for a controlled
Not to the ancilla. With this, the ancilla has been restored.

Now we have to uncompute what we just did. To do that, we apply another NOT
gate to the most significant qubit, followed by a QFT and an addition of a to reverse
the initial subtraction. The end result is a clean computation of (a + ) mod N. In
circuit notation, the second half of the circuit is shown in Figure 11.19. In code:

def cc_add mod_n(gc, g, ctll, ctl2, aux, a, number, n):
"nnCircuit that implements doubly controlled modular addition by a."""

ccadd(gc, g, ctll, ctl2, a, n, factor=1.0)
add(gc, g, number, n, factor=-1.0)
inverse_qgft(gc, g, n, with_swaps=0)
gc.cx(gln-1], aux)

aft(gc, g, n, with_swaps=0)

cadd(gc, g, aux, number, n, factor=1.0)

ccadd(gc, g, ctll, ctl2, a, n, factor=-1.0)
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inverse_qgft(gc, g, n, with_swaps=0)
gc.x(gln-17)

gc.cx(gln-1], aux)

gc.x(g[n-1])

aft(gc, g, n, with_swaps=0)

ccadd(gc, g, ctll, ctl2, a, n, factor=1.0)

For uncomputation, we will also need the inverse of this procedure. As explained
in Section 2.12, we apply the inverse gates in reverse order:

def cc_add_mod_n_inverse(gc, g, ctll, ctl2, aux, a, number, n):
""n"Inverse of the double-controlled modular addition."""

ccadd(gc, g, ctll, ctl2, a, n, factor=-1.0)
inverse_qgft(gc, g, n, with_swaps=0)
gc.x(g[n-17)

gc.cx(gln-1], aux)

gc.x(gln-1])

agft(gc, 9, n, with_swaps=0)

ccadd(gc, g, ctll, ctl2, a, n, factor=1.0)

cadd(gc, g, aux, number, n, factor=-1.0)
inverse_gft(gc, g, n, with_swaps=0)
gc.cx(gln-1], aux)

agft(gc, 49, n, with_swaps=0)

add(gc, g, number, n, factor=1.0)

ccadd(gc, g, ctll, ctl2, a, n, factor=-1.0)

Uncomputing circuits like this is tedious. In Section 3.4.3 we showed how to auto-
mate uncomputation in an elegant way. However, that relatively simple method will
not work here because we use a coprime number in the computation step. In order to
uncompute, we must use its modular inverse. This value is not apparent and hence not
available in the automated uncomputation infrastructure.

Controlled Modular Multiplication

The next step is to build a controlled modular multiplier from the modular adders we
just constructed. Our circuit will be controlled by a qubit |c) and take the state |c,x,b)
to the state |c,x,b + (ax) mod N), if |¢) = |1). Otherwise, it will leave the original
state intact.

We perform successive applications of the controlled modular addition gate, con-
trolled by the individual bits x; of x, as shown in Figure 11.20. The bit positions
correspond to powers of 2 in the identity

(ax) mod N =
(. .. ((20ax0) mod N + 21ax1) mod N +---+ 2"_]ax,1,1) mod N.


https://doi.org/10.1017/9781009548519.012

11.7 Order Finding 289

[9)

|x)

1b) OFT +2% L +2'a L] +271q -
modN modN modN Q0

Figure 11.20 Circuit for controlled modular multiplication.

As described in Section 2.12 on uncomputation, to eliminate the entanglement with
|b), we swap out |x) and uncompute the circuit after the swap. In the code, we see three
sections. In the first section, it computes the multiplication modulo N. In the second
block, it connects the results with controlled gates to swap out |x) to the aux register
(the cswap was introduced in Section 3.3 on quantum circuits). Finally, it uncomputes
the results. This means we must implement the inverse computation of the first block
using the modular inverse.

def cmultmodn(gc, ctl, g, aux, a, number, n):
"nncontrolled Multiply of g by number, with n bits."""

print ( 'Compute... ')
agft(gc, aux, n+l, with_swaps=0)
for i in range(n):
cc_add_mod_n(gc, aux, gl[il, ctl, aux[n+1],
((2%%1i)*a) % number, number, n+l)
inverse_qgft (gc, aux, n+l, with_swaps=0)

print ( 'Swap... ")
for i in range(n):

gc.cswap (ctl, gl[il], aux[i])
a_inv = modular_inverse(a, number)

print ( 'Uncompute... ')
aft(gc, aux, n+l, with_swaps=0)
for i in range(n-1, -1, -1):
cc_add_mod_n_inverse(gc, aux, glil, ctl, aux[n+1l],
((2x*i)*a_inv) % number, number, n+1)
inverse_qgft (gc, aux, n+l, with_swaps=0)

In summary, the modular multiplication circuit performs:
[x)|0) — |ax mod N)|0).

We shall name this circuit CU,. There is still a problem — the phase estimation
algorithm requires powers of 2 of this circuit. Does this mean we have to multiply
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this circuit n times by itself to get to (CU,)" for each power of 2 as required by phase
estimation? Fortunately, we do not. We simply compute a” classically and use

(CU,)" = CU,.

This can be seen at the top level in the code, where we iterate over the calls to the
modular arithmetic circuit (the expressions containing 2+ +1).

Continued Fractions

We are close to the finish line. We mentioned in Section 11.7.1 that an expected
result for the up register was 128. This was an interpretation of this register as an
integer. However, we performed phase estimation, so we have to interpret the bits of
the register as binary fractions. A value of 0 corresponds to a phase of 0.0, and a value
of 128 corresponds to a phase of 0.5. We also know that phase estimation will give a
phase of the following form with order r:
s
="
This means that if we find a fraction of integers that approximate this phase, we
would have an initial guess of the order r. To approximate a fractional value to an
arbitrary degree of precision, we can use the technique of continued fractions."” For-
tunately, an implementation of it already exists in the fractions Python library. We
first decode the x-register as a binary fraction using the helper function bits2frac.
Then we obtain the lowest denominator from the continued fractions algorithm. We
need to limit the accuracy via 1imit_denominator to ensure that we get reasonably
sized denominators:

import fractions

[... loop over high-probability states from above]
bitslice = bits[nbits + 2 : nbits + 2 + nbits * 2][::-1]
intval = helper.bits2val (bitslice)
phase = helper.bits2frac(bitslice)

r = fractions.Fraction(phase).limit_denominator (8) .denominator
guesses = [math.gcd(a *x (r // 2) - 1, number),
math.gcd(a ** (r // 2) + 1, number)]
print('Final x: {:3d} phase: {:3f} prob: {:.3f} factors: {}'.
format (intval, phase, prob.real, guesses))

With this r, we can then follow the explanations on the non-quantum part of Shor’s
algorithm and compute the factors. We might just get 1s or Ns, which do not help us.
However, with a little luck (and the relevant probabilities), we might find one or both
of the real factors.

17" http://en.wikipedia.org/wiki/Continued_fraction.
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Experiments

Let’s run just a few examples to demonstrate the working machinery. To factorize 15
with a seed value a = 4, we run a circuit with 10,553 gates and obtain two sets of
factors, the trivial ones with 1 and 15, but Eureka! also the real factors of 3 and 5:

.../order_finding -- --a=4 --N=15
Final x-value int: 0 phase: 0.000000 prob: 0.250 factors: [15, 1]
Final x-value int: 128 phase: 0.500000 prob: 0.250 factors: [3, 5]
Circuit Statistics

Qubits: 18

Gates : 10553

To factor 21 with a = 5, the required number of qubits increases from 18 to 22,
increasing the number of gates to over 20,000. The run time increases roughly by a
factor of 8. In addition to trivial factors, at least the routine finds the value 3 as one of
the real factors:

.000000 prob:
.500000 prob:
.833008 prob:
.166992 prob:
.666992 prob:

.028 factors: [21, 1]
.028 factors: [1, 3]
.019 factors: [1, 21]
.019 factors: [1, 21]
.019 factors: [1, 3]

Final x-value int: 0 phase:
Final x-value int: 512 phase:
Final x-value int: 853 phase:
Final x-value int: 171 phase:

o O O O ©o
o O O O ©o

Final x-value int: 683 phase:
Circuit Statistics

Qubits: 22

Gates : 20671

Finally, factoring 35 with a seed a = 4 uses over 36,000 gates and requires a runtime
of approximately 60 minutes on a standard-issue laptop:

Final x-value int: 0 phase: 0.000000 prob: 0.028 factors: [35, 1]
Final x-value int: 2048 phase: 0.500000 prob: 0.028 factors: [1, 5]
Final x-value int: 1365 phase: 0.333252 prob: 0.019 factors: [1, 5]
Final x-value int: 3413 phase: 0.833252 prob: 0.019 factors: [7, 5]
Final x-value int: 683 phase: 0.166748 prob: 0.019 factors: [7, 5]
Final x-value int: 2731 phase: 0.666748 prob: 0.019 factors: [1, 5]

Circuit Statistics
Qubits: 26
Gates : 36373

You may want to experiment and perhaps transpile the code to 1ibg with the
transpilation facilities described in Section 3.4.7. The code runs significantly faster in
1ibg, which allows experimentation with a much larger number of qubits. As a rough
and unscientific estimate, factorization with 22 qubits runs for about two minutes on a
standard workstation. After compilation to 1ibg, it runs much faster due to the sparse
representation and takes less than 5 seconds to complete. This is a speed-up factor of
more than 25 times! Factoring 35 with 26 qubits accelerates from about an hour to
about three minutes with 1ibq, still a significant speed-up of about 20 times.
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To summarize, the algorithm as a whole — from the classical parts to the quantum
parts to finding the order with continued fractions — is truly magical. No wonder it has
received so much attention and stands out as one of the key contributors to today’s
interest in quantum computing.

What may be even more exciting is that progress has not stood still. Shor’s algo-
rithm is usually estimated to require at least (’)(log(n)2 log log n) gates. The algorithm
we outlined above requires 2n 4 3 qubits and (’)(n3 log, n) gates. Recently, Regev
(2024) showed that Shor’s algorithm could be computed by running a circuit with just
C’)(n3/ 2) gates approximately /n + 4 times, representing a significant improvement.

Should we be concerned that quantum computers will crack RSA-2048 soon? As
of this writing, quantum computers operate with only tens or hundreds of qubits
and without full error correction, making them incapable of handling such complex
computations. Fully error-corrected qubits, which are required to reduce noise and
decoherence, would vastly increase the number of physical qubits and gates needed,
pushing “cracking the code” even further beyond the capabilities of quantum hardware
today.'8

18 This paragraph may be a candidate for the category of “Famous Last Words.”
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Quantum Walk Algorithms

In this chapter, we briefly introduce quantum random walks, which are quite different
from classical random walks. There is a large class of problems that can be solved
with this technique, but here we focus on basic principles only.

Quantum Random Walk

A classical random walk describes a process of random movement in a given topology,
such as moving randomly left or right on a number line, left/right and up/down on a 2D
grid, or along the edges of a graph. Random walks accurately model an extensive range
of real-world phenomena in disciplines as diverse as physics, chemistry, economics,
and sociology. In computer science, random walks are effectively used in randomized
algorithms. Some of these algorithms have a lower computational complexity than
previously known deterministic algorithms.

Random walks have fascinating properties. For example, assume that two random
walkers start their journey at the same location on a 2D grid. Will the walkers meet
again in the future, and if so, how often? The answer is yes, they will meet again, and
furthermore, they will meet again infinitely many times.

A quantum random walk is the quantum analog of a classical random walk (Kempe,
2003), but of course, adding quantum mechanics makes things more interesting. In a
quantum walk on a grid, the walker, due to superposition, exists in multiple states
and moves in all directions simultaneously, taking all possible paths. Furthermore, the
paths can interfere with each other.

To achieve this, the quantum walker needs an extra degree of freedom, often called
a “coin,” which determines the direction of the movement. The coin is a quantum sys-
tem, existing in a superposition of states, allowing the walker to move in all directions
simultaneously. This leads to some unique properties:

« A quantum walker spreads across the grid much faster than a classical walker.
« The probability of finding the quantum walker at a specific location after a certain
number of steps creates very different patterns from a classical walk.

Specific problems, such as the glued tree algorithm developed by Childs et al. (2003,
2009), cannot be computed in a tractable way on a classical machine. Herein lies the
great interest in quantum random walks: Some of these intractable problems become
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Figure 12.1 Results from a limited number of simulated classical random walks, plotting the
likelihood of final position after starting in the middle of the range.

tractable on a quantum machine. In this section, we further explore this phenomenon
and touch on basic principles, such as how probabilities propagate through a topology.

1D Walk

Let us start in the simplest of scenarios by considering a classical 1-dimensional walk
on a number line. For each step, the toss of a fair coin determines whether to move
left or right. After many moves, the probability distribution of the final location will
be shaped like a classic bell curve, with the highest probability clustering around the
origin of the journey.! Figure 12.1 shows the result of a simple experiment.?

Py Find the code
In file src/tools/random walk.py

The equivalent quantum walk operates in an analogous fashion with coin tosses
and movements. Because this is quantum, we exploit the superposition and move in
both directions at the same time. In short, a quantum random walk is the repeated
application of an operator U = MC, with C being the coin toss followed by the move
operator M. What are these unitary operators C and M?

The most straightforward coin-toss operator may just be a single Hadamard gate.
In this context, the coin is called a Hadamard coin. The |0) part of the resulting
superposition will control a movement to the left, and the |1) part controls a movement
to the right.

The movement circuits can be constructed as shown in Douglas and Wang (2009).
A number line has infinite length, which cannot be adequately represented in a quan-
tum state. We simplify and assume that the underlying topology for the walk is a
circle with N stops on it. Each stop represents one of the N computational basis states.

1" A biased coin would lead to a skewed distribution.
2 In fairness, the curve simply reflects the random number distribution chosen for the experiment.
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(a) An n-qubit increment operator. (b) An n-qubit decrement operator.

Figure 12.2 Increment and decrement operators for quantum walks.

Simple up and down counters with overflow and underflow between N and 0 will
work as movement operators by changing a current high-probability basis state |B) to
|B + 1) and |B — 1) in superposition. We can construct an n-qubit increment circuit as
shown in Figure 12.2a, with the corresponding Python code below.

Py Find the code
In file src/quantum_walk.py

def incr(gc, idx: int, nbits: int, aux, controller=[]):

for i in range(nbits):
ctl=controller.copy ()
for j in range(nbits-1, i, -1):
ctl.append (j+idx)
gc.multi_control (ctl, i+idx, aux, ops.PauliX(), 'multi-I1-X')

The analogous n-qubit-decrement circuit is also easy to construct with this code,
following Figure 12.2b.

def decr(gc, idx: int, nbits: int, aux, controller=[]):
for i in range(nbits):
ctl=controller.copy ()
for j in range(nbits-1, i, -1):
ctl.append([j+idx])
gc.multi_control (ctl, i+idx, aux, ops.PauliX(), 'multi-0-X')

With these tools, we can construct an initial n-qubit quantum circuit step, as shown
in Figure 12.3. A step has to be applied multiple times to simulate a walk (consisting
of more than just a single step).

For both increment and decrement, N is a power of 2. We can construct other
types of counters, for example, counters with step size larger than 1 or counters that
increment modulo another number. For example, to construct a counter modulo 9, we
add gates that match the binary representation of 9 and force the counter to reset to O
once it reaches that limit value, as shown in Figure 12.4.

We can see how to generalize this pattern to other topologies. For example, for a 2D
walk across a grid, we can use two Hadamard coins: one for the left or right movement
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n Incr Decr

!

Figure 12.3 A single step for a quantum walk. The increment and decrement unitary operators
change the current high-probability computational basis state |[B) to |B + 1) and |B — 1) in
superposition.

and one for movements up or down. For graph traversals, we would encode a graph’s
connectivity as a unitary operator. Several other examples of this can be found in
Douglas and Wang (2009).

Walk the Walk

To simulate a given number of steps, we use the following driver code. The current
position in the walk is encoded as a basis state, and we will go left and right by adding
and subtracting 1. If we start at O and subtract 1, we have an immediate underflow
to deal with. We have a similar problem with overflow at the high end of the number
range. To make our lives a little easier, we initialize the x register in the middle of the
state number range for n qubits. The middle of the binary number range for a given
number of bits is the binary number that has a single 1 as the most significant bit, for
example, the binary 0b100. . .0. Starting there, we avoid the immediate underflow
below zero, and the visualizations appear centered.

Note how the increment operator is controlled by coin[0], while the decrement
operator is controlled by the single-element list [coin[0]]. The former is a standard
Controlled-by-1 gate, while the latter is a Controlled-by-0 gate, as described in Section
3.3.6.

|1001)
1) —P 1 [ —
|
10) 0! }
|
10) = }
|
10) o— =
0 & S— )

Figure 124 An increment modulo 9 operator.
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def simple_walk() :
nnrnsimple quantum walk. """

nbits = 8

gc = circuit.qgc('simple walk')

X = gc.reg(nbits, 0x80)

aux = gc.reg(nbits, 0)

coin = gc.reg(l, 0) # Add single coin qubit

for _ in range(64):
gc.h(coin[0])
incr(gc, 0, nbits, aux, [coin[0]]) # ctrl-by-1
decr(gc, 0, nbits, aux, [[coin[0]1]]1) # ctrl-by-0

What is happening here? With n qubits, we can represent 2" states in superposition
with the corresponding number of probability amplitudes. As we perform step after
step, nonzero amplitudes will propagate out over the state space. Looking at the
examples in Figure 12.5b and 12.6b, we see that, in contrast to a classical walk,
the amplitude distribution spreads out faster and with a different shape. A series of
32 steps produces a nonzero amplitude in 64 states. The walk progresses in both
directions at the same time. The farther away from the origin, the larger the amplitudes.
These are the key properties that quantum walk algorithms exploit to solve classically
intractable problems.

To visualize how fast the amplitudes spread out, we print and graph the amplitudes
after a number of steps.

for bits in helper.bitprod(nbits) :
idx_bits = bits
for i in range(nbits+1):
idx_bits = idx_bits + (0,)
if gc.psi.ampl (*idx_bits) != 0.0:
print('{:5.3f}'.format (gc.psi.ampl (xidx_bits0) .real))

0.4 B 04 i
0.2} . 0.2 .
(= . 0r .
—-02 - =02 4
—04 <4 =041 .
0 5‘0 160 lgO 2(50 2g0 0 Sb 160 15‘0 260 25‘0

(a) 8 qubits, 32 steps, starting at basis state (b) 8 qubits, 64 steps, starting at basis state
[100. .. 0). [100...0).

Figure 12.5 Propagating amplitudes after 32 and 64 steps.
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(a) 8 qubits, 96 steps, starting at basis state (b) 8 qubits, 96 steps, starting at basis state
[100. .. 0), coin in initial state |0). [100. .. 0), coin in initial state |1).

Figure 12.6 Propagating amplitudes with different initial states.

Let us experiment with eight qubits. The starting position for the walk should be
in the middle of the range of basis states, which we encode as a binary basis state
with a single |1) in the most significant qubit and |0) in the other qubits. With eight
qubits, there are 256 possible basis states. We initialize the eight qubits as [100. .. 0),
which is binary 0x80, the middle of the range. The amplitudes after 32, 64, and 96
steps are shown in Figure 12.5a, Figure 12.5b, and Figure 12.6a. The x-axis shows the
state space (256 unique basis states for eight qubits). The y-axis shows the amplitude
of each basis state.

Notice how, in the figures, the amplitudes progress in a biased fashion. It is pos-
sible to create coin operators that are biased to the other side or even balanced coin
operators. Alternatively, we can start in a state different from |0). In the example in
Figure 12.6b, we simply initialize the coin state as |1).

There are countless more experiments that you can perform with different coin
operators, starting points, initial states, number of qubits, iteration counts, and more
complex topologies beyond simple 1D and 2D walks.

The 2010 IARPA program announcement set a challenge of eight complex
algorithms to drive the development of scalable quantum software and infrastructure
(IARPA, 2010). Three of these algorithms used quantum walks: The triangle finding
algorithm (Buhrman et al., 2005; Magniez et al., 2005), the Boolean formula algorithm
(Childs et al., 2009), and the welded tree algorithm (Childs et al., 2003).

It is exciting to know that if we can express a particular algorithmic reachability
problem as a quantum walk circuit, the fast speed of quantum walks and the dense
storage of states can lead to quantum algorithms with lower complexity than their
corresponding classical algorithms.
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Optimization Algorithms

At this point, we have convinced ourselves that several quantum algorithms have an
advantage in computational complexity over their classical analogs. We have seen
algorithms that use quantum search, algorithms based on the quantum Fourier trans-
form, and algorithms utilizing quantum random walks. In this section, we discuss a
small number of quantum optimization problems and touch on the topic of simulating
quantum systems.

We begin with the variational quantum eigensolver algorithm (VQE), which allows
finding the minimum eigenvalue of a Hamiltonian. As an application, we develop a
quantum version of the graph maximum cut algorithm by framing the problem as a
Hamiltonian. This algorithm was introduced as part of the quantum approximate opti-
mization algorithm (QAOA), which we present briefly. We conclude with a discussion
of the Subset Sum algorithm.

The Variational Quantum Eigensolver (VQE)

Welcome to a brief foray into the area of quantum simulation. In general, the goal of
quantum simulation is to use a controllable quantum system to study another quantum
system that is difficult to simulate classically. Classical simulation must deal with the
exponentially growing number of basis states in superposition and the computationally
complex equations that govern the evolution of a system. The original idea of using a
quantum computer to simulate a quantum system was presented by Richard Feynman
in his talk “Simulating physics with computers” (Feynman, 1982), which many regard
as the origin of quantum computing.

We will start with the variational quantum eigensolver (VQE), which is primarily
an optimization algorithm. The VQE is a hybrid classical/quantum algorithm, as it
leverages a quantum computer to prepare and measure quantum states and a classical
computer to optimize a set of parameters for finding the ground-state energy (lowest
eigenvalue) of a given Hamiltonian.

It is possible to use quantum phase estimation (QPE) for this purpose. For realistic
Hamiltonians, however, the number of required gates can reach millions, even billions,
making it challenging to keep a physical quantum machine coherent long enough to
run the computation. For VQE, on the other hand, the quantum part requires fewer
gates and much shorter coherence times than QPE (Zhang et al., 2022). This is why
it created such great interest in today’s era of Noisy Intermediate Scale Quantum
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Computers (NISQ), which have limited resources and short coherence times (Preskill,
2018).

Any self-respecting book on quantum computing must mention the Schrédinger
equation at least once. This is that section in this book. We begin by marveling at the
beauty of the equation, although we will not solve it here. The purpose of showing it
is to derive the spectral decomposition of Hamiltonians from eigenvectors (see also
Section 4.1) and to show how the variational principle enables the approximation of
a minimum eigenvalue. This is followed by a discussion of measurements in different
bases and the hybrid classical/quantum algorithm itself.

System Evolution

In Section 2.13, we describe the evolution of a closed quantum system in postulate 2
as |¢’) = Uy). This is what we have used in this text so far. To change a state, we
applied a unitary operator that did not depend on a time parameter; we used U and
not U(t). This discrete time evolution of a system is sufficient for all the algorithms
discussed in previous sections. However, it is a simplification, as time does not move
in discrete steps (as far as we know, or perhaps suspect).

The following paragraphs derive a specific form of the time-independent Schro-
dinger equation. The details are not overly important in the context of this text. We
focus primarily on the final form because that is where the VQE will come into play.

The time-dependent evolution of the state |¥) of a system is described by the
beautiful Schrédinger equation (which typically does not use the bracket notation).
Here, we discuss the one-dimensional' version only. Again, let us marvel at this
differential equation. We don’t have to solve it here:

ov n? 0*W

s = T CE Ly
! ot 2m Ox? +

This equation can be transformed into the time-independent form?
e d|y)
2m  dx?

In classical mechanics, the total energy of a system, which is the kinetic energy

plus the potential V, is called a Hamiltonian, denoted as H, not to be confused with
our Hadamard operator H:

+ V) =E). (13.1)

! This dimension of the physical system is different from the dimension of the Hilbert space of the
quantum state.
2 We assume a time-independent potential.
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As a side note, the factor 7 (the reduced Planck constant)? is the same factor used in
the famous Heisenberg uncertainty principle for the position x and the momentum p,,,
with AxAp, > 1i/2. A Hamiltonian operator is obtained by the standard substitution
of the momentum operator p:

. 0
p— —lha7
w9

7%@ + V(x)

H =
We use this form to rewrite Equation (13.1) as the following, with H being the
operator, E being an energy eigenvalue and |i) being an eigenstate. Note the parallel

to the definition of eigenvectors as AX = AX:

HIY) =E[p).
The expectation value for the total energy is then
(H) = E.

The Hamiltonian operator is Hermitian. On measurement, we obtain real values,
which means that the eigenvalues must be real. The operator has a complete set of
orthonormal eigenvectors |Ep), |E1), . . . ,|E,—1), with the corresponding real eigenval-
ues Ag,Aq,...,A,_1. Hence, we can describe a state as a linear combination of the
eigenvectors as

[¢) = co|Eo) + c1|EV) + -+ - + 1 |Ep—i), (13.2)

with complex coefficients ¢; and basis vectors E;, such that >_; |c;|> = 1. This is the
result that we were looking for. For a detailed derivation, see, for example, Fleisch
(2020).

The Variational Principle

Assume that we are looking for the ground state energy E, of a system described by a
given Hamiltonian. Knowing the ground state energy is important in many fields. For
example, in thermodynamics, it describes behavior at temperatures close to absolute
zero. In chemistry, this enables us to draw conclusions about electron energy levels.

Let us now assume that we cannot solve the time-independent Schrédinger Equa-
tion (13.1). We know that the measurement will project the state onto an eigenvector,
and the measurement result will be the corresponding eigenvalue. The variational
principle gives an upper bound for Ey with an expectation value for H as

Ey < (Y[H|Y) = (H).

However, what is this state |{)? The answer is potentially any state. The actual
chosen state will determine the remaining error for estimating E,. We have to be smart

3 See also https://en.wikipedia.org/wiki/Planck_constant. For simplicity, it is common to normalize
h=h/(2n) to 1.
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about how to construct it. This is the key idea of the VQE algorithm. To see how this
principle works, let us again take the state

[Y) = co|Eo) + c1|lEr) + -+ - + cpm1|Enr).

Let’s assume that A is the minimal eigenvalue. Calculating <1,b\7:l|¢> as follows
demonstrates that any computed expectation value will be greater than or equal to
Ao (recall that the {|c;|}*~" form a vector of probabilities, that’s why this inequality
holds):

(3 (Eol + ¢ (Br| + - + iy (Eaal) H (colEo) + e1lEr) + -+ + cumt |Encr))

= |co[*Ao + |c1]P A1 + -+ - + |enmi1[FAns
> Ao.

The structure of real Hamiltonians is another complication. The VQE algorithm
works with Hamiltonians that can be written as a sum of a polynomial number of
terms of Pauli operators and their tensor products (Peruzzo et al., 2014). This type of
Hamiltonian is used in quantum chemistry, the Heisenberg model, the quantum Ising
model, and many other fields. For example, for a helium hydride ion (He-H™) with
bond distance 90 pm, the Hamiltonian (with 0,0, as a shorthand notation for 0,®0,) is

H = — 3.8511 — 0.2291, — 1.0471, — 0.2290,1 + 0.2610,0,
+0.2290,0, — 1.04670.1 + 0.2290.0, + 0.23600;.

To measure states affected by such Hamiltonians, we need to be able to measure in an
arbitrary Pauli basis. This will be the topic of Section 13.1.3.

Measurement in Pauli Bases

So far in this book, we have mainly described measurement as projecting a state onto
basis states, such as the computational basis states |0) and |1). If we recall the Bloch
sphere representation as shown in Figure 13.1, this type of standard measurement
projects the state to either the north or south pole of the Bloch sphere, corresponding

|0) (z)

) |+¥)

Iy

Figure 13.1 Bloch sphere representation with axes x, y, z.
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to a measurement along the z-axis. However, what if the current state was aligned with
a different axis, such as the x-axis or the y-axis? In both cases, a measurement along
the z-axis would result in a random toss between |0) and |1) and not produce the result
we were looking for.

To measure in a different basis, we should rotate the state to the standard basis on
the z-axis and perform a standard measurement there. The results can be interpreted
as if they were along the original bases, and we get the added benefit of only needing
a measurement apparatus in one direction.

For example, to measure along the x-axis, we can apply a Hadamard gate or rotate
about the y-axis. Correspondingly, to get a measurement along the y-axis, we may
rotate about the x-axis. To compute expectation values for states composed of Pauli
matrices, recall the X, Y, and Z bases states:

xi m=—(}). -

Pauli operators have eigenvalues of —1 and +1. Applying these operators to basis
states with eigenvalues +1 yields

X[+)=1+), Z[0)=10), Y|+y)=[+y).
The same operators applied to basis states with eigenvalues —1 yields
X|=)==|=), Z|l)=-[1), Y[=y)=-[-y.

Let us now talk about expectation values. For a state in the Z basis with amplitudes
c§ and ¢§ we write the state as

1Y) = ¢5l0) + <il).

Calculating the expectation value for the Z gate, measured in the Z basis, yields the
following. You can compute this for the X and Y bases in a similar fashion:

WIZly) = (c5 (0] + i (1]) Z (c§l0) + <f|1))

1 0\ [c§
= (& 0)
@y 9
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The values |c§|* and |c%|* are the measurement probabilities for |0) and |1). If we
run N experiments and measure state |0) n times and state |1) n; times, then

22 _ Mo 212 _ m
|cgl” = | N

N’
This means that the empirical expectation value for Z is
ng —ny

N

For example, let’s assume we have the random number generator from Section 6.1,
which consists of a single-qubit state initialized as |0) and a Hadamard gate. The state
after this gate is |+), which you can find in Figure 13.1 on the positive x-axis. If we
now measure N times in the Z basis, about 50% of the measurements will return |0),
and 50% will return |1). The |0) corresponds to eigenvalue Ay = +1, and the |1)

() = e — Icil* =

corresponds to eigenvalue A; = —1. Hence, the expectation value is
AN/24+AMN/2  (+1)N/2 4 (=1)N/2 0
N B N 7

If we rotate the state into the Z basis with another Hadamard gate, the expectation
value of |0) in the Z basis would now be 1, which corresponds to the expectation value
of the state |+) originally in the X basis.

In our infrastructure, we do not have to make measurements to compute probabil-
ities because we can directly look at the amplitudes of a state vector. To compute the
expectation values for measurements made on Pauli operators with eigenvalues +1
and —1 corresponding to measuring |0) or |1), we add this function to our quantum
circuit implementation.

Py Find the code
Infile src/lib/circuit.py

def pauli_expectation(self, idx: int):
# Pauli eigenvalues are -1 and +1, hence we can calculate the
# expectation value as:
p0, _ = self.measure_bit(idx, 0, False)

return p0 - (1 - p0)

Let us run a few experiments to familiarize ourselves with these concepts. What
happens to the eigenvectors and eigenvalues for a Hamiltonian constructed from a
single Pauli matrix multiplied by a factor? Is the result still unitary or Hermitian?

factor = 0.6
H = factor * ops.PauliY()
eigvals = np.linalg.eigvalsh (H)

print (f 'Eigenvalues of {factor} X = ', eigvals)
print (f 'is unitary: {H.is_unitary()}"')

print (f 'is hermitian: {H.is_hermitian()}")

>>
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Eigenvalues of 0.6 X = [-0.6 0.6]
is_unitary: False
is_hermitian: True

We see that the eigenvalues scale with the factor. Hamiltonians are Hermitian but
not necessarily unitary. Let us create a |0) state, show its Bloch sphere coordinates,
and compute its expectation value in the Z basis.

X:

gc = circuit.qgc('test')
gc.reg(l, 0)
qubit_dump_bloch(gc.psi)

print (f 'Expectation value for 0 State: {gc.pauli_expectation(0)}")

>>

0.00, y: 0.00, z: 1.00

Expectation value for 0 State: 1.0

As expected, the current position is on top of the north pole, corresponding to the
state |0). The expectation value is 1, and the state |1) cannot be measured. Now, if we
add just a single Hadamard gate, we will get:

X:

1.00, y: 0.00, z: -0.00

Expectation value for |0>: -0.00

The position on the Bloch sphere is now on the x-axis, and the corresponding
expectation value in the Z basis is 0. This is because the probabilities of measuring |0)
or |1) are equal, leading to an average of 0.

VQE Algorithm

With these preliminaries, let us take a look at the VQE algorithm itself, which takes
the following three steps:

1. Ansatz. Prepare a parameterized initial state |¢), which is called the ansatz.
2. Measurement. Measure the expectation value (i|H]).

3. Minimize. Tune the parameters of the ansatz to minimize the expectation value.
The smallest value will be the best approximation of the minimum eigenvalue
achievable with the given ansatz.

This is best explained by an example. Let us first focus on the single-qubit case here.
We know from Section 2.3 that we can reach any point on the Bloch sphere with
rotations about the x-axis and the y-axis. Let us use the simple parameterized circuit in
Figure 13.2 as the ansatz to create a state |i). With this circuit, we can set any angles
6 and ¢ as an initial guess to calculate the expectation value of a Hamiltonian #.
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0) —{ R(0) F Ru(9) |— 1)

Figure 13.2 A flexible circuit to construct a single-qubit ansatz.

We will construct multiple instances of ansatzes* to find improved values for the
angles. Let us write a function to make these ansatzes:

Find the code
In file src/vge_simple.py

PY

def single_qubit_ansatz (theta: float, phi: float) -> circuit.qgc:
gc = circuit.qgc('single-qubit ansatz Y')
gc.qubit(1.0)
gc.rx (0, theta)
gc.ry (0, phi)
return qc

Let us further assume a Hamiltonian A of the form
H=Ho+Hi +Hy =02X +0.5Y + 0.6Z.

We can compute the minimum eigenvalue of —0.8062 with numpy:

H = 0.2 * ops.PauliX() + 0.5 * ops.PauliY() + 0.6 x ops.PauliZ()
eigvals = np.linalg.eigvalsh (H)
print (eigvals)

>>

[-0.8062258 0.8062258]

To compute the expectation value, let’s create a state |) and compute the expecta-
tion value (1| H|¢) with the two given angles theta and phi:’

def run_single_qgubit_experiment2 (theta: float, phi: float):
# Construct Hamiltonian.
H= 0.2 » ops.PauliX() + 0.5 * ops.PauliY() + 0.6 * ops.PauliZ()

# Compute known minimum eigenvalue.

eigvals = np.linalg.eigvalsh (H)

# Build the ansatz with two rotation gates.
ansatz = single_qubit_ansatz (theta, phi)

# Compute <psi | H | psi>. Find smallest one, which will be
# the best approximation to the minimum eigenvalue from above.

4 Which have a fun rhyme to them and is the proper English plural form. The correct German plural
Ansitze does not sound quite as melodic.
5 This code is modified from the open-source version and for illustration purposes only.
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val = np.dot (ansatz.psi.adjoint (), H(ansatz.psi))

# Result from computed approach:
{:.4f},
np.real(val),

{:.4f}, Delta: {:.4f}'.format
np.real (val - eigvals[0])))

print ( 'Minimum: Estimated:

eigvals([0],

We can experiment with a few different values for theta and phi:

run_single_qubit_experiment2 (0.1, -0.4)
run_single_qubit_experiment2 (0.8, -0.1)
run_single_qubit_experiment2 (0.9, -0.8)
Minimum: -0.8062, Estimated: 0.4225, Delta: 1.2287
Minimum: -0.8062, Estimated: 0.0433, Delta: 0.8496
Minimum: -0.8062, Estimated: -0.2210, Delta: 0.5852

We are moving in the right direction as the delta is getting smaller and smaller.
We are approaching the lowest eigenvalue, but we are still pretty far away. Since
this particular ansatz is simple, we can incrementally iterate over both angles and
approximate the minimum eigenvalue with good precision. We could also pick random
numbers, which, for a simple case like this, may work quite well. In general, we
should use techniques such as gradient descent to find the best possible arguments
more quickly (Wikipedia, 2021d).

For experimentation, we perform ten experiments with random single-qubit Hamil-
tonians and iterate over the angles 0 and ¢ in increments of 10 degrees:

for i in range(0, 180, 10):

for j in range(0, 180, 10):
theta = np.pi = i / 180.0
phi = np.pi * j / 180.0

[...1

# run 10 experiments with

>>

random H's.

Minimum: -0.6898, Estimated: -0.6889, Delta: 0.0009
Minimum: -0.7378, Estimated: -0.7357, Delta: 0.0020
[...]

Minimum: -1.1555, Estimated: -1.1552, Delta: 0.0004
Minimum: -0.7750, Estimated: -0.7736, Delta: 0.0014

In the above, we explicitly computed the expectation value with dot products.
However, in the physical world, we have to measure. The key to success here is that
the ansatz must be able to find the minimum eigenvalue and its eigenvector. We need
a circuit that is general enough.

There are many ways to prepare arbitrary two-qubit states; see, for example, Shende
et al. (2004) or Section 9.2. However, for much larger Hamiltonians, the number of
gates required for the ansatz may grow significantly. The challenge is to minimize
the number and type of gates, especially on today’s limited machines. The construc-
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tion of suitable ansatzes is a research challenge. The specific learning technique for
converging on an approximation is another topic of ongoing interest in the field,
although standard techniques from the field of machine learning seem to work well.

Measuring Eigenvalues

In a physical setting, we cannot simply multiply a state by a Hamiltonian, as we have
done here in the code. We have to measure along the Pauli bases and derive the
eigenvalues from the expectation values, as explained above. As before, we assume
that we can only measure in one direction. Let the Hamiltonian H again be of the
following form. We again choose the three random factors 0.2, 0.5, and 0.6 for the
individual Pauli matrices. They are the key to success, and we must remember them:

= 0.2X + 0.5Y + 0.6Z.

We calculate the expectation values in the Z basis with the help of gate equivalences
(and the S gate from Section 2.7.6). Note how we isolate Z in the last line, representing
the measurement in the Z basis:

(YH|Y) = (1]0.2X + 0.5Y + 0.6Z|i))
= 02(Y[X[¢) + 0.5(¢|Y[Y) + 0.6(¢|Z[)
= 0.2(¢|HZH|Y) + 0.5(|STHZHS|() + 0.6(¢|Z|y)
= 0.2(YH|Z|HY) + 0.5(YSTH|Z|HSY) + 0.6(Y|Z| ).

In our experimental code, we do not use the remembered factors but construct
random Hamiltonians:

= random.random /()
random. random ()
= random.random ()

m Qo o 9
I

= (a *» ops.PauliX() + b x* ops.PauliY() + ¢ * ops.Pauliz())

We have to build three circuits. The first is for the term (i|X|y), which requires a
Hadamard gate.

0) —{ &(6) F Ro(o) |

We compute the expectation value and multiply it by the factor a from above to
compute val_a:

# X basis

gc = single_qgubit_ansatz (theta, phi)
gc.h(0)

val_a = a * gc.pauli_expectation(0)
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Then we build a circuit for (|Y|¢), which requires a Hadamard and an ST gate.

|
10) — r(0) R (9)

We multiply the calculated expectation value with the factor b from above:

# Y basis

gc = single_qgubit_ansatz (theta, phi)
gc.sdag(0)

gc.h(0)

val_b = b *» gc.pauli_expectation(0)

Finally, we build a circuit for the measurement in the Z basis (¢’|Z]i)). In this basis,
we can measure as is, there is no need for additional gates, but we still multiply the
expectation value by the factor ¢ from above.

0) —{ R(6) F— Ry(¢))

# Z basis
gc = single_qubit_ansatz (theta, phi)
val_c = ¢ * gc.pauli_expectation(0)

As before, we iterate over the angles ¢ and 0 and use increments of 5 degrees this
time.® For each iteration, we take the scaled expectation values val_a, val_b, and
val_c, add them, and find the smallest sum:

expectation = val_a + val_b + val_c
if expectation < min_val:
min_val = expectation

[...1

print('Minimum eigenvalue: {:.3f}, Delta: {:.3f}'

.format (eigvals[0], min_val - eigvals[0]))

That value min_val should be our estimate, and below we can see that the results are
numerically very accurate:

Minimum eigenvalue: -0.793, Delta: 0.000
Minimum eigenvalue: -0.986, Delta: 0.000
Minimum eigenvalue: -1.278, Delta: 0.000
Minimum eigenvalue: -0.937, Delta: 0.000

[...1

6 This is fairly coarse; you may want to experiment with different values.
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Multiple Qubits

How do we extend measurements to more than just one qubit? We begin with the
simplest two-qubit Hamiltonians we can think of and extrapolate from there. Let us
look at the tensor product Z ® I and the corresponding operator matrix:

1 0 0 0
0O 1 0 0
Ze9I=14g o _1 o
0 0 0 —I

We know that for diagonal matrices, the diagonal elements are the eigenvalues,
which are +1 and —1 in this case.” This matrix has two subspaces that correspond to
these eigenvalues. On measurement, we will get the result of +1 or —1.

Any unitary two-qubit transformation U of this matrix will map to a space with the
same eigenvalues of +1 and —1, which we explained in Section 4.1. This means we
can apply a trick similar to the one-qubit case and apply the following transformations.
We are dealing with matrices and have to multiply from both sides:

ul(zenu.

We can change any Pauli measurement’s basis into Z @ I. For example, to change
the basis for X® 1 to Z® I, we apply a Hadamard gate, just as above, with the operator
U = H ® I. Let us verify this in code:

U = ops.Hadamard() * ops.Identity()

(ops.PauliZz() * I).dump('Z x I')

(U.adjoint () @ (ops.PauliX() * I) @ U).dump('Udag(X x I)U'")
>>

Z x I (2-qubits operator)

1.0 - - -
- 1.0 - -
- -1.0 -

- - - -1.0
Udag(X x I)U (2-qubits operator)
1.0 - - -
- 1.0 - -
- - -1.0 -

- - -1.0

From this, it is straightforward to construct the operators for a first set of Pauli
measurements that contain at least one identity operator, as shown in Table 13.1. But
now it gets complicated. The operator we need to transform Z ® Z is the controlled
Not gate C'X o! How does this happen? The matrix for Z ® Z is

I 0 0 o0
0 -1 0 0
ZOZ=1o o -1 o
0o 0 0 1

7 Non-unique eigenvalues are also referred to as degenerate eigenvalues, but this doesn’t matter here.
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Table 13.1. Operators for measurements containing an identity.

Pauli Measurement Operator U

ZI1 Il

X®lI H®I

Yol HS'®1

I®Z II) SWAP
I®X (H®I) SWAP
I®Y (HS' @ I) SWAP

Table 13.2. Operators for measurements with no identity.

Pauli Measurement Operator U

Z®Z CX1,0

X®Z CXi0(H®I)
Y®Z CX 10 (HST®1)
ZRX CXi10(I®H)
X®X Cv(ho(ffébff)
Y®X CX 1, (HST ® H)
ZQY CX 1,0 (I ® HS")
X®Y CX 1,0 (H® HS")
YeY CX 1, (HS' @ HS)

To turn this matrix into Z ® I, we need a specific permutation. Applying the controlled
Not from both the left and the right (note that CX J{70 = CX ), as

CX|,(292Z) CX10=(Z®1),

yields the result we were looking for, as shown in this code snippet:

(ops.Cnot (1, 0).adjoint() @ (ops.Pauliz() * ops.PauliZ()) @
ops.Cnot (1, 0)).dump()
>>

The operator matrices for CX | ¢ perform the required permutation. You may think
of this gate as having the potential to generate entanglement, like for a simple Bell
state, or removing entanglement, as in this case. With this background, we can define
the remaining 4 x 4 Pauli measurement operators as shown in Table 13.2.

We can generalize the construction for Z ® Z to more than two qubits (see also
Whitfield et al. (2011) on Hamiltonian simulation). All we have to do is surround
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Figure 13.3 Measuring in the ZZZZ basis.

the multi-Z Hamiltonian with cascading controlled Not gates. For example, for the

three-qubit ZZZ, we write this code:

ZII = ops.PauliZ() * ops.Identity()* ops.Identity ()
Cl0 = ops.Cnot(1l, 0) * ops.Identity()

C21 = ops.Identity() * ops.Cnot(2, 1)

Cl0adj = Cl0.adjoint()

C2ladj = C2l.adjoint()

777 = ops.PauliZ() * ops.PauliZ() * ops.PauliZ()

res = Cl0adj @ C2ladj @ zZz @ C21 @ C10
self.assertTrue(res.is_close(ZII))

Note that the adjoint of the X gate is identical to the X gate, and the adjoint of
a controlled Not is also a controlled Not. To go even further, for ZZZZ or longer
sequences of Z gates, we build cascading gate sequences, as shown in Figure 13.3.
Moreover, just to be sure, you can verify the construction for ZZZZ with a short code

sequence like this:

* ops.Identity() * ops.Identity()

opl = ops.Cnot(1l, O
op2 = ops.Identity(
(

) (
) * ops.Cnot(2, 1) * ops.Identity()
op3 = ops.Identity() * ops.Identity() * ops.Cnot(3, 2)
bigop = opl @ op2 @ op3 @ ops.PauliZz(4) @ op3 @ op2 @ opl
op = ops.PauliZ() * ops.Identity(3)

self.assertTrue (bigop.is_close (op))

13.2 Quantum Approximate Optimization Algorithm

In this section, we briefly introduce the Quantum Approximate Optimization Algo-
rithm, or QAOA (pronounced “Quah-Wah”). It was first introduced in the seminal
paper by Farhi et al. (2014), which also details the use of QAOA for the implementa-

tion of the Max-Cut algorithm. We explore Max-Cut in Section 13.4.
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The QAOA technique is related to VQE, but we only provide a brief overview.
There are two operators in QAOA, U¢ and Upg. The first operator U¢ applies a phase
to pairs of qubits with a problem-specific cost function C, which is similar to the Ising
formulation below in Section 13.3, with Z; being the Pauli Z gate applied to qubit i
and / being the number of qubits or vertices involved:

1
C= ZijZjZk.
Jik

The operator U itself depends on a phase angle y:

UC( _ e—l}/C He—l)/W/kZZk

This operator acts on two qubits and thus can be used for problems that can be
expressed as weighted graphs. The second operator Up depends on parameter f3. It is
problem-independent and applies the following rotations to each qubit, where each X;
is a Pauli X gate:

Up(B) = e P8 = He X where B = ZX]‘.
J

For problems with higher depth, these two operators U¢ and Up are applied repeatedly,
each with their own set of hyper-parameters y; and §;, on an initial state of |+)®”

Us(Bu-1)Uc(Yu-1)--. Us(Bo)Uc(y0) |+)*"

The task at hand is similar to that of VQE: Find the best possible set of hyper-
parameters to minimize the expectation value of the cost function (y,B|C|y,B), using
well-known optimization techniques. The operators Uc and Up can be approximated
with these circuits:

|4)
Uc: and  yp: i) — Re(Bi
40) %00 |4;) (Bi)

We already know from Section 13.1 on VQE how to implement this type of search,
so we will not expand on it further.

The original QAOA paper showed that for 3-regular graphs, which are cubic graphs
with each vertex having exactly three edges, the algorithm produces a cut that is
at least 70% of the maximum cut, a number that we can roughly confirm in our
experiments below. Together with VQE, QAOA is an attractive algorithm for today’s
NISQ machines with limited resources since the corresponding circuits have a shallow
depth (Preskill, 2018). At the same time, the utility of QAOA for industrial problems
is still under debate (Harrigan et al., 2021).
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Ising Formulations of NP Problems

The Ising model of ferromagnetism is a powerful statistical model of magnetism.
Magnetic dipole moments of atomic spins are modeled as having values of +1 or
—1. In the model, individual atoms are arranged on a grid. The interaction between
a pair (i,j) of neighboring spins on the grid is Jj;. It takes the values J; = O for no
interaction, J;; > 0 for ferromagnetism, and J; < O for anti-ferromagnetism. There
may also be an external magnetic field 4;, which interacts with individual atoms on
the grid. With a magnetic moment y (which is often omitted) and with x; € {+1, —1}
representing the spin of an atom at grid location i, the Hamiltonian for the system is
then defined as

N
7‘2 = —UZI’!,‘X,' — ZJ,‘J')CI'.XJ'.
i i,j

For our quantum algorithms, we use this model to construct the Hamiltonian for a
system using Pauli o, operators, as demonstrated in (Lucas, 2014):

N
H(xox1, .- - Xn) = fyZhiof - Zjijofo;. (13.3)
i i\J

The term o7 is the Pauli Z gate living in the Hilbert space of the ith qubit. The
term u will be O in our examples. There is no equivalent of an external field. The
minus signs indicate that we look for a minimum eigenvalue. For problems such as
Max-Cut, we use 0% because we want an operator® with eigenvalues +1 and —1.

With this background, Lucas (2014) details several NP-complete or NP-hard prob-
lems for which this approach may work and lead to a quantum algorithm. The list
of algorithms includes partitioning problems, graph coloring problems, covering and
packing problems, Hamiltonian cycles (including the traveling salesperson problem),
and tree problems. We will develop the related graph Max-Cut problem in Section
13.4, and a slightly modified formulation of the Subset Sum problem in Section 13.5.

Maximum Cut Algorithm

Previously, in Section 13.1, we saw how the VQE approach finds the minimum eigen-
value and its eigenvector for a Hamiltonian. This is exciting for quantum computing
because if we can successfully frame an optimization problem as a Hamiltonian,
we can use VQE to find an optimal solution. This section briefly describes how to
construct a class of such Hamiltonians using the Ising spin-glass model we described
above. The treatment here is admittedly shallow, but it is sufficient to implement
impressive examples, such as the Max-Cut and Min-Cut algorithms in this section
and the Subset Sum problem in Section 13.5.

8 For other algorithms, we may need other eigenvalues. For example, an operator with eigenvalues 0 and
1, suchas (I — Z)/2.
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(a) A graph with 4 vertices (b) A graph with 15 vertices

Figure 13.4 Example graphs with marked Max-Cut sets.

Max-Cut/Min-Cut

For a graph, a cut is a partition of the graph’s vertices into two non-overlapping sets L
and R. A maximum cut is the cut that maximizes the number of edges between L and
R. The assignment of weights to the edges of the graph transforms the problem into
the more general weighted maximum cut, which aims to find the cut that maximizes
the weights of the edges between sets L and R. This is the Max-Cut problem we are
trying to solve in this section.

The weights can be positive or negative. The Max-Cut problem turns into a Min-
Cut problem simply by changing the sign of each weight. As an example, for the
graph with four nodes shown in Figure 13.4a, the maximum cut is between the sets
L = {0,2} and R = {1,3}. You can manually verify that separating the nodes in this
way maximizes the edge weights between the sets L and R. In the figure, the nodes are
colored white or gray, depending on which set they belong to.

For small graphs, you can still examine all possible set partitions to find the maxi-
mum cut. However, this process becomes impractical very rapidly for larger graphs, as
illustrated in Figure 13.4b for a graph with merely 15 vertices. The general Max-Cut
problem is NP-complete (Karp et al., 1972); no polynomial-time algorithm is known
to provide an optimal solution. This looks like a formidable challenge for a quantum
algorithm!

Construct Graphs

We begin our exploration with code to construct a random graph with n vertices. As
usual, the code is designed for simplicity.?

Find the code
In file src/max_cut.py

We number the vertices from O to n — 1 and represent them with simple Python
tuples [from_node, to_node, weight]. A graph is then just alist of these tuples.

9 Making excuses for somewhat clumsy code.
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The code starts with a triangle of three nodes and then randomly adds new nodes up
to the limit num. We set 5 as the maximal edge weight, chosen at random. The way the
loop is written, no double edges can be generated.

—

def build_graph(num: int = 0) -> Tuplel[int, List[Tuplel[int, int,

float]]]:
assert num >= 3, 'Must request graph of at least 3 nodes.'

# Nodes are tuples: (from: int, to: int, weight: float).

weight = 5.0

nodes = [(0, 1, 1.0), (1, 2, 2.0), (0, 2, 3.0)]

for i in range(num - 3):
rand_nodes = random.sample(range(0, 3 + i1 - 1), 2)
nodes.append((3 + i, rand_nodes[0], weight * np.random.random()))
nodes.append((3 + i, rand_nodes[l], weight * np.random.random()))

return num, nodes

For debugging and for building intuition, it helps to visualize the graph. We add a
helper function to print the graph in the dot file format for the Graphviz (graphviz.org,
2021) tool. The graph in Figure 13.4b was produced in this way.

def graph_ to_dot(n: int, nodes: List[int], max_cut) -> None:

print ( 'graph {')
print(' {\n node [ style=filled ]')
pattern = bin(max_cut)[2:].zfill(n)
for idx, val in enumerate (pattern):

if val == '0':

print (f' "{idx}" [fillcolor=1lightgray]")
print (' }')
for node in nodes:
print (' "{}" -- "{}" [label="{(:.1f}",weight="{:.2f}"];"
.format (node[0], node[l], node[2], node[2]))

print('}"')

Compute Max-Cut

We will use a binary representation to encode a cut. The graph nodes are numbered
from O to n — 1. The nodes in set L are marked with 1, nodes in set R with 0. For the
example in Figure 13.4a, nodes 0 and 2 are in set L, and nodes 1 and 3 are in set R.
We associate node 0 with index O (not bit 0) in a binary bit string (counting the indices
from left to right) and represent the cut as a binary string 1010. We then apply this
scheme to a quantum state by associating qubit ¢; with graph node n;:

1010)

ng np ny n3

In code, we can compute the Max-Cut exhaustively (and quite inefficiently, given
our choice of data structures). For n nodes, we generate all binary bit strings from 0


https://graphviz.org
https://doi.org/10.1017/9781009548519.014

13.4 Maximum Cut Algorithm 317

to n. For each bit string, we iterate over the individual bits and build two index sets:
indices with a 0 in the bit string and indices with a 1 in the bit string. For example, the
bit string 11001 would create sets L = {0,1,4} and R = {2,3}. Note the symmetry —
if the Max-Cutis L = {0,1,4} and R = {2,3}, then L = {2,3} and R = {0,1,4} is a
Max-Cut as well.

The code then iterates over all edges in the graph. For each edge, if one vertex is
in L and the other in R, there is an edge between sets. We add the edge weight to the
currently computed maximum cut and maintain the absolute maximum cut.

Finally, we return the corresponding bit pattern as a simple decimal number. For
example, if the maximum cut was binary 11001, the routine will return 25, which
means that this routine will only work with up to 64 bits or vertices (which is already
beyond our simulation capabilities).

def compute_max_cut(n: int,
nodes: List[Tuple[int, int, float]]) -> int:
max_cut = -1000.0
for bits in helper.bitprod(n) :
# Collect in/out sets.
iset = []
oset = []
for idx, val in enumerate(bits):
if val == 0:
iset.append (idx)
else:
oset.append (idx)

# Compute costs for this cut, record maximum.
cut = 0.0
for node in nodes:
if node[0] in iset and node[l] in oset:
cut += node[2]
if node[l] in iset and node[0] in oset:
cut += node[2]
if cut > max_cut:
max_cut_in, max_cut_out = iset.copy(), oset.copy()
max_cut = cut
max_bits = bits
state = bin(helper.bits2val (max_bits)) [2:].zfill (n)
print ( 'Max Cut. N: {}, Max: {:.1f}, {}-{}, [{}>'
.format (n, np.real (max_cut), max_cut_in, max_cut_out,
state))
return helper.bits2val (max_bits)

The performance of this code is, of course, quite horrible, but perhaps indicative
of the combinatorial character of the problem. On a standard workstation, computing
the Max-Cut for 20 nodes takes about 10 seconds; for 23 nodes, it takes about 110
seconds. Even considering the performance differences between Python and C++ and
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the relatively poor choice of data structure, it is evident that the run time will quickly
become intractable for larger graphs.

Construct Hamiltonian

Classically, the Max-Cut problem can be expressed as the optimization problem:
1
max 5 Z(l —s5i8), s € {-1,+1}.
ij

where the s; are positive or negative weights of magnitude 1 on the vertices, depending
on which set they belong to. If an edge is cut between two vertices, one vertice will
have a positive 1 while the other has a negative 1 and the term %(1 —s;5;) = 1. If both
vertices have the same sign, then %(1 — s,-sj) = 0, which does not contribute to the
objective. We can also introduce weighted edges by adding factors to the edges s;s;.

For the corresponding quantum formulation, we will use a variation of Equation
(13.3) to construct the Hamiltonian using the Pauli o, operators, which, conveniently,
also have eigenvalues —1 and +1.

Concretely, we iterate over the edges of the graph. We build the tensor product
with identity matrices for nodes not part of the edge and Pauli o, matrices for the
vertices connected by the edge. This follows the methodology briefly outlined above
in Section 13.3. We may also use the intuition that Pauli o, are “easy” to measure,
as we have outlined in Section 13.1 on measuring in the Pauli bases. Since the Pauli
matrix o, has eigenvalues +1 and —1, an edge can increase or decrease the “energy”
of the Hamiltonian, depending on the set in which the vertices fall. This construction
decreases the energy for the vertices in the same set.

As an example, for the graph in Figure 13.4a we build the tensor products for the

edges €from, to as!0

Z2RZQIR]I),
6‘0,2:3.0 ZRIRZRI),

e, = 1.0 )
)
03 =46(ZRI012),
)
)

~—~ ~ —~

e1,2 =20IRZRZRII),

e3=35(1IQRIRZRZ),
and add up these partial operators to the final Hamiltonian A, mirroring Equation
(13.2):

H=ep1+ep2+es+e 2+ ens.

Here is the code to construct the Hamiltonian in full matrix form. It iterates over the
edges and constructs the full tensor products as shown above:

10 Note that even though we use from and to, the edges are not directed.
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def graph_to_hamiltonian(n: int, nodes) -> ops.Operator:
hamil = np.zeros((2**n, 2*xn))
for node in nodes:
idxl = max(node[0], node[l])
idx2 = min(node[0], node[l])

op = ops.Identity(idxl) * (node[2] * ops.PauliZ())
op = op * ops.Identity(idx2 - idxl + 1)

op = op * (node[2] * ops.PauliZ())

op = op * ops.Identity(n - idx2 + 1)

hamil = hamil + op
return ops.Operator (hamil)

As described so far, for a graph with n nodes, we have to build operator matrices
of size 2" x 2", which does not scale well. However, note that the identity matrix and
o, are diagonal matrices. The tensor product of diagonal matrices is also a diagonal
matrix. For example:

1 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0
00 1 0 0 0 0 0
00 0 100 0 0
FTel®zZ=144"9 9 0 1 0 0 0
00 0 0 0 10 0
00 0 00 0 1 0
00 0 00 0 0 —1
— diag(1, 1,1, = 1,1, 1,1, —1).

If we apply a factor to any individual operator, that factor multiplies across the
whole diagonal. Let us look at what happens to the signs of the diagonal values if we
use o, at indices 0,1,2,...,n — 1 (from right to left) in the tensor products

I®I®Z=dag(+1,—1,+1,—1,+1,—1, 41, —1),
~— ~~

20 20
I®RZ®I=diag(+1,+1, -1, —1,+1,+1,—1, - 1),
HT_/HZT_/
2
ZII=diag(+l,+1,+1,+1,—-1,—1,—1,—1).

22 22

There are groups of values with the same sign in power-of-2 patterns, similar to
those we have seen in the fast gate apply routines. This means that we can optimize
the construction of the diagonal Hamiltonian and only construct a diagonal tensor
product. The full matrix code is very slow and can barely handle 12 graph nodes.
The diagonal version below can easily handle twice as many. C++ acceleration might
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help to further improve scalability, especially because calls to tensor_diag can be
parallelized."!

def tensor_diag(n: int, fr: int, to: int, w: float):
def tensor_product(wl: float, w2: float, diag):
return [j for i in zip([x » wl for x in diag],
[x * w2 for x in diag]) for j in i]

diag = [w, -w] if (0 == fr or 0 == to) else [1, 1]
for i in range(l, n):
if 1 == fr or 1 == to:
diag = tensor_product (w, -w, diag)
else:
diag = tensor_product(l, 1, diag)
return diag

def graph_to_diagonal_h(n: int, nodes) -> List[float]:
h = [0.0] % 2%xn
for node in nodes:
diag = tensor_diag(n, node[0], node[l], node[2])
for idx, val in enumerate(diag):
hlidx] += val
return h

13.4.5  VQE by Peek-A-Boo

After constructing the Hamiltonian, we would typically run the variational quantum
eigensolver (VQE) to find the minimum eigenvalue. The corresponding eigenstate
encodes the Max-Cut in binary form, where a 0 at the index i indicates that the vertex
i belongs to a first set and otherwise to a second set. In our simulated environment, we
don’t have to run the computationally expensive VQE, we can just take a peek at the
matrix representation of the Hamiltonian. It is diagonal, meaning that the eigenvalues
are on the diagonal. The corresponding eigenstate is a state vector with the same binary
encoding as the index of the minimum eigenvalue. For example, for the graph in Figure
13.5, the Hamiltonian is

H = diag(49.91, —21.91, —18.67, —5.32,10.67, —2.67, —41.91,29.91,
29.91, —41.91, —2.67,10.67, —5.32, —18.67, —21.91,49.91).

The minimum value is —41.91 and appears in two places: At index 6, which is binary
0110, and at the complementary index 9, which is binary 1001. This corresponds to
the state |0110) and the complementary state |1001). We interpret this as nodes 0 and
3 belonging to one set and nodes 1 and 2 belonging to a second set. You can see that
this is precisely the Max-Cut pattern of Figure 13.5. We have found the Max-Cut by
applying VOE by peek-a-boo on a properly prepared Hamiltonian!

1 The tensor_product routine is admittedly difficult to read. Python linters warn about its
complexity. I still use it here because it is a thing of beauty.
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Figure 13.5 Graph with 4 nodes; Max-Cut is {0,3},{1,2}, or 0110 in binary set encoding.

Here is the code to run the experiments. It constructs the graph and computes the
Max-Cut exhaustively. Then it computes the Hamiltonian and obtains the minimum
value and its index off the diagonal.

def run_experiment (num_nodes: int):
n, nodes = build_graph (num_nodes)

max_cut = compute_max_cut (n, nodes)

# These two lines are the basic implementation, where
# a full matrix is being constructed.

# H = graph to_hamiltonian(n, nodes)
# diag = H.diagonal ()

# This code is much faster:

diag = graph_to_diagonal_h(n, nodes)
min_idx = np.argmin(diag)

if min_idx == max_cut:

print ( 'SUCCESS: {:+10.2f} /[}>’.format(np.real(diag[min_idx]),
bin(min_idx) [2:].zfill(n)))
else:
print ( 'FAIL : {:+10.2f} /[}> '.format (np.real (diag[min_idx]),
bin(min_idx) [2:].zfill(n)), end="'")
print ( 'Max-Cut: {:+10.2f} [{}>'.format (np.real(diag[max_cutl),
bin(max_cut) [2:].zfill(n)))

Running this code, we find that it does not always work; it fails in about 20%—-30%
of the invocations. Some of it may be because our criteria are stringent: To mark a run
as successful, we classically check whether the optimal cut was found. Anything else
is considered a failure. However, even if the optimal cut was not found, the results
are still within 30% of the optimal classical cut and typically significantly closer than
20% (this seems to agree with the analysis in the QAOA paper.)

As a larger example, running over graphs with 12 nodes may produce output like
the following results, which show the number of nodes N and the maximal cut, com-
puted classically, including the two sets for the cut. Then we find the index of the
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smallest diagonal element of the Hamiltonian. A test passes when the binary basis state
corresponding to this index matches the classically computed maximum. For example,
in the first line of the following output, the set {2,3,5,6,8,11} should match a binary
state that has 1s at only these bit indices, as in [001101101001), which matches the
result found (shown in bold below):

Max Cut. N: 12, Max: 38.9, [0, 1, 4, 7, 9, 10]-[2, 3, 5, 6, 8, 11],
< |001101101001>

SUCCESS : -129.39 |001101101001>

Max Cut. N: 12, Max: 39.5, [0, 1, 5, 6, 7, 9]1-[2, 3, 4, 8, 10, 117,
< ]001110001011>

SUCCESS : -117.64 |001110001011>

Max Cut. N: 12, Max: 46.0, [0, 3, 5, 8, 11]1-[1, 2, 4, 6, 7, 9, 107,
— ]011010110110>

FAIL : -146.79 |OOlOlOllOllO> Max-Cut: -145.05 |011010110110>
[...]

Max Cut. N: 12, Max: 43.7, [0, 1, 3, 4, 7, 8, 9, 101-[2, 5, 6, 111,
— ]001001100001>

SUCCESS : -124.69 |OOlOOllOOOOl>

Exploring the maximum degree!? of the graph is instructive, as it seems to be one
of the factors that affect the failure rate of this algorithm. Finally, note that a quantum
advantage for this algorithm has not been fully established, except for a special class
of graphs (Carlson et at., 2023).

Subset Sum Algorithm

Now that we know how to solve an optimization problem let us explore another
algorithm of this type, namely the so-called Subset Sum problem. This problem is
known to be NP-hard (Garey et al., 1990) and can be stated as follows: Given a set S
of integers, can $ be partitioned into two sets, with L and R = S — L, such that the sum
of the elements in L equals the sum of the elements in R:

IZ| IR|

i J

We will approach this problem with a Hamiltonian constructed similarly to the one
in Max-Cut. There, we used two weighted Z gates to represent an edge in a graph.
Here, we will introduce only a single weighted Z gate to represent a single number
in S. In Max-Cut, we were looking for a minimal energy state. For the problem of
balancing partial sums, we will look for a zero-energy state, as such a state represents
the “energy equilibrium” of balanced partial sums.

12 See also http://en.wikipedia.org/wiki/Degree_(graph_theory).
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13.5.1 Implementation

Our implementation only decides whether or not a solution exists. It does not identify
a specific solution. To start, since this algorithm is begging to be experimented with,
we define relevant parameters as command line options.

Find the code
In file src/subset_sum.py

The maximum integer in S is specified by parameter nmax. Similarly to Max-Cut,
we encode integers as positions in a bit string corresponding to a state. This means
that for integers up to nmax, we will need nmax qubits. The size |S| of the set S is
specified by parameter nnum. Finally, the number of experiments to run is specified
by parameter iterations.

flags.DEFINE_integer ( 'nmax', 15, 'Maximum number')
flags.DEFINE_integer ( 'nnum', 6,

'Maximum number of set elements [l-nmax]')
flags.DEFINE_integer('iterations', 20, 'Number of experiments')

The next step is to produce nnum random and unique integers ranging from 1 to
nmax (exclusive). Other ranges are possible, specifically ranges including negative
numbers, but given that we use integers as bit positions, we have to map such arbitrary
ranges to the positive range of 1 to nmax. In the code, we check that the sum of all
selected random numbers is even because otherwise, the partitioning into equal sums
is not possible:

def select_numbers (nmax: int, nnum: int) -> List[int]:
while True:
sample = random.sample(range(l, nmax), nnum)
o

if sum(sample) % 2 ==
return sample

To compute the diagonal tensor product, we only have to check for a single number
(compared to the Max-Cut algorithm, where we had to check for two numbers) and
apply a correspondingly weighted (by index i) Z gate.

def tensor_product(wl: float, w2: float, diag):
return [j for i in zip([x » wl for x in diag],
[x * w2 for x in diag]) for j in i]

def tensor_diag(n: int, num: int):
diag = [1, 1]
for i in range(l, n):
if i == num:
diag = tensor_product (i, -i, diag)
else:
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diag = tensor_product(l, 1, diag)
return diag

The final step in building the Hamiltonian is to add all the diagonal tensor products.
This function is similar to the function graph_to_diagonal_h in the Max-Cut
algorithm, except for the invocation of tensor_diag to compute the diagonal tensor
product. If we implemented more algorithms of this type, we should spend more effort
to generallize this construction.

def set_to_diagonal_h(num_list: List[int], nmax: int) -> -> List[float]:
h = [0.0] *» 2+%*nmax
for num in num_list:
diag = tensor_diag(nmax, num)
for idx, val in enumerate(diag):
hlidx] += val
return h

13.5.2  Experiments

Now we move on to experiments. In each experiment, we create a list of random
numbers and exhaustively find potential partitions. Then, similarly to Max-Cut, we
divide the set of numbers into two sets with the help of binary bit patterns. For each
division, we will compute the two sums for the two sets. If the two sums are equal, we
will add the corresponding bit pattern to the list of positive results. The routine then
returns this list, which can be empty if no solution is found for a given set of numbers.
The partitioning for an example set is shown in Figure 13.6.

def compute_partition(num_list: List[int]):
solutions = []
for bits in helper.bitprod(len(num_list)):
iset = []
oset = []
for idx, val in enumerate(bits):

®e @

OO

Figure 13.6 A subset partition for a set of eight integers. The partial sums of all elements in the
white and gray sets are equal.
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if val ==
iset.append (num_list[idx])
else:
oset.append (num_list[idx])
if sum(iset) == sum(oset):
solutions.append(bits)
return solutions

Next, we add a short helper function to print the solutions found:

def dump_solution(bits: List[int], num_list: List[int]):

iset = []
oset = []
for idx, val in enumerate (bits):
if val == 0:
iset.append (f '{num_list[idx]:d}"')
else:
oset.append(f '{num_list[idx]:d}")
return '+'.join(iset) + ' == ' + '+'.join(oset)

Finally, we run the experiments. For each experiment, we create a set of numbers,
compute the solutions exhaustively, and compute the Hamiltonian.

def run_experiment (num_list: List[int]) -> bool:

nmax = flags.FLAGS.nmax
if not num_list:
num_list = select_numbers (nmax, flags.FLAGS.nnum)
solutions = compute_partition (num_list)
diag = set_to_diagonal_h(num_list, nmax)

Now we can again perform VQE by peek-a-boo. For Max-Cut, we took an index
and value from the diagonal. But what is the correct value to look for here? We are
looking for a zero energy state that indicates a balance between the sets L and R.
Hence, we look for zeros on the diagonal of the Hamiltonian. There can be multiple
zeros, but as long as one single zero can be found, we know there should be a solution.

If no solution was found exhaustively, but we still find a zero on the diagonal, we
know that we have encountered a false positive. Conversely, if no zero was found
on the diagonal, but the exhaustive search found a solution, we encountered a false
negative. The code below checks both of these conditions:

non_zero = np.count_nonzero (diag)
if non_zero != 2**nmax:
print (' Solution should exist...', end="'")
if solutions:
print (' Found: ', dump_solution(solutions[0], num_list))
return True
assert False, 'False positive found.'
print (' No Solution Found.', sorted(num_list))
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assert not solutions, 'False negative found.'
return False

As we run the code, we should see a success rate of 100%.

def main(argv) :
for _ in range(flags.FLAGS.iterations):
run_experiment (None)

>>
Solution should exist... Found Solution: 13+1+5+3 == 14+8

Solution should exist... Found Solution: 10+1+14 == 4+12+9
Solution should exist... Found Solution: 4+9+14 == 12+5+10
[...]

Solution should exist... Found Solution: 1+3+11+2 == 5+12

We also test for negative cases which are sets of numbers that cannot be divided into
two equal sums:

, 8, 10, 12, 137,

for s in sets:
if run_experiment (s) :
raise AssertionError ('Incorrect Classification')
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Quantum Machine Learning

At the time of this writing, machine learning (ML), artificial intelligence (AI), and
even artificial general intelligence (AGI), are the hottest topics in academia and indus-
try, with billions of dollars in funding and several companies evaluated at multi-trillion
dollar stock values. The computational needs for large language models (LLMs) based
on the transformer architecture (Vaswani et al., 2017) are gigantic and continue to
grow exponentially, with models having 10 trillion parameters and more.

Quantum machine learning (QML) merges machine learning algorithms with quan-
tum computing to potentially unlock new efficiencies. Since QML promises to address
the scalability limitations of ML, it is a rapidly evolving area of exciting research and
promising applications.

This section focuses on just three representatives from this field: Euclidean
distance, principal component analysis, and the HHL algorithm. We will start with a
quantum way to calculate the Euclidean distance between two vectors, a fundamental
operation in several classical ML algorithms. Next, we explore principal component
analysis (PCA), which we can view as another efficient way to calculate eigenvalues.
Both the PCA and the Euclidean distance calculation utilize specific forms of the
swap test.

Finally, we will work through the HHL algorithm for matrix inversion. This algo-
rithm is one of the most complex algorithms in this book but also one of the most
beautiful. It was at the center of the interest in quantum machine learning and we
explore it in great detail.

Euclidean Distance

This section explores how to compute the Euclidean distance between two state vec-
tors. This computation can be the dominant factor in several classical algorithms, par-
ticularly machine learning algorithms. We mention a few examples of such algorithms
in Section 14.1. Being able to perform this calculation quantum mechanically enables
these classical algorithms to (potentially) run faster on quantum machines. As we shall
see shortly, the core mechanism for calculating the distance between two arbitrary real
vectors A and B is closely related to the swap test discussed in Section 7.1.
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Classically, the Euclidean distance! between two vectors of real numbers is com-
puted as the norm of the vector difference

D = ’K—E‘ = \/(a() —b0)2 + (a1 —b1)2 —+ -4 (an,1 —bnfl)z.

The quantum technique makes an initial assumption that the encoding of the input
vectors as quantum states is feasible. Furthermore, when comparing the complexity of
the classical algorithms with analogous quantum algorithms that utilize the Euclidean
distance, it is often assumed that state initialization is a zero-cost procedure. This may
be difficult to achieve in practice, as shown in Chapter 9.

With these caveats, we assume that, without loss of generality, our vectors have
dimensions that are powers of 2. In the first step, we use amplitude encoding to
represent the vectors as quantum states, where each basis state |i) gets an amplitude
corresponding to the vector element A;. As discussed in Section 9.1.2, this represen-
tation is efficient in the number of qubits; only log, N qubits are required to represent
vectors of size N.

We calculate the norm of the classical vectors |A| and |B| and normalize the vectors
by dividing each vector element by their respective vector norm. This allows us to
represent the vectors as the quantum states

- 1
A=Ay = =" Aili),
Al
= 1
B—|B)=—= Bili).
Bl 5
We can get the original vector A back with A = |A|]A). In code, normalizing the

vectors is straightforward with numpy. We also compute the value Z = |A|? +|B|? that
we will need later.

Py Find the code
In file src/euclidian_distance.py

def run_experiment (a, b):

norm_a = np.linalg.norm(a)

norm_b = np.linalg.norm(b)

assert norm_a != 0 and norm b != 0, 'Invalid zero-vectors.'
normed_a = a / norm_a

normed_b = b / norm_b

z = (norm_axx2) + (norm_b=*x*2)

Next, we cleverly construct two states |¢) and [¢), with |¢) as a single-qubit state
and |1) encoding both vectors A and B. It will become clear soon why we are creating
these specific states:

1" Also known as the L, norm of a vector v, often written as ||v||. In this book, we mostly use single
vertical bars |v|.
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Figure 14.1 Circuit using a swap test to calculate the Euclidean distance between two vectors of
length N = 2".

1, - .
|@=7?W@—BW»

1
|¢>:ﬁ

We can borrow ideas from the Hadamard test to construct these states with a circuit.
However, in our code, we simply initialize the state vectors for |¢) and the larger state
|y) directly. Then, similarly to the swap test from Section 7.1, we create a state combo
consisting of an ancilla initialized as |0) and tensored to states |¢) and |¢):

(10) ®14) + 1) @ |B)).

# [phi> =1 / sqrt(z) ([al |0> - [b] [1>)
phi = state.State(l / np.sqgrt(Z) * np.array([norm_a, -norm_bl))

# [psi> =1 / sqrt(2) [0>]a> + [1>[b>)
psi = (state.bitstring(0) =% state.State(normed_a) +

state.bitstring(l) * state.State(normed_b)) / np.sgrt(2)

combo = state.bitstring(0) % phi * psi

Now we use the swap test circuit to estimate the probability pjgy of the ancilla
being measured in state |0). The state [¢) has multiple qubits, but we only connect the
controlled Swap gate with |¢) and the top qubit of |¢), as shown in Figure 14.1 and
with this equivalent code:

# Construct a swap test and find the ancilla probability
combo = ops.Hadamard () (combo, 0)

combo = ops.ControlledU(0, 1, ops.Swap(l, 2)) (combo)
combo = ops.Hadamard() (combo, 0)

p0, _ = ops.Measure (combo, 0)

To see how this works, let us compute the inner product (¢|i)) of the two states
and use the fact that, for a tensor product of a scalar and vector, k ® A = KA. The
left and right sides of the dot product have different dimensions. However, the inner
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product is performed only on the matching subsystems. You can think® of (¢|¢)) as

(@ @1°MY):

:<44mm)|mu ®M%HU®W»>

et
(14 |<0|—\Bl<ll)ﬁ(\0>®|A>+\1>®IB>)

z ] ] ]
= 7 g W - A e - B e - g e )
:f(|A|®|A> |B|  |B))

:%(|A\|A> |B|1B)). (b

From the swap test, we know the probability of measuring the ancilla as |0) is

and hence

11
Py =755

2(P\o> - %) = |<¢|1P>|2~

Substituting in Equation (14.1), we compute the Euclidean distance D as

2(py - 5) = (01
= S |IA114) — 1Bl 1B
—E%K_mz
= %D?

=D= 4Z(pm>—»%).

In code, we calculate the distance D both classically and quantum mechanically.
We run a range of experiments where we use random vectors containing k=4 integers
ranging from O to 10 and compare the classical and quantum results:

# Compute the classic and quantum distances after swap test:
eucl_dist_g = (4 x Z * (p0 - 0.5)) % 0.5

eucl_dist_c = np.linalg.norm(a - b)

assert np.allclose(eucl_dist_qg, eucl_dist_c, atol=le-4), 'Whaaa’

def main(argv) :

for iter in range(10):
a = np.array(random.choices (range(10), k=4))

2 See also http:/quantumcomputing.stackexchange.com/a/40084.


http://quantumcomputing.stackexchange.com/a/40084
https://doi.org/10.1017/9781009548519.015

14.1.1

14.2

14.2 Principal Component Analysis 331

b = np.array(random.choices (range(10), k=4))
run_experiment (a, b)
>>
Compute Quantum Euclidean Distance.
Quantum Euclidean Distance between a=[3 6 4 4] b=[0 3 8 6]
Classic: 6.16, quantum: 6.16, Correct
Quantum Euclidean Distance between a=[9 0 0 7] b=[1 5 5 7]
Classic: 10.68, guantum: 10.68, Correct
[...]

Quantum Algorithms Using Euclidean Distance

Now that we have a quantum way to compute the Euclidean distance between vectors,
we can find a range of classical algorithms that can potentially be accelerated using
a quantum computer. The two typical examples given in the area of machine learning
are the k-nearest neighbor algorithm (KNN) (Basheer et al., 2021) and the minimum
spanning tree algorithm (Soltan et al., 2008). Both classical algorithms spend a lot of
time computing vector distances, and assuming a zero-cost approach to translate these
computations into a quantum algorithm is promising.

At time of writing, the most important topics in machine learning were transformer
models such as ChatGPT and other large-language models (LLMs), as well as the so-
called large-embedding models (LEMs). Embeddings are floating-point vectors, and
large LEM and LLM models make heavy use of embeddings and vector databases.
Hence, using quantum encoding and algorithms like the Euclidean distance calculation
is an exciting optimization opportunity for quantum algorithms to accelerate those
important workloads.

Principal Component Analysis

Machine learning deals with huge amounts of high-dimensional data and suffers from
what is often called the curse of dimensionality. Adding features to data sets increases
their size exponentially, inevitably introducing sparsity and inflicting enormous com-
putational costs. There are adverse effects for models relying on distance measures as
distances in high-dimensional spaces become less meaningful. It can be challenging to
identify which specific features are important and which can be removed with limited
impact on the overall quality of a model.

Principal component analysis (PCA) (Greenacre et al., 2022) is a well-known sta-
tistical technique that allows reducing the dimensionality of a data set while preserving
its most important features, its principal components, which contribute maximally to
the variance of the data set. This is a lossy data compression technique that attempts to
keep the features that contribute the most to the variance of the data (and hence to the
quality of a model) and remove correlated or insignificant data. The technique itself
consists of the following high-level steps:
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« The PCA aims to explain the variances in the data set. In order to avoid excessive
influence of individual variables X;, variables are standardized by centering them
around their mean and normalizing them to values of similar magnitude. It is
important to bring variables to the same scale, especially when they have different
units.

« Compute the covariance matrix X consisting of all dot products X;X;. Since we
center variables around their mean, the expectation value for each variable is
E(X;) = 0. Note that ¥ will be a symmetric matrix.

« Perform an eigenvalue decomposition (EVD) of ¥. This will produce the
eigenvalues Ag,Aq,...,A,_1 of X as well as the eigenvectors corresponding to
each eigenvalue. Note that a more efficient way to calculate the eigenvalues is
using singular value decomposition (SVD).

« The sum of the eigenvalues equals the total variance. The components with the
smallest eigenvalues contribute the least to the variance of the data set.> Those are
the prime candidates for removal.

For a classical example, we take the data from (Abhijith et al., 2020) showing the
correlation between apartment rooms and prices. In code, we can store the data as a
two-dimensional Python array x:

x = [[4, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 5, 4, 3, 4],
[3028, 1365, 2726, 2538, 1318, 1693, 1412, 1632, 2875,
3564, 4412, 4444, 4278, 3064, 3857]]

As a first step, we center each dimension around the mean and normalize all values
to range from O to 1 as

Xl —E[Xl]

and X « ,
X

where E[Xy] is the expectation value of X, and E[X,] = E[X;] = 0 after we center the
variables around the mean. Then we compute the covariance matrix 3 between these
centered and normalized vectors as*

v (EXoXo] E[XoXi]\ _ 1 (X(Xo XiX,
C\EXiX] E[Xixi])  15-1\XIXo X[Xi)’

The algorithm proceeds to diagonalize > with the eigenvalues eg,eq,...,e,—1 on
the diagonal in decreasing order. For PCA, the lowest right eigenvalues and their
corresponding features will add the least to the data variance and could potentially
be eliminated. In our example of a two-feature case, the matrix becomes

__ (€0 0
s (5 D)

Our code strictly follows this recipe. We add a factor of 2 to house prices for
numerical stability:

3 Covariance matrices are symmetric and positive semi-definite with eigenvalues > 0.
4 You may wonder why we divide by 14, even though the data has 15 entries. This is related to the Bessel
correction. See http://en.wikipedia.org/wiki/Bessel_correction for details.
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def pca(x):
x[0] = x[0] - np.average(x[0])
x[0] = x[0] / np.linalg.norm(x[0])
x[1] = (x[1] - np.average(x[1l]))
x[1] = 2 x x[1] / np.linalg.norm(x[1])
m = (np.array([[np.dot(x[0], x[0]), np.dot(x[0], x[1])],
[np.dot (x[1], x[0]), np.dot(x[1], x[11)11) /

(len(x[0])-1))

The quantum version of this algorithm was first introduced in Lloyd et al. (2014),
which uses phase estimation to find the eigenvalues. Here, we follow the refinement
offered in Abhijith et al. (2020) on single-qubit states.

In the classical pre-processing step, we computed the covariance matrix X in the
Python variable m. The first key idea is to interpret this matrix as a density matrix.
Density matrices must have a trace of 1, so we simply divide the matrix by its current
trace:

>
Py

Next, we compute purity P as the trace of the squared density matrix, as described
in Section 4.2:

P =Tr(p?).

For a pure state, the purity is P = 1, which for a single-qubit state means that the
state lies on the surface of the Bloch sphere. Here is the second trick: From P we can
determine the two eigenvalues Ay and A; because we know that the trace of a density
matrix is the sum of its eigenvalues and that for pure states, the trace must be 1. We
know that P = )\% + )\% and A9 + A; = 1. Hence, with a little algebra,

(Ao 4+ A1)* = A2 4+ A3 2404,

=1 =P
A= (1 -P)/2. (14.2)
Now, with
Ar=1-— A,

AoAr = Ao(1 — Ag)
= Ao — A and with Equation (14.2)
=(1-P)/2.
= A —A+(1-P)/2=0.

We can do the same computation for A; and use the quadratic formula to get the
eigenvalues as

1+2P -1
Ao] —_—.

L= 5 (14.3)
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So far, so good, but how do we find the purity in a quantum way? In essence, we
will use a cleverly constructed swap test. Here are the steps. We know the density
matrix has a spectral decomposition of the following form, where we define the purity
P as the trace of the squared density matrix:

p= Zpi i) (ai],
P=tr(p®) =) pi.

A density matrix p may represent a mixed state, a statistical mixture of pure
states. We can use the process of purification to transform a mixed state into a larger
pure state, as we learned in Section 4.6. After purification, we can write the purified
state |¢) as

) = Z Vilai) (bil,

where we use the same trick as in Section 4.6 on purification and reuse the bases {|a;) }
for the bases {|b;)} on the right-hand side of the outer product. We can interpret this as
making copies of the density matrix. We then apply a swap test between the purified
copies. The expectation value of the Swap gate under state (| is [¢)

(W[ (W[ SWAP [} [) = > (bj| (| (bil (@il \/Bibj /P |aj) i) |ai) 1)

ij
=> »
i

The purity P equals the expectation value of the Swap gate. We will use this to find
the purity P first and then the eigenvalues from it:

P =tr(p?) = (Y[ (Y| SWAP [9) [¢)) .

Our implementation builds the circuit shown in Figure 14.2. First, we construct
the purified state |¢). This is a bit like cheating since in order to construct this state,
we have to compute the eigenvalues, the computation of which is the whole point
of this algorithm. On a real quantum machine, this would have to be done by state
preparation, as shown in Chapter 9.

o A

Figure 14.2 A simple PCA circuit. A swap test is performed between two instances of a purified
input state [), which we label as [1o) and [¢;).
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Find the code
In file src/quantum_pca.py

PY

rho_eig val, rho_eig vec = np.linalg.eig(rho)

p_vec = np.concatenate((np.sqgrt(rho_eig_val), np.sqgrt(rho_eig_val)))
u_vec = rho_eig_vec.reshape((4))

psi = state.State(p_vec * u_vec)

Next, we construct the swap test. The expectation value of the swap gate under the
purified state allows us to re-construct the eigenvalues. In the code, we initialize qubits
1 and 2 as well as qubits 3 and 4 with this state vector psi. Again, on a real quantum
computer, we would have to add circuitry to prepare the state.

gc = circuit.qgc('pca’)
gc.reg(l, 0)

gc.state(psi) # qubits 1, 2
gc.state(psi) # qubits 3, 4

# Swap Test.
gc.h(0)
gc.cswap (0, 1, 3)
gc.h(0)

Now we can compute the purity from its expectation value and the two eigenval-
ues as shown in Equation (14.3). We also compare against the classically computed
eigenvalues we get with a call to numpy.linalg.eig:

purity = gc.pauli_expectation (idx=0)

m_ 0 = (1 - np.sgrt(2 * purity - 1)) / 2 % np.trace(m)
m_1 = (1 + np.sgrt(2 * purity - 1)) / 2 x np.trace(m)
print (f'Eigenvalues Quantum PCA: {m_0:.6f}, {m_l:.6f}")

# Compare to classically derived values, which must match.

m, _ = np.linalg.eig(m)
if (not np.isclose(m_0, m[0], atol=le-5) or
not np.isclose(m_1, m[1l], atol=le-5)):

raise AssertionError ('Incorrect Computation.')
print (f 'Eigenvalues Classically: {m[0]:.6f}, {m[l]:.6f}. Correct')

Running a few experiments will convince us that our calculations are correct:

for _ in range(10):

for idx, _ in enumerate(x[0]):
x[1] [idx] = random.random() * 10000
pca(x)

>>
Quantum Principal Component Analysis (PCA).
Eigenvalues Quantum PCA: 0.018904, 0.314429
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Eigenvalues Classically: 0.018904, 0.314429. Correct
Eigenvalues Quantum PCA: 0.066605, 0.266728
Eigenvalues Classically: 0.066605, 0.266728. Correct

-]

HHL Algorithm

The Harrow—Hassidim—-Lloyd (HHL) algorithm (Lloyd et al., 2009)) is exciting and
was central to the promises of quantum machine learning.” It uses several techniques
we have already studied so far — and adds a few more — to solve for X in a system of
linear equations

AX =b.

To set expectations right from the start, the algorithm does not fully “solve” for X.
Instead, it calculates specific properties of X, such as how the vector elements relate to
each other, which will only allow estimating X in the end.

This algorithm is one of the more complex algorithms in this book. The descrip-
tion follows the didactic flow of the excellent step-by-step guide by Morell et al.
(2023). In the open-source repository, we faithfully implemented this reference in file
src/hhl_2x2.py, where we added numerical verification checks for each main step.
We present a slightly more general implementation, which can be found in the file
src/hhl. py in the open-source repository.

A system of linear equations is also called a linear system problem (LSP). For
example, for 3 equations with 3 variables x, y, and z, this system of equations

2x 42y — 1z =3,
x —3y+4z =4,
—x+ 1y —2z=-5,

can be written in matrix form as

2 2 -1 X 3
1 -3 4 y| = 4
—1 1 -2 Z -5

The solution to this linear system would be x = 1, y = 2, and z = 3. In general, we
can write the problem of finding X in AX = b as a system of linear equations:

ap,0Xxo + Ao, 1x1 + - -+ + ap,n—1X,—1 = by,

aioXo +ap Xy + -+ ap—1x—1 = by,

Ap—1,0X0 + Ap—1,1X1 + ++ + Ap—1,p—1Xp—1 = bp_1.

5 At time of writing, machine learning is the hottest field in computer science and industry, so why would
we combine it with another hot buzzword — quantum? Living in Silicon Valley, this is how venture
capital is being unlocked!
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Needless to say, this is a very important classical problem with innumerable appli-
cations. It is also a computationally very demanding problem. Let’s discuss complex-
ity and the case for a quantum algorithm next.

Complexity

Classically, this problem can be solved using Gaussian elimination,® which is gener-
ally of complexity O(n3). Depending on the type of matrix, faster techniques may be
applicable. Let us introduce two matrix properties:

o A matrix is s-sparse if it has at most s nonzero entries in each row and column.
Typically, s-sparse vectors are defined as having only s nonzero elements, so
s-sparse matrices have s-sparse vectors as rows and columns. Note that in the
literature, the definition of sparsity may only pertain to either rows or columns, but
we require s-sparsity for both.

o The matrix condition number x (‘“kappa’) is a metric on how invertible a given
matrix is and is usually calculated as x = ||A[| - [JA~!|| using the operator norm.”
It hints at the accuracy that can be obtained when solving an LSP. A large
condition number indicates high sensitivity; small changes in b can result in large
effects and errors in X¥. For Hermitian matrices, x can be calculated as the ratio of
largest to smallest eigenvalue after taking the absolute value (which is undefined if
the denominator is 0).

For the special case of sparse matrices and a given approximation accuracy of ¢,
solving the LSP of size N classically with the conjugate gradient method® has a
complexity of O(Nsklog(1/¢)). The quantum HHL algorithm, on the other hand,
has a complexity of O(log(N )s?x2/ e). This presents an exponential speed-up over
the size N of the system but a polynomial slowdown in s and «.

There are questions about this algorithm. The vector b has to be encoded as a
state, and we have seen in Chapter 9 that state preparation can be a costly operation.
Reading out a full result may result in an additional complexity of O(N ) This means
that the algorithm may only be applicable in cases where sampled results suffice.
In other words, if an application only requires approximate information or statistics
derived from the data, quantum algorithms may still offer a speed-up since fewer
measurements are needed. Aaronson (2015) enumerates more reasons why we should
be cautious about the promises made by this algorithm, including the fact that it only
estimates relationships between vector elements, as mentioned above.

Nevertheless, despite these concerns, there is general recognition that the algorithm
is, first of all, marvelous and that, at least for certain classes of input, it will indeed
have a quantum advantage.

6 See, for example, http:/en.wikipedia.org/wiki/Gaussian_elimination.
7 See also http://en.wikipedia.org/wiki/Operator_norm.
8 See also http://en.wikipedia.org/wiki/Conjugate_gradient_method.
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Algorithm

In the quantum algorithm, the matrix A must be an N x N Hermitian matrix with
N = 2" for some n. Vectors X and b are N-dimensional vectors. A and b are known, X
is the unknown we are trying to solve for. This means we can write the problem as

$=A"b. (14.4)

Let’s recall the required linear algebra. A complex square matrix A is normal if it
commutes with its conjugate transpose ATA = AAT. It can be shown that A is normal
if and only if it is unitarily diagonalizable. This means there exists a unitary matrix U
such that

A = UDU", (14.5)

where D is a diagonal matrix. The diagonal elements of D will hold the eigenvalues
of A, which must be real if A is Hermitian. The columns of U will be the orthonormal
eigenvectors of A.

Since all unitary and Hermitian matrices are normal, the finite-dimensional spectral
theorem applies, as shown in Section 4.1. Normal matrices can be written as the sum
of the products of the eigenvalues A; with the outer product of the eigenvectors u;. If
you think about it, this is just a different way of writing Equation (14.5):

N—1
A= Nifui){uil. (14.6)
i=0

In this form, it is trivial to compute the inverse of A as

N—1
A=A ). (14.7)
i=0

From Section 4.1, we know that a complex N X N Hermitian matrix has N linearly
independent orthogonal basis vectors with real eigenvalues. This means that any vector
in CV can be constructed from such an orthogonal basis. Hence we can write basa
linear combination of A’s basis vectors |u;) as

N—1
b) = bilus) . (14.8)

i=0

We combine this with Equations (14.4) and (14.7) as
) =A~"|b)

N—1
= DA ) il )
i=0

N—-1
= ZAt_lbl |Ml>
i=0

(wilui) ,
=1
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N—1
= [x) =Y A by fus) . (14.9)
i=0
Since we encode the vectors as state vectors, Equations (14.8) and (14.9) require that
2% —1 2" —1
S bP=1 and AP =1
i=0 i=0

As an example, let us define the 4 x 4 Hermitian Python matrix a as:

a = ops.Operator ([[15, 9, 5, -31,
[9, 15, 3, -5]1,
[5, 3, 15, -971,
[-3, -5, -9, 1511) / 4

print (a)

>>

[[ 3.75+0.35 2.25+0.3 1.25+0.3 -0.75+0.5]
[ 2.2540.3 3.75+0.3J 0.75+0.3 -1.25+0.3]
[ 1.25+0.3 0.75+0.3 3.75+0.3 -2.25+0.3]
[-0.75+0.9 -1.25+0.F -2.25+0.3 3.75+0.51]

— T .
Let'ssetavectorb= (0 0 0 1) and solve the system with numpy:

b = ops.Operator ([0, 0, 0, 11)

x = np.linalg.solve(a, b)

>>> X

array([-0.094+0.5, 0.156+0.3, 0.281+0.3, 0.469+0.3])

The quantum algorithm will not give us these concrete numbers. Instead, it will
provide information on how these values relate to each other, which we classically
compute as the ratios of all norms over the norm of the smallest element. The goal of
our quantum HHL implementation is to produce similar ratios. We write this simple
function to compute the ratios classically:

Find the code
In file src/hhl .py

def check_classic_solution(a, b):

x = np.linalg.solve(a, b)

ratio = []

for i in range(l, len(x)):
ratio.append(np.real ((x[i] * x[i].conj()) / (x[0] » x[0].conj())))
print (f'Classic ratio: {ratio[-1]1:6.3f}")

return ratio

For the example, the output will be:

Classic ratio: 2.778
Classic ratio: 9.000
Classic ratio: 25.000
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We need a routine to classically compute the eigenvalues and eigenvectors, sorted
by magnitude, which we get with the following code using numpy. Note that the
function eig returns the eigenvalues as columns — you find the eigenvector for the
eigenvalue w[i] incolumn v[:, i].To make our lives easier, we take the eigenvec-
tors out of the columns and “decolumn”® the vectors on return. Since the eigenvalues
of a Hermitian matrix are real, we explicitly convert the eigenvalues withnp . real (w)
before returning the results to avoid Python type conflicts:

def compute_sorted_eigenvalues(a) :
w, v = np.linalg.eig(a)

# Return sorted (real) eigenvalues and eigenvectors.
idx = w.argsort()
return np.real (w[idx]), v[:, idx]

Let’s use this function to compute the eigenvalues and eigenvectors for the matrix
a defined above. Note how we have chosen the matrix to have eigenvalues that are
powers of 2:

w, v = compute_sorted_eigenvalues(a)
print ( 'Eigenvalues:', w)

print ( 'Eigenvectors:\n', v)

>>

Eigenvalues: [1. 2. 4. 8.]

Eigenvectors:

[[ 0.540.F 0.5+0.j -0.5+0.3 0.5+0.3]
[-0.5+0.3 -0.5+0.3 -0.5+0.3 0.5+0.3]
[-0.5+0.37 0.540.j3 0.5+0.3 0.5+40.3]
[-0.5+0.3 0.5+0.j -0.5+0.3 -0.5+0.311

We can use the eigenvalues w and decolumned eigenvectors v to reconstruct the
matrix a and its inverse inv with the following code, following Equations (14.6) and
(14.7). We can check for correctness by comparing the reconstructed matrix x with
the original a and by comparing the matrix product of x and its inverse inv with the
identity matrix:

ndim = a.shape[0]
X = np.matrix(np.zeros ((ndim, ndim)))
for i in range(ndim) :
x = x + w[i] * np.outer (v, v.adjoint())
assert np.allclose(a, x)

inv = np.matrix(np.zeros((ndim, ndim)))
for i in range(ndim) :
inv = inv + (w[i]l#**-1) * np.outer(v, v.adjoint(

)

)
assert np.allclose(inv @ x, ops.Identity(a.nbits))

9 T am not sure this is a word. We take the vectors out of the columns and make them an array of vectors.
With this, you get an eigenvector with v [1] insteadof v[:, 1i].
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A:0)

C: 0)®"

L |b)®"

Figure 14.3 The HHL algorithm as a circuit diagram.

Equation (14.9) is the form we will use in the HHL algorithm to solve for |x). The
algorithm has the following major steps, which are also shown in Figure 14.3:

1. State Preparation. The vector b needs to be encoded as a quantum state via state
preparation. As we have learned in Chapter 9, this can be quite difficult in
practice. Here, we just assume that vector bis readily available as a quantum state.

2. The next step is to perform quantum phase estimation to encode the eigenvalues
of an operator U that represents the matrix A. For experimentation, in order to
deal with known eigenvalues, we also have to construct the U operator.

3. This is followed by the so-called ancilla rotation. This step is new and
complicated in its general form. Here, we simplify slightly and require that the
eigenvalues of U be powers of 2.

4. We are almost done at this point. We uncompute the QPE from Step 2 above and
measure and interpret the results.

To construct the circuit, let us assume that the vector b has N, = 2™ components
for n;, qubits. We use amplitude encoding (Section 9.1.2) to encode this vector as a
quantum state. The circuit consists of three register files:

1. A single ancilla qubit A. When written as a substate, we will denote this qubit
by [ )

2. A clock register C of width 2'. This register will contain the encoded eigenvalues
coming out of the quantum phase estimation. A larger number ¢ of qubits will
result in higher accuracy. In state notation, we refer to this register as | ),.

3. An input register I of width 2", which will contain the results of the state
preparation to represent the vector b. Similarly to the above, we denote the state of
this register as | ),,.

State Preparation

We start by using amplitude encoding as described in Section 9.1 to encode the vector
b as a quantum state |b). We assume that this step is possible and efficient in a physical

. o . . . n n .
system. For simplicity, in our examples, we will only use states |0)" or |1)", which are
easy to prepare. With the notation shown above, the system after state preparation will
be in state
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|1P> = |0>a |0 T 00>c |b>b7

with |b), indicating a register of size n,. We will see below that the algorithm produces
a result in basis encoding, as described in Section 9.1.1. But let’s not get ahead of
ourselves.

Hamiltonian Encoding

To encode the matrix A, we use Hamiltonian encoding from Section 9.1.4. We
interpret the Hermitian A as a time-dependent Hamiltonian and define the unitary
operator

U(t) = ™.

The factor ¢ is the evolution time of the Hamiltonian and we will calculate a specific
value for it shortly. The practical way to build U is to use the spectral decomposition of
A and compute its eigenvalues A; as above (in the Python variable w). Then construct
U using the computational basis vectors |e;) as

N—1
U(r) = eMle;)ei]. (14.10)
i=0

In this way, U will be a diagonal matrix. To keep the eigenvalues but change the
basis back to the original basis of A, we use the matrix similarity transformation:'°

U= VUVT,

where V is a matrix with the original eigenvectors of A as its rows.!! We computed
this V in the variable v above. V is also called a change of basis matrix.'?

Note that this explicit construction is only for experimentation. The whole purpose
of the HHL algorithm is to approximate the eigenvalues for a given unknown
Hamiltonian. In code, we follow the exact steps as outlined above. The function
compute_u_matrix gets the original matrix A as parameter a, the eigenvalues
and decolumned eigenvectors as w and v, and the t time evolution parameter:

def compute_u_matrix(a, w, v, t):

u = ops.Operator(np.zeros((a.shapel[0], a.shapell]),
dtype=np.complex64))
for i in range(a.shape[0]):
ulil[i] = np.exp(1j * w[i] * t)
u=v @ u @ v.adjoint()
return u

10 http://en.wikipedia.org/wiki/Matrix_similarity.

11 You will often find the similarity transformation written as U = VT UV with V having the eigenvectors
as columns. However, we already decolumned the eigenvectors of V into rows. Therefore, the adjoint
VT comes last.

12 http://en.wikipedia.org/wiki/Change_of_basis.
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Phase Estimation

Now that we know how to compute the matrix U for our experiments, the next step
is to discuss the quantum phase estimation at a slightly more mathematical level. We
know from Section 11.2.1 and Equation (11.2) that we can write the QPE in closed
form as

OPEIY) = 217 Zezmw 0)19).

We also learned in Section 11.4 that we can write the quantum Fourier transform
QFT in the closed form of Equation (11.8) as

QFT|X > /2 Z 27‘[ljk/N

We apply the inverse QFT to the output of the QPE for the resulting state

N—1
) = [b) QFT' (21/ > |k>) 0},
k=0

N—1
= 16) 37z > (0FT' 1) [0),
k=0

1 N—1 N—1
— ‘b) 27 2k Ze—Zmyk/N |y> |O>a
k=0 y=0
1 N—IN—-1
b) 5 37 37 O ) o),
k=0 y=0

If for some y the term ¢ — y /N = 0, then the exponent will be 0, the exponential
term will be 1, which leads to

1 N—1 1 N-1 on
L 2mik(p—y/N) _ mik0 _ = q

Since the resulting amplitude for this yj is 1, all other amplitudes must'® be 0. This
is also called destructive interference, which arises from the periodic nature of the
complex exponentials. Since ¢ — yo/N = 0, we can solve for yo:

¢ —yo/N =0,
¢ =yo/N,
— Yo = qu

With [yo) = |¢pN) we can write the state after QPE as the following, with |b)
still being the unmodified input register, [N¢) the phase estimate stored in the clock
register, and |0),, the unmodified ancilla:

13 See http://quantumcomputing.stackexchange.com/a/39933 for a rigorous proof.
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1b) IN@) [0),, - (14.11)

This form is for a single yy. We still have to consider that there are multiple eigen-
values in superposition and we have to decide what to do with that mysterious ¢
parameter. This will be the focus of Section 14.3.6.

In code, let’s write down what we have so far. To construct the circuit, we use the
function construct_circuit and give it the following parameters: The vector b, the
eigenvalues in parameter w, the unitary operator U we constructed above, a constant ¢
that we will derive below, and the number of qubits clock_bits we want to assign
to the clock register. With these parameters, we construct the circuit gc and create the
ancilla, clock, and b quantum registers, assigning the vector b to the breg register
directly:

def construct_circuit(b, w, u, c, clock_ bits):
gc = circuit.gc('hhl'")

# State preparation - just initialize the b register.
anc = gc.reg(l, 0)

clock = gc.reg(clock_bits, 0)

breg = gc.state(b)

Then we build the phase estimation circuit. We know we must uncompute this later,
so as we iterate over the clock bits, we also store the inverse U~ gates in variable
u_inv_gates. The rest of the loop is similar to the QPE implementation in Section
11.2.3:

# Phase estimation to bring the eigenvalues into the clock register.
gc.h(clock)
u_inv_gates = []
for idx in range(clock_bits):
op = ops.ControlledU(clock[idx], bregl[0], u)
gc.unitary(op, clock[idx])
u_inv_gates.append(np.linalg.inv(u))
u=u@u
gc.inverse_qgft (clock, True)

This is only the first half of the function. We will finalize the implementation in just a
few pages.

Time Evolution Parameter ¢

Hamiltonian encoding has that time evolution parameter 7 in the exponent. We will
see that, as long as the eigenvalues are integer multiples of each other, we can use 7 to
map the eigenvalues to actual integers. Let us derive a way to calculate ¢.
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We know that U in the Hamiltonian encoding in Equation (14.10) is a normal matrix
and that the spectral theorem applies (as discussed in Section 4.1):

U= Z)\i|xi>(xi\.

Since U is unitary with UUT = I, it follows that |A;|> = 1 and A; = €*™® for some
angle ¢;. If we set |b) as one of the eigenvectors |u;) of U, then

Ub) = &

Lti> .
We also know from Equation (14.10) that

U|b) = ™

I/ti> .

We can equate the two and find ¢; with

iAit = 27Tl.(¢),',
Ait
:> qb[ — %

We substitute this into Equation (14.11) and get

Ajt
= Ib) [N5Z) [0),
[¥) = 16) [NZE) [0),
In general, |b) will be in superposition as |b) = Ef;h(;l b; |u;) and we can general-
ize |{) to our almost final form:

M

)= > bilw) INA;t/(20)) [0, -

Jj=0

With all this in place, we can finally calculate a proper value for ¢. The eigenvalues
A; are usually not integers, but as long as they are related to each other by integer
factors, we can scale them to integers simply by dividing them by their smallest value
Ap. In practice, this Ay must be carefully chosen.

We want the eigenvalues to be integers for two reasons. Firstly, it makes it easy to
map the binary eigenvalue values onto the clock register. More importantly, though, in
order to invert the eigenvalues, we must apply controlled rotations by specific angles.
These angles are much easier to find from integer eigenvalues, especially integers that
are powers of two, as we will see shortly.

We still have to apply a factor  when we construct the matrix U. To obtain integer
eigenvalues, we define 7 as

AoN’
and define scaled eigenvalues with a tilde over the symbol A as

Aj = NAjt/(2m) = Tf)
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As long as the eigenvalues are integer multiples of each other, the scaled eigenval-
ues will be integers. With this, we arrive at the final form we were looking for:

My 1

W) = > biluy) [4;)10), (14.12)
j=0

After QPE and inverse QFT with a time factor ¢, we will have the integer eigenval-
ues in superposition in the clock register. Section 14.3.7 describes how to rotate the
eigenvalues to obtain their inverse values.

Inversion of Eigenvalues

In this section, we will take the state in Equation (14.12) and apply rotations by
specific factors to change the state into a form that may seem confusing at first. We
will measure the ancilla and only keep the results for which the ancilla measured |1).
The remaining state will allow us to derive the rotation angles. At this point, it will
also become apparent why we had to scale the eigenvalues to integer values. Let’s dive
right in.

We have seen in Section 9.1.3 that we can encode a value a with an R, rotation by
angle 6 = 2 arcsin(a) such that

Ry(0)10) = V1 — a2]0) + a|1).

We choose a constant C and apply controlled R, (6;) rotations between the ancilla
|0), and the clock register with a = C/ /Tj In just a few paragraphs, it will become
clear what the value of C should be and how to compute the angles 6;. The rotations
change the state in Equation (14.12) to

)

Now we measure the ancilla and discard the measurements that result in |0) for the
ancilla. For the other cases, the state will hold the inverse eigenvalues and become

M

Wy =" bjlu;) (14.13)
j=0

2% 1 c 1
W) =cn Y bilw) =[1),, with ¢, = ———x.
SR
The complicated factor c¢,, is just a normalization factor after measurement to
ensure that the total probabilities in the state vector still add up to 1. With this, we
can now derive a good value for C. The probability of measuring |1), in Equation
(14.13) is pj1y = |C//Tj\2 Probabilities must be less than or equal to 1. We mapped
the eigenvalues to integers above, and the smallest mapped value is Ay = 1. Hence,
to maximize the probability p|;y of measuring [1) we want to use the largest possible

value for C such thatp|1> < 1. For this, we set C to 1.

We can now complete the function construct_circuit. We left off right after
we built the QPE circuitry. The next steps are to compute the angles by calling
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compute_angles, which we develop below, and apply the controlled R, rotations
between the clock register and the ancilla using gc.cry. To uncompute, we apply
the inverse QPE using the gates we stored in u_inv_gates. The final step in this
function is to measure and force the ancilla to state |1) and return this ingeniously
constructed circuit gc:

angles = compute_angles(w, c)
for idx, angle in enumerate(angles):
gc.cry(clock[idx], anc, angle)

# Uncompute.
gc.qgft(clock, True)
for idx in reversed(range(clock_bits)):
op = ops.ControlledU(clock[idx], breglO0],
u_inv_gates[idx])
gc.unitary(op, clock[idx])
gc.h(clock)

# Measure (and force) ancilla to state [1>.
gc.measure_bit(anc[0], 1, collapse=True)
return gc

So far so good, but how do we go about computing the rotation angles? We know
that in order to transform the ancilla from |0)_ to the right side of Equation (14.13),
we have to apply an R rotation by an angle 0 = 2 arcsin L with:

We can calculate the angles 0; for each integer eigenvalue /Tl = {1,2,...} as

1
0, = 2 arcsin 1= T,

1
0, = 2 arcsin 2= g,

Now it becomes clear why we chose the eigenvalues to be powers of two. We
can decompose a value ¢ in the clock register before rotations in the binary form
€ = Cp—1Cn—2 -+ - C¢, and apply the rotations for each of the individual distinct binary
bits. In this way, the rotations do not overlap, as they would for eigenvalues with
overlapping binary bits, such as 1 (0b01) and 3 (0b11). There are complex ways to
solve cases where the binary representations of the scaled eigenvalues do overlap, but
with this simplified power-of-2 scheme, we can compute the angles simply with:

def compute_angles(w, c):
unis = np.unique (w)
return [2 * np.arcsin(c / eigen) for eigen in unis]
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14.3.8

Putting It All Together

We now have all the pieces in place to run this algorithm on a variety of inputs. We
define a function run_experiment with parameters a for the matrix A and b for the
vector b. The function computes the sorted eigenvalues, as shown above, and produces
the scaled integer eigenvalues in lam. It computes parameter t, sets the constant ¢
(to 1), constructs the circuit with the code shown above, and compares the results.
Without test and print statements, the code looks rather compact:

def run_experiment (a, b):

clock_bits = len(b)
n = 2 xx clock_bits

w, v = compute_sorted_eigenvalues (a)

lam = [w[i] / w[0O] for i in range(a.shape[0])]
t = 2 % np.pi / (w[0] * n)

¢ = np.min(np.abs(lam))

gc = construct_circuit (b, lam, u, c, clock bits)
check_results(gc, a, b)

To compare the results, we compute the ratios of the classical and quantum solu-
tions. Then we compare the ratios one by one and ensure that they are within an
acceptable accuracy range.

def check_results(gc, a, b):

ratio_classical = check_classic_solution(a, b)
res = (np.abs(gc.psi) > 0.07) .nonzero() [0]
ratio_quantum = [np.real(gc.psi[res[j]l] ** 2 / gc.psi[res[0]] ** 2)

for j in range(l, len(res))]

for idx, ratio in enumerate(ratio_qgquantum) :
delta = ratio - ratio_classical[idx]
print (f 'Quantum ratio: {ratio:6.3f}, delta: {delta:+5.3f}")
if abs(delta) > 0.2:
raise AssertionError ('Incorrect result.')

In the Python main function, we construct several examples and run the experi-
ments, resulting in output like this one:

def main(argv) :

a = ops.Operator([[15, 9, 5, -3],

[9, 15, 3, -51,

[5, 3, 15, -91,

[-3, -5, -9, 1511) / 4
b = ops.Operator ([0, 0, 0, 1]).transpose()
run_experiment (a, b, clock_bits=4)

[...]
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Clock bits
Dimensions A
lambda[0]

lambda[1]
lambda[2]
lambda[3]
Set C to min

Classic ratio:
Classic ratio:
Classic ratio:
Quantum ratio:
Quantum ratio:
Quantum ratio:

4x4

= oo NN
o O O O ©o

w o R wo kr

.044
.738
.545
.044,
.738,
.545,

delta:
delta:
delta:

+0.000
-0.000
+0.000
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Quantum Error Correction

Quantum computing operates at a (smaller than) microscopic scale, with a high likeli-
hood of noise, errors, and decoherence' in larger circuits. Because of this, it has been
believed for the longest time that practical quantum computing will not be feasible.
This all changed with the discovery of quantum error correction techniques,> which
we touch upon in this chapter. We have ignored this topic so far and assumed an
ideal, error-free execution environment. However, for real machines, this assumption
does not hold. Quantum error correction is a fascinating and wide-ranging topic. This
section is primarily an introduction with focus on core principles.

Quantum Noise

Building a real, physical quantum computer that has a large enough number of qubits
to perform useful computations presents enormous challenges. A quantum system
must be isolated from the environment as much as possible to avoid entanglement
with the environment and other perturbations, all of which could induce errors. For
example, molecules may bump into qubits and change their relative phase, even at
temperatures close to absolute zero. However, a quantum system cannot be entirely
isolated because we want to program the machine, change its internal state, and make
measurements.

A summary of the available technologies presented in Nielsen and Chuang (2011)
is shown in Table 15.1. The table lists the underlying technology, the time 7 the
system can remain coherent before losing coherence, the time 7, it takes to apply
a typical unitary gate, and the number n,, of operations that can be executed while
still in a coherent state. For several technologies, the number of coherently executable
instructions is rather small and will likely not suffice to execute larger algorithms,
especially those with many qubits and millions or potentially billions of gates. How-
ever, encouraging improvements have been reported recently in Anferov et al. (2024).

Errors are inevitable at the atomic scale, and the environment is very likely to
perturb the system. Let us compare the expected quantum and classical error rates.

1 See also: http://en.wikipedia.org/wiki/Quantum_decoherence.
2 Other techniques for decoherence reduction exist today. See, for example,
http://en.wikipedia.org/wiki/Dynamical_decoupling.
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Table 15.1. Estimates for decoherence times 7, (secs), gate application latency 7., (secs), and
number of gates ., that can be applied while coherent. Data from Nielsen and Chuang (2011).

System To Top Top
Nuclear spin 107%t0 1078 102 to 1076 10° to 10"
Electron spin 1073 1077 10*

Ion trap 107! 1071 10
Electron — Au 1078 1071 10°
Electron — GaAs 1071 107" 10°
Quantum dot 107° 107° 10°
Optical cavity 1073 10~ 10°
Microwave cavity 10° 1074 10*

For a modern CPU, a typical error rate is about one per year, or one error for every
10'7 operations. The actual error rate might be higher, but mitigation strategies and
redundancies are in place.

In contrast, data from 2020 from IBM (Maldonado, 2022) show an average single-
qubit gate error rate of about one per 10~* seconds. Based on frequency, this could
reach up to one error for every 200 operations. This is a difference of almost ten orders
of magnitude! Next, let us explore possible quantum error conditions and model their
likelihood of occurrence.

Bit-Flip Error

A bit-flip error causes the probability amplitudes of a qubit to flip, similar to the effect
of an X gate or even a classical bit-flip error:

al0) + B|1) = Bl0) + all).

This is also called a dissipation-induced bit-flip error. Dissipation is the process of
losing energy to the environment. If we think of a qubit in the state |1) as an electron
in an excited state, as it loses energy, it may fall to the lower energy |0) state and emit
a photon. Consequently, by absorbing a photon, it can jump from |0) to |1), in which
case it should probably be called an excitation-induced error.

Phase-Flip Error

The phase-flip error causes the relative phase to flip from +1 to —1, similar to the
effect of a Z gate:

al0) + B[1) = «[0) = B[1).

This is also called a decoherence-induced phase-shift error. In the example, the phase
on 3 was shifted by 7t, but for decoherence, we should also consider more minor phase
changes and their insidious tendency to compound over time.
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Combined Phase/Bit-Flip Error

The combination of the two error conditions above
al0) + B[1) — Bl0) — all),

is equivalent to applying the Y gate and ignoring the global phase:

v(alo+ i) = (75 (§) = 6101 + ) = ~i(p10) - aly).

No Error

We only mention this case for completeness. It is the effect of applying an identity
gate to a qubit or, equivalently, doing nothing.’

Errors will occur with a certain probability. To model this properly, we will intro-
duce the concept of quantum operations next. Using those, we can describe statistical
error distributions in an elegant way.

Quantum Operations

So far, we have primarily focused on describing quantum states as vectors of probabil-
ity amplitudes. We explained how density operators can also describe states, allowing
us to describe mixtures of states. In the following, we adopt the formalism presented
in Nielsen and Chuang (2011).

Similarly to how a state evolves as |¢') = U|y) with a unitary U, a state’s density
operator p = |i) (| evolves as

p' = E&p),

where the &£ is called a quantum operation. The two types of operations we have
encountered so far are unitary transformations and measurements with a projection
operator M. Note again the matrix multiplication from both sides:

E(p) =UpU' and Ey(p) = MpM'. (15.1)

In a closed quantum system, which has no interaction with the environment, the
system evolves as

p (v} Up Ut

In an open system, we model the system as the tensor product of state and environ-
ment as P ® Peny- The system evolves as described in Equation (15.1), with U being
a unitary in the Hilbert space of both the system and the environment, expressed with
density matrices:

U(p @ Peny) uU'.

3 It is impossible to resist mentioning the famous error message “No Error” in a certain operating system
that shall remain unnamed.
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p— — &(p)
We can visualize this with this conceptual circuit: U
Penv

To describe the system without the environment, we can trace out the environment
using the methodology from Section 4.3:

E(p) = treny [U(p & peny) U] . (15.2)

Now, quantum operators can be expressed in the operator-sum representation,
which only describes the behavior of the principal system in Equation (15.2). Let |e)
be the orthonormal basis of the environment, and let |ecny) = |eg)(eg| be the initial
state of the environment, which we assume to be pure. It can be shown (see Nielsen
and Chuang, 2011, section 8.2.3) that

Ep) = EwpE], (15.3)
k

where E;y = (ex|Uleg). The Ej are the operation elements for the quantum
operation &. They are also called Kraus operators and operate on the quantum system
of interest only. Now, let us see how we can use this formalism to describe the various
error modes.

Quantum Channels

The term channel is an abstraction in information theory to model how information is
transmitted in the presence of noise, errors, and potential attackers intent on stealing
transmitted information. In this book, we are not discussing these aspects of quantum
cryptography. Viddick (2023) provides an excellent introduction to the topic. How-
ever, we can use the formalism developed therein to model quantum error modes and
probabilities.

A classical channel could be as simple as the vibrations of a string in a string
telephone or as complex as light traveling in a fiber optic line. In the quantum case, we
have to consider that in addition to unitary operations and measurements, as discussed
above, there are two other types of quantum operations that eavesdroppers can use to
steal information, for example, with cloning attacks (Scarani, 2005):*

o We can add an ancilla qubit to a given state |¢) and increase the dimension of the
state by a factor of 2 as 1)) — [¢) |0).

« We can trace out a qubit and reduce the dimension of a state by a factor of 2, as
described in Section 4.3.

With these, we define a general quantum channel C as an operation from (C?)" —
(C?)™ consisting of a sequence of unitary operations, the addition of ancillas, and the
tracing out of qubits.

4 Quantum cryptography is a very large field. We will not go into great depth in this book.


https://doi.org/10.1017/9781009548519.016

354

15.1.3

15.1.4

Quantum Error Correction

Bit Flip and Phase Flip Channels

The bit-flip channel Cyiip flips the states from [0) to |1) with probability 1 — p
(probability p of not introducing an error). It has the operation elements

1 0 0 1
Expressed in the form of Equation (15.3), the bit-flip channel for a density matrix p is

Coinip(p) = (1 — p)p + pXpX.

The phase-flip channel flips the phase as described above with probability 1 — p. It
has the operation elements

1 0 1 0
Eo—\/ﬁl—\/[)(o 1) and E; = lpZ—\/lp(O _1).

Finally, the bit-flip phase-flip channel has the operation elements

10 0 —i
EOZ\/];I:\/ﬁ(O 1) and Elz 1—pY:\/1—p<i O)

Depolarization Channel

The depolarization channel is another standard way to describe quantum noise.
Depolarization means an original state is transformed into a completely mixed state
I/2. In Section 4.3, we briefly talked about pure and mixed states and derived
that a maximally mixed bipartite state is proportional to /, which means that the
two subsystems are maximally entangled with each other. For the scenario we are
considering, one of the systems is the environment.

Quantum noise means that if some disturbances have a probability p of changing a
state, the state remains unmodified with probability 1 — p. The state, expressed as the
density matrix p, can be written as

I
p'=p5+(1=p)p.

For an arbitrary (single-qubit) p, the following holds in operator-sum notation,
which we verify in the test test_rho in file src/1ib/ops_test.py (this equation
is related to Equation (2.6)):

_ p+XpX+YpY+ZpZ

1
2

Py Find the code
Infile src/1lib/ops_test.py

def test_rho(self):
for _ in range(100):
g = state.qubit (alpha=random.random())
rho = g.density()


https://github.com/qcc4cp/qcc/blob/main/src/lib/ops_test.py
http://www.github.com/qcc4cp/qcc/blob/main/src/src/lib/ops_test.py
http://www.github.com/qcc4cp/qcc/blob/main/src/lib/ops_test.py
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ident, x, y, z = ops.Pauli/()
u = (rho + x @ rho @ x + y @ tho @ y + z @ rho @ z) / 2
self.assertTrue(np.allclose(u, ident))

Suppose that we assign a probability of (1 — p) for a state to remain unmodified
by noise and assign a probability of 1/3 for each of the operators X, Y, and Z to
introduce noise (other probability distributions are possible). In that case, the operator
sum expression above becomes

Ep) = (1—p)p + %(XpX + YpY + ZpZ).

This is the result that we were looking for. It allows us to model quantum noise by
injecting Pauli gates with a given probability. Assume a gate E, which may be one of
the Pauli matrices with a probability as follows:

X  with p,,
E— Y  withp,,
Z withp,,
I withl— (py+py+p;).

To model noise, we introduce error gates E with a given probability, injecting bit-
flip and phase-flip errors. Example circuits before and after error injection are shown
in Figures 15.1 and 15.2. It is educational to experiment with injecting these error gates
and evaluating their impact on various algorithms. We will do just that in Section 15.2.

Amplitude and Phase Damping

We mention amplitude and phase damping only for completeness, but we will not elab-
orate further. Amplitude damping seeks to model energy dissipation, the energy loss
in a quantum system. It is described by two operator elements, with y (gamma) being

Figure 15.2 Circuit with injected noise.
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the likelihood of energy loss, such as the emission of a photon in a physical system:

ae ) om0 0)

Phase damping describes the process of a system losing relative phase between
qubits, thus introducing errors in algorithms that rely on successful quantum interfer-
ence. The operator elements are

el ) w3 0

The factor  might be expressed as an exponential function in more realistic modeling
environments.

Effect of Imprecise Gates

Gates themselves may be imperfect. There could be issues with manufacturing, exter-
nal influences, temperature, and other conditions, which all influence gate accuracy.
Additionally, it is unlikely that all software gates we use in this text will be available
on physical machines. The software gates may have to be decomposed into a series
of hardware gates or be approximated. Approximations have residual errors, as we
detailed in Section 9.4 on the Solovay—Kitaev algorithm.

The impact of gate imprecision varies by algorithm. We have the source code and
can simulate the algorithms, which allows us to run experiments and inject various
error conditions and distributions. In the following brief example, we modify the final
inverse QFT in the phase estimation circuit from Section 11.2.1 by introducing errors
in the R; phase gates. To achieve this, we compute a normally distributed random
number in the range of 0 to 1 and scale a noise factor ny with it. For example, a
factor n; = 0.1 means that a maximum error of 10% can be introduced. The follow-
ing code is a simple model, and you are encouraged to experiment with other error
distributions.

def Rk(k):

return Operator (np.array([(1.0, 0.0),
(0.0, cmath.exp((1l + (random.random() » flags.FLAGS.noise)) x
(2.0 * cmath.pi * 1j / 2*xk)))]1))

Then, for values of n; ranging from 0.0 to 2.0, we perform 50 experiments and
count the number of experiments that result in a phase estimation error greater than
2%. In other words, we test the robustness of phase estimation against small to large
errors in the inverse QFT rotation gates. Figure 15.3 shows the distribution.

You can see that the inverse QFT is surprisingly robust against sizable maximum
errors in the rotation gates. The exact result would depend on the statistical distribution
of the actual errors. We should also expect that each algorithm has different tolerances
and sensitivities. For comparison, introducing depolarization with only 0.1% proba-
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Figure 15.3 Phase estimation errors exceeding a threshold of 2% from increasing noise levels,
for N = 50 experiments per setting. The x-axis represents noise ranging from 0% to 200%, and
the y-axis represents the number of experiments exceeding the threshold. The number 40
corresponds to 80% of the 50 experiments conducted.

bility leads to significantly different outcomes in the order finding algorithm, which is

very sensitive to this particular type of error.’

Quantum Error Correction

Moving forward, we will need some form of error correction techniques to control the
impact of noise. In classical computing, there is a large body of known error-correcting
techniques. Error correction code memory, or ECC (Wikipedia, 2021b), may be one
of the best known. There are many more techniques to prevent invalid data, missing
data, or spurious data. NASA, in particular, has developed impressive techniques to
communicate with its ever-more-distant exploratory vehicles.

A simple classical error correction technique uses repetition codes and majority
voting. For example, we could triple each binary digit:

0 — 000,
1 — 111

As we receive data over a noisy channel, we measure it and perform majority vot-
ing with the scheme shown in Table 15.2. This simple scheme does not account for
missing or erroneous bits but is a good start to explain basic principles. In quantum
computing, the situation is generally more difficult:

« Physical quantum computers operate at the quantum level of atomic spins,
photons, and electrons, which are all very sensitive systems. There is a high
probability of encountering errors or decoherence, especially for longer-running
computations.

« Errors can be more subtle than simple bit flips. There are multiple error modes.

5 This behavior could be because an angle error will still lead to a pure state, while depolarizing errors
cause the state to become mixed, leading to a loss in coherence.
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Table 15.2. Majority voting for a simple repetition code.

Measured Voted Measured Voted
000 0 111 1
001 0 110 1
010 0 101 1
100 0 011 1
) = al0) +B|1) =
|0) vy al000) + B|111)

0) —O——

Figure 15.4 A circuit to produce a quantum repetition code. In essence, it makes a GHZ state.

« Errors, such as relative phase errors, compound during execution.

« Simple repetition codes will not work because of the no-cloning theorem.

« Most problematically, you cannot directly observe errors, as that would constitute
a measurement that destroys the superposition and entanglement that an algorithm
relies on.

Because of these difficulties and especially because of the inability to read a corrupted
state, early speculation was that error correction codes could not exist. Hence, it would
be nearly impossible to produce a viable quantum computer (Rolf, 1995; Haroche and
Raimond, 1996). Fortunately, this changed when Shor presented a viable nine-qubit
error correction code (Shor, 1995). The principles of this approach are the foundation
of many quantum error correction techniques in use today.

Quantum Repetition Code

We can make a quantum repetition code with the circuit shown in Figure 15.4. Note
its similarity to the GHZ circuit in Section 2.11.4. To illustrate how it works, we can
use the following code snippet to produce the state and dump the state vector:

gbit = state.qubit (random.random())

psi = gbit * state.zeros(2)

psi = ops.Cnot (0, 2) (psi)

psi = ops.Cnot (0, 1) (psi)

psi.dump ()
>>
|000> (|O>): ampl: +0.78+0.00j prob: 0.61 Phase: 0.0
|lll> (|7>): ampl: +0.62+0.00j prob: 0.39 Phase: 0.0
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Correct Bit Flip Errors

Here is the main #rick to error correction, which is related to quantum teleportation.
First, we introduce redundancy and triple each single-qubit state into a GHZ state, as
shown in Figure 15.4. We entangle this three-qubit state with two ancillae and measure
only the ancillae, leaving the original state intact. Based on the measurement outcome,
we apply gates to the original three-qubit state to correct it.

Figure 15.5 shows this procedure in circuit notation, assuming a single qubit-flip
error for qubit 0, which we indicate on the left side of the circuit. The state |¢;) right
before a measurement, where the bottom two qubits have been flipped to [10), is

1) = a|10010) + B|01110).
Right after measurement, this turns into
[Un) = (a]100) + B[011)) @ [10).

This measurement result is also called an error syndrome. Based on the syndrome,
we decide what to do next and which qubit to flip back with another X gate:

« For a measurement result of |00), do nothing.

« For a measurement result of |01), apply X gate to qubit 2.
« For a measurement result of |10), apply X gate to qubit 0.
« For a measurement result of |11), apply X gate to qubit 1.

The way Figure 15.5 is drawn is somewhat sloppy because the R gate is different for
each measurement result. Making physical measurements and reacting to the outcome
is not a realistic scenario; it would be hard to achieve in practice, and even if it
worked, it would likely destroy a quantum computer’s performance advantage because
of Amdahl’s law.% In larger circuits, we should also disentangle the ancillae.

[¥1)  Error Correction
| |

al100) + B[011) R — | a]000) + B|111)

0
A

|0)
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Figure 15.5 Bit-flip error correcting circuit. After turning the state into a GHZ state, we
entangle it with two ancillae and only measure the ancillae. Correction gates are applied based
on the measurement outcome.

6 http://en.wikipedia.org/wiki/Amdahl%27s_law.
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Figure 15.6 Error correction for bit-flip error.

Hence, a common practical construction to correct for bit-flip errors can be found in
the circuit in Figure 15.6. We know that the noisy channel C introduces bit-flip errors
according to Equation (15.4) as

Coie-nip(p) = (1 — p)p + p(XpX). (15.4)

In code, we can simulate this and inject an error by introducing an X gate.

Find the code
Infile src/1ib/circuit_test.py

PY

def test_x_error(self):
gc = circuit.qgc('x-flip / correction')
gc.qubit (0.6)

# Replication code setup.
gc.reg (2, 0)
gc.cx (0, 2)
gc.cx (0, 1)
gc.psi.dump ( 'after setup')

# Error insertion.

gc.x(0)
# Fix.
gc.cx (0, 1)
gc.cx (0, 2)

gc.ccx(1l, 2, 0)
gc.psi.dump( 'after correction')

If no error has been injected, we will see this output:

[210> 'after setup'

|000> (|O>): ampl: +0.60+0.00j prob: 0.36 Phase: 0.0

|lll> (|7>): ampl: +0.80+0.00j prob: 0.64 Phase: 0.0

|210> 'after correction'

|000> (|O>): ampl: +0.60+0.00j prob: 0.36 Phase: 0.0
> >): ampl: +0.80+0.003j prob: 0. Phase: .

100> (|4>) 1 0.80+0.003 b: 0.64 Ph 0.0

If an error has indeed been injected, the state becomes:


http://www.github.com/qcc4cp/qcc/blob/main/src/lib/circuit_test.py
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¥) H | —H] P— [¥)
0) O H || Conase [—{ H |
0) —b—H}  H] &
Figure 15.7 Error correction for phase-flip error.
|210> 'after setup'
|OOO> (|O>): ampl: +0.60+0.00j prob: 0.36 Phase: 0.0
|111> (|7>): ampl: +0.80+0.00j prob: 0.64 Phase: 0.0
|210> 'after correction'
|011> (|3>): ampl: +0.60+0.00j prob: 0.36 Phase: 0.0
|111> (|7>): ampl: +0.80+0.00j prob: 0.64 Phase: 0.0

Note the slight difference in the final states with nonzero probabilities. Without
an injected error, the state becomes |000) and |100), the original input state. With
an injected error, the ancilla qubits become |11) for both resulting states (which may
require uncomputation if we wanted to reuse the ancillae).

Correct Phase-Flip Errors

We can use the same idea to correct phase-flip errors. Recall how the application of
Hadamard gates puts a state from the computational basis into the Hadamard basis.’
A phase-flip error in the computational basis is the same as a bit-flip error in the
Hadamard basis. Correspondingly, we can use the circuit in Figure 15.7 to create
a quantum repetition and error correction circuit, similar to Figure 15.6, but with
surrounding Hadamard gates. We use a similar code sequence for this as above, but
we change it to the following for error injection:

ac. , 1, 21)
qc. , 1, 21)

The probability distribution of the resulting nonzero probability states is the same,
but we get a few states with different phases. For example, without error injection:

|210> 'after setup'
[000> (|0>):
[111> (|7>):

0.36 Phase: 0.0
0.64 Phase: 0.0

+0.60+0.00j prob:
+0.80+0.00j prob:

ampl :
ampl:

7 You may want to convince yourself of this mathematically.
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|210> rafter correction'’

\000> (|O>): ampl: +0.60+0.00j prob: 0.36 Phase: 0.0
\001> (|1>): ampl: +0.00+40.00j prob: 0.00 Phase: 0.0
\010> (|2>): ampl: -0.00+0.00j prob: 0.00 Phase: 180.0
\011> (|3>): ampl: -0.00+0.00j prob: 0.00 Phase: 180.0
\100> (|4>): ampl: +0.80+0.00j prob: 0.64 Phase: 0.0
\101> (|5>): ampl: +0.00+0.00j prob: 0.00 Phase: 0.0
[110> (|6>): ampl: +0.00+0.00j prob: 0.00 Phase: 0.0

15.3 Nine-Qubit Shor Code

All of what we have done so far leads to the final nine-qubit Shor code (Shor, 1995).
It combines the circuits to find bit-flip, phase-flip, and combined errors into one large
circuit, as shown in Figure 15.8.

Py Find the code
Infile src/lib/circuit_test.py

The Shor nine-qubit circuit can identify and correct one bit-flip error, one phase-flip
error, or one of each on a single qubit! Let us verify this in code and apply all Pauli
gates to each of the qubits of this circuit. For this experiment, we construct a qubit
with the factor @ = 0.60 to the |0) basis state:

def test_shor_9_qubit_correction(self):
for i in range(9):

) (H| O H ] H— I¥)
0) o o

0) b b

0) — [H] &}

0) O b

0) b b

0) S— ] P— ] O

0) O O

0) &— | b

Figure 15.8 Shor’s nine-qubit error correction circuit.


http://www.github.com/qcc4cp/qcc/blob/main/src/lib/circuit_test.py
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print (f 'Init qubit as 0.6/0> + 0.8]/1>, error on qubit {i}')

gc.qubit(0.6)
gc.reg (8, 0)

# Left Side.

gc.cx (0, 3)

gc.cx (0, 6)

gc.h(0); gc.h(3); qgc.h(6);
gc.cx (0, 1); gc.cx(0, 2)
gc.cx (3, 4); gc.cx(3, 5)
gc.cx(6, 7); gc.cx(6, 8)

# Error insertion, use x(i), y(i), or z(i)

gc.x (1)

# Fix.
gc.cx (0,
qgc.h(0)
gc.cx (3,
gc.h(3)
gc.cx (6,
gc.h(6)

gc.cx (0,
gc.ccx (6,

probl, s

probl, s

print ('
math.

7); qgc.cx(6, 8); qgc.ccx(7, 8, 6)

3); gc.cx(0, 6)

3, 0)

= gc.measure_bit (0, 0)
= gc.measure_bit (0, 1)

Measured: {:.2f}[0> + {:.2f}[1>'.format (

sqgrt (prob0), math.sqgrt (probl)))

We should see the following results with the corresponding output:

Initialize qubit as 0.
Measured: O.

[...]

Initialize qubit as 0.
Measured: O.

600>
600>

600>
600>

.80|1>, error on qubit 0
.80 1>

.80|1>, error on qubit 8
.80 1>

This is all we will cover in this section. Quantum error correction is a vibrant field.
Numerous other techniques and formalisms exist for quantum information and quan-
tum error correction. As a next step, it may be of interest to read the comprehensive
overview in Devitt et al. (2013) or refer to standard textbooks (Nielsen and Chuang,

2011).
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Quantum Languages, Compilers,
and Tools

At this point, we understand the principles of quantum computing, the important foun-
dational algorithms, and the basics of quantum error correction. We have developed a
compact and reasonably fast classical infrastructure for simulation and experimenta-
tion. The infrastructure is working as intended but may be a long way from enabling
high productivity, as composing algorithms at this level of abstraction is both labor-
intensive and error-prone. We can build circuits with maybe 10° gates, but some more
realistic solutions may require trillions of gates with orders of magnitude more qubits.

In classical computing, programs are constructed at higher levels of abstraction
using programming languages, which allows the targeting of several general-purpose
architectures in a portable way. On a high-performance CPU, programs execute bil-
lions of instructions per second on just a single core. Building quantum programs on
that scale with a “flat” programming model such as QASM, which stitches together
individual gates, does not scale to large programs. We discuss QASM below in Section
16.3.1. This approach is the equivalent of programming today’s classical machines
in assembly language and, to make it even more interesting, without control-flow
constructs.

There are parallels to the 1950s, where assembly language' was the trade of the
day to program early computers. That is when FORTRAN? emerged as one of the
first compiled programming languages, unlocking major productivity gains. In quan-
tum computing, there are similar attempts today to develop quantum programming
languages that try to raise the abstraction level and make programming quantum
computers easier, safer, and more productive.

This chapter discusses a representative cross-section of quantum programming lan-
guages and briefly touches on productivity tooling, such as simulators or entanglement
analysis. There is also a discussion of quantum compiler optimizations, a fascinating
topic with unique challenges. We write this chapter with the understanding that com-
parisons between toolchains are necessarily incomplete but educational nonetheless.

Challenges for Quantum Compilation

The design of compilers for quantum computing presents distinct challenges. This
section outlines some of the main difficulties. The subsequent sections will provide
further details and suggest possible solutions.

1" And even cruder, switches!
2 See also http://en.wikipedia.org/wiki/Fortran.
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Quantum computing needs a programming model — what will run, how, when, and
where? Today, the most common classical coprocessor is a graphics processing unit
(GPU). GPUs provide massive parallelism, but computation itself is still expressed in
terms of programming a CPU core. There are just a boatload of those cores with addi-
tional abilities and constraints to support parallelism, paired with a dynamic runtime
to manage the various compute kernels on device.

Quantum computers are unlikely to offer general-purpose functionality similar to
that of a CPU. Instead, we should expect a classical machine to entirely control the
quantum computer, moving programs and data in and out of the machine. A model
called QRAM was proposed early in the history of quantum computing (Knill, 1996).
We will discuss this model in Section 16.2. Note that today’s use of QRAM is different
and typically refers to “Quantum Random Access Memory,” a broad set of techniques
to store and retrieve values as quantum states.

A key question is how realistic this idealized model can be. Quantum circuits
operate at micro-Kelvin temperatures. It will be a challenge for standard CPU
manufacturing processes to operate at this temperature, although progress has been
made (Patra et al., 2020). The CPU could alternatively operate physically distant
from the quantum circuit, but then the bandwidth between classical and quantum
circuits may be severely limited. Some recent research can be found in Xue et al.
(2021).

Constructing quantum circuits gate-by-gate is tedious and error-prone. There are
challenges such as the no-cloning theorem and the need for automatic error correc-
tion. Programming languages offer a higher level of abstraction and will be essential
for programmer productivity. But what is the “right” level of abstraction? We sam-
ple several existing approaches to quantum programming languages in Section 16.3.
Compiler construction and intermediate representation (IR) design are challenges in
themselves. It seems apparent that a flat, QASM-like, linked-list IR will not scale to
programs with trillions of gates.

The required precision of the gates is an important design parameter. We will
have to approximate certain unitaries by sequences of existing physical gates, which
introduces inaccuracies and noise. Some algorithms are robust against noise, others
not at all. The toolchain also plays an essential role in this area.

Aspects of dynamic code generation may become necessary, for example, to
approximate specific rotations dynamically or to reduce noise (Wilson et al., 2020).
There are challenges in fast gate approximation, compile time, accuracy, and opti-
mality of approximated gate sequences. To give a taste of these problems, we have
already detailed the Solovay—Kitaev algorithm in Section 9.4.

Compiler optimization has a novel set of transformations to consider in an expo-
nentially growing search space. We are currently in the era of physical machines with
up to 1000 physical qubits, the noisy intermediate-scale quantum computers (Preskill,
2018). Future systems will have more qubits and qubits with likely different charac-
teristics than today’s qubits. Compiler optimizations and code generation techniques
will have to evolve accordingly as well. We discuss several optimization techniques in
Section 16.4.
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Quantum Programming Model

As our standard model of computation, we assume the old quantum random access
model (QRAM) proposed by Knill (1996) (again, this name means something entirely
different today). The model proposes connecting a general-purpose machine with a
quantum computer to use it as an accelerator. Registers are explicitly quantum or clas-
sical. There are functions to initialize quantum registers, to program gate sequences
into the quantum device, and to get results back via measurements.

w Init, Operations — (
[ Server J < Measurement L

Quantum Machine }

On the surface, this model is not very different from today’s programming mod-
els for PCIe-connected accelerators,? such as GPUs or storage devices, which are
ubiquitous today. The elegant CUDA programming model for GPUs provides clear
abstractions for code that is supposed to run on either device or server (Buck et al.,
2004; Nickolls et al., 2008). The program source code for the accelerator and the host
can be mixed in the same source file to enhance programmer productivity.

QRAM is an idealization. Communication between the classical and quantum parts
of a program may be severely limited. There may be a significant lack of computing
power close to the quantum circuit, which operates at micro-Kelvin temperature, or
bandwidth-limited communication to a CPU further away.

It is important to keep the separation between classical and quantum in mind. In
QRAM (as in our simulation infrastructure), the separation of classical and quantum
is muddled because it runs classical loops over applications of quantum gates inter-
spersed with print statements. This might be a good approach to learning, but it may
not be realistic for a real machine. The approach is more akin to an infrastructure such
as the machine learning framework TensorFlow, which first builds up computation as
a graph before executing the graph in a distributed fashion on CPU, GPU, or TPU.

Another aspect of the QRAM model is the expectation of available universal gates
on the target quantum machine. Several universal sets of gates have been described
in the literature (see Nielsen and Chuang, 2011, section 4.5.3). We showed how any
unitary gate can be approximated by universal gates in Section 9.4. With this in mind,
we assume that any gate may be used freely in our idealized infrastructure.

With these preliminaries and simplifications, let us now explore a range of
approaches that have been taken to make the programming of quantum machines
more productive and less error-prone.

Quantum Programming Languages

This section discusses a representative cross-section of quantum programming lan-
guages with corresponding compilers and tooling. The descriptions are brief and,
therefore, necessarily incomplete. Most importantly, the selection does not judge the

3 http://en.wikipedia.org/wiki/PCI_Express.
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quality of the non-selected languages. A more complete collection of references to
quantum programming languages and systems can be found in Quantum Programming
(2024).

If we were to build a hierarchy of programming abstractions, we should consider
these levels:

« The high abstraction level of programming languages. This level may provide
automatic ancilla management, support correct program construction with
advanced typing rules, offer libraries for standard operations (such as QFT), and
perhaps offer meta-programming techniques (such as C++ templates).

« Programming at the gate level. This is the level of abstraction that we mostly used
in this text. At this level, we directly construct and manipulate individual qubits
and gates. We also manage ancillae and uncomputation manually and explicitly.

« Direct machine control with pulses and waveforms operating on the physical
device. We will not discuss related infrastructure, such as OpenPulse (Gokhale
et al., 2020).

For each of these levels, several alternative implementations and approaches are avail-
able online, many with material for learning and experimentation. In the following
sections, we highlight some selected, perhaps seminal examples. Many of the features
that we will explore should inspire you to think about how to make them available in
simpler frameworks, such as the one presented in this book.*

QASM

The quantum assembly language (QASM) was an early attempt to standardize a tex-
tual specification of quantum circuits (Svore et al., 2006). The structure of a QASM
program is very simple. Qubits and registers are declared upfront, and gate appli-
cations follow one by one. There are no looping constructs, function calls, or other
constructs that would help to structure and densify the code. As an example, a simple
entangler circuit would be written as follows:

qubit x,vy;
gate h;
gate cx;

h x;

cxX X,Y;

More capable variants emerged that augment QASM in a variety of ways. Open-
QASM adds the ability to define new gates, control flow constructs, and barriers (Cross
et al., 2017). It also offers looping constructs. cQASM is one attempt to unify QASM
dialects into a single form> (Khammassi et al., 2018). It offers additional language
features, such as explicit parallelization, register mapping/renaming, and a variety of

4 As a matter of fact, we did some of this already, for example, for the automatic control of a subcircuit.
5 See also xkcd cartoon #927 on attempts to replace N existing standards with a single new standard, the
result, of course, being that now we have N + 1 standards.
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measurement types. An example implementation of a three-qubit Grover algorithm
takes about 50 lines of code (Quantum Inspire, 2024).

QcL

The quantum computing language (QCL) was an early attempt to use classical
programming constructs to express quantum computation (Omer, 2000, 2005; QCL
Online). Algorithms run on a classical machine controlling a quantum computer and
might have to run multiple times until a solution is found. The quantum and classical
codes are intermixed. Qubits are defined as registers of a given length, and gates are
applied directly to the registers. For example:

qureg gll]l; // Define quantum register g of length 1
qureg f[1]; // Define quantum register g of length 1
H(q) ; // Hadamard gates on register g
Not (f) ; // X gates on register f
const n=#q; // classical length of g register
for i=1 to n { // classical loop

Phase(pi/27(i)); // quantum phase gate at implicit index i

QCL defines several quantum register types: A gureg is an unrestricted qubit,
quconst defines an invariant qubit, and quvoid specifies a register to be empty (it
is guaranteed to be initialized in state |0)). The register type quscratch denotes
ancillae. Gates have specific names, such as H, Not, or Phase.

The code is organized into quantum functions. Operators and functions of operators
are reversible by definition, making the uncomputation of an operator easy. Prefixing
a function with an exclamation point produces the inverse, as in this example from the
Grover algorithm® (calling ! di ffuse (reg) would call the inverse operator):

operator diffuse(qureg qg) {

H(q); // Hadamard transform

Not (q) ; // Invert g

CPhase (pi,q); // Rotate if g=1111...

!Not (q) ; // Undo inversion

'H(q) ; // Undo Hadamard transform

QCL defines several types of functions, such as the non-reversible procedure,
which may contain classical code and allow side effects. Functions marked as
operator and qufunct are guaranteed to be free from side effects and reversible.
To facilitate uncomputation, QCL supports a fanout operation. It restores scratch
and auxiliary registers while preserving the results, as described in Section 2.12 on
uncomputation. Let’s take a closer look at the fanout operation.

6 Of course, both the Hadamard and the NOT gates are their own inverses. This might not be the most
convincing example.
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Assume that f(x) is the function we want to compute and g(x) is a byproduct
of the computation, some random state that ended up in the ancillary qubits. As
described in Section 2.12, the first step performs the computation, with the desired
result ending up in the bottom register (in the example below) and some ancillary state
in the middle register. The second fanout step connects the bottom register holding the
results with the target register, the first register in the example. The third step performs
the uncomputation. The result f(x) is now available in the top register, and the other
registers are properly uncomputed:’

|x50a050> — ‘x707g(x)vf(x)>
— [xf(x),g(x).f (x))
— |x,f(x),0,0).

The implementation of fanout is quite elegant. Assume a function F(x,y,s) with x
being the input, y being the output, and s being junk qubits. Allocate the ancilla ¢ and
transform F into the following, adding ¢ to its signature:

F'(x,y,5,t) = F'(x,1,s) fanout(t,y) F(x,1,s).

What makes this elegant is the fact that fanout is written in QCL itself:

cond qufunct fanout (quconst ancilla, quvoid b) {
int 1i;
for 1=0 to #ancilla-1 {
CNot (b[1], ancillalil);

QCL supports conditionals in interesting ways. Standard controlled gates are sup-
ported as described in Section 2.8. Suppose a function signature is marked with the
keyword cond and has as a parameter the quconst condition qubit. In that case, QCL
automatically transforms the operators of the function into controlled operators. Here
is an example of such a function signature for a controlled function inc:

cond qufunct cinc(qureg x, quconst e) {...}

Additionally, QCL supports an if statement, where i1f e {inc (x);} is equiva-
lent to a new function cinc (x, e) as shown above, with the if-then-else statement
translating into:

if e {
inc(x) ;

} else {
linc (x) ;

=>

cinc(x, e);

7 This notation is a little bit sloppy. See section 2.12 on uncomputation for details.
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Not (e) ;
lcinc(x, e);
Not (e)

Here is an example implementation of a QFT in QCL (Omer, 2000):

cond qufunct flip(qureg q) {

int 1i; // declare loop counter
for i=0 to #qg/2-1 { // swap 2 symmetric bits
Swap (qlil,ql#g-1i-11);

operator gft(qureg q) { // main operator

const n=#q; // set n to length of input
int i; int 3j; // declare loop counters
for i=1 to n {
for j=1 to i-1 { // apply conditional phase gates
V(pi/2~(i-]),qln-1i] & qln-3j1);
}

H(gln-i]); // qubit rotation
}
flip(q); // swap bit order of the output
Scaffold

Scaffold takes a different approach (Javadi-Abhari et al., 2014). It extends the open-
source LLVM compiler (Lattner and Adve, 2004) and its Clang-based front end for
C/C++. Scaffold introduces the data types gbit and cbit to distinguish quantum data
from classical data. Quantum gates, such as the X or Hadamard gates, are implemented
as built-ins, the equivalent of opaque function calls. The compiler recognizes them as
such and can reason internally about them in transformation passes.

Scaffold supports a hierarchical code structure through modules, which are spe-
cially marked functions. Quantum circuits do not support calls and returns, so modules
representing subcircuits need to be instantiated, similar to how Verilog modules are
instantiated in a hardware design. Modules must be reversible, either by design or via
automatic compiler transformations.

Scaffold offers convenient functionality for converting classical circuits to quantum
gates via the Classical-To-Quantum-Circuit (CTQC) tool. This tool is of great utility
for quantum algorithms that perform classical computation in the quantum domain.
CQTC emits QASM assembly. To enable whole-program optimization, Scaffold has a
QASM to LLVM IR transpiler, which can be used to import QASM modules, enabling
further cross-module optimization.

Modules are parameterized. This means that the compiler has to manage module
instantiation, for example, with help of IR duplication. This can lead to sizable code
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bloat and corresponding extreme compile times. The example given is the following
code snippet, where the module Oracle would have to be instantiated N = 3000
times via the outer loop, with an additional factor of 3 from the inner loop. Clearly, a
parameterized IR would alleviate this problem considerably.

#define N 3000 // iteration count

module Oracle (gbit al[l]l, gbit b[l], int 3j) {
double theta = (-1)+*pow(2.0, j)/100;
X(al0]);
Rz (b[0], theta);

module main () {
gbit all]l, bll];
int i, J;

for (i=1; i<=N; i++) {
for (j=0; j<=3; j++) {
Oracle(a, b, j);

As aresult, Javadi-Abhari et al. (2014) report compile times ranging from 24 hours
to several days for a large triangle-finding problem with size n = 15 (see also Magniez
et al., 2005).

Hierarchical QASM

Scaffold intends to scale to very large circuits. The existing QASM model, as shown
above, is flat, which is not suitable for large circuits. One of the contributions of Scaf-
fold is the introduction of hierarchical QASM. Additionally, the compiler employs
heuristics to decide which code sequences to flatten or keep in a hierarchical structure.
For example, the compiler distinguishes between forall loops to apply a gate to all
qubits in a register and repeat loops, such as those required for Grover iterations.

Entanglement Analysis

Scaffold includes tooling for entanglement analysis. In the development of Shor’s
algorithm, we observed a certain ancilla qubit that was still entangled after modular
addition. How does an automatic tool reason about this?

Scaffold tracks entanglement-generating gates, such as controlled Not gates, on
a stack. As inverse gates are executed during uncomputation in reverse order, items
are popped off the stack. If, for a given qubit, no more entangling gates are found
on the stack, the qubit is marked as likely unentangled. As a result of the analysis,
the generated output can be decorated to show the estimated remaining entangled
qubits:
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module EQxMark 1_1 ( gbitx b , gbitx t ) {

Toffoli ( x[0] , b[1l] , b[O] );
// x0, bl, b0

Toffoli ( x[1] , x[0] , b[2] );
// x1, x0, b2, bl, b0

}
// Final entanglements:
// (£t0, b4, b3, b2, bl, bO);

Q language

We can contrast the compiler-based work in Section 16.3.3 with a pure C++-embedded
approach, as presented in Bettelli et al. (2003). This approach consists of a library of
C++ classes modeling quantum registers, operators, operator application, and other
functions, such as the reordering of quantum registers. During program construction,
the class library builds an internal data structure to represent the computation, similar
in nature to the infrastructure we developed in this book. It is interesting to think about
the question of which approach makes more engineering sense:

« Extension of the C/C++ compiler with specific quantum types and operators,
as in Scaffold, or
o A C++class library as in the Q language.

Both approaches appear equally powerful in principle. The compiler-based approach
benefits from a large set of established compiler passes, such as inlining, loop trans-
formations, redundancy elimination, and many other scalar, loop, and inter-procedural
optimizations. The C++ class library has the advantage that the management of the
IR, all optimizations, and final code generation schemes are maintained outside of
the compiler. Since compilers can prove impenetrable for non-compiler experts, this
approach might have a maintenance advantage, but at the cost of potentially having to
reimplement many standard optimization passes.

Quipper

Haskell is a popular choice for programming language theorists and enthusiasts. A
major reason for this is Haskell’s powerful type system. An example of a Haskell-
embedded implementation of a quantum programming system can be found with the
Quantum IO Monad (Altenkirch and Green, 2013). Another even more rigid exam-
ple is van Tonder’s proposal for a A-calculus to express quantum computation (van
Tonder, 2004).

What these approaches have in common is the attempt to guarantee correctness
by construction with support of the type system. This is also one of Quipper’s core
design ideas (Green et al., 2013; Quipper Online, 2021). Quipper is an embedded DSL
in Haskell. At the time of Quipper’s publication, Haskell lacked linear types, which
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could have guaranteed that objects were only referenced once, as well as dependent
types, which are types tied to a value. Dependent types, for example, allow you to
distinguish a QFT operator over n qubits from one over m qubits.

Quipper is designed to scale and handle large programs with up to 10'? operators.
Quipper has a notion of the scope of an ancilla, with the ability to reason about live
ranges. With this, allocating ancilla qubits turns into a register allocation problem.
Unfortunately, the programmer still has to mark ancilla live ranges explicitly.

At the language level, qubits are held in variables and gates are applied to these
variables. For example, this is the code to generate a Bell state:

bell :: Qubit -> Qubit -> Circ (Qubit, Qubit)
bell a b = do

a <- hadamard a

(a, b) <- controlled_not a b

return (a, b)

To control an entire block of gates, Quipper offers a with_controls construct,
similar to QCL’s i £ blocks. Another block-level construct allows for the explicit man-
agement of ancillae via the with_ancilla construct. Circuits defined this way can
be reversed with a reverse_simple construct. Quipper’s type system distinguishes
different types of quantum data, such as simple qubits, or fixed-point interpretations
of multiple qubits.

Automatic Oracles

Quipper offers tooling for the automatic construction of oracles. Typically, oracles are
constructed with the following four manual steps:®

1. Build a classical oracle, such as a permutation matrix.

2. Translate the classic oracle into classical circuits.

3. Compile classical circuits into quantum circuits, potentially using additional
ancillae. We saw examples of this in Section 5.2.

4. Finally, make the oracle reversible, typically with an XOR construction to another
ancilla.

Quipper utilizes Template Haskell to automate steps 2 and 3. The approach has high
utility and has been used to synthesize millions of gates in a set of benchmarks.
In direct comparison to QCL on the Binary Welded Tree algorithm, it appears that
QCL generates significantly more gates and qubits than Quipper. On the other hand,
Quipper appears to generate more ancillary qubits.

Despite tooling, type checks, oracle automation, and utilization of the Haskell
environment, it still took 55 person-months to implement the 11 algorithms in a given
benchmark set (IARPA, 2010). This is undoubtedly a productivity improvement over
manually constructing all the benchmarks at the gate level, but it still compares unfa-
vorably against programmer productivity on classical infrastructure.

8 Open-source implementations are available for these techniques, for example (Soeken et al., 2019).
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Quipper led to interesting follow-up work, such as Proto-Quipper-M (Rios and
Selinger, 2018), Proto-Quipper-S (Ross, 2017), leading to Proto-Quipper-D (Fu
et al., 2020). These attempts are steeped in type theory and improve on program
correctness by a variety of techniques, for example, using linear types to enforce
the no-cloning theorem and linear dependent types to support the construction of
type-safe families of circuits.

Silq

Based on a fork of the PSI probabilistic programming language (PSI Online,
2021), Silg is another step in the evolution of quantum programming languages,
supporting safe and automatic uncomputation (Bichsel et al., 2020). It explicitly
distinguishes between the classical and quantum domains with syntactical constructs.
Giving the compiler the responsibility for safe uncomputation leads to two major
benefits. First, the code becomes more compact. Direct comparisons with Quipper
and Q# show significant code size savings for Silq in the range of 30% to over
40%. Second, the compiler may choose an optimal strategy for uncomputation,
minimizing the required ancillae. As an added benefit, the compiler may choose to skip
uncomputation for simulation altogether and just renormalize states and unentangle
ancillae.

Many of the Haskell-embedded DSLs bemoan either the absence of linear types or
the difficulties in handling constants. Silq resolves this by using linear types for non-
constant values and a standard type system for constants. This leads to safe semantics,
even across function calls, and the no-cloning theorem falls out naturally. Function
type annotations are used to aid the type checker:

« The annotation gfree indicates that a function can be classically computed. For
example, the quantum X gate is considered gfree, while the
superposition-inducing Hadamard gate is not.

« Function parameters marked as const are preserved and not consumed by a
function. They continue to be accessible after a function call. Parameters not
marked as const are no longer available after the function call. Functions with
only const parameters are called 1ifted.

« Functions marked as mfree promise not to perform measurements and are
reversible.

Silq supports other quantum language features, such as function calls, measurements,
explicit reversal of an operator via reverse, and an if-then-else construct that
can be classical or quantum, similar to other quantum languages. Looping constructs
must be classical. As an improvement over previous approaches, Silq supports Oracle
construction with quantum gates.

With the annotations and the corresponding operational semantics, Silq can safely
deduce which operations are safe to reverse and uncompute, even across function calls.
There are many examples of potentially hazardous corner cases that are being handled
correctly (Bichsel et al., 2020).
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As a program example, this code snippet solves one of the challenges in Microsoft’s
Q# Summer 2018 coding contest:’

Given classical binary string b € {0,1}" with b[0] = 1, return the state \%ﬂb} +

|0)), where |0) is represented using n qubits.
The code itself demonstrates several of Silq’s features, for example, using the excla-
mation point ! to denote classical values and types.

def solve[n:|N|](bits:|!B|"n){
// prepare superposition between 0 and 1
X::H(O:‘!B|);
// prepare superposition between bits and 0
gs := if x then bits else (0:int[n]) as |!B|"n;
// uncompute x
forget (x=qgs([0]); // valid because bits[0]==
return gs;

def main() {
// example usage for bits=1, n=2
x := 1:|!|int[2];
y := x as |!B|"2;
return solve(y);

Commercial Systems

Commercial systems are open-source infrastructures maintained by commercial
entities. The most important systems appear to be IBM’s Qiskit (Gambetta et al.,
2019), Microsoft’s Q# (Microsoft Q#, 2021), Google’s Cirq (Google, 2021c¢), and
ProjectQ (Steiger et al., 2018). Microsoft’s Q# is a functional standalone language and
a part of the Quantum Developer Kit (QDK). Qiskit, Cirq, and ProjectQ all provide
Python embeddings. By the time you read this, others may have become more popular.

These ecosystems are vast, fast-evolving, and provide excellent learning materials
we do not have to cover here. For further reading, we recommend (Garhwal et al.,
2021), which details Q#, Cirq, ProjectQ, and Qiskit, or Chong et al. (2017), which
describes some of the major challenges for quantum tool flows in general.

Compiler Optimization
Compiler optimization is a fascinating topic in classical compilers. For quantum com-

pilers, it becomes even more interesting, given the exponential complexity and novelty
of transformations. Compiler optimizations play an important role in several areas:

9 See also http://codeforces.com/blog/entry/60209.
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« Ancilla management. As we use higher-level abstractions and programming
languages, ancilla qubits should be managed automatically in a manner similar to
register allocation for classical compilers. The compiler can trade off circuit depth
against the number of ancilla bits, supporting the goal of squeezing a circuit into
limited resources. Minimizing ancillae in the general case appears to be an open
problem.

« Noise reduction. The application of quantum gates is subject to noise. Some gates
introduce more noise than others. Hence, the role of the optimizer is to minimize
gates as a whole and emit gate sequences to actively contain noise.

« Gate mapping to physical machines. Current quantum computers only support a
small number of different gates. The compiler must decompose logical gates and
map them to available physical gates. Furthermore, at least in the short term, the
number of available qubits is extremely limited. One of the compiler’s main roles
is mapping circuits onto those limited resources.

« Logical to physical register mapping. Quantum computers have topological
constraints on how qubits can interact with each other. For example, only
next-neighbor interactions may be possible in some cases. Multi-qubit gates
spanning non-neighboring qubits thus must be decomposed into two-qubit gates
between neighboring qubits.

o Accuracy tuning. Individual gates may not be accurate enough for a given
algorithm; multiple gates may be necessary to achieve the desired result. The
compiler plays a central role in determining the required accuracy and the
corresponding generation of approximating circuits.

« Error correction. The automatic insertion of minimal error-correcting circuitry is
an important task for the compiler.

« Tooling. The compiler sees the whole circuit and can apply whole program
analyses, such as the entanglement analysis we saw in Section 16.3.3.

« Performance. Optimization should also target circuit depth and complexity. Given
the short coherence times of current machines, the shorter a circuit has to run, and
the fewer gates it needs to execute, the higher the chances of reliable outcomes.

The space is large and complex, and we cannot cover it exhaustively. Instead, we
again provide representative examples of key principles and techniques in order to
give a taste of the challenges.

Classic(al) Compiler Optimizations

In our infrastructure and many of the other platforms we described in Section 16.3,
classical code is freely intermixed with quantum code. This means that classical
optimizations, such as loop unrolling, function inlining, redundancy elimination,
constant propagation, and many other scalar, loop, and inter-procedural optimizations
still apply. This is necessary because all classical constructs must be eliminated
before sending a circuit to the quantum accelerator. Besides, classical techniques such
as dead code elimination and constant folding equally apply to quantum circuitry.
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Scaffold is a great example of the mix of the classical and quantum worlds and
the impact of classical optimizations on the performance of a quantum circuit (Javadi-
Abhari et al., 2014). Scaffold represents quantum operations in the intermediate rep-
resentation (IR) of a classical compiler and directly benefits from the rich library of
available optimization passes in LLVM (Lattner and Adve, 2004).

Other known classical techniques also apply. Analysis of communication overhead
and routing strategies developed for distributed systems work with modifications for
quantum computing (Ding et al., 2018). Register allocation can lead to optimal allo-
cation and reuse of quantum registers (Ding et al., 2020).

Simple Gate Transformations

The most basic optimization is to eliminate gates that will have no effect. For example,
two X gates in a row, or two other involutory matrices in sequence acting on the same
qubit, or two rotations adding up to 0; all of these can be eliminated:

Z; X;X; Y, =2Y,.
—

redundant

Sequences like this can be found as the result of higher-level transformations that
link independent circuit fragments. For example, take the four-qubit decrement circuit,

which we detailed in Section 12.1 on quantum random walks:
Fany

T

The circuit expands the multi-controlled gates into this much longer sequence of
gates (don’t worry, you are not expected to be able to decipher this):

o oo o o

Zooming in at the right, you can see the opportunity to eliminate redundant X gates:

[x] (x] (o] (o] (x] (x] (o] (o] xXp—
—{x] {x] {x] {x] Jj {x] {x]
o] ) [ov] o] el

cv Vv o

In general, for a single-qubit operator U, if the compiler can prove that the input
state is an eigenstate of U with an eigenvalue of 1 (which means U|i) = |¢)), it can
simply remove the gate. For example, if the qubit is in the |+) state, the X gate has no
effect, as X|+) = |+).
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Depending on the numerical conditioning of an algorithm, the compiler may also
decide to remove gates with only minor effects. As an example, we have seen the
effectiveness of this technique in the approximate QFT (Coppersmith, 2002).

Gate Fusion

For simulation and perhaps for physical machines with a suitable gate set, we can fuse
consecutive gates by means of simple matrix multiplication. Some high-performance
simulators use this technique. Fusion can happen at several levels and across a varying
number of qubits. The resulting gates may not be available on a physical machine, in
which case the compiler will have to approximate the fused gates. This can nullify the
benefits of fusion, but in cases where two gates X and Y both have to be approximated,
it may be beneficial to approximate the combined gate YX:

e s

The compiler can also exploit the fact that qubits may be unentangled. For example,
assume that qubits |¢) and |¢) are known to be unentangled and must be swapped,
potentially by a Swap gate spanning multiple qubits. Since the gates are unentangled
and in a pure state, we may be able to classically find a unitary operator U such that
UlY) = |¢) and UT|¢p) = [¢). The operator U is specific to [¢) and |¢) and input
dependent. In circuit notation:

¥) 6)  [9) 6)

) ) 1e) )

Gate Scheduling

We have described many gate equivalences, and many more are available in the lit-
erature. The specific gate sequence to use will depend on topological constraints, on
what a specific quantum computer can support, and also on the relative cost of specific
gates. For example, T’ gates might be an order of magnitude slower than other gates
and may have to be avoided.

In order to find the best equivalences, pattern matching can be used. To maxi-
mize the number of possible matches, you may have to reorder and reschedule gates.
Therefore, valid and efficient recipes for reordering are a rich area of research. As a
simple example, single-qubit gates applied to different qubits can be reordered and
parallelized as
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There are many other opportunities to reorder. For example, if a gate is followed by
a controlled gate of the same type, the two gates can be re-ordered:

Y,CY; = CY;iY..

Rotations are a popular target for reordering. For example, the S gate, T gate, and
phase gate represent rotations, which can be applied in any order (as long as they rotate
around the same axis). Nam et al. (2018) provide many recipes, rules for rewriting, and
examples, such as this one:

A e {®

R

In simulation, it may not help to parallelize gates, at least in our implementation.
However, on a physical quantum computer, it is safe to assume that multiple gates will
be able to operate in parallel. Mapping gates to parallel running qubits will improve
device utilization and have the potential to reduce circuit depth. Shorter depth means
shorter runtime and a higher probability of finishing execution before decoherence.

Measurements typically occur at the end of a circuit execution. Qubits have a
limited lifetime, so it is a good strategy to initialize qubits as late as possible. This
is achieved with a policy to schedule gates as late as possible (ALAP), working back-
ward from the measurement. This is also the default policy in IBM’s Qiskit compiler.
Ding and Chong (2020) detail other scheduling policies and additional techniques to
minimize communication costs.

Peephole Optimization

Peephole optimization gets its name from the fact that this type of optimization looks at
only a small sliding window over code or circuitry, hoping to find exploitable patterns
in this window. This is a standard technique in classical compilers but applies to
quantum computing as well (McKeeman, 1965). Limited window pattern matching
approaches have in common that the underlying unitary operator must not change for
a given gate replacement. This guarantees the correctness of a transformation.

With relaxed peephole optimization, this constraint can be, well, relaxed (Liu et al.,
2021). For example, if a controlling qubit is known to be in state |0), as shown above,
we can eliminate the controlled gate. The circuit is still logically equivalent, but the
underlying operator has changed. We can exploit this insight in the following ways. A
controlled U operation with a controlling |0) qubit has no effect and can be eliminated
(the compiler has to ascertain that the controller will be |0)):

0)—p—

Y) —— —

We can also “squeeze” the Swap gate and remove one of the controlled gates if one
of the inputs is known to be |0):
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Figure 16.1 Optimized Bernstein—Vazirani circuit.
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The controlled Not gates in the Bernstein—Vazirani oracle circuit can be replaced
by simple Z gates because the leading Hadamard gates put the qubits in the |4) basis.
This is shown in Figure 16.1. The techniques can be generalized to multi-controlled
gates as well. More examples of this technique, along with a full evaluation, can be
found in (Liu et al., 2021).

N
D
N
%)

High-Performance Pattern Libraries

Efficient matching of patterns to gate sequences is a challenge. A possible approach is
to precompute a library of high-performance subcircuits and then transpile nonoptimal
and permuted subcircuits into known high-performance circuits. This approach is
similar to the end-game library in a computer playing chess.!?

Logical to Physical Mapping

We have already seen many gate equivalences in this text. Choosing which ones to
apply will depend on the physical constraints of an underlying architecture. In this
context, logical to physical qubit mapping presents an optimization challenge.

For example, Swap gates may only be applied to neighboring physical qubits. If
there is a swap between logical qubits 0 and (very large) n, it might be better to place
the physical qubit n right next to qubit 0. Otherwise, communication overhead will
be very high. For example, a construction like the one in Figure 16.2 is needed to
swap qubits 0 and 2 in a three-qubit circuit. The circuit presented is not very efficient;
it simply stitches together a series of two-qubit Swap gates. To bridge swaps across

10 1p the olden times, before AlphaZero: http://en.wikipedia.org/wiki/AlphaZero.
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Figure 16.2 Decomposition of a Swap gate spanning three qubits into next-neighbor controlled
gates.
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Figure 16.3 A controlled Not from qubit O to qubit 2 is decomposed into next-neighbor
controlled Not gates.

longer distances, this ladder must be extended to more qubits, all the way down and
back up again.

If the physical qubit assignment has been decided, gates may have to be further
deconstructed to fit the topological constraints. In the example shown in Figure 16.3,
a controlled Not from a qubit O to qubit 2 is being decomposed into next-neighbor
controlled gates. Several other controlled Not deconstructions are presented in Garcia-
Escartin and Chamorro-Posada (2011).

A related proposed technique is wire optimization (Paler et al., 2016). It uses a
qubit lifetime analysis to recycle wires and qubits, the insight being that not all qubits
are needed during the execution of a full circuit. Under the assumption that we can
measure and reuse qubits, this work shows drastic reductions in the number of qubits
required for an algorithm of up to 90%. This mirrors the results we find with our
sparse implementation. However, at the time of this writing, it does not appear that
intermittent measurement and re-initialization of qubits can be performed efficiently.

Physical Gate Decomposition

Finally, an important step for compiler and optimizer is to decompose higher-level
gates into physically available gates while respecting connectivity constraints. For
example, IBMQXS5 has five qubits and the gates U;, U,, Ui, as well as a CNOT gate
(IBM, 2021a), which can only be applied to neighboring gates:
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Other architectures offer different gates available in different topologies. Mapping
idealized gates to physical gates is challenging, especially if the physical gates have
an unusual structure. A broader analysis and taxonomy can be found in Murali et al.
(2019).

We also discussed earlier in Section 16.2 that in an idealized programming model,
we may use any gate, knowing that gates can be approximated. In the context of
software/hardware codesign, key questions may be as follows.

1. What is the best set of gates to realize in hardware?

2. What is the impact of this choice on the gate approximation or other design
parameters and circuit depth?

3. What is the accuracy impact of gate approximations on an algorithm?

4. If approximation would require an exponentially growing set of gates, would this
not nullify the complexity advantage of quantum algorithms?

Some abstract gates will be easier to approximate than others on a given physical
instruction set, such as the IBM machine above. Each target and algorithm will hence
require targeted methodology and compilation techniques.

Open-Source Simulators

We discussed the basic principles of how to construct an efficient but still bare-bones
simulator. With the help of our transcoding facilities, we can target other available
simulators, for example, to utilize simulators that support distributed computation
or advanced noise models. This section provides a cross-section of the most cited
and well-developed simulators. A more exhaustive list of simulators can be found in
Quantiki (2021).

The qHipster full-state simulator implements threading, vectorization, and dis-
tributed computation through MPI and OpenMP (Smelyanskiy et al., 2016). It uses
highly optimized libraries on Intel platforms. At the time of writing, the simulator was
rebranded as the Intel Quantum Simulator (Guerreschi et al., 2020), which is available
on Github (Intel, 2021). This simulator also allows the modeling of quantum noise
processes, which enables the simulation of quantum hardware subject to the noise.

The only sparse implementation we are aware of is libquantum (Butscher and
Weimer, 2013). We used it as the foundation for our 1ibg. The library is no longer
actively maintained (the last release was in 2013). Even though it offers excellent
single-thread performance for circuits where the maximum number of states with
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nonzero amplitudes is only a small fraction of all possible states. It also makes provi-
sions for quantum error correction and allows modeling of decoherence effects.

QX is an open-source implementation of a high-performance simulator (Kham-
massi et al., 2017). It accepts as input quantum code, a variation of QASM that
supports explicit parallelism between gates, debug print statements, and looping con-
structs. It performs aggressive optimizations but still appears to store the full state
vector. QX also supports noisy execution using a variety of error models. It is part of
a larger quantum development environment from the University of Delft.

ProjectQ is a Python-embedded compiler-supported framework for quantum com-
puting (Steiger et al., 2018). It allows targeting of both real hardware and the simulator
included in the distribution. The simulator allows “shortcuts” to set the expected result
of an expensive computation without simulating it. ProjectQ’s distribution contains
transpilers to several other available frameworks. It can call into RevKit (Soeken et
al., 2012) to automatically construct reversible oracles from classical gates, a function
of great utility.

QuEST, the Quantum Exact Simulation Toolkit, is a full-state, multithreaded,
distributed, and GPU-accelerated simulator (Jones et al., 2019). It hybridizes MPI
and OpenMP and has demonstrated impressive scaling on large supercomputers. It
supports state-vector and density matrix simulation, general decoherence channels of
any size, general unitaries with any number of control and target qubits, and other
advanced facilities like Pauli gadgets and higher-order Trotterization. The related
QuESTlink (Jones and Benjamin, 2020) system allows use of the QuUEST features
within the Mathematica package.

Recently, Cirq published two high-performance simulators, qsim and gsimh
(Google, 2021d). The former, gsim, targets single machines, whereas gsimh allows
distributed computation via OpenMP. The implementations are vectorized and
perform several optimizations, such as gate fusion. The gsim simulator is a full state
Schrodinger simulator. The gsimh simulator (note the character %) is a Schrodinger—
Feynman simulator (Markov et al., 2018), which trades performance for reduced
memory requirements.

Microsoft’s quantum development kit offers several simulators, including a full-
state simulator, several resource estimators, and an accelerated simulator for Clifford
gates, which can handle millions of gates (Microsoft QDK Simulators, 2021).

The Qiskit ecosystem offers a range of simulators, including full-state simulators,
resource estimation tools, noisy simulations, and QASM simulators (Qiskit, 2021).
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This appendix details the implementation of 1ibg, including some optimization
successes and failures. The full source code can be found online in the directory
src/libg of the open-source repository. It is about 500 lines of C++ code. Corre-
spondingly, this section is very code-heavy.

A1 Register File and Program State

The entire program state, including the basis states and their amplitudes, is maintained
in the structure type qureg_t defined in file 1ibg.h. The important parts of this
struct are:

Find the code
Infile src/1libag/libg.h

PY

typedef uint64 state_t;
struct qureg t {
cmplxx amplitude;
state_tx state;
int width; /* number of qubits in the qureg */
int size; /#* number of nonzero vectors #*/
int hashw; /* width of the hash array #*/
int+ hash;
bool bit_is_set(int index, int target) __attribute__ ((pure)) {
return state[index] & (static_cast<state_t>(1l) << target);
}
void bit_xor (int index, int target) {
state[index] "= (static_cast<state_t>(1) << target);
}
Y
typedef struct qureg t qureg;
qureg *new_qureg(state_t initval, int width);
void delete_qgureg(qureg =*reg) ;
void print_qgureg (qureg *reg) ;
void print_qgureg stats(qureg *reg) ;
void flush(qureg* reg);

Again, we use similar names in libg as found in libquantum to enable line-
by-line comparisons. As described in Section 3.9, individual basis states are stored
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as an array of bit masks in state, paired with their complex amplitude in array
amplitude.

Here is an interesting tidbit: In an earlier version of this library included in the
SPEC 2006 benchmarks, those two arrays were written as an array of C++ structs,
where each individual struct element had a single amplitude and state. This was
not good for performance, as iterations over the array during state modification had to
iterate over more memory than necessary, as the state bit masks were interleaved with
the amplitudes.'

The member width, which probably deserves a better name, represents the number
of qubits available in the program state. The member size has the number of nonzero
probabilities, and hash is a pointer to the hash table, with hashw being the size of the
hash table.

Operations to check whether a bit is set and to XOR a specific bit with a value
are very common and done with the two inline member functions bit_is_set and
bit_xor. In the header file, there are a handful of functions to manipulate the program
state as follows.

The function new_qureg creates a new program state with a quantum register of a
given size width and initializes an initial single state with a given bit mask initval
with probability 1 (at least one state must be defined). The function’s main job is to
calloc () the various arrays and make sure that there are no out-of-memory errors.

To free all allocated data structures and set relevant pointers to nullptr, we use
the function delete_gureg(qureg *reg). To print a textual representation of
the current state by listing all states with nonzero probability, we use the function
print_qureg(qureg *reg). Function print_qureg_stats (qureg *reg) can
be used to display statistics such as how many qubits were stored, how often the
hash table was recomputed, and the maximum number of nonzero probability states
reached during the execution of an algorithm.

For certain experiments, parts of the internal state are cached. The function
flush(qureg* reg) ensures that all remaining states are flushed. This could mean
that a computation is completed or that some pending prints are flushed to stdout.

Superposition-Preserving Gates

These are gates that neither create nor destroy superposition. They represent the “easy”
case in this sparse representation. Let us look at some representative gates. To apply
the X gate to a specific qubit, the bit corresponding to the qubit index must be flipped.
Recall that the gate’s function is determined by

(o) ()= (2)

! This author implemented a rather involved automatic data layout transformation in the HP compilers for
Itanium that would transform the array of structs into a struct of arrays (Hundt et al., 2006). A
later version of the library then modified the source code itself, a two-line change that completely
obliterated the need and benefit of the complex compiler transformation.
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Let us assume that we have a basis state encoded as the binary 0000101 and apply
the X gate to qubit 2 in bit order (from the right). To achieve this, we XOR bit 2 with
a 1. If the bit was 0, it would become 1, and if it was already 1, it would flip to 0. In
the example, the bit mask changes to 0b000001.

If there are n states with nonzero amplitudes in the system, there are n pairs of
states and amplitudes. To flip one qubit’s amplitude according to the X gate, we have
to flip the bit corresponding to that qubit in each of those tuples since that represents
the operation of this gate on all the states. Mechanically, the probability amplitudes
for that qubit are flipped by just flipping the bit in the state bit masks. There is no other
data movement, and the code is remarkably simple:

Find the code
In file src/libg/gates.cc

void x (int target, qureg *reg) {
for (int i = 0; i < reg->size; ++1i)
reg->bit_xor (i, target);

For another class of operators, we must check whether a bit is set before applying
a transformation. For example, applying the Z gate to a state acts like this:

b 0 G)-(5)

The gate only has an effect if § is nonzero. In the sparse representation, this means
that there must be a tuple representing a nonzero probability that has a 1 at the intended
qubit location. We iterate over all state tuples, check for the condition, and only negate
the amplitude if that bit was set:

void z (int target, qureg =*reg) {

for (int i = 0; i < reg->size; ++1)
if (reg->bit_is_set (i, target))
reg->amplitude[i] *= -1;

Recall that if the qubit is in superposition, there will be two tuples: one with the
corresponding bit set to 0 and the amplitude set to a, and the other with the bit set to 1
and the amplitude set to . For the Z gate, we only need to change the second tuple.
This is similar for the T gate and other phase gates:

void t (int target, qureg *reg) {

static cmplx z = cexp(M_PI / 4.0);
for (int i = 0; i < reg->size; ++1i)
if (reg->bit_is_set (i, target))
reg->amplitude[i] *= z;
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The Y gate is moderately more complex and combines the methods shown above.

The operation of the gate is:
0 —i\ (a\ [—ip
i 0)\B) \ia)’

In code, we first flip the bit with the X gate and then multiply by i or —i, depending on
whether the bit is set after it was flipped:

void vy (int target, qureg x*reg) {
for (int i = 0; i1 < reg->size; ++1i) {
reg->bit_xor (i, target);
if (reg->bit_is_set (i, target))
reg->amplitude[i] *= cmplx (0, 1.0);
else
reg->amplitude[i] *= cmplx (0, -1.0);

A3 Controlled Gates

Controlled gates are a logical extension of the above. In order to control a gate, we
have to check whether the corresponding control bit is set to 1. For example, for the
controlled X gate:

void cx(int control, int target, qureg *reg) {
for (int i = 0; i < reg->size; ++1)
if (reg->bit_is_set (i, control))
reg->bit_xor (i, target);

Similarly, for the controlled Z gate:

void cz(int control, int target, qureg *reg) {
for (int i = 0; i < reg->size; ++1i)
if (reg->bit_is_set (i, control))
if (reg->bit_is_set (i, target))
reg->amplitude[i] »= -1;

This even works for double-controlled gates, where we only have to check that both
control bits are set. Here is the implementation of a double-controlled X gate:

void ccx(int control0O, int controll, int target, qureg xreg) {
for (int i = 0; i < reg->size; ++1)
if (reg->bit_is_set (i, control0))
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if (reg->bit_is_set (i, controll))
reg->bit_xor (i, target);

Superpositioning Gates

The difficult case is for gates that create or destroy superposition. We provide an
implementation in function 1ibg_gatel, which we detail in Section A.6. The func-
tion expects the 2 x 2 gate as a parameter. For example, for the Hadamard gate:

Py Find the code
In file src/libag/apply.cc

void h(int target, qureg =*reg) {

static cmplx mh[4] = {sqgrt(1.0/2), sqgrt(l1.0/2), sgrt(l1.0/2),
-sgrt(1.0/2)};
libg gatel (target, mh, reg);

The implementation applies the same technique we saw earlier in Section 3.6 on
accelerated gates: a linear traversal over the states, except that it is adapted to the
sparse representation. Additionally, it manages memory by filtering out close-to-zero
states.

Hash Table

First, as indicated above, the states are maintained in a hash table with this hash
function:

static inline unsigned int hash64 (state_t key, int width) {

unsigned int k32 = (key & OxXFFFFFFFF) " (key >> 32);
k32 »= 0x9e370001UL;

k32 = k32 >> (32 - width);

return k32;

The hash lookup function get_state checks whether a given state exists with
nonzero amplitude. It calculates the hash index for state a and iterates over the dense
array, hoping to find that state. If a O state was found (the marker for an unpopulated
entry) or if the search wraps around, no state was found and -1 is returned. Otherwise,
the position in the hash table is returned:
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state_t get_state(state_t a, qureg xreg) {
unsigned int i = hashé64(a, reg->hashw);
while (reg->hash[i]) {
if (reg->statel[reg->hash[i] - 1] == a)
return reg->hash(i] - 1;
i++;
if (1 == (1 << reg->hashw))
break;
}

return -1;

Of course, there is a function to add a state to the hash table:

void libg add_hash(state_t a, int pos, qureg *reg) {
int mark = 0;

int i = hash64(a, reg->hashw);

while (reg->hash([i]) {
i++;
if (i == (1 << reg->hashw)) {

if (!mark) {

i=20;
mark = 1;
}
}
}
reg->hash[i] = pos + 1;
// -- Optimization will happen here (later).

The most interesting function from a performance perspective is the one that recon-
structs the hash table. Since the function to apply a gate will filter out states with
probabilities close to 0 after gate application, we have to reconstruct the hash table
to ensure it contains only valid entries. This is the most expensive operation of the
entire 1ibg implementation. We show some optimizations below, where the first loop

is being replaced with a memset (), and more tricks in Section A.8.

void libg reconstruct_hash(qureg *reg) {

reg->hash_computes += 1; // count invocations.

for (int i = 0; i < (1 << reg->hashw); ++i)
reg->hash[i] = 0;

for (int i = 0; i < reg->size; ++1)

libg_add_hash(reg->statel[i], i, reg);
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The first thing to note is the first loop, which resets the hash array to all zeros:
for (int i = 0; i < (1 << reg->hashw); ++1)

reg->hash[i] = 0;

You might expect the compiler to transform this loop into a vectorized memset
operation. However, it does not. The loop-bound reg->hashw aliases with the loop
body, which means that the compiler cannot infer whether the loop body would modify
the loop bound. Manually changing this to memset speeds up the entire simulation by
approximately 20%.

memset (reg->hash, 0, (1 << reg->hashw) * sizeof (int));
This memset is still the slowest part of the implementation. We will show how to
optimize it further below.
A.6 Gate Application

Now we describe the routine for applying a gate. It starts by assuming that something
might have changed since the last invocation, so its first task is to reconstruct the hash
table:

void libg gatel (int target, cmplx m[4], qureg *reg) {
int addsize = 0;
libg _reconstruct_hash(reg) ;
[...]

The superposition of a given qubit means that states with both a 0 and a 1 at a given
bit position must exist. So, the function iterates and counts how many of those states
are missing and need to be added:

/* calculate the number of basis states to be added =/
for (int 1 = 0; i < reg->size; ++i) {
/* determine whether XOR'ed basis state already exists */
if (get_state(reg->statel[i] *
(static_cast<state_t>(1) << target), reg) == -1)
addsize++;

If new states need to be added, the function reallocates the arrays. It also does some
bookkeeping and remembers the largest number of states with a nonzero probability:
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/+ allocate memory for the new basis states #*/
if (addsize) {
reg->state = static_cast<state_t x> (
realloc (reg->state, (reg->size + addsize) * sizeof (state_t)));
reg->amplitude = static_cast<cmplx =*>(
realloc (reg->amplitude, (reg->size + addsize) * sizeof (cmplx)));

memset (&reg->state[reg->size], 0, addsize * sizeof (int));
memset (&reg->amplitude[reg->size], 0, addsize x sizeof (cmplx));
if (reg->size + addsize > reg->maxsize)

reg->maxsize = reg->size + addsize;

This is all for state and memory management. Now we move on to applying the
gates. We allocate an array done to remember which states we have already handled.
The variable 1imit will be used at the end of the function to remove states with a
probability close to zero.

char *done =
static_cast<char *>(calloc(reg->size + addsize, sizeof (char))) ;
int next_state = reg->size;
float limit = (1.0 / (static_cast<state_t>(1) << reg->width))
* le-6;

We then iterate over all states and check if a state has not yet been handled. We
check whether a target bit has been set and obtain the index of the other base state in
the variable xor_index. The amplitudes for the basis states |0) and |1) are stored in
tnot and t.

/+ perform the actual matrix multiplication #*/

for (int 1 = 0; i < reg->size; ++1i) {
if (!donel[i]) {
/+ determine if the target of the basis state is set */
int is_set = reg->statel[i] & (static_cast<state_t> (1) << target);

int xor_index =
get_state(reg->state[i] *
(static_cast<state_t> (1) << target), reg):;

cmplx tnot = xor_index >= 0 ? reg->amplitude[xor_index] : 0;

cmplx t = reg->amplitude([i];

The matrix multiplication follows the patterns we have seen for the fast gate appli-
cation in Section 3.6. If states are found, we apply the gate. If the XOR’ed state was
not found, this means that we have to add a new state and perform the multiplication:
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if (is_set) {

reg->amplitude[i] = m[2] * tnot + m[3] * t;
} else {
reg->amplitude[i] = m[0] * t + m[l] * tnot;

if (xor_index >= 0) {

if (is_set) {

reg->amplitude[xor_index] = m[0] * tnot + m[l] * t;
} else {
reg->amplitude[xor_index] = m[2] * t + m[3] * tnot;
}
} else { /* new basis state will be created */
if (abs(m[1l]) == 0.0 && is_set) break;
if (abs(m[2]) == 0.0 && !is_set) break;

reg->state[next_state] =

S

reg->state[i] (static_cast<state_t> (1) << target);
reg->amplitude[next_state] = is_set ? m[1l] » t : m[2] * t;
next_state += 1;

}

if (xor_index >= 0)

done[xor_index] = 1;

As a final step, we filter out the states with an amplitude close to 0. The code
below densifies the array by moving up all nonzero elements before finally real-
locating the amplitude and state arrays to a smaller size (which is a redundant
operation):

reg->size += addsize;

free (done) ;

/* remove basis states with extremely small amplitude */
if (reg->hashw) {
int decsize = 0;
for (int 1 = 0, j = 0; i1 < reg->size; ++i) {
if (probability(reg->amplitude[i]) < limit) {
J++;
decsize++;
} else if (j) {
reg->state[i - j] = reg->stateli];
reg->amplitude[i - j] = reg->amplitudel[i];

}
if (decsize) {

reg->size -= decsize;
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Premature Optimization, Second Act
Here is an anecdote that might serve as a lesson to over-eager code optimizers.’
After implementing the code and running initial benchmarks, it appeared obvious that
repeated iterations over the memory just had to be a bottleneck. Some form of mini-JIT
(Just-In-Time compilation) should be helpful, which first collects all the operations
and then fuses gate applications into the same loop iteration. The goal would be to
significantly reduce repeated iterations over the states to avoid memory traffic, which
was assumed to be the problem. The code is available online. It might become valuable
in the future,? as other performance bottlenecks are being resolved.

The goal of the main routine was to execute something like the following, with just
one outer loop and a switch statement over all superposition-preserving gates:

[..

void Execute(qureg *reg) {

[..

-]

for (int i = 0; i < reg->size; ++1i) {
for (auto op : op_list_) {
switch (op.op()) {

case op_t::X:
reg->bit_xor (i, op.target());
break;

case op_t::Y:
reg->bit_xor (i, op.target()):;
if (reg->bit_is_set (i, op.target()))
reg->amplitude[i] *= cmplx (0, 1.0);
else
reg->amplitude[i] *= cmplx (0, -1.0);
break;

case op_t::Z:

if (reg->bit_is_set (i, op.target())) {
reg->amplitude[i] *= -1;

}

Break;

-1 111}

A8

As a complete surprise, running the JITed version produced a performance
improvement of roughly 0%. Simple profiling then revealed that about 96% of
the execution time was spent on reconstructing the hash table. Gate application was
not a performance bottleneck at all. Lesson learned again — intuition is good, but
verification is better.

Actual Performance Optimization

As noted above, reconstructing the hash table is the most expensive operation in this
library. The hash table is sized to hold all potential states, given the number of qubits.

2 Such as myself.
3 Or serve as a warning to future readers.
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Gigantic, sparsely filled hash table

AEEENEEEEENEEETEEEEENEEE

Much smaller, dense hash cache

Figure A.1 A caching scheme to accelerate hash table zeroing.

However, even for complex algorithms, the actual maximal number of states with
nonzero probability can be relatively small. For example, for two benchmarks that
we extract from quantum arithmetic (Arith) and order finding (Order), we show
the maximum number of nonzero states reached (8,192) and, given the number of
qubits involved, the theoretical maximal number of states. The percentage is 3.125%
for Order, and only 0.012% for Arith. It has a lot more qubits and hence a very large
potential number of states:

Arith: Maximum of states: 8192, theoretical: 67108864, 0.012%
Order: Maximum of states: 8192, theoretical: 262144, 3.125%

During execution, the number of states changes dynamically in powers of two as
1libg removes states very close to 0. Therefore, there is an opportunity to augment the
hash table and track, or cache, the addresses of elements that have been set, up to a
given threshold, for example, up to 64K elements.

To reset the hash table, we iterate over the entries in hash cache and zero out the
marked elements in the hash table, as shown in Figure A.1. There will be a crossover
point. For some size of the hash cache, just linearly sweeping the hash table will be
faster than the random memory access patterns from the cache because of hardware
prefetching dynamics. We chose 64K as the cache size, which significantly improves
the runtime for our examples. This is an interesting space to experiment with to find
better heuristics and data structures.

In function 1ibg reconstruct_hash, we additionally maintain an array called
hash_hits, which holds the addresses of states in the main hash table, along with
a counter reg->hits of those. Then, we selectively zero out only those memory
addresses in the hash table that we cached. If the hash cache was not big enough, we
have to resort to zeroing out the full hash table:

void libg reconstruct_hash(qureg xreg) {
reg->hash_computes += 1;

if (reg->hash_caching && reg->hits < HASH_CACHE_SIZE) {

for (int i1 = 0; i < reg->hits; ++i) {
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reg->hash[reg->hash_hits[i]] = 0;
reg->hash_hits[i] = 0;
}
reg->hits = 0;
} else {
memset (reg->hash, 0,
memset (reg->hash_hits, 0,

(1 << reg->hashw) = sizeof (int));
reg->hits * sizeof (int));

reg->hits = 0;
}

for (int i = 0; i < reg->size; ++1i)
libg _add_hash(reg->state[i], i, reg);

All that’s left to do now is to fill in this array hash_hits whenever we add a new
element in 1ibg_add_hash using the following code at the very bottom:

[...]

reg->hash[i] = pos + 1;
if (reg->hash_caching && reg->hits < HASH_CACHE_SIZE) {
reg->hash_hits[reg->hits] = i;

reg->hits += 1;

Performance gains from this optimization can be substantial, depending on the char-
acteristics of the algorithm. Anecdotal evidence points to improvements in the range
of 20-30% for Arith and Order, as long as the nonzero states fit in the hash cache.
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@ symbol, controlled qubit in quantum
circuit notation, 54
® tensor product operator, 5
Kronecker product operator, 19
tensoring together matrices, 13
Y as qubit state space, 15
operator applied to 1 at qubit index, 33
* operator for tensor products, 19
Kronecker products, 13
@ operator for matrix multiplication, 13
9-qubit Shor error correction code, 362,
374

Absolute value of complex numbers, 1
Addition
constants, 270, 275
increment operator, 295, 303
quantum arithmetic, 265-271, 276
quantum gates, 265-272
testing quantum arithmetic, 270, 275
adjoint () function for gates, 30, 56
gc data structure, 82
ALAP scheduling, 379, 393
Amdahl’s law, 359, 372
Amplitude amplification
amplitude estimation, 224-228
Boolean Satisfiability, 228-232
graph coloring, 232-236
Grover’s algorithm, see Grover’s
algorithm
quantum amplitude amplification,
218-221
quantum counting, 222-224
quantum mean estimation, 237-239
quantum median estimation, 241-243
quantum minimum finding, 239-241
Amplitude damping, 355, 367
Amplitude encoding, 178
Amplitude estimation, 222, 224-228
quantum counting, 222-224
Ancilla qubits (ancillae), 57
code to create and initialize registers, 79
compiler optimization and, 375, 390
entanglement, 58, 67
error correction trick, 359, 371

quantum computation, 67
Quipper programming language, 373,
387
Silq programming language, 374, 388
uncomputation, 66
AND logic gates, 126
Ansatz, 305, 314
Arithmetic via quantum gates
decrement circuit, 295, 303
full adder, 123-126
code, 124
constants, 270, 275
quantum arithmetic, 265-271, 276
increment circuit, 295, 303
multiplication, 269, 271, 274, 276
powers, 289, 297
testing quantum arithmetic, 270, 275
Array ndarray as Tensor base, 12
Arute, Frank, 128
at (@) operator for matrix multiplication,
13

Basis encoding, 177
Basis states of qubits, 15
basis encoding, 177
constructing a qubit, 16
density matrix diagonal elements, 28,
106
measurement, 70
orthonormal set of basis vectors, 15
superposition as orthonormal basis,
40
projection operators extracting
amplitude, 46
state as superposition, 19
superposition via Hadamard gates, 40
Hadamard basis, 40
Bell measurement, 139, 145
Bell states, 61
code, 62
measurement example, 74
Quipper programming language, 373,
387
tracing out qubits, 110
Bell, John S., 58, 61


https://doi.org/10.1017/9781009548519.020

Benchmarking
benchmark gaming, 129
cross entropy benchmarking, 129
gate faster application in C++, 99
quantum random circuits, 129
quantum versus classical computers,
129-131
sparse representation, 103
Bernstein—Vazirani algorithm, 163-166
about, 162
oracle form of algorithm, 164, 173
compiler optimization, 380, 394
phase-kick rotation gates, 245, 246
Beyond Classical
classical arithmetic via quantum gates,
123-126
computational complexity theory, 76,
128, 136
Google Sycamore processor, 129
benchmarking, 129
benchmarking quantum versus
classical computers, 129-131
logic circuit general construction, 126
quantum random circuits, 129
simulation design, 131
simulation evaluation, 135
simulation implementation, 133
simulation metric, 133
Quantum Supremacy experiment,
127-136
Binary fractions, 24
Binary interpretation, 23-25
Birthday paradox, 275, 280
Bit conversion, 23
Bit index notation for states, 94
Bit order
binary interpretation, 23-25
qubit order, 21-22
two tensored states, 22
Bit-flip errors
bit-flip channel, 354, 366
bit-flip phase-flip channel, 354, 366
combined phase/bit-flip error, 352, 364
dissipation-induced error, 351, 363
error correction, 359-361, 371-373
Shor’s 9-qubit code, 362, 374
Bits to binary fractions, 24
Bits-decimal conversion functions, 23
bits2frac () for binary fractions, 24
bits2val () for binary to decimal, 23
bitstring () function, 27
Black-box algorithms
about, 162
quantum parallelism, 162
query complexity, 162
Bernstein-Vazirani algorithm, 163-166
oracle form of algorithm, 164, 173
Deutsch algorithm, 166-173
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general oracle operator, 171
Deutsch—Jozsa algorithm, 174-176
Bloch sphere
Quirk online simulator, 264, 269
Bloch spheres
about, 17, 38, 302, 312
Bloch vector, 18
rotation operators, 38
expectation values, 17, 71, 303, 312
minus sign as global phase, 17
qubits described by, 17-19
computing coordinates for given
state, 37
Solovay—Kitaev algorithm, 189
two degrees of freedom for superdense
coding, 143
universal gates, 189
Bloch, Felix, 17
Boolean Conjunction, 228
Boolean Disjunction, 228
Boolean formulas with quantum gates,
127
Boolean Satisfiability, 228-232
Born rule, 69
about projective measurement, 69
BPP (complexity), 128, 136
BQP (complexity), 128, 136
Bra(c)kets, 3
Branching, see Controlled gates
Bras
Dirac notation, 2
inner products, 3
bra-ket notation, 3
tensor products, 5

C++
Accelerated gate application
Execution speed, 100
accelerated gate application, 95-101
execution speed, 95
extending Python with, 96
sparse representation, 101
benchmarking, 103
“Can Quantum-Mechanical Description of
Physical Reality Be Considered
Complete?” (Einstein, Podolsky, and
Rosen), 58
Cartesian coordinates for Bloch sphere, 38
CCX gates, see controlled—controlled Not
gates
Change of basis, 342, 354
Channels in information theory, 353, 365
bit-flip channel, 354, 366
bit-flip phase-flip channel, 354, 366
depolarization channel, 354, 366
phase-flip channel, 354, 366
ChatGPT, 331, 342
CHSH game, 146-149
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Circuits
about function calls and returns, 370,
384
Scaffold programming language,
370, 384
Silq programming language, 374,
388
compiler optimization and, 376, 390
decrement circuit, 295, 303
entangler circuits, 59-61
increment circuit, 295, 303
intermediate representation
capabilities, 88
subcircuit control, 89
libraries of compiler optimization
patterns, 380, 394
Logic circuits
fan-out circuits, 126
logic circuits, 126
fan-out in QCL, 368, 382
phase inversion circuit, 209
quantum circuit data structure, 80
adjoint gates, 82
constructor, 80
double-controlled gates, 83
gates, 82-85
gates applied, 82
measurements, 86
multi-controlled gates, 84
parameterized gates, 83
quantum registers, 81
qubits added, 81
Swap and controlled Swap gates, 85
quantum random circuits, 129
simulation design, 131
simulation evaluation, 135
simulation implementation, 133
simulation metric, 133
qubits
ordering of qubits, 22
gc data structure, 81
quantum circuit notation, 53-55
Shor’s 9-qubit error correction, 362,
374

subcircuits instantiated, not called, 370,

384
Cirq commercial system (Google), 375,
389
simulators, 383, 397
Classical arithmetic, see Arithmetic via
quantum gates
Classical computers versus quantum,
129-131
classical computers controlling
quantum, 365, 366, 378, 379
Summit simulating quantum random
circuits, 135
Clifford gates, 78

Closed quantum systems, 352, 364
CNEF, 228
CNOT, see Controlled Not gates
CNOTO, see Controlled-by-0 Not gate
Coin toss operator, 294, 302
Coloring graphs, 232-236
Column vectors
inner products, 3
kets
Dirac notation, 2
Hermitian conjugate of, 2
qubits and states as, 2
Combined phase/bit-flip error, 352, 364
Commercial systems, 375, 389
Compiler optimization, 375, 390
about, 375, 390
classical for classical constructs, 376,
391
gate approximation, 382, 396
gate elimination, 377, 391
gate fusion, 378, 392
gate parallelization, 379, 393
gate scheduling, 378, 392
high-performance pattern libraries, 380,
394
inlining, 376, 391
logical to physical mapping, 376, 380,
390, 395
resource for information, 382, 396
loop unrolling, 376, 391
peephole optimization, 379, 393
libraries of compiler optimization
patterns, 380, 394
relaxed peephole optimization, 379,
394
physical gate decomposition, 381, 396
unentangled qubits, 378, 392
Compilers
about hierarchy of abstractions, 367,
380
design challenges, 364, 378, 380, 395
optimization, see Compiler
optimization, see Compiler
optimization
programming languages, see Quantum
programming languages, see
Quantum programming languages
Completeness relation, 71
Complex numbers
numpy data types, 12
2D plane, 1
about, 1
conjugates, 1
exponentiation, 2
modulus, 1
norm, 1
Python, 2
qubits as column vectors of, 2
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states as column vectors of, 2
Tensor comparisons to values, 14
tensor_type() abstraction, 12
Complex plane, 1
Complexity classes
BPP, 128, 136
BQP, 128, 136
NP, 128
NP-complete, 128
NP-hard, 128
P, 128
Complexity of simulation, 76, 129
Composite kets inner products, 6
Computation reversed, 66
Computational basis, 15
Computational complexity theory, 76,
128, 136
Conditional execution, see Controlled
gates
Conjugates
adjoint synonymous with conjugate, 7
complex numbers, 1
denotation not explicit, 3
Hermitian conjugate matrix, 7
operator adjoint () function, 30
Conjugation
conjugate complex numbers, 2
involutivity, 2
Conjunction, 228
Constants in quantum addition, 270, 275
Continued fractions, 290, 297
Controlled U gates under compiler
optimization, 379, 394
Controlled Z gates, 52
Controlled gates, 48-50
about QCL programming language,
369, 382
controlled U, (A) gate for quantum
arithmetic, 266, 270
Controlled Z gates, 52
Controlled Not gates, 48-50
constructor function, 50
Controlled phase gates, 52
controlled rotation gates additive, 244
controlled—controlled gates, 50
gc data structure, 83
Toffoli gates, 55, 56
Controlled-by-0 Not gate, 50
function of, 48-50
multi-controlled gates, 57
ancilla qubits, 57, 66
controlled—controlled Not gates, 55
gc data structure, 84
Sleator—Weinfurter construction, 56
nonadjacent controller and controlled
qubits, 49
notation for gates involved, 48
gc data structure
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double-controlled gates, 83
fast application of gates, 94
multi-controlled gates, 84
Swap and controlled Swap gates, 85
quantum circuit notation
controlled X gates, 54
controlled Z gates, 54
Controlled-by-0 Not gate built, 54
more than one qubit controlling, 54
scalability, 50
Swap and controlled Swap gates
qc data structure, 85
Swap gates, 51
compiler optimization, 379, 394
controlled Swap gates, 51
quantum circuit notation, 54
Controlled Not gates (CNOT'; CX)
compiler optimization, 380, 394
constructor function, 50
entangler circuits, 60
function, 48-50
GHZ states, 62
logic circuits from, 126
quantum registers for result storage, 68
Swap gate action, 51
Controlled phase gates, 52
Controlled Swap gates, 51
Controlled—Controlled gates
Toffoli gates, 55
Controlled—Controlled gates
Sleator—Weinfurter construction, 56
Toffoli gates
logic circuits from, 126
Sleator—Weinfurter construction, 56
Controlled—Controlled Not gates (CCX
gates), 55
Controlled-by-0 Not gate (CNOTO0), 50
quantum circuit notation, 54
Copenhagen interpretation of quantum
mechanics, 59
Counters
decrement operator, 295, 303
increment operator, 295, 303
Covariance matrix, 332, 343
C++
Q language C++class library, 372, 386
cQASM, 367, 381
Cross entropy benchmarking (XEB), 129
Curse of dimensionality, 331, 342
Cut on graph, 315, 325
CX, see Controlled Not gates

Data encoding
amplitude encoding, 178
basis encoding, 177
Hamiltonian encoding, 180
rotations for encoding, 179
Data registers, see Quantum registers
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Data structure, see Quantum circuit (gc)
data structure
Data types
about, 12
abstracting, 12
complex data type selection, 12
numpy data types, 12
State, 16
Debugging
direction of rotations, 42
gc data structure abstraction, 80
Tensors compared to values, 14
Decoherence times of technologies, 350,
362
Decoherence-induced phase shift error,
351,363
Decrement circuit, 295, 303
Density matrices
about, 28
apply gate, 107
Bloch sphere coordinate computation
Cartesian coordinates, 38
outer product of state with itself, 28,
106
partial trace derivation
code, 108
tracing out other qubits, 109
probabilities of measuring a basis state,
28
quantum computing theory as, 106
as tool, 106
trace of, 28, 107
Depolarization channel, 354, 366
depolarization definition, 354, 366
Destructive interference, 343, 355
Deutsch algorithm, 166-173
about, 162
general oracle operator, 171
Deutsch—Jozsa algorithm, 174-176
Diagonal matrices
eigenvalues, 6
tensor products, 5
Diffusion operator, 210
Dirac notation
bras, 2
kets, 2
qubits
0O-state and 1-state, 15
two tensored states, 22
Discrete phase gates, 42
Disjunction, 228
Dissipation-induced error, 351, 363
Dot products, see Inner products
Double-controlled gates
gc data structure, 83
Dual vectors for a ket, 2
Dumper function, 26
transpilation, 90

EGCD, see Extended Euclidean algorithm
Eigenstates, 6
Eigenvalues, 6
Hamiltonians, 300-301, 308-310,
317-319
Hermitian and Pauli matrices, 37
Hermitian matrices, 7
quantum phase estimation, 247,
248
trace of a matrix, 9
unitary matrices, 8
variational quantum eigensolver,
308-309, 317-319
Eigenvectors, 6
Hamiltonians in Schrodinger equation,
300-301, 309-310
unitary matrices, 8
Einstein, Albert
hidden state, 58
spooky action at a distance, 58, 61
Electron decoherence time
electron spin, 350, 362
gallium arsenide, 350, 362
gold, 350, 362
Embeddings, 331, 342
Encoding data, see Data encoding
Endianess of qubits
quantum circuit notation, 53
Endianness of qubits, 21-22
Entanglement, 58—-65
about, 58
algorithms exploiting
CHSH game, 146-149
entanglement swapping, 145
random number generator, 137
superdense coding, 142-145
teleportation, 138-142
analysis by Scaffold, 371, 385
ancilla qubits, 58, 67
Bell states, 61
code, 62
tracing out qubits, 110
code
Bell states, 62
entangler circuit, 60
GHZ states, 62
compiler optimization and, 378,
392
Copenhagen interpretation, 59
entangler circuits, 59-61
code, 60
GHZ states, 62
code, 62
error correction trick, 359, 371
maximal entanglement, 111
mixed state depolarization, 354, 366
No-Cloning Theorem, 64
error correction challenge, 358, 370
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product states, 59
tracing out qubits, 110
W state, 63
Entangler circuits, 59-61
Environmental challenges of quantum
computing, 350-357, 362-369
closed versus open quantum systems,
352,364
EPR paper, 58
Equal superposition of adjacent qubits, 41
Erasure of information resulting in heat
dissipation, 66
Error correction
about, 350, 357, 362, 369
bit-flip errors, 359-361, 371-373
Shor’s 9-qubit code, 362, 374
compiler optimization and, 376, 390
error correction code memory, 357, 369
error syndrome, 359, 371
phase-flip errors, 361, 373
Shor’s 9-qubit code, 362, 374
quantum computing challenges, 357,
370
quantum noise, 350-357, 362-369
repetition code, 357, 369
majority voting, 357, 369
No-Cloning Theorem, 358, 370
quantum repetition code, 358, 370
resources for information, 363, 376
Shor’s 9-qubit error correction code,
362,374
Error correction code memory (ECC),
357, 369
Error injection to model quantum noise,
355, 367
checking bit-flip error correction, 359,
372
gates as quantum noise source, 356, 368
Error syndrome, 359, 371
Euclidean distance, 327-331, 338-342
quantum algorithms that use, 331, 342
Euler theorem, 276, 281
Euler’s formula
complex exponentiation, 2
Phase gate derivation, 41
Expectation values, 17, 71
Bloch sphere, 17
variational quantum eigensolver, 303,
312
Exponentiation
complex numbers, 2
operators, 38
Extended Euclidean algorithm, 285, 292

Factorization, 274, 279
Fan-out circuits, 126

QCL programming language, 368, 382
fast gate application, 92-95
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faster gate application, 95-98
Feynman, R., ix, xii
Flexible phase gates
constructed via Us gates, 43
constructing other gates, 43
discrete phase gates, 42
Ui(A) gates, 43
Fourier transform, see Quantum Fourier
transform (QFT), see Quantum
Fourier transform (QFT)
Fractions, binary, 24
Fredkin gates, 51
Full adder, 123-126
code, 124
quantum arithmetic, 265-271, 276
Fundamentals of quantum computing, see
Quantum computing fundamentals
Fused gates, 378, 392

Gallium arsenide (GaAs) electron
decoherence time, 350, 362
Gate equivalences
compiler optimization, 378, 380, 392,
395
Controlled phase gates, 52
multi-controlled gates, 57
Gates
qgc data structure
parameterized gates, 83
about operators as gates, 29
adjoint gate gc data structure, 82
application, 30-31
apply () function, 34, 82, 98
fast application, 92-95
fast application generalized, 94-95
faster application with C++, 95-101
fastest benchmarked, 103
fastest with sparse representation,
101-102
multiple operators in sequence, 33
multiple qubits, 31-33
noise reduction via compiler
optimization, 376, 390
norm preserving, 29
notation for qubit index applied to,
33
padding operators, 33, 49
projection operators extracting
subspace, 70
quantum computation, 67
to density matrix, 107
to state 1 at qubit index, 33
compiler optimization
gate approximation, 382, 396
gate fusion, 378, 392
gate parallelization, 379, 393
gate scheduling, 378, 392
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Gates (conti.)
logical to physical mapping, 376,
380, 390, 395
noise reduction, 376, 390
physical gate decomposition, 381,
396
scheduling gates as late as possible,
379, 393
unentangled qubits, 378, 392
constructed via Us gates, 43
controlled gates, see Controlled gates
flexible phase gates
discrete phase gates, 42
phase shift or kick gate, 43
Hadamard gates, 40-41
identity gates, 35
applied to multiple qubits, 32
multi-qubit gates
controlled gates, 48-55
Hadamard gates, 40—41
single-qubit constructors for, 35
outer product representation of
operator, 46
parameterized gate quantum circuit data
structure, 83
phase gates, 41
discrete phase gates, 42
phase inversion operator, 209
phase shift or kick gates, 43
square root as T gate, 45
various gates via, 43
projection operators, 46
gc data structure, 82—85
double-controlled gates, 83
gates applied, 82
multi-controlled gates, 84
quantum circuit notation, 53
quantum noise source, 356, 368
precision of design required, 365,
378
Ry gates, 42
Scaffold programming language, 370,
383
Classical-To-Quantum-Circuit tool,
370, 384
single-qubit gates, 3441
Solovay-Kitaev theorem, 188
T gates
square root of S gates, 45
universal gates, 189
via phase gates, 43
U, (M) gates, 43
universal gates, see Universal gates
V gates as square roots of X gates, 44,
56
X gates, 29, 36
square root of as V gates, 56
Y gates, 36

square root of, 45
yroot gates, 45
GCD, see Greatest common divisor, see
Greatest common divisor
GHZ states, 62
error correction trick, 359, 371
Global phase, 17
Bloch sphere, 17
phase invariance, 17
Global variables as bad style, 28
“Going beyond Bell’s Theorem”
(Greenberger, Horne, and Zeilinger),
62
Gold (Au) electron decoherence time,
350, 362
Google
Cirq commercial system, 375, 389
simulators, 383, 397
coding style, 14
underscore in function names, 14
quantum random circuits, 129, 135
simulation design, 131
simulation evaluation, 135
simulation implementation, 133
simulation metric, 133
Sycamore processor supremacys,
129-131
GPUs (graphics processing units), 364,
378
Gradient descent, 307, 316
Graph coloring, 232-236
Graph cut, 315, 325
graphics processing units (GPUs), 364,
378

Greatest common divisor (GCD), 274, 279
Greenberger, Daniel M., 62
Ground state energy
about variational quantum eigensolver,
299, 308
variational principle, 301, 310
Grover’s algorithm
about, 200
accounting for multiple solutions,
218-221
circuit implementation, 216-218
examples
simple numerical, 203
two-qubit, 204
Grover operator, 201, 207
implementing, 215
quantum counting, 222
inversion about the mean, 203
circuit, 213
operator, 209-213
iteration count, 206—-208
multiple solutions, 218-221
overview, 201
phase inversion, 201
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implementation, 208
multiple solutions, 218-221
operator, 209, 222

quantum amplitude amplification,
218-221

quantum counting, 222-224

Hadamard basis, 15, 18, 40
measuring in, 144
Hadamard gates, 40—41
constructed with Us gates, 44
entangler circuits, 59-61
Hadamard basis, 40
measuring in, 144
Hadamard coin, 294, 302
its own inverse, 41
quantum circuit notation, 53
random number generator, 137
universal gates, 189
Hadamard similarity test, 155-160
Hamiltonian
definition, 300, 309
eigenvalues
about VQE algorithm, 299, 302, 308,
311
Schrodinger equation derivation,
300-301, 309-310
variational principle, 301, 310
variational principle measurements,
308-309, 317-319
Ising spin glass model, 314, 324
Hamiltonian constructed, 318-320,
328-331
operator, 300, 310
Hermitian, 301, 310
Hamiltonian encoding, 180, 342, 354
Hash table in libq, 388, 393, 403, 409
Haskell programming language, 372, 386
Quipper as embedded DSL, 372, 386
oracle construction, 373, 387
Silq as embedded DSL, 374, 388
oracle construction, 374, 388
Heisenberg uncertainty principle, 300, 310
Hello World for quantum computing, 137
Helper functions
bit conversion, 23
Bloch sphere coordinate computation,
38
Hermitian and unitary matrix
properties, 14
n-bit projector construction, 47
Hermitian conjugate vector, 2
Hermitian matrices
about, 7
checking if Tensor is Hermitian, 14
eigenvalues as real, 7
Hermitian adjoint matrices, 7
expressions, 8
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Hermitian conjugate matrices, 7
projection operators as, 46
real vector space basis, 37
Hermitian projector, 46
Hidden state, 58, 61
Hierarchical QASM, 371, 384
High-Performance Computing (HPC)
techniques, 77
Horne, Michael A., 62

I matrix, 7
IBM
Qiskit commercial system, 375, 389
ALAP scheduling of gates, 379, 393
simulators, 383, 398
Sycamore supremacy challenged, 129
Summit supercomputer, 135
Idempotent projection operators, 46
Identity gates, 35
applied to multiple qubits, 32
controller and controlled qubits not
adjacent, 49
Hermitian matrix real vector space, 37
via phase gates, 43
Identity matrix, 7
Increment circuit, 295, 303
Increment modulo 9 circuit, 295, 304
Indirect measures of similarity between
states
swap test, 150-154
swap test code, 153
swap test for multi-qubit states, 154
Information
erasure resulting in heat dissipation, 66
quantum circuit double lines, 54
quantum teleportation, 138-142
superdense coding, 142—145
Inner products, 3
tensors, 6
Instruction Set Architecture (ISA) of
quantum computers, 29
Intel Quantum Simulator, 382, 397
Intermediate representation (IR), 86-91
about circuit capabilities, 88
Scaffold programming language, 370,
384
classic and quantum mix, 376, 391
scalability, 365, 378
transpilation
dumper function, 90
inverting a register, 90
IR base class, 87
IR nodes, 86
subcircuit control, 89
uncomputation, 88
Inversion about the mean, 203
circuit, 213
operator, 209-213
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Inversion test for similarity, 160
Involutivity, 2

Hadamard gates, 41

Pauli matrices, 37

rotations, 38
Ion trap decoherence time, 350, 362
IR, see Intermediate representation
ISA (Instruction Set Architecture) of

quantum computers, 29

Ising

Hamiltonian, 314, 324

NP algorithms, 314, 324

Spin Glass, 314, 324

Junk qubits, 66
quantum computation, 67

K-nearest neighbor algorithm, 331, 342

KD-Tree, 192
Kets
about, 68

composite kets inner products, 6
Dirac notation, 2
dual vectors for, 2
Hermitian conjugate of, 2
inner products, 3
bra-ket notation, 3
composite kets, 6
outer products, 4
trace of, 9
tensor products, 5
KNN, 331, 342
Knuth, D. E., ix, xii
Kraus operators, 71, 353, 365
kron member function of Tensor, 13
Kronecker power function (kpow),
13
Kronecker product, 5, 13
® operator symbol, 5, 19
* operator for, 13, 19
tensor product synonym, see also
Tensor products

Landauer, D., 66
Landauer’s principle, 66
Least significant bit, see Bit order
Libq, 101
implementation
about, 384, 399
controlled gates, 387, 402

gate application, 390-392, 406—408

hash table, 388, 393, 403, 409
register file, 384, 399

superposition-preserving gates, 385,

400
superpositioning gates, 388, 403
libquantum basis, 101

optimization
gate application, 393, 409
hash table reconstruction, 393-395,
410411
libquantum library for sparse
representation, 101
simulation, 382, 397
Libraries of compiler optimization
patterns, 380, 394
Linear independent vectors, 4
LLM, 331, 342
Local phase, 17
Logic circuits, 126
fan-out circuits, 126
QCL programming language, 368,
382
“Logical Reversibility of Computation”
(Bennett), 66

Majority voting for repetition code, 357,
369
Matrices
* operator for Kronecker product, 13
@ operator for matrix multiplication,
13
2-dimensional index via projection
operators, 46
density matrices, 28, 106
diagonalization function, 196
eigenvalues, 6
exponent with matrix, 38
Hermitian, see Hermitian matrices
Pauli matrices, 35
Hermitian matrix real vector space,
37
involutivity, 37
permutation matrices, 14
scalability, 76
tensor products, 5
tensoring together with ®, 13
trace of, 107
trace of a matrix, 9
transposition, 2
unitary, 7
Maximal entanglement, 111
Maximally mixed state, 111
Maximum cut algorithm, 314-322,
324-333
about, 314, 324
cut definition, 315, 325
experiments, 320, 331
Ising formulations of NP algorithms,
314,324
maximum cut definition, 315, 325
quantum approximate optimization
algorithm, 312, 322
variational quantum eigensolver
VQE by peek-a-boo, 320, 331
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weighted maximum cut, 315, 325
computing maximum cut, 316, 326
graphs constructed, 315, 325
Hamiltonian constructed, 318-320,

328-331
Mean estimation, 237-239
Mean inversion, see Inversion about the
mean
Measurement gate quantum circuit
notation, 54
Measurements

by peek-a-boo, 86
Grover’s algorithm, 215

By peek-a-boo, Grover’s algorithm, 215

entanglement, 58
No-Cloning Theorem, 64

error detection challenges, 358, 370

expectation values, 17, 71, 303, 312

Hadamard basis for measuring, 144

implementation, 72

Pauli bases, 302-305, 312-314

projective, 69—72
examples, 73
implementation, 72

gc data structure, 86

quantum circuit notation, 54

quantum mechanics postulates, 68

state similarity indirect measures
swap test, 150-154
swap test code, 153
swap test for multi-qubit states, 154

states collapsing on measurement, 16,
58
Born rule, 69
measurement definition, 69
renormalization, 72

Median estimation, 241-243

Mermin, David, 59

Microsoft Q# commercial system, 375,
389

Quantum Developer Kit, 375, 389

simulators, 383, 398
Microwave cavity decoherence time, 350,
362
Minimum cut problems, 315, 325
Minimum spanning tree, 331, 342
Mixed states
depolarization, 354, 366
tracing out qubits, 111
Mixed-product property, 6
MLPerf benchmarks, 129
Modular arithmetic, 273, 278

continued fractions, 290, 297

controlled modular multiplication, 288,
295

modular addition, 286288, 293-295

Modular inverse, 285, 292
Modulus of complex numbers, 1
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Most significant bit, see Bit order
Multi-controlled gates, 57
ancilla qubits, 57, 66
controlled—controlled Not gates, 55
gc data structure, 84
Sleator—Weinfurter construction, 56
Multi-qubit gates
about controlled gates, 48
about single-qubit constructors, 35
Hadamard gates, 40-41
Multiplication, 269, 274
quantum arithmetic, 271, 276
testing quantum arithmetic, 270, 275
Mottonen’s algorithm, 182-188

NAND logic gates, 126
nbits property of Tensor class, 23
ndarray base for Tensor, 12
No-Cloning Theorem, 64
fan-out circuits and, 126
repetition code for error control, 358,
370
uncomputation not violating, 68
No-Deleting Theorem, 65
Node class for transpilation, 86
Noise, see Quantum noise, see Quantum
noise
Noisy Intermediate Scale Quantum
Computers (NISQ), 299, 308, 365,
378
Norm
complex numbers, 1
unitary matrices as norm preserving, 7,
29
vector normalization, 26
Not gates, see also X gates
logic circuits from, 126
Nuclear spin decoherence time, 350, 362
numpy
path to, 96
numpy
* operator for Kronecker product, 13
@ operator for matrix multiplication,
13
adjoint () function for operators, 30
allclose () for Tensor comparisons,
14
conj function, 2
ndarray base for Tensor, 12
instantiating, 12
about, 11
complex number support, 12
eigenvalues of matrices, 7

“On the Einstein Podolsky Rosen
paradox” (Bell), 58, 61
Open quantum systems, 352, 364
Open-source simulators, 382, 396
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OpenPulse, 367, 380
OpenQASM, 367, 381
transpilation dumper function, 90
Operator class
adjoint () function, 30
gate applied to state ¢ at qubit index, 34
Gate function returning Operator
object, 34
Tensor class parent, 29
Operator function, 181
Operator-sum representation, 353,
365
Operators
* operator for Kronecker product, 13
@ operator for matrix multiplication,
13
about, 12, 29
application, 30-31
apply () function, 34, 82, 98
fast application, 92-95
fast application generalized, 94-95
faster application with C++, 95-101
fastest benchmarked, 103
fastest with sparse representation,
101-102
multiple operators in sequence, 33
multiple qubits, 31-33
noise reduction via compiler
optimization, 376, 390
norm preserving, 29
notation for qubit index applied to,
33
padding operators, 33, 49
projection operators extracting
subspace, 70
quantum computation, 67
to state ¢ at qubit index, 33
diffusion operator, 210
Hamiltonian operator, 300, 310
Hermitian, 301, 310
inversion about the mean, 209-213
circuit, 213
oracle operator, 171
phase inversion implementation,
208
outer product representation, 46
Pauli representation, 117-120
phase inversion operator, 209
quantum counting, 222
gc data structure, 82
gates applied, 82
quantum Fourier transform operator,
262, 266
inverse, 263, 267
Tensor class parent, 29
unitary, 29
invertable, 29
Optical cavity decoherence time, 350, 362

Optimization
compilers, see Compiler optimization,
see Compiler optimization
gate application iteration lesson, 393,
409
gate application special cases, 99—100
Hamiltonians constructed for, 314, 324
hash table reconstruction, 393-395,
410411
Ising formulations of NP algorithms,
314, 324
maximum cut algorithm, 314-322,
324-333
quantum approximate optimization
algorithm, 312, 322
subset sum algorithm, 322-326,
333-337
variational quantum eigensolver,
299-312, 322
OR logic gates, 126
Oracles
about, 162
quantum parallelism, 162
query complexity, 162
Bernstein—Vazirani algorithm, 163-166
compiler optimization, 380, 394
oracle form of algorithm, 164, 173
Deutsch algorithm, 166-173
general oracle operator, 171
Deutsch—Jozsa algorithm, 174—-176
general oracle operator, 171
phase inversion implementation, 208
Quipper automatic construction of, 373,
387
RevKit for constructing reversible, 383,
397
Silq construction of, 374, 388
Order finding
order of function, 276, 281
quantum order, 279, 285
quantum algorithm, 279-292, 300
continued fractions, 290, 297
controlled modular multiplication,
288, 295
experimentation, 290, 298
main program, 283-284, 290-292
modular addition, 286-288, 293-295
support routines, 284-286, 292-293
Shor’s integer factorization algorithm,
275-271, 280-282
Orthogonal vectors, 4
Outer products
about, 4
density matrices as, 28, 106
outer product representation of
operator, 46
projection operators, 46
trace of two kets, 9
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Overloading * operator, 13

P gates, see also Phase gates
Parallelism, see Quantum parallelism
Parameterized gate quantum circuit data
structure, 83
Partial-trace procedure
code, 108
experimenting with, 109
dimension reducing operation, 108
maximal entanglement, 111
reduced density operator from, 107
tracing out other qubits, 109
entangled states, 110
environment traced out, 353, 365
experimenting with, 109
mixed states, 111
Quirk qubits on Bloch sphere, 264,
269
Path to numpy, 96
Pauli matrices
about, 35
Hermitian matrix real vector space, 37
involutivity, 37, 39
measurement in Pauli bases, 302-305,
312-314
Pauli X gates, see also X gates
Pauli Y gates, 36
Pauli Z gates, 36
Phase-flip gates, 36
quantum noise modeling, 355, 367
rotation operators via exponentiation,
38
Pauli representation, 117-120
decomposition with projectors, 119
Pauli basis, 117
two qubits, 119
PCA (principal component analysis),
331-336, 342-347
Peephole optimization, 379, 393
libraries of compiler optimization
patterns, 380, 394

relaxed peephole optimization, 379, 394

Perdomo two-qubit state preparation, 181
Performance
compiler optimization and, 376, 390
quantum versus classical computers,
129-131
Period of function
about, 276, 281
quantum order, 279, 285
quantum algorithm
continued fractions, 290, 297
controlled modular multiplication,
288, 295
experimentation, 290, 298
main program, 283-284, 290-292

modular addition, 286-288, 293-295
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support routines, 284-286, 292-293
Shor’s integer factorization algorithm,
275-271, 280-282
Permutation matrices
about, 14
checking if tensor is permutation, 14
Controlled Not gate, 48, 49
Phase damping, 356, 368
Phase estimation for 7t approximation,
256-261
Phase gates, 41
controlled phase gates, 52
discrete phase gates, 42
phase inversion operator, 209
phase shift or kick gates, 43
square root of S gate, 45
U, (M) gates, 43
controlled U;(A) gate for quantum
arithmetic, 266, 270
various gates via, 43
Phase invariance, 17
Phase inversion, 201
implementation, 208
multiple solutions, 218-221
operator, 209
quantum counting, 222
Phase of qubits, 26
Phase shift error, decoherence-induced,
351, 363
Phase-flip errors, 351, 363
bit-flip phase-flip channel, 354, 366
error correction, 361, 373
Shor’s 9-qubit code, 362, 374
phase-flip channel, 354, 366
Phase-kick circuit, 244
Phase/bit-flip errors, 352, 364
7t approximation via QFT, 256-261
Planck constant, 300, 310
Podolsky, B., 58
Positive operator-valued measure, 71
Postulates of quantum mechanics, 68
POVM, 71
Power arithmetic, 289, 297
Power function via Kronecker products,
13
Preskill, John, 127
Principal component analysis (PCA),
331-336, 342-347
Probabilistic Turing machines, 128
Probability amplitudes, 15
binary addressing, 23
ket definition, 68
maximally mixed state, 111
measurement, 69, 70
qubits as states, 16, 19
equal superposition with same
amplitude, 41
Probability amplitudes (conti.)
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projection operators extracting
amplitude, 46
state class code, 25
state collapsing on measurement, 16, 69
state vectors and unitary operators, 29
Swap gates, 51
Product states, 59
Programming languages
about hierarchy of abstractions, 367,
380
about programming, 364, 377
compilers, see Compilers, see
Compilers
FORTRAN, 364, 377
Haskell, 372, 386
Quipper as embedded DSL, 372, 386
Quipper oracle construction, 373,
387
Silq as embedded DSL, 374, 388
Silq oracle construction, 374, 388
PSI probabilistic, 374, 388
Q language C++class library, 372, 386
Q#, 375, 389
Silq comparison, 374, 388
QASM tool, 367, 380
addition via QFT circuit, 267, 272
QCL, 368-370, 381-383
Quipper comparison, 373, 387
Quipper, 372, 386
oracle construction, 373, 387
proto-Quipper follow-ups, 373, 388
QCL comparison, 373, 387
Silq comparison, 374, 388
resources for information, 375, 389
Scaffold, 370, 383
classical and quantum constructs,
376, 391
entanglement analysis, 371, 385
hierarchical QASM, 371, 384
transpiler, 370, 384
Silq, 374, 388
code snippet showcasing, 374, 389
oracle construction, 374, 388
Projection operators, 46
2-dimensional index into matrix,
46
controller and controlled qubits not
adjacent, 49
Hermitian, 46
not unitary or reversible, 46
outer product representation, 46
projective measurements and, 70
Projection operators (projectors)
decomposition with, 119
n- it projector construction, 47
Projective measurements, 69—72
about, 70
ProjectQ commercial system, 375, 389

simulator, 383, 397
PSI probabilistic programming language,
374, 388
Pure states
compiler optimization, 378, 392
trace of density matrix, 28
Python
@ operator for matrix multiplication,
13
conjugate function, 2
about, 11
about numpy, 11
C++
accelerated gate application, 95-101
execution speed, 95, 100
extending Python with, 96
sparse representation, 101
sparse representation benchmarked,
103
complex numbers, 2
operator application, 30-31
Tensor class, 11-14
* operator for Kronecker product, 13
comparing to values, 14

Q language C++class library, 372, 386
Q# commercial system (Microsoft), 375,
389
programming language, 375, 389
Silq comparison, 374, 388
Quantum Developer Kit, 375, 389
QAOA (quantum approximate
optimization algorithm), 312, 322
QASM tool, 367, 380
addition via QFT circuit, 267, 272
cQASM, 367, 381
hierarchical QASM, 371, 384
openQASM, 367, 381
transpilation dumper function, 90
gc (quantum circuit) data structure
about abstraction, 80
constructor, 80
gates, 82-85
adjoint, 82
applying, 82, 98
double-controlled gates, 83
fast application, 92-95
fast application generalized, 94-95
faster application with C++, 95-101
multi-controlled gates, 84
parameterized gates, 83
Swap and controlled Swap gates, 85
measurements, 86
quantum registers, 81
qubits added, 81
sparse representation, 101-102
benchmarking, 103
transpilation extension of
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eager mode, 88
QCL programming language, 368-370,
381-383
Quipper comparison, 373, 387
QFT, see Quantum Fourier transform, see
Quantum Fourier transform
qHipster simulator, 382, 397
Qiskit commercial system (IBM), 375,
389
ALAP scheduling of gates, 379, 393
simulators, 383, 398
QRAM model of quantum computing,
365, 366, 378, 379
gate approximation, 382, 396
gsim simulator (Google), 383, 397
gsimh simulator (Google), 383, 397
Quantum advantage, 127-136
Quantum amplitude amplification (QAA),
218-221
Quantum Amplitude Estimation (QAE),
224-228
Quantum approximate optimization
algorithm (QAOA), 312, 322
Quantum arithmetic for full adder,
265-271,276
Quantum circuit (gc) data structure
about abstraction, 80
constructor, 80
gates, 82-85
adjoint, 82
applying, 82, 98
double-controlled gates, 83
fast application, 92-95
fast application generalized, 94-95
faster application with C++, 95-101
multi-controlled gates, 84
parameterized gates, 83
Swap and controlled Swap gates, 85
measurements, 86
quantum registers, 81
qubits added, 81
sparse representation, 101-102
benchmarking, 103
transpilation extension of
eager mode, 88
Quantum circuit model, see also Circuits
Quantum circuit notation, 53-55
controlled gates
controlled X gates, 54
controlled Z gates, 54
Controlled-by-0 Not gate, 54
more than one qubit controlling, 54
entangler circuits, 59-61
fan-out circuits, 126
full adder, 123
information flow double lines, 54
logic circuits, 126
measurement, 54
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oracle for Bernstein—Vazirani
algorithm, 164
quantum computation, 67
qubit order, 53
single-qubit operator applied, 53
state change depiction, 53
state initialization, 53
swap test, 150
X gates, 54
Quantum computers
arithmetic multiplication, 271, 276
arithmetic via full adder, 123-126
quantum arithmetic, 265-271, 276
classical computers controlling, 365,
366, 378, 379
classical computers simulated by, 128
commercial systems, 375, 389
compiler design challenges, 364, 378
density matrices for theory of, 106
environmental challenges, 350-357,
362-369
error correction challenges, 357, 370
flow control via controlled gates, 48-50
QCL programming language, 369,
382
Silq programming language, 374,
388
GPU coprocessors, 364, 378
logic circuits, 126
Noisy Intermediate Scale Quantum
Computers, 299, 308, 365, 378
operators as ISA of, 29
QRAM model, 365, 366, 378, 379
gate approximation, 382, 396
quantum computation, 67
A-calculus to express, 372, 386
quantum registers, 68, 78-80
simulation, see Simulation
uncomputation, 66—68
QCL programming language, 368,
382
Silq programming language, 374,
388
transpilation intermediate
representation, 88
trick for saving result, 68
Quantum computing fundamentals
controlled gates, 48-50
controlled Not gates, 48-50
controlled Not gates constructor
function, 50
controlled phase gates, 52
controlled Swap gates, 51
Swap gates, 51
data types, 12
abstracting, 12
complex data type selection, 12
Quantum computing fundamentals (conti.)
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entanglement, 58—65
measurement
examples, 73
implementation, 72
projective measurements, 69—72
quantum mechanics postulates, 68
multi-controlled gates, 57
controlled—controlled Not gates, 55
Sleator—Weinfurter construction, 56
No-Cloning Theorem, 64
error correction challenge, 358, 370
No-Deleting Theorem, 65
operators, 29-34
apply () function, 34
application, 30-31
base class, 29
multiple qubits, 31-33
padding operators, 33
unitary operators, 29
quantum circuit notation, 53-55
qubits, 15-17
Bloch sphere, 17-19
Bloch sphere coordinates for given
state, 37
constructing in code, 16
single-qubit gates, 3448
Bloch sphere coordinates, 37
flexible phase gates, 42
Hadamard gates, 4041
identity gates, 35
Pauli matrices, 35
phase gates, 41
projection operators, 46
rotations, 38
square roots of gates, 44—46
Us gates, 43
states, 19-28
binary interpretation, 23-25
qubit ordering, 21-22
represented as matrices, 28
State constructors, 27
State member functions, 25-27
tensoring states, 20
Tensor class, 11-14
uncomputation, 66—68
Quantum Developer Kit (QDK), 375, 389
simulators, 383, 398
Quantum dot decoherence time, 350, 362
Quantum error correction
about, 350, 357, 362, 369
bit-flip errors, 359-361, 371-373
Shor’s 9-qubit code, 362, 374
compiler optimization and, 376, 390
error correction code memory, 357, 369
error syndrome, 359, 371
phase-flip errors, 361, 373
Shor’s 9-qubit code, 362, 374

quantum computing challenges, 357,
370
quantum noise, 350-357, 362-369
repetition code, 357, 369
majority voting, 357, 369
No-Cloning Theorem, 358, 370
quantum repetition code, 358, 370
resources for information, 363, 376
Shor’s 9-qubit error correction code,
362, 374
Quantum Fourier transform (QFT)
about, 244
algorithm detail
about, 258, 261
two-qubit QFT online simulation,
264, 268
online simulation, 264, 268
order finding, 279-292, 300
continued fractions, 290, 297
controlled modular multiplication,
288, 295
experimentation, 290, 298
main program, 283-284, 290-292
modular addition, 286-288, 293-295
support routines, 284-286, 292-293
7t approximation, 256-261
QCL programming language, 370, 383
QFT operator, 262, 266
inverse, 263, 267
quantum arithmetic
addition, 265-271, 276
multiplication, 269, 271, 274, 276
testing, 270, 275
quantum phase estimation, 246-256,
259
Quantum Hello World algorithm, 137
Quantum information, see Information
Quantum interference, 162
Quantum IO Monad, 372, 386
Quantum machine learning
Euclidean distance, 327-331, 338-342
quantum algorithms that use, 331,
342
principal component analysis, 331-336,
342-347
Quantum mean estimation, 237-239
Quantum mechanics
Copenhagen interpretation, 59
hidden state, 58, 61
postulates, 68
Quantum median estimation, 241-243
Quantum minimum finding, 239-241
Quantum noise, 350-357, 362-369
about, 354, 366
amplitude damping, 355, 367
channels, 353, 365
bit flip and phase flip, 354, 366
depolarization, 354, 366
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compiler optimization and noise
reduction, 376, 390
error correction, 357-363, 369-376
gates imprecise, 356, 368
modeling via error injection, 355, 367
checking bit-flip error correction,
359,372
gates as quantum noise source, 356,
368
phase damping, 356, 368
quantum error conditions, 351, 363
quantum operations, 352, 364
operation element, 353, 365
operator-sum representation, 353,
365
simulation, 382, 383, 397, 398
Quantum operations
operation element, 353, 365
operator-sum representation, 353, 365
quantum noise, 352, 364
Quantum parallelism, 162, 169
Quantum phase estimation (QPE),
246-256, 259
detailed derivation, 248-252, 254
Hamiltonian eigenvalues, 299, 308
implementation, 253-255, 257
phase estimation, 247, 248
definition, 247, 248
Quantum counting, 222
Quantum programming languages
about hierarchy of abstractions, 367,
380
about programming, 364, 377
compilers, see Compilers, see
Compilers
Haskell, 372, 386
Quipper as embedded DSL, 372, 386
Quipper oracle construction, 373,
387
Silq as embedded DSL, 374, 388
PSI probabilistic, 374, 388
Q language C++class library, 372, 386
Q#, 375, 389
Silq comparison, 374, 388
QASM tool, 367, 380
addition via QFT circuit, 267, 272
QCL, 368-370, 381-383
Quipper comparison, 373, 387
Quipper, 372, 386
oracle construction, 373, 387
proto-Quipper follow-ups, 373, 388
QCL comparison, 373, 387
Silq comparison, 374, 388
resources for information, 375, 389
Scaffold, 370, 383
classical and quantum constructs,
376, 391
entanglement analysis, 371, 385
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hierarchical QASM, 371, 384
transpiler, 370, 384
Silg, 374, 388
code snippet showcasing, 374, 389
oracle construction, 374, 388
Quantum random circuits (QRC), 129
simulation design, 131
simulation evaluation, 135
simulation implementation, 133
simulation metric, 133
Quantum random walk
1D walk, 294-296, 302-304
2D walk, 295, 304
about, 293, 297, 301, 306
classical random walk, 293, 301
coin toss, 294, 302
walking the walk, 296-298, 304-307
Quantum registers, 78—80
about, 76
code to create and initialize, 79
libq implementation, 384, 399
gc data structure, 81
compiler optimization and, 376, 390
inverting a register, 90
QCL programming language, 368, 381
reg class, 78
result storage, 68
Quantum simulation, 299, 308
Quantum state preparation
about, 177
data encoding, 177-181
amplitude encoding, 178
basis encoding, 177
Hamiltonian encoding, 180
Mottonen’s algorithm, 182-188
Solovay—Kitaev algorithm, 188—199
two- and three-qubit states, 181
Quantum supremacy, 127-136
“Quantum supremacy using a
programmable superconducting
processor” (Arute et al.), 128
Quantum teleportation, 138—142
error correction trick, 359, 371
Quantum Turing machines, 128
Qubits, 15-17
about the state of a qubit, 15, 19
basis states, 15, 19
basis states orthonormal, 15
collapsing on measurement, 16, 58,
69
communicating state of two with
one, 142-145
equal superposition of adjacent
qubits, 41
measurement, 72
measurement examples, 73
probability amplitudes, 15, 16, 19
state class constructors, 27
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Qubits (conti.)
superposition via Hadamard gates, 40
tensor product combined state, 19
ancilla qubits, 57
entanglement, 58
uncomputation, 66
binary addressing, 23
Bloch spheres describing, 17-19
computing coordinates for given
state, 37
cloning or copying impossible, 64
error correction challenge, 358, 370
column vectors of complex numbers, 2,
19
compiler optimization via recycling,
381, 395
constructing in code, 16
data structure, 16
tensoring states, 20
deleting impossible, 65
entanglement, 58-65
junk qubits, 66
operator application, 30-31
applied at index specified, 33
controller and controlled qubits,
48-55
multiple operators in sequence, 33
multiple qubits, 31-33
nonadjacent controller and controlled
qubits, 49
norm preserving, 29
notation for qubit index applied to,
33
projection operators extracting
subspace, 70
quantum computation, 67
qubit ordering, 94
order of qubits, 21-22
operator application, 94
quantum circuit notation, 53
phase, 26
quantum circuit notation, 53
scaling complexity, 76
tensors constructing, 16
nbits property, 23
code, 19
state for n qubits, 19
topological limitations to interactions,
50
Query complexity, 162
QuEST (Quantum Exact Simulation
Toolkit), 383, 397
Quipper programming language, 372, 386
oracle automatic construction, 373, 387
proto-Quipper follow-ups, 373, 388
QCL comparison, 373, 387
Silq comparison, 374, 388
Quirk online simulations, 264, 268

QX Simulator, 383, 397

Random circuits, see Quantum random
circuits (QRC)
Random number generator, 137
coin toss, 294, 302
random combination of O or 1 states, 27
Random walk
2D walk, 295, 304
about, 297, 306
classical random walk, 293, 301
coin toss, 294, 302
quantum random walk
1D walk, 294-296, 302-304
about, 293, 301
walking the walk, 296-298, 304-307
Reduced density operator
partial trace derivation, 107
code, 108
Quirk qubits on Bloch sphere, 264, 269
Reg class, 78
Registers, 78-80
code to create and initialize, 79
libq implementation, 384, 399
gc data structure, 81
compiler optimization and, 376, 390
inverting a register, 90
QCL programming language, 368, 381
reg class, 78
result storage, 68
Relaxed peephole optimization, 379, 394
Renormalization, 72
Repetition code, 357, 369
majority voting, 357, 369
No-Cloning Theorem, 358, 370
quantum repetition code, 358, 370
Resources for information
computational complexity theory, 128
logical to physical mapping, 382, 396
quantum error correction, 363, 376
quantum programming languages, 375,
389
Quirk online simulator, 264, 268
Schrodinger equation, 301, 310
simulators available, 382, 397
RevK:it for reversible oracles, 383, 397
Ry gates, 42,43
Roots (square roots) of gates, 44—46
scipy sqrtm () function, 45
Rosen, N., 58
Rotation axis, 40
Rotation operators, 38
axis of rotation, 40
constructed via Us gates, 44
controlled rotation gates additive, 244
discrete phase gates, 42
error source potential, 42
Hadamard gates, 40-41
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phase gates, 41
quantum counting, 222
square roots of, 45
Rotations for encoding, 179
Row vectors
bras in Dirac notation, 2
inner products, 3
RSA encryption algorithm, 273, 278

S gates, see also Phase gates
square root as T gate, 45
Scaffold programming language, 370, 383
classical and quantum constructs, 376,
391
entanglement analysis, 371, 385
hierarchical QASM, 371, 384
transpiler, 370, 384
Scalability
about, 76
complexity of scaling up, 76, 365, 378
controlled gates, 50
gate fast application, 92-95
hierarchical QASM, 371, 384
Quipper programming language, 373,
387
Scalar products, see Inner products
Scheduling of gates, 378, 392
Schmidt decomposition, 111-115
Schrodinger equation
gsim simulator, 383, 397
resource for more information, 301, 310
time-independent for state evolving, 69
derivation, 300-301, 309-310
variational principle, 301, 310
Schrodinger full-state simulations, 77
Schrédinger—Feynman path histories, 100,
129, 136
gsimh simulator, 383, 397
Schrodinger—Feynman Simulation, 78
scipy
installing, 45
sgrtm () function, 45
Shor’s 9-qubit error correction code, 362,
374
Shor’s integer factorization algorithm,
273-279, 285
about, 273, 278
about phase estimation, 258, 261
classical
experimentation, 277, 282
factorization, 274, 279
greatest common divisor, 274, 279
modular arithmetic, 273, 278
order finding, 275-277, 280-282
order finding quantum algorithm
continued fractions, 290, 297
controlled modular multiplication,
288, 295
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experimentation, 290, 298
main program, 283-284, 290-292
modular addition, 286—288, 293-295
support routines, 284-286, 292-293
sparse representation benchmarked, 103
Silq programming language, 374, 388
code snippet showcasing, 374, 389
oracle construction, 374, 388
Similarity tests
about, 150
Hadamard test, 155-160
inversion test, 160
Similarity Transformation, 342, 354
Simon’s algorithm, 176
Simon’s generalized algorithm, 176
Simulation
about scalability, 76
available simulators, 382, 397
circuits, 80-86
benchmarking, 103
double-controlled gates, 83
fast gate application, 92-95
faster gate application, 95-98
finalization, 98
gate application, 82
measurement, 86
multi-controlled gates, 84
optimization 1st act, 99
parameterized gates, 83
qubits, 81
sparse representation, 101-102
standard gates, 82
Swap and controlled Swap gates, 85
complexity, 76, 129
intermediate representation, 86-91
online simulators, 264, 268
open-source simulators, 382, 396
parallelization of gates, 379, 393
quantum Fourier transform online
simulation, 264, 268
quantum random circuits
Google team, 129, 135
metric, 133
simulation design, 131
simulation evaluation, 135
simulation implementation, 133
quantum registers, 78—80
quantum simulating classical
computers, 128
quantum simulation, 299, 308
Single-qubit gates, 34—41
about constructing multi-qubit
operators, 35
about quantum gates, 34
Bloch sphere coodinates, 37
Hadamard gates, 40-41
identity gates, 35
applied to multiple qubits, 32
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Single-qubit gates (conti.) States, 19
Pauli matrices, 35 about, 12
phase gates, 41 about bit order, 22
discrete phase gates, 42 binary interpretation, 23-25
phase shift or kick gates, 43 bit index notation, 94
various gates via, 43 basis states of qubits, see Basis states
projection operators, 46 cloning, 65
quantum circuit notation, 53 collapsing on measurement, 16, 58
reversed by conjugate transpose, 29 Born rule, 69
Ry gates, 43 measurement definition, 69
rotation operators, 38 renormalization, 72
Hadamard gates, 4041 density matrices, 28
square roots of gates, 44-46 entanglement, 58-65
T gates, 43 kets representing state of system, 68
via phase gates, 43 state evolving via operators, 69
Ui (A) gates, 43 maximally mixed state, see also
Us gates, 43 Probability amplitudes
X gates, 29, 36 operator application, 30-31
applied to multiple qubits, 32 multiple qubits, 31-33
Y gates, 36 projection operators extracting
Z gates, 36 amplitude, 46
Singular value decomposition, 332, 343 quantum circuit notation
Sleator—Weinfurter construction, 56 single-qubit operators applied, 53
Solovay—Kitaev (SK) algorithm, 188—199 state change depiction, 53
about, 188 state initialization, 53

algorithm, 192-194
balanced group commutator, 194-197
matrix diagonalization function, 196
Bloch sphere angle and axis, 189
evaluation, 197
pre-computing gates, 191
similarity metric trace distance, 191
theorem, 188
universal gates, 189
SU(2) group, 189
Solovay—Kitaev (SK) theorem, 188
Sparse representation, 101-102
benchmarking, 103
libquantum library, 101
simulation, 382, 397

SPEC benchmarks, 129
Spooky action at a distance, 58,

61
quantum teleportation, 138—142
sqgrtm () function of scipy, 45
Square roots of gates, 44—46
scipy sqrtm () function, 45

State class

constructing qubits in code, 16
qubit data structure, 16
constructors, 27
all O-states or 1-states, 27
density() function, 106
member functions, 25-27
dumper function, 26
probability and amplitudes, 25
Tensor class parent, 19
nbits property, 23

quantum operations, 352, 364
qubit ordering, 21-22
qubit states, 15
similarity tests

about, 150

Hadamard test, 155-160

inversion test, 160

swap test, 150-154

swap test code, 153

swap test for multi-qubit states, 154
single-qubit 0 and 1 state constants, 28
state preparation

about, 177

data encoding, 177-181

Mottonen’s algorithm, 182—188

Solovay—Kitaev algorithm, 188—-199

two- and three-qubit states, 181
state purification technique, 115
system state as tensor product, 78
tensors constructing qubits, 16

code, 19

qubit data structure, 16

state for n qubits, 19

tensor product combined state, 20
vectors

binary interpretation, 23-25

column vectors of complex numbers,

2,16

kets representing state of system, 68

normalization, 16, 26

normalized vectors, 4

operator application, 30-31, 69

scaling complexity, 76


https://doi.org/10.1017/9781009548519.020

unitary operators as norm preserving,
29
SU(2) group, 189
Subset sum algorithm, 322-326, 333-337
about, 322, 333
experiments, 324-326, 335-337
implementation, 323, 334
Subtraction
decrement operator, 295, 303
testing quantum arithmetic, 270, 275
Summit supercomputer simulating
quantum random circuits, 135
Superdense coding, 142-145
Superposition
about, 40
about measurement, 69
error correction challenge, 358, 370
about qubits, 15
Hadamard gates on qubits, 40
equal superposition of adjacent
qubits, 41
linear combination of basis states, 15
maximally mixed state, 111
state after operator applied, 53
SVD, 332, 343
Swap gates, 51
compiler optimization, 379, 394
controlled Swap gates, 51
gc data structure, 85
Swap test, 150-154
code, 153
multi-qubit states, 154
Sycamore processor, 129

T gates
square root of S gates, 45
universal gates, 189
via phase gates, 43
Teleportation, 138-142
entanglement teleportation, 145
error correction trick, 359, 371
Tensor class, 11-14
* operator for Kronecker product, 13
checking if Hermitian or unitary, 14
comparing to values, 14
is_close() function, 14
inner products, 6
instantiating, 12
ndarray data structure, 12
tensor_type() abstraction, 12
Kronecker product member function,
13
* operator for, 13
operators derived from, 29
qubit states code, 19, 20
State class derived from, 19
nbits property, 23
Tensor products, 5
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& operator, 5
* operator, 19
binary interpretation, 23
distributive, 6
Kronecker product as, 5, 13
mixed-product property, 6
multiplication with scalar, 5
operators applied to multiple qubits,
31-33
multiple operators in sequence, 33
product states, 59
state of two or more qubits, 19
trace of a matrix, 9
Testing
debugging, 14
quantum arithmetic, 270, 275
tracing out state of one qubit, 109
Time-evolution encoding, 181
Toffoli gates, 55
logic circuits from, 126
multi-controlled X gates, 57
Sleator—Weinfurter construction, 56
Tools and techniques
density matrices, 106
maximal entanglement, 111
Pauli representation of operators,
117-120
reduced density operators, 107-110
Schmidt decomposition, 111-115
spectral theorem for normal matrices,
104-106
state purification, 115
XYX decomposition, 122—-123
ZYZ decomposition, 120-122
Trace distance, 191
Trace of a matrix, 9
tensor product, 9
trace of outer product of two kets, 9
Transpilation
intermediate representation
circuit capabilities of, 88
dumper function, 90
inverting a register, 90
IR base class, 87
IR nodes, 86
subcircuit control, 89
uncomputation, 88
Scaffold transpiler, 370, 384
Transposition
involutivity, 2
matrix, 2
Two-qubit quantum Fourier transform
online simulator, 264, 268

U, (A) gates, 43
controlled U, (1) gate for quantum
arithmetic, 266, 270
Us gates, 43
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Uncomputation, 66—68
QCL programming language, 368, 382
Silq programming language, 374, 388
transpilation intermediate
representation, 88
trick for saving result, 68
Underscore in function names, 14
Unitary matrices
about, 7
checking if Tensor is unitary, 14
norm preserving, 7, 29
tensoring together with ®, 13
Unitary operators, see also Gates;
Operators
invertable, 29
Universal gates
definition, 55, 189
QRAM model of quantum computing,
366, 379

sets of gates in quantum computing, 51,

55
Solovay—Kitaev theorem, 188
SU(2) group, 189

V gates as square root of X gates, 44, 56
val2bits () for decimal to binary, 23
Variational quantum eigensolver (VQE),
299-312, 322
about, 299, 308
algorithm, 305-308, 314-317
expectation values, 303, 312
Hamiltonian type, 302, 311
measurement in Pauli bases, 302-305,
312-314
measuring eigenvalues, 308-309,
317-319
multiple qubits, 310-312, 320-322
quantum phase estimation, 299, 308
Schrodinger equation, 300-301,
309-310
variational principle, 301, 310
VQE by peek-a-boo, 320, 331
Vector database, 331, 342
Vectors
adjoint of, 2
binary interpretation, 23-25
Bloch vector, 18
rotation operators, 38
complex numbers, 1
dual vectors for a ket, 2
eigenvalues, 6
eigenvectors, 6
Euclidean distance, 327-331, 338-342
quantum algorithms that use, 331,
342

inner products, 3
linear independent, 4
norm of, 4
normalization, 4
orthogonal, 4
states
basis states of qubits, 15
initializing with normalized vector,
28
kets representing state of system, 68
normalized vectors, 4
operator application, 30-31, 69
scaling complexity, 76
unitary operators as norm preserving,

tensor products, 5
unitary matrices as norm preserving, 7,
29
vector spaces, 4
VQE, see Variational quantum
eigensolver, see Variational quantum
eigensolver

W state entanglement, 63
Weighted maximum cut, 315, 325
Wilczek, F., ix, xii

Wire optimization, 381, 395

X gates, 29, 36
applied to multiple qubits, 32, 92
constructed with Us gate, 43
controlled—controlled X gates, 55
Sleator—Weinfurter construction, 56
logic circuits from, 126
multi-controlled X gates, 57
Not gate, 36
quantum circuit notation, 54
controlled X gates, 54
Controlled-by-0 Not gate built, 54
square root of as V gate, 44, 56
XYX decomposition, 122—123

Y gates, 36
square root of, 45
yroot gates, 45

Z gates, 36
controlled Z gates, 52
phase-flip gates, 36
quantum circuit notation, 54
controlled Z gates, 54
via phase gates, 43
790 gates, see also Phase gates
Zeilinger, Anton, 62
ZYZ decomposition, 120-122
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