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This introduction to quantum computing from a classical programmer’s perspective 

is meant for students and practitioners alike. About 50 fundamental algorithms are 

explained with full mathematical derivations and classical code for simulation, using 

an open-source code base developed from the ground up in Python and C++. New 

material throughout this fully revised and expanded second edition includes new chap-

ters on Quantum Machine Learning, State Preparation, and Similarity Tests. 

After presenting the basics of quantum computing and the software infrastructure 

used for simulation, a section on modeling classical logic with quantum gates prepares 

for the quantum supremacy experiment. With this background, the following sec-

tions discuss, derive, and implement with working code algorithms exploiting entan-

glement, blackbox algorithms, algorithms for state preparation and state similarity 

tests, algorithms based on amplitude amplification, the quantum Fourier transform 

and phase estimation, several quantum optimization algorithms, quantum walks, and 

a short section on foundational quantum machine learning algorithms. The list of 

algorithms includes Shor’s algorithm, Grover’s algorithm, SAT3, graph coloring, the 

Solovay–Kitaev algorithm, Möttönen’s algorithm, quantum mean, median, and min-

imum finding, Deutsch’s algorithm, Bernstein–Vazirani, quantum teleportation and 

superdense coding, and the CHSH game. From the field of quantum machine learning, 

the book discusses Euclidean distance, principal component analysis, and the HHL 

algorithm. The book also addresses issues around programmer productivity, including 

quantum noise, error correction, quantum programming languages, compilers, and 

techniques for transpilation. 

Robert Hundt is a distinguished engineer at Google. He has led many compiler and 

performance projects, including an open-source CUDA compiler and the high-level 

synthesis toolchain XLS. He is the senior tech lead for Google’s low-level machine 

learning software infrastructure, which includes the OpenXLA compiler for CPU, 

GPU, and TPU. He has more than 25 scientific publications, holds more than 35 

patents, and is a senior member of the Institute of Electrical and Electronics Engineers. 



“There is a great deal of interest in quantum computing today. What many would like is 

a book that explains quantum computing to people who already know how to program 

conventional computers. This book successfully fills that need.” 

– David Patterson, 2017 ACM A.M. Turing Award Laureate 

“There is a critical need for quantum software engineers in the emerging quantum com-

puting industry. Robert Hundt is a classical software engineer who presents quantum 

computing as simply as possible to others with a similar background. This book could 

be the perfect vehicle for many interested in this emerging area.” 

– Fred Chong, Seymour Goodman Professor, University of Chicago 

“Quantum mechanics, the century-old theory underlying modern physics and chemistry, 

has a reputation for being incomprehensible. Professional physicists have a standard 

approach to this conundrum: ‘Shut up and calculate!’ This book provides an alternative 

much better suited to the programmers of the twenty-first century interested in quantum 

computing: ‘Shut up and program!”’ 

– Sergio Boixo, Google 

“This book strikes just the right balance between theory and practice. Exploring quantum 

computing from the perspective of a classical programmer, using software and simulators 

to explain all concepts and algorithms, leads to an intuitive, accessible, yet deep learning 

experience. I highly recommend this book!” 

– Kunle Olukotun, Cadence Design Professor, Stanford University 

“This book takes a unique approach of introducing quantum computing with a combination 

of precise but manageable mathematics, open-source code, and detailed derivations of 

many core quantum algorithms, which makes it an ideal learning resource for the com-

munity of software programmers, including both students and professionals, to explore the 

fascinating land of quantum computing.” 

– Jason Cong, Volgenau Chair for Engineering Excellence, UCLA 
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Introduction

I think I can safely say that nobody understands quantum mechanics. 

Feynman (1965) 

I have been impressed by numerous instances of mathematical theories that are really about 

particular algorithms; these theories are typically formulated in mathematical terms that are 

much more cumbersome and less natural than the equivalent formulation today’s computer 

scientists would use. 

Knuth (1974) 

This book is an introduction to quantum computing from the perspective of a classical 

programmer. All major concepts and algorithms are explained with code, based on 

the insight that much of the complicated-looking math typically found in quantum 

computing books may look quite simple in code. For many programmers, reading 

code is faster than reading complex mathematical derivations. Coding also allows 

experimentation, which helps build intuition and understanding of the fundamental 

mechanisms of quantum computing. I believe that this approach will make it efficient 

and fun to get started. 

Contrary to other learning resources, we will not use available software frameworks 

in this book, such as the well-developed Qiskit toolkit from IBM or Google’s Cirq. The 

goal is to learn about quantum computing without being burdened by the complexities 

of these frameworks. Instead, we build our own infrastructure from the ground up, 

based initially on Python’s numpy library. It turns out that, to learn the fundamentals, 

only a few hundred lines of code are required. This initial code is slow but easy to 

debug and experiment with, making it an excellent learning vehicle. 

We also improve this infrastructure, accelerate it with C++, and detail an elegant 

sparse representation. We introduce basic compiler concepts that allow for the tran-

spilation of our circuits to platforms like Qiskit, Cirq, and others. This enables the 

use of these systems’ advanced features, such as scale-out performance and advanced 

error models. 

Typically, an introduction to quantum computing is preceded by a sizable rein-

troduction of complex linear algebra. We will not follow this pattern here. Many 

programmers have a solid foundation in linear algebra, but others lack the background 

or interest in this topic. It is my goal to produce an attractive learning resource for 

both groups without getting too deep into linear algebra. Hence, I only assume basic 
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xiii Introduction

familiarity with complex numbers, vectors, and matrices. Some core concepts are 

reviewed in Chapter 1. These basics will be sufficient for most of the book. 

Nevertheless, this second edition of the book goes deeper into the mathematical 

foundation and adds a dedicated section on more advanced topics. Although those 

will only be needed for a few algorithms, the book would not be complete without 

them. I hope that this format will be helpful to the linear algebra-challenged and not 

be too shallow for the cognoscenti. 

The book is organized into 16 chapters plus an appendix. To get started, it is rec-

ommended to read the first three chapters on the fundamentals of quantum computing 

and the code base that we use throughout the book. Chapters 4 and 5 are the bridge to 

the remaining chapters on various classes of algorithms, which can be read in almost 

any order. The book closes with a discussion of quantum programming languages, 

compilation techniques, and other aspects of productivity in Chapter 16. Some of 

the later chapters may reuse insights from earlier chapters, but the references and 

extensive index will allow you to find any missing information. 

Chapter 1 The Mathematical Minimum This brief chapter discusses the 

minimum mathematical background required to fully understand the derivations in 

this text. Basic familiarity with matrices and vectors is assumed. The chapter 

reviews key properties of complex numbers, the Dirac notation with inner and 

outer products, the Kronecker product, unitary and Hermitian matrices, 

eigenvalues and eigenvectors, the matrix trace, and how to construct the Hermitian 

adjoint of matrix-vector expressions. 

Chapter 2 Quantum Computing Fundamentals This chapter introduces the 

fundamental concepts and rules of quantum computing. In parallel, it develops an 

initial, easy-to-understand Python code base for building and simulating 

small-scale quantum circuits and algorithms. The chapter details single qubits, 

superposition, quantum states with many qubits and operators, including a sizable 

set of important single-qubit gates and controlled gates. The Bloch sphere and the 

quantum circuit notation are introduced. Entanglement follows, that fascinating 

“spooky action at a distance,” as Einstein called it. The chapter then discusses 

maximally entangled Bell states, the no-cloning and no-deleting theorems, local 

and global phases, and uncomputation. The quantum postulates are discussed 

briefly in preparation for the discussion on measurements. 

Chapter 3 Simulation Infrastructure This chapter builds a more complete 

software framework, including a high-performance simulator. It discusses 

transpilation, a powerful compiler-based technique that allows seamless porting of 

circuits to other frameworks. The methodology further enables implementing of 

key features found in quantum programming languages, such as automatic 

uncomputation or conditional blocks. The chapter also introduces an elegant 

sparse representation. 

Chapter 4 Quantum Tools and Techniques This chapter details the mathematical 

tools and techniques required by some of the advanced algorithms. Beginners may 

choose to skip this section and refer back to it as needed. The chapter discusses the 

spectral theorem, density matrices, the partial trace, Schmidt decomposition, state 

purification, and various operator decompositions. 

https://doi.org/10.1017/9781009548519.001
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Chapter 5 Beyond Classical This chapter serves as a bridge from the introductory 

material to the sections on quantum algorithms. We start by implementing a 

classical circuit using quantum gates and show that quantum computers are at least 

as capable as classical computers. Then we discuss the term “beyond classical,” 

which is now the preferred term to describe a computation that can be run 

efficiently on a quantum computer but would be intractable to run on a classical 

computer. For this, we discuss Google’s seminal quantum supremacy paper in 

detail. 

Chapter 6 Algorithms Exploiting Entanglement This chapter presents the first 

real algorithm – a quantum “Hello World” program, a simple random number 

generator. The chapter then details quantum teleportation, superdense coding, 

entanglement swapping, and the CHSH game. This game is a simplified version of 

the Bell inequalities, which established that classical theories assuming hidden 

states cannot explain quantum entanglement. 

Chapter 7 State Similarity Tests This chapter discusses the terms overlap and 

similarity between quantum states and introduces the important swap test, as well 

as the Hadamard test, and the inversion test. The mathematical derivations in this 

chapter are still very detailed. 

Chapter 8 Black-Box Algorithms The algorithms presented in this chapter were 

the first to establish a query complexity advantage for quantum algorithms. The 

list includes the Bernstein–Vazirani algorithm, Deutsch’s algorithm, and 

Deutsch–Jozsa algorithm. Quantum oracles and their construction are introduced. 

Chapter 9 State Preparation Quantum algorithms operate on inputs encoded as 

quantum states. Preparing these input states can be quite complicated. The chapter 

discusses the trivial basis and amplitude encoding schemes, as well as 

Hamiltonian encoding. It also discusses smaller circuits for two- and three-qubit 

states. Then, this chapter presents two of the most complex algorithms in this 

book, the general state preparation algorithms from Möttönen, and the 

Solovay–Kitaev algorithm for gate approximation. Beginners may decide to skip 

these two algorithms on a first read. 

Chapter 10 Algorithms Using Amplitude Amplification This chapter discusses 

the fundamental Grover’s algorithm, which enables searching over a domain of N(√
O N 

 ) 
elements with complexity. Several derivative algorithms and applications 

are being discussed, including amplitude amplification, amplitude estimation, 

quantum counting, Boolean satisfiability, graph coloring, and quantum mean, 

median, and minimum finding. 

Chapter 11 Algorithms Using Quantum Fourier Transform The quantum 

Fourier transform is another fundamental quantum algorithm. The chapter begins 

with a simple phase-kick circuit and expands to quantum phase estimation before 

detailing the quantum Fourier transform itself. A short section on arithmetic in the 

quantum domain introduces techniques that are used in a final elaborate section on 

Shor’s famous algorithm for number factorization. 

Chapter 12 Quantum Walk Algorithms A quantum walk algorithm is the 

quantum analog to a classical random walk with potential applications in search 

problems, graph problems, quantum simulation, and even machine learning. In 
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this section, we describe the basic principles of this class of algorithms on a 

simple one-dimensional topology. 

Chapter 13 Optimization Algorithms This chapter details several optimization 

algorithms. The variational quantum eigensolver is presented, which allows 

finding a minimum eigenvalue for a given Hamiltonian. This chapter also includes 

extensive notes on performing measurements in arbitrary bases. After a brief 

introduction to the quantum approximate optimization algorithm, the chapter 

further discusses the quantum maximum cut algorithm and the quantum subset 

sum algorithm in great detail. 

Chapter 14 Quantum Machine Learning Quantum machine learning is an 

exciting field that explores the intersection of quantum computing and machine 

learning. It aims to leverage the principles of quantum computing to enhance 

machine learning algorithms and potentially revolutionize how we analyze data 

and solve complex problems. This chapter begins with a simple algorithm for 

computing the Euclidean distance between vectors. We discuss the quantum 

principal component analysis and, finally, detail the complex but beautiful HHL 

algorithm for solving systems of linear equations. 

Chapter 15 Quantum Error Correction This chapter discusses quantum noise 

and techniques for quantum error correction, which is necessary for quantum 

computing. It discusses bit-flip errors, phase-flip errors, and their combinations. 

The formalism of quantum operations is introduced, along with the operator-sum 

representation and the Kraus operators. With this in mind, the chapter discusses 

the depolarization channel and imprecise gates, as well as (briefly) amplitude and 

phase damping. For error correction, repetition codes are introduced to motivate 

Shor’s 9-qubit error correction technique. 

Chapter 16 Quantum Languages, Compilers, and Tools We have introduced a 

compact infrastructure for exploration and experimentation, at the level of 

individual gates. Higher levels of abstraction are needed to scale to larger 

programs. The chapter discusses several quantum programming languages, 

including their specific tooling, such as hierarchical program representations or 

entanglement analysis. General challenges for compilation are discussed as well as 

compiler optimization techniques. 

Appendix The appendix contains a detailed description of the sparse simulation 

infrastructure. 

Notes on the 2nd Edition 

This second edition is a substantial rewrite and edit of the first edition. No page has 

been left untouched. 

The book is now organized into 16 chapters, compared to the 8 chapters before. 

Much of the material from the first edition had to be compacted to make space for 

the new material. 

• 

• 

The didactic flow has been substantially improved. Several sections have been 

rearranged to provide a better learning experience. 

https://doi.org/10.1017/9781009548519.001
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Many graphical elements have been modified to be more clear and visually 

appealing. Pointers to the code are now clearly marked (with hyperlinks in the 

online editions). 

• 

• 

More attention is now given to the mathematical foundation. This is based on 

reader feedback. For some, even the limited math of the first edition was already 

too much, while for many others the math was too shallow. The additional focus 

on the math may not help the first group, but will make the second group much 

happier. 

A lot of new content has been added: 

• Chapter 2 adds content on the W state, the U3 gate, and how it can be used to 

make other gates, a section on the No-Deleting Theorem, and a short exercise 

section on the practice of tensor expressions. 

• Chapter 3 condenses the previous sections on various pieces of software 

infrastructure and acceleration into a single section. 

• Chapter 4 is a new chapter on mathematical tools and techniques. It includes 

discussions of the spectral theorem, density matrices, the Schmidt decomposition 

and state purification, maximal entanglement, and several operator 

decompositions, such as the Pauli, ZYZ, and XYX decompositions. The previous 

section on the partial trace has been moved here as well. 

• Chapter 6 on algorithms using entanglement adds the entanglement swapping 

algorithm and a discussion of the CHSH game. 

• Chapter 7 is a new chapter on similarity tests and adds the Hadamard test, the 

inversion test, and a new multi-qubit swap test, to the previous swap test. 

• Chapter 9 is a new chapter on state preparation. It discusses the basis, amplitude, 

and Hamiltonian encoding, adds material on effective initialization of 2-qubit and 

3-qubit states, and an elaborate section on Möttönen’s algorithm for general state 

preparation. The material on Solovay–Kitaev’s algorithm has been moved here as 

well. 

• Chapter 10 is an extended chapter on algorithms using quantum amplitude 

amplification. It has previous sections on Grover’s algorithm, amplitude 

amplification, and quantum counting, and it adds new sections on amplitude 

estimation, Boolean satisfiability, graph coloring, quantum mean, median, and 

minimum finding. 

• Chapter 11 on the quantum Fourier transform and Shor’s algorithm is a rewrite 

and restructuring of prior material with more emphasis on detailed mathematical 

derivations. The section on arithmetic now adds multiplication in the Fourier 

domain. 

• Chapter 14 on quantum machine learning algorithms is new and includes a 

discussion of the Euclidean distance, the principal component analysis, and a very 

detailed discussion of the HHL algorithm for solving systems of linear equations. 

A significant number of problems and inaccuracies in the first edition were cor-

rected during the writing of this second edition. It is my sincere hope that I fixed more 

problems from the first edition than I introduced in this second edition. Naturally, the 
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inevitable remaining errors are solely my own responsibility, and I apologize for all of 

them. 

Source Code 

Much of the content of this book is explained with both math and code. However, to 

avoid turning this book into a giant code listing, we abbreviate less interesting or repet-

itive code with constructs such as [...]. Scaffolding code, such as Python import 

statements or #include directives for C++, as well as many redundant comments, are 

typically omitted. 

To run the code, as a minimal setup, a working Python interpreter is required 

with the Python packages absl, numpy, and scipy. Without the C++ acceleration 

described later in the book, some of the algorithms will continue to work but run 

rather slowly. The complete sources are hosted under a permissive Apache license on 

GitHub, along with instructions on how to download, build, and run: 

www.github.com/qcc4cp/qcc 

I will maintain the errata on this site as well. Contributions, comments, and sugges-

tions are always welcome. The code typesetting may have introduced errors, but the 

source of truth is the working code in the online repository. The code may also have 

evolved beyond what is published here. 

http://www.github.com/qcc4cp/qcc
https://doi.org/10.1017/9781009548519.001
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1 The Mathematical Minimum 

In this first chapter, we briefly discuss the minimum mathematical background 

required to follow this text. This section is quite compact, as it is mainly meant 

as a reference. Readers who are familiar with the concepts may skip this section. 

Readers easily discouraged by even basic math may proceed to the next chapters and 

refer back to here as needed. 

1.1 Complex Numbers 

Quantum computing runs on complex numbers (Penrose R., 2021). Let us start by 

briefly recalling the most important properties of complex numbers. A complex num-

ber z is of the form 

z = x + iy. 

The x is called the real part of z, and y is the imaginary part. The imaginary number i

is defined as
√ 

 i = −1, the solution to the equation 

2 x + 1 = 0. 

The conjugate of a complex number is created by replacing i with −i. The conjugate 

is often denoted by ̄z or ∗z . For example, for z = 5 + 2i, the conjugate is simply ∗ z = 
5 − 2i. The conjugate of a product of complex numbers is equal to the product of the 

conjugates of the complex numbers. This tongue twister translates to the simple rule 

∗ ∗ (ab) ∗ = a b . 

The norm of a complex number z, denoted by |z|, is calculated by multiplying z 

with its conjugate ∗ z and taking the root, the result being a real number. The norm is 

commonly referred to as the modulus or absolute value: 

√ ∗∗|z| = z z, or, equivalently, |z|2 = z z. 

A complex number z = x + iy can be drawn in the 2D plane1 where the x and y 

give the coordinates. If you think of a complex number as a vector from the origin to 

the coordinate (x,y), the norm of a complex number is the length of this vector. It is a 

real number and can be computed using Pythagoras’ theorem as 

1 Also called the complex plane. 
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x 22 + y .|z| = |x + iy| = (x − iy)(x + iy) = 

2 The Mathematical Minimum 

√ √
Note the difference between the square of a complex number and its squared norm. 

The square is computed as 

2 2 2 z = (x + iy)2 = (x + iy)(x + iy) = x + 2ixy − y . 

Complex exponentiation is defined by Euler’s famous formula: ( )
iφ = r cos φ + i sin φ re . 

Complex numbers with norm |z| = r = 1.0 are on a unit circle: 

iφ z = e = cos φ + i sin φ. 

In Python, complex numbers are conveniently a part of the language. However, note 

that the imaginary i is written as j in Python, which is commonly used in electrical 

engineering. For the example of x = 1 + i 
2 
, we write in Python: 

x = 1.0 + 0.5j 
x.real # returns 1.0 
x.imag # returns 0.5 

To conjugate, you can use the built-in conjugate() function for complex data 

types or use numpy’s conj() function. For example: 

x_conj = x.conjugate() # Python builtin, or 
x_conj = np.conj(x) # via numpy 

1.2 Dirac Notation, Bras, and Kets 

In quantum computing, we think of qubits and states as column vectors of n complex 

numbers, where n is typically a power of 2. We will soon learn why this is the case. A 

vector with n elements is also called an n-dimensional vector. In the so-called Dirac 

notation, or bra–ket notation, a column vector is called a ket and written as |x⟩ with 


x0 

x1 

with xi ∈ C and |x⟩ ∈ Cn|x⟩ = , .. . . 

xn−1 

Recall that to transpose a matrix A, we take the column i of A and make it row i of the 

transpose AT , or AT 
ij = Aji. The Hermitian conjugate of a column vector |x⟩, denoted

†
 |x⟩ by a dagger , is the transpose of the vector with each element conjugated. This is 

also called the adjoint of the vector. We write it as ⟨x|, changing the direction of the 

angle bracket and indicating that now we have a row vector: ( (∗)T )† ∗ ∗ ∗|x⟩ = |x⟩ = ⟨x| = x x . . . x .0 1 n−1 
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3 1.3 Inner Product 

In Dirac notation, this row vector ⟨x| is called a bra or the dual vector of ket 

|x⟩. Transposition and conjugation go both ways – applying the transformation twice 

results in the original ket. In other words, the dagger operation is its own inverse, a 

property called involutivity: 

†|x⟩ = ⟨x|, 
†⟨x| = |x⟩ , 
††

(|x⟩ ) = |x⟩ . 

There is the potential for confusion around conjugates. Conjugates in a bra are not 

explicitly marked with ∗ x i or
†

xi  , as in ⟨ ∗ ∗ ∗ x x . . . x 0 1 n−1 |. Converting a ket to a bra

already implies conjugation of all vector elements. 

1.3 Inner Product 

The inner product of two vectors, which is also called the scalar product or the 

dot product, is computed as a matrix product of a bra and a ket, which simplifies 

to the product between a row vector and a column vector – an element-wise vector 

multiplication and summation, which produces a single number. It is written in the 

following forms, with the dot (·) denoting a scalar product: 

⟨x| · |y⟩ = ⟨x||y⟩ = ⟨x|y⟩. 

For a ket |x⟩ and its dual bra vector ⟨x|, the inner product with another ket |y⟩ is 

defined as 

(
|x⟩ = 


x0 

x1 

. . . 

 , ⟨x| = , and |y⟩ = 


 , 

y0 

y1 

. . 

)∗ ∗ ∗ x x . . . x n−10 1 
. 

xn−1 yn−1 

∗ ∗ ⟨x|y⟩ = x0 y0 + x1 y1 + · · · + xn−1yn−1. 

The inner product is how the vectors in this notation get their names because they form 

the product of a bra and a ket, a bra(c)ket. Naming is difficult in general, and quantum 

computing is no exception. The inner product of complex vectors can result in a 

complex value. Note that ⟨x|y⟩ generally does not equal ⟨y|x⟩. For example, consider 

two kets |x⟩ and |y⟩:    −1 

2i 

1 

0|x⟩ = , |y⟩ = . 

1 i 

(1.1) 

We construct the corresponding bras as Hermitian conjugates (transposition, and nega-

tion of the imaginary parts): ))
⟨x| = −1 −2i 1 , ⟨y| = 1 0 −i . 



∗
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We then compute the two inner products as 

⟨x|y⟩ = (−1)1 − (2i)0 + 1i = −1 + i, 

⟨y|x⟩ = 1(−1) + 0(2i) − 1i = −1 − i. 

The two inner products are different. The second result is the conjugate of the first, 

which points to the general rule: 

∗ ⟨x|y⟩ = ⟨y|x⟩. 

Two vectors are orthogonal if and only if their scalar product is zero. For 2D or 3D 

vectors, we can visualize orthogonal vectors as being perpendicular to each other. 

⟨x|y⟩ = 0 ⇔ x,y are orthogonal. 

A set of vectors is called linear independent if no vector in the set can be expressed 

as a linear combination of other vectors in the set. A set is called orthogonal if the 

scalar product of any pair of distinct vectors is 0. 

A set of vectors forms a basis for the (vector) space of all vectors that can be 
2constructed from linear combinations of the vectors. The basis for a given vector 

space is not unique, as we shall see later in this book. Typically, only orthogonal basis 

vectors are considered. 

Related to the way we compute the norm of a complex number, the norm of a 

complex vector3 is the root of the scalar product of the vector with its dual vector. A 

vector is normalized if its norm (or just its inner product) is 1: | ||x⟩ = ⟨x|x⟩ = 1 ⇒ |x⟩ is normalized. 
√

State vectors in quantum computing represent probability distributions that must 

add up to 1 by definition. Hence, as we will see shortly, normalized vectors play an 

important role in quantum computing. 

1.4 Outer Product 

Where there is an inner product, there should also be an outer product. We can con-

struct the outer product between a ket |x⟩ and a bra ⟨y| by changing the order of the 

operands of the inner product. Instead of ⟨y|x⟩, we write 

(





 . 

∗ ∗ ∗ x0y x0y . . . x0y0 1 n−1x0 
∗ ∗ ∗ x1y x1y . . . x1y0 1)x1 n−1∗ ∗ ∗|x⟩⟨y| = y y . . . y = 0 1 n−1. . . ... . . . . . .. . . 

∗ ∗ ∗xn−1 xn−1y xn−1y . . . xn−1y0 1 n−1 

2 Vector spaces and their properties are an important topic in linear algebra. However, in this book, we 

will not go into great depth on this topic. 
3 This norm is also called the Euclidean norm or L2 norm. Vector norms are often written with two bars 

on each side, such as ||x|| or || |x⟩ ||. However, for ease of readability, we will only use single bars in this 

book. 

⎹ ⎹⎹ ⎹
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In the example given by Equation (1.1), |x⟩ is a 3 × 1 vector, |y⟩ is a 1 × 3 vector, 

and ⟨y| is a 3 × 1 vector. According to the rules of matrix multiplication, their outer 

product will be a 3×3 matrix. Again, if the vector elements are complex, we conjugate 

the vector elements when converting from bra to ket and vice versa. 

Tensor Product 1.5 Tensor Product 

To denote the tensor product4 of two vectors, which can be either bras or kets, we use 

the ⊗ operator symbol and may use one of the following shorthand notations for kets 

|x⟩ ⊗ |y⟩ = |x⟩ |y⟩ = |x,y⟩ = |xy⟩ , (1.2) 

and bras 

⟨x| ⊗ ⟨y| = ⟨x|⟨y| = ⟨x,y| = ⟨xy|. 

In a tensor product, each element of the first constituent is multiplied by the whole 

of the second constituent. Therefore, an n × m matrix tensored with a k × l matrix 

will result in an nk × ml matrix. For example, to compute the tensor products of the 

following two kets: ����
1 0 |0⟩ = , |1⟩ = ,
0 1 � 

� = 


0 

1 

0 


0 

1 
1� �|0⟩ ⊗ |1⟩ = |01⟩ = . 
0 

0 
1 0 

You can see that the tensor product of two kets is a ket, the tensor product of two 

bras is a bra, and the tensor product of two diagonal matrices is a diagonal matrix. 

Of course, tensor products are also defined for general matrices. Here we show an 

example of two 2 × 2 matrices being tensored together: ����


b00 b01 b00 b01 
a00 a01����

b00 b01 b10 b11 b10 b11a00 a01 ⊗ � �� �= 
b10 b11 b00 b01 b00 b01a10 a11 

a10 
b10 b11 

a11 
b10 b11 

a00b00 a00b01 a01b00 a01b01 

a00b10 a00b11 a01b10 a01b11 

a10b00 a10b01 a11b00 a11b01 

a10b10 a10b11 a11b10 a11b11 


 .= 

For multiplication of scalars α and β with a tensor product, these rules apply: 

α(|x⟩ ⊗ |y⟩) = α |x⟩ ⊗ |y⟩ = |x⟩ ⊗ α |y⟩ , 

4 I am ignoring the differences between the tensor product and the Kronecker product and will use these 

terms interchangeably. 
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(α + β)(|x⟩ ⊗ |y⟩) = α |x⟩ ⊗ |y⟩ + β |x⟩ ⊗ |y⟩ . 

Assume that we have a tensor product of two matrices A and B, and another tensor 

product of two vectors |a⟩ and |b⟩. If the two products are multiplied with standard 

matrix multiplication, the very important mixed-product rule applies, which is used in 

many places in this text: 

(A ⊗ B)(|a⟩ ⊗ |b⟩) = A |a⟩ ⊗ B |b⟩ . (1.3) 

Transposition and conjugation distribute over the tensor product: 

(A ⊗ B)T = AT ⊗ BT , 
∗ ∗ (A ⊗ B) = A ∗ ⊗ B . 

Because the adjoint consists of the transpose and the complex conjugate, the adjoint 

is distributed as well: 

† †(A ⊗ B) = A† ⊗ B , and similarly (
|φ⟩ ⊗ |χ⟩ 

)† 
= ⟨φ| ⊗ ⟨χ|. 

(1.4) 

With this, we find that for two composite kets 

|ψ1⟩ = |φ1⟩ ⊗ |χ1⟩ and |ψ2⟩ = |φ2⟩ ⊗ |χ2⟩ , 

and with Equation (1.3), the inner product between |ψ1⟩ and |ψ2⟩ is ( )†⟨ψ1|ψ2⟩ = |φ1⟩ ⊗ |χ1⟩ |φ2⟩ ⊗ |χ2⟩ ( )( )
= ⟨φ1| ⊗ ⟨χ1| |φ2⟩ ⊗ |χ2⟩ 
= ⟨φ1|φ2⟩⟨χ1|χ2⟩. 

( )
(1.5) 

It follows that the tensor product of two unit vectors (with norm 1) also has the unit 

norm. 5 

1.6 Eigenvalues and Eigenvectors 

There is a special case of matrix-vector multiplication where the following equation 

holds, where A is a square matrix, |ψ⟩ a ket, and λ a complex scalar: 

A|ψ⟩ = λ|ψ⟩. 

Applying A to the special vector |ψ⟩ only scales the vector with a complex number, it 

does not change its orientation. We call λ an eigenvalue of A. There can be multiple 

eigenvalues for a given matrix. The corresponding vectors for which this equation 

holds are called eigenvectors. In quantum mechanics, the synonym eigenstates is also 

used. Zero vectors are generally excluded from the exclusive club of eigenvectors. 

For a diagonal matrix, finding the eigenvalues is trivial. Given a diagonal matrix of 

the form 

5 Discussed in http://quantumcomputing.stackexchange.com/a/32146. 

http://quantumcomputing.stackexchange.com/a/32146
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7 1.8 Unitary Matrices 

λ1 

 , 

λ0 

 . . . 

λn−1 

we can pick the eigenvalues right off the diagonal. The corresponding eigenvectors are 

(1,0,0, . . .)T ,(0,1,0, . . .)T , . . . , (0,0, . . . ,1)T , a set that is also called computational 

basis. Note that any multiple of an eigenvector is also an eigenvector for a given 

eigenvalue. 

Generally, eigenvalues for a given (smaller) matrix U can be found by solving6 the 

characteristic equation det(U−λI) = 0. In this text, we keep it simple and use numpy 

to find the eigenvalues of a given matrix: 

import numpy as np 
[...] 
umat = ... # some matrix 
eigvals, eigvecs = np.linalg.eig(umat) 

1.7 Hermitian Matrices 

A square matrix A is a Hermitian matrix if it is equal to its transposed complex 

conjugate †A  . As such, the diagonal elements must be real numbers, and the elements 

mirrored along the main diagonal are complex conjugates of each other. For example, 

the following matrix A is Hermitian:  √
1 3 + i 2 

A = A† = √ . 
3 − i 2 0 

Similarly to the way we compute Hermitian conjugates for vectors in Section 1.2, to 

construct the Hermitian conjugate of a square matrix, you have to transpose the matrix 

and conjugate its elements. A Hermitian conjugate is also called Hermitian adjoint, or 

just adjoint for short. The terms adjoint and Hermitian conjugate are synonymous and 

can be used interchangeably. 

The eigenvalues of Hermitian matrices are always real. A perhaps surprising prop-

erty of Hermitian matrices is that their eigenvectors are orthogonal for distinct eigen-

values. A Hermitian matrix M is positive semidefinite if all its eigenvalues λi are 

positive, denoted by M ≥ 0. Similarly, M is positive semidefinite if ⟨v|M|v⟩ ≥ 0 for all 

vectors |v⟩. This will become clear later in Section 4.1 on the spectral decomposition. 

1.8 Unitary Matrices 

A square matrix A is normal if   †AA = †A A. It is unitary if its conjugate transpose is 

equal to its inverse, with   †A A = †AA = I. Both Hermitian and unitary matrices are 

6 With det being the determinant of a matrix. See, for example: http://en.wikipedia.org/wiki/Determinant. 

The matrix I is the identity matrix which has 1s on the diagonal and 0s everywhere else. 

( )

http://en.wikipedia.org/wiki/Determinant
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normal. Unitary matrices are norm-preserving. Multiplying a unitary matrix with a 

vector might change the orientation of the vector, but it will not change its norm. The 

columns of a unitary matrix form an orthonormal basis in Cn . In general, a matrix is 

unitary if it transforms any orthonormal basis in Cn into another orthonormal basis. 

The eigenvectors of a unitary (square and complex) matrix are orthonormal. We 

can prove 7 that the eigenvalues of a unitary matrix are unimodular; they have a mod-

ulus of 1. 

Proof We know that eigenvalues are defined as 

U|u⟩ = λ|u⟩. 

Assume a normalized eigenvector |u⟩ with an inner product of 1. By computing the 

norm on both sides, we have 

⟨uU†|Uu⟩ = ⟨uλ∗ |λu⟩. 

We know that †U U = I because U is unitary. We pull the factor (λ∗|λ) = |λ|2 in front 

of the inner product: 

⟨uU†|Uu⟩ = (λ∗λ)⟨u|u⟩, 
⟨u|u⟩ = |λ|2⟨u|u⟩, 

⇒ |λ|2 = 1. 

 Since |λ2| = 1, we can write the complex eigenvalues as λ = iφe . In the following 

example, the matrix Y is both unitary and Hermitian. The matrix S is unitary, but not 

Hermitian: � � � � � �
0 i 1 0 1 0† †Y = Y = and S = = = S . −i 0 0 i 0 −i 

/

Hermitian Adjoint of Expressions 

8 

1.9 Hermitian Adjoint of Expressions 

Here are the rules for conjugating expressions of matrices and vectors. We use these 

rules extensively throughout this book. Previously, we learned how to convert between 

bras and kets as |ψ †⟩ = ⟨ψ| and ⟨ψ †| = |ψ⟩. To compute the adjoint of a matrix scaled 

by a complex factor α, we use 

† †(αA) = α∗ A = A† α∗ . 

For matrix–matrix products, the order reverses (this is an important rule used often 

in this book): 

(AB)
† 
= B†A† . (1.6) 

Note that this differs from the rule for the tensor product shown in Equation (1.4). 

To compute the adjoint for products of matrices and vectors, the order reverses as well: 

7 This simple proof showcases a few of the tricks used later in this book. 
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† †(A|ψ⟩) = ⟨ψ|A , 
† † †(AB|ψ⟩) = ⟨ψ|B A . 

For matrices in outer product notation, this rule follows from Equation (1.6) (by 

taking |ψ⟩ as the A in Equation (1.6) and ⟨φ| as the B): 

†A = |ψ⟩⟨φ| ⇒ A = |φ⟩⟨ψ|. 

And finally, the adjoint of a sum of two operators is 

† † †(A + B) = A + B . 

1.10 Trace of a Matrix 

The trace of an n × n matrix A is defined as the sum of its diagonal elements: 

Σ−1n 

tr(A) = aii = a00 + a11 + · · · + an−1n−1 . 

i=0 

The following are basic properties of the trace, where c is a scalar, and A and B are 

square matrices: 

tr(A + B) = tr(A) + tr(B), 

tr(cA) = c tr(A), 

tr(AB) = tr(BA). 

In general, the trace operation is cyclic (as long as the dimensions of the matrices 

allow it). For example, for a product of three matrices, 

tr(ABC) = tr(BCA) = tr(CAB). 

For the trace of tensor products, this important relation holds: 

tr(A ⊗ B) = tr(A) tr(B). 

The next relation is important for quantum measurements, as we will discover soon. 

Suppose we have two kets |x⟩ and |y⟩: 


x0 

and |y⟩ = 


 . 

y0 

y1 

. . 

x1 

|x⟩ = . . . . 

xn−1 yn−1 

The trace of the outer product |x⟩⟨y| is equal to the inner product of the operands in 

reverse order: 

tr(|x⟩⟨y|) = ⟨y|x⟩. (1.7) 
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We can see this directly from writing the outer product as 

( ∗ ∗ ∗ x0 x0y x0y . . . x0y0 1 n−1 
∗ ∗ ∗ 


 )∗ ∗ ∗ y y . . . y = 0 1 n−1 


x1 

. . 

x1y x1y . . . x1y0 1 n−1 

. . .. . . . . .. .. . 
∗ ∗ ∗ xn−1 xn−1y xn−1y . . . xn−1y0 1 n−1 

n−1 

∗ =⇒ tr(|x⟩⟨y|) = xiy = ⟨y|x⟩.i 

i=0 

Σ
We will use Equation (1.7) often in this book for expressions like the following: 
⟨ 
⟨((( )))

tr ⟨x|A|x⟩ = tr A|x⟩ x| = tr |x⟩ x|A . 

Finally, the trace of a matrix A is the sum of its n eigenvalues λi, counted with 

multiplicity:8 

Σn−1 

tr(A) = λi. 

i=0 

(1.8) 

We will use this property in several places in this book as well, but for a proof we have 

to wait until Section 4.1 on the spectral decomposition. 

8 Which means that identical eigenvalues are counted multiple times. 

⟨ ⟨
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This chapter outlines the basic principles and rules of quantum computing. In parallel, 

we develop an initial, easy-to-understand, easy-to-debug code base for building and 

simulating smaller-scale algorithms. 

The chapter is structured as follows. First, we introduce our basic underlying data 

type, the Python Tensor type, which is derived from numpy’s ndarray data type. 

Using this type, we construct single qubits and quantum states composed of many 

qubits. We define operators that allow us to modify states and describe a range of 

important single-qubit gates. Controlled gates, which play a similar role to control 

flow in classical computing, come next. We detail how to describe quantum circuits 

via the Bloch sphere and in quantum circuit notation. A discussion of entanglement 

follows, that fascinating “spooky action at a distance,” as Einstein called it. In quantum 

physics, measurement might be even more problematic than entanglement (Norsen, 

2017). In this text, we avoid philosophy and conclude the chapter by describing a 

simple way to simulate measurements. 

2.1 Tensors 

Quantum computing is expressed in the language of linear algebra, with vectors, 

matrices, and operations such as the inner product. Quantum algorithms are, to a large 

degree, algorithms based on linear algebra. Because of that, some of the mathematics 

is unavoidable. A very compressed summary of necessary mathematical concepts was 

already presented in the previous chapter. However, since this book has “programmer” 

in the title, we balance the mathematical development of the algorithms with working 

code for experimentation. 

Let us start by describing a Python data structure that will serve as the basis for all 

the code in this book. Python may be slow to execute but is fast to develop.1 It also 

has the vectorized and accelerated numpy numerical library for scientific computing. 

We make great use of this library and avoid implementing standard numerical linear 

algebra operations ourselves. In general, we follow Google’s coding style guides for 

Python (Google, 2021b) and C++ (Google, 2021a). 

One of the insights here is that it only takes a little bit of code to implement 

and simulate the algorithms. Of course, there are many existing frameworks and 

1 To be fair, only for programs up to moderate size. 
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libraries available. The advantage of quickly developing our own framework is that 

you can focus on learning quantum computing and not be distracted by having to 

learn another complex framework. Learning quantum computing is already hard 

enough. 

The core data types, such as states and operators, are all vectors and matrices of 

complex numbers. It is good practice to base the types on one common array abstrac-

tion and hide the underlying implementation. The typical benefits are an improved 

development speed and a smaller jump from experimentation on your laptop to run-

ning on a distributed supercomputer. The data type for all subsequent work will be our 

Python Tensor class. 

We derive Tensor from the ndarray array data structure in numpy. It will behave 

just like a numpy array, but we can augment it with additional convenience functional-

ity. For example, for ease of debugging, we allow a tensor to have a descriptive name. 

There are several complex ways to instantiate an ndarray. The proper way to derive 

a class from this data type is complicated but well documented.2 

PY 
Find the code 

In file src/lib/tensor.py 

import numpy as np 

class Tensor(np.ndarray): 
def __new__(cls, input_array, op_name=None) -> Tensor: 

cls.name = op_name 

return np.asarray(input_array, dtype=tensor_type()).view(cls) 

def __array_finalize__(self, obj) -> None: 
if obj is None: 

return 
# If new attributes are needed, add them like this: 

# self.info = getattr(obj, 'info', None) 

Note the use of tensor_type() in this code snippet: It abstracts the floating-point 

representation of complex numbers. The choice of which complex data type to use 

is an interesting question. Should we use complex numbers based on 64-bit doubles, 

32-bit floats, or perhaps something else, for example, a TPU 16-bit bfloat3 format? 

Smaller data types may be faster to simulate due to lower memory bandwidth require-

ments, but they come at the cost of reduced numerical precision. The numpy package 

supports np.complex128 (consisting of two 64-bit doubles) and np.complex64 

(with two 32-bit floats). We define a command line flag that holds the width of the 

type and functions to return the corresponding numpy data type and the number 

of bits: 

2 Refer to http://numpy.org/doc/stable/user/basics.subclassing.html. 
3 TPU stands for Google’s “Tensor Processing Unit,” a hardware accelerator for machine learning 

algorithms. It also introduced the bfloat data type, which is a standard fp32 data type but without the 

lower 16 bits. 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/tensor.py
http://numpy.org/doc/stable/user/basics.subclassing.html
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from absl import flags 
flags.DEFINE_integer('tensor_width', 64, 'Width of complex (64, 128)') 

def tensor_width(): 
return flags.FLAGS.tensor_width 

def tensor_type(): 
assert tensor_width() == 64 or tensor_width() == 128 
return np.complex64 if tensor_width() == 64 else np.complex128 

As we shall see in our discussion of quantum states in Section 2.4, the Kronecker 

product of tensors is an important operation. As mentioned in Section 1.5, this product 

is commonly referred to as the tensor product, which is also the term we will use.4 We 

implement it by adding the member function kron to the Tensor class. This function 

delegates to the function of the same name in numpy. 

We will use this operation in many places, so we additionally overload the Python 

multiplication operator * for convenience. There is the potential to confuse this * oper-

ator with simple matrix multiplication. However, in Python and in numpy, matrix mul-

tiplication is done with the at operator @. We conveniently inherit this multiplication 

operator from numpy and do not have to implement it ourselves: 

def kron(self, arg: Tensor) -> Tensor: 
return self.__class__(np.kron(self, arg)) 

def __mul__(self, arg: Tensor) -> Tensor: 
return self.kron(arg) 

We will often construct larger matrices by tensoring together many identical matri-

ces, which corresponds to calling the kron function multiple times. To tensor together 

n matrices A, we will use a notation similar to raising the matrix to the power of n, but 

add the ⊗ operator in the notation: 

A ⊗ A ⊗ · · · ⊗ A( )( ) ⊗n = A = An = AA · · · A .( )( )
n n 

/

It looks like a power function, but instead of matrix multiplication, it uses Kro-

necker products. Naming is hard, but this function names itself: We should call it 

the Kronecker power function, or kpow (pronounced “Kah-Pow”). We handle cases 

where the exponent is 0 as a special case with x 0 = 1. As expected, numpy correctly 

computes tensor products with scalars. 

def kpow(self, n: int) -> Tensor: 
if n == 0: 

return self.__class__(1.0) 
t = self 

for _ in range(n - 1): 

4 Tensoring states rolls off the tongue much more easily than Kroneckering states. 
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t = np.kron(t, self) 

return self.__class__(t) # Return a Tensor type 

Often, especially during testing, we want to compare a Tensor with another tensor. 

We are working with complex numbers based on floating-point data types. Direct 

comparison of values of these types is considered bad practice due to issues with 

floating-point precision. Instead, for equality, we have to check that the difference 

between two numerical values is less than a given ε. 

Fortunately, numpy comes to the rescue and offers the function allclose(), 

which compares full tensors, so we do not have to iterate over dimensions and 

compare real and imaginary parts. Here, and in almost all other places, we use a 
5tolerance of 10−6 and add the is_close method to our Tensor type. Python’s 

math module has an isclose() function. However, we follow Google’s coding 

style, which requires us to name functions with a trailing underscore after is, as in 

is_close(): 

def is_close(self, arg) -> bool: 
return np.allclose(self, arg, atol=1e-6) 

In Section 1.8, we learned about Hermitian and unitary matrices. The two helper 

functions below check for these properties: 

def is_hermitian(self) -> bool: 
if len(self.shape) != 2 or self.shape[0] != self.shape[1]: 

return False 
return self.is_close(np.conj(self.transpose())) 

def is_unitary(self) -> bool: 
return Tensor(np.conj(self.transpose()) @ self).is_close( 

Tensor(np.eye(self.shape[0]))) 

Another interesting matrix type is a permutation matrix, which has a single 1 

in each row and column. Multiplying a column vector by such a matrix allows 

us to permute the vector elements. The Tensor class offers the member function 

is_permutation() to verify this matrix property: 

def is_permutation(self) -> bool: 
x = self 

return (x.ndim == 2 and x.shape[0] == x.shape[1] and 
(x.sum(axis=0) == 1).all() and 
(x.sum(axis=1) == 1).all() and 
((x == 1) or (x == 0)).all()) 

5 Note that for scalars, math.isclose is significantly faster than np.allclose. We will use it in 

performance-critical code. 
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2.2 Qubits 

In classical computing, a bit can have the values 0 or 1. It is off or on, like a switch. 

You could say that a bit is in the off state (0 state) or in the on state (1 state). Quantum 

bits, which we call qubits, can also be in a 0 or a 1 state. What makes them quantum 

is that they can be in superposition of these states: They can be in the 0-state and the 

1-state at the same time. What exactly does this mean? 

First, we must distinguish between a qubit and state of a qubit. Physical qubits, 

developed for real quantum computers, are real physical entities, such as ions captured 

in an electric field or Josephson junctions in an ASIC. The state of a qubit describes 

some measurable property of that qubit, such as the energy level of an electron. 

In quantum computing, at the level of programming abstractions, the physical 

implementation does not matter; we are only concerned with the measurable state. 

This is analogous to classical computing, where very few people care about the 

quantum effects that enable transistors at the level of logic gates. In this text, we will 

use the terms qubit and state of the qubit interchangeably. 

The state of one or more qubits is often denoted by the Greek symbol |ψ⟩ (“psi”). 

The standard notation for the 0-state of a qubit is |0⟩ in the Dirac notation and |1⟩ 
for the 1-state. You can think of these as physically distinguishable states, such as the 

energy levels of electrons. Superposition now means that the state of a qubit is a linear 

combination of the orthonormal basis6 states, for example, the |0⟩ and |1⟩ states, as 

|ψ⟩ = α|0⟩ + β|1⟩, 

where α and β are complex numbers, called the probability amplitudes. We further 

require that 

|α|2 + |β|2 = 1, (2.1) 

for reasons explained below. Using the basis vectors (1, 0)T and (0, 1)T , we define 

the state of a qubit elegantly as ( ) ( ) ( )
1 0 α |ψ⟩ = α|0⟩ + β|1⟩ = α + β = . 
0 1 β 

The choice of (1, 0)T and (0, 1)T as orthonormal basis vectors, which is also called 

the computational basis, is intuitive and simplifies many of the calculations. The basis 

vectors are orthogonal with a scalar product of ⟨0|1⟩ = 0 and normalized with scalar 

products of ⟨0|0⟩ = ⟨1|1⟩ = 1. 

Other bases are possible, especially those resulting from rotations, which are com-

monplace in quantum computing. For example, the Hadamard basis consists of the 

two orthonormal vectors |+⟩ and |−⟩, which are defined as 

6 To be rigorous, one would say superposition can be the linear combination of any two distinct, not 

necessarily orthogonal states. 
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( )

For the superposition |ψ⟩ = α|0⟩ + β|1⟩, we required |α|2 + |β|2 = 1. As will 

become clear later, this follows from one of the fundamental postulates of quantum 

mechanics, which states that on measurement, the state collapses to |0⟩ with probabil-

ity |α|2, or to |1⟩ with probability |β|2. The state has to collapse to one of the two. The 

probabilities must add up to a real value of 1. Since amplitudes are complex numbers 

in general, we use the absolute value of the inner product to calculate the real physical 

probabilities. 

Let us look at a standard example. Suppose we have a qubit in the state 
 √
3 i |φ⟩ = |0⟩ + |1⟩. 

2 2 

For a single complex number c, the conjugate   ∗c is the same7 as the Hermitian 

adjoint †c . The probability p|0⟩ of measuring |0⟩ is the norm squared:8 |||||
|||||

 (  (  (√ 2 √ † √ √ √ 
3 3 3 3 3 3 

p|0⟩ = = = = . 
2 2 2 2 2 4 

To compute the probability p|1⟩ of measuring |1⟩, we take the norm squared of the 

amplitude i/2 as |||| ||||2 ( )† ( ) ( )( )
i i i −i i 1 

p|1⟩ = = = = . 
2 2 2 2 2 4 

You can see that the two probabilities of 3/4 and 1/4 add up to 1. 

The following code will translate these concepts into a straightforward implemen-

tation. As a forward reference, we use the type State, which we will discuss in 

Section 2.4. In simple terms, State is a vector of complex numbers implemented 

using Tensor. 

To construct a qubit, we need α or β, or both. If only one is provided, we can easily 

compute a candidate9 for the other one since their squared norms must add up to 1. 

To compute the squared norms of the complex numbers α and β, we multiply each 

by its complex conjugate (using np.conj). The result will be a real number.10 To 

avoid generating a type error from numpy, we have to explicitly convert the result to 

np.real(). We compare the results to 1.0, and if it is within tolerance, we construct 

and return the qubit as a State. 

7 We will often use the dagger for simplicity. 
8 We are really computing a projection |⟨0|ψ⟩|2, but for more details we will have to wait for Section 

2.13.2 on measurements. 
9 Here, we ignore a possible local phase, which we will learn about in Section 2.3. 

10 We could also use np.abs(alpha)**2, but I prefer it this way; it is more explicit. You will find this 

construction in many places in this book. 

|||||
|||||

( ) (√ ) ( )( )

|| ||||| |

.
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PY 
Find the code 

In file src/lib/state.py 

def qubit(alpha: complex = None, beta: complex = None) -> State: 
if alpha is None and beta is None: 

raise ValueError('alpha, beta, or both, need to be specified') 
if beta is None: 

beta = np.sqrt(1.0 - np.real(np.conj(alpha) * alpha)) 

if alpha is None: 
alpha = np.sqrt(1.0 - np.real(np.conj(beta) * beta)) 

norm2 = np.real(np.conj(alpha) * alpha) + np.real(np.conj(beta) * beta) 

assert math.isclose(norm2, 1.0), 'Qubit probabilities not equal to 1.' 
return State([alpha, beta]) 

2.3 Bloch Sphere 

We now introduce the Bloch sphere, a 3D visualization of the state of a qubit, named 

after the famous physicist Felix Bloch, even though it was first introduced by Feynman 

(1957). It may be especially useful for visual learners. We will use it in the following 

sections to visualize the effect of operators on qubits. To begin, let us introduce some 

basic trigonometry and an angle θ. Using 

θ θ 
α = cos and β = sin ,

2 2 

we meet the requirement from Equation (2.1) that 

2 θ θ |α|2 + |β|2 = cos + sin2 = 1. 
2 2 

Now we introduce a second angle φ as a phase φ ei  between |0⟩ and |1⟩. This phase 

is called a local phase and it plays an important role in many algorithms. We must not 

ignore it, and, more importantly, Equation (2.1) still holds with it. With this, we can 

write a qubit in the alternative form 

θ θ iγ |ψ⟩ = e cos |0⟩ + eiφ sin |1⟩ . 
2 2 

( )
(2.2)

The parameters γ and φ are real numbers in [0,2π) and θ in [0,π). The first term 
γei  in Equation (2.2) is called a global phase. Multiplying a state by such a complex 

coefficient does not have an actual physical meaning because the expectation value of 

the state with or without the coefficient does not change. This is also related to what 

physicists call phase invariance. 

The expectation value for an operator A on state |ψ⟩ (which we will develop in Sec-

tion 2.13 on measurement) is ⟨ψ|A|ψ⟩. The Hermitian adjoint of ( ∗c |ψ⟩)† = ⟨ψ|c  . We 

can see that the expectation value with and without a global phase remains unchanged. 

States with or without a global phase cannot be distinguished: 

−iφ −iφ iφ ⟨ψ|e Aeiφ|ψ⟩ = ⟨ψ|e e A|ψ⟩ = ⟨ψ|A|ψ⟩. 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/state.py
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(a) Sphere with axes x, y, and z. (b) Basis states on the sphere. 

Figure 2.1 The Bloch sphere representation. 

The two parameters θ and φ are sufficient to specify a qubit. This leads to a 

representation as a point on a three-dimensional sphere with unit radius as shown in 

Figure 2.1(a), where a qubit |ψ⟩ lies on the surface of the sphere. With some trigonom-

etry, we see that this point is specified by a vector→r = (cos φ sin θ, sin φ sin θ, cos θ), 
the so-called Bloch vector. 

Let us explore where we can find specific states on the sphere, as shown in 

Figure 2.1(b). The position at the sphere’s north pole has θ = 0 and φ = 0 (other 

values for φ will still land the qubit on the north pole, but let us ignore this case for 

now). With this, the state becomes 

0 0 
cos |0⟩ + eiφ sin |1⟩ = 1 |0⟩ + 0 |1⟩ = |0⟩ . 

2 2 

The state |0⟩ sits at the top. Similarly, for θ = π, state |1⟩ sits at the south pole: 

π π 
cos |0⟩ + eiφ sin |1⟩ = 0 |0⟩ + 1 |1⟩ = |1⟩ . 

2 2 

The points where the positive and negative x-axes intersect with the sphere have 

angles θ = π/2 with φ = 0 and φ = π. This is where we find the Hadamard bases 

|+⟩ and |−⟩ with 

π/2 π/2 1 1 
cos |0⟩ + eiφ sin |1⟩ = √ |0⟩ + √ |1⟩ = |+⟩ , 

2 2 2 2 

π/2 π/2 1 1 
cos |0⟩ + eiπ sin |1⟩ = √ |0⟩ − √ |1⟩ = |−⟩ . 

2 2 2 2 

Finally, the points that intersect the positive and negative y-axis have angles θ = 
π/2 with φ = π/2 and φ = 3π/2. These states form another basis which is affec-

tionately, and sometimes confusingly, denoted as |i⟩ and |−i⟩: 
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π/2 π/2 1 1 
cos |0⟩ + e π/2 sin |1⟩ = √ |0⟩ + i √ |1⟩ = | i ⟩ = |+y⟩ , 

2 2 2 2 

π/2 π/2 1 1 
cos |0⟩ + e 3π/2 sin |1⟩ = √ |0⟩ − i √ |1⟩ = |−i⟩ = |−y⟩ . 

2 2 2 2 
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The term |i⟩ can be confusing because it is often used to denote arbitrary compu-

tational basis states. Instead of |i⟩ and |−i⟩, we will also use the terms |+y⟩ and |−y⟩ 
for these basis states. To add to the confusion, note that states with anti-parallel Bloch 

vectors are orthogonal. Orthogonal states do not have orthogonal Bloch vectors. 

Another interesting question is how to compute the x,y,z coordinates for a given 

state |ψ⟩ on a Bloch sphere. We will have to make more progress before we can answer 

this question in Section 2.7.3. Bloch spheres are only defined for single-qubit states. 

You can visualize the Bloch sphere of an individual qubit in a multi-qubit system 

by tracing out all the other qubits in the state. This is done with the partial trace 

procedure, a useful tool we introduce in Section 4.3. 

2.4 States 

As we saw in Section 2.2, the possible quantum state of a qubit is a vector of complex 

numbers that represent probability amplitudes. We should use our trusty Tensor class 

to represent states in code and inherit the State class from Tensor. In this way, we 

also conveniently inherit the Python __repr__ and __str__ functions from the base 

class. 

PY 
Find the code 

In file src/lib/state.py 

class State(tensor.Tensor): 
"""class State represents single- and multi-qubit states.""" 

So far, we have learned how to construct a single-qubit state. But what about a state 

that consists of multiple qubits? The state of two or more qubits is defined as their 

tensor product. To compute it, we added the * operator to the underlying Tensor 

type in Section 2.1 (implemented as the corresponding Python __mul__ member 

function). Given this definition, the quantum state of n qubits is a Tensor of 2n 

complex probability amplitudes. And we already know, from Equation (1.2), that 

for two qubits |φ⟩ and |χ⟩ we can write the combined state as 

|ψ⟩ = |φ⟩ ⊗ |χ⟩ = |φ⟩|χ⟩ = |φ,χ⟩ = |φχ⟩. 
11For two qubits, there are four basis states, and we can write the state |ψ⟩ as 

11 By convention, computational basis states are often denoted as |ei⟩. Basis states for a general state |ψ⟩ 
may also be written as |ψ0⟩ , . . . , |ψn−1⟩, which is a convention we will use often. 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/state.py
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|ψ⟩ = 

(||(
)\\) = c0 

(||(
1 

0 

0 

)\\)+ c1 

(||(
0 

1 

0 

)\\)+ c2 

(||(
0 

0 

1 

)\\)+ c3 

(||(
0 

0 

0 

)\\)
c0 

c1 

c2 

c3 0 0 0 1 

= c0 |e0⟩ + c1 |e1⟩ + c2 |e2⟩ + c3 |e3⟩ 
= c0 |ψ0⟩ + c1 |ψ1⟩ + c2 |ψ2⟩ + c3 |ψ3⟩ 

3 

= ci |ψi⟩. 
i=0 

∑
We already learned in Section 1.5 that the norm of a tensor product of vectors with 

unit norm is also 1, which is exactly what we need for state vectors to represent prob-

abilities. Probability amplitudes are complex numbers. To compute the inner product, 

we multiply by the complex conjugates and exploit the fact that the basis states are 

normalized with an inner product of 1: 

⟩ ⟩ ⟩∗ ∗ ∗ ⟨ψ|ψ⟩ = c ⟨ψ0| c0 |ψ0⟩ + c ⟨ψ1| c1 |ψ1⟩ + · · · + c ⟨ψn−1| cn |ψn−1⟩0 1 n 

∗ ∗ ∗ = c0 c0 ⟨ψ0| ψ0 + c1 c1 ⟨ψ1| ψ1 + · · · + c cn ⟨ψn−1| ψn−1n 

∗ ∗ ∗ = c0 c0 + c1 c1 + · · · + cn−1cn−1 

= 1 . 

We can extract an individual value ci by computing the inner product of the state 

with the corresponding computational basis vector |ei⟩. For example, to extract c2 (you 

can get ∗ c 2 by reversing the order of the inner product): ( ) ( )T ⟨e2|ψ⟩ = 0 0 1 0 c0 c1 c2 c3 = c2. (2.3) 

2.4.1 Tensoring States 

To build systems of multiple qubits, the individual states of the participating qubits are 

tensored together. Given our definition of the tensor product in Section 1.3, this was 

easy to understand when the states were expressed as vectors: 

)()(
a c ⊗ 
b d 

= 

(||(
)(

c 
)\\) = 

(||(
ac 

ad 

bc 

)\\) . 

a (d)
c 

b 
d bd 

(2.4) 

But what if a state |ψ⟩ is written as an expression, such as (( )
|ψ⟩ = a |0⟩ + b |1⟩ ⊗ c |0⟩ + d |1⟩ . 

)
Similarly, and sometimes confusingly, the product is often written without the operator 

⊗, as ((( )) )( )
a |0⟩ + b |1⟩ ⊗ c |0⟩ + d |1⟩ ≡ a |0⟩ + b |1⟩ c |0⟩ + d |1⟩ . 

⟩ ⟩ ⟩
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This can be confusing because it may look like a matrix product or dot product. It 

is important to be aware of the context. We can “multiply out” the expression, just like 

a normal product of two terms. As we multiply the two bracketed terms, the scalar 

factors turn into simple products, and the qubit states are tensored together. For scalar 

products, the order of their operands does not matter. For qubit states, the ordering 

must be maintained: ( )( )
|ψ⟩ = a |0⟩ + b |1⟩ c |0⟩ + d |1⟩ ( ) ( )

= a |0⟩ c |0⟩ + d |1⟩ + b |1⟩ c |0⟩ + d |1⟩ 
= ac |00⟩ + ad |01⟩ + bc |10⟩ + bd |11⟩ . ( )T 

ac ad bc bd Writing this state as a vector results in the same state vector 

as in Equation (2.4). To make the required ordering clear, individual qubits sometimes 
12get a subscript, indicating who they belong to, such as Alice or Bob: ( )( )

|ψ⟩ = a |0A⟩ + b |1A⟩ c |0B⟩ + d |1B⟩ 
= ac |0A0B⟩ + ad |0A1B⟩ + bc |1A0B⟩ + bd |1A1B⟩ . 

The multiplication procedure can be reversed; we can factor out individual qubits. 

This should not be surprising, but it may be helpful to see it at least once: 

|ψ⟩ = ac |00⟩ + ad |01⟩ + bc |10⟩ + bd |11⟩ ( ) ( )
= |0⟩ ac |0⟩ + ad |1⟩ + |1⟩ bc |0⟩ + bd |1⟩ ( ) ( )
= a |0⟩ c |0⟩ + d |1⟩ + b |1⟩ c |0⟩ + d |1⟩ ( )( )
= a |0⟩ + b |1⟩ c |0⟩ + d |1⟩ . 

You will find these types of state manipulations in several places in this book. 

2.4.2 Qubit Ordering 

As we compose states of multiple qubits, we must consider the issue of endianness. 

Consider how the bits in a typical byte are numbered, with the least significant 

bit 0 on the right, as shown in Figure 2.2(a). However, when we think of arrays, 

we typically have element 0 at address 0 at the top of the array, as shown in 

Figure 2.2(b). 

Classical binary numbers are combinations 0s or 1s, which we interpret as an n-ary 

number. In quantum computing, we can also combine multiple qubits in the basis 

states |0⟩ and |1⟩ with the tensor product and interpret the resulting state as a classical 

binary number. There are two distinct conventions: 

1. In the little-endian convention, the least significant part of a data structure is 

placed at the lowest address. The Intel x86 family of CPUs follows this 

convention. The hexadecimal value 0x1234 is stored in a 16-bit memory space as 

0x3412, with the least significant byte 0x34 at the lower byte address. 

12 Alice and Bob are widely used as stand-ins to denote two distinct systems A and B. 
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(b) Array addresses go from top 

(a) In a byte, bits are numbered from right to left. to bottom or left to right. 

Figure 2.2 Ordering conventions for most/least significant parts. 

2. On the other hand, in the big-endian convention, the most significant part of a data 

structure comes first. The IBM Power CPU family follows this convention, 

representing the hex value 0x1234 as the 16-bit integer 0x1234, with the 

higher-order byte 0x12 at the lower byte address. 

As you can see, it depends on convention, how entries are numbered in an underlying 

array-like structure, and what endianness convention is used. In this book, we primar-

ily use the big-endian convention. We number the qubits from 0 to n − 1 and place the 

most significant qubit first at index 0. In this way, when we see a tensor product such 

as |0⟩ ⊗ |1⟩ ⊗ |1⟩, we know to interpret it as binary 0b011 or decimal 3. 

There is no standard convention, and major software frameworks use different 

conventions. Some of the algorithms in this book are based on reference implementa-

tions. In such cases, we may switch to the little-endian convention. The key points to 

internalize are: 

As qubits are added to a circuit, they are added from left to right (in a binary 

string), from the high-order qubit to the low-order qubit. 

• 

• 

In Dirac notation, a two-qubit state is written as |x,y⟩, for example, as |0,1⟩ or 

|01⟩. The most significant qubit is the first to appear in big-endian notation: 

|0⟩ ⊗ · · · ⊗ |0⟩ .()() ()()
High-order Low-order 

We will see in Section 2.9 that the circuits are drawn as a vertical stack of qubits, 

and the top qubit is considered the most significant in big-endian notation. 

• 

• 

We will soon learn about simple functions to construct composite states from |0⟩ 
and |1⟩ states. In these functions, the first qubit to appear will be the most 

significant qubit, similar to the circuit notation. For example, we call 

state.bitstring(1, 1, 0) to generate the state |ψ⟩ = |1⟩ ⊗ |1⟩ ⊗ |0⟩. 
When we print a state, the most significant bit will also be on the left. • 
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2.4.3 Binary Interpretation 

We can write tensor products of the basis states |0⟩ and |1⟩ as in this three-qubit 

example: 

|0⟩ ⊗ |1⟩ ⊗ |1⟩ = |011⟩. 

For brevity, when interpreting the bit strings as binary numbers, we can simplify the 

notation and write out the binary numbers as decimals, as in this example: 

|011⟩ = |3⟩. 

Be aware of the potential for confusion between the state |000⟩, the corresponding 

decimal state |0⟩, and the state |0⟩ of a single qubit. How does the decimal interpreta-

tion of the sequence of basis states relate to the state vector? ( ) ( )
1 1 ( )T⊗ = 

 
 1 0 0 0 

0 0 
State |00⟩ is computed as , also called |0⟩.• ( ) ( )

1 0 ( )T ⊗ = 0 1 0 0 
0 1 

State |01⟩ is computed as , also called |1⟩.• ( ) ( )
0 1 ( )T ⊗ = 0 0 1 0 
1 0 

State |10⟩ is computed as , also called |2⟩.• ( ) ( )
0 0 ( )T ⊗ = 0 0 0 1 
1 1 

State |11⟩ is computed as , also called |3⟩.• 

To find the probability amplitude for a given state, we can use binary addressing. 

The state vector for the three-qubit state |011⟩ is the following, where we indicate the 

index into the state vector as in underneath each vector element: 

Interpreting the rightmost qubit in |011⟩ as the least significant bit with a classical 

bit value of 1 · 20, the middle qubit with a classical bit value of 1 · 21, and the leftmost 

qubit with a classical value of 0 · 22, the state |011⟩ corresponds to the decimal value 

3 or state |3⟩. 
When we store and manipulate state vectors in Python, we index the vector as 

an array from left to right, from 0 to n − 1. For state |011⟩, the element at index 

i3 will be set to 1. Using this simple binary addressing scheme, the amplitudes for 

each basis state in the state vector can be quickly found. Note that the tensor product 

representation of this 3-qubit state contains the amplitudes for all eight possible states, 

but seven states have an amplitude of 0. This already hints at a potentially more 

efficient sparse representation, which we explore in Section 3.9. 

We add a few helper functions to support the conversion back and forth between 

numbers and their bit representations. Note that you can use the array slice operator 

[::-1] to reverse the order of elements in a Python list. 
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PY 
Find the code 

In file src/lib/helper.py 

def bits2val(bits: List[int]) -> int: 
return sum(v * (1 << (len(bits)-i-1)) for i, v in enumerate(bits)) 

def val2bits(val: int, nbits: int): 
return [int(c) for c in format(val, '0 b'.format(nbits))] 

To iterate over all bit strings of a given length nbits, we use the following function 

(note the use of Python’s yield construct, which allows usage of this function in 

Python for loops): 

def bitprod(nbits: int) -> Iterable[int]: 
for bits in itertools.product([0, 1], repeat=nbits): 

yield bits 

Binary bits can also be interpreted as binary fractions. For example, using big-

endian convention, for individual qubits xi in state 

|ψ⟩ = |x0 x1 · · · xn−2 xn−1⟩, 

we introduce this big-endian notation, where the most significant fractional part comes 

first: 

x0 1 
= x0 = 0.x0, 

21 21 

x0 x1 1 1 
+ = x0 + x1 = 0.x0x1, 

21 22 21 22 

x0 x1 x2 1 1 1 
+ + = x0 + x1 + x2 = 0.x0x1x2, 

21 22 23 21 22 23 

. . . 

In little-endian notation, x0 would be the least significant fractional part of the 

binary fraction, as in 0.xn−1 · · · x1x0. The function bits2frac computes the fraction 

for a given big-endian string: 

def bits2frac(bits: Iterable) -> float: 
return sum(bit * 2 ** (-idx - 1) for idx, bit in enumerate(bits)) 

Here are a few examples and results from printing val. You can see how bits 0 and 

1 are interpreted as 2−1 = 0.5 and 2−2 = 0.25, respectively: 

val = helper.bits2frac((0,)) 

>> 0 

val = helper.bits2frac((1,)) 

>> 0.5 

val = helper.bits2frac((0, 1)) 

>> 0.25 

val = helper.bits2frac((1, 0)) 

{}

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/helper.py
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>>0.5 

val = helper.bits2frac((1, 1)) 

>>0.75 

To approximate a given floating point number x < 1.0 with binary fractions, we 

add the routine frac2bits: 

def frac2bits(val: float, nbits: int): 
assert val < 1.0, 'frac2bits: value must be strictly < 1.0' 
res = [] 

while nbits: 
nbits -= 1 

val *= 2 

res.append(int(val)) 

val -= int(val) 

return res 

2.4.4 State Member Functions 

Now that we understand the order of qubits and state vector indexing, we can add 

functions to State to return the amplitude and probability of a given state. The 

probability is a real number, but we still have to convert it to an actual real number 

with np.real() to avoid a type conflict and a warning message. 

PY 
Find the code 

In file src/lib/state.py 

def ampl(self, *bits) -> np.complexfloating: 
return self[helper.bits2val(bits)] 

def prob(self, *bits) -> float: 
amplitude = self.ampl(*bits) 

return np.real(amplitude.conj() * amplitude) 

We use Python parameters (such as bits above) that are decorated with the aster-

isk *. This means a variable number of arguments is allowed. In Python parlance, 

the parameters are packed into a tuple. To unpack the tuple, you have to prefix any 

accesses with a * again, as shown in the function prob above. As an example, for a 

four-qubit state, you can get the amplitude and probability for the state |1011⟩ in the 

following way: 

psi.ampl(1, 0, 1, 1) 

psi.prob(1, 0, 1, 1) 

The following snippet iterates over all possible states and prints the probabilities 

for each state: 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/state.py
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for bits in helper.bitprod(4):
print(psi.prob(*bits)) 

 

Given a state, we often want to know the number of qubits it consists of. We 

could maintain this length as an extra member variable to State, but it is easy to 

compute from the length of the state vector (which is already maintained by numpy). 

Because this property is required for all classes derived from Tensor (e.g., States 

and Operators), we add the nbits property to the Tensor base class: 

@property 

def nbits(self) -> int: 
return int(math.log2(self.shape[0])) 

When developing an algorithm, we often want to find the state with the highest 

probability. For this, to find the largest (absolute) element in an array and its index, 

we add the convenience function maxprob, which uses the clever numpy function 

argmax(). Then we use a helper function to convert the found index into a binary bit 

string: 

def maxprob(self) -> (List[float], float): 
idx = np.abs(self).argmax() 

maxprob = np.real(self[idx].conj() * self[idx]) 

maxbits = helper.val2bits(idx, self.nbits) 

return maxbits, maxprob 

It can become necessary to renormalize a state vector. This is done with the 

normalize member function. This function asserts that the dot product is not equal 

to 0 to avoid a division by zero exception: 

def normalize(self): 
dprod = np.conj(self) @ self 

assert not dprod.is_close(0.0), 'Normalizing to 0-probability state' 
self /= np.sqrt(np.real(dprod)) # modify object in place. 

return self 

The phase of a basis state is the angle obtained by converting the state’s complex 

amplitude to polar coordinates. We only use this during printouts and convert the phase 

to degrees here: 

def phase(self, *bits) -> float: 
amplitude = self.ampl(*bits) 

return math.degrees(cmath.phase(amplitude)) 

Finally, to assist in debugging, it is always helpful to have a function dump() that 

lists all relevant state information. By default, this function only prints the basis states 
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that have a nonzero probability (set parameter prob_only to False to see all basis 

states). An optional description string can also be passed in: 

def dump(self, desc: str = None, prob_only: bool = True) -> None: 
[...] 

The output from the dumper may look like the following, showing all basis vectors 

with nonzero probability: 

|001> (|1>): ampl: +0.50+0.00j prob: 0.25 Phase: 0.0 

|011> (|3>): ampl: +0.35+0.35j prob: 0.25 Phase: 45.0 

|101> (|5>): ampl: +0.00+0.50j prob: 0.25 Phase: 90.0 

|111> (|7>): ampl: -0.35+0.35j prob: 0.25 Phase: 135.0 

2.4.5 State Constructors 

Using the methods described so far, let us define standard constructors to create com-

posite states. The first two functions are for states consisting of only |0⟩ and |1⟩. The 

state vector for these vectors is all zeros, except for a 1 at index 0 for a state of all |0⟩, 
or a 1 at the last index for a state consisting of all |1⟩: 

def zeros_or_ones(d: int = 1, idx: int = 0) -> State: 
assert d > 0, 'Need to specify at least 1 qubit' 
t = np.zeros(2**d, dtype=tensor.tensor_type()) 

t[idx] = 1 

return State(t) 

def zeros(d: int = 1) -> State: 
return zeros_or_ones(d, 0) 

def ones(d: int = 1) -> State: 
return zeros_or_ones(d, 2**d - 1) 

The function bitstring allows the construction of states from a defined sequence 

of |0⟩ and |1⟩ states. As noted above, the most significant bit comes first: 

def bitstring(*bits) -> State: 
arr = np.asarray(bits) 

assert len(arr) > 0, 'Need to specify at least 1 qubit' 
assert ((arr == 1) | (arr == 0)).all(), 'Bits must be 0 or 1' 

t = np.zeros(1 << len(bits), dtype=tensor.tensor_type()) 

t[helper.bits2val(bits)] = 1 

return State(t) 
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Sometimes, especially for testing or benchmarking, we want to generate a tensor 

product of n random |0⟩ and |1⟩ states: 

def rand_bits(n: int) -> State: 
bits = [random.randint(0, 1) for _ in range(n)] 
return bitstring(*bits) 

While the canonical single-qubit states |0⟩ and |1⟩ are used often, we should not 

define global variables for them.13 Global variables are bad style. Must. Resist. Temp-

tation. 

Can we initialize a state with a given normalized vector? Yes, we can. We will see 

this pattern later in Section 11.2.1 on phase estimation, where we directly initialize a 

state as the eigenvector of a unitary matrix: 

umat = scipy.stats.unitary_group.rvs(2**nbits) 

eigvals, eigvecs = np.linalg.eig(umat) 

psi = state.State(eigvecs[:, 0]) 

2.5 Representing States as Matrices 

In Section 4.2 we will learn that there are questions in quantum computing that cannot 

be answered by representing states as simple vectors. To address this, we will intro-

duce the so-called density matrix formalism to represent states as matrices. We briefly 

mention these matrices here, as we will use one of their properties later in this chapter. 

For a given state |ψ⟩, we can construct its density matrix by computing the outer 

product of a state with itself. For convenience, we add the function density() to our 

State class. Typically, the Greek letter ρ (“rho”) is used to denote a density matrix 

as ρ = |ψ⟩⟨ψ|: 

def density(self) -> tensor.Tensor: 
return tensor.Tensor(np.outer(self, self.conj())) 

Given how this matrix is being constructed, the diagonal elements are the probabilities 

of measuring one of the basis states for |ψ⟩ = α |0⟩ + β |1⟩: 

( |( αα∗ \)
ββ∗ 

)( αβ∗)α 
α∗ β∗|ψ⟩⟨ψ| = = . 

β βα∗ 

( )

For a pure state, the vector and matrix representations contain the same information. 

This density matrix has a rank14 of 1. Its trace must also be 1 because it represents the 

sum of the probabilities. We will discuss density matrices in more detail in Section 4.2. 

13 As some commercial systems do. Tsk tsk tsk. 
14 See also http://en.wikipedia.org/wiki/Rank_(linear_algebra). The rank of a matrix is the maximal 

number of its linearly independent columns. 

http://en.wikipedia.org/wiki/Rank_(linear_algebra)
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2.6 Operators 

Now that we have learned about qubits and states, how are these states modified in 

quantum computing? Classical bits are manipulated through logic gates such as AND, 

OR, XOR, and NAND. In quantum computing, qubits and states are manipulated with 

unitary matrices that we call operators. It seems appropriate to think of operators as 

the Instruction Set Architecture (ISA) of a quantum computer. It is a different ISA 

from that of a typical classical computer, but it is nonetheless an ISA that enables 

computation. This section discusses operators, their structure, properties, and how to 

apply them to states. 

2.6.1 Unitary Operators 

Any unitary matrix of dimension 2n can be considered a quantum operator. Operators 

are also called gates, in analogy to classical logic gates. Unitary matrices are norm 

preserving; that is, when multiplied with a state vector, they do not change the mod-

ulus of the vector. A state vector represents probabilities as probability amplitudes. 

Applying an operator to this state might change the amplitudes of individual states but 

must not change the fact that all probabilities must still add up to 1. This is important 

enough to warrant a brief proof. 

Proof To show that a unitary U is norm-preserving, we need to show that ⟨Uv|Uw⟩ = 
⟨v|w⟩. This is to show that if U preserves the structure of the inner product, it must 

also preserve the norm: 

† †⟨Uv|Uw⟩ = (v U†)(Uw) = v †(U U)w. 

Now, † †v ( †U U)w = v w = ⟨v,w⟩ implies that ( †U U) = I. Any operator that 

preserves the norm must be unitary. 

An example of a single-qubit unitary gate is the Pauli X gate which we describe in 

Section 2.7.2. It swaps the probability amplitudes of a qubit: ( )( ) ( )
0 1 α β 

X |ψ⟩ = = . 
1 0 β α 

We detail many standard gates later in this section. Note that because † UU = I, 

unitary matrices are necessarily invertible simply by using the conjugate transpose. 

Hermitian matrices, on the other hand, are not necessarily unitary. In Section 2.13, we 

will see that the Hermitian operators used for measurements are neither unitary nor 

reversible. 

2.6.2 Base Class 

Since operators are matrices, we derive them from the Tensor base class and inherit 

the __repr__ and __str__ functions from the underlying numpy array data struc-

ture. We also add a convenience function to compute the adjoint. A simple dump 

function allows us to print the state with a given number of digits using the underlying 

functionality of numpy. 
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PY 
Find the code 

. 
In file src/lib/ops.py 

class Operator(tensor.Tensor): 
"""Operators are represented by square, unitary matrices.""" 

def __new__(subtype, input_array, name=None): 
obj = super().__new__(subtype, input_array) 

obj.name = name 

return obj 

def adjoint(self) -> Operator: 
return self.__class__(np.conj(self.transpose())) 

def dump(self, desc = None, digits = 3) -> None: 
np.set_printoptions(precision=digits) 

if desc: 
print(f'{desc} ({self.nbits}-qubit(s) operator)') 

print(self) 

2.6.3 Operator Application 

To apply an operator to a state vector, we have to compute the matrix–vector product 

between the operator matrix and the state vector. In Python, we define the function 

call operator () for this purpose. For example, to apply a gate X to a state psi, we 

simply call ops.X(psi). The __call__ function wraps the apply function, which 

we define next. For convenience, we will make the call operator accept a state or an 

operator as its argument. 

def __call__(self, 
arg: Union[state.State, ops.Operator], 

idx: int = 0) -> state.State: 

return self.apply(arg, idx) 

In the following, we gradually build up the apply function. The initial versions 

will be fairly incomplete. We apply an operator to a state vector using numpy’s matrix 

multiplication function np.matmul: 

def apply(self, 
arg: Union[state.State, ops.Operator], 

idx: int) -> state.State: 

[...] 

assert isinstance(arg, state.State), 'Error, expected State.') 
[...] 

return state.State(np.matmul(self, arg)) 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/ops.py
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We can also apply an operator to another operator. In this case, the application 

results in a matrix–matrix multiplication. This raises the question of the order of the 

matrices when multiple operators are applied in sequence. Assume that we have an 

X gate and a Y gate (to be explained later) that will be applied in sequence. We can 

write this in Python the following way, where gates are applied to a state and return 

the updated state: 

psi_1 = X(psi_0) 

psi_2 = Y(psi_1) 

These are Python assignments, not to be confused with a mathematical notation like 

x = y, which expresses an equivalence. In Python, variables are mutable. We could 

omit the indices and overwrite a single state variable psi. 

In function call notation, we write symbols from left to right, but function parame-

ters are evaluated first before the actual invocation of a function. This means that the 

parameters are applied first: 

# A function call means that X is applied before Y. 

Y(X) 

If we express the combined operator as a product of matrices, we must reverse their 

order (recall that the operator @ is the matrix multiply operator in Python): 

# In a combined operator matrix, X is applied first: 

(Y @ X)(psi) 

This leads to the following (still incomplete) implementation of apply, assuming that 

the sizes of the operator and the state vector match: 

def apply(self, 
arg: Union[state.State, ops.Operator], 

idx: int) -> Union[state.State, ops.Operator]: 

if isinstance(arg, Operator): 
assert self.nbits == arg.nbits, 'Mismatched dimensions.' 
return arg @ self 

assert isinstance(arg, state.State), 'Error, expected State.' 
# Note the reversed parameters. 

return state.State(np.matmul(self, arg)) 

2.6.4 Multiple Qubits 

The code above makes it possible to apply a gate to a single qubit. How does this 

work if we have a state of two or more qubits and want to apply a 2 × 2 gate to just 
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one qubit in the tensor product? The key property of the tensor product that enables 

handling this case is Equation (1.3), replicated here: 

(A ⊗ B)(|a⟩ ⊗ |b⟩) = A |a⟩ ⊗ B |b⟩ . 

We can utilize this equation by using the identity gate I (see also Section 2.7.1), since 

applying I to a qubit leaves the qubit intact: ( ) ( ) ( )
I = 

1 

0 

0 

1 
, with I |ψ⟩ = I 

α 
β 

= 
α 
β 

= |ψ⟩ . 

As an example, for a given three-qubit state, Equation (1.3) allows us to apply the 

X gate (discussed earlier) to the second qubit only by tensoring together the identity I 

with the X gate and another identity I to obtain an 8 × 8 operator matrix: 

psi = state.bitstring(0, 0, 0) 

op = ops.Identity() * ops.PauliX() * ops.Identity() 

psi = op(psi) 

psi.dump() 

When interpreting the state |ψ0⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ = |000⟩ as the binary number 

0 (recall that by our big-endian convention, the least significant bit is to the right), 

element 0 of the state vector of 8 elements should contain the value 1.0, which we can 

confirm by dumping the state: 

[1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] 

Applying the X gate to qubit 1 in this way 

|ψ1⟩ = (I ⊗ X ⊗ I) |ψ0⟩ 

becomes, again according to Equation (1.3), 

|ψ1⟩ = I|0⟩ ⊗ X|0⟩ ⊗ I|0⟩. 

Since we are in the computational basis,15 the X gate flips the probability ampli-

tudes. Another way to say this colloquially is that it flips a state from |0⟩ to |1⟩ (or 

from |1⟩ to |0⟩). As a result, we managed to apply the gate X to qubit 1 only and the 

modified state |ψ1⟩ becomes 

|ψ1⟩ = |0⟩ ⊗ |1⟩ ⊗ |0⟩. 

Interpreting |010⟩ as the binary number 2, we should find the value 1.0 in the state 

vector at index 2, and indeed, there it is: 

[0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0] 

( ) 
1

 
0

( ) 
0

. 
1 

15 Recall that in the computational basis, we represent |0⟩ as and |1⟩ as 
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To apply multiple operators in sequence, their individual expanded operators can 

be multiplied to build a single combined operator. For example, to apply the X gate to 

qubit 1 and the Y gate to qubit 2, we write the following: 

psi = state.bitstring(0, 0, 0) 

opx = ops.Identity() * ops.PauliX() * ops.Identity() 

opy = ops.Identity() * ops.Identity() * ops.PauliY() 

big_op = opy(opx) 

psi = big_op(psi) 

We can use a shorthand notation for this. To indicate that gate A should be applied 

to a qubit at a specific index i, we write Ai. This notation means that this operator is 

padded on both sides with identity matrices. For the example above, to apply the X 

gate to qubit 1 and the Y gate to qubit 2, we write X1Y2. 

Of course, in terms of performance, building the full combined operator up front 

for n qubits can be the worst possible case, as we have to perform full matrix multi-

plication with matrices of size (2n)2. Matrix multiplication is of cubic16 complexity ( ) ( )
O n 3 . Since a matrix–vector product is of complexity O n 2 , it can be faster to apply 

the gates individually, depending on the number of gates. In this particular example, 

instead of applying the gates one by one: 

psi = state.bitstring(0, 0, 0) 

opx = ops.Identity() * ops.PauliX() * ops.Identity() 

psi = opx(psi) 

opy = ops.Identity() * ops.Identity() * ops.PauliY() 

psi = opy(psi) 

We could have simply combined the gates in one step: 

psi = state.bitstring(0, 0, 0) 

opxy = ops.Identity() * ops.PauliX() * ops.PauliY() 

psi = opxy(psi) 

2.6.5 Operator Padding 

Having to “pad” operators with identity matrices on the left and right is annoying and 

error-prone. It is more convenient to apply an operator to a qubit at index idx and let 

the infrastructure do the rest for us. This is what operator padding does, which we 

will implement next. To apply a given gate, say the X gate, to a state psi at a given 

qubit index idx, we write: 

X = ops.PauliX() 

psi = X(psi, idx) 

16 This is an approximation to make a point, which we will use in several places. More efficient( ) 
O 22.3752477 . algorithms are known, such as the Coppersmith–Winograd algorithm with complexity 
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To achieve this, we augment the function call operator for Operator. If an index 

is provided as a parameter, we pad the operator up to this index with identity matrices. 

Then, we compute the size of the given operator, which can be larger than 2 × 2, and 

if the resulting matrix dimension is still smaller than the state to which it is applied, 

we pad it further with identity matrices. In the above example, instead of writing: 

psi = state.bitstring(0, 0, 0) 

opx = ops.Identity() * ops.PauliX() * ops.Identity() 

psi = opx(psi) 

We can now write the more compact code: 

psi = state.bitstring(0, 0, 0) 

psi = ops.PauliX()(psi, 1) 

This syntax may need to be clarified. The first pair of parentheses to PauliX() 

returns a 2 × 2 Operator object. The parentheses (psi, 1) are parameters passed 

to the operator’s function call operator __call__, which delegates to the apply 

function. This is where the automatic padding magic happens. 

We can now finalize the implementation of apply: 

def apply(self, 
arg: Union[state.State, ops.Operator], 

idx: int) -> Union[state.State, ops.Operator]: 

if isinstance(arg, Operator): 
arg_bits = arg.nbits 

if idx > 0: 
arg = Identity().kpow(idx) * arg 

if self.nbits > arg.nbits: 
arg = arg * Identity().kpow(self.nbits - idx - arg_bits) 

assert self.nbits == arg.nbits, 'Mismatched dimensions.' 
return arg @ self 

assert isinstance(arg, state.State), 'Error, expected State.' 
op = self 

if idx > 0: 
op = Identity().kpow(idx) * op 

if arg.nbits - idx - self.nbits > 0: 

op = op * Identity().kpow(arg.nbits - idx - self.nbits) 

return state.State(np.matmul(op, arg)) 

In this section, we list single-qubit gates that are commonly used in quantum com-

puting. These gates are analogous to logic gates seen in classical computing in that 

2.7 Single-Qubit Gates 
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a full understanding of the basic gates is needed to construct more sophisticated cir-

cuits. However, while quantum gates share similarities with their classical computing 

counterparts, their functions are quite different. 

We start with simple gates and then discuss the more complicated roots and rota-

tions, including the important Hadamard gate, which maps computational basis states 

to superpositions of basis states. For each gate, we define a constructor function and 

allow passing a dimension parameter d, which allows the construction of a multi-qubit 

operator from the same underlying single-qubit gate. As an example, to compute the 

tensor product of two identity matrices and a Y gate, we write 

Y2 = I ⊗ I ⊗ Y = I⊗2 ⊗ Y . 

Note again the subscript in Y2, which indicates that the Y gate should only be applied 

to qubit 2. With this, we have two ways to apply the identity gates: 

# Explicit way: 

y2 = ops.Identity() * ops.Identity() * ops.PauliY() 

# Compact way: 

y2 = ops.Identity(2) * ops.PauliY() 

2.7.1 Identity Gate 

The general identity matrix is a square matrix with 1s on its diagonal and 0s every-

where else. As a single-qubit operator, the operator I is the matrix ( )
1 0 

I = . 
0 1 

Applying this gate to a state leaves the state intact: ( )( ) ( )
1 0 α α 

= . 
0 1 β β 

It is easy to construct. We will use the following code pattern for most gate constructor 

functions: 

def Identity(d: int = 1) -> Operator: 
return Operator([[1.0, 0.0], [0.0, 1.0]], 'Id').kpow(d) 

2.7.2 Pauli Matrices 

The three Pauli matrices play an essential role in quantum computing and have many 

uses, some of which we will discover as we go along. Pauli matrices are usually 

denoted with the greek σ (“sigma”) as σx,σy,σz, alternatively as σ1,σ2,σ3, or simply 
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as X, Y , and Z, which is the notation we will use most often. Sometimes, the identity 

matrix I is added as a first Pauli matrix σ0: ( ) ( ) ( ) ( )
1 0 0 1 0 −i 1 0 

σ0 = , σx = , σy = , σz = . 
0 1 1 0 i 0 0 −1 

The Pauli gate σx is also known as the X gate, the quantum Not gate, or just X for 

short. It is called a Not gate because it seemingly “flips” basis states in the following 

way:17 

X |0⟩ = |1⟩ and X |1⟩ = |0⟩. 

This can be confusing, especially for beginners. To clarify, the computational basis 

states remain unmodified as they represent physical states. The X gate only swaps the 

probability amplitudes: ( )( ) ( )
0 1 α β 

X|ψ⟩ = = . 
1 0 β α 

It changes   |ψ⟩ = α|0⟩ + β|1⟩ to |ψ ′⟩ = β|0⟩ + α|1⟩, for all possible values of α 
and β, including the cases where α or β is 0 and the other is 1. In code: 

def PauliX(d: int = 1) -> Operator: 
return Operator([[0.0, 1.0], [1.0, 0.0]], 'X').kpow(d) 

The Z gate is also known as the phase-flip gate. It inverts the sign of the qubit’s β 
factor: ( )( ) ( )

1 0 α α 
Z|ψ⟩ = = . 

0 −1 β −β 

This gate changes the state from  to  |ψ⟩ = α|0⟩ + β|1⟩ |ψ ′ ⟩ = α|0⟩ − β|1⟩. Again, 

the basis states remain unchanged; only the sign of the coefficient β changes. The 

choice of basis matters because, for example, in the Hadamard basis, the Z gate acts 

as a bit-flip gate, with Z |+⟩ = |−⟩ and Z |−⟩ = |+⟩. In code: 

def PauliZ(d: int = 1) -> Operator: 
return Operator([[1.0, 0.0], [0.0, -1.0]], 'Z').kpow(d) 

The action of the Pauli Y gate on a state |ψ⟩ is ( )( ) ( )
0 −i α −iβ 

Y|ψ⟩ = = . 
i 0 β iα 

def PauliY(d: int = 1) -> Operator: 
return Operator([[0.0, -1.0j], [1.0j, 0.0]], 'Y').kpow(d) 

17 Again, in the computational basis. 
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Applying the Y gate to the standard basis states leads to both a bit flip and a 

phase flip: 

Y |0⟩ = iXZ |0⟩ = iX |0⟩ = i |1⟩ , 
Y |1⟩ = iXZ |1⟩ = −iX |1⟩ = −i |0⟩ . 

Some useful mathematical properties of the Paul matrices are as follows. Pauli 

matrices are Hermitian with eigenvalues +1 and −1. Their trace is tr σi = 0 and the 

determinants (for X, Y , and Z) are det σi = −1. On the Bloch sphere, the X gate 

rotates the state about the x-axis, the Y gate rotates the state about the y-axis, and the 

Z gate rotates the state about the z-axis, all by  180◦ (π in radians, or half a circle). 

Together with the identity matrix, the Pauli matrices form a basis for the vector 

space of 2×2 Hermitian matrices.18 Any 2×2 Hermitian matrix M can be constructed 

using a linear combination of Pauli matrices as 

I + xX + yY + zZ 
M = . 

2 
(2.5)

Pauli matrices are involutory: 

II = XX = YY = ZZ = I. 

We can use the basis states to construct the Pauli matrices as follows: 

X = |+⟩ ⟨+| − |−⟩ ⟨−|, 
Y = |+y⟩ ⟨−y| − |−y⟩ ⟨+y| , 
Z = |0⟩⟨0| − |1⟩⟨1|. 

The effects of the Pauli matrices on the computational and Hadamard basis states 

can be summarized as follows: 

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ , X |+⟩ = |+⟩ , X |−⟩ = − |−⟩ , 
Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ , Z |+⟩ = |−⟩ , Z |−⟩ = |+⟩ , 
Y |0⟩ = i |1⟩ , Y |1⟩ = −i |0⟩ , Y |+⟩ = −i |−⟩ , Y |−⟩ = i |+⟩ . 

2.7.3 Bloch Sphere Coordinates 

With Equation (2.5) we can compute the Cartesian coordinates for a given state |ψ⟩ on 

the Bloch sphere.19 The Pauli matrices form a basis for the space of 2 × 2 Hermitian 

matrices. The outer product ρ = |ψ⟩⟨ψ| is such a Hermitian matrix. Hence we can 

write  ( )
I + xX + yY + zZ 1 1 + z x − iy

ρ = = . 
2 2 x + iy 1 − z 

(2.6)

18 To be precise, any 2 × 2 matrix can be constructed from the Pauli matrices. However, if the matrix is 

Hermitian, the coefficients to the Pauli matrices are necessarily real. 
19 Found in http://quantumcomputing.stackexchange.com/a/17180. 

(

http://quantumcomputing.stackexchange.com/a/17180.
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If we think of ρ as a matrix

( )
a b 

 
c d 

, then 

2a = 1 + z and 2c = x + iy. 

Consequently, x = 2 Re(c), y = 2 Im(c), and z = 2a − 1. In code, we can do this 

in two simple steps: 

1. Compute the outer product of the state |ψ⟩ with itself as ρ = |ψ⟩⟨ψ|. This matrix 

ρ is a special case of a density matrix, as discussed in Section 2.5. 

2. Apply the helper function density_to_cartesian(rho), shown below, which 

returns the corresponding coordinates x, y, and z. 

PY 
Find the code 

. 
In file src/lib/helper.py 

def density_to_cartesian(rho: np.ndarray) -> Tuple[float, float, float]: 
a = rho[0, 0] 

c = rho[1, 0] 

x = 2.0 * c.real 

y = 2.0 * c.imag 

z = 2.0 * a - 1.0 

return np.real(x), np.real(y), np.real(z) 

2.7.4 Rotations 

When we say that we apply a rotation we mean applying a unitary operator on a 

quantum state or, equivalently, a rotation operator on a Bloch vector for a single-qubit 

state. We define rotations about the orthogonal axes x, y, and z, with help of the Pauli 

matrices as 

−i θ X
2Rx(θ) = e , 

−i θ Y
2Ry(θ) = e , 

−i θ Z
2Rz(θ) = e . 

While seeing an exponential function with a matrix in the exponent may seem unfa-

miliar, the process is not overly complex. Here, we provide a proof for the following 

statement, which explains the mechanics of matrix exponentiation through a simple 

power series expansion. 

T H E O R E M : If an operator A is involutory (which means it is its inverse), then 

iθA e = cos(θ)I + i sin(θ)A. 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/helper.py
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Proof The exponential function eA has the power series expansion 

A2 A3 A4 
A e = I + A + + + + · · · . 

2! 3! 4! 

For the specific function θ ei A , this becomes 

(θA)2 (θA)3 (θA)4 
iθA e = I + iθA − − i + + · · · . 

2! 3! 4! 

If the operator is involutory and satisfies A2 = I, then we can reorder the terms into 

the Taylor series for sin(·) and cos(·): 

θ2I θ3A θ4I 
eiθA = I + iθA − − i + + · · · 

2! 3! 4! ( ) ( )
θ2 θ4 θ3 θ5 

= 1 − + − · · · I + i θ − + − · · · A 
2! 4! 3! 5! 

= cos θI + i sin θA. 

(2.7)

Since the Pauli matrices are involutory, with II = XX = YY = ZZ = I, we can write: 

 (−i θ θ θ ZRz(θ) = e 2 = cos I − i sin Z 
2 2

−i θ 
2e 0 

= 
i θ . 

20 e 

2 2( ) ( )

−i θ θ θY
2Ry(θ) = e = cos I − i sin Y 

2 2 ( ( ) ( ))θ θ cos − sin 
= ( 2 ) ( 2 ) ,θ θ sin cos

  

θ −i θ X θ 
2Rx(θ) = e = cos I − i sin X 

2 2 ( ( ) ( ))θ θ cos −i sin 
= ( 2 ) ( 2 ) ,θ θ −i sin cos

2 2

( ) ( )

( ) ( )
(2.8)

(2.9)

(2.10)

We will learn more about rotations and how to compute the axis, coordinates, and 

rotation angles in Section 9.4.3. For now, we implement rotations about the standard 

Cartesian x, y, and z axes with these functions: 

def Rotation(vparm: List[float], theta: float) -> Operator: 
v = np.asarray(vparm) 

[...] # error handling 

return Operator(np.cos(theta / 2) * Identity() - 1j * np.sin(theta / 2) 

* (v[0] * PauliX() + v[1] * PauliY() + v[2] * PauliZ())) 

def RotationX(theta: float) -> Operator: 
return Rotation([1.0, 0.0, 0.0], theta, 'Rx') 

def RotationY(theta: float) -> Operator: 
return Rotation([0.0, 1.0, 0.0], theta, 'Ry') 

( )
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def RotationZ(theta: float) -> Operator: 
return Rotation([0.0, 0.0, 1.0], theta, 'Rz') 

In general, rotations are defined about any arbitrary axis n̂ = (n1,n2,n3) as ( )
1 

Rn̂ = exp −iθn̂ σ̂ . 
2 

We will see an advanced example of this in Section 9.4 on the Solovay–Kitaev algo-

rithm for gate approximation. 

2.7.5 Hadamard Gate 

As the final rotation gate, we now discuss the all-important Hadamard gate, which is 

defined as  (
√ √ 
)( ) 1 1

1 1 1 
H = √ = 

12 −1 
2 2 

√√1 1 

2 2 

. − 

If you look at this definition carefully, you can see that it is made up of the X and Z√ 
(→x +→z)/ 2 gates, representing a rotation about the axis . Let us apply this gate to |0⟩ 

and |1⟩ respectively to obtain ( )( ) ( )
1 1 1 1 1 1 |0⟩ + |1⟩ 

H|0⟩ = √ = √ = √ ,
1 −1 0 12 2 2 ( )( ) ( )

1 1 1 0 1 1 |0⟩ − |1⟩ 
H|1⟩ = √ = √ = √ . 

1 −1 1 −12 2 2 

Both results can be stated as the sum or difference of the |0⟩ and |1⟩ bases, scaled by √
1/ 2

 
. As we have seen earlier, these basis states are so common they get the symbolic 

names |+⟩ and |−⟩: 

|0⟩ + |1⟩ |0⟩ − |1⟩ 
H|0⟩ = √ = |+⟩ and H|1⟩ = √ = |−⟩ . 

2 2 

The Hadamard gate is important because it maps the computational basis states to 

an equal superposition. For a general state |ψ⟩ = α|0⟩ + β|1⟩, the Hadamard operator 

yields: ( )
H|ψ⟩ = H α|0⟩ + β|1⟩ 

= αH|0⟩ + βH|1⟩ 

|0⟩ + |1⟩ |0⟩ − |1⟩ 
= α √ + β √ 

2 2 

= α |+⟩ + β |−⟩ 

α + β α − β 
= √ |0⟩ + √ |1⟩. 

2 2 

In code, the operator is defined using our standard template: 

(
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def Hadamard(d: int = 1) -> Operator: 
return Operator(1 / np.sqrt(2) * np.array([[1.0, 1.0], [1.0, -1.0]]), 

'H').kpow(d) 

A Hadamard gate is its own inverse with −H = H 1 and HH = I. It is Hermitian 

and also involutory, just like the Pauli matrices: ( ) ( ) ( ) ( )
1 1 1 1 1 1 1 2 0 1 0 

HH = √ √ = = I. 
2 1 −1 2 1 −1 2 0 2 0 1 

A common operation is the application of Hadamard gates to several adjacent 

qubits. If those qubits were all in the |0⟩ state, the resulting state becomes an equal 

superposition with amplitudes 1√
2n 

: ∑1⊗n
H⊗n |0⟩ = √ |x⟩ . 

2n 
x∈{0,1}n 

This construction is used in many of our algorithms and examples. Let us spell it out 

explicitly for two and three qubits, which also illustrates some of the notations we will 

be using: ( ) 1 ( )
(H ⊗ H) |0⟩ ⊗ |0⟩ = |00⟩ + |01⟩ + |10⟩ + |11⟩ , 

2 ( )
(H ⊗ H ⊗ H) |0⟩ ⊗ |0⟩ ⊗ |0⟩ 

1 ( )
= √ |000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩ 

23 

1 ( )
= √ |0⟩ + |1⟩ + |2⟩ + |3⟩ + |4⟩ + |5⟩ + |6⟩ + |7⟩ 

23 

7∑ ∑1 1 
= √ |x⟩ = √ |x⟩. 

23 23 
x=0 x∈{0,1}3 

2.7.6 Phase Gate 

The phase gate, also called the S gate, P gate, or Z90 gate, represents a phase of  90◦

around the z-axis for the |1⟩ part of a qubit. Because this rotation is quite common, it 

gets its own name: ( )
1 0 

S = . 
0 i 

The phase gate can be derived using Euler’s formula for the angle φ = π/2: 

iφ e = cos(φ) + i sin(φ), 
iπ/2 e = cos(π/2) + i sin(π/2) = i. 

In code, we construct this gate using our standard recipe: 
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def Phase(d: int = 1) -> Operator: 
return Operator([[1.0, 0.0], [0.0, 1.0j]], 'S').kpow(d) 

def Sgate(d: int = 1) -> Operator: 
return Phase(d) 

Note the effect this gate has on the basis states |0⟩ and |1⟩, the gate only affects the |1⟩ 
part of the qubit state: ( ) ( )

1 0 
S |0⟩ = = |0⟩ and S |1⟩ = = i |1⟩ . 

0 i 

You can spot a potential source of errors: the direction of rotations, especially 

when porting code from other infrastructures that might interpret angle directions 

differently. For much of this text, we are shielded from this problem. However, it 

may be one of the first things to look for when the results do not meet expectations. 

Finally, remember the Z gate and how similar it is to the phase gate? The relation-

ship is easy to see — applying two phase gates, each affecting a rotation of π/2, yields 

a rotation of π, which we get from applying the Z gate: ( )( ) ( )
1 0 1 0 1 0 

S2 = SS = = = Z. 
0 i 0 i 0 −1 

2.7.7 Flexible Phase Gates 

There are other, more flexible versions of phase gates. The general U1(λ) gate is also 

known as the phase shift or phase kick gate: ( )
1 0 

U1(λ) = .iλ 0 e 

It has no restrictions on the phase to use and its implementation is straightforward: 

def U1(lam: float, d: int = 1) -> Operator: 
return Operator([(1.0, 0.0), 

(0.0, cmath.exp(1j * lam))], 'U1').kpow(d) 

The derived discrete phase gate (also known as the Rk gate) performs rotations 

about the z-axis by fractional powers of 2π/2k for k > 0, such as π, π/2, π/4, and so 

on:  (
1 0 

Rk(k) = . 
2πi/2k 

0 e 

def Rk(k: int, d: int = 1) -> Operator: 
return U1(2 * math.pi / (2**k)).kpow(d) 

( )
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For integer powers of 2, the relationship between Rk and U1 is 

Rk(n) = U1 (2π/2n) . 

Some of the named gates are just special cases of Rk (and therefore of U1). In par-

ticular, the identity gate I, the Z gate, the S gate, and the T gate (which we define in 

Section 2.7.9 below) can be constructed with these flexible phase gates. This test code 

may help to clarify: 

def test_rk(self): 
self.assertTrue(ops.Rk(0).is_close(ops.Identity())) 

self.assertTrue(ops.Rk(1).is_close(ops.PauliZ())) 

self.assertTrue(ops.Rk(2).is_close(ops.Sgate())) 

self.assertTrue(ops.Rk(3).is_close(ops.Tgate())) 

2.7.8 U3 gate 

Physical quantum computers may implement other types of gates. IBM machines 

specify the general U3 gate with real angles θ, φ, and λ: ( )
cos(θ/2) −eiλ sin(θ/2)

U3(θ,φ,λ) = . 
eiφ sin(θ/2) ei(λ+φ) cos(θ/2) 

This gate is quite versatile, as it can be used to construct several other standard gates.20 

The likely simplest form generates the identity gate as ( )
1 0 

U3(0,0,0) = = I. 
0 1 

To construct the flexible phase gate U1 (with which we can generate Z, S, and T gates), 

we set ( ) ( )
cos(0) −e −iλ sin(0) 1 0 

U3(0,0,λ) = = = U1.iλ e 0i sin(0) ei(λ+0) cos(0) 0 e 

To make an X gate, we set θ = π, resulting in cos(θ/2) = 0 and sin(θ/2) = 1: ( )
iλ 0 −e 

U3(π,φ,λ) = . iφ e 0 
(2.11)

The lower left term must be 1, which we get with φ = 0. The upper right term must 

be 1 as well, which we get with λ = π: ( )
0 1 

U3(π,0,π) = = X. 
1 0 

Using Equation (2.11) we can derive the Pauli Y gate as ( )
π π 0 −i 

U3(π, , ) = = Y . 
2 2 i 0 

20 Found in http://qiskit.org/textbook/ch-states/single-qubit-gates.html, section 7. 

http://qiskit.org/textbook/ch-states/single-qubit-gates.html
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We can create more complex gates. For example, to construct a Hadamard gate, 

we set ( )
π cos(π/4) −(−1) sin(π/4)

U3(θ = ,φ = 0,λ = π) = . 
2 1 sin(π/4) −1 cos(π/4) 

With  cos π = sin π = 1√ 
4 4 2

, the result is a Hadamard gate: ( )
π 1 1 1 

U3( ,0,π) = √ = H. 
2 2 1 −1 

 

We can even construct rotation gates: 

π π 
U3(θ, − , ) = Rx(θ),

2 2 

U3(θ,0,0) = Ry(θ). 

Similarly to the other standard gates, we add this constructor to src/lib/ops.py: 

def U3(theta: float, phi: float, lam: float, d: int = 1) -> Operator: 
return Operator( 

[(np.cos(theta / 2), 

-cmath.exp(1j * lam)*np.sin(theta / 2)), 

(cmath.exp(1j * phi)*np.sin(theta / 2), 

cmath.exp(1j * (phi + lam))*np.cos(theta / 2))], 'U3').kpow(d) 

2.7.9 Square Roots of Gates 

What is the square root of a classical NOT gate? There is no such thing. There is no 

classical gate that, when applied twice, flips a bit. However, it is possible to find a√
 V = X 

 
matrix in quantum computing. 

When asked what the root is of 4, the usual answer is 2. However, there are actually 

two roots, namely 2 and −2. Similarly, matrices can have multiple roots; in particular, 

if X = V2, then also X = (−V)2. As we shall see later in Section 2.10.2, roots play an 

important role in the construction of efficient two-qubit gates. 

The root of the X gate is the V gate. V is unitary,21 with † VV = I, but also V2 = X. 

It can be defined in the following ways 22 (we only implement the first option): ( )√ 1 1 + i 1 − i 1 
V = X = = √ eiπ/4(I − iX), 

2 1 − i 1 + i 2 ( )
1 −1 − i −1 + i 1 

= = −√ eiπ/4(I − iX). 
2 −1 + i −1 − i 2 

def Vgate(d: int = 1) -> Operator: 
return Operator(0.5 * np.array([(1 + 1j, 1 - 1j), 

(1 - 1j, 1 + 1j)]), 'V').kpow(d) 

21 Any root of a unitary gate is also unitary. We omit the proof here. 
22 Found in http://quantumcomputing.stackexchange.com/a/30216. 

http://www.github.com/qcc4cp/qcc/blob/main/src/src/lib/ops.py
http://quantumcomputing.stackexchange.com/a/30216
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The root of a rotation by an angle φ is a rotation about the same axis, in the same 

direction, by the angle φ/2. Two half-rotations result in one full rotation. This is 

obvious from the exponential form 
√ 

iφ iφ )1/2 iφ/2 e = (e = e . 

The root of the S gate is called the T gate. The S gate represents a phase of 90◦ . 

Consequently, the T gate is equivalent to a   45◦ phase: ( )√ 1 0 
T = S = .iπ/40 e 

def Tgate(d: int = 1) -> Operator: 
return Operator([[1.0, 0.0], 

[0.0, cmath.exp(cmath.pi * 1j / 4)]]).kpow(d) 

The T gate is sometimes called the π/8 gate, which seems counterintuitive since 

the gate has a factor of π/4 in it! The name may come from the fact that pulling out a 

factor makes the gate appear symmetric: ( ) ( )−iπ/81 0 e 0iπ/8T = = e .iπ/4 iπ/80 e 0 e 

The root of the Y gate has no special name (which we know of), but is required 

later in the text, so we introduce it here as Yroot. It is defined as ( )√ 1 1 + i −1 − i 
Yroot = Y = , 

2 1 + i 1 + i 

which translates to this code: 

def Yroot(d: int = 1) -> Operator: 
return Operator(0.5 * np.array([(1 + 1j, -1 - 1j), 

(1 + 1j, 1 + 1j)]), 'YRoot').kpow(d) 

There are other interesting roots, but these are the main ones we will encounter in 

this text. We can test for correct implementations with code like this: 

def test_gates_roots(self): 
t = ops.Tgate() 

self.assertTrue(t(t).is_close(ops.Phase())) 

v = ops.Vgate() 

self.assertTrue(v(v).is_close(ops.PauliX())) 

yr = ops.Yroot() 

self.assertTrue(yr(yr).is_close(ops.PauliY())) 

Finding a root in closed form can be cumbersome. In case of analytical problems, 

you can use the scipy function sqrtm() to compute the root of a gate. For this to 

work, scipy must be installed: 
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from scipy.linalg import sqrtm 
[...] 

computed_yroot = sqrtm(ops.PauliY()) 

self.assertTrue(ops.Yroot().is_close(computed_yroot)) 

2.7.10 Projection Operators 

A projection operator for a given basis state, or projector for short, is the outer product 

of a basis state with itself.23 The term projector comes from the fact that applying a 

basis state’s projector to a given state extracts the amplitude of the basis state. The state 

is projected on the basis state, similar to how the cosine function is a projection of a 
24two-dimensional vector on the x-axis. The projectors for the states |0⟩ and |1⟩ are ( ) ( )

1 ( ) 1 0 
P|0⟩ = Π|0⟩ = 1 0 = ,

0 0 0 ( ) ( )
0 ( ) 0 0 

P|1⟩ = Π|1⟩ = 0 1 = . 
1 0 1 

Applying the projector for the |0⟩ state to a random qubit yields the probability 

amplitude of the qubit being found in the |0⟩ state (and similar for the projector to the 

|1⟩ state): 

P|0⟩|ψ⟩ = |0⟩⟨0|(α |0⟩ + β|1⟩) = α |0⟩. 

Projection operators are Hermitian, hence †P = P  , but note that the projection 

operators are not unitary or reversible. Their two eigenvalues are 0 and 1. If the basis 

states of a projection operator are normalized, the projection operator is equal to its 

square P = P2; it is idempotent. We will use this result below in Section 2.13 on 

measurement. Similar to basis states, two projection operators are orthogonal if and 

only if their product is 0, which means that for each state 

→P|0⟩P|1⟩|ψ⟩ = 0. 

The sum of all projection operators for any given orthonormal basis {→i} adds up to 

the identity operator. This is also known as the completeness relation. You can try this 

out, for example, with the Hadamard basis: 

n−1∑
P|i⟩ = I, 

i=0 

|+⟩ ⟨+| + |−⟩ ⟨−| = I. 

In general, when writing an outer product as |r⟩⟨c|, you can think of this as a 

two-dimensional index [row,col] into a matrix. This is also called the outer product 

representation of an operator: 

23 Strictly speaking, it does not have to be a basis state, but this is what we will typically use. 
24 Often the symbol Π (“Pi”) is used to denote projectors. In this book, we will use a slant P. 
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(
a 

A = 
c 

)
b 
= a|0⟩⟨0| + b|0⟩⟨1| + c|1⟩⟨0| + d|1⟩⟨1|. 

d 

This also works for larger operators. For example, for this two-qubit operator U with 

just one nonzero element α, 

|00⟩ |01⟩ |10⟩ |11⟩ ( )
|00⟩ 0 0 0 0 | \
|01⟩ || 0 0 0 0 \

U = \| \,
|10⟩ ( 0 0 0 0 )
|11⟩ 0 α 0 0 

the outer product representation for the single nonzero element α in this operator 

would be α|11⟩⟨01|, an index pattern of |row⟩⟨col|. For derivations, this representation 

can be more convenient than having to deal with full matrices. For example, to express 

the application of the X gate to a qubit, we would write ( )
0 1 

X = = |0⟩⟨1| + |1⟩⟨0|,
1 0 ( )

X α |0⟩ + β |1⟩ ( )
= |0⟩⟨1| + |1⟩⟨0| (α |0⟩ + β |1⟩) 

= |0⟩⟨1|α |0⟩ + |0⟩⟨1|β |1⟩ + |1⟩⟨0|α |0⟩ + |1⟩⟨0|β |1⟩ 

= α|0⟩ ⟨1|0⟩ +β|0⟩ ⟨1|1⟩ +α|1⟩ ⟨0|0⟩ +β|1⟩ ⟨0|1⟩()() ()() ()() ()()
=0 =1 =1 =0 

= β |0⟩ + α|1⟩. 

We add the following helper functions to construct the common n-bits projectors 

for the basis states |00 . . . 0⟩ and |11 . . . 1⟩, where we exploit the fact that the resulting 

matrices have a singular 1 in either the top left or bottom right corner of the matrix: 

def ZeroProjector(nbits: int) -> Operator: 
zero_projector = np.zeros((2**nbits, 2**nbits)) 

zero_projector[0, 0] = 1 

return Operator(zero_projector) 

def OneProjector(nbits: int) -> Operator: 
dim = 2**nbits 

zero_projector = np.zeros((dim, dim)) 

zero_projector[dim - 1, dim - 1] = 1 

return Operator(zero_projector) 

At this point, we have made good progress in learning about single-qubit gates and 

how to construct multi-qubit states. Yet, a key ingredient to computing is still missing: 

What are the control-flow constructs that are ubiquitous in classical computing? The 
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quantum equivalents of these constructs are called controlled gates, which we will 

discuss next. 

Quantum computing does not have classic control flow with branches around con-

ditionally executed parts of the code. As described earlier, in a quantum circuit, all 

qubits are active at all times. The quantum analog of control-dependent execution is 

achieved with controlled gates. Controlled gates are always applied but show an effect 

only under certain conditions. At least two qubits are involved: a controller qubit and 

a controlled qubit. Note that 2-qubit gates in this form cannot be decomposed into 

single-qubit gates. 

R E M A R K : Before we continue, we have to agree on naming (which is hard). Shall 

we call a controlled not gate a, well, controlled not gate, a controlled-not gate, or 

Controlled-Not gate, or even a Controlled-Not-gate? Should it be X-gate or X gate? 

We will follow the convention of using uppercase gate names and no hyphens, such 

as controlled Not gate, X gate, or Hadamard gate. In mathematical notation, gates 

are referred to by their symbolic names, such as X, Y, and Z. 

Let us explain the function of controlled gates by example. Assume that we have 

two qubits, numbered qubit 0 and qubit 1, and we somehow want qubit 0 to influence 

the effect of qubit 1. Consider how the following two-qubit controlled Not matrix 

(abbreviated as CNOT, or CX ), spanning both qubits, operates on combinations of the 

|0⟩ and |1⟩ basis states: 

CX 0,1 = 

(||(
1 0 0 0 

0 1 0 0 

0 0 0 1 

0 0 1 0 

)\\) . 

Eagle-eyed readers will find the X gate in the lower right quadrant of this matrix 

and the identity matrix in the upper left. This can be misleading. The important thing 

to note is that a controlled Not gate is a permutation matrix. Applying this matrix to 

(||(
1 0 0 0 ||(\\)

1 

0 

0 

\\) = 
||(

1 

0 

0 

\\)0 1 0 0 
CX 0,1 |00⟩ = = |00⟩,

0 0 0 1 

0 0 1 0 0 0 (||(
(||(

)\\)
)\\)

(||(
)\\)

1 0 0 0 0 0 

0 1 0 0 1 1 
CX 0,1 |01⟩ = = |01⟩.= 

0 0 0 1 0 0 

0 0 1 0 0 0 

states |00⟩ and |01⟩ leaves the states intact: () ) ( )
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Application to |10⟩ however flips the second qubit to a resulting state of |11⟩: 

1 0 0 0 
)\\)

(||(
)\\)

(||(
)\\)

(||(
0 0 

0 1 0 0 0 0 
CX 0,1 |10⟩ = = |11⟩.= 

0 0 0 1 1 0 

0 0 1 0 0 1 

| ⟩ | ⟩Similarly, application 11 the second qubit resulting of 10flipsto to state :a )\\)
(||(

1 0 0 0 
)\\)

(||(
)\\)

(||(
0 0 

0 1 0 0 0 0 
CX 0,1 |11⟩ = = |10⟩.= 

0 0 0 1 0 1 

0 0 1 0 1 0 

The CX matrix flips the second qubit from |0⟩ to |1⟩, or from |1⟩ to |0⟩, but only 

if the first qubit is in state |1⟩. In this example, the X gate on the second qubit is 

controlled by the first qubit, but any 2 × 2 quantum gate can be controlled this way. 

We can control Z gates, rotations, or any other 2 × 2 gate. 

The CX gate is usually introduced, as we did here, by its effects on the |0⟩ and 

|1⟩ states of the second qubit where both qubits are adjacent. What if the controller 

and the controlled qubit are farther apart or in inverted order? The following shows a 

general way to construct a controlled unitary operator U with the help of projectors. 

In the tensor products below, the projectors P|0⟩ and P|1⟩ are at the position of the 

controlling qubit and U is at the position of the controlled qubit: 

CU0,1 = P|0⟩ ⊗ I + P|1⟩ ⊗ U. (2.12) 

With this recipe, we can construct a controlled Not gate CX 1,0 from 1 to 0. Note 

that in this gate, you won’t find the original X gate or the identity matrix in the operator, 

but it is still a permutation matrix: 

CX 1,0 = 

(||(
1 0 0 0 

0 0 0 1 

0 0 1 0 

0 1 0 0 

)\\) . 

If there are n qubits between the controlling and controlled qubits, n identity matri-

ces must also be tensored between them. If the index of the controlling qubit is higher 

than the index of the controlled qubit, the positions of the gates and the projectors 

change in the tensor product in Equation (2.12). Here is an example of qubit 2 con-

trolling gate U on qubit 0: 

CU2,0 = I ⊗ I ⊗ P|0⟩ + U ⊗ I ⊗ P|1⟩. 

The corresponding code is straightforward. We have to make sure that the right 

number of identity matrices are being added to pad the operator: 

def ControlledU(idx0: int, idx1: int, u: Operator) -> Operator: 
assert idx0 != idx1, 'Controller / Controlled must not be equal.' 
p0 = ZeroProjector(1) 
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p1 = OneProjector(1) 

# space between qubits 

ifill = Identity(abs(idx1 - idx0) - 1) 

# 'width' of U in terms of Identity matrices 

ufill = Identity().kpow(u.nbits) 

if idx1 > idx0: 
op = p0 * ifill * ufill + p1 * ifill * u 

else: 

op = ufill * ifill * p0 + u * ifill * p1 

return op 

With this code, we can control operators larger than 2×2 matrices. We can also con-

struct controlled–controlled gates, controlled–controlled–controlled gates, and even 

longer sequences of controlled-. . . gates, which are required for many interesting algo-

rithms. 

The code creates one large operator matrix. This can be a problem for larger cir-

cuits, e.g., for a circuit with 20 qubits, with qubit 0 controlling qubit 19 (or any other 

padded operator). The operator would be a matrix of size (220)2, multiplied by the size 

of a Python complex data type, which could amount to a total of 8 or 16 terabytes25 

of memory. Building such a large matrix in memory and applying it via matrix–vector 

multiplication can become intractable. Since this is how we express operators at this 

point, we are limited by the number of qubits we can experiment with. Fortunately, 

there are techniques to significantly improve scalability, which we will discuss in 

Chapter 3. 

Also, note that we allow the controller and controlled qubits to be at arbitrary 

distances from each other in our simulations. In a real quantum computer, there are 

topological limitations to the possible interactions between qubits. Mapping an algo-

rithm on a concrete physical topology introduces another set of interesting problems. 

IBM (2021b) shows several examples, which we will touch on in Section 16.4. 

2.8.1 Controlled Not Gate 

The controlled Not gate (CNOT) is a key ingredient in introducing entanglement into 

a circuit, as we shall see shortly. It deserves its own constructor function. We already 

discussed this gate at the beginning of Section 2.8: 

def Cnot(idx0: int = 0, idx1: int = 1) -> Operator: 
return ControlledU(idx0, idx1, PauliX()) 

The Controlled-by-0 Not gate (CNOT0) is similar to the CNOT gate, except that it 

is controlled by the |0⟩ part of the controlling qubit. This is accomplished by inserting 

an X gate before and after the controlling qubit: 

25 tebibytes, to be precise. 
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def Cnot0(idx0: int = 0, idx1: int = 1) -> Operator: 
if idx1 > idx0: 

x2 = PauliX() * Identity(idx1 - idx0) 

else: 

x2 = Identity(idx0 - idx1) * PauliX() 

return x2 @ ControlledU(idx0, idx1, PauliX()) @ x2 

Of course, this construction to control a gate by |0⟩ works for any target gate. We 

will see several examples of this in later sections. 

2.8.2 Swap Gate 

The Swap gate is another important gate. Just as its name suggests, it swaps two qubits. 

Concretely, for two qubits q0 = (a b)T and q1 = (c d)T , their product state is 

q0 ⊗ q1 = (ac ad bc bd)T . The swap gate will swap the elements at indices 1 and 2 

in the state vector and turn it into (ac bc ad bd)T = q1 ⊗ q0. As a matrix, the gate is 

a permutation matrix: 

SWAP0,1 = 

(||(
1 0 0 0 

0 0 1 0 

0 1 0 0 

0 0 0 1 

)\\) . 

Using Equation (2.12) to construct controlled gates cannot produce this gate. How-

ever, it turns out that a sequence of three CNOT gates swaps the probability amplitudes 

of the basis states, which compounds to a Swap gate. To swap qubits 0 and 1, you apply 

the three gates CX 10, CX 01, and CX 10. This is analogous to classical computing, 

where a sequence of three XOR operations can be used to swap classical bit values. 

These techniques do not require additional temporary storage, such as a temporary 

variable or a helper qubit. 

There are many other ways to construct Swap gates, specifically for cases where 

the participating qubits are not adjacent. Several interesting alternatives are given in 

Gidney (2021b). Here is a standard implementation using the three CNOT gates: 

def Swap(idx0: int = 0, idx1: int = 1) -> Operator: 
return Cnot(idx1, idx0) @ Cnot(idx0, idx1) @ Cnot(idx1, idx0) 

2.8.3 Controlled Swap Gate 

Like any other unitary operator, Swap gates can also be controlled. A controlled Swap 

gate is also known as the Fredkin gate. Similarly to the Toffoli gate, the Fredkin gate 

is a universal gate in classical computing, but not in quantum computing.26 As a black 

26 There is no single universal gate in quantum computing, only sets of gates. We will not expand on this 

further. See, for example, www.scottaaronson.com/qclec/16.pdf for more details. 

http://www.scottaaronson.com/qclec/16.pdf
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Figure 2.3 Block diagram for the Fredkin gate, which is a controlled Swap gate. 

box, it represents the logic shown in Figure 2.3, which may be difficult to reason 

about in isolation (with ∧ as logical AND and ¬ as logical NOT). However, the logic 

is simple. If qubit A is |1⟩, qubits B and C are swapped in the tensor product of the 

three qubits: 

CSWAP |A,B,C⟩ = |A,C,B⟩, if A = |1⟩ . 

The first physical quantum Fredkin gate was built relatively recently (Patel et al., 2016) 

and used to construct GHZ states, which we describe in Section 2.11.4. 

2.8.4 Controlled Phase Gate 

Phase gates can also be controlled. They are especially interesting because they are 

symmetric: the controller and controlled qubits for a controlled phase gate can be 

swapped without changing the resulting operator matrix. With Equation (2.12) in 

Section 2.8 on controlled gates we saw how to construct controlled unitary gates as 

CU0,1 = P|0⟩ ⊗ I + P|1⟩ ⊗ U, 

CU1,0 = I ⊗ P|0⟩ + U ⊗ P|1⟩. 

Let’s use the controlled Z gate as an example and compute the operator matrices. 

This will work for all phase gates derived from the U1 gate, but we use the Z gate here; 

it is the easiest to read: 

CZ0,1 = 
||(

1 0 0 0 

0 1 0 0 

0 0 0 0 

\\)+ 
||(

0 0 0 0 

0 0 0 0 

0 0 1 0 

\\) . 

0 0 0 0 0 0 0 −1 

( ) ( )

Swapping the indices from 0,1 to 1,0 results in 

CZ1,0 = 
||(

1 0 0 0 

0 0 0 0 

0 0 1 0 

\\)+ 
||(

0 0 0 0 

0 1 0 0 

0 0 0 0 

\\) . 

0 0 0 0 0 0 0 −1 

( ) ( )

In both cases, the identical result is (||( \\)
1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 −1 

CZ0,1 = CZ1,0 = . 

)
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def test_controlled_z(self): 
z0 = ops.ControlledU(0, 1, ops.PauliZ()) 

z1 = ops.ControlledU(1, 0, ops.PauliZ()) 

self.assertTrue(z0.is_close(z1)) 

Circuits will soon become quite sophisticated; we need an effective graphical circuit 

visualization, which we detail in this section. Qubits are drawn from top to bottom. In 

our big-endian convention, qubits are depicted from the most significant qubit to the 

least significant qubit. In equations, the top qubit will be on the left of a state, such 

as the 1 in |ψ⟩ = |1000⟩. Another way to visualize this order may be to imagine |ψ⟩ 
as a vector. Transposing this vector will move the leftmost qubit to the top spot in the 

transposed vector. 

Graphically, the initial states of the qubits are drawn to the left of horizontal lines 

that go to the right, as shown in Figure 2.4. Lines indicate how the state changes over 

time as operators are applied. Again, note the absence of any classical control flow. All 

qubits are active at all times in the combined state. By convention, qubits are always 

initialized in state |0⟩. However, because it is trivial to insert X or Hadamard gates, we 

sometimes take shortcuts and draw circuits as if they were present. 

The application of a Hadamard gate (or any other gate) to a qubit is drawn with the 

gate symbol (H in this case) on the line corresponding to the qubit. To describe the 

state at a given point during the execution of the circuit, we add dotted vertical lines 

and mark the states at that point with a subscript, like |ψ0⟩ and |ψ1⟩ in Figure 2.5a. 

|0⟩ 

|1⟩ 

|+⟩ 

Figure 2.4 The structure of a quantum circuit. Qubits are initialized, and computation flows 

from left to right. This circuit has no gates yet. 

|ψ0⟩ |ψ1⟩ |ψ1⟩ |ψ2⟩ 

|0⟩ H 

|0⟩ 

|0⟩ H 

|0⟩ Z 

(a) A Hadamard gate on the first qubit (b) A Z gate to the right of the H gate. 

Figure 2.5 Applying a Hadamard gate and a Z gate in sequence. 
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Recall that the state of the circuit is the combined state of all the qubits in the state. 

For example, the initial state before the Hadamard gate is |ψ0⟩ = |0⟩ ⊗ |0⟩ = |00⟩, 
indicated by a dotted vertical line marked with |ψ0⟩. The Hadamard gate puts the top √

(|0⟩ + |1⟩)/ 2 = |+⟩ 
 

qubit in superposition . As a result, the state |ψ1⟩ in Figure 2.5a 

is the tensor product of the top qubit with the bottom qubit |0⟩: 

|0⟩ + |1⟩ 1 ( )
|ψ1⟩ = |+⟩ ⊗ |0⟩ = √ ⊗ |0⟩ = √ |00⟩ + |10⟩ . 

2 2 

Applying a Z gate to qubit 1 after the Hadamard gate results in the circuit shown in 

Figure 2.5b. The fact that the Z gate is to the right of the Hadamard gate indicates that 

this operator should be applied after the Hadamard gate (although, in this case, their 

order would not matter). 

Controlled X gates are indicated with a solid circle for the controller qubit and the 

addition-modulo-2 symbol ⊕ for the controlled qubit (though not to be confused with 

the symbol for the tensor product ⊗). In some instances, we may still want to denote 

an X gate, but these two are identical: 

= 

X 

Any single-qubit gate can be controlled in this way. The controlled Z gate is sym-

metric (as are all other phase gates; see Section 2.8.4). It is quite common and gets its 

own graphical representation: 

= 
Z 

= 

Z 

The Controlled-by-0 Not gate can be built by applying an X gate before and after 

the controller. It is drawn with an empty circle on the controlling qubit: 

= 
X X 

Swap gates are marked with two connected × symbols, as in the circuit diagrams 

below. Like any other gate, swap gates can also be controlled: 

If a gate is controlled by more than one qubit, it is drawn with multiple black or 

empty circles, depending on whether the gates are controlled by |1⟩ or |0⟩. In the 

example in Figure 2.7, qubits 0 and 2 must be |1⟩ (have an amplitude for this base 

state), and qubit 1 must be |0⟩ to activate the X gate on qubit 3. 
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U V 

Figure 2.6 Measurement and flow of classical data after measurement, which is indicated with 

double lines. 

Figure 2.7 An example multi-controlled Not gate. The first and third qubit are controlled by |1⟩, 
and the second qubit is controlled by |0⟩. 

We will learn more about measurements in Section 2.13. Measurement gates pro-

duce real, classical values and are indicated with a meter symbol. Classical informa-

tion flow is drawn with double lines. In the example in Figure 2.6, measurements are 

being made, and the real, classical measurement data may then be used to build or 

control other unitary gates, U and V in the example.27 

2.10 Multi-controlled Gates 

Now that we know how to create controlled gates, the logical next step is to devise 

mechanisms to control gates with multiple controllers. In this section, we will first 

show how to create a controlled–controlled Not operator. Next, we introduce the 

Sleator–Weinfurter construction, which uses only 2-qubit gates and enables efficient 

simulation. We will conclude with a mechanism for creating gates that are controlled 

by an arbitrary number of qubits. 

2.10.1 Controlled–Controlled Not Gate 

The full matrix construction for the controlled gates works in a nested fashion, extend-

ing the control to already controlled gates. A double-controlled X gate is also called the 

Toffoli gate or, for short, the CCX gate. This gate is interesting in classical computing 

because it is a universal gate – every classical logic function can be constructed using 

just this gate. As mentioned before, this universality attribute does not hold in quantum 

All circuit diagrams in this book were created using the excellent LATEX package quantikz, with a 

few custom settings. 

27 

https://doi.org/10.1017/9781009548519.003


A A 

B BT 

(A ∧ B) ⊕ CC 

56 Quantum Computing Fundamentals 

Figure 2.8 Block diagram for the Toffoli gate. 

computing. In quantum computing, there are only sets of universal gates (see also 

Section 9.4). 

This is how the Toffoli gate works: If the first two inputs are |1⟩ it flips the third 

qubit. This is often shown as a logic block diagram (with ∧ as the logical AND), as in 

Figure 2.8. In matrix form, we can describe it using block matrices, with 0n as an n×n 

null matrix. Note that changing the indices of the controller and controlled qubits may 

destroy these patterns, but the resulting 8 × 8 matrix will still be a permutation matrix: 

)(
I4 04 

04 CX 
= 

(||(
I2 02 02 02 

02 I2 02 02 

02 02 I2 02 

02 02 02 X 

)\\) . 

The constructor code is fairly straightforward and is a good example of how to con-

struct a double-controlled gate: 

def Toffoli(idx0: int, idx1: int, idx2: int) -> Operator: 
cnot = Cnot(idx1, idx2) 

toffoli = ControlledU(idx0, idx1, cnot) 

return toffoli 

We observe that because we are able to construct quantum Toffoli gates and because 

Toffoli gates are classical universal gates, it follows that quantum computers are at 

least as capable as classical computers. 

2.10.2 Sleator–Weinfurter Construction 
√ 

 R = UFor a given unitary matrix U and one of its square roots , we can construct a 

double-controlled U gate using only two-qubit gates with the pattern shown in Figure 

2.9. This is important for simulation performance because two-qubit gates can be 

simulated very efficiently, as we will show in Chapter 3. Furthermore, building gates 

consisting of more than two qubits for physical machines can be a major challenge, if 

not impossible. 

An example of a double-controlled gate is the Toffoli gate from Section 2.10.1, 

which is a double-controlled X gate, as shown in the quantum circuit notation on 

the left side of Figure 2.9. The Toffoli gate can be built with the Sleator–Weinfurter 

construction (Barenco et al., 1995), which is illustrated on the right-hand side of 

Figure 2.9. 
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Figure 2.9 The Sleator–Weinfurter construction for a double-controlled X gate. 

a0 

a1 

a2 

c0 

c1 

c2 

c3 

c4 

q0 X 

= 

... 

... 

... 

... 

... 

... 

... 

X 

Uncompute 

Figure 2.10 A multi-controlled X gate. 

We know that the square root of the X gate is the V gate, and we also have the 

adjoint() function to compute the adjoint of a tensor. This construction works for 

any single-qubit gate and its root, so we can construct double-controlled X, Y , Z, T , 

and any other controlled 2 × 2 gates. We show the implementation in Section 3.3.5. 

2.10.3 Multi-controlled Gates 

Building on the efficient two-qubit construction introduced in Section 2.10.2, an ele-

gant construction for a gate controlled by n controlling qubits requires n − 2 ancillary 

qubits. To see how this works, let us examine the first half of the circuit in Figure 

2.10. This circuit has three ancilla qubits a0, a1, and a2. It has the five controller 

qubits c0 to c4 and the controlled qubit q0. The circuit builds a cascade of Toffoli gates 

to ultimately control the qubit q0. First, the controllers c0 and c1 control the ancilla a2. 

The next control qubit c2 is then connected to a2 with a Toffoli gate, controlling the 

ancilla a1. Finally, the control qubit c3 connects a Toffoli gate to ancilla a1 to control 

the top ancilla a0. This is also the top of the cascade. From here, we use a final Toffoli 

gate to control the X gate at the bottom, on qubit q0, with both c4 and a0. This X gate 
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will have an effect only if all the controlling qubits and the topmost ancilla qubit were 

in state |1⟩. 
This construction can be used to control other single-qubit gates. A potential prob-

lem is that the system’s state is now entangled with the ancillary qubits. A solution 

to this problem, which we detail in Section 2.12, is to uncompute the cascade of 

Toffoli gates by computing the adjoints of the gates and applying them in reverse 

order. By doing this, as shown in the right-hand half of Figure 2.10, the ancillary 

qubits return to their initial state. The state can then again be expressed as a product 

state, as all entanglement with the ancilla qubits has been eliminated. We detail an 

implementation of multi-controlled gates that may have 0, 1, or more controllers and 

that can be controlled by |0⟩ or |1⟩ in Section 3.3.6. 

Other constructions are possible. Mermin (2007) proposes multi-controlled gates 

that trade additional gates for lower numbers of ancillae, as well as circuits that do not 

require the ancillae to be in |0⟩ states (which may save a few uncomputation gates). 

2.11 Entanglement 

Entanglement is one of the most fascinating aspects of quantum physics. When two 

qubits (or systems) are entangled, measurement results are strongly correlated, even 

if the states are physically separated, be it by a millimeter or across the universe! This 

is the effect that Albert Einstein famously called “spooky action at a distance.” If we 

entangle two qubits in a specific way (described below), and qubit 0 is measured to be 

in state |0⟩, qubit 1 will always be in state |0⟩ as well. 

Why is this truly remarkable? Assume that we took two coins, placed them heads 

up in two boxes, and shipped one of the boxes to Mars. Regardless of how we shipped 

the boxes or in which order we opened the boxes, when we opened them, both coins 

showed heads. So, what is so special about the quantum case? In this example, the 

coins have a hidden state. We have placed them in the boxes before shipment, knowing 

which side to place on top in an initial, defined, non-probabilistic state. We also know 

that this state will not change during shipment. 

If there were some form of a hidden state in quantum mechanics, then the whole 

theory would be incomplete. The quantum mechanical wave functions would be insuf-

ficient to describe a physical state fully. This was the point that Einstein, Podolsky, and 

Rosen attempted to make in their famous EPR paper (Einstein et al., 1935). 

However, a few decades later, it was shown that there cannot be a hidden state in an 

entangled quantum system. A famous thought experiment, the Bell inequalities (Bell, 

1964), proved this and it was later experimentally confirmed. We will detail a variant 

of the inequalities in Section 6.5 about the CHSH game. 

Qubits collapse probabilistically during measurement to either |0⟩ or |1⟩.28 This is 

equivalent to placing the coins in the boxes while they spin on their edges and shipping 

one of them to Mars. Let’s assume that the long and likely bumpy journey by a rocket 

does not disturb their twirling. Only when we open the boxes will the coins fall to 

28 This is true as long as we measure in this computational basis. We talk about measurements in different 

bases in Section 13.1.3. 
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one of their sides. Perfect coins would fall on each side 50% of the time. Similarly, 

if we prepare a qubit in the |0⟩ state and apply a Hadamard gate to it, this qubit will 

measure either |0⟩ or |1⟩, with a probability of 50% for each outcome. The magic of 

quantum entanglement is that both qubits of an entangled pair will measure the same 

value, either |0⟩ or |1⟩, 100% of the time. This is equivalent to the coins falling to the 

same side 100% of the time on Earth and Mars! 

There are profound philosophical arguments about entanglement, measurement, 

and what they tell us about the very nature of reality. Many of the greatest physicists 

of the last century have argued over this for decades, including Einstein, Schrödinger, 

Heisenberg, and Bohr. These discussions have not been resolved to this day; there is 

no agreement. Many books and articles have been written solely on this topic and go 

into much more detailed and nuanced explanations than we are able to do here. We 

are not even going to try it. Instead, we take the laws of nature (as postulated) and use 

them as rules that we can use for computation. 

This sentiment might put us in the camp of the Copenhagen interpretation of 

quantum mechanics (Faye, 2019). Ontology is a fancy term for questions like “What 

is?” or “What is the nature of reality?” The Copenhagen interpretation refuses to 

answer all ontological questions. To quote David Mermin (Mermin, 1989, p. 2): If 

I were forced to sum up in one sentence what the Copenhagen interpretation says to 

me, it would be “Shut up and calculate!” 

The key here is that progress can be made, even if ontological questions remain 

unanswered.29 

2.11.1 Product States 

Consider a two-qubit system. Constructing the tensor product between the pure states 

of two qubits leads to a state where each qubit can still be described without reference 

to the other. There is no correlation between the two states. 

There is an intuitive (though not general) way to visualize this. The state can be 

expressed as the result of a tensor product with the result (a,b,c,d)T . If two states are 

not entangled, they are said to be in a product state. This is the case if ad = bc. If the 

states are entangled, this identity will not hold. 

Proof As a quick proof, assume two qubits q0 = (i,k)
T and q1 = (m,n)

T . Their Kro-

necker product is q0 ⊗ q1 = (im,in,km,kn)T . Multiplying the outer elements and the 

inner elements, corresponding to the ad = bc form above, we see that 

im kn = imkn = inkm = in km .()() ()() ()() ()()
a d b c 

2.11.2 Entangler Circuit 

The circuit in Figure 2.11 is the quintessential quantum entangler circuit. We will see 

many uses of it in this text. Let us discuss in detail how the state changes as the gates 

are applied. 

29 My colleague Sergio Boixo modified this quote to “Shut up and program” for this book. 
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|ψ0⟩ |ψ1⟩ |ψ2⟩ 

|0⟩ H 

|0⟩ 

Figure 2.11 A simple circuit to entangle two qubits. 

The initial state |ψ0⟩ before the Hadamard gate is the tensor product of the two |0⟩ 
states, which is |00⟩ with a state vector of (1, 0, 0, 0)T . The Hadamard gate puts the 

first qubit in superposition of the |0⟩ and |1⟩ basis states and the state |ψ1⟩ becomes 

the tensor product of the superpositioned first qubit with the second qubit: 

|0⟩ + |1⟩ 1 |ψ1⟩ = √ |0⟩ = √ (|00⟩ + |10⟩). 
2 2 

In code, we compute this with the snippet below. The resulting state has nonzero 

entries at indices 0 and 2, corresponding to the states |00⟩ and |10⟩: 

psi = state.zeros(2) 

op = ops.Hadamard() * ops.Identity() 

psi = op(psi) 

print(psi) 

>> 

[0.70710677+0.j 0. +0.j 0.70710677+0.j 0. +0.j] 

Now we apply the controlled Not gate. The |0⟩ part of the first qubit in superposition 

does not affect the second qubit, and the |00⟩ part remains unchanged. However, the 

|1⟩ part of the superpositioned first qubit controls the second qubit. It will flip the qubit 

to |1⟩ and change the |10⟩ part of the state to |11⟩. The resulting state |ψ2⟩ after the 

controlled Not gate thus becomes 

|00⟩ + |11⟩ |ψ2⟩ = √ , 
2 

which corresponds to the state vector 

1 

(||(
1 

0 

0 

)\\) = 

(||(
a 

b 

)\\) .|ψ2⟩ = √ 
2 c 

1 d 

This state is now entangled because the ad = bc identity in the above rule does not 

hold. The product of elements 0 and 3 is 1/2, but the product of elements 1 and 2 is 0. 

The state can no longer be expressed as a product state. 

In code, we take the state psi we computed above and apply the controlled Not 

gate. As we print the entangled 2-qubit state vector, we can see that vector elements 0√ 
1/ 2and 3, which correspond to the basis states |00⟩ and |11⟩, hold the value : 
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psi = ops.Cnot(0, 1)(psi) 

print(psi) 

>> 

[0.70710677+0.j 0. +0.j 0. +0.j 0.70710677+0.j] 

Only states |00⟩ and |11⟩ can now be measured. The other two basis states have a 

probability of 0. If qubit 0 is measured as |0⟩, the other qubit will also be measured as 

|0⟩, since the only nonzero probability state with a |0⟩ as the first qubit is |00⟩. 
This explains the correlations (that spooky action at a distance), at least mathe-

matically. The measurement results of the two qubits are 100% correlated. We don’t 

know why, what physical mechanism facilitates this effect, or what reality is. Perhaps 

another famous Einstein quote applies: “Reality is just an illusion, albeit a very per-

sistent one.” At least for simple circuits and their respective matrices, we now have a 

means to express this unreal feeling of reality. 

2.11.3 Bell States 

Bell states are named after the great physicist John Bell (Burke et al., 1999), whose 

thought experiment using standard probability theory proved that entangled qubits 

could not have a hidden state or hidden information (Bell, 1964). This discovery was 

one of the defining moments for quantum mechanics, in particular, because a few years 

later, a physical experiment was devised that confirmed the theory. 

We saw the first of four possible Bell states above, constructed with the entangler 

circuit and |00⟩ as input. There are a total of four Bell states, resulting from the four 

inputs |00⟩, |01⟩, |10⟩, and |11⟩. We denote |βxy⟩ as the state resulting from the inputs30 

|x⟩ and |y⟩. In the literature, you will also find the symbols |Φ⟩ and |Ψ⟩ to denote these 

states: 

||

||

||

⟩

(||(
)\\)

1 

0 

0

|00⟩ + |11⟩ 1 √ =|β00⟩ = √= , 
2 2 

1 (||(
)\\)

1 

0 

0

|00⟩ − |11⟩ 1 √ =|β10⟩ = √= , 
2 2 

−1 (||(
)\\)

0 

1 

1

|01⟩ + |10⟩ 1 √ =|β01⟩ = √= , 
2 2 

0 (||(
0 
)\\)|01⟩ − |10⟩ 1 √ = 

1 |β11⟩ = = √ . −12 2 

0 

30 We should interpret these indices themselves as little-endian. 

||Φ+
⟩

||Φ−⟩

||Ψ+
⟩

||Ψ−⟩
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PY 
Find the code 

In file src/lib/bell.py 

def bell_state(a: int, b: int) ->state.State: 
assert a in [0, 1] and b in [0, 1], 'Bell bits must be 0 or 1.' 
psi = state.bitstring(a, b) 

psi = ops.Hadamard()(psi) 

return ops.Cnot()(psi) 

The four Bell states form an orthonormal basis for two-qubit states, which are com-

plex vectors in C4. Any two-qubit state |ψ⟩ can be expressed as a linear combination 

of these four basis states: 

|ψ⟩ = c0 |β00⟩ + c1 |β01⟩ + c2 |β10⟩ + c3 |β11⟩ . 

Similarly to Equation (2.3), we can derive the individual factors ci simply by com-

puting the inner product of |ψ⟩ with the four Bell states ci = ⟨βxy|ψ⟩. A simple 

example of this can be found in file bell_basis.py in the open-source repository. 

PY 
Find the code 

In file src/bell_basis.py 

Bell states are the simplest forms of entangled states. We will encounter them 

in Chapter 6 on entanglement-based algorithms, such as quantum teleportation or 

superdense coding. There are other entangled states with very interesting properties, 

namely the GHZ state and the W state, which we discuss next. 

2.11.4 GHZ States 

A generalization of Bell states is the GHZ state of three or more qubits, named after 

Greenberger, Horne, and Zeilinger (Greenberger et al., 2008). It can be constructed 

with a circuit as shown in Figure 2.12, which propagates the superposition from the top 

qubit to all other qubits via cascading controlled Not gates. Note that, as an alternative 

way to construct the circuit, instead of a cascade of controlled Not gates, we could 

instead connect the top qubit 0 with each of the lower qubits with a controlled Not gate. 

This construction can be extended to more than three qubits, generalizing the GHZ √
(|00 . . . 0⟩ + |11 . . . 1⟩)/ 2. Only one of two possible states can be measured 

 
states to 

in the computational basis, each with a probability of 1/2. 

|0⟩ H 

|000⟩+|111⟩√ 
2

|0⟩ 

|0⟩ 

Figure 2.12 Circuit to construct a GHZ state. 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/bell.py
http://www.github.com/qcc4cp/qcc/blob/main/src/bell_basis.py
http://www.github.com/qcc4cp/qcc/blob/main/src/bell_basis.py
https://doi.org/10.1017/9781009548519.003


63 2.11 Entanglement 

|0⟩ Ry(φ3) X 

|0⟩ H 

|0⟩ 

Figure 2.13 Circuit to construct a W state with φ3 = 2 arccos √1 . 
3 

def ghz_state(nbits: int) -> state.State: 
psi = state.zeros(nbits) 

psi = ops.Hadamard()(psi) 

for offset in range(nbits-1): 
psi = ops.Cnot(0, 1)(psi, offset) 

return psi 

GHZ states are considered maximally entangled (see Section 4.4 for a definition 

of this term), even though no standard metric seems to exist for multipartite systems. 

The GHZ state is interesting because it is no longer entangled after “losing” a single 

qubit. We can simulate this with the partial trace routine we introduce in Section 4.3. 

For example, by tracing out the third qubit (at index 2) from the state density matrix, 

we obtain [( )( )]
|000⟩ + |111⟩ ⟨000| + ⟨111| |00⟩ ⟨00| + |11⟩ ⟨11|

tr2 √ √ = . 
2 2 2 

The result is an unentangled mixed state, a statistical ensemble of pure states. We will 

learn more about these terms in Section 4.2. 

2.11.5 W State 

There are two typical ways to entangle three qubits. The above GHZ state is one way, 

and the W state, named after Wolfgang Dür (Dür et al., 2000), is the other. The GHZ 

and W states are inequivalent, meaning they cannot be transformed into each other by 

standard unitary transformations. The W state has the form 

1 ( )
|W⟩ = √ |001⟩ + |010⟩ + |100⟩ . 

3 

This state is interesting because it is more robust against the loss of a qubit. After 

losing one, the remaining state is still entangled. We will experiment with this in 

Section 4.3 on the partial trace. Following the circuit diagram in Figure 2.13, the W 

state can be generated with this corresponding code: 

def w_state() -> state.State: 
psi = state.zeros(3) 

phi3 = 2 * np.arccos(1 / np.sqrt(3)) 
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psi = ops.RotationY(phi3)(psi, 0) 

psi = ops.ControlledU(0, 1, ops.Hadamard())(psi, 0) 

psi = ops.Cnot(1, 2)(psi, 1) 

psi = ops.Cnot(0, 1)(psi, 0) 

psi = ops.PauliX()(psi, 0) 

return psi 

2.11.6 No-Cloning Theorem 

There is another profound difference between classical and quantum computing. In 

classical computing, it is always possible to copy a bit, a byte, or any memory many 

times. This is verboten in quantum computing. It is generally impossible to clone the 

state of an unknown arbitrary qubit. This inability to copy is expressed with the so-

called No-Cloning Theorem (Wootters and Zurek, 1982). This restriction is related to 

the topic of measurements and the fact that it is impossible to create a measurement 

device that does not impact (entangle with) a state. 

T H E O R E M : Given an arbitrary unknown quantum state |ψ⟩ = |φ⟩|0⟩, there cannot 

exist a unitary operator U such that U|ψ⟩ = |φ⟩|φ⟩. 

Proof Assume that such an operator U exists. This means that U would take an 

arbitrary state |φ⟩ |0⟩ and transform it into 

U |φ⟩ |0⟩ = |φ⟩ |φ⟩ . 

The state |φ⟩ is an unknown arbitrary state, which means that the operator U should 

also work for another such unknown state |ψ⟩: 

U |ψ⟩ |0⟩ = |ψ⟩ |ψ⟩ . 

We know that U must be unitary, and unitary matrices preserve the inner product. Let 

us take the inner product of these multi-qubit states before and after cloning. Before 

cloning, we calculate the inner product as ( ) ( )
⟨φ| ⟨0| · |ψ⟩ |0⟩ , 

which, according to Equation (1.5), is 

⟨φ|ψ⟩ ⟨0|0⟩ = ⟨φ|ψ⟩.()()
=1 

However, after cloning, the inner product becomes ( ) ( )
⟨φ| ⟨φ| · |ψ⟩ |ψ⟩ = ⟨φ|ψ⟩⟨φ|ψ⟩ = |⟨φ|ψ⟩|2. 

Since we expect U to preserve the inner product, it must be true that ⟨φ|ψ⟩ = 
|⟨φ|ψ⟩|2. However, this only holds if ⟨φ|ψ⟩ = 0 or ⟨φ|ψ⟩ = 1. This is not true in the 

general case and for arbitrary states. It follows that an unknown arbitrary state cannot 

be cloned. 
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Arbitrary states can be moved but not cloned. Obviously, this leads to interesting 

challenges in quantum algorithm design and the design of quantum programming 

languages. 

Note the special cases of the basis states |0⟩ and |1⟩. These states can be cloned 

as long as they are not in superposition. This is easy to see for a state of the form 

|φ⟩ = α |0⟩ + β |1⟩. With one of α or β being 1 and the other being 0, only one term 

can remain after applying U: 

U|φ⟩|0⟩ = α2|00⟩ + βα|10⟩ + αβ|01⟩ + β2|11⟩ 
= α|00⟩ + β|11⟩. 

2.11.7 No-Deleting Theorem 

Similarly to the just described No-Cloning Theorem, which states that in general 

an unknown quantum state cannot be cloned, the No-Deleting Theorem (Pati and 

Braunstein, 2000) proves that for two qubits in an unknown but identical state |ψ⟩, 
there cannot be a unitary operator to delete or reset only one of the two qubits back to 

state |0⟩. 

T H E O R E M : Given a general quantum state |ψ⟩|ψ⟩|A⟩, with two qubits in an iden-

tical state |ψ⟩ and an ancilla |A⟩, there cannot be a unitary operator U, such that 
′U |ψ⟩ |ψ⟩ |A⟩ = |ψ  ⟩ |0⟩ |A ⟩, where ′  A is the ancilla’s state after the application of U. 

Proof Assume we had an operator U that is capable of performing the deletion 

operation: 

U |0⟩ |0⟩ |A⟩ = |0⟩ |0⟩ |A ′ ⟩ , 
U |1⟩ |1⟩ |A⟩ = |1⟩ |0⟩ |A ′ ⟩ . 

As before, we calculate the application of U to state |ψ⟩|ψ⟩|A⟩ in two different 

ways. First, for an individual qubit in state α |0⟩ + β |1⟩ with |α|2 + |β|2 = 1 and with 

the operator U as defined above, we get 

U |ψ⟩ |ψ⟩ |A⟩ = |ψ⟩ |0⟩ |A ′ ⟩ ( )
= α |0⟩ |0⟩ + β |1⟩ |0⟩ |A ′ ⟩ . (2.13) 

Now let’s compute the state as the tensor product of the qubits and apply the hypo-

thetical operator U: ( )
U |ψ⟩ |ψ⟩ |A⟩ = U (α |0⟩ + β |1⟩)(α |0⟩ + β |1⟩) |A⟩ ( )

= U α2 |00⟩ + αβ |01⟩ + βα |10⟩ + β2 |11⟩ |A⟩ 
= α2U |00⟩ |A⟩ + β2U |11⟩ |A⟩ + αβU |01⟩ |A⟩ + βαU |10⟩ |A⟩ ( )
= α2 |00⟩ |A ′ ⟩ + β2 |10⟩ |A ′ ⟩ + αβU |01⟩ + |10⟩ |A⟩ . 

https://doi.org/10.1017/9781009548519.003


66 Quantum Computing Fundamentals 

This form is different from Equation (2.13) because it has an additional (entangled) ( )
component |01⟩ + |10⟩ , which we can abbreviate as |Φ⟩. The final form becomes ( )

α2 |00⟩ + β2 |10⟩ |A ′ ⟩ + αβU |Φ⟩ |A⟩ . (2.14) 

In general, Equation (2.13) is different from Equation (2.14), a contradiction that 

proves that no such operator U can exist. 

Note that if α = 0 or β = 0, we again deal with the equivalent of classical bits. For 

these cases, the final term in Equation (2.14) disappears, and thus, an operator U for 

these classical states is feasible. 

2.12 Uncomputation 

In the last sections, we learned about the No-Cloning Theorem and the No-Deleting 

Theorem. We have also seen how qubits entangle with ancilla qubits and themselves 

during the construction of complex circuits. How are we supposed to extract clean, 

high-probability results if resulting states are just hairballs of all-entangled qubits? 

This is where the technique of uncomputation comes to the rescue, which we discuss 

in this section. 

The question of logical reversibility of computation was raised by Bennett (1973). 

That paper was an answer to Landauer, who is also known for Landauer’s principle 

(Landauer, 1973). That principle states that the erasure of information during comput-

ing must result in heat dissipation.31 Truly reversible computing would use almost no 

energy (in theory), but reversing a computation would also undo any obtained result. 

Therefore, the question was whether it was feasible to construct a reversible circuit 

from which any meaningful result could be obtained. Given that quantum computing is 

reversible by definition, it would be utterly useless if we did not answer this question. 

Fortunately, Bennet found an elegant construction to resolve this issue. 

Bennet’s paper is formal and based on a three-tape Turing machine.32 The proposed 

mechanism would compute a result, then fan out the result to a new tape, before 

uncomputing the result via reverse computation of one of the Turing machine’s tapes. 

The goal at the time was to mitigate heat dissipation. In quantum computation, our 

goal is to break undesirable entanglement with ancillary qubits. Bennet’s approach 

works for both. 

We mentioned ancillary qubits before. Let us quickly define the relevant terms: 

For constructions like the multi-controlled gate from Section 2.10.3, we need 

additional qubits to perform the computation correctly. You may think of these 

qubits as temporary qubits or helper qubits, which play no essential role for the 

algorithm. They are equivalent to the stack space allocated by a classical compiler 

to mitigate register pressure. These qubits are called ancilla qubits, or the plural 

ancillae. You will also see the term ancillary qubits. 

• 

31 Landauer’s principle does contribute to modern CPU’s heat dissipation, but the effect is very small 

when compared to leakage current and other more dominant effects (Bérut, A. et al., 2015). 
32 See also en.wikipedia.org/wiki/Multitape_Turing_machine. 

http://en.wikipedia.org/wiki/Multitape_Turing_machine
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Figure 2.14 Typical structure of a quantum computation. 

|0⟩ |f (x)⟩ 

|x⟩ 

Uf U
† 
f 

|x⟩ 

|0⟩ |0⟩ 

Figure 2.15 Computation of a result with Uf , followed by the transfer of the results to ancilla 
†

U f qubits, followed by uncomputation with .

Ancilla qubits may start in state |0⟩ and also end up in state |0⟩ after a construction 

such as the multi-controlled gate. In other scenarios, however, the ancillae may 

remain entangled with a state, potentially destroying a desired result. In this case, 

we call these ancillae junk qubits, or simply junk. 

• 

The typical structure of a quantum computation looks like the one shown in 

Figure 2.14. All quantum gates are unitary, so we can pretend that we have packed 

them all up into one giant unitary operator Uf . There are the input state |x⟩ and some 

ancillary qubits, all initialized to |0⟩. The result of the computation will be |f (x)⟩ and 

some leftover ancillae, which are now junk; they serve no purpose; they just hang 

around, intent on messing up our results. The problem is that the junk qubits may still 

be entangled with the result, nullifying the intended effects of quantum interference 

upon which quantum algorithms are based. 

Here is the uncomputation procedure, as shown in Figure 2.15. After computing 
† 

U f a solution with operator Uf , we have to apply the inverse unitary operation to

completely undo the computation. We say we “uncomputed” the effect of Uf . We can 

either build giant combined unitary operators as shown in the figure or, if we have 

constructed Uf as a circuit using individual gates, we apply the inverses of the gates in 
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reverse order to undo the computation. This works because the operators are unitary 

and †U U = I. 

The problem is that in this way, we will lose the result |f (x)⟩ that we were trying to 

compute. Here is the “trick” to work around this problem (which is similar to Bennet’s 

recipe). After the computation, but before the uncomputation with 
†

Uf 

 
, we fan out the 

result qubits to a set of ancillary qubits with the help of controlled Not gates, as shown 

in the middle part of Figure 2.15. With this circuit, the result of |f (x)⟩ will be in 

the upper ancillae, and the uncomputation restores the other registers to their original 

state, eliminating all unwanted entanglement! 

How does this work? We start in the state composed of an input state |x⟩ and a 

working register initialized with |0⟩. The first Uf transforms the initial state |x⟩|0⟩ 
into |f (x)⟩|g(0)⟩, with some algorithm-dependent, likely entangled |g(0)⟩. To extract 

the result, we add an ancillary register at the top to manufacture the product state 

|0⟩|f (x)⟩|g(0)⟩. ∑
, |f (x)⟩ = ci |i⟩i Suppose that, when expressed as basis states . As we now connect

the result register to the ancilla register with controlled Not gates, we obtain the state ∑
ci |i⟩ |i⟩ |g(0)⟩i . Fortunately, this does not violate the no-cloning theorem because

the result is not a product state.33 The two registers cannot be measured independently 

and give the same result. 
†

U f We apply to the two lower registers to uncompute Uf and obtain |f (0)⟩|x⟩|0⟩.
The final result is now in the top register, the bottom registers have been successfully 

restored, and we have succeeded in extracting the result. This is one of the fundamental 

techniques of quantum computing and we make use of it in many places in this book. 

2.13 Measurement 

We have almost reached the end of this introductory chapter. The remaining task is 

to discuss measurements. This is a complex subject with many subtleties and layered 

theories. We will keep it simple and stick to projective measurements only. 

2.13.1 Postulates of Quantum Mechanics 

The rules of quantum mechanics are different from the typical observed physical laws 

of nature in that they are postulates. Depending on the author and context, you may 

find between four and six of them, presented in a different order and with different 

focus and rigor. In keeping with the spirit of our text, we present them here in a more 

informal way that conveys just enough information to understand the essence of the 

postulates: 

1. The state of a system is represented by a ket, which is a unit vector of complex 

numbers representing probability amplitudes. 

In fact, writing the state incorrectly as |f (x)⟩|f (x)⟩|g(0)⟩ would have violated the cloning theorem. 33 
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2. A state evolves as the result of unitary operators operating on the state (in a closed 

system) as  |ψ ′⟩ = U|ψ⟩. This is derived from the time-independent Schrödinger 

equation. To describe the evolution of a system in continuous time, this postulate 

is expressed with the time-dependent Schrödinger equation (which we mostly 

ignore in this text).34 

3. Quantum measurements are described by measurement operators. Measurement 

means obtaining a singular measurable value, which is a real eigenvalue of a 

Hermitian observable. The probability amplitudes and the corresponding 

probabilities determine the likelihood of a specific measurement result. This may 

sound more scary than it actually is and will be the focus of this section. 

4. After measurement, the state collapses to the measurement result. This is also 

called the Born rule. We will explain the implications of this postulate and the 

need for renormalization. 

5. The state space of a composite physical system is the tensor product of the 

individual state spaces of components of the system. We already used this 

postulate in Section 2.4, where we discussed multi-qubit states. 

The postulates are postulates, not standard physical laws. As noted above, they also 

have been the subject of almost a century of scientific disputes and philosophical 

interpretation. See, for example, Einstein et al. (1935), Bell (1964), Norsen (2017), 

Faye (2019), and Ghirardi and Bassi (2020), and many more. As we have stated before, 

we will avoid philosophy and focus on how the postulates enable interesting forms of 

computation. 

2.13.2 Projective Measurements 

The class of projective measurements is easy to understand and is the only method 

we will use in this text. Given a system in a superposition of two states, the idea 

behind making a projective measurement is simply to determine the probability that 

the system is in one state or the other. If we measure along the z-axis, we may wonder 

if a qubit was more likely to be in the |0⟩ state or in the |1⟩ state. The measurement 

returns only one of the two with a given probability. After measurement, according to 

Born’s rule, the state collapses to the measured state (postulate 5). The qubit will now 

be in basis state |0⟩ or |1⟩ and will remain in this state for all future measurements. 

To obtain the probabilities of a state |ψ⟩ in the computational basis, we compute 

the norm of the inner product of the state with the computational basis vectors. We 

project the state onto the basis vectors to obtain the probabilities of a measurement 

outcome as |||| |||||||| ||||

( ) 2( ) α 
p|0⟩ = |⟨0|ψ⟩|2 = 1 0 = |α|2 ,

β ( ) 2( ) α 
p|1⟩ = |⟨1|ψ⟩|2 = 0 1 = |β|2. 

β 

34 This is expressed as postulate 2’ in Nielsen and Chuang (2011). 

|||| |||||||| ||||
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If we apply a Hadamard gate to state |0⟩ = (1 0)T , the resulting state |ψ⟩ = 
|+⟩ is located on the x-axis of the Bloch sphere. If we measure this state along the 

perpendicular z-axis, there should be a 50/50 chance that the result will be the |0⟩ or 

|1⟩ state. We will see that this is the basic idea of the random number generator we 

will discuss in Section 6.1. Using the same expressions from above for |+⟩, measured 

in the computational basis, we get the expected probabilities as |||| |||| |||| |||||||| |||| |||| ||||

( ) 2 2( ) 1 1 1 1 
p|0⟩ = |⟨0|ψ⟩|2 = 1 0 √ = √ = ,

1 22 2 ( ) 2 2( ) 1 1 1 1 
p|1⟩ = |⟨1|ψ⟩|2 = 0 1 √ = √ = . 

1 22 2 

How do we measure in a different basis? For example, can we measure the state 

along the x-axis, in the Hadamard basis {|+⟩ , |−⟩}? In this case, we would expect 

a probability of 1 for state |ψ⟩ = |+⟩. We can follow the same projection recipe as 

above, but this time using the Hadamard basis vectors: |||| |||||||| ||||

( ) 2 
1 ( ) 1 1 

p|+⟩ = |⟨+|ψ⟩|2 = √ 1 1 √ = 1,
12 2 ( ) 2 

1 ( ) 1 1 
p|−⟩ = |⟨−|ψ⟩|2 = √ 1 −1 √ = 0. 

2 2 1 

We will detail general measurements in other bases in Section 13.1.3. But let us 

return to the computational basis. We can perform a similar computation as above to 

extract probabilities using the projection operators P|0⟩ and P|1⟩: ( ) ( )
1 ( ) 1 0 

P|0⟩ = |0⟩⟨0| = 1 0 = ,
0 0 0 ( ) ( )
0 ( ) 0 0 

P|1⟩ = |1⟩⟨1| = 0 1 = . 
1 0 1 

Applying a projector to a qubit “extracts” a subspace and reveals its probability ampli-

tude. For example, for P|0⟩: 

P|0⟩|ψ⟩ = |0⟩⟨0|(α|0⟩ + β|1⟩)( )( ) ( )
1 0 α α 

= = 
0 0 β 0 ( )

1 
= α = α|0⟩. 

0 

To compute the probability p|i⟩ of finding the ith basis state, we square the norm of the 

probability amplitude, as stated in the fourth postulate: || ||2 
p|i⟩ = P|i⟩|ψ⟩ ( )†( )

= P|i⟩|ψ⟩ P|i⟩|ψ⟩ 
† = ⟨ψ|P|i⟩P|i⟩|ψ⟩. 

|||| |||| |||| |||||||| |||| |||| ||||

|||| |||||||| ||||

|| ||
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The probabilities must add to 1 in ∑ ∑ † 
p|i⟩ = ⟨ψ|P|i⟩P|i⟩|ψ⟩ = 1, 

i i 

which leads us directly to the completeness relation for projection operators:35 ∑ †
P P|i⟩ = I.|i⟩ 

i 

Projectors are Hermitian and hence equal to their adjoint: 

p|i⟩ = ⟨ψ|P|i⟩P|i⟩|ψ⟩ 
= ⟨ψ|P2 

|i⟩|ψ⟩. 

For projectors of normalized basis vectors, we also know that 

P2 
|i⟩ = P|i⟩. 

This leads us to the final form for the probabilities as 

p|i⟩ = ⟨ψ|P|i⟩|ψ⟩. 

The term ⟨ψ|P|i⟩|ψ⟩ is also called the expectation value of the operator P|i⟩, which 

is the quantum equivalent of the average of P|i⟩. It is often denoted with square 

brackets as [P|i⟩]. Now, from Equation (1.7) we know that 

n−1( ) ∑
∗ tr |x⟩⟨y| = xiy = ⟨y|x⟩. i 

i=0 

(2.15)

By rearranging terms and, using Equation (2.15) and interpreting ⟨ψ| as ⟨y| and P|i⟩|ψ⟩ 
as |x⟩, we arrive at the form we will use in our code: ( )

p|i⟩ = ⟨ψ|P|i⟩|ψ⟩ = tr P|i⟩|ψ⟩⟨ψ| . (2.16) 

You can intuitively understand this form. The density matrix of the state |ψ⟩⟨ψ| has 

the probabilities pi for each basis state |xi⟩ on the diagonal, as shown in Section 2.5. 

The projector zeros out all diagonal elements that are not covered by the projector’s 

basis state. What remains on the diagonal are the probabilities of states that match the 

projector. The trace then sums up all these remaining probabilities. 

After measurement, the state collapses to the measured result. Basis states that 

disagree with the measured qubit values get a resulting probability of 0. As a result, 

the remaining states’ probabilities no longer add up to 1 and need to be renormalized, 

which we achieve with the following complicated-looking expression (no worries, in 

code, this will look quite simple): 

35 From here, it is only a small step to generalized measurements in the POVM (positive operator-valued 

measure) formalism, which we will not pursue in this text. In this formalism, our projectors are special 

cases of general measurement operators Mi, which also obey the completeness equation. The positive 
 

operator  †
Em = M M 

i 
is a POVM element and the complete set of operators {Em} is called POVM. For 

each of the Mi, the Kraus operator representation is a set of matrices such that 
†

Mi = A Aii 
. The Ai are 

†
P = P|i⟩ |i⟩

†
P P||i⟩ i⟩ = P|i⟩called the Kraus operators. Since for our projectors  and , the projectors are 

also Kraus operators. 
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P|i⟩|ψ⟩ |ψ ′ ⟩ = √ . 
⟨ψ|P|i⟩|ψ⟩ 

(2.17)

As an example, let us assume we have the state 

1 ( )
|ψ⟩ = |00⟩ + |01⟩ + |10⟩ + |11⟩ . 

2 

Each of the four basis states has the same probability (1/2)2 = 1/4 of being mea-

sured. In addition, assume that qubit 0 is measured as |0⟩. This means that the only 

choices for measuring the final full state are |00⟩ or |01⟩. The first qubit is “fixed” at 

|0⟩ after measurement. This means that the states where qubit 0 is |1⟩ now have a zero 

probability of ever being measured. The state collapses to the unnormalized state 

/
1 ( ) ( )

|ψ⟩(=|1|) = |00⟩ + |01⟩ + 0 |10⟩ + |11⟩ . 
2 

In this form, the norms squared of the probability amplitudes no longer add up to 1. 

We must renormalize the state following Equation (2.17) and divide by the square root 

of the expectation value (which was 1/2): 

1 ( )
|ψ⟩ = √ |00⟩ + |01⟩ . 

2 

This normalization step might be surprising. How does Mother Nature know when 

and if to normalize? Given that we adhere to the Copenhagen interpretation and have 

decided to “Shut up and program,” a possible answer is that the need for renor-

malization is simply a remnant of the mathematical framework, nothing more and 

nothing less. 

2.13.3 Implementation 

The function to measure a specific qubit has four parameters. The state to be measured 

is passed as parameter psi. The qubit to measure, indexed from the top/left, is passed 

as parameter idx. Whether to measure the probability that the state collapses to |0⟩ 
or |1⟩ is controlled by parameter tostate. Finally, whether the state should collapse 

after measurement is controlled by parameter collapse. In the physical world, mea-

surement destroys superposition, but in our simulation we can just take a peek-a-boo 

at the probabilities without affecting the superposition of states. 

The way this function is written, if we measure and collapse to state |0⟩, the state 

is made to collapse to this state independently of the actual probabilities. There are 

other ways to implement this, for example, by selecting the measurement result based 

purely on probabilities. At this early point in our exploration, the ability to force a 

result works quite well; it makes debugging easier. Care must be taken not to force the 

state to collapse to a result with probability 0. This would lead to a division by 0 with 

likely very confusing subsequent measurement results. 

The function returns two values: the probability of measuring the desired qubit state 

and a state. The returned state is the collapsed post-measurement state if collapse 
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was set to True, or the unmodified state otherwise. In the implementation, the func-

tion first computes the density matrix and the padded operator around the projection 

operator. The probability is computed from a trace over the matrix resulting from 

the multiplication of the padded projection operator with the density matrix, as in 

Equation (2.16): 

def Measure(psi: state.State, idx: int, 
tostate:int=0, collapse:bool=True) -> (float, state.State): 

rho = psi.density() 

op = ZeroProjector(1) if tostate == 0 else OneProjector(1) 

if idx > 0: 
op = Identity().kpow(idx) * op 

if idx < psi.nbits - 1: 

op = op * Identity().kpow(psi.nbits - idx -1) 

# Probability is the trace. 

prob = np.trace(np.matmul(op, rho)) 

If state collapse is required, we update the state and renormalize it before returning 

the updated (or unmodified) probability and state. 

if collapse: 
mvmul = np.dot(op, psi) 

divisor = np.real(np.linalg.norm(mvmul)) 

assert divisor > 1e-10, 'Measurement collapses to p 0' 
normed = mvmul / divisor 

return np.real(prob), state.State(normed) 

# Return original state, enable chaining. 

return np.real(prob), psi 

To clarify one more time, the measurement operators are projectors. They are 

Hermitian and positive semidefinite with eigenvalues 0 and 1, and an eigenvector |1⟩. 
A measurement will produce |0⟩ or |1⟩, corresponding to the probabilities of the basis 

states. Measurement will not measure, for example, a value of 0.75. It will measure 

one of the two basis states with a probability of 0.75. This can be a source of confusion 

for novices. In the real world, we have to measure several times to estimate the 

probabilities with statistical significance. 

2.13.4 Examples 

Let us look at a handful of examples to see measurements in action. In the first 

example, let us create a 4-qubit state and look at the probabilities: 
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psi = state.bitstring(1, 0, 1, 0) 

psi.dump() 

>> 

|1010> (|10>): ampl: +1.00+0.00j prob: 1.00 Phase: 0.0 

There is only one state with nonzero probabilities. If we just measure the second qubit, 

the probability of finding basis state |0⟩ is 1: 

p0, _ = ops.Measure(psi, 1) 

print(p0) 

>> 

1.0 

But if we tried to measure this second qubit to be in the basis state |1⟩, which is a state 

that it cannot be in, we would expect an error: 

p1, _ = ops.Measure(psi, 1, tostate=1) 

print(p1) 

>> 

AssertionError: Measurement collapses to 0.0. 

Here is an example with a collapsing measurement. Let us create a Bell state: 

psi = bell.bell_state(0, 0) 

psi.dump() 

>> 

|00> (|0>): ampl: +0.71+0.00j prob: 0.50 Phase: 0.0 

|11> (|3>): ampl: +0.71+0.00j prob: 0.50 Phase: 0.0 

This state has only two possible measurement results, |00⟩ and |11⟩. Let us measure 

the first qubit to be |0⟩ without collapsing the state: 

psi = bell.bell_state(0, 0) 

p0, _ = ops.Measure(psi, 0, 0, collapse=False) 

print('Probability: ', p0) 

psi.dump() 

>> 

Probability: 0.49999997 

|00> (|0>): ampl: +0.71+0.00j prob: 0.50 Phase: 0.0 

|11> (|3>): ampl: +0.71+0.00j prob: 0.50 Phase: 0.0 

This shows the correct probability of 0.5 of measuring |0⟩, but the state is still unmod-

ified. Now let’s change this and collapse the state after the measurement, which is 

more reflective of making an actual, physical measurement: 
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psi = bell.bell_state(0, 0) 

p0, psi = ops.Measure(psi, 0, 0, collapse=True) 

print('Probability: ', p0) 

psi.dump() 

>> 

Probability: 0.49999997 

|00> (|0>): ampl: +1.00+0.00j prob: 1.00 Phase: 0.0 

Now only one possible measurement outcome remains, the state |00⟩, which from now 

on will be measured with 100% probability. 
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3 Simulation Infrastructure 

3.1 Simulation Complexity 

The basic infrastructure we have implemented so far, with its tensors, states, and 

operators implemented as large matrices, is sufficient to explore many small-scale 

quantum algorithms. It is great for learning and experimentation. However, more 

complex algorithms typically consist of much larger circuits with many more qubits. 

For these, the matrix-based infrastructure becomes unwieldy, error-prone, and does 

not scale. In this chapter, we develop an improved infrastructure that easily scales to 

larger problems. If you are not interested in infrastructure, you may only skim this 

content for now. Most of the remainder of the book is understandable without the low-

level details presented here. However, we are building an initial high-performance 

quantum simulator. You don’t want to miss it! 

First, we give an overview of various levels of infrastructure with the correspond-

ing computational complexities and levels of performance. We introduce quantum 

registers, which are named groups of qubits. We describe a quantum circuit model, 

where most of the complexity of the base infrastructure is hidden elegantly. To handle 

larger circuits, we need faster simulation speeds. We detail an approach to applying 

an operator with linear complexity rather than the methods with quadratic or even 

cubic complexities that we started with. We further accelerate this method with C++, 

attaining a performance improvement of up to 100 times over the Python version. For 

a specific class of algorithms, we can do even better with a sparse state representation, 

which we detail at the end of this chapter. 

This book focuses on algorithms and how to simulate them efficiently on a classical 

computer. The key attributes of the various implementation strategies are computa-

tional complexity, resulting performance, and the maximum number of qubits that 

can be simulated in reasonable time with reasonable resource requirements. To some 

extent, this whole endeavor seems doomed from the start. You will need a quantum 

computer to effectively run quantum algorithms, as a classical computer can only go 

so far. However, luckily for us, our techniques will take us far enough to learn the 

principles. 

The size of the state vector grows exponentially with the number of qubits. For a 

single qubit, we only need to store two complex numbers, which amount to 8 bytes 

when using float or 16 bytes when using double as the underlying data type. 
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Two qubits require four complex numbers, and n qubits require 2n complex numbers. 

Simulation speed and the ability to fit a state into memory are typically measured by 

the number of qubits at which a given methodology is still tractable. By tractable, 

we mean a result that can be obtained in less than roughly an hour. At the time of 

writing, the world record for storing and simulating a full wave function was 48 qubits 

(De Raedt et al., 2019). 

Due to the exponential nature of the problem, improving the performance by a 

factor of eight means that we can handle only three more qubits (23 = 8). If we see a 

speed-up of 100 times, this means that we can handle six or seven additional qubits. In 

the following, we use n to count qubits and N = 2n for the size of the corresponding

state vector. These are the five different approaches we describe in this book: 

Worst. Implementing gates as potentially huge matrices and constructing• ( )
 O N3 

 
operators using matrix–matrix products is of complexity . This is how we 

started in the previous chapter, and it is the worst case; avoid it if possible. It 

becomes intractable even with a relatively small number n of qubits, around n ∼ 8. 

• Bad. We can apply a gate to a state one at a time as a matrix×vector product with ( ) 
complexity O N2 , which is already a substantial improvement. We can simulate 

roughly n ∼ 12 qubits. 

• Good. In Section 3.5, we will learn that one- and two-qubit gates can be applied 

by linearly iterating over the state vector, which is a massive improvement. We 

should be able to simulate roughly n ∼ 18 qubits with this technique. 

• Better. We started our journey with Python but can accelerate it using C++. In 

Section 3.6 we will implement the previous apply functions in C++, extending 

Python with its foreign function interface (FFI). The performance gain of C++ 

over Python is about 100× for these types of problems, and we may be able to 

simulate n ∼ 25 qubits, depending on the problem. 

• Best. In Section 3.9, we will change the underlying representation to a sparse one.( ) 
This approach is still O N in the worst case, but it can and does win over other 

implementations by a significant factor. Improvements are possible because, for 

many circuits, the number of nonzero probability states is less than 3% or even 

lower. With this, we may reach n ∼ 30 qubits or more for some algorithms. 

We could further improve our techniques (which are also called Schröedinger full-

state simulations) with well-known techniques from the field of high-performance 

computing (HPC), such as vectorization (which adds one or two qubits) or paralleliza-

tion (64 cores could add log2(64) = 6 additional qubits). We could employ machine 

clusters with 128 or more machines and the corresponding additional qubits to reach 

a simulation capability of around 45 qubits using 512 TB of memory. Today’s largest 

supercomputers would add another handful of qubits (if they were fully dedicated to 

a simulation job, including all their secondary storage). 

These techniques do not add much to our material, and we will not discuss them 

further. We list a range of open-source solutions in Section 16.4.9, several of which 

support distributed simulation. The transpilation techniques detailed in Section 3.4.7 

allow the targeting of several of these simulators. What these numbers demonstrate 

is how quickly the simulation hits the limits. Improving performance or scalability 
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by 103 only gains about 10 qubits. Adding 20 qubits results in 106 higher resource 

requirements. 

There are other important simulation techniques. For example, there is the so-called 

Schrödinger–Feynman simulation technique, which is based on path history (Rudiak-

Gould, 2006; Frank et al., 2009). This technique trades performance for reduced 

memory requirements. Other simulators work efficiently on restricted gate sets, such 

as the Clifford gates (Aaronson and Gottesman, 2004; Anders and Briegel, 2006). 

Furthermore, there is ongoing research on improving the simulation of specific circuit 

types (Markov et al., 2018; Pan and Zhang, 2021).) as well as circuit cutting, which 

breaks a large circuit into smaller subcircuits and combines their simulation results 

classically (Piveteau and Sutter, 2024). 

3.2 Quantum Registers 

For larger and more complex circuits, we want to make algorithms more readable by 

addressing qubits in named groups. For example, the circuit in Figure 3.1 has a total 

of eight qubits. We want to group the first four as data, the next three as ancilla, 

and the bottom one as a single control qubit. On the right side, the figure shows the 

global qubit number as gi and the local offset into the named groups. For example, the 

global qubit index 5 for qubit g5 corresponds to the local offset 1 for qubit ancilla1. 

These named groups of adjacent qubits are called quantum registers. 

The full state of the system is the tensor product of eight qubits, numbered g0 to g7. 

We want to address data with indices ranging from 0 to 3, which should produce the 

same global qubit indices 0 to 3 in the combined state. We want to index the ancilla 

qubits from 0 to 2, resulting in global qubit indices 4 to 6. Finally, we want to address 

control at index 0, resulting in global qubit index 7. In code, a simple list of indices 

will do the trick. 

data 

ancilla 

control 

... 

... 

... 

... 

... 

... 

... 

... 

H U H 

H Z U H 

H T 

H T 

H 

H 

H U H 

H Z U H 

H 

H 

H T 

H T 

g0 

g1 

g2 

g3 

g4 

g5 

g6 

g7 

: data0 

: data1 

: data2 

: data3 

: ancilla0 

: ancilla1 

: ancilla2 

: control0 

Figure 3.1 Quantum registers data, ancilla, and control. 
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The initial implementation is a bit rough. No worries, we will wrap this code up 

nicely in Section 3.3. We introduce a Python class Reg (for “Register”) and initialize 

it by passing the size of the register file that we want to create and the current global 

offset, which must be manually maintained for this interface. In Figure 3.1, the first 

global offset is 0, for the second register it is 4, and for the last register it is 7. 

We derive this class from the Python built-in list type, which means that we get 

functions like __len__ or __getitem__ for free. This enables the use of the Python 

len function and standard array indexing. In addition to the indices, we also want 

to maintain the potential initial values for each qubit, which we hold in the member 

array val. 

By default, all qubits are assumed to be |0⟩, but an initializer, init, can be pro-

vided. If init is an integer, it is converted to a string with the binary number repre-

sentation. If init is a string (including after the previous step), tuple, or list, the val 

array is initialized with 0s and 1s according to the binary numbers passed. 

class Reg(list): 
def __init__(self, size: int, init=None, global_reg=0) -> None: 

super().__init__([global_reg + idx for idx in range(size)]) 
self.val = [0] * size 

if init: 
if isinstance(init, int): 

init = format(init, '0{}b'.format(size)) 

if isinstance(init, (str, tuple, list)): 
for idx, val in enumerate(init): 

if val == '1' or val == 1: 
self.val[idx] = 1 

For example, to create and initialize data with |1011⟩ and ancilla with |111⟩ 
(decimal 7), and to access global qubit 5, we can write: 

data = state.Reg(4, (1, 0, 1, 1), 0) # 0b1011 

ancilla = state.Reg(3, 7, 4) # 0b111 

# Access global qubit[5] == ancilla[1] as: 

... = ancilla[1] 

Only two additional functions are needed. To give a textual representation of the 

register with the initial state, we write a short string conversion function __str__ 

to print the register in state notation. To produce a quantum state from this register, 

the member function psi may be called once after the initialization is complete. 

All other typically required functionality to manage a list of indices, including slice 

management, is conveniently handled by the underlying list class. 

def __str__(self) -> str: 
return '|' + ''.join([f'{val}' for val in self.val]) + '>' 

def psi(self) -> State: 
return bitstring(*self.val) 
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Now, let’s move on to discuss a more convenient abstraction and interface for 

quantum circuits that will utilize our quantum register implementation. 

3.3 Circuits 

So far, we have used full-state vectors and operator matrices to learn about the fun-

damentals and to implement small circuits. This infrastructure is easy to understand 

and works quite well for algorithms with a limited number of qubits. It is helpful 

for learning, but the representation is very verbose and explicit. It also exposes the 

underlying data structures, and that can cause problems like the following: 

• Describing states and operators explicitly at a very low level of abstraction 

requires a lot of typing, which is inconvenient and error-prone. 

• The representation exposes the implementation details. Changing aspects of the 

implementation would be challenging – all users of the base infrastructure would 

have to be updated. 

• A minor point to make is that this style of representation differs from that 

commonly found in existing frameworks such as Qiskit (Gambetta et al., 2019) or 

Cirq (Google, 2021c). 

The second problem is especially important in our context, as we want to develop 

faster ways to apply gates in Python and C++-accelerated Python. We might want 

to change the representation of states themselves from storing a full state vector to 

a sparse representation. The current level of abstraction does not allow that without 

changing all dependent client code. 

To remedy these problems, we create a data structure called a quantum circuit qc. 

It nicely wraps up all the functions that we have discussed so far. The naming 

convention is to use all lower case to distinguish from the explicit representation 

discussed in Chapter 2. Importantly, this data structure enables quite sophisticated 

functionality: 

Gates can be executed as the circuit is being constructed, similar to the initial 

infrastructure above. This is also called eager execution. 
• 

• It also enables non-eager circuit construction, where gate sequences are simply 

recorded in an internal data structure that we call intermediate representation (IR), 

following the typical compiler phraseology. 

• Using this IR, we can do several advanced things. We can execute a circuit 

multiple times, execute it in reverse for uncomputation using adjoint gates, and 

even control a whole circuit using another qubit. 

• We can also transpile the IR to target other simulators or commercial frameworks. 

In this book, we used this technique in a few places to produce circuit diagrams in 

LATEX. 

The first thing we need is a circuit constructor that accepts a string argument to assign 

a name to the circuit. This name is used in printing and debugging. The internally 

stored quantum state psi is initialized to 1.0, indicating that there are no qubits in this 
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circuit immediately after creation. The parameter eager controls whether the circuit 

is executed eagerly during construction or whether all gates should be stored in the 

IR for later execution. For convenience, the IR object itself is always constructed, 

but the IR construction is controlled by the Boolean build_ir. We only enable IR 

construction in non-eager execution mode. 

class qc: 
"""Wrapper class to maintain state + operators.""" 

def __init__(self, name=None, eager: bool = True): 
self.name = name 

self.psi = state.State(1.0) 

self.ir = ir.Ir() 

self.eager = eager 

self.build_ir = not eager 
self.global_reg = 0 

3.3.1 Qubits 

The circuit class supports quantum registers. As they are constructed with the 

functions detailed below, they are immediately tensored to the circuit’s internal full 

state, using the helper function _tprod. This function maintains the global register 

count, hiding the rough interface of the underlying Reg class. Together, adding support 

for the qubit constructors discussed above is straightforward. We add the functions 

rand_bits() to create a random bit string of n qubits and arange() to build a 

non-quantum vector of values 0 to n − 1 (used for debugging only). 

def _tprod(self, new_state, nqubits: int): 
self.psi = self.psi * new_state 

self.global_reg = self.global_reg + nqubits 

def reg(self, size: int, it=0, *, name: str = None) -> state.Reg: 
ret = state.Reg(size, it, self.global_reg) 

self._tprod(ret.psi(), size) 

return ret 

def qubit(self, alpha: np.complexfloating = None, 
beta: np.complexfloating = None) -> None: 

self._tprod(state.qubit(alpha, beta), 1) 

# and similar for these functions. 

def zeros(self, n: int) -> None 
def ones(self, n: int) -> None 
def bitstring(self, *bits) -> None 
def arange(self, n: int) -> None 
def rand_bits(self, n: int) -> None 
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3.3.2 Gate Application 

To apply gates to qubits, assume that there are functions apply1 for single-qubit gates 

and applyc for controlled two-qubit gates. We will develop their implementations in 

the following sections. Let us pretend that these functions will apply gates at index 

idx, with the control qubit at index ctl for controlled gates. In Python, optional 

function parameters can be specified after a single parameter *. Gates that need a 

parameter, such as rotations, get their optional value as val. 

def apply1(self, gate: ops.Operator, idx: int, 
name: str = None, *, val: float = None): 

[...] 

def applyc(self, gate: ops.Operator, ctl: int, idx: int, 
name: str = None, *, val: float = None): 

[...] 

3.3.3 Standard Gates 

With these two apply functions in place, we can now wrap all standard gates and make 

them member functions of the circuit. But how should we apply adjoint gates? There 

are a variety of implementation strategies in Python, but we keep it simple in this 

book. If a gate is invoked with gate_name, we will add a corresponding function to 

apply the adjoint as gate_name_dag. 

For non-parameterized single-qubit gates, we add the following code to the circuit 

constructor to add member functions to apply the gate (for example, as qc.s for the S 

gate, the adjoint gate (as qc.s_dag), the controlled gate (qx.cs), and the controlled 

adjoint gate (qc.cs_dag). These functions are added as object attributes that hold a 

lambda function. This way, we can add an optional parameter cond to the lambda for 

conditional gate application. 

self.simple_gates = [ 

['h', ops.Hadamard()], ['s', ops.Sgate()], ['t', ops.Tgate()], 

['v', ops.Vgate()], ['x', ops.PauliX()], ['y', ops.PauliY()], 

['z', ops.PauliZ()], ['yroot', ops.Yroot()], 

] 

for gate in self.simple_gates: 
self.add_single(gate[0], gate[1]) 

self.add_single(gate[0] + 'dag', gate[1].adjoint()) 

self.add_ctl('c' + gate[0], gate[1]) 

self.add_ctl('c' + gate[0] + 'dag', gate[1].adjoint()) 

[...] 

def add_single(self, name: str, gate: ops.Operator): 
setattr(self, name, lambda idx, cond = True: 

self.apply1(gate, idx, name) if cond else None) 

def add_ctl(self, name: str, gate: ops.Operator): 
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setattr(self, name, lambda idx0, idx1, cond = True: 
self.applyc(gate, idx0, idx1, name) if cond else None) 

3.3.4 Parameterized Gates 

For parameterized gates requiring a value, such as an angle, we add simple wrapper 

functions. Again, you can see how we call the apply1 function for standard gates and 

the applyc function for controlled gates. The value is passed as parameter val to 

these functions. 

def u1(self, idx: int, val): 
self.apply1(ops.U1(val), idx, 'u1', val=val) 

def cu1(self, idx0: int, idx1: int, value): 
self.applyc(ops.U1(value), idx0, idx1, 'cu1', val=value) 

def rx(self, idx: int, theta: float): 
self.apply1(ops.RotationX(theta), idx, 'rx', val=theta) 

def crx(self, ctl: int, idx: int, theta: float): 
self.applyc(ops.RotationX(theta), ctl, idx, 'crx', val=theta) 

# ... and similar for ry, cry, rz, crz 

3.3.5 Controlled–Controlled Gates 

For general single-qubit gates, we add functions for controlled and controlled–con-

trolled gate applications, using the Sleator–Weinfurter construction outlined in Sec-

tion 2.10.2. We add the alias ccx for the double-controlled Pauli X gate, a common 

abbreviation. The helper function _ctl_by_0(ctl) checks whether the index of 

the controlling qubit is passed as an integer or a single-element list (as in [idx]), 

indicating that the control qubit should be used as a Controlled-by-0 qubit. 

def _ctl_by_0(self, ctl): 
if isinstance(ctl, int): 

return ctl, False 
return ctl[0], True 

def cu(self, idx0: int, idx1: int, op: ops.Operator, desc: str = None): 
assert op.shape[0] == 2, 'cu only supports 2x2 operators' 
self.applyc(op, idx0, idx1, desc) 

def ccu(self, idx0: int, idx1: int, idx2: int, 
op: ops.Operator, desc=''): 

"""Sleator-Weinfurter Construction for general operators.""" 
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# Enable Control-By-0 (if idx is being passed as [idx]) 

i0, c0_by_0 = self._ctl_by_0(idx0) 

i1, c1_by_0 = self._ctl_by_0(idx1) 

with self.scope(self.ir, f'cc{desc}({idx0}, {idx1}, {idx2})'): 
self.x(i0, c0_by_0) 

self.x(i1, c1_by_0) 

v = ops.Operator(sqrtm(op)) 

self.cu(i0, idx2, v, desc + '^1/2') 

self.cx(i0, i1) 

self.cu(i1, idx2, v.adjoint(), desc + '^t') 

self.cx(i0, i1) 

self.cu(i1, idx2, v, desc + '^1/2') 

self.x(i1, c1_by_0) 

self.x(i0, c0_by_0) 

def ccx(self, idx0: int, idx1: int, idx2: int): 
self.ccu(idx0, idx1, idx2, ops.PauliX(), 'ccx') 

3.3.6 Multi-Controlled Gates 

To build multi-controlled gates as outlined in Section 2.10.3, we use the approach 

outlined here and make it quite fancy: 

For the controlling gates, we distinguish the special cases of 0, 1, 2, and more 

controllers. 

• 

• 

We allow for Controlled-by-1 gates and Controlled-by-0 gates. To mark a gate as 

Controlled-by-0, the index idx of the controller is passed as a single element list 

item [idx]. 

Let us use the example in Figure 3.2, which has a controlled X gate on qubit q4. This 

gate is controlled by By-1 and By-0 control qubits, marked as solid and hollow circles. 

To produce this controlled gate, we make the following function call, where the By-1 

gates are passed as indices 0 and 3 and the By-0 gates as single-list elements [1] 

and [2]: 

q0 

q1 

q2 

q3 

q4 

Figure 3.2 A multi-controlled X gate. 
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qc.multi_control([0, [1], [2], 3], 4, aux, ops.PauliX(), 'multi-X')) 

Of course, we have to make sure that we have reserved enough space for the ancillae 

in the aux register. For our implementation, n control qubits require n − 1 ancilla 

qubits. For the full implementation, we also modified the function applyc to enable 

Controlled-by-0 gates by adding an X gate before and after the controller qubit (not 

shown here). 

def multi_control(self, ctl, idx1, aux, gate, desc: str): 
"""Multi-Controlled gate, using aux as ancilla.""" 

with self.scope(self.ir, f'multi({ctl}, {idx1}) # {desc})'): 

if len(ctl) == 0: 
self.apply1(gate, idx1, desc) 

return 
if len(ctl) == 1: 

self.applyc(gate, ctl[0], idx1, desc) 

return 

# Compute the predicate. 

self.ccx(ctl[0], ctl[1], aux[0]) 

aux_idx = 0 

for i in range(2, len(ctl)): 
self.ccx(ctl[i], aux[aux_idx], aux[aux_idx+1]) 

aux_idx = aux_idx + 1 

# Use predicate to single-control qubit at idx1. 

self.applyc(gate, aux[aux_idx], idx1, desc) 

# Uncompute predicate. 

aux_idx = aux_idx - 1 

for i in range(len(ctl)-1, 1, -1): 
self.ccx(ctl[i], aux[aux_idx], aux[aux_idx+1]) 

aux_idx = aux_idx - 1 

self.ccx(ctl[0], ctl[1], aux[0]) 

3.3.7 Swap Operations 

We also add implementations of the Swap gate (swap) and the controlled Swap gate 

(cswap), as described earlier in Sections 2.8.2 and 2.8.3. The cswap gate will be used 

later in Section 11.7 on quantum order finding, which is part of Shor’s algorithm. 

It is easy to implement by simply changing the cx gates in a Swap gate to double-

controlled ccx gates. 
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def swap(self, idx0: int, idx1: int) -> None: 
self.cx(idx1, idx0) 

self.cx(idx0, idx1) 

self.cx(idx1, idx0) 

def cswap(self, ctl: int, idx0: int, idx1: int) -> None: 
self.ccx(ctl, idx1, idx0) 

self.ccx(ctl, idx0, idx1) 

self.ccx(ctl, idx1, idx0) 

3.3.8 Measurement 

As the final construct, we have to wrap the measurement operator, which is done in 

this straightforward way: 

def measure_bit(self, idx: int, tostate: int = 0, 
collapse: bool = True) -> (float, state.State): 

return ops.Measure(self.psi, idx, tostate, collapse) 

Note that here, we construct a full-matrix measurement operator, meaning that this 

method of measuring will not scale. Fortunately, in many cases, we don’t have to 

perform an actual measurement to determine a most likely measurement outcome. We 

can just look at the state vector and find the one state with the highest probability – we 

say we perform measurement by peek-a-boo. 

3.4 Intermediate Representation (IR) 

As mentioned above, adding the ability to represent a circuit in an internal data struc-

ture enables useful capabilities, which we will study in this brief section. We start by 

outlining the IR data structure and show how it can be used in various flexible ways 

to deal with subcircuits. Then, we show how to use it to transpile a circuit to other 

quantum frameworks in Section 3.4.7. 

3.4.1 IR Nodes 

An IR node holds all the information that defines an individual operation, such as the 

gate type, control qubit, target qubit, and values such as rotation angles. Nodes are 

represented by a Python class that holds all these values. A single class type is suffi-

cient to represent all possible node types – we keep it simple. To make working with 

this basic implementation more comfortable, we add functions to check for specific 

properties. We also add a notion of sections to aid with debugging (but we will not 

elaborate on this feature here). 
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PY 
Find the code 
In file src/lib/ir.py 

class Op(enum.Enum): 
SINGLE = 1 

CTL = 2 

class Node: 
def __init__(self, opcode, name, idx0=0, idx1=None, val=None): 

self._opcode = opcode 

self._name = name 

self._idx0 = idx0 

self._idx1 = idx1 

self._val = val 

def is_single(self): 
return self._opcode == Op.SINGLE 

def is_ctl(self): 
return self._opcode == Op.CTL 

This simple node implementation contains all the information needed to specify 

single-qubit and controlled gates, as well as gates with an optional parameter. The 

trivial function is_single checks whether a node represents a single-qubit gate, and 

is_ctl checks for controlled gates. 

3.4.2 IR Base Class 

The Ir class maintains a single list of nodes and has member functions to add single-

qubit gates and controlled gates. It also offers the function reg to create a quantum 

register. 

class Ir: 
def __init__(self): 

self._ngates = 0 # gates in this IR 

self.gates = [] # [] of gates 

self.regs = [] # [] of tuples (global reg index, name, reg index) 

self.nregs = 0 # number of registers 

self.regset = [] # [] of tuples (name, size, reg) for registers 

def reg(self, size, name, register): 
self.regset.append((name, size, register)) 

for i in range(size): 
self.regs.append((self.nregs + i, name, i)) 

self.nregs += size 

def single(self, name, idx0, val=None): 
self.gates.append(Node(Op.SINGLE, name, idx0, None, val)) 

self._ngates += 1 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/ir.py
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def controlled(self, name, idx0, idx1, val=None): 
self.gates.append(Node(Op.CTL, name, idx0, idx1, val)) 

self._ngates += 1 

@property 

def ngates(self): 
return self._ngates 

3.4.3 Circuits of Circuits 

Using this simple IR we can now introduce the notion of a subcircuit, which can 

be stored, combined, and executed later in flexible ways. The member function sub 

creates a completely independent new circuit. The member sub_circuits is only 

used for printing and debugging. 

def sub(self, name: str = ''): 
sub = qc(f'inner_{self.sub_circuits}{name}', eager=False) 

self.sub_circuits += 1 

return sub 

To execute a circuit in the context of another circuit, the member function qc is 

used. For a main circuit main and a subcircuit sub, the subcircuit can be invoked with 

main.qc(sub). The qc function simply replays all the gates in the subcircuit in the 

parent circuit at an optional offset. For example, we can create a main circuit and a 

subcircuit and replay this subcircuit three times with this code: 

main = circuit.qc('main circuit, eager execution') 

[... add gates to main, eager] 

sub1 = circuit.sub('subcircuit') 

[... add gates to sub1, non-eager] 

# Now add three copies of sub1 to main (eager), 

# all at different offsets 0, 1, and 2: 

main.qc(sub1, 0) 

main.qc(sub1, 1) 

main.qc(sub1, 2) 

To reiterate, in non-eager mode the subcircuit is only being constructed, not exe-

cuted. The gates and their order are only recorded for replay later. This behavior is 

controlled by setting parameter eager to False in the sub function. 

3.4.4 Uncomputation with Inverse Circuit 

A second useful capability of the IR makes the uncomputation from Section 2.12 easy 

and error-free. To obtain the inverse of a gate sequence, we reverse the stored list of 
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gates in the IR and replace each gate with its adjoint. To aid debugging, we decorate 

the textual gate names with a '*'. The implementation is simple and elegant: 

def inverse(self): 
"""Return, but don't apply, the inverse circuit.""" 

newqc = qc(self.name, eager=False) 

for gate in self.ir.gates[::-1]: 
val = -gate.val if gate.val else None 
if gate.is_single(): 

newqc.apply1(gate.gate.adjoint(), gate.idx0, gate.name + '*', 

val=val) 

if gate.is_ctl(): 
newqc.applyc( 

gate.gate.adjoint(), gate.ctl, gate.idx1, gate.name + '*', 

val=val 

) 

return newqc 

In the example from the prior section, to reverse the application of the three subcircuits 

in the code example, we can now use the following code: 

# Create an inverse copy of sub1 (which is still non-eager) 

sub1_inv = sub1.inverse() 

# Now add three copies of sub1_inv to main (eager), 

# at the reverted list of offsets: 

main.qc(sub1_inv, 2) 

main.qc(sub1_inv, 1) 

main.qc(sub1_inv, 0) 

3.4.5 Controlling Subcircuits 

Another useful feature of the IR is that it allows controlling a whole subcircuit by 

another qubit with function control_by. This function iterates over all gates in the 

circuit. Individual single-qubit gates are converted to a controlled gate, and controlled 

gates are converted to multi-controlled gates, as shown in this implementation: 

def control_by(self, ctl: int): 
res = ir.Ir() 

for _, gate in enumerate(self.ir.gates): 
if gate.is_single(): 

gate.to_ctl(ctl) 

res.add_node(gate) 

continue 
if gate.is_ctl(): 

sub = qc('multi', eager=False) 

sub.multi_control( 
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[ctl, gate.ctl], gate.idx1, None, gate.gate, gate.desc 

) 

for gate in sub.ir.gates: 
res.add_node(gate) 

self.ir = res 

3.4.6 Inverting a Register 

The individual qubits in a register can be inverted, or flipped vertically, by inverting 

the indices of the gates applied to the register. For example, assume that a register has ( ) ( ) 
four qubits with local indices 0,1,2,3 and global indices 2,3,4,5 . Further, assume 

a single gate is applied to local qubit 0 in the register (global qubit 2) and a controlled 

gate from the register’s local qubit 1 to qubit 3. The invert procedure will change 

the ordering and apply the single gate to local qubit 3 in the register (global qubit 5) 

and change the controlled gate to go from local qubit 0 to qubit 2. 

def invert(self, reg): 
def swap_bits(reg, idx): 

d = int(len(reg) - idx - 1) 

tmp = reg[idx] 

reg[idx] = reg[d] 

reg[d] = tmp 

for gate in self.ir.gates: 
swap_bits(reg, gate.idx0, reg.size) 

if gate.is_ctl(): 
swap_bits(reg, gate.idx1, reg.size) 

3.4.7 Transpilation 

Finally, the IR can be used to output a circuit in a format that can serve as input 

to other frameworks. For example, to produce a simple QASM format (Svore et al., 

2006), the code traverses the list of nodes and outputs the nodes with their names 

as found. Fortunately, the names chosen for the operators already match the QASM 

specification.1 

Typically, one needs a few helper functions to make the output more readable. 

For example, the code below uses helper.pi_fractions to convert values into 

fractions of π. There are several other transpilers in the file src/lib/dumpers.py, 
2including transpilers to IBM’s Qiskit, Google’s Cirq, a rudimentary LAT X converter,E  

a transpiler to our own libq implementation, which is detailed in Section 3.9, and a 

minimal text generator. 

1 This is not a coincidence. 
2 We used this transpiler quite often in this book to typeset larger circuits. 

http://www.github.com/qcc4cp/qcc/blob/main/src/src/lib/dumpers.py
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PY 
Find the code 
In file src/lib/dumpers.py 

def qasm(ir) -> str: 
res = 'OPENQASM 2.0;\n' 

for regs in ir.regset: 
res += f'qreg {regs[0]}[{regs[1]}];\n' 

res += '\n' 

for op in ir.gates: 
if op.is_gate(): 

res += op.name 

if op.val is not None: 
res += '({})'.format(helper.pi_fractions(op.val)) 

if op.is_single(): 
res += f' {reg2str(ir, op.idx0)};\n' 

if op.is_ctl(): 
res += f' {reg2str(ir, op.ctl)},{reg2str(ir, op.idx1)};\n' 

return res 

That’s it! It is really that simple. It is just an iteration over all gates, where each gate 

is printed according to its type. Here is an output example. It shows a few quantum 

registers at the top, a few Hadamard gates on register q1, a couple of controlled U1 

gates followed by measurement operators: 

OPENQASM 2.0; 

qreg q2[4]; 

qreg q1[8]; 

qreg q0[6]; 

creg c0[8]; 

h q1[0]; 

h q1[1]; 

h q1[2]; 

[...] 

cu1(-pi/64) q1[7],q1[1]; 

cu1(-pi/128) q1[7],q1[0]; 

h q1[7]; 

measure q1[0] -> c0[0]; 

measure q1[1] -> c0[1]; 

[...] 

QASM is fairly simple and supported by several other infrastructures. It is very 

useful for debugging complex algorithms, as it allows for direct comparisons with 

results obtained by other infrastructures.3 

3 I used it extensively during the development of the algorithms. 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/dumpers.py
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3.5 Fast Gate Application 

Simulation Infrastructure 

Up to this point, we have applied a gate by first tensoring it with identity matrices 

and then applying the resulting large matrix to a full state vector. As described in 

Section 3.1, this does not scale well beyond a small number of qubits. For ten qubits, 

the operator matrix is a 1024 × 1024 matrix, which requires 10242 multiplications 

and additions for a matrix–vector multiplication (10243 if you want to multiply it with 

another operator of this size). Can we devise a more efficient way to apply gates? Yes, 

we can. 

Let us analyze what happens during gate application. To start the analysis, we create 

a pseudo state vector containing a sequence of numbers. We do not normalize the 

vector because this makes it easier to visualize what happens to the vector elements as 

the gates are applied to the individual qubits. 

qc = circuit.qc('test') 

qc.arange(4) 

print(qc.psi) 

>> 

[ 0.+0.j 1.+0.j 2.+0.j 3.+0.j 4.+0.j 5.+0.j 6.+0.j 7.+0.j 

8.+0.j 9.+0.j 10.+0.j 11.+0.j 12.+0.j 13.+0.j 14.+0.j 15.+0.j] 

Now we apply the X gate to qubits 0 to 3, one by one, always starting with a freshly 

created vector. The X gate is interesting because it multiplies the entries in the state 

vector by 0 and 1, causing the appearance of values being swapped. This is similar to 

the application of the X gate to a regular qubit, which seems to “flip” |0⟩ and |1⟩: 

# Let's try this for qubits 0 to 3. 

for idx in range(4): 
qc = circuit.qc('test') 

qc.arange(4) 

qc.x(idx) 

print('Applied X to qubit {}:\n {}'.format(idx, qc.psi)) 

We start by applying the X gate to qubit 0 and get: 

Applied X to qubit 0: 

[ 8.+0.j 9.+0.j 10.+0.j 11.+0.j 12.+0.j 13.+0.j 14.+0.j 15.+0.j 

0.+0.j 1.+0.j 2.+0.j 3.+0.j 4.+0.j 5.+0.j 6.+0.j 7.+0.j] 

The right half of the vector was swapped with the left half. Let us try the next qubit 

index. Applying the X gate to qubit 1 results in the following: 

https://doi.org/10.1017/9781009548519.004


93 3.5 Fast Gate Application 

Applied X to qubit 1: 

[ 4.+0.j 5.+0.j 6.+0.j 7.+0.j 0.+0.j 1.+0.j 2.+0.j 3.+0.j 

12.+0.j 13.+0.j 14.+0.j 15.+0.j 8.+0.j 9.+0.j 10.+0.j 11.+0.j] 

Now chunks of four vector elements are being swapped. The elements 4–7 swap 

position with elements 0–3, and the elements 12–15 swap position with elements 8– 

11. A pattern is emerging. Let us apply the X gate to qubit 2: 

Applied X to qubit 2: 

[ 2.+0.j 3.+0.j 0.+0.j 1.+0.j 6.+0.j 7.+0.j 4.+0.j 5.+0.j 

10.+0.j 11.+0.j 8.+0.j 9.+0.j 14.+0.j 15.+0.j 12.+0.j 13.+0.j] 

The pattern continues; now groups of two elements are swapped. And finally, for 

qubit 3, we see that individual qubits are being swapped: 

Applied X to qubit 3: 

[ 1.+0.j 0.+0.j 3.+0.j 2.+0.j 5.+0.j 4.+0.j 7.+0.j 6.+0.j 

9.+0.j 8.+0.j 11.+0.j 10.+0.j 13.+0.j 12.+0.j 15.+0.j 14.+0.j] 

We recognize a clear “power-of-2” pattern. The state vector for four qubits and 

24 = 16 elements. To express the numbers from 0–15, we need four classical bits: 

b3b2b1b0. Recall that we enumerate qubits from left to right and classical bits from 

right to left. Also, remember that we are using the X gate, which is a permutation 

matrix and multiplies with values of 0 and 1, leaving the impression of swapping 

elements. The mechanism works for all single-qubit gates; we just use the X gate for 

effective visualization. 

Qubit 0. Applying the X gate to qubit 0 swaps the first half of the state vector with 

the second half. If we interpret vector indices as binary numbers, the state 

elements with indices that had bit 3 set (most significant bit) switched position 

with the indices that did not have bit 3 set. Positions 8–15 had bit 3 set and 

switched with positions 0–7, which did not have bit 3 set. Two blocks of eight 

elements were switched. 

• 

• 

Qubit 1. Applying the X gate to qubit 1 swaps the second quarter of the state 

vector with the first quarter and the fourth quarter with the third. Consequently, the 

vector elements with indices that had bit 2 set switched with those that had bit 2 

not set, “bracketed” by the bit pattern in bit 3. What does it mean that an index is 

bracketed by a higher-order bit? It simply means that the higher-order bit did not 

change, it remained 0 or 1. Only the lower-order bits switch between 0 and 1. 

Here, four-element blocks were switched. There are four such blocks for qubit 1 – 

two blocks where binary bit 3 was 0 and another two blocks where bit 3 was 1.4 

4 This is admittedly confusing. It doesn’t help that qubits are numbers from 0 to 3 and the binary bits from 

3 to 0. 

https://doi.org/10.1017/9781009548519.004


94 Simulation Infrastructure 

• Qubit 2. Applying the X gate to qubit 2 swaps the second eighth of the state 

vector with the first, the fourth with the third, the sixth with the fifth, and the 

eighth with the seventh. As above, the vector elements with indices with bit 1 set 

switched places with those that did not have bit 1 set. This swapping is bracketed 

by the bit pattern in bit 2 and further bracketed by the bit patterns of bit 3. 

• Qubit 3. Finally, applying the X gate to qubit 3 now swaps single elements: 

element 0 with element 1, element 2 with element 3, and so on. 

We can put this pattern in a closed form by looking at the binary bit pattern for the 

state vector indices (Smelyanskiy et al., 2016). Let us introduce this bit index notation 

for a state with a classical binary bit representation (where we omit the state kets |·⟩
for ease of notation): 

ψβn−1 βn−2...β0
. 

If we expect a specific 0 or 1 at a given bit position k, we specify this bit value with 

this notation: 

ψβn−1 βn−2...0k...β0 
, 

ψβn−1 βn−2...1k...β0
. 

Applying a single-qubit gate to qubit k in an n-qubit state (qubits 0 to n − 1) applies 

the gate to a pair of amplitudes whose indices differ in bit (n − 1 − k) in binary 

representation. In our first example, we have four qubits. Qubit 0 translates to classical 

bit 3 in this notation, and qubit 3 corresponds to classical bit 0. We apply the X gate to 

the probability amplitudes that correspond to the states where the bit index switches 

between 0 and 1, thus swapping chunks of the state vector. 

Suppose we want to apply a single-qubit gate G to a qubit of a system in state |ψ⟩, 
where G is a 2 × 2 matrix. Let us name the four elements of the matrix G00, G01, G10, 

and G11, corresponding to the top left, top right, bottom left, and bottom right. 

Applying a gate G to the kth qubit corresponds to the following recipe. This notation 

indicates looping over the full state vector. All vector elements whose indices match 

the specified bit patterns are multiplied by the gate elements G00, G01, G10, and G11, 

as specified in this recipe: 

ψβn−1 βn−2...0k...β0 
= G00 ψβn−1βn−2...0k...β0 

+ G01 ψβn−1 βn−2...1k...β0 
, 

ψβn−1 βn−2...1k...β0 
= G10 ψβn−1βn−2...0k...β0 

+ G11 ψβn−1 βn−2...1k...β0
. 

For controlled gates, the pattern can be extended. We have to ensure that the control 

bit c is set to 1 and only apply the gates to states for which this is the case: 

ψβn−1βn−2...1c...0k...β0 
= G00 ψβn−1 βn−2...1c...0k...β0 

+ G01 ψβn−1 βn−2...1c...1k...β0
, 

ψβn−1βn−2...1c...1k...β0 
= G10 ψβn−1 βn−2...1c...0k...β0 

+ G11 ψβn−1 βn−2...1c...1k...β0
. 

In the implementation, we have to be mindful of the bit orderings. Qubit 0 is the 

topmost qubit, but for the classical bits, as is common, bit 0 is the least significant bit. 

This means that in the implementation we have to reverse the bit indices. 
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To apply a single gate, we add this function to our implementation of states in file 

src/lib/state.py (with 1<<n as an optimization for 2**n): 

PY 
Find the code 
In file src/lib/state.py 

def apply(self, gate: ops.Operator, index: int) -> None: 
# To maintain qubit ordering in this infrastructure, 

# index needs to be reversed. 

index = self.nbits - index - 1 

pow_2_index = 1 << index 

for g in range(0, 1 << self.nbits, 1 << (index + 1)): 
for i in range(g, g + pow_2_index): 

t1 = gate[0, 0] * self[i] + gate[0, 1] * self[i + pow_2_index] 

t2 = gate[1, 0] * self[i] + gate[1, 1] * self[i + pow_2_index] 

self[i] = t1 

self[i + pow_2_index] = t2 

The implementation for controlled gates is very similar, but note the additional if 

statement in the code, which checks for the control bit. 

def applyc(self, gate: ops.Operator, ctrl: int, target: int) -> None: 

index = self.nbits - target - 1 

ctrl = self.nbits - ctrl - 1 

pow_2_index = 1 << index 

for g in range(0, 1 << self.nbits, 1 << (qbit+1)): 
idx_base = g * (1 << self.nbits) 

for i in range(g, g + pow_2_index): 
if (idx_base + i) & (1 << ctrl): 

t1 = gate[0, 0] * self[i] + gate[0, 1] * self[i + pow_2_index] 

t2 = gate[1, 0] * self[i] + gate[1, 1] * self[i + pow_2_index] 

self[i] = t1 

self[i + pow_2_index] = t2 

We could now go ahead and add these routines to the quantum circuit class, but 

wait – we can do even better and accelerate these routines with C++! This will be the 

topic of Section 3.6. 

We now understand how to apply gates to a state vector with linear complexity, but 

the code is written in Python, which is known to run slower than C++. In order to 

add a few more qubits to our simulation capabilities, we need to accelerate the gate 

application further. To achieve this, we implement the gate application functions in 

3.6 Accelerated Gate Application 

http://www.github.com/qcc4cp/qcc/blob/main/src/src/lib/state.py
http://www.github.com/qcc4cp/qcc/blob/main/src/lib/state.py
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C++ and import them into Python using standard extension techniques. The overhead 

of calling these C++ functions from Python is minimal, which means we can continue 

to program in Python but with the execution speed of C++. 

This section contains a lot of C++ code. For these routines, the C++ code executes 

about 100× faster than the Python code, giving us the ability to simulate six or seven 

additional qubits. The basic principles are shown in Section 3.5. We detail this code 

because it might be useful to readers without experience extending Python with C++. 

The implementations of apply1 and applyc are quite similar, so we only show the 

code for the former. 

In the code, <path> to numpy must be set correctly to point to a local setup. The 

open-source repository will have the latest instructions on how to compile and use 

this Python extension. We also want to support both float and double complex 

numbers and use C++ templates to specialize the code for these two types. Since build-

ing C++ extensions can be difficult on some platforms, we provide Python fallback 

implementations. This enables all our open-source algorithms to run correctly, if at 

slower execution speed. 

PY 
Find the code 
In file src/lib/xgates.cc 

// Make sure this header can be found: 

#include <Python.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <complex> 

// Configure the path, likely found in the BUILD file: 

#include "<path>/numpy/core/include/numpy/ndarraytypes.h" 

#include "<path>/numpy/core/include/numpy/ufuncobject.h" 

#include "<path>/numpy/core/include/numpy/npy_3kcompat.h" 

typedef std::complex<double> cmplxd; 
typedef std::complex<float> cmplxf; 

// apply1 applies a single gate to a state. 

// 2x2 gates are flattened to a 1x4 array: 

// a b 

// c d -> a b c d 

template <typename cmplx_type> 
void apply1(cmplx_type *psi, cmplx_type gate[4], 

int nbits, int tgt) { 
tgt = nbits - tgt - 1; 

int q2 = 1 << tgt; 
for (int g = 0; g < 1 << nbits; g += (1 << (tgt+1))) { 

for (int i = g; i < g + q2; ++i) { 

cmplx_type t1 = gate[0] * psi[i] + gate[1] * psi[i + q2]; 

cmplx_type t2 = gate[2] * psi[i] + gate[3] * psi[i + q2]; 

psi[i] = t1; 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/xgates.cc
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psi[i + q2] = t2; 

} 

} 

} 

To extend Python and make this extension loadable as a shared module, we add 

standard Python bindings for single-qubit gates. Function apply1_python obtains 

C++ pointers to the arguments and calls the C++ apply1 function. The function 

apply1_call verifies the type of state parameter param_psi, which is identified by 

parameter bit_width, and calls the correctly typed flavors of the templatized C++ 

function: 

template <typename cmplx_type, int npy_type> 
void apply1_python(PyObject *param_psi, PyObject *param_gate, 

int nbits, int tgt) { 
PyArrayObject *psi_arr = 

PyArrayObject*) PyArray_FROM_OTF(param_psi, npy_type, NPY_IN_ARRAY); 

cmplx_type *psi = ((cmplx_type *)PyArray_GETPTR1(psi_arr, 0)); 

PyArrayObject *gate_arr = 

PyArrayObject*) PyArray_FROM_OTF(param_gate, npy_type, NPY_IN_ARRAY); 

cmplx_type *gate = ((cmplx_type *)PyArray_GETPTR1(gate_arr, 0)); 

apply1<cmplx_type>(psi, gate, nbits, tgt); 

Py_DECREF(psi_arr); 

Py_DECREF(gate_arr); 

} 

static PyObject *apply1_call(PyObject *dummy, PyObject *args) { 
PyObject *param_psi = NULL; 

PyObject *param_gate = NULL; 

int nbits, tgt, bit_width; 

if (!PyArg_ParseTuple(args, "OOiii", &param_psi, &param_gate, 
&nbits, &tgt, &bit_width)) 

return NULL; 
if (bit_width == 128) { 

apply1_python<cmplxd, NPY_CDOUBLE>(param_psi, 

param_gate, nbits, tgt); 

} else { 
apply1_python<cmplxf, NPY_CFLOAT>(param_psi, 

param_gate, nbits, tgt); 

} 

Py_RETURN_NONE; 

} 

This is followed by the standard functions that the Python interpreter will call when 

importing a module. We register the Python wrappers in a module named xgates with 

standard boilerplate code: 
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// Python boilerplate to expose above wrappers to programs. 

static PyMethodDef xgates_methods[] = { 
{"apply1", apply1_call, METH_VARARGS, 

"Apply single-qubit gate, complex double"}, 

{NULL, NULL, 0, NULL}}; 

// Give a name to the module (xgates) and register above array. 

static struct PyModuleDef xgates_definition = { 
PyModuleDef_HEAD_INIT, 

"xgates", 

"Python extension to accelerate quantum simulation math", 

-1,

xgates_methods 

}; 

// Standard registering function, identified by Python by name (xgates). 

PyMODINIT_FUNC PyInit_xgates(void) { 

Py_Initialize(); 

import_array(); 

return PyModule_Create(&xgates_definition); 
} 

Python typically finds extensions with the help of an environment variable. For exam-

ple, on Linux: 

export PYTHONPATH=path_to_xgates.so 

Alternatively, you can extend Python’s module search path programmatically with 

code like this (of course, this will make code changes necessary to adjust the path): 

import sys
sys.path.append('/path/to/search') 

3.7 Circuits Finally Finalized 

With our accelerated implementation, we can finally finish the gate application func-

tions in the quantum circuit qc class. Single-qubit gates can be applied to an indi-

vidual qubit, a whole register, or a list of qubits. For each of these sets of indices, 

gates are added to the IR and, in eager mode, directly applied using the accelerated 

routines:5 

5 In the code in the repository, you will find another indirection to ensure that everything runs 

successfully, even if xgates could not be built or found. In that case, a message will warn about 

potentially degraded execution speed. 
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def apply1(self, gate: ops.Operator, idx_set, name: str = None, *, 
val: float = None): 

indices = [] 

if isinstance(idx_set, int): 
indices.append(idx_set) 

if isinstance(idx_set, state.Reg): 
indices += idx_set.reg 

if isinstance(idx_set, list): 
indices += idx_set 

for idx in indices: 
if self.build_ir: 

self.ir.single(name, idx, gate, val) 

if self.eager: 
xgates.apply1(self.psi, gate.reshape(4), self.psi.nbits, idx, 

tensor.tensor_width()) 

Controlled qubits can be applied to an individual qubit or single-qubit register. 

When the controlling qubit is specified as a single-element list (as above), the gate 

will be a Controlled-By-0 gate. Similarly to the above, the IR is constructed, and the 

gates are applied in eager mode only. 

def applyc(self, gate: ops.Operator, ctl: int, idx: int, 
name: str = None, *, val: float = None): 

if isinstance(idx, state.Reg): 
assert idx.size == 1, 'Controlled n-qbit register not supported' 
idx = idx[0] 

ctl_qubit, by_0 = self._ctl_by_0(ctl) 

self.x(ctl_qubit, by_0) 

if self.build_ir: 
self.ir.controlled(name, ctl_qubit, idx, gate, val) 

if self.eager: 
xgates.applyc(self.psi, gate.reshape(4), self.psi.nbits, ctl_qubit, 

idx, tensor.tensor_width()) 

self.x(ctl_qubit, by_0) 

You can refer back to Figure 3.2 and the corresponding code to see an example of 

how this code can be invoked from Python. 

Looking at the standard gates, we find many 0s and 1s, which means that several gate 

applications may run faster if we optimize for these special cases. Emphasis on should. 

Let us run an experiment to verify this assumption. 

We start by constructing a benchmark to compare the general and fast gate appli-

cation routines from Section 3.5 with a specialized function for the X gate, which 

3.8 Premature Optimization, First Act 
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Table 3.1. Benchmark results (program output), comparing hand-optimized and nonoptimized gate 
application routines. 

Benchmark Time(ns) CPU(ns) Iterations 

BM_apply_single 116403527 116413785 24 

BM_apply_single_opt 132820169 132829412 21 

BM_apply_controlled 81595871 81600200 34 

BM_apply_controlled_opt 89064964 89072559 31 

has two 0s and two 1s. Multiplications by 0 can be replaced by just 0, additions of 

0 and multiplications by 1 can also be removed. For fast gate application routines 

specialized in this way for the X gate, a total of four multiplications, two additions, 

and some memory accesses per single qubit should be saved. This is the original inner 

loop: 

for (int i = g; i < g + q2; ++i) { 

cmplx t1 = gate[0][0] * psi[i] + gate[0][1] * psi[i + q2]; 

cmplx t2 = gate[1][0] * psi[i] + gate[1][1] * psi[i + q2]; 

psi[i] = t1; 

psi[i + q2] = t2; 

} 

And this is the optimized version of the loop:6 

for (int i = g; i < g + q2; ++i) { 

cmplx t1 = psi[i + q2]; 

cmplx t2 = psi[i]; 

psi[i] = t1; 

psi[i + q2] = t2; 

} 

The results of comparing the two implementations are in Table 3.1. Recall our 

hypothesis that the optimized version would be faster because it executes fewer mul-

tiplications and additions. The column Iterations shows iterations per second; 

higher is better. Surprisingly, you can see that the specialized version runs about 

10% slower! For the given x86 platform, the compiler was able to vectorize the 

unspecialized version, leading to a slightly higher overall throughput.7 

In summary, we found a way to apply gates with linear complexity over the size of 

the state vector and accelerated it by a significant factor with C++. This infrastructure 

is sufficient for all the algorithms in this book. 

6 I wonder whether classical compilers can be made smart enough to perform this transformation 

“automagically.” 
7 To riff on a quote that is (potentially incorrectly) ascribed to Lenin: Intuition is good, but verification is 

better. 
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There are other ways to simulate quantum algorithms (Altman et al., 2021), as we 

discussed at the end of Section 3.1. A specifically interesting methodology represents 

states sparsely. Indeed, for many circuits, this is the most efficient representation. We 

give a brief overview of it in Section 3.9 and a full implementation will be provided 

in the Appendix. 

3.9 Sparse Representation 

So far, our data structure for representing quantum states is a dense array that holds 

all the probability amplitudes of the superimposed basis states, where the amplitude 

for a specific basis state can be found via binary indexing. However, for many circuits 

and algorithms, a high percentage of states can have a probability equal to or very 

close to zero. Storing these 0-states and applying gates to them will have no effect 

and is wasteful. This fact can be exploited with a sparse representation. An excellent 

reference implementation of this principle can be found in the venerable open-source 

library libquantum (Butscher and Weimer, 2013). 

PY 
Find the code 
In file src/libq 

We reimplement the core ideas of that library as they relate to this book; libquantum 

addresses other aspects of quantum information, which we do not cover. Therefore, we 

name our implementation libq to distinguish it from the original. The original library 

is in plain C, but our implementation was moderately updated with C++ for improved 

readability and performance. We maintain some of the C naming conventions for key 

variables and functions to help with direct code comparisons. 

Here is the core idea: Assume that we have a state of n qubits, all initialized to be in 

the state |0⟩. The dense representation stores 2n complex numbers in the state vector, 

where only the very first entry is a 1 and all other values are 0, corresponding to state 

|00 . . . 0⟩. 
The libq library turns this on its head. Basis states are encoded as simple binary 

bits in an integer (currently up to 64 qubits, but this can be extended), where the 

binary digits 0s and 1s correspond to states |0⟩ and |1⟩. Each of these bit combinations 

stored in the integer variable is paired with a probability amplitude. Only states with 

nonzero amplitudes are being stored. In the above example, libq would store the 

basis state |00 . . . 0⟩ with amplitude 1 as the only Python tuple (0b00...0, 1.0), 

indicating that the only state with nonzero probability is |00 . . . 0⟩. For 53 qubits, the 

full-state representation would require 72 petabytes of memory. In contrast, the sparse 

representation only requires a total of 16 bytes if the amplitude is stored as a double 

precision value (only 12 bytes are needed if we use 4-byte floating point values).8 

Applying a Hadamard gate to a qubit will put the state in superposition. In libq, 

there will now be two states with nonzero amplitudes. For example, applying the 

Hadamard gate to the right-most qubit will lead to the two basis states with equal 

amplitudes: 

8 15 orders of magnitude — Is that all you got? 

http://www.github.com/qcc4cp/qcc/blob/main/src/libq
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|00 . . . 00⟩ with probability 50%, and 

|00 . . . 01⟩ with probability 50%. 

√ 
1/ 2,Consequently, libq now stores two tuples, each with a probability amplitude of  

using 32 bytes (or 24 bytes with 4-byte floats). 

During the execution of a circuit, superposition is generated and destroyed. Indi-

vidual states become probable and no longer probable. A key aspect of libquantum 

is that gates are recognized as producing or destroying superposition and handled 

accordingly. Furthermore, it filters out all states with amplitudes close to 0 after the 

application of superposition generating gates. This reduces the number of stored tuples 

and accelerates future gate applications. 

The gate application itself becomes very fast. For example, assume that we need to 

apply the X gate to the least significant qubit. In the dense case, the entire state vector 

needs to be traversed and modified, as described in Section 3.6 on accelerated gate 

application. 

In libq, only a bit flip is needed. In the example above, assuming an initial state 

of all |0⟩, applying the X gate to the least significant qubit means that we only have to 

flip the least significant bit in the bit mask; the tuple (0x00...00, 1.0) becomes 

(0x00...01, 1.0). This is dramatically faster than having to traverse and modify 

a potentially very large state vector, especially if the number of nonzero probability 

states is low. To maintain the state tuples, we need to support two main operations: 

Iterate over all available state tuples. 

• 

• 
Find or create a specific state tuple. 

The original libquantum implements a hash table to manage the tuples, and, as we 

will see, despite the favorable performance characteristics of hash tables, it ultimately 

remains the performance bottleneck in the implementation. Our libq moderately 

improves this core data structure. 

The implementation of libq consists of just about 500 lines of C++ code. A 

detailed, annotated description, which also includes optimization wins and fails, can 

be found in the Appendix. 

This design also has downsides, which may prevent it from scaling to very large 

numbers of qubits or circuits with a high percentage of nonzero probabilities. Indi-

vidual states are efficiently encoded as tuples of a bit mask to encode a state and a 

probability amplitude. However, there are additional data structures, such as the hash 

table, to maintain existing states. The memory requirement per individual basis state 

is higher than that in a full-state representation. This means there is a crossover point 

where the sparse representation becomes less efficient than the full state representa-

tion. In particular, it appears to perform poorly for the quantum random algorithms 

that we discuss in Section 5.3.2. 

Another downside might arise from the way the hash table is used to store the 

states. At some size threshold, the hash table’s random memory accesses will 

be outperformed by linear memory accesses, which benefit from caches and can 

be prefetched effectively. Furthermore, hash table entries might be distributed 

unpredictably across machines in a distributed computing environment. The gate 

application might thus incur prohibitively high communication costs. 
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Benchmarking 

Here, we provide anecdotal evidence for the efficiency of the sparse representation. 

A full performance evaluation is ill-advised in a book like this – the results will be out 

of date and no longer relevant by the time you read this. 

The most complex algorithm in this book is Shor’s integer factorization algorithm 

(Section 11.6). The quantum part of the algorithm is called order finding. Factoring 

the number 15 requires 18 qubits and 10,533 gates; factoring 21 requires 22 qubits 

and 20,671 gates, and factoring 35 requires 26 qubits and 36,373 gates. We run this 

circuit in two different ways: 

• Run it as is, using the accelerated quantum circuit implementation.

• Construct the circuit non-eagerly and transpile it to libq. We described the

transpilation in Section 3.4.7. The output is a C++ source file, which is compiled

and linked with the libq library to produce an executable.

Both versions will compute the same result; the textual output differs and shows the 

maximum number of nonzero states reached during execution. Factoring the number 

21 with 22 qubits, we get the following output. A maximum of only 1.6% of all 

possible states ever obtained a nonzero probability at one point or the other during 

execution. 

# of qubits : 22 

# of hash computes : 2736 

Maximum # of states: 65536, theoretical: 4194304, 1.562% 

States with nonzero probability: 

0.499966 +0.000000i|4> (2.499658e-01) (|00 0000 0000 0000 0000 0100>) 

0.000001 -0.000000i|32772> (6.14857e-13) (|00 0000 1000 0000 0000 0100>) 

-0.499970 +0.000000i|65536> (2.4997e-01) (|00 0001 0000 0000 0000 0000>)

0.499966 +0.000000i|65540> (2.49966e-01) (|00 0001 0000 0000 0000 0100>)

0.000001 -0.000000i|98308> (6.14856e-13) (|00 0001 1000 0000 0000 0100>)

0.499970 -0.000000i|0> (2.4997e-01) (|00 0000 0000 0000 0000 0000>)

The libq version runs in less than five seconds on a modern workstation, while 

the circuit version takes about 2.5 minutes, a speed-up of roughly 25 times. Factoring 

the number 35 with 26 qubits, the libq version runs for about 3 minutes, while the 

full-state simulation takes about an hour. Again, another solid acceleration of about 20 

times. We ignore the compilation times for the generated C++ code, which we would 

have to include in an actual scientific evaluation.9 

Which this is not. 9 
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In quantum computing, there are several standard techniques for working with states 

and operators and to assist with debugging of computational processes. In this section, 

we detail several of these mathematical tools. Some of the material may be confusing 

for novices. If you fall into this group, do not be discouraged. Many of the algorithms 

presented in this book can be understood without this material. However, if you seek 

a deeper understanding of the relevant linear algebra, this material is for you. 

4.1 Spectral Theorem for Normal Matrices

This section discusses the important spectral theorem in an informal and code-based 

manner. We will use it in several algorithms in this book. Recall from Section 1.8 

that the Hermitian and unitary matrices are special cases of normal matrices for which 
† AA = †A A. The complex spectral theorem states that any normal matrix is diagonal-

izable by some unitary matrix. Since we are not going too deeply into linear algebra, 

we will use a more targeted version of this theorem for Hermitian matrices: 

T H E O R E M : (Spectral Theorem) For any Hermitian matrix H, 

• All eigenvalues of H are real. 

• The eigenvectors corresponding to distinct eigenvalues are orthogonal.1 

• The eigenvectors form a basis for the vector space of H (we mostly ignore the 

linear algebra of vector spaces; we also ignore this part of the theorem). 

Furthermore, for any Hermitian2 matrix H there exists a unitary matrix U with 

HU = UΛ, 

where the matrix Λ is a diagonal matrix with the real eigenvalues λi of H on the 

diagonal. The columns of U are the eigenvectors |vi⟩ of H (not of U). This means that 

we can write H in the spectral decomposition as ∑
H = λi|vi⟩⟨vi|. 

i 

(4.1) 

1 Which we can normalize to get an orthonormal basis. 
2 The general spectral theorem states that this holds for any normal matrix. 

https://doi.org/10.1017/9781009548519.005


105 4.1 Spectral Theorem for Normal Matrices

If H is a unitary matrix, then all eigenvalues have the absolute value of 1. We 

already proved this in Section 1.8 on unitary matrices. The proofs for the other parts of 

the theorem can be found in existing material on linear algebra, for example, in Nielsen 

and Chuang (2011), so we will not repeat them here. Instead, we play with code to 

convince ourselves of these results. We create a unitary3 operator U in the Python 

variable umat using scipy and make it Hermitian by computing †H = (U + U )/2 

and storing the result in variable hmat: 

PY 
Find the code 
In file src/spectral_decomp.py 

def spectral_decomp(ndim: int): 
u = scipy.stats.unitary_group.rvs(ndim) 
umat = ops.Operator(u) 

hmat = 0.5 * (umat + umat.adjoint()) 
assert np.allclose(hmat, hmat.adjoint()), 'Something is wrong' 

We compute eigenvalues and eigenvectors using numpy and check that the eigenvalues 

are real and that the eigenvectors are orthonormal: 

w, v = np.linalg.eig(hmat) 
for i in range(ndim): 

assert np.allclose(w[i].imag, 0.0), 'Non-real eigenvalue!' 

for i in range(ndim): 
for j in range(i + 1, ndim): 

dot = np.dot(v[:, i], v[:, j].conj()) 
assert np.allclose(dot, 0.0, atol=1e-5), 'Not orthogonal' 

for i in range(ndim): 
dot = np.dot(v[:, i], v[:, i].conj()) 
assert np.allclose(dot, 1.0, atol=1e-5) 'Not orthonormal' 

Now we can write the matrix in the form of Equation (4.1) and verify that the decom-

position is correct: 

x = np.matrix(np.zeros((ndim, ndim))) 
for i in range(ndim): 

x = x + w[i] * np.outer(v[:, i], v[:, i].conj()) 
assert np.allclose(hmat, x, atol=1e-5), 'Spectral decomp failed.' 

Spectral decomposition is powerful for many reasons. In particular, if we look at 

Equation (4.1) and squint our eyes, we can see that the matrix trace is independent 

of a chosen basis. It depends only on the eigenvalues. In fact, as we have already 

stated in Equation (1.8), the trace is the sum of the eigenvalues. We can also compute 

3 Note that this works for any square matrix. 

http://www.github.com/qcc4cp/qcc/blob/main/src/spectral_decomp.py
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the inverse of an invertible matrix (with nonzero eigenvalues) simply by using the 

reciprocals of the eigenvalues: ∑ ∑
H = 

i 

λi|vi⟩⟨vi| ⇔ −1H = 
i 

λ−1|vi⟩⟨vi|.i 

x = np.matrix(np.zeros((ndim, ndim))) 
for i in range(ndim): 

x = x + 1 / w[i] * np.outer(v[:, i], v[:, i].conj()) 
assert np.allclose(np.linalg.inv(hmat), x, atol=1e-5), 'Inverse Error.' 

4.2 Density Matrices

So far, we have explored pure states which represent a single well-defined state of a 

quantum system. This formalism will carry us through most of the remainder of this 

book. However, the formalism is insufficient to answer the following questions. 

• First, assume that we have an apparatus that does not just produce a single state 

but a statistical mixture of different states. Having a single mathematical 

formalism to describe such a system would be nice. 

• Secondly, assume that we have an EPR pair βAB of qubits as described in Section 

2.11.3, where the qubit A may be physically separated from B. We should have a 

way to describe the individual qubits without having access to the other. 

We need a better methodology for these cases, and the trick will be to describe states 

not just as vectors but as matrices. As hinted in Section 2.5, for a state vector |ψ⟩, 
we construct a density matrix ρ by computing the outer product of the state |ψ⟩ with 

itself as 

ρ = |ψ⟩⟨ψ|. 

The density matrix for a pure state has a rank of 1 and also a trace of 1. If we 

measure a state |ψ⟩ in a basis with a basis vector |b⟩, we already know that the 

probability of measuring |b⟩ is 

|⟨b|ψ⟩|2 = ⟨b|ψ⟩⟨ψ|b⟩ 
= ⟨b|ρ|b⟩. 

Let us assume that we have an apparatus that produces a state |ψ0⟩ with probability 

p0 and another state |ψ1⟩ with probability p1. The machine produces a statistical 

mixture of states. To represent the full system, we add the individual density matrices 

of the states weighted by their system-level probabilities as 

ρ = p0|ψ0⟩⟨ψ0| + p1|ψ1⟩⟨ψ1|. 
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We can generalize this to any mixture of states as ∑
ρ = pi|ψi⟩⟨ψi|. 

i 

This may look similar to the spectral decomposition from Section 4.1, but it is dif-

ferent, as the |ψi⟩ are not necessarily basis states here. Any matrix with the following 

two properties can be considered a density matrix: 

1. The matrix must be positive semidefinite with eigenvalues λi ≥ 0. 

2. The trace of the matrix must be 1. 

A set of density matrices with their probabilities {(pi,ρi)} is called an ensemble 

of states. Density matrices are not unique and can result from different ensembles. 

For example, the matrix I/2 (with I being the identity matrix) is a valid density 

matrix. Suppose an apparatus generates states |0⟩ and |1⟩ with equal probability and 

a second apparatus generates states |+⟩ and |−⟩ with equal probability. In that case, 

their density matrices are the same and physically indistinguishable: 

I 1 ( )
= |+⟩ ⟨+| + |−⟩ ⟨−| 

2 2 
1 ( )

= |0⟩⟨0| + |1⟩⟨1| . 
2 

As mentioned above, if the rank of matrix ρ is 1, then ρ is a pure density matrix. 

Otherwise, it is a mixed density matrix. Furthermore, the trace operation gives us 

another mathematical definition of mixed and pure states with ( )
tr ρ2 = 1 : Pure state,( )
tr ρ2 < 1 : Mixed state. 

This term tr(ρ2) as a metric is also known as the purity of a state. For a single 

qubit, it can be visualized on the Bloch sphere. The Bloch vector for a pure state is 

located on the surface of the Bloch sphere, while for a mixed state, the Bloch vector 

is somewhere in the sphere’s interior. 

We apply an operator U with   |ψ ′⟩ = U|ψ⟩ to modify a state vector. To apply an 

operator U to a state expressed as a density matrix, we must apply U from the left and 
† U from the right, as   ρ ′ = Uρ † U . 

4.3 Reduced Density Matrix and Partial Trace

The density matrix formalism allows us to reason about physically separated qubits 

and their subspaces. For this, we will use what is called a reduced density operator, 

which we can derive with the help of a procedure called a partial trace. Recall how 

we defined the trace of a matrix in Section 1.10 as the sum of the diagonal elements as 
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∑n−1 

tr(A) = aii = a00 + a11 + · · · + an−1n−1. 

i=0 

(4.2) 

The trace of a matrix is independent of the basis used to represent the matrix, as 

we hinted in Section 4.1 on the spectral decomposition. We also know from the above 

that the trace of a density matrix is 1. This means that we can write the trace of an 

operator as ∑n−1 

tr(A) = ⟨i|A|i⟩, 
i=0 

where |i⟩ are the basis vectors of an orthonormal basis. For a product state of two 

qubits expressed as a density matrix, we take the trace over the subsystem B as follows. 

The states |i⟩ are the basis states of an orthonormal basis for ρ B. From Equation (4.2) ,

we know that the sum over the terms ⟨i|ρ B |i⟩ is 1. Hence: ∑ ∑
trB(ρAB) = ρA ⊗ tr(ρB) = ρA ⊗ ⟨i|ρB|i⟩ = ρA. ( )) }

i i ∑ 
=1 

(4.3)

We say that subsystem B is being “traced out”. In general, the state does not need 

to be a product state for this procedure to work. We can also generalize it and use 

identity matrices to leave subspaces untouched. This is quite similar to what we do 

during general operator applications. 

To see how this works, let us first consider a two-qubit state and trace out qubit 0 

as subsystem A. We construct the special operator matrices |0A⟩ and |1A⟩ below by 

tensoring the basis states |0⟩ and |1⟩ with an identity matrix I, resulting in matrices 

of size 4 × 2. The order of basis state and identity matrix depends on which specific 

qubit we intend to trace out. Here we want to trace out qubit 0, so the |0⟩ and |1⟩ states 

come first. ( ) ( )( ) ( ) 1 0 ( ) ( ) 0 0 

1 1 0 |0 1 | | |
|0A⟩ = ⊗ = | | 0 1 0 |0 0 |

0 0 1 ( ) , |1A⟩ = ⊗ = 
0 0 1 0 1 ( . 

1 0 )
0 0 0 1 

Then we use |0A⟩ and |1A⟩ and compute the partial traces as shown in Equation (4.3) 

with 

ρA = trB(ρAB) = ⟨0B|ρAB|0B⟩ + ⟨1B|ρAB|1B⟩, 
ρB = trA(ρAB) = ⟨0A|ρAB|0A⟩ + ⟨1A|ρAB|1A⟩. 

The partial trace is a dimension-reducing operation. For example, let us assume 

that we have a system of two qubits A and B (at indices 0 and 1) with a 4 × 4 density 

matrix, and we want to trace out qubit 0. Multiplying the 4 × 4 density matrix from 

the right with a 4 × 2 matrix results in a 4 × 2 matrix. Multiplying this matrix from 

the left with a (now transposed) 2 × 4 matrix results in a 2 × 2 matrix. 
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PY 
Find the code 
In file src/lib/ops.py 

def TraceOutSingle(rho: Operator, index: int) -> Operator: 
nbits = int(math.log2(rho.shape[0])) 
assert index <= 0 < nbits, 'TraceOutSingle: Invalid index.' 

eye = Identity() 
zero = Operator([1.0, 0.0]) 
one = Operator([0.0, 1.0]) 
p0 = p1 = tensor.Tensor(1.0) 
for idx in range(nbits): 

if idx == index: 
p0 = p0 * zero 
p1 = p1 * one 

else: 
p0 = p0 * eye 
p1 = p1 * eye 

rho0 = p0 @ rho @ p0.transpose() 
rho1 = p1 @ rho @ p1.transpose() 
return rho0 + rho1 

If we have a state of n qubits and are interested in the state of just one of the qubits, 

we must trace out all other qubits. For this, we add a convenience function to file 

src/lib/ops.py: 

def TraceOut(rho: Operator, index_set: List[int]) -> Operator: 
for idx, val in enumerate(index_set): 

nbits = int(math.log2(rho.shape[0])) 
rho = TraceOutSingle(rho, val) 
for i in range(idx+1, len(index_set)): 

index_set[i] = index_set[i] - 1 
return rho 

Experiments 

Let us see this procedure in action. We start by producing a state from two well-defined 

qubits (assuming a local phase of 0, which means the factors are real), with 
√ √ 

1 3 3 1 
q0 = |0⟩ + |1⟩ and q1 = |0⟩ + |1⟩ . 

2 2 2 2 

q0 = state.qubit(alpha=0.5) # sqrt(0.25) 

q1 = state.qubit(alpha=0.8660254) # sqrt(0.75) 

psi = q0 * q1 
>>> psi 
State([0.433+0.j, 0.25 +0.j, 0.75 +0.j, 0.433+0.j], dtype=complex64) 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/ops.py
http://www.github.com/qcc4cp/qcc/blob/main/src/src/lib/ops.py
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>>> psi.density()
Tensor([[0.188+0.j, 0.108+0.j, 0.325+0.j, 0.188+0.j],

[0.108+0.j, 0.062+0.j, 0.188+0.j, 0.108+0.j],
[0.325+0.j, 0.188+0.j, 0.562+0.j, 0.325+0.j],
[0.188+0.j, 0.108+0.j, 0.325+0.j, 0.188+0.j]], dtype=complex64)

Tracing out one qubit should leave the other in the resulting density matrix, with 

the top left matrix element having the value |α|2 and the bottom right matrix element

having the value |β|2 for the remaining qubit. For the example, tracing out qubit q1 

should result in a value of 0.52 = 0.25 in the top left matrix element, which is the 

norm squared of α = 0.5 for qubit q0. 

reduced = ops.TraceOut(psi.density(), [1])
self.assertTrue(math.isclose(np.real(np.trace(reduced)), 1.0))

>>> reduced
Tensor([[0.25 +0.j, 0.433+0.j],

[0.433+0.j, 0.75 +0.j]], dtype=complex64)

Tracing out qubit q0 should leave 0.86602542 = 0.75 at the top left:

reduced = ops.TraceOut(psi.density(), [0])
self.assertTrue(math.isclose(np.real(np.trace(reduced)), 1.0))

>>> reduced
Tensor([[0.75 +0.j, 0.433+0.j],

[0.433+0.j, 0.25 +0.j]], dtype=complex64)

As an example of an entangled state, let us take the first Bell state β00. For this 

state, the square of the trace of the density matrix is 1. After tracing out qubit 0, the 

square of the trace is just 0.52 + 0.52 = 0.5. 

psi = bell.bell_state(0, 0)
reduced = ops.TraceOut(psi.density(), [0])
self.assertTrue(math.isclose(np.real(np.trace(reduced)),

1.0, abs_tol=1e-6))
self.assertTrue(math.isclose(np.real(reduced[0, 0]),

0.5, abs_tol=1e-6))
self.assertTrue(math.isclose(np.real(reduced[1, 1]),

0.5, abs_tol=1e-6))

This already hints at the methodology to distinguish pure and mixed states, which we 

elaborate upon further in Section 4.4. 
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4.4 Maximal Entanglement

A maximally mixed state is a state that exhibits maximum uncertainty, or randomness, 

in its outcome when measured. When represented by a density matrix, a maximally 

mixed state is proportional to the identity matrix. 

For two-qubit states, we define maximally entangled as follows. The partial trace 

allows us to reason about a subspace of a state. Tracing out a subspace leaves a reduced 

density matrix. We call a two-qubit state maximally entangled if the remaining reduced 

density matrices are maximally mixed after tracing out individual qubits. 

For example, in Section 4.3, we saw that the density matrix of a Bell state was I/2 

after tracing out a single qubit. The diagonal elements are all identical, and the off-

diagonal elements are 0, meaning it is a maximally mixed state. This also means that 
4Bell states are maximally entangled states. The trace of the reduced density matrix 

is 1, as required for a density matrix. However, the trace squared of the reduced and 

maximally mixed state is 0.5: 

tr(I/2) = 1, 

tr (I/2)2 = 0.5 < 1. 

This result is as expected for an entangled state. The joint state of the two qubits is 

a pure state, which means that we know everything there is to know about the state. 

However, looking at the individual qubits of the entangled Bell state with the help of 

density matrices, we find that those are in a mixed state. 

In general, maximal entanglement is defined as maximizing a specific entanglement 

measure. Our bipartite two-qubit case above was easy to reason about. For multipartite 

states, things become considerably more complicated and are beyond the scope of this 

book. A good discussion can be found in Plenio and Virmany (2006). 

4.5 Schmidt Decomposition

For a given state, determining whether the state is separable or entangled can be of 

great interest. For a two-qubit state, we derived a simple entanglement test in Section 

2.11.2, but this test was not general. In this section, we introduce the Schmidt decom-

position, a well-known linear algebra technique that is useful in quantum computing, 

as it provides a general test for entanglement. Furthermore, it even points to a measure 

of the entanglement strength. 

Assume we have a pure state |ψ⟩ in the composite bipartite quantum system AB. For 

simplicity, assume that A and B have the same dimensionality n. The Schmidt decom-

position states that there exists an orthonormal basis {u0,u1, . . . ,un−1} for system A 

and a basis {v0,v1, . . . ,vn−1} for system B, such that 

n−1∑
|ψ⟩ = λi |ui⟩A ⊗ |vi⟩ . B 

i=0 

(4.4)

4 As well as GHZ states. 
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The λi are called the Schmidt coefficients. They are real positive numbers with∑
We can use these coefficients to test for separability: A state |ψ⟩ isi λ

2 
i = 1. 

separable if and only if the number of distinct coefficients is 1 exactly. 

This description may seem somewhat abstract; it will be helpful to look at two 

examples. First, consider a separable state of two qubits in equal superposition, where 

the first qubit belongs to system A and the second qubit to system B: 

1 1 1 1 |ψ⟩ = |00⟩ + |01⟩ + |10⟩ + |11⟩ . 
2 2 2 2 

We know from Section 2.4.1 that we can factor this state into 

1 ( ) 1 |ψ⟩ = √ |0⟩A + |1⟩A ⊗ √ (|0⟩B + |1⟩B) 
2 2( ) ( )

= 1 · |+⟩ ⊗ |+⟩ + 0 · |−⟩ ⊗ |−⟩ A B A B . 

Since there is only a single nonzero Schmidt coefficient, the state |ψ⟩ is separable. 

For an example of an entangled state, let us look at the |W⟩ state from Section 2.11.5 

and separate it into two systems, one containing the first two qubits and the other 

having the third qubit: 

1 ( )
|W⟩ = √ |001⟩ + |010⟩ + |100⟩ . 

3 

1 ( )
|WAB⟩ = √ |00⟩A |1⟩B + |01⟩A |0⟩B + |10⟩A |0⟩B . 

3 

We set the basis for system A as {|00⟩ , |01⟩ , |10⟩ , |11⟩} and the basis for system B as 

{|0⟩ , |1⟩}. With this and a little algebra to separate A and B, we manually decompose 

the state into √ ( )
1 ( ) 2 1 1 |WAB⟩ = √ |00⟩ ⊗ |1⟩ + √ |01⟩ + √ |10⟩ ⊗ |0⟩A B A A B
3 3 2 2())} ())}

λ1λ0 √ √
to find the two Schmidt coefficients λ0 = 1/3 and λ1 = ( 2/3. The basis vectors )
for A are |u0⟩ = |00⟩ and the more complex |u 1

1⟩ = √ |01⟩ + |10⟩A A .
2 

 In general,

any bipartite state can be written as 

n−1 n−1∑∑
|ψAB⟩ = cij |χi⟩ ⊗ |φj⟩ .A B 

i=0 j=0 

The Schmidt decomposition reduces this by introducing new bases such that 

n−1∑
|ψAB⟩ = λi |ui⟩ ⊗ |vi⟩B .A 

i=0 

The question is how to derive the λi from the cij. There are two ways to approach 

this. The first method is based on the singular value decomposition (SVD) (Strang 

(2016), page 364). Let us again use the example of the |W⟩ state from above, with the 
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basis states for system A of {|00⟩ , |01⟩ , |10⟩ , |11⟩} and {|0⟩ , |1⟩} for B. We can write 

any state in the combined basis as 

|ψAB⟩ = c00 |00⟩ |0⟩ + c01 |01⟩ |0⟩ + c02 |10⟩ |0⟩ + c03 |11⟩ |0⟩ 
+ c10 |00⟩ |1⟩ + c11 |01⟩ |1⟩ + c12 |10⟩ |1⟩ + c13 |11⟩ |1⟩ . 

In general, we can arrange the coefficients as a matrix CAB, where we index the 

rows with the basis states |ψ⟩ from system A and the columns with the basis states |φ⟩ 
from system B: 

|φ0⟩ |φ1⟩ . . . |φn−1⟩ 

c00 c01 . . . c0,n−1 

c10 c11 . . . c1,n−1 

. . .. 

(|||||(

)|||||). 

|ψ0⟩ 
|ψ1⟩ 

CAB = 
. . . . . . . .. . . 

|ψn−1⟩ cn−1,0 cn−1,1 . . . cn−1,n−1 

Now we make use of the SVD, which is a standard technique in linear algebra with 

many great resources discussing it. We will not discuss it any further here. What the 

SVD does is decompose a square matrix CAB into 

CAB = UΣV† , 

where both U and †V  are n × n unitary matrices.5 Recall that a unitary matrix is 

a matrix with orthonormal columns. This is exactly what we need for the Schmidt 

decomposition. After the SVD, the columns of U will be the orthonormal basis ui. 

The rows of † V will have the adjoints of the orthonormal basis vi. The diagonal matrix 

Σ will have the Schmidt coefficients λi on its diagonal. 

We can also look at the Schmidt decomposition from a different angle using the 

partial trace. For a bipartite pure state |ψAB⟩ in Schmidt form and its density matrix 

ρAB, we get the reduced density matrix ρA for subsystem A as 

∑∑((

∑n−1 

|ψAB⟩ = λi |ui⟩ ⊗ |vi⟩ and ρAB = |ψAB⟩⟨ψAB|.A B 

i=0 

= trB(ρAB) 

n−1 n−1 

ρA ))= trB λi |ui⟩ ⊗ |vi⟩ λj ⟨uj| ⊗ ⟨vj|A B A 
.

B 

i=0 j=0 

∑∑

We can reorder this and use the definition of the trace to pull it to the right. Also, 

recall from Equation (1.7) that the trace over an outer product is equal to its reverse 

inner product, which leads to 

n−1 n−1 
(( ))ρA = trB λiλj |ui⟩⟨uj|A ⊗ |vi⟩⟨vj|B 

i=0 j=0 

5 In general, things get more complex if CAB is an n × m rectangular matrix.  
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n−1 n−1∑∑ ( )
= λiλj |ui⟩⟨uj|A ⊗ tr |vi⟩⟨vj|B . ( )) }

i=0 j=0 
=⟨vj |vi⟩ 

The vi and vj are orthonormal basis states. Their inner product is 0, except for i = j, 
where it is 1. This allows us to write the final reduced density matrix as 

n−1∑
ρA = λ2 |ui⟩⟨ui|,i 

i=0 

which is the spectral decomposition of ρA with eigenvectors |ui⟩ and eigenvalues λ2 
i . 

We can do the same thing for the partial density matrix ρB to arrive at 

n−1∑
ρB = λ2 |vi⟩⟨vi|.i 

i=0 

Now we have the Schmidt coefficients, which are identical for both ρA and ρB, and 

the bases for both A and B, which is what we needed for the Schmidt decomposition 

in Equation (4.4). This is also what we implemented in the code below. 

PY 
Find the code 
In file src/schmidt_decomposition.py 

def compute_eigvals(psi: state.State, expected: int, tolerance: float): 
rho = psi.density() 

rho0 = ops.TraceOut(rho, [1]) 
eigvals0 = np.linalg.eigvalsh(rho0) 
rho1 = ops.TraceOut(rho, [0]) 
eigvals1 = np.linalg.eigvalsh(rho1) 

assert np.allclose(eigvals0, eigvals1, atol=1e-6), 'Whaa' 
assert np.allclose(np.sum(eigvals0), 1.0), 'Whaa' 

# Count the number of nonzero eigenvalues and match against expected. 

nonzero = np.sum(eigvals0 > tolerance) 
if nonzero != expected: 

print(f' Unstable math: {eigvals0[0]:.4f}, {eigvals0[1]:.4f}') 

# Construct the state from the eigenvalues and the new bases. 

a0, d0, _ = np.linalg.svd(rho0) 
a1, _, _ = np.linalg.svd(rho1) 
newpsi = (np.sqrt(d0[0]) * np.kron(a0[:, 0], a1[0, :]) + 

np.sqrt(d0[1]) * np.kron(a0[:, 1], a1[1, :])) 
assert np.allclose(psi, newpsi, atol=1e-3), 'Incorrect Schmidt basis' 
return eigvals0 

Now we can run a few examples with entangled and non-entangled states to con-

vince ourselves that things work as expected! 

http://www.github.com/qcc4cp/qcc/blob/main/src/schmidt_decomposition.py
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def main(argv): 
iterations = 1000 
print('\tSchmidt Decomposition for seperable states.') 
for _ in range(iterations): 

psi = state.qubit(random.random()) * state.qubit(random.random()) 
compute_eigvals(psi, 1, 1e-3) 

print('\tSchmidt Decomposition for entangled states.') 
for _ in range(iterations): 

psi = state.bitstring(0, 0) 
psi = ops.Hadamard()(psi) 
angle = random.random() * np.pi 
psi = ops.ControlledU(0, 1, ops.RotationY(angle))(psi) 
compute_eigvals(psi, 2, 1e-9) 

print('\tSchmidt Decomposition for max-entangled state.') 
psi = state.bitstring(0, 0) 
psi = ops.Hadamard()(psi) 
psi = ops.Cnot()(psi) 
eigv = compute_eigvals(psi, 2, 1e-9) 
if abs(eigv[0] - eigv[1]) > 0.001: 

raise AssertionError('Wrong computation for max-entangled state.') 

4.6 State Purification

When a pure state interacts with its environment, it can become a mixed state because 

of noise and decoherence. State purification attempts to create a pure state from a 

mixed state. We can think of it as a dual to the partial trace and ask the inverse question: 

Given a mixed state ρA for a quantum system A, is it possible to introduce another 

system B such that the state |AB⟩ is a pure state with partial trace ρA = trB(|AB⟩⟨AB|)? 

This is indeed possible with state purification, a mathematical procedure that is 

generally considered to have no real physical relevance.6 Here is how it works. Let us 

assume that we have state A in its spectral decomposition form with the eigenvalues 

λi and basis states |iA⟩ as ∑
ρA = λi|iA⟩⟨iA|. 

i 

We introduce another system B with the same state space as A and the correspond-

ing orthonormal basis states |iB⟩. Then state ∑√
|AB⟩ = λi|iA⟩|iB⟩ 

i 

is a pure state. We can check that taking the partial trace of system B will result in 

exactly ρA. 

6 Which may not be a correct statement (Kleinmann et al., 2006). 
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PY 
Find the code 
In file src/purification.py 

Let us quickly verify this in code. We use the same eigenvectors for the subsystems A 

and B: 

def purify(rho: ops.Operator, nbits: int):
rho_eig_val, rho_eig_vec = np.linalg.eig(rho)

# Construct combined system, using same basis vectors. 

psi1 = np.zeros((2**(nbits * 2)), dtype=np.complex128) 
for i in range(len(rho_eig_val)):

psi1 += (np.sqrt(rho_eig_val[i]) * 
np.kron(rho_eig_vec[:, i], rho_eig_vec[:, i]))

# Make sure it is a pure state. 

mat = psi1.reshape((2**nbits, 2**nbits)) 
assert np.allclose(np.trace(mat@mat), 1.0, atol = 1e-5)

# Another way to compute the reduced density matrix: 

reduced = ops.TraceOut(state.State(psi1).density(),
[x for x in range(int(nbits),

int(nbits*2))]) 
assert np.allclose(rho, reduced), 'Wrong reduced density' 

We test a variety of density matrices to ensure that this procedure works for entan-

gled and unentangled states: 

def main(argv):
print(' Single qubit.')

purify(ops.Operator([(0.22704306, 0.34178495),
(0.34178495, 0.77295694)]), 1)

print(' Bell states.')

purify(bell.bell_state(0, 0).density(), 2)
purify(bell.bell_state(0, 1).density(), 2)

print(' GHZ state.')

purify(bell.ghz_state(4).density(), 4)

print(' Random 2 qubit states.')

for _ in range(1000):
psi = state.State(np.random.rand(4)).normalize()
purify(psi.density(), 2)

http://www.github.com/qcc4cp/qcc/blob/main/src/purification.py
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4.7 Pauli Representation of Operators

In Section 2.7.2 on the Pauli operators X, Y , Z, and the identity operator I, we stated 

that Pauli matrices form a basis for 2 × 2 matrices. This means that a density matrix 
7 can be written as follows, which is also called the Pauli representation of an operator: 

I + xX + yY + zZ 
ρ = . 

2 
(4.5)

Let us derive this result. First, note that since we claim that the Pauli matrices 

form an orthonormal basis for any 2 × 2 matrix, we should be able to write any such 

matrix as 

A = cI + xX + yY + zZ. (4.6) 

If A is Hermitian, all four factors c,x,y,z will be real. By simply adding up the four 

matrix terms, we get ( )
c + z x − iy

A = . 
x + iy c − z 

Comparing Equation (4.5) and Equation (4.6) leads to three questions: 

1. Why is there no factor c in front of I in Equation (4.5)? 

2. Where does the factor 1/2 come from? 

3. Given a matrix, what are the factors x, y, and z, and maybe c? 

To answer the second and third questions first, for a given state |ψ⟩ and its density 

matrix ρ = |ψ⟩ ⟨ψ|, we extract the individual factors by multiplying the density matrix 

with the corresponding Pauli matrix and taking the trace.8 Let’s see how this works. 

To extract the factor x, we compute ( )
c + z x − iy

Xρ = X 
x + iy c − z ( )( )

0 1 c + z x − iy 
= 

1 0 x + iy c − z ( )
x + iy c − z 

= . 
c + z x − iy 

Taking the trace of this matrix as 

tr(Xρ) = x + iy + x − iy = 2x, 

we are able to extract the factor x, but with a factor of 2. This is the reason why, in 

Equation (4.5), we compensate with a factor of 1/2. Let’s derive this for the other 

factors, starting with Y: 

7 Here we implicitly assume that the trace of the operator is 1. 
8 We are using the density matrix of a pure state here, but the same mechanism will work for any 2 × 2 

matrix. 
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( )
c + z x − iy

Yρ = Y 
x + iy c − z ( )( )

0 −i c + z x − iy 
= 

i 0 x + iy c − z ( )
−ix + y −i(c − z) 

= ,
i(c + z) ix + y 

⇒ tr(Yρ) = −ix + y + ix + y = 2y. 

And similarly, for Z: ( )
c + z x − iy

Zρ = Z 
x + iy c − z ( )( )

1 0 c + z x − iy 
= 

0 −1 x + iy c − z ( )
c + z x − iy 

= ,−x − iy z − c 

⇒ tr(Zρ) = c + z + z − c = 2z. 

Finally, for the identity I, the right side remains unchanged: ( )
c + z x − iy

Iρ = I 
x + iy c − z ( )

c + z x − iy 
= , 

x + iy c − z 

⇒ tr(Iρ) = c + z + c − z = 2c. 

Now we use the fact that the trace of a density matrix must be 1. Since we already 

applied a factor 1/2 in Equation (4.5), the factor c in Equation (4.6) must be 1. This is 

why we were able to omit a scalar factor to I in Equation (4.5). 

PY 
Find the code 
In file src/pauli_rep.py 

This is easy to verify in code. We construct a random qubit and extract the factors 

as described above. With these factors, we can verify that we calculated the correct 

results simply by inserting them into Equation (4.5). We compute the factors c,x,y,z 

in Equation (4.6) as the Python variables c, x, y, and z. 

qc = circuit.qc('random qubit') 
qc.random() 
rho = qc.psi.density() 

c = np.trace(ops.Identity() @ rho) # not strictly needed. 

x = np.trace(ops.PauliX() @ rho) 
y = np.trace(ops.PauliY() @ rho) 
z = np.trace(ops.PauliZ() @ rho) 

http://www.github.com/qcc4cp/qcc/blob/main/src/pauli_rep.py
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new_rho = 0.5 * (c * ops.Identity() + x * ops.PauliX() + 
y * ops.PauliY() + z * ops.PauliZ()) 

assert np.allclose(rho, new_rho), 'Invalid Pauli Representation' 

Decomposition with Projectors 

With the factors x, y, and z from Equation (4.6), there is an interesting alternative 

representation with application in the circuit-cutting technique (Tang et al., 2021). We 

compute the projectors as usual: 

P|0⟩ = |0⟩⟨0|, P|1⟩ = |1⟩⟨1|, P|+⟩ = |+⟩⟨+|, P|+y⟩ = |+y⟩⟨+y|. 

With the following four matrices Ai and the factors c,x,y,z calculated above, we can 

decompose a density matrix ρ as 9

A1 = (c + z)P|0⟩, A2 = (c − z)P|1⟩, 

A3 = x(2P|+⟩ − P|0⟩ − P|1⟩), A4 = y(2P|+y⟩ − P|0⟩ − P|1⟩), 

A1 + A2 + A3 + A4⇒ ρ = . 
2 

Two Qubits 

So far, we have computed the density matrix of a single qubit with the Pauli matrices 

σi as 

3∑1 
ρ = ciσi. 

2 
i=0 

This technique can be extended to two qubits by applying the same principles and 

multiplying the density matrix by all tensor products of two Pauli matrices. Similar 

to Equation (4.5), the density matrix can be constructed from the two-qubit bases in 

the following way (note that the factor is now 1/4, or 1/2n in the general case for n 

qubits): 

3∑1 
ρ = ci,j (σi ⊗ σj). 

4 
i,j=0 

To generalize to any number of qubits: Generate n-dimensional tensors holding the 

factors (ci1,...,in 
), tensor together n Pauli matrices of each kind, sum up all the terms, 

and normalize: 

3∑1 
ρ = ci1,...,in 

(σi1 
⊗ · · · ⊗ σin 

). 
2n 

i1,...,in =0 

9 The corresponding code and test are in the open-source repository. 
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But back to the two-qubit case. We compute the factors (cij) in the same way as in 

the single-qubit case. In the following code, we first create a state and corresponding 

density matrix of two potentially entangled qubits: 

qc = circuit.qc('random qubit') 
qc.random(2) 
qc.h(0) 
qc.cx(0, 1) 
rho = qc.psi.density() 

Now we multiply by all the Pauli matrix tensor products and compute the factors 

from the trace. Since two qubits are involved, instead of a vector of factors (ci), we 

will now get a matrix of factors (cij): 

paulis = [ops.Identity(), ops.PauliX(), ops.PauliY(), ops.PauliZ()] 
c = np.zeros((4, 4), dtype=np.complex64) 
for i in range(4): 

for j in range(4): 
tprod = paulis[i] * paulis[j] 
c[i][j] = np.trace(rho @ tprod) 

Note that in the computation of the trace above, we switched the order of rho and 

tprod compared to the single-qubit case. We can do this because for two matrices A 

and B, tr(AB) = tr(BA). Similarly to the above, we can now construct a new state and 

verify that the computed factors are correct: 

new_rho = np.zeros((4, 4), dtype=np.complex64) 
for i in range(4): 

for j in range(4): 
tprod = paulis[i] * paulis[j] 
new_rho = new_rho + c[i][j] * tprod 

assert np.allclose(rho, new_rho / 4, atol=1e-5), 'Invalid result' 

4.8 ZYZ Decomposition

In this section, we will show and derive that any single-qubit unitary gate can be 

decomposed (Nielsen and Chuang (2011), Theorem 4.1) into the form 

iα U = e Rz(β)Ry(γ)Rz(δ), (4.7) 

where Ry and Rz are the rotations about the y-axis and z-axis as described in Section 

2.7.4: ( ) ( )
−i θ θ θ Y

2Ry(θ) = e = cos I − i sin Y 
2 2 ( ( ) ( ))θ θ cos − sin 

= ( 2 ) ( 2 ) ,θ θ sin cos
2 2 
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( ) ( )
−i θ Z θ θ 

2Rz(θ) = e = cos I − i sin Z 
2 2)

−i θ 
2e 0 

= 
i θ . 

20 e 

Let’s find the values for these parameters and verify in code that we have calculated 

the right results. First, we should think of a general single-qubit gate U as having the 

form ( )
a biα U = e . 
c d 

To compute α, we consider the new unitary α V = −e i  U with the special property 

det V = 1. The determinant of a unitary10 is the product of the eigenvalues. For n-

qubit operators, we have k = 2n eigenvalues. If we multiply U by a constant c, then

each eigenvalue is multiplied by this constant, and det(cU) = ck det(U). Hence, for 

this 2 × 2 matrix U, the determinant is det U = ai2α . Similarly to how we find the 

angle of a phase of a complex number, we can find the angle α as the arctangent 

between the imaginary part of the determinant and its real part: ( )
1 Im det(U)

α = arctan ( ) . 
2 Re det(U) 

 ( )
To compute γ, we multiply out Equation (4.7) and get )

−i 1 β−i 1 γ −i 1 β+i 1 γ 
2 2

iα e 2 
δ cos( 

2 
) −e 2 

δ sin( 
2 
)

U = e . (4.8)
+i 1 β−i 1 γ +i 1 β+i 1 γ 

2 2 2 2e δ sin( ) e δ cos( )
2 2 

From this we can compute γ. We compute it from the upper left with 2 arccos |a| 
or from the upper right with 2 arcsin |b|. For numerical stability, we choose the largest 

of the two matrix elements a and b. For α, we use Python’s arctan2 to account for 

all quadrants. 

PY 
Find the code 
In file src/zy_decomp.py 

def zy_decompose(umat): 
a = umat[0][0] 
b = umat[0][1] 
c = umat[1][0] 

det = np.linalg.det(umat) 
alpha = 0.5 * np.arctan2(det.imag, det.real) 
if a >= b: 

gamma = 2 * np.arccos(abs(a)) 
else: 

gamma = 2 * np.arcsin(abs(b)) 

10 To be precise, the determinant of any diagonalizable matrix. 

(

(

(

http://www.github.com/qcc4cp/qcc/blob/main/src/zy_decomp.py
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When we look at the matrix elements a and c in Equation (4.8) (top left and 

bottom left elements), we can see that the sign differs for the β/2 terms. Taking the 

whole exponentiated term (before cos) as a rotation means that the whole β is the 

phase difference between these matrix elements. Similarly, the angle δ is the phase 

difference between −b and c (though there are special cases for γ = 0 or γ = π, 

which we omit here):11 

beta = cmath.phase(c) - cmath.phase(a) 
delta = cmath.phase(-b) - cmath.phase(a) 
return alpha, beta, gamma, delta 

The code in file zy_decomp.py contains routines to construct the matrices from these 

angles and to ensure correct calculations. 

4.9 XYX Decomposition

Given the insights from Section 4.8, we can quickly derive an XYX decomposition 

as well. Going from one coordinate system to another can be done with a unitary 

transformation. In this case, the Hadamard gate allows us to change our frame of 

reference in the following way: 

HZH = X and HYH = −Y, 

HRz(θ)H = Rx(θ) and HRy(θ)H = Ry(−θ). 

If we assign ′ U = −HUH 1 = HUH (the Hadamard gate is its own inverse), we can 

apply the ZYZ decomposition as above on ′ U = iαe Rz(β)Ry(γ)Rz(δ). The computed 

angles will be the XYX decomposition we were looking for. 

′ U = HU H ( ) ( ) ( )
iα = e HRz(β)H HRy(γ)H HRz(δ)H 

iα = e Rx(β)Ry(−γ)Rx(δ). 

PY 
Find the code 
In file src/zy_decomp.py 

def make_u_xy(alpha, beta, gamma, delta): 
return ( 

ops.RotationX(beta) @ ops.RotationY(gamma) @ ops.RotationX(delta) 
) * cmath.exp(1.0j * alpha) 

[...] 
udash = ops.Hadamard() @ umat @ ops.Hadamard() 
alpha, beta, gamma, delta = zy_decompose(udash) 
unew = make_u_xy(alpha, beta, -gamma, delta) 
if not np.allclose(umat, unew, atol=1e-4): 

raise AssertionError('X-Y decomposition failed') 

11 Found in http://quantumcomputing.stackexchange.com/a/16263. 

http://www.github.com/qcc4cp/qcc/blob/main/src/zy_decomp.py
http://www.github.com/qcc4cp/qcc/blob/main/src/zy_decomp.py
http://quantumcomputing.stackexchange.com/a/16263
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Quantum computing is of great interest because of its promise of being able to execute 

certain tasks much faster than is possible with classical computers. We will soon learn 

about the quadratic speed-up of search with Grover’s algorithm and even exponential 

speed-up for integer factorization with Shor’s algorithm. One natural question to ask 

is whether quantum computers are limited to a small set of specific tasks only. 

In this chapter, we demonstrate how any classical digital circuit can be implemented 

with a quantum circuit. This proves that quantum computers are at least as capable 

as classical computers. Then we detail and discuss the seminal quantum supremacy 

experiment, which, for the first time, seemed to demonstrate a true quantum advantage 

for a specific type of algorithm. This result, however, did not come without contro-

versy, so buckle up, this will be interesting. 

5.1 Classical Arithmetic 

Let’s begin by implementing a standard classical logic circuit, the full adder, with 

quantum gates instead of classical gates. The quantum circuit is very basic in that it 

does not utilize any specific features of quantum computing (we detail arithmetic in 

the quantum Fourier domain in Section 11.4). 

A 1-bit full adder block is usually drawn as shown in Figure 5.1. The input bits are 

A and B; their sum comes out as bit Sum. We only have 1 bit to represent the result, so 

if both A and B are 1, their binary sum overflows back to 0, and we set a carry-out bit 

Cout. You can see all bit combinations in Table 5.1. 

Multiple instances of the full adder can be chained together in sequence to facilitate 

the addition of multibit binary numbers. In this scenario, the potential carry-out bit of 

a one full adder is chained to the next full adder as a carry-in bit Cin. 

A 

B 

Cin 

1-Bit Full Adder 

Sum 

Cout 

Figure 5.1 The 1-bit full adder block diagram. 
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Table 5.1. Truth table for the full adder logic circuit. 

A B Cin Cout Sum 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

A 

B 

Cin 

Sum Sum 

Cout Cout 

Figure 5.2 Classical full adder, implemented with quantum gates. All input qubits are in one of 

the basis states |0⟩ or |1⟩. 

Classical circuits use, unsurprisingly, classical gates such as AND, OR, NAND, 

and others. The task at hand is to construct a quantum circuit that produces the same 

truth table as the classical circuit but only uses quantum gates. Classical 0s and 1s are 

represented by the basis states |0⟩ and |1⟩. With some thought (and experimentation), 

we arrive at the circuit in Figure 5.2. Let’s walk through the circuit to convince 

ourselves that it is working properly: 

If A is |1⟩, Sum will toggle to |1⟩ (with the controlled Not from A to Sum). 

• 

• 
If B is |1⟩, Sum will flip to |1⟩ or back to |0⟩ if it was already set to |1⟩. 

• If Cin is |1⟩, Sum will flip again with the controlled Not on the right. 

• Cout will toggle if both A and B are set, or both A and Cin are set, or both B and Cin 

are set. 

• What happens if all A, B, and Cin are set? Sum will start as |0⟩ and go through 

these states: |0⟩ , |1⟩ , |0⟩ , |1⟩. Cout will also start as |1⟩ and go through these 

states: |0⟩ , |1⟩ , |0⟩ , |1⟩. The final results are |1⟩ and |1⟩ for both Sum and Cout, as 

expected. 

The implementation of the circuit is straightforward using controlled and double-

controlled Not gates. Measurements are probabilistic, but in this case, the probability 

of the correct result is 100% in the computational basis. There will only be a single 
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resulting state with nonzero probability. We apply each gate to the state in the order 

shown in Figure 5.2. 

PY 
Find the code 
In file src/arith_classic.py 

def fulladder_matrix(psi: state.State): 
psi = ops.Cnot(0, 3)(psi, 0) 
psi = ops.Cnot(1, 3)(psi, 1) 
psi = ops.ControlledU(0, 1, ops.Cnot(1, 4))(psi, 0) 
psi = ops.ControlledU(0, 2, ops.Cnot(2, 4))(psi, 0) 
psi = ops.ControlledU(1, 2, ops.Cnot(2, 4))(psi, 1) 
psi = ops.Cnot(2, 3)(psi, 2) 
return psi 

Next, we conduct experiments as follows. First, we construct the state from the 

inputs (A,B,Cin) and augment it with two |0⟩ states for the expected outputs sum and 

cout. Then, we apply the circuit we just constructed. We measure the probabilities of 

the outputs being 1, which means we will get a probability of 0 if the state was |0⟩ and 

a probability of 1 if the state was |1⟩: 

def experiment_matrix(a: int, b: int, cin: int, 
expected_sum: int, expected_cout: int): 

psi = state.bitstring(a, b, cin, 0, 0) 
psi = fulladder_matrix(psi) 

bsum, _ = ops.Measure(psi, 3, tostate=1, collapse=False) 
bout, _ = ops.Measure(psi, 4, tostate=1, collapse=False) 
print(f'a: {a} b: {b} cin: {cin} sum: {bsum} cout: {bout}') 
if bsum != expected_sum or bout != expected_cout: 

raise AssertionError('invalid results') 

Lastly, we check the circuit for all inputs and expected results: 

def add_classic(): 
for exp_function in [experiment_matrix]: 

exp_function(0, 0, 0, 0, 0) 
exp_function(0, 1, 0, 1, 0) 
exp_function(1, 0, 0, 1, 0) 
exp_function(1, 1, 0, 0, 1) 
[...] 

def main(argv): 
add_classic() 

>> 
a: 0 b: 0 cin: 0 sum: 0.0 cout: 0.0 
a: 0 b: 1 cin: 0 sum: 1.0 cout: 0.0 
a: 1 b: 0 cin: 0 sum: 1.0 cout: 0.0 
a: 1 b: 1 cin: 0 sum: 0.0 cout: 1.0 
[...] 

http://www.github.com/qcc4cp/qcc/blob/main/src/arith_classic.py
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Other classical circuits can be implemented and combined to build more powerful 

circuits. We show a general construction below, but it is important to note that all 

these circuits point to a general statement about quantum computers: Since classical 

universal logic gates can be implemented on quantum computers, a quantum computer 

is at least as capable as a classical computer. 

However, this does not mean that a quantum computer performs better in the gen-

eral case. The circuit presented in Figure 5.2 may just be a very inefficient way to 

implement a simple 1-bit adder. However, we will soon learn about algorithms that 

perform significantly better on quantum computers than on classical computers by 

some measure of complexity. 

5.2 General Construction of Logic Circuits 

This section briefly discussed how to construct general classical logic circuits with 

quantum gates (Williams, 2011). This method uses only three quantum gates: 

NOT = |a⟩ |a ⊕ 1⟩ 

|a⟩ |a⟩ 

|b⟩ |a ⊕ b⟩ 
CNOT = 

|a⟩ |a⟩ 

|b⟩ |b⟩ 

|c⟩ |(a ∧ b) ⊕ c⟩ 

 Toffoli =

These gates are sufficient to construct quantum analogs to the classical gates AND 

(∧), OR (∨), and, of course, the NOT gate. The AND gate is a Toffoli gate with a |0⟩ 
as its third input: 

|a⟩ |a⟩ 

AND = |b⟩ |b⟩ 

|0⟩ |a ∧ b⟩ 

The OR gate is slightly more involved but still based on a Toffoli gate: 

|a⟩ 

OR = |b⟩ 

|0⟩ 

|a⟩ |a⟩ 

|b⟩ = |b⟩ 

|a ∨ b⟩ |0⟩ 

X X |a⟩ 

|b⟩ 

|a ∨ b⟩X 

X X 

X 
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|x0⟩ 

|x1⟩ 

|x2⟩ 

|0⟩0 |x0 ∧ x1⟩ 

|0⟩1 X |x1 ∨ x2⟩ 

|0⟩2 |(x0 ∧ x1) ∧ (x1 ∨ x2)⟩ 

Figure 5.3 A Boolean formula, expressed with quantum gates. 

We know that with NOT and AND, we can build the classically universal NAND 

gate, which means we can construct the quantum analog of any classical logic circuit 

with quantum gates. 

We might need fan-out to connect single wires to multiple gates for complex logic 

circuits. Therefore, we need a fan-out circuit. Is this possible, or does fan-out violate 

the no-cloning theorem? The answer is no, it does not because, in this scenario, logical 

0 and 1 are strictly represented by qubits in the basis states |0⟩ or |1⟩. For these states, 

cloning and fan-out are possible, as shown in Section 2.12. 

|a⟩ |a⟩ 
Fan-out = 

|0⟩ |a⟩ 

With these elements, and knowing that any Boolean formula can be expressed as 
1 a product of sums we can build any logic circuit with quantum gates. Of course, 

making this construction efficient would require additional techniques, such as ancilla 

management, uncomputation, logic optimizations, and general minimization of gates. 

An example of a quantum circuit for the Boolean formula (x0 ∧ x1) ∧ (x1 ∨ x2) 
is shown in Figure 5.3. The top three qubits are the inputs |xi⟩, and the bottom three 

qubits are ancilla qubits initialized to state |0⟩. In the circuit diagram, we do not show 

the uncomputation following the final gate that would be required to disentangle the 

ancillae from the state. The ability to uncompute ancillae in a large chain of logic 

expressions can reduce the number of required ancillae. In this example, we could 

uncompute |0⟩0 and |0⟩1 and make them available again for future temporary results. 

The term Beyond Classical is now the preferred term over Quantum Advantage, which 

in turn was the preferred term over the unfortunate term Quantum Supremacy. Prof. 

John Preskill originally coined that term to describe a computation that can be run 

1 http://en.wikipedia.org/wiki/Canonical_normal_form 

5.3 The Quantum Supremacy Experiment 

http://en.wikipedia.org/wiki/Canonical_normal_form
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efficiently on a quantum computer but would be intractable to run on a classical 

computer (Preskill, 2012; Harrow and Montanaro, 2017). 

Computational complexity theory is a pillar of computer science. A good introduc-

tion and extensive literature references can be found in Dean (2016). A large set of 

complexity classes exists. The best-known big categories may be the following: 

Class P, the class of decision problems (with a yes or no answer) with problem size ( ) ( ) 
n that run in polynomial time O n x , with x being of complexity O 1 . 

Class NP, which contains decision problems of size n that run in exponential time ( ) 
O x n and can be verified in polynomial time. 

Class NP-complete, which is a somewhat technical construction. It is a class of 

NP problems that other NP-complete problems can be mapped to in polynomial 

time. Finding a single example of this class that falls into P would mean that all 

members of this class are also in P. 

Class NP-hard, the class of problems that are at least as hard as the hardest 

problems in NP. To simplify, this is the class of NP problems that may not be a 

decision problem, such as integer factorization, or for which there is no known 

polynomial-time algorithm for verification, such as the traveling salesperson 

problem (Applegate et al., 2006). 

There are dozens of complexity classes with various properties and inter-

relationships. The famous question of whether P = NP remains one of the great 

challenges in computer science today.2 

Interest in quantum computing arises from the belief that quantum algorithms fall 

into the BQP class, the class of algorithms that can be solved by a quantum Turing 

machine in polynomial time with an error probability of less than 1/3 (which is a 

somewhat arbitrary bound). This group is believed to be more powerful than the BPP 

class, the class of algorithms that can be solved in polynomial time by a probabilistic 

Turing machine with a similar error rate. Put simply, there may be a class of algorithms 

that can run exponentially faster on quantum machines than on classical machines. 

From a complexity-theoretical point of view, since BQP contains BPP, this would 

mean that quantum computers can efficiently simulate classical computers. How-

ever, would we run a word processor or a video game on a quantum computer? 

Theoretically, we could, but today it appears that classical and quantum computing 

complement each other. The term beyond seems to have been well chosen to indicate 

that there is a complexity class for algorithms that run tractably only on quantum 

computers. 

To establish the quantum advantage, we will not take a complexity-theoretic 

approach in this book. Instead, we will try to estimate and validate the results of the 

quantum supremacy paper by Arute et al. (2019) to convince ourselves that quantum 

computers do indeed reach capabilities beyond those of classical machines. 

2 It can be answered jokingly with yes, if N = 1 or P = 0. 
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5.3.1 10,000 Years, 2 Days, or 200 Seconds 

In 2019, Google published a seminal paper claiming to finally have reached a quantum 

advantage on their 53-qubit Sycamore chip (Arute et al., 2019). In their work, the 

researchers used a quantum random algorithm. This type of algorithm assembles a 

small set of gates randomly into a circuit, following only a small set of rules. The 

resulting circuit is a valid circuit and computes something. However, the result itself 

has no specific meaning. The researchers then sampled the result by performing a large 

number of measurements. Since a random circuit introduces random superpositions, it 

will produce probabilistic results. However, if the circuit is measured often enough, the 

results will be correlated and not purely random, proving that an actual computational 

process has occurred. In their paper, the researchers computed and sampled a random 

circuit 1,000,000 times in just 200 seconds, producing a result that would take the 

world’s fastest supercomputer 10,000 years to produce and which can only be obtained 

by classically simulating the random circuit. 

Shortly after that, IBM, a competitor in the field of quantum computing, followed 

up with the estimate that a similar result could be achieved in just a few days, with 

higher accuracy, on a classical supercomputer (Pednault et al., 2019). A few days 

versus 200 seconds is a factor of about 1,000. A few days versus 10,000 years is 

another factor of 1,000. Disagreements of this magnitude are exciting. How is it 

possible that these two great companies disagree to the tune of a combined factor 

of a million? 

5.3.2 Quantum Random Circuit Algorithm 

In order to make performance claims, you first need a proper benchmark. Typical 

benchmark suites are SPEC (www.spec.org) for CPU performance and recent 

MLPerf benchmarks (http://mlcommons.org) for machine learning systems. It 

is also known that as soon as benchmarks are published, large groups embark on 

efforts to optimize and tune their various infrastructures towards the benchmarks. 

When these efforts cross into an area where optimizations only work for specific 

benchmarks, these efforts are called benchmark gaming. 

The challenge in setting benchmarks for quantum computing is, therefore, to build a 

benchmark that is meaningful, general, and yet difficult to game. Google suggested the 

methodology of using quantum random circuits (QRC) and cross-entropy benchmark-

ing (XEB) (Boixo et al., 2018). QRC observes that the measurement probabilities of a 

random circuit follow certain patterns, which would be destroyed if there were errors 

or chaotic randomness in the system. XEB samples the resulting bit strings and uses 

statistical modeling to confirm that the chip performed a non-chaotic computation. The 

math used here is beyond the scope of this text, and we refer to Boixo et al. (2018) for 

further details. 

How do you construct a random circuit? Initially, Google used a set of 2 × 2 opera-

tors and controlled Z gates. The choice of this particular set of gates and connectivity 

restrictions was influenced by the capabilities of the Sycamore chip (Google, 2019). 

http://www.spec.org
http://mlcommons.org
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The problem size with a 53-qubit random circuit is huge. Assuming complex 

numbers of size 23 bytes, a traditional Schrödinger full-state simulation of the random 

circuit would require 256 bytes or 72 PB of storage; twice that for 16-byte complex 

numbers. Assuming that a full-state simulation would not be realistic, the Google 

team used a hybrid simulation technique that combined full-state simulation with a 

simulation technique based on Schrödinger–Feynman path history (Rudiak-Gould, 

2006). This method trades exponential space requirements for exponential runtime. 

The hybrid technique breaks the circuit into two (or more) chunks. It simulates each 

half using the Schrödinger full-state method, and for gates spanning the divided 

hemispheres, it uses path history techniques. The performance overhead of these 

hemisphere-spanning gates is very high, but their numbers are comparatively small. 

Based on benchmarking of the hybrid technique, as well as evaluation of full-state 

simulation on a supercomputer (Häner and Steiger, 2017), it was estimated that a full 

simulation for 53 qubits would take thousands of years, even when run on a million 

server class machines. 

Soon after publication, methods were indeed found to game the benchmark with 

targeted simulation techniques for this specific circuit type, exploiting some unfor-

tunate patterns in how the circuits were constructed. The benchmark needed to be 

refined. Fortunately, relatively simple changes, such as introducing new gate types, 

counter these techniques. Details can be found in Arute et al. (2020). 

There are concerns that this choice of benchmark is a somewhat artificial 

proposition – an algorithm of no practical use for which no other classically equivalent 

algorithm exists other than quantum simulation. To play the devil’s advocate, let us 

take a pendulum with a magnetic weight and have it swing right over an opposite 

magnetic pole. The movement will be highly chaotic. Simulating this behavior 

from some assumed starting conditions can theoretically be done in polynomial 

time, but enormous compute resources are required to model the motion accurately 

over a prolonged period of time. Even then, it is impossible to model all starting 

conditions – the proverbial flap of a butterfly wing on the other side of earth will 

eventually influence the motion. If we ran the simulations n times and sampled the 

final positions, the results would be chaotically random and differ from equivalent 

physical experiments. On the other hand, simply letting the pendulum swing as a 

physical system “performs” (and does not compute) the problem in real-time, using 

practically no computational resources and resulting in an equally chaotic random 

outcome. Have we really proven the pendulum-swing computer advantage? 

This is an intriguing argument but flawed. The pendulum-swing computer is a 

chaotic, physical, analog, and, most importantly, non-repeatable process. The most 

insignificant changes in the initial conditions will lead to different, unpredictable, and 

unrepeatable outcomes. As such, it does not perform a computation (which is why we 

used the term perform above). 

A random quantum circuit, on the other hand, is a computation. A significant 

change in the setup, such as modified sequences of different gates or starting from 

a different initial state, will change the outcome in random ways. However, small 

changes to parameterized gates, different noise levels, or modest exposure to errors 

will not cause the resulting probabilities to change meaningfully; the deviations are 
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bounded. In future machines, quantum error correction will make the results even 

more robust and repeatable. 

The key argument is now the following. A random but non-chaotic calculation was 

computed efficiently on a quantum computer (a million runs in just 200 seconds). 

Computing the same result on a classical machine runs dramatically less efficiently, to 

the tune of thousands of years, thus proving a quantum advantage. 

In all cases, it is just a matter of time until we can run something big and meaningful 

on a quantum computer, perhaps Shor’s algorithm utilizing millions of qubits with 

error correction. In the meantime, let us take a closer look at Google’s quantum circuit 

and estimate how long it would take us to simulate it using our infrastructure. 

5.3.3 Circuit Construction 

There are specific constraints for the gates on the Google chip, as they cannot be 

placed at random. We follow the original construction rules from Boixo et al. (2018). 

The supremacy experiment uses three types of gates, each a rotation by π/2 around 

an axis on a Bloch sphere. Note that the following definitions of the gates are slightly 

different from those we presented earlier: ( ) 
1 1 −i 

X1/2 ≡ Rx(π/2) = √ , 
2 −i 1 ( ) 

1 1 −1 
Y1/2 ≡ Ry(π/2) = √ , 

2 1 1 ( √ ) 
1 1 − i 

W1/2 ≡ Rx+y(π/2) = √ √ . 
2 −i 1 

There is also a list of specific constraints for circuits: 

For each qubit, the very first and last gates must be Hadamard gates. This is 

reflected in a notation for circuit depth as 1-n-1, indicating that n steps, or gate 

levels, must be sandwiched between Hadamard gates. 

• 

(1) (2) (3) (4) 

(5) (6) (7) (8) 

Figure 5.4 Patterns for applying controlled gates on the Sycamore chip. 
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Figure 5.5 A smaller-scale, semi-random supremacy circuit. 

Apply CZ gates in the patterns shown in Figure 5.4, alternating between horizontal 

and vertical layouts. 
• 

• Apply single qubit operators X1/2, /Y1 2, and T (or /W1 2) to qubits that are not 

affected by the CZ gates, using the criteria below. For our simulation 

infrastructure, which does not specialize for specific gates, the choice of gates 

does not matter with respect to computational complexity: They are all 2 × 2 

gates. For more sophisticated methodologies, such as tensor networks, the choice 

of gates can make a difference. 

• If the previous cycle had a CZ gate, apply any of the three single-qubit unitary 

gates. 

• If the previous cycle had a non-diagonal unitary gate, apply the T gate. 

• If the previous cycle had no unitary gate (except Hadamard), apply the T gate. 

• Otherwise, do not apply a gate. 

• Repeat the above steps for a given number of steps (which we call depth in our 

implementation). 

• Measure after the final Hadamard gates. 

This interpretation of the rules produces a circuit similar to the one shown in 

Figure 5.5. Note that there have been refinements since the initial publication; Arute 

et al. (2020) has the details. The main motivation for making changes was to make 

it harder for the new circuits to be simulated by tensor networks, the most efficient 

simulation technique for this type of network (Pan and Zhang, 2021). In our case, we 

are looking for orders of magnitude differences, so we stick to the original definition3 

and apply the corresponding fudge factors in the final estimation. 

3 As we understand it. 
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5.3.4 Estimation 

In the implementation, it does not matter which gates are used specifically; the sim-

ulation time is the same for each gate in our infrastructure. Our estimation should be 

reasonably accurate as long as the gate types and density are roughly aligned with the 

Google circuit. Note that other simulation infrastructures, including Google’s qsimh, 

do apply an additional range of optimizations to improve the simulation performance. 

For example, we can construct a sample circuit with 12 qubits and a depth of 1-10-1 

(a single Hadamard gate at the beginning and end, 10 random steps in the middle) and 

print the circuit. 

PY 
Find the code 
In file src/supremacy.py 

def print_state(states, nbits, depth): 
[...] 
>> 

0 1 2 3 4 5 6 7 8 9 10 11 12 
0: h cz cz u t h 
1: h t cz u t cz cz h 
2: h cz u t cz u t cz h 
3: h t cz u t cz cz cz cz cz u h 
4: h cz cz cz u t cz cz u cz u t h 
5: h t cz u t cz u h 
6: h cz u t cz u t h 
7: h t cz u t cz cz cz cz cz u h 
8: h cz cz cz u t cz cz u cz u t h 
9: h t cz u t cz cz h 
10: h cz u t cz u t cz h 
11: h t cz u cz u h 

The simulation is done with a function that iterates over the depth of the circuit 

and simulates each gate one by one. To estimate the time it would take to execute this 

circuit at 53 qubits, we make more assumptions: 

We assume that the single- and two-qubit gate application times are linear over the 

size of the state vector. 

• 

• 

Performance is strictly memory-bound, which means that providing additional 

compute units or ALUs would not help. The bandwidth with which we can bring 

in data limits performance. 

• For a very large circuit, we know that we would have to distribute the computation 

over multiple machines, but we ignore the communication cost. 

• We assume a number of machines and a number of cores on those machines. A 

relatively small number of cores on a high-core machine can saturate the available 

memory bandwidth, so we take a guess on what the number of reasonably utilized 

cores would be (we assume 255, which is very likely too high and can be 

adjusted). 

http://www.github.com/qcc4cp/qcc/blob/main/src/supremacy.py
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With these assumptions, we will use the metric Time per gate per byte in the state vec-

tor to extrapolate the results. It is remarkably stable across qubits and circuit depths, 

and thus, we estimate the approximate performance of larger circuits by simulating 

and measuring smaller circuits. To estimate how many gates there would be in a larger 

circuit, we calculate a gate density, which is the number of gates in a circuit divided 

by (nbits * depth). We present the key results in code as the following: 

print('\nEstimate simulation time on larger circuit:\n') 
gate_ratio = ngates / nbits / depth 
print('Simulated circuit:') 
print(' Qubits : {:d}'.format(nbits)) 
print(' Circuit Depth : {:d}'.format(depth)) 
print(' Gates : {:.2f}'.format(ngates)) 
print(' State Memory : {:.4f} MB'.format( 

2 ** (nbits-1) * 16 / (1024 ** 2))) 
print('Estimated Circuit Qubits : {}'.format(target_nbits)) 
print('Estimated Circuit Depth : {}'.format(target_depth)) 
print('Estimated State Memory : {:.5f} TB'.format( 

2 ** (target_nbits-1) * 16 / (1024 ** 4))) 
print('Machines used : {}'.format(flags.FLAGS.machines)) 
print('Estimated cores per server: {}'.format(flags.FLAGS.cores)) 
print('Estimated gate density : {:.2f}'.format(gate_ratio)) 

estimated_sim_time_secs = ( 
# time per gate per byte 

(duration / ngates / (2**(nbits-1) * 16)) 
# gates 

* target_nbits 
# gate ratio scaling factor to circuit size 

* gate_density 
# depth 

* target_depth 
# memory 

* 2**(target_nbits-1) * 16 
# number of machines 

/ flags.FLAGS.machines 
# Active core per machine 

/ flags.FLAGS.cores) 
print('Estimated for {} qbits: {:.2f} y or {:.2f} d or ({:.0f} sec)' 

.format(target_nbits, 
estimated_sim_time_secs / 3600 / 24 / 365, 
estimated_sim_time_secs / 3600 / 24, 
estimated_sim_time_secs)) 

For the specific result, we assume that the target circuit has 53 qubits and is run on 

100 machines, each with 255 fully available cores. The number of gates in our simu-

lation seems to roughly align with the number of gates published by Google, though 

not exactly.4 For the example parameters, the estimation results are the following: 

4 There is a bit of ambiguity in the description of the algorithm to construct the circuit. 
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Estimate simulation time for larger circuit: 
Simulated smaller circuit: 

Qubits : 20 
Circuit Depth : 20 
Gates : 320.00 
State Memory : 8.0000 MB 

Estimated Circuit Qubits : 53 
Estimated Circuit Depth : 20 
Estimated State Memory : 65536.00000 TB 
Machines used : 100 
Estimated cores per server: 255 
Estimated gate density : 0.80 
Estimated for 53 qbits: 0.01 y or 4.81 d or (415780 sec) 
Estimated sim for FULL experiment, 53 qbits: 13184.29 years 

With all of our simplifying assumptions, we arrive at a simulation time of 4.81 days for 

a single simulation of the 53-qubit circuit. Of course, these parameters could be made 

more realistic. For example, how would we provision 72 PB of memory on just 100 

machines? Assuming that we can provision 1 TB per server, we would need at least 

72K hosts. At this scale, we cannot ignore communication costs. At the same time, we 

are using our non-optimized infrastructure. You may want to experiment with more 

realistic settings. 

The supremacy experiment performed and sampled this circuit 1,000,000 times 

in about 200 seconds. Given a duration of 4.81 days for a single run, we would 

need about 13,184.3 years to simulate the circuit an equal number of times. For 

comparison, let us look at the massive Summit supercomputer (Oak Ridge National 

Laboratory, 2021). It can theoretically perform up to 1017 single-precision floating-

point operations per second. Calculating 253 equivalents of 2×2 matrix multiplications 

requires 256 floating-point operations. At 100 percent utilization, it would take Summit 

just a few seconds to simulate one of the iterations or perhaps a few months to take all 

of the 1,000,000 samples! 

To store a full state of 53 qubits, we need 72 PB bytes of storage. Summit has 

an estimated 2.5 PB of RAM on all sockets and 250 PB of secondary storage. This 

means we should expect the simulation to encounter high communication overhead 

when moving data from permanent storage to RAM. Much of the permanent storage 

would also have to be reserved for this experiment. The IBM researchers found an 

impressive way to minimize data transfers, a major contribution by Pednault et al. 

(2019). With this technique, a slowdown of about 500× was anticipated, leading to 

the estimate that the full simulation could run in about two days. 

Now let us answer the question that started this section: Where does the discrepancy 

of 10,000 years versus days come from? This is a factor of about 1,000,000, after all. 

The Google Quantum X team based their estimations on a different simulator 

architecture (Markov et al., 2018), assuming that a full-state simulation is not realistic. 

The simulation techniques were benchmarked on a smaller scale. The results of the 

full-state simulation were evaluated on a supercomputer. From these data points, the 
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computational costs were extrapolated to 1,000,000 machines, arriving at an estimate 

of 10,000 years of simulation time for 53 qubits and a circuit depth of 20. 

The IBM researchers, on the other hand, found an elegant way to squeeze the 

problem into one of the biggest supercomputers in the world. The results are only esti-

mated; an experiment was not performed. It is difficult to determine how realistic the 

estimates are in practice because, at petabyte scale, other factors have to be taken into 

account, for example, disk error rates. This also assumes that most of the machine’s 

secondary storage was committed to the experiment. 

Is there a right or wrong? The answer is no because we compare apples to oranges. 

The evaluated simulation techniques are different based on different assumptions of 

what can realistically run on a supercomputer. The supremacy experiment was physi-

cally run, while the Summit paper was only estimated. Even if the physical simulation 

took just a day on Summit, adding a handful of additional qubits will exhaust its 

storage capacity. The simulation technique would have to change and trade storage 

requirements for simulation time, similar to the Schrödinger–Feynman path history 

technique (Rudiak-Gould, 2006). At that point, and only then would we be able to 

make a more fair apples-to-apples comparison. 

It is safe to anticipate that other clever simulation techniques will emerge. However, 

as long as BPP ⊂ BQP is true, it is also safe to assume that additional qubits or 

moderately modified benchmarks will again defeat attempts to simulate these circuits 

classically. 
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In this chapter, we further familiarize ourselves with the basics of gates and states 

and study several entanglement-based algorithms. The calculations are explicit and 

detailed since this is early in the book and we have yet to get used to the code and 

mathematical formalism. We start with the “Hello World” of quantum computing, 

a quantum random number generator. We quickly follow this with three algorithms 

exploiting entanglement: quantum teleportation, superdense coding, and entanglement 

swapping. We conclude with a discussion of the CHSH game, a variant of Bell’s 

inequalities. The CHSH game may be the most complex of the algorithms presented 

in this chapter. It will also lead us to philosophical aspects of quantum mechanics and 

reality itself. 

6.1 Quantum Hello World 

Every programming system introduces itself with the equivalent of a “Hello World” 

program. In quantum computing, this may be a random number generator. We are 

ready to discuss it now using the material presented so far. It is the simplest possible 

quantum circuit that does something meaningful, and it does so with just one qubit 

and one gate: 

|+⟩ |0⟩ or |1⟩ 
|0⟩ H 

The Hadamard gate puts the state in an equal superposition of the basis states |0⟩ and 

|1⟩, namely 

|0⟩ + |1⟩ 
H|0⟩ = √ = |+⟩. 

2 

On measurement,1 the state will collapse to either |0⟩ or |1⟩ with 50% probability 

for each case. You can validate this with these two lines of code to make the state, 

apply the Hadamard gate, and print the probabilities: 

1 In the computational basis. 

H
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psi = ops.Hadamard()(state.zeros(1))
psi.dump()

>>

0.70710678+0.00000000i |0> 50.0%

0.70710678+0.00000000i |1> 50.0%

Since we can construct a random number generator with just a single qubit, which 

we interpret as a classical bit after measurement, bundling multiple qubits in parallel 

or sequence allows the generation of random numbers of any bit width. By random, 

we mean true, intrinsically quantum randomness, not classical pseudo-randomness. 

This circuit can barely be called a circuit, not to mention an algorithm (even though 

we call it that in Section 10.2 on amplitude amplification). It only has one gate, so 

it is the simplest of all possible circuits. Nevertheless, it exploits crucial quantum 

computing properties, namely superposition and probabilistic collapse of the wave 

function on measurement. It is trivial, and it is not. Both at the same time. A true 

quantum circuit. 

138 

6.2 Quantum Teleportation 

Algorithms Exploiting Entanglement 

We now describe the quantum algorithm with one of the most intriguing algorithm 

names of all time – quantum teleportation (Bennett et al., 1993). This algorithm is a 

small example of the fascinating field of quantum information, which includes encryp-

tion and error correction. This type of algorithm exploits entanglement to send a 

quantum state between spatially separate locations without transmitting any physical 

qubits, only information! 

As is typical in quantum computing, the algorithmic story begins with our pro-

tagonists, Alice and Bob, the placeholders for the distinct systems A and B. At the 

beginning of the story, they are together in a lab on Earth and create an entangled pair 

of qubits, the Bell state |Φ+⟩ = β00. Let us mark the first qubit as Alice’s and the

second one as belonging to Bob in obvious notation: ⟩ |0A0B⟩ + |1A1B⟩  = √ .
2 

As we tell the story, we will weave in code snippets to make the mathematical 

concepts concrete and allow experimentation. After creating the state, they each take 

one of the qubits and physically separate them. Alice goes to the Moon, and Bob 

ships off to Mars. We should not worry about how they are getting their supercooled 

quantum qubits across the solar system. No one said that teleportation was easy. In 

code, we start with a call to create the Bell state psi: 

PY 
Find the code 
In file src/teleportation.py 

def main(argv):
# Step 1: Alice and Bob share an entangled pair and separate. 

psi = bell.bell_state(0, 0)

||Φ+
⟩

http://www.github.com/qcc4cp/qcc/blob/main/src/teleportation.py
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|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩ |ψ5⟩ 

|0⟩ 

|0⟩ 

|φ⟩ H 

|ψ⟩ 
H 

Figure 6.1 Quantum teleportation in circuit notation. 

Sitting there on the Moon, Alice happens to be in possession of this other qubit |φ⟩, 
which is in a specific state with probability amplitudes α and β: 

|φ⟩ = α|0⟩ + β|1⟩. 

Alice does not know what the values of α and β are and cannot measure them 

because measuring the qubit would destroy their superposition.2 Alice wants to com-

municate α and β to Bob so that he will be in possession of the state of |φ⟩. On 

measurement, he will obtain a basis state of |φ⟩ with the corresponding probabilities. 

How can Alice “send” or “teleport” the state of |φ⟩ to Bob? She can do this by 

exploiting the entangled qubit she already has from the time before her Moon travel. 

In code, we create the qubit |φ⟩ with defined values for α (0.6) and β to check later 

whether Alice has teleported the state to Bob correctly. The combined state of the new 

qubit |φ⟩ with the qubit |ψ⟩ she brought with her from Earth, the one that is entangled 

with Bob’s qubit, is their tensor product that we store in combo: 

# Step 2: Alice wants to teleport a qubit |phi> to Bob 

# with |phi> = a|0> + b|1>, a^2 + b^2 == 1: 

a = 0.6 
b = math.sqrt(1.0 - a * a) 
phi = state.qubit(a, b) 
print('Quantum Teleportation') 
print(f'Start with EPR Pair a={a:.2f}, b={b:.2f}') 

# Produce combined state 'combo'. 

combo = phi * psi 

The state is now |φ, Φ+⟩. She continues and connects |φ⟩ and |Φ+⟩ with a con-

trolled Not gate, followed by a final Hadamard gate on qubit |φ⟩. This reverse entan-

gler circuitry (see Section 2.11.2), with a first controlled Not gate followed by a 

Hadamard gate, is also called making a Bell measurement since the circuit is the 

adjoint of the circuit used to create Bell states. The whole procedure is shown in 

Figure 6.1 as a circuit. 

2 For this algorithm, it doesn’t matter whether either Alice or Bob knows these parameters. 
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alice = ops.Cnot(0, 1)(combo) 
alice = ops.Hadamard()(alice, idx=0) 

Let’s analyze how the state progresses from left to right and explain the math in 

detail. Starting in the lab, before the first Hadamard gate, the state is just the tensor 

product of the two qubits: 

|ψ0⟩ = |0A⟩ ⊗ |0B⟩ = |0A0B⟩. 

The first Hadamard gate creates a superposition of qubit |0A⟩: 

|0A⟩ + |1A⟩ |ψ1⟩ = √ ⊗ |0
2 

B⟩. 

The controlled Not gate entangles the two qubits and generates a Bell state, as we 

have seen before in Section 2.11.2 on entanglement. Note that up to this point, Bob 

and Alice are still at the same location in the lab on Earth: 

|0A0B⟩ + |1A1B⟩ |ψ2⟩ = Φ+ = √ . 
2 

Alice has now traveled to the Moon, where she has the other qubit |φ⟩. The com-

bined state is the tensor product of her new qubit |φ⟩ with the qubit she brought with 

her from Earth, resulting in state ( ) |0A0B⟩ + |1A1B⟩ |ψ3⟩ = α|0⟩ + β|1⟩ ⊗ √ 
2 ( ) ( ) 

α|0⟩ |0A0B⟩ + |1A1B⟩ + β|1⟩ |0A0B⟩ + |1A1B⟩ 
= √ . 

2 

Now she applies the controlled Not from |φ⟩ to her part of the entangled qubit (now 

the middle qubit 1 in the circuit). The |1⟩ component of |φ⟩ will flip the controlled 

qubit. As a result, qubits |0A⟩ and |1A⟩ flip in the right-hand side of the expression 

|ψ3⟩ to ) 
 

. 

( ) ( 
α|0⟩ |0A0B⟩ + |1A1B⟩ + β|1⟩ |1A0B⟩ + |0A1B⟩|ψ4⟩ = √ 

2 

Finally, we apply the Hadamard gate to |φ⟩, resulting in ( )( ) ( )( ) 
α |0⟩ + |1⟩ |0A0B⟩ + |1A1B⟩ + β |0⟩ − |1⟩ |1A0B⟩ + |0A1B⟩ |ψ5⟩ = . 

2 

We multiply out |ψ5⟩ to get (1 ( ) 
|ψ5⟩ = α |0 0A0B⟩ + |0 1A1B⟩ + |1 0A0B⟩ + |1 1A1B⟩ 

2 ( )) 
+ β |0 1A0B⟩ + |0 0A1B⟩ − |1 1A0B⟩ − |1 0A1B⟩ . 

We are almost there. Notice how all the last qubits in |ψ5⟩ are Bob’s. Alice has the 

first two qubits in her possession. If we regroup the above expression and isolate the 
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first two qubits, we arrive at our target expression. We can omit the subscripts as the 

first two qubits are Alice’s, and the last is Bob’s. 

1 ( ) 
|ψ5⟩ = |00⟩ α|0⟩ + β|1⟩ 

2 ( ) 
+|01⟩ β|0⟩ + α|1⟩ ( ) 
+|10⟩ α|0⟩ − β|1⟩ ( )) 
+|11⟩ −β|0⟩ + α|1⟩ . 

(

Alice can measure her first two qubits while leaving the superposition of Bob’s 

third qubit intact. On her measurement, the state collapses and leaves Bob’s qubit in a 

state with a combination of parameters α and β that depends on Alice’s measurement 

outcome. As the final step, Alice tells Bob about her measurement result over a classic 

communication channel — she may be able to teleport a state, but she will not be able 

to do it faster than the speed of light. If she measured: 

|00⟩ - Bob’s qubit is now in state α|0⟩ + β|1⟩. 
|01⟩ - Bob’s qubit is now in state β|0⟩ + α|1⟩. 
|10⟩ - Bob’s qubit is now in state α|0⟩ − β|1⟩. 
|11⟩ - Bob’s qubit is now in state −β|0⟩ + α|1⟩. 

At this point, Alice has teleported the state |φ⟩ to Bob successfully. For Bob to know 

how to reconstruct the state of |φ⟩ for his qubit, she still had to classically commu-

nicate her measurement results. However, the spooky action at a distance “modified” 

Bob’s entangled qubit on Mars to obtain the probability amplitudes from Alice’s qubit 

|φ⟩, which she created on the Moon. The spooky action is truly spooky. 

The final step, depending on Alice’s classical communication, is to apply gates to 

Bob’s qubit to put it in the desired teleported state of α|0⟩ + β|1⟩: 

If she sends 00, nothing needs to be done. 

• 

• 
If she sends 01, Bob must flip the amplitudes by applying the X gate. 

• If she sends 10, Bob flips the phase by applying the Z gate. 

• Similarly, for 11, Bob applies a Z gate and an X gate. 

After this, Bob’s qubit on Mars will be in the state of Alice’s original qubit |φ⟩ on the 

Moon. Teleportation completed. Minds blown. 

We perform four experiments corresponding to the four possible measurement 

results. For each experiment, we pretend that Alice measured a specific result and 

apply the corresponding decoder gates to Bob’s qubit. Then we measure Bob’s qubit 

and confirm that it matches expectations. 

def alice_measures(alice: state.State, 
expect0: np.complexfloating, expect1: np.complexfloating, 
qubit0: np.complexfloating, qubit1: np.complexfloating): 

_, alice0 = ops.Measure(alice, 0, tostate=qubit0) 
_, alice1 = ops.Measure(alice0, 1, tostate=qubit1) 
if qubit0 == 0 and qubit1 == 0: 
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pass 
if qubit0 == 0 and qubit1 == 1: 

alice1 = ops.PauliX()(alice1, idx=2) 
if qubit0 == 1 and qubit1 == 0: 

alice1 = ops.PauliZ()(alice1, idx=2) 
if qubit0 == 1 and qubit1 == 1: 

alice1 = ops.PauliX()(ops.PauliZ()(alice1, idx=2), idx=2) 

p0, _ = ops.Measure(alice1, 2, tostate=0, collapse=False) 
p1, _ = ops.Measure(alice1, 2, tostate=1, collapse=False) 

# We sqrt() the probability to get the (original) amplitude. 

bob_a = math.sqrt(p0.real) 
bob_b = math.sqrt(p1.real) 
print('Teleported (|{:d}{:d}>) a={:.2f}, b={:.2f}'.format( 

qubit0, qubit1, bob_a, bob_b)) 

if (not math.isclose(expect0, bob_a, abs_tol=1e-6) or 
not math.isclose(expect1, bob_b, abs_tol=1e-6)): 

raise AssertionError('Invalid result.') 

As a final step, we run the four experiments and inspect the output: 

# Alice measures and communicates the result to Bob. 
alice_measures(alice, a, b, 0, 0) 
alice_measures(alice, a, b, 0, 1) 
alice_measures(alice, a, b, 1, 0) 
alice_measures(alice, a, b, 1, 1) 

>> 
Quantum Teleportation 
Start with EPR Pair a=0.60, b=0.80 
Teleported (|00>) a=0.60, b=0.80 
Teleported (|01>) a=0.60, b=0.80 
Teleported (|10>) a=0.60, b=0.80 
Teleported (|11>) a=0.60, b=0.80 

6.3 Superdense Coding 

Superdense coding, yet another algorithm with a super cool name, takes the core 

idea from quantum teleportation and turns it on its head. It uses entanglement to 

communicate classical bits with the help of a smaller number of qubits. This protocol 

was suggested by Charles H. Bennett and Stephen Wiesner in 1970 and was later 

published in Bennett et al. (1992). 

We start with a familiar story. Alice and Bob again share an entangled pair of 

qubits. Alice takes her qubit to the Moon, while Bob takes his qubit to Mars. Sitting 

on the Moon, Alice wants to communicate two classical bits to Bob. Superdense 

coding encodes two classical bits and transmits their values to Bob by physically 
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|0A⟩ H X Z H 

|0B⟩ 

if bit 0 if bit 1 

Figure 6.2 Superdense coding in circuit notation. 

shipping just a single qubit. Again, we don’t care how this is done in the real world 

(nobody said superdense coding was easy). Two qubits are still needed in total, but the 

communication itself is done with just a single qubit. 

There exists no other classical compression scheme that would allow for the com-

pression of two classical bits into one. Of course, here we are dealing with entangled 

qubits, which have two degrees of freedom (two angles define the position on a Bloch 

sphere). The challenge is to exploit this fact to encode information. To understand how 

this works, we begin with an entangled pair of qubits again. 

PY 
Find the code 

. 
In file src/superdense.py 

# Step 1: Alice and Bob share an entangled pair and separate. 

psi = bell.bell_state(0, 0) 

Alice manipulates her qubit on the Moon according to the rules of how to encode 

two classical bits into a single qubit, as shown below. In a twist of events, she will 

classically ship her qubit to Bob’s Mars station. There, Bob will disentangle and mea-

sure. Based on the measurement results, he can derive Alice’s original two classical 

bits. Alice sent just one qubit to allow Bob to restore two classical bits. 

To start the process, Alice manipulates her entangled qubit in the following way. 

She wants to communicate the two classical bits b0 and b1. 

If classical bit b0 is 1, she applies the X gate. 

• 

• 
If classical bit b1 is 1, she applies the Z gate. 

• Of course, if both bits b0 and b1 are 1, she applies both the X and Z gate. 

• And, for completeness, if both bits b0 and b1 are 0, nothing needs to be done. 

The whole procedure is shown in circuit notation in Figure 6.2. In the code, the two 

classical bits encode four possible cases 00, 01, 10, and 11. For experimentation, we 

iterate over these four combinations in main below: 

def alice_manipulates(psi: state.State, 
bit0: int, bit1: int) -> state.State: 

ret = ops.Identity(2)(psi) 
if bit0: 

ret = ops.PauliX()(ret) 

http://www.github.com/qcc4cp/qcc/blob/main/src/superdense.py
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if bit1: 
ret = ops.PauliZ()(ret) 

return ret 

def main(argv): 
for bit0 in range(2): 

for bit1 in range(2): 
psi_alice = alice_manipulates(psi, bit0, bit1) 
bob_measures(psi_alice, bit0, bit1) 

Let’s work through the math. The entangled pair is initially in the Bell state \\ ⟩ |0A0B⟩ + |1A1B⟩ 
Φ+ = √ . 

2 

If the classical bit b0 is 1, Alice applies an X gate to her qubit, which turns the state 

into the different Bell state |Ψ+⟩: 

\\ ⟩ \\0 0 1 0 1 0 
( ((((( 

(X ⊗ I) = 
||( 

0 0 0 1 

1 0 0 0 

||) 
||( 

0 

0 

||) = 
||( 

1 

1 

||) 
1 √ 

1 √ = 
2 2 

0 1 0 0 1 0 

If the classical bit b1 is 1, Alice applies a Z gate, which changes the state and flips the 

first subscript of the Bell state: \\ ⟩ \\ ⟩|0A0B⟩ − |1A1B⟩ 
(Z ⊗ I) Φ+ = √ = Φ− . 

2 

Finally, if both bits b0 and b1 are 1, Alice uses an X gate and a Z gate and changes the 

state to |Ψ−⟩: 

(Z ⊗ I)(X ⊗ I)
||Φ+

⟩
= i(Y ⊗ I)

||Φ+
⟩
=

|0A1B⟩ − |1A0B⟩√
2

=
||Ψ−⟩ .

After receiving Alice’s qubit, Bob applies a reverse entangler circuit between his 

entangled qubit and the qubit he just received, with a controlled Not gate followed 

by the Hadamard gate. This is shown as the final two gates before the measurement 

operator in Figure 6.2. 

Going through the entangler circuit in reverse uncomputes the entanglement and 

changes the state to one of the computational basis states |00⟩,|01⟩,|10⟩, or |11⟩, 
depending on the value of the original classical bits. The probability of each result 

will be 100%. With a measurement, Bob can reliably determine the classical bit values 

Alice wanted to communicate. 

def bob_measures(psi: state.State, expect0: int, expect1: int) -> None: 
psi = ops.Cnot(0, 1)(psi) 
psi = ops.Hadamard()(psi) 

p0, _ = ops.Measure(psi, 0, tostate=expect1) 
p1, _ = ops.Measure(psi, 1, tostate=expect0) 

|| ⟩

|| ⟩ || ⟩

Φ+
⟩ ||Ψ+

⟩
.

||
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q0 : |0⟩ 

q1 : |0⟩ 

q2 : |0⟩ 

q3 : |0⟩ 

Alice 

H H 

H 

Bob 
Entangled in 

a Bell state! 

Figure 6.3 Entanglement teleportation circuit. 

if (not math.isclose(p0, 1.0, abs_tol=1e-6) or 
not math.isclose(p1, 1.0, abs_tol=1e-6)): 

raise AssertionError(f'Invalid Result p0 {p0} p1 {p1}') 
print(f'Expected/matched: {expect0}{expect1}.') 

Based on how Alice manipulated the qubit, we should get the expected results: 

Expected/matched: 00 
Expected/matched: 01 
Expected/matched: 10 
Expected/matched: 11 

6.4 Entanglement Swapping 

Another algorithm of this type, which we only briefly mention here, is entanglement 

swapping, also called entanglement teleportation (Berry and Sanders, 2002). In this 

story, Alice and Bob each have a pair of entangled qubits. Unlike before, each keeps 

their pair of qubits to themselves. This is illustrated in Figure 6.3. Alice has qubits q0 

and q1, Bob has q2 and q3. However, before physically separating, they entangle q0 

with q2 and q1 with q3. Note that at this time, there is no entanglement between Bob’s 

qubits q2 and q3. 

Now Alice performs a Bell measurement on her two qubits. Here is where the 

magic happens: After measurement, Bob’s qubits q2 and q3 will be in an entangled 

Bell state! We simulate this miraculous effect in the open-source repository with just 

a few lines of code similar to these: 
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PY 
Find the code 
In file src/entanglement_swap.py 

def main(argv): 
qc = circuit.qc('Entanglement swap') 
qc.reg(4, 0) 

# Alice has qubits 0, 1, Bob has qubits 2, 3. Entangle 0, 2 and 1, 3: 

qc.h(0) 
qc.cx(0, 2) 
qc.h(1) 
qc.cx(1, 3) 

# Alice performs a Bell measurement between her qubits 0 and 1, 

qc.cx(0, 1) 
qc.h(0) 

# Measure and check results (all combinations of 0 and 1). 

qc.measure_bit(0, 0, collapse=True) 
qc.measure_bit(1, 0, collapse=True) 
[...] 

6.5 The CHSH Game 

The CHSH game, named after its authors (Clauser, Horne, Shimony, Holt, 1969), is 

an implementation of their CHSH equality, a simplified form of the Bell inequalities 

(Bell, 1964). The CHSH game is a powerful demonstration of the use of entanglement 

as a resource to obtain results that go beyond what can be achieved classically. 

In the game, Alice and Bob each receive a random classical bit. Alice receives 

bit x, and Bob receives bit y, as indicated in Figure 6.4. Both x and y are drawn from 

a random distribution. Alice and Bob cannot communicate during the game, but they 

can agree on a strategy before the game starts. Based on the bit values they each 

receive, Alice and Bob will respond with bit values a and b. The goal of the game is 

to produce matching bits a and b, except when both x = y = 1. In this case, a and b 

Alice Bob 

Input x y 

Output a b 

Goal xy = a ⊕ b 

Figure 6.4 The CHSH Game. 

http://www.github.com/qcc4cp/qcc/blob/main/src/entanglement_swap.py
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|1⟩|1⟩ 

|0⟩ x0 

|+⟩ x1|−⟩ |+⟩ x1|−⟩ 
|a1⟩ |b1⟩ 

|a0⟩ y0 

|0⟩ x0 

|b0⟩ y1 

(a) Alice measures in bases {|0⟩ , |1⟩} or 
{|+⟩ , |−⟩}. 

(b) Bob measures in bases {|a0⟩,|a1⟩} or 
{|b0⟩,|b1⟩}, rotated by ±π/8. 

Figure 6.5 Alice and Bob use different bases for measurement. 

must differ. In closed form, the winning condition can be written as xy = a ⊕ b, with 

⊕ being the usual addition modulo 2 (XOR). 

A plausible classical strategy for Alice and Bob is to always respond with a = b = 
0, a strategy with a success probability of 3/4. With some thought, you can convince 

yourself that this is indeed the best possible outcome for the classical case. 

Let us now explore how quantum entanglement can help improve their chances of 

winning. Before the game starts, Alice and Bob create an entangled Bell state |β00⟩ 
and each takes their qubit with them before physically separating: 

|0A0B⟩ + |1A1B⟩ |β00⟩ = |Ψ+⟩ = √ . 
2 

Depending on the classical bits x and y they receive, Alice and Bob will measure 

in specific bases. When Alice receives a classical bit x = 0, she measures in the 

computational basis {|0⟩,|1⟩}. If she gets bit x = 1, she measures in the Hadamard 

basis {|+⟩ , |−⟩}, as shown in Figure 6.5(a). 

If Bob receives his classical bit y = 0, he measures in the basis {|a0⟩,|a1⟩}, which 

is the computational basis rotated by π/8: 

π π |a0⟩ = cos |0⟩ + sin |1⟩, 
8 8 
π π |a1⟩ = − sin |0⟩ + cos |1⟩. 
8 8 

If Bob receives y = 1, he measures in the basis {|b0⟩,|b1⟩}, which is the computa-

tion basis rotated by −π/8, as shown in Figure 6.5(b): 

π π |b0⟩ = cos |0⟩ − sin |1⟩ 
8 8 
π π |b1⟩ = sin |0⟩ + cos |1⟩. 
8 8 

When measuring in these bases, the results for Alice and Bob will be correlated 

because the qubits were entangled. In the four cases of the classical bits x and y, and 

with a little bit of trigonometry, we find: 
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x=0, y=0: The bases |0⟩ and |a0⟩ are separated by an angle of π/8. If Alice measures 

|0⟩, the probability that Bob will measure |a0⟩ is cos2 π/8. 

x=0, y=1: The bases |0⟩ and |b0⟩ are separated by an angle of −π/8. If Alice 

measures |0⟩, the probability that Bob will measure |b1⟩ is also cos2 π/8. 

x=1, y=0: The bases |+⟩ and |a0⟩ are separated by an angle of −π/8. If Alice 

measures |1⟩, the probability that Bob will measure |a0⟩ is cos2 π/8 again. 

x=1, y=1: The bases |+⟩ and |b0⟩ are separated by an angle of 3π/8. If Alice 

measures |1⟩, the probability that Bob will measure |b0⟩ is cos2(3π/8). However, 

in this case, we want the results to be different according to the rules of the game. 

The probability that the results differ is 

1 − cos2(3π/8) = sin2(3π/8) = cos2 π/8. 

In all four cases, entanglement improved the chances of winning to cos2 π/8 ≈ 0.85, 

or 85%. Recall that the best classical strategy had a maximum 75% chance of winning. 

The entanglement led to a better outcome. It can also be shown that rotating the bases 

by π/8 is the optimal choice (Tsirelson, 1980). 

The key argument here is that since the classical bits and, hence, the measurement 

bases are chosen at random, there cannot be any unexplained variables hidden in 

the Bell state to predetermine the measurement result. This seems to confirm that 

quantum physics is non-local, where entangled qubits can affect each other, even when 

separated by vast distances. 

Let us put philosophy aside and try this in code. We simulate a random mea-

surement in function measure and carry out the actual experiment in function 

run_experiment. 

PY 
Find the code 
In file src/chsh.py 

def measure(psi: state.State): 
"""Simulated, probabilistic measurement.""" 

r = random.random() - 0.001 
total = 0 
for i in range(len(psi)): 

total += psi[i] * psi[i].conj() 
if r < total: 

psi = helper.val2bits(i, 2) 
return psi[0], psi[1] 

def run_experiments(experiments: int, alpha: float) -> float: 
wins = 0 
for _ in range(experiments): 

x = random.randint(0, 1) 
y = random.randint(0, 1) 
psi = bell.bell_state(0, 0) 

if x == 0: 
pass 

if x == 1: 
psi = ops.RotationY(2.0 * alpha)(psi, 0) 

http://www.github.com/qcc4cp/qcc/blob/main/src/chsh.py
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if y == 0: 
psi = ops.RotationY(alpha)(psi, 1) 

if y == 1: 
psi = ops.RotationY(-alpha)(psi, 1) 

a, b = measure(psi) 
if x * y == (a + b) % 2: 

wins += 1 
return wins / experiments * 100.0 

With these two functions in place, we can run two types of experiments. First, we 

check the experimental winning percentage, which should be around 86%. Second, we 

iterate over multiple angles and plot horizontal bars scaled to the winning percentages. 

You can see this in the output below. 

def main(argv): 
print('Quantum CHSH evaluation.') 
percent = run_experiments(1000, 2.0 * np.pi / 8) 
print(f'Optimal Angle 2 pi / 8, winning: {percent:.1f}%') 
assert percent > 80.0, 'Incorrect result, should reach above 80%' 

# Run a few incremental experiments. 

steps = 32 
inc_angle = (2.0 * np.pi / 8) / (steps / 2) 
for i in range(0, 66, 2): 

percent = run_experiments(500, inc_angle * i) 
s = '(opt)' if i == 16 else '' 
print( 

f'{i:2d} * Pi/64 ={inc_angle * i:.2f}: winning: {percent:5.2f}%' 
f'{"#" * int(percent/3)}{s}' 

) 
>> 
Quantum CHSH evaluation. 
Optimal Angle 2 pi / 8, winning: 86.2% 
[...] 
10 * Pi/64 = 0.49: winning: 81.80% ########################### 
12 * Pi/64 = 0.59: winning: 85.20% ############################ 
14 * Pi/64 = 0.69: winning: 85.40% ############################ 
16 * Pi/64 = 0.79: winning: 86.40% ############################(opt) 
18 * Pi/64 = 0.88: winning: 83.60% ########################### 
20 * Pi/64 = 0.98: winning: 84.40% ############################ 
[...] 
36 * Pi/64 = 1.77: winning: 33.60% ########### 
38 * Pi/64 = 1.87: winning: 29.40% ######### 
40 * Pi/64 = 1.96: winning: 24.40% ######## 
[...] 
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This chapter discusses a few techniques that allow us to determine how close two 

states are to each other. This is important in various algorithms, as we shall see later. 

Sometimes we use the term overlap to make a statement about how close states are to 

each other, and sometimes we use the term similarity. There are subtle differences 

between the two: 

The overlap between two quantum states |ψ⟩ and |φ⟩ is defined as the absolute 

value of the inner product |⟨ψ|φ⟩|. As we already know, this product is 0 if the 

states are orthogonal and 1 if there is complete overlap. 

•

• 

The similarity between two states is a more general notion than overlap. It can be

expressed in different ways, such as by the trace distance between the density

operators of two states. We can find an example of this in Section 9.4.4.

We will use the terms overlap and similarity interchangeably, but keeping this distinc-

tion in mind is helpful. Also, since we are still early in the book, the math here is still 

very detailed to help us get used to some of the typical algebraic transformations in 

quantum computing. 

7.1 Swap Test 

The quantum swap test measures the similarity between two quantum states without 

directly measuring the two states (Buhrman et al., 2001). Instead, the trick is to intro-

duce an ancilla qubit and a controlled Swap gate and only measure the ancilla. The 

two states were very different if the resulting measurement probability for the basis 

state |0⟩ is close to 0.5. A measurement probability closer to 1.0 means the two states 

were very similar. In the physical world, we must run the experiment multiple times 

to measure the probabilities. Our implementation will only look at the probabilities 

encoded in the state vector. 

The swap test is an example of a quantum algorithm that allows the derivation of 

an indirect measure. It will not tell us what the two states are, which would constitute 

a measurement. It also does not tell us which state has the larger amplitude in a given 

basis. However, it does tell us how similar two unknown states are without measuring 

them. The circuit to measure the proximity of the qubit states |ψ⟩ and |φ⟩ is shown in 

Figure 7.1. 
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|χ |χ |χ |χ 
0⟩ 1⟩ 2⟩ 3⟩ 

|0⟩ H H 

|ψ⟩ 

|φ⟩ 

Figure 7.1 The basic swap test circuit. 

Let us denote the state of the 3-qubit system by |χ⟩ and see how it changes going 

from left to right. At the start of the circuit, the state |χ0⟩ is the tensor product of the 

three qubits: 

|χ0⟩ = |0,ψ,φ⟩. 

The Hadamard gate on qubit 0 superimposes the system to state 

| |1 ( ) 
|χ1⟩ = √ 0,ψ,φ⟩ + 1,ψ,φ⟩ . 

2 | {z } | {z } 
a b 

The controlled Swap gate modifies the second half of this expression due to the 

controlling |1⟩ state of the ancilla qubit. In the part marked b above, |φ⟩ and |ψ⟩ are 

swapped and state |χ2⟩ becomes 

1 ( ) 
|χ2⟩ = √ |0,ψ,φ⟩ + |1,φ,ψ⟩ . 

2 

The second Hadamard gate now superimposes further. The first part of state |χ2⟩ 
turns into 

1 1 ( ) 
√ √ |0,ψ,φ⟩ + |1,ψ,φ⟩ + · · · , 

2 2 

where the Hadamard superposition of the |0⟩ state introduces a plus sign. On the other 

hand, the second term in |χ2⟩ becomes 

1 1 ( ) 
· · · + √ √ |0,φ,ψ⟩ − |1,φ,ψ⟩ , 

2 2 

because the Hadamard superposition of |1⟩ introduces a minus sign. Combined, this 

results in state |χ3⟩ in Figure 7.1: 

1 ( ) 
|χ3⟩ = |0,ψ,φ⟩ + |1,ψ,φ⟩ + |0,φ,ψ⟩ − |1,φ,ψ⟩ . 

2 

We can factor out the first qubit and simplify to 

1 ( ) 1 ( ) 
|χ3⟩ = |0⟩ |ψ,φ⟩ + |φ,ψ⟩ + |1⟩ |ψ,φ⟩ − |φ,ψ⟩ , 

2 | {z } 2 | {z }
χ χ + − 

where we name the terms next to |0⟩ and |1⟩ as χ + and χ−. Now we measure the first 

ancillary qubit. We only consider measurements that result in state |0⟩ for the ancilla 
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and ignore all others. To compute the probability of measuring |0⟩, we usually take the 

probability amplitude and compute the squared norm. However, we don’t have just an 

amplitude; we have the more complex states χ + and χ−. 

To obtain the probabilities for |0⟩ or |1⟩, we first calculate the inner product of |χ3⟩ 
with itself and then analyze the terms. We have 

1 = ⟨χ3|χ3⟩ 
1 ( ) ( ) 

= ⟨0| ⟨χ +| + ⟨1| ⟨χ−| · |0⟩ |χ +⟩ + |1⟩ |χ−⟩ 
4 
1 ( ) 

= ⟨0|0⟩⟨χ +|χ +⟩ + ⟨0|1⟩⟨χ +|χ−⟩ + ⟨1|0⟩⟨χ−|χ +⟩ + ⟨1|1⟩⟨χ−|χ−⟩ . 
4 

The second and third terms are zero as ⟨0|1⟩ = ⟨1|0⟩ = 0. The surviving terms are 

1 ( ) 
1 = ⟨χ3|χ3⟩ = ⟨0|0⟩⟨χ +|χ +⟩ + ⟨1|1⟩⟨χ−|χ−⟩ . 

4 

The first term is the probability that the outcome of the measurement is |0⟩, and 

the second term is the probability of measuring |1⟩. If we substitute that back in the 

expression for |χ +⟩, we get the probability p|0⟩ as 

1 ( )† 1 ( ) 
p|0⟩ = |ψ,φ⟩ + |φ,ψ⟩ |ψ,φ⟩ + |φ,ψ⟩ 

2 2 

1 ( ) 1 ( ) 
= ⟨ψ,φ| + ⟨φ,ψ| |ψ,φ⟩ + |φ,ψ⟩ 

2 2 

1 1 1 1 
= ⟨ψ,φ|ψ,φ⟩ + ⟨ψ,φ|φ,ψ⟩ + ⟨φ,ψ|ψ,φ⟩ + ⟨φ,ψ|φ,ψ⟩ . 

4 | {z } 4 4 4 | {z } 
=1 =1 

The inner product of a normalized state with itself is 1, which means that the first 

and fourth terms each become 1/4, and the expression simplifies to 

1 1 1 
p|0⟩ = + ⟨ψ,φ|φ,ψ⟩ + ⟨φ,ψ|ψ,φ⟩. 

2 4 4 
(7.1)

Now recall how to compute the inner product of two compound tensors from Equa-

tion (1.5) as 

|ψ1⟩ = |φ1⟩ ⊗ |χ1⟩, 
|ψ2⟩ = |φ2⟩ ⊗ |χ2⟩, 

⇒ ⟨ψ1|ψ2⟩ = ⟨φ1|φ2⟩⟨χ1|χ2⟩. 

This means we can rewrite Equation (7.1) (changing the order of the inner products; 

they are just complex numbers) as 

1 1 1 
p|0⟩ = + ⟨ψ,φ|φ,ψ⟩ + ⟨φ,ψ|ψ,φ⟩ 

2 4 4 

1 1 1 
= + ⟨ψ|φ⟩⟨φ|ψ⟩ + ⟨φ|ψ⟩⟨ψ|φ⟩ 

2 4 4 

1 1 1 
= + ⟨ψ|φ⟩⟨φ|ψ⟩ + ⟨ψ|φ⟩⟨φ|ψ⟩ 

2 4 4 
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1 1 
= + ⟨ψ|φ⟩⟨φ|ψ⟩ 

2 2 

1 1 
= + ⟨φ|ψ⟩ ∗ ⟨φ|ψ⟩ 

2 2 

1 1 
= + |⟨ψ|φ⟩|2. 

2 2 
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The scalar product of the two states is the key to measuring similarity. The proba-

bility for basis state |0⟩ will be close to 1/2 if the dot product of |ψ⟩ and |φ⟩ is close 

to 0, which means that these two states were orthogonal and maximally different. The 

probability will be close to 1 if the dot product is close to 1, meaning the states were 

almost identical. 

Find the code 
PY 

In file src/swap_test.py 

In code, this looks quite simple. In each experiment, we construct the circuit shown in 

Figure 7.1: 

def run_experiment(a1: np.complexfloating, a2: np.complexfloating, 
target: float) -> None: 

psi = state.bitstring(0) * state.qubit(a1) * state.qubit(a2) 
psi = ops.Hadamard()(psi, 0) 
psi = ops.ControlledU(0, 1, ops.Swap(1, 2))(psi) 
psi = ops.Hadamard()(psi, 0) 

Then we measure and calculate the probability that the ancilla qubit is in state |0⟩. 
That is all there is to it. The variable p0 will be the probability that qubit 0 will be 

found in the |0⟩ state. What is left to do now is to compare this probability with a 

target and check that the results are valid. We allow for a 5% error margin (0.05). 

p0, _ = ops.Measure(psi, 0) 
if abs(p0 - target) > 0.05: 

raise AssertionError( 
'Probability {:.2f} off more than 5 pct from target {:.2f}' 
.format(p0, target)) 

print('Similarity of a1: {:.2f}, a2: {:.2f} ==> \%: {:.2f}' 

.format(a1, a2, 100.0 * p0)) 

Lastly, we run experiments and verify that the results match our expectations: 

def main(argv): 
print('Swap test. 0.5 means different, 1.0 means similar') 
run_experiment(1.0, 0.0, 0.5) 
run_experiment(0.0, 1.0, 0.5) 
run_experiment(1.0, 1.0, 1.0) 
run_experiment(0.0, 0.0, 1.0) 
run_experiment(0.1, 0.9, 0.65) 

http://www.github.com/qcc4cp/qcc/blob/main/src/swap_test.py
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[...] 
>> 
Swap test to compare state. 0.5 means different, 1.0 means similar 
Similarity of a1: 1.00, a2: 0.00 ==> %: 50.00 
Similarity of a1: 0.00, a2: 1.00 ==> %: 50.00 
Similarity of a1: 1.00, a2: 1.00 ==> %: 100.00 
Similarity of a1: 0.00, a2: 0.00 ==> %: 100.00 
Similarity of a1: 0.10, a2: 0.90 ==> %: 63.71 
[...] 

7.2 Swap Test for Multi-qubit States 

We have learned how to use the swap test to compute the overlap of two single-

qubit states, but how could we make this work for multi-qubit states? The answer 

is surprisingly simple. We just have to compose multiple swap tests, one for each pair 

of qubits, all connected to the same ancillary, as shown in Figure 7.2. 

We show a simple code snippet for two-qubit states. The code constructs two 

random, entangled two-qubit states psi_a and psi_b and makes a final state by 

tensoring them together with an ancillary qubit initialized as |0⟩. This is followed by 

two controlled swap gates, similar to what is shown in Figure 7.2. Finally, we measure 

and ensure correct results: 

PY 
Find the code 
In file src/swap_test.py 

def run_experiment_double(a0: np.complexfloating, 
a1: np.complexfloating, 
b0: np.complexfloating, 
b1: np.complexfloating, 
target: float) -> None: 

psi_a = state.qubit(a0) * state.qubit(a1) 

|0⟩ H H 

|φ⟩ 

|ψ⟩ 

Figure 7.2 The swap tests for two three-qubit states |φ⟩ and |ψ⟩. 

http://www.github.com/qcc4cp/qcc/blob/main/src/swap_test.py
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7.3 Hadamard Test 

psi_a = ops.Cnot(0, 1)(psi_a) 
psi_b = state.qubit(b0) * state.qubit(b1) 
psi_b = ops.Cnot(0, 1)(psi_b) 

psi = state.bitstring(0) * psi_a * psi_b 

psi = ops.Hadamard()(psi, 0) 
psi = ops.ControlledU(0, 1, ops.Swap(1, 3))(psi) 
psi = ops.ControlledU(0, 2, ops.Swap(2, 4))(psi) 
psi = ops.Hadamard()(psi, 0) 

# Measure once. 

p0, _ = ops.Measure(psi, 0) 
if abs(p0 - target) > 0.05: 

raise AssertionError( 
'Probability {:.2f} off more than 5% from target {:.2f}' 

.format(p0, target)) 

To run the experiments, we drive this implementation with a simple loop: 

probs = [0.5, 0.5, 0.5, 0.52, 0.55, 0.59, 0.65, 0.72, 0.80, 0.90] 
for i in range(10): 

run_experiment_double(1.0, 0.0, 0.0 + i * 0.1, 1.0 - i * 0.1, 
probs[i]) 

In Section 7.1, we discussed the swap test to measure the similarity between two 

unknown states |ψ⟩ and |φ⟩ without having to measure the states directly. This section 

presents another test of this nature, the Hadamard Test. 

The swap and Hadamard tests can be visualized using an analogy with real-valued 

vectors. The numbers show differently, but the principle is the same. Think about 

how we compute the inner product of the sum →(→a + b) of two normalized, real-valued 

vectors →a and →b (they have to be normalized, else the math doesn’t work out): 

(7.2) 

For the three extreme cases where →a and →b point in the same direction, are orthogonal, 

or are antiparallel, Equation (7.2) yields: ( ) ( ) 
T→parallel: →a = 

1 
and →b = 

1 
then →a b = 1. 

0 0 
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Operator U 

|0⟩ H 

|0⟩ A B 

( ) 
√1 |0⟩|a⟩ + |1⟩|b⟩ 

2 

1 ( ) 1 ( )T |ψ⟩ = √ |0⟩|a⟩ + |1⟩|b⟩ = √ a0 a1 b0 b1 . 
2 2 

1 ( ) 
|ψ⟩ = √ |0⟩|a⟩ + |1⟩|b⟩ . 

2 
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( ) ( ) 

orthogonal: →a = 
0 

and →b = 
1 

then →a T→b = 0. 
1 0 ( ) ( ) 

anit-parallel: →a = 
−1 

and →b = 
1 

then →a T→b = −1. 
0 0 

Now let us apply this principle to the Hadamard test. Recall how the swap test used 

two quantum registers to hold the states |ψ⟩ and |φ⟩. The Hadamard test is different. 

It uses only one quantum register that holds the superposition of the two states |a⟩ and 

|b⟩ for which we want to determine the overlap. To simplify, let us focus on single-

qubit states. As a precondition, we need to prepare the initial state |ψ⟩ as 

(7.3) 

How can we generate such a state? First, let’s see how the partial expressions look as 

state vectors:    
a0 0( ) ( ) ( ) ( ) 

1 a0 
  0  0  

|0⟩|a⟩ = ⊗ = a1 
and |1⟩|b⟩ = ⊗ 

b0 =     . 0 a1 0 1 b1 b0 

0 b1 

 

As a vector, state |ψ⟩ in Equation (7.3) would be 

We define the operators A and B to produce the states |a⟩ and |b⟩ when applied to 

the state |0⟩. Note how we arrange the matrix elements for A and B to produce the 

desired output vectors: ( ) ( )( ) ( ) 
1 a0 a2 1 a0

A |0⟩ = A = = = |a⟩ ,
0 a1 a3 0 a1 ( ) ( )( ) ( ) 
1 b0 b2 1 b0

B |0⟩ = B = = = |b⟩ . 
0 b1 b3 0 b1 

To construct the circuit, we use the top qubit as an ancilla and an initial Hadamard 

gate to produce an equal superposition of |0⟩ and |1⟩ with which we control the gates 

A and B on the bottom qubit, as shown in the circuit in Figure 7.3. In the literature, the 

two controlled operators A and B are often referred to as a single combined operator U. 

Figure 7.3 The base circuit for the Hadamard similarity test. 
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1 ( ) 1 ( ) 
p|0⟩ = ⟨a| + ⟨b| |a⟩ + |b⟩ 

2 2 

1 ( ) 1 ( ) 
√ H 

2 
|0⟩|a⟩ + |1⟩|b⟩ = √ H|0⟩|a⟩ + H|1⟩|b⟩ 

2 

1 1 ( ) 
= √ √ |0⟩|a⟩ + |1⟩|a⟩ + |0⟩|b⟩ − |1⟩|b⟩ 

2 2 

1 ( ) 1 ( ) 
= |0⟩ |a⟩ + |b⟩ + |1⟩ |a⟩ − |b⟩ . 

2 2 
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PY 
Find the code 
In file src/hadamard_test.py 

Let’s verify this in code! We create random unitary operators A and B and apply 

them to state |0⟩ to extract the relevant state components a0,a1,b0, and b1: 

def make_rand_operator(): 
U = ops.Operator(unitary_group.rvs(2)) 
psi = U(state.bitstring(0)) 
return (U, psi[0], psi[1]) 

def hadamard_test(): 
A, a0, a1 = make_rand_operator() 
B, b0, b1 = make_rand_operator() 

With these parameters, we can construct the state in two different ways. First, we 

compute it explicitly, following Equation (7.3): 

psi = (1 / cmath.sqrt(2) * 
(state.bitstring(0) * state.State([a0, a1]) + 
state.bitstring(1) * state.State([b0, b1]))) 

To compare, we construct the state with a circuit and confirm that the result matches 

the closed form above: 

qc = circuit.qc('Hadamard test - initial state construction.') 
qc.reg(2, 0) 
qc.h(0) 
qc.applyc(A, [0], 1) # Controlled-by-0 

qc.applyc(B, 0, 1) # Controlled-by-1 

# The two states should be identical! 

assert np.allclose(qc.psi, psi), 'Incorrect result' 

Now let’s add another Hadamard gate to the top ancilla qubit, as shown in 

Figure 7.4. This changes the state to 

We calculate the probability p|0⟩ of measuring state |0⟩ in the same way as above 

for the swap test: 

http://www.github.com/qcc4cp/qcc/blob/main/src/hadamard_test.py
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1 ( ) 1 ( ) 
p|0⟩ = ⟨a| + i ⟨b| |a⟩ − i |b⟩ 

2 2 

1 ( ) 1 ( ) 
√ H |0⟩|a⟩ − i|1⟩|b⟩ = √ H|0⟩|a⟩ − Hi|1⟩|b⟩ 

2 2 

1 1 ( ) 
= √ √ |0⟩|a⟩ + |1⟩|a⟩ − i|0⟩|b⟩ + i|1⟩|b⟩ 

2 2 

1 ( ) 1 ( ) 
= |0⟩ |a⟩ − i |b⟩ + |1⟩ |a⟩ + i |b⟩ . 

2 2 

1 ( ) 
|ψ⟩ = √ |0⟩|a⟩ − i|1⟩|b⟩ . 

2 

1 1 ( ) 
p|0⟩ = + Re ⟨a|b⟩ , and also 

2 2( ) 
2p|0⟩ − 1 = Re ⟨a|b⟩ 

1 ( ) 
= ⟨a|a⟩ +⟨a|b⟩ + ⟨b|a⟩ + ⟨b|b⟩ 

4 | {z } | {z } 
=1 =1 

= 
1 ( ) 

2 + ⟨a|b⟩ + ⟨a|b⟩ ∗ . 
4 
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|0⟩ 

|0⟩ 

H H 

A B 

Figure 7.4 The Hadamard similarity test circuit for the real part. 

(7.4)

The two inner products are complex numbers. For a given complex number z, z + 
∗ z = a + ib + a − ib = 2a. We use this in Equation (7.4) and get the probability of 

measuring |0⟩ on the top qubit as 

We can quickly verify this in code as well: 

[...] 
qc.h(0) 
dot = np.dot(np.array([a0, a1]).conj(), np.array([b0, b1])) 
p0 = qc.psi.prob(0, 0) + qc.psi.prob(0, 1) 
if not np.allclose(2 * p0 - 1, dot.real, atol = 1e-6): 

raise AssertionError('Incorrect inner product estimation') 

Can we also obtain an estimate for the imaginary part of the inner product? Yes, we 

can. For this, we start with a slightly modified initial state: 

The construction is similar to the one above, but we have to apply a factor of −i to 

the |1⟩ part of the state by adding an † S gate right after the initial Hadamard gate, as 

shown in Figure 7.5. The final Hadamard gate changes the state to 

The probability p|0⟩ of measuring state |0⟩ for the ancilla is then 

https://doi.org/10.1017/9781009548519.008


1 1  
p|0⟩ = + Im ⟨a|b⟩ , and also 

2 2( ) 
2p|0⟩ − 1 = Im ⟨a|b⟩ . 

1 ( ) 
= ⟨a|a⟩−i⟨a|b⟩ + i⟨b|a⟩ + ⟨b|b⟩ 

4 | {z } | {z } 
=1 =1 

= 
1 ( ) 

2 − i⟨a|b⟩ + i⟨a|b⟩ ∗ . 
4 
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|0⟩ 

|0⟩ 

H S† H 

A B 

Figure 7.5 The Hadamard similarity test circuit for measuring the imaginary part. 

(7.5) 

The inner products are complex numbers. For any complex number z = a + ib, the 
∗ z = a − ib conjugate is and these relations hold: 

−iz = −i(a + ib) = −ia + b, 
∗ iz = i(a − ib) = ia + b, 
∗ ⇒ −iz + iz = −ia + b + ia + b 

= 2b 

= 2 Im(z). 

Substituting this into Equation (7.5), we obtain the final result as ( )

This is also what we use in the code: 

psi = (1 / cmath.sqrt(2) * 
(state.bitstring(0) * state.State([a0, a1]) -
1.0j * state.bitstring(1) * state.State([b0, b1]))) 

qc = circuit.qc('Hadamard test - initial state construction.') 
qc.reg(2, 0) 
qc.h(0) 
qc.sdag(0) # <- this gate is new. 

qc.applyc(A, [0], 1) # Controlled-by-0 

qc.applyc(B, 0, 1) # Controlled-by-1 

# The two states should be identical! 

assert np.allclose(qc.psi, psi), 'Incorrect result' 

# Now let us apply a final Hadamard to ancilla. 

qc.h(0) 

# And compute the dot product and p0. 

dot = np.dot(np.array([a0, a1]).conj(), np.array([b0, b1])) 
p0 = qc.psi.prob(0, 0) + qc.psi.prob(0, 1) 

# Compare and verify results. 
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† † † †⟨0|A B|0⟩ ⟨0|B A|0⟩ = ⟨0|A B|0⟩⟨0|B A|0⟩ 
† = |⟨0|B A|0⟩|2 

† = | ⟨0|B A|0⟩ |2 | {z } |{z} 
=⟨b| =|a⟩ 

= |⟨b|a⟩|2 

= |⟨a|b⟩|2. 
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if not np.allclose(2 * p0 - 1, dot.imag, atol = 1e-6): 
raise AssertionError('Incorrect inner product estimation') 

So far, we have learned about the swap test, which utilized a register for each input 

|a⟩ and |b⟩ combined with an ancilla. We also learned about the Hadamard test, which 

uses an ancilla but only one register, assuming that there are operators A and B to 

construct the states |a⟩ and |b⟩. A third way to calculate the similarity between two 

states is the inversion test, which estimates the scalar product of the states. 

The inversion test takes this one step further. It no longer needs an ancilla, just one 

quantum register, but it needs the ability to construct †B  . We again assume operators 

A and B produce states |a⟩ and |b⟩, with ( ) ( )( ) ( ) 
1 a0 a2 1 a0

A |0⟩ = A = = = |a⟩ ,
0 a1 a3 0 a1 ( ) ( )( ) ( ) 
1 b0 b2 1 b0

B |0⟩ = B = = = |b⟩ ,
0 b1 b3 ‘ 0 b1 

and construct this simple circuit: 

|0⟩ A † B

The expectation value of the projective measurement M = |0⟩⟨0| is given by ( )( )

Note that the norm of the inner product is symmetric.1 In code, we reuse the mech-

anism introduced in Section 7.3 on the Hadamard test to construct random unitaries 

A and B with function make_rand_operator(). The inversion test itself is easy to 

implement: 

def inversion_test(): 
A, a0, a1 = make_rand_operator() 
B, b0, b1 = make_rand_operator() 
Bdag = B.adjoint() 

1 Found in http://quantumcomputing.stackexchange.com/q/26135. 

A B†

http://quantumcomputing.stackexchange.com/q/26135
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# Compute the dot product <a|b>: 

dot = np.dot(np.array([a0, a1]).conj(), np.array([b0, b1])) 

qc = circuit.qc('Hadamard test - initial state construction.') 
qc.reg(1, 0) 
qc.apply1(A, 0) 
qc.apply1(Bdag, 0) 

p0, _ = qc.measure_bit(0, 0) 
assert np.allclose(dot.conj() * dot, p0), 'Error' 

https://doi.org/10.1017/9781009548519.008


8 Black-Box Algorithms 

In this chapter, we discuss several algorithms that fall into the class of the so-called 

oracle algorithms, where a large black-box unitary operator performs a critical task. 

As we discuss the algorithms, it is initially not clear how the oracles are implemented. 

However, what they intend to achieve can be described, and this will be sufficient to 

demonstrate a quantum advantage. 

You get the impression that there is some “trick” to construct the oracle, a magical 

quantum way of doing this, which allows the oracle to answer specific algorithmic 

questions. This can be confusing for novices. We will learn that to construct the oracle, 

we need to consider all possible input states and build the oracle in a way that gives 

the correct answers for all inputs. This means that, in order to construct the oracle, we 

need to know the solution. However, a third party querying the oracle does not. This 

will become clearer in the description of the algorithms in the following sections. 

The oracle can be a circuit or a permutation matrix. What makes the oracle a 

quantum oracle is that we can feed it states in superposition. This leads to quantum 

parallelism, where all the answers are computed in parallel. Unfortunately, the state 

will collapse during measurement, and only one result can be obtained. The challenge 

for quantum algorithms is hence to amplify the probabilities of the states representing 

solutions such that they can be reliably measured.1 

A handful of oracle algorithms exist in the literature. We will visit 2 1 
2 

of them.

Although the Deutsch algorithm (Deutsch, 1985) historically came earlier, the 

Bernstein–Vazirani algorithm (Bernstein, Vazirani, 1997) seems easier to understand. 

We discuss it first. Then we discuss Deutsch’s algorithm and its extension to more 

than two input qubits. We add another 1/2 algorithm by showing how to formulate the 

previously discussed Bernstein–Vazirani algorithm in oracle form using the general 

oracle constructor developed in these chapters. 

These algorithms were the first to demonstrate a quantum advantage. Their query 

complexity2 is lower than that for their equivalent classical algorithms. For example, 

for n bits, a single query is sufficient to find the answer in the Bernstein–Vazirani 

algorithm, whereas n queries are required in the classical case. Let us dive right in! 

1 Drawing an analogy to classical wave interference, you may also see the term quantum interference 

being used. 
2 Query complexity refers to the number of queries needed to solve a computational problem where an 

input or internal state can only be accessed through queries. 

https://doi.org/10.1017/9781009548519.009


|0⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

|1⟩ 

Uf 

|1⟩ 

|0⟩ 

|1⟩ 

|0⟩ 

|1⟩ 

b · s = 1 · 1 ⊕ 0 · 1 ⊕ 1 · 1 ⊕ 0 · 0 ⊕ 0 · 0 

= 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕0| {z } | {z } 
=1 =1 

= 1 ⊕ 1 ⊕ 0 

= 0. 
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8.1 Bernstein–Vazirani Algorithm 

Assume we have an input string b consisting of n bits. Further, assume that there is 

another secret bit string s of the same length with the property that the scalar product 

of the input and output bits modulo 2 equals 1. In other words, if the input bits are bi 

and the secret string has bits si, then this product should hold: 

b · s = b0s0 ⊕ b1s1 ⊕ · · · ⊕ bn−1sn−1 = 1. (8.1) 

The goal is to find the secret string s. For example, assume an input string 

b = [1,1,1,0,0] and an example string s = [1,0,1,0,0]. The result of the product 

would be 

We would have to try n times on a classical computer to find the secret string. Each 

experiment would have an input string of all 0s, except for a single 1. Each iteration 

for which Equation (8.1) holds identifies a single 1-bit in s at position t, one for each 

trial t ∈ [0,n − 1]. For example, with the secret string from above, we would start with 

an input string of b = [1,0,0,0,0]. With this input, Equation (8.1) becomes 

b · s = 1 · 1 ⊕ 0 · 0 ⊕ 1 · 0 ⊕ 0 · 0 ⊕ 0 · 0 

= 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 

= 1, 

as it should, as there was a 1 at the first position in the secret string. 

In the quantum formulation, we will construct a smart circuit and perform a single 

query to an oracle. After running the circuit, the output qubits will be in states |0⟩ and 

|1⟩, corresponding to the bits of the secret string. In the example in Figure 8.1, the 

secret string is 1010. 

Figure 8.1 The oracle Uf for the secret bit string 1010. The bottom qubit is an ancilla, 

initialized to |1⟩. 
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|0⟩ + |1⟩ |0⟩ − |1⟩ 
H|0⟩ = √ = |+⟩ and H|1⟩ = √ = |
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−⟩ . 
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|+⟩ |+⟩ |0⟩ 

|+⟩ |−⟩ |1⟩ 

|−⟩ |−⟩ |1⟩ 

|0⟩ H H 

|0⟩ H H 

|1⟩ H H 

Figure 8.2 A controlled Not gate from a state |+⟩ to a state |−⟩ changes the controller’s state 

to |−⟩. 

To see how this works, we need to understand the mechanics of basis changes. 

Recall how the |0⟩ and |1⟩ states are put in superposition with Hadamard gates: 

As a first step, we create an input state of length n, initialized with all |0⟩, with an 

additional ancilla qubit in state |1⟩. We apply a Hadamard gate to all qubits, resulting 

in an equal superposition of |+⟩ for the |0⟩ input qubits and |−⟩ for the |1⟩ ancilla. 

If we apply a controlled Not from a controlling qubit in the |+⟩ state to a qubit in 

the |−⟩ state, the effect is that the controlling qubit flips into the |−⟩ state! In closed 

form, we can write this as CNOT |+⟩ |−⟩ = |−⟩ |−⟩. This is the crucial trick because 

applying another Hadamard gate to each qubit at the end of the circuit will rotate the 

bases from |+⟩ back to |0⟩ and from |−⟩ back to |1⟩. In other words, qubits that were 

in state |−⟩, which are the qubits corresponding to 1s in the secret string, will now be 

in the resulting state |1⟩. 
We can visualize this effect with the circuit in Figure 8.2. In this figure, we abuse 

the circuit notation a little and mark the states of the individual qubits on the horizontal 

lines. 

Let us write this in code. First, we create the secret string as a tuple of length nbits 

of 0s and 1s: 

PY 
Find the code 
In file src/bernstein.py 

def make_c(nbits: int) -> Tuple[int]: 
constant_c = [0] * nbits 
for idx in range(nbits-1): 

constant_c[idx] = int(np.random.random() < 0.5) 
return tuple(constant_c) 

Next, we construct the oracle, which in this case will be a simple circuit. As 

described in the introduction to this chapter, an important aspect of all oracle 

algorithms is that to construct the oracle, we have to know the solution. However, 

once the oracle is constructed, a third party without knowledge of the solution only 

needs a single query to the quantum oracle to find the solution. 

http://www.github.com/qcc4cp/qcc/blob/main/src/bernstein.py
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|0⟩ H H 

|0⟩ H H 

|0⟩ H H 

|0⟩ H H 

|0⟩ X H H 

Figure 8.3 The circuit for the Bernstein–Vazirani algorithm with secret string 1010. 

This is the difference from classical computing. In classical computing, we would 

also have to know the secret string and encode a function that matches an input against 

this secret string. However, to find the entire secret string (which users of the function 

cannot see), one has to call this function multiple times. The difference lies in the 

query complexity. 

The construction is simple: We apply a controlled Not for each qubit corresponding 

to a 1 in the secret string. For example, for the secret string 1010, we build the 

circuit in Figure 8.3. We construct the corresponding circuit as one big unitary matrix 

operator U. This limits the maximal number of qubits we can still simulate but is 

sufficient to explore the algorithm. 

def make_u(nbits: int, constant_c: Tuple[int]) -> ops.Operator: 
op = ops.Identity(nbits) 
for idx in range(nbits-1): 

if constant_c[idx]: 
op = ops.Identity(idx) * ops.Cnot(idx, nbits-1) @ op 

assert op.is_unitary(), 'Constructed non-unitary operator.' 
return op 

For experimentation, we perform the following steps. First, we create a secret 

string of length nbits-1 and construct the corresponding large unitary with function 

make_u. Then we build a state consisting of nbits-1 states initialized as |0⟩ and 

tensor it with an ancilla qubit initialized as |1⟩. After this, we sandwich the big unitary 

between Hadamard gates and measure and compare the results as a final step: 

def run_experiment(nbits: int) -> None: 
c = make_c(nbits-1) 
u = make_u(nbits, c) 
psi = state.zeros(nbits-1) * state.ones(1) 

psi = ops.Hadamard(nbits)(psi) 
psi = u(psi) 
psi = ops.Hadamard(nbits)(psi) 
check_result(nbits, c, psi) 
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To verify the results, we find all states with probability p > 0.1. There should only 

be a single state with a higher probability, and that state should represent the secret 

string. In the code below, we iterate over all basis states and only print the states with 

high enough probability. 

def check_result(nbits: int, c: Tuple[int], psi: state.State) -> None 
print(f'Expect:', c) 
for bits in helper.bitprod(nbits): 

if psi.prob(*bits) > 0.1: 
print(f'Found : {bits[:-1]}, with prob: {psi.prob(*bits):.1f}') 
assert bits[:-1] == c, 'Invalid result' 

Running this program should produce output like the following, showing the secret 

bit strings and the resulting probabilities (which should be very close to 1): 

Expect: (1, 0, 1, 0, 0) 
Found : (1, 0, 1, 0, 0), with prob: 1.0 

8.2 Deutsch’s Algorithm 

Deutsch’s algorithm is another, somewhat contrived, algorithm with no apparent prac-

tical use (Deutsch, 1985). However, it was one of the first to showcase the potential 

power of quantum computers, and therefore, it is always one of the first algorithms to 

be discussed in textbooks. Never fight the trend; let us discuss it right away. 

8.2.1 Problem: Distinguish Two Types of Functions 

Assume we have a function f that accepts a single bit as input and produces a single 

bit as output, mapping an input of 0 or 1 to an output of 0 or 1: 

f : {0,1} → {0,1}. 

The four possible cases for this function fall into two categories, which we call con-

stant or balanced: 

f (0) = 0, f (1) = 0 ⇒ constant, 

f (0) = 0, f (1) = 1 ⇒ balanced, 

f (0) = 1, f (1) = 0 ⇒ balanced, 

f (0) = 1, f (1) = 1 ⇒ constant. 

This function essentially performs a test for bit parity, which is why it is sometimes 

called a parity detector. Deutsch’s algorithm answers the following question: Given 

one of these four functions f , which type of function is it: balanced or constant? 

https://doi.org/10.1017/9781009548519.009


|0⟩ + |1⟩ |0⟩ − |1⟩ |ψ1⟩ = √ ⊗ √ = |+⟩ ⊗ |−⟩ . 
2 2 

|0⟩ + |1⟩ |0 ⊕ f (x)⟩ − |1 ⊕ f (x)⟩ |ψ2⟩ = √ ⊗ √ . 
2 2 

|0⟩ + |1⟩ |0 ⊕ 0⟩ − |1 ⊕ 0⟩ |ψ2⟩ = √ ⊗ √ 
2 2 

|0⟩ + |1⟩ |0⟩ − |1⟩ 
= √ ⊗ √ = |+⟩ ⊗ |−⟩ . 

2 2 

167 8.2 Deutsch’s Algorithm 

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ 

Input |0⟩ H 

Uf 

H 

Ancilla |0⟩ X H 

x x 

y y ⊕ f (x) 

Figure 8.4 The circuit representation of Deutsch’s algorithm. 

To answer this question with a classical computer, you must evaluate the function 

for all possible inputs. We have to feed both a 0 and a 1 to the function and evaluate 

the results to determine the type of the function. In the quantum model, we assume 

that we have an oracle that, given an input qubit |x⟩ and an ancilla |y⟩, changes the 

state to Equation (8.2) (again, with ⊕ as addition modulo 2). 

|x,y⟩ → |x,y ⊕ f (x)⟩. (8.2) 

The input |x⟩ remains unmodified and |y⟩ is being XOR’ed with f (|x⟩). This is a 

formulation that we will see in other oracle algorithms as well – there is always an 

ancilla |y⟩, and the result of the evaluated function is XOR’ed with that ancilla. Recall 

that quantum operators must be reversible; this is one way to achieve this. 

Assuming that we have an oracle Uf representing and applying the unknown func-

tion f (x), the Deutsch algorithm can be drawn as the circuit shown in Figure 8.4. It is 

a convention to start every circuit with all qubits in state |0⟩. The algorithm requires 

the ancilla qubit to be in state |1⟩, which can be easily achieved by applying an X gate 

to the lower qubit. 

Let us go through the math in detail. Initially, after the X gate on qubit 1, the state is 

|ψ0⟩ = |01⟩. 

After the first Hadamard gates, the state is in superposition: 

We still don’t know how to construct Uf , but we know from Equation (8.2) that 

applying Uf to the second qubit (let’s not be confused by the use of ⊕ and ⊗) yields 

the state 

If f (x) = 0, then |ψ2⟩ = |ψ1⟩: 
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(−1)f (0)|0⟩ + (−1)f (1)|1⟩ |0⟩ − |1⟩ |ψ2⟩ = √ ⊗ √ 
2 2 

(−1)0|0⟩ + (−1)0|1⟩ |0⟩ − |1⟩ 
= √ ⊗ √ 

2 2 

|0⟩ + |1⟩ |0⟩ − |1⟩ 
= √ ⊗ √ . 

2 2 

(−1)f (x)|0⟩ + (−1)f (x)|1⟩ |0⟩ − |1⟩ |ψ2⟩ = √ ⊗ √ . 
2 2 

|0⟩ + |1⟩ |0 ⊕ 1⟩ − |1 ⊕ 1⟩ |ψ2⟩ = √ ⊗ √ 
2 2 

|0⟩ + |1⟩ |1⟩ − |0⟩ 
= √ ⊗ √ = |+⟩ ⊗ − |−⟩ . 

2 2 

� � 
|0⟩ + |1⟩ |0⟩ − |1⟩ |ψ2⟩ = (−1)f (x) √ ⊗ √ .

2 2 

(−1)f (0)|0⟩ + (−1)f (1)|1⟩ |0⟩ − |1⟩ |ψ2⟩ = √ ⊗ √ . 
2 2 

|0⟩ + |1⟩ |0⟩ + |1⟩ 
H|0⟩ = √ and H √ = |0⟩, 

2 2 

|0⟩ − |1⟩ |0⟩ − |1⟩ 
H|1⟩ = √ and H √ = |1⟩. 

2 2 

|0⟩ + |1⟩ |0⟩ − |1⟩ |0⟩ − |1⟩ |ψ3⟩ = H √ ⊗ √ = |0⟩ ⊗ √ . 
2 2 2 

|0⟩ − |1⟩ |ψ3⟩ = −|0⟩ ⊗ √ . 
2 
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But if f (x) = 1, then (note the minus sign at the end) 

We can combine the two results into a single expression: 

 

Now we multiply the constant factor   (−1)f (x) into the first term, with x values of 0 and 

1 corresponding to the basis states |0⟩ and |1⟩: 

We substitute the corresponding value for x as 

(8.3) 

Finally, applying the final Hadamard to the top qubit takes the state from the Hada-

mard basis back to the computational basis. To see how this works, let us quickly 

remind ourselves that the Hadamard operator is its own inverse: 

If we look at Equation (8.3) and take f (0) = f (1) = 0, we get 

Applying the final Hadamard gate to |ψ2⟩ yields the state 

For f (0) = f (1) = 1 we get the same expression, but with a minus sign in front of the 

first qubit: 
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(−1)f (0)|0⟩ + (−1)f (1)|1⟩ |0⟩ − |1⟩|ψ2⟩ = √ ⊗ √ 
2 2 

(−1)0|0⟩ + (−1)1|1⟩ |0⟩ − |1⟩ 
= √ ⊗ √ 

2 2 

|0⟩ − |1⟩ |0⟩ − |1⟩ 
= √ ⊗ √ . 

2 2 

|0⟩ − |1⟩ |0⟩ − |1⟩ |0⟩ − |1⟩ |ψ3⟩ = H √ ⊗ √ = |1⟩ ⊗ √ . 
2 2 2 

|0⟩ − |1⟩ |ψ3⟩ = − |1⟩ ⊗ √ . 
2 
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Back to |ψ2⟩, for a balanced function, f (0) = 0 and f (1) = 1, we get 

 

Applying the final Hadamard gate to |ψ2⟩ now produces the state 

Similarly, for f (0) = 1 and f (1) = 0, we get a similar expression, just with a minus 

sign in front:3 

You can see that for a constant function f , we always have a |0⟩ in the first qubit, 

and in the balanced case, the first qubit will always be in the state |1⟩. This means that 

after a single run of the circuit, we can determine the type of f simply by measuring 

the first qubit (it helps that |0⟩ and |1⟩ are orthogonal). 

The superposition allows the computation of the results for both basis states |0⟩ and 

|1⟩ simultaneously. As mentioned earlier, this is an example of quantum parallelism. 

The XOR’ing to the ancilla qubit allows the math to add up in a smart way such that a 

result can be obtained with high probability. The result does not tell us which specific 

function it is out of the four possible cases, but it does tell us which of the two classes 

it belongs to. In the classical case, two queries are required to determine the type of 

function. Because the algorithm can exploit superposition to compute the results in 

parallel, a single query is sufficient. 

The mere saving of a single query may not look that impressive, but we will soon 

learn about the Deutsch–Jozska algorithm in Section 8.3. This algorithm extends to 

functions of the form f : {0,1}N → {0,1}, with N = 2n for n qubits. Classically, this 

algorithm requires 2n−1 + 1 queries,4 but in the quantum case, still only a single query 

is required. This represents an exponential speed-up. We can see that the algorithm 

has a true query complexity advantage over its classical equivalent. 

8.2.2 Construct Uf 
The math in Section 8.2.1 may seem quite abstract, but things become clear when 

considering how to construct Uf . To reiterate, for a combined state of two qubits, the 

four basis states are ( )T |00⟩ = 1 0 0 0 , 

3 You may want to verify this yourself. 
4 If the results were all the same after checking half of all possible inputs, the next query will reveal 

whether the function was constant or balanced. 
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)

We want to construct an operator that takes any linear combination of these input states 

such that 

|x,y⟩ → |x,y ⊕ f (x)⟩. 

Constant Functions 

The function f only modifies the second qubit as a function of the first. For the case 

where f (0) = f (1) = 0, the truth table is shown in the left half of Table 8.1. The 

columns x and y represent the input qubits. y is the ancilla and always 1, but we still 

need to consider it to build a full permutation matrix. f (x) produces a constant 0 in 

this first case. 

The next column shows the result of XOR’ing the function’s return value with y, 

which is y ⊕ f (x). The last column finally shows the resulting new state, which leaves 

the first qubit (x) unmodified and changes the second qubit (y) to the result of the 

previous XOR. Similarly, for the case f (0) = f (1) = 1, the truth table is in the right-

hand half of Table 8.1. 

We can express these cases with a 4 × 4 permutation matrix, where rows and 

columns are marked with the four basis states. We use the combination of x and y 

as a row index and the new state as column index. A permutation matrix is reversible, 

which is what we need. In the case of f (0) = f (1) = 0, the old and new states are 

identical, and the resulting U0,0 matrix is simply the identity matrix I. The matrix U1,1 

for the case of f (0) = f (1) = 1 is more interesting: 

|00⟩ |01⟩ |10⟩ |11⟩ |00⟩ |01⟩ |10⟩ |11⟩    
|00⟩  

and U1,1 = 

|00⟩ 
|01⟩ 
|10⟩ 

 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 1 0 0 

1 0 0 0 

0 0 0 1 

 

|01⟩ 
U0,0 = . 

|10⟩ 
|11⟩ 0 0 0 1 |11⟩ 0 0 1 0 

Table 8.1. Truth table for constant functions. 

f (0) = 0,f (1) = 0 f (0) = 1,f (1) = 1 

x 

0 

0 

1 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

1 

0 

1 

0, 0 

0, 1 

1, 0 

1, 1 

1 

1 

1 

1 

1 

0 

1 

1 

0, 1 

0, 0 

1, 1 

1, 0 

y f (x) = 0 y ⊕ f (x) new f (x) = 1 y ⊕ f (x) new 
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Table 8.2. Truth table for balanced functions. 

f (0) = 0,f (1) = 1 f (0) = 1,f (1) = 0 

x y f (x) y ⊕ f (x) new f (x) y ⊕ f (x) new 

0 

0 

1 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0 

1 

1 

0 

0, 0 

0, 1 

1, 1 

1, 0 

1 

1 

0 

0 

1 

0 

0 

1 

0, 1 

0, 0 

1, 0 

1, 1 

Balanced Functions 

The construction for the two balanced functions follows the same pattern as above, 

with the truth tables shown in Table 8.2. The table translates to operators U0,1 and U1,0: 

|00⟩ |01⟩ |10⟩ |11⟩ |00⟩ |01⟩ |10⟩ |11⟩    
|00⟩  

and U1,0 = 

|00⟩ 
|01⟩ 
|10⟩ 

 

1 0 0 0 

0 1 0 0 

0 0 0 1 

0 1 0 0 

1 0 0 0 

0 0 1 0 

 

|01⟩ 
U0,1 = . 

|10⟩ 
|11⟩ 0 0 1 0 |11⟩ 0 0 0 1 

8.2.3 General Oracle Operator 

We can see that the operator depends only on the function f . A combination of basis 

states is taken to another combination of basis states through a permutation matrix 

(which has a single 1 per row and column), and the process is solely controlled by the 

function and an XOR operation. So far, we have only considered one input qubit and 

one ancilla qubit, but this can be easily generalized and extended to any number of 

input qubits (as we find below in Section 8.3). Since the oracle can be used for other 

algorithms, we add this constructor function to the list of operator constructors. 

PY 
Find the code 
In file src/lib/ops.py 

def OracleUf(nbits: int, f: Callable[[List[int]], int]): 
dim = 2**nbits 
u = np.zeros(dim**2).reshape(dim, dim) 
for row in range(dim): 

bits = helper.val2bits(row, nbits) 
fx = f(bits[0:-1]) # f(x) without the y. 

xor = bits[-1] ^ fx # xor with ancilla (the last qubit) 

new_bits = bits[0:-1] 
new_bits.append(int(xor)) 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/ops.py
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# Construct new column. 

new_col = helper.bits2val(new_bits) 
u[row][new_col] = 1.0 

op = Operator(u) 
assert op.is_unitary(), 'Constructed non-unitary operator.' 
return op 

8.2.4 Experiments 

For experimentation, we construct the circuit and measure the first qubit. If it collapses 

to |0⟩, f is a constant function according to the above calculations. If it collapses to 

|1⟩, f is a balanced function. 

First, we define a function make_f that returns a function closure object,5 according 

to one of the four possible function flavors. We can call the returned function object as 

f (0) or f (1) where the integer parameter indexes into one of the subarrays in flavors, 

returning a single 0 or 1: 

PY 
Find the code 
In file src/deutsch.py 

def make_f(flavor: int) -> Callable[[int], int]: 
flavors = [[0, 0], [0, 1], [1, 0], [1, 1]] 
def f(bit: int) -> int: 

return flavors[flavor][bit] 
return f 

The full experiment first constructs this function object, followed by the oracle. 

Hadamard gates are applied to each qubit in an initial state |0⟩ ⊗ |1⟩, followed by the 

oracle operator and a final Hadamard gate on the top qubit. 

def run_experiment(flavor: int) -> None: 
f = make_f(flavor) 
u = make_uf(f) 
h = ops.Hadamard() 

psi = h(state.zeros(1)) * h(state.ones(1)) 
psi = u(psi) 
psi = h(psi) 
p0, _ = ops.Measure(psi, 0, tostate=0, collapse=False) 

print(f'f(0) = {f(0)}, f(1) = {f(1)} -> ') 
if math.isclose(p0, 0.0): 

print('balanced') 

5 For readers not familiar with closures, in this context, it means that the returned function object f still 

has access to the local array flavors even though f escapes the scope of the surrounding function 

make_f. 

http://www.github.com/qcc4cp/qcc/blob/main/src/deutsch.py
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assert flavor in [1, 2], 'Invalid result, expected balanced.' 
else: 

print('constant') 
assert flavor in [0, 3], 'Invalid result, expected constant.' 

Finally, we verify that we have the right answers for all four functions. To make this 

more clear, we specify the inputs as binary numbers. The output should look like the 

one printed below. The fact that we did not hit an assert means that the code produces 

a valid result: 

def main(argv): 
run_experiment(0b00) 
run_experiment(0b01) 
run_experiment(0b10) 
run_experiment(0b11) 

>> 
f(0) = 0 f(1) = 0 constant 
f(0) = 0 f(1) = 1 balanced 
f(0) = 1 f(1) = 0 balanced 
f(0) = 1 f(1) = 1 constant 

8.2.5 Bernstein–Vazirani in Oracle Form 

As promised, we present the Bernstein–Vazirani algorithm in oracle form. Much of the 

implementation remains the same, but instead of explicitly constructing a circuit with 

controlled Not gates to represent the secret number, we write an oracle function and 

call the OracleUf constructor from above. This also demonstrates how a multi-qubit 

input can be used to build the oracle. 

First, we construct the function to compute the dot product between the state and 

the secret string: 

def make_oracle_f(c: Tuple[bool]) -> ops.Operator: 
const_c = c 
def f(bit_string: Tuple[int]) -> int: 

val = 0 
for idx in range(len(bit_string)): 

val += const_c[idx] * bit_string[idx] 
return val % 2 

return f 

Then we repeat the original algorithm, but this time using the oracle: 

def run_oracle_experiment(nbits: int) -> None: 
c = make_c(nbits-1) 
f = make_oracle_f(c) 
u = ops.OracleUf(nbits, f) 
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psi = state.zeros(nbits-1) * state.ones(1) 
psi = ops.Hadamard(nbits)(psi) 
psi = u(psi) 
psi = ops.Hadamard(nbits)(psi) 
check_result(nbits, c, psi) 

Lastly, we run the code and check that we implemented all this correctly: 

Expected: (0, 1, 0, 1, 0, 0) 
Found : (0, 1, 0, 1, 0, 0), with prob: 1.0 

The Deutsch–Jozsa algorithm is a generalization of the Deutsch algorithm to multiple 

input qubits (Deutsch and Jozsa, 1992). The function to evaluate is still balanced or 

constant, but over an expanded domain with multiple input bits: 

f : {0,1}n → {0,1}. 

The mathematical treatment of this case parallels the two-qubit Deutsch algorithm. 

The key result is that we measure the state of n qubits. If we find qubits in the state |0⟩ 
only, the function is constant. If we find anything else, the function is balanced. We 

only need a single query in the quantum case, whereas classically, this would again 

require 2n−1 + 1 queries. The circuit, shown in Figure 8.5, looks similar to the two-

qubit case, except that multiple qubits are used for both input and output. The single 

ancilla qubit at the bottom will still be the key to the answer. 

Implementation 

The mathematical derivation of this result is sizable but does not provide much addi-

tional value. Let’s focus on the code, which is quite compact with our Uf operator. 

First, we create the many-qubit function as either a constant function (all 0s or all 

1s with equal probability) or a balanced function (the same number of 0s and 1s, 

randomly distributed over the length of the input bit string). We create an array of 

bits and fill it with 0s and 1s accordingly. Finally, we return a function object that 

H⊗n x x

Uf

H⊗n

X y y ⊕ f (x) 

|0⟩⊗n 

H |0⟩ 

Figure 8.5 The Deutsch–Jozsa algorithm as a circuit diagram. 
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returns one of the values from this prepopulated array, thus representing one of the 

two function types. 

PY 
Find the code 
In file src/deutsch_jozsa.py 

def make_f(dim: int = 1, 
flavor: int = exp_constant) -> Callable[[List[int]], int]: 

power2 = 2**dim 
bits = np.zeros(power2, dtype=np.uint8) 
if flavor == exp_constant: 

bits[:] = int(np.random.random() < 0.5) 
else: 

bits[np.random.choice(power2, size=power2//2, replace=False)] = 1 

def f(bit_string:List[int]) -> int: 
idx = helper.bits2val(bit_string) 
return bits[idx] 

return f 

To carry out an experiment, we construct the circuit shown in Figure 8.5 and mea-

sure. If the measurement finds that only the state |00 . . . 0⟩ has a nonzero probability 

amplitude, then we have a constant function. If we measure anything else, then we 

have a balanced function. 

def run_experiment(nbits: int, flavor: int): 
f = make_f(nbits-1, flavor) 
u = ops.OracleUf(nbits, f) 

psi = (ops.Hadamard(nbits-1)(state.zeros(nbits-1)) * 
ops.Hadamard()(state.ones(1))) 

psi = u(psi) 
psi = (ops.Hadamard(nbits-1) * ops.Identity(1))(psi) 

# Measure all of |0>. If allclose to 1.0, f() is constant. 

for idx in range(nbits - 1): 
p0, _ = ops.Measure(psi, idx, tostate=0, collapse=False) 
if not math.isclose(p0, 1.0, abs_tol=1e-5): 

return exp_balanced 
return exp_constant 

Finally, we run the experiments on numbers of qubits ranging from 2 to 7 to run 

reasonably fast and ensure that the results match the expectations. Note that we still 

generate operators and oracles as full matrices, which limits the number of qubits we 

can handle: 

def main(argv): 
for qubits in range(2, 8): 

result = run_experiment(qubits, exp_constant) 

http://www.github.com/qcc4cp/qcc/blob/main/src/deutsch_jozsa.py
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assert result == exp_constant, f'Want: {exp_constant}' 
result = run_experiment(qubits, exp_balanced) 
assert result == exp_balanced, f'Want: {exp_balanced}' 

>> 
Found: constant (2 qubits) (expected: constant) 
Found: balanced (2 qubits) (expected: balanced) 
Found: constant (3 qubits) (expected: constant) 
Found: balanced (3 qubits) (expected: balanced) 
[...] 
Found: constant (7 qubits) (expected: constant) 
Found: balanced (7 qubits) (expected: balanced) 

Other algorithms of this nature are Simon’s algorithm and Simon’s generalized 

algorithm (Simon, 1994). We will not discuss them here, but implementations can 

be found in the open-source repository in files simon.py and simon_general.py. 

http://www.github.com/qcc4cp/qcc/blob/main/src/simon.py
http://www.github.com/qcc4cp/qcc/blob/main/src/simon_general.py
https://doi.org/10.1017/9781009548519.009


9 State Preparation 

The question of how to encode and store data in a quantum machine is a complex 

one. Algorithms often assume a specific initial state. For example, the optimization 

algorithms that we will discover in Chapter 13, or the quantum machine learning 

algorithms in Chapter 14, may all require a specific initial state for the algorithm 

to work correctly. However, this state may be difficult to prepare. The preparation 

overhead could potentially reduce the quantum advantage of an algorithm, or the 

preparation may require gate types that are not available on a given machine. These 

challenges are collectively referred to as the problem of state preparation, which is 

the topic of this chapter. 

We first describe typical ways to encode data in a quantum state. Then we explore 

a few ways to prepare a quantum state. There are trivial techniques for states that 

are initialized with just the basis states |0⟩ and |1⟩ and slightly more sophisticated 

techniques for arbitrary two- and three-qubit states. To prepare an arbitrary multi-qubit 

state, we implement Möttönen’s algorithm. However, this elegant algorithm requires 

gates that may not be physically available on a given machine. The Solovay–Kitaev 

algorithm addresses this problem. It is a seminal result in quantum computing as it 

shows how to approximate any gate with sequences of tolerable lengths of standard 

universal gate sets. 

These last two algorithms are some of the most advanced algorithms discussed in 

this book. They have the potential to completely frustrate novices and even advanced 

readers.1 Depending on your skill level, you may want to revisit these algorithms at a 

later time. 

9.1 Data Encoding 

This section discusses a few typical ways of representing data in a quantum state. 

We will discuss the trivial but qubit-intensive basis encoding, the potentially more 

complex but qubit-efficient amplitude encoding, and methods that use Hamiltonian 

operators to encode data. 

9.1.1 Basis Encoding 

Integers can be quantum-encoded with a scheme called basis encoding. In this scheme, 

the binary bits of an integer are directly encoded as states |0⟩ or |1⟩, with a binary bit 0 

1 Including this author. 
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mapping to the basis state |0⟩ and a binary bit 1 mapping to the basis state |1⟩. We 

have already seen this in Section 2.4.3, where we also discussed bit ordering. 

Similarly, floating point numbers can be encoded as binary fractions, with qubits 

representing fractional powers of 2. The achievable accuracy depends on the number 

of qubits that represent a value. With n qubits, the precision of the approximation is 

1/2n . For example, if we reserve 5 qubits to represent a binary fraction (1 sign bit, 4 

bits to represent the value), the vector 0.1 −0.7 1.0 can be approximated with a 
)

maximum of 1 /16 = 0.0625error as 

1 1 1 1 
0.082 ≃ |00001⟩ = + 0 + 0 + 0 + 1 = +0.0625 (∆ = 0.0195), 

21 22 23 24 

1 1 1 1 
� �

−0.7 ≃ |11011⟩ = − 1 + 0 + 1 + 1 = −0.6875 (∆ = 0.0125), 
21 22 23 24 

1 1 1 1 
� �

1.0 ≃ |01111⟩ = + 1 + 1 + 1 + 1 = +0.9375 (∆ = 0.0625). 
21 22 23 24 

��

To represent vectors of values, we create a state that concatenates the states using 

basis encoding. In the example, the encoded state would be the concatenation of the 

three 5-qubit basis states: 

|ψ⟩ = |00001 11011 01111⟩ . 

With this type of encoding, the vector does not necessarily need to be normalized. 

The largest fractional value that can be approximated asymptotically is 1.0, which 

means that individual vector elements must be strictly scaled with |xi| < 1.0. 

We will use this type of encoding in many places in this book. The main advantage 

of this scheme is that state preparation is exceedingly trivial (at least in simulation). 

Starting from a state of all |0⟩, one only has to apply an X gate to the qubits that 

have a corresponding 1 bit in the binary representation. The disadvantages are that a 

potentially large number of qubits is required to represent data and that, similarly to 

classical computing, the floating-point values are only approximated. 

9.1.2 Amplitude Encoding 

To represent an arbitrary vector →v in amplitude encoding, we encode the individual 

vector elements →vi as probability amplitudes of basis states. Since the probabilities of 

a state vector must sum up to 1, the vector →v may require normalization. Given that 

state vectors have lengths that are powers of two, →v is also padded to lengths that are 

powers of two. Putting it all together, a vector →v is encoded as a state |ψ⟩ with the 

computational basis vectors |ei⟩ as 
 . . 

vn−1 

v0 

v1→v 
→vnormed → |ψ⟩ = v0 |e0⟩ + v1 |e1⟩ + · · · + vn−1 |en−1⟩ .= = .|→v| 
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( )
As an example, we take the vector 0.1 −0.7 1.0 from above, extend it to four( )
elements, and normalize it to 0.08 −0.57 0.82 0.0 : 

def amplitude_encoding():
psi = state.State([0.1, -0.7, 1.0, 0.0])
psi.normalize()

psi.dump() # only prints non-0 amplitudes. 

>>

|00> (|0>): ampl: +0.08+0.00j prob: 0.01 Phase: 0.0

|01> (|1>): ampl: -0.57+0.00j prob: 0.33 Phase: 180.0
|10> (|2>): ampl: +0.82+0.00j prob: 0.67 Phase: 0.0

The advantage of this encoding is that only a small number of qubits are required to 

encode a vector (only two qubits for this example, compared to 15 for basis encoding). 
2In addition, floating point values are stored with infinite precision in the system. 

However, the main disadvantage is that the physical preparation of the state can be 

very difficult. State preparation is trivial in our code, as we simply assign amplitudes. 

In an actual physical circuit, potentially very complex sequences of gates must be used 

to prepare a state properly. 

For the special case of a state with equal nonzero probabilities for a small 

number of basis states, we discuss an algorithm based on amplitude amplification in 

Section 10.2.1. 

9.1.3 Encoding with Rotations 

To encode a real value |α| ≤ 1.0 with a single qubit, we ignore a potential local phase 

and write the state in the form p
|ψ⟩ = 1 − α2 |0⟩ + α |1⟩ . 

This is valid because adding up the norms of the probability amplitudes sums up to 1.√
1 − α2 
 

Because we compute the square root (and ignore complex values here), α 
must be smaller than 1, which may require normalization of α. From Equation (2.9) 

we know that we can prepare this state with an Ry operator performing a rotation about 

the y-axis:  
 

 

!
cos θ − sin θ

2 2Ry(θ) = . 
sin θ cos θ

2 2 � � θ 
1 cos 

2Ry(θ) |0⟩ = Ry(θ) = 
0 sin θ

2 q
1 − sin2 θ

2= . 
sin θ

2 

2 On a computer, analog values are still discretized using floating-point formats. 

(
( )

( )
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With θ = 2 arcsin(α), we get the result we were looking for as p
Ry(θ) |0⟩ = 1 − α2 |0⟩ + α |1⟩ . 

We can easily verify this in code. For a given Python value alpha, we compute the 

result in two different ways and make sure the results match: 

factor_0 = np.sqrt(1 - 1.0 / (alpha * alpha)) 
factor_1 = 1.0 / alpha 
theta = 2.0 * np.arcsin(1.0 / alpha) 

psi = state.zeros(1) 
psi = ops.RotationY(theta)(psi) 

assert np.isclose(factor_0, psi[0], atol=0.001), 'Incorrect factor 0' 
assert np.isclose(factor_1, psi[1], atol=0.001), 'Incorrect factor 1' 

In the literature, this technique is sometimes called time-evolution encoding, for rea-

sons that will become clear in Section 9.1.4. 

9.1.4 Hamiltonian Encoding 

In Section 2.7.4 we write the Ry operator as  
 − θ

R i Y
y(θ) = e 2 with an exponenti-

ated Pauli Y matrix. We can generalize this to other Hermitian matrices. In quantum 

mechanics, a Hamiltonian Ĥ is an operator that corresponds to the energy of a system. 

It is a Hermitian operator with Ĥ  Ĥ= †. Unitaries and Hamiltonians are connected 

with the time-dependent Schrödinger equation, which states that 

∂ ˆiℏ |Ψ⟩ = H|Ψ⟩ . 
∂t 

It has a solution |Ψ(t)⟩ = U(t) |Ψ(0)⟩, with U(t) being a time-dependent unitary 

operator. The key to an encoding technique is that for a time-dependent Hamiltonian, 

a unitary operator can be defined as 

−itĤ 
U(t) = e , 

with the Hermitian Ĥ and setting ℏ = 1. Let us prove this identity. The proof uses the 

important concept of an operator function, which we will also use later in the book. 

Proof Since U is a normal matrix, the spectral theorem applies (as discussed in 

Section 4.1). We can write U as X
U = λi|xi⟩⟨xi|

i 

, 

where λi are the eigenvalues of U and |xi⟩ its eigenvectors. Since U is unitary with 
† UU = I, it follows that |λi|2 = 1 and hence λ iθi

i = e for some angle θi. Now we can 

define Ĥ as 
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X
Ĥ = θi|xi⟩⟨xi|. 

i 

To apply an operator function f (·) to a normal operator A, we spectrally decompose 

A and apply f (·) to the eigenvalues of A: X
f (A) = f (λi)|xi⟩⟨

i 

xi|. 

With f as the exponential function f (·) = exp(·) and A = iĤ , we find that X X
iĤ iθi |xi⟩⟨xi| = 

i i 

e = e λi|xi⟩⟨xi| = U. 

Pauli matrices can be used to represent Hamiltonians. This is why the rotational 

encoding scheme from Section 9.1.3, which uses the Ry gate, is sometimes called 

time-evolution encoding. 

We will learn more details in Section 11.2.1 on phase estimation and find a concrete 

use case in the important HHL algorithm for matrix inversion in Section 14.3. We will 

encounter a way to construct Hamiltonians inspired by the Ising model of ferromag-

netism in Section 13.3, with use cases in Section 13.4 on the max-cut problem and in 

Section 13.5 on the subset-sum problem. 

9.2 State Preparation for Two- and Three-Qubit States 

State preparation for a single qubit is trivial, at least in code. We have already seen in 

Section 2.3 that any location on the surface of a Bloch sphere can be reached with just 

two rotations, for example, a rotation around the y-axis and another around the z-axis. 

Things get considerably more complicated for states of more than just a single 

qubit. Specialized and optimized preparation mechanisms have been found for two-

and three-qubit circuits. For example, for 2-qubit states, Perdomo (2022) and the 

corresponding video on YouTube (Perdomo, 2 qubits, YT, 2022), discuss the circuit 

shown in Figure 9.1. The same authors also present a circuit for preparing a 3-qubit 

state (Perdomo, 3 qubits, YT, 2022). This work presents improvements over the pre-

vious work by (Znidaric, 2008) and (Acin, 2000). 

For the 2-qubit case, to compute the unitary operators w1, w2, and w3 in Figure 9.1, 

we follow the instructions on YouTube. The code transforms a given general state into 

|0⟩. Hence, to prepare a state, you must reverse the circuit. 

|0⟩ w2 

|0⟩ w1 w2 

Figure 9.1 Compact circuit to prepare a 2-qubit state. 
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PY 
Find the code 
In file src/state_prep.py 

def run_experiment_2qubit() -> None: 
def norm(x): 

return np.linalg.norm(x) 
def u(x, y): 

return (1 / np.sqrt(norm(x)**2 + norm(y)**2) * 
ops.Operator([[x, y], [-np.conj(y), np.conj(x)]])) 

psi = np.random.random([4]) + 1j * np.random.random(4) 
psi = psi / norm(psi) 
print('Random input:', psi, ' -> |0>') 

a1 = np.array([psi[0], psi[1]]) 
a2 = np.array([psi[2], psi[3]]) 
a12 = np.inner(a1.conj(), a2) 
if a12 == 0: 

k = norm(a2) / norm(a1) 
else: 

k = -norm(a2) / norm(a1) * a12 / norm(a12) 

w1 = u(psi[3] - k * psi[1], (psi[2] - k * psi[0]).conj()).transpose() 
psi1 = (ops.Identity() * w1) @ psi 
psi1 = ops.ControlledU(0, 1, ops.PauliZ()) @ psi1 

w2 = u(psi1[1].conj(), psi1[3].conj()) 
psi2 = (w2 * ops.Identity()) @ psi1 

w3 = u(psi2[0].conj(), (-psi2[1]).conj()).transpose() 
psi3 = (ops.Identity() * w3) @ psi2 

assert np.allclose(psi3[0], 1.0, 1e-6), 'Yikes' 

9.3 Möttönen’s Algorithm 

Now that we know how to prepare states with up to three qubits, what should we 

do for larger, general circuits? An elegant algorithm for preparing general states was 

given by Möttönen (2004,1). In this chapter, we review and implement these results. 

For detailed derivations, refer to Möttönen (2004, 2) by the same authors. 

This is one of the most complicated algorithms presented in this book. Novice 

readers may have difficulty with this material. If you are in this group, we recommend 

not reading this section linearly but returning to it later. At the high level, the algorithm 

uses controlled rotations to explicitly “set” the amplitudes for all individual basis 

states. However, since this would require a large number of gates and ancillas, the 

algorithm improves by demonstrating an elegant way to reduce the required number 

for both. Let’s see how this works. 

http://www.github.com/qcc4cp/qcc/blob/main/src/state_prep.py
https://doi.org/10.1017/9781009548519.010


183 9.3 Möttönen’s Algorithm 

. . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

Ra 

= 

. . . 

. . . 

. . . 

. . .α0 α1 α2 α3 α4 α2n−1 

Figure 9.2 The uniformly controlled rotation gate Fk 
m(a,α) with k controlling qubits and 

angles αi. 

Ra 

= 

θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 

Figure 9.3 A recursive implementation of the uniformly controlled rotation gate, shown for 

three controlling qubits (k = 3). 

First, let us introduce the concept of a uniformly controlled rotation Fk 
m (a,α→), which 

has k qubits that control rotations by angles {αi} about the axis a on the target qubit 

m. Figure 9.2 shows the construction, which covers the 2k binary combinations of 

control qubits controlling rotations by angles αi. In circuit diagrams, we indicate these 

controlled gates with black-white shaded dots at the controlling qubits, as seen on the 

left side of the figure. 

This construction can prepare any desired state but requires many gates, espe-

cially with our implementation of multi-controlled gates. However, previous work 

in Möttönen (2004, 2) showed that this gate Fk 
m can be implemented with the 

recursive construction shown in Figure 9.3 (for the example of k = 3). This 

method represents significant savings in the amount of required gates and ancillary 

qubits. The challenge is to derive the angles {θi} from the angles {αi}, which we 

show next. 

The construction is recursive. To add another qubit k, take the construction for k−1 

qubits, add a controlled Not to the new controlling qubit, and repeat the full sequence 

twice. For the case of k = 0, there is no controlled gate, only the rotation gate. We 
3find the control qubit indices recursively in the following elegant way. 

It took me a while to figure this out. The secret to success is to “kill” the last token in the recursive call. 3 
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PY 
Find the code 
In file src/state_prep_mottonen.py 

def compute_ctl(idx: int): 
if idx == 0: 

return [] 
side = compute_ctl(idx - 1)[:-1] 
return side + [idx - 1] + side + [idx - 1] 

The angles θi in Figure 9.3 can be calculated from the angles αi with Equation 

(9.1). To stay close to the reference in Möttönen (2004,1), we use 1-based indexing in 

the mathematical formulation (this is Equation (3) in the reference): 
 = M 


 , with Mij = 2−k(−1)bj−1 ·gi−1 . 

θ1 

. . 

α1 

. . . . 

θ2k α2k 

(9.1) 

Here, bj stands for the binary representation of integer j and gi is the binary 

reflected Gray code4 of integer i. We know how to get to a binary representation of 

an integer. The Gray code uses a combination of XOR and shift operations to ensure 

that subsequent numbers differ only by a single bit in their binary representation. We 

compute the Gray code with a classic routine5 and construct the matrix M as follows: 

def gray_code(i: int) -> int: 
return i ^ (i >> 1) 

def compute_m(k: int): 
n = 2**k 
m = np.zeros([n, n]) 
for i in range(n): 

for j in range(n): 
m[i, j] = (-1) ** bin(j & gray_code(i)).count('1') * 2 ** (-k) 

return m 

With these preliminaries in place, we can now discuss the algorithm for the prepa-

ration of the state. The reference paper takes an arbitrary state and constructs the gate 

sequence required to reduce it to the first computational basis state |e1⟩ = |00 . . . 0⟩. 
To borrow the nomenclature, it assumes a state in the form 

|a⟩ = |a1|e 
Tiω1 iω2 iωN ,|a2|e , . . . ,|aN |e . 
)

(9.2) 

The transformation to |e1⟩ then happens in two steps: 

1. First, a cascade of uniformly controlled z-rotations to equalize the phases ωi make 

the vector real up to a global phase. 

4 See http://en.wikipedia.org/wiki/Gray_code. 
5 “Classic” as in “classic car.” 

(

http://www.github.com/qcc4cp/qcc/blob/main/src/state_prep_mottonen.py
http://en.wikipedia.org/wiki/Gray_code
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R1 
y R1 

z 

. . . . . . . . . . . . . . . . . . 

Rn−2 
y Rn−2 

z 

Rn−1 
y Rn−1 

z 

Rn 
z Rn 

y 

Figure 9.4 Cascades of Ry and Rz rotations to transform an initial state |00 . . . 0⟩ into any 

desired state. 

2. Rotate the resulting real vector to |e1⟩ with a similar cascade of rotations around 

the y-axis. 

However, we want to achieve the opposite. We want to start from a ket |00 . . . 0⟩ and 

transform it into the desired state. Hence, we perform this algorithm in reverse. We 

start with a cascade of Ry rotations, followed by a cascade of Rz rotations, as shown in 

Figure 9.4. 

Mathematically, cascades (using Ry or Rz rotations) can be written as the product 

of cascading gates, where we use the definition of Fk 
m (a,α): 

nY
j−1
( )

F z,αz ⊗ I2n −j.j n−j+1 

j=1 

To implement the cascades, we need to calculate the various angles αi from the 

phase angles ωi in Equation (9.2). These are the phases that we want to eliminate. For 

the Rz rotations, the angles are (following Equation (5) in the reference): 

2k−1X( )
αz = ω(2j−1)2k−1 +l − ω(2j−2)2k−1+l /2k−1 ,j,k 

l=1 

with −j = 1,2, . . . ,2n k and k = 1,2, . . . ,n. 

def compute_alpha_z(omega, k: int, j: int): 
# Since the mathematical notation is 1-based but the 

# Python code is 0-based, we have to add a correction 

# term to the code: j becomes j+1: 

m = 2 ** (k - 1) 
ind1 = [(2 * (j + 1) - 1) * m + l for l in range(m)] 
ind2 = [(2 * (j + 1) - 2) * m + l for l in range(m)] 
diff = (omega[ind1] - omega[ind2]) / m 
return sum(diff) 

https://doi.org/10.1017/9781009548519.010


186 State Preparation 

The expression to calculate the rotation angles around the y-axis is more compli-

cated, with j,k as above (this is Equation (8) in the reference). 

2k−1 2kXX
αy 

j,k = 2 arcsin 


vuut

l=1 

|a(2j−1)2k−1+l|2/ 

vuut |a(j−1)2k +l|2 

 . 

l=1 

As mentioned above, we also have to apply the correction term (j becomes j+1) 

here. The corresponding code is: 

def compute_alpha_y(vec, k: int, j: int): 
m = 2 ** (k - 1) 
enumerator = sum(vec[(2 * (j + 1) - 1) * m + l] ** 2 for l in range(m)) 
m = 2**k 
divisor = sum(vec[j * m + l] ** 2 for l in range(m)) 
if divisor != 0: 

return 2 * np.arcsin(np.sqrt(enumerator / divisor)) 
return 0.0 

With all these building blocks in place, we can now compose the routine to perform 

a uniformly controlled rotation. The procedure is the same for the Ry and Rz rotations, 

which allows us to pass the actual rotation gate as a parameter. The following code 

uses the functions compute_m and compute_ctl that were introduced above: 

def controlled_rotation(qc, alpha_k, control, target, rotgate): 
k = len(control) 
thetas = compute_m(k) @ alpha_k 
ctl = compute_ctl(k) 
for i in range(2**k): 

rotgate(target, thetas[i]) 
if k > 0: 

qc.cx(control[k - 1 - ctl[i]], target) 

Now we can implement the cascades of rotations as shown in Figure 9.3. Note that 

the procedure still leaves a global phase in place. We will have to account for it later 

in our experiments. 

def prepare_state_mottonen(qc, qb, vector, nbits: int = 3): 
"""Construct the Mottonen circuit based on input vector.""" 

# Ry gates for the absolute amplitudes. 

avec = abs(vector) 
for k in range(nbits): 

alpha_k = [compute_alpha_y(avec, nbits - k, j) for j in range(2**k)] 
controlled_rotation(qc, alpha_k, qb[:k], qb[k], qc.ry) 

# Rz gates to normalize up to a global phase. This is only 

# needed for complex values. 

omega = np.angle(vector) 
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if np.allclose(omega, 0.0): 
return 

for k in range(0, nbits): 
alpha_z = [compute_alpha_z(omega, nbits - k, j) for j in range(2**k)] 
controlled_rotation(qc, alpha_z, qb[:k], qb[k], qc.rz) 

It is interesting to inspect the circuit structure for states with one, two, or three 

qubits. For the circuits shown here, all values are taken from random inputs. It is 

safe to ignore the actual values; we only want to show the structure of the generated 

circuits. In the circuit diagrams, the gates Ys and Zs denote the rotations Ry and Rz by s 

in radians. For a single-qubit state, we only need a single Ry and Rz gate: 

Y1.22 Z0.19 

For states with two qubits, the circuit looks like this: 

Y2.30 Z1.29

Y2.18 Y0.64 Z−0.13 Z−0.11

For states of three qubits, the number of gates grows quite considerably. They 

may be too small to decipher here, but you should be able to recognize the recursive 

structure: 

Y1.66 Z0.40

Y1.54 Y0.27 Z0.16 Z0.19

Y1.39 Y−0.81 Y−0.02 Y0.22 Z0.15 Z−0.22 Z−0.43 Z0.19

To convince ourselves that the whole procedure is correct, we run a set of experi-

ments. For each experiment, we consider an arbitrary state vector, apply the algorithm, 

account for a possible global phase, and check for correctness. We then run this 

procedure on circuits ranging from a single qubit to up to 10 qubits. 

def run_experiment(nbits: int = 3): 
"""Prepare a random state with nbits qubits.""" 

vector = np.random.random([2**nbits]) + 
np.random.random([2**nbits]) * 1j 

vector = vector / np.linalg.norm(vector) 
print(f' Qubits: {nbits:2d}, vector: {vector[:6]}...') 

qc = circuit.qc() 
qb = qc.reg(nbits) 
prepare_state_mottonen(qc, qb, vector, nbits) 
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# For complex numbers, this algorithm introduces a global phase 

# which we can account for (and ignore) here: 

phase = vector[0] / qc.psi[0] 
if not np.allclose(vector, qc.psi * phase, atol=1e-5): 

raise AssertionError('Invalid State initialization.') 

def main(argv): 
print("State Preparation with Moettoenen's Algorithm...") 
for nbits in range(1, 11): 

run_experiment(nbits) 

9.4 Solovay–Kitaev Theorem and Algorithm 

State preparation may require flexible quantum gates, such as specific rotation gates, 

which may not exist on physical hardware. A given architecture may implement only 

a smaller universal set of gates, such as the set of Hadamard and T gates. We know 
6that we can synthesize any gate from this universal set of gates. However, we do 

not want to destroy any quantum advantage. For example, if a quantum algorithm(√
O N 

 ) ( )
has a theoretical complexity of but requires O N2 gates for its physical 

implementation, the advantage would be nullified. 

The Solovay–Kitaev (SK) theorem and corresponding algorithm (Kitaev et al., 

2002) are important results in quantum computing, as they address this problem. 

The theorem shows that not only can any unitary gate be approximated from a finite 

universal set of gates, but it can also be approximated quickly. A version of the theorem 

that seems appropriate in our context is the following (even though it uses terminology 

that we have not explained yet, such as SU(2) or ⟨G⟩). 

T H E O R E M : (Solovay–Kitaev theorem) Let G be a finite set of elements in SU(2) 
containing its own inverses, such that ⟨G⟩ is dense in SU(2). Let ε > 0 be given. Then 

there is a constant c such that for any U in SU(2) there is a sequence S of gates of( )
length O logc(1/ε) such that ||S − U|| < ε. 

In English, this theorem states that for a given unitary gate U, a finite sequence 

of universal gates will approximate U up to any precision ε. The important part: 

The complexity scales only polylogarithmically, as a power of log(1/ε). This algo-

rithm is seminal and supremely elegant. Since its development in 1995, there have 

been many improvements and also variations (Kliuchnikov et al., 2015; Ross and 

Selinger, 2016, 2021). 

We will study it following the pedagogical review from Dawson and Nielsen (2006) 

as a guide. We start with a few important concepts and functions. Then, we outline the 

high-level structure of the algorithm before diving deeper into the complex parts and 

implementation. We will omit a small number of mathematical derivations that go well 

beyond the scope of this book.7 

6 Otherwise, the set would not be called universal. 
7 And the comfort level of this author. 
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9.4.1 Universal Gates 

In quantum computing, unlike classical computing, there is no single universal gate 

from which all other gates can be derived. Only sets of gates have this property. For 

single qubits, one of such sets consists of the Hadamard gate H and the T gate. Any 

point on a Bloch sphere can be reached by a sequence of only these two gates. We 

prove this by showing that the SK algorithm, based on (minor adjustments of) just 

these two gates, can approximate any 2 × 2 unitary matrix up to arbitrary precision 

(hence the term dense in the theorem above). 

9.4.2 SU(2) 

One of the requirements of the SK algorithm is that the universal gates involved 

are part of the SU(2) group, which is the group of all 2 × 2 unitary matrices with 

determinant 1. The determinants of the Hadamard and T gates are not equal to 1 (you 

may want to convince yourself of this). Since their determinants are not 0, we can 

divide by the determinant and apply this simple transformation to make the gates 

become members of SU(2): r
1′ U = U. 

det U 

′ T Using this simple adjustment, we compute the set of universal gates ′ H and with 

this routine: 

PY 
Find the code 
In file src/solovay_kitaev.py 

def to_su2(U): 
return np.sqrt(1 / np.linalg.det(U)) * U 

We will not go deeper into SU(2) and the related mathematics. For our purposes, 

we should think of SU(2) in terms of rotations. For a given rotation V , the inverse 

rotation is †V  , with   †VV = I. For two rotations U and V , the inverse of UV is † †V U  , 

with   † †UVV U = I. However, similar to how two perpendicular sides on a Rubik’s cube 

rotate against each other, if we change the order of rotations, then † † UVU V = I̸ . The 

rotations do not commute; their order matters. This also means that the two rotations 

can gradually move a state about the Bloch sphere, which is exactly what the SK 

algorithm does. 

9.4.3 Bloch Sphere Angle and Axis 

Any 2 × 2 unitary matrix represents a quantum gate that can move a state about the 

Bloch sphere. It rotates a state by an angle θ around an axis →n in a three-dimensional 

coordinate system. To calculate this angle and axis, let us think of the gate U as being 

of the form 

http://www.github.com/qcc4cp/qcc/blob/main/src/solovay_kitaev.py
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� �
a b 

U = . 
c d 

(9.3) 

We can also write the operator in the following way, where ̂n refers to 3-dimensional 

orthogonal axes and →σ refers to the Pauli matrices, using the Taylor expansion from 

Equation (2.7): 

iθn̂ 1 →σ U = e 2 = I cos (θ/2) + in̂ · →σ sin (θ/2) . 

We already know that any unitary matrix can be constructed from a linear combina-

tion of Pauli matrices. Applying the Pauli matrices one by one compounds to a single 

rotation about an axis ̂n by an angle θ. Elements on a rotation axis remain unmoved by 

the rotation. With this insight, we can compute the angle and axis using the following 

derivations. 

  
  

  

1iθn̂· →σ iθ/2n̂·→σ 
2U = e = e 

= I cos (θ/2) + n̂ · i→σ sin (θ/2) 

= I cos (θ/2) + n1iσ1 sin (θ/2) + n2iσ2 sin (θ/2) + n3iσ3 sin (θ/2) 

cos (θ/2) 0 0 n1i sin (θ/2) 
= + 

0 cos (θ/2) n1i sin (θ/2) 0 

0 n2 sin (θ/2) n3i sin (θ/2) 0 
+ + 

−n2 sin (θ/2) 0 0 −n3i sin (θ/2) 

cos (θ/2) + n3i sin (θ/2) n2 sin (θ/2) + n1i sin (θ/2) a b 
= = . 

−n2 sin (θ/2) + n1i sin (θ/2) cos (θ/2) − n3i sin (θ/2) c d 

We compute the relevant parameters with these algebraic transformations: 

a + d 
θ = 2 arccos , 

2 

b + c 
n1 = , 

2i sin (θ/2) 

b − c 
n2 = , 

2 sin (θ/2) 

a − d 
n3 = , 

2i sin (θ/2) 

and directly translate them into this code: 

def u_to_bloch(U): 
angle = np.real(np.arccos((U[0, 0] + U[1, 1])/2)) 
sin = np.sin(angle) 
if sin < 1e-10: 

axis = [0, 0, 1] 
else: 

nx = (U[0, 1] + U[1, 0]) / (2j * sin) 
ny = (U[0, 1] - U[1, 0]) / (2 * sin) 
nz = (U[0, 0] - U[1, 1]) / (2j * sin) 

( ) ( )
( ) ( )

( ) ( )
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axis = [nx, ny, nz] 
return axis, 2 * angle 

9.4.4 Similarity Metrics 

The trace distance8 tells us how similar two states are. Typically, this concept is 

applied for states expressed as density matrices, but we may as well adopt it here 

to measure the similarity between operators. For two density operators ρ and σ, the 

trace distance is defined as q
1 

T(ρ,σ) = tr (ρ − σ)†(ρ − σ) . 
2 

� �
In code, we use this definition and pass two parameters U and V to the routine 

trace_dist. Notice that we do not use np.sqrt, which computes the root of indi-

vidual elements of the matrix, not the root of the matrix. Instead, we must use the 

slower but correct scipy.linalg.sqrtm: 

def trace_dist(U, V): 
return np.real(0.5 * 

np.trace(sp.linalg.sqrtm((U - V).adjoint() @ (U - V)))) 

9.4.5 Pre-computing Gates 

The SK algorithm is recursive. At the innermost step, it maps a given unitary operator 

U against a library of precomputed gate sequences, selecting the gate closest to U, as 

measured by the trace distance. 

To precompute gate sequences, we provide a trivial implementation that is slow 

but has the advantage of being easy to understand. There are only two base gates ′ H 
′T  and , as shown in Section 9.4.2, which we hold in the simple two-element Python 

list basegates. We generate all strings of bits up to a certain length, such as 0 and 

1 for length 1, the bit strings 00, 01, 10, 11, for length 2, and so on. We initialize a 

temporary gate as the identity gate I and iterate through the bits of each bit string, 
′ T ,multiplying the temporary gate by one of the two basis gates   ′H or  depending on 

whether a bit in the bit string was set to 0 or 1 respectively. The function then returns 

the list of all precomputed gates. 

def create_unitaries(basegates, limit): 
gate_list = [] 
for width in range(limit): # length of bit string 

for bits in helper.bitprod(width): 
U = ops.Identity() 
for bit in bits: 

8 See also http://en.wikipedia.org/wiki/Trace_distance. 

http://en.wikipedia.org/wiki/Trace_distance
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Figure 9.5 Distribution of 256 generated gate sequences applied to state |0⟩. The trivial method 

used to generate these gates leads to many duplicates. 

U = U @ basegates[bit] 
gate_list.append(U) 

return gate_list 

To find the closest gate to a given gate U, we iterate over the list, compute the trace 

distance of each gate in the list to U, and return the gate with the minimum distance. 

There are ways to significantly accelerate this search, for example, with KD-trees 

(Wikipedia, 2021a). 

def find_closest_u(gate_list, u): 
min_dist, min_u = 1e6, ops.Identity() 
for gate in gate_list: 

tr_dist = trace_dist(gate, u) 
if tr_dist < min_dist: 

min_dist, min_u = tr_dist, gate 
return min_u 

Note that our method of generating gate sequences results in duplicate gates. For 

example, when plotting the effects of the generated gates on state |0⟩ in Figure 9.5, we 

see that the resulting distinct states are quite sparse on the Bloch sphere. Of course, 

this is easy to optimize. 

9.4.6 Algorithm 

Now we are ready to discuss the algorithm, which we write in code and explain line 

by line. The inputs are the unitary operator U, which we seek to approximate, the list 

of precomputed gates, and the recursion depth n. 

def sk_algo(U, gates, n): 
if n == 0: 

return find_closest_u(gates, U) 
else: 
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c0(58) 
x 

y 

z 

ψ 

Figure 9.6 A random gate U moves state |0⟩ to state |ψ⟩ (light gray dot). The closest 

precomputed gate (gate 58) is on the x-axis (dark gray dot). 

U_next = sk_algo(U, gates, n-1) 
V, W = gc_decomp(U @ U_next.adjoint()) 
V_next = sk_algo(V, gates, n-1) 
W_next = sk_algo(W, gates, n-1) 
return (V_next @ W_next @ V_next.adjoint() @ W_next.adjoint() @ 

U_next) 

The recursion counts down from an initial value of n and stops when it reaches 

the termination case with n==0. At this point, the algorithm looks for the closest 

precomputed gate. If we specify a maximum recursion depth of 0, this gate will be 

the result, as shown in Figure 9.6. 

if n == 0: 
return find_closest_u(gates, U) 

Starting with this basic approximation, the following steps further improve the 

approximation by applying sequences of other inaccurate gates. The first recursive 

step tries to find an approximation U_next of U as Un−1. For example, if n==1, the 

recursion with n-1 reaches the termination clause and returns the closest precomputed 

gate as U_next. 

U_next = sk_algo(U, gates, n-1) 

Assume that Un−1 is an approximation of U with error |U − Un−1| = εn−1. 

We define  †∆ = UUn−1 (note the dagger) and try to find an approximation of ∆ 
†

UU n−1 with error εn < εn−1. Then we concatenate the sequence with the previous 

approximation Un−1 to get an approximation Un with error |U − Un| ≤ εn. 

To approximate ∆, we decompose it as a group commutator, defined as ∆ = 
† † VWV W for some unitary gates V,W. There are an infinite number of such decompo-

sitions. In the following, we apply an accuracy criterion to get a balanced group com-

mutator. The underlying mathematics motivating this decomposition is beyond the 

https://doi.org/10.1017/9781009548519.010


194 State Preparation 

c0(58) 
x 

y 

z 

ψ 

v 

wv ′ (25) 

w ′ (2) 

r1 

Figure 9.7 The decomposed gates V and W (black dots) and their closest precomputed gates ′ v 

(gate 25) and ′ w  (gate 2) as white dots. 

scope of this book. We refer to Dawson and Nielsen (2006) and Kitaev et al. (2002) for 

more details. Here, we accept the result and show how to implement gc_decomp(), 

which we call in the algorithm to get the operators V and W: 

V, W = gc_decomp(U @ U_next.adjoint()) 

The next recursive steps are to calculate improved approximations for V and W 

using the same algorithm. Once we have those, the algorithm returns a new and 

improved approximation: 

Un = ∆Un−1 

= UUn 

†
−1Un−1 

† † = Vn−1Wn−1V W Un−1. n−1 n−1 

V_next = sk_algo(V, gates, n-1) 
W_next = sk_algo(W, gates, n-1) 
return (V_next @ W_next @ V_next.adjoint() @ W_next.adjoint() @ 

U_next) 

For our example, we visualize the gates V and W and their closest precomputed 

gates in Figure 9.7. The dot marked r1 is the approximated gate (when applied to |0⟩) 
after one level of recursion. 

9.4.7 Balanced Group Commutator 

Now let us explore the definition of the balanced group commutator in more detail. 

For a unitary operator U, an infinite number of group commutator decompositions 

exists. We are looking for one for which   † †VWV W = U, but for which the distance 

between the identity I and both V and W is less than a specific error bound. The idea 

is to continuously reduce the error in subsequent recursions. We apply more and more 

https://doi.org/10.1017/9781009548519.010


195 9.4 Solovay–Kitaev Theorem and Algorithm 

inaccurate gates to increase the accuracy of the final gate, which is quite miraculous. 

Mathematically, the propagation of the error goes beyond the scope of this book. We 

focus mainly on the implementation. 

For our balanced group commutator, we consider V as a rotation by angle φ about 

the x-axis of a Bloch sphere and W as a similar rotation about the y-axis. The group 

commutator † †VWV W  is a rotation about the Bloch sphere around the axis n̂ by an 

angle θ, satisfying Equation (9.4). This equation admittedly seems to come out of 

the blue, but in the following paragraphs, we will derive this equation and then solve 

for φ: q
sin (θ/2) = 2 sin2 (φ/2) 1 − sin4 (φ/2). (9.4) 

Both V and W were defined as rotations about the x-axis and y-axis: 

V = Rx(φ), 
†V = Rx(φ)

† = Rx(−φ), 
† †U = VWV W = Rx(φ)Ry(φ)Rx(−φ)Ry(−φ). 

From Equation (2.8) we know we can write rotations as 

Rx(φ) = cos (φ/2) I + i sin (φ/2) X, 

Ry(φ) = cos (φ/2) I + i sin (φ/2) Y . 

We can multiply out U and again think of the resulting matrix as being in the form 

of Equation (9.3) with a, b, c, and d as stand-ins for the four matrix elements. We ( )
evaluate the diagonal elements as above with cos θ/2 = (a + d)/2 and arrive at: 

cos (θ/2) = cos 4 (φ/2) + 2 cos 2 (φ/2) sin2 (φ/2) − sin4 (φ/2) . 

We factor out cos2 (φ/2) + sin2 (φ/2): 

cos (θ/2) = cos 4 (φ/2) + 2 cos 2 (φ/2) sin2 (φ/2) − sin4 (φ/2) ( )2 
= cos 2 (φ/2) + sin2 (φ/2) − 2 sin4 (φ/2) 

= 1 − 2 sin4 (φ/2) . 

Using the Pythagorean theorem, we get the form we are looking for: 

sin2 (θ/2) = 1 − cos 2 (θ/2) ( )2 
= 1 − 1 − 2 sin4 (φ/2) 

= 4 sin4 (φ/2) − 4 sin8 (φ/2)( )
= 4 sin4 (φ/2) 1 − sin4 (φ/2) , q

⇒ sin (θ/2) = 2 sin2 (φ/2) 1 − sin4 (φ/2). 

Now we solve for φ. From what we have done so far, we know how to compute θ 
for an operator. We eliminate the square root in Equation (9.4) by squaring the whole 
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equation. For ease of notation, we substitute x for the left side as � �2 � q �2
sin (θ/2) 

x = = sin2 (φ/2) 1 − sin4 (φ/2)
2 ( )

= sin4 (φ/2) 1 − sin4 (φ/2) 

= sin4 (φ/2) − sin8 (φ/2) , 

⇒ 0 = sin4 (φ/2) − sin8 (φ/2) − x 

= sin8 (φ/2) − sin4 (φ/2) + x. 

This is a quadratic equation that we can solve: 

y 2 − y + x = 0, 
√ 

1 ± 1 − 4x ⇒ sin4 (φ/2) = y = , 
2 q√ 

sin (φ/2) = y, � �
1/4⇒ φ = 2 arcsin y . (9.5) 

Expand y (and remember that cos2(φ) + sin2(φ) = 1): 

√ 
1 ± 1 − 4x 

y = 
2 q

1 ± 1 − 4 sin2 (θ/2) /4 
= 

2 

1 ± cos (θ/2) 
= . 

2 

Substituting this into Equation (9.5) leads to the final result for φ. We ignore the + 
9 case from the quadratic equation, as the goal was to arrive at Equation (9.4): � �1/4 

1 − cos (θ/2)
φ = 2 arcsin . 

2 

Let us write this in code. First, we define the function gc_decomp, adding a helper 

function to diagonalize a unitary matrix. We compute θ and φ as described above: 

def gc_decomp(U): 

def diagonalize(U): 
_, V = np.linalg.eig(U) 
return ops.Operator(V) 

axis, theta = u_to_bloch(U) 
phi = 2.0 * np.arcsin(np.sqrt( 

np.sqrt((0.5 - 0.5 * np.cos(theta) / 2)))) 

9 We recommend that rigor-sensitive readers please hold their noses here. 
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After that, we compute the rotation angle and axis on the Bloch sphere as shown 

above and construct the rotation operators V and W: 

V = ops.RotationX(phi) 
if axis[2] > 0: 

W = ops.RotationY(2 * np.pi - phi) 
else: 

W = ops.RotationY(phi) 

Construction continues as follows. We calculated that U is a rotation by angle θ 
about some axis n̂. We defined V and W as rotations by an angle φ around a different 

compound axis p̂. We align the axis p̂ to axis n̂ with the similarity transformation 
†U = S( †VWV W ) †S  for some unitary matrix S, which we compute in the code below 

as a change of basis matrix. We define   V̂ = †SVS and †Ŵ = SWS  and obtain 

V̂Ŵ ˆ† ˆ †U = V W . 

In code, this may be a bit easier to read: 

VWVdWd = diagonalize(V @ W @ V.adjoint() @ W.adjoint()) 
S = diagonalize(U) @ VWVdWd.adjoint() 

V_hat = S @ V @ S.adjoint() 
W_hat = S @ W @ S.adjoint() 
return V_hat, W_hat 

In Figure 9.8, we show how the approximation improves in our example as we 

increase the recursion depth. Interestingly, the results at recursion levels 1 and 2 are 

almost identical, but the accuracy improves further at deeper levels of recursion. 

9.4.8 Evaluation 

For a brief evaluation, we define key parameters and run a few experiments. The 

number of experiments is given by num_experiments. The variable depth is the 

x 

y 

z 

ψ 

r1,2 r3 

r4 r5 

Figure 9.8 Increasing the depth of recursion (rx) quickly leads to better accuracy. 
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maximum length of the bit strings we use to precompute gates. For a depth value x, 

2x − 1 gates are precomputed. The variable recursion is the depth of recursion of 

the SK algorithm. It is instructive to experiment with these values and explore the 

accuracy and performance you can achieve: 

def main(argv): 
num_experiments = 10 
depth = 8 
recursion = 4 
print('SK algorithm - depth: {}, recursion: {}, experiments: {}'. 

format(depth, recursion, num_experiments)) 

Next, we compute the SU(2) base gates from the Hadamard and T gates and gen-

erate the list of precomputed gates: 

base = [to_su2(ops.Hadamard()), to_su2(ops.Tgate())] 
basegates = create_unitaries(base, depth) 
sum_dist = 0.0 

Finally, we run the experiments. In each experiment, we create a unitary gate 

U from a randomly chosen combination of rotations. We apply the algorithm and 

compute distance metrics for the results. We also compare the impact of the original 

and approximate unitary gates on a state |0⟩ and show how much the results differ, 

measured in percent. This can give an intuitive measure of the remaining approxima-

tion errors. 

for i in range(num_experiments): 
U = (ops.RotationX(2.0 * np.pi * random.random()) @ 

ops.RotationY(2.0 * np.pi * random.random()) @ 
ops.RotationZ(2.0 * np.pi * random.random())) 

U_approx = sk_algo(U, basegates, recursion) 
dist = trace_dist(U, U_approx) 
sum_dist += dist 

phi1 = U(state.zero) 
phi2 = U_approx(state.zero) 
print('[{:2d}]: Trace Dist: {:.4f} State: {:6.4f}%'. 

format(i, dist, 
100.0 * (1.0 - np.abs(np.dot(phi1, phi2.conj()))))) 

print('Gates: {}, Mean Trace Dist:: {:.4f}'. 
format(len(basegates), sum_dist / num_experiments)) 

This should result in output as shown below. With just 255 precomputed gates 

(including duplicates) and a recursion depth of 4, the approximation error consistently 

falls below 1%. 
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SK algorithm, depth: 8, recursion: 4, experiments: 10 
[ 0]: Trace Dist: 0.0063 State: 0.0048% 
[ 1]: Trace Dist: 0.0834 State: 0.3510% 
[ 2]: Trace Dist: 0.0550 State: 0.1557% 
[...] 
[ 8]: Trace Dist: 0.1114 State: 0.6242% 
[ 9]: Trace Dist: 0.1149 State: 0.6631% 
Gates: 255, Mean Trace Dist:: 0.0698 
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10 Algorithms Using Amplitude
Amplification

In this chapter, we explore algorithms associated with quantum amplitude amplifica-

tion. We introduce Grover’s algorithm, a fundamental technique that enables searching (√ ) 
over N elements in a domain with complexity of only O N . In the following 

algorithms, we represent the domain by the N = 2n computational basis states of 

n qubits and consider one or more of these as special elements, or “solutions,” repre-

senting the elements we were searching for. Grover’s algorithm operates on states in 

equal superposition. Its extension to unequal superposition is covered in the section 

on quantum amplitude amplification. Quantum counting determines the total number 

of solutions in states in equal superposition, whereas quantum amplitude estimation 

extends this to states in unequal superposition. 

After covering the necessary preliminaries, we explore how these methods apply to 

algorithms such as graph coloring and Boolean satisfiability. The final three techniques 

presented here, namely quantum mean finding, quantum median finding, and quantum 

minimum finding, are frequently referenced but may rely on assumptions that may not 

be physically realizable. We have much ground to cover! 

10.1 Grover’s Algorithm

Grover’s algorithm is one of the fundamental algorithms of quantum computing 

(Grover, 1996). It allows searching for a special element in a domain of N elements(√ ) 
in O N time. We will represent the domain by the N = 2n basis states of n qubits,( ) 
so the space complexity is O log N . The special element is also called a “solution.” 

In general, special elements form a set of solutions S. By “searching” we mean that 

there is a function f (x) and one (or more) special element ′ x for which ( 
1, x ∈ S (or x = x ′ ), 

f (x) = 
0, x ∈/ S (or x = x ′ ). / ( ) 

The classical algorithm to find ′ x has complexity O N in the worst case since it(√ ) 
has to evaluate all possible inputs to f . Being able to do this with complexity O N 

is, of course, an exciting prospect and one of the main reasons for the interest in this 

quantum algorithm. 

To understand the algorithm, we first describe it at a high level in fairly abstract 

terms. We need to learn two new concepts: phase inversion and inversion about the 
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mean. Once these concepts are explained, we detail several variants of their imple-

mentation. Then we assemble all the pieces into the complete Grover’s algorithm and 

run a few experiments. 

10.1.1 High-Level Overview

At a high level, the algorithm performs the following steps given a domain encoded 

with n qubits and a special element |x ′ ⟩: 

1. Create an equal superposition state  ⊗|++ · · · +⟩ = |+⟩ n
by applying Hadamard 

gates to an initial state |00 . . . 0⟩ of n qubits. 

2. Construct a phase inversion operator Uf around the basis state representing the 

special input   | ′x ⟩, which is defined mathematically as 

Uf = I⊗n − 2|x ′ ⟩⟨x ′ |. 

3. Construct an inversion about the mean operator U ⊤, 

⊗nU = 2(|+⟩ ⟨+|)⊗n − I ⊤ . 

4. Combine U ⊤ 

defined as 

and Uf into the Grover operator G: 

G = U  ⊤Uf . 

5. Repeat steps 2 to 4 a total of k times, applying G to the state in each iteration. We 

derive the iteration count k below. The resulting state will be close to the special 

state   | ′x ⟩: 
⊗n

Gk |+⟩ ∼ |x ′ ⟩. 

This basically explains the whole procedure. Some of you may look at this, shrug 

mildly, and understand it right away. For the rest of us, the following sections explain 

this procedure in great detail and in multiple different ways. Grover’s algorithm is 

foundational; we want to make sure we understand it completely. 

10.1.2 Phase Inversion

The first new concept we need to learn is phase inversion. Assume a given state |ψ⟩ 
with probability amplitudes cx and the basis states |x⟩ representing the elements in a 

domain on N elements, with N = 2n for n qubits: ∑ 
|ψ⟩ = cx|x⟩ with x ∈ {0,1, . . . ,2n − 1}. 

x 

√ 
 ci = 1/ N.For simplicity, assume equal  Figure 10.1 shows a bar graph where the 

x-axis enumerates the states |xi⟩, and the y-axis plots the height of the corresponding 

probability amplitudes ci. It is safe to ignore the actual values; we are just trying to 

make a point. 
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Figure 10.1 Equally distributed probability amplitudes. 
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Figure 10.2 Probability amplitudes after phase inversion. 

We also assume that one of these input states |xi⟩ is the special element   | ′x ⟩ men-

tioned above. Phase inversion converts the original state into a state where the phase 

for the special element   | ′x ⟩ picks up a factor of iπ e = −1, its phase is being “negated.”1 ∑ ∑ 
|ψ⟩ = cx|x⟩ → |ψ⟩ = cx|x⟩ − cx ′ |x ′ ⟩. 

x x= x ′ ̸

In the graph in Figure 10.2, we negated the phase of state |4⟩, which is our special 

state  | ′x ⟩. To relate this back to the function f (x) that we are trying to analyze, we 

use phase inversion to negate the phase for the special elements only, which we can 

express in closed form as ∑ ∑ 
|ψ⟩ = cx|x⟩ →inv |ψ⟩ = cx(−1)f (x)|x⟩. 

x x 

(10.1) 

Similarly to the black-box algorithms of Chapter 8, a key aspect of this procedure 

is that the function f must be known. Otherwise, we would not be able to build the 

operators and circuits required by this algorithm. This is an important distinction: 

Although an implementation must know the function, observers who try to construct 

and measure the function still have to go through N steps in the classical case but only√ 
N in the quantum case. This will become clearer in Sections 10.5 and 10.6, where 

we provide examples of applications of this algorithm. 

1 Note that in general, the ci can be complex. 
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μ 

Figure 10.3 An example of random (real) data (black circles) and its inversion about the mean 

(white circles). The lines connecting the dots have no meaning but help to visualize the mean 

inversion. 

10.1.3 Inversion about the Mean

The second new concept is inversion about the mean. In general, the probability 

amplitudes cx are complex. However, for simplicity in the following paragraphs, we 

assume only real probability amplitudes. We calculate the mean μ (“mu”) of the 

probability amplitudes cx of the original state as ∑  
μ = cx /N. 

x 

� �
Inversion about the mean is the process of mirroring each cx about the mean. To 

achieve this, we take the distance of each value from the mean, which is μ − cx, and 

add it to the mean. For values above the mean, μ − cx is negative, and the value is 

reflected below the mean. Conversely, for values below the mean, μ − cx is positive, 

and the values are reflected up. Figure 10.3 shows an example with a random set of 

values plotted as black dots and the reflected values as white dots. Again, note our 

simplification, we only consider real coefficients. In closed form, we compute 

ci → μ + (μ − ci) = (2μ − ci),∑ ∑ 
cx|x⟩ → (2μ − cx)|x⟩. 

x x 

(10.2) 

10.1.4 Simple Numerical Example

With these new concepts, we can now describe a single step in Grover’s algorithm 

using the simple example with 4 qubits and 16 states, as shown in Figure 10.1. Here 

is how it works: 

1. Initialization. As seen in Section 10.1.1, we put states in superposition and start√ 
with all the states being equally likely with an amplitude of 1/ N. 

2. Phase inversion. Apply phase inversion as shown in Equation (10.1). The 

amplitude of the special element becomes negative, thus pushing the mean of all √ 
amplitudes down. In our example with 16 states and amplitude 1/ 16 = 0.25, the 

overall mean is roughly pushed down to (0.25 ∗ 15 − 0.25)/16 = 0.22. 
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Figure 10.4 Distribution of (real) amplitudes after phase and mean inversion. The amplitude for 

the special element ′  |x ⟩ = |4⟩ has been amplified, and all other amplitudes have been lowered. 

3. Inversion around the mean. This will reduce the amplitudes of 0.25 to 

0.22 + (0.22 − 0.25) = 0.19 but will amplify the special element to a value of 

0.22 + (0.22 + 0.25) = 0.69. 

For the general case, rinse and repeat steps 2 and 3. For our artificial amplitude exam-

ple above, a single step transforms the initial state into the state shown in Figure 10.4. 

10.1.5 Two-Qubit Example

Let us make this even more concrete and visualize the procedure using an example 

with two qubits, inspecting the operator matrices and state vectors. In a two-qubit 

system, our special element shall be   | ′x ⟩ = |11⟩ with its corresponding outer product:  
0 0 0 0 0 

|x ′ ⟩ = |11⟩ = 
 

0 

0 

 and |x ′ ⟩⟨x ′ | = 
 

0 0 0 0 

0 0 0 0 

 . 

1 0 0 0 1 

The solution   | ′x ⟩ corresponds to the solution space |β⟩ in Figure 10.5. The phase 

inversion operator Uf from step 2 in Section 10.1.1 then becomes the following 

(note that in the implementation below, we use a different methodology to get this 

operator):  

Uf = I − 2|x ′ ⟩⟨x ′ | = 
 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 −1 

 . 

We know how to create an equal superposition state |s⟩ = |++⟩. The state

 ⊤

 |x ⟩ 
  is the difference between |s⟩ and | ′x ⟩ and corresponds to the axis |α⟩ in Figure 10.5, 

which is the subspace of all non-solutions:  
1 1 

|s⟩ = H⊗2|00⟩ = |++⟩ = 
1 

2 

 
1 

1 

 and |x 

⊤

⟩ = 
1 √ 

 
1 

1 

 . 
3 

1 0 

A
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|β⟩ 

|α⟩ 

|ψ⟩ 

Uf |ψ⟩ 

U ⊤Uf |ψ⟩ 

φ/2 
φ 

2φ 

3 

2 
φ 

Figure 10.5 Geometric interpretation of a Grover rotation. 

The state

 ⊤

 |x ⟩ is orthogonal to   | ′x ⟩ = |β⟩, the subspace of solutions in Figure 10.5. 

We can confirm this by computing the inner product

⊤

 ⟨ ′ x |x ⟩ = 0. The state 

⊤

|x ⟩ is

 

also “close” to when we think of closeness as how many 1s and 0s are common in 

the state vectors (this is also called Hamming distance).

|s⟩ 
2 

The state |ψ⟩ in the figure corresponds to the initial |s⟩. It is easy to see how 

applying the operator Uf inverts the phase of the  | ′x ⟩ component in |s⟩ to 

1  
 . 

1 1 

1 
Uf |ψ⟩ = Uf |s⟩ = 

2 

−1 

(10.3) 

In Figure 10.5, this corresponds to a reflection of the state |ψ⟩ (which is our |s⟩) 
about the α-axis, drawn as the bottom vector marked as Uf |ψ⟩. The inversion about 

the mean operator U  ⊤, as defined in step 3 above, is 

⊤ U 
⊗2 ⊗2|+⟩ ⟨+| − I= 2 

⊗2  
= 2|s⟩⟨s| − I 

−1 1 1 1 
 

= 
1 

2 

 
1 −1 1 1 

1 1 −1 1 

 . 

1 1 1 −1 

)

  

This operator U  ⊤reflects Uf |ψ⟩ from Equation (10.3) about the original state |s⟩ 
into the new state U  ⊤Uf |ψ⟩ = |11⟩: 

−1 1 1 1 1 0 

1  
 

1 

2 

 
1 

1 

 = 
 

0 

0 

 = |11⟩ . 1 −1 1 1 

2 1 1 −1 1 

1 1 1 −1 −1 1 

2 See http://en.wikipedia.org/wiki/Hamming_distance. 

http://en.wikipedia.org/wiki/Hamming_distance
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For this example with only two qubits, a single iteration is sufficient to move the 

state |s⟩ to the special state ′ |x ⟩ = |11⟩ that we were looking for. All of these steps 

look very compact in code: 

x = state.bitstring(1, 1) 
s = ops.Hadamard(2)(state.bitstring(0, 0)) 

Uf = ops.Operator(ops.Identity(2) - 2 * x.density()) 
Ub = ops.Operator(2 * s.density() - ops.Identity(2)) 
(Ub @ Uf)(s).dump() 

>> 
|11> (|3>): ampl: +1.00+0.00j prob: 1.00 Phase: 0.0 

The iteration count of 1 for this example agrees with the general iteration count in 

Equation (10.7) below, which we will derive next. 

10.1.6 Iteration Count

How many iterations k should we perform? How do we know when to stop? It turns 

out we need exactly k iterations (with k rounded down to an integer), where 

√π 
k = N. 

4 

Let’s derive this result. First, we define two subspaces as indicated above: The space 

|α⟩ of all states that do not contain a special element and the space |β⟩ of only special 

states. Note that in Grover’s algorithm, we search for only one special element  | ′x ⟩, 
but here we generalize this derivation to search for M solutions in a population of N 

elements. As we are using Hadamard gates, all states are in equal superposition. The 

two subspaces are 

1 1 |α⟩ = √ |x⟩ and |β⟩ = √ |x ′ ⟩. 
N − M M 

x∈/S x ′∈S 

With this, we can define the whole state |ψ⟩ as the composite of the two subspaces: 

N − M M |ψ⟩ = |α⟩ + |β⟩. 
N N 

∑ ∑

r r 

(10.4)

We can visualize this space in two dimensions, where the x-axis corresponds to state 

space |α⟩ and the y-axis to solution space |β⟩, as shown in Figure 10.5. 

Application of phase inversion (with the corresponding operator Uf , as before) 

reflects the state about the axis or subspace |α⟩. This, in essence, negates the second 

part of the superposition, similar to the effect of a Z gate on a single qubit, where a 

and b are the probability amplitudes for the subspaces α and β: ( ) 
Uf a|α⟩ + b|β⟩ = a|α⟩ − b|β⟩. 

In the figure, this is shown as the vector marked with |ψ⟩ being reflected about the 

axis marked as |α⟩ to the final vector marked as Uf |ψ⟩. 
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The inversion around the mean (with operator U  ⊤) then performs another reflection 

about the vector |ψ⟩. The two reflections compound to a rotation, which means that 

the state remains in the space spanned by |α⟩ and |β⟩. Furthermore, the state rotates 

incrementally towards the solution space |β⟩. We have seen in Equation (10.4) that 

N − M M |ψ⟩ = |α⟩ + |β⟩. 
N N 

r r 

We can geometrically position the state vector with simple trigonometry. We define 

the initial angle between |ψ⟩ and |α⟩ as φ/2. Moving forward, Equation (10.5) will 

be important; we use it in Section 10.3 on quantum counting: 

φ N − M 
cos = , 

2 N � � r 
φ M 

sin = , 
2 N � � � � 
φ φ |ψ⟩ = cos |α⟩ + sin |β⟩. 
2 2 

� � r 

(10.5)

From Figure 10.7, we can see that after phase inversion and inversion about the 

mean, the state has rotated by φ towards |β⟩. The angle between |α⟩ and |ψ⟩ is now 
3 φ. 
2 

We call the combined operator the Grover operator G = U  ⊤Uf , which, after one

iteration, produces the state � � � � 
3φ 3φ 

G|ψ⟩ = cos |α⟩ + sin |β⟩. 
2 2 

We can see that repeated application of the Grover operator G will take the state to 

2k + 1 2k + 1 
Gk|ψ⟩ = cos φ |α⟩ + sin φ |β⟩. 

2 2 

� � � � 

( ) 
Now, to maximize the probability of measuring |β⟩, the term sin 2k+1

2 
φ should

be as close to 1 as possible. Taking the arcsin of the expression yields � � 
2k + 1 

sin φ = 1 
2 

2k + 1 
φ = π/2 

2 
π 1 π 1 

k = − = − . φ 2φ 2 4 2
2 

(10.6)

Note that an iteration count must be an integer, so the question we face now is 

what to do with the term −1/2. In our implementation, we simply ignore it. For our 

examples below, the probabilities of finding solutions are around 40% or higher, and 

this term seems to have no impact. Now let us solve for k. From Equation (10.5), we 

know that � � r 
φ M 

sin = . 
2 N 
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Since we can assume that N ≫ M, we use the approximation that, for small angles, p
sin(x) ≈ x. Substituting in

φ 
= M/N 

2 
 and M = 1 into Equation (10.6), we reach

the final result for the number of iterations k as the rounded down integer of r 
√π N π 

k = = N. 
4 M 4 

(10.7)

10.1.7 Phase Inversion Oracle Operator

We have already seen the mathematical way to compute the matrix operator Uf = 
′I −  2|x ⟩⟨ ′ x |. As a second strategy, we will use an oracle operator, which, at this point, 

we suspect can be implemented as a circuit (we also want to demonstrate the utility of 

the oracle operator one more time). 

The oracle structure, shown in Figure 10.6, is similar to the Deutsch–Jozsa oracle – 

the input x is a whole register of qubits initialized as |0⟩ and put in equal superposition 

with Hadamard gates. The lower qubit y is an ancilla initialized as |1⟩. The Hadamard 

gate puts it in state |−⟩. 
Recall from Equation (10.1) that for Uf , the goal is to transform the input state as ∑ ∑ 

|ψ⟩ = cx|xi⟩ →inv |ψ⟩ = cx(−1)f (x)|x⟩. 
x x 

How does this work? State |−⟩ is 

|0⟩ − |1⟩ |−⟩ = √ . 
2 

Since we use an oracle, all input values are computed in parallel. If f (x) = 0, 

the bottom qubit in state |−⟩ is XOR’ed with |0⟩, which means that its state remains 

unmodified. However, if f (x) = 1, the ancilla qubit in state |−⟩ is XOR’ed with |1⟩, 
which means the state gets negated as 

|1⟩ − |0⟩ √ = − |−⟩ . 
2 

For the ancilla, the result in closed form is (−1)f (x) |−⟩ . The tensor product of 

input bits and the ancilla is ∑ 
cx|x⟩(−1)f (x) |−⟩ . 

x 

|0⟩⊗n 
H⊗n 

Uf 

H⊗n 

|1⟩ H 

x x 

y y ⊕ f (x) 

Figure 10.6 The Grover oracle is similar to the Deutsch–Jozsa oracle detailed in Section 8.3. 
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Figure 10.7 Phase inversion circuit for the special element  | ′x ⟩ = |11010⟩ in the state space of 

n = 5 qubits. The controlled Z gate acts on the ancilla non-trivially only when the first five 
′ control qubits are in state |x ⟩. 

We slightly rearrange the terms, ignore the ancilla,3 and arrive at the closed form we 

are looking for: ∑ 
|ψ⟩ = cx(−1)f (x)|x⟩. 

x 

10.1.8 Phase Inversion Circuit

So far, we have constructed the phase inversion operator as a giant matrix, which is 

inefficient for larger numbers of qubits. Here is a more efficient construction with a 

multi-controlled Z gate. It will show better performance, even though n − 1 ancilla 

qubits are required with our implementation, as outlined in Section 2.10.3. We are 

trying to compute a unitary operator Uf such that ( 
′ f (x) = 0, x = x , 

Uf |x⟩|y⟩ = |x⟩|y ⊕ f (x)⟩, where 
′ f (x) = 1, x = x . 

̸

The way to read this is that we only want to apply phase inversion for the special state 
 | ′x ⟩ for which   f ( ′x ) = 1. This means we must multi-control the final qubit as shown 

in Figure 10.7, ensuring that the control bits are all |1⟩ only for the special state. We 

will find more instances of this type of construction in other Grover-based algorithms 

later in this book. 

10.1.9 Inversion about the Mean Operator

To reiterate, inversion about the mean μ is this procedure: ∑ ∑ 
cx|x⟩ → (2μ − cx)|x⟩. 

x x 

3 We can ignore the ancilla here, but in general, we should uncompute it. 
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In matrix form, we can accomplish this by multiplying the state vector with a matrix 

with values 2/N everywhere, except for the diagonal elements, which are 2/N − 1. We 

derive this matrix in the following paragraphs. The matrix can also be written as 

U ⊤ ⊗n = 2(|+⟩ ⟨+|)⊗n − I . 

This matrix is also called diffusion operator for a variety of reasons. The main 

reason is that Lov Grover himself called it the diffusion operator because of how 

probabilities seem to spread out with bias towards the special element(s). There are 

similarities to diffusion in that values closer to the mean decrease, while values farther 

away from the mean increase. This is the operator we aim to construct:  
2/N − 1 2/N . . . 2/N 

2/N 2/N − 1 . . . 2/N 
 

 
U ⊤= . . . .. . . . . . 

2/N 2/N . . . 2/N − 1 

. . . 

Why do we look for this specific operator? Recall from Equation (10.2) that we 

want to construct an operator that performs the transformation 

(10.8)

∑∑ 
cx|x⟩ → (2μ − cx)|x⟩. 

x x 

How does the operator U ⊤
element by 2/N before subtracting the one element corresponding to the diagonal: 

work? Each row multiplies and adds each state vector 

 
2/N − 1 2/N . . . 2/N c0  

 

 

 

2/N 2/N − 1 . . . 2/N 

. . .. . . . . .. . . 

c1 

. . . 

2/N 2/N . . . 2/N − 1 cn−1   

(2c0/N + 2c1/N + · · · + 2cn−1/N) − c0 

(2c0/N + 2c1/N + · · · + 2cn−1/N) − c1 

. . . 

(2c0/N + 2c1/N + · · · + 2cn−1/N) − cn−1 

 
= 

  

2μ − c0 

2μ − c1 

. . . 

2μ − cn−1 

 
= . 

(10.9) 

We derived the matrix from Equation (10.8) mathematically. But what procedure 

and what operators should we use in practice to get this matrix as an operator? We 

have seen the geometrical interpretation above. We can think of inversion about the 

mean as a reflection around a subspace. Hence, a possible derivation consists of three 

steps: 
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Figure 10.8 Inversion about the mean circuit for the operator U  ⊤. The diagonal matrix 
⊗W = 2(|0⟩ ⟨0|) n − ⊗I n has a 1 in the top left element, and all remaining diagonal elements 

are −1. 

1. Ideally, we would like to rotate the space in equal superposition |++ · · · +⟩. But 

it is hard to construct an operator to do this reflection in this basis. Therefore, we 

use Hadamard gates to get into the computational basis and construct the 

reflection there. 

2. Leaving the Hadamard basis, the state |++ · · · +⟩ becomes the state |00 . . . 0⟩, 
which seems like an obvious choice to reflect about. We could pick another state 

for reflection, as long as that state is still almost orthogonal to the subspace α, but 

for state |00 . . . 0⟩, the inversion operator has an elegant construction (which we 

show in Section 10.1.10). 

3. Transform the state back to the Hadamard basis with Hadamard gates. 

These three steps define the circuit shown in Figure 10.8. For Steps 1 and 3, we 

apply Hadamard gates to get in and out of the computational basis, as we are in the 

Hadamard basis from the phase inversion before. For Step 2, we will want to leave 

the state |00 . . . 0⟩ alone but reflect all other states. If we think about how states are 

represented in binary and how matrix–vector multiplication works, we can achieve 

this by constructing the matrix W, which is easy to derive as 

 

⊗nW = 2(|0⟩ ⟨0|)⊗n − I  
2 1  

 
− 

 

 

0 1 
= . . . . . . 

0 1   

1 

−1  
= . . . . 

−1 

(10.10)

Again, we could pick any state as the axis to reflect about, but the math is ele-

gant and simple when picking the state |00 . . . 0⟩. This will become clearer with the 

derivation immediately below. 
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Only the first bit in the state vector remains unmodified, and that first bit corre-

sponds to the state |00 . . . 0⟩, as indicated in Equation (10.10). Recall that the state 

vector for this state is all 0s, except the very first element, which is a 1. The projector 

P|0⟩ = |0⟩⟨0| has a single 1 at the top left corner and 0s everywhere else. Therefore, 

using the matrix W, which has a −1 on all remaining diagonal elements, all other 

states are negated. In combination, we want to compute   

1 

−1  
H⊗n⊗n ⊗n ⊗nH WH = H . . . 

−1   

 

2 

0  
− I 

 

⊗n ⊗n = H H . . . 

0   

2 

0  

⊗n ⊗n ⊗n⊗n − H IH= H H . . . . 

0 

Since the Hadamard operator is its own inverse, the second term reduces to the 

identity matrix I. Multiplying in the left and right Hadamard gates as 

2/ N 0 . . . 0 √ 
2/ N 0 . . . 0 

. . .. . . . . .. . . √ 
2/ N 0 . . . 0 

 

 
H⊗n − I= 

  

2/N 2/N . . . 2/N 

2/N 2/N . . . 2/N 

. . . . . . . . . . . . 

2/N 2/N . . . 2/N 

 
− I.= 

 √  

Finally, subtracting the identity I produces a matrix where all elements are 2/N, 

except the diagonal elements, which are 2/N − 1:  
2/N − 1 2/N . . . 2/N 

2/N 2/N − 1 . . . 2/N 

⊤U = 

 

 
. . . . . . . . . . . . . 

2/N 2/N . . . 2/N − 1 
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. . . 
n qubits 

Ancilla X 

= 

. . . 

X X 

X X 

X X 

X X 

X 

Figure 10.9 Inversion about the mean circuit (omitting leading and trailing Hadamard gates 

applied to the top n qubits). We want to apply the X gate to state |00 . . . 0⟩ only. Hence all 

control bits must be |0⟩. 

This is the matrix U  ⊤we were looking for. Applying this matrix to a state trans-

forms each element cx into 2μ − cx, as shown in Equation (10.9). 

10.1.10 Inversion about the Mean Circuit

As a third implementation strategy, we can construct a quantum circuit for the inver-

sion about the mean using reasoning similar to that for the phase inversion operator 

(Mermin, 2007). 

The main “trick” for building an operator for mean inversion is to realize that the 

direction of the rotation for amplitude amplification does not matter; it can be negative 

or positive. This means that instead of constructing ⊗W = 2(P|0⟩) n − ⊗I n as before, 

we construct 

′ W = I⊗n − 2(P|0⟩)
⊗n = I⊗n − 2|00 . . . 0⟩⟨00 . . . 0|. 

We want to build a gate that leaves all states untouched, except |00 . . . 0⟩, for which 

we want to flip the amplitudes. An X gate will do this for us. Because the X gate 

must be controlled to apply only to |00 . . . 0⟩, we expect all inputs to be |0⟩. Hence, 

to control the X gate, we sandwich the controller qubits between the X gates, omitting 

the left and right Hadamard gates from the construction in Equation (10.8), as shown 

in Figure 10.9. 

As a result, for the big inversion operator U  ⊤from Equation (10.8), the circuit in 

Figure 10.9 corresponds to the closed form below (with (CX )n+1 indicating a multi-

controlled X gate with n control qubits controlling the ancilla qubit at index n + 1), 

which yields the operator 

= ⊗U n ⊤  ⊗ ⊗H X n(CX )n+1 n ⊗X H n. 

In the implementation shown below, we can verify that the order of rotation does 

not matter by modifying this line in file grover.py: 

http://www.github.com/qcc4cp/qcc/blob/main/src/grover.py
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<< 
reflection = op_zero * 2.0 - ops.Identity(nbits) 

>> 
reflection = ops.Identity(nbits) - op_zero * 2.0 

10.1.11 Oracle Implementation of Grover’s Algorithm

Now let’s put all the pieces together. The complete Grover iteration circuit is shown 

in Figure 10.10. In the code, we first define the function f we intend to analyze. The 

make_f function creates an array of all 0s, except for one or more special elements 

randomly set to 1, corresponding to   | ′x ⟩. The function returns a lambda function object 

that converts its parameter, a sequence of address bits, to a decimal index and returns 

the value of the array at that index. 

PY 
Find the code 
In file src/grover.py 

def make_f(d: int = 3, solutions: int = 1): 
answers = np.zeros(1 << d, dtype=np.int8) 
solutions = random.sample(range(1 << d), nsolutions) 
answers[solutions] = 1 
return lambda bits: answers[helper.bits2val(bits)] 

The initial state of the circuit is a register of |0⟩ qubits with an additional ancilla 

qubit in state |1⟩. Applying the Hadamard gate to all of the qubits puts the ancilla into 

the state |−⟩. 

# State initialization: 

psi = state.zeros(nbits) * state.ones(1) 
for i in range(nbits + 1): 

psi.apply(ops.Hadamard(), i) 

. . . 

. . . 

. . . 

. . . 

. . . 

|0⟩⊗n 

H⊗n 

Uf 

H⊗n W H⊗n 

|1⟩ H 

G = U ⊤Uf repeat π 
4 

√ 
N times 

 Figure 10.10 Full circuit for Grover algorithm with the Uf and U ⊤operators. As drawn, the 

circuit would only perform a single iteration. 

http://www.github.com/qcc4cp/qcc/blob/main/src/grover.py
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In order to implement phase inversion, we generate an oracle with the function 

object we created above. To create the oracle itself, we use our trusty OracleUf 

operator and give it the function object as a parameter. Using an oracle this way is 

slow as it utilizes the full matrix implementation. Of course, any given operator can 

be implemented with quantum gates, but this can be quite cumbersome.4 Fortunately 

for us, this is not the case here, as shown for the elegant phase inversion operator in 

Figure 10.9. 

f = make_f(nbits) 
uf = ops.OracleUf(nbits+1, f) 

Now we move on to mean inversion. We first construct an all-0 matrix with a single 

1 in the top left element. This is equivalent to building an nbits-dimensional |0⟩⟨0|
projector (using the helper function ZeroProjector). With this, we construct the 

2|00 . . . 0⟩⟨00 . . . 0| − ⊗I n reflection matrix: 

op_zero = ops.ZeroProjector(nbits) 
reflection = op_zero * 2.0 - ops.Identity(nbits) 

The full inversion operator U ⊤consists of the Hadamard gates surrounding the 

reflection matrix W. We add an identity gate to account for the ancilla we added 

earlier for the phase inversion oracle. We build the complete Grover operator grover 

as the product of the mean inversion operator inversion with the phase inversion 

operator uf. Finally, we iterate the desired number of times based on the size of the 

state, as calculated with Equation (10.7): 

hn = ops.Hadamard(nbits) 
inversion = hn(reflection(hn)) * ops.Identity() 
grover = inversion(uf) 

iterations = int(math.pi / 4 * math.sqrt(2**nbits)) 
for _ in range(iterations): 

psi = grover(psi) 

To check whether we have computed the right result, we perform measurement by 

peek-a-boo and compare the state with the highest probability to the intended result: 

maxbits, maxprob = psi.maxprob() 
result = f(maxbits[:-1]) 
print('Got f({}) = {}, want: 1, #: {:2d}, p: {:6.4f}' 

.format(maxbits[:-1], result, solutions, maxprob)) 
assert result == 1, 'Something went wrong, invalid state' 

4 Perhaps more cumbersome than what we have shown so far. 
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Experimenting with a few bit widths should produce a result similar to this: 

def main(argv): 
for nbits in range(3, 8): 

run_experiment(nbits) 
>> 
Got f((1, 0, 1)) = 1, want: 1, #: 1, p: 0.3906 

Got f((1, 0, 1, 1)) = 1, want: 1, #: 1, p: 0.4542 

Got f((1, 0, 1, 0, 0)) = 1, want: 1, #: 1, p: 0.4485 

Got f((1, 0, 0, 1, 1, 1)) = 1, want: 1, #: 1, p: 0.4818 

Got f((0, 1, 0, 1, 0, 0, 0)) = 1, want: 1, #: 1, p: 0.4710 

So far, we have operated with big matrices and projectors, which are easy to 

construct mathematically. In order to implement Grover’s algorithm on a physical 

machine, we need to implement the operators with gates. This is the topic of 

Section 10.1.12. 

10.1.12 Circuit Implementation of Grover’s Algorithm

Now, let us explore the implementation of Grover’s algorithm using gates instead of 

big matrices. We will find similar constructions in many variants of the algorithm. 

To start, we modify the function make_f from Section 10.1.11 to mark only a single 

special element and additionally return the binary bit pattern for the special element: 

def make_f1(d: int = 3): 
answers = np.zeros(1 << d, dtype=np.int8) 
answer_true = np.random.randint(0, 1 << d) 
answers[answer_true] = 1 
return (lambda bits: answers[helper.bits2val(bits)], 

helper.val2bits(answer_true, d)) 

We introduce a helper function multi-masked that applies a gate only if it matches 

a specific mask and masking value: 

def run_experiment_circuit(nbits: int) -> None: 
def multi_masked(qc: circuit.qc, gate: ops.Operator, idx: List[int], 

mask, allow: int): 
for i in idx: 

if mask[i] == allow: 
qc.apply1(gate, i, 'multi-mask') 

To construct the state, we add the input register, another ancilla initialized with |1⟩, 
and an additional aux register for the multi-controlled gates used later in the circuit: 
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qc = circuit.qc('Grover') 
reg = qc.reg(nbits, 0) # n bits for functions 

qc.reg(1, 1) # ancilla. 

aux = qc.reg(nbits - 1, 0) # auxiliary bits for multi_control 

We create the function object, which gives us the bit pattern of the special elements 

in variable bits. We also compute the number of iterations as in the oracle-based 

implementation. 

f, bits = make_f1(nbits) 
iterations = int(math.pi / 4 * math.sqrt(2**nbits)) 

In addition, we create a range of indices in the list variable idx. These are the 

indices for the qubits to which we want to apply the Hadamard and X gates in the 

diffusion circuit. At the start of the algorithm, we also have to apply Hadamard gates 

to all qubits, including the ancillary qubit. We use a similar Python list comprehension 

for this (similar to other single-qubit gates, the Hadamard function qc.h accepts a 

single qubit index as well as a list of indices as input): 

idx = [i for i in range(nbits)] 
qc.h([i for i in range(nbits + 1)]) 

With these pieces in place, we can now create the loop and construct phase inversion 

and mean inversion circuits, as outlined above. For phase inversion, we apply Z gates 

to the qubit indices that represent a 0 in the binary representation of the special 

element. This is encompassed by passing bits with a mask of 0 to multi_masked. 

For the mean inversion, we use the convenience of being able to pass lists of indices to 

the single-gate functions and apply the controlled X gate to the ancilla, which resides 

at index nbits: 

for _ in range(iterations): 
# Phase Inversion 

multi_masked(qc, ops.PauliX(), idx, bits, 0) 
qc.multi_control(reg, nbits, aux, ops.PauliZ(), 'Phase Inversion') 
multi_masked(qc, ops.PauliX(), idx, bits, 0) 

# Mean Inversion 

qc.h(idx) 
qc.x(idx) 
qc.multi_control(reg, nbits, aux, ops.PauliX(), 'Mean Inversion') 
qc.x(idx) 
qc.h(idx) 

[...] # check results 

All that is left now is to obtain the state with the highest probability and to ensure 

that everything goes as planned. This code is almost identical to the equivalent code 
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|ψ0⟩ |ψ1⟩ 

H X X H X X H 

H X X H X X H 

H /Z1 2 † Z /Z1 2 /X1 2 † X /X1 2 

Figure 10.11 A 2-qubit Grover algorithm implementation with a bottom ancilla qubit. The 

phase inversion subcircuit starts at |ψ0⟩, and the mean inversion subcircuit starts at |ψ1⟩. 
Measurement gates have been omitted. 

in the oracle-based implementation, so we do not replicate it here. It is interesting to 

compare the run-time behavior and performance of the matrix-based and circuit-based 

implementations; you may want to run a few experiments. In Figure 10.11, we show 

the full circuit for a 2-qubit Grover circuit. 

10.2 Quantum Amplitude Amplification (QAA)

How should we modify Grover’s algorithm to account for a set of solutions S with 

more than one special element? Naively, this is relatively easy to achieve: We have to 

adjust the phase inversion, the inversion about the mean, and the iteration count. The 

function make_f shown above already accepts parameter solutions to specify how 

many elements to mark. 

We derived the proper iteration count in the derivation for Grover’s algorithm in 

Equation (10.7) as r 
π N 

k = , with M ≪ N. 
4 M 

In Section 10.1.6 we assumed M = 1. To account for multiple special elements, we 

have to adjust the computation of the iteration count and divide by a larger M, which 

is the parameter solutions in the code. 

PY 
Find the code 
In file src/grover.py 

iterations = int(math.pi / 4 * math.sqrt(2**nbits / solutions)) 

We add a test sequence to our main driver code to check whether any solution can 

be found and with what probability. For good performance, we hold the number of 

qubits at eight and gradually increase the number of solutions from 1 to 8: 

for solutions in range(1, 9): 
run_experiment(8, solutions) 

http://www.github.com/qcc4cp/qcc/blob/main/src/grover.py
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Figure 10.12 Probability of finding a special element when the total number of such elements 

ranges from 5 up to 64 in a state space of 128 elements. The y-axis shows the probability; the 

x-axis shows the number of special elements. 

If we were to print the number of states with nonzero probability, we would find 

that all of their probabilities are identical but that there are twice as many states with 

nonzero probability as there are solutions! This is an artifact of our oracle construction 

and the entanglement with the ancilla qubit. 

As we run the experiment, and if all goes well, we should get output like the 

following. Note how we increase the number of solutions (sols): 

Got f((1, 1, 0, 0, 1, 0, 0, 0)) = 1, want: 1, sols: 1, found 1, p: 0.491 
Got f((1, 0, 1, 1, 1, 1, 0, 1)) = 1, want: 1, sols: 2, found 1, p: 0.235 
Got f((1, 1, 1, 0, 0, 1, 1, 0)) = 1, want: 1, sols: 3, found 1, p: 0.162 
Got f((0, 0, 1, 0, 0, 0, 1, 0)) = 1, want: 1, sols: 4, found 1, p: 0.120 

In this experiment, the algorithm is able to find a single solution each time, but 

the probability of finding a solution (p) decreases as the total number of solutions 

increases. This is a limitation of Grover’s algorithm when dealing with multiple solu-

tions, and the results here are consistent with that theoretical understanding. As M 

grows, the small-angle approximation used in Grover’s algorithm no longer holds. 

Let us visualize the probabilities in the graph in Figure 10.12. On the x-axis, we 

have the number of solutions ranging from 5 to 64. On the y-axis, we ignore the 

first few cases with high probability and set a maximum of 0.1. We can see how 

the probabilities decrease rapidly and drop to 0 after the total number of solutions 

exceeds 40. 

What if there are many more solutions, perhaps even a majority of the state space, 5 

or what if the solution probabilities are not all equal? To answer these questions, 

Grover’s algorithm has been generalized by Brassard et al. (2002) as Quantum Ampli-

tude Amplification (QAA), which we discuss in this section. 

5 Let us ignore that in this scenario, a random choice would give a correct solution with high probability. 
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Grover expected only one special element and initialized the search with an equal 

superposition of all inputs by applying the algorithm ⊗ A = H n to the input. Note the 

unusual use of the term algorithm. In the context of this section, an algorithm can mean 

just a single gate, as in Grover, with equal superposition states. But it can also mean 

other, more complex algorithms with sequences of gates that may produce unequal 

state probabilities. QAA supports any algorithm A to initialize the input and changes 

the Grover iteration to the more general form:6 

Q = AU † ⊤A Uf . (10.11) 

The operator Uf is the phase inversion operator for multiple solutions, and U ⊤

inversion about the mean operator that we saw in Grover’s algorithm. What changes is 

the derivation of the iteration count k, which has been shown to be proportional to the 

probability pgood of finding a solution (see Kaye et al., 2007, section 8.2). For QAA, 

the iteration count shall be s 
1 

k = . 
pgood 

The square root in the formula for k comes from Grover’s algorithm, where the 

number of iterations needed to find a solution scales as the square root of the ratio 

of the search space to the number of solutions. In Quantum Amplitude Amplifica-

tion (QAA), this idea is generalized: The number of iterations is proportional to the 

inverse square root of the probability pgood of finding a solution. This reflects how the 

algorithm amplifies the probability of success over time. 

Let us see how the probabilities improve with this new and improved iteration 

count. As an experiment, we keep ⊗A = H n and compute the new iteration count 

as the following, where we now divide by solutions to reflect the probability of 

finding a solution: 

is the 

iterations = int(math.sqrt(2**nbits / solutions)) 

Figure 10.13 shows the probabilities for the two iteration counts, where the thick 

line represents the probabilities obtained with the new iteration count. We see that 

the situation improves markedly, but the probabilities still drop to 0 for more than 64 

solutions. When the ancilla qubit is used in Grover’s algorithm, it becomes entangled 

with the other qubits. This entanglement effectively doubles the number of basis states 

because the ancilla qubit can be |0⟩ or |1⟩. As a result, even though the number of 

solutions (marked by the oracle) remains the same, there are now twice as many states 

overall with nonzero probabilities due to the extra entanglement introduced by the 

ancilla qubit. 

When the number of solution states becomes half of the total state space, Grover’s 

algorithm becomes inefficient and starts to fail because the amplitude amplification 

6 You will also see this written as

this is why we can use the dagger. 

− Q = AU  ⊤A 1Uf . However, the algorithm A is unitary and invertible; 
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Figure 10.13 Probabilities for amplitude amplification finding 1 out of up to 64 solutions in a 

state space with 128 elements: (thick black line) amplitude amplification, (light gray line) and 

Grover’s search. The y-axis shows the probability; the x-axis shows the number of special 

elements 

starts to overshoot, reducing the probabilities of measuring a solution state. To 

avoid this, adding another qubit effectively doubles the size of the state space, 

providing more room for Grover’s algorithm to work efficiently again without 

crashing. The additional qubit increases the total number of basis states, ensuring 

that the number of solutions is no longer half the state space, thereby solving the 

problem. 

The technique of amplitude amplification requires knowledge of the number of 

good solutions and their probability distribution. A general technique called amplitude 

estimation can help with this (see Kaye et al., 2007, section 8.2). We detail this tech-

nique in Section 10.4. However, before that, in Section 10.3, we detail a special case of 

amplitude estimation, called quantum counting, which assumes an equal superposition 

of the search space with the algorithm A = ⊗H n , similar to Grover. 

10.2.1 State Preparation with QAA

In Section 9.1.2 on amplitude encoding, we hinted at a way to initialize a state such 

that specific states |xi⟩ have a high probability of equal magnitude, while all other 

states have a probability close to 0. With QAA in our arsenal of techniques, this is 

now straightforward to implement. You create a function that marks all the elements 

that should have high probability as special elements and run Grover’s algorithm. 

After the correct number of iterations, the result will be exactly as expected. A short 

implementation of this technique can be found in file state_prep.py in the open-

source repository. 

Find the code 
PY 

In file src/state_prep.py 

http://www.github.com/qcc4cp/qcc/blob/main/src/state_prep.py
http://www.github.com/qcc4cp/qcc/blob/main/src/state_prep.py
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10.3 Quantum Counting

Quantum Counting is an interesting extension of the search problems that we solved 

with Grover’s algorithm and amplitude amplification. Combining these search algo-

rithms with phase estimation in an interesting way solves the problem of not knowing 

how many solutions M exist in a population of N elements. Recall that amplitude 

amplification requires knowledge of M to determine the proper iteration count. Quan-

tum counting is a special case of amplitude estimation that seeks to estimate this 

number M. Because it expects an equal superposition of the search space, similar 

to Grover with algorithm ⊗A = H n , we can reuse much of the Grover implementation 

from Section 10.2 above. 

As in Grover’s algorithm, we partition the state space into a space |α⟩ with no 

solutions and the space |β⟩ with only solutions as 

N − M M |ψ⟩ = |α⟩ + |β⟩. 
N N 

r r 

Applying the Grover operator amounts to a rotation by an angle φ towards the 

solution space |β⟩. You may refer again to Figure 10.5 for a graphical illustration 

of this process. Since this is a counterclockwise rotation, we can express the Grover 

operator as a standard rotation matrix: � � 
cos φ − sin φ 

G(φ) = . 
sin φ cos φ 

Rotation matrices are unitary matrices with eigenvalues λ ±iφ 
0,1 = e . In the analysis 

of Grover’s algorithm, we found Equation (10.5), replicated here, with N being the 

number of elements and M being the number of solutions: � � r 
φ M 

sin = . 
2 N 

If we had a way to find φ, we would be able to estimate M because we already know 

N. Fortunately, we will learn in Section 11.2.1 about phase estimation that will allow 

us to find φ with a circuit as shown in Figure 10.14. Don’t worry about its function at 

this point, it will become clear in Chapter 11. 

PY 
Find the code 
In file src/counting.py 

Let us translate this circuit into code. We reuse the function make_f from Section 

10.1.11. It returns 1 for a solution and 0 otherwise. Next, we build the Grover operator, 

just as we did in Section 10.1 on Grover’s algorithm. The parameter nbits_phase 

specifies how many qubits to use for phase estimation, and parameter nbits_grover 

indicates how many qubits to use for the Grover operator itself. Since this code utilizes 

the full matrix implementation, we can use only a limited number of qubits. Neverthe-

less, the more qubits we use for phase estimation, the more numerically accurate the 

results will become. 

http://www.github.com/qcc4cp/qcc/blob/main/src/counting.py
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Figure 10.14 Phase estimation for the Grover operator G. 

In the code, we use Hadamard gates before and after the reflection operator. Later, 

in Section 10.4, we will generalize and allow for other operators (algorithms) that may 

result in unequal probability distributions. 

def run_experiment(nbits_phase: int, nbits_grover: int, 
solutions: int) -> None: 

op_zero = ops.ZeroProjector(nbits_grover) 
reflection = op_zero * 2.0 - ops.Identity(nbits_grover) 

hn = ops.Hadamard(nbits_grover) 
inversion = hn(reflection(hn)) * ops.Identity() 
grover = inversion(u) 

f = make_f(nbits_grover, solutions) 
u = ops.OracleUf(nbits_grover + 1, f) 

Now we build the circuit in Figure 10.14. The Grover operator needs an ancilla 

in state |1⟩, which we also add to the state (not shown in Figure 10.14). We apply 

a Hadamard gate to the inputs and the ancilla and then apply the Grover operator 

iterations times: 

psi = state.zeros(nbits_phase + nbits_grover) * state.ones(1) 
for i in range(nbits_phase + nbits_grover + 1): 

psi.apply1(ops.Hadamard(), i) 

iterations = int(math.pi / 4 * math.sqrt(2**nbits / solutions)) 
for _ in range(iterations): 

psi = grover(psi) 

Finally, we follow this with a sequence of exponentiated gates for phase estima-

tion and a final inverse QFT (again, the details are being explained in Chapter 11). 
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For convenience, we also wrap this code for phase estimation in a helper function 

PhaseEstimation(), which we will use later: 

cu = grover 
for inv in reversed(range(nbits_phase)): 

psi = ops.ControlledU(inv, nbits_phase, cu)(psi, inv) 
cu = cu(cu) 

psi = ops.Qft(nbits_phase).adjoint()(psi) 

This completes the circuit. We measure and find the state with the highest probabil-

ity. Then we reconstruct the phase from the binary fractions and use Equation (10.5) 

to estimate M, the number of solutions: 

maxbits, maxprob = psi.maxprob() 
phi_estimate = helper.bits2frac(maxbits) 

m = round(2**nbits_grover * math.sin(phi_estimate * math.pi) ** 2, 2) 
print( 

f'Estimate: {phi_estimate:.4f} prob: {maxprob * 100.0:5.2f}% ' 

f'--> m: {m:5.2f}, want: {solutions:2d}' 

) 
assert np.allclose(np.round(m), solutions), 'Incorrect result.' 

Let us run some experiments with seven qubits for phase estimation and four qubits 

for the Grover operator. For N = 64, we let M range from 1 to 5: 

def main(argv): 
for solutions in range(1, 6): 

run_experiment(7, 4, solutions) 

Running this code should produce output like the following: 

Estimate: 0.9250 prob: 9.12% --> m: 0.87, want: 1 
Estimate: 0.8843 prob: 4.73% --> m: 2.02, want: 2 
Estimate: 0.1460 prob: 0.80% --> m: 3.14, want: 3 
Estimate: 0.1714 prob: 0.73% --> m: 4.21, want: 4 
Estimate: 0.8125 prob: 1.04% --> m: 4.94, want: 5 

We can see that our estimates will round to the correct number of solutions. Also 

note that the probability of a solution decreases significantly with higher values of M. 

10.4 Amplitude Estimation

In Section 10.3 on quantum counting, we constructed the Grover operator using Hada-

mard gates as the “algorithm” to put the state in an equal superposition of basis states. 
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Then we used phase estimation (details in Chapter 11) to calculate the operator’s 

eigenvalue. From this value, given that there was an equal superposition, we could 

count the number of solutions. However, equal superposition is really a special case. 

Quantum Amplitude Estimation (QAE) is the generalization of this procedure to 

unequal superpositions. In QAE, an algorithm A will put the state in a potentially 

unequal superposition of special elements ( ′ x i ) and regular elements (xi). QAE then

estimates the probability of finding a solution. 

To recap, we have seen in Section 10.1 that for a population of N elements with M 

solutions, we can write the state as the following, defining the initial angle between 

|ψ⟩ and |α⟩ as φ/2: 

N − M M |ψ⟩ = |α⟩ + |β⟩, and 
N N� � � � 
φ φ |ψ⟩ = cos |α⟩ + sin |β⟩. 
2 2 

r r 

(10.12)

Taken together, QAE will estimate the probability of finding a solution as � � 

sin2 φ 
= 

M 
. 

2 N 
(10.13)

In QAE, we can use any unitary matrix representing an algorithm for state prepa-

ration. Consequently, we change the code that constructs the Grover operator in the 

same way as Equation (10.11) in Section 10.2 on amplitude amplification with an 

algorithm A: 

Q = AU A†Uf .

⊤ 

Similarly to quantum counting, we apply phase estimation on Q. For a given eigen-

vector |u⟩ with eigenvalue 2πiφ e , phase estimation gives us the value φ. From Equation 

(10.13) we know that we are looking for φ/2. Since φ is an angle and we work within 

a trigonometric context, phase estimation typically returns a phase in units ranging 

from 0 to 1, rather than 0 to 2π. To convert this phase into the correct trigonometric 

angle, the phase is multiplied by 2π. Since Equation (10.13) involves φ/2, multiplying 

by π adjusts the phase correctly and eliminates the need to divide φ by 2 again. Once 

we have that, we know the probability of finding at least one solution. 

The implementation is quite similar to quantum counting. In the code snippet 

below, we only highlight the few code changes required for this generalization. First, 

we modify make_f again and add a parameter specifying the list of solutions we want 

to mark as special elements. 

PY 
Find the code 
In file src/amplitude_estimation.py 

def make_f(nbits: int, solutions: List[int]): 
answers = np.zeros(1 << nbits, dtype=np.int32) 
answers[solutions] = 1 
return lambda bits: answers[helper.bits2val(bits)] 

http://www.github.com/qcc4cp/qcc/blob/main/src/amplitude_estimation.py
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We pass in the unitary representing the algorithm as parameter algo and construct 

the Grover operator with it. We also pass in the specific solutions that should be 

marked: 

def run_experiment(nbits_phase: int, nbits_grover: int, 
algo: ops.Operator, 
solutions: List[int]) -> None: 

[...] 
inversion = algo.adjoint()(reflection(algo)) * ops.Identity() 
grover = inversion(u) 
[...] 

As in quantum counting in Section 10.3, we perform phase estimation and apply 

the inverse QFT. Using Equation (10.12), we calculate the amplitude ampl, print, and 

return it. 

psi = ops.PhaseEstimation(grover, psi, nbits_phase, nbits_phase) 
psi = ops.Qft(nbits_phase).adjoint()(psi) 

maxbits, _ = psi.maxprob() 
ampl = np.sin(np.pi * helper.bits2frac(maxbits[:nbits_phase])) 

print(' AE: ampl: {:.2f} prob: {:5.1f} % {}/{} solutions ({})' 
.format(ampl, ampl * ampl * 100, len(solutions), 

1 << nbits_grover, solutions)) 
return ampl 

The code in the open-source repository explores a few examples of equal and 

unequal state superposition with a varying number of solutions. In the first experiment, 

we create an equal superposition state of n = 3 qubits with Hadamard gates. We range 

the number of solutions from 0 to 2n , selected at random. We compute the resulting 

amplitude and ensure it is close to the expected amplitude. This is easy to calculate 

because it must adhere to the equal superposition. For eight qubits, the probability 

of finding a solution with zero marked elements must be zero. If all eight solutions 

are marked, the probability of finding a solution must be 100%. For everything in 

between, the probability should be a multiple of 1/8. 

algorithm = ops.Hadamard(3) 
for nsolutions in range(9): 

ampl = run_experiment(7, 3, algorithm, 
random.sample(range(2**3), nsolutions)) 

if not math.isclose(ampl, np.sqrt(nsolutions / 2**3), abs_tol=0.03): 
raise AssertionError('Incorrect AE.') 

>>> 
Algorithm: Hadamard (equal superposition) 

AE: ampl: 0.00 prob: 0.0% 0/8 solutions ([]) 
AE: ampl: 0.34 prob: 12.1% 1/8 solutions ([4]) 
AE: ampl: 0.47 prob: 22.7% 2/8 solutions ([0, 1]) 
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[...] 
AE: ampl: 0.93 prob: 87.0% 7/8 solutions ([3, 6, 4, 5, 1, 2, 7]) 
AE: ampl: 1.00 prob: 100.0% 8/8 solutions ([6, 0, 4, 5, 7, 3, 2, 1]) 

To experiment with other algorithms, we create a random operator that will produce 

an unequal superposition of basis states. In the next experiment, we individually mark 

a single basis state as a special element and ensure that the estimated probability 

matches the amplitude of that state. 

In the code snippet below, we dump the state as a reference to display the proba-

bility amplitudes for each basis state. Then we run the experiment, iterating over the 

basis states and marking a single basis state by passing a single-element list [i]. As 

we print the estimated probabilities, you can see that they match within the rounding 

accuracy: 

i1 = ops.Identity(1) 
algorithm = (ops.Hadamard(3) @ 

(ops.RotationY(random.random()/2) * i1 * i1) @ 
(i1 * ops.RotationY(random.random()/2) * i1) @ 
(i1 * i1 * ops.RotationY(random.random()/2))) 

psi = algorithm(state.zeros(3)) 
psi.dump() 
for i in range(len(psi)): 

ampl = run_experiment(7, 3, algorithm, [i]) 
>>> 
Algorithm: Random (unequal superposition), single solution 
|000> (|0>): ampl: +0.53+0.00j prob: 0.28 Phase: 0.0 
|001> (|1>): ampl: +0.39+0.00j prob: 0.15 Phase: 0.0 
[...] 
|111> (|7>): ampl: +0.20+0.00j prob: 0.04 Phase: 0.0 

AE: ampl: 0.53 prob: 28.6% 1 out of 8 solutions ([0]) 
AE: ampl: 0.38 prob: 14.3% 1 out of 8 solutions ([1]) 
[...] 
AE: ampl: 0.20 prob: 3.8% 1 out of 8 solutions ([7]) 

In a final experiment, we take the same unequal superposition state and vary the 

number of marked solutions from 0 to 2n . Again, for zero marked solutions, the 

probability of finding a solution should be zero. If all states are marked, the probability 

should be 100%. The probabilities for k marked solutions with k ∈ [1,2n − 1] should 
7accumulate as the sum of the individual probabilities of the marked states: 

print('Algorithm: Random (unequal superposition), multiple solutions') 
for i in range(len(psi)+1): 

ampl = run_experiment(7, 3, algorithm, [i for i in range(i)]) 
>>> 
Algorithm: Random (unequal superposition), multiple solutions 

AE: ampl: 0.00 prob: 0.0% 0/8 solutions ([]) 

7 I’m pushing the limits with the list comprehension [i for i in range(i)]. For clarity, the 

rightmost i is from the outer loop. 
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AE: ampl: 0.53 prob: 28.6% 1/8 solutions ([0]) 
AE: ampl: 0.65 prob: 43.2% 2/8 solutions ([0, 1]) 
[...] 
AE: ampl: 1.00 prob: 100.0% 8/8 solutions ([0, 1, 2, 3, 4, 5, 6, 7]) 

With all these pieces in place, let’s explore a few practical applications of Grover’s 

algorithm. 

10.5 Boolean Satisfiability

The question of Boolean Satisfiability is the following: Given a Boolean formula in 

Conjunctive Normal Form (CNF), does this formula have an assignment of values to 

variables such that the formula is True? A CNF is defined as follows. 

A literal is a Boolean variable or its negation, written as x or ¬x.• 

• A clause is a disjunction (logical OR, ∨) of literals, for example 

(x0 ∨ ¬x1 ∨ ¬x2). 

• A formula is a conjunction (logical AND, ∧) of clauses, for example 

(x0 ∨ ¬x1 ∨ ¬x2) ∧ (¬x0 ∨ ¬x2). 

The goal is to find an assignment of the Boolean values True (T) and False (F) to 

variables xi such that the formula becomes true. For example, for the clause (x0 ∨ 
¬x1 ∨¬x2), an assignment of x0 = T and any random Boolean value for x1 and x2 will 

make the clause yield True, as the values are OR’ed together. Only one element of the 

clause needs to yield True for the clause to become True. 

Classically, this problem has an exponential run time and belongs to the class of 

NP-complete algorithms. In fact, this problem was the first problem that Cook (1971) 

found to belong to this complexity class. The good news for us quantum programmers 

is that we can use Grover’s algorithm for this problem. Let us see how to do that. In 

the implementation, we provide an oracle-based solution and a circuit-based solution 

(we only describe the latter here; it is the more interesting one). 

A 3SAT problem is a CNF where each clause has exactly 3 literals, each involving 

a different variable. For example 

(x0 ∨ ¬x1 ∨ ¬x2) ∧ (¬x0 ∨ ¬x4 ∨ x7). 

The restriction to 3SAT standardizes the problem somewhat. To keep things simple 

in our code, we further require that every clause contains all literals. We won’t allow a 

clause like (x0 ∨ x1 ∨ x3), as it misses the literal x2. We further simplify and only deal 

with a single clause, but in exchange, we allow it to have more than three literals. This 

is meant to simplify the implementation only; it does not restrict the generality of the 

approach (as we can convert any CNF into a 3CNF). 

We represent the clause with a simple list of 0s and 1s, where a 1 means that the 

literal is to be taken, well, literally, while a value of 0 means that the literal should 
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be negated. In other words, the list [1, 0, 1] corresponds to the clause x0 ∨ ¬x1 ∨ 
x2. The 0 at index 1 indicates that x1 is to be negated. A formula is then just a list 

of clauses. In code, to produce random clauses and formulas, we use the function 

make_clause. 

PY 
Find the code 
In file src/sat3.py 

def make_clause(variables: int): 
return [random.randint(0, 1) for _ in range(variables)] 

def make_formula(variables: int, clauses: int): 
return [make_clause(variables) for _ in range(clauses)] 

To evaluate whether a given list of bits satisfies a given clause, we check for every 

bit whether it matches the bit in the list representing the clause. This makes it easy to 

evaluate a complete formula for a given bit string: 

def eval_formula(bits, clauses: List[List[int]]): 
for clause in clauses: 

res = [bit == clause[idx] for idx, bit in enumerate(bits)] 
if not True in res: 

return False 
return True 

Another simplification in our approach is that we need to find a negative solution. 

We want to find a string of bits for which the formula is false. A clause is false if all 

assigned literals evaluate to false, which, in effect, inverts the clause. Since we only 

deal with a single clause, only one bit assignment will yield False. There is only one 

solution and that makes things work nicely with Grover’s algorithm, as we shall see 

shortly. To find negative solutions classically, we use this function: 

def find_negative_solutions(variables: int, formula): 
for bits in itertools.product([0, 1], repeat=variables): 

res = eval_formula(bits, formula) 
if not res: 

return bits 

This is all we need for the classical scaffolding code. Now we can move to the 

quantum part and the implementation of Grover’s algorithm for this problem. The 

circuit is shown in Figure 10.15. We add a helper function for the inversion about the 

mean operation, as discussed in Section 10.1.9. This is represented by the gate U ⊤

a controlled X gate to the right of state |ψ3⟩ in the figure. The corresponding code is: 

def diffuser(qc: circuit.qc, reg, checker, aux): 
qc.h(reg) 
qc.x(reg) 

and 

http://www.github.com/qcc4cp/qcc/blob/main/src/sat3.py
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|ψ1⟩ |ψ2⟩ |ψ3⟩ 

|0⟩ H 

U ⊤ 

|1⟩ H X X 

|0⟩ H 

|aux0⟩ 

|aux1⟩ 

|aux2⟩ 

|w0⟩ 

|w1⟩ 

|chk⟩ Z X 

Figure 10.15 Initialization and a single step of the Grover algorithm to compute Boolean 

satisfiability for the clause (x0 ∨ ¬x1 ∨ x2). The gate between states |ψ2⟩ and |ψ3⟩ represents 

the phase inversion operator. The operator on the right represents the inversion about the mean 

operator, which covers only the top three qubits. Gates required for uncomputation are not 

shown in this figure. 

qc.multi_control(reg, checker, aux, ops.PauliX(), 'Diffuser Gate') 
qc.x(reg) 
qc.h(reg) 

To implement Grover’s algorithm for this problem, we first compute the single 

clause we want to experiment with, find a solution classically, and compute the number 

of required iterations in the default way by using the number of literals (variables): 

def grover_with_circuit(variables: int = 3): 
formula = make_formula(variables, 1) 
clause = formula[0] 
solution = find_solutions(variables, formula) 
iterations = int(math.pi / 4 * math.sqrt(2**variables)) 

To construct the circuit, we create a register reg to hold the initial values of the 

clause. We create another register aux of the same size and copy the original or 

negated values to it with controlled X gates. To verify the equality of two or more 

values, we create another register w and use a cascade of Toffoli gates to accumulate 

the final result in a single qubit register chk. 

qc = circuit.qc('Outer') 
reg = qc.reg(variables, 0) 
aux = qc.reg(variables, 0) # can be optimized away. 

w = qc.reg(variables - 1, 0) 
chk = qc.reg(1, 0)[0] 
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In code, following Grover’s algorithm, we apply Hadamard gates to the initial 

register reg. Then we iterate iterations times and construct a subcircuit cc in each 

iteration. We want to find an assignment to the clause that returns false. De Morgan’s 

law tells us that to negate a clause, we have to negate each literal individually and 

change the logical OR to a logical AND: 

¬(x ∨ y ∨ z) = ¬x ∧ ¬y ∧ ¬z. 

If a literal is already negated, we leave it alone and copy the corresponding qubit 

from reg to aux with a controlled X gate. If it still needs to be negated, we negate 

it explicitly by bracketing the controlled X gates with single X gates before and after. 

This corresponds to the circuit to the left of state |ψ1⟩ in Figure 10.15. Using the 

subcircuit (cc) makes the uncomputation below quite convenient: 

qc.h(reg) 
for _ in range(iterations): 

cc = circuit.qc('Gates', eager=False) 

# First we negate each literal if it was not already negated. 

for idx in range(variables): 
if clause[idx] == 1: 

cc.x(reg[idx]) 
cc.cx(reg[idx], aux[idx]) 
cc.x(reg[idx]) 

else: 
cc.cx(reg[idx], aux[idx]) 

To compute the logical AND between qubits, we compute a cascade of Toffoli 

gates, using the w register to store temporary intermediate comparison results in the wi 

ancilla qubits. This cascade is shown in Figure 10.15 as the gates between the states 

|ψ1⟩ and |ψ2⟩. 

cc.toffoli(aux[0], aux[1], w[0]) 
for idx in range(2, variables): 

cc.toffoli(aux[idx], w[idx - 2], w[idx - 1]) 

Finally, we link this subcircuit (cc) to the main circuit. Then we use a controlled 

Z gate to export the final result to the chk register. The gate between states |ψ2⟩ and 

|ψ3⟩ corresponds to the phase-inversion operator outlined in Section 10.1.8. 

We have to uncompute the subcircuit, which we can do quite conveniently with 

the inverse function of the subcircuit (the uncomputation gates are not shown in the 

figure). As a final step, we add the mean-inversion circuit from above. Note that this 

diffuser operator only connects the three input qubits and the final result qubit. 

# Add and execute the subcircuit. 

qc.qc(cc) 
# Phase inversion - connect the result to the chk qubit. 
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qc.cz(w[idx - 1], chk) 
# Uncompute the subcircuit. 

qc.qc(cc.inverse()) 
# Mean inversion. 

diffuser(qc, reg, chk, aux) 

This completes the implementation of the Grover algorithm for this problem. All 

that is left to do is to find the state with the highest probability and compare it with the 

expected results. 

maxbits, maxprob = qc.psi.maxprob() 
print(f'Circuit: Want: {list(solution[0])}, ', end='') 
print(f'Got: {list(maxbits[:variables])}, p: {maxprob:.2f}') 
assert solution[0]) == maxbits[:variables], 'Incorrect Result' 

Lastly, we perform experiments with clauses of varying length and verify that this 

works as expected: 

def main(argv): 
for variables in range(4, 7): 

grover_with_circuit(variables) 
>> 
Circuit: Want: [1, 1, 1], Got: [1, 1, 1], p: 0.44 
Circuit: Want: [0, 1, 1], Got: [0, 1, 1], p: 0.44 
Circuit: Want: [0, 1, 0], Got: [0, 1, 0], p: 0.44 
Circuit: Want: [1, 1, 0, 0], Got: [1, 1, 0, 0], p: 0.38 
Circuit: Want: [1, 1, 1, 1, 0], Got: [1, 1, 1, 1, 0], p: 0.35 
Circuit: Want: [0, 0, 0, 1, 0, 1], Got: [0, 0, 0, 1, 0, 1], p: 0.32 

10.6 Graph Coloring

Graph coloring is the problem of assigning labels to vertices in a graph such that no 

pair of vertices connected by an edge have the same label. Traditionally, those labels 

are called “colors.” In our case, we use integers to represent colors. For example, in 

Figure 10.16, you can see that only two colors are needed to color a line graph with 

only one edge or a rectangular graph. For a triangle, on the other hand, you need three 

colors. 

If a maximum of k colors is required to color a graph, we call that k-coloring. 

Graph coloring has many applications, such as map coloring or register allocation in a 

compiler (Briggs, 1992). In the general case, the complexity of this problem appears ( ) 
to be O 2.4423n in time and space for a graph with n vertices (Lawler, 1976). Better-

performing solutions have been found for special types of graphs, such as constraint 

graphs (Wikipedia, 2021e). 

Let us see how we can use Grover’s algorithm for this problem. To simplify the 

code, we turn the problem on its head and find solutions where all vertices have the 

same color. This makes the code less complex without limiting generality. 
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1 

2 

1 

2 1 

2 3 

1 

2 

Figure 10.16 Coloring of graphs. A line and a rectangle only need two colors, while a triangle 

needs three. 

We use basis encoding to represent vertices and their colors. For example, to rep-

resent up to four colors, we will need two qubits to represent the coloring of a single 

vertex. In general, if we have a graph with n vertices that require m colors, we will need 

n ⌈log2(m)⌉ qubits (rounded up to the next integer). For example, for a graph with four 

nodes and four colors, we can represent its state with eight qubits as follows, where 

each vertex is represented by the two qubits specifying one of four possible colors. 

The first two qubits, representing vertex v0, have color c0 or binary 0b00. Vertex v1 

has color c2 or binary 0b10. Vertex v2 has color c3 (0b11), and vertex v3 has color c1 

(0b01): 

| 0 0 1 0 1 1 0 1⟩. 
v0:c0 v1:c2 v2:c3 v3:c1 

To define a graph in code, we build a simple Graph data structure. The edges of 

the graph are tuples of two integers representing the from and to vertices.8 We add a 

member function to verify whether or not all colors in the state representing the graph 

are equal. We restrict ourselves to four colors, represented by two qubits per color. 

PY 
Find the code 
In file src/graph_coloring.py 

class Graph: 
def __init__( 

self, num_vertices: int, desc: str, edges: List[Tuple[int, int]] 
): 

self.num = num_vertices 
self.edges = edges 
self.desc = desc 

def verify(self, bits, n: int = 2): 
for edge in self.edges: 

if (bits[edge[0] * n: edge[0] * n + n] != 
bits[edge[1] * n: edge[1] * n + n]): 

return True # different colors! 

return False # all colors are the same. 

8 We use these terms even though the edges are not directed. 

http://www.github.com/qcc4cp/qcc/blob/main/src/graph_coloring.py
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Table 10.1. Truth table for the controlled X gate. |φ⟩ 
is |0⟩ for identical inputs. 

|ψ⟩ |φ⟩ → |φ⟩

|0⟩ |0⟩ |0⟩ 
|0⟩ |1⟩ |1⟩ 
|1⟩ |0⟩ |1⟩ 
|1⟩ |1⟩ |0⟩ 

|ψ⟩ = |0/1⟩ 

|φ⟩ = |0/1⟩ |0⟩ ,if |ψ⟩ = |φ⟩ 

Figure 10.17 A single controlled X gate with inputs of |0⟩ or |1⟩. If |ψ⟩ and |φ⟩ are both |0⟩ or

both |1⟩, we will measure |0⟩ on qubit |φ⟩. 

|a⟩ 

|b⟩ 

|c⟩ X X 

|d⟩ 

|w⟩ |1⟩ , if |a⟩ = |c⟩ 

Figure 10.18 Check two qubits a and c for equality with a controlled Not gate. If they are equal, 

qubit c will be in state |0⟩. We use a Controlled-by-0 X gate from c to w to record this result as 

a state |1⟩ in the ancilla w. The final controlled X gate is for uncomputation. 

To compare qubits, let’s look at the truth table of the controlled X gate in 

Figure 10.17. As you can see in Table 10.1, the second qubit φ will be in state |0⟩ 
if the input qubits both are in the same state |0⟩ or |1⟩. In larger circuits, it is always 

good practice to avoid entangling ancillary qubits. In order to compare two qubits, we 

construct the circuit in Figure 10.18, which includes the uncomputation, and record 

the result in an ancilla qubit. This scheme can easily be extended to compare arbitrary 

tuples of qubits for equality, or even inequality, with just minor changes. Since we 

restrict ourselves to only four vertices and colors, we must compare pairs of qubits. 

For this, we build the circuit in Figure 10.19. 

In code, we add the identical diffuser helper function for the standard mean 

inversion operator from Section 10.5. To implement the circuit shown in Figure 10.19 

to compare pairs of qubits, we add this function: 

def compare_pairs(qc, a, b, c, d, w0, w1, chk):
qc.cx(a, c)
qc.cx0(c, w0)
qc.cx(b, d)
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|a⟩ 

|b⟩ 

|c⟩ 

|d⟩ 

|w0⟩ 

|w1⟩ 

|chk⟩ 

Figure 10.19 Compare pairs of qubits (a,b) = (c,d) for equality and record the result in the 

ancillary qubit |chk⟩. The first two gates compare |a⟩ and |c⟩ and record the result in |w0⟩. 
Gates three and four compare |b⟩ and |d⟩ and record the result in |w1⟩. The double-controlled 

Not gate then compares |w0⟩ and |w1⟩ and records the result in |chk⟩. The remaining gates are 

for uncomputation. 

qc.cx0(d, w1) 

qc.ccx(w0, w1, chk) 

qc.cx0(d, w1) 
qc.cx(b, d) 
qc.cx0(c, w0) 
qc.cx(a, c) 

With these preliminaries in place, we can now implement the whole circuit. To 

represent all vertices, we create the register reg with two qubits per vertice. We use 

the register chk to keep all the intermediate comparison results. A multi-controlled 

gate over this complete register will place the final result in the register res. We will 

have to connect chk with res in the phase inversion and reg with res in the mean 

inversion. For proper uncomputation, we utilize a subcircuit in the construction below. 

def build_circuit(g: Graph): 
qc = circuit.qc('Graph Circuit') 
reg = qc.reg(g.num * 2) 
chk = qc.reg(len(g.edges)) 
res = qc.reg(1)[0] 
tmp = qc.reg(g.num * 2 - 1) 

iterations = int(math.pi / 4 * math.sqrt(2**(g.num * 2))) 
qc.h(reg) 
for _ in range(iterations): 

sc = qc.sub() 
for idx, edge in enumerate(g.edges): 

fr = edge[0] * 2 
to = edge[1] * 2 
compare_pairs(sc, fr, fr + 1, to, to + 1, tmp[0], tmp[1], chk[idx]) 
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# Phase inversion. 

qc.qc(sc) 
qc.multi_control(chk, res, tmp, ops.PauliZ(), 'multi') # (!) 

qc.qc(sc.inverse()) 

# Mean inversion. 

diffuser(qc, reg, res, tmp) 

To check the results, we test each basis state with nonzero probability. Since we 

want all colors to be the same, we require that all pairs of qubits be the same. We 

should find exactly four solutions for each input problem, one for each of the color 

combinations (0,0), (0,1), (1,0), and (1,1). 

# results, show all states with nonzero probability. 

_, maxprob = qc.psi.maxprob() 
for idx, val in enumerate(qc.psi): 

if np.real(val.conj() * val) > (maxprob - 0.005): 
bits = helper.val2bits(idx, qc.nbits) 
print(' Color:', bits[0 : g.num * 2]) 
assert not g.verify(bits), 'Incorrect color assignment found.' 

After that, we construct a few simple graph shapes and verify that the implementation 

works as expected. 

def main(argv): 
print("Graph coloring via Grover's Search. ", end='') 
print('Find identical colors (2 qubits each).') 
build_circuit(Graph(2, 'simple line', [(0, 1)])) 
build_circuit(Graph(3, 'simple triangle', [(0, 1), (1, 2), (2, 0)])) 
build_circuit(Graph(4, 'star formation', [(0, 1), (0, 2), (0, 3)])) 
build_circuit(Graph(4, 'rectangle', [(0, 1), (1, 2), (2, 3)])) 

>> 
Solving [simple line]: 2 vertices, 1 edges -> 9 qubits 

Color: [0, 0, 0, 0] 
Color: [0, 1, 0, 1] 
Color: [1, 0, 1, 0] 
Color: [1, 1, 1, 1] 

Solving [simple triangle]: 3 vertices, 3 edges -> 15 qubits 
Color: [0, 0, 0, 0, 0, 0] 
Color: [0, 1, 0, 1, 0, 1] 
Color: [1, 0, 1, 0, 1, 0] 
Color: [1, 1, 1, 1, 1, 1] 

[...] 
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10.7 Quantum Mean Estimation

Grover’s algorithm can find the mean of a set of values, as proposed in Terhal (1999). 

A more straightforward way was described by Mosca (2008), which is the approach 

we will discuss here. We assume that we have N = 2n values (represented by n qubits), 

for which we want to calculate the mean. If the values do not sum up to 1.0, we must ( ) 
normalize them. For an example vector of 1 3 6 7 , we use the L2 norm and 

divide the vector by its norm to get normalized vector xn and mean xn as 

1 3 6 7 ( ) 
xn = = 0.103 0.308 0.616 0.718 ,|x| 
xn = 0.436. 

( ) 

To calculate the original mean, we multiply the normalized mean by the norm. 

We define the functions f (i) to return the ith original value and F(i) to return the 

normalized value at index i. Recall from Section 9.1.3 that with a rotation about the 

y-axis by an angle θ = 2 arcsin(α), we can transform the basis state |0⟩ into p 
Ry(θ) |0⟩ = 1 − α2 |0⟩ + α |1⟩ . 

For more than one qubit, the “trick” for quantum mean estimation is to construct a 

circuit that applies specific controlled rotations to each basis state |i⟩ in equal super-

position. We construct a circuit implementing a unitary Ua such that 

1 ( )⊗n
Ua : |0⟩ |0⟩ 7→ |i⟩ 1 − F(i)2|0⟩ + F(i)|1⟩ , 

2n/2 
i 

∑ q 

with |i⟩ as the basis state representing the index of the ith value in binary. For example, 

F(|011⟩) would return the normalized value at index 3 (0b011). 

For two qubits, the circuit looks like the one in Figure 10.20. First, we put the state 

in an equal superposition with Hadamard gates. We use multi-controlled rotation gates 

to rotate each basis state |i⟩ in binary form by an angle θi = 2 arcsin(F(i)). For a 0 

in the binary representation of |i⟩, we use a Controlled-by-0 rotation gate. For a 1, 

we use a Controlled-by-1 gate. For two qubits, there are 22 = 4 bit patterns or four 

multi-controlled rotation gates. After the rotations, we get out of the superposition 

with another set of Hadamard gates. The resulting amplitude of measuring a |1⟩ on 

|1⟩ 

|0⟩ H H 

|0⟩ H H 

Ancilla |0⟩ H θ0 θ1 θ2 θ3 H 

Figure 10.20 Quantum circuit to compute the mean over 2N values, shown for N = 2. 
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the ancilla qubit will then accumulate to the mean μ with 

∑ F(i) 
= μ. 

2n/2 
i 

The reason for the normalization by 2n/2 is related to the distribution of the 

amplitudes across the states in superposition. Since the initial Hadamard gates create 

2n 1
n

2 /2 states with the same amplitude , this factor appears in the calculation of the 

final mean. 

Let us explore this in code. In each experiment, we create a random array of 

nbits positive and negative values and store the normalized vector in variable xn. 

We construct a state consisting of input qubits, auxiliary ancilla qubits for the multi-

controlled rotations, and the extra ancilla for the rotations. 

PY 
Find the code 
In file src/quantum_mean.py 

def run_experiment(nbits: int): 
x = np.array([random.randint(0, 10) - 5 for _ in range(2**nbits)]) 
xn = x / np.linalg.norm(x) 

qc = circuit.qc('mean calculator') 
inp = qc.reg(nbits, 0) # State input. 

aux = qc.reg(nbits - 1, 0) # Aux qubits for multi-contrl. gates. 

ext = qc.reg(1, 0) # Target 'extra' qubit. 

Next, we apply the rotation gates using the bit patterns of the binary representations 

of the basis states |i⟩ to determine whether to use a Controlled-by-0 or Controlled-

by-1 gate. We use these bits to multi-control a y-rotation by the values stored in xn, as 

explained above. We bracket the whole circuit with Hadamard gates: 

qc.h(inp) 
for bits in itertools.product([0, 1], repeat=nbits): 

idx = helper.bits2val(bits) 
# Control-by-zero is indicated with a single-element list. 

ctl = [i if bit == 1 else [i] for i, bit in enumerate(bits)] 
qc.multi_control(ctl, ext, aux, 

ops.RotationY(2 * np.arcsin(xn[idx]))) 
qc.h(inp) 

Now, recall that the state vector for |00 . . . 1⟩ holds a single 1 at index 1 and 0s 

everywhere else. In other words, we can obtain the probability amplitude for this 

state by looking at index 1 in the state vector. To obtain the original classical mean 

qclas, we multiply this value by the vector norm, undoing the above normalization. 

In the code below, we calculate these values, assert that they are equal, and run a few 

experiments over a range of numbers of qubits: 

http://www.github.com/qcc4cp/qcc/blob/main/src/quantum_mean.py
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qmean = np.real(qc.psi[1]) 
qclas = np.real(qc.psi[1] * np.linalg.norm(x)) 

# Check results. 

assert np.allclose(np.mean(xn), qmean, atol=0.001), 'Whaaa' 
assert np.allclose(np.mean(x), qclas, atol=0.001), 'Whaaa' 
print(f'Mean ({nbits} qb): classic: {np.mean(x):.3f}, q: {qclas:.3f}') 

def main(argv): 
for nbits in range(2, 8): 

run_experiment(nbits) 
>> 
Mean (2 qb): classic: 0.500, q: 0.500 
Mean (3 qb): classic: -1.125, q: -1.125 
Mean (4 qb): classic: -1.688, q: -1.688 
Mean (5 qb): classic: -0.500, q: -0.500 
Mean (6 qb): classic: 0.172, q: 0.172 
Mean (7 qb): classic: 0.227, q: 0.227 

10.8 Quantum Minimum Finding

We discussed black-box algorithms in Chapter 8. Sometimes, these algorithms appear 

to push the reasoning about their quantum advantage a bit too far. A good example 

may be the often-cited quantum minimum finding algorithm published by Durr and 

Hoyer (1999). Since it utilizes Grover’s algorithm at its core, we discuss it here with 

focus on a few important aspects of this algorithm. 

To establish a quantum advantage, the algorithm makes several assumptions and 

simplifications that may be impossible to implement on a real machine. However, as 

long as we just pretend that some of the assumptions can be implemented at zero cost, 

the algorithm does have a quantum advantage. The basic algorithm goes as follows, 

with a short example shown in Figure 10.21. 

3 5 11 15

found 

0 1 2 4 6 7 8 9 10 12 13 14 16 . . .. . .0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 m 

3 50 1 2 4 6 7 8 9 10 11 12 13 14 15 16 . . .. . . 

found 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 m 

(a) In the range of 0 . . . m, we want to find the minimum of the four elements marked 
in gray. In the example, QAA found element 11. 

(b) In a second step, only elements smaller than 11 are marked. In the example, QAA 
found element 3, which is the minimum. 

Figure 10.21 An example of the quantum minimum finding algorithm. 
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1. First, we need to define the set of numbers for which we want to find the 

minimum. In code, we create a set of num_vals random numbers in a given range 

with function get_distro. 

PY 
Find the code 
In file src/minimum_finding.py 

def get_distro(min_value: int, max_value: int, num_vals: int): 
return sorted(np.random.choice( 

np.arange(min_value, max_value), num_vals)) 

We should think of the whole range of numbers as the available state space and the 

generated list of numbers as the special elements or the set of solutions S. 

2. The goal is to find the smallest number in the set of special elements. We will use 

Grover’s algorithm to achieve this goal. The number of elements in S should be 

small compared to the whole range of numbers to ensure that we find a solution 

with reasonably high probability. In the example in the figure, the range of 

numbers goes from 0 to a maximum number m, all represented by basis states. We 

only mark the four elements 3, 4, 11, and 15. 

Similarly to the regular Grover algorithm, we construct a function in make_f 

that returns a 1 for every marked number in the set. However, there is a twist: We 

mark a value only if it is smaller than a given value M. This is easy to do in code9 

and perhaps in a thought experiment. However, this may be impossible to 

implement efficiently on a quantum computer. Again, here we pretend it would be 

possible at zero cost. Note that we already know the minimum classically as we 

construct the oracle and mark the values. Note that as we construct the oracle and 

mark the values, we already know the minimum classically. In the example in 

Figure 10.21(a), since we know that 15 is the largest value M, we would start by 

picking M + 1 as the upper bound. 

def make_f(d: int, numbers: List[int], max_value: int): 
num_inputs = 2**d 
answers = np.zeros(num_inputs, dtype=np.int8) 
answers[[i for i in numbers if i < max_value]] = 1 
return lambda bits: answers[helper.bits2val(bits)] 

3. The third step is now identical to what is found in Grover’s algorithm. After 

performing this algorithm, the marked special elements will have a higher 

amplitude than the remaining elements in the list. We use this fact to measure and 

find one of the marked values, which are all smaller than a given M. 

4. In terms of measurement, we simulate measurement by simply picking one of the 

found elements. All marked elements have a higher probability than the other 

9 Note the clever loop comprehension used as index expression. 

http://www.github.com/qcc4cp/qcc/blob/main/src/minimum_finding.py
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states, so this approach is reasonably legitimate. In the example in the figure, 

element 11 was found in the first iteration. 

new_max = np.random.choice(results) 
print(' -> New Max:', new_max) 
result = f(helper.val2bits(new_max, nbits)) 
assert result == 1, 'something went wrong, measured invalid state' 
return new_max 

5. Now go back to step 2 and use the newly found upper bound 11 as the new 

maximum M to mark the remaining special elements. In the example, we find 

element 3 in the next step. Just by chance, this value is also the minimum. 

6. As soon as we hit the smallest value, we are done. We have found the smallest 

special element. 

There are concerns with this approach and its claims of a quantum advantage: 

• The oracle has to be constructed somehow. However, the paper assumes that this 

construction is free and has zero cost. This point is moot if we only consider query 

complexity. 

• We terminate after finding the smallest number, but this requires knowing the 

smallest number. Alternatively, we run Grover’s algorithm multiple times. If, at a 

given step, Grover fails to find elements smaller than the current limit M, we may 

have found the smallest element. 

• We must know how many numbers remain below a current maximum to adjust the 

Grover iteration number (even though there may be ways around this). 

The last two points could be solved via quantum counting or perhaps other mecha-

nisms to find when there is no more solution to be marked. However, taken together, 

this algorithm makes several critical assumptions. If all assumptions hold, the algo-

rithm would indeed demonstrate a quantum speed-up because of the use of Grover’s 

algorithm. However, this author happens to believe that this algorithm, as stated, is 
10not implementable in a practical or efficient way. Depending on the use case, 

combining classical and quantum computations may solve this particular problem 

in a more assumption-free way. 

10.9 Quantum Median Estimation

We can combine the estimation of the quantum mean and quantum minimum find-

ing to determine the median of an ensemble of data points (Brassard et al., 2011). 

However, let us be cautious; besides the assumptions from the quantum algorithm 

for minimum finding, this algorithm makes further assumptions that may not be 

feasible to implement efficiently on a quantum computer. 

10 Stated with the caveat that, as usual, I might be wrong. 
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The median z is the one value in an ensemble of n values for which the distance 

to all other points in the set is the minimum. With a distance function dist(x,xi) 
between an individual value x and the values xi at index i, we can write z in closed 

form as 
n−1 

z = min dist(x,xi). 
x∈{0,...,xn−1} 

i=0 

∑
To implement a feasibility study of this algorithm, we first create an array of 

random, normalized values in the range of {0, . . . ,2n − 1} for n qubits. 

PY 
Find the code 
In file src/quantum_median.py 

def run_experiment(nbits: int): 
x = np.array([random.randint(0, 2**nbits) for _ in range(2**nbits)]) 
xn = x / np.linalg.norm(x) 

We then iterate over all the n individual values xi in the xn array and compute the 

n difference vectors d⃗ 
i to xi, where the element dij at index j will be the difference 

of element dij and xi: ( )
d⃗i = |x0 − xi|, |x1 − xi|, . . . ,|xn−1 − xi| . 

In programming terms, you can think of this as a two-deep nested loop: 

for idx, z in enumerate(xn): 
diff = [abs(xval - z) for xval in xn] 

It is not clear how to compute the difference vector efficiently in the quantum 

domain. It may be one of those cases where we assume it would be easily doable 

and don’t really care or because we are only interested in the query complexity. 

Assuming that we can use a quantum algorithm to compute the mean, as 

described above, we compute the mean of this vector and store the result for each 

value xi. In a quantum algorithm, we would store all the mean values in a new 

vector and use the quantum minimum finding algorithm to find the smallest value. 

In the code, we do not implement full quantum techniques to find the mean and 

minimum. For the minimum specifically, we just maintain the smallest value as we 

iterate over the elements in xn: 

# Normalization (required for quantum, also improves 

# accuracy by an order of magnitude). 

diffnorm = np.linalg.norm(diff) 

# Compute the mean (which we know how to do quantumly) 

# for the element xn[idx]. 

mean = np.mean(diffnorm) 

http://www.github.com/qcc4cp/qcc/blob/main/src/quantum_median.py
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# Find the minimum (which we would also know how to do quantumly). 

# Here, classically, maintain the index of the smallest element. 

if mean < min_mean: 
min_mean = mean 
median = idx 

Finally, we compare the results and check for correctness, which should produce 

an output like the one shown below. The quantum results are integer indices: 

print( 
f' Median ({nbits} qb): Classic: {np.mean(x):.3f},' 
f' Quantum: {x[median]:.0f}' 

) 
if max(np.mean(x), x[median]) / min(np.mean(x), x[median]) > 1.02: 

raise AssertionError('Incorrect median computation.') 
>> 
Classic Sim of Quantum Median Computation. 
Median (10 qb): Classic: 525.596, Quantum: 525 
Median (10 qb): Classic: 487.644, Quantum: 487 
Median (10 qb): Classic: 517.676, Quantum: 519 

[...] 

https://doi.org/10.1017/9781009548519.011


11 Algorithms Using Quantum 
Fourier Transform 

The Quantum Fourier Transform (QFT) is a cornerstone of several quantum algorithms 

because it leverages the principles of superposition and entanglement to perform a 

Fourier transform on quantum data exponentially faster than classical algorithms. 

This speed-up is crucial for algorithms like Shor’s algorithm, which uses the QFT 

to factor large numbers efficiently, potentially breaking widely used encryption 

schemes. Essentially, the QFT allows quantum computers to analyze the periodic 

patterns in quantum states, revealing hidden information that would be intractable to 

find classically. This ability to efficiently extract information from quantum systems 

makes the QFT a fundamental tool for unlocking the power of quantum computation. 

We start by describing the almost trivial phase kick mechanism that transfers 

a phase from a controlled qubit to its controller. This mechanism is the basis for 

quantum phase estimation (QPE), another fundamental quantum algorithm with 

broad applications. It efficiently estimates the eigenvalues for known eigenvectors of 

a unitary operator. This ability is used in numerous quantum algorithms, including 

Shor’s algorithm, quantum simulations for material science, and quantum chemistry. 

The QPE and QFT are inextricably linked, and one cannot be discussed without the 

other. We first describe the QPE and make forward references to the QFT. 

We follow these fundamental algorithms with a few applications. First, we explain 

a cute way to estimate π. Then we describe the arithmetic operations of addition and 

multiplication in the Fourier domain. With these tools in place, we finally describe 

Shor’s famous algorithm for number factorization. It is a beautiful but complex 

algorithm and one of the main reasons for the excitement in quantum computing. 

11.1 Phase-Kick Circuit 

First, we shall explore the phase-kick mechanism, which is the basis for algorithms 

such as quantum phase estimation and the quantum Fourier transform, as we will see 

shortly. Let us examine the simple phase-kick circuit in Figure 11.1. Why is this circuit 

called a phase kick circuit? The state |ψ1⟩ after the Hadamard gate is 

1 ( )
H |0⟩ ⊗ |1⟩ = |+⟩ ⊗ |1⟩ = √ |0⟩|1⟩ + |1⟩|1⟩ . 

2 

After the controlled S operation, where only the |1⟩ part of the state of the first qubit 

triggers the S gate, the state |ψ2⟩ at the end of the phase-kick circuit is 
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|ψ1⟩ |ψ2⟩ 

|0⟩ H 

|1⟩ S 

Figure 11.1 A simple phase-kick circuit. 

1 ( )
|ψ2⟩ = √ |0⟩|1⟩ + |1⟩S|1⟩ 

2 

1 ( )
= √ |0⟩|1⟩ + |1⟩eiπ/2|1⟩ 

2 

1 ( )
= √ |0⟩ + eiπ/2|1⟩ |1⟩ . 

2 

You can see that the second qubit remains unmodified as |1⟩. The trick is that |1⟩ is 

an eigenstate of the S gate, which allows us to kick the phase from one qubit to another 

via controlled rotations. We will further elaborate on this in Section 11.2.1 on phase 

estimation. 

This mechanism also enabled the Bernstein–Vazirani algorithm, covered in 

Section 8.1. We did not use rotation gates in that implementation, but rather controlled 

Not gates on states in the Hadamard basis. But in this basis, a controlled Not gate 

corresponds to a simple Z gate (see also Section 16.4.5), which manifests as a   180◦

rotation about the z-axis. 

Controlled rotation gates have the nice property that they can be used in an additive 

fashion. An example of this basic principle is shown in Figure 11.2. Here, the two 

top qubits are initialized as |0⟩ and placed in superposition with Hadamard gates. 

A bottom ancilla qubit starts in state |1⟩. We apply the controlled S gate from the 

top qubit to the ancilla, controlling a rotation by  90◦. The T gate on the ancilla is 

controlled by the middle qubit, which controls a rotation by 45◦ . Recall that these 

gates only add a phase to the |1⟩ component of a state: 

� �� � � �( ) 1 0 α α 
S α |0⟩ + β |1⟩ = = = α |0⟩ + iβ |1⟩ .

0 i β iβ 
 

|0⟩ H 

|0⟩ H 

|1⟩ S T 

Figure 11.2 A two-qubit phase-kick circuit. The individual phases add up. 
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PY 
Find the code 
In file src/phase_kick.py 

This is easy to implement with just a few lines of code. 

psi = state.bitstring(0, 0, 1) 
psi = ops.Hadamard(2)(psi) 
psi = ops.ControlledU(0, 2, ops.Sgate())(psi) 
psi = ops.ControlledU(1, 2, ops.Tgate())(psi, 1) 
psi.dump() 

Due to superposition, the |1⟩ part of each of the top two qubits triggers the rotation 

of a controlled gate and adds a local phase to the controlling qubit. Having the top 

qubit as |1⟩ adds   90◦, and the |1⟩ part of the middle qubit adds another 45◦ . Here 

we restrict ourselves to S and T gates, but we could use arbitrary rotations about the 

z-axis. We can use this type of circuit to express additions or subtractions in terms of 

phases as long as we normalize to 2π and avoid overflows. For the example: 

1 2πi/2 πe = e i .• The rotation of 180◦ as a fraction of 2π is  Expressed as a phase 

angle, this is −1. 
2 2πi/2 πi/e = e 2 

• A rotation of   90◦ as a fraction of 2π is , a phase of i. 
π 3 2 i/2 π i/e = e 4 

• The rotation of  45◦ as a fraction of 2π is . 
22πi(1/2 +1/ 32 )e • Finally, a rotation by 135◦ = 90◦ + 45◦ as a fraction of 2π is . 

The resulting probability amplitudes and phases will be as follows: 

|001> (|1>): ampl: +0.50+0.00j prob: 0.25 Phase: 0.0 
|011> (|3>): ampl: +0.35+0.35j prob: 0.25 Phase: 45.0 
|101> (|5>): ampl: +0.00+0.50j prob: 0.25 Phase: 90.0 
|111> (|7>): ampl: -0.35+0.35j prob: 0.25 Phase: 135.0 

This ability to add phases in a controlled fashion is a powerful mechanism and the 

foundation of the quantum Fourier transformation, which we will explore shortly. The 

detailed math for two or more qubits is more challenging, we detail it in Section 11.2.2 

below. 

11.2 Quantum Phase Estimation (QPE) 

Quantum phase estimation (QPE) (Kitaev, 1995) is a key building block for several 

advanced algorithms. It allows finding the unknown eigenvalues for known eigenvec-

tors of a given operator U. After going through the QPE circuit, the state will be in a 

form closely related to the output of the quantum Fourier transform (QFT), which we 

discuss in Section 11.4. In other words, QPE and QFT are inextricably linked, and one 

cannot be discussed without the other. We start by discussing the QPE, but we must 

http://www.github.com/qcc4cp/qcc/blob/main/src/phase_kick.py
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|0⟩t 

|u⟩ 

... 

. . . 
. . . 

... 

... 

... 

... 

H 

H 

H 

H 

U20 

U21 

U22 

U2t−1 

2πi(2t−1 φ)|1⟩e 

. . . 

2πi(22 φ)|1⟩e 

2πi(21 φ)|1⟩e 

2πi(20 φ)|1⟩e 

|u⟩ 

Figure 11.3 The first part of the phase estimation circuit. 

make a few forward references to QFT. Once you are through with the section on the 

QFT, you may want to refer back to this section and fill in the blanks. 

11.2.1 Phase Estimation 

For a given unitary matrix U with a known eigenvector |u⟩ and corresponding 
 unknown eigenvalue e 2πiφ, the quantum phase estimation (QPE) aims to estimate 

the value of φ using a two-step procedure:1 

1. Basis encode the unknown phase using a circuit that produces a result identical to 

the result of a QFT, which we will discuss in Section 11.4 below. 
†2. Apply the adjoint QFT operator to estimate the phase φ as a binary fraction. 

In this section, we focus on the first task. To start, we define a result register with t 

qubits representing the bits in a binary fraction, where t is determined by the precision 

we want to achieve. The more qubits, the more fine-grained fractions of powers of 

2 will approximate the final result. We initialize the t qubits in the first register with 

|0⟩ and put them in equal superposition with Hadamard gates, as shown on the left of 

Figure 11.3. 

We add a second register representing the known eigenvector |u⟩. We connect the 

top result register with controlled gates to a sequence of t instances of U, each taken 

to increasing powers of 2 (U,U2 , . . . ,Ut−1), which we apply to the second register. 

To achieve the powers of 2, we multiply U by itself and accumulate the results. 
0 

U U2
0 = = U0 0For example, we start with U itself, as . Next, we compute U1 = 

1 

U = U2
0U0 0 , the U1U1 to get U2  

2 

= U = U2
1U1 , and so on. The goal is to accumulate 0 

1 The literature distinguishes between quantum phase estimation and quantum eigenvalue estimation. The 

eigenvalues of a unitary operator have unit modulus and are characterized by their phase. Hence, for 

unitary operators, the algorithm can be used for both. Here, we interpret it as the estimation of an 

eigenvalue, as that seems to be the majority opinion. 
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phase information by repeatedly applying these unitaries to the eigenvector |u⟩. The 

entire procedure is shown in Figure 11.3 in circuit notation, and the math is detailed 

in Section 11.2.2 below. 

The first question to ask may be why |u⟩ has to be initialized as an eigenvector. 

Wouldn’t this procedure work for any normalized state vector |x⟩? The answer is no. 

For one or more applications of a unitary U, the eigenvalue equation only holds for 

eigenvectors: 

Un|u⟩ = λn|u⟩. 

This means we can apply U and any power of U to |u⟩ as often as we want. Since 

|u⟩ is an eigenvector, it will only be scaled by a number, the corresponding power of 

the complex eigenvalue λ, which has a modulus of 1. Moreover, since we are using 

controlled gates, “some” information will be transferred to the controllers. We develop 

all the details in Section 11.2.2. If you are not interested in the math, jump to Section 

11.2.3 on the implementation. 

11.2.2 Detailed Derivation 

First, recall from Section 1.8 that the eigenvalues of a unitary matrix have a modulus 

of 1. Since |λ| = 1, we can write an eigenvalue as 

2πiφ λi = e , 

with φ being a factor between 0 and 1. In Section 2.4.3, we used the following notation 

for binary fractions with t bits of resolution and the binary bits φi having values 0 or 1: 

φ = 0.φ0 φ1 . . . φt−1 

1 1 1 
= φ0 + φ1 + · · · + φt−1 . 

21 22 2t 

For example, a binary number written as 0.1101 has the decimal value of 

1 1 1 1 
0.1101 = 1 + 1 + 0 + 1 = 0.8125 . 

2 4 8 16 

With these preliminaries, let us see what happens to the state in Figure 11.4, which is 

a first small part of the phase estimation circuit. The state |u⟩ may consist of multiple 

qubits and must be an eigenstate of U. You may notice the similarity to the phase 

kick circuit we discussed in Section 11.1. This circuit has only one qubit at the top, 

which limits the precision of the approximated eigenvalue of U to a single fractional 

|ψ1⟩ |ψ2⟩ |ψ3⟩ 

|0⟩ H H 

|u⟩ U 

Figure 11.4 An initial phase estimation circuit with a single 
0 

U = U2 operator. 
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bit. However, once we understand how this works for a single fractional bit, we can 

expand to two bits and generalize. 

Let us start and assume U has the eigenvalue λ = 2πi0.φe 0 , with the term 0.φ0 

representing a single binary fractional bit with the value of 1/ 2−1
2 = . With this, the 

estimated phase can only be calculated as having a value of 0 or 0.5. The state |ψ1⟩ 
after the first Hadamard gate is: 

1 ( )
|ψ1⟩ = |+⟩ ⊗ |u⟩ = √ |0⟩ |u⟩ + |1⟩ |u⟩ . 

2 

After the controlled U gate, the state |ψ2⟩ will be the following, as only the |1⟩ part 

of the state triggers the U gate: 

1 ( )
|ψ2⟩ = √ |0⟩ |u⟩ + |1⟩U |u⟩ 

2 

1 ( )
= √ |0⟩ |u⟩ + e 2πi0.φ0 |1⟩ |u⟩ 

2 

1 ( )
= √ |0⟩ + e 2πi0.φ0 |1⟩ |u⟩ . 

2 

The state |u⟩ remains unchanged, as it should be since it is an eigenstate of U. We 

can apply U as often as we want, |u⟩ will remain the same. However, the eigenvalue 

has become a local phase of the |1⟩ part of the first qubit. We kicked the phase back to 

qubit 0, as described in Section 11.1. 

This concludes the first part of the single-qubit phase estimation algorithm. There 

is still the problem that, when measuring the first qubit, the state could still collapse 

to |0⟩ or |1⟩ with the same probability of 1/2, regardless of whether the phase value is 

0 or 0.5. Kicking the phase up does not change the probabilities. 

To resolve this, we apply another Hadamard gate to the top qubit. In the next 

section, we will learn that this is equivalent to a single-qubit inverse quantum Fourier 

transform. After applying the final Hadamard gate, we obtain state |ψ3⟩ (omitting the 

trailing qubit |u⟩ for ease of notation), as shown in Figure 11.4: 

1 |ψ3⟩ = √ H |0⟩ + e 2πi0.φ0 |1⟩ 
2 

1 ( ) 1 ( )
2πi0.φ0 2πi0.φ0= 1 + e |0⟩ + 1 − e |1⟩. 

2 2 

( )

The term φ0 is a binary digit and can only be 0 or 1. If it is 0, we have that the factor 

e 2πi0.φ0 = e 0 becomes 1, and |ψ3⟩ becomes 

1 1 1 1 |ψ3⟩ = |0⟩ + |0⟩ + |1⟩ − |1⟩ = |0⟩. 
2 2 2 2 

On the other hand, if the digit φ0 = 1, then 1(2−1) = 1/2, the factor 2πi0.φe 0 becomes 

e 2πi/2 = −1 and |ψ3⟩ becomes 

1 1 1 1 |ψ3⟩ = |0⟩ − |0⟩ + |1⟩ + |1⟩ = |1⟩. 
2 2 2 2 
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|ψ1⟩ |ψ2⟩ 

|0⟩
0 H 

|0⟩
1 H 

|u⟩2 U20 

U21 

Figure 11.5 Phase estimation circuit with an accuracy of two binary digits (corresponding to 1

2 

and 1

4 
) and the corresponding unitaries U1 and U2. Here, the top two qubits with subscripts 0 

and 1 are in little-endian. 

Since |0⟩ and |1⟩ are orthogonal, we will now measure |0⟩ or |1⟩ with certainty, 

depending on whether the bit φ0 was 0 or 1. 

Now that we see how to compute a single digit let us move on and consider two 

fractional parts for a phase with two decimal binary digits φ = 0.φ0 φ1. With two 

digits, we can approximate the phase with fractional values 0.0,0.25,0.5, and 0.75, 

which is already better than a single digit. The corresponding quantum circuit uses 

two exponentiated gates U1 and U2 as shown in Figure 11.5. From above, we know 

that |ψ1⟩ will have the form 

1 ( ) ( )
|ψ1⟩ = √ |0⟩ + |1⟩ ⊗ |0⟩ + 2πi0.φ0 φe 1 |1⟩ ⊗ |u⟩ . 

22 | {z } | {z } |{z}
qubit 0 qubit 1 qubit 2 

Let us study the effect of the controlled 
1 

U2 on qubit 0. We know that squaring a 

rotation means doubling the rotation angle as in 

2 2πi(2φ)U |ψ⟩ = e |ψ⟩.

Looking at the fractional representation 0.φ0φ1 and the effect of U2, we can see 

that the binary point shifts by one digit to the left: 

2φ = 2(0.φ0φ1)( )
= 2 φ02−1 + φ12−2 

= φ0 + φ12−1 

= φ0.φ1 . 

After shifting 0.φ0 φ1 to φ0.φ1, we can split the exponent: 

2πi(2φ) 2πi(φ0.φ1 )e = e 

2πi(φ0 +0.φ1 )= e 

2πi(φ0 ) 2πi(0.φ1)= e e . 
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Similarly to the single-digit case above, the term φ0 corresponds to a binary digit 

and can only be 0 or 1. This means that the first factor corresponds to a rotation of 0 

or 2π, which has no effect. The final result is 

2πi(2φ) 2πi(0.φ1)e = e , 

where we shifted φ1 to the left and eliminated φ0. We can generalize this for a phase 

with t fractional parts φ = 0.φ0 φ1 . . . φt−1 as 

2πi(2k φ) 2πi0.φk φk+1 ···φt−1e = e . 

For our three-qubits circuit above, after the two controlled gates U1 and U2, the 

state ψ2 becomes 

1 |ψ⟩ = √ |0⟩ + e 2πi0.φ1 |1⟩ ⊗ |0⟩ + e 2πi0.φ0 φ1 |1⟩ ⊗ |u⟩ 
22 | {z } | {z } |{z}

qubit 0 qubit 1 qubit 2 � � � �1 
= √ |0⟩ + e 2πi21 φ|1⟩ ⊗ |0⟩ + e 2πi20 φ |1⟩ ⊗ |u⟩ . 

22 

( ) ( )
(11.1) 

In Section 11.4 on the quantum Fourier transform, we will see that this form is 

identical to the result from applying the QFT operator to a state of two qubits |φ0⟩ 
and |φ1⟩ (ignoring the ancilla). This means that we will be able to apply the two-

†qubit adjoint operator QFT to retrieve the binary bits of φ = 0.φ0φ1 as a state with 

the qubits |φ0⟩ and |φ1⟩ in states |0⟩ or |1⟩, depending on how the digits φ0 and φ1 

were set: 

†
QFT |ψ2⟩ = |φ0⟩ ⊗ |φ1⟩ ⊗ |u⟩ .0,1 

Let us derive a closed form for the phase estimation. For two qubits, we ignore 

qubit 2 in Equation (11.1) and multiply out the remaining terms: � � � �1 |ψ2⟩ = √ |0⟩ + e 2πi21 φ |1⟩ ⊗ |0⟩ + e 2πi20 φ|1⟩ 
22 � �1 2πi(21+20 

= √ |00⟩ + e 2πi20 φ |01⟩ + e 2πi21 φ |10⟩ + e )φ |11⟩ 
22 � �1 

= √ |00⟩ + e 2πi1φ |01⟩ + e 2πi2φ |10⟩ + e 2πi3φ) |11⟩ , 
22 

To generalize, we connect the 0th power of 2 to the last qubit in the t register and 

the (t − 1)’s power of 2 to the first qubit,2 as shown in Figure 11.3. The resulting state 

becomes 

|0⟩ + e 2πi2t−1 φ |1⟩ ⊗ |0⟩ + e 2πi2t−2 φ |1⟩ ⊗ · · · ⊗ |0⟩ + e 2πi20 φ |1⟩ . 
2t/2 

1 � � � � � �
Multiplying this out results in the important general form for a state |ψ⟩ with basis 

states {|k⟩}. Note that we reintroduce the final qubit |u⟩ here, as the final state is the 

superposition of the phase register and the unchanged |u⟩: 

2 You can also do this the other way around, depending on your bit ordering convention. 
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(11.2)

We write φ with t binary bits in the fractional notation (we will use the same form 

in Section 11.4 on QFT) as 

φ = 0.φ0φ1 · · · φt−1. 

Multiplying this angle with the powers of two shifts the digits of the binary repre-

sentation to the left, and the state after the circuit in Figure 11.3 is 

1 ( )
2πi0.φt−1|0⟩ + e |1⟩ 

2t/2 ( )
2πi0.φt−2 φt−1 |1⟩⊗ |0⟩ + e 

. . . ( )
2πi0.φ0 φ1...φt−1 |1⟩⊗ |0⟩ + e . 

(11.3)

Again, we will see shortly in Section 11.4 that this is also the result of a QFT 

applied to a specific computational basis state. The final step of phase estimation is, 

therefore, to reverse the QFT by applying the inverse QFT 
† operator to reconstruct 

the input, a representation of φ as a binary fraction in basis encoding. The almost 

complete circuit is shown in Figure 11.6, where we have yet to measure the qubits. 

You will find this step in the implementation. 

A cautious word on endianness is in order. We can think of the qubits in the figure as 

addresses from top to bottom, with the lowest address 0 at the top. The first controlled 

U gate contributes the most to the binary fraction. It is the most significant qubit. 

In the figure, the most significant qubit appears at the highest address, which means 

... 

. . . 

... 

... 

... 

... 

|0⟩ H 

QFT† 

0
.φ

 0φ
 1 
· ·

 ·φ
 t−

1
 

|0⟩ H 

|0⟩ H 

|0⟩ H 

|u⟩ U20 

U21 

U2t−1 |u⟩ 

Figure 11.6 Full quantum phase estimation circuit. 
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we are using the little-endian convention, where the least significant contributor to a 

value resides at the lowest address. We will often switch between little-endian and 

big-endian notations in this book;3 this is something to be aware of. 

11.2.3 Implementation 

We drive the algorithm from main(), where we reserve seven qubits for t (this is 

arbitrary and chosen for performance reasons only) and two qubits for the unitary 

operator. You can experiment with these numbers to see how the probabilities change 

with the size of the unitary operator. 

PY 
Find the code 
In file src/phase_estimation.py 

def main(argv): 
nbits = 2 
t = 7 
print('Estimating {} qubits random unitary eigenvalue ' 

.format(nbits) + 'with {} bits of accuracy.'.format(t)) 
for i in range(10): 

run_experiment(nbits, t) 

In each experiment, we create a random operator and obtain its eigenvalues and 

eigenvectors to verify the computed estimates: 

def run_experiment(nbits: int, t: int = 8): 
umat = scipy.stats.unitary_group.rvs(2**nbits) 
eigvals, eigvecs = np.linalg.eig(umat) 
u = ops.Operator(umat) 

We choose the eigenvector at index 0 in the example, but the procedure works for all 

other pairs of eigenvectors and eigenvalues. To verify the algorithm, we calculate the 

angle phi to be estimated in advance. Since we assume that the eigenvalue is 2πiφ e , as 

discussed in Section 11.2.1, we divide by 2j*np.pi and correct for negative values. 

Again, this angle does not participate in the algorithm. We only compute it upfront to 

compare it against the approximated phase value later: 

eigen_index = 0 
phi = np.real(np.log(eigvals[eigen_index]) / (2j*np.pi)) 
if phi < 0: 

phi += 1 

In the construction of the circuit, we initialize the state psi with t qubits in state 

|0⟩ tensored to another state that is directly initialized with an eigenvector. Then we 

3 Homework assignment: Count how often I am confusing the endianness. 

http://www.github.com/qcc4cp/qcc/blob/main/src/phase_estimation.py
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perform the phase estimation (the code follows shortly) and the inverse QFT on the 

resulting state: 

psi = state.zeros(t) * state.State(eigvecs[:, eigen_index]) 
psi = phase_estimation(psi, u, t) 
psi = ops.Qft(t).adjoint()(psi) 

The heart of this circuit is the controlled connection of the operators taken to powers 

of two, which is implemented in function phase_estimation (we also add a version 

of it to the library file src/lib/ops.py, as it is used in several other algorithms). 

You can see that after the Hadamard gates have been applied to the t register, the code 

iterates, and the u2 operator is repeatedly multiplied by itself to produce the powers 

of two required by the phase estimation algorithm: 

def phase_estimation(psi: state.State, u: ops.Operator, t: int): 
psi = ops.Hadamard(t)(psi) 
u2 = u 
for inv in reversed(range(t)): 

psi = ops.ControlledU(inv, t, u2)(psi, inv) 
u2 = u2(u2) 

return psi 

All that is left to do is to simulate a measurement by picking the state with the 

highest probability, computing the representation of the state as a binary fraction, and 

comparing the result against the target value. Since we have limited bits to represent 

the result, we allow an error margin of 2%. More bits for t will make the circuit run 

slower but also improve the error margins. 

# Find state with highest measurement probability and show results. 

maxbits, maxprob = psi.maxprob() 
phi_estimate = helper.bits2frac(maxbits[:t]) 

delta = abs(phi - phi_estimate) 
print('Phase : {:.4f}'.format(phi)) 
print('Estimate: {:.4f} delta: {:.4f} probability: {:5.2f}%' 

.format(phi_estimate, delta, maxprob * 100.0)) 
if delta > 0.02 and phi_estimate < 0.98: 

print('*** Warning: Delta is large') 

There is the potential for delta to be greater than the hard-coded 2% when an 

insufficient number of bits was reserved for t. Another error case is when the eigen-

value rounds to 1.0. In this case, all digits after the dot are 0, and the estimated binary 

fraction will also be 0 instead of the correct value of 1.0. The code warns about this 

case. The results should look similar to this: 

http://www.github.com/qcc4cp/qcc/blob/main/src/src/lib/ops.py
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Estimating 2 qubits random unitary eigenvalue with 7 bits of accuracy 
Phase : 0.5180 
Estimate: 0.5156 delta: 0.0024 probability: 31.65% 
Phase : 0.3203 
Estimate: 0.3125 delta: 0.0078 probability: 7.30% 
[...] 
Phase : 0.6688 
Estimate: 0.6719 delta: 0.0030 probability: 20.73% 

11.2.4 Estimating Multiple Eigenvalues 

So far, we have explored the case of a single eigenvalue and eigenvector pair. What if 

the initial state |u⟩ was in a superposition of multiple eigenvectors? Can we derive mul-

tiple eigenvalues with this procedure? Yes, we can, with the caveat that measurements 

are still probabilistic and obtaining all eigenvalues is subject to the usual probability 

laws. We use this feature later in Section 14.3 on the HHL algorithm and provide 

another detailed derivation there. 

For experimentation, we mirror the code above very closely. To generate a super-

position of multiple eigenvectors, we again generate a random unitary and find its 

multiple pairs of eigenvalues and eigenvectors. We calculate the eigenvalues as frac-

tions of π in the phi array and add 1 to any negative values. As a simplification, we 

calculate the superposition of the eigenvectors as a simple addition of scaled vectors 

in variable ini and use it to directly initialize the state.4 All that is left to do is run the 

phase estimation circuitry and apply the inverse QFT: 

umat = scipy.stats.unitary_group.rvs(2**nbits) 
eigvals, eigvecs = np.linalg.eig(umat) 

phi = np.array([np.real(np.log(v) / (2j*np.pi)) for v in eigvals]) 
phi[phi < 0] += 1 

fac = np.sqrt(1 / 2**nbits) 
ini = np.sum(fac * eigvecs, axis=1) 

# Make state and circuit to estimate phi (similar to above). 

psi = state.zeros(t) * state.State(ini) 
psi = phase_estimation(psi, u, t) 
psi = ops.Qft(t).adjoint()(psi) 

We collect the states with the highest probability (≥ 1%), as the eigenvalues 

encoded in these states will have the highest amplitudes. The final step is to find 

whether these states represent the eigenvalues. If an estimate has been found correctly, 

we mark it as -> Found and as -> *** otherwise. Since we have set more or less 

arbitrary limits for the required probability and precision, a small number of eigenval-

ues is expected to be marked as not found (***), as shown in the output below. 

4 We already saw in Chapter 9 that initializing a state with an actual circuit can be quite challenging. 
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estimates = [helper.bits2frac(bits) 
for bits in helper.bitprod(psi.nbits) 
if psi.prob(*bits) >= 0.03] 

for p in phi: 
print(f'Phase : {p:.4f} ', end='') 
est = [x for x in estimates if abs(p - x) < 0.01] 
print('-> Found' if len(est) else '-> ***') 

>> 
Phase : 0.2342 -> Found 
Phase : 0.9560 -> Found 
Phase : 0.4984 -> Found 
Phase : 0.6832 -> Found 

Phase : 0.9660 -> *** 
Phase : 0.6609 -> Found 
Phase : 0.2599 -> Found 
Phase : 0.4468 -> Found 
[...] 

11.3 Approximating π 

Phase estimation can be used in an interesting manner to approximate the value of 

π. As discussed in Section 11.2.1, when a unitary operator U is applied to one of its 

eigenvectors such as |ψ⟩, its eigenvalues have unit norm: 

U |ψ⟩ = e 2πiφ |ψ⟩ . (11.4) 

We already know the U1(θ) operator from Section 2.7.7: � �
1 0 

U1(θ) = iθ 0 e 

This operator is a diagonal matrix and has its eigenvalues 1 and θ ei  on the diagonal. If 

we apply U1(θ) to its eigenstate |ψ⟩ = |1⟩, as in 

U1(θ) |1⟩ = eiθ |1⟩ , (11.5) 

and furthermore equate Equations (11.4) and (11.5), we get 

2πiφ iθ e = e . 

We smartly set θ = 1, which leads to an approximation of π as 

1 
2πφ = 1 ⇒ π = . 

2φ 

Now we can estimate φ with the QPE. We define a function to run experiments 

with a given number of qubits to represent the phase values – as usual, the more qubits 

we use, the more accurate the estimation of π will be, but the slower the experiment 

will run. 
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First, we build a circuit with the given number of qubits to hold the results of the 

phase estimation. We also have to add an ancilla for the phase estimation and apply an 

X gate to turn it into eigenstate |1⟩: 

PY 
Find the code 
In file src/estimate-pi.py 

def run_experiment(nbits_phase): 
qc = circuit.qc('pi estimator') 
qclock = qc.reg(nbits_phase) 
qbit = qc.reg(1) 
qc.x(qbit) # make it |1> 

# Perform phase estimation. 

qc.h(qclock) 
for inv in range(nbits_phase): 

qc.cu1(qclock[inv], qbit[0], 2**(nbits_phase - inv - 1)) 
qc.inverse_qft(qclock) 

# Compute pi (and the delta from it). 

bits, _ = qc.psi.maxprob() 
theta = helper.bits2frac(bits[:nbits_phase][::-1]) 
pi = 1 / (2 * theta) 
delta = np.abs(pi - np.pi) 

print(f'Pi Est: {pi:.5f} (qb: {nbits_phase:2d}) Delta: {delta:.6f}') 
assert delta < 0.06, 'Incorrect Estimation of Pi.' 

We run over an increasing number of qubits (you may have to adjust the upper limit 

for performance reasons) to get increasingly more accurate approximations for π: 

def main(argv): 
print('Estimate Pi via phase estimation...') 
for nbits in range(7, 20): 

run_experiment(nbits) 
>> 
Estimate Pi via phase estimation... 
Pi Est: 3.20000 (qb: 7) Delta: 0.058407 
Pi Est: 3.12195 (qb: 8) Delta: 0.019641 
Pi Est: 3.16049 (qb: 9) Delta: 0.018901 
[...] 
Pi Est: 3.14159 (qb: 19) Delta: 0.000001 

How scalable is this methodology for finding π? At the time of writing, the world 

record for classically estimating π was 105 trillion digits. Observing the progression 

of the results in our experiments, about three qubits are required to improve the esti-

mation accuracy by a factor of 10, gaining a single additional digit of precision. The 

biggest classical chip at the time of writing was a full-wafer chip with about 4 trillion 

http://www.github.com/qcc4cp/qcc/blob/main/src/estimate-pi.py
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classical bits. In other words, let us not wait for a quantum computer to try to break 

that world record. 

However, there is also a related helpful result. A similar technique was presented 

by Bochkin et al. (2020) to estimate the precision of individual qubits by estimating π 
and propagating the remaining error back to the qubits. 

11.4 Quantum Fourier Transform (QFT) 

In classical engineering, mathematics, and physics, the discrete Fourier transform 

(DFT) is an analysis technique that, for a complex-valued function f (·), finds a series 

of underlying periodic frequencies and amplitudes that combine to the original func-

tion f (·). It is written as 

N−1X1 2πijk/N yk = √ xje , 
N 

j=0 

(11.6) 

where a sequence of N complex values xj is transformed into the sequence yk. The( )
computational complexity of DFT is O N2 , which makes it impractical for large 

problems or problems with fast latency requirements. The development of the fast ( )
Fourier transform (FFT) reduced the complexity to O N log N , a major breakthrough 

in classical computing. 

The discovery of the quantum Fourier transform (QFT), which promises a further( )
reduction of a theoretical complexity of just

2 
 O log N , N = 2n for n qubits, was 

an exciting moment for quantum computing.5 The QFT is one of the fundamental 

algorithms of quantum computing. It enables important algorithms, such as phase 

estimation, which we learned about in Section 11.2.1. As we shall see shortly, phase 

estimation is also a key ingredient in Shor’s factoring algorithm.6 

The QFT has a similar form as the DFT but is expressed as a unitary state evolution, 

where for n qubits, an operator QFT of size 2n × 2n is applied to transform a state in

the computational basis | N−1 
x⟩ = xi |i⟩i=0 

P P
 into a state | N−1

 y⟩ = yi |ii=0 ⟩:

QFT |x⟩ = |y⟩ . (11.7) 

We define ω 2πi/N
N = e . The elements of the set {ωn = 22πin/N } are called the Nth 

roots of unity (the nth root of unity7 is a complex number z such that z n = 1). The 

individual components of the state vector are transformed as 

1 
yk = √ xnωN

nk , k = 0,1, . . . ,N − 1. 
N 

n=0 

N−1X
If the state |x⟩ in Equation (11.7) is a basis state (which in our cases it always will 

be), then we can write the closed form for the QFT operator as 

( ) 
The complexity of QFT was later refined to O N log2 N to account for measurements (Musk, 2020). 

6 Note that for historical reasons, the inverse DFT is often considered analogous to the QFT, but let’s not 

get hung up on those details here. 
7 See also http://en.wikipedia.org/wiki/Root_of_unity. 

5 

http://en.wikipedia.org/wiki/Root_of_unity
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X X
(11.8) 

Note how similar this form is to the classical DFT in Equation (11.6). Sometimes, 

authors put a minus sign in front of the exponent. This is a matter of convention. As 

an example, to apply this formula to the two-qubit state |10⟩ = |2⟩, with N = 4 and 

k = 2, we get 

(

N−1 

QFT |10⟩ = √ e 
N 

1 2πijk/N | j⟩ 
j=0 � �1 2πi1·2/4) |1⟩ + e )

= |0⟩ − |1⟩ + |2⟩ − |3⟩ . 
2 

2πi0·2/4) |0⟩ + e 2πi2·2/4) |2⟩ + e 2πi3·2/4) |3⟩= e 
2 
1 

X

To write the QFT as an operator for n qubits with N = 2n basis states, we define 

the general and quite elegant form of the operator with ω = ωN as 
1 1 1 1 1 1  1 1 ω1 ω2 ω3 · · · ωN−   1 1 ω2 ω4 ω6 · · · ω2(N−1) 

QFTN = √ 1 ω3  ω6 ω9 · · · ω3(N−1)  . 
N   . . . . .  . . . . . 

. . . . . 
1 ωN−1 ω2(N−1) ω3(N−1)  · · · ω(N−1)(N−1)



In fact, a simple mnemonic for the entry at row i and column j is 

ωi·j 
QFTi,j = √ |i⟩⟨ j|. 

N 

For two qubits, this matrix is the following. Note that the factors in column 2, 

(+1,−1,+1,−1), match the resulting signs in the above example, where we calculated 

QFT |10⟩ = 1 (+ |0⟩ − |1⟩ + |2⟩ − |3⟩
2 

). We would get similar results for the other

basis states and their corresponding columns (specifically column 0, because applying 

QFT to state |00⟩ will result in all-zero exponents): 


1 1 1 1  . 

1 −1 −i1 i 
QFT4 = 

1 −1 1 −12 

1 −i −1 i 



To follow this line of reasoning to the smallest operator, for a single qubit, the QFT2 

operator is the same as the Hadamard gate: ��
1 1 1 

QFT2 = H = √ . 
1 −12 

As we stated in Section 11.2.1, applying the QFT to a state will match the output 

of a phase estimation circuit. Our mission in this chapter is to derive this form and the 

circuit to produce it. 
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11.4.1 QFT Circuit 

Let us again consider a state in the binary interpretation φ = |φ0 φ1 · · · φn−1⟩ repre-

senting the decimal value 

1 1 1 
0.φ0φ1 . . . φn−1 = φ0 + φ1 + . . . + φn−1 ,

21 22 2n−1 

with the φi representing the binary bits 0 or 1. Recall from Section 11.2.1 that the 

result of phase estimation on |φ⟩ was Equation (11.3), reproduced here as Equation 

(11.9). We also claimed that this state was identical to the result of a QFT applied to 

state |φ⟩: ( )( ) ( )
|0⟩+ e 2πi0.φt−1 |1⟩ |0⟩+ e 2πi0.φt−2 φt−1 |1⟩ · · · |0⟩+ e 2πi0.φ0 φ1...φt−1 |1⟩ 

2t/2 
(11.9)

Let us derive this result. The arithmetic looks quite daunting, you may choose to 

focus on the final result only. 

N−1X1 |φ⟩ → e 2πiφk/N |k⟩ 
2n/2 

k=0 

1 1X X ∑1 −l2πiφ( 2
l=1= · · · e
n ) |k0 . . . kn−1⟩ 

2n/2 
k0 =0 kn−1 =0 

1 1 n−1X X O1 −l2πiφkl 2 = · · · e |kl⟩ 
2n/2 

k0 =0 kn−1 =0 l=0 " #
n−1 1O X1 −l2πiφkl2 = e |kl⟩ 

2n/2 
l=0 kl =0 

n−1 

2πiφ21 Oh
−l 

i
= |0⟩ + e |1⟩ 

2n/2 
l=0( ) ( ) ( )

|0⟩ + e 2πi0.φn−1 |1⟩ |0⟩ + e 2πi0.φn−2 φn−1 |1⟩ · · · |0⟩ + e 2πi0.φ0 φ1 ···φn−1 |1⟩ 
= . 

2n/2 

Depending on the endianness of the circuit, the terms may be in reverse order. Not 

to worry, we can augment a QFT circuit with final Swap gates to reverse the order of 

the terms. Alternatively, instead of hooking up the unitaries with control qubits going 

from the bottom to the top, we can also build a circuit where the control qubits go 

from top to bottom. In this book, we will find examples of both ways. 

How would we build the circuit to produce this state? In the following, we will use 

the Rk gate from Section 2.7.7: !
1 0 

Rk = .
2πi/2k 

0 e 

The following process closely mirrors what we have already learned from phase 

estimation. For notation, we will write Hx to indicate that a Hadamard gate is applied 

(
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|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ 

|q0⟩ H R2 R3 R4 

|q1⟩ H R2 R3 

|q2⟩ H R2 

|q3⟩ H 

Figure 11.7 A QFT circuit for four qubits. This circuit uses little-endian convention (the least 

significant qubit is at the lowest index, which is the top qubit). To produce a circuit in 

big-endian convention, you can mirror the qubit indices about the middle with qubits 0 ↔ 3 

and 1 ↔ 2. 

to the qubit at index x. For the controlled Rk gates, we will write Rk(x) to indicate that 

the Rk gate is applied to the qubit at index x. We follow the sequence of gates shown 

in Figure 11.7. Note that this whole mechanism is an extended phase-kick circuit. 

For the first qubit, we get a first digit φ0 by applying a Hadamard gate H0. Applying 

this gate results in the state 

1 ( �
H0 |φ⟩ = |0⟩ + 2π 0.φ

1
e i 0 |1⟩ |φ1 · · · φn−1⟩ . 

2 /2 

If bit φ0 = 1, then 2φi0.φe 0 = −1, if φ0 = 0, then 2φi0.φe 0 = 1 and we get the 

expected result from the Hadamard gate. We can append a second digit by applying a 

controlled R2 gate: 

1 2 0.π φR i 0 φ1 
2(0)H0 |φ⟩ = 

1
|0⟩ + e |1⟩ |φ2 · · · φn−1⟩ . 

2 /2 

( �
For the remaining digits, we follow this with a sequence of controlled Rk gates, 

k = 3, . . . ,n, resulting in 

1 ( �
2πi0.φ0 φ1 ···φn−1|ψ1⟩ = |0⟩ + e . 

21/2 

For the second qubit q1 (at index 1), we repeat an almost identical sequence of gates, 

but it will be shorter by one rotation gate. We start again with a single Hadamard gate 

to the second qubit 

H |ψ1⟩ = H1Rn−1(0) · · · R2(0)H0 |φ⟩ 
1 ( � ( �

= | ⟩ + 2πi0.φ0 φ1 ···φ0 e n−1 |0⟩ + 2πe i0.φ1 

2
|1⟩ |φ2 · · · φn−1⟩ , 

2 /2 

and apply a controlled R2 gate as above to get a second digit for the second qubit 

R2(1)H1Rn−1(0) · · · R2(0)H0 |φ⟩ 
1 ( � ( �

= |0⟩ + e 2πi0.φ0 φ1 ···φn−1 |0⟩ + e 2πi0.φ1 φ2 |1⟩ |φ3 · · · φn−1⟩ . 
22/2 
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We continue this process for the remaining digits. We then use this methodology 

for the remaining terms in Equation (11.9) and the corresponding qubits, with ever-

shorter gate sequences, until only a final Hadamard gate remains after |ψ3⟩ (you may 

recall the final Hadamard gate in Figure 11.4 in the section on QPE; this gate indeed 

corresponded to a single-qubit QFT). 

Note that the terms are in reverse order compared to Equation (11.9). We would 

only have to invert the qubit indices to obtain a matching result, for example, by 

starting the very first Hadamard gate on qubit 3 instead of qubit 0. We chose the 

current order because it is easier to write. You will find that both the big-endian and 

little-endian conventions are being used in this book and the literature. 

Recall that controlled phase gates are symmetrical, as shown in Section 2.9, so 

sometimes you may see a functionally identical circuit but with switched controlled 

and controlling qubits. 

As we have already stated in Section 11.2.1, the QFT operator is a unitary operator, 

as it should be because it is made up of other unitary operators. Since it is unitary, it has 

an inverse, the Hermitian conjugate. To repeat what we have learned in Section 11.2.1 

on QPE, this is how we get from the output of phase estimation to a state representing 

binary bits: 

1 ( �
QFT † ⊗ |0⟩ + e 2πi0.φn−1 |1⟩ 

2n/2 ( �
⊗ |0⟩ + e 2πi0.φn−2 φn−1 |1⟩ 

. . . ( �
⊗ |0⟩ + e 2πi0.φ0 φ1 ···φn−1 |1⟩ 

= |φ0 φ1 · · · φn−1⟩. (11.10) 

In many algorithms, we will apply the inverse QFT to remove the superposition 

and obtain a result, as shown in Equation (11.10). An important aspect of QFT is 

that, while it enables the encoding of (binary) states in superposition with phases, on 

measurement in the computational bases, the state collapses to just one basis state. 

All other information will be lost. The challenge for QFT-based algorithms is to use 

tricks and transformations so that we can find a solution to a given problem with high 

probability. 

How many fractions do we need to achieve a reliable result for a specific algorithm? 

This is an interesting metric to play with. Early work on the approximate quantum 

Fourier transform indicates that, for Shor’s algorithm, you can stop adding rotation gates 

as the rotation angles become smaller than π/n 2 (Coppersmith, 2002). This reduces the 

complexity of the QFT circuit without affecting the accuracy of the results, making this 

a viable optimization for practical implementations of quantum algorithms. 

11.4.2 QFT Operator 

In code, we implement the QFT operator as a full matrix. We put the input qubits in 

superposition with Hadamard gates and apply controlled rotations for each fractional 
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part. Be careful to put the indices in the right order.8 We also provide an optional 

facility to reverse the order of qubits with Swap gates: 

PY 
Find the code 
In file src/lib/ops.py 

def Qft(nbits: int, swap: bool = True) -> Operator: 
op = Identity(nbits) 
h = Hadamard() 
for idx in range(nbits): 

op = op(h, idx) 
for rk in range(2, nbits - idx + 1): 

controlled_from = idx + rk - 1 
op = op(ControlledU(controlled_from, idx, Rk(rk)), idx) 

if swap: 
for idx in range(nbits // 2): 

op = op(Swap(idx, nbits - idx - 1), idx) 
assert op.is_unitary(), 'Constructed non-unitary operator.' 
return op 

Calculating the inverse of the QFT operator is trivial. QFT is a unitary operator, so 

the inverse is simply the adjoint: 

Qft = ops.Qft(nbits) 
[...] 
InvQft = Qft.adjoint() 

Suppose QFT is computed via explicit gate applications in a circuit. In that case, 

the inverse has to be implemented as the application of the inverse gates in reverse 

order, as outlined in Section 2.12 on reversible computing (we should also recall that 

for a product of matrices, (AB)−1 = −B 1 −A 1). We add implementations of qft and 

inverse_qft to the circuit class and will see examples of their use shortly. 

PY 
Find the code 
In file src/lib/circuit.py 

def qft(self, reg, with_swaps: bool = False) -> None: 
for i in reversed(range(len(reg))): 

self.h(reg[i]) 
for j in reversed(range(i)): 

self.cu1(reg[i], reg[j], np.pi/2**(i - j)) 
if with_swaps: 

self.flip(reg) 

def inverse_qft(self, reg, with_swaps: bool = False) -> None: 
if with_swaps: 

self.flip(reg) 

8 This is very easy to get wrong. 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/ops.py
http://www.github.com/qcc4cp/qcc/blob/main/src/lib/circuit.py
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for idx, r in enumerate(reg): 
self.h(r) 
if idx != len(reg) - 1: 

for y in range(idx, -1, -1): 
self.cu1(reg[idx + 1], reg[y], -np.pi / 2 ** (idx + 1 - y)) 

Note that qubit ordering can be an issue, as discussed. Depending on whether the 

big-endian or little-endian convention is used, the order in which gates are applied to 

qubits may have to be inverted. Alternatively, the binary interpretation of qubits can 

be reverted. 

11.4.3 Online Simulation 

It can be helpful to use one of the available online simulators to verify the results. Be 

aware that the simulators might not agree on the qubit ordering. For experiments, we 

can always add Swap gates at the end of a circuit to follow online simulators’ qubit 

ordering. Alternatively, we can also add the Swap gates to the circuits in the online 

simulators. 

A widely used online simulator is Quirk (Gidney, 2021a). Let us construct a simple 

two-qubit QFT circuit in Quirk, as shown in Figure 11.8. To the right of this graphical 

representation, we can reconstruct the phases from the gray circles (blue on the web-

site). We see that the state |00⟩ (top left) has a phase of 0 (the direction of the x-axis), 

the state |01⟩ (top right) has a phase of 180◦ , the state |10⟩ (bottom left) has a phase 

of −90◦ , and the state |11⟩ has a phase of 90◦ . 

In our infrastructure, we would construct the same circuit: 

qc = circuit.qc() 
reg = qc.reg(2, [1, 1]) 
qc.qft(reg, True) # True, for the final swap gates. 

qc.psi.dump() 
>> 
|00> (|0>): ampl: +0.50+0.00j prob: 0.25 Phase: 0.0 
|01> (|1>): ampl: -0.50+0.00j prob: 0.25 Phase: 180.0 
|10> (|2>): ampl: -0.00-0.50j prob: 0.25 Phase: -90.0 
|11> (|3>): ampl: +0.00+0.50j prob: 0.25 Phase: 90.0 

Figure 11.8 A partial screenshot from http://algassert.com/quirk, showing a two-qubit QFT 

operation with swap gates. 

http://algassert.com/quirk
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Quirk agrees with our qubit ordering (or we agree with Quirk). Quirk also shows 

the state of individual qubits on a Bloch sphere. How does this work, as we are dealing 

with a two-qubit tensored state, and Bloch spheres only represent single qubits? We 

discussed the partial trace in Section 4.3, which allows tracing out qubits from a state. 

The result is a reduced density matrix. In Section 2.3, we showed how to compute the 

Bloch sphere coordinates from a density matrix. For systems of more than two qubits, 

all qubits that are not of interest must be traced out so that only a 2 × 2 density matrix 

remains. 

Let’s try this out. From the state shown in Figure 11.8, we trace out qubit 0 and 

qubit 1 individually and compute the Bloch sphere coordinates: 

psi = state.bitstring(1, 1) 
psi = ops.Qft(2)(psi) 
rho0 = ops.TraceOut(psi.density(), [1]) 
rho1 = ops.TraceOut(psi.density(), [0]) 
x0, y0, z0 = helper.density_to_cartesian(rho0) 
x1, y1, z1 = helper.density_to_cartesian(rho1) 
print('x0: {:.1f} y0: {:.1f} z0: {:.1f}'.format(x0, y0, z0)) 
print('x1: {:.1f} y1: {:.1f} z1: {:.1f}'.format(x1, y1, z1)) 

>> 
x0: -1.0 y0: 0.0 z0: -0.0 
x1: -0.0 y1:-1.0 z1: -0.0 

This result agrees with Quirk as well. The first qubit is located at −1 on the x-axis 

of the Bloch sphere (the x-axis goes from the back of a page to the front), and the 

second qubit is located at −1 on the y-axis (going from left to right). 

11.5 Quantum Arithmetic 

We saw in Section 5.1 how a quantum circuit can emulate a classical full adder, using 

quantum gates without exploiting any of the unique features of quantum computing, 

such as superposition or entanglement. All qubits were |0⟩ or |1⟩, which was equiv-

alent to classical computing. This was a nice exercise demonstrating the universality 

of quantum computing but an inefficient way to construct a full adder. There was no 

demonstrable quantum advantage. 

In this section, we discuss another algorithm that performs addition and subtrac-

tion. Here, the math is being developed in the Fourier domain with a technique first 

described by Draper (2000). Updated techniques can be found in Cuccaro et al. (2004), 

Gidnay (2018), and Wang et al. (2023). 

To perform addition, we apply a QFT, a sprinkle of magic, and a final inverse 

QFT to obtain the desired numerical result. We explain this algorithm with just a 

hint of math and a lot of code. This implementation uses a different direction from the 

controller to the controlled qubit as in our early QFT operator. This is not difficult to 
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|a0⟩ H 

|a1⟩ H π/2 

|a2⟩ H π/2 π/4 

Figure 11.9 A three-qubit QFT in big-endian convention (the least-significant qubit is at the 

highest address, index 2). 

|a0⟩ π 

|a1⟩ π π/2 

|a2⟩ π π/2 π/4 

|b0⟩ 

|b1⟩ 

|b2⟩ 

Figure 11.10 The evolve step for a three-qubit quantum addition in the Fourier domain. 

|a0⟩ H 

|a1⟩ −π/2 H 

|a2⟩ −π/4 −π/2 H 

Figure 11.11 The inverse QFT for three qubits, also in big-endian convention. 

follow; simply inverting the qubits in a register leads to identical implementations. We 

use explicit angles and the controlled U1 gate. 

The algorithm performs three basic operations to compute a + b, for which we 

show some numerical examples below: 

• Apply QFT to the qubits that represent an input value a. This encodes the bits as 

phases on states. The corresponding circuit for three qubits is shown in Figure 

11.9. 

• Evolve a by the value b to compute their addition. This cryptic-sounding step 

performs another set of QFT-like rotations on a using the same controlled rotation 

mechanism as regular QFT. However, it is not a full QFT. There are also no initial 

Hadamard gates, as the states are already in superposition. We detail the steps in 

the following; an example for three qubits is shown in Figure 11.10 

• Perform an inverse QFT to decode phases back to bits. The three-qubit example is 

in Figure 11.11 
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In code, these key functions are implemented as the following: 

PY 
Find the code 
In file src/arith_quantum.py 

def qft(qc: circuit.qc, reg: state.Reg, n: int) -> None: 
qc.h(reg[n]) 
for i in range(n): 

qc.cu1(reg[n - (i + 1)], reg[n], math.pi / float(2 ** (i + 1))) 

def evolve(qc: circuit.qc, reg_a: state.Reg, reg_b: state.Reg, 
n: int, factor: float) -> None: 

for i in range(n + 1): 
qc.cu1(reg_b[n - i], reg_a[n], factor * math.pi / float(2**i)) 

def inverse_qft(qc: circuit.qc, reg: state.Reg, n: int) -> None: 
for i in range(n): 

qc.cu1(reg[i], reg[n], -1 * math.pi / float(2 ** (n - i))) 
qc.h(reg[n]) 

To drive the algorithm, we first need to specify the bit width of the inputs a and b. 

For n-bit arithmetic, we need (n + 1) bits to account for overflow. 

The signature of our entry point will get the bit width as n and the two initial integer 

values init_a and init_b, which must fit the available bits. The parameter factor 

will be 1.0 for addition and −1.0 for subtraction. We will see shortly how this factor 

applies. We instantiate the two registers with bit width n + 1. Because we interpret the 

bits in reverse order, we have to invert the bits when initializing the registers: 

def arith_quantum(n: int, init_a: int, init_b: int, factor: float = 1.0): 
a = qc.reg(n+1, helper.val2bits(init_a, n)[::-1], name='a') 
b = qc.reg(n+1, helper.val2bits(init_b, n)[::-1], name='b') 

for i in range(n+1): 
qft(qc, a, n-i) 

for i in range(n+1): 
evolve(qc, a, b, n-i, factor) 

for i in range(n+1): 
inverse_qft(qc, a, i) 

Let us look at these three steps in detail, using the example of a two-qubit addition 

using three qubits for both the a and b registers. The initial QFT is a standard three-

qubit QFT circuit. We can enumerate the qubits from 0 to 2 or 2 to 0; it does not make 

a real difference as long as we remain consistent. After the first loop, we constructed a 

standard QFT circuit. The middle loop in Figure 11.10 is where the magic happens – 

we explain how this works in the following. The construction of the inverse QFT 

circuit takes place in the third loop. All of the first QFT gates are inverted and applied 

in reverse order. 

http://www.github.com/qcc4cp/qcc/blob/main/src/arith_quantum.py
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|a⟩ 
H π H 

H π/2 π π/2 −π/2 H 

|b⟩ 

Figure 11.12 The addition circuit for single-qubit inputs, each with an additional overflow qubit. 

|a⟩ 

H π H 

H π/2 π π/2 −π/2 H 

H π/2 π/4 π π/2 π/4 −π/4 −π/2 H 

|b⟩ 

Figure 11.13 The addition circuit for two-qubit inputs, each with an additional overflow qubit. 

Recall that the inverse of the Hadamard gate is another Hadamard gate, and the 

inverse of a rotation is a rotation by the same angle but in the opposite direction. 

For single-qubit registers a and b, the addition circuit, including the overflow qubit, 

is shown in Figure 11.12. A corresponding circuit for two-qubit addition with an 

overflow qubit is shown in Figure 11.13. 

To elaborate further on the numerical results for the example in Figure 11.13, we 

construct two two-qubit states holding the value 1 using the little-endian convention 

(we have to revert the bits with [::-1]). With the extra qubit for overflow, the state 

after initialization is the following: 

qc = circuit.qc('qadd') 
a = qc.reg(n + 1, helper.val2bits(init_a, n)[::-1], name='a') 
b = qc.reg(n + 1, helper.val2bits(init_b, n)[::-1], name='b') 

>> 
|100100> (|36>): ampl: +1.00+0.00j prob: 1.00 Phase: 0.0 

After QFT on the first qubit, represented by the first three digits in the textual repre-

sentation, the state becomes the following, where the bottom three qubits representing 

the input b are still in state |100⟩ (marked in bold in this snippet): 

|000100> (| 4>): ampl: +0.35+0.00j prob: 0.12 Phase: 0.0 
|001100> (|12>): ampl: +0.25+0.25j prob: 0.12 Phase: 45.0 
|010100> (|20>): ampl: +0.00+0.35j prob: 0.12 Phase: 90.0 
|011100> (|28>): ampl: -0.25+0.25j prob: 0.12 Phase: 135.0 
|100100> (|36>): ampl: -0.35+0.00j prob: 0.12 Phase: 180.0 
|101100> (|44>): ampl: -0.25-0.25j prob: 0.12 Phase: -135.0 
|110100> (|52>): ampl: -0.00-0.35j prob: 0.12 Phase: -90.0 
|111100> (|60>): ampl: +0.25-0.25j prob: 0.12 Phase: -45.0 
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The state after the evolution step becomes a little harder to interpret: 

|000100> (| 4>): ampl: +0.35+0.00j prob: 0.12 Phase: 0.0 
|001100> (|12>): ampl: +0.00+0.35j prob: 0.12 Phase: 90.0 
|010100> (|20>): ampl: -0.35+0.00j prob: 0.12 Phase: 180.0 
|011100> (|28>): ampl: -0.00-0.35j prob: 0.12 Phase: -90.0 
|100100> (|36>): ampl: +0.35-0.00j prob: 0.12 Phase: -0.0 
|101100> (|44>): ampl: +0.00+0.35j prob: 0.12 Phase: 90.0 
|110100> (|52>): ampl: -0.35+0.00j prob: 0.12 Phase: 180.0 
|111100> (|60>): ampl: -0.00-0.35j prob: 0.12 Phase: -90.0 

The final state after the inverse QFT will have the correct result of binary 010 or 

decimal 2 in the top three qubits (marked in bold): 

|010100> (|20>): ampl: +1.00-0.00j prob: 1.00 Phase: -0.0 

How does this work? Let us first try to explain it mathematically. First, remember 

that QFT in little-endian takes this input state: 

|ψ⟩ = |an−1 an−2 · · · a1 a0⟩, 

and transforms it to 

1 ( �
QFT |ψ⟩ = |0⟩ + e 2πi0.an−1an−2 ···a0 |1⟩ 

2n/2 

. . . ( �
⊗ |0⟩ + e 2πi0.an−1an−2 |1⟩ ( �
⊗ |0⟩ + e 2πi0.an−1 |1⟩ . 

Applying the rotations of the evolve step adds the binary fractions of b to a. For 

example, let us look at the first term and apply the various controlled gates CRk. Recall 

from Section 2.7.7 that Rk(n) = U1(2π/2n). Doing this for all the fractional parts in 

the evolve step, the final state becomes ( �
|ψ(a + b)⟩ = |0⟩ + e 2πi0.an−1 an−2 ···a0 |1⟩ ( �

→ |0⟩ + e 2πi0.an−1 an−2 ···a0+0.bn−1 |1⟩ CR2 gate on bn−1, ( �
→ |0⟩ + e 2πi0.an−1 an−2 ···a0+0.bn−1bn−2 |1⟩ CR3 gate on bn−2, 

. . . ( �
→ |0⟩ + e 2πi0.an−1 an−2 ···a0+0.bn−1bn−2 ···b0 |1⟩ CRn−1 gate on b0. 

Given the insight that rotations in the Fourier domain facilitate addition, it is almost 

too easy to implement subtraction – we add a factor of −1 to b to evolve the state in 

the opposite direction. This is already implemented in the evolve function above. 
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With the same line of reasoning, we can easily express multiplications of the form 

a+cb, by just applying that factor to the rotation gates. We have to be careful with 

numerical overflow and make sure to reserve enough qubits to hold the result. 

The algorithm does not implement an actual multiplication, as recently proposed by 

Gidney (2019), where the factor c is held in another quantum register as input to the 

algorithm. However, performing multiplication in this way has an important use case. 

In Section 11.6 on Shor’s algorithm, we will multiply by constant integers for which 

we can classically compute the rotation angles required for addition. 

To test our code, we check the results with a routine that performs a measurement. 

As usual, we do not actually measure but look up the state with the highest probability. 

After the rotations and coming out of the superposition, the basis state representing 

the sum a + b will have a probability close to 1. 

def check_result(psi: state.State, a, b, 
nbits: int, factor: float = 1.0) -> None: 

maxbits, _ = psi.maxprob() 
result = helper.bits2val(maxbits[0:nbits][::-1]) 
assert result == a + factor * b, 'Incorrect addition.' 

11.5.1 Adding a Constant 

Adding a known constant value to a quantum state representing a binary number does 

not require a second quantum register, as in the general case of addition. We can 

precompute the rotation angles and apply them directly as if they were controlled by 

a second register that holds that constant. To precompute the required angles, we use 

this function: 

def precompute_angles(a: int, n: int) -> List[float]: 
angles = [0.0] * n 
for i in range(n): 

for j in range(i, n): 
if (a & (1 << n - j - 1)): 

angles[n - i - 1] += 2 ** (-(j - i)) 
angles[n - i - 1] *= math.pi 

return angles 

We modify the evolve step and add the precomputed rotation gates directly with U1 

gates instead of using controlled gates, as shown in the following code snippet. We 

will use this method later in Shor’s algorithm as well. 

for i in range(n+1): 
qft(qc, a, n-i) 

for idx, angle in enumerate(precompute_angles(c, n)): 
qc.u1(a[idx], angle) 

for i in range(n+1): 
inverse_qft(qc, a, i) 
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H π H 

H π/2 π/2 −π/2 H 

H π/2 π/4 π/4 −π/4 −π/2 H 

Figure 11.14 The circuit for a three-qubit addition of a constant value 1 to a quantum register. 

The individual rotations are precomputed; no further controlled rotations are needed. The left 

and right sides of the circuit are the QFT and inverse QFT operation, and the three rotations in 

the middle by π, π/2, and π/4 represent the evolve step. 

H 0 H 

H π/2 π −π/2 H 

H π/2 π/4 π/2 −π/4 −π/2 H 

Figure 11.15 The circuit for a three-qubit addition of a constant value 2 to a quantum register. 

The individual rotations are precomputed and differ from the case shown in Figure 11.14; they 

are now 0, π, and π/2. 

For example, for the three-qubit addition of a constant 1, the circuit without the 

b register is shown in Figure 11.14. To compare, the corresponding circuit for the 

addition of a constant 2 is shown in Figure 11.15. Notice the modified rotation angles 

in the evolution step. 

11.5.2 Multiplication 

So far, our methodology allows us to compute a + cb, for a constant c. Using this 

as a building block, we can implement full multiplication of two quantum registers 

a and b. Observe that if we write a in its binary form a = an−1an−2 · · · a0, we can 

decompose the multiplication ab into 

an−12n−1b + an−22n−2b + . . . + a121b + a020b. 

This is helpful because we know how to implement each of the subterms as an 

addition circuit with the terms 2n−1 ,2n−2 , . . . ,21 ,20 as the constant factor c in the 

partial term cb. The complete circuit is shown in Figure 11.16, starting with term a0. 

In code, we define a nested function add_src_to_target() that replicates the code 

above to calculate a + cb. 

def arith_quantum_mult(nbits_a: int, init_a: int, 
nbits_b: int, init_b: int) -> None: 

def add_src_to_targ(qc, nbits: int, src, targ, factor: float = 1.0): 
for i in range(nbits): 

qft(qc, targ, nbits - i) 
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Figure 11.16 A multiplication circuit to calculate c = ab. The individual qubits of |a⟩, 
interpreted as powers of 2, control additions of powers of 2 of the bit values of binary |b⟩. The 

effects are accumulative, resulting in a multiplication. 

for i in range(nbits): 
evolve(qc, targ, src, nbits - i, factor) 

for i in range(nbits): 
inverse_qft(qc, targ, i) 

The complete circuit instantiates three registers for a, b, and c, reserving enough 

qubits for a full multiplication result. We build the circuit as a non-eager circuit. After 

the registers are built, we iterate over all bits of a, generating a subcircuit to compute 

a subterm. We use a subcircuit because we want to control the addition circuit with a 

qubit in the a register. The convenience function control_by(), described in Section 

3.4.5, makes this easy. Finally, in each iteration, we multiply factor by 2. Once 

everything is constructed, a final qc.run() runs the entire circuit. We follow this 

with our usual code to ensure that everything went according to plan. 

qc = circuit.qc('qmult', eager=False) 
a = qc.reg(nbits_a, helper.val2bits(init_a, nbits_a)[::-1]) 
b = qc.reg(nbits_b * 2 + 1, helper.val2bits(init_b, nbits_b)[::-1]) 
c = qc.reg(nbits_b * 2 + 1, 0) 

factor = 1.0 
for idx in range(nbits_a): 

sc = qc.sub() 
add_src_to_targ(sc, nbits_b * 2, b, c, factor) 
sc.control_by(a[idx]) 
qc.qc(sc) 
factor *= 2 

qc.run() 

maxbits, _ = qc.psi.maxprob() 
result = helper.bits2val(maxbits[c[0] : c[0 + nbits_b * 2]][::-1]) 
assert result == init_a * init_b, 'Incorrect multiplication' 
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11.6 Shor’s Algorithm 

Shor’s algorithm for number factorization sparked tremendous interest in quantum 

computing (Shor, 1994). The Internet’s RSA (Rivest, Shamir, Adleman) encryption 

algorithm (Rivest et al., 1978) is based on the assumption that number factoring is an 

intractable problem. If quantum computers could crack this code, it would obviously 

have severe implications. 

Shor’s algorithm is complex to implement. Factoring small numbers like 15 or 

21 already requires a large number of qubits and many gates, on the order of many 

thousands. Despite this, there is still a quantum advantage. The best-known com-

plexity for classical order ( finding uses a general number � field sieve with subexpo-

nential complexity O exp(  1/3   2/3  ( 1.9(logN) (log log� N) ) . The best known theoretical

quantum complexity is O (log N)2(log log N) , which puts the algorithm in the BQP 

complexity class (Wikipedia, 2024f). The algorithm has three main steps: 

1. It has a classical part, grounded in number theory, which relies on modular 

arithmetic, followed by a process called order finding. 

2. Order finding is classically intractable, but an efficient probabilistic quantum 

algorithm was discovered. This quantum part is at the heart of Shor’s algorithm. 

3. Once the order has been found, the prime factors can be derived. 

We split the description of the algorithm into two parts. The classical part is discussed 

in this section. The quantum parts, including factoring, will be discussed in Section 

11.7 on order finding. 

11.6.1 Modular Arithmetic 

Modular arithmetic is a complete arithmetic on integers that wrap around a given 

number, called the modulus, and considers the remainder.9 One definition is 

a ≡ b mod N ⇒ b ≡ qN + a, for some q. 

Equivalently, 

a ≡ b mod N ⇒ a mod N ≡ b mod N. 

Simple algebraic rules hold: 

(x + y) mod N ≡ x mod N + y mod N, ( �
(xy) mod N ≡ (x mod N)(y mod N) mod N. 

(11.11)

(11.12) 

We can use Equations (11.11) and (11.12) to simplify computation with large num-

bers, for example: 

(121 + 241) mod 12 ≡ 1 + 1 = 2, 

(121 · 241) mod 12 ≡ (1 · 1) mod 12 = 1. 

9 The modulus mirrors the C++ or Python percent operators. 
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11.6.2 Greatest Common Divisor 

We will need to calculate the greatest common divisor (GCD) of two integers. Recall 

that we get that by decomposing the numbers into their prime factors and finding the 

largest common factor. For example, the GCD of the integers 15 and 21 is 3, as 

15 = 3 · 5, 
21 = 3 · 7. 

We compute the GCD with the famous Euclidean algorithm (Wikipedia, 2024f): 

def gcd(a: int, b: int) -> int: 
while b != 0: 

t = b 
b = a % b 
a = t 

return a 

11.6.3 Factorization 

Now, let us see how to use modular arithmetic and the GCD to factor a large number. 

We are only considering numbers that have exactly two prime factors. In general, a 

number can potentially be factored into several prime factors pi, as 

e0 e1 en−1N = p p . . . p0 1 n−1 , 

but factoring is computationally most difficult if N has only two prime factors of 

roughly equal length.10 This is the property upon which the RSA encryption mech-

anism is based. With p and q prime, we assume that 

N = pq. 

We can restate the factorization problem in the following interesting and perhaps 

surprising way. The problem of factoring the large number N into two primes is 

equivalent to finding nontrivial solutions to the equation 

2 x ≡ 1 mod N. (11.13) 

Below we will find that x will be of the form x = ar/2 for a seed value a and an even 

“order” r, but let us not get ahead of ourselves. The two trivial solutions for Equation 

(11.13) are x = 1 and x = −1. But what about other solutions? For the example of 

N = 21, we can find another solution by iterating over the values [1, . . . ,N − 1] and 

searching for a value x for which Equation (11.13) holds: 

10 The typical reasons given for this are a) the absence of obvious weakness from the imbalance of factors, 

b) the fact that the search space cannot be reduced, and c) the complexity of the known factorization 

algorithms, which is measured in terms of the size of the factors. 
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1 · 1 = 1 = 1 mod N, 

2 · 2 = 4 = 4 mod N, 

3 · 3 = 9 = 9 mod N, 

. . . 

8 · 8 = 64 = 1 mod N (Bingo!). 

We find that Equation (11.13) holds for x = 8. Now, since 

x 2 ≡ 1 mod N ⇒ x 2 − 1 ≡ 0 mod N, 

we can factor the left side using the quadratic formula as 

(x + 1)(x − 1) ≡ 0 mod N. 

The remainder of 0 means N divides the product on the left. This means we can find 

the prime factors {p,q} with 

p = gcd(N,x + 1), and 

q = gcd(N,x − 1). 

For the example of N = 21 and x = 8, we find p = 3 and q = 7. 

This seems easy but suffers from the “little technical problem” of having to find 

that number x. In the classical case, our only options are to either iterate over all 

numbers or pick random values, square them, and check whether we find a number 

that, when taken modulo N, produces a 1. The choice of random values means that 

the birthday paradox may apply.11 We would have a 50% chance of finding a positive √ 
result after about 2N searches. This is intractable for the large numbers used in 

internet encryption with lengths of 2048 bits, 4096 bits, and higher. 

11.6.4 Period Finding 

We saw above that we want to find the important even order r for a seed value a with 

x = r/a 2, such that x 2 = 1 mod N. To find these values, we perform the following 

three somewhat unexpected steps to find r. Later, we will find an efficient quantum 

algorithm for the order finding part in Step 2: 

Step 1 – Select Seed Number 

We pick a random number a < N that does not have a nontrivial factor12 in common 

with N. We also say that a and N are coprime. For example, the numbers 5 and 21 are 

coprime, even though 21 by itself is not a prime number. This can be tested with the 

help of the GCD. If two numbers are coprime they do not13 have a common factor and 

their GCD is 1. If our initial selection of a divides N without a remainder, we were 

lucky and found a factor already. 

11 See also http://en.wikipedia.org/wiki/Birthday_problem. 
12 Double negative. Perhaps it is better to say that a and N have only trivial factors in common. 
13 On the other hand, if the numbers are not coprime, their GCD will find a nontrivial factor of N. 

http://en.wikipedia.org/wiki/Birthday_problem
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Step 2 – Find Order 

Use the function f x
a,N (x) = a mod N and iterate over x in the sequence 

ax=0 mod N = 1, 

ax=1 mod N = . . . , 

ax=2 mod N = . . . , 
. . . 

Leonhard Euler showed (Euler, 1763) that for any coprime a of N (which again 

means that a and N have no common factors), this sequence will result in 1 for some 

nontrivial x < N. Since the sequence started with ax=0 = 1, once it hits 1 for x > 0, 

the sequence will repeat itself. For example, for a = 7 and N = 15, the sequence is 

a 0 mod N = 70 mod 15 = 1, 

a 1 mod N = 71 mod 15 = 7, 

a 2 mod N = 72 mod 15 = 4, 

a 3 mod N = 73 mod 15 = 13, 

a 4 mod N = 74 mod 15 = 1. 

The length of the sequence r (4 in the example) is called the order, or period, of the 

function. We can write this mathematically as 

fa,N (s + r) = fa,N (s). 

This is the problematic classical step. We do not know of a polynomial-time classi-

cal algorithm for it. In Section 11.7, we will learn about a quantum algorithm for this 

task. For now, let us just pretend that we have an efficient way to compute the order 

and learn how we can use it to factor a number. 

Step 3 – Factor 

If we find an order r that is an odd number, we give up, throw the result away, and 

try again with a different initial value of a in Step 1. If, on the other hand, we find an 

order r that is an even number, we can use what we discovered earlier. Namely, we 

can get the factors if we can find the x in the equation 

x 2 ≡ 1 mod N. 

We just found in step 2 above that 

r a ≡ 1 mod N. 

If r is even, we can rewrite this as ( �2 r/2 a ≡ 1 mod N. 
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In this form, we can compute the prime factors of N with the GCD as (
r/2 p = gcd N,a + 1 ,(

q r
�

= gcd /2 N,a − 1 . 

�
There is another small (as in, actually small) caveat. We do not know whether a 

given initial value of a will result in an even or odd order. We cannot use odd orders 

because they would not lead to useful factors. It can be shown that the probability of 

selecting an a that produces an even order r is 1/2. This means we might have to run 

the algorithm multiple times until we find an even order. 

The three steps of selecting a seed number, finding the order, and factoring are the 

core of Shor’s algorithm. As mentioned, we develop a quantum algorithm for order 

finding in Section 11.7. But before we get there, let us write some code and explore 

the concepts developed so far. 

11.6.5 Playground 

Let’s use some random examples to experiment with what we have learned so far. We 

classically compute the order and derive the prime factors from it. Since the numbers 

are small, the problems are still tractable. Let us first develop some helper functions. 

When choosing a random number num to play with, we must make sure that it is 

not prime and can be factored. To check for primality,14 we iterate over all the odd 

numbers starting at 3 and confirm that none of them divides the candidate number num. 

PY 
Find the code 
In file src/shor_classic.py 

def is_prime(num: int) -> bool: 
for i in range(3, num // 2, 2): 

if num % i == 0: 
return False 

return True 

The algorithm requires picking a random number seed, which must be coprime to 

the larger number (no common factors). 

def is_coprime(num: int, larger_num: int) -> bool: 
return math.gcd(num, larger_num) == 1 

We find a random, odd, and nonprime number in the range of numbers from fr to 

to. We also add a routine to find a coprime: 

14 It’s a word. I checked. 

http://www.github.com/qcc4cp/qcc/blob/main/src/shor_classic.py
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def get_odd_non_prime(fr: int, to: int) -> int: 
while True: 

n = random.randint(fr, to) 
if n % 2 == 0: 

continue 
if not is_prime(n): 

return n 

def get_coprime(larger_num: int) -> int: 
while True: 

val = random.randint(3, larger_num - 1) 
if is_coprime(val, larger_num): 

return val 

Finally, we will need a routine to compute the order of a given modulus. The code 

below iterates until it finds a result of 1 (which is guaranteed to exist). 

def classic_order(num: int, modulus: int) -> int: 
order = 1 
while 1 != (num ** order) % modulus 

order += 1 
return order 

For the main experiments, we first select a random N and a coprime a, as described 

above. N is the number to factorize; it must not be prime or divisible by 2. Once 

we have the numbers, we classically compute the order. Once the order is found, we 

compute the factors from it and check the results: 

def run_experiment(fr: int, to: int) -> (int, int): 
n = get_odd_non_prime(fr, to) 
a = get_coprime(n) 
order = classic_order(a, n) 

factor1 = math.gcd(a ** (order // 2) + 1, n) 
factor2 = math.gcd(a ** (order // 2) - 1, n) 
if factor1 == 1 or factor2 == 1: 

return None 

print('Found Factors: N = {:4d} = {:4d} * {:4d} (r={:4})'. 
format(factor1 * factor2, factor1, factor2, order)) 

assert factor1 * factor2 == n, 'Invalid factoring' 
return factor1, factor2 

We run a number of tests and should find results as follows. Even for small random 

numbers of up to 9,999, the order can already be quite large. 
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def main(argv): 
print('Classic Part of Shor\'s Algorithm.') 
for i in range(25): 

run_experiment(21, 9999) 
>> 
Classical Part of Shor's Algorithm. 
Found Factors: N = 3629 = 191 * 19 (r=1710) 
Found Factors: N = 4295 = 5 * 859 (r=1716) 
Found Factors: N = 9023 = 1289 * 7 (r=3864) 
[...] 

In summary, we have examined how to factorize a number N into two prime factors 

using order finding and modular arithmetic. However, we also find that classical order 

finding for large numbers is intractable. Thankfully, an efficient quantum algorithm 

has been discovered for this purpose, which we will discuss next. 

11.7 Order Finding 

So far, we have learned how finding the order of a specific function classically lets us 

find two prime factors. In this section, we discuss an effective quantum algorithm to 

improve on the classical task. We start by restating the objective in a slightly different 

way: We want to find the phase of one particular operator. It may not be immediately 

clear how this pertains to determining the order, but no worries, we will elaborate on 

all the details in the subsequent sections. 

Quantum order finding boils down to estimating the phase for the operator Ux, 

which is defined as 

Ux|y⟩ = |xy mod N⟩. (11.14) 

Here, x plays the role of the value a from Section 11.6.4, where we exponentiated 

a with increasing integer exponents and computed the modulus until we found a 

remainder of 1. We can also see that there is a modulus operation in the operator. 

We will have to find a quantum way to implement this operation. 

To begin, let us first find the form of the eigenvalues of this operator. We use a 

process similar to the power iteration process from Section 11.6.4. We know that the 

eigenvalues must have norm 1, otherwise the state probabilities would not sum up to 

1. We also know that the eigenvalues are defined as U|v⟩ = λ|v⟩. Hence, we can state: 

Uk|v⟩ = λk|v⟩, 

and, substituting this into the operator of Equation (11.14), we get � kUk|y⟩ = x y mod N . 

If r is the order of x mod N, then x r = 1 mod N, and � rUr|y⟩ = λr|y⟩ = x y mod N = |y⟩. 

|| ⟩
|| ⟩
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In turn, this allows us to derive that λr = 1. This means that the eigenvalues of U 

are rth roots of unity, which are complex numbers that yield 1 when raised to some 

integer power n. They are defined as 

λ 2πis/r
s = e , for s = 0, . . . ,r − 1. 

Using phase estimation, we will find these eigenvalues. The final trick will be to get 

to the order r from the fraction s/r. 

There is, of course, an initialization problem. For the phase estimation circuit to 

work, we need to know an eigenvector. In the following, we will show that the eigen-

vectors of the operator U with order r, a value s with 0 ≤ s < r, and a seed value a, are 

�� �r−1X1 2πiks/r|vs⟩ = √ e ak mod N . 
r 

k=0 

However, because we do not yet know the order r, we do not know any of the 

eigenvectors. Here comes another smart trick. We can see that the operator U from 

Equation (11.14) is a permutation operator. How does this work? Following the pattern 

of modular arithmetic, given states are uniquely mapped to different states with order 

r. Let us interpret the states as integers, with state |1⟩ representing decimal 1, and 

state |1001⟩ representing decimal 9. For all values less than r, this mapping is a 1:1 

mapping – each input state maps to a unique output state, which ensures that no two 

input states map to the same output state. For the operator 

U|y⟩ = |xy mod N⟩ , 

we see that state |y⟩ is multiplied by x mod N. As we iterate over exponents, this 

becomes 

Un|y⟩ = |xny mod N⟩ . 

For example, with x = 2 and N = 21, each application multiplies the state of the 

input register by 2 mod N. We started with 20 = 1 = 1 mod N, which corresponds to 

state |1⟩. Then 

U1|1⟩ = |2⟩, 
U2|1⟩ = UU|1⟩ = U|2⟩ = |4⟩, 
U3|1⟩ = |8⟩, 
U4|1⟩ = |16⟩, 
U5|1⟩ = |11⟩, 
U6|1⟩ = Ur|1⟩ = |1⟩. 

We still need to find an eigenvector but discover that the first eigenvector of this 

operator is in superposition of all states. This may be surprising but is easy to under-

stand from another simple example.15 Let us take the unitary X gate, which only 

permutes between the two states |0⟩ and |1⟩, with 

15 http://quantumcomputing.stackexchange.com/a/15590. 

|| ⟩
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X|0⟩ = |1⟩ and X|1⟩ = |0⟩. 

Applying X to the superposition of these basis states leads to the following result with 

an eigenvalue of 1: � �
|0⟩ + |1⟩ X|0⟩ + X|1⟩ 

X √ = √ 
2 2 

|1⟩ + |0⟩ |0⟩ + |1⟩ 
= √ = √ 

2 2 

|0⟩ + |1⟩ 
= 1 √ . 

2 

Now that we have found at least one plausible eigenvector, we can generalize the 

operator in Equation (11.14) to multiple basis states. As shown, the superposition of 

the basis states is an eigenvector of U with eigenvalue 1: 

�� �r−1X1 |u1⟩ = √ ak mod N . 
r 

k=0 

We also found that the eigenvalues are 

2πis/rλs = e , for s = 0, . . . ,r − 1. 

We can introduce a factor k to define eigenstates where the phase of the kth basis 

state is proportional to k as 

�� �r−1X1 2πik/r|u1⟩ = √ e ak mod N . 
r 

k=0 

(11.15) 

For our example, applying the operator to this eigenvector follows the permutation 

rules of the operator U (|1⟩ → |2⟩,|2⟩ → |4⟩, . . .): � �1 |u1⟩ = √ |1⟩ + e 2πi/6|2⟩ + e 4πi/6|4⟩ + e 6πi/6|8⟩ + e 8πi/6|16⟩ + e 10πi/6|11⟩ , 
6 � �1 

U|u1⟩ = √ |2⟩ + e 2πi/6|4⟩ + e 4πi/6|8⟩ + e 6πi/6|16⟩ + e 8πi/6|11⟩ + e 10πi/6|1⟩ . 
6 

We can pull out the factor −2πi/e 6 to arrive at: � �1 2πi 4πi 6πi 8πi 10πi 12πi−2πi/6 
6 6 6 6 6 6U|u1⟩ = √ e e |2⟩ + e |4⟩ + e |8⟩ + e |16⟩ + e |11⟩ + e |1⟩|{z}6 

=1 

−2πi/6|u1⟩.= e 

Note how the order r = 6 now appears in the denominator. To make this general 

for all eigenvectors, we multiply in a factor s in the exponent, thereby obtaining: 

�� �r−1X1 2πiks/r|us⟩ = √ e ak mod N . 
r 

k=0 

|| ⟩

|| ⟩

|| ⟩
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Figure 11.17 Order finding circuit, which consists of phase estimation for the operator U 

followed by an inverse QFT operation. 

As a result, for our operator, we now get a unique eigenvector for each integer 

s = 0, . . . ,r − 1, with the following eigenvalues (note that if we added the minus sign 

to Equation (11.15), the minus sign here would disappear; we can ignore it): 

−2πis/r|use ⟩. (11.16) 

There is another important result here: If we add all these eigenvectors, the phases 

cancel out except for |1⟩ (not shown here; it is voluminous but not challenging). This 

helps us because now we can use |1⟩ as the eigenvector input to the phase estimation 

circuit. There, phase estimation for any of the eigenvalues in Equation (11.16) will 

give us the following result: 

s 
φ = . 

r 

But why can we use |1⟩ to initialize the phase estimation? Here is an answer:16 

Phase estimation should work for one eigenvector/eigenvalue pair. But in this case, 

we initialize the circuit with the sum of all eigenvectors, which we can consider as 

the superposition of all eigenstates. On measurement, the state will collapse to one 

of them. We do not know which one, but we know from the above that it will have 

a phase φ = s/r. This is all we need to find the order with the method of continued 

fractions. 

With all these preliminaries, we can now construct a phase estimation circuit as 

shown in Figure 11.17. The big challenge is how to implement the large unitary 

operator U. Our solution is based on a paper by Stephane Beauregard (Beauregard, 

2003) and a reference implementation by Tiago Leao and Rui Maia (Leao and Maia 

2021). The implementation is quite complicated. Fortunately, we are already familiar 

with many of the building blocks. 

16 http://quantumcomputing.stackexchange.com/q/15589. 

http://quantumcomputing.stackexchange.com/q/15589
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In our implementation, which is not highly optimized and far from theoretical 

limits, we need 22 qubits and more than 20,000 gates to factor the number 21. Because 

there are many QFTs and uncomputations, the number of gates increases rapidly. With 

our accelerated implementation, we can still simulate this circuit tractably for smaller 

numbers requiring about five classical binary bits. The overall implementation consists 

of about 250 lines of Python code. 

As with all oracles or high-level unitary operators, you might expect some quantum 

trick, a specially crafted matrix that just happens to compute the modulo exponentia-

tion. Unfortunately, that magical matrix does not exist. Instead, we have to compute 

the exponentiation explicitly with quantum gates by implementing addition and multi-

plication (by a constant) in the Fourier domain. We also have to implement the modulo 

operation, which we have not seen before. 

We describe the implementation as follows. First, we outline the main routine 

driving the whole process. Then, we describe the helper routines, e.g., for addition. 

We have seen most of these before in other sections. Finally, we describe the code that 

implements the unitary operators, which we connect in a phase estimation circuit. We 

finally get experimental results from the estimated phase with the help of continued 

fractions. 

11.7.1 Main Program 

In the implementation, we get the number N to factor and the seed value a as 

command-line parameters. From these values, we compute the required bit width and 

construct three registers. 

• aux for ancillae. 

• up is the top register in the circuit shown in Figure 11.17. We will compute the 

inverse QFT on this register to get the phase estimation. 

• down is the register that will hold the unitary operators. We initialize it to state |1⟩, 
which we can think of as the superposition of all eigenvectors, as explained above. 

PY 
Find the code 
In file src/order_finding.py 

def main(argv): 
number = flags.FLAGS.N 
a = flags.FLAGS.a 
nbits = number.bit_length() 
print('Shor: N = {}, a = {}, n = {} -> qubits: {}' 

.format(number, a, nbits, nbits*4 + 2)) 

qc = circuit.qc('order_finding') 
aux = qc.reg(nbits+2) 
up = qc.reg(nbits*2) 
down = qc.reg(nbits) 

http://www.github.com/qcc4cp/qcc/blob/main/src/order_finding.py
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We follow this with a one-to-one implementation of the circuit diagram in 

Figure 11.17. We apply Hadamard gates to the up register and a single X gate to 

the top qubit of the down register to initialize it as |1⟩. Note that to stay close to the 

reference implementation (Leao, 2021), we interpret down in reverse order. Then, we 

iterate over the number of up bits (nbits * 2) and create and connect the unitary 

gates with the controlled Multiply-Modulo routine cmultmodn. All of this is then 

followed by a final inverse QFT: 

qc.h(up) 
qc.x(down[0]) 
for i in range(nbits*2): 

cmultmodn(qc, up[i], down, aux, int(a**(2**i)), number, nbits) 
inverse_qft(qc, up, 2*nbits, with_swaps=1) 

Finally, we check the results. For the example numbers given (N = 15, a = 4), we 

expect the highest probability end states to correspond to a result of 128 or 0 in the up 

register, corresponding to interpretations as binary fractions of 0.5 and 0.0. We will 

detail the steps necessary to get to the factors from these fractions at the end of this 

section. Note again that we again inverted the order of the qubits with [::-1]. 

for bits in helper.bitprod(nbits * 4 + 2): 
prob = qc.psi.prob(*bits) 
if prob > 0.01: 

bitslice = bits[nbits + 2 : nbits + 2 + nbits * 2][::-1] 
intval = helper.bits2val(bitslice) 
phase = helper.bits2frac(bitslice) 

[... compute fractions here] 

total_prob += prob 
if total_prob > 0.999: 

break 

As we measure, we will find the correct factors with a probability of 50% (or 

less). The algorithm is probabilistic. On a real machine, we might find only factors 

1 and N and have to run the algorithm multiple times until we find at least one of the 

other prime factors. In our infrastructure, of course, we can just peek at the resulting 

probabilities without the need to run multiple times. 

[...] 
Swap... 
Uncompute... 
Measurement... 
Final x-value. Got: 0 Want: 128, probability: 0.250 
Final x-value. Got: 0 Want: 128, probability: 0.250 
Final x-value. Got: 128 Want: 128, probability: 0.250 
Final x-value. Got: 128 Want: 128, probability: 0.250 
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11.7.2 Support Routines 

We use the variable a to compute a modulo number. Since we have to perform uncom-

putation, we need the modulo inverse of this number. The modulo inverse of x mod N 

is the number xinv, such that xxinv = 1 mod N. We can compute this number with the 

help of the extended Euclidean algorithm (Wikipedia, 2021c): 

def modular_inverse(a: int, m: int) -> int: 
"""Compute Modular Inverse.""" 

def egcd(a: int, b: int) -> (int, int, int): 
if a == 0: 

return (b, 0, 1) 
else: 

g, y, x = egcd(b % a, a) 
return (g, x - (b // a) * y, y) 

# Modular inverse of x mod m is the number x^-1 such that 

# x * x^-1 = 1 mod m 

g, x, _ = egcd(a, m) 
assert g == 1, f'Modular inverse ({a}, {m}) does not exist.' 
return x % m 

Our implementation of the algorithm requires a large number of QFTs and inverse 

QFTs. Many of these operations are part of adding a constant to a quantum register. 

We saw in Section 11.5.1 on quantum arithmetic how to precompute the angles with 

this routine: 

def precompute_angles(a: int, n: int) -> List[float]: 
angles = [0.0] * n 
for i in range(n): 

for j in range(i, n): 
if (a & (1 << n - j - 1)): 

angles[n - i - 1] += 2 ** (-(j - i)) 
angles[n - i - 1] *= math.pi 

return angles 

We will need circuitry to compute addition, controlled addition, and double-

controlled addition. We implement constant addition in add using the u1 gate. The 

controlled addition in cadd uses the controlled gate cu1, and the double-controlled 

addition in ccadd uses the double-controlled gate ccu1. 

def add(qc, q, a: int, n: int, factor: float) -> None: 
for idx, angle in enumerate(precompute_angles(a, n)): 

qc.u1(q[idx], factor * angle) 

def cadd(qc, q, ctl, a: int, n: int, factor: float) -> None: 
for idx, angle in enumerate(precompute_angles(a, n)): 

qc.cu1(ctl, q[idx], factor * angle) 
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def ccadd(qc, q, ctl1: int, ctl2: int, a: int, n: int, 
factor: float) -> None: 

for idx, angle in enumerate(precompute_angles(a, n)): 
qc.ccu1(ctl1, ctl2, q[idx], factor * angle) 

Using the fact that a subtraction circuit is the adjoint of an addition circuit, 

( †Sub a) = Add (a), we get (b − a) if b ≥ a, and (2n−1 − (a − b)) if b < a. So 

we can use this to subtract and compare numbers. If b < a, then the most significant 

qubit will be |1⟩. We will use this qubit to control other gates later. 

b Sub(a QFT 
† 

(
QFT ) 

|b − a⟩ if b ≥ a, 
= 

|2n−1 − (a − b)⟩ if b < a. 

For QFT and inverse QFT operations, we reuse the qft and inverse_qft func-

tions that we implemented in Section 11.4.2 in the circuit class. We will perform 

QFT on partial registers, so we provide wrappers to these functions that allow us to 

specify how many qubits in a register to operate on. We use the Python slice operator 

since our registers are conveniently just Python lists of indices. 

def qft(qc, up_reg, n: int, with_swaps: bool = False) -> None: 
qc.qft(up_reg[:n], with_swaps) 

def inverse_qft(qc, up_reg, n: int, with_swaps: bool = False) -> None: 
qc.inverse_qft(up_reg[:n], with_swaps) 

11.7.3 Modular Addition 

At this point, we know how to add numbers and check whether a value has turned 

negative by checking the sign qubit. This means that we should have all the necessary 

ingredients for modular addition: We compute a + b and subtract N if a + b > N. 

We achieve this by adding an ancilla in the initial state |0⟩. We start by adding a 

and b as before. We also reserve an overflow bit. Then, we use the adjoint of the adder 

to subtract N (a fancy way of saying that we apply a negative factor in the addition 

routines above). 

To get to the most significant qubit and determine if this result was negative, we 

have to perform the inverse QFT. We connect the most significant qubit and the ancilla 

with a controlled Not gate. It will only be set to |1⟩ if a + b − N is negative. After 

this, we go back to the Fourier domain with another QFT. If a + b − N is negative, we 

use the ancilla qubit to control the addition of N to make the result positive again. The 

circuit is shown in Figure 11.18. 

There is a resulting problem that is not easy to solve – the ancilla qubit is still 

entangled. It has turned into a junk qubit. We have to find a way to return it to its 

original state of |0⟩, otherwise it will mess up our results (as junk qubits have a habit 

of doing). 
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|b⟩ +(a) −(N) QFT † QFT +(N) 

|0⟩ 

Figure 11.18 First half of the modular addition circuit. 

−(a) QFT † QFT +(a) (a + b) mod N 

X X 

|0⟩ 

Figure 11.19 Second half of the modulo addition circuit, disentangling the ancilla. Note that this 

implementation uses the little-endian convention with the most significant qubit being at the 

bottom. 

To resolve this, we use an almost identical circuit again, but with a twist. We 

observe that, after the modulo operation, if the remainder is larger than a, then 

(a + b) mod N ≥ a ⇒ a + b < N. 

We change the circuit and, this time, run an inverse addition to subtract a from the 

above result and compute (a + b) mod N − a. The most significant bit will be |0⟩ if 
(a + b) mod N ≥ a. We apply a NOT gate and use it as the controller for a controlled 

Not to the ancilla. With this, the ancilla has been restored. 

Now we have to uncompute what we just did. To do that, we apply another NOT 

gate to the most significant qubit, followed by a QFT and an addition of a to reverse 

the initial subtraction. The end result is a clean computation of (a + b) mod N. In 

circuit notation, the second half of the circuit is shown in Figure 11.19. In code: 

def cc_add_mod_n(qc, q, ctl1, ctl2, aux, a, number, n): 
"""Circuit that implements doubly controlled modular addition by a.""" 

ccadd(qc, q, ctl1, ctl2, a, n, factor=1.0) 
add(qc, q, number, n, factor=-1.0) 
inverse_qft(qc, q, n, with_swaps=0) 
qc.cx(q[n-1], aux) 
qft(qc, q, n, with_swaps=0) 
cadd(qc, q, aux, number, n, factor=1.0) 

ccadd(qc, q, ctl1, ctl2, a, n, factor=-1.0) 
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inverse_qft(qc, q, n, with_swaps=0) 
qc.x(q[n-1]) 
qc.cx(q[n-1], aux) 
qc.x(q[n-1]) 
qft(qc, q, n, with_swaps=0) 
ccadd(qc, q, ctl1, ctl2, a, n, factor=1.0) 

For uncomputation, we will also need the inverse of this procedure. As explained 

in Section 2.12, we apply the inverse gates in reverse order: 

def cc_add_mod_n_inverse(qc, q, ctl1, ctl2, aux, a, number, n): 
"""Inverse of the double-controlled modular addition.""" 

ccadd(qc, q, ctl1, ctl2, a, n, factor=-1.0) 
inverse_qft(qc, q, n, with_swaps=0) 
qc.x(q[n-1]) 
qc.cx(q[n-1], aux) 
qc.x(q[n-1]) 
qft(qc, q, n, with_swaps=0) 
ccadd(qc, q, ctl1, ctl2, a, n, factor=1.0) 

cadd(qc, q, aux, number, n, factor=-1.0) 
inverse_qft(qc, q, n, with_swaps=0) 
qc.cx(q[n-1], aux) 
qft(qc, q, n, with_swaps=0) 
add(qc, q, number, n, factor=1.0) 
ccadd(qc, q, ctl1, ctl2, a, n, factor=-1.0) 

Uncomputing circuits like this is tedious. In Section 3.4.3 we showed how to auto-

mate uncomputation in an elegant way. However, that relatively simple method will 

not work here because we use a coprime number in the computation step. In order to 

uncompute, we must use its modular inverse. This value is not apparent and hence not 

available in the automated uncomputation infrastructure. 

11.7.4 Controlled Modular Multiplication 

The next step is to build a controlled modular multiplier from the modular adders we 

just constructed. Our circuit will be controlled by a qubit |c⟩ and take the state |c,x,b⟩ 
to the state |c,x,b + (ax) mod N⟩, if |c⟩ = |1⟩. Otherwise, it will leave the original 

state intact. 

We perform successive applications of the controlled modular addition gate, con-

trolled by the individual bits xi of x, as shown in Figure 11.20. The bit positions 

correspond to powers of 2 in the identity 

(ax) mod N = � �( �
. . . (20 ax0) mod N + 21 ax1 mod N + · · · + 2n−1 axn−1 mod N. 
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... 
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... 

... 

... 

|c⟩ 

|x⟩ 

|b⟩ QFT 
+20 a 

modN 

+21 a 

modN 

+2n−1 a 

modN 
QFT † 

Figure 11.20 Circuit for controlled modular multiplication. 

As described in Section 2.12 on uncomputation, to eliminate the entanglement with 

|b⟩, we swap out |x⟩ and uncompute the circuit after the swap. In the code, we see three 

sections. In the first section, it computes the multiplication modulo N. In the second 

block, it connects the results with controlled gates to swap out |x⟩ to the aux register 

(the cswap was introduced in Section 3.3 on quantum circuits). Finally, it uncomputes 

the results. This means we must implement the inverse computation of the first block 

using the modular inverse. 

def cmultmodn(qc, ctl, q, aux, a, number, n): 
"""Controlled Multiply of q by number, with n bits.""" 

print('Compute...') 
qft(qc, aux, n+1, with_swaps=0) 
for i in range(n): 
cc_add_mod_n(qc, aux, q[i], ctl, aux[n+1], 

((2**i)*a) % number, number, n+1) 
inverse_qft(qc, aux, n+1, with_swaps=0) 

print('Swap...') 
for i in range(n): 
qc.cswap(ctl, q[i], aux[i]) 

a_inv = modular_inverse(a, number) 

print('Uncompute...') 
qft(qc, aux, n+1, with_swaps=0) 
for i in range(n-1, -1, -1): 

cc_add_mod_n_inverse(qc, aux, q[i], ctl, aux[n+1], 
((2**i)*a_inv) % number, number, n+1) 

inverse_qft(qc, aux, n+1, with_swaps=0) 

In summary, the modular multiplication circuit performs: 

|x⟩|0⟩ → |ax mod N⟩|0⟩. 

We shall name this circuit CUa. There is still a problem – the phase estimation 

algorithm requires powers of 2 of this circuit. Does this mean we have to multiply 
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this circuit n times by itself to get to (CUa)
n for each power of 2 as required by phase 

estimation? Fortunately, we do not. We simply compute an classically and use 

n .(CUa)
n = CUa

This can be seen at the top level in the code, where we iterate over the calls to the 

modular arithmetic circuit (the expressions containing 2**i). 

11.7.5 Continued Fractions 

We are close to the finish line. We mentioned in Section 11.7.1 that an expected 

result for the up register was 128. This was an interpretation of this register as an 

integer. However, we performed phase estimation, so we have to interpret the bits of 

the register as binary fractions. A value of 0 corresponds to a phase of 0.0, and a value 

of 128 corresponds to a phase of 0.5. We also know that phase estimation will give a 

phase of the following form with order r: 

s 
φ = . 

r 

This means that if we find a fraction of integers that approximate this phase, we 

would have an initial guess of the order r. To approximate a fractional value to an 

arbitrary degree of precision, we can use the technique of continued fractions.17 For-

tunately, an implementation of it already exists in the fractions Python library. We 

first decode the x-register as a binary fraction using the helper function bits2frac. 

Then we obtain the lowest denominator from the continued fractions algorithm. We 

need to limit the accuracy via limit_denominator to ensure that we get reasonably 

sized denominators: 

import fractions 
[... loop over high-probability states from above] 

bitslice = bits[nbits + 2 : nbits + 2 + nbits * 2][::-1] 
intval = helper.bits2val(bitslice) 
phase = helper.bits2frac(bitslice) 

r = fractions.Fraction(phase).limit_denominator(8).denominator 
guesses = [math.gcd(a ** (r // 2) - 1, number), 

math.gcd(a ** (r // 2) + 1, number)] 
print('Final x: {:3d} phase: {:3f} prob: {:.3f} factors: {}'. 

format(intval, phase, prob.real, guesses)) 

With this r, we can then follow the explanations on the non-quantum part of Shor’s 

algorithm and compute the factors. We might just get 1s or Ns, which do not help us. 

However, with a little luck (and the relevant probabilities), we might find one or both 

of the real factors. 

17 http://en.wikipedia.org/wiki/Continued_fraction. 
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11.7.6 Experiments 

Let’s run just a few examples to demonstrate the working machinery. To factorize 15 

with a seed value a = 4, we run a circuit with 10,553 gates and obtain two sets of 

factors, the trivial ones with 1 and 15, but Eureka! also the real factors of 3 and 5: 

.../order_finding -- --a=4 --N=15 
Final x-value int: 0 phase: 0.000000 prob: 0.250 factors: [15, 1] 
Final x-value int: 128 phase: 0.500000 prob: 0.250 factors: [3, 5] 
Circuit Statistics 
Qubits: 18 
Gates : 10553 

To factor 21 with a = 5, the required number of qubits increases from 18 to 22, 

increasing the number of gates to over 20,000. The run time increases roughly by a 

factor of 8. In addition to trivial factors, at least the routine finds the value 3 as one of 

the real factors: 

Final x-value int: 0 phase: 0.000000 prob: 0.028 factors: [21, 1] 
Final x-value int: 512 phase: 0.500000 prob: 0.028 factors: [1, 3] 
Final x-value int: 853 phase: 0.833008 prob: 0.019 factors: [1, 21] 
Final x-value int: 171 phase: 0.166992 prob: 0.019 factors: [1, 21] 
Final x-value int: 683 phase: 0.666992 prob: 0.019 factors: [1, 3] 
Circuit Statistics 
Qubits: 22 
Gates : 20671 

Finally, factoring 35 with a seed a = 4 uses over 36,000 gates and requires a runtime 

of approximately 60 minutes on a standard-issue laptop: 

Final x-value int: 0 phase: 0.000000 prob: 0.028 factors: [35, 1] 
Final x-value int: 2048 phase: 0.500000 prob: 0.028 factors: [1, 5] 
Final x-value int: 1365 phase: 0.333252 prob: 0.019 factors: [1, 5] 
Final x-value int: 3413 phase: 0.833252 prob: 0.019 factors: [7, 5] 
Final x-value int: 683 phase: 0.166748 prob: 0.019 factors: [7, 5] 
Final x-value int: 2731 phase: 0.666748 prob: 0.019 factors: [1, 5] 
Circuit Statistics 
Qubits: 26 
Gates : 36373 

You may want to experiment and perhaps transpile the code to libq with the 

transpilation facilities described in Section 3.4.7. The code runs significantly faster in 

libq, which allows experimentation with a much larger number of qubits. As a rough 

and unscientific estimate, factorization with 22 qubits runs for about two minutes on a 

standard workstation. After compilation to libq, it runs much faster due to the sparse 

representation and takes less than 5 seconds to complete. This is a speed-up factor of 

more than 25 times! Factoring 35 with 26 qubits accelerates from about an hour to 

about three minutes with libq, still a significant speed-up of about 20 times. 
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To summarize, the algorithm as a whole – from the classical parts to the quantum 

parts to finding the order with continued fractions – is truly magical. No wonder it has 

received so much attention and stands out as one of the key contributors to today’s 

interest in quantum computing. 

What may be even more exciting is that progress has not stood still. Shor’s algo-( )
rithm is usually estimated to require at least O log(n)2 log log n gates. The algorithm ( )
we outlined above requires 2n + 3 qubits and O n 3 log2 n gates. Recently, Regev 

(2024) showed that Shor’s algorithm could be computed by running a circuit with just ( ) √
 n + 4 

 
O 3/n 2 gates approximately times, representing a significant improvement. 

Should we be concerned that quantum computers will crack RSA-2048 soon? As 

of this writing, quantum computers operate with only tens or hundreds of qubits 

and without full error correction, making them incapable of handling such complex 

computations. Fully error-corrected qubits, which are required to reduce noise and 

decoherence, would vastly increase the number of physical qubits and gates needed, 

pushing “cracking the code” even further beyond the capabilities of quantum hardware 

today.18 

18 This paragraph may be a candidate for the category of “Famous Last Words.” 
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In this chapter, we briefly introduce quantum random walks, which are quite different 

from classical random walks. There is a large class of problems that can be solved 

with this technique, but here we focus on basic principles only. 

12.1 Quantum Random Walk 

A classical random walk describes a process of random movement in a given topology, 

such as moving randomly left or right on a number line, left/right and up/down on a 2D 

grid, or along the edges of a graph. Random walks accurately model an extensive range 

of real-world phenomena in disciplines as diverse as physics, chemistry, economics, 

and sociology. In computer science, random walks are effectively used in randomized 

algorithms. Some of these algorithms have a lower computational complexity than 

previously known deterministic algorithms. 

Random walks have fascinating properties. For example, assume that two random 

walkers start their journey at the same location on a 2D grid. Will the walkers meet 

again in the future, and if so, how often? The answer is yes, they will meet again, and 

furthermore, they will meet again infinitely many times. 

A quantum random walk is the quantum analog of a classical random walk (Kempe, 

2003), but of course, adding quantum mechanics makes things more interesting. In a 

quantum walk on a grid, the walker, due to superposition, exists in multiple states 

and moves in all directions simultaneously, taking all possible paths. Furthermore, the 

paths can interfere with each other. 

To achieve this, the quantum walker needs an extra degree of freedom, often called 

a “coin,” which determines the direction of the movement. The coin is a quantum sys-

tem, existing in a superposition of states, allowing the walker to move in all directions 

simultaneously. This leads to some unique properties: 

A quantum walker spreads across the grid much faster than a classical walker. 

• 

• 
The probability of finding the quantum walker at a specific location after a certain 

number of steps creates very different patterns from a classical walk. 

Specific problems, such as the glued tree algorithm developed by Childs et al. (2003, 

2009), cannot be computed in a tractable way on a classical machine. Herein lies the 

great interest in quantum random walks: Some of these intractable problems become 
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Figure 12.1 Results from a limited number of simulated classical random walks, plotting the 

likelihood of final position after starting in the middle of the range. 

tractable on a quantum machine. In this section, we further explore this phenomenon 

and touch on basic principles, such as how probabilities propagate through a topology. 

12.1.1 1D Walk 

Let us start in the simplest of scenarios by considering a classical 1-dimensional walk 

on a number line. For each step, the toss of a fair coin determines whether to move 

left or right. After many moves, the probability distribution of the final location will 

be shaped like a classic bell curve, with the highest probability clustering around the 

origin of the journey.1 Figure 12.1 shows the result of a simple experiment.2 

PY 
Find the code 
In file src/tools/random_walk.py 

The equivalent quantum walk operates in an analogous fashion with coin tosses 

and movements. Because this is quantum, we exploit the superposition and move in 

both directions at the same time. In short, a quantum random walk is the repeated 

application of an operator U = MC, with C being the coin toss followed by the move 

operator M. What are these unitary operators C and M? 

The most straightforward coin-toss operator may just be a single Hadamard gate. 

In this context, the coin is called a Hadamard coin. The |0⟩ part of the resulting 

superposition will control a movement to the left, and the |1⟩ part controls a movement 

to the right. 

The movement circuits can be constructed as shown in Douglas and Wang (2009). 

A number line has infinite length, which cannot be adequately represented in a quan-

tum state. We simplify and assume that the underlying topology for the walk is a 

circle with N stops on it. Each stop represents one of the N computational basis states. 

1 A biased coin would lead to a skewed distribution. 
2 In fairness, the curve simply reflects the random number distribution chosen for the experiment. 

http://www.github.com/qcc4cp/qcc/blob/main/src/tools/random_walk.py
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(a) An n-qubit increment operator. (b) An n-qubit decrement operator. 

Figure 12.2 Increment and decrement operators for quantum walks. 

Simple up and down counters with overflow and underflow between N and 0 will 

work as movement operators by changing a current high-probability basis state |B⟩ to 

|B + 1⟩ and |B − 1⟩ in superposition. We can construct an n-qubit increment circuit as 

shown in Figure 12.2a, with the corresponding Python code below. 

PY 
Find the code 
In file src/quantum_walk.py 

def incr(qc, idx: int, nbits: int, aux, controller=[]): 
for i in range(nbits): 

ctl=controller.copy() 
for j in range(nbits-1, i, -1): 

ctl.append(j+idx) 
qc.multi_control(ctl, i+idx, aux, ops.PauliX(), 'multi-1-X') 

The analogous n-qubit-decrement circuit is also easy to construct with this code, 

following Figure 12.2b. 

def decr(qc, idx: int, nbits: int, aux, controller=[]): 
for i in range(nbits): 

ctl=controller.copy() 
for j in range(nbits-1, i, -1): 

ctl.append([j+idx]) 
qc.multi_control(ctl, i+idx, aux, ops.PauliX(), 'multi-0-X') 

With these tools, we can construct an initial n-qubit quantum circuit step, as shown 

in Figure 12.3. A step has to be applied multiple times to simulate a walk (consisting 

of more than just a single step). 

For both increment and decrement, N is a power of 2. We can construct other 

types of counters, for example, counters with step size larger than 1 or counters that 

increment modulo another number. For example, to construct a counter modulo 9, we 

add gates that match the binary representation of 9 and force the counter to reset to 0 

once it reaches that limit value, as shown in Figure 12.4. 

We can see how to generalize this pattern to other topologies. For example, for a 2D 

walk across a grid, we can use two Hadamard coins: one for the left or right movement 

...

...

...

...

...

...

...

...

http://www.github.com/qcc4cp/qcc/blob/main/src/quantum_walk.py
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Incr Decr 

... 

... 

n 
... 

... 

...H 

Figure 12.3 A single step for a quantum walk. The increment and decrement unitary operators 

change the current high-probability computational basis state |B⟩ to |B + 1⟩ and |B − 1⟩ in 

superposition. 

and one for movements up or down. For graph traversals, we would encode a graph’s 

connectivity as a unitary operator. Several other examples of this can be found in 

Douglas and Wang (2009). 

12.1.2 Walk the Walk 

To simulate a given number of steps, we use the following driver code. The current 

position in the walk is encoded as a basis state, and we will go left and right by adding 

and subtracting 1. If we start at 0 and subtract 1, we have an immediate underflow 

to deal with. We have a similar problem with overflow at the high end of the number 

range. To make our lives a little easier, we initialize the x register in the middle of the 

state number range for n qubits. The middle of the binary number range for a given 

number of bits is the binary number that has a single 1 as the most significant bit, for 

example, the binary 0b100...0. Starting there, we avoid the immediate underflow 

below zero, and the visualizations appear centered. 

Note how the increment operator is controlled by coin[0], while the decrement 

operator is controlled by the single-element list [coin[0]]. The former is a standard 

Controlled-by-1 gate, while the latter is a Controlled-by-0 gate, as described in Section 

3.3.6. 

|1001⟩ 

|1⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

Figure 12.4 An increment modulo 9 operator. 

|0⟩ 
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def simple_walk(): 
"""Simple quantum walk.""" 

nbits = 8 
qc = circuit.qc('simple_walk') 
x = qc.reg(nbits, 0x80) 
aux = qc.reg(nbits, 0) 
coin = qc.reg(1, 0) # Add single coin qubit 

for _ in range(64): 
qc.h(coin[0]) 
incr(qc, 0, nbits, aux, [coin[0]]) # ctrl-by-1 

decr(qc, 0, nbits, aux, [[coin[0]]]) # ctrl-by-0 

What is happening here? With n qubits, we can represent 2n states in superposition 

with the corresponding number of probability amplitudes. As we perform step after 

step, nonzero amplitudes will propagate out over the state space. Looking at the 

examples in Figure 12.5b and 12.6b, we see that, in contrast to a classical walk, 

the amplitude distribution spreads out faster and with a different shape. A series of 

32 steps produces a nonzero amplitude in 64 states. The walk progresses in both 

directions at the same time. The farther away from the origin, the larger the amplitudes. 

These are the key properties that quantum walk algorithms exploit to solve classically 

intractable problems. 

To visualize how fast the amplitudes spread out, we print and graph the amplitudes 

after a number of steps. 

for bits in helper.bitprod(nbits): 
idx_bits = bits 
for i in range(nbits+1): 

idx_bits = idx_bits + (0,) 
if qc.psi.ampl(*idx_bits) != 0.0: 

print('{:5.3f}'.format(qc.psi.ampl(*idx_bits0).real)) 
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(a) 8 qubits, 32 steps, starting at basis state (b) 8 qubits, 64 steps, starting at basis state 
|100 . . . 0⟩. |100 . . . 0⟩. 

Figure 12.5 Propagating amplitudes after 32 and 64 steps. 
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0.2 

0.4 

0.1 
0.2 
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−0.2 
−0.1 

−0.4 

−0.2 

(a) 8 qubits, 96 steps, starting at basis state (b) 8 qubits, 96 steps, starting at basis state 
|100 . . . 0⟩, coin in initial state |0⟩. |100 . . . 0⟩, coin in initial state |1⟩. 

Figure 12.6 Propagating amplitudes with different initial states. 

Let us experiment with eight qubits. The starting position for the walk should be 

in the middle of the range of basis states, which we encode as a binary basis state 

with a single |1⟩ in the most significant qubit and |0⟩ in the other qubits. With eight 

qubits, there are 256 possible basis states. We initialize the eight qubits as |100 . . . 0⟩, 
which is binary 0x80, the middle of the range. The amplitudes after 32, 64, and 96 

steps are shown in Figure 12.5a, Figure 12.5b, and Figure 12.6a. The x-axis shows the 

state space (256 unique basis states for eight qubits). The y-axis shows the amplitude 

of each basis state. 

Notice how, in the figures, the amplitudes progress in a biased fashion. It is pos-

sible to create coin operators that are biased to the other side or even balanced coin 

operators. Alternatively, we can start in a state different from |0⟩. In the example in 

Figure 12.6b, we simply initialize the coin state as |1⟩. 
There are countless more experiments that you can perform with different coin 

operators, starting points, initial states, number of qubits, iteration counts, and more 

complex topologies beyond simple 1D and 2D walks. 

The 2010 IARPA program announcement set a challenge of eight complex 

algorithms to drive the development of scalable quantum software and infrastructure 

(IARPA, 2010). Three of these algorithms used quantum walks: The triangle finding 

algorithm (Buhrman et al., 2005; Magniez et al., 2005), the Boolean formula algorithm 

(Childs et al., 2009), and the welded tree algorithm (Childs et al., 2003). 

It is exciting to know that if we can express a particular algorithmic reachability 

problem as a quantum walk circuit, the fast speed of quantum walks and the dense 

storage of states can lead to quantum algorithms with lower complexity than their 

corresponding classical algorithms. 

0 50 100 150 200 250 0 50 100 150 200 250 
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13 Optimization Algorithms 

At this point, we have convinced ourselves that several quantum algorithms have an 

advantage in computational complexity over their classical analogs. We have seen 

algorithms that use quantum search, algorithms based on the quantum Fourier trans-

form, and algorithms utilizing quantum random walks. In this section, we discuss a 

small number of quantum optimization problems and touch on the topic of simulating 

quantum systems. 

We begin with the variational quantum eigensolver algorithm (VQE), which allows 

finding the minimum eigenvalue of a Hamiltonian. As an application, we develop a 

quantum version of the graph maximum cut algorithm by framing the problem as a 

Hamiltonian. This algorithm was introduced as part of the quantum approximate opti-

mization algorithm (QAOA), which we present briefly. We conclude with a discussion 

of the Subset Sum algorithm. 

13.1 The Variational Quantum Eigensolver (VQE) 

Welcome to a brief foray into the area of quantum simulation. In general, the goal of 

quantum simulation is to use a controllable quantum system to study another quantum 

system that is difficult to simulate classically. Classical simulation must deal with the 

exponentially growing number of basis states in superposition and the computationally 

complex equations that govern the evolution of a system. The original idea of using a 

quantum computer to simulate a quantum system was presented by Richard Feynman 

in his talk “Simulating physics with computers” (Feynman, 1982), which many regard 

as the origin of quantum computing. 

We will start with the variational quantum eigensolver (VQE), which is primarily 

an optimization algorithm. The VQE is a hybrid classical/quantum algorithm, as it 

leverages a quantum computer to prepare and measure quantum states and a classical 

computer to optimize a set of parameters for finding the ground-state energy (lowest 

eigenvalue) of a given Hamiltonian. 

It is possible to use quantum phase estimation (QPE) for this purpose. For realistic 

Hamiltonians, however, the number of required gates can reach millions, even billions, 

making it challenging to keep a physical quantum machine coherent long enough to 

run the computation. For VQE, on the other hand, the quantum part requires fewer 

gates and much shorter coherence times than QPE (Zhang et al., 2022). This is why 

it created such great interest in today’s era of Noisy Intermediate Scale Quantum 

https://doi.org/10.1017/9781009548519.014
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Computers (NISQ), which have limited resources and short coherence times (Preskill, 

2018). 

Any self-respecting book on quantum computing must mention the Schrödinger 

equation at least once. This is that section in this book. We begin by marveling at the 

beauty of the equation, although we will not solve it here. The purpose of showing it 

is to derive the spectral decomposition of Hamiltonians from eigenvectors (see also 

Section 4.1) and to show how the variational principle enables the approximation of 

a minimum eigenvalue. This is followed by a discussion of measurements in different 

bases and the hybrid classical/quantum algorithm itself. 

13.1.1 System Evolution 

In Section 2.13, we describe the evolution of a closed quantum system in postulate 2 

as  |ψ ′⟩ = U|ψ⟩. This is what we have used in this text so far. To change a state, we 

applied a unitary operator that did not depend on a time parameter; we used U and 

not U(t). This discrete time evolution of a system is sufficient for all the algorithms 

discussed in previous sections. However, it is a simplification, as time does not move 

in discrete steps (as far as we know, or perhaps suspect). 

The following paragraphs derive a specific form of the time-independent Schrö-

dinger equation. The details are not overly important in the context of this text. We 

focus primarily on the final form because that is where the VQE will come into play. 

The time-dependent evolution of the state |Ψ⟩ of a system is described by the 

beautiful Schrödinger equation (which typically does not use the bracket notation). 

Here, we discuss the one-dimensional1 version only. Again, let us marvel at this 

differential equation. We don’t have to solve it here: 

This equation can be transformed into the time-independent form2 

(13.1)

In classical mechanics, the total energy of a system, which is the kinetic energy 

plus the potential V , is called a Hamiltonian, denoted as H, not to be confused with 

our Hadamard operator H: 

1 This dimension of the physical system is different from the dimension of the Hilbert space of the 

quantum state. 
2 We assume a time-independent potential. 

https://doi.org/10.1017/9781009548519.014
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As a side note, the factor ℏ (the reduced Planck constant)3 is the same factor used in 

the famous Heisenberg uncertainty principle for the position x and the momentum px, 

with ∆x∆px ≥ ℏ/2. A Hamiltonian operator is obtained by the standard substitution 

of the momentum operator p: 

∂ 
p → −iℏ ,

∂x 

ℏ2 ∂2 

Ĥ = − + V(x). 
2m ∂x2 

We use this form to rewrite Equation (13.1) as the following, with Ĥ being the 

operator, E being an energy eigenvalue and |ψ⟩ being an eigenstate. Note the parallel 

to the definition of eigenvectors as A→x = λ→x: 

Ĥ |ψ⟩ = E |ψ⟩ . 

The expectation value for the total energy is then 

⟨H⟩ˆ = E. 

The Hamiltonian operator is Hermitian. On measurement, we obtain real values, 

which means that the eigenvalues must be real. The operator has a complete set of 

orthonormal eigenvectors |E0⟩,|E1⟩, . . . ,|En−1⟩, with the corresponding real eigenval-

ues λ0,λ1, . . . ,λn−1. Hence, we can describe a state as a linear combination of the 

eigenvectors as 

|ψ⟩ = c0|E0⟩ + c1|E1⟩ + · · · + cn−1|En−1⟩, (13.2) P 
|ci|2 

i = 1with complex coefficients ci and basis vectors Ei, such that . This is the

result that we were looking for. For a detailed derivation, see, for example, Fleisch 

(2020). 

13.1.2 The Variational Principle 

Assume that we are looking for the ground state energy E0 of a system described by a 

given Hamiltonian. Knowing the ground state energy is important in many fields. For 

example, in thermodynamics, it describes behavior at temperatures close to absolute 

zero. In chemistry, this enables us to draw conclusions about electron energy levels. 

Let us now assume that we cannot solve the time-independent Schrödinger Equa-

tion (13.1). We know that the measurement will project the state onto an eigenvector, 

and the measurement result will be the corresponding eigenvalue. The variational 

principle gives an upper bound for E0 with an expectation value for Ĥ as 

E0 ≤ ⟨ψ|H|ˆ ψ⟩ ≡ ⟨H⟩ˆ . 

However, what is this state |ψ⟩? The answer is potentially any state. The actual 

chosen state will determine the remaining error for estimating E0. We have to be smart 

3 See also https://en.wikipedia.org/wiki/Planck_constant. For simplicity, it is common to normalize 

ℏ = h/(2π) to 1. 

https://en.wikipedia.org/wiki/Planck_constant
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about how to construct it. This is the key idea of the VQE algorithm. To see how this 

principle works, let us again take the state 

|ψ⟩ = c0|E0⟩ + c1|E1⟩ + · · · + cn−1|En−1⟩. 

Let’s assume that λ0 is the minimal eigenvalue. Calculating ⟨ψ|H|ˆ ψ⟩ as follows 

demonstrates that any computed expectation value will be greater than or equal to 

λ0 (recall that the {|ci|}n−1 
i form a vector of probabilities, that’s why this inequality

holds): 

∗ ∗ ∗ ˆ(c ⟨E0| + c ⟨E1| + · · · + c ⟨En−1|) H (c0|E0⟩ + c1|E1⟩ + · · · + cn−1|En−1⟩)0 1 n−1 

= |c0|2λ0 + |c1|2λ1 + · · · + |cn−1|2λn−1 

≥ λ0. 

The structure of real Hamiltonians is another complication. The VQE algorithm 

works with Hamiltonians that can be written as a sum of a polynomial number of 

terms of Pauli operators and their tensor products (Peruzzo et al., 2014). This type of 

Hamiltonian is used in quantum chemistry, the Heisenberg model, the quantum Ising 

model, and many other fields. For example, for a helium hydride ion ( +He-H ) with 

bond distance 90 pm, the Hamiltonian (with σz σx as a shorthand notation for σz ⊗σx) is 

Ĥ = − 3.851II − 0.229Iσx − 1.047Iσz − 0.229σxI + 0.261σx σx 

+ 0.229σx σz − 1.0467σzI + 0.229σzσx + 0.236σzσz. 

To measure states affected by such Hamiltonians, we need to be able to measure in an 

arbitrary Pauli basis. This will be the topic of Section 13.1.3. 

13.1.3 Measurement in Pauli Bases 

So far in this book, we have mainly described measurement as projecting a state onto 

basis states, such as the computational basis states |0⟩ and |1⟩. If we recall the Bloch 

sphere representation as shown in Figure 13.1, this type of standard measurement 

projects the state to either the north or south pole of the Bloch sphere, corresponding 

|+⟩ (x) 

|−⟩ 

|+y⟩| −y⟩ 

|0⟩ (z) 

|1⟩ 

Figure 13.1 Bloch sphere representation with axes x, y, z. 
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to a measurement along the z-axis. However, what if the current state was aligned with 

a different axis, such as the x-axis or the y-axis? In both cases, a measurement along 

the z-axis would result in a random toss between |0⟩ and |1⟩ and not produce the result 

we were looking for. 

To measure in a different basis, we should rotate the state to the standard basis on 

the z-axis and perform a standard measurement there. The results can be interpreted 

as if they were along the original bases, and we get the added benefit of only needing 

a measurement apparatus in one direction. 

For example, to measure along the x-axis, we can apply a Hadamard gate or rotate 

about the y-axis. Correspondingly, to get a measurement along the y-axis, we may 

rotate about the x-axis. To compute expectation values for states composed of Pauli 

matrices, recall the X, Y , and Z bases states: � � � � 

X : |+⟩ = 
1 √ 
2 

1 

1 
, |−⟩ = 

1 √ 
2 

1 

−1 
, 

� � � � 

Y : |+y⟩ = 
1 √ 
2 

1 

i 
, |−y⟩ = 

1 √ 
2 

1 

−i 
, 

� � � � 

Z : |0⟩ = 
1 

0 
, |1⟩ = 

0 

1 
. 

Pauli operators have eigenvalues of −1 and +1. Applying these operators to basis 

states with eigenvalues +1 yields 

X |+⟩ = |+⟩ , Z |0⟩ = |0⟩ , Y |+y⟩ = |+y⟩ . 

The same operators applied to basis states with eigenvalues −1 yields 

X |−⟩ = – |−⟩ , Z |1⟩ = – |1⟩ , Y |−y⟩ = – |−y⟩ . 

Let us now talk about expectation values. For a state in the Z basis with amplitudes 

c z0 and c z 
1 we write the state as

z z|ψ⟩ = c |0⟩ + c |1⟩.0 1 

Calculating the expectation value for the Z gate, measured in the Z basis, yields the 

following. You can compute this for the X and Y bases in a similar fashion: ( ) ( ) 
z∗ z∗ z z⟨ψ|Z|ψ⟩ = c ⟨0| + c ⟨1| Z c |0⟩ + c |1⟩0 1 0 1� �� � 

z( ) 1 0 c z∗ z∗ 0= c c0 1 z0 −1 c1� � 
z( ) c z∗ z∗ 0= c −c0 1 z c1 

z z = |c |2 − |c |2.0 1 
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The values |c z |2 
0 and |c z |2 

1 are the measurement probabilities for |0⟩ and |1⟩. If we

run N experiments and measure state |0⟩ n0 times and state |1⟩ n1 times, then 

n0 n1z z|c |2 = , |c |2 = .0 1N N 

This means that the empirical expectation value for Z is 

n0 − n1z z⟨Z⟩ = |c |2 − |c |2 = .0 1 N 

For example, let’s assume we have the random number generator from Section 6.1, 

which consists of a single-qubit state initialized as |0⟩ and a Hadamard gate. The state 

after this gate is |+⟩, which you can find in Figure 13.1 on the positive x-axis. If we 

now measure N times in the Z basis, about 50% of the measurements will return |0⟩, 
and 50% will return |1⟩. The |0⟩ corresponds to eigenvalue λ0 = +1, and the |1⟩ 
corresponds to eigenvalue λ1 = −1. Hence, the expectation value is 

λ0N/2 + λ1N/2 (+1)N/2 + (−1)N/2 
= = 0. 

N N 

If we rotate the state into the Z basis with another Hadamard gate, the expectation 

value of |0⟩ in the Z basis would now be 1, which corresponds to the expectation value 

of the state |+⟩ originally in the X basis. 

In our infrastructure, we do not have to make measurements to compute probabil-

ities because we can directly look at the amplitudes of a state vector. To compute the 

expectation values for measurements made on Pauli operators with eigenvalues +1 

and −1 corresponding to measuring |0⟩ or |1⟩, we add this function to our quantum 

circuit implementation. 

PY 
Find the code 
In file src/lib/circuit.py 

def pauli_expectation(self, idx: int): 
# Pauli eigenvalues are -1 and +1, hence we can calculate the 

# expectation value as: 

p0, _ = self.measure_bit(idx, 0, False) 

return p0 - (1 - p0) 

Let us run a few experiments to familiarize ourselves with these concepts. What 

happens to the eigenvectors and eigenvalues for a Hamiltonian constructed from a 

single Pauli matrix multiplied by a factor? Is the result still unitary or Hermitian? 

factor = 0.6 

H = factor * ops.PauliY() 

eigvals = np.linalg.eigvalsh(H) 

print(f'Eigenvalues of {factor} X = ', eigvals) 

print(f'is_unitary: {H.is_unitary()}') 

print(f'is_hermitian: {H.is_hermitian()}') 

>> 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/circuit.py
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Eigenvalues of 0.6 X = [-0.6 0.6] 

is_unitary: False 

is_hermitian: True 

We see that the eigenvalues scale with the factor. Hamiltonians are Hermitian but 

not necessarily unitary. Let us create a |0⟩ state, show its Bloch sphere coordinates, 

and compute its expectation value in the Z basis. 

qc = circuit.qc('test') 

qc.reg(1, 0) 

qubit_dump_bloch(qc.psi) 

print(f'Expectation value for 0 State: {qc.pauli_expectation(0)}') 

>> 

x: 0.00, y: 0.00, z: 1.00 

Expectation value for 0 State: 1.0 

As expected, the current position is on top of the north pole, corresponding to the 

state |0⟩. The expectation value is 1, and the state |1⟩ cannot be measured. Now, if we 

add just a single Hadamard gate, we will get: 

x: 1.00, y: 0.00, z: -0.00 

Expectation value for |0>: -0.00 

The position on the Bloch sphere is now on the x-axis, and the corresponding 

expectation value in the Z basis is 0. This is because the probabilities of measuring |0⟩ 
or |1⟩ are equal, leading to an average of 0. 

13.1.4 VQE Algorithm 

With these preliminaries, let us take a look at the VQE algorithm itself, which takes 

the following three steps: 

1. Ansatz. Prepare a parameterized initial state |ψ⟩, which is called the ansatz. 

2. Measurement. Measure the expectation value ⟨ψ|H|ˆ ψ⟩. 

3. Minimize. Tune the parameters of the ansatz to minimize the expectation value. 

The smallest value will be the best approximation of the minimum eigenvalue 

achievable with the given ansatz. 

This is best explained by an example. Let us first focus on the single-qubit case here. 

We know from Section 2.3 that we can reach any point on the Bloch sphere with 

rotations about the x-axis and the y-axis. Let us use the simple parameterized circuit in 

Figure 13.2 as the ansatz to create a state |ψ⟩. With this circuit, we can set any angles 

θ and φ as an initial guess to calculate the expectation value of a Hamiltonian Ĥ. 

https://doi.org/10.1017/9781009548519.014
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Rx(θ) Ry(φ) |ψ⟩|0⟩ 

Figure 13.2 A flexible circuit to construct a single-qubit ansatz. 

4We will construct multiple instances of ansatzes to find improved values for the 

angles. Let us write a function to make these ansatzes: 

PY 
Find the code 
In file src/vqe_simple.py 

def single_qubit_ansatz(theta: float, phi: float) -> circuit.qc: 
qc = circuit.qc('single-qubit ansatz Y') 

qc.qubit(1.0) 

qc.rx(0, theta) 

qc.ry(0, phi) 

return qc 

Let us further assume a Hamiltonian Ĥ of the form 

ˆ ˆ ˆ ˆH = H0 + H1 + H2 = 0.2X + 0.5Y + 0.6Z. 

We can compute the minimum eigenvalue of −0.8062 with numpy: 

H = 0.2 * ops.PauliX() + 0.5 * ops.PauliY() + 0.6 * ops.PauliZ() 

eigvals = np.linalg.eigvalsh(H) 

print(eigvals) 

>> 

[-0.8062258 0.8062258] 

To compute the expectation value, let’s create a state |ψ⟩ and compute the expecta-
5tion value ⟨ψ|H|ˆ ψ⟩ with the two given angles theta and phi: 

def run_single_qubit_experiment2(theta: float, phi: float): 
# Construct Hamiltonian. 

H = 0.2 * ops.PauliX() + 0.5 * ops.PauliY() + 0.6 * ops.PauliZ() 

# Compute known minimum eigenvalue. 

eigvals = np.linalg.eigvalsh(H) 

# Build the ansatz with two rotation gates. 

ansatz = single_qubit_ansatz(theta, phi) 

# Compute <psi | H | psi>. Find smallest one, which will be 

# the best approximation to the minimum eigenvalue from above. 

4 Which have a fun rhyme to them and is the proper English plural form. The correct German plural 

Ansätze does not sound quite as melodic. 
5 This code is modified from the open-source version and for illustration purposes only. 

http://www.github.com/qcc4cp/qcc/blob/main/src/vqe_simple.py
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val = np.dot(ansatz.psi.adjoint(), H(ansatz.psi)) 

# Result from computed approach: 

print('Minimum: {:.4f}, Estimated: {:.4f}, Delta: {:.4f}'.format( 

eigvals[0], np.real(val), np.real(val - eigvals[0]))) 

We can experiment with a few different values for theta and phi: 

run_single_qubit_experiment2(0.1, -0.4) 

run_single_qubit_experiment2(0.8, -0.1) 

run_single_qubit_experiment2(0.9, -0.8) 

>> 

Minimum: -0.8062, Estimated: 0.4225, Delta: 1.2287 

Minimum: -0.8062, Estimated: 0.0433, Delta: 0.8496 

Minimum: -0.8062, Estimated: -0.2210, Delta: 0.5852 

We are moving in the right direction as the delta is getting smaller and smaller. 

We are approaching the lowest eigenvalue, but we are still pretty far away. Since 

this particular ansatz is simple, we can incrementally iterate over both angles and 

approximate the minimum eigenvalue with good precision. We could also pick random 

numbers, which, for a simple case like this, may work quite well. In general, we 

should use techniques such as gradient descent to find the best possible arguments 

more quickly (Wikipedia, 2021d). 

For experimentation, we perform ten experiments with random single-qubit Hamil-

tonians and iterate over the angles θ and φ in increments of 10 degrees: 

for i in range(0, 180, 10): 
for j in range(0, 180, 10): 

theta = np.pi * i / 180.0 

phi = np.pi * j / 180.0 

[...] 

# run 10 experiments with random H's. 

>> 

Minimum: -0.6898, Estimated: -0.6889, Delta: 0.0009 

Minimum: -0.7378, Estimated: -0.7357, Delta: 0.0020 

[...] 

Minimum: -1.1555, Estimated: -1.1552, Delta: 0.0004 

Minimum: -0.7750, Estimated: -0.7736, Delta: 0.0014 

In the above, we explicitly computed the expectation value with dot products. 

However, in the physical world, we have to measure. The key to success here is that 

the ansatz must be able to find the minimum eigenvalue and its eigenvector. We need 

a circuit that is general enough. 

There are many ways to prepare arbitrary two-qubit states; see, for example, Shende 

et al. (2004) or Section 9.2. However, for much larger Hamiltonians, the number of 

gates required for the ansatz may grow significantly. The challenge is to minimize 

the number and type of gates, especially on today’s limited machines. The construc-
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tion of suitable ansatzes is a research challenge. The specific learning technique for 

converging on an approximation is another topic of ongoing interest in the field, 

although standard techniques from the field of machine learning seem to work well. 

13.1.5 Measuring Eigenvalues 

In a physical setting, we cannot simply multiply a state by a Hamiltonian, as we have 

done here in the code. We have to measure along the Pauli bases and derive the 

eigenvalues from the expectation values, as explained above. As before, we assume 

that we can only measure in one direction. Let the Hamiltonian Ĥ again be of the 

following form. We again choose the three random factors 0.2, 0.5, and 0.6 for the 

individual Pauli matrices. They are the key to success, and we must remember them: 

Ĥ = 0.2X + 0.5Y + 0.6Z. 

We calculate the expectation values in the Z basis with the help of gate equivalences 

(and the S gate from Section 2.7.6). Note how we isolate Z in the last line, representing 

the measurement in the Z basis: 

⟨ψ|H|ˆ ψ⟩ = ⟨ψ|0.2X + 0.5Y + 0.6Z|ψ⟩ 
= 0.2⟨ψ|X|ψ⟩ + 0.5⟨ψ|Y|ψ⟩ + 0.6⟨ψ|Z|ψ⟩ 

† = 0.2⟨ψ|HZH|ψ⟩ + 0.5⟨ψ|S HZHS|ψ⟩ + 0.6⟨ψ|Z|ψ⟩ 
† = 0.2⟨ψH|Z|Hψ⟩ + 0.5⟨ψS H|Z|HSψ⟩ + 0.6⟨ψ|Z|ψ⟩. 

In our experimental code, we do not use the remembered factors but construct 

random Hamiltonians: 

a = random.random() 

b = random.random() 

c = random.random() 

H = (a * ops.PauliX() + b * ops.PauliY() + c * ops.PauliZ()) 

We have to build three circuits. The first is for the term ⟨ψ|X|ψ⟩, which requires a 

Hadamard gate. 

|0⟩ Rx(θ) Ry(φ) H 

We compute the expectation value and multiply it by the factor a from above to 

compute val_a: 

# X basis 

qc = single_qubit_ansatz(theta, phi) 

qc.h(0) 

val_a = a * qc.pauli_expectation(0) 
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Then we build a circuit for ⟨ψ|Y|ψ⟩, which requires a Hadamard and an † S gate. 

|0⟩ Rx(θ) Ry(φ) S† H 

We multiply the calculated expectation value with the factor b from above: 

# Y basis 

qc = single_qubit_ansatz(theta, phi) 

qc.sdag(0) 

qc.h(0) 

val_b = b * qc.pauli_expectation(0) 

Finally, we build a circuit for the measurement in the Z basis ⟨ψ|Z|ψ⟩. In this basis, 

we can measure as is, there is no need for additional gates, but we still multiply the 

expectation value by the factor c from above. 

|0⟩ Rx(θ) Ry(φ) 

# Z basis 

qc = single_qubit_ansatz(theta, phi) 

val_c = c * qc.pauli_expectation(0) 

As before, we iterate over the angles φ and θ and use increments of 5 degrees this 

time.6 For each iteration, we take the scaled expectation values val_a, val_b, and 

val_c, add them, and find the smallest sum: 

expectation = val_a + val_b + val_c 

if expectation < min_val: 
min_val = expectation 

[...] 

print('Minimum eigenvalue: {:.3f}, Delta: {:.3f}' 

.format(eigvals[0], min_val - eigvals[0])) 

That value min_val should be our estimate, and below we can see that the results are 

numerically very accurate: 

Minimum eigenvalue: -0.793, Delta: 0.000 

Minimum eigenvalue: -0.986, Delta: 0.000 

Minimum eigenvalue: -1.278, Delta: 0.000 

Minimum eigenvalue: -0.937, Delta: 0.000 

[...] 

6 This is fairly coarse; you may want to experiment with different values. 
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13.1.6 Multiple Qubits 

How do we extend measurements to more than just one qubit? We begin with the 

simplest two-qubit Hamiltonians we can think of and extrapolate from there. Let us 

look at the tensor product Z ⊗ I and the corresponding operator matrix:  

Z ⊗ I = 
 

1 0 0 0 

0 1 0 0 

0 0 −1 0 

0 0 0 −1 

 

We know that for diagonal matrices, the diagonal elements are the eigenvalues, 

which are +1 and −1 in this case.7 This matrix has two subspaces that correspond to 

these eigenvalues. On measurement, we will get the result of +1 or −1. 

Any unitary two-qubit transformation U of this matrix will map to a space with the 

same eigenvalues of +1 and −1, which we explained in Section 4.1. This means we 

can apply a trick similar to the one-qubit case and apply the following transformations. 

We are dealing with matrices and have to multiply from both sides: 

U†(Z ⊗ I) U. 

We can change any Pauli measurement’s basis into Z ⊗ I. For example, to change 

the basis for X ⊗ I to Z ⊗ I, we apply a Hadamard gate, just as above, with the operator 

U = H ⊗ I. Let us verify this in code: 

U = ops.Hadamard() * ops.Identity() 

(ops.PauliZ() * I).dump('Z x I') 
(U.adjoint() @ (ops.PauliX() * I) @ U).dump('Udag(X x I)U') 
>> 

Z x I (2-qubits operator) 

1.0 - - -

- 1.0 - -

- - -1.0 -

- - - -1.0 

Udag(X x I)U (2-qubits operator) 

1.0 - - -

- 1.0 - -

- - -1.0 -

- - - -1.0 

From this, it is straightforward to construct the operators for a first set of Pauli 

measurements that contain at least one identity operator, as shown in Table 13.1. But 

now it gets complicated. The operator we need to transform Z ⊗ Z is the controlled 

Not gate CX 1,0! How does this happen? The matrix for Z ⊗ Z is  
1 0 0 0 

0 −1 0 0 
Z ⊗ Z = 

 
 . 

0 0 −1 0 

0 0 0 1 

7 Non-unique eigenvalues are also referred to as degenerate eigenvalues, but this doesn’t matter here. 
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Table 13.1. Operators for measurements containing an identity. 

Pauli Measurement Operator U 

Z ⊗ I I ⊗ I 

X ⊗ I 

Y ⊗ I 

H ⊗ I 

HS† ⊗ I 

I ⊗ Z 

I ⊗ X 

I ⊗ Y 

(I ⊗ I) SWAP 

(H ⊗ I) SWAP 
† (HS ⊗ I) SWAP 

Table 13.2. Operators for measurements with no identity. 

Pauli Measurement Operator U 

Z ⊗ Z CX 1,0 

X ⊗ Z CX 1,0 (H ⊗ I) 

Y ⊗ Z CX 1,0 (HS† ⊗ I) 

Z ⊗ X CX 1,0 (I ⊗ H) 

X ⊗ X CX 1,0 (H ⊗ H) 

Y ⊗ X CX 1,0 (HS† ⊗ H) 

Z ⊗ Y †CX 1,0 (I ⊗ HS ) 

X ⊗ Y †CX 1,0 (H ⊗ HS ) 

Y ⊗ Y †CX 1,0 (HS† ⊗ HS ) 

To turn this matrix into Z ⊗ I, we need a specific permutation. Applying the controlled 

Not from both the left and the right (note that  †CX 1,0 = CX 1,0), as 

†CX 1,0 (Z ⊗ Z) CX 1,0 = (Z ⊗ I), 

yields the result we were looking for, as shown in this code snippet: 

(ops.Cnot(1, 0).adjoint() @ (ops.PauliZ() * ops.PauliZ()) @ 

ops.Cnot(1, 0)).dump() 

>> 

1.0 - - -

- 1.0 - -

- - -1.0 -

- - - -1.0 

The operator matrices for CX 1,0 perform the required permutation. You may think 

of this gate as having the potential to generate entanglement, like for a simple Bell 

state, or removing entanglement, as in this case. With this background, we can define 

the remaining 4 × 4 Pauli measurement operators as shown in Table 13.2. 

We can generalize the construction for Z ⊗ Z to more than two qubits (see also 

Whitfield et al. (2011) on Hamiltonian simulation). All we have to do is surround 
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Figure 13.3 Measuring in the ZZZZ basis. 

the multi-Z Hamiltonian with cascading controlled Not gates. For example, for the 

three-qubit ZZZ, we write this code: 

ZII = ops.PauliZ() * ops.Identity()* ops.Identity() 

C10 = ops.Cnot(1, 0) * ops.Identity() 

C21 = ops.Identity() * ops.Cnot(2, 1) 

C10adj = C10.adjoint() 

C21adj = C21.adjoint() 

ZZZ = ops.PauliZ() * ops.PauliZ() * ops.PauliZ() 

res = C10adj @ C21adj @ ZZZ @ C21 @ C10 

self.assertTrue(res.is_close(ZII)) 

Note that the adjoint of the X gate is identical to the X gate, and the adjoint of 

a controlled Not is also a controlled Not. To go even further, for ZZZZ or longer 

sequences of Z gates, we build cascading gate sequences, as shown in Figure 13.3. 

Moreover, just to be sure, you can verify the construction for ZZZZ with a short code 

sequence like this: 

op1 = ops.Cnot(1, 0) * ops.Identity() * ops.Identity() 

op2 = ops.Identity() * ops.Cnot(2, 1) * ops.Identity() 

op3 = ops.Identity() * ops.Identity() * ops.Cnot(3, 2) 

bigop = op1 @ op2 @ op3 @ ops.PauliZ(4) @ op3 @ op2 @ op1 

op = ops.PauliZ() * ops.Identity(3) 

self.assertTrue(bigop.is_close(op)) 

13.2 Quantum Approximate Optimization Algorithm 

In this section, we briefly introduce the Quantum Approximate Optimization Algo-

rithm, or QAOA (pronounced “Quah-Wah”). It was first introduced in the seminal 

paper by Farhi et al. (2014), which also details the use of QAOA for the implementa-

tion of the Max-Cut algorithm. We explore Max-Cut in Section 13.4. 
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The QAOA technique is related to VQE, but we only provide a brief overview. 

There are two operators in QAOA, UC and UB. The first operator UC applies a phase 

to pairs of qubits with a problem-specific cost function C, which is similar to the Ising 

formulation below in Section 13.3, with Zi being the Pauli Z gate applied to qubit i 

and l being the number of qubits or vertices involved: 

lX 
C = wjkZjZk. 

j,k 

The operator UC itself depends on a phase angle γ: Y 
−iγC −iγwjkZjZkUC(γ) = e = e . 

j,k 

This operator acts on two qubits and thus can be used for problems that can be 

expressed as weighted graphs. The second operator UB depends on parameter β. It is 

problem-independent and applies the following rotations to each qubit, where each Xj 

is a Pauli X gate: Y X 
−iβB −iβXjUB(β) = e = e , where B = Xj. 

j j 

For problems with higher depth, these two operators UC and UB are applied repeatedly, 
⊗|+⟩ n

each with their own set of hyper-parameters γi and βi, on an initial state of as 

⊗n
UB(βn−1)UC(γn−1) . . . UB(β0)UC(γ0) |+⟩ . 

The task at hand is similar to that of VQE: Find the best possible set of hyper-

parameters to minimize the expectation value of the cost function ⟨γ,β|C|γ,β⟩, using 

well-known optimization techniques. The operators UC and UB can be approximated 

with these circuits: 

⟩UC: 

Rz(γi) 
and UB : |qj⟩ Rx(βi) 

We already know from Section 13.1 on VQE how to implement this type of search, 

so we will not expand on it further. 

The original QAOA paper showed that for 3-regular graphs, which are cubic graphs 

with each vertex having exactly three edges, the algorithm produces a cut that is 

at least 70% of the maximum cut, a number that we can roughly confirm in our 

experiments below. Together with VQE, QAOA is an attractive algorithm for today’s 

NISQ machines with limited resources since the corresponding circuits have a shallow 

depth (Preskill, 2018). At the same time, the utility of QAOA for industrial problems 

is still under debate (Harrigan et al., 2021). 

||qj

⟩
||qk

⟩
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13.3 Ising Formulations of NP Problems 

The Ising model of ferromagnetism is a powerful statistical model of magnetism. 

Magnetic dipole moments of atomic spins are modeled as having values of +1 or 

−1. In the model, individual atoms are arranged on a grid. The interaction between 

a pair (i,j) of neighboring spins on the grid is Jij. It takes the values Jij = 0 for no 

interaction, Jij > 0 for ferromagnetism, and Jij < 0 for anti-ferromagnetism. There 

may also be an external magnetic field hi, which interacts with individual atoms on 

the grid. With a magnetic moment μ (which is often omitted) and with xi ∈ {+1, −1}
representing the spin of an atom at grid location i, the Hamiltonian for the system is 

then defined as 

NX X 
Ĥ = −μ hixi − Jijxixj. 

i i,j 

For our quantum algorithms, we use this model to construct the Hamiltonian for a 

system using Pauli σz operators, as demonstrated in (Lucas, 2014): 

NX X 
Ĥ(x0,x1, . . . ,xn) = −μ hiσ

z − Jij σ
zσz 

i i j . 

i i,j 

(13.3)

The term σz 
i is the Pauli Z gate living in the Hilbert space of the ith qubit. The

term μ will be 0 in our examples. There is no equivalent of an external field. The 

minus signs indicate that we look for a minimum eigenvalue. For problems such as 

Max-Cut, we use σz because we want an operator8 with eigenvalues +1 and −1. 

With this background, Lucas (2014) details several NP-complete or NP-hard prob-

lems for which this approach may work and lead to a quantum algorithm. The list 

of algorithms includes partitioning problems, graph coloring problems, covering and 

packing problems, Hamiltonian cycles (including the traveling salesperson problem), 

and tree problems. We will develop the related graph Max-Cut problem in Section 

13.4, and a slightly modified formulation of the Subset Sum problem in Section 13.5. 

13.4 Maximum Cut Algorithm 

Previously, in Section 13.1, we saw how the VQE approach finds the minimum eigen-

value and its eigenvector for a Hamiltonian. This is exciting for quantum computing 

because if we can successfully frame an optimization problem as a Hamiltonian, 

we can use VQE to find an optimal solution. This section briefly describes how to 

construct a class of such Hamiltonians using the Ising spin-glass model we described 

above. The treatment here is admittedly shallow, but it is sufficient to implement 

impressive examples, such as the Max-Cut and Min-Cut algorithms in this section 

and the Subset Sum problem in 

8 For other algorithms, we may need other eigenvalues. For example, an operator with eigenvalues 0 and 

1, such as (I − Z)/2. 

Section 13.5. 
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Figure 13.4 Example graphs with marked Max-Cut sets. 

13.4.1 Max-Cut/Min-Cut 

For a graph, a cut is a partition of the graph’s vertices into two non-overlapping sets L 

and R. A maximum cut is the cut that maximizes the number of edges between L and 

R. The assignment of weights to the edges of the graph transforms the problem into 

the more general weighted maximum cut, which aims to find the cut that maximizes 

the weights of the edges between sets L and R. This is the Max-Cut problem we are 

trying to solve in this section. 

The weights can be positive or negative. The Max-Cut problem turns into a Min-

Cut problem simply by changing the sign of each weight. As an example, for the 

graph with four nodes shown in Figure 13.4a, the maximum cut is between the sets 

L = {0,2} and R = {1,3}. You can manually verify that separating the nodes in this 

way maximizes the edge weights between the sets L and R. In the figure, the nodes are 

colored white or gray, depending on which set they belong to. 

For small graphs, you can still examine all possible set partitions to find the maxi-

mum cut. However, this process becomes impractical very rapidly for larger graphs, as 

illustrated in Figure 13.4b for a graph with merely 15 vertices. The general Max-Cut 

problem is NP-complete (Karp et al., 1972); no polynomial-time algorithm is known 

to provide an optimal solution. This looks like a formidable challenge for a quantum 

algorithm! 

13.4.2 Construct Graphs 

We begin our exploration with code to construct a random graph with n vertices. As 

usual, the code is designed for simplicity.9 

PY 
Find the code 
In file src/max_cut.py 

We number the vertices from 0 to n − 1 and represent them with simple Python 

tuples [from_node, to_node, weight]. A graph is then just a list of these tuples. 

9 Making excuses for somewhat clumsy code. 

http://www.github.com/qcc4cp/qcc/blob/main/src/max_cut.py
https://doi.org/10.1017/9781009548519.014


� ⟩

316 Optimization Algorithms 

The code starts with a triangle of three nodes and then randomly adds new nodes up 

to the limit num. We set 5 as the maximal edge weight, chosen at random. The way the 

loop is written, no double edges can be generated. 

def build_graph(num: int = 0) -> Tuple[int, List[Tuple[int, int, 
,→ float]]]: 

assert num >= 3, 'Must request graph of at least 3 nodes.' 

# Nodes are tuples: (from: int, to: int, weight: float). 

weight = 5.0 

nodes = [(0, 1, 1.0), (1, 2, 2.0), (0, 2, 3.0)] 

for i in range(num - 3): 

rand_nodes = random.sample(range(0, 3 + i - 1), 2) 

nodes.append((3 + i, rand_nodes[0], weight * np.random.random())) 

nodes.append((3 + i, rand_nodes[1], weight * np.random.random())) 

return num, nodes 

For debugging and for building intuition, it helps to visualize the graph. We add a 

helper function to print the graph in the dot file format for the Graphviz (graphviz.org, 

2021) tool. The graph in Figure 13.4b was produced in this way. 

def graph_to_dot(n: int, nodes: List[int], max_cut) -> None: 
print('graph {') 

print(' {\n node [ style=filled ]') 

pattern = bin(max_cut)[2:].zfill(n) 

for idx, val in enumerate(pattern): 
if val == '0': 

print(f' "{idx}" [fillcolor=lightgray]') 

print(' }') 

for node in nodes: 
print(' "{}" -- "{}" [label="{:.1f}",weight="{:.2f}"];' 

.format(node[0], node[1], node[2], node[2])) 

print('}') 

13.4.3 Compute Max-Cut 

We will use a binary representation to encode a cut. The graph nodes are numbered 

from 0 to n − 1. The nodes in set L are marked with 1, nodes in set R with 0. For the 

example in Figure 13.4a, nodes 0 and 2 are in set L, and nodes 1 and 3 are in set R. 

We associate node 0 with index 0 (not bit 0) in a binary bit string (counting the indices 

from left to right) and represent the cut as a binary string 1010. We then apply this 

scheme to a quantum state by associating qubit qi with graph node ni: � 1 0 1 0 
n0 n1 n2 n3 

In code, we can compute the Max-Cut exhaustively (and quite inefficiently, given 

our choice of data structures). For n nodes, we generate all binary bit strings from 0 

|| ⟩

https://graphviz.org
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to n. For each bit string, we iterate over the individual bits and build two index sets: 

indices with a 0 in the bit string and indices with a 1 in the bit string. For example, the 

bit string 11001 would create sets L = {0,1,4} and R = {2,3}. Note the symmetry – 

if the Max-Cut is L = {0,1,4} and R = {2,3}, then L = {2,3} and R = {0,1,4} is a 

Max-Cut as well. 

The code then iterates over all edges in the graph. For each edge, if one vertex is 

in L and the other in R, there is an edge between sets. We add the edge weight to the 

currently computed maximum cut and maintain the absolute maximum cut. 

Finally, we return the corresponding bit pattern as a simple decimal number. For 

example, if the maximum cut was binary 11001, the routine will return 25, which 

means that this routine will only work with up to 64 bits or vertices (which is already 

beyond our simulation capabilities). 

def compute_max_cut(n: int, 
nodes: List[Tuple[int, int, float]]) -> int: 

max_cut = -1000.0 

for bits in helper.bitprod(n): 
# Collect in/out sets. 

iset = [] 

oset = [] 

for idx, val in enumerate(bits): 
if val == 0: 

iset.append(idx) 

else: 

oset.append(idx) 

# Compute costs for this cut, record maximum. 

cut = 0.0 

for node in nodes: 
if node[0] in iset and node[1] in oset: 

cut += node[2] 

if node[1] in iset and node[0] in oset: 
cut += node[2] 

if cut > max_cut: 
max_cut_in, max_cut_out = iset.copy(), oset.copy() 

max_cut = cut 

max_bits = bits 

state = bin(helper.bits2val(max_bits))[2:].zfill(n) 

print('Max Cut. N: {}, Max: {:.1f}, {}-{}, |{}>' 

.format(n, np.real(max_cut), max_cut_in, max_cut_out, 

state)) 

return helper.bits2val(max_bits) 

The performance of this code is, of course, quite horrible, but perhaps indicative 

of the combinatorial character of the problem. On a standard workstation, computing 

the Max-Cut for 20 nodes takes about 10 seconds; for 23 nodes, it takes about 110 

seconds. Even considering the performance differences between Python and C++ and 
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the relatively poor choice of data structure, it is evident that the run time will quickly 

become intractable for larger graphs. 

13.4.4 Construct Hamiltonian 

Classically, the Max-Cut problem can be expressed as the optimization problem: X1 
max (1 − sisj), si ∈ {−1, +1}. 

s 2 
i,j 

where the si are positive or negative weights of magnitude 1 on the vertices, depending 

on which set they belong to. If an edge is cut between two vertices, one vertice will 

have a positive 1 while the other has a negative 1 and the term 1 (1 − sisj) = 1
2 

. If both 
1 (1 − sisj) = 0
2 

vertices have the same sign, then , which does not contribute to the

objective. We can also introduce weighted edges by adding factors to the edges sisj. 

For the corresponding quantum formulation, we will use a variation of Equation 

(13.3) to construct the Hamiltonian using the Pauli σz operators, which, conveniently, 

also have eigenvalues −1 and +1. 

Concretely, we iterate over the edges of the graph. We build the tensor product 

with identity matrices for nodes not part of the edge and Pauli σz matrices for the 

vertices connected by the edge. This follows the methodology briefly outlined above 

in Section 13.3. We may also use the intuition that Pauli σz are “easy” to measure, 

as we have outlined in Section 13.1 on measuring in the Pauli bases. Since the Pauli 

matrix σz has eigenvalues +1 and −1, an edge can increase or decrease the “energy” 

of the Hamiltonian, depending on the set in which the vertices fall. This construction 

decreases the energy for the vertices in the same set. 

As an example, for the graph in Figure 13.4a we build the tensor products for the 
10edges efrom,to as 

e0,1 = 1.0 (Z ⊗ Z ⊗ I ⊗ I), 

e0,2 = 3.0 (Z ⊗ I ⊗ Z ⊗ I), 

e0,3 = 4.6 (Z ⊗ I ⊗ I ⊗ Z), 

e1,2 = 2.0 (I ⊗ Z ⊗ Z ⊗ I), 

e2,3 = 3.5 (I ⊗ I ⊗ Z ⊗ Z), 

and add up these partial operators to the final Hamiltonian Ĥ, mirroring Equation 

(13.2): 

Ĥ = e0,1 + e0,2 + e0,3 + e1,2 + e2,3. 

Here is the code to construct the Hamiltonian in full matrix form. It iterates over the 

edges and constructs the full tensor products as shown above: 

10 Note that even though we use from and to, the edges are not directed. 
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def graph_to_hamiltonian(n: int, nodes) -> ops.Operator: 
hamil = np.zeros((2**n, 2**n)) 

for node in nodes: 
idx1 = max(node[0], node[1]) 

idx2 = min(node[0], node[1]) 

op = ops.Identity(idx1) * (node[2] * ops.PauliZ()) 

op = op * ops.Identity(idx2 - idx1 + 1) 

op = op * (node[2] * ops.PauliZ()) 

op = op * ops.Identity(n - idx2 + 1) 

hamil = hamil + op 

return ops.Operator(hamil) 

As described so far, for a graph with n nodes, we have to build operator matrices 

of size 2n × 2n , which does not scale well. However, note that the identity matrix and 

σz are diagonal matrices. The tensor product of diagonal matrices is also a diagonal 

matrix. For example:  

I ⊗ I ⊗ Z = 

 

1 0 0 0 0 0 0 0 

0 −1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 −1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 −1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 −1 

 

= diag(1, −1,1, −1,1, −1,1, −1). 

If we apply a factor to any individual operator, that factor multiplies across the 

whole diagonal. Let us look at what happens to the signs of the diagonal values if we 

use σz at indices 0,1,2, . . . ,n − 1 (from right to left) in the tensor products 

I ⊗ I ⊗ Z = diag(+1, − 1, + 1, − 1, + 1, − 1, +1 , −1 ),|{z} |{z} 
20 20 

I ⊗ Z ⊗ I = diag(+1, + 1, − 1, − 1, +1, + 1 , −1, − 1),| {z } | {z } 
21 21 

Z ⊗ I ⊗ I ).}| 
= diag(+1, + 1, + 1, + 1{z }|, −1, − 1, − 1, − 1{z 

22 22 

There are groups of values with the same sign in power-of-2 patterns, similar to 

those we have seen in the fast gate apply routines. This means that we can optimize 

the construction of the diagonal Hamiltonian and only construct a diagonal tensor 

product. The full matrix code is very slow and can barely handle 12 graph nodes. 

The diagonal version below can easily handle twice as many. C++ acceleration might 

https://doi.org/10.1017/9781009548519.014


320 Optimization Algorithms 

help to further improve scalability, especially because calls to tensor_diag can be 

parallelized.11 

def tensor_diag(n: int, fr: int, to: int, w: float): 
def tensor_product(w1: float, w2: float, diag): 

return [j for i in zip([x * w1 for x in diag], 
[x * w2 for x in diag]) for j in i] 

diag = [w, -w] if (0 == fr or 0 == to) else [1, 1] 
for i in range(1, n): 

if i == fr or i == to: 
diag = tensor_product(w, -w, diag) 

else: 

diag = tensor_product(1, 1, diag) 

return diag 

def graph_to_diagonal_h(n: int, nodes) -> List[float]: 
h = [0.0] * 2**n 

for node in nodes: 
diag = tensor_diag(n, node[0], node[1], node[2]) 

for idx, val in enumerate(diag): 
h[idx] += val 

return h 

13.4.5 VQE by Peek-A-Boo 

After constructing the Hamiltonian, we would typically run the variational quantum 

eigensolver (VQE) to find the minimum eigenvalue. The corresponding eigenstate 

encodes the Max-Cut in binary form, where a 0 at the index i indicates that the vertex 

i belongs to a first set and otherwise to a second set. In our simulated environment, we 

don’t have to run the computationally expensive VQE, we can just take a peek at the 

matrix representation of the Hamiltonian. It is diagonal, meaning that the eigenvalues 

are on the diagonal. The corresponding eigenstate is a state vector with the same binary 

encoding as the index of the minimum eigenvalue. For example, for the graph in Figure 

13.5, the Hamiltonian is 

H = diag(49.91, −21.91, −18.67, −5.32,10.67, −2.67, −41.91,29.91, 

29.91, −41.91, −2.67,10.67, −5.32, −18.67, −21.91,49.91). 

The minimum value is −41.91 and appears in two places: At index 6, which is binary 

0110, and at the complementary index 9, which is binary 1001. This corresponds to 

the state |0110⟩ and the complementary state |1001⟩. We interpret this as nodes 0 and 

3 belonging to one set and nodes 1 and 2 belonging to a second set. You can see that 

this is precisely the Max-Cut pattern of Figure 13.5. We have found the Max-Cut by 

applying VQE by peek-a-boo on a properly prepared Hamiltonian! 

11 The tensor_product routine is admittedly difficult to read. Python linters warn about its 

complexity. I still use it here because it is a thing of beauty. 
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Figure 13.5 Graph with 4 nodes; Max-Cut is {0,3},{1,2}, or 0110 in binary set encoding. 

Here is the code to run the experiments. It constructs the graph and computes the 

Max-Cut exhaustively. Then it computes the Hamiltonian and obtains the minimum 

value and its index off the diagonal. 

def run_experiment(num_nodes: int): 
n, nodes = build_graph(num_nodes) 

max_cut = compute_max_cut(n, nodes) 

# These two lines are the basic implementation, where 

# a full matrix is being constructed. 

# H = graph_to_hamiltonian(n, nodes) 

# diag = H.diagonal() 

# This code is much faster: 

diag = graph_to_diagonal_h(n, nodes) 

min_idx = np.argmin(diag) 

if min_idx == max_cut: 
print('SUCCESS: {:+10.2f} |{}>'.format(np.real(diag[min_idx]), 

bin(min_idx)[2:].zfill(n))) 

else: 

print('FAIL : {:+10.2f} |{}> '.format(np.real(diag[min_idx]), 

bin(min_idx)[2:].zfill(n)), end='') 

print('Max-Cut: {:+10.2f} |{}>'.format(np.real(diag[max_cut]), 
bin(max_cut)[2:].zfill(n))) 

Running this code, we find that it does not always work; it fails in about 20%–30% 

of the invocations. Some of it may be because our criteria are stringent: To mark a run 

as successful, we classically check whether the optimal cut was found. Anything else 

is considered a failure. However, even if the optimal cut was not found, the results 

are still within 30% of the optimal classical cut and typically significantly closer than 

20% (this seems to agree with the analysis in the QAOA paper.) 

As a larger example, running over graphs with 12 nodes may produce output like 

the following results, which show the number of nodes N and the maximal cut, com-

puted classically, including the two sets for the cut. Then we find the index of the 
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smallest diagonal element of the Hamiltonian. A test passes when the binary basis state 

corresponding to this index matches the classically computed maximum. For example, 

in the first line of the following output, the set {2,3,5,6,8,11} should match a binary 

state that has 1s at only these bit indices, as in |001101101001⟩, which matches the 

result found (shown in bold below): 

Max Cut. N: 12, Max: 38.9, [0, 1, 4, 7, 9, 10]-[2, 3, 5, 6, 8, 11], 
,→ |001101101001> 

SUCCESS : -129.39 |001101101001> 
Max Cut. N: 12, Max: 39.5, [0, 1, 5, 6, 7, 9]-[2, 3, 4, 8, 10, 11], 

,→ |001110001011> 

SUCCESS : -117.64 |001110001011> 

Max Cut. N: 12, Max: 46.0, [0, 3, 5, 8, 11]-[1, 2, 4, 6, 7, 9, 10], 

,→ |011010110110> 

FAIL : -146.79 |001010110110> Max-Cut: -145.05 |011010110110> 

[...] 

Max Cut. N: 12, Max: 43.7, [0, 1, 3, 4, 7, 8, 9, 10]-[2, 5, 6, 11], 

,→ |001001100001> 

SUCCESS : -124.69 |001001100001> 

Exploring the maximum degree12 

12 See also http://en.wikipedia.org/wiki/Degree_(graph_theory). 

of the graph is instructive, as it seems to be one 

of the factors that affect the failure rate of this algorithm. Finally, note that a quantum 

advantage for this algorithm has not been fully established, except for a special class 

of graphs (Carlson et at., 2023). 

13.5 Subset Sum Algorithm 

Now that we know how to solve an optimization problem let us explore another 

algorithm of this type, namely the so-called Subset Sum problem. This problem is 

known to be NP-hard (Garey et al., 1990) and can be stated as follows: Given a set S 

of integers, can S be partitioned into two sets, with L and R = S − L, such that the sum 

of the elements in L equals the sum of the elements in R: 

|L| |R|∑ ∑ 
li = rj. 

i j 

We will approach this problem with a Hamiltonian constructed similarly to the one 

in Max-Cut. There, we used two weighted Z gates to represent an edge in a graph. 

Here, we will introduce only a single weighted Z gate to represent a single number 

in S. In Max-Cut, we were looking for a minimal energy state. For the problem of 

balancing partial sums, we will look for a zero-energy state, as such a state represents 

the “energy equilibrium” of balanced partial sums. 

http://en.wikipedia.org/wiki/Degree_(graph_theory)
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13.5.1 Implementation 

Our implementation only decides whether or not a solution exists. It does not identify 

a specific solution. To start, since this algorithm is begging to be experimented with, 

we define relevant parameters as command line options. 

PY 
Find the code 
In file src/subset_sum.py 

The maximum integer in S is specified by parameter nmax. Similarly to Max-Cut, 

we encode integers as positions in a bit string corresponding to a state. This means 

that for integers up to nmax, we will need nmax qubits. The size |S| of the set S is 

specified by parameter nnum. Finally, the number of experiments to run is specified 

by parameter iterations. 

flags.DEFINE_integer('nmax', 15, 'Maximum number') 

flags.DEFINE_integer('nnum', 6, 

'Maximum number of set elements [1-nmax]') 

flags.DEFINE_integer('iterations', 20, 'Number of experiments') 

The next step is to produce nnum random and unique integers ranging from 1 to 

nmax (exclusive). Other ranges are possible, specifically ranges including negative 

numbers, but given that we use integers as bit positions, we have to map such arbitrary 

ranges to the positive range of 1 to nmax. In the code, we check that the sum of all 

selected random numbers is even because otherwise, the partitioning into equal sums 

is not possible: 

def select_numbers(nmax: int, nnum: int) -> List[int]: 
while True: 

sample = random.sample(range(1, nmax), nnum) 

if sum(sample) % 2 == 0: 
return sample 

To compute the diagonal tensor product, we only have to check for a single number 

(compared to the Max-Cut algorithm, where we had to check for two numbers) and 

apply a correspondingly weighted (by index i) Z gate. 

def tensor_product(w1: float, w2: float, diag): 
return [j for i in zip([x * w1 for x in diag], 

[x * w2 for x in diag]) for j in i] 

def tensor_diag(n: int, num: int): 
diag = [1, 1] 

for i in range(1, n): 
if i == num: 

diag = tensor_product(i, -i, diag) 

else: 

http://www.github.com/qcc4cp/qcc/blob/main/src/subset_sum.py
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diag = tensor_product(1, 1, diag) 

return diag 

The final step in building the Hamiltonian is to add all the diagonal tensor products. 

This function is similar to the function graph_to_diagonal_h in the Max-Cut 

algorithm, except for the invocation of tensor_diag to compute the diagonal tensor 

product. If we implemented more algorithms of this type, we should spend more effort 

to generallize this construction. 

def set_to_diagonal_h(num_list: List[int], nmax: int) -> -> List[float]: 
h = [0.0] * 2**nmax 

for num in num_list: 
diag = tensor_diag(nmax, num) 

for idx, val in enumerate(diag): 
h[idx] += val 

return h 

13.5.2 Experiments 

Now we move on to experiments. In each experiment, we create a list of random 

numbers and exhaustively find potential partitions. Then, similarly to Max-Cut, we 

divide the set of numbers into two sets with the help of binary bit patterns. For each 

division, we will compute the two sums for the two sets. If the two sums are equal, we 

will add the corresponding bit pattern to the list of positive results. The routine then 

returns this list, which can be empty if no solution is found for a given set of numbers. 

The partitioning for an example set is shown in Figure 13.6. 

def compute_partition(num_list: List[int]): 
solutions = [] 

for bits in helper.bitprod(len(num_list)): 
iset = [] 

oset = [] 

for idx, val in enumerate(bits): 

13 
10 

15 

5 
12 

14 
9 

2 

Figure 13.6 A subset partition for a set of eight integers. The partial sums of all elements in the 

white and gray sets are equal. 
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if val == 0: 
iset.append(num_list[idx]) 

else: 

oset.append(num_list[idx]) 

if sum(iset) == sum(oset): 
solutions.append(bits) 

return solutions 

Next, we add a short helper function to print the solutions found: 

def dump_solution(bits: List[int], num_list: List[int]): 
iset = [] 

oset = [] 

for idx, val in enumerate(bits): 
if val == 0: 

iset.append(f'{num_list[idx]:d}') 

else: 

oset.append(f'{num_list[idx]:d}') 

return '+'.join(iset) + ' == ' + '+'.join(oset) 

Finally, we run the experiments. For each experiment, we create a set of numbers, 

compute the solutions exhaustively, and compute the Hamiltonian. 

def run_experiment(num_list: List[int]) -> bool: 
nmax = flags.FLAGS.nmax 

if not num_list: 
num_list = select_numbers(nmax, flags.FLAGS.nnum) 

solutions = compute_partition(num_list) 

diag = set_to_diagonal_h(num_list, nmax) 

Now we can again perform VQE by peek-a-boo. For Max-Cut, we took an index 

and value from the diagonal. But what is the correct value to look for here? We are 

looking for a zero energy state that indicates a balance between the sets L and R. 

Hence, we look for zeros on the diagonal of the Hamiltonian. There can be multiple 

zeros, but as long as one single zero can be found, we know there should be a solution. 

If no solution was found exhaustively, but we still find a zero on the diagonal, we 

know that we have encountered a false positive. Conversely, if no zero was found 

on the diagonal, but the exhaustive search found a solution, we encountered a false 

negative. The code below checks both of these conditions: 

non_zero = np.count_nonzero(diag) 

if non_zero != 2**nmax: 
print(' Solution should exist...', end='') 

if solutions: 
print(' Found: ', dump_solution(solutions[0], num_list)) 

return True 
assert False, 'False positive found.' 

print(' No Solution Found.', sorted(num_list)) 
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assert not solutions, 'False negative found.' 
return False 

As we run the code, we should see a success rate of 100%. 

def main(argv): 

for _ in range(flags.FLAGS.iterations): 

run_experiment(None) 

>> 

Solution should exist... Found Solution: 13+1+5+3 == 14+8 

Solution should exist... Found Solution: 10+1+14 == 4+12+9 

Solution should exist... Found Solution: 4+9+14 == 12+5+10 

[...] 

Solution should exist... Found Solution: 1+3+11+2 == 5+12 

We also test for negative cases which are sets of numbers that cannot be divided into 

two equal sums: 

sets = [ 

[1, 2, 3, 7], 

[1, 3, 5, 10], 

[2, 7, 8, 10, 12, 13], 

[...] 

] 

for s in sets: 

if run_experiment(s): 

raise AssertionError('Incorrect Classification') 
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14 Quantum Machine Learning 

At the time of this writing, machine learning (ML), artificial intelligence (AI), and 

even artificial general intelligence (AGI), are the hottest topics in academia and indus-

try, with billions of dollars in funding and several companies evaluated at multi-trillion 

dollar stock values. The computational needs for large language models (LLMs) based 

on the transformer architecture (Vaswani et al., 2017) are gigantic and continue to 

grow exponentially, with models having 10 trillion parameters and more. 

Quantum machine learning (QML) merges machine learning algorithms with quan-

tum computing to potentially unlock new efficiencies. Since QML promises to address 

the scalability limitations of ML, it is a rapidly evolving area of exciting research and 

promising applications. 

This section focuses on just three representatives from this field: Euclidean 

distance, principal component analysis, and the HHL algorithm. We will start with a 

quantum way to calculate the Euclidean distance between two vectors, a fundamental 

operation in several classical ML algorithms. Next, we explore principal component 

analysis (PCA), which we can view as another efficient way to calculate eigenvalues. 

Both the PCA and the Euclidean distance calculation utilize specific forms of the 

swap test. 

Finally, we will work through the HHL algorithm for matrix inversion. This algo-

rithm is one of the most complex algorithms in this book but also one of the most 

beautiful. It was at the center of the interest in quantum machine learning and we 

explore it in great detail. 

14.1 Euclidean Distance 

This section explores how to compute the Euclidean distance between two state vec-

tors. This computation can be the dominant factor in several classical algorithms, par-

ticularly machine learning algorithms. We mention a few examples of such algorithms 

in Section 14.1. Being able to perform this calculation quantum mechanically enables 

these classical algorithms to (potentially) run faster on quantum machines. As we shall 

see shortly, the core mechanism for calculating the distance between two arbitrary real 

vectors A⃗ and B⃗ is closely related to the swap test discussed in Section 7.1. 
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Classically, the Euclidean distance1 

1 Also known as the L2 norm of a vector v, often written as ||v||. In this book, we mostly use single 

vertical bars |v|. 

between two vectors of real numbers is com-

puted as the norm of the vector difference �� ��A⃗ − ⃗D = B = (a0 − b0)2 + (a1 − b1)2 + · · · + (an−1 − bn−1)2. 

q
The quantum technique makes an initial assumption that the encoding of the input 

vectors as quantum states is feasible. Furthermore, when comparing the complexity of 

the classical algorithms with analogous quantum algorithms that utilize the Euclidean 

distance, it is often assumed that state initialization is a zero-cost procedure. This may 

be difficult to achieve in practice, as shown in Chapter 9. 

With these caveats, we assume that, without loss of generality, our vectors have 

dimensions that are powers of 2. In the first step, we use amplitude encoding to 

represent the vectors as quantum states, where each basis state |i⟩ gets an amplitude 

corresponding to the vector element Ai. As discussed in Section 9.1.2, this represen-

tation is efficient in the number of qubits; only log2 N qubits are required to represent 

vectors of size N. 

We calculate the norm of the classical vectors |A⃗| and |B⃗| and normalize the vectors 

by dividing each vector element by their respective vector norm. This allows us to 

represent the vectors as the quantum states 

1
A⃗ → |A⟩ = Ai |i⟩ , 

|A⃗| 
i X1

B⃗ → |B⟩ = Bi |i⟩ . |B⃗| 
i 

X

We can get the original vector A⃗ back with A⃗ = |A⃗| |A⟩. In code, normalizing the 

vectors is straightforward with numpy. We also compute the value Z = |A⃗|2 + |B⃗|2 that 

we will need later. 

PY 
Find the code 
In file src/euclidian_distance.py 

def run_experiment(a, b): 
norm_a = np.linalg.norm(a) 
norm_b = np.linalg.norm(b) 
assert norm_a != 0 and norm_b != 0, 'Invalid zero-vectors.' 
normed_a = a / norm_a 
normed_b = b / norm_b 
z = (norm_a**2) + (norm_b**2) 

Next, we cleverly construct two states |φ⟩ and |ψ⟩, with |φ⟩ as a single-qubit state 

and |ψ⟩ encoding both vectors ⃗A and ⃗B. It will become clear soon why we are creating 

these specific states: 

|| ||

http://www.github.com/qcc4cp/qcc/blob/main/src/euclidian_distance.py
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. . . 

|0⟩ H H 

|φ⟩ 

|ψ⟩ 

Figure 14.1 Circuit using a swap test to calculate the Euclidean distance between two vectors of 

length N = 2n . 

|φ⟩ = 
1 √ 
( )
|A⃗| |0⟩ − |B⃗| |1⟩ , 

Z 

1 ( )
|ψ⟩ = √ |0⟩ ⊗ |A⟩ + |1⟩ ⊗ |B⟩ . 

2 

We can borrow ideas from the Hadamard test to construct these states with a circuit. 

However, in our code, we simply initialize the state vectors for |φ⟩ and the larger state 

|ψ⟩ directly. Then, similarly to the swap test from Section 7.1, we create a state combo 

consisting of an ancilla initialized as |0⟩ and tensored to states |φ⟩ and |ψ⟩: 

# |phi> = 1 / sqrt(Z) (|a| |0> - |b| |1>) 

phi = state.State(1 / np.sqrt(Z) * np.array([norm_a, -norm_b])) 

# |psi> = 1 / sqrt(2) |0>|a> + |1>|b>) 

psi = (state.bitstring(0) * state.State(normed_a) + 
state.bitstring(1) * state.State(normed_b)) / np.sqrt(2) 

combo = state.bitstring(0) * phi * psi 

Now we use the swap test circuit to estimate the probability p|0⟩ of the ancilla 

being measured in state |0⟩. The state |ψ⟩ has multiple qubits, but we only connect the 

controlled Swap gate with |φ⟩ and the top qubit of |ψ⟩, as shown in Figure 14.1 and 

with this equivalent code: 

# Construct a swap test and find the ancilla probability 

combo = ops.Hadamard()(combo, 0) 
combo = ops.ControlledU(0, 1, ops.Swap(1, 2))(combo) 
combo = ops.Hadamard()(combo, 0) 

p0, _ = ops.Measure(combo, 0) 

To see how this works, let us compute the inner product ⟨φ|ψ⟩ of the two states 

and use the fact that, for a tensor product of a scalar and vector, k ⊗ A⃗ = kA⃗. The 

left and right sides of the dot product have different dimensions. However, the inner 
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product is performed only on the matching subsystems. You can think2 

2 See also http://quantumcomputing.stackexchange.com/a/40084. 

of ⟨φ|ψ⟩ as 

⟨φ ⊗ ⊗I m|ψ⟩: 

⟨φ|ψ⟩ D )E1 ( ) 1 (
= √ |A⃗| |0⟩ − |B⃗| |1⟩ √ |0⟩ ⊗ |A⟩ + |1⟩ ⊗ |B⟩ 

Z 2 

1 ( ) 1 ( )
= √ |A⃗| ⟨0| − |B⃗| ⟨1| √ |0⟩ ⊗ |A⟩ + |1⟩ ⊗ |B⟩ 

Z 2 

1 ( )
= √ |A⃗| ⟨0|0⟩⊗ |A⟩ + |A⃗| ⟨0|1⟩⊗ |B⟩ − |B⃗| ⟨1|0⟩⊗ |A⟩ − |B⃗| ⟨1|1⟩⊗ |B⟩ 

2Z |{z} |{z} |{z} |{z}
=1 =0 =0 =1 

1 ( )
= √ |A⃗| ⊗ |A⟩ − |B⃗| ⊗ |B⟩ 

2Z 

1 ( )
= √ |A⃗| |A⟩ − |B⃗| |B⟩ . 

��

(14.1)

From the swap test, we know the probability of measuring the ancilla as |0⟩ is 

� ��� ��
1 1 2 

p|0⟩ = + ⟨φ|ψ⟩ , and hence 
2 2� �1 2 

2 p|0⟩ − = ⟨φ|ψ⟩ . 
2 

Substituting in Equation (14.1), we compute the Euclidean distance D as �� ���� ��
1 2 

2 p|0⟩ − = ⟨φ|ψ⟩ 
2 

1 2 
= |A⃗| |A⟩ − |B⃗| |B⟩ 

2Z 

1 
= |A⃗ − ⃗B|2 

2Z 

1 
D2 

2Z 
= . r � �1 ⇒ D = 4Z p|0⟩ − . 

2 

� �

In code, we calculate the distance D both classically and quantum mechanically. 

We run a range of experiments where we use random vectors containing k=4 integers 

ranging from 0 to 10 and compare the classical and quantum results: 

# Compute the classic and quantum distances after swap test: 

eucl_dist_q = (4 * Z * (p0 - 0.5)) ** 0.5 
eucl_dist_c = np.linalg.norm(a - b) 
assert np.allclose(eucl_dist_q, eucl_dist_c, atol=1e-4), 'Whaaa' 

def main(argv): 
for iter in range(10): 

a = np.array(random.choices(range(10), k=4)) 

|| |||| ||
|| ||

|||

|| ||

http://quantumcomputing.stackexchange.com/a/40084
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b = np.array(random.choices(range(10), k=4)) 
run_experiment(a, b) 

>> 
Compute Quantum Euclidean Distance. 
Quantum Euclidean Distance between a=[3 6 4 4] b=[0 3 8 6] 

Classic: 6.16, quantum: 6.16, Correct 
Quantum Euclidean Distance between a=[9 0 0 7] b=[1 5 5 7] 

Classic: 10.68, quantum: 10.68, Correct 
[...] 

14.1.1 Quantum Algorithms Using Euclidean Distance 

Now that we have a quantum way to compute the Euclidean distance between vectors, 

we can find a range of classical algorithms that can potentially be accelerated using 

a quantum computer. The two typical examples given in the area of machine learning 

are the k-nearest neighbor algorithm (KNN) (Basheer et al., 2021) and the minimum 

spanning tree algorithm (Soltan et al., 2008). Both classical algorithms spend a lot of 

time computing vector distances, and assuming a zero-cost approach to translate these 

computations into a quantum algorithm is promising. 

At time of writing, the most important topics in machine learning were transformer 

models such as ChatGPT and other large-language models (LLMs), as well as the so-

called large-embedding models (LEMs). Embeddings are floating-point vectors, and 

large LEM and LLM models make heavy use of embeddings and vector databases. 

Hence, using quantum encoding and algorithms like the Euclidean distance calculation 

is an exciting optimization opportunity for quantum algorithms to accelerate those 

important workloads. 

14.2 Principal Component Analysis 

Machine learning deals with huge amounts of high-dimensional data and suffers from 

what is often called the curse of dimensionality. Adding features to data sets increases 

their size exponentially, inevitably introducing sparsity and inflicting enormous com-

putational costs. There are adverse effects for models relying on distance measures as 

distances in high-dimensional spaces become less meaningful. It can be challenging to 

identify which specific features are important and which can be removed with limited 

impact on the overall quality of a model. 

Principal component analysis (PCA) (Greenacre et al., 2022) is a well-known sta-

tistical technique that allows reducing the dimensionality of a data set while preserving 

its most important features, its principal components, which contribute maximally to 

the variance of the data set. This is a lossy data compression technique that attempts to 

keep the features that contribute the most to the variance of the data (and hence to the 

quality of a model) and remove correlated or insignificant data. The technique itself 

consists of the following high-level steps: 

https://doi.org/10.1017/9781009548519.015
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• The PCA aims to explain the variances in the data set. In order to avoid excessive 

influence of individual variables Xi, variables are standardized by centering them 

around their mean and normalizing them to values of similar magnitude. It is 

important to bring variables to the same scale, especially when they have different 

units. 

• Compute the covariance matrix Σ consisting of all dot products XiXj. Since we 

center variables around their mean, the expectation value for each variable is 

E(Xi) = 0. Note that Σ will be a symmetric matrix. 

• Perform an eigenvalue decomposition (EVD) of Σ. This will produce the 

eigenvalues λ0,λ1, . . . ,λn−1 of Σ as well as the eigenvectors corresponding to 

each eigenvalue. Note that a more efficient way to calculate the eigenvalues is 

using singular value decomposition (SVD). 

• The sum of the eigenvalues equals the total variance. The components with the 

smallest eigenvalues contribute the least to the variance of the data set.3 

3 Covariance matrices are symmetric and positive semi-definite with eigenvalues ≥ 0. 

Those are 

the prime candidates for removal. 

For a classical example, we take the data from (Abhijith et al., 2020) showing the 

correlation between apartment rooms and prices. In code, we can store the data as a 

two-dimensional Python array x: 

x = [[4, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 5, 4, 3, 4], 
[3028, 1365, 2726, 2538, 1318, 1693, 1412, 1632, 2875, 
3564, 4412, 4444, 4278, 3064, 3857]] 

As a first step, we center each dimension around the mean and normalize all values 

to range from 0 to 1 as 

X0 ← 
X0 − E[X0] 

,
|X0| 

and X1 ← 
X1 − E[X1] 

,
|X1| 

where E[X0] is the expectation value of X0 and E[X0] = E[X1] = 0 after we center the 

variables around the mean. Then we compute the covariance matrix Σ between these 

centered and normalized vectors as 4

4 You may wonder why we divide by 14, even though the data has 15 entries. This is related to the Bessel 

correction. See http://en.wikipedia.org/wiki/Bessel_correction for details. 

E X0X0 E X0X1 1 XTX0 XTX10 0Σ = � � � � = . 
XT XTE E 15 − 1X1X0 X1X1 1 X0 1 X1 

� � � � �� � �
The algorithm proceeds to diagonalize Σ with the eigenvalues e0,e1, . . . ,en−1 on 

the diagonal in decreasing order. For PCA, the lowest right eigenvalues and their 

corresponding features will add the least to the data variance and could potentially 

be eliminated. In our example of a two-feature case, the matrix becomes � �
Σ = 

e0 0 
.

0 e1 

 

Our code strictly follows this recipe. We add a factor of 2 to house prices for 

numerical stability: 

http://en.wikipedia.org/wiki/Bessel_correction
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def pca(x): 
x[0] = x[0] - np.average(x[0]) 
x[0] = x[0] / np.linalg.norm(x[0]) 
x[1] = (x[1] - np.average(x[1])) 
x[1] = 2 * x[1] / np.linalg.norm(x[1]) 

m = (np.array([[np.dot(x[0], x[0]), np.dot(x[0], x[1])], 
[np.dot(x[1], x[0]), np.dot(x[1], x[1])]]) / 

(len(x[0])-1)) 

The quantum version of this algorithm was first introduced in Lloyd et al. (2014), 

which uses phase estimation to find the eigenvalues. Here, we follow the refinement 

offered in Abhijith et al. (2020) on single-qubit states. 

In the classical pre-processing step, we computed the covariance matrix Σ in the 

Python variable m. The first key idea is to interpret this matrix as a density matrix. 

Density matrices must have a trace of 1, so we simply divide the matrix by its current 

trace: 

Σ 
ρ = .

tr(Σ) 
 

Next, we compute purity P as the trace of the squared density matrix, as described 

in Section 4.2: 

P = Tr(ρ2). 

For a pure state, the purity is P = 1, which for a single-qubit state means that the 

state lies on the surface of the Bloch sphere. Here is the second trick: From P we can 

determine the two eigenvalues λ0 and λ1 because we know that the trace of a density 

matrix is the sum of its eigenvalues and that for pure states, the trace must be 1. We 

know that P = λ2 + λ2
0 1

 and λ0 + λ1 = 1. Hence, with a little algebra,  

(λ0 + λ1)
2 = λ2 + λ2 +2λ0λ1,0 1| {z } | {z }

=1 =P 

λ0λ1 = (1 − P)/2. (14.2) 

Now, with 

λ1 = 1 − λ0, 

λ0λ1 = λ0(1 − λ0) 

= λ0 − λ2 
0 

= (1 − P)/2. 

⇒ λ2 − λ0 + (1 − P)/2 = 0.0 

and with Equation (14.2) 

We can do the same computation for λ1 and use the quadratic formula to get the 

eigenvalues as 

√ 
1 ± 2P − 1 

λ0,1 = . 
2 

(14.3)
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So far, so good, but how do we find the purity in a quantum way? In essence, we 

will use a cleverly constructed swap test. Here are the steps. We know the density 

matrix has a spectral decomposition of the following form, where we define the purity 

P as the trace of the squared density matrix: X
ρ = pi |ai⟩ ⟨ai| , 

i X
2P = tr(ρ2) = pi . 

i 

A density matrix ρ may represent a mixed state, a statistical mixture of pure 

states. We can use the process of purification to transform a mixed state into a larger 

pure state, as we learned in Section 4.6. After purification, we can write the purified 

state |ψ⟩ as X√ |ψ⟩ = pi |ai⟩ ⟨bi| ,
i 

 

where we use the same trick as in Section 4.6 on purification and reuse the bases {|ai⟩}
for the bases {|bi⟩} on the right-hand side of the outer product. We can interpret this as 

making copies of the density matrix. We then apply a swap test between the purified 

copies. The expectation value of the Swap gate under state ⟨ψ| is |ψ⟩
√ √ ⟨ψ| ⟨ψ| SWAP |ψ⟩ |ψ⟩ = ⟨bj| ⟨aj| ⟨bi| ⟨ai| pipj pipj |aj⟩ |bi⟩ |ai⟩ |bj⟩ 

ijX
2 = pi . 

i 

 X

The purity P equals the expectation value of the Swap gate. We will use this to find 

the purity P first and then the eigenvalues from it: ( )
P = tr ρ2 = ⟨ψ| ⟨ψ| SWAP |ψ⟩ |ψ⟩ . 

Our implementation builds the circuit shown in Figure 14.2. First, we construct 

the purified state |ψ⟩. This is a bit like cheating since in order to construct this state, 

we have to compute the eigenvalues, the computation of which is the whole point 

of this algorithm. On a real quantum machine, this would have to be done by state 

preparation, as shown in Chapter 9. 

|0⟩ H H 

|ψ0⟩ 

|ψ1⟩ 

Figure 14.2 A simple PCA circuit. A swap test is performed between two instances of a purified 

input state |ψ⟩, which we label as |ψ0⟩ and |ψ1⟩. 
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PY 
Find the code 
In file src/quantum_pca.py 

rho_eig_val, rho_eig_vec = np.linalg.eig(rho) 
p_vec = np.concatenate((np.sqrt(rho_eig_val), np.sqrt(rho_eig_val))) 
u_vec = rho_eig_vec.reshape((4)) 
psi = state.State(p_vec * u_vec) 

Next, we construct the swap test. The expectation value of the swap gate under the 

purified state allows us to re-construct the eigenvalues. In the code, we initialize qubits 

1 and 2 as well as qubits 3 and 4 with this state vector psi. Again, on a real quantum 

computer, we would have to add circuitry to prepare the state. 

qc = circuit.qc('pca') 
qc.reg(1, 0) 
qc.state(psi) # qubits 1, 2 

qc.state(psi) # qubits 3, 4 

# Swap Test. 

qc.h(0) 
qc.cswap(0, 1, 3) 
qc.h(0) 

Now we can compute the purity from its expectation value and the two eigenval-

ues as shown in Equation (14.3). We also compare against the classically computed 

eigenvalues we get with a call to numpy.linalg.eig: 

purity = qc.pauli_expectation(idx=0) 
m_0 = (1 - np.sqrt(2 * purity - 1)) / 2 * np.trace(m) 
m_1 = (1 + np.sqrt(2 * purity - 1)) / 2 * np.trace(m) 
print(f'Eigenvalues Quantum PCA: {m_0:.6f}, {m_1:.6f}') 

# Compare to classically derived values, which must match. 

m, _ = np.linalg.eig(m) 
if (not np.isclose(m_0, m[0], atol=1e-5) or 

not np.isclose(m_1, m[1], atol=1e-5)): 
raise AssertionError('Incorrect Computation.') 

print(f'Eigenvalues Classically: {m[0]:.6f}, {m[1]:.6f}. Correct') 

Running a few experiments will convince us that our calculations are correct: 

for _ in range(10): 
for idx, _ in enumerate(x[0]): 

x[1][idx] = random.random() * 10000 
pca(x) 

>> 
Quantum Principal Component Analysis (PCA). 
Eigenvalues Quantum PCA: 0.018904, 0.314429 

http://www.github.com/qcc4cp/qcc/blob/main/src/quantum_pca.py
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Eigenvalues Classically: 0.018904, 0.314429. Correct 
Eigenvalues Quantum PCA: 0.066605, 0.266728 
Eigenvalues Classically: 0.066605, 0.266728. Correct 
[...] 

14.3 HHL Algorithm 

The Harrow–Hassidim–Lloyd (HHL) algorithm (Lloyd et al., 2009)) is exciting and 

was central to the promises of quantum machine learning.5 

5 At time of writing, machine learning is the hottest field in computer science and industry, so why would 

we combine it with another hot buzzword – quantum? Living in Silicon Valley, this is how venture 

capital is being unlocked! 

It uses several techniques 

we have already studied so far – and adds a few more – to solve for ⃗x in a system of 

linear equations 

⃗A⃗x = b. 

To set expectations right from the start, the algorithm does not fully “solve” for ⃗x. 

Instead, it calculates specific properties of ⃗x, such as how the vector elements relate to 

each other, which will only allow estimating ⃗x in the end. 

This algorithm is one of the more complex algorithms in this book. The descrip-

tion follows the didactic flow of the excellent step-by-step guide by Morell et al. 

(2023). In the open-source repository, we faithfully implemented this reference in file 

src/hhl_2x2.py, where we added numerical verification checks for each main step. 

We present a slightly more general implementation, which can be found in the file 

src/hhl.py in the open-source repository. 

A system of linear equations is also called a linear system problem (LSP). For 

example, for 3 equations with 3 variables x, y, and z, this system of equations 

2x + 2y − 1z = 3, 

x − 3y + 4z = 4, 

−x + 1y − 2z = −5, 

can be written in matrix form as  2 2 −1 

1 −3 4  x 

y  =  3 

4  .

−1 1 −2 z −5 

   
 

The solution to this linear system would be x = 1, y = 2, and z = 3. In general, we 

can write the problem of finding ⃗x in A⃗x ⃗= b as a system of linear equations: 

a0,0x0 + a0,1x1 + · · · + a0,n−1xn−1 = b0, 

a1,0x0 + a1,1x1 + · · · + a1,n−1xn−1 = b1, 

. . . 

an−1,0x0 + an−1,1x1 + · · · + an−1,n−1xn−1 = bn−1. 

http://www.github.com/qcc4cp/qcc/blob/main/src/src/hhl_2x2.py
http://www.github.com/qcc4cp/qcc/blob/main/src/src/hhl.py
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Needless to say, this is a very important classical problem with innumerable appli-

cations. It is also a computationally very demanding problem. Let’s discuss complex-

ity and the case for a quantum algorithm next. 

14.3.1 Complexity 

Classically, this problem can be solved using Gaussian elimination,6 

6 See, for example, http://en.wikipedia.org/wiki/Gaussian_elimination. 

which is gener-( )
ally of complexity O n 3 . Depending on the type of matrix, faster techniques may be 

applicable. Let us introduce two matrix properties: 

• A matrix is s-sparse if it has at most s nonzero entries in each row and column. 

Typically, s-sparse vectors are defined as having only s nonzero elements, so 

s-sparse matrices have s-sparse vectors as rows and columns. Note that in the 

literature, the definition of sparsity may only pertain to either rows or columns, but 

we require s-sparsity for both. 

• The matrix condition number κ (“kappa”) is a metric on how invertible a given 

matrix is and is usually calculated as κ = ||A|| · || −A 1|| using the operator norm.7

7 See also http://en.wikipedia.org/wiki/Operator_norm. 

 

It hints at the accuracy that can be obtained when solving an LSP. A large 

condition number indicates high sensitivity; small changes in ⃗b can result in large 

effects and errors in ⃗x. For Hermitian matrices, κ can be calculated as the ratio of 

largest to smallest eigenvalue after taking the absolute value (which is undefined if 

the denominator is 0). 

For the special case of sparse matrices and a given approximation accuracy of ε, 

solving the LSP of size N classically with the conjugate gradient method8 

8 See also http://en.wikipedia.org/wiki/Conjugate_gradient_method.

has a( )
complexity of O Nsκ log(1/ε) ( . The quantum HHL algorithm, on the other hand,)
has a complexity of O log(N)s 2κ2/ε . This presents an exponential speed-up over 

the size N of the system but a polynomial slowdown in s and κ. 

There are questions about this algorithm. The vector b⃗ has to be encoded as a 

state, and we have seen in Chapter 9 that state preparation can be a costly operation.( )
Reading out a full result may result in an additional complexity of O N . This means 

that the algorithm may only be applicable in cases where sampled results suffice. 

In other words, if an application only requires approximate information or statistics 

derived from the data, quantum algorithms may still offer a speed-up since fewer 

measurements are needed. Aaronson (2015) enumerates more reasons why we should 

be cautious about the promises made by this algorithm, including the fact that it only 

estimates relationships between vector elements, as mentioned above. 

Nevertheless, despite these concerns, there is general recognition that the algorithm 

is, first of all, marvelous and that, at least for certain classes of input, it will indeed 

have a quantum advantage. 

  

http://en.wikipedia.org/wiki/Gaussian_elimination
http://en.wikipedia.org/wiki/Operator_norm
http://en.wikipedia.org/wiki/Conjugate_gradient_method
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14.3.2 Algorithm 

In the quantum algorithm, the matrix A must be an N × N Hermitian matrix with 

N = 2n for some n. Vectors ⃗x and ⃗b are N-dimensional vectors. A and ⃗b are known, ⃗x 

is the unknown we are trying to solve for. This means we can write the problem as 

−1⃗x⃗ = A b. (14.4) 

Let’s recall the required linear algebra. A complex square matrix A is normal if it 

commutes with its conjugate transpose †A A = †AA  . It can be shown that A is normal 

if and only if it is unitarily diagonalizable. This means there exists a unitary matrix U 

such that 

A = UDU† , (14.5) 

where D is a diagonal matrix. The diagonal elements of D will hold the eigenvalues 

of A, which must be real if A is Hermitian. The columns of U will be the orthonormal 

eigenvectors of A. 

Since all unitary and Hermitian matrices are normal, the finite-dimensional spectral 

theorem applies, as shown in Section 4.1. Normal matrices can be written as the sum 

of the products of the eigenvalues λi with the outer product of the eigenvectors ui. If 

you think about it, this is just a different way of writing Equation (14.5): 

N−1X
A = λi|ui⟩⟨ui|. 

i=0 

(14.6) 

In this form, it is trivial to compute the inverse of A as 

N−1X
−1A = λ−1|ui⟩⟨ui|. i 

i=0 

(14.7)

From Section 4.1, we know that a complex N × N Hermitian matrix has N linearly 

independent orthogonal basis vectors with real eigenvalues. This means that any vector 

in CN can be constructed from such an orthogonal basis. Hence we can write b⃗ as a 

linear combination of A’s basis vectors |ui⟩ as 

N−1X
|b⟩ = bi |ui⟩ . 

i=0 

(14.8) 

We combine this with Equations (14.4) and (14.7) as 

|x⟩ = A−1 |b⟩ 
N−1X

= λ−1|ui⟩⟨ui|bi |ui⟩i 

i=0 

N−1X
= λ−1bi |ui⟩ ⟨ui|ui⟩ ,i | {z }

i=0 =1 
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N−1X
⇒ |x⟩ = λ−1bi |ui⟩ . i 

i=0 

(14.9)

Since we encode the vectors as state vectors, Equations (14.8) and (14.9) require that 

2Xnb −1 2Xnb −1 

|bi|2 = 1 and |λ−1bi|2 = 1.i 

i=0 i=0 

As an example, let us define the 4 × 4 Hermitian Python matrix a as: 

a = ops.Operator([[15, 9, 5, -3], 
[9, 15, 3, -5], 
[5, 3, 15, -9], 
[-3, -5, -9, 15]]) / 4 

print(a) 
>> 
[[ 3.75+0.j 2.25+0.j 1.25+0.j -0.75+0.j] 
[ 2.25+0.j 3.75+0.j 0.75+0.j -1.25+0.j] 
[ 1.25+0.j 0.75+0.j 3.75+0.j -2.25+0.j] 
[-0.75+0.j -1.25+0.j -2.25+0.j 3.75+0.j]] 

Let’s set a vector 
( )

⃗ T 
b = 0 0 0 1 and solve the system with numpy: 

b = ops.Operator([0, 0, 0, 1]) 
x = np.linalg.solve(a, b) 
>>> x 
array([-0.094+0.j, 0.156+0.j, 0.281+0.j, 0.469+0.j]) 

The quantum algorithm will not give us these concrete numbers. Instead, it will 

provide information on how these values relate to each other, which we classically 

compute as the ratios of all norms over the norm of the smallest element. The goal of 

our quantum HHL implementation is to produce similar ratios. We write this simple 

function to compute the ratios classically: 

PY 
Find the code 
In file src/hhl.py 

def check_classic_solution(a, b): 
x = np.linalg.solve(a, b) 
ratio = [] 
for i in range(1, len(x)): 

ratio.append(np.real((x[i] * x[i].conj()) / (x[0] * x[0].conj()))) 
print(f'Classic ratio: {ratio[-1]:6.3f}') 

return ratio 

For the example, the output will be: 

Classic ratio: 2.778 
Classic ratio: 9.000 
Classic ratio: 25.000 

http://www.github.com/qcc4cp/qcc/blob/main/src/hhl.py
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We need a routine to classically compute the eigenvalues and eigenvectors, sorted 

by magnitude, which we get with the following code using numpy. Note that the 

function eig returns the eigenvalues as columns – you find the eigenvector for the 

eigenvalue w[i] in column v[:, i]. To make our lives easier, we take the eigenvec-

tors out of the columns and “decolumn”9 

9 I am not sure this is a word. We take the vectors out of the columns and make them an array of vectors. 

With this, you get an eigenvector with v[i] instead of v[:, i]. 

the vectors on return. Since the eigenvalues 

of a Hermitian matrix are real, we explicitly convert the eigenvalues with np.real(w) 

before returning the results to avoid Python type conflicts: 

def compute_sorted_eigenvalues(a): 
w, v = np.linalg.eig(a) 

# Return sorted (real) eigenvalues and eigenvectors. 

idx = w.argsort() 
return np.real(w[idx]), v[:, idx] 

Let’s use this function to compute the eigenvalues and eigenvectors for the matrix 

a defined above. Note how we have chosen the matrix to have eigenvalues that are 

powers of 2: 

w, v = compute_sorted_eigenvalues(a) 
print('Eigenvalues:', w) 
print('Eigenvectors:\n', v) 
>> 
Eigenvalues: [1. 2. 4. 8.] 
Eigenvectors: 
[[ 0.5+0.j 0.5+0.j -0.5+0.j 0.5+0.j] 
[-0.5+0.j -0.5+0.j -0.5+0.j 0.5+0.j] 
[-0.5+0.j 0.5+0.j 0.5+0.j 0.5+0.j] 
[-0.5+0.j 0.5+0.j -0.5+0.j -0.5+0.j]] 

We can use the eigenvalues w and decolumned eigenvectors v to reconstruct the 

matrix a and its inverse inv with the following code, following Equations (14.6) and 

(14.7). We can check for correctness by comparing the reconstructed matrix x with 

the original a and by comparing the matrix product of x and its inverse inv with the 

identity matrix: 

ndim = a.shape[0] 
x = np.matrix(np.zeros((ndim, ndim))) 
for i in range(ndim): 

x = x + w[i] * np.outer(v, v.adjoint()) 
assert np.allclose(a, x) 

inv = np.matrix(np.zeros((ndim, ndim))) 
for i in range(ndim): 

inv = inv + (w[i]**-1) * np.outer(v, v.adjoint()) 
assert np.allclose(inv @ x, ops.Identity(a.nbits)) 
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Phase Estimation Ry(λ−1) Uncompute 
|1⟩ 

A: |0⟩ R 

C: |0⟩⊗n 
H⊗n QFT † QFT H⊗n |0⟩⊗n 

I: |b⟩⊗n 
U U |x⟩⊗n 

Figure 14.3 The HHL algorithm as a circuit diagram. 

Equation (14.9) is the form we will use in the HHL algorithm to solve for |x⟩. The 

algorithm has the following major steps, which are also shown in Figure 14.3: 

1. State Preparation. The vector ⃗b needs to be encoded as a quantum state via state 

preparation. As we have learned in Chapter 9, this can be quite difficult in 

practice. Here, we just assume that vector ⃗b is readily available as a quantum state. 

2. The next step is to perform quantum phase estimation to encode the eigenvalues 

of an operator U that represents the matrix A. For experimentation, in order to 

deal with known eigenvalues, we also have to construct the U operator. 

3. This is followed by the so-called ancilla rotation. This step is new and 

complicated in its general form. Here, we simplify slightly and require that the 

eigenvalues of U be powers of 2. 

4. We are almost done at this point. We uncompute the QPE from Step 2 above and 

measure and interpret the results. 

To construct the circuit, let us assume that the vector b⃗ has N 2nb
b = components 

for nb qubits. We use amplitude encoding (Section 9.1.2) to encode this vector as a 

quantum state. The circuit consists of three register files: 

1. A single ancilla qubit A. When written as a substate, we will denote this qubit 

by | ⟩a .  

2. A clock register C of width 2t . This register will contain the encoded eigenvalues 

coming out of the quantum phase estimation. A larger number t of qubits will 

result in higher accuracy. In state notation, we refer to this register as | ⟩c .  

3. An input register I of width 2nb , which will contain the results of the state 

preparation to represent the vector ⃗b. Similarly to the above, we denote the state of 

this register as | ⟩b. 

14.3.3 State Preparation 

We start by using amplitude encoding as described in Section 9.1 to encode the vector 

b⃗ as a quantum state |b⟩. We assume that this step is possible and efficient in a physical 

system. For simplicity, in our examples, we will only use states |0⟩n 
or |1⟩n 

, which are 

easy to prepare. With the notation shown above, the system after state preparation will 

be in state 
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|ψ⟩ = |0⟩ |0 · · · 00⟩ |b⟩ ,a c b 

with |b⟩ b indicating a register of size nb. We will see below that the algorithm produces  

a result in basis encoding, as described in Section 9.1.1. But let’s not get ahead of 

ourselves. 

14.3.4 Hamiltonian Encoding 

To encode the matrix A, we use Hamiltonian encoding from Section 9.1.4. We 

interpret the Hermitian A as a time-dependent Hamiltonian and define the unitary 

operator 

iAtU(t) = e . 

The factor t is the evolution time of the Hamiltonian and we will calculate a specific 

value for it shortly. The practical way to build U is to use the spectral decomposition of 

A and compute its eigenvalues λi as above (in the Python variable w). Then construct 

U using the computational basis vectors |ei⟩ as 

N−1X
iλit|ei⟩⟨ei|.U(t) = e 

i=0 

(14.10) 

In this way, U will be a diagonal matrix. To keep the eigenvalues but change the 

basis back to the original basis of A, we use the matrix similarity transformation:10 

10 http://en.wikipedia.org/wiki/Matrix_similarity.

U = VUV† , 

where V is a matrix with the original eigenvectors of A as its rows. 11 

11 You will often find the similarity transformation written as †U = V UV with V having the eigenvectors 

as columns. However, we already decolumned the eigenvectors of V into rows. Therefore, the adjoint 
† V comes last. 

We computed 

this V in the variable v above. V is also called a change of basis matrix.12 

12 http://en.wikipedia.org/wiki/Change_of_basis.

Note that this explicit construction is only for experimentation. The whole purpose 

of the HHL algorithm is to approximate the eigenvalues for a given unknown 

Hamiltonian. In code, we follow the exact steps as outlined above. The function 

compute_u_matrix gets the original matrix A as parameter a, the eigenvalues 

and decolumned eigenvectors as w and v, and the t time evolution parameter: 

def compute_u_matrix(a, w, v, t): 
u = ops.Operator(np.zeros((a.shape[0], a.shape[1]), 

dtype=np.complex64)) 
for i in range(a.shape[0]): 

u[i][i] = np.exp(1j * w[i] * t) 
u = v @ u @ v.adjoint() 
return u 

 

 

http://en.wikipedia.org/wiki/Matrix_similarity
http://en.wikipedia.org/wiki/Change_of_basis
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14.3.5 Phase Estimation 

Now that we know how to compute the matrix U for our experiments, the next step 

is to discuss the quantum phase estimation at a slightly more mathematical level. We 

know from Section 11.2.1 and Equation (11.2) that we can write the QPE in closed 

form as 
N−1X1 

QPE |ψ⟩ = e 2πikφ |k⟩ |φ⟩ . 
2n/2 

k=0 

We also learned in Section 11.4 that we can write the quantum Fourier transform 

QFT in the closed form of Equation (11.8) as 

N−1X1 
QFT |x⟩ = e 2πijk/N |j⟩ . 

2n/2 
j=0 

We apply the inverse QFT to the output of the QPE for the resulting state 

N−1X1 |ψ⟩ = |b⟩ QFT 
† 

e 2πikφ |k⟩ |0⟩ a 

k=0 

N−1 � �2n/2 

X1 2πikφ = |b⟩ e QFT 
† |k⟩ |0⟩ 

2n/2 a 

k=0  
N−1 N−1X X1 = |b⟩ e 2πikφ e −2πiyk/N |y⟩ |0⟩ a2n 

k=0 y=0 

N−1 N−1XX1 
= |b⟩ e 2πik(φ−y/N) |y⟩ |0⟩ . a2n 

k=0 y=0 

!

If for some y the term φ − y/N = 0, then the exponent will be 0, the exponential 

term will be 1, which leads to 

NX−1 N−1X 2n1 12πik(φ−y/N) 2πik0 e = e = = 1. 
2n 2n 2n 

y=0 y=0 

Since the resulting amplitude for this y0 is 1, all other amplitudes must13 

13 See http://quantumcomputing.stackexchange.com/a/39933 for a rigorous proof. 

be 0. This 

is also called destructive interference, which arises from the periodic nature of the 

complex exponentials. Since φ − y0/N = 0, we can solve for y0: 

φ − y0/N = 0, 

φ = y0/N, 

→ y0 = φN. 

With |y0⟩ = |φN⟩ we can write the state after QPE as the following, with |b⟩ 
still being the unmodified input register, |Nφ⟩ the phase estimate stored in the clock 

register, and |0⟩ a the unmodified ancilla:  

 

http://quantumcomputing.stackexchange.com/a/39933
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|b⟩ |Nφ⟩ |0⟩ .a  (14.11)

This form is for a single y0. We still have to consider that there are multiple eigen-

values in superposition and we have to decide what to do with that mysterious t 

parameter. This will be the focus of Section 14.3.6. 

In code, let’s write down what we have so far. To construct the circuit, we use the 

function construct_circuit and give it the following parameters: The vector ⃗b, the 

eigenvalues in parameter w, the unitary operator U we constructed above, a constant c 

that we will derive below, and the number of qubits clock_bits we want to assign 

to the clock register. With these parameters, we construct the circuit qc and create the 

ancilla, clock, and b⃗ quantum registers, assigning the vector b⃗ to the breg register 

directly: 

def construct_circuit(b, w, u, c, clock_bits): 
qc = circuit.qc('hhl') 

# State preparation - just initialize the b register. 

anc = qc.reg(1, 0) 
clock = qc.reg(clock_bits, 0) 
breg = qc.state(b) 

Then we build the phase estimation circuit. We know we must uncompute this later, 

so as we iterate over the clock bits, we also store the inverse −U 1 gates in variable 

u_inv_gates. The rest of the loop is similar to the QPE implementation in Section 

11.2.3: 

# Phase estimation to bring the eigenvalues into the clock register. 

qc.h(clock) 
u_inv_gates = [] 
for idx in range(clock_bits): 

op = ops.ControlledU(clock[idx], breg[0], u) 
qc.unitary(op, clock[idx]) 
u_inv_gates.append(np.linalg.inv(u)) 
u = u @ u 

qc.inverse_qft(clock, True) 

This is only the first half of the function. We will finalize the implementation in just a 

few pages. 

14.3.6 Time Evolution Parameter t 

Hamiltonian encoding has that time evolution parameter t in the exponent. We will 

see that, as long as the eigenvalues are integer multiples of each other, we can use t to 

map the eigenvalues to actual integers. Let us derive a way to calculate t. 
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We know that U in the Hamiltonian encoding in Equation (14.10) is a normal matrix 

and that the spectral theorem applies (as discussed in Section 4.1): X
U = λi|xi⟩⟨xi|. 

i 

Since U is unitary with † UU = I, it follows that |λi|2 = 1 and λ 2πφi
i = e for some 

angle φi. If we set |b⟩ as one of the eigenvectors |ui⟩ of U, then 

2πiφiU |b⟩ = e |ui⟩ . 

We also know from Equation (14.10) that 

U |b⟩ = eiλit |ui⟩ . 

We can equate the two and find φi with 

iλit = 2πiφi, 

λit ⇒ φi = . 
2π 

We substitute this into Equation (14.11) and get 

��|ψ⟩ = |b⟩ N 
λjt |0⟩ . a2π 

E
P

In general, |b⟩ will be in superposition as  
n2 b −| 1

b⟩ = bj |uj⟩j=0  and we can general-

ize |ψ⟩ to our almost final form: 

2Xnb −1 

|ψ⟩ = bj |uj⟩ |Nλjt/(2π)⟩ |0⟩ . a 

j=0 

With all this in place, we can finally calculate a proper value for t. The eigenvalues 

λi are usually not integers, but as long as they are related to each other by integer 

factors, we can scale them to integers simply by dividing them by their smallest value 

λ0. In practice, this λ0 must be carefully chosen. 

We want the eigenvalues to be integers for two reasons. Firstly, it makes it easy to 

map the binary eigenvalue values onto the clock register. More importantly, though, in 

order to invert the eigenvalues, we must apply controlled rotations by specific angles. 

These angles are much easier to find from integer eigenvalues, especially integers that 

are powers of two, as we will see shortly. 

We still have to apply a factor t when we construct the matrix U. To obtain integer 

eigenvalues, we define t as 

2π 
t = ,

λ0N 

and define scaled eigenvalues with a tilde over the symbol λ as 

e λjλj = Nλjt/(2π) = . 
λ0 

   

https://doi.org/10.1017/9781009548519.015


346 Quantum Machine Learning 

As long as the eigenvalues are integer multiples of each other, the scaled eigenval-

ues will be integers. With this, we arrive at the final form we were looking for: 

�� �2Xnb −1 e|ψ⟩ = bj |uj⟩ λj |0⟩ . a 

j=0 

(14.12)

After QPE and inverse QFT with a time factor t, we will have the integer eigenval-

ues in superposition in the clock register. Section 14.3.7 describes how to rotate the 

eigenvalues to obtain their inverse values. 

14.3.7 Inversion of Eigenvalues 

In this section, we will take the state in Equation (14.12) and apply rotations by 

specific factors to change the state into a form that may seem confusing at first. We 

will measure the ancilla and only keep the results for which the ancilla measured |1⟩. 
The remaining state will allow us to derive the rotation angles. At this point, it will 

also become apparent why we had to scale the eigenvalues to integer values. Let’s dive 

right in. 

We have seen in Section 9.1.3 that we can encode a value α with an Ry rotation by 

angle θ = 2 arcsin(α) such that p
Ry(θ) |0⟩ = 1 − α2 |0⟩ + α |1⟩ . 

We choose a constant C and apply controlled Ry(θk) rotations between the ancilla 

|0⟩ a and the clock register with α = C/λej. In just a few paragraphs, it will become 

clear what the value of C should be and how to compute the angles θk. The rotations 

change the state in Equation (14.12) to 

���2Xnb −1 E uu C2 Ce  |ψ⟩ = bj |uj⟩ λj t1 − |0⟩ + |1⟩ . e 2 a e a 

j=0 λj λj 

v 
(14.13) 

Now we measure the ancilla and discard the measurements that result in |0⟩ for the 

ancilla. For the other cases, the state will hold the inverse eigenvalues and become 

�� ��
2Xnb −1 

C 1 |ψ⟩ = cm bj |uj⟩ |1⟩ , with cm = . ae rP2nb −1 bjC 2 
j=0 λj 

j=0 λ  
j 

The complicated factor cm is just a normalization factor after measurement to 

ensure that the total probabilities in the state vector still add up to 1. With this, we 

can now derive a good value for C. The probability of measuring |1⟩a in Equation 

(14.13) is p|1⟩ = |C/λej|2. Probabilities must be less than or equal to 1. We mapped 

the eigenvalues to integers above, and the smallest mapped value is λ0 = 1. Hence, 

to maximize the probability p|1⟩ of measuring |1⟩ we want to use the largest possible 

value for C such that p|1⟩ ≤ 1. For this, we set C to 1. 

We can now complete the function construct_circuit. We left off right after 

we built the QPE circuitry. The next steps are to compute the angles by calling 

   

    

  ⟩
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compute_angles, which we develop below, and apply the controlled Ry rotations 

between the clock register and the ancilla using qc.cry. To uncompute, we apply 

the inverse QPE using the gates we stored in u_inv_gates. The final step in this 

function is to measure and force the ancilla to state |1⟩ and return this ingeniously 

constructed circuit qc: 

angles = compute_angles(w, c) 
for idx, angle in enumerate(angles): 

qc.cry(clock[idx], anc, angle) 

# Uncompute. 

qc.qft(clock, True) 
for idx in reversed(range(clock_bits)): 

op = ops.ControlledU(clock[idx], breg[0], 
u_inv_gates[idx]) 

qc.unitary(op, clock[idx]) 
qc.h(clock) 

# Measure (and force) ancilla to state /1>. 

qc.measure_bit(anc[0], 1, collapse=True) 
return qc 

So far so good, but how do we go about computing the rotation angles? We know 

that in order to transform the ancilla from |0⟩a to the right side of Equation (14.13), 

we have to apply an Ry rotation by an angle θ = 2 arcsin 1 

λ  
j 

with: 

1 1 
Ry(θ) |0⟩ = 1 − |0⟩ + |1⟩ . 

2 a a 

λej λej 

s

We can calculate the angles θj for each integer eigenvalue λej = {1,2, . . .} as 

1 
θ1 = 2 arcsin = π,

1 
1 π 

θ2 = 2 arcsin = ,
2 3 

. . . 

Now it becomes clear why we chose the eigenvalues to be powers of two. We 

can decompose a value c in the clock register before rotations in the binary form 

c = cn−1cn−2 · · · cc0 
and apply the rotations for each of the individual distinct binary 

bits. In this way, the rotations do not overlap, as they would for eigenvalues with 

overlapping binary bits, such as 1 (0b01) and 3 (0b11). There are complex ways to 

solve cases where the binary representations of the scaled eigenvalues do overlap, but 

with this simplified power-of-2 scheme, we can compute the angles simply with: 

def compute_angles(w, c): 
unis = np.unique(w) 
return [2 * np.arcsin(c / eigen) for eigen in unis] 
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14.3.8 Putting It All Together 

We now have all the pieces in place to run this algorithm on a variety of inputs. We 

define a function run_experiment with parameters a for the matrix A and b for the 

vector ⃗b. The function computes the sorted eigenvalues, as shown above, and produces 

the scaled integer eigenvalues in lam. It computes parameter t, sets the constant c 

(to 1), constructs the circuit with the code shown above, and compares the results. 

Without test and print statements, the code looks rather compact: 

def run_experiment(a, b): 
clock_bits = len(b) 
n = 2 ** clock_bits 

w, v = compute_sorted_eigenvalues(a) 
lam = [w[i] / w[0] for i in range(a.shape[0])] 
t = 2 * np.pi / (w[0] * n) 
c = np.min(np.abs(lam)) 

qc = construct_circuit(b, lam, u, c, clock_bits) 
check_results(qc, a, b) 

To compare the results, we compute the ratios of the classical and quantum solu-

tions. Then we compare the ratios one by one and ensure that they are within an 

acceptable accuracy range. 

def check_results(qc, a, b): 
ratio_classical = check_classic_solution(a, b) 
res = (np.abs(qc.psi) > 0.07).nonzero()[0] 
ratio_quantum = [np.real(qc.psi[res[j]] ** 2 / qc.psi[res[0]] ** 2) 

for j in range(1, len(res))] 

for idx, ratio in enumerate(ratio_quantum): 
delta = ratio - ratio_classical[idx] 
print(f'Quantum ratio: {ratio:6.3f}, delta: {delta:+5.3f}') 
if abs(delta) > 0.2: 

raise AssertionError('Incorrect result.') 

In the Python main function, we construct several examples and run the experi-

ments, resulting in output like this one: 

def main(argv): 
a = ops.Operator([[15, 9, 5, -3], 

[9, 15, 3, -5], 
[5, 3, 15, -9], 
[-3, -5, -9, 15]]) / 4 

b = ops.Operator([0, 0, 0, 1]).transpose() 
run_experiment(a, b, clock_bits=4) 
[...] 

>> 
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Clock bits : 4 
DimensionsDimensions  AAA   : 4x4 

lambda[0] : 1.0 
lambda[1] : 2.0 
lambda[2] : 2.0 
lambda[3] : 8.0 

Set C to min : 1.0 
Classic ratio: 1.044 
Classic ratio: 0.738 
Classic ratio: 3.545 
Quantum ratio: 1.044, delta: +0.000 
Quantum ratio: 0.738, delta: -0.000 
Quantum ratio: 3.545, delta: +0.000 
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15 Quantum Error Correction 

Quantum computing operates at a (smaller than) microscopic scale, with a high likeli-

hood of noise, errors, and decoherence1 in larger circuits. Because of this, it has been 

believed for the longest time that practical quantum computing will not be feasible. 

This all changed with the discovery of quantum error correction techniques,2 which 

we touch upon in this chapter. We have ignored this topic so far and assumed an 

ideal, error-free execution environment. However, for real machines, this assumption 

does not hold. Quantum error correction is a fascinating and wide-ranging topic. This 

section is primarily an introduction with focus on core principles. 

15.1 Quantum Noise 

Building a real, physical quantum computer that has a large enough number of qubits 

to perform useful computations presents enormous challenges. A quantum system 

must be isolated from the environment as much as possible to avoid entanglement 

with the environment and other perturbations, all of which could induce errors. For 

example, molecules may bump into qubits and change their relative phase, even at 

temperatures close to absolute zero. However, a quantum system cannot be entirely 

isolated because we want to program the machine, change its internal state, and make 

measurements. 

A summary of the available technologies presented in Nielsen and Chuang (2011) 

is shown in Table 15.1. The table lists the underlying technology, the time τQ the 

system can remain coherent before losing coherence, the time τop it takes to apply 

a typical unitary gate, and the number nop of operations that can be executed while 

still in a coherent state. For several technologies, the number of coherently executable 

instructions is rather small and will likely not suffice to execute larger algorithms, 

especially those with many qubits and millions or potentially billions of gates. How-

ever, encouraging improvements have been reported recently in Anferov et al. (2024). 

Errors are inevitable at the atomic scale, and the environment is very likely to 

perturb the system. Let us compare the expected quantum and classical error rates. 

1 See also: http://en.wikipedia.org/wiki/Quantum_decoherence. 
2 Other techniques for decoherence reduction exist today. See, for example, 

http://en.wikipedia.org/wiki/Dynamical_decoupling. 

http://en.wikipedia.org/wiki/Quantum_decoherence
http://en.wikipedia.org/wiki/Dynamical_decoupling
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Table 15.1. Estimates for decoherence times τQ (secs), gate application latency τop(secs), and 
number of gates nop that can be applied while coherent. Data from Nielsen and Chuang (2011). 

System τQ τop nop 

Nuclear spin −10 2 to − 10 8 −10 3 to −10 6 105 to 1014 

Electron spin 10−3 10−7 104 

Ion trap −110 −1410 1013 

Electron – Au −810 −1410 106 

Electron – GaAs −1010 −1310 103 

Quantum dot −610 −910 103 

Optical cavity −510 −1410 109 

Microwave cavity 100 −410 104 

For a modern CPU, a typical error rate is about one per year, or one error for every 

1017 operations. The actual error rate might be higher, but mitigation strategies and 

redundancies are in place. 

In contrast, data from 2020 from IBM (Maldonado, 2022) show an average single-

qubit gate error rate of about one per 10−3 seconds. Based on frequency, this could 

reach up to one error for every 200 operations. This is a difference of almost ten orders 

of magnitude! Next, let us explore possible quantum error conditions and model their 

likelihood of occurrence. 

Bit-Flip Error 

A bit-flip error causes the probability amplitudes of a qubit to flip, similar to the effect 

of an X gate or even a classical bit-flip error: 

α|0⟩ + β|1⟩ → β|0⟩ + α|1⟩. 

This is also called a dissipation-induced bit-flip error. Dissipation is the process of 

losing energy to the environment. If we think of a qubit in the state |1⟩ as an electron 

in an excited state, as it loses energy, it may fall to the lower energy |0⟩ state and emit 

a photon. Consequently, by absorbing a photon, it can jump from |0⟩ to |1⟩, in which 

case it should probably be called an excitation-induced error. 

Phase-Flip Error 

The phase-flip error causes the relative phase to flip from +1 to −1, similar to the 

effect of a Z gate: 

α|0⟩ + β|1⟩ → α|0⟩ − β|1⟩. 

This is also called a decoherence-induced phase-shift error. In the example, the phase 

on β was shifted by π, but for decoherence, we should also consider more minor phase 

changes and their insidious tendency to compound over time. 
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Combined Phase/Bit-Flip Error 

The combination of the two error conditions above 

α|0⟩ + β|1⟩ → β|0⟩ − α|1⟩, 

is equivalent to applying the Y gate and ignoring the global phase: �  ( � 0 −i α ( � 
Y α|0⟩ + β|1⟩ = = −iβ|0⟩ + iα|1⟩ = −i β|0⟩ − α|1⟩ . 

i 0 β 

�� �

No Error 

We only mention this case for completeness. It is the effect of applying an identity 

gate to a qubit or, equivalently, doing nothing.3 

Errors will occur with a certain probability. To model this properly, we will intro-

duce the concept of quantum operations next. Using those, we can describe statistical 

error distributions in an elegant way. 

15.1.1 Quantum Operations 

So far, we have primarily focused on describing quantum states as vectors of probabil-

ity amplitudes. We explained how density operators can also describe states, allowing 

us to describe mixtures of states. In the following, we adopt the formalism presented 

in Nielsen and Chuang (2011). 

Similarly to how a state evolves as   |ψ ′⟩ = U|ψ⟩ with a unitary U, a state’s density 

operator ρ = |ψ⟩⟨ψ| evolves as 

ρ ′ = E(ρ), 

where the E is called a quantum operation. The two types of operations we have 

encountered so far are unitary transformations and measurements with a projection 

operator M. Note again the matrix multiplication from both sides: 

† †E(ρ) = Uρ U and EM(ρ) = MρM . (15.1) 

In a closed quantum system, which has no interaction with the environment, the 

system evolves as 

ρ U Uρ U† . 

In an open system, we model the system as the tensor product of state and environ-

ment as ρ ⊗ ρenv. The system evolves as described in Equation (15.1), with U being 

a unitary in the Hilbert space of both the system and the environment, expressed with 

density matrices: 

†U(ρ ⊗ ρenv) U . 

3 It is impossible to resist mentioning the famous error message “No Error” in a certain operating system 

that shall remain unnamed. 
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We can visualize this with this conceptual circuit: 

ρ 

ρenv 

U 

E(ρ) 

To describe the system without the environment, we can trace out the environment 

using the methodology from Section 4.3: � �†E(ρ) = trenv U(ρ ⊗ ρenv) U . (15.2) 

Now, quantum operators can be expressed in the operator-sum representation, 

which only describes the behavior of the principal system in Equation (15.2). Let |ek⟩ 
be the orthonormal basis of the environment, and let |eenv⟩ = |e0⟩⟨e0| be the initial 

state of the environment, which we assume to be pure. It can be shown (see Nielsen 

and Chuang, 2011, section 8.2.3) that X †E(ρ) = EkρE , k 

k 

(15.3)

where Ek = ⟨ek|U|e0⟩. The Ek are the operation elements for the quantum 

operation E. They are also called Kraus operators and operate on the quantum system 

of interest only. Now, let us see how we can use this formalism to describe the various 

error modes. 

15.1.2 Quantum Channels 

The term channel is an abstraction in information theory to model how information is 

transmitted in the presence of noise, errors, and potential attackers intent on stealing 

transmitted information. In this book, we are not discussing these aspects of quantum 

cryptography. Viddick (2023) provides an excellent introduction to the topic. How-

ever, we can use the formalism developed therein to model quantum error modes and 

probabilities. 

A classical channel could be as simple as the vibrations of a string in a string 

telephone or as complex as light traveling in a fiber optic line. In the quantum case, we 

have to consider that in addition to unitary operations and measurements, as discussed 

above, there are two other types of quantum operations that eavesdroppers can use to 

steal information, for example, with cloning attacks (Scarani, 2005):4 

• We can add an ancilla qubit to a given state |ψ⟩ and increase the dimension of the 

state by a factor of 2 as |ψ⟩ → |ψ⟩ |0⟩. 
• We can trace out a qubit and reduce the dimension of a state by a factor of 2, as 

described in Section 4.3. 

With these, we define a general quantum channel C as an operation from (C2)n → 
(C2)m consisting of a sequence of unitary operations, the addition of ancillas, and the 

tracing out of qubits. 

4 Quantum cryptography is a very large field. We will not go into great depth in this book. 
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15.1.3 Bit Flip and Phase Flip Channels 

The bit-flip channel Cbit-flip flips the states from |0⟩ to |1⟩ with probability 1 − p 

(probability p of not introducing an error). It has the operation elements � � � �p p√ √ 1 0 0 1 
E0 = p I = p and E1 = 1 − p X = 1 − p . 

0 1 1 0 

Expressed in the form of Equation (15.3), the bit-flip channel for a density matrix ρ is 

Cbit-flip(ρ) = (1 − p)ρ + pXρX. 

The phase-flip channel flips the phase as described above with probability 1 − p. It 

has the operation elements � � � �p√ √ 1 0 p 1 0 
E0 = p I = p and E1 = 1 − p Z = 1 − p . 

0 1 0 −1 

Finally, the bit-flip phase-flip channel has the operation elements � � � �p p√ √ 1 0 0 −i 
E0 = p I = p and E1 = 1 − p Y = 1 − p . 

0 1 i 0 

15.1.4 Depolarization Channel 

The depolarization channel is another standard way to describe quantum noise. 

Depolarization means an original state is transformed into a completely mixed state 

I/2. In Section 4.3, we briefly talked about pure and mixed states and derived 

that a maximally mixed bipartite state is proportional to I, which means that the 

two subsystems are maximally entangled with each other. For the scenario we are 

considering, one of the systems is the environment. 

Quantum noise means that if some disturbances have a probability p of changing a 

state, the state remains unmodified with probability 1 − p. The state, expressed as the 

density matrix ρ, can be written as 

I 
ρ ′ = p + (1 − p)ρ. 

2 

For an arbitrary (single-qubit) ρ, the following holds in operator-sum notation, 

which we verify in the test test_rho in file src/lib/ops_test.py (this equation 

is related to Equation (2.6)): 

ρ + XρX + YρY + ZρZ 
I = . 

2 

PY 
Find the code 
In file src/lib/ops_test.py 

def test_rho(self): 
for _ in range(100): 

q = state.qubit(alpha=random.random()) 

rho = q.density() 

https://github.com/qcc4cp/qcc/blob/main/src/lib/ops_test.py
http://www.github.com/qcc4cp/qcc/blob/main/src/src/lib/ops_test.py
http://www.github.com/qcc4cp/qcc/blob/main/src/lib/ops_test.py
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ident, x, y, z = ops.Pauli() 

u = (rho + x @ rho @ x + y @ rho @ y + z @ rho @ z) / 2 

self.assertTrue(np.allclose(u, ident)) 

Suppose that we assign a probability of (1 − p) for a state to remain unmodified 

by noise and assign a probability of 1/3 for each of the operators X, Y , and Z to 

introduce noise (other probability distributions are possible). In that case, the operator 

sum expression above becomes 

E(ρ) = (1 − p)ρ + 
p 
(XρX + YρY + ZρZ). 

3 

This is the result that we were looking for. It allows us to model quantum noise by 

injecting Pauli gates with a given probability. Assume a gate E, which may be one of 

the Pauli matrices with a probability as follows:  


X with px,
Y with py, 

E = 
Z with pz, 
I with 1 − (px + py + pz). 

To model noise, we introduce error gates E with a given probability, injecting bit-

flip and phase-flip errors. Example circuits before and after error injection are shown 

in Figures 15.1 and 15.2. It is educational to experiment with injecting these error gates 

and evaluating their impact on various algorithms. We will do just that in Section 15.2. 

15.1.5 Amplitude and Phase Damping 

We mention amplitude and phase damping only for completeness, but we will not elab-

orate further. Amplitude damping seeks to model energy dissipation, the energy loss 

in a quantum system. It is described by two operator elements, with γ (gamma) being 

|0⟩ H 

|0⟩ S H 

Figure 15.1 Circuit before noise injection. 

Noise Noise Noise Noise 

|0⟩ E H E E E 

|0⟩ E E S E H E 

Figure 15.2 Circuit with injected noise. 
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the likelihood of energy loss, such as the emission of a photon in a physical system: � � � √ � 
1 0 0 γ 

E0 = p and E1 = . 
0 1 − γ 0 0 

Phase damping describes the process of a system losing relative phase between 

qubits, thus introducing errors in algorithms that rely on successful quantum interfer-

ence. The operator elements are � � � � 
1 0 0 0 

E0 = p and E1 = √ . 
0 1 − γ 0 γ 

The factor γ might be expressed as an exponential function in more realistic modeling 

environments. 

15.1.6 Effect of Imprecise Gates 

Gates themselves may be imperfect. There could be issues with manufacturing, exter-

nal influences, temperature, and other conditions, which all influence gate accuracy. 

Additionally, it is unlikely that all software gates we use in this text will be available 

on physical machines. The software gates may have to be decomposed into a series 

of hardware gates or be approximated. Approximations have residual errors, as we 

detailed in Section 9.4 on the Solovay–Kitaev algorithm. 

The impact of gate imprecision varies by algorithm. We have the source code and 

can simulate the algorithms, which allows us to run experiments and inject various 

error conditions and distributions. In the following brief example, we modify the final 

inverse QFT in the phase estimation circuit from Section 11.2.1 by introducing errors 

in the Rk phase gates. To achieve this, we compute a normally distributed random 

number in the range of 0 to 1 and scale a noise factor nf with it. For example, a 

factor nf = 0.1 means that a maximum error of 10% can be introduced. The follow-

ing code is a simple model, and you are encouraged to experiment with other error 

distributions. 

def Rk(k): 
return Operator(np.array([(1.0, 0.0), 

(0.0, cmath.exp((1 + (random.random() * flags.FLAGS.noise)) * 

(2.0 * cmath.pi * 1j / 2**k)))])) 

Then, for values of nf ranging from 0.0 to 2.0, we perform 50 experiments and 

count the number of experiments that result in a phase estimation error greater than 

2%. In other words, we test the robustness of phase estimation against small to large 

errors in the inverse QFT rotation gates. Figure 15.3 shows the distribution. 

You can see that the inverse QFT is surprisingly robust against sizable maximum 

errors in the rotation gates. The exact result would depend on the statistical distribution 

of the actual errors. We should also expect that each algorithm has different tolerances 

and sensitivities. For comparison, introducing depolarization with only 0.1% proba-
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0 0.5 1 1.5 2 

40 

30 

20 

10 

0 

Figure 15.3 Phase estimation errors exceeding a threshold of 2% from increasing noise levels, 

for N = 50 experiments per setting. The x-axis represents noise ranging from 0% to 200%, and 

the y-axis represents the number of experiments exceeding the threshold. The number 40 

corresponds to 80% of the 50 experiments conducted. 

bility leads to significantly different outcomes in the order finding algorithm, which is 

very sensitive to this particular type of error. 5

15.2 Quantum Error Correction 

Moving forward, we will need some form of error correction techniques to control the 

impact of noise. In classical computing, there is a large body of known error-correcting 

techniques. Error correction code memory, or ECC (Wikipedia, 2021b), may be one 

of the best known. There are many more techniques to prevent invalid data, missing 

data, or spurious data. NASA, in particular, has developed impressive techniques to 

communicate with its ever-more-distant exploratory vehicles. 

A simple classical error correction technique uses repetition codes and majority 

voting. For example, we could triple each binary digit: 

0 → 000, 

1 → 111. 

As we receive data over a noisy channel, we measure it and perform majority vot-

ing with the scheme shown in Table 15.2. This simple scheme does not account for 

missing or erroneous bits but is a good start to explain basic principles. In quantum 

computing, the situation is generally more difficult: 

• Physical quantum computers operate at the quantum level of atomic spins, 

photons, and electrons, which are all very sensitive systems. There is a high 

probability of encountering errors or decoherence, especially for longer-running 

computations. 

• Errors can be more subtle than simple bit flips. There are multiple error modes. 

5 This behavior could be because an angle error will still lead to a pure state, while depolarizing errors 

cause the state to become mixed, leading to a loss in coherence. 
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Table 15.2. Majority voting for a simple repetition code. 

Measured Voted Measured Voted 

000 0 111 1 

001 0 110 1 

010 0 101 1 

100 0 011 1 

|ψ⟩ = α|0⟩ + β|1⟩ = 

|0⟩ α|000⟩ + β|111⟩ 

|0⟩ 

Figure 15.4 A circuit to produce a quantum repetition code. In essence, it makes a GHZ state. 

• Errors, such as relative phase errors, compound during execution. 

• Simple repetition codes will not work because of the no-cloning theorem. 

• Most problematically, you cannot directly observe errors, as that would constitute 

a measurement that destroys the superposition and entanglement that an algorithm 

relies on. 

Because of these difficulties and especially because of the inability to read a corrupted 

state, early speculation was that error correction codes could not exist. Hence, it would 

be nearly impossible to produce a viable quantum computer (Rolf, 1995; Haroche and 

Raimond, 1996). Fortunately, this changed when Shor presented a viable nine-qubit 

error correction code (Shor, 1995). The principles of this approach are the foundation 

of many quantum error correction techniques in use today. 

15.2.1 Quantum Repetition Code 

We can make a quantum repetition code with the circuit shown in Figure 15.4. Note 

its similarity to the GHZ circuit in Section 2.11.4. To illustrate how it works, we can 

use the following code snippet to produce the state and dump the state vector: 

qbit = state.qubit(random.random()) 

psi = qbit * state.zeros(2) 

psi = ops.Cnot(0, 2)(psi) 

psi = ops.Cnot(0, 1)(psi) 

psi.dump() 

>> 

|000> (|0>): ampl: +0.78+0.00j prob: 0.61 Phase: 0.0 

|111> (|7>): ampl: +0.62+0.00j prob: 0.39 Phase: 0.0 
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15.2.2 Correct Bit Flip Errors 

Here is the main trick to error correction, which is related to quantum teleportation. 

First, we introduce redundancy and triple each single-qubit state into a GHZ state, as 

shown in Figure 15.4. We entangle this three-qubit state with two ancillae and measure 

only the ancillae, leaving the original state intact. Based on the measurement outcome, 

we apply gates to the original three-qubit state to correct it. 

Figure 15.5 shows this procedure in circuit notation, assuming a single qubit-flip 

error for qubit 0, which we indicate on the left side of the circuit. The state |ψ1⟩ right 

before a measurement, where the bottom two qubits have been flipped to |10⟩, is 

|ψ1⟩ = α|10010⟩ + β|01110⟩. 

Right after measurement, this turns into ( � 
|ψ2⟩ = α|100⟩ + β|011⟩ ⊗ |10⟩. 

This measurement result is also called an error syndrome. Based on the syndrome, 

we decide what to do next and which qubit to flip back with another X gate: 

• For a measurement result of |00⟩, do nothing. 

• For a measurement result of |01⟩, apply X gate to qubit 2. 

• For a measurement result of |10⟩, apply X gate to qubit 0. 

• For a measurement result of |11⟩, apply X gate to qubit 1. 

The way Figure 15.5 is drawn is somewhat sloppy because the R gate is different for 

each measurement result. Making physical measurements and reacting to the outcome 

is not a realistic scenario; it would be hard to achieve in practice, and even if it 

worked, it would likely destroy a quantum computer’s performance advantage because 

of Amdahl’s law.6 In larger circuits, we should also disentangle the ancillae. 

|ψ1⟩ Error Correction 

0 

1 

α|100⟩ + β|011⟩ R α|000⟩ + β|111⟩ 

|0⟩ 

|0⟩ 

Figure 15.5 Bit-flip error correcting circuit. After turning the state into a GHZ state, we 

entangle it with two ancillae and only measure the ancillae. Correction gates are applied based 

on the measurement outcome. 

6 http://en.wikipedia.org/wiki/Amdahl%27s_law. 

http://en.wikipedia.org/wiki/Amdahl%27s_law
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|ψ⟩ 

Cbit-flip 

|ψ⟩ 

|0⟩ 

|0⟩ 

Figure 15.6 Error correction for bit-flip error. 

Hence, a common practical construction to correct for bit-flip errors can be found in 

the circuit in Figure 15.6. We know that the noisy channel C introduces bit-flip errors 

according to Equation (15.4) as 

Cbit-flip(ρ) = (1 − p)ρ + p(XρX). (15.4) 

In code, we can simulate this and inject an error by introducing an X gate. 

PY 
Find the code 
In file src/lib/circuit_test.py 

def test_x_error(self): 
qc = circuit.qc('x-flip / correction') 

qc.qubit(0.6) 

# Replication code setup. 

qc.reg(2, 0) 

qc.cx(0, 2) 

qc.cx(0, 1) 

qc.psi.dump('after setup') 

# Error insertion. 

qc.x(0) 

# Fix. 

qc.cx(0, 1) 

qc.cx(0, 2) 

qc.ccx(1, 2, 0) 

qc.psi.dump('after correction') 

If no error has been injected, we will see this output: 

|210> 'after setup' 

|000> (|0>): ampl: +0.60+0.00j prob: 0.36 Phase: 0.0 

|111> (|7>): ampl: +0.80+0.00j prob: 0.64 Phase: 0.0 

|210> 'after correction' 

|000> (|0>): ampl: +0.60+0.00j prob: 0.36 Phase: 0.0 

|100> (|4>): ampl: +0.80+0.00j prob: 0.64 Phase: 0.0 

If an error has indeed been injected, the state becomes: 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/circuit_test.py
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|ψ⟩ H 

Cphase 

H |ψ⟩ 

|0⟩ H H 

|0⟩ H H 

Figure 15.7 Error correction for phase-flip error. 

|210> 'after setup' 

|000> (|0>): ampl: +0.60+0.00j prob: 0.36 Phase: 0.0 

|111> (|7>): ampl: +0.80+0.00j prob: 0.64 Phase: 0.0 

|210> 'after correction' 

|011> (|3>): ampl: +0.60+0.00j prob: 0.36 Phase: 0.0 

|111> (|7>): ampl: +0.80+0.00j prob: 0.64 Phase: 0.0 

Note the slight difference in the final states with nonzero probabilities. Without 

an injected error, the state becomes |000⟩ and |100⟩, the original input state. With 

an injected error, the ancilla qubits become |11⟩ for both resulting states (which may 

require uncomputation if we wanted to reuse the ancillae). 

15.2.3 Correct Phase-Flip Errors 

We can use the same idea to correct phase-flip errors. Recall how the application of 

Hadamard gates puts a state from the computational basis into the Hadamard basis.7 

A phase-flip error in the computational basis is the same as a bit-flip error in the 

Hadamard basis. Correspondingly, we can use the circuit in Figure 15.7 to create 

a quantum repetition and error correction circuit, similar to Figure 15.6, but with 

surrounding Hadamard gates. We use a similar code sequence for this as above, but 

we change it to the following for error injection: 

[...] 

qc.h([0, 1, 2]) 

qc.z(0) 

qc.h([0, 1, 2]) 

[...] 

The probability distribution of the resulting nonzero probability states is the same, 

but we get a few states with different phases. For example, without error injection: 

|210> 'after setup' 

|000> (|0>): ampl: +0.60+0.00j prob: 0.36 Phase: 

|111> (|7>): ampl: +0.80+0.00j prob: 0.64 Phase: 

0.0 

0.0 

7 You may want to convince yourself of this mathematically. 
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|210> 'after correction' 

|000> (|0>): ampl: +0.60+0.00j prob: 0.36 Phase: 0.0 

|001> (|1>): ampl: +0.00+0.00j prob: 0.00 Phase: 0.0 

|010> (|2>): ampl: -0.00+0.00j prob: 0.00 Phase: 180.0 

|011> (|3>): ampl: -0.00+0.00j prob: 0.00 Phase: 180.0 

|100> (|4>): ampl: +0.80+0.00j prob: 0.64 Phase: 0.0 

|101> (|5>): ampl: +0.00+0.00j prob: 0.00 Phase: 0.0 

|110> (|6>): ampl: +0.00+0.00j prob: 0.00 Phase: 0.0 

15.3 Nine-Qubit Shor Code 

All of what we have done so far leads to the final nine-qubit Shor code (Shor, 1995). 

It combines the circuits to find bit-flip, phase-flip, and combined errors into one large 

circuit, as shown in Figure 15.8. 

PY 
Find the code 
In file src/lib/circuit_test.py 

The Shor nine-qubit circuit can identify and correct one bit-flip error, one phase-flip 

error, or one of each on a single qubit! Let us verify this in code and apply all Pauli 

gates to each of the qubits of this circuit. For this experiment, we construct a qubit 

with the factor α = 0.60 to the |0⟩ basis state: 

def test_shor_9_qubit_correction(self): 
for i in range(9): 

|ψ⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

|0⟩ 

H 

C 

H 

H H 

H H 

|ψ⟩ 

Figure 15.8 Shor’s nine-qubit error correction circuit. 

http://www.github.com/qcc4cp/qcc/blob/main/src/lib/circuit_test.py
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qc = circuit.qc('shor-9') 

print(f'Init qubit as 0.6|0> + 0.8|1>, error on qubit {i}') 

qc.qubit(0.6) 

qc.reg(8, 0) 

# Left Side. 

qc.cx(0, 3) 

qc.cx(0, 6) 

qc.h(0); qc.h(3); qc.h(6); 

qc.cx(0, 1); qc.cx(0, 2) 

qc.cx(3, 4); qc.cx(3, 5) 

qc.cx(6, 7); qc.cx(6, 8) 

# Error insertion, use x(i), y(i), or z(i) 

qc.x(i) 

# Fix. 

qc.cx(0, 1); qc.cx(0, 2); qc.ccx(1, 2, 0) 

qc.h(0) 

qc.cx(3, 4); qc.cx(3, 5); qc.ccx(4, 5, 3) 

qc.h(3) 

qc.cx(6, 7); qc.cx(6, 8); qc.ccx(7, 8, 6) 

qc.h(6) 

qc.cx(0, 3); qc.cx(0, 6) 

qc.ccx(6, 3, 0) 

prob0, s = qc.measure_bit(0, 0) 

prob1, s = qc.measure_bit(0, 1) 

print(' Measured: {:.2f}|0> + {:.2f}|1>'.format( 

math.sqrt(prob0), math.sqrt(prob1))) 

We should see the following results with the corresponding output: 

Initialize qubit as 0.60|0> + 0.80|1>, error on qubit 0 

Measured: 0.60|0> + 0.80|1> 

[...] 

Initialize qubit as 0.60|0> + 0.80|1>, error on qubit 8 

Measured: 0.60|0> + 0.80|1> 

This is all we will cover in this section. Quantum error correction is a vibrant field. 

Numerous other techniques and formalisms exist for quantum information and quan-

tum error correction. As a next step, it may be of interest to read the comprehensive 

overview in Devitt et al. (2013) or refer to standard textbooks (Nielsen and Chuang, 

2011). 
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and Tools 

At this point, we understand the principles of quantum computing, the important foun-

dational algorithms, and the basics of quantum error correction. We have developed a 

compact and reasonably fast classical infrastructure for simulation and experimenta-

tion. The infrastructure is working as intended but may be a long way from enabling 

high productivity, as composing algorithms at this level of abstraction is both labor-

intensive and error-prone. We can build circuits with maybe 106 gates, but some more 

realistic solutions may require trillions of gates with orders of magnitude more qubits. 

In classical computing, programs are constructed at higher levels of abstraction 

using programming languages, which allows the targeting of several general-purpose 

architectures in a portable way. On a high-performance CPU, programs execute bil-

lions of instructions per second on just a single core. Building quantum programs on 

that scale with a “flat” programming model such as QASM, which stitches together 

individual gates, does not scale to large programs. We discuss QASM below in Section 

16.3.1. This approach is the equivalent of programming today’s classical machines 

in assembly language and, to make it even more interesting, without control-flow 

constructs. 

There are parallels to the 1950s, where assembly language1 was the trade of the 

day to program early computers. That is when FORTRAN2 emerged as one of the 

first compiled programming languages, unlocking major productivity gains. In quan-

tum computing, there are similar attempts today to develop quantum programming 

languages that try to raise the abstraction level and make programming quantum 

computers easier, safer, and more productive. 

This chapter discusses a representative cross-section of quantum programming lan-

guages and briefly touches on productivity tooling, such as simulators or entanglement 

analysis. There is also a discussion of quantum compiler optimizations, a fascinating 

topic with unique challenges. We write this chapter with the understanding that com-

parisons between toolchains are necessarily incomplete but educational nonetheless. 

16.1 Challenges for Quantum Compilation 

The design of compilers for quantum computing presents distinct challenges. This 

section outlines some of the main difficulties. The subsequent sections will provide 

further details and suggest possible solutions. 

1 And even cruder, switches! 
2 See also http://en.wikipedia.org/wiki/Fortran. 

http://en.wikipedia.org/wiki/Fortran
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Quantum computing needs a programming model – what will run, how, when, and 

where? Today, the most common classical coprocessor is a graphics processing unit 

(GPU). GPUs provide massive parallelism, but computation itself is still expressed in 

terms of programming a CPU core. There are just a boatload of those cores with addi-

tional abilities and constraints to support parallelism, paired with a dynamic runtime 

to manage the various compute kernels on device. 

Quantum computers are unlikely to offer general-purpose functionality similar to 

that of a CPU. Instead, we should expect a classical machine to entirely control the 

quantum computer, moving programs and data in and out of the machine. A model 

called QRAM was proposed early in the history of quantum computing (Knill, 1996). 

We will discuss this model in Section 16.2. Note that today’s use of QRAM is different 

and typically refers to “Quantum Random Access Memory,” a broad set of techniques 

to store and retrieve values as quantum states. 

A key question is how realistic this idealized model can be. Quantum circuits 

operate at micro-Kelvin temperatures. It will be a challenge for standard CPU 

manufacturing processes to operate at this temperature, although progress has been 

made (Patra et al., 2020). The CPU could alternatively operate physically distant 

from the quantum circuit, but then the bandwidth between classical and quantum 

circuits may be severely limited. Some recent research can be found in Xue et al. 

(2021). 

Constructing quantum circuits gate-by-gate is tedious and error-prone. There are 

challenges such as the no-cloning theorem and the need for automatic error correc-

tion. Programming languages offer a higher level of abstraction and will be essential 

for programmer productivity. But what is the “right” level of abstraction? We sam-

ple several existing approaches to quantum programming languages in Section 16.3. 

Compiler construction and intermediate representation (IR) design are challenges in 

themselves. It seems apparent that a flat, QASM-like, linked-list IR will not scale to 

programs with trillions of gates. 

The required precision of the gates is an important design parameter. We will 

have to approximate certain unitaries by sequences of existing physical gates, which 

introduces inaccuracies and noise. Some algorithms are robust against noise, others 

not at all. The toolchain also plays an essential role in this area. 

Aspects of dynamic code generation may become necessary, for example, to 

approximate specific rotations dynamically or to reduce noise (Wilson et al., 2020). 

There are challenges in fast gate approximation, compile time, accuracy, and opti-

mality of approximated gate sequences. To give a taste of these problems, we have 

already detailed the Solovay–Kitaev algorithm in Section 9.4. 

Compiler optimization has a novel set of transformations to consider in an expo-

nentially growing search space. We are currently in the era of physical machines with 

up to 1000 physical qubits, the noisy intermediate-scale quantum computers (Preskill, 

2018). Future systems will have more qubits and qubits with likely different charac-

teristics than today’s qubits. Compiler optimizations and code generation techniques 

will have to evolve accordingly as well. We discuss several optimization techniques in 

Section 16.4. 
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16.2 Quantum Programming Model 

As our standard model of computation, we assume the old quantum random access 

model (QRAM) proposed by Knill (1996) (again, this name means something entirely 

different today). The model proposes connecting a general-purpose machine with a 

quantum computer to use it as an accelerator. Registers are explicitly quantum or clas-

sical. There are functions to initialize quantum registers, to program gate sequences 

into the quantum device, and to get results back via measurements. 

Server Quantum Machine 
Init, Operations → 

← Measurement 

On the surface, this model is not very different from today’s programming mod-

els for PCIe-connected accelerators,3 such as GPUs or storage devices, which are 

ubiquitous today. The elegant CUDA programming model for GPUs provides clear 

abstractions for code that is supposed to run on either device or server (Buck et al., 

2004; Nickolls et al., 2008). The program source code for the accelerator and the host 

can be mixed in the same source file to enhance programmer productivity. 

QRAM is an idealization. Communication between the classical and quantum parts 

of a program may be severely limited. There may be a significant lack of computing 

power close to the quantum circuit, which operates at micro-Kelvin temperature, or 

bandwidth-limited communication to a CPU further away. 

It is important to keep the separation between classical and quantum in mind. In 

QRAM (as in our simulation infrastructure), the separation of classical and quantum 

is muddled because it runs classical loops over applications of quantum gates inter-

spersed with print statements. This might be a good approach to learning, but it may 

not be realistic for a real machine. The approach is more akin to an infrastructure such 

as the machine learning framework TensorFlow, which first builds up computation as 

a graph before executing the graph in a distributed fashion on CPU, GPU, or TPU. 

Another aspect of the QRAM model is the expectation of available universal gates 

on the target quantum machine. Several universal sets of gates have been described 

in the literature (see Nielsen and Chuang, 2011, section 4.5.3). We showed how any 

unitary gate can be approximated by universal gates in Section 9.4. With this in mind, 

we assume that any gate may be used freely in our idealized infrastructure. 

With these preliminaries and simplifications, let us now explore a range of 

approaches that have been taken to make the programming of quantum machines 

more productive and less error-prone. 

16.3 Quantum Programming Languages 

This section discusses a representative cross-section of quantum programming lan-

guages with corresponding compilers and tooling. The descriptions are brief and, 

therefore, necessarily incomplete. Most importantly, the selection does not judge the 

3 http://en.wikipedia.org/wiki/PCI_Express. 
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quality of the non-selected languages. A more complete collection of references to 

quantum programming languages and systems can be found in Quantum Programming 

(2024). 

If we were to build a hierarchy of programming abstractions, we should consider 

these levels: 

The high abstraction level of programming languages. This level may provide 

automatic ancilla management, support correct program construction with 

advanced typing rules, offer libraries for standard operations (such as QFT), and 

perhaps offer meta-programming techniques (such as C++ templates). 

• 

• Programming at the gate level. This is the level of abstraction that we mostly used 

in this text. At this level, we directly construct and manipulate individual qubits 

and gates. We also manage ancillae and uncomputation manually and explicitly. 

• Direct machine control with pulses and waveforms operating on the physical 

device. We will not discuss related infrastructure, such as OpenPulse (Gokhale 

et al., 2020). 

For each of these levels, several alternative implementations and approaches are avail-

able online, many with material for learning and experimentation. In the following 

sections, we highlight some selected, perhaps seminal examples. Many of the features 

that we will explore should inspire you to think about how to make them available in 

simpler frameworks, such as the one presented in this book.4 

16.3.1 QASM 

The quantum assembly language (QASM) was an early attempt to standardize a tex-

tual specification of quantum circuits (Svore et al., 2006). The structure of a QASM 

program is very simple. Qubits and registers are declared upfront, and gate appli-

cations follow one by one. There are no looping constructs, function calls, or other 

constructs that would help to structure and densify the code. As an example, a simple 

entangler circuit would be written as follows: 

qubit x,y; 
gate h; 
gate cx; 
h x; 
cx x,y; 

More capable variants emerged that augment QASM in a variety of ways. Open-

QASM adds the ability to define new gates, control flow constructs, and barriers (Cross 

et al., 2017). It also offers looping constructs. cQASM is one attempt to unify QASM 

dialects into a single form5 (Khammassi et al., 2018). It offers additional language 

features, such as explicit parallelization, register mapping/renaming, and a variety of 

4 As a matter of fact, we did some of this already, for example, for the automatic control of a subcircuit. 
5 See also xkcd cartoon #927 on attempts to replace N existing standards with a single new standard, the 

result, of course, being that now we have N + 1 standards. 
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measurement types. An example implementation of a three-qubit Grover algorithm 

takes about 50 lines of code (Quantum Inspire, 2024). 

16.3.2 QCL 

The quantum computing language (QCL) was an early attempt to use classical 

programming constructs to express quantum computation (Ömer, 2000, 2005; QCL 

Online). Algorithms run on a classical machine controlling a quantum computer and 

might have to run multiple times until a solution is found. The quantum and classical 

codes are intermixed. Qubits are defined as registers of a given length, and gates are 

applied directly to the registers. For example: 

qureg q[l]; // Define quantum register q of length l 
qureg f[1]; // Define quantum register q of length l 
H(q); // Hadamard gates on register q 
Not(f); // X gates on register f 
const n=#q; // classical length of q register 
for i=1 to n { // classical loop 

Phase(pi/2^(i)); // quantum phase gate at implicit index i 
} 

QCL defines several quantum register types: A qureg is an unrestricted qubit, 

quconst defines an invariant qubit, and quvoid specifies a register to be empty (it 

is guaranteed to be initialized in state |0⟩). The register type quscratch denotes 

ancillae. Gates have specific names, such as H, Not, or Phase. 

The code is organized into quantum functions. Operators and functions of operators 

are reversible by definition, making the uncomputation of an operator easy. Prefixing 

a function with an exclamation point produces the inverse, as in this example from the 

Grover algorithm6 (calling !diffuse(reg) would call the inverse operator): 

operator diffuse(qureg q) { 
H(q); // Hadamard transform 
Not(q); // Invert q 
CPhase(pi,q); // Rotate if q=1111... 
!Not(q); // Undo inversion 
!H(q); // Undo Hadamard transform 

} 

QCL defines several types of functions, such as the non-reversible procedure, 

which may contain classical code and allow side effects. Functions marked as 

operator and qufunct are guaranteed to be free from side effects and reversible. 

To facilitate uncomputation, QCL supports a fanout operation. It restores scratch 

and auxiliary registers while preserving the results, as described in Section 2.12 on 

uncomputation. Let’s take a closer look at the fanout operation. 

6 Of course, both the Hadamard and the NOT gates are their own inverses. This might not be the most 

convincing example. 
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Assume that f (x) is the function we want to compute and g(x) is a byproduct 

of the computation, some random state that ended up in the ancillary qubits. As 

described in Section 2.12, the first step performs the computation, with the desired 

result ending up in the bottom register (in the example below) and some ancillary state 

in the middle register. The second fanout step connects the bottom register holding the 

results with the target register, the first register in the example. The third step performs 

the uncomputation. The result f (x) is now available in the top register, and the other 

registers are properly uncomputed:7 

|x,0,0,0⟩ → |x,0,g(x),f (x)⟩ 
→ |x,f (x),g(x),f (x)⟩ 
→ |x,f (x),0,0⟩. 

The implementation of fanout is quite elegant. Assume a function F(x,y,s) with x 

being the input, y being the output, and s being junk qubits. Allocate the ancilla t and 

transform F into the following, adding t to its signature: 

F ′ (x,y,s,t) = F†(x,t,s) fanout(t,y) F(x,t,s). 

What makes this elegant is the fact that fanout is written in QCL itself: 

cond qufunct fanout(quconst ancilla, quvoid b) { 
int i; 
for i=0 to #ancilla-1 { 

CNot(b[i], ancilla[i]); 
} 

} 

QCL supports conditionals in interesting ways. Standard controlled gates are sup-

ported as described in Section 2.8. Suppose a function signature is marked with the 

keyword cond and has as a parameter the quconst condition qubit. In that case, QCL 

automatically transforms the operators of the function into controlled operators. Here 

is an example of such a function signature for a controlled function inc: 

cond qufunct cinc(qureg x, quconst e) {...} 

Additionally, QCL supports an if statement, where if e {inc(x);} is equiva-

lent to a new function cinc(x, e) as shown above, with the if-then-else statement 

translating into: 

if e { 
inc(x); 

} else { 
!inc(x); 

} 
=> 

cinc(x, e); 

7 This notation is a little bit sloppy. See section 2.12 on uncomputation for details. 
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Not(e); 
!cinc(x, e); 
Not(e) 

Here is an example implementation of a QFT in QCL (Ömer, 2000): 

cond qufunct flip(qureg q) { 
int i; // declare loop counter 
for i=0 to #q/2-1 { // swap 2 symmetric bits 

Swap(q[i],q[#q-i-1]); 
} 

} 

operator qft(qureg q) { // main operator 
const n=#q; // set n to length of input 
int i; int j; // declare loop counters 
for i=1 to n { 

for j=1 to i-1 { // apply conditional phase gates 
V(pi/2^(i-j),q[n-i] & q[n-j]); 

} 
H(q[n-i]); // qubit rotation 

} 
flip(q); // swap bit order of the output 

} 

16.3.3 Scaffold 

Scaffold takes a different approach (Javadi-Abhari et al., 2014). It extends the open-

source LLVM compiler (Lattner and Adve, 2004) and its Clang-based front end for 

C/C++. Scaffold introduces the data types qbit and cbit to distinguish quantum data 

from classical data. Quantum gates, such as the X or Hadamard gates, are implemented 

as built-ins, the equivalent of opaque function calls. The compiler recognizes them as 

such and can reason internally about them in transformation passes. 

Scaffold supports a hierarchical code structure through modules, which are spe-

cially marked functions. Quantum circuits do not support calls and returns, so modules 

representing subcircuits need to be instantiated, similar to how Verilog modules are 

instantiated in a hardware design. Modules must be reversible, either by design or via 

automatic compiler transformations. 

Scaffold offers convenient functionality for converting classical circuits to quantum 

gates via the Classical-To-Quantum-Circuit (CTQC) tool. This tool is of great utility 

for quantum algorithms that perform classical computation in the quantum domain. 

CQTC emits QASM assembly. To enable whole-program optimization, Scaffold has a 

QASM to LLVM IR transpiler, which can be used to import QASM modules, enabling 

further cross-module optimization. 

Modules are parameterized. This means that the compiler has to manage module 

instantiation, for example, with help of IR duplication. This can lead to sizable code 
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bloat and corresponding extreme compile times. The example given is the following 

code snippet, where the module Oracle would have to be instantiated N = 3000 

times via the outer loop, with an additional factor of 3 from the inner loop. Clearly, a 

parameterized IR would alleviate this problem considerably. 

#define N 3000 // iteration count 
module Oracle (qbit a[1], qbit b[1], int j) { 

double theta = (-1)*pow(2.0, j)/100; 
X(a[0]); 
Rz(b[0], theta); 

} 

module main () { 
qbit a[1], b[1]; 
int i, j; 
for (i=1; i<=N; i++) { 

for (j=0; j<=3; j++) { 
Oracle(a, b, j); 

} 
} 

} 

As a result, Javadi-Abhari et al. (2014) report compile times ranging from 24 hours 

to several days for a large triangle-finding problem with size n = 15 (see also Magniez 

et al., 2005). 

Hierarchical QASM 

Scaffold intends to scale to very large circuits. The existing QASM model, as shown 

above, is flat, which is not suitable for large circuits. One of the contributions of Scaf-

fold is the introduction of hierarchical QASM. Additionally, the compiler employs 

heuristics to decide which code sequences to flatten or keep in a hierarchical structure. 

For example, the compiler distinguishes between forall loops to apply a gate to all 

qubits in a register and repeat loops, such as those required for Grover iterations. 

Entanglement Analysis 

Scaffold includes tooling for entanglement analysis. In the development of Shor’s 

algorithm, we observed a certain ancilla qubit that was still entangled after modular 

addition. How does an automatic tool reason about this? 

Scaffold tracks entanglement-generating gates, such as controlled Not gates, on 

a stack. As inverse gates are executed during uncomputation in reverse order, items 

are popped off the stack. If, for a given qubit, no more entangling gates are found 

on the stack, the qubit is marked as likely unentangled. As a result of the analysis, 

the generated output can be decorated to show the estimated remaining entangled 

qubits: 
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module EQxMark_1_1 ( qbit* b , qbit* t ) { 
... 
Toffoli ( x[0] , b[1] , b[0] ); 
// x0, b1, b0 
Toffoli ( x[1] , x[0] , b[2] ); 
// x1, x0, b2, b1, b0 
... 
} 
// Final entanglements: 
// (t0, b4, b3, b2, b1, b0); 

16.3.4 Q language 

We can contrast the compiler-based work in Section 16.3.3 with a pure C++-embedded 

approach, as presented in Bettelli et al. (2003). This approach consists of a library of 

C++ classes modeling quantum registers, operators, operator application, and other 

functions, such as the reordering of quantum registers. During program construction, 

the class library builds an internal data structure to represent the computation, similar 

in nature to the infrastructure we developed in this book. It is interesting to think about 

the question of which approach makes more engineering sense: 

• Extension of the C/C++ compiler with specific quantum types and operators, 

as in Scaffold, or 

• A C++ class library as in the Q language. 

Both approaches appear equally powerful in principle. The compiler-based approach 

benefits from a large set of established compiler passes, such as inlining, loop trans-

formations, redundancy elimination, and many other scalar, loop, and inter-procedural 

optimizations. The C++ class library has the advantage that the management of the 

IR, all optimizations, and final code generation schemes are maintained outside of 

the compiler. Since compilers can prove impenetrable for non-compiler experts, this 

approach might have a maintenance advantage, but at the cost of potentially having to 

reimplement many standard optimization passes. 

16.3.5 Quipper 

Haskell is a popular choice for programming language theorists and enthusiasts. A 

major reason for this is Haskell’s powerful type system. An example of a Haskell-

embedded implementation of a quantum programming system can be found with the 

Quantum IO Monad (Altenkirch and Green, 2013). Another even more rigid exam-

ple is van Tonder’s proposal for a λ-calculus to express quantum computation (van 

Tonder, 2004). 

What these approaches have in common is the attempt to guarantee correctness 

by construction with support of the type system. This is also one of Quipper’s core 

design ideas (Green et al., 2013; Quipper Online, 2021). Quipper is an embedded DSL 

in Haskell. At the time of Quipper’s publication, Haskell lacked linear types, which 
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could have guaranteed that objects were only referenced once, as well as dependent 

types, which are types tied to a value. Dependent types, for example, allow you to 

distinguish a QFT operator over n qubits from one over m qubits. 

Quipper is designed to scale and handle large programs with up to 1012 operators. 

Quipper has a notion of the scope of an ancilla, with the ability to reason about live 

ranges. With this, allocating ancilla qubits turns into a register allocation problem. 

Unfortunately, the programmer still has to mark ancilla live ranges explicitly. 

At the language level, qubits are held in variables and gates are applied to these 

variables. For example, this is the code to generate a Bell state: 

bell :: Qubit -> Qubit -> Circ (Qubit, Qubit) 
bell a b = do 

a <- hadamard a 
(a, b) <- controlled_not a b 
return (a, b) 

To control an entire block of gates, Quipper offers a with_controls construct, 

similar to QCL’s if blocks. Another block-level construct allows for the explicit man-

agement of ancillae via the with_ancilla construct. Circuits defined this way can 

be reversed with a reverse_simple construct. Quipper’s type system distinguishes 

different types of quantum data, such as simple qubits, or fixed-point interpretations 

of multiple qubits. 

Automatic Oracles 

Quipper offers tooling for the automatic construction of oracles. Typically, oracles are 

constructed with the following four manual steps:8 

1. Build a classical oracle, such as a permutation matrix. 

2. Translate the classic oracle into classical circuits. 

3. Compile classical circuits into quantum circuits, potentially using additional 

ancillae. We saw examples of this in Section 5.2. 

4. Finally, make the oracle reversible, typically with an XOR construction to another 

ancilla. 

Quipper utilizes Template Haskell to automate steps 2 and 3. The approach has high 

utility and has been used to synthesize millions of gates in a set of benchmarks. 

In direct comparison to QCL on the Binary Welded Tree algorithm, it appears that 

QCL generates significantly more gates and qubits than Quipper. On the other hand, 

Quipper appears to generate more ancillary qubits. 

Despite tooling, type checks, oracle automation, and utilization of the Haskell 

environment, it still took 55 person-months to implement the 11 algorithms in a given 

benchmark set (IARPA, 2010). This is undoubtedly a productivity improvement over 

manually constructing all the benchmarks at the gate level, but it still compares unfa-

vorably against programmer productivity on classical infrastructure. 

8 Open-source implementations are available for these techniques, for example (Soeken et al., 2019). 
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Quipper led to interesting follow-up work, such as Proto-Quipper-M (Rios and 

Selinger, 2018), Proto-Quipper-S (Ross, 2017), leading to Proto-Quipper-D (Fu 

et al., 2020). These attempts are steeped in type theory and improve on program 

correctness by a variety of techniques, for example, using linear types to enforce 

the no-cloning theorem and linear dependent types to support the construction of 

type-safe families of circuits. 

16.3.6 Silq 

Based on a fork of the PSI probabilistic programming language (PSI Online, 

2021), Silq is another step in the evolution of quantum programming languages, 

supporting safe and automatic uncomputation (Bichsel et al., 2020). It explicitly 

distinguishes between the classical and quantum domains with syntactical constructs. 

Giving the compiler the responsibility for safe uncomputation leads to two major 

benefits. First, the code becomes more compact. Direct comparisons with Quipper 

and Q# show significant code size savings for Silq in the range of 30% to over 

40%. Second, the compiler may choose an optimal strategy for uncomputation, 

minimizing the required ancillae. As an added benefit, the compiler may choose to skip 

uncomputation for simulation altogether and just renormalize states and unentangle 

ancillae. 

Many of the Haskell-embedded DSLs bemoan either the absence of linear types or 

the difficulties in handling constants. Silq resolves this by using linear types for non-

constant values and a standard type system for constants. This leads to safe semantics, 

even across function calls, and the no-cloning theorem falls out naturally. Function 

type annotations are used to aid the type checker: 

• The annotation qfree indicates that a function can be classically computed. For 

example, the quantum X gate is considered qfree, while the 

superposition-inducing Hadamard gate is not. 

• Function parameters marked as const are preserved and not consumed by a 

function. They continue to be accessible after a function call. Parameters not 

marked as const are no longer available after the function call. Functions with 

only const parameters are called lifted. 

• Functions marked as mfree promise not to perform measurements and are 

reversible. 

Silq supports other quantum language features, such as function calls, measurements, 

explicit reversal of an operator via reverse, and an if-then-else construct that 

can be classical or quantum, similar to other quantum languages. Looping constructs 

must be classical. As an improvement over previous approaches, Silq supports Oracle 

construction with quantum gates. 

With the annotations and the corresponding operational semantics, Silq can safely 

deduce which operations are safe to reverse and uncompute, even across function calls. 

There are many examples of potentially hazardous corner cases that are being handled 

correctly (Bichsel et al., 2020). 
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As a program example, this code snippet solves one of the challenges in Microsoft’s 

Q# Summer 2018 coding contest: 9

Given classical binary string b ∈ {0,1}n with b[0] = 1, return the state 1√ (|b⟩ +
2 

 
|0⟩), where |0⟩ is represented using n qubits. 

The code itself demonstrates several of Silq’s features, for example, using the excla-

mation point ! to denote classical values and types. 

def solve[n:|N|](bits:|!B|^n){ 
// prepare superposition between 0 and 1 
x:=H(0:|!B|); 
// prepare superposition between bits and 0 
qs := if x then bits else (0:int[n]) as |!B|^n; 
// uncompute x 
forget(x=qs[0]); // valid because bits[0]==1 
return qs; 

} 

def main(){ 
// example usage for bits=1, n=2 
x := 1:|!|int[2]; 
y := x as |!B|^2; 
return solve(y); 

} 

16.3.7 Commercial Systems 

Commercial systems are open-source infrastructures maintained by commercial 

entities. The most important systems appear to be IBM’s Qiskit (Gambetta et al., 

2019), Microsoft’s Q# (Microsoft Q#, 2021), Google’s Cirq (Google, 2021c), and 

ProjectQ (Steiger et al., 2018). Microsoft’s Q# is a functional standalone language and 

a part of the Quantum Developer Kit (QDK). Qiskit, Cirq, and ProjectQ all provide 

Python embeddings. By the time you read this, others may have become more popular. 

These ecosystems are vast, fast-evolving, and provide excellent learning materials 

we do not have to cover here. For further reading, we recommend (Garhwal et al., 

2021), which details Q#, Cirq, ProjectQ, and Qiskit, or Chong et al. (2017), which 

describes some of the major challenges for quantum tool flows in general. 

16.4 Compiler Optimization 

Compiler optimization is a fascinating topic in classical compilers. For quantum com-

pilers, it becomes even more interesting, given the exponential complexity and novelty 

of transformations. Compiler optimizations play an important role in several areas: 

9 See also http://codeforces.com/blog/entry/60209. 
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Ancilla management. As we use higher-level abstractions and programming 

languages, ancilla qubits should be managed automatically in a manner similar to 

register allocation for classical compilers. The compiler can trade off circuit depth 

against the number of ancilla bits, supporting the goal of squeezing a circuit into 

limited resources. Minimizing ancillae in the general case appears to be an open 

problem. 

• 

• 

Noise reduction. The application of quantum gates is subject to noise. Some gates 

introduce more noise than others. Hence, the role of the optimizer is to minimize 

gates as a whole and emit gate sequences to actively contain noise. 

• Gate mapping to physical machines. Current quantum computers only support a 

small number of different gates. The compiler must decompose logical gates and 

map them to available physical gates. Furthermore, at least in the short term, the 

number of available qubits is extremely limited. One of the compiler’s main roles 

is mapping circuits onto those limited resources. 

• Logical to physical register mapping. Quantum computers have topological 

constraints on how qubits can interact with each other. For example, only 

next-neighbor interactions may be possible in some cases. Multi-qubit gates 

spanning non-neighboring qubits thus must be decomposed into two-qubit gates 

between neighboring qubits. 

• Accuracy tuning. Individual gates may not be accurate enough for a given 

algorithm; multiple gates may be necessary to achieve the desired result. The 

compiler plays a central role in determining the required accuracy and the 

corresponding generation of approximating circuits. 

• Error correction. The automatic insertion of minimal error-correcting circuitry is 

an important task for the compiler. 

• Tooling. The compiler sees the whole circuit and can apply whole program 

analyses, such as the entanglement analysis we saw in Section 16.3.3. 

• Performance. Optimization should also target circuit depth and complexity. Given 

the short coherence times of current machines, the shorter a circuit has to run, and 

the fewer gates it needs to execute, the higher the chances of reliable outcomes. 

The space is large and complex, and we cannot cover it exhaustively. Instead, we 

again provide representative examples of key principles and techniques in order to 

give a taste of the challenges. 

16.4.1 Classic(al) Compiler Optimizations 

In our infrastructure and many of the other platforms we described in Section 16.3, 

classical code is freely intermixed with quantum code. This means that classical 

optimizations, such as loop unrolling, function inlining, redundancy elimination, 

constant propagation, and many other scalar, loop, and inter-procedural optimizations 

still apply. This is necessary because all classical constructs must be eliminated 

before sending a circuit to the quantum accelerator. Besides, classical techniques such 

as dead code elimination and constant folding equally apply to quantum circuitry. 
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Scaffold is a great example of the mix of the classical and quantum worlds and 

the impact of classical optimizations on the performance of a quantum circuit (Javadi-

Abhari et al., 2014). Scaffold represents quantum operations in the intermediate rep-

resentation (IR) of a classical compiler and directly benefits from the rich library of 

available optimization passes in LLVM (Lattner and Adve, 2004). 

Other known classical techniques also apply. Analysis of communication overhead 

and routing strategies developed for distributed systems work with modifications for 

quantum computing (Ding et al., 2018). Register allocation can lead to optimal allo-

cation and reuse of quantum registers (Ding et al., 2020). 

16.4.2 Simple Gate Transformations 

The most basic optimization is to eliminate gates that will have no effect. For example, 

two X gates in a row, or two other involutory matrices in sequence acting on the same 

qubit, or two rotations adding up to 0; all of these can be eliminated: 

Zi XiXi Yi = ZiYi.|{z}
redundant 

Sequences like this can be found as the result of higher-level transformations that 

link independent circuit fragments. For example, take the four-qubit decrement circuit, 

which we detailed in Section 12.1 on quantum random walks: 

The circuit expands the multi-controlled gates into this much longer sequence of 

gates (don’t worry, you are not expected to be able to decipher this): 

X 

X X X X X 

X cx cx X X cx cx X X cx cx X X cx cx X X 

X X X X X X X X X X X 

cv cv † cv cx cx cx cx cv cv † cv cv cv † cv cv cv † cv 

cv cv † cv cv cv † cv 

Zooming in at the right, you can see the opportunity to eliminate redundant X gates: 

X 

X X cx cx X X cx cx X 

X X X X X X 

cv cv † cv cv cv † cv 

In general, for a single-qubit operator U, if the compiler can prove that the input 

state is an eigenstate of U with an eigenvalue of 1 (which means U|ψ⟩ = |ψ⟩), it can 

simply remove the gate. For example, if the qubit is in the |+⟩ state, the X gate has no 

effect, as X|+⟩ = |+⟩. 
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Depending on the numerical conditioning of an algorithm, the compiler may also 

decide to remove gates with only minor effects. As an example, we have seen the 

effectiveness of this technique in the approximate QFT (Coppersmith, 2002). 

16.4.3 Gate Fusion 

For simulation and perhaps for physical machines with a suitable gate set, we can fuse 

consecutive gates by means of simple matrix multiplication. Some high-performance 

simulators use this technique. Fusion can happen at several levels and across a varying 

number of qubits. The resulting gates may not be available on a physical machine, in 

which case the compiler will have to approximate the fused gates. This can nullify the 

benefits of fusion, but in cases where two gates X and Y both have to be approximated, 

it may be beneficial to approximate the combined gate YX: 

X Y = YX 

The compiler can also exploit the fact that qubits may be unentangled. For example, 

assume that qubits |ψ⟩ and |φ⟩ are known to be unentangled and must be swapped, 

potentially by a Swap gate spanning multiple qubits. Since the gates are unentangled 

and in a pure state, we may be able to classically find a unitary operator U such that 
†U |φ⟩ = |ψ⟩.U|ψ⟩ = |φ⟩ and  The operator U is specific to |ψ⟩ and |φ⟩ and input 

dependent. In circuit notation: 

|ψ⟩ |φ⟩ 

|φ⟩ |ψ⟩ 
= 

|ψ⟩ U |φ⟩ 

|φ⟩ U† |ψ⟩ 

16.4.4 Gate Scheduling 

We have described many gate equivalences, and many more are available in the lit-

erature. The specific gate sequence to use will depend on topological constraints, on 

what a specific quantum computer can support, and also on the relative cost of specific 

gates. For example, T gates might be an order of magnitude slower than other gates 

and may have to be avoided. 

In order to find the best equivalences, pattern matching can be used. To maxi-

mize the number of possible matches, you may have to reorder and reschedule gates. 

Therefore, valid and efficient recipes for reordering are a rich area of research. As a 

simple example, single-qubit gates applied to different qubits can be reordered and 

parallelized as 

(U ⊗ I)(I ⊗ V) = (I ⊗ V)(U ⊗ I) = (U ⊗ V) 

U 

= 

U U 

= 

VV V 
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There are many other opportunities to reorder. For example, if a gate is followed by 

a controlled gate of the same type, the two gates can be re-ordered: 

YiCYji = CYjiYi. 

Rotations are a popular target for reordering. For example, the S gate, T gate, and 

phase gate represent rotations, which can be applied in any order (as long as they rotate 

around the same axis). Nam et al. (2018) provide many recipes, rules for rewriting, and 

examples, such as this one: 

Rz 

= 
Rz 

In simulation, it may not help to parallelize gates, at least in our implementation. 

However, on a physical quantum computer, it is safe to assume that multiple gates will 

be able to operate in parallel. Mapping gates to parallel running qubits will improve 

device utilization and have the potential to reduce circuit depth. Shorter depth means 

shorter runtime and a higher probability of finishing execution before decoherence. 

Measurements typically occur at the end of a circuit execution. Qubits have a 

limited lifetime, so it is a good strategy to initialize qubits as late as possible. This 

is achieved with a policy to schedule gates as late as possible (ALAP), working back-

ward from the measurement. This is also the default policy in IBM’s Qiskit compiler. 

Ding and Chong (2020) detail other scheduling policies and additional techniques to 

minimize communication costs. 

16.4.5 Peephole Optimization 

Peephole optimization gets its name from the fact that this type of optimization looks at 

only a small sliding window over code or circuitry, hoping to find exploitable patterns 

in this window. This is a standard technique in classical compilers but applies to 

quantum computing as well (McKeeman, 1965). Limited window pattern matching 

approaches have in common that the underlying unitary operator must not change for 

a given gate replacement. This guarantees the correctness of a transformation. 

With relaxed peephole optimization, this constraint can be, well, relaxed (Liu et al., 

2021). For example, if a controlling qubit is known to be in state |0⟩, as shown above, 

we can eliminate the controlled gate. The circuit is still logically equivalent, but the 

underlying operator has changed. We can exploit this insight in the following ways. A 

controlled U operation with a controlling |0⟩ qubit has no effect and can be eliminated 

(the compiler has to ascertain that the controller will be |0⟩): 

|0⟩ 
= 

|ψ⟩ 

We can also “squeeze” the Swap gate and remove one of the controlled gates if one 

of the inputs is known to be |0⟩: 
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Figure 16.1 Optimized Bernstein–Vazirani circuit. 

|ψ⟩|0⟩ 
= 

|ψ⟩ |0⟩ 

The controlled Not gates in the Bernstein–Vazirani oracle circuit can be replaced 

by simple Z gates because the leading Hadamard gates put the qubits in the |+⟩ basis. 

This is shown in Figure 16.1. The techniques can be generalized to multi-controlled 

gates as well. More examples of this technique, along with a full evaluation, can be 

found in (Liu et al., 2021). 

16.4.6 High-Performance Pattern Libraries 

Efficient matching of patterns to gate sequences is a challenge. A possible approach is 

to precompute a library of high-performance subcircuits and then transpile nonoptimal 

and permuted subcircuits into known high-performance circuits. This approach is 

similar to the end-game library in a computer playing chess.10 

16.4.7 Logical to Physical Mapping 

We have already seen many gate equivalences in this text. Choosing which ones to 

apply will depend on the physical constraints of an underlying architecture. In this 

context, logical to physical qubit mapping presents an optimization challenge. 

For example, Swap gates may only be applied to neighboring physical qubits. If 

there is a swap between logical qubits 0 and (very large) n, it might be better to place 

the physical qubit n right next to qubit 0. Otherwise, communication overhead will 

be very high. For example, a construction like the one in Figure 16.2 is needed to 

swap qubits 0 and 2 in a three-qubit circuit. The circuit presented is not very efficient; 

it simply stitches together a series of two-qubit Swap gates. To bridge swaps across 

10 In the olden times, before AlphaZero: http://en.wikipedia.org/wiki/AlphaZero. 

http://en.wikipedia.org/wiki/AlphaZero
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= 

Figure 16.2 Decomposition of a Swap gate spanning three qubits into next-neighbor controlled 

gates. 

= 

Figure 16.3 A controlled Not from qubit 0 to qubit 2 is decomposed into next-neighbor 

controlled Not gates. 

longer distances, this ladder must be extended to more qubits, all the way down and 

back up again. 

If the physical qubit assignment has been decided, gates may have to be further 

deconstructed to fit the topological constraints. In the example shown in Figure 16.3, 

a controlled Not from a qubit 0 to qubit 2 is being decomposed into next-neighbor 

controlled gates. Several other controlled Not deconstructions are presented in Garcia-

Escartin and Chamorro-Posada (2011). 

A related proposed technique is wire optimization (Paler et al., 2016). It uses a 

qubit lifetime analysis to recycle wires and qubits, the insight being that not all qubits 

are needed during the execution of a full circuit. Under the assumption that we can 

measure and reuse qubits, this work shows drastic reductions in the number of qubits 

required for an algorithm of up to 90%. This mirrors the results we find with our 

sparse implementation. However, at the time of this writing, it does not appear that 

intermittent measurement and re-initialization of qubits can be performed efficiently. 

16.4.8 Physical Gate Decomposition 

Finally, an important step for compiler and optimizer is to decompose higher-level 

gates into physically available gates while respecting connectivity constraints. For 

example, IBMQX5 has five qubits and the gates U1, U2, U3, as well as a CNOT gate 

(IBM, 2021a), which can only be applied to neighboring gates: 

 !
1 0 

U1(λ) = ,
iλ 0 e 

(
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Other architectures offer different gates available in different topologies. Mapping 

idealized gates to physical gates is challenging, especially if the physical gates have 

an unusual structure. A broader analysis and taxonomy can be found in Murali et al. 

(2019). 

We also discussed earlier in Section 16.2 that in an idealized programming model, 

we may use any gate, knowing that gates can be approximated. In the context of 

software/hardware codesign, key questions may be as follows. 

1. What is the best set of gates to realize in hardware? 

2. What is the impact of this choice on the gate approximation or other design 

parameters and circuit depth? 

3. What is the accuracy impact of gate approximations on an algorithm? 

4. If approximation would require an exponentially growing set of gates, would this 

not nullify the complexity advantage of quantum algorithms? 

Some abstract gates will be easier to approximate than others on a given physical 

instruction set, such as the IBM machine above. Each target and algorithm will hence 

require targeted methodology and compilation techniques. 

16.4.9 Open-Source Simulators 

We discussed the basic principles of how to construct an efficient but still bare-bones 

simulator. With the help of our transcoding facilities, we can target other available 

simulators, for example, to utilize simulators that support distributed computation 

or advanced noise models. This section provides a cross-section of the most cited 

and well-developed simulators. A more exhaustive list of simulators can be found in 

Quantiki (2021). 

The qHipster full-state simulator implements threading, vectorization, and dis-

tributed computation through MPI and OpenMP (Smelyanskiy et al., 2016). It uses 

highly optimized libraries on Intel platforms. At the time of writing, the simulator was 

rebranded as the Intel Quantum Simulator (Guerreschi et al., 2020), which is available 

on Github (Intel, 2021). This simulator also allows the modeling of quantum noise 

processes, which enables the simulation of quantum hardware subject to the noise. 

The only sparse implementation we are aware of is libquantum (Butscher and 

Weimer, 2013). We used it as the foundation for our libq. The library is no longer 

actively maintained (the last release was in 2013). Even though it offers excellent 

single-thread performance for circuits where the maximum number of states with 

( )

( )
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nonzero amplitudes is only a small fraction of all possible states. It also makes provi-

sions for quantum error correction and allows modeling of decoherence effects. 

QX is an open-source implementation of a high-performance simulator (Kham-

massi et al., 2017). It accepts as input quantum code, a variation of QASM that 

supports explicit parallelism between gates, debug print statements, and looping con-

structs. It performs aggressive optimizations but still appears to store the full state 

vector. QX also supports noisy execution using a variety of error models. It is part of 

a larger quantum development environment from the University of Delft. 

ProjectQ is a Python-embedded compiler-supported framework for quantum com-

puting (Steiger et al., 2018). It allows targeting of both real hardware and the simulator 

included in the distribution. The simulator allows “shortcuts” to set the expected result 

of an expensive computation without simulating it. ProjectQ’s distribution contains 

transpilers to several other available frameworks. It can call into RevKit (Soeken et 

al., 2012) to automatically construct reversible oracles from classical gates, a function 

of great utility. 

QuEST, the Quantum Exact Simulation Toolkit, is a full-state, multithreaded, 

distributed, and GPU-accelerated simulator (Jones et al., 2019). It hybridizes MPI 

and OpenMP and has demonstrated impressive scaling on large supercomputers. It 

supports state-vector and density matrix simulation, general decoherence channels of 

any size, general unitaries with any number of control and target qubits, and other 

advanced facilities like Pauli gadgets and higher-order Trotterization. The related 

QuESTlink (Jones and Benjamin, 2020) system allows use of the QuEST features 

within the Mathematica package. 

Recently, Cirq published two high-performance simulators, qsim and qsimh 

(Google, 2021d). The former, qsim, targets single machines, whereas qsimh allows 

distributed computation via OpenMP. The implementations are vectorized and 

perform several optimizations, such as gate fusion. The qsim simulator is a full state 

Schrödinger simulator. The qsimh simulator (note the character h) is a Schrödinger– 

Feynman simulator (Markov et al., 2018), which trades performance for reduced 

memory requirements. 

Microsoft’s quantum development kit offers several simulators, including a full-

state simulator, several resource estimators, and an accelerated simulator for Clifford 

gates, which can handle millions of gates (Microsoft QDK Simulators, 2021). 

The Qiskit ecosystem offers a range of simulators, including full-state simulators, 

resource estimation tools, noisy simulations, and QASM simulators (Qiskit, 2021). 
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This appendix details the implementation of libq, including some optimization 

successes and failures. The full source code can be found online in the directory 

src/libq of the open-source repository. It is about 500 lines of C++ code. Corre-

spondingly, this section is very code-heavy. 

A.1 Register File and Program State 

The entire program state, including the basis states and their amplitudes, is maintained 

in the structure type qureg_t defined in file libq.h. The important parts of this 

struct are: 

PY 
Find the code 
In file src/libq/libq.h 

typedef uint64 state_t; 
struct qureg_t { 
cmplx* amplitude; 
state_t* state; 
int width; /* number of qubits in the qureg */ 
int size; /* number of nonzero vectors */ 

int hashw; /* width of the hash array */ 
int* hash; 
bool bit_is_set(int index, int target) __attribute__ ((pure)) { 
return state[index] & (static_cast<state_t>(1) << target); 

} 
void bit_xor(int index, int target) { 
state[index] ^= (static_cast<state_t>(1) << target); 

} 
}; 
typedef struct qureg_t qureg; 
qureg *new_qureg(state_t initval, int width); 
void delete_qureg(qureg *reg); 
void print_qureg(qureg *reg); 
void print_qureg_stats(qureg *reg); 
void flush(qureg* reg); 

Again, we use similar names in libq as found in libquantum to enable line-

by-line comparisons. As described in Section 3.9, individual basis states are stored 

http://www.github.com/qcc4cp/qcc/blob/main/src/libq
http://www.github.com/qcc4cp/qcc/blob/main/src/libq/libq.h
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as an array of bit masks in state, paired with their complex amplitude in array 

amplitude. 

Here is an interesting tidbit: In an earlier version of this library included in the 

SPEC 2006 benchmarks, those two arrays were written as an array of C++ structs, 

where each individual struct element had a single amplitude and state. This was 

not good for performance, as iterations over the array during state modification had to 

iterate over more memory than necessary, as the state bit masks were interleaved with 

the amplitudes.1 

The member width, which probably deserves a better name, represents the number 

of qubits available in the program state. The member size has the number of nonzero 

probabilities, and hash is a pointer to the hash table, with hashw being the size of the 

hash table. 

Operations to check whether a bit is set and to XOR a specific bit with a value 

are very common and done with the two inline member functions bit_is_set and 

bit_xor. In the header file, there are a handful of functions to manipulate the program 

state as follows. 

The function new_qureg creates a new program state with a quantum register of a 

given size width and initializes an initial single state with a given bit mask initval 

with probability 1 (at least one state must be defined). The function’s main job is to 

calloc() the various arrays and make sure that there are no out-of-memory errors. 

To free all allocated data structures and set relevant pointers to nullptr, we use 

the function delete_qureg(qureg *reg). To print a textual representation of 

the current state by listing all states with nonzero probability, we use the function 

print_qureg(qureg *reg). Function print_qureg_stats(qureg *reg) can 

be used to display statistics such as how many qubits were stored, how often the 

hash table was recomputed, and the maximum number of nonzero probability states 

reached during the execution of an algorithm. 

For certain experiments, parts of the internal state are cached. The function 

flush(qureg* reg) ensures that all remaining states are flushed. This could mean 

that a computation is completed or that some pending prints are flushed to stdout. 

A.2 Superposition-Preserving Gates 

These are gates that neither create nor destroy superposition. They represent the “easy” 

case in this sparse representation. Let us look at some representative gates. To apply 

the X gate to a specific qubit, the bit corresponding to the qubit index must be flipped. 

Recall that the gate’s function is determined by � �� � � � 
0 1 α β 

= . 
1 0 β α 

1 This author implemented a rather involved automatic data layout transformation in the HP compilers for 

Itanium that would transform the array of structs into a struct of arrays (Hundt et al., 2006). A 

later version of the library then modified the source code itself, a two-line change that completely 

obliterated the need and benefit of the complex compiler transformation. 
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Let us assume that we have a basis state encoded as the binary 0b000101 and apply 

the X gate to qubit 2 in bit order (from the right). To achieve this, we XOR bit 2 with 

a 1. If the bit was 0, it would become 1, and if it was already 1, it would flip to 0. In 

the example, the bit mask changes to 0b000001. 

If there are n states with nonzero amplitudes in the system, there are n pairs of 

states and amplitudes. To flip one qubit’s amplitude according to the X gate, we have 

to flip the bit corresponding to that qubit in each of those tuples since that represents 

the operation of this gate on all the states. Mechanically, the probability amplitudes 

for that qubit are flipped by just flipping the bit in the state bit masks. There is no other 

data movement, and the code is remarkably simple: 

PY 
Find the code 

. 
In file src/libq/gates.cc 

void x(int target, qureg *reg) { 
for (int i = 0; i < reg->size; ++i) 

reg->bit_xor(i, target); 
} 

For another class of operators, we must check whether a bit is set before applying 

a transformation. For example, applying the Z gate to a state acts like this: � �� � � � 
1 0 α α 

= . 
0 −1 β −β 

The gate only has an effect if β is nonzero. In the sparse representation, this means 

that there must be a tuple representing a nonzero probability that has a 1 at the intended 

qubit location. We iterate over all state tuples, check for the condition, and only negate 

the amplitude if that bit was set: 

void z(int target, qureg *reg) { 
for (int i = 0; i < reg->size; ++i) 

if (reg->bit_is_set(i, target)) 
reg->amplitude[i] *= -1; 

} 

Recall that if the qubit is in superposition, there will be two tuples: one with the 

corresponding bit set to 0 and the amplitude set to α, and the other with the bit set to 1 

and the amplitude set to β. For the Z gate, we only need to change the second tuple. 

This is similar for the T gate and other phase gates: 

void t(int target, qureg *reg) { 
static cmplx z = cexp(M_PI / 4.0); 
for (int i = 0; i < reg->size; ++i) 

if (reg->bit_is_set(i, target)) 
reg->amplitude[i] *= z; 

} 

http://www.github.com/qcc4cp/qcc/blob/main/src/libq/gates.cc
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The Y gate is moderately more complex and combines the methods shown above. 

The operation of the gate is: � �� � � � 
0 −i α −iβ 

= . 
i 0 β iα 

In code, we first flip the bit with the X gate and then multiply by i or −i, depending on 

whether the bit is set after it was flipped: 

void y(int target, qureg *reg) { 
for (int i = 0; i < reg->size; ++i) { 

reg->bit_xor(i, target); 
if (reg->bit_is_set(i, target)) 

reg->amplitude[i] *= cmplx(0, 1.0); 
else 

reg->amplitude[i] *= cmplx(0, -1.0); 
} 

} 

A.3 Controlled Gates 

Controlled gates are a logical extension of the above. In order to control a gate, we 

have to check whether the corresponding control bit is set to 1. For example, for the 

controlled X gate: 

void cx(int control, int target, qureg *reg) { 
for (int i = 0; i < reg->size; ++i) 

if (reg->bit_is_set(i, control)) 
reg->bit_xor(i, target); 

} 

Similarly, for the controlled Z gate: 

void cz(int control, int target, qureg *reg) { 
for (int i = 0; i < reg->size; ++i) 

if (reg->bit_is_set(i, control)) 
if (reg->bit_is_set(i, target)) 

reg->amplitude[i] *= -1; 
} 

This even works for double-controlled gates, where we only have to check that both 

control bits are set. Here is the implementation of a double-controlled X gate: 

void ccx(int control0, int control1, int target, qureg *reg) { 
for (int i = 0; i < reg->size; ++i) 

if (reg->bit_is_set(i, control0)) 
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if (reg->bit_is_set(i, control1)) 
reg->bit_xor(i, target); 

} 

A.4 Superpositioning Gates 

The difficult case is for gates that create or destroy superposition. We provide an 

implementation in function libq_gate1, which we detail in Section A.6. The func-

tion expects the 2 × 2 gate as a parameter. For example, for the Hadamard gate: 

PY 
Find the code 
In file src/libq/apply.cc 

void h(int target, qureg *reg) { 
static cmplx mh[4] = {sqrt(1.0/2), sqrt(1.0/2), sqrt(1.0/2), 

-sqrt(1.0/2)}; 
libq_gate1(target, mh, reg); 

} 

The implementation applies the same technique we saw earlier in Section 3.6 on 

accelerated gates: a linear traversal over the states, except that it is adapted to the 

sparse representation. Additionally, it manages memory by filtering out close-to-zero 

states. 

A.5 Hash Table 

First, as indicated above, the states are maintained in a hash table with this hash 

function: 

static inline unsigned int hash64(state_t key, int width) { 
unsigned int k32 = (key & 0xFFFFFFFF) ^ (key >> 32); 
k32 *= 0x9e370001UL; 
k32 = k32 >> (32 - width); 
return k32; 

} 

The hash lookup function get_state checks whether a given state exists with 

nonzero amplitude. It calculates the hash index for state a and iterates over the dense 

array, hoping to find that state. If a 0 state was found (the marker for an unpopulated 

entry) or if the search wraps around, no state was found and -1 is returned. Otherwise, 

the position in the hash table is returned: 

http://www.github.com/qcc4cp/qcc/blob/main/src/libq/apply.cc
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state_t get_state(state_t a, qureg *reg) { 
unsigned int i = hash64(a, reg->hashw); 
while (reg->hash[i]) { 

if (reg->state[reg->hash[i] - 1] == a) 
return reg->hash[i] - 1; 

i++; 
if (i == (1 << reg->hashw)) 

break; 
} 
return -1; 

} 

Of course, there is a function to add a state to the hash table: 

void libq_add_hash(state_t a, int pos, qureg *reg) { 
int mark = 0; 

int i = hash64(a, reg->hashw); 
while (reg->hash[i]) { 

i++; 
if (i == (1 << reg->hashw)) { 

if (!mark) { 
i = 0; 
mark = 1; 

} 
} 

} 
reg->hash[i] = pos + 1; 
// -- Optimization will happen here (later). 

} 

The most interesting function from a performance perspective is the one that recon-

structs the hash table. Since the function to apply a gate will filter out states with 

probabilities close to 0 after gate application, we have to reconstruct the hash table 

to ensure it contains only valid entries. This is the most expensive operation of the 

entire libq implementation. We show some optimizations below, where the first loop 

is being replaced with a memset(), and more tricks in Section A.8. 

void libq_reconstruct_hash(qureg *reg) { 
reg->hash_computes += 1; // count invocations. 

for (int i = 0; i < (1 << reg->hashw); ++i) 
reg->hash[i] = 0; 

for (int i = 0; i < reg->size; ++i) 
libq_add_hash(reg->state[i], i, reg); 

} 

https://doi.org/10.1017/9781009548519.018
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The first thing to note is the first loop, which resets the hash array to all zeros: 

for (int i = 0; i < (1 << reg->hashw); ++i) 
reg->hash[i] = 0; 

You might expect the compiler to transform this loop into a vectorized memset 

operation. However, it does not. The loop-bound reg->hashw aliases with the loop 

body, which means that the compiler cannot infer whether the loop body would modify 

the loop bound. Manually changing this to memset speeds up the entire simulation by 

approximately 20%. 

memset(reg->hash, 0, (1 << reg->hashw) * sizeof(int)); 

This memset is still the slowest part of the implementation. We will show how to 

optimize it further below. 

A.6 Gate Application 

Now we describe the routine for applying a gate. It starts by assuming that something 

might have changed since the last invocation, so its first task is to reconstruct the hash 

table: 

void libq_gate1(int target, cmplx m[4], qureg *reg) { 
int addsize = 0; 
libq_reconstruct_hash(reg); 
[...] 

} 

The superposition of a given qubit means that states with both a 0 and a 1 at a given 

bit position must exist. So, the function iterates and counts how many of those states 

are missing and need to be added: 

/* calculate the number of basis states to be added */ 

for (int i = 0; i < reg->size; ++i) { 
/* determine whether XOR'ed basis state already exists */ 

if (get_state(reg->state[i] ^ 
(static_cast<state_t>(1) << target), reg) == -1) 
addsize++; 

} 

If new states need to be added, the function reallocates the arrays. It also does some 

bookkeeping and remembers the largest number of states with a nonzero probability: 
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/* allocate memory for the new basis states */ 

if (addsize) { 
reg->state = static_cast<state_t *>( 

realloc(reg->state, (reg->size + addsize) * sizeof(state_t))); 
reg->amplitude = static_cast<cmplx *>( 

realloc(reg->amplitude, (reg->size + addsize) * sizeof(cmplx))); 

memset(&reg->state[reg->size], 0, addsize * sizeof(int)); 
memset(&reg->amplitude[reg->size], 0, addsize * sizeof(cmplx)); 
if (reg->size + addsize > reg->maxsize) 
reg->maxsize = reg->size + addsize; 

} 

This is all for state and memory management. Now we move on to applying the 

gates. We allocate an array done to remember which states we have already handled. 

The variable limit will be used at the end of the function to remove states with a 

probability close to zero. 

char *done = 
static_cast<char *>(calloc(reg->size + addsize, sizeof(char))); 

int next_state = reg->size; 
float limit = (1.0 / (static_cast<state_t>(1) << reg->width)) 

* 1e-6; 

We then iterate over all states and check if a state has not yet been handled. We 

check whether a target bit has been set and obtain the index of the other base state in 

the variable xor_index. The amplitudes for the basis states |0⟩ and |1⟩ are stored in 

tnot and t. 

/* perform the actual matrix multiplication */ 

for (int i = 0; i < reg->size; ++i) { 
if (!done[i]) { 

/* determine if the target of the basis state is set */ 

int is_set = reg->state[i] & (static_cast<state_t>(1) << target); 
int xor_index = 

get_state(reg->state[i] ^ 
(static_cast<state_t>(1) << target), reg); 

cmplx tnot = xor_index >= 0 ? reg->amplitude[xor_index] : 0; 
cmplx t = reg->amplitude[i]; 

} 
[...] 

} 

The matrix multiplication follows the patterns we have seen for the fast gate appli-

cation in Section 3.6. If states are found, we apply the gate. If the XOR’ed state was 

not found, this means that we have to add a new state and perform the multiplication: 
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if (is_set) { 
reg->amplitude[i] = m[2] * tnot + m[3] * t; 

} else { 
reg->amplitude[i] = m[0] * t + m[1] * tnot; 

} 

if (xor_index >= 0) { 
if (is_set) { 

reg->amplitude[xor_index] = m[0] * tnot + m[1] * t; 
} else { 

reg->amplitude[xor_index] = m[2] * t + m[3] * tnot; 
} 

} else { /* new basis state will be created */ 
if (abs(m[1]) == 0.0 && is_set) break; 
if (abs(m[2]) == 0.0 && !is_set) break; 

reg->state[next_state] = 
reg->state[i] ^ (static_cast<state_t>(1) << target); 

reg->amplitude[next_state] = is_set ? m[1] * t : m[2] * t; 
next_state += 1; 

} 
if (xor_index >= 0) 

done[xor_index] = 1; 

As a final step, we filter out the states with an amplitude close to 0. The code 

below densifies the array by moving up all nonzero elements before finally real-

locating the amplitude and state arrays to a smaller size (which is a redundant 

operation): 

reg->size += addsize; 
free(done); 

/* remove basis states with extremely small amplitude */ 

if (reg->hashw) { 
int decsize = 0; 
for (int i = 0, j = 0; i < reg->size; ++i) { 

if (probability(reg->amplitude[i]) < limit) { 
j++; 
decsize++; 

} else if (j) { 
reg->state[i - j] = reg->state[i]; 
reg->amplitude[i - j] = reg->amplitude[i]; 

} 
} 
if (decsize) { 

reg->size -= decsize; 
} 

} 
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A.7 

A.8 Actual Performance Optimization 

Premature Optimization, Second Act 

Here is an anecdote that might serve as a lesson to over-eager code optimizers.2 

After implementing the code and running initial benchmarks, it appeared obvious that 

repeated iterations over the memory just had to be a bottleneck. Some form of mini-JIT 

(Just-In-Time compilation) should be helpful, which first collects all the operations 

and then fuses gate applications into the same loop iteration. The goal would be to 

significantly reduce repeated iterations over the states to avoid memory traffic, which 

was assumed to be the problem. The code is available online. It might become valuable 

in the future,3 as other performance bottlenecks are being resolved. 

The goal of the main routine was to execute something like the following, with just 

one outer loop and a switch statement over all superposition-preserving gates: 

[...] 
void Execute(qureg *reg) { 

for (int i = 0; i < reg->size; ++i) { 
for (auto op : op_list_) { 

switch (op.op()) { 
case op_t::X: 

reg->bit_xor(i, op.target()); 
break; 

case op_t::Y: 
reg->bit_xor(i, op.target()); 
if (reg->bit_is_set(i, op.target())) 

reg->amplitude[i] *= cmplx(0, 1.0); 
else 

reg->amplitude[i] *= cmplx(0, -1.0); 
break; 

case op_t::Z: 
if (reg->bit_is_set(i, op.target())) { 

reg->amplitude[i] *= -1; 
} 
Break; 

[...] }}}} 

As a complete surprise, running the JIT’ed version produced a performance 

improvement of roughly 0%. Simple profiling then revealed that about 96% of 

the execution time was spent on reconstructing the hash table. Gate application was 

not a performance bottleneck at all. Lesson learned again – intuition is good, but 

verification is better. 

A.8 Actual Performance Optimization 

As noted above, reconstructing the hash table is the most expensive operation in this 

library. The hash table is sized to hold all potential states, given the number of qubits. 

2 Such as myself. 
3 Or serve as a warning to future readers. 
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Gigantic, sparsely filled hash table 

Much smaller, dense hash cache 

Figure A.1 A caching scheme to accelerate hash table zeroing. 

However, even for complex algorithms, the actual maximal number of states with 

nonzero probability can be relatively small. For example, for two benchmarks that 

we extract from quantum arithmetic (Arith) and order finding (Order), we show 

the maximum number of nonzero states reached (8,192) and, given the number of 

qubits involved, the theoretical maximal number of states. The percentage is 3.125% 

for Order, and only 0.012% for Arith. It has a lot more qubits and hence a very large 

potential number of states: 

Arith: Maximum of states: 8192, theoretical: 67108864, 0.012% 
Order: Maximum of states: 8192, theoretical: 262144, 3.125% 

During execution, the number of states changes dynamically in powers of two as 

libq removes states very close to 0. Therefore, there is an opportunity to augment the 

hash table and track, or cache, the addresses of elements that have been set, up to a 

given threshold, for example, up to 64K elements. 

To reset the hash table, we iterate over the entries in hash cache and zero out the 

marked elements in the hash table, as shown in Figure A.1. There will be a crossover 

point. For some size of the hash cache, just linearly sweeping the hash table will be 

faster than the random memory access patterns from the cache because of hardware 

prefetching dynamics. We chose 64K as the cache size, which significantly improves 

the runtime for our examples. This is an interesting space to experiment with to find 

better heuristics and data structures. 

In function libq_reconstruct_hash, we additionally maintain an array called 

hash_hits, which holds the addresses of states in the main hash table, along with 

a counter reg->hits of those. Then, we selectively zero out only those memory 

addresses in the hash table that we cached. If the hash cache was not big enough, we 

have to resort to zeroing out the full hash table: 

void libq_reconstruct_hash(qureg *reg) { 
reg->hash_computes += 1; 

if (reg->hash_caching && reg->hits < HASH_CACHE_SIZE) { 
for (int i = 0; i < reg->hits; ++i) { 
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reg->hash[reg->hash_hits[i]] = 0; 
reg->hash_hits[i] = 0; 

} 
reg->hits = 0; 

} else { 
memset(reg->hash, 0, (1 << reg->hashw) * sizeof(int)); 
memset(reg->hash_hits, 0, reg->hits * sizeof(int)); 
reg->hits = 0; 

} 
for (int i = 0; i < reg->size; ++i) 

libq_add_hash(reg->state[i], i, reg); 
} 

All that’s left to do now is to fill in this array hash_hits whenever we add a new 

element in libq_add_hash using the following code at the very bottom: 

[...] 
reg->hash[i] = pos + 1; 
if (reg->hash_caching && reg->hits < HASH_CACHE_SIZE) { 

reg->hash_hits[reg->hits] = i; 
reg->hits += 1; 

} 

Performance gains from this optimization can be substantial, depending on the char-

acteristics of the algorithm. Anecdotal evidence points to improvements in the range 

of 20–30% for Arith and Order, as long as the nonzero states fit in the hash cache. 
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Index 

⊕ symbol, controlled qubit in quantum 
circuit notation, 54 

⊗ tensor product operator, 5 

Kronecker product operator, 19 

tensoring together matrices, 13 

ψ as qubit state space, 15 

operator applied to ψ at qubit index, 33 

⋆ operator for tensor products, 19 

Kronecker products, 13 

@ operator for matrix multiplication, 13 

9-qubit Shor error correction code, 362, 
374 

Absolute value of complex numbers, 1 

Addition 

constants, 270, 275 

increment operator, 295, 303 

quantum arithmetic, 265–271, 276 

quantum gates, 265–272 

testing quantum arithmetic, 270, 275 

adjoint() function for gates, 30, 56 

qc data structure, 82 

ALAP scheduling, 379, 393 

Amdahl’s law, 359, 372 

Amplitude amplification 

amplitude estimation, 224–228 

Boolean Satisfiability, 228–232 

graph coloring, 232–236 

Grover’s algorithm, see Grover’s 
algorithm 

quantum amplitude amplification, 
218–221 

quantum counting, 222–224 

quantum mean estimation, 237–239 

quantum median estimation, 241–243 

quantum minimum finding, 239–241 

Amplitude damping, 355, 367 

Amplitude encoding, 178 

Amplitude estimation, 222, 224–228 

quantum counting, 222–224 

Ancilla qubits (ancillae), 57 

code to create and initialize registers, 79 

compiler optimization and, 375, 390 

entanglement, 58, 67 

error correction trick, 359, 371 

quantum computation, 67 

Quipper programming language, 373, 
387 

Silq programming language, 374, 388 

uncomputation, 66 

AND logic gates, 126 

Ansatz, 305, 314 

Arithmetic via quantum gates 

decrement circuit, 295, 303 

full adder, 123–126 

code, 124 

constants, 270, 275 

quantum arithmetic, 265–271, 276 

increment circuit, 295, 303 

multiplication, 269, 271, 274, 276 

powers, 289, 297 

testing quantum arithmetic, 270, 275 

Array ndarray as Tensor base, 12 

Arute, Frank, 128 

at (@) operator for matrix multiplication, 
13 

Basis encoding, 177 

Basis states of qubits, 15 

basis encoding, 177 

constructing a qubit, 16 

density matrix diagonal elements, 28, 
106 

measurement, 70 

orthonormal set of basis vectors, 15 

superposition as orthonormal basis, 
40 

projection operators extracting 
amplitude, 46 

state as superposition, 19 

superposition via Hadamard gates, 40 

Hadamard basis, 40 

Bell measurement, 139, 145 

Bell states, 61 

code, 62 

measurement example, 74 

Quipper programming language, 373, 
387 

tracing out qubits, 110 

Bell, John S., 58, 61 

https://doi.org/10.1017/9781009548519.020


INDEX 407 

Benchmarking 
benchmark gaming, 129 
cross entropy benchmarking, 129 
gate faster application in C++, 99 
quantum random circuits, 129 
quantum versus classical computers, 

129–131 
sparse representation, 103 

Bernstein–Vazirani algorithm, 163–166 
about, 162 
oracle form of algorithm, 164, 173 

compiler optimization, 380, 394 
phase-kick rotation gates, 245, 246 

Beyond Classical 
classical arithmetic via quantum gates, 

123–126 
computational complexity theory, 76, 

128, 136 
Google Sycamore processor, 129 

benchmarking, 129 
benchmarking quantum versus 

classical computers, 129–131 
logic circuit general construction, 126 
quantum random circuits, 129 

simulation design, 131 
simulation evaluation, 135 
simulation implementation, 133 
simulation metric, 133 

Quantum Supremacy experiment, 
127–136 

Binary fractions, 24 
Binary interpretation, 23–25 
Birthday paradox, 275, 280 
Bit conversion, 23 
Bit index notation for states, 94 
Bit order 

binary interpretation, 23–25 
qubit order, 21–22 
two tensored states, 22 

Bit-flip errors 
bit-flip channel, 354, 366 
bit-flip phase-flip channel, 354, 366 
combined phase/bit-flip error, 352, 364 
dissipation-induced error, 351, 363 
error correction, 359–361, 371–373 

Shor’s 9-qubit code, 362, 374 
Bits to binary fractions, 24 
Bits-decimal conversion functions, 23 
bits2frac() for binary fractions, 24 
bits2val() for binary to decimal, 23 
bitstring() function, 27 
Black-box algorithms 

about, 162 
quantum parallelism, 162 
query complexity, 162 

Bernstein-Vazirani algorithm, 163–166 
oracle form of algorithm, 164, 173 

Deutsch algorithm, 166–173 

general oracle operator, 171 
Deutsch–Jozsa algorithm, 174–176 

Bloch sphere 
Quirk online simulator, 264, 269 

Bloch spheres 
about, 17, 38, 302, 312 
Bloch vector, 18 

rotation operators, 38 
expectation values, 17, 71, 303, 312 
minus sign as global phase, 17 
qubits described by, 17–19 

computing coordinates for given 
state, 37 

Solovay–Kitaev algorithm, 189 
two degrees of freedom for superdense 

coding, 143 
universal gates, 189 

Bloch, Felix, 17 
Boolean Conjunction, 228 
Boolean Disjunction, 228 
Boolean formulas with quantum gates, 

127 
Boolean Satisfiability, 228–232 
Born rule, 69 

about projective measurement, 69 
BPP (complexity), 128, 136 
BQP (complexity), 128, 136 
Bra(c)kets, 3 
Branching, see Controlled gates 
Bras 

Dirac notation, 2 
inner products, 3 

bra-ket notation, 3 
tensor products, 5 

C++ 

Accelerated gate application 
Execution speed, 100 

accelerated gate application, 95–101 
execution speed, 95 

extending Python with, 96 
sparse representation, 101 

benchmarking, 103 
“Can Quantum-Mechanical Description of 

Physical Reality Be Considered 
Complete?” (Einstein, Podolsky, and 
Rosen), 58 

Cartesian coordinates for Bloch sphere, 38 
CCX gates, see controlled–controlled Not 

gates 
Change of basis, 342, 354 
Channels in information theory, 353, 365 

bit-flip channel, 354, 366 
bit-flip phase-flip channel, 354, 366 
depolarization channel, 354, 366 
phase-flip channel, 354, 366 

ChatGPT, 331, 342 
CHSH game, 146–149 
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Circuits 
about function calls and returns, 370, 

384 
Scaffold programming language, 

370, 384 
Silq programming language, 374, 

388 
compiler optimization and, 376, 390 
decrement circuit, 295, 303 
entangler circuits, 59–61 
increment circuit, 295, 303 
intermediate representation 

capabilities, 88 
subcircuit control, 89 

libraries of compiler optimization 
patterns, 380, 394 

Logic circuits 
fan-out circuits, 126 

logic circuits, 126 
fan-out in QCL, 368, 382 

phase inversion circuit, 209 
quantum circuit data structure, 80 

adjoint gates, 82 
constructor, 80 
double-controlled gates, 83 
gates, 82–85 
gates applied, 82 
measurements, 86 
multi-controlled gates, 84 
parameterized gates, 83 
quantum registers, 81 
qubits added, 81 
Swap and controlled Swap gates, 85 

quantum random circuits, 129 
simulation design, 131 
simulation evaluation, 135 
simulation implementation, 133 
simulation metric, 133 

qubits 
ordering of qubits, 22 
qc data structure, 81 
quantum circuit notation, 53–55 

Shor’s 9-qubit error correction, 362, 
374 

subcircuits instantiated, not called, 370, 
384 

Cirq commercial system (Google), 375, 
389 

simulators, 383, 397 
Classical arithmetic, see Arithmetic via 

quantum gates 
Classical computers versus quantum, 

129–131 
classical computers controlling 

quantum, 365, 366, 378, 379 
Summit simulating quantum random 

circuits, 135 
Clifford gates, 78 

Closed quantum systems, 352, 364 
CNF, 228 
CNOT, see Controlled Not gates 
CNOT0, see Controlled-by-0 Not gate 
Coin toss operator, 294, 302 
Coloring graphs, 232–236 
Column vectors 

inner products, 3 
kets 

Dirac notation, 2 
Hermitian conjugate of, 2 

qubits and states as, 2 
Combined phase/bit-flip error, 352, 364 
Commercial systems, 375, 389 
Compiler optimization, 375, 390 

about, 375, 390 
classical for classical constructs, 376, 

391 
gate approximation, 382, 396 
gate elimination, 377, 391 
gate fusion, 378, 392 
gate parallelization, 379, 393 
gate scheduling, 378, 392 
high-performance pattern libraries, 380, 

394 
inlining, 376, 391 
logical to physical mapping, 376, 380, 

390, 395 
resource for information, 382, 396 

loop unrolling, 376, 391 
peephole optimization, 379, 393 

libraries of compiler optimization 
patterns, 380, 394 

relaxed peephole optimization, 379, 
394 

physical gate decomposition, 381, 396 
unentangled qubits, 378, 392 

Compilers 
about hierarchy of abstractions, 367, 

380 
design challenges, 364, 378, 380, 395 
optimization, see Compiler 

optimization, see Compiler 
optimization 

programming languages, see Quantum 
programming languages, see 
Quantum programming languages 

Completeness relation, 71 
Complex numbers 
numpy data types, 12 
2D plane, 1 
about, 1 
conjugates, 1 
exponentiation, 2 
modulus, 1 
norm, 1 
Python, 2 
qubits as column vectors of, 2 
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states as column vectors of, 2 

Tensor comparisons to values, 14 

tensor_type() abstraction, 12 

Complex plane, 1 

Complexity classes 

BPP, 128, 136 

BQP, 128, 136 

NP, 128 

NP-complete, 128 

NP-hard, 128 

P, 128 

Complexity of simulation, 76, 129 

Composite kets inner products, 6 

Computation reversed, 66 

Computational basis, 15 

Computational complexity theory, 76, 
128, 136 

Conditional execution, see Controlled 
gates 

Conjugates 

adjoint synonymous with conjugate, 7 

complex numbers, 1 

denotation not explicit, 3 

Hermitian conjugate matrix, 7 

operator adjoint() function, 30 

Conjugation 

conjugate complex numbers, 2 

involutivity, 2 

Conjunction, 228 

Constants in quantum addition, 270, 275 

Continued fractions, 290, 297 

Controlled U gates under compiler 
optimization, 379, 394 

Controlled Z gates, 52 

Controlled gates, 48–50 

about QCL programming language, 
369, 382 

controlled U1(λ) gate for quantum 
arithmetic, 266, 270 

Controlled Z gates, 52 

Controlled Not gates, 48–50 

constructor function, 50 

Controlled phase gates, 52 

controlled rotation gates additive, 244 

controlled–controlled gates, 50 

qc data structure, 83 

Toffoli gates, 55, 56 

Controlled-by-0 Not gate, 50 

function of, 48–50 

multi-controlled gates, 57 

ancilla qubits, 57, 66 

controlled–controlled Not gates, 55 

qc data structure, 84 

Sleator–Weinfurter construction, 56 

nonadjacent controller and controlled 
qubits, 49 

notation for gates involved, 48 

qc data structure 

double-controlled gates, 83 
fast application of gates, 94 
multi-controlled gates, 84 
Swap and controlled Swap gates, 85 

quantum circuit notation 
controlled X gates, 54 
controlled Z gates, 54 
Controlled-by-0 Not gate built, 54 
more than one qubit controlling, 54 

scalability, 50 
Swap and controlled Swap gates 
qc data structure, 85 

Swap gates, 51 
compiler optimization, 379, 394 
controlled Swap gates, 51 
quantum circuit notation, 54 

Controlled Not gates (CNOT; CX) 
compiler optimization, 380, 394 
constructor function, 50 
entangler circuits, 60 
function, 48–50 
GHZ states, 62 
logic circuits from, 126 
quantum registers for result storage, 68 
Swap gate action, 51 

Controlled phase gates, 52 
Controlled Swap gates, 51 
Controlled–Controlled gates 

Toffoli gates, 55 
Controlled–Controlled gates 

Sleator–Weinfurter construction, 56 
Toffoli gates 

logic circuits from, 126 
Sleator–Weinfurter construction, 56 

Controlled–Controlled Not gates (CCX 
gates), 55 

Controlled-by-0 Not gate (CNOT0), 50 
quantum circuit notation, 54 

Copenhagen interpretation of quantum 
mechanics, 59 

Counters 
decrement operator, 295, 303 
increment operator, 295, 303 

Covariance matrix, 332, 343 
C++ 

Q language C++class library, 372, 386 
cQASM, 367, 381 
Cross entropy benchmarking (XEB), 129 
Curse of dimensionality, 331, 342 
Cut on graph, 315, 325 
CX, see Controlled Not gates 

Data encoding 
amplitude encoding, 178 
basis encoding, 177 
Hamiltonian encoding, 180 
rotations for encoding, 179 

Data registers, see Quantum registers 
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Data structure, see Quantum circuit (qc) 
data structure 

Data types 
about, 12 
abstracting, 12 
complex data type selection, 12 
numpy data types, 12 

State, 16 
Debugging 

direction of rotations, 42 
qc data structure abstraction, 80 
Tensors compared to values, 14 

Decoherence times of technologies, 350, 
362 

Decoherence-induced phase shift error, 
351, 363 

Decrement circuit, 295, 303 
Density matrices 

about, 28 
apply gate, 107 
Bloch sphere coordinate computation 

Cartesian coordinates, 38 
outer product of state with itself, 28, 

106 
partial trace derivation 

code, 108 
tracing out other qubits, 109 

probabilities of measuring a basis state, 
28 

quantum computing theory as, 106 
as tool, 106 
trace of, 28, 107 

Depolarization channel, 354, 366 
depolarization definition, 354, 366 

Destructive interference, 343, 355 
Deutsch algorithm, 166–173 

about, 162 
general oracle operator, 171 

Deutsch–Jozsa algorithm, 174–176 
Diagonal matrices 

eigenvalues, 6 
tensor products, 5 

Diffusion operator, 210 
Dirac notation 

bras, 2 
kets, 2 
qubits 

0-state and 1-state, 15 
two tensored states, 22 

Discrete phase gates, 42 
Disjunction, 228 
Dissipation-induced error, 351, 363 
Dot products, see Inner products 
Double-controlled gates 
qc data structure, 83 

Dual vectors for a ket, 2 
Dumper function, 26 

transpilation, 90 

EGCD, see Extended Euclidean algorithm 
Eigenstates, 6 
Eigenvalues, 6 

Hamiltonians, 300–301, 308–310, 
317–319 

Hermitian and Pauli matrices, 37 
Hermitian matrices, 7 
quantum phase estimation, 247, 

248 
trace of a matrix, 9 
unitary matrices, 8 
variational quantum eigensolver, 

308–309, 317–319 
Eigenvectors, 6 

Hamiltonians in Schrödinger equation, 
300–301, 309–310 

unitary matrices, 8 
Einstein, Albert 

hidden state, 58 
spooky action at a distance, 58, 61 

Electron decoherence time 
electron spin, 350, 362 
gallium arsenide, 350, 362 
gold, 350, 362 

Embeddings, 331, 342 
Encoding data, see Data encoding 
Endianess of qubits 

quantum circuit notation, 53 
Endianness of qubits, 21–22 
Entanglement, 58–65 

about, 58 
algorithms exploiting 

CHSH game, 146–149 
entanglement swapping, 145 
random number generator, 137 
superdense coding, 142–145 
teleportation, 138–142 

analysis by Scaffold, 371, 385 
ancilla qubits, 58, 67 
Bell states, 61 

code, 62 
tracing out qubits, 110 

code 
Bell states, 62 
entangler circuit, 60 
GHZ states, 62 

compiler optimization and, 378, 
392 

Copenhagen interpretation, 59 
entangler circuits, 59–61 

code, 60 
GHZ states, 62 

code, 62 
error correction trick, 359, 371 

maximal entanglement, 111 
mixed state depolarization, 354, 366 
No-Cloning Theorem, 64 

error correction challenge, 358, 370 
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product states, 59 
tracing out qubits, 110 
W state, 63 

Entangler circuits, 59–61 
Environmental challenges of quantum 

computing, 350–357, 362–369 
closed versus open quantum systems, 

352, 364 
EPR paper, 58 
Equal superposition of adjacent qubits, 41 
Erasure of information resulting in heat 

dissipation, 66 
Error correction 

about, 350, 357, 362, 369 
bit-flip errors, 359–361, 371–373 

Shor’s 9-qubit code, 362, 374 
compiler optimization and, 376, 390 
error correction code memory, 357, 369 
error syndrome, 359, 371 
phase-flip errors, 361, 373 

Shor’s 9-qubit code, 362, 374 
quantum computing challenges, 357, 

370 
quantum noise, 350–357, 362–369 
repetition code, 357, 369 

majority voting, 357, 369 
No-Cloning Theorem, 358, 370 
quantum repetition code, 358, 370 

resources for information, 363, 376 
Shor’s 9-qubit error correction code, 

362, 374 
Error correction code memory (ECC), 

357, 369 
Error injection to model quantum noise, 

355, 367 
checking bit-flip error correction, 359, 

372 
gates as quantum noise source, 356, 368 

Error syndrome, 359, 371 
Euclidean distance, 327–331, 338–342 

quantum algorithms that use, 331, 342 
Euler theorem, 276, 281 
Euler’s formula 

complex exponentiation, 2 
Phase gate derivation, 41 

Expectation values, 17, 71 
Bloch sphere, 17 
variational quantum eigensolver, 303, 

312 
Exponentiation 

complex numbers, 2 
operators, 38 

Extended Euclidean algorithm, 285, 292 

Factorization, 274, 279 
Fan-out circuits, 126 

QCL programming language, 368, 382 
fast gate application, 92–95 

faster gate application, 95–98 

Feynman, R., ix, xii 

Flexible phase gates 

constructed via U3 gates, 43 

constructing other gates, 43 

discrete phase gates, 42 

U1(λ) gates, 43 

Fourier transform, see Quantum Fourier 
transform (QFT), see Quantum 
Fourier transform (QFT) 

Fractions, binary, 24 

Fredkin gates, 51 

Full adder, 123–126 

code, 124 

quantum arithmetic, 265–271, 276 

Fundamentals of quantum computing, see 
Quantum computing fundamentals 

Fused gates, 378, 392 

Gallium arsenide (GaAs) electron 
decoherence time, 350, 362 

Gate equivalences 

compiler optimization, 378, 380, 392, 
395 

Controlled phase gates, 52 

multi-controlled gates, 57 

Gates 

qc data structure 

parameterized gates, 83 

about operators as gates, 29 

adjoint gate qc data structure, 82 

application, 30–31 

apply() function, 34, 82, 98 

fast application, 92–95 

fast application generalized, 94–95 

faster application with C++, 95–101 

fastest benchmarked, 103 

fastest with sparse representation, 
101–102 

multiple operators in sequence, 33 

multiple qubits, 31–33 

noise reduction via compiler 
optimization, 376, 390 

norm preserving, 29 

notation for qubit index applied to, 
33 

padding operators, 33, 49 

projection operators extracting 
subspace, 70 

quantum computation, 67 

to density matrix, 107 

to state ψ at qubit index, 33 

compiler optimization 

gate approximation, 382, 396 

gate fusion, 378, 392 

gate parallelization, 379, 393 

gate scheduling, 378, 392 

https://doi.org/10.1017/9781009548519.020


412 INDEX 

Gates (conti.) 
logical to physical mapping, 376, 

380, 390, 395 
noise reduction, 376, 390 
physical gate decomposition, 381, 

396 
scheduling gates as late as possible, 

379, 393 
unentangled qubits, 378, 392 

constructed via U3 gates, 43 
controlled gates, see Controlled gates 
flexible phase gates 

discrete phase gates, 42 
phase shift or kick gate, 43 

Hadamard gates, 40–41 
identity gates, 35 

applied to multiple qubits, 32 
multi-qubit gates 

controlled gates, 48–55 
Hadamard gates, 40–41 
single-qubit constructors for, 35 

outer product representation of 
operator, 46 

parameterized gate quantum circuit data 
structure, 83 

phase gates, 41 
discrete phase gates, 42 
phase inversion operator, 209 
phase shift or kick gates, 43 
square root as T gate, 45 
various gates via, 43 

projection operators, 46 
qc data structure, 82–85 

double-controlled gates, 83 
gates applied, 82 
multi-controlled gates, 84 

quantum circuit notation, 53 
quantum noise source, 356, 368 

precision of design required, 365, 
378 

Rk gates, 42 
Scaffold programming language, 370, 

383 
Classical-To-Quantum-Circuit tool, 

370, 384 
single-qubit gates, 34–41 
Solovay-Kitaev theorem, 188 
T gates 

square root of S gates, 45 
universal gates, 189 
via phase gates, 43 

U1(λ) gates, 43 
universal gates, see Universal gates 
V gates as square roots of X gates, 44, 

56 
X gates, 29, 36 

square root of as V gates, 56 
Y gates, 36 

square root of, 45 
yroot gates, 45 

GCD, see Greatest common divisor, see 
Greatest common divisor 

GHZ states, 62 
error correction trick, 359, 371 

Global phase, 17 
Bloch sphere, 17 
phase invariance, 17 

Global variables as bad style, 28 
“Going beyond Bell’s Theorem” 

(Greenberger, Horne, and Zeilinger), 
62 

Gold (Au) electron decoherence time, 
350, 362 

Google 
Cirq commercial system, 375, 389 

simulators, 383, 397 
coding style, 14 

underscore in function names, 14 
quantum random circuits, 129, 135 

simulation design, 131 
simulation evaluation, 135 
simulation implementation, 133 
simulation metric, 133 

Sycamore processor supremacy, 
129–131 

GPUs (graphics processing units), 364, 
378 

Gradient descent, 307, 316 
Graph coloring, 232–236 
Graph cut, 315, 325 
graphics processing units (GPUs), 364, 

378 
Greatest common divisor (GCD), 274, 279 
Greenberger, Daniel M., 62 
Ground state energy 

about variational quantum eigensolver, 
299, 308 

variational principle, 301, 310 
Grover’s algorithm 

about, 200 
accounting for multiple solutions, 

218–221 
circuit implementation, 216–218 
examples 

simple numerical, 203 
two-qubit, 204 

Grover operator, 201, 207 
implementing, 215 
quantum counting, 222 

inversion about the mean, 203 
circuit, 213 
operator, 209–213 

iteration count, 206–208 
multiple solutions, 218–221 

overview, 201 
phase inversion, 201 
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implementation, 208 
multiple solutions, 218–221 
operator, 209, 222 

quantum amplitude amplification, 
218–221 

quantum counting, 222–224 

Hadamard basis, 15, 18, 40 
measuring in, 144 

Hadamard gates, 40–41 
constructed with U3 gates, 44 
entangler circuits, 59–61 
Hadamard basis, 40 

measuring in, 144 
Hadamard coin, 294, 302 
its own inverse, 41 
quantum circuit notation, 53 
random number generator, 137 
universal gates, 189 

Hadamard similarity test, 155–160 
Hamiltonian 

definition, 300, 309 
eigenvalues 

about VQE algorithm, 299, 302, 308, 
311 

Schrödinger equation derivation, 
300–301, 309–310 

variational principle, 301, 310 
variational principle measurements, 

308–309, 317–319 
Ising spin glass model, 314, 324 

Hamiltonian constructed, 318–320, 
328–331 

operator, 300, 310 
Hermitian, 301, 310 

Hamiltonian encoding, 180, 342, 354 
Hash table in libq, 388, 393, 403, 409 
Haskell programming language, 372, 386 

Quipper as embedded DSL, 372, 386 
oracle construction, 373, 387 

Silq as embedded DSL, 374, 388 
oracle construction, 374, 388 

Heisenberg uncertainty principle, 300, 310 
Hello World for quantum computing, 137 
Helper functions 

bit conversion, 23 
Bloch sphere coordinate computation, 

38 
Hermitian and unitary matrix 

properties, 14 
n-bit projector construction, 47 

Hermitian conjugate vector, 2 
Hermitian matrices 

about, 7 
checking if Tensor is Hermitian, 14 
eigenvalues as real, 7 
Hermitian adjoint matrices, 7 

expressions, 8 

Hermitian conjugate matrices, 7 
projection operators as, 46 
real vector space basis, 37 

Hermitian projector, 46 
Hidden state, 58, 61 
Hierarchical QASM, 371, 384 
High-Performance Computing (HPC) 

techniques, 77 
Horne, Michael A., 62 

I matrix, 7 
IBM 

Qiskit commercial system, 375, 389 
ALAP scheduling of gates, 379, 393 
simulators, 383, 398 

Sycamore supremacy challenged, 129 
Summit supercomputer, 135 

Idempotent projection operators, 46 
Identity gates, 35 

applied to multiple qubits, 32 
controller and controlled qubits not 

adjacent, 49 
Hermitian matrix real vector space, 37 
via phase gates, 43 

Identity matrix, 7 
Increment circuit, 295, 303 
Increment modulo 9 circuit, 295, 304 
Indirect measures of similarity between 

states 
swap test, 150–154 
swap test code, 153 
swap test for multi-qubit states, 154 

Information 
erasure resulting in heat dissipation, 66 
quantum circuit double lines, 54 
quantum teleportation, 138–142 
superdense coding, 142–145 

Inner products, 3 
tensors, 6 

Instruction Set Architecture (ISA) of 
quantum computers, 29 

Intel Quantum Simulator, 382, 397 
Intermediate representation (IR), 86–91 

about circuit capabilities, 88 
Scaffold programming language, 370, 

384 
classic and quantum mix, 376, 391 

scalability, 365, 378 
transpilation 

dumper function, 90 
inverting a register, 90 
IR base class, 87 
IR nodes, 86 
subcircuit control, 89 
uncomputation, 88 

Inversion about the mean, 203 
circuit, 213 
operator, 209–213 
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Inversion test for similarity, 160 

Involutivity, 2 

Hadamard gates, 41 

Pauli matrices, 37 

rotations, 38 

Ion trap decoherence time, 350, 362 

IR, see Intermediate representation 

ISA (Instruction Set Architecture) of 
quantum computers, 29 

Ising 

Hamiltonian, 314, 324 

NP algorithms, 314, 324 

Spin Glass, 314, 324 

Junk qubits, 66 

quantum computation, 67 

K-nearest neighbor algorithm, 331, 342 

KD-Tree, 192 

Kets 

about, 68 

composite kets inner products, 6 

Dirac notation, 2 

dual vectors for, 2 

Hermitian conjugate of, 2 

inner products, 3 

bra-ket notation, 3 

composite kets, 6 

outer products, 4 

trace of, 9 

tensor products, 5 

KNN, 331, 342 

Knuth, D. E., ix, xii 

Kraus operators, 71, 353, 365 

kron member function of Tensor, 13 

Kronecker power function (kpow), 
13 

Kronecker product, 5, 13 

⊗ operator symbol, 5, 19 

⋆ operator for, 13, 19 

tensor product synonym, see also 
Tensor products 

Landauer, D., 66 

Landauer’s principle, 66 

Least significant bit, see Bit order 

Libq, 101 

implementation 

about, 384, 399 

controlled gates, 387, 402 

gate application, 390–392, 406–408 

hash table, 388, 393, 403, 409 

register file, 384, 399 

superposition-preserving gates, 385, 
400 

superpositioning gates, 388, 403 

libquantum basis, 101 

optimization 
gate application, 393, 409 
hash table reconstruction, 393–395, 

410–411 
libquantum library for sparse 

representation, 101 
simulation, 382, 397 

Libraries of compiler optimization 
patterns, 380, 394 

Linear independent vectors, 4 
LLM, 331, 342 
Local phase, 17 
Logic circuits, 126 

fan-out circuits, 126 
QCL programming language, 368, 

382 
“Logical Reversibility of Computation” 

(Bennett), 66 

Majority voting for repetition code, 357, 
369 

Matrices 
⋆ operator for Kronecker product, 13 
@ operator for matrix multiplication, 

13 
2-dimensional index via projection 

operators, 46 
density matrices, 28, 106 
diagonalization function, 196 
eigenvalues, 6 
exponent with matrix, 38 
Hermitian, see Hermitian matrices 
Pauli matrices, 35 

Hermitian matrix real vector space, 
37 

involutivity, 37 
permutation matrices, 14 
scalability, 76 
tensor products, 5 
tensoring together with ⊗, 13 
trace of, 107 
trace of a matrix, 9 
transposition, 2 
unitary, 7 

Maximal entanglement, 111 
Maximally mixed state, 111 
Maximum cut algorithm, 314–322, 

324–333 
about, 314, 324 
cut definition, 315, 325 
experiments, 320, 331 
Ising formulations of NP algorithms, 

314, 324 
maximum cut definition, 315, 325 
quantum approximate optimization 

algorithm, 312, 322 
variational quantum eigensolver 

VQE by peek-a-boo, 320, 331 
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weighted maximum cut, 315, 325 
computing maximum cut, 316, 326 
graphs constructed, 315, 325 
Hamiltonian constructed, 318–320, 

328–331 
Mean estimation, 237–239 
Mean inversion, see Inversion about the 

mean 
Measurement gate quantum circuit 

notation, 54 
Measurements 

by peek-a-boo, 86 
Grover’s algorithm, 215 

By peek-a-boo, Grover’s algorithm, 215 
entanglement, 58 

No-Cloning Theorem, 64 
error detection challenges, 358, 370 
expectation values, 17, 71, 303, 312 
Hadamard basis for measuring, 144 
implementation, 72 
Pauli bases, 302–305, 312–314 
projective, 69–72 

examples, 73 
implementation, 72 

qc data structure, 86 
quantum circuit notation, 54 
quantum mechanics postulates, 68 
state similarity indirect measures 

swap test, 150–154 
swap test code, 153 
swap test for multi-qubit states, 154 

states collapsing on measurement, 16, 
58 
Born rule, 69 
measurement definition, 69 
renormalization, 72 

Median estimation, 241–243 
Mermin, David, 59 
Microsoft Q# commercial system, 375, 

389 
Quantum Developer Kit, 375, 389 

simulators, 383, 398 
Microwave cavity decoherence time, 350, 

362 
Minimum cut problems, 315, 325 
Minimum spanning tree, 331, 342 
Mixed states 

depolarization, 354, 366 
tracing out qubits, 111 

Mixed-product property, 6 
MLPerf benchmarks, 129 
Modular arithmetic, 273, 278 

continued fractions, 290, 297 
controlled modular multiplication, 288, 

295 
modular addition, 286–288, 293–295 

Modular inverse, 285, 292 
Modulus of complex numbers, 1 

Most significant bit, see Bit order 
Multi-controlled gates, 57 

ancilla qubits, 57, 66 
controlled–controlled Not gates, 55 
qc data structure, 84 
Sleator–Weinfurter construction, 56 

Multi-qubit gates 
about controlled gates, 48 
about single-qubit constructors, 35 
Hadamard gates, 40–41 

Multiplication, 269, 274 
quantum arithmetic, 271, 276 
testing quantum arithmetic, 270, 275 

Möttönen’s algorithm, 182–188 

NAND logic gates, 126 
nbits property of Tensor class, 23 
ndarray base for Tensor, 12 
No-Cloning Theorem, 64 

fan-out circuits and, 126 
repetition code for error control, 358, 

370 
uncomputation not violating, 68 

No-Deleting Theorem, 65 
Node class for transpilation, 86 
Noise, see Quantum noise, see Quantum 

noise 
Noisy Intermediate Scale Quantum 

Computers (NISQ), 299, 308, 365, 
378 

Norm 
complex numbers, 1 
unitary matrices as norm preserving, 7, 

29 
vector normalization, 26 

Not gates, see also X gates 
logic circuits from, 126 

Nuclear spin decoherence time, 350, 362 
numpy 

path to, 96 
numpy 

⋆ operator for Kronecker product, 13 
@ operator for matrix multiplication, 

13 
adjoint() function for operators, 30 
allclose() for Tensor comparisons, 

14 
conj function, 2 
ndarray base for Tensor, 12 

instantiating, 12 
about, 11 
complex number support, 12 
eigenvalues of matrices, 7 

“On the Einstein Podolsky Rosen 
paradox” (Bell), 58, 61 

Open quantum systems, 352, 364 
Open-source simulators, 382, 396 
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OpenPulse, 367, 380 
OpenQASM, 367, 381 

transpilation dumper function, 90 
Operator class 
adjoint() function, 30 
gate applied to state ψ at qubit index, 34 

Gate function returning Operator 
object, 34 

Tensor class parent, 29 
Operator function, 181 
Operator-sum representation, 353, 

365 
Operators 

⋆ operator for Kronecker product, 13 
@ operator for matrix multiplication, 

13 
about, 12, 29 
application, 30–31 
apply() function, 34, 82, 98 
fast application, 92–95 
fast application generalized, 94–95 
faster application with C++, 95–101 
fastest benchmarked, 103 
fastest with sparse representation, 

101–102 
multiple operators in sequence, 33 
multiple qubits, 31–33 
noise reduction via compiler 

optimization, 376, 390 
norm preserving, 29 
notation for qubit index applied to, 

33 
padding operators, 33, 49 
projection operators extracting 

subspace, 70 
quantum computation, 67 
to state ψ at qubit index, 33 

diffusion operator, 210 
Hamiltonian operator, 300, 310 

Hermitian, 301, 310 
inversion about the mean, 209–213 

circuit, 213 
oracle operator, 171 

phase inversion implementation, 
208 

outer product representation, 46 
Pauli representation, 117–120 
phase inversion operator, 209 

quantum counting, 222 
qc data structure, 82 

gates applied, 82 
quantum Fourier transform operator, 

262, 266 
inverse, 263, 267 

Tensor class parent, 29 
unitary, 29 

invertable, 29 
Optical cavity decoherence time, 350, 362 

Optimization 

compilers, see Compiler optimization, 
see Compiler optimization 

gate application iteration lesson, 393, 
409 

gate application special cases, 99–100 

Hamiltonians constructed for, 314, 324 

hash table reconstruction, 393–395, 
410–411 

Ising formulations of NP algorithms, 
314, 324 

maximum cut algorithm, 314–322, 
324–333 

quantum approximate optimization 
algorithm, 312, 322 

subset sum algorithm, 322–326, 
333–337 

variational quantum eigensolver, 
299–312, 322 

OR logic gates, 126 

Oracles 

about, 162 

quantum parallelism, 162 

query complexity, 162 

Bernstein–Vazirani algorithm, 163–166 

compiler optimization, 380, 394 

oracle form of algorithm, 164, 173 

Deutsch algorithm, 166–173 

general oracle operator, 171 

Deutsch–Jozsa algorithm, 174–176 

general oracle operator, 171 

phase inversion implementation, 208 

Quipper automatic construction of, 373, 
387 

RevKit for constructing reversible, 383, 
397 

Silq construction of, 374, 388 

Order finding 

order of function, 276, 281 

quantum order, 279, 285 

quantum algorithm, 279–292, 300 

continued fractions, 290, 297 

controlled modular multiplication, 
288, 295 

experimentation, 290, 298 

main program, 283–284, 290–292 

modular addition, 286–288, 293–295 

support routines, 284–286, 292–293 

Shor’s integer factorization algorithm, 
275–277, 280–282 

Orthogonal vectors, 4 

Outer products 

about, 4 

density matrices as, 28, 106 

outer product representation of 
operator, 46 

projection operators, 46 

trace of two kets, 9 
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Overloading ⋆ operator, 13 

P gates, see also Phase gates 
Parallelism, see Quantum parallelism 
Parameterized gate quantum circuit data 

structure, 83 
Partial-trace procedure 

code, 108 
experimenting with, 109 

dimension reducing operation, 108 
maximal entanglement, 111 
reduced density operator from, 107 
tracing out other qubits, 109 

entangled states, 110 
environment traced out, 353, 365 
experimenting with, 109 
mixed states, 111 
Quirk qubits on Bloch sphere, 264, 

269 
Path to numpy, 96 
Pauli matrices 

about, 35 
Hermitian matrix real vector space, 37 
involutivity, 37, 39 
measurement in Pauli bases, 302–305, 

312–314 
Pauli X gates, see also X gates 
Pauli Y gates, 36 
Pauli Z gates, 36 

Phase-flip gates, 36 
quantum noise modeling, 355, 367 
rotation operators via exponentiation, 

38 
Pauli representation, 117–120 

decomposition with projectors, 119 
Pauli basis, 117 
two qubits, 119 

PCA (principal component analysis), 
331–336, 342–347 

Peephole optimization, 379, 393 
libraries of compiler optimization 

patterns, 380, 394 
relaxed peephole optimization, 379, 394 

Perdomo two-qubit state preparation, 181 
Performance 

compiler optimization and, 376, 390 
quantum versus classical computers, 

129–131 
Period of function 

about, 276, 281 
quantum order, 279, 285 

quantum algorithm 
continued fractions, 290, 297 
controlled modular multiplication, 

288, 295 
experimentation, 290, 298 
main program, 283–284, 290–292 
modular addition, 286–288, 293–295 

support routines, 284–286, 292–293 
Shor’s integer factorization algorithm, 

275–277, 280–282 
Permutation matrices 

about, 14 

checking if tensor is permutation, 14 
Controlled Not gate, 48, 49 

Phase damping, 356, 368 
Phase estimation for π approximation, 

256–261 
Phase gates, 41 

controlled phase gates, 52 
discrete phase gates, 42 
phase inversion operator, 209 
phase shift or kick gates, 43 
square root of S gate, 45 
U1(λ) gates, 43 

controlled U1(λ) gate for quantum 
arithmetic, 266, 270 

various gates via, 43 
Phase invariance, 17 
Phase inversion, 201 

implementation, 208 
multiple solutions, 218–221 
operator, 209 

quantum counting, 222 
Phase of qubits, 26 
Phase shift error, decoherence-induced, 

351, 363 
Phase-flip errors, 351, 363 

bit-flip phase-flip channel, 354, 366 
error correction, 361, 373 

Shor’s 9-qubit code, 362, 374 
phase-flip channel, 354, 366 

Phase-kick circuit, 244 
Phase/bit-flip errors, 352, 364 
π approximation via QFT, 256–261 
Planck constant, 300, 310 
Podolsky, B., 58 
Positive operator-valued measure, 71 
Postulates of quantum mechanics, 68 
POVM, 71 
Power arithmetic, 289, 297 
Power function via Kronecker products, 

13 
Preskill, John, 127 
Principal component analysis (PCA), 

331–336, 342–347 
Probabilistic Turing machines, 128 
Probability amplitudes, 15 

binary addressing, 23 
ket definition, 68 
maximally mixed state, 111 
measurement, 69, 70 
qubits as states, 16, 19 

equal superposition with same 
amplitude, 41 

Probability amplitudes (conti.) 
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projection operators extracting 
amplitude, 46 

state class code, 25 
state collapsing on measurement, 16, 69 
state vectors and unitary operators, 29 
Swap gates, 51 

Product states, 59 
Programming languages 

about hierarchy of abstractions, 367, 
380 

about programming, 364, 377 
compilers, see Compilers, see 

Compilers 
FORTRAN, 364, 377 
Haskell, 372, 386 

Quipper as embedded DSL, 372, 386 
Quipper oracle construction, 373, 

387 
Silq as embedded DSL, 374, 388 
Silq oracle construction, 374, 388 

PSI probabilistic, 374, 388 
Q language C++class library, 372, 386 
Q#, 375, 389 

Silq comparison, 374, 388 
QASM tool, 367, 380 

addition via QFT circuit, 267, 272 
QCL, 368–370, 381–383 

Quipper comparison, 373, 387 
Quipper, 372, 386 

oracle construction, 373, 387 
proto-Quipper follow-ups, 373, 388 
QCL comparison, 373, 387 
Silq comparison, 374, 388 

resources for information, 375, 389 
Scaffold, 370, 383 

classical and quantum constructs, 
376, 391 

entanglement analysis, 371, 385 
hierarchical QASM, 371, 384 
transpiler, 370, 384 

Silq, 374, 388 
code snippet showcasing, 374, 389 
oracle construction, 374, 388 

Projection operators, 46 
2-dimensional index into matrix, 

46 
controller and controlled qubits not 

adjacent, 49 
Hermitian, 46 
not unitary or reversible, 46 
outer product representation, 46 
projective measurements and, 70 

Projection operators (projectors) 
decomposition with, 119 
n- it projector construction, 47 

Projective measurements, 69–72 
about, 70 

ProjectQ commercial system, 375, 389 

simulator, 383, 397 
PSI probabilistic programming language, 

374, 388 
Pure states 

compiler optimization, 378, 392 
trace of density matrix, 28 

Python 
@ operator for matrix multiplication, 

13 
conjugate function, 2 
about, 11 
about numpy, 11 
C++ 

accelerated gate application, 95–101 
execution speed, 95, 100 
extending Python with, 96 
sparse representation, 101 
sparse representation benchmarked, 

103 
complex numbers, 2 
operator application, 30–31 
Tensor class, 11–14 

⋆ operator for Kronecker product, 13 
comparing to values, 14 

Q language C++class library, 372, 386 
Q# commercial system (Microsoft), 375, 

389 
programming language, 375, 389 

Silq comparison, 374, 388 
Quantum Developer Kit, 375, 389 

QAOA (quantum approximate 
optimization algorithm), 312, 322 

QASM tool, 367, 380 
addition via QFT circuit, 267, 272 
cQASM, 367, 381 
hierarchical QASM, 371, 384 
openQASM, 367, 381 
transpilation dumper function, 90 

qc (quantum circuit) data structure 
about abstraction, 80 
constructor, 80 
gates, 82–85 

adjoint, 82 
applying, 82, 98 
double-controlled gates, 83 
fast application, 92–95 
fast application generalized, 94–95 
faster application with C++, 95–101 
multi-controlled gates, 84 
parameterized gates, 83 
Swap and controlled Swap gates, 85 

measurements, 86 
quantum registers, 81 
qubits added, 81 
sparse representation, 101–102 

benchmarking, 103 
transpilation extension of 
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eager mode, 88 

QCL programming language, 368–370, 
381–383 

Quipper comparison, 373, 387 

QFT, see Quantum Fourier transform, see 
Quantum Fourier transform 

qHipster simulator, 382, 397 

Qiskit commercial system (IBM), 375, 
389 

ALAP scheduling of gates, 379, 393 

simulators, 383, 398 

QRAM model of quantum computing, 
365, 366, 378, 379 

gate approximation, 382, 396 

qsim simulator (Google), 383, 397 

qsimh simulator (Google), 383, 397 

Quantum advantage, 127–136 

Quantum amplitude amplification (QAA), 
218–221 

Quantum Amplitude Estimation (QAE), 
224–228 

Quantum approximate optimization 
algorithm (QAOA), 312, 322 

Quantum arithmetic for full adder, 
265–271, 276 

Quantum circuit (qc) data structure 

about abstraction, 80 

constructor, 80 

gates, 82–85 

adjoint, 82 

applying, 82, 98 

double-controlled gates, 83 

fast application, 92–95 

fast application generalized, 94–95 

faster application with C++, 95–101 

multi-controlled gates, 84 

parameterized gates, 83 

Swap and controlled Swap gates, 85 

measurements, 86 

quantum registers, 81 

qubits added, 81 

sparse representation, 101–102 

benchmarking, 103 

transpilation extension of 

eager mode, 88 

Quantum circuit model, see also Circuits 

Quantum circuit notation, 53–55 

controlled gates 

controlled X gates, 54 

controlled Z gates, 54 

Controlled-by-0 Not gate, 54 

more than one qubit controlling, 54 

entangler circuits, 59–61 

fan-out circuits, 126 

full adder, 123 

information flow double lines, 54 

logic circuits, 126 

measurement, 54 

oracle for Bernstein–Vazirani 
algorithm, 164 

quantum computation, 67 
qubit order, 53 
single-qubit operator applied, 53 
state change depiction, 53 
state initialization, 53 
swap test, 150 
X gates, 54 

Quantum computers 
arithmetic multiplication, 271, 276 
arithmetic via full adder, 123–126 

quantum arithmetic, 265–271, 276 
classical computers controlling, 365, 

366, 378, 379 
classical computers simulated by, 128 
commercial systems, 375, 389 
compiler design challenges, 364, 378 
density matrices for theory of, 106 
environmental challenges, 350–357, 

362–369 
error correction challenges, 357, 370 
flow control via controlled gates, 48–50 

QCL programming language, 369, 
382 

Silq programming language, 374, 
388 

GPU coprocessors, 364, 378 
logic circuits, 126 
Noisy Intermediate Scale Quantum 

Computers, 299, 308, 365, 378 
operators as ISA of, 29 
QRAM model, 365, 366, 378, 379 

gate approximation, 382, 396 
quantum computation, 67 
λ-calculus to express, 372, 386 

quantum registers, 68, 78–80 
simulation, see Simulation 
uncomputation, 66–68 

QCL programming language, 368, 
382 

Silq programming language, 374, 
388 

transpilation intermediate 
representation, 88 

trick for saving result, 68 
Quantum computing fundamentals 

controlled gates, 48–50 
controlled Not gates, 48–50 
controlled Not gates constructor 

function, 50 
controlled phase gates, 52 
controlled Swap gates, 51 
Swap gates, 51 

data types, 12 
abstracting, 12 
complex data type selection, 12 

Quantum computing fundamentals (conti.) 
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entanglement, 58–65 

measurement 

examples, 73 

implementation, 72 

projective measurements, 69–72 

quantum mechanics postulates, 68 

multi-controlled gates, 57 

controlled–controlled Not gates, 55 

Sleator–Weinfurter construction, 56 

No-Cloning Theorem, 64 

error correction challenge, 358, 370 

No-Deleting Theorem, 65 

operators, 29–34 

apply() function, 34 

application, 30–31 

base class, 29 

multiple qubits, 31–33 

padding operators, 33 

unitary operators, 29 

quantum circuit notation, 53–55 

qubits, 15–17 

Bloch sphere, 17–19 

Bloch sphere coordinates for given 
state, 37 

constructing in code, 16 

single-qubit gates, 34–48 

Bloch sphere coordinates, 37 

flexible phase gates, 42 

Hadamard gates, 40–41 

identity gates, 35 

Pauli matrices, 35 

phase gates, 41 

projection operators, 46 

rotations, 38 

square roots of gates, 44–46 

U3 gates, 43 

states, 19–28 

binary interpretation, 23–25 

qubit ordering, 21–22 

represented as matrices, 28 

State constructors, 27 

State member functions, 25–27 

tensoring states, 20 

Tensor class, 11–14 

uncomputation, 66–68 

Quantum Developer Kit (QDK), 375, 389 

simulators, 383, 398 

Quantum dot decoherence time, 350, 362 

Quantum error correction 

about, 350, 357, 362, 369 

bit-flip errors, 359–361, 371–373 

Shor’s 9-qubit code, 362, 374 

compiler optimization and, 376, 390 

error correction code memory, 357, 369 

error syndrome, 359, 371 

phase-flip errors, 361, 373 

Shor’s 9-qubit code, 362, 374 

quantum computing challenges, 357, 
370 

quantum noise, 350–357, 362–369 
repetition code, 357, 369 

majority voting, 357, 369 
No-Cloning Theorem, 358, 370 
quantum repetition code, 358, 370 

resources for information, 363, 376 
Shor’s 9-qubit error correction code, 

362, 374 
Quantum Fourier transform (QFT) 

about, 244 
algorithm detail 

about, 258, 261 
two-qubit QFT online simulation, 

264, 268 
online simulation, 264, 268 
order finding, 279–292, 300 

continued fractions, 290, 297 
controlled modular multiplication, 

288, 295 
experimentation, 290, 298 
main program, 283–284, 290–292 
modular addition, 286–288, 293–295 
support routines, 284–286, 292–293 

π approximation, 256–261 
QCL programming language, 370, 383 
QFT operator, 262, 266 

inverse, 263, 267 
quantum arithmetic 

addition, 265–271, 276 
multiplication, 269, 271, 274, 276 
testing, 270, 275 

quantum phase estimation, 246–256, 
259 

Quantum Hello World algorithm, 137 
Quantum information, see Information 
Quantum interference, 162 
Quantum IO Monad, 372, 386 
Quantum machine learning 

Euclidean distance, 327–331, 338–342 
quantum algorithms that use, 331, 

342 
principal component analysis, 331–336, 

342–347 
Quantum mean estimation, 237–239 
Quantum mechanics 

Copenhagen interpretation, 59 
hidden state, 58, 61 
postulates, 68 

Quantum median estimation, 241–243 
Quantum minimum finding, 239–241 
Quantum noise, 350–357, 362–369 

about, 354, 366 
amplitude damping, 355, 367 
channels, 353, 365 

bit flip and phase flip, 354, 366 
depolarization, 354, 366 
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compiler optimization and noise 
reduction, 376, 390 

error correction, 357–363, 369–376 
gates imprecise, 356, 368 
modeling via error injection, 355, 367 

checking bit-flip error correction, 
359, 372 

gates as quantum noise source, 356, 
368 

phase damping, 356, 368 
quantum error conditions, 351, 363 
quantum operations, 352, 364 

operation element, 353, 365 
operator-sum representation, 353, 

365 
simulation, 382, 383, 397, 398 

Quantum operations 
operation element, 353, 365 
operator-sum representation, 353, 365 
quantum noise, 352, 364 

Quantum parallelism, 162, 169 
Quantum phase estimation (QPE), 

246–256, 259 
detailed derivation, 248–252, 254 
Hamiltonian eigenvalues, 299, 308 
implementation, 253–255, 257 
phase estimation, 247, 248 

definition, 247, 248 
Quantum counting, 222 

Quantum programming languages 
about hierarchy of abstractions, 367, 

380 
about programming, 364, 377 
compilers, see Compilers, see 

Compilers 
Haskell, 372, 386 

Quipper as embedded DSL, 372, 386 
Quipper oracle construction, 373, 

387 
Silq as embedded DSL, 374, 388 

PSI probabilistic, 374, 388 
Q language C++class library, 372, 386 
Q#, 375, 389 

Silq comparison, 374, 388 
QASM tool, 367, 380 

addition via QFT circuit, 267, 272 
QCL, 368–370, 381–383 

Quipper comparison, 373, 387 
Quipper, 372, 386 

oracle construction, 373, 387 
proto-Quipper follow-ups, 373, 388 
QCL comparison, 373, 387 
Silq comparison, 374, 388 

resources for information, 375, 389 
Scaffold, 370, 383 

classical and quantum constructs, 
376, 391 

entanglement analysis, 371, 385 

hierarchical QASM, 371, 384 

transpiler, 370, 384 

Silq, 374, 388 

code snippet showcasing, 374, 389 

oracle construction, 374, 388 

Quantum random circuits (QRC), 129 

simulation design, 131 

simulation evaluation, 135 

simulation implementation, 133 

simulation metric, 133 

Quantum random walk 

1D walk, 294–296, 302–304 

2D walk, 295, 304 

about, 293, 297, 301, 306 

classical random walk, 293, 301 

coin toss, 294, 302 

walking the walk, 296–298, 304–307 

Quantum registers, 78–80 

about, 76 

code to create and initialize, 79 

libq implementation, 384, 399 

qc data structure, 81 

compiler optimization and, 376, 390 

inverting a register, 90 

QCL programming language, 368, 381 

reg class, 78 

result storage, 68 

Quantum simulation, 299, 308 

Quantum state preparation 

about, 177 

data encoding, 177–181 

amplitude encoding, 178 

basis encoding, 177 

Hamiltonian encoding, 180 

Möttönen’s algorithm, 182–188 

Solovay–Kitaev algorithm, 188–199 

two- and three-qubit states, 181 

Quantum supremacy, 127–136 

“Quantum supremacy using a 
programmable superconducting 
processor” (Arute et al.), 128 

Quantum teleportation, 138–142 

error correction trick, 359, 371 

Quantum Turing machines, 128 

Qubits, 15–17 

about the state of a qubit, 15, 19 

basis states, 15, 19 

basis states orthonormal, 15 

collapsing on measurement, 16, 58, 
69 

communicating state of two with 
one, 142–145 

equal superposition of adjacent 
qubits, 41 

measurement, 72 

measurement examples, 73 

probability amplitudes, 15, 16, 19 

state class constructors, 27 
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Qubits (conti.) 

superposition via Hadamard gates, 40 

tensor product combined state, 19 

ancilla qubits, 57 

entanglement, 58 

uncomputation, 66 

binary addressing, 23 

Bloch spheres describing, 17–19 

computing coordinates for given 
state, 37 

cloning or copying impossible, 64 

error correction challenge, 358, 370 

column vectors of complex numbers, 2, 
19 

compiler optimization via recycling, 
381, 395 

constructing in code, 16 

data structure, 16 

tensoring states, 20 

deleting impossible, 65 

entanglement, 58–65 

junk qubits, 66 

operator application, 30–31 

applied at index specified, 33 

controller and controlled qubits, 
48–55 

multiple operators in sequence, 33 

multiple qubits, 31–33 

nonadjacent controller and controlled 
qubits, 49 

norm preserving, 29 

notation for qubit index applied to, 
33 

projection operators extracting 
subspace, 70 

quantum computation, 67 

qubit ordering, 94 

order of qubits, 21–22 

operator application, 94 

quantum circuit notation, 53 

phase, 26 

quantum circuit notation, 53 

scaling complexity, 76 

tensors constructing, 16 

nbits property, 23 

code, 19 

state for n qubits, 19 

topological limitations to interactions, 
50 

Query complexity, 162 

QuEST (Quantum Exact Simulation 
Toolkit), 383, 397 

Quipper programming language, 372, 386 

oracle automatic construction, 373, 387 

proto-Quipper follow-ups, 373, 388 

QCL comparison, 373, 387 

Silq comparison, 374, 388 

Quirk online simulations, 264, 268 

QX Simulator, 383, 397 

Random circuits, see Quantum random 
circuits (QRC) 

Random number generator, 137 
coin toss, 294, 302 
random combination of 0 or 1 states, 27 

Random walk 
2D walk, 295, 304 
about, 297, 306 
classical random walk, 293, 301 
coin toss, 294, 302 
quantum random walk 

1D walk, 294–296, 302–304 
about, 293, 301 
walking the walk, 296–298, 304–307 

Reduced density operator 
partial trace derivation, 107 

code, 108 
Quirk qubits on Bloch sphere, 264, 269 

Reg class, 78 
Registers, 78–80 

code to create and initialize, 79 
libq implementation, 384, 399 
qc data structure, 81 

compiler optimization and, 376, 390 
inverting a register, 90 
QCL programming language, 368, 381 
reg class, 78 
result storage, 68 

Relaxed peephole optimization, 379, 394 
Renormalization, 72 
Repetition code, 357, 369 

majority voting, 357, 369 
No-Cloning Theorem, 358, 370 
quantum repetition code, 358, 370 

Resources for information 
computational complexity theory, 128 
logical to physical mapping, 382, 396 
quantum error correction, 363, 376 
quantum programming languages, 375, 

389 
Quirk online simulator, 264, 268 
Schrödinger equation, 301, 310 
simulators available, 382, 397 

RevKit for reversible oracles, 383, 397 
Rk gates, 42, 43 
Roots (square roots) of gates, 44–46 

scipy sqrtm() function, 45 
Rosen, N., 58 
Rotation axis, 40 
Rotation operators, 38 

axis of rotation, 40 
constructed via U3 gates, 44 
controlled rotation gates additive, 244 
discrete phase gates, 42 
error source potential, 42 
Hadamard gates, 40–41 
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phase gates, 41 experimentation, 290, 298 
quantum counting, 222 
square roots of, 45 

Rotations for encoding, 179 
Row vectors 

bras in Dirac notation, 2 
inner products, 3 

RSA encryption algorithm, 273, 278 

S gates, see also Phase gates 
square root as T gate, 45 

Scaffold programming language, 370, 383 
classical and quantum constructs, 376, 

391 
entanglement analysis, 371, 385 
hierarchical QASM, 371, 384 
transpiler, 370, 384 

Scalability 
about, 76 
complexity of scaling up, 76, 365, 378 
controlled gates, 50 
gate fast application, 92–95 
hierarchical QASM, 371, 384 
Quipper programming language, 373, 

387 
Scalar products, see Inner products 
Scheduling of gates, 378, 392 
Schmidt decomposition, 111–115 
Schrödinger equation 

qsim simulator, 383, 397 
resource for more information, 301, 310 
time-independent for state evolving, 69 

derivation, 300–301, 309–310 
variational principle, 301, 310 

Schrödinger full-state simulations, 77 
Schrödinger–Feynman path histories, 100, 

129, 136 
qsimh simulator, 383, 397 

Schrödinger–Feynman Simulation, 78 
scipy 

installing, 45 
sqrtm() function, 45 

Shor’s 9-qubit error correction code, 362, 
374 

Shor’s integer factorization algorithm, 
273–279, 285 

about, 273, 278 
about phase estimation, 258, 261 
classical 

experimentation, 277, 282 
factorization, 274, 279 
greatest common divisor, 274, 279 
modular arithmetic, 273, 278 
order finding, 275–277, 280–282 

order finding quantum algorithm 
continued fractions, 290, 297 
controlled modular multiplication, 

288, 295 

main program, 283–284, 290–292 
modular addition, 286–288, 293–295 
support routines, 284–286, 292–293 

sparse representation benchmarked, 103 
Silq programming language, 374, 388 

code snippet showcasing, 374, 389 
oracle construction, 374, 388 

Similarity tests 
about, 150 
Hadamard test, 155–160 
inversion test, 160 

Similarity Transformation, 342, 354 
Simon’s algorithm, 176 
Simon’s generalized algorithm, 176 
Simulation 

about scalability, 76 
available simulators, 382, 397 
circuits, 80–86 

benchmarking, 103 
double-controlled gates, 83 
fast gate application, 92–95 
faster gate application, 95–98 
finalization, 98 
gate application, 82 
measurement, 86 
multi-controlled gates, 84 
optimization 1st act, 99 
parameterized gates, 83 
qubits, 81 
sparse representation, 101–102 
standard gates, 82 
Swap and controlled Swap gates, 85 

complexity, 76, 129 
intermediate representation, 86–91 
online simulators, 264, 268 
open-source simulators, 382, 396 
parallelization of gates, 379, 393 
quantum Fourier transform online 

simulation, 264, 268 
quantum random circuits 

Google team, 129, 135 
metric, 133 
simulation design, 131 
simulation evaluation, 135 
simulation implementation, 133 

quantum registers, 78–80 
quantum simulating classical 

computers, 128 
quantum simulation, 299, 308 

Single-qubit gates, 34–41 
about constructing multi-qubit 

operators, 35 
about quantum gates, 34 
Bloch sphere coodinates, 37 
Hadamard gates, 40–41 
identity gates, 35 

applied to multiple qubits, 32 
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Single-qubit gates (conti.) 
Pauli matrices, 35 
phase gates, 41 

discrete phase gates, 42 
phase shift or kick gates, 43 
various gates via, 43 

projection operators, 46 
quantum circuit notation, 53 
reversed by conjugate transpose, 29 
Rk gates, 43 
rotation operators, 38 

Hadamard gates, 40–41 
square roots of gates, 44–46 
T gates, 43 

via phase gates, 43 
U1(λ) gates, 43 
U3 gates, 43 
X gates, 29, 36 

applied to multiple qubits, 32 
Y gates, 36 
Z gates, 36 

Singular value decomposition, 332, 343 
Sleator–Weinfurter construction, 56 
Solovay–Kitaev (SK) algorithm, 188–199 

about, 188 
algorithm, 192–194 
balanced group commutator, 194–197 

matrix diagonalization function, 196 
Bloch sphere angle and axis, 189 
evaluation, 197 
pre-computing gates, 191 
similarity metric trace distance, 191 
theorem, 188 
universal gates, 189 

SU(2) group, 189 
Solovay–Kitaev (SK) theorem, 188 
Sparse representation, 101–102 

benchmarking, 103 
libquantum library, 101 

simulation, 382, 397 
SPEC benchmarks, 129 
Spooky action at a distance, 58, 

61 
quantum teleportation, 138–142 

sqrtm() function of scipy, 45 
Square roots of gates, 44–46 

scipy sqrtm() function, 45 
State class 

constructing qubits in code, 16 
qubit data structure, 16 

constructors, 27 
all 0-states or 1-states, 27 

density() function, 106 
member functions, 25–27 

dumper function, 26 
probability and amplitudes, 25 
Tensor class parent, 19 
nbits property, 23 

States, 19 
about, 12 
about bit order, 22 

binary interpretation, 23–25 
bit index notation, 94 

basis states of qubits, see Basis states 
cloning, 65 
collapsing on measurement, 16, 58 

Born rule, 69 
measurement definition, 69 
renormalization, 72 

density matrices, 28 
entanglement, 58–65 
kets representing state of system, 68 

state evolving via operators, 69 
maximally mixed state, see also 

Probability amplitudes 
operator application, 30–31 

multiple qubits, 31–33 
projection operators extracting 

amplitude, 46 
quantum circuit notation 

single-qubit operators applied, 53 
state change depiction, 53 
state initialization, 53 

quantum operations, 352, 364 
qubit ordering, 21–22 
qubit states, 15 
similarity tests 

about, 150 
Hadamard test, 155–160 
inversion test, 160 
swap test, 150–154 
swap test code, 153 
swap test for multi-qubit states, 154 

single-qubit 0 and 1 state constants, 28 
state preparation 

about, 177 
data encoding, 177–181 
Möttönen’s algorithm, 182–188 
Solovay–Kitaev algorithm, 188–199 
two- and three-qubit states, 181 

state purification technique, 115 
system state as tensor product, 78 
tensors constructing qubits, 16 

code, 19 
qubit data structure, 16 
state for n qubits, 19 
tensor product combined state, 20 

vectors 
binary interpretation, 23–25 
column vectors of complex numbers, 

2, 16 
kets representing state of system, 68 
normalization, 16, 26 
normalized vectors, 4 
operator application, 30–31, 69 
scaling complexity, 76 
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unitary operators as norm preserving, 
29 

SU(2) group, 189 
Subset sum algorithm, 322–326, 333–337 

about, 322, 333 
experiments, 324–326, 335–337 
implementation, 323, 334 

Subtraction 
decrement operator, 295, 303 
testing quantum arithmetic, 270, 275 

Summit supercomputer simulating 
quantum random circuits, 135 

Superdense coding, 142–145 
Superposition 

about, 40 
about measurement, 69 

error correction challenge, 358, 370 
about qubits, 15 
Hadamard gates on qubits, 40 

equal superposition of adjacent 
qubits, 41 

linear combination of basis states, 15 
maximally mixed state, 111 
state after operator applied, 53 

SVD, 332, 343 
Swap gates, 51 

compiler optimization, 379, 394 
controlled Swap gates, 51 
qc data structure, 85 

Swap test, 150–154 
code, 153 
multi-qubit states, 154 

Sycamore processor, 129 

T gates 
square root of S gates, 45 
universal gates, 189 
via phase gates, 43 

Teleportation, 138–142 
entanglement teleportation, 145 
error correction trick, 359, 371 

Tensor class, 11–14 
⋆ operator for Kronecker product, 13 
checking if Hermitian or unitary, 14 
comparing to values, 14 

is_close() function, 14 
inner products, 6 
instantiating, 12 
ndarray data structure, 12 
tensor_type() abstraction, 12 

Kronecker product member function, 
13 
⋆ operator for, 13 

operators derived from, 29 
qubit states code, 19, 20 
State class derived from, 19 
nbits property, 23 

Tensor products, 5 

⊗ operator, 5 
⋆ operator, 19 
binary interpretation, 23 
distributive, 6 
Kronecker product as, 5, 13 
mixed-product property, 6 
multiplication with scalar, 5 
operators applied to multiple qubits, 

31–33 
multiple operators in sequence, 33 

product states, 59 
state of two or more qubits, 19 
trace of a matrix, 9 

Testing 
debugging, 14 
quantum arithmetic, 270, 275 
tracing out state of one qubit, 109 

Time-evolution encoding, 181 
Toffoli gates, 55 

logic circuits from, 126 
multi-controlled X gates, 57 
Sleator–Weinfurter construction, 56 

Tools and techniques 
density matrices, 106 
maximal entanglement, 111 
Pauli representation of operators, 

117–120 
reduced density operators, 107–110 
Schmidt decomposition, 111–115 
spectral theorem for normal matrices, 

104–106 
state purification, 115 
XYX decomposition, 122–123 
ZYZ decomposition, 120–122 

Trace distance, 191 
Trace of a matrix, 9 

tensor product, 9 
trace of outer product of two kets, 9 

Transpilation 
intermediate representation 

circuit capabilities of, 88 
dumper function, 90 
inverting a register, 90 
IR base class, 87 
IR nodes, 86 
subcircuit control, 89 
uncomputation, 88 

Scaffold transpiler, 370, 384 
Transposition 

involutivity, 2 
matrix, 2 

Two-qubit quantum Fourier transform 
online simulator, 264, 268 

U1(λ) gates, 43 
controlled U1(λ) gate for quantum 

arithmetic, 266, 270 
U3 gates, 43 
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Uncomputation, 66–68 

QCL programming language, 368, 382 

Silq programming language, 374, 388 

transpilation intermediate 
representation, 88 

trick for saving result, 68 

Underscore in function names, 14 

Unitary matrices 

about, 7 

checking if Tensor is unitary, 14 

norm preserving, 7, 29 

tensoring together with ⊗, 13 

Unitary operators, see also Gates; 
Operators 

invertable, 29 

Universal gates 

definition, 55, 189 

QRAM model of quantum computing, 
366, 379 

sets of gates in quantum computing, 51, 
55 

Solovay–Kitaev theorem, 188 

SU(2) group, 189 

V gates as square root of X gates, 44, 56 

val2bits() for decimal to binary, 23 

Variational quantum eigensolver (VQE), 
299–312, 322 

about, 299, 308 

algorithm, 305–308, 314–317 

expectation values, 303, 312 

Hamiltonian type, 302, 311 

measurement in Pauli bases, 302–305, 
312–314 

measuring eigenvalues, 308–309, 
317–319 

multiple qubits, 310–312, 320–322 

quantum phase estimation, 299, 308 

Schrödinger equation, 300–301, 
309–310 

variational principle, 301, 310 

VQE by peek-a-boo, 320, 331 

Vector database, 331, 342 

Vectors 

adjoint of, 2 

binary interpretation, 23–25 

Bloch vector, 18 

rotation operators, 38 

complex numbers, 1 

dual vectors for a ket, 2 

eigenvalues, 6 

eigenvectors, 6 

Euclidean distance, 327–331, 338–342 

quantum algorithms that use, 331, 
342 

inner products, 3 
linear independent, 4 
norm of, 4 
normalization, 4 
orthogonal, 4 
states 

basis states of qubits, 15 
initializing with normalized vector, 

28 
kets representing state of system, 68 
normalized vectors, 4 
operator application, 30–31, 69 
scaling complexity, 76 
unitary operators as norm preserving, 

29 
tensor products, 5 
unitary matrices as norm preserving, 7, 

29 
vector spaces, 4 

VQE, see Variational quantum 
eigensolver, see Variational quantum 
eigensolver 

W state entanglement, 63 
Weighted maximum cut, 315, 325 
Wilczek, F., ix, xii 
Wire optimization, 381, 395 

X gates, 29, 36 
applied to multiple qubits, 32, 92 
constructed with U3 gate, 43 
controlled–controlled X gates, 55 

Sleator–Weinfurter construction, 56 
logic circuits from, 126 
multi-controlled X gates, 57 
Not gate, 36 
quantum circuit notation, 54 

controlled X gates, 54 
Controlled-by-0 Not gate built, 54 

square root of as V gate, 44, 56 
XYX decomposition, 122–123 

Y gates, 36 
square root of, 45 

yroot gates, 45 

Z gates, 36 
controlled Z gates, 52 
phase-flip gates, 36 
quantum circuit notation, 54 

controlled Z gates, 54 
via phase gates, 43 

Z90 gates, see also Phase gates 
Zeilinger, Anton, 62 
ZYZ decomposition, 120–122 
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