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Preface

This book grew from lecture notes developed for the junior-level course
Quantum Information Processing, which has been offered regularly to
computer science, mathematics, physical sciences, and engineering ma-
jors at the University of Central Florida since 2022. The course aims to
introduce basis concepts, ideas, and methods in quantum information to
undergraduates who had no previous exposition to quantum mechanics.
Thus the prerequisites for the course are rather minimal: Physics I and 11
(calculus-based mechanics, electricity, magnetism, and optics), and Cal-
culus with Analytic Geometry I, IT, and III (derivatives, integrals, vectors
fields, line and multiple integrals, simple ordinary differential equations,
and matrices) or Matrix and Linear Algebra. At UCF, completing these
courses marks the transition from sophomore to junior standing. The
course is often taken by seniors as well.

We follow the same approach of that course in this book and assume
the reader knows no more than fundamental physics and mathematics
at the junior level. The book attempts to be as self-contained as possi-
ble and starts with a concise description of the historic and conceptual
developments that led to quantum mechanics, from Planck’s black-body
radiation to the Copenhagen interpretation. It then introduces vector
spaces and operators utilizing Dirac’s notation to familiarize the reader
with the mathematical formulation used in quantum mechanics. The
last foundational step is a chapter with a formal presentation of quan-
tum mechanics postulates.

Chapters 5 to 9 cover key elements of quantum information with
increasing level of complexity. After introducing qubits, gates and cir-
cuits, Bloch sphere representation, and other basic concepts and tools,
the book moves on to key results such as the non-cloning theorem, tele-
portation, and quantum algorithms, from simple ones such as Deutsch’s
to more complicated ones such as Shor’s and Grover’s.

Those materials are the bulk of the course and the remaining chap-
ters in the book are not always covered. The choice of which chapters to
cover depends on the particular student cohort. For instance, when the
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majority of the students in the class is from computer science and en-
gineering majors, chapters 10, 14, and 15 may be skipped. When the
majority is from physics and optics & photonics, chapter 11 can be
skipped and chapter 15 replaced by assigned term papers requiring a
more detailed description of various physical realizations of qubits. It is
also possible to skip certain sections in some chapters without compro-
mising overall understanding. The book is organized in such a way that
instructors adopting it in their courses may freely pick and choose what
to cover according to the background and interests of their students.
In the author’s own experience, it is actually quite difficult to cover all
sections of all chapters in a 15-week term.

All chapters but 12, 14, and 15 contain exercises to help students
practice applying concepts and methods. These exercises were assigned
as homework or featured in past mid-term and final exams. Solutions
are provided only to instructors upon request.

At several points in the course, Qiskit, a python library for simulat-
ing and programming quantum computers, is used for practicing with
quantum gates, quantum circuits, and for the graphical representation of
Bloch spheres, circuits, quantum states and measurement outcomes. The
book describes these activities; template codes are also available upon
request. Python is such an accessible language that even students with
very little familiarity with coding have been able to use the templates
and complete the activities. An appendix explaining how to install and
use Qiskit is included for convenience, but the reader should be aware
that this package is constantly being updated, so the official online doc-
umentation should be always checked first.

Appendices are also included to help students with some linear alge-
bra concepts and mathematical methods that are employed in the main
text or are required for solving exercises. An appendix on the basics of
computational complexity theory is also provided.

This book does not attempt to be a comprehensive treatise of quan-
tum information processing, which is now a vast and yet still rapidly
evolving subject. Like in the course that inspired it, the goal of this
book is to provide just enough information to prepare undergraduates for
more specialized, higher-level courses, and for research and employment
opportunities that require basic knowledge of the subject. The focus is
primarily on quantum computation because it covers foundational mate-
rial for both quantum communications and quantum sensing. Therefore,
the latter two areas of quantum information processing are only sparsely
touched in this first edition and will hopefully be enhanced in the future.
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References are provided at the end of all chapters for readers who want
to gain a deeper understanding or learn topics in more details.

The author is in debt to more than one hundred students who have
endured tough homework assignments and tests and yet found energy
to provide suggestions and corrections to lecture notes and exercises. He
would also like to acknowledge helpful suggestions from Drs. Hebin Li,
Andrei Ruckenstein, and Bahaa Saleh.

E. R. Mucciolo

Winter Park, Florida
February, 2025
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CHAPTER 1

Introduction

What is Quantum Information Processing (QIP)?

It is a collection of concepts, methods, and techniques that aim to
process information (store, compute, transmit) by exploring two fun-
damental properties of quantum mechanical systems: interference and
entanglement.

It is said that quantum mechanics has led to two revolutions so far.

e The first revolution started at around 1900 with the advent of foun-
dational theories by Planck, Einstein, Bohr, Heisenberg, Dirac, and
many others, leading to many scientific breakthroughs in atomic
and molecular physics, solid-state physics, nuclear and particle
physics, as well as technological advances such as lasers, transis-
tors, magnetic storage, etc. Despite their tremendous impact on
society, these new technologies did not exhaust the full potential
of quantum mechanics.

e The second revolutions started in the late 1980s to mid 1990s by
Bennett, Feynman, Deutsch, Shor, Grover, and others who showed
that we can harness the power of quantum mechanics to solve prob-
lems of practical relevance that were considered too hard to tackle
efficiently until then. The second revolution is about applying the
rules and concepts learned during the first revolution to process
information faster, more securely, and more accurately.
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What does it take to understand QIP?

As much as mathematics is the language of physics, linear alge-
bra is the language of QIP. Concepts are expressed in terms of “vec-
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tors”,

scalers”, “operators”, “matrices”, “tensors”, “spaces”, “transfor-

mations”, etc. Fortunately, pioneers and founders of quantum mechanics
have developed a nice and intuitive formulation that naturally infuses
linear algebra. We will soon discuss this formulation.

Some knowledge of fundamental quantum phenomena is also impor-
tant and we will tackle that in the next chapter.

Finally, the critical question: what is QIP good for?

We can break down QIP into three main areas, as far as applications
are concerned:

1. quantum computing
2. quantum communication
3. quantum sensing.

In this order, they also reflect the level of “quantum power” needed,
from high to low, as well as the level of difficulty in implementing them.
These three areas share some common aspects such as the need to store
information faithfully (quantum memories), to precisely control quan-
tum states, and the inexorable susceptibility of quantum information to
decoherence (the nemesis of QIP!).

Practical uses of quantum computing include: database search, crack-
ing of cryptosystems, simulation of complex chemical systems (e.g., for
drug development), solving linear algebra problems, and possibly arti-
ficial intelligence acceleration. Some of these applications require large
and very low-noise quantum processors to work and are therefore some-
what futuristic. Hence, there is an intense search for other applications
where one can take full advantage of the current generation of quan-
tum processors, which are adequately named noisy intermediate-scale
quantum (NISQ) devices.

Applications in quantum communications are already in use (includ-
ing commercially) and boil down to eavesdropping-proof schemes of en-
cryption key exchange. So far they have only been implemented from
point A to point B; there are ongoing efforts to build networks relying
on quantum exchange of information. This area is evolving rapidly.
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Quantum sensing is mostly about enhancing the resolution and de-
tection capabilities of scanners for medical, astronomical, and defense
applications, among other uses. One one hand, some quantum sensing
technologies are readily accessible and are making their way into com-
mercial products; on the other hand, some applications require exquisite
control or the use of very refined materials and are yet to be implemented
in practice.

In this book, we mainly cover topics in quantum computation and
quantum communications, from the fundamentals to applications. We
try to balance depth and breath for both topics. Quantum sensing will
be covered only superficially.

The reader should be aware that many other acronyms related to
QIP are currently in use. In general, they have a broader scope than
QIP and are more appealing to a non-technical audience, such as QISE
(quantum information science and engineering) or QIST (quantum infor-
mation science and technology). But, concepts and methods from QIP
are at the core of these other denominations of the field.
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CHAPTER 2

Basics of Quantum
Phenomena

In this chapter we review the ideas and discoveries that lead to the
development of quantum mechanics. Like other theories in physics, it
was motivated by a series of experimental results that were at odds with
the prevailing theories of the time. New concepts were introduced to
explain those experiments, which in turn led to new experiments and
more discoveries. Quantum mechanics took its current shape about 100
years ago and continues to provide a formidable framework for describing
not only natural phenomena but also for leading us to new technologies,
such as quantum information processing.

2.1 BLACKBODY RADIATION

Quantum mechanics was born in 1900 when Max Planck introduced the
concept of quantization to explain why the radiation emitted by a “black-
body” ! did not grow in intensity unboundedly as a function of the radi-
ation frequency (the so-called ultraviolet catastrophe effect). This was a
big deal because the prevailing physics theories at that time (Newton’s
mechanics, Maxwell’s electromagnetism, and Boltzmann’s statistical me-
chanics) predicted such a behavior, as shown in Fig. 2.1.

However, experiments results followed instead the behavior shown in
Fig. 2.2.

! A blackbody is any macroscopic object in thermal equilibrium at a certain tem-
perature. For an elementary description of blackbody radiation, check the Open-
Stax webpage https://cnx.org/contents/NP30v71W@2.49:0joA1037@7/
6-1-Blackbody—-Radiation.


https://cnx.org/contents/NP3Ov7lW@2.49:OjoA1o37@7/6-1-Blackbody-Radiation
https://cnx.org/contents/NP3Ov7lW@2.49:OjoA1o37@7/6-1-Blackbody-Radiation

6 M Introduction to Quantum Information Processing

black body

catastrophe radiation

—
=
1 (E}MN

detector

I(f) L, T i > ultraviolet

B>

f

Figure 2.1 Left panel: intensity versus frequency for the radiation emitted
by a blackbody for two distinct temperatures as predicted by classical
physics. Right panel: a schematic illustration of a blackbody radiation
detection setup. The detector is connected to a spectrum analyzer that
produces the plot shown on the left panel.
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Figure 2.2 Intensity versus frequency for the radiation emitted by a black-
body observed in experiments.

The theory based on classical physics predicted that the intensity of
the radiation should grow as a function of its frequency, while experi-
ments showed that the intensity had a peak at a certain frequency, but
then decayed for incresing frequencies. The experiments also showed that
the higher the temperature, the higher the frequency where the peak is
located.

Planck understood that the reason for I(f) to grow unbounded with
frequency in the classical theories had to do with the assumption that
oscillations of the atoms in the blackbody had the same average energy,
independently of their frequency. This assumption followed from Boltz-
mann’s statistical mechanics, where the average energy was shown to be
proportional to the temperature of the black body and independent of
anything else.

Planck relaxed that assumption and made the oscillation energies to
vary discretely and be proportional to their frequency,

E =nhf,

where n = 0,1,2,3,... and h is a constant (now named after Planck,
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6.62607 x 1073* m? kg s7!). Based on this assumption, he derived an
expression for the energy density of the blackbody radiation at temper-

ature T',
8 f3 1
U(f, T) - 02 ehf/kBT o 17

where c¢ is the speed of light in vacuum (2.99792 x 10® m/s) and kg is
the Boltzmann constant (1.38065 x 10723 m?-kg-s?/K). His expression
matched precisely the experimental data available! Moreover, it correctly
described other features seen in experiments at that time, such as the
dependence of the peak’s frequency on temperature, as well as the so-
called Stefan’s total power law,

P x T4,

where P is the total power (i.e., energy per unit of time) of the radiation
emitted by the blackbody.

The concept of quantized energy was as much revolutionary in 1900
as it was incomprehensible. Planck would win the 1918 Nobel Prize in
Physics for his theory.

2.2 PHOTOELECTRIC EFFECT

However, the concept of quantization caught on. In 1905, Albert Einstein
used it to put forward a theory of the photoelectric effect , which is the
ejection of electrons from a metal surface when struck by light with
frequencies above a threshold value (say, f > fo), as shown in Fig. 2.3.

K

electron
(K)

photon

(0

A f

Figure 2.3 Left panel: photoelectron kinetic energy versus light frequency.
Right panel: illustration of the photoelectric effect. The ejected electrons
can be collected by a detector and their kinetic energy measured as a
function of the incoming light’s frequency, producing the plot shown on
the left panel.

In Fig. 2.3, K represents the electron’s kinetic energy. Until Ein-
stein’s theory, it was unclear why such a minimum threshold frequency
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was needed and why is independent of the light intensity. Moreover, the
experiments showed that K depended only on the frequency of the light,
and not on the light intensity either. More intense light did not produce
faster electrons but light with higher frequency did.

Einstein explained this behavior by postulating that light itself is
quantized, being formed by packets of energy (now called photons)

E =hf,

where h is the same constant used by Planck . Then, by energy conser-
vation, the ejected electron’s kinetic energy obeys the relation

K:{ hf =W =h(f~fo) forf>fy
0 forf < fo |

where W = hfj is the so-called work function of the metal surface. The
work function is a property of the metal, so different materials will have
different work functions . It is the minimum energy required to free up an
electron from the metal surface. Einstein won a Nobel Prize in Physics
in 1921 for this explanation.

2.3 HYDROGEN ATOM

In 1913, Niels Bohr took the concept of quantization one step fur-
ther. Starting from Rutherford’s model of an atom (a massive positively
charged nucleus surrounded by lightweight negatively charged electrons,
like planets orbiting a star), Bohr quantized the orbital motion of the
electron in the hydrogen atom? by assuming that its angular momentum
can only vary discretely,

h
na- =nh, (21)
where n = 1,2,3,.... From this assumption and using elementary clas-

sical mechanics, it follows immediately that the electron can only take
up discrete total energy values, Fq, Eo, Ej3, etc. Bohr postulated that
the transitions between quantized energy values in the hydrogen atom
involved photons (to be emitted or absorbed) with well-defined, discrete
energies:

hf = E, — Ep.

2Hydrogen was known to have only one electron orbiting around the nucleus.
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Bohr used his theory to derive expressions for the spectral lines emitted
by atomic hydrogen in the gas phase (see Fig. 2.4). His results matched
nearly perfectly the experimental data available at the time, solving a
long-standing puzzle in physics: Maxwell’s equations, when combined
with Newton’s mechanics, predicted that electrons moving around the
nucleus should emit radiation until they run out of kinetic energy, then
falling into the nucleus. Thus Maxwell’s and Newton’s theories combined
predicted that atoms were unstable! In 1922, Bohr received a Nobel Prize
in Physics for his theory.

Figure 2.4 The visible spectral lines emitted by excited hydrogen atoms in
gas state. The lines correspond to the Balmer series, where n’ = 2). The
wavelength increases from left to right. The four most intense lines have
wavelengths 656 nm, 486 nm, 434 nm, and 410 nm, corresponding to
n =3, 4, 5, and 6, respectively. Image taken from LibreTexts Chemistry.

2.4 PARTICLE-WAVE DUALITY

An important aspect that underlies these early theories of quantization
is that they apply to matter and radiation alike. The notion that elec-
tromagnetic radiation (light) can behave like a particle — the photon —
was further solidified by experiments carried out in the early 1920s by
Arthur Compton. He measured the dispersion of X-rays scattered off by
electrons and showed that the wavelength of the X-rays increased af-
ter being scattered, something that only made sense if the X-ray beam
behaved like a collection of particles with well-defined energy and mo-
mentum. This led Louis de Broglie in 1923 to propose the particle-wave

duality relation:
hf h
== =— 2.2
L _2, (22)
where p is the linear momentum (a particle-like property), f is frequency,
and )\ is a wavelength (a wave-like property). Moreover, de Broglie pro-
posed that such a relation holds for both matter (i.e., particles) and

radiation (i.e., light).
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For instance, Bohr’s orbital quantization condition can be under-
stood as a requirement that the electron’s “wave” be stationary around
the nucleus: since L = mwvr and p = mwv, where v is the electron velocity
and r is the radius of the orbit, using Eqgs. (2.1) and (2.2), we can write

nh
mor = —
2T
and
mv = ﬁ
=

Substituting the second equation into the first we obtain
nA = 2ar.

The circumference of the electron’s orbit must be a multiple of its wave-
length, otherwise the orbit does not close onto itself and stationary
motion cannot occur (i.e., it is unstable). See Fig. 2.5. Quantization
is paramount to stability. Compton and de Broglie were also recipients
of the Nobel Prize in Physics, in 1927 and 1929, respectively.

Figure 2.5 A de Broglie standing wave whose wavelength is a quarter of
the electron orbit’s circumference (n = 4).

2.5 DOUBLE-SLIT EXPERIMENT

Is there another way to confirm the particle-wave duality more directly?
The answer is yes! It is the double-slit experiment.

Suppose that we can prepare a beam of identical particles with a
well-defined linear momentum (and thus a well-defined wavelength, per
de Broglie’s duality principle). Let us direct the beam toward a wall with
two narrow slits close to each other and then use a screen on the other
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Figure 2.6 Left panel: the double-slit experimental setup. Right panel:
outcome of the experiment for the cases when one of the slits is closed.

side of the wall to detect the particles that make it through the slits. See
Fig. 2.6.

Firstly, let us consider two cases: (1) when slit #2 is closed and #1
is open; (2) when slit #1 is closed and #2 is open. On the screen, we
will see a continuous and broad distribution of particle “hits”, I; and
I, respectively, each one peaked at a point in front of the correspond-
ing open slit. We can understand the continuous distribution as due to
particles being deflected as they pass through the open slit.

Secondly, consider a third case when both slits are simultaneously
open. What will happen? There are two possible scenarios: the particle-
like scenario, and the wave-like scenario, see Fig. 2.7.

In the particle-like scenario of Fig. 2.7a, we see a continuous and
smooth distribution on the screen, centered at a point in front of the
middle point between the slits. The total intensity is the sum of the in-
tensities when the slits are individually closed. In the wave-like scenario
of Fig. 2.7b, the distribution has peaks and troughs, with the peak am-
plitudes bounded by a continuous envelope, with the most intense peak
at the point in front of the slits. We call this distribution an interference
pattern. See Fig. 2.8 for an actual photograph of an interference pattern.

As long as the wavelength A of the beam and the distance d between
slits are of the same order of magnitude (and slits are thin enough), the
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Figure 2.7 (a) Classical prediction. (b) Actual experimental result.

Figure 2.8 Image of the light emanating from a double slit after projection
onto a screen. Image from Wikipedia Commons.

wave-like scenario (b) always prevails in experiments, no matter whether
the beam consists of particles (e.g., electrons) or light (i.e., photons).

This experiment shows that interference is a key property of all quan-
tum systems. As long as the beam wavelength and the slit separation
are of the same order, the beam will split and then refocus, but in a way
that reveals interference between the two secondary beams emitted by
the slits. Superposition and interference are key fundamental properties
that are heavily utilized in QIP. We will study their consequences in
detail throughout this book.

2.6 THE BIRTH OF QUANTUM MECHANICS

After all these exciting developments in the first couple decades of the
20th century, physicists began to put together a more rigorous mathe-
matical theory to describe and unify quantization, interference, and other
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phenomena that had been observed experimentally. They also began to
build a framework to interpret the results predicted by this new theory.
These were not trivial tasks. Consider that, in Newtonian mechanics, a
particle can have both position and momentum simultaneously well de-
fined. The situation is different for waves (e.g., electromagnetic waves),
which can never be fully localized. How can these two apparently incom-
patible descriptions live side-by-side?

In 1926, Erwin Schrédinger published four papers with a mathemat-
ically complete description of the so-called wave mechanics of matter
(nowadays known as the wave-based formulation of quantum mechan-
ics). His theory provided a quantitatively accurate description of the
electronic structure of the hydrogen atom and introduced the concept
of wave functions. A year earlier, Werner Heisenberg had published a
paper proposing a matrix formulation of quantum mechanics (which is
now very much used in QIP), although very few people understood it
at that time. He coined his theory “matrix mechanics” and introduced a
wealth of concepts and tools. Schrodinger eventually showed that these
two approaches, despite their mathematical differences, were equivalent.

A few years later, in 1928, Paul Dirac extended these theories to the
relativistic domain, which is necessary when particles move close to the
speed of light. And few more years later, he also introduced a very useful
notation for quantum mechanics that we use to this day.

All three were awarded Nobel Prizes: Heisenberg in 1932 (although
he only received in it 1933) and Schrodinger and Dirac in 1933.

Many other people made significant contributions in these early days
of quantum mechanics, such as Wolfgang Pauli, Pascual Jordan, En-
rico Fermi, Max Born, etc. One aspect that took a while to settle was
the physical interpretation of the new theory. Eventually, the so-called
Copenhagen interpretation (driven mainly by Niels Bohr and collabora~
tors) prevailed and became widely accepted, although other interpreta-
tions still exist. Despite their differences, they mostly agree as far as the
formal and practical mathematical aspects of quantum mechanics go.
This is what matters most for a beginner student of QIP and therefore
we will strictly follow the Copenhagen interpretation in this book.

2.7 AMPLITUDES AND PROBABILITIES

Let us go back to the double-slit experiment. What happens if instead
of a dense beam of atomic particles we sent one particle at a time? To
analyze this situation, we define the following probabilities:
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P(z) = probability of the particle hitting the screen at point of coordi-
nate x when both slits are open.
Py (x) = same, but when only slit Sy is open.
Py () = same, but when only slit Sy is open.
Our classical (non quantum) intuition tells us that

P(z) = Pi(z) + Py(x).
But that is not what is seen in the experiments. Instead, the result is
P(I‘) = Pl(x) + PQ(J)) + AP12((II),

where APj(x) represents interference and causes the peaks and troughs
we discussed in the previous section (i.e., a sequence of intensity maxima
and minima). How can we account for that?

Instead of composing probabilities, we need to use amplitudes . Let
us introduce a as the amplitude of a certain possible outcome of the
experiment, where a € C (meaning, a can be a complex number, with real
and imaginary parts). It is convenient (but not required) that |a| < 1.
How do we employ amplitudes? They are certainly not as intuitive as
probabilities, but it turns out that they work similarly. We will now
provide a non-rigorous explanation, but will get back to it in the next
chapter after introducing a bit more math.

Suppose that the particle can take two distinct states or paths when
passing through the slits toward the point of coordinate x on the screen
(i.e., passing through either slit S or slit Sy, when they are both open).
To each one of these distinct states we associate an amplitude, say, a1 (z)
and az(z). Then, the total amplitude of the system can be written as
the sum of these amplitudes, namely,

a(z) = a1 (x) + az(z).

How can we understand that? Notice that each individual amplitudes
a1 and as corresponds to the outcome of a measurement that could be
performed on the system to find out which path was taken. We expect
only one outcome (either S; or S) in such a measurement.

We associate the square of the absolute value of each individual am-
plitude to the probability of observing that particular outcome (i.e., the
particle passing through slit S or slit S, and hitting a certain point on
the screen) when measuring the system without any previous knowledge:

e P(x) = l|ai(z)|?> = probability of the particle having passed
through slit S; and hitting point z.
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e Py(x) = laz(x)|?> = probability of the particle having passed
through slit S5 and hitting point x.

When the system is free to choose between slits S7 or Sy, we sum the
amplitudes (the particle takes both paths at the same time!). The prob-
ability to hit point x on the screen is now equal to

P(z) ja(2)[* = Ja(2) + az(2)?

|ar(2)* + laz(2)|* + a1 (2)a3(x) + aj (x)as(@).

The extra terms are responsible for the interference effect,
APip(x) = ar(z)as(x) + af(z)az(x).

Notice that APys is always real, but it can be positive or negative. For
instance, a; = 1/3 and ay = —1/4 results in APjs = —1/6 and P <
P, + P» in this case.

The underlying concept in this construction is superposition , i.e.,
the ability of a quantum system to be simultaneously in distinct config-
urations. Namely, if there are N possible outcomes for a certain mea-
surement X, a quantum system can be on a state such that its ampli-
tude is a sum of the amplitudes associated to each possible outcome,
a=ay+a+...+ay.

But there is a catch: the system may be in a superposition state, but
if we try to measure X, we will only obtain one of the N possible out-
comes! It is only after we prepare the system multiple times in the same
superposition state, and each time we perform the same measurement,
that we start to see that some outcomes happen more often than oth-
ers: outcome k will happen with a frequency proportional to Py = |ax|?,
where k =1,2,..., N.

There is a lot to digest here. To help fix these new concepts in our
minds, imagine that the quantum system is an unbiased coin. Assume
that Phead = Pl = 1/2. We can set Gneaq = Gtajl = 1/v/2 for the
sake of argument. In principle, it is possible to prepare this quantum
coin in a state that is a superposition of head and tail. Yet, if we try
to measure which face is up, we will either find head or tail, and not
something in-between or both head and tail at the same time. To reveal
the superposition state, we must measure a different property of the coin,
one that is not directly related to which side is facing up. But to do that
we need first to develop an appropriate mathematical formulation. We
will do so by taking the electron as our quantum coin and focus on
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its spin, which is a property related to the electron’s intrinsic magnetic
moment, see Fig. 2.9 (every electron is a small — the smallest — magnet):?

- §

Figure 2.9 Every electron carries a magnetic dipole moment.

In turns out that the electron spin, when measured, yields only two
possible outcomes, regardless to how the measurement is performed. But
being a vector in three spatial dimensions, the electron spin offers more
possibilities of manipulation than a coin, allowing for more interesting
concepts and phenomena, as we will soon find out.

2.8 REFERENCES AND FURTHER READING

1. Eisberg, R. and R. Resnick. 1985. Quantum Physics of Atoms,
Molecules, Solids, Nuclei, and Particles, 2nd edition. John Wiley
& Sons. Chapters 1-4.

2. Tipler, P. A. and Llewellyn, R. 2002. Modern Physics, 4th edition.
W. H. Freeman. Chapters 3, 4, and 5.

3. Liboft, R. L. 2003. Introductory Quantum Mechanics, 4th edition.
Addison Wesley. Chapter 2.

2.9 EXERCISES AND PROBLEMS

Useful quantities for calculations you may have to do:
h=6.63x 1073 Js
kp =138 x 1072 J/K
c=3.00 x 10® m/s
1eV=1602x10719]
1A=10"10m,

3Maxwell’s equations of electromagnetism say that any spinning electric charge
distribution generates a magnetic moment. The tricky aspect is that electrons have
no dimensions! They are point-like objects, as far as we can see in experiments
and therefore should not have an intrinsic magnetic moment, according to classical
physics. Their magnetic moment is quantum mechanical and is fully included in
Dirac’s relativistic formulation of quantum mechanics.
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1. Planck’s spectral density for the radiation emitted by blackbody
as a function of the frequency is given by*

8rhf? 1
u(f) = B ohf/keT _1°

This expression can be used to measure the temperature of a hard-
to-reach source of radiation, such as a star or hot furnace, when the
temperature and spectral density of a reference source are known.
Optical pyrometers are based on this principle (typically, the spec-
tral density is sampled at several frequencies).

(a) Call T, the temperature of a reference (i.e., known) radiation
source and T, the unknown temperature of another source
whose spectral density can be measured. Find an expression
relating the ratio of the spectral densities of these two sources
to their temperatures. Call this expression r(f). How does
r(f) behave when T, = 1,7

(b) About 70 years ago, Dicke, Penzias, and Wilson used a similar
technique to find out that the Earth is surrounded uniformly
in all directions by electromagnetic radiation as if the uni-
verse itself were a blackbody, which they determined to be
at a temperature of 3 K. Their finding gave strong support
to the big-bang theory for the origin of the universe. Find
the predominant wavelength of the radiation of a blackbody
at 3 K (Hint: find at which frequency Planck’s formula has
a maximum and then convert it to wavelength). Does this
wavelength give you a clue for the technique they used in
their experimental investigation?

2. In photoelectric effect experiments, one observes that electrons are
ejected with different velocities, even when the light is monochro-
matic (i.e., has a well-defined frequency). Provide a plausible ex-
planation of this phenomenon using Einstein’s theory.

3. Light with a wavelength of 2000 A hits an aluminum surface. For
aluminum, 4.2 eV are necessary to remove an electron.

4This expression gives the amount of energy emitted by the blackbody radiation
per unit of frequency and unit of volume. It differs with respect to other forms of
the radiation distribution, such as when the density of emitted energy is defined per
unit of wavelength. The two forms are related by the differential relation u(f)df =
u(A)dA, recalling that f = c¢/A.
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(a) What is the kinetic energy of the fastest photoelectron (i.e.,
the electron ejected by the light)?

(b) What is the kinetic energy of the slowest photoelectron?
(c) What is the cutoff wavelength for aluminum?

(d) If the light intensity is 2.0 W/m?, what is the number of
photons per unit of time and area that hit the aluminum
surface? Hint: intensity is the total amount of energy per
unit of time and unit of area; start by finding out how much
energy a single photon carries.

4. Why we do not experience wave-like phenomena such as interfer-
ence and diffraction in our daily lives? You may illustrate your
answers by considering an object of mass 40 g moving at 1000
m/s. What is its de Broglie wavelength?

5. Starting from Bohr’s quantization of the angular momentum (L =
nh) and assuming that the proton (mass m, and charge e) stays
stationary while the electron (mass me, charge —e) moves in a
circular orbit around it, use elementary Newton’s mechanics and
Coulomb’s law to:

(a) Find an expression for the quantized radius of the orbit, 7,
of an electron in the hydrogen atom.

(b) Find an expression for the quantized total energy of the elec-
tron £, in the hydrogen atom.

(c¢) Find an expression relating the energy of the emitted (or
absorbed) photon when the electron changes its orbit from n
to n'.

Hints: start by relating the radius of the orbit to the electron mass
and its velocity; then use the angular momentum quantization to
find the quantization of the radius; finally, relate the total energy
(kinetic plus potential) to the radius.



CHAPTER 3

The Language of
Quantum Mechanics

In this chapter we go through the essential mathematical tools needed to
develop a quantitative description of quantum systems. The content will
seem a bit dry and abstract, but gaining a good grasp of the concepts
and the math of vectors and operators will make understanding quantum
information processing a lot easier. So, take your time when studying this
chapter. It will pay off.

3.1 VECTOR SPACES

We associate to each quantum system an abstract entity called a state
vector, which we denote as

[¥).

The letter ¢ labels the state of the quantum system. The brackets | and
) are used to remind us that we are dealing with a vector and not a
scalar.

Why do we need vectors to describe the state of a quantum system?
They main practical reason is to allow for superpositions, namely, the
possibility to prepare a quantum system in classically distinct configura-
tions at the same time, much like you can write a position vector in three
dimensions as a sum of three vectors or components, 77 = i 4y ] +z k
each one along one of the three orthogonal directions (z 7, and k’)

Why use the bracket notation instead of adding a little arrow on
top of ¥ or changing its font to bold? The reason is that quantum state
vectors have some properties that ordinary vectors in three-dimensional
spaces do not have, and we want to make sure that the mathematical

19
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notation makes those additional properties to stand out. For instance,
|1) is what we call a “ket” version of the state vector; we can also have a
“bra” version, which we denote as (1|. They are analogous to a complex
number and its conjugate.’

|¥) lives in a vector space which we denote by H and call a Hilbert
space.? Vectors in this space obey the following properties.

1. Addition: let |Q) = [¢) +|@). If [¢), |¢) € H, then |Q2) € H as well.

2. Scalar multiplication: let |¢) = c|¢), with ¢ € C. If |¢)) € H, then
|¢) € H as well.

Multiplication is distributive: ¢ (|0) + |¢)) = c|¢) + ¢ ).
Addition is commutative: 1) + |¢) = |¢) + [1).

Addition is associative: |¢) + (|¢) + Q) = (|¥) + |¢)) + [©2).
A null vector exists: 0 + [¢) = [¢) for every |¢) € H.

NS otk W

An inverse vector exists: (—[1)) + |¢) = 0 for every |¢) € H.

8. There exists an inner product (see below for a definition).

(Rules 1 to 7 also apply to bra vectors.)

Let us play a bit with these vectors. Call [1) the vector representing
the electron spin when it is pointing “up”, and |}) when it is pointing
“down”. Quantum mechanics tells us that it is possible to prepare the
electron in a superposition state,

V) = ar [1) +ay[1),

where a4 and a are the amplitudes associated to “up” and “down”,
respectively. A fully spin-up state has a4 = 1 and a; = 0; a fully spin-
down one has a4+ = 0 and a; = 1. |1) and |]) represent very distinct
configurations. How can we quantify that? Let us introduce a scalar
product (also known as inner product) , such that:?

(¥]o) =c. (3.1)

'Technically, 1) and (1| correspond to the same state. They just live in dual
vector spaces. Similarly to z = a +ib and z* = a — ib, which are defined by a single
real tuple (a,b). z and z* have the same information content but we need both to
compute the magnitude: |z| = vz z*.

2Rigorously, a vector space is a Hilbert space only when an inner product is also
defined.

3Through the inner product, vectors from dual spaces meet to produce a scalar.
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To compute the scalar product, we take two vectors, one in its “ket”
version and the other in its “bra” version, and join them together to
produce a scalar (i.e., a number, which can be complex). To get some
intuition about what a scalar product means, we can momentarily recall
ordinary three-dimensional vectors. For instance, consider the velocity
vectors shown in Fig. 3.1 and two of their “dot” products:

Ul=‘ U2=/' US=—>

Figure 3.1 Three velocity vectors.

(N ’172 = |’l71‘|’l72‘ COS(QlQ)

U1'173 = |171||’L73|COS(013).

Since 013 = 7/2, ¥} and U3 are orthogonal and ¥; - U3 = 0; and since
015 <7T/2, Uy 1727&0

Going back to quantum mechanics, when two state vectors |¢)) and
|¢) correspond to completely different and distinguishable configura-
tions, we expect their scalar product to vanish,

(¥lg) = 0.

We say that the two state vectors are “orthogonal”. When they corre-
spond to identical configurations, we expect instead the scalar product
to have its maximum possible value, as if the vectors were “parallel” to
each other,

(Wlo) = llelliel,
where we define the vector magnitude or norm as
[l =/ {¥l)

((¢|¥)) > 0 by definition).

For example, going back to spin states, since “up” is clearly distin-
guishable from “down” in a measurement of the spin’s orientation, we
can safely assume

(414 =0.
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To facilitate calculations, we go one step further and assume that

I =1 and  ([N=1 (3.2)

This way of dealing with vectors through bras and kets is called the
Dirac notation (a.k.a. “braket” notation). It is very useful, as we will
soon find out. For instance, if

V) = ar|1) + alld), (3.3)

then

(W] = af {1l + aj (I,
where the x indicates complex conjugation. We say that (¢ is the adjoint
of [10). We can add kets to kets,

[¥) + 1),

and we can add bras to bras,

W]+ (¢l,
but we cannot add kets to bras,
|Y) + (¢| = nonsense!
However, we can take products of bras and kets,
(1|¢) — inner product

|1))(¢| — outer product (to be explained soon).

Dirac’s notation looks a bit weird but is very powerful. Consider
Eq. (3.3). Taking the inner product of both sides with respect to the bra
(1 |, we have

(T1¥) = ar (T 1) + a {11 4) = ay
because of the relations shown in (3.2). Therefore,

(P )P = |ar]?* = Py,

which is the probability of finding the spin “up” upon measuring its
orientation when the electron spin is in the state ¢.* Similarly,

(L [)? = |ay|* = Py.

40f course, this probabilistic interpretation only makes sense when (YY) =1, in
which case 0 < Py < 1,0 < P, <1, and Py + P, = 1. Otherwise, we need to rescale
|at|? by (]1h) to obtain the probability: Py = |at|?/(¥|v).




The Language of Quantum Mechanics B 23

Thus we can extract amplitudes and probabilities from a state vector by
taking inner products with suitable vectors.

Because the electron spin can only have two possible measurement
outcomes, we only need two reference orthogonal vectors to span the
entire vector space and be able to represent any superposition state. The
vectors [1) and |}) can be those reference vectors, although they are not
the only possible choice. Yet, once we settle on a choice, by judiciously
picking the amplitudes in front of the vectors [e.g., the coefficients aq and
a; in Eq. (3.3)], we can in principle describe any arbitrary state |¢). We
say that {|1),|])} is a complete set of vectors for the two-dimensional
spin space. Such a set is called a complete basis. A complete basis is not
unique, even for a two-dimensional vector space. To see this point, let us
go back to vectors in ordinary three-dimensional space: the Cartesian set
{(1,0,0),(0,1,0),(0,0,1)} is a good basis for that space, but so is the set

%, %,0) , (%, &—%,O) , (0,0, 1)} where we rotated the “x” and “y”
basis vectors by 45°. The same occurs for quantum state vector spaces,
where one can always design different but just-as-good basis through
rotations.

A complete basis provides a handy way to compute inner products,
especially if the basis vectors in the set are orthonormal (i.e., have norm
1 and are all orthogonal to each other). For example, consider two state
vectors decomposed in the up and down basis,

[y = ar|t) +ald)
) br|1) + by )

Then,

(@l) = (R + 07 (L) (ar|1) + ay[1))
= biap (T [ 1) + bay (T [ 1) +bjar(l | 1) +bjay (L [ 1)
= biay + bjay.

The decomposition of state vectors on the same orthonormal basis allows
us to compute their inner product by just multiplying amplitudes and
adding the products. This is similar to what we do when taking the
scalar products of three-dimensional position vectors written in terms of
Cartesian coordinates:

Ul V2 =V V2g +V1yVoy + V1,02,
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3.2 OPERATORS

The Dirac notation has one more surprise for us: outer products . Let
us introduce

A=) (9.

Notice that we can “contract” A from both left and right sides if we use
a bra or a ket, respectively. Namely,

(Q A = (Qp)(¢] = a(g]

and A

AlE) = [¥){¢[%) = Blv),
where o = (Q¢)) and = (¢|X) are scalars. Thus, A “acting” on a
bra produces another bra (times a scalar); A “acting” on a ket produces

another ket (times a scalar as well). A is essentially an “operator” that
takes a vector into another vector,

Alr) = |va)

and
(ur| A = (ual.

We can conclude that the outer product of a bra with a ket results in
an operator that can act on any vector in H to produce another vector
in the same space.

The concept of an operator acting on vectors can be extended to sit-
uations when the operator cannot be expressed as single outer product.
Thus, generally, it is more appropriate to think of operators as entities
that act on vectors to produce other vectors.

In quantum mechanics, we only deal with linear operators:

A(jg) +|9)) = Aly) + Alg)

and . A
Aclp)) = c(Aly)),

where c is a scalar (and similarly for bras).?

Not all operators are born equal! To understand their differences, let
us define the adjoint operation for scalars, vectors, and operators:

) — (¥

5To distinguish operators from scalars, we use capital letters for the former and
endow them with a hat.
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c— "
A —s At
AT is called the Hermitian adjoint of A. When A = Af| the operator is
called Hermitian. When AfA = I where I is the identity operator (i.e.,
I is a do-nothing operator), A=! = A' (i.e., the inverse is equal to the
Hermitian adjoint), in this case, A is called a unitary operator. When

A- A= A% = A, the operator is called a projector. These are the three
most important types of operators in quantum mechanics.

3.2.1 Operators as matrices

There are a few more important facts about operators.

1. We can “sandwich” an operator with a bra and a ket to produce
a scalar,

(W|A]g) =,
implying ¢* = (gb\fﬂ\ﬂ}) (a very useful property). In some specific
contexts, such a sandwich is called a “matrix element”.

2. When we have a complete basis for the vector space, and know how
an operator acts on the vectors of the basis, we can associate a ma-
trix to the operator. This is an extremely useful property because
it turns abstract operator manipulations into matrix algebra. Here
is an example of matrix representation of an operator using the

basis {[1),[1)}:

<T|{1|T> = An, <T|{1|¢> = A
(AT = Ao, (LA[]) = Agg,

which we can cast into a matrix form as
A A
A= 1 A .
Ao Age

3. We can use a matrix notation for vectors as well: let

implying
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and
<T|:(1 o) and <¢|:(0 1)
implying
(Wl = axtl+ajll = (a; a} ).

4. Inner and outer products can be represented with matrices as well.

Let
|¢>=<‘”> and (o] = (b3 b} ).

ap
Then

a

(oly) = (b b)) ( aI ) = blar + bjay,

which is a scalar, i.e., a 1 x 1 matrix, and

- CLT % % o aﬂ); aTbI
‘w><¢’ N ( a| ) ( bT bi ) - ( aib$ a¢bI ’
which is a 2 x 2 matrix.

5. The action of an operator on a vector can also be performed in a
matrix representation:

~ A11 A12 a4 A11 a4 + A12 a|
A — = .
) ( Ao Ag ay Asrar + Axpay
6. We can sum and multiply operators acting on the same Hilbert
space:
A+B=C
AB=D.

Using a matrix representation, we have
Ay A n Bi1 DB _ An+ B A+ Bio
Ao Ag By1 B A1 + Ba1 A + Ba

_ Cii Cho
Co1 Oy
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and

Ay A Bi1 B
Ao Ago By1 B

_ A1 By + A1a Bar Ay Bia + A2 Bo
Aoy Bi1 + Ay By Aoy Big + Agg Boo

_ D11 Dy

D1 Do
However, it is of fundamental importance to know that operators
do not necessarily commute under multiplication: in general A B #

B A. When operators commute, something special happens, as we
will see below.

SHORT BREAK TO TAKE A BREATH AND TO SUMMARIZE

What have we learned so far?

3.4

The state of a quantum system can be represented by a vector in
a Hilbert space.

To each vector we associate a dual one (e.g., a ket to a bra and
vice versa).

State vectors can be decomposed in terms of basis vectors; the most
useful bases are those comprising normalized, mutually orthogonal
vectors.

In a decomposition, the amplitude corresponding to a certain basis
vector can be related to the probability amplitude of finding the
system in the configuration associated to that basis vector.

Using a vector and its dual, we can compute scalar (inner) prod-
ucts, as well as outer products (which function as operators).

Using an orthonormal basis, we can represent vectors as single-
column or single-row matrices and operators as square matrices.

MORE ABOUT OPERATORS

Now

that we learned the basics, we can start using a more general

formulation. For instance, we can denote an orthonormal basis of an
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N-dimensional Hilbert space as

{10k) Yo=1,...N,

where®
(r|Or) = On -

Then, for any state |¢) in that space we can write

N
= > ai|dw),
k=1

where a, = (¢x1)) (check it!). Also, for any operator A acting on vectors
in that space we can write,

N N
A=>" Z A | D) (D (3.4)
k=1 k'=1

where Ay = (61| A|dr) (check it as well!).

3.4.1 Trace of an operator

Because we associate matrices to operators, we can easily define the
trace of an operator: Starting from Eq. (3.4) and the orthonormal basis

{|¢x)}, we write

N . N
= Z Sl Alor) =D Arpe
k=1 k=1

In words: the trace of an operator is the sum of its diagonal matrix
elements. It turns out that the trace of an operator is independent of
the basis! Namely, any basis decomposition yields the same trace. It is
thus an intrinsic property of the operator.

3.4.2 Eigenvalues and eigenvectors of an operator

Another intrinsic property of an operator is its “spectrum”, which is the
collection of its eigenvalues. Let us define what an eigenvalue is.
Consider a vector |v) such that, for an operator A,

Afv) = alv),

1if k=Fk

6 . S —
Here, 6y, denotes the Kronecker delta : d 5 { 0 otherwise °
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where a is some scalar. In words, the action of the operator on the vector
produces the same vector, up to a constant factor. When this happens,
|v) is called an eigenvector of the operator A with a corresponding eigen-
value a. The set of all eigenvalues of an operator is called its spectrum.
Operators acting on an N-dimensional Hilbert space can have as many
as N distinct eigenvalues and corresponding eigenvectors. However, it is
not uncommon to have the same eigenvalue showing up more than once,
which is a phenomenon called degeneracy. Eigenvalues in a degenerate
subset are all equal but their corresponding eigenvectors are not.
Here are a couple important facts about eigenvalues.

e Hermitian operators have only real eigenvalues:
if A= A" and AJ|v) = alv), then a = a*.

e The eigenvalues of unitary operators are complex numbers of mag-
nitude 1:

if At = A= and AJv) = a|v), then |a| = 1.

There is a fundamental result from linear algebra that is extensively used
in quantum mechanics. It is called the spectral theorem: let us define a
linear operator as normal when AAT = ATA (i.e., the operator commutes
with its adjoint). Then, for every normal operator acting on a Hilbert
space of finite dimension, there is an orthonormal basis formed by the
operator’s eigenvectors.

It turns out that Hermitian and unitary operators are always normal!
Hence, an important application of the spectral theorem is that every
Hermitian operator provides an orthonormal basis through its eigenvec-
tors. This also means that every Hermitian operator can be “diagonal-
ized”, namely, be decomposed in its own eigenbasis: if /Al|vk> = ag|vg),
then

N
A = Z ak\vk)<vk|.
k=1

Notice that there are no cross terms in the decomposition (this is what
we mean by “diagonal”). To understand how this translates into a matrix
representation, we need one more result. One can show that Hermitian
operators can be diagonalized by unitary operators: if A = At then
there exists a U such that A = U - A - UT, where UT = U~! and A is
a diagonal matrix containing the eigenvalues of A. The columns of U
contain the corresponding eigenvectors of A.
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As an example, consider the 3 x 3 Hermitian matrix

-1 5 2
A= 5 -1 2|,
2 2 2

which is diagonalized by the unitary matrix

1/v/3 1/3/6 —1/V2
U= 1/vV3 1/V6 1/V2
1/vV3 —2/6 0

and yields the diagonal matrix

A= 4-0 -

o O
o O O
o O O

Notice that

>

i

B

o ohslt slish-si shsksl
|
X

o ﬁ"d§u é‘w&"_‘é"_‘ a‘H§‘H§‘H

A A

Interestingly, notice also that Tr[A] = Tr[A] = 0. In fact, as noted earlier
for operators, the trace of a square matrix is an inwvariant, which means
that it does not change upon unitary transformations of the matrix (i.e.,
upon a change of basis). The trace of a matrix is always the sum of its
eigenvalues.

One final note in regard to eigenvalues and eigenvectors: when two
operators commute, they share the same eigenvectors. However, their
eigenvalue sets do not need to be equal. For instance, if AB = BA and
Alpn) = an|dn), then B|p,) = bp|dn) but by, is not necessarily equal to
-
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EXERCISES AND PROBLEMS

. Consider the three 3-dimensional vectors

a=(1,2,0), b=(-21,0), &=(1,1,1).
Let the scalar (inner) product have the standard form
U - U= upv1 + U0 + uzvs
for @ = (uy, ug,us) and 0 = (v1, ve, v3).
(a) Normalize the vectors @, b, and & (namely, find @’ = @/|a),

etc.).

(b) Verify that the set {a’,b’,&'} does not form an orthogonal
basis.

(c) Keeping @’ fixed, find an orthonormal basis (i.e., find two
other vectors b” and " such that the triplet of vectors forms
an orthonormal basis). Hint: look for the Gram-Schmidt pro-
cess from linear algebra.

A linear vector space is a very general concept that can be applied
to a variety of contexts. Consider the set of functions

Gon(x) =sin(nz) and Popi1(z) = cos(nz),

where n = 0,1,2,... and € [0 : 27). It turns out that the set
{¢m () }m=0,1,2,... spans the entire linear vector space of continuous
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real functions with domain in the interval [0 : 27); namely, for such
functions, it always possible to write

F@) =S (@) (3.5)
m=0

for some set of real coefficients {, }m=0,1,2,... Let us associate to
each function ¢,,(x) a ket |¢,,) and a bra (¢,|.

(a) Rewrite Eq. (3.5) as ket and bra equations, assuming that |f)
and (f| represent the function f(x).

(b) What is the dimensionality of this vector space?
(c) Show that

o) = [ defaigta)

is an acceptable scaler (inner) product of this vector space.
Hint: you need to prove that (f|f) > 0 and (f|(alg) +blh)) =
a{flg) + b{f|h) for any |f), |g), |h), a, and b.

(d) Isthe basis {|¢m) }m=0,1,2,.. orthogonal? Is the basis orthonor-
mal? If not, how do you turn it into an orthonormal one?

3. Consider all polynomials of degree 3 in a real variable x confined
to the interval [0:1], P,(z) = ag + a17 + asz? + azx®, where a =
(ap, a1, as, as) are real numbers. Let the operation P, + P, denote
ordinary addition.

(a) Show that the set of all P, when combined with ordinary
addition constitutes a linear vector space. In your proof, use
the Dirac notation with a suitable set of variables or indices
to label the vectors.

(b) Show that
/0 duP,(z)Py(x)

works a scalar (inner) product for this vector space.
(c) What is the dimensionality of this vector space?
(d) What would constitute a good orthonormal basis for this vec-

tor space?

4. Show that Hermitian operators can only have real eigenvalues.
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5. Show that unitary operators can only have eigenvalues with mag-
nitude 1.
6. Show that if A commutes with B, then they share an eigenbasis.

7. Let {|T)[{)} constitute an orthonormal basis of the two-
dimensional Hilbert space of a spin-1/2 electron. Consider a state

V) = as|1) +ayll),

where a; and a; are the probability amplitudes. Show that if
(¥|y) = 1, it follows that |at|* 4 |ay|* = 1. How would you define
the probabilities of measuring the spin in the states [1) and |{) if

(W) #17

8. Compute analytically the eigenvalues and eigenvectors of the ma-
trix

0
0
1

o O O

1
0
0
Is this matrix Hermitian? Is it unitary? Is it a projector?

9. An important manifestation of “quantummness” is tunneling,
namely, the ability of a quantum system to transit between two
configurations separated by an energy barrier higher than the avail-
able energy to the system. Consider, for instance a single particle
in a double well, as show in Fig. 3.2 below, where the total en-
ergy is assumed to be lower than the barrier height. Denote as |L)
and |R) the state vectors associated to the particle being on the
left and right wells, respectively. Assume that these vectors are
orthonormal.

Figure 3.2 Double-well quantum system with a single particle.
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Show that the operator X = |L)(R| + |R)(L| is Hermitian.
Find the eigenvectors (eigenkets) and eigenvalues of X.

Show that the operators ¥ = —i|L)(R| + i|R)(L| and Z =
|L)(L| — |R)(R| are also Hermitian.

Find the eigenvalues of Y and Z.

Show that XV = iZ , namely, that the sequential operation
of X and Y on any vector is equivalent to operating with
1Z on the same vector. What happens when the order of the
product of X and Y is reversed?

Show that ZX =iV and Y7 = iX.

Show that I = |L)(L| + |R)(R| is an identity operator in the
context of the double well system.

Show that P, = |L)(L| and Pr = |R)(R] are projection op-
erators.

What happens when you take integer powers of the operators
X, Y, and Z7

Find matrix representations of the operators ]5L, 153, I , X ,

f/, and Z. What are the traces of these operators? Hint: use
the eigenbasis {|L), |R)} to represent your matrices.



CHAPTER 4

Quantum Mechanics

Now that we went through the math and the notation, we can introduce
the fundamentals of quantum mechanics in a formal and precise way.

4.1

POSTULATES OF QUANTUM MECHANICS

We will begin with five postulates that establish the theoretical founda-
tions and mathematical framework of quantum mechanics.

L.

II.

The state of a quantum system is represented by a vector in a
Hilbert space,
[¥(2))-

Note: we added a time variable ¢ to indicate that we are considering
the possibility of state vectors changing over time.

Note: contrast this representation with that in Newton’s mechanics
where the state of a classical system is specified by position and
velocity coordinates.

Observable and measurable quantities are represented by Hermitian
operators.

Ezxample: if the system consists of a single particle in three spatial
dimensions, its position and linear momentum will be represented
by operators Z, 4, £, g, Py, and p,. (The hats help us distinguish
scalars from operators.) Position and space coordinates are not vari-
ables in quantum mechanics but rather observables represented by
operators.
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IT1.

Iv.

41.1

If a system is in a state [¢),! the measurement of a quantity
represented by an operator () will always yield one of its eigen-
values. For instance, the eigenvalue w will occur with probability
P(w) = [{w|$)[2, where |w) is the eigenvector of () associated to w,
namely, R
Qw) = w|w).

We say that the state of the system “collapses” to |w) after the
measurement.

Note: this postulate is a profound departure from classical physics.
See below for comments.

The state vector |1(t)) obeys the Schrodinger equation
L d A
i) = (),

where H is the Hamiltonian operator of the system.

Note: this equation plays a similar role to Newton’s second law
in classical mechanics and sets the dynamics of the quantum sys-
tem. It relates the interactions existing in the system (r.h.s. of the
equation) to the change in its state vector (Lh.s. of the equation).

When two systems are combined as one system, the resulting
Hilbert space is the tensor product of the Hilbert spaces of the
subsystems: H = H; ® Ha. If system #1 is in a state [¢);) and
subsystem #2 is in a state [¢)5), the total system is in a product
state |1)1) @ |[1b9). Thus, if the Hilbert space of system #1 has di-
mension d; and its counterpart for system #2 has dimension ds,
the composed system has a Hilbert space of dimension d = d; ds.
The state of a system composed of subsystems does not need to
always be a product (i.e., separable): entanglement can occur.

Note: this postulate can be straightforwardly generalized to any
number of subsystems.

There is a lot to comment and explain!

Comments on postulate |

A vector space is an abstract concept but we can try to make physical
sense of it by choosing an appropriate basis. The choice of such a basis

'"We implicitly assume that |+) is normalized.
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is guided by the physical characteristics of the particular system under
consideration, and that is where the math meets the physical world.

Ezxamples:

1. If we want to describe the spin of an electron or nucleon (s = 1/2),
then we choose the basis vectors

|1) for spin “up” (aligned)
|{) for spin “down” (anti-aligned)
in reference to some direction in the three-dimensional space. For

this system, {|1),|{)} is a good orthonormal basis and, as seen
before, the Hilbert space is two-dimensional.

2. If the system is a single-electron atom with orbital states ¢y, ¢o,
¢3, ..., we pick those orbitals as basis, {|¢1),|d2), |Ps3), ...}, see
Fig. 4.1. There is a discrete but infinite number of such orbital
states (thus the Hilbert space of such a system has infinite dimen-
sion).

Figure 4.1 Schematic representation of orbital states in an atom.

Let Fy, Es, Es, ... be the energies associated to these (stationary)
orbital states of the atom. When FEj is near to Fs but Fs, Ey, ...
are much further out (i.e., higher in energy), we can neglect all
but the states |¢1) and |¢s), effectively approximating the Hilbert
space to two dimensional.

Inserting an overall phase on the state vector does not represent a change
in the state of a system, namely, if

W) = e|o),

with § € R, then |¢) and |¢) describe the same quantum state. The
phase 6 is not observable.
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However, a relative phase can completely alter a state, namely, if

) =11+

and ‘
|6) = [1) + ™)),

then |¢) # |¢) both mathematically and physically; in this case, the
relative phase 7/4 is actually observable (usually via an interference
experiment).

It turns out that when a quantum system interacts with another one,
especially with a larger one that we do not know or care how to describe
in detail, a state vector is not enough to characterize the system’s state
because quantum information is lost to the other system. Later, we will
describe a way to cope with such a situation.

4.1.2 Comments on postulate Il

Operators do not necessarily commute. At first, this seems to be just a
mathematical inconvenience, but it turns out to have a profound physical
interpretation and some important practical implications. Let us define
what we mean by non commutability more precisely: it is the dependence
on order with which we apply operators on vectors. In general,

A(B¢)) # B(Al¢))

for two operators A and B and a state vector |¢). When two operators
do not commute, the uncertainties in their measurements are related
to each and lower bounded. Heisenberg was the first one to notice this
property, which is now called the uncertainty principle.

To understand this point, let us define the average (also known as
expectation value) of a Hermitian operator A on a state |1) as?

(A) = (¥l A1)

The definition of variance of the same operator with respect to |¢) is
straightforward:

A

V&I‘(A) = <¢|(j21— <121> )A2H¢>
= (A — (4
(A%) = (A)%,

2Notice the implicit dependence on the particular state used to compute the
average.
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where [ is the identity operator. The uncertainty of the operator A with
respect to the state [1) is defined as

AA = y/var(A).

Let A and B be two Hermitian operators . Then, it is possible to prove
that

(AA)AB) > 5|(F)], (4.)
where I' = AB — BA = [A, B]. The latter is called the commutator of A
and B . In particular, when A and B are so-called canonically conjugated
operators (a terminology borrowed from classical mechanics), namely,
when [A, B] = ihl, then
h

(AA)(AB) > 5 (4.2)
This is the case for the position and linear momentum operators, leading
to the famous relation Az Ap > h/2 (Heisenberg’s uncertainty princi-
ple). But what does the uncertainty principle mean?

Simply put, the uncertainty principle says that the more certainty
we have about the value of 121, the less we know about the value of B ,
and vice versa. By more certainty we mean decreasing values of AA:
when AA — 0, by the relation (4.2), we must have AB — oo, in which
case the fluctuations in B from one measurement to another are so large
that we learn nothing about B while we are certain about A.

From a physics standpoint, it means that the quantities associated
to the operators A and B cannot be simultaneously determined with
complete certainty. For instance, if we know that an electron is localized
within a region of width Az, we cannot expect to learn about its linear
momentum with precision better than Ap = i/(2Ax).

Interestingly, as mentioned in the previous chapter, when two opera-
tors do commute, they share an eigenbasis, even though their eigenvalues
can be completely different.

4.1.3 Comments on postulate IlI

Firstly, this postulate says that it is possible to have multiple outcomes
of a measurement for the same system prepared in the same state. This
is completely different from classical physics, where two measurements
performed on two identical systems will also yield exactly the same re-
sult. Secondly, the measurement steers the quantum system toward a



40 m Introduction to Quantum Information Processing

particular state, i.e., it alters the state of the system. Again, this is not
what happens in classical physics, where, in principle, one can always
devise measurements that do not alter in any significant way the state
of the system being observed. Thirdly, if we know |¢)) and the spectrum
of the operator Q, all we can do as far as predictions of a measurement
of () are concerned is to compute the probabilities of possible outcomes.

4.1.4 Comments on postulate IV

Firstly, notice that Schréodinger’s equation is a first-order differential
equation. Therefore, given just |¢)(t = 0)) (or at some other reference
time), we can in principle determine [¢(¢)) uniquely at any ¢ > 0. Sec-
ondly, in addition to the initial state, the evolution of the state vector is
entirely determined by the Hamiltonian.

But what is a Hamiltonian?

In classical mechanics, a Hamiltonian is a function of the positions
and momenta of the particles in the system and is often associated to
the system’s total energy:

H = H(7,p).

It turns out that the evolution of these variables (positions and mo-
menta) are uniquely determined by partial derivatives of the Hamilto-
nian,

dp 0OH dr  0H

- =—— and — ==

dt or dt op
(these are the so-called Hamilton’s equations — an advanced but equiv-
alent formulation of Newtonian mechanics). The Hamiltonian usually
consists of a sum of all kinetic and potential energies present in the
system, with the latter representing interactions among the system’s
particles, and between those particles and external fields.

In quantum mechanics, we give the same interpretation to the Hamil-
tonian, except that we represent it as an operator (or a sum of operators)
that encodes the kinetic energies and potential energies in the system.
Those energies are written in terms of operators that themselves repre-
sent the relevant degrees of freedom of the system.

Examples of Hamiltonians:

1. Particle of mass m attached to a spring of constant k£ and moving
in one spatial dimension.
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classical Hamiltonian: H(z,p) = 5—p® + ka?

1 52 4 kg2

quantum Hamiltonian: H (2,p) = 50" + 52

Notice that we simply replaced the position and momentum coor-
dinates by their quantum operator counterparts.

2. Magnetic dipole [ in the presence of a uniform magnetic field B.
classical Hamiltonian: H(ji) = —ji- B
quantum Hamiltonian: H (ﬁ) =—ji-B

Notice that there is no kinetic term. Moreover, since the magnetic
field is fixed (it is not a degree of freedom or variable but rather a
parameter) it is not treated as an operator.

Often, it is appropriate to adopt an evolution operator instead of defining
the dynamics via Schrodinger’s equation. Consider

[0(1)) = U (t;0)[4(0))

for t > 0. The vector on the Lh.s. represents the state at time ¢; the vector
on the r.h.s. represents the system at time O; U(t;O) is the operator
that takes the system at time 0 and returns it at time . When the
Hamiltonian is time independent, one can easily find an expression for
U from the Schrodinger equation:

Zﬁ*hﬁ( D=Hlp®)  — (1) =T p(0))
(prove it!). We then identify the evolution operator as
U(t;0) = e~ tHi/h, (4.3)
The evolution operator is an exponential of the Hamiltonian operator!

Math Digression: How to define a function of an operator in practice?
Use a Taylor series expansion:

Integer powers of operators are straightforward to implement: just act
with the operator sequentially as many times as the power. Notice that
(A)Y results in the identity operator I.
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4.1.5 Comments on postulate V

The concept of a product state that emerges from combining two or more
quantum systems into one is hard to grasp but crucial for understanding
entanglement. To help a bit, consider as an example a system of two
particles of spin s = 1/2. In principle, we could prepare the state with
both spins up,

(W) = [1)a @ T (4.4)
or the state with both spins down,
) = [Da ® [

In these two examples, the states of the total system are a product of two
separate individual qubit states. We could also prepare a state which is
a superposition of these two examples:

1
V2

If we consider that we could also prepare up-down and down-up states,
which are distinguishable from up-up and down-down, it is clear that
the dimension of the Hilbert space for the two-spin system is four.

The state in Eq. (4.5) is particularly interesting because it is an
example of an entangled state, i.e., a state which cannot be reduced to a
single product . Entangled states can only happen in systems composed
of two or more subsystems or degrees of freedom (e.g., in this case two
qubits). A more intuitive way to think about entanglement has to do with
measurement: a state is entangled when measurements of its components
yield random but fully correlated results. For instance, for the state
in Eq. (4.5), a measurement of qubit a in the {1,]} basis would yield
either 1" or | with equal probability; however, once a certain outcome is
obtained, we can be 100% certain that a similar measurement of qubit
b will yield exactly the same outcome. The randomness aspect is very
important. Take, for example, the state in Eq. (4.4): measurements of
qubits @ and b also yield exactly the same outcome, but in this case
there is no uncertainty in that outcome and therefore the state is not
entangled (indeed, it is a single product).

¥) () ® e+ [1)a © [1)s)- (4.5)

4.2 REFERENCES AND FURTHER READING

1. Shankar, R. 1994. Principles of Quantum Mechanics, 2nd edition.
New York: Plenum Press. Chapter 4.




Quantum Mechanics m 43

2. Liboff, R. L. 2003. Introductory Quantum Mechanics, 4th edition.

Addison Wesley. Chapter 3.

3. Zettili, N. 2009. Quantum Mechanics, Concepts and Applications,

2nd edition. John Wiley & Sons. Sections 3.1-3.6.

4. Nielsen M. A. and I. L. Chuang. 2000. Quantum Computation and

4.3

Quantum Information. Cambridge Univ. Press. Section 2.3.

EXERCISES AND PROBLEMS

1.

Which of the following states of a system composed of two spin-1/2
particles is entangled? Justify your answer.

[91) = 1)a @ )
[¥2) = 75 (ID)a @ [ + [1)a @ [1)s)
[¥3)

)

Z(Ma@ My +1Da® )
3 (Na® Mo+ Ma® s+ [Na® e + e © 1))

|4

. Suppose that we take a double-well system and place two electrons

on it. Because electrons have spin 1/2, they are “fermions” and
two fermions cannot occupy the same quantum state. This result,
known as the Pauli principle, forbids, for instance, electrons with
the same spin orientation to be in the same orbital configuration.
Let us assume that each well can hold only one “energy level”,
thus forcing two electrons that find themselves in the same well to
be on the same energy level but with opposite spin orientations.
Because of Coulomb repulsion, we expect a double occupied well
to require an extra energy, which we call U.

(a) Find all possible classical configurations that two electrons
can take in a double-well system with a single energy level
per well (use the notation |¢) 1 |t)) g to denote the two-electron
state vectors, with suitable choices for ¢ and v, e.g., 0, 1, |,
etc.). Associate an orthonormal basis to these configurations.

(b) Setting the energy of the levels in the wells to € and the energy
cost of double occupancy to U, write down a Hamiltonian
operator for this system.

(c) Now, let tunneling take place, namely, add to the Hamiltonian
a term that allows electrons to hop from one well to another
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(the Dirac notation comes in handy!). Assign a prefactor ¢ to
this term in the Hamiltonian.

(d) Find the eigenvalues of the resulting Hamiltonian. Sugges-
tion: start with € = 0 and bring € back at the end of your
calculation by a suitable shift of the eigenvalues.

(e) What would be an entangled quantum state for this system?



CHAPTER 5

Qubits, Gates, and
Circuits

Before we start to discuss quantum bits (“qubits” for short), let us spend
some time reviewing classical bits, which we will simply call bits, and
the types of operations one can perform with them.

5.1 CLASSICAL BITS AND LOGIC GATES

Any classical physical system that takes only two clearly distinguishable
configurations can become a bit. More abstractly, a bit is any variable
that can only take two values.! Historically, because bits were imple-
mented with devices running electric currents, we associate to them the
values “0” (current off) and “1” (current on). This association is also
convenient because any integer or finite-precision real number can be
represented using 0s and 1s (the so-called binary decomposition). For
instance, for any integer x, we can write

T=by 1 X2 4 by o x 224 by x 28 4By x 20,

where by = 0 or 1 and kK = 0,1,...,n — 1. The b, coefficients are the
bit variables. In the expression above, we used n such variables to rep-
resent the number x. We often line up the bit variables together and in
decreasing order from left to right to form a bit string: b, _1b,_2 - - - b1bg.

Eramples:

e 3 (decimal) = 1 x 2! + 1 x 2° = 11 (binary)

IBit variables are also called Boolean variables.
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e 286 (decimal) =1 x 28 +0x 27+ 0x 20+ 0 x 29 +1x 24 +1 x
23 +1x224+1x24+0x2°=100011110 (binary)

We can extend the binary representation to fractional numbers:
T =by_ 1 X2 b, o x 2" 2 by X 2 by x 20+ f1x 27 o x 272 -

where fi =0 or 1. The set {fi} spans the fractional part.

Ezxample:
e 3.375 (decimal) = 1x2'+1x294+1x2724+1x273 = 11.011 (binary)

All arithmetic rules we use to manipulate numbers in the decimal rep-
resentation work for binary numbers, although they look a bit strange:

04+0=0

0+1=1

141 =10 (we needed to bring a second bit to represent the decimal 2)
014+10=11

11+ 01 = 100 (we needed to bring a third bit to represent the decimal

4)
and so on.
5.1.1 Circuits

Before we start discussing what we can do with bits, we need to settle
on some conventions, including how to graphically represent bits as they
undergo transformations and operations. The standard way to do that is
to associate to each bit a line, going from left (beginning) to right (end),
see Fig. 5.1.

X Vi
Xa Y2
X3 Y3
Xn Yn

Figure 5.1 Schematic representation of a circuit (empty in this case). Each
horizontal line corresponds to the evolution of a binary variable and is
called a bitline.
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In Fig. 5.1, {x1, 29, 3,...,2,} are the initial values of the bits and
{y1,92,93,...,yn} are the final ones. We often call “bitlines” the lines
representing the time evolution of the bits. Of course, if nothing is acting
on the bits, then their initial and final values are the same. When some
operation acts on them, we can represent the situation by inserting boxes
and other symbols into the diagram to indicate those operations. Say we
have an operation that acts on bits 1 and 2, following by another that
acts on bit 3, and then another acting on bit n; call these operations A,
B, and C, respectively. We can represent this sequence of operations as

in Fig. 5.2.
X N
X, A Y2

X3 B Y3

X, — I i
Figure 5.2 Operations on binary variables are indicated by boxes.

We call the sequence of operations a circuit. So, a circuit is basically
a chronological sequence of operations. In the classical (non-quantum)
case, the operations are called logic gates. (It is a little harder to repre-
sent operations that act on non adjacent bitlines, but we will find ways
to do it.) Now we are ready to continue!

5.1.2 Logic gates

Any complex operation on bits can be broken down into elementary
operations that we call logic gates.

To the logic gates we associate truth tables, which are basically lists
of all possible input states and the corresponding outputs. For instance,
consider the NOT gate:

e NOT: z input; y output: y = NOT(z) = &

oy

— Ol R
O e

This one-bit gate “flips” the state of the bit.
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Other important gates are:

e AND: z,y inputs; z output: z = AND(x,y) =z Ay=2x-y

This gate realizes a one-bit multiplication.

e NAND: z,y inputs; z output: z = NAND(x,y) =z Ay

e OR: z,y inputs; z output: z=0R(z,y) =zVy=x+y

e XOR:? 7,y inputs; z output: 2z = XOR(z,y) =Dy

This gate realizes one-bit addition, with a caveat (no carry forward
bit).

2Useful relation: z & 1 = 7.
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There are also operations which are not logic gates but perform useful
tasks. For instance,

FANOUT: z input; y, z outputs: y ==z, z==x

<
X
Z

— O R
— ol
— O N

It acts like a “copy” gate.

By combining logic gates and operations such as FANOUT, one can
build complex operations such as the one shown in Fig. 5.3, which is a
one-bit half adder (it is called so because there is no input carry bit).
For a full adder, we need to combine two half adders and an OR gate,
as shown in Fig. 5.4.

,,,,,,,,,,,,,,,

Figure 5.3 A half adder (it is called so because it does not include a carry
forward input bit).

X — half
y adder |_| half out

C. adder S

Figure 5.4 A full one-bit adder.

An important aspect of all examples of two-bit gates we presented so
far is that they are irreversible, namely, you cannot figure out the input
state if given only the output state. Check that yourself.

If we consider logic gates as maps (i.e., relations that relate inputs
to outputs), we notice that an irreversible two-bit gate g implements the
following map:®

g: {0,1}* — {0,1}%.

3Such a map is a Boolean function.
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Here, {0, 1}™ is used as a notation to represent all possible n-bit states for
a total of 2" configurations. Notice that there is a reduction in the space
dimension for gates such as AND, OR, XOR, and NAND, as they take
four possible input configurations onto only two (but there is no such a
reduction for the one-bit gate NOT). Such a reduction in dimensionality
signifies irreversibility.

It turns out that it is possible to accomplish the same logic operation
using only reversible gates. However, there is a caveat: sometimes we
need to bring fresh bits into the operation, the so-called ancillary bits or
ancillae for short, to help. Let us understand how reversible gates work
through an example.

Example:

Turning an XOR into a CNOT.

e XOR + FANOUT: z,y inputs; z, w outputs

Notice that there is a one-to-one correspondence between input states
and output states, as illustrated in Fig. 5.5. (In fact, in this particular
example, the gate is its own inverse.) By keeping a copy of one of the
input bit values, we managed to keep sufficient information about the
input state to uniquely determine it from the output. The result is the
so-called CNOT gate, which is represented in Fig. 5.6.*

00e——=>+00
0l e——>901

1 * * 1 States are swap, d
pe
11 e >< e 11

input output

Figure 55 The CNOT permutation.

4This is not the best way to create a gate with the CNOT functionality, as it
requires the use of two irreversible elements. It is possible and desirable to create
CNOT gates without involving irreversible elements.
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X —— 7=X

y—— w=yodx

Figure 5.6 The CNOT gate.

A CNOT is a particular case of a “control gate”. The reason for this
name is that the value of bit x decides whether the value of bit y is
flipped or not on output:

=0 — w=y=yd0
z=1 — w=y=yd1l

For this reason, z is called the control bit while y is called the target bit.
Consider now a more general control gate with two control bits, the
so-called TOFFOLI gate :

e TOFFOLI: x1,z9, x3 inputs; y1, y2, y3 outputs

Ty T2 T3 |Y1 Y2 Y3

0 0 0]0 0 0 B

0 0 110 0 1 T—e— V1=

0 1 010 1 0 X) —9— Y2 =X

0 1 1 10 1 1

1 0 ol1 0 o X3 —@— Y3=x39(x; A xp)
1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

Notice that x3 is flipped only when z1 = x5 = 1.

5.1.3 Universal gate sets

It turns out that the NAND gate is universal, in the sense that any
Boolean function f : {0,1}" — {0,1}! can be decomposed in terms of
NAND logic operations.” Modern transistor-based processors (like the
ones in your computer or cell phone) often rely heavily on NAND gates.
Notice that gates such as XOR, AND, and OR are not universal, meaning
you cannot decompose a Boolean function using only one type of those
gates.

SFANOUT or copy operations are implicitly assumed to be available.
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When it comes to reversible binary operations, the TOFFOLI gate is
universal. However, this is only the case if ancillary bits can be utilized
and initialized to 0. For some complicated Boolean functions, we may
need an exponentially large number of such ancillary bits! More precisely,
any Boolean function can be decomposed in terms of TOFFOLI gates,
provided that ancillary bits are freely available.

5.1.4 Reversible gates and permutations

Because n-bit reversible gates implement one-to-one relations between
all possible input and output bit strings of length n, they represent
permutations in the 2™-dimensional space of n-bit configurations. Such
permutations form a group denoted by the symbol S5..% To each re-
versible gate we can thus associate a permutation, which we represent
by a 2" x 2™ matrix where the elements are either 0 or 1. For instance,
consider the CNOT gate (n = 2):

1 T |y Yo = N

0O 0 |0 O

0 1 0 1 1 0 0 O x2—€9—y2

1 01 1 y_|[O0O L OO0} I I

1 11 o 000 1 X Y
0 0 1 0

The input and output states are denoted by 4-entry column vectors X
and Y, respectively. The correspondence between bit strings and column
vectors is the following:

00 — 10 — 11 —

1
8,01—>

S O = O
O = O O
= O O O

0

Notice that the 4 x 4 permutation matrix has an important property:
there is only one 1 for every row and column; all other elements are 0.

In the same fashion, we can also associate a 2 X 2 permutation matrix
to the NOT case:"> 8

SA group is a set whose elements obey certain properties. See
https://en.wikipedia.org/wiki/Group (mathematics) for a definition.

"Where have you seen this matrix before? Recall the spin 1/2 quantum systems!

8Notice the change in the symbol used to represent a NOT gate. In the context
of reversible gates, one adopts this symbol rather than the one used earlier when
discussing irreversible gates.
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X ——
[ [

0 1
— . X Y
v=({5)x

where, in this case, the bit values correspond to the column vectors

() (1)

5.2 QUBITS AND QUANTUM GATES

— o8
O e

Permutations are a special case of a more general transformation called
unitary. Unitary transformations can be represented by unitary matrices,
which we know are also used to represent unitary operators in quantum
mechanics. Thus, there is a close connection between unitary operators
and reversible operations. We will elaborate more on that shortly.

If Pis a permutation matrix,” it is always possible to obtain its
inverse pfl,

PP =1,
where [ is the identity matrix, containing zeros everywhere except along
the diagonal, which has only 1s. Guess what is P~17 The transpose of P,
namely, PT (transposition means replacing columns by rows, and vice
versa).

We have already seen matrices with a similar property: the unitary
ones. If U is a unitary matrix, then U~! = Ut where U = (UT)*

The main difference between permutation and unitary matrices is
that permutation matrix elements are either 0 or 1, and there is always
only one 1 per row or column. Unitary matrix elements are not restricted
to only Os and 1s, and not even to real numbers.

While permutation transformations represent reversible operations
among bits, unitary operations are used to implement quantum oper-
ations among qubits. Let us begin to understand this concept through
examples.

Ezxamples:

1. Consider the unitary matrix

- (1 0

9To distinguish matrices from scalars, we use a hat, similarly (and not acciden-
tally!) to what we did for quantum operators.
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which is not a permutation (notice the element with a minus sign).
Then, let |z) and |y) represent input and output qubit states, such
that

ly) = Ul).

0-(1);
|y>:(_01>:<—1>x($).

The unitary transformation returned the input vector multiplied
by the scalar —1. The latter is a phase factor: —1 = ¢'™. No classi-
cal transformation (i.e., a sequence of logic gates) can add a phase
factor to a qubit state vector. Thus U has no counterpart in clas-
sical computing.

Let |0) denote the state where the qubit is “0” and |1) when it is
%17 Then,

Notice that if

then

A

U0y =10) and  U[1) = —[1).

2. Consider a more general phase gate, defined by the matrix
N 1 0
U= ( 0 e ) '

U0y =10) and  U[1) = €?]1).

In this case,

All classical reversible gates are also quantum gates, in the sense that
any permutation is a unitary transformation as well.

Is it possible to turn any irreversible gate into a quantum one? The
generic answer is no. The physical reason is that the number of “bit
lines”, or degrees of freedom, is not preserved in an irreversible gate.
Irreversible gates do not preserve the dimension of the qubit space. In
a quantum evolution, degrees of freedom are preserved, namely, they
cannot be destroyed or created. There is a surprising consequence to
that, which we will study soon (spoiler: copy via FANOUT is not allowed
in quantum information processing).
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Hence, the only similarity between qubits and classical bits is that
the former can only be measured or observed in two states. Qubits go
much beyond classical bits. Qubits can exist in many different states,
infinitely many, in fact. Consider the qubit state

|¢) = al0) + b[1),
which represents a superposition between “0” and “1”. Because a and b
can vary continuously (and can even be complex numbers), there is an

infinite number of possibilities for [).

5.2.1 Single-qubit gates

There are a few single-qubit gates that are particularly useful and impor-
tant. Below, we represent the unitary operator associated to each gate
as a matrix in the basis provided by the “0” and “1” states, namely,

|0>:<(1J> and |1>:<(1)>
e NOT:
UNOT-(? (1)>

e Phase:
A 1 0

There are two special phase gates worth mentioning :

A A 1 0 PN 1 0
S_Uﬂ—/g_<o Z) and T_UW/4_<O eiﬂ./4>.

e Hadamard:

N 1 1 1
=1 )
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This one is especially useful for creating superposition states . For
instance,
Oul) = —=(10) +]1)
" V2
A 1
Unll) = (10) = [1))

e Pauli: there are three of them:

S

2

0 1 X
(V)
0 —i Y
Yf_(i _OZ>
Z_

. (1 0

Notice that X is the same as the NOT gate and Z is the same
as the phase gate with § = 7. Pauli gates have some intriguing
properties:

X2 =v2=72=] (even powers of Pauli operators are the
identity)

Xy = zZ, 7X = 137, V7 =iX (cyclic product permutation
rule)

(X,Y] =2z, [Z,X] =2iY, [V,Z] = 2iX (they form a so-

called Lie algebra).

Aside their use as quantum gates, Pauli operators are important
in other areas of quantum mechanics and used to represent ob-
servables such as the components of the s = 1/2 spin. Spin is an
intrinsic angular momentum of elementary particles, such as the
electron.'”

The z, y, and z components of the angular momentum do not commute and
therefore cannot be simultaneously determined with certainty through measure-
ments. The Pauli operators manifest this property via their non commutability.
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e Rotations:

Ro(0) = e7X/2 = cos(0/2)—isin(0/2)X

I
—
D
=

Ry (0) = e7 /2 = cos(0/2)[—isin(0/2)Y

R.(0) = e 02/2 — cos(0/2)1—isin(0/2)Z

In matrix representation,
A B cos(6/2)  —isin(6/2)
f(0) = ( _isin(0/2)  cos(6/2)

. B cos(0/2) —sin(6/2)
R,(0) = <sin(9/2) cos(0/2) )

. e—i9/2 0
R.(0) = < 0 b2 |-

It is possible to prove that any one-qubit unitary operator (i.e.,
any one-qubit gate) can be decomposed as

¢ R.(8) By (1) R.(6).

where «, 3, v, and § are real numbers. We will return to this
topic (gate decomposition) later on. For now, notice that four real
parameters (o, 3,7, d) are needed in the most general case, which
matches the number of independent real numbers needed to write
the most general 2 x 2 unitary matrix.

5.3 BLOCH SPHERE REPRESENTATION

Let us introduce a neat way to represent single-qubit states: the Bloch
sphere.

The most general state vector of a single qubit can be written in the
so-called computational basis (i.e., the basis of “0” and “1”) as

|w=<2>=qm+mm
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where ¢; and ¢y are complex numbers satisfying |c1|? + |c2|? = 1. Let
c1 = a1 + 101 and ¢ = a9 + ifs, where aq, as, f1, and [ are real
numbers. In terms of these numbers, the normalization condition reads

aft+az+ i+ =1 (5.1)

(therefore, |ay| < 1, || < 1, |B1] < 1, and |52| < 1). Mathematically,
this equation describes the surface of a sphere of radius 1 in a four-
dimensional space. Thus we only need three coordinates to uniquely
determine any point on such a surface embedded in four dimensions. As
a result, in principle we can map the coefficients a1, as, 51, and S under
the constraint of Eq. (5.1) onto three coordinates (z, y, z). The mapping
is not unique, but consider for instance this one:

r = 2o+ fif2)
= 2(foq — azfh)

2 2 2 2
= aj+ 8] —a3—f5.

The convenience of this particular map is that it is consistent with the
relation

?+yt+2 =1
(check it!). Therefore, the coordinates (x,y, z) themselves describe points
on a three-dimensional sphere of radius 1, the so-called Bloch sphere.
We can express the points on the Bloch sphere via spherical coordinates
(r,0,¢) by setting r = 1 and

z
r = sinfcos¢ jh
y = sinfsing » Y
z = cosb, x

with 0 < 0 <7 and 0 < ¢ < 27. Notice that through these mappings we
went from four variables to only two angles. Going back to the original
four variables, we find

a; = cos(0/2)cos(w)
as = sin(6/2) cos(w + ¢)
B1 = cos(0/2)sin(

By = sin(0/2)sin(w + ¢),
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where w is some unspecified angle, with 0 < w < 2x. This angle or phase
has no physical significance. To understand why, let us go back to the
matrix and braket representations. We find that (check this too!)

) = & ( eijossif(/e%) ) — e [cos(8/2)]0) + ¢ sin(0/2)[1)].  (5.2)
Notice that the factor e is an overall phase and, as such, cannot be
detected. We henceforth disregard it. As a result, by convention, in the
Bloch representation, the cofficient in front of the |0) basis state must
always be real and positive.

To recap: one can go from a four-dimensional to a three-dimensional
representation of qubit states, where to each state we associate a point
on a sphere of radius 1. While the (x,y,z) coordinates of points on
the sphere do not have anything to do with real-space coordinates, it
turns out that they can help us visualize qubit states as if they were
standard three-dimensional vectors. Thus the great appeal of the Bloch
representation.

5.3.1 States and gates in the Bloch representation

Notice that at # = 0 (i.e., at the north pole in the Bloch sphere), we

obtain
rw=<é)=m%

whereas at @ = 7 (at the south pole), we obtain instead

w=($)=ww

For § = 7/2 (at the equator), we obtain

|@—<Qﬁ%>—jﬂm+wm%

which is a superposition state. Notice that by varying ¢, one can move
along the equator. Hence, 0 is a latitude angle, while ¢ is an azimuth or
longitude angle.

What happens when you act with a rotation operator on a state
represented on a Bloch sphere? Let us look at a rotation by an angle «
around the “x axis”, starting from the north pole:

R.(a)]0) = [cos(a/2)T — isin(a/2)X]|0) = cos(a/2)|0) — isin(a/2)[1).
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Setting o = 7, we get
Ry (m)[0) = —i[1),

which essentially flips the qubit state by taking it from the north to the
south pole, up to a phase factor. When we set o = 7/2 instead, we get

1
V2

which is a state on the equator line. As you can see, a 90° rotation around

the x axis bring the qubit state from the north pole to the equator.

This aligns perfectly with the geometry afforded by the Bloch sphere

representation. The Bloch sphere notation provides an intuitive, visually

appealing way of representing qubit states. But there are some subtleties.
Let us consider a rotation by 8 = 27 of a generic state:

reow = (700 ) (i )
—cos(0/2)
- ( —e'?sin(0/2) ) = —l¥)-

We do not quite get back to the same state we started with! The sign
changes! In fact, we need to rotate the state by 0 = 4xw to get back to
exactly the same state we started with:

Ry(4m)|y) = [9).

Ry (m/2)|0) = —=(10) —i[1)),

Dirac found an entertaining demonstration of this effect: the Dirac string
trick! If you search it on the Internet, you will find videos showing it (you
can also search it as the plate or belt trick). Technically, it means that
the mathematical group of quaternions (our 2 x 2 single-qubit unitary
operations), known as SU(2), covers the group of three-dimensional ro-
tations, known as SO(3), twice over.

Let us look at the effects of a couple more gates on states on the
Bloch sphere:

e Hadamard gate:

H|0) = )+

1 1
—|0) + —<|1),
\/§| \/5| )
which implies § = 7/2 and ¢ = 0 (the point at the intersection
between the z axis and the equator).
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e S gate:
A1 1 1 1
S(O +1):0 + —=|1),
¢§> %ﬂ> V@> ¢§>
which implies # = /2 (no change on this angle) and ¢ = /2 (the
point at the intersection between the y axis and the equator).

5.4 PAULI DECOMPOSITION

Any one-qubit operator can be decomposed as a weighed sum of Pauli
operators complemented by the identity operator:

O:<Oll 012>:C]j+CxX+CyY+022, (53)

O21 O

where ¢j, cx, ¢y, and ¢z are suitable complex coefficients (try to find how
they related to the original matrix elements O;;). This should not come
as a surprise: any one-qubit operator can be written as a 2 X 2 matrix
with four matrix elements. So, there are four complex degrees of freedom
in expressing a one-qubit operator. Equation (5.3) is basically a linear
mapping from four complex coefficients onto four others. It can also be
understood as a basis decomposition: the Pauli matrices, complemented
with the identity, are linearly independent (i.e., we cannot write one in
terms of the three others), thus they form a basis in the vector space of
2 x 2 complex matrices.

5.5 GATES AS PULSES

How does one apply a quantum gate in practice? The action of a gate
is performed by applying fields to the physical system that encodes the
qubits. Consider for instance the ]%m(oz) gate. It can be implemented by
turning on a field!! whose effect is to add the following term to the qubit
Hamiltonian:
H=)X,

where A is the coupling amplitude. If this is the only term in the qubit
Hamiltonian, recalling Eq. (4.3), we can easily obtain the evolution op-
erator for the qubit under the action of the field:

ﬁ(t) _ it/ _ efi(a/2)f(’

"The field could be electric, magnetic, optical, or a combination of.
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where a = 2\ t/h. Hence, but adjusting the duration of the field pulse,
we can control the parameter «. For instance, setting t = wh/2\ creates
an }?x(w) gate. In this context, such a gate is called a 7 pulse.

Similarly, one can implement an R,(7/2) gate — which is called a
7/2 pulse — or any other rotation by applying a suitable field pulse and
controlling its duration. Other single-qubit gates can be performed in a
similar fashion but may require a combination of fields to achieve the
correct phases and amplitudes in the qubit state vector. Even two-qubit
gates (to be explained in following sections) also boil down to applying
a sequence of field pulses to the qubits involved.

5.6 MEASUREMENTS

We have not talked much about measurements so far but they are a
critical part of any quantum information processing. After all, at some
point in the processing, being it computation, storage, communication,
or sensing, we need to retrieve information.

Recall that Postulate I1I of quantum mechanics states that any time
we measure an observable in a quantum system, we only obtain one of
the eigenvalues of the operator associated to that observable. Moreover,
the state of the system after the measurement is that of the eigenvector
associated to the observed eigenvalue.

These rules are satisfied by qubits, of course. When we measure some
observable involving a certain number of qubits, those qubits will collapse
to the eigenstate corresponding to the measured outcome.

Often, we do not specify very clearly which quantity or observable
we are measuring in a qubit system; when this is the case, it is implicitly
assumed that we are measuring the 7 operator associated to the qubits.
For instance, in a 10-qubit system, measuring qubit #3 means measuring
the value of the observable Z associated to that qubit. The eigenvalues
of the Z operators are +1, but we usually prefer to associate them to
0 and 1, (0 for +1 and 1 for —1). To be more precise, when we are
expecting 0 or 1 as the outcomes of a qubit measurement, in reality we
are measuring the operator Q = (I — Z)/2. It is trivial to check that Q
has the following form in the computational basis:

. (00
o=(01)

In circuits, we denote the “measurement of a qubit” (i.e., measuring the
observable @) by the element shown in Fig. 5.7.
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e —

Figure 5.7 Graphic representation of a measurement circuit element.

After measuring a qubit and, say, obtaining 0, that qubit collapses to
the state |0), which is in fact a classical state. Similarly, if we obtain 1, the
qubit collapses to the state |1). Because the output of a measurement is a
classical variable (with values 0 or 1 in this case) and the final state of the
qubit is, in essence, classical (i.e., not a superposition), the output line in
the measurement element is doubled to contrast with single “quantum”
lines.

5.7 PRACTICING WITH QISKIT

Let us practice what we learned so far by using Qiskit to play with qubits
and quantum gates.

Follow the instruction provided in Appendix B to install Qiskit on
your computer and get acquainted with its basic commands. Then try
the tasks listed below, making sure to understand the result of each gate
application.

1. Create a single-qubit circuit with the qubit set initially to |0);
apply a Hadamard gate; print out the resulting state vector.

2. Add a measurement to the circuit and use a sampling evaluator
(mimicking a real quantum computer) to run the circuit 1000 times
and collect the measurement data.

3. Plot a histogram with the number of counts for each measurement
outcome.

4. Plot a vector of Cartesian coordinates (0, 1,0) on the Bloch sphere.

5. Plot a vector of spherical coordinates (1,7/2,7/3) on the Bloch
sphere.

6. Define another single-qubit circuit with the qubit initially set to
|0); apply the sequence of gates Hadamard, X, and Y, and plot
the state vector on the Bloch sphere after each gate.

7. Apply an R,(—7/2) gate. Where is the resulting state vector lo-
cated on the Bloch sphere?

8. Where does the state vector go after applying an R, (7/2) gate?
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5.8 TWO- AND MULTI-QUBIT GATES

We have already encountered a two-qubit gate: the CNOT. It applies a
NOT gate on one of the qubits (the target one) when the state of the
other qubit (the control one) is 1. While not necessarily a quantum gate
(it can also be used in classical reversible computations), the CNOT has
an entangling effect when applied to qubits in a superposition state. Let
us understand this important point.

Consider the initial two-qubit state where the control qubit is in a
superposition and the target qubit is in the |0) state:

1 1
V2 V2

Notice that this state is fully factorizable and therefore not entangled.
Let us apply a CNOT operator to it:

1
7

Clearly, the resulting state is entangled (i.e., it is not factorizable).
Adopting a two-qubit computational basis where

|¥) (10) + 1)) ©10) = —=(]00) +[10)).

UCN0T|@/’> = (|00> + |11>)'

|00) = , ]01) = . ]10) = , and |11) =

o o o=
SO = O
O = OO
— o O O

and taking the qubit on the left within the ket as the control, we can
represent the CNOT gates in a matrix form,

1000
~ 0100
Ucnor = 00 0 1
0010

The CNOT gate is a particular example of a more general class of n-qubit
gates named controlled-U gates, as shown in Fig. 5.8.
The gate action is defined by the rule:

e if the control qubit = |0), do nothing;

e if the control qubit = |1), apply the unitary operator U on the
target bits.
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} control bit (1)

U : }target bits (n—-1)

Figure 5.8 A generic control-U gate.

Here, Uis a multi-qubit unitary operator acting on a 2"~ !-dimensional
space. For instance, for a CNOT, n = 2 and U=Xx1m2

It turns out that one can build multi-qubit control gates out of CNOT
gates. Thus, it is often sufficient to consider circuits with only two-qubit
control gates. Let us elaborate on this point.

Consider that any one-qubit unitary operator can be decomposed as
a sequence of rotations and an overall phase factor,

U = ¢ R.(B)Ry(7) R(5) (5:4)

after suitable choices for the angles «, (5, 7, and d. One can show after
a bit of algebra that this result can be recast as

AAAAA

where we introduced the following combinations of operators:

A

= R.B)Ry(7/2)
Ry(—7/2)R.(=(6 + 5)/2)
= R.((6-5)/2).

Interestingly, ABC =T and CBA = I. We can imagine that U acts on a
target qubit while another qubit (the control) activates the X operators,
as shown in the circuit in Fig. 5.9.

Notice the insertion of a phase gate on the control bitline to account
for the overall phase factor in Eq. (5.4).

We can also define control circuits , which we denote by Cyy. Consider
a multi-qubit unitary operator U that consists of a series of individual
gates, as shown in Fig. 5.10.

A possible Cy circuit is shown in Fig. 5.11.

Q> UU> 0 Y
Il

12We can write an explicit expression for the control-U gate as Cpy = [0)(0] ®
In—1+|1)(1] ® U, where the projectors act on the control bit and both I,—; and U
act on n — 1 target bits.
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‘ eic
Gl ARG

Figure 5.9 The decomposition of a two-qubit control-U gate.

ﬂ []
ol

Figure 5.10 A multi-qubit circuit can be cast as a unitary operator U.

[

Figure 5.11 A U-circuit control gate.

Because each gate in the sub-circuit represented by U only acts when
the control bit activates them, we can assign individual control lines to
each gate making up U, as shown in Fig. 5.12.

This example illustrates that more complex control-like circuits can
be easily decomposed into elementary control gates. Therefore, we can
build very complex quantum circuits using just single-qubit gates and
CNOT gates. But is that sufficient? We address this question in Sec. 5.10.

5.9 MORE PRACTICE WITH QISKIT

Let us practice with one- and two-qubit gates using Qiskit . Try the
tasks listed below, always making sure to understand the result of each
gate application.

1. Create a two-qubit circuit with all qubits initially set to |0); apply
a Hadamard gate on the first qubit and then a CNOT gate with
the control on the first qubit and the target on the second qubit;
print out the resulting state vector. What kind of state is it?
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e lzrs

Figure 5.12 A circuit of control gates equivalent to that in Fig. 5.11.

2. Retrieve the unitary operator associated to the circuit and print
out the corresponding 4 x 4 matrix (in the computational basis).

3. Now add measurements to both qubits; use a sampling evaluator
to run the circuit 1000 times and collect the measurement data;
plot a histogram with the number of counts for each measurement
outcome. Does the result match what you expected?

4. Create a new two-qubit circuit, again with all qubits set initially
to |0) again; apply the same gates as in the previous circuit (do
not include the measurements yet); in addition, apply a Hadamard
gate to the second qubit and then another CNOT gate, this type
swapping the location of control and target; print out the resulting
state vector. What kind of state is it?

5. Repeate steps 2 and 3 for the new circuit. Reflect on the result of
step 3.

5.10 UNIVERSAL QUANTUM GATE SETS

What is the smallest set of gates needed to allow for any quantum com-
putation, no matter how complex? In other words: what is the minimum
gate set that is needed for implementing any unitary operation over n
qubits?

The answer depends on how accurate we want the computation to
be. Since unitary operations are defined in the continuum, unless the op-
eration is relatively simple, we can anticipate that a large number of indi-
vidual elementary gates will be needed to perform complex, multi-qubit
operations. Yet, perhaps all that is needed is a good-enough approxi-
mation to the unitary operation rather than an exact implementation.
In this case, the number of elementary gates may scale more favorably
with the number of qubits (i.e., the dimension of the Hilbert space), or,
alternatively, only a few types of elementary gates may be sufficient. Let
us formalize this notion.
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Let U be a desired _unitary operation and V some other unitary
operation. We say that 1% approximates U to accuracy € when

r%xu( V)| < e

for € > 0.'3 In words, the maximum value of the norm of the difference
between the vectors resulting from acting with U and V on |1) is smaller
than a certain desired accuracy. The smaller the € the better 1% approx-
imates U. The hope is that V can be built out of a small set of gates
types (although we may need to use the same type of gate many times).
When e can be made arbitrarily small, we say that 1% approximates U
with arbitrary accuracy.

A set of gates is called universal if, for any n > 1, any n-qubit unitary
operator can be approximated with arbitrary accuracy by a quantum
circuit formed only by gates from that set.

Based on these definitions, it is possible to prove the following theo-
rem:

A set composed of any two-qubit entangling gate, together with all
one-qubit gates, is universal for quantum computing.

But what is an entangling gate? It is any gate that, given a product
state as input, can output an entangled state (i.e., a state that cannot
be factorized, see the beginning of Sec. 5.8). CNOT is an entangling
gate; however, the SWAP gate is not (see Sec. 5.11 below). Thus, by
combining two-qubit CNOT gates with one-qubit gates one can build
any multi-qubit unitary operation.

Is it possible to restrict the one-qubit gates to a smaller set?

The answer is yes. For instance, if you recall, using a series of rotation
gates such as R, and fiy we can emulate any one-qubit unitary operator,
as long as we can freely adjust the rotation angles.

Can we restrict the one-qubit gate class even further? The answer is
again positive: the set {H,7'} combined with CNOT, where H is the
Hadamard gate and T is the 7 /4 phase gate, is universal. This means
that any one-qubit unitary operator can be approxunated with arbitrary
accuracy by a sufficiently large number of Hand T gates.

A

13This notion means: the maximum of magnitude of the state (U — V)[¢) with
respect to all possible |¢)) must be smaller than e.
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{ﬁ T, CNOT} is not the only universal set. There are others, but
they all are similar in the sense that they contain at least one entangling
two-qubit gate and a finite number of one-qubit gate types that can be
composed to represent any one-qubit unitary operations with arbitrary
accuracy.'*

The fact that a universal set can approximate any multi-qubit uni-
tary operation with arbitrary accuracy tells us nothing about how ef-
ficient such an approximation might be, namely, how many individual
gates are needed. When an exponential number of gates is needed, the
concept of a universal set is not practical.

Fortunately, a theorem by Solovay and Kitaev saves the day:

Any one-qubit unitary operator can be approzimated with an error e
using at most O(log®(1/€)) gates from a set G if, for any gate g € G its
inverse g~' can be implemented exactly by a finite number of gates

from G.

Notice that poly-log scaling grows much slower than an exponential one.

Luckily, the subset {H, T} satisfies this condition! However, if we
were to substitute 7’ by, say, the phase gate S the subset would no
longer be universal for all one-qubit unitary operations. Nevertheless,
the set {CNOT, H,S } is of some importance in QIP since it generates
the so-called Clifford group. A theorem by Gottesman and Knill states
that any quantum circuit based on gates from the Clifford group can be
efficiently simulated on a classical computer. Namely, it is possible to
mimic the action of a Clifford gate using only a polynomial amount of
classical computational resources. Because Clifford gates can entangle,
this theorem basically says that not all entangled states are difficult to
simulate in a classical computer. Clifford gates have applications in cer-
tain protocols of entanglement distillation and quantum error correction,
as we will see later on. But they are insufficient for universal quantum
computation.

5.11 OTHER GATES OF RELEVANCE

To wrap up this chapter, let us describe a few more two-qubit gates of
relevance, with their symbols and matrix representations (always using
the states showed in Eq. (5.8) as the basis).

M\ any other sets were introduced over the years, particularly in the 1980s and
1990s, including sets containing the three-qubit Deutsch gate and the two-qubit
Barenco gate, which are no longer commonly used.
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e SWAP:
1 0 0 O
A 00 1 0 — K
Uswap = 01 0 0
0 0 0 1
e VSWAP
1 0 0 0
o o avie a-iz o
VEWAP = | 0 (1-4)/2 (1+4)/2 0
0 0 0 1
e CSIGN (ak.a. CTRL-Z):
1 00 O
~ 01 0 o0
Uctri-z = 001 0
00 0 -1

The latter is especially important to optical quantum computing because
it is relatively simple to implement in that setting and it is possible to
generate other two-qubit gates from it. For instance, consider the circuit
equivalence shown in Fig. 5.13.

— °

-

Figure 5.13 Decomposition of a CNOT gate in terms of rotations and a
CTRL-Z gate.
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5.13 EXERCISES AND PROBLEMS

1.

Build a permutation matrix that represents the Toffoli gate. Do not
forget to define the vector representation of each possible classical
input.

Build all possible truth tables for gates in the Toffoli class, namely,
for three-bit gates where two bits control a NOT applied on a third
(target) bit. Write Boolean functions for each output line of these
gates. Hint: when there are two control bits, there are 22 different
ways for these bits to control the target bit.

. Show that for any one of the three Pauli gates G=X , )7, Z ,

e~ #C/2 — cos(0/2) I —i sin(0/2) G

Hint: use the Taylor expansion mentioned in Ch. 4.

. Show that a phase gate is equivalent to an R, gate up to an overall

phase factor.

. Identify the following one-qubit states in the Bloch sphere (use

drawings and identify angles):

¥) = (il0> —2[1))
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(e) |y = £]0) — 1),

6. Find the change in angles 6 and ¢ of a Bloch sphere state when
the following gates act on it: (a) Ry(«), (b) Ry(e), (c) R.(a), (d)
H, (e) S, and (f) T.

7. Show that a SWAP gate, when applied to a generic product state
of two qubits, always yields another product state. Show that this
is not the case for a CNOT gate.

8. Consider a two-qubit state

1
Uy = — | |0)g|1)p + [1)a]0)s] -
v) ﬂ|>|>b|>’>b
Show that it is an entangled state. Hint: prove that there are no
possible values of «y, 84, ap, and [, such that the state can be
reduced to the product

(V) = (aa|0)a + Ball)a) ® (as|0) + Bol1)s).

9. Consider a system of two qubits, a and b.

(a) Show how one can use Hadamard gates to build the following
two-qubit basis states from classical ones:

{10 (Lt ln) g, g (1 lt),
e (D) g (10t}

(b) Using the Dirac notation, describe the effect of a CNOT gate
on these basis states. First, consider qubit a as the control
and b as the target, and then vice versa.

10. Consider the two-qubit operator

A

Q=2ioi+:20l+i0X--20X.

NN

1
2

N —

1
2
(a) Find a matrix representation for Q. Hint: start by defining

your computational basis vectors in the two-qubit Hilbert
space.
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(b) Is the operator ) unitary? Is it Hermitian? Justify your an-
swers.

(c) Design a quantum circuit (with as many gates as needed) that
implements this operator. Hint: it is a very simple circuit!

11. Construct a matrix representation for the two-qubit circuit shown
in Fig. 5.14. Hint: start by defining the two-qubit computational
basis states and the action of the gates on these states.

\Z ]

Figure 5.14 Diagram for problem 11.

12. Consider the three-qubit circuits in Fig. 5.15.

L T e SIS 1] S
T U I e U

(a) (b) (©)

Figure 5.15 Diagrams for problem 12.

(a) Let |000) be the input state. Find the output state for the
circuit in panel (a) of Fig. 5.15.

(b) Find the probability that a measurement in the computa-
tional basis, as shown in panel (b) of Fig. 5.15, obtains the
state |010). Hint: define a projector operator for the state
|010) and use it to compute the probability amplitude.

(c) Find the probability that a measurement in the computa-
tional basis, as shown in panel (¢) of Fig. 5.15, obtains the
value 1 for the bottom qubit. Hint: define a suitable project
operator that only acts on the bottom qubit to produce the
desired output value for that qubit.

13. Show that the two elementary quantum circuits shown in Fig. 5.16
are equivalent. Hint: you can either use unitary matrices or states
from a complete basis.
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Figure 5.16

Diagram for problem 13.

14. Consider the two-bit function f(z) defined by the truth table

(a)
(b)

(e)

Construct a classical gate (reversible or irreversible), com-
posed of Boolean gates, that evaluates this function.

Now construct a quantum gate that evaluates this function.
Hint: you can build it using classical elementary gates but
they need to be reversible. You will need two ancilla qubits;
check the approach used in Deutsch’s algorithm to turn a
Boolean function into a unitary gate.

Obtain a unitary matrix U ¢ that implements the quantum
gate. Hint: it is a 16 x 16 matrix; it can be broken down into
sixteen blocks, with each block being a 4 x 4 matrix. But only
four of the 16 blocks are non trivial.

Using this matrix, find the output state for the input state
1
) = 5(100) = [01) +[10) — [11)).
Repeat the calculation in item d) for the input state |¥) =

H ® H|00), where H denotes a Hadamard gate (ie., a
Hadamard gate is applied to each qubit).

15. Starting from a classical product state, design a quantum circuit
to build a superposition involving all possible computational basis
states of three qubits. Hint: you need at least three gates.

16. Consider the two-qubit state

W) = (10} + o) — [00))
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Is this an entangled state or a product state? Justify your answer.
17. Consider the three-qubit state

1
Y

Is this an entangled state or a product state? Justify your answer.

k%) (110) + [010) — 2i[101)).

18. Show that the H and T gates satisfy the conditions of the Solovay-
Kitaev theorem.

19. Design quantum circuits to create the following states from classi-
cal product states:

(a) Bell state '
[4) = — (100) + |11)

Sl

(b) GHZ state
9) = <= (000} +[111)).
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CHAPTER 6

Basic Quantum
Algorithms

Can an algorithm that explores quantum superposition and entangle-
ment outperform its classical counterpart?

It was only in 1985, long after the birth of quantum mechanics, that
an affirmative answer was established. While the concept of a quantum
computing machine had been introduced earlier (circa 1982 by Richard
Feynman), it was David Deutsch in 1985 who first showed a simple
example where a quantum algorithm could beat any classical one.!

Deutsch’s example is not particularly useful for practical applica-
tions, but it does show that superposition and entanglement can be
used to speed up a calculation. Using quantum computing jargon, we
can say that the algorithm invented by Deutsch illustrates the concepts
of quantum parallelism and quantum interference and how they can be
combined to speed up the solution of a mathematical problem.

6.1 DEUTSCH'S ALGORITHM

What problem does Deutsch’s algorithm solve? It determines if a one-bit
function is balanced: let f : {0,1} — {0, 1} denote a function that takes
a binary variable into another:

e [ is balanced if f(0) # f(1);

e [ is not balanced if f(0) = f(1) (i.e., it is a constant in this
particular one-bit case).

Deutsch, D. 1985. Quantum Theory, the Church-Turing Principle and the Uni-
versal Quantum Computer. Proc. R. Soc. Lond. A 400:97-117.
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Imagine that f is implemented by a reversible circuit inside a black
box. We cannot tell how f works internally, therefore cannot predict in
advance if f is balanced unless we test it. How many queries to the black
box do we have to make?

e Classically, the answer is two: query f(0) and f(1) and then com-
pare the results.

e Quantum mechanically, the answer is one! How is that possible?!

Deutsch’s algorithm finds f(0) & f(1) without querying f(0) and f(1)
separately; it queries the black box only once. From knowing z = f(0) ®
f(1) we can immediately tell if f is balanced or not: a balanced f yields
z = 0 while a constant one yields z = 1. Since f is entirely made out of
reversible gates (although classical), it can be realized it with quantum
gates without any constraints.

Let U ¢ represent the two-qubit unitary operator that implements the
following control gate:

Oyl2)ly) = lo)ly @ f(x)).
Namely, U ¢ is such that:

e if x =0 (Ist qubit) and y = 0 (2nd qubit), get |f(0)) on the 2nd
qubit;

e ifr=0and y=1,get |[1® f(0)) =|f(0)) on the 2nd qubit;

e if z=1and y =0, get |f(1)) on the 2nd qubit;

e ifr=1andy=1,get |[1® f(1)) =|f(1)) on the 2nd qubit.

(Recall that a bar on a binary variable means its negation.) What hap-
pens when we start with |z) = %(!@ + 1)) and |y) = |0) on input? Let
us work it out:

~ (10) + |1>> 1 . 1 A
U | ———=—)10) = —=U¢|0)|0) + —=U¢|1)|0
(M) 0 = 50010 + = 05m10)
1 0 1
V2 V2
The output state is a superposition of both f(0) and f(1) on the second
qubit. In other words, both computations have happened! How do we

)F(0)) + —= D) f (1)
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extract f(0)@® f(1)? Use a superposition state for the other qubit as well.

To do so, let us start instead with the initial state

) = (|0>\J/r§!1>> <|0>\;§!1>>'

Again, let us work it out:

W) = Urlvo)
N 1 1 1 1
e (2\00>—2101>+2\10>—211>>

1 A A A A
= §(Uf|00> — Up|01) + Ug[10) — Uy[11))

N =N

[10)17(0)) = [0)[L @ f(0)) + [DIf(1)) = DT @ f(1))]
= %{|0>(!f(0)> — L& £(0)) + (1) — L& f(1)))}.

Now we can make use of the following relation:

e L0 f(@) =0
(@)~ L& f()) {D_m)ﬁm_l
= (=1)/@(|0) - |1)).
Therefore,
1) = %{(—1)”0)!@ [10) = [1)] + (=1)/M[1) [jo) — [1)]}
1

= > [=DO) + ()P )] (o) - 1))

2
10) + (=) OWL) | (0) — 1))
V2 v2 o

Now, apply a Hadamard gate on the first qubit:

W}2> = ﬁqubit1|wl>-
o If f(0)® f(1) =1 (balanced function), then

o) = (0o (2R,

- (_1)1‘(0)

[l0)|0® f(0)) = [0)[1 & F(O)) + [D]0® f(1)) = [T @ f(1))]
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e if f(0)@ f(1) =0 (constant function), then

o) = (-0 (21,

By measuring the state of the first qubit in the computational basis
after applying the Hadamard gate, we can with certainty find out if the
function f is balanced or not! The state of the qubit tells us that:

Ist qubit = |1) = balanced
Ist qubit = |0) = constant.

A quantum circuit that implements this algorithm is shown in Fig. 6.1.

o
| VA |
R DH . |

oy v v

Figure 6.1 Quantum circuit for Deutsch’s algorithm.

In Fig. 6.1, we assume that there is a reversible-circuit implementa-
tion of the operator U t. The dashed lines indicate the stage where the
state vectors were computed in the derivation developed above.

Deutsch’s algorithm determines whether f is balanced or not by a
single query to the classical black-box circuit that computes f (which is
assumed to be inside U 7). It does so at the expense of an extra (ancilla)
qubit and a few single-qubit gates.

Notice that in the process of implementing this algorithm we em-
ployed superposition and entanglement. Can you tell on which stage
each one of these properties were used? In this particular case, quan-
tum, interference led us to the desired answer with 100% certainty. We
will see later that this is not always the case with quantum algorithms.

6.2 DEUTSCH-JOZSA ALGORITHM

Deutsch’s algorithm can be generalized to find whether an n-bit function
f 40,1} — {0,1} is balanced (i.e., 0 for half of the possible 2"
entries and 1 for the other half) or a constant (0 or 1 for all 2" entries),
provided that we know that it can only be one or the other. The resulting
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algorithm is called Deutsch-Jozsa,? ® which requires n 4+ 1 qubits and
an operator that acts on this larger space according to the rule,

0f|x1"'xn>’y> =z 2|y ® f(w1,...,20)).

The circuit that implements this algorithm is shown in Fig. 6.2

Figure 6.2 Quantum circuit for the Deutsch-Jozsa algorithm.

Notice the (n+1)-qubit U ¢ gate and the n measurements. We assume
that a quantum implementation of U + requires a computational effort
that scales polynomially with the number of qubits.

Following the same approach used for the Deutsch algorithm, we can
establish the evolution of the quantum state at the stages indicated by
the dashed lines in Fig. 6.2:

o) = [ﬁmm ® e,
k=1
_ S ! 0 1
) = g | S 1| © 500 - 1),

[92) = 5o [Z (~1)7@a)

=0

1
® ﬁ(!@ - 1), (6.1)

2Deutsch, D. and R. Jozsa. 1992. Rapid solutions of problems by quantum com-
putation. Proc. R. Soc. Lond. A 439: 553-558

3Cleve, R., A. Ekert, C. Macchiavello, and M. Mosca. 1998. Quantum algorithms
revisited. Proc. R. Soc. Lond. A 454: 339-354
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and

2n—1 1 2" —1

ws) = > |5 2o (DO ®12(\0>—|1))

S5

= > p@)) @ —(10)- 1), (6.2)

1
=0 \/i
where p(0) = 1 when f(z) is constant and p(0) = 0 when f(z) is bal-
anced. Therefore, if at least one qubit measurement yields 1, we can
conclude that the function is balanced.

The amazing aspect of this algorithm is that it allows for the deter-
mination (with 100% accuracy) of whether an n-bit function is balanced
or constant through a single query to the black box that computes f.
No classical algorithm can do that in the most general case!* Of course,
the price to pay is the use of n ancilla qubits. But this may not be a
high price given that we may have avoided 2" classical computations. So,
overall, we replaced an exponential number of classical computations of
f by a polynomial number of quantum operations (i.e., proportional to
some power of n) on the n 4+ 1 qubits. More precisely, we replaced the
O(2"™) worst-case-scenario computational cost of the classical algorithm
with a quantum one that costs only O(n®), for some « > 0. For large
enough n, O(n®) > O(2"), and by a lot.

Quantum parallelism is achieved in this case by the battery of
Hadamard gates at the first layer of the quantum circuit, which puts
the (n + 1) qubits into a state comprising a superposition of all 2"+
computational basis states and with equal amplitudes.

The second battery of Hadamard gates after the control gate steers
the many-qubit state toward another superposition that reveals the an-
swer to you query, and no more. Quantum interference allows us to filter
the bit of information we are seeking without having to run the circuit
more than once. We only access the information we need!

The Deutsch-Jozsa algorithm shows the exponential advantage of
a quantum computer over a classical one for a deterministic task such
as finding if a binary function is balanced or not. However, there is a
caveat. There are probabilistic algorithms that can, in principle, solve
the Deutsch-Jozsa problem with probability at most 1/3 with only two

“Someone using a classical algorithm that queries f(x1,...,%,) may be lucky
and find out, after only two queries, that f is not a constant (and therefore must be
balanced). But in the worst-case scenario, they may have to make as many as 2" *
queries to arrive at a conclusion.
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queries. The probability of error can be further reduced to 1/2" with n+1

queries. So, the quantum advantage of the Deutsch-Jozsa algorithm is
less impressive against a classical probabilistic algorithm.

6.3 SIMON'S ALGORITHM

There is a problem solvable efficiently by a quantum circuit where even a
classical probabilistic algorithm is exponentially worse. It is the Simon’s
problem:®

Consider the function f : {0,1}" — @, where @ is some finite
set of bit states. Suppose that a bit string syss--- s, exists such that
flrrza- ) = f(yay2 - - yn) if and only if 2129+ 2, = Y1y2 -+ Yy OF
T1To Tp = S1 D Y152 D Yo+ - - Sy D Y. Find the string s1s9--- s, by
making queries to f.

It turns out that probabilistic classical algorithms can solve this prob-
lem at least 2/3 of the time, but only after evaluating f O(2/3) times!
However, there is a quantum algorithm invented by Daniel Simon in
1997 that queries f less than O(n) times and always finds a solution. It
requires O(n3) gates and O(n) ancilla bits.

One can do even better and use fewer queries by allowing probabilis-
tic success of the quantum algorithm.

6.4 REFERENCES AND FURTHER READING

1. Mermin, N. D. 2007. Quantum Computer Science. Cambridge
Univ. Press. Chapter 2.

2. Nielsen M. A. and 1. L. Chuang. 2000. Quantum Computation and
Quantum Information. Cambridge Univ. Press. Section 1.4.

3. Kaye, Ph., R. Laflamme and M. Mosca. 2007. An Introduction to
Quantum Computing. Oxford Univ. Press. Chapter 6.

6.5 EXERCISES AND PROBLEMS

1. Obtain Eq. (6.2) from Eq. (6.1) by applying a Hadamard to each
one of the first n qubits. Obtain an expression for p(z). Show that
p(0) = %1 corresponds to a constant function and p(0) = 0 to a
balanced function.

5Simon, D. R. 1997. On the power of quantum computation. SIAM J. Comput.
26: 1474-1483
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2. Consider x € {0,1}", i.e., an n-bit string. Let y =21 P xo @ -+ - P
xn define the parity of the bit string. Classically, to determine y,
we would need to query the bit string n times (to perform XOR
operations). Show that using the Deutsch-Jozsa algorithm, we can
reduce the number of queries to n/2.



CHAPTER 7

Quantum Information:
Limits and Possibilities

Even though quantum mechanics allows a state to pack a lot of infor-
mation (via arbitrary superposition of basis states), not all information
contained in a quantum state is retrievable from measurements. This
seems to be a limitation at first, but can also offer some advantages over
classical ways to store and transmit information.

7.1  NO-CLONING THEOREM

To understand why one cannot retrieve all information stored in a quan-
tum state, consider the following situation.
Alice has a qubit in the state

[¥) = al0) +b[1),

with |a]? + [b]?> = 1. She wants to build her own copy of it and send it
to Bob. For this purpose, she performs a measurement of the operator

O =1){1

on the state [¢)). Notice that this operator provides some information
about the amount of |1) present in |1)).

What values can she obtain? Answer: 0 and 1. The frequency of
occurrence of each outcome depends on the amplitudes a and b. She
needs to repeat the experiment many times to try to pin down a and b.

What are the probabilities of each one of the two possible outcomes?
Answer: p(0) = |a|? and p(1) = [b]*> = 1 — |a|?.
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Suppose that a = 1/2. Alice has been given 1000 identical samples
of the state |1) (but still wants to build one herself). After repeating the
same measurement of Q for each sample, she would be able to tell that
la| ~ 1/2. She may even assume without loss of generality that a ~ 1/2.

After obtaining a, can she determine b accurately? Answer: not really.
She can certainly estimate that |b| ~ v/3/2 with a relatively small error
(because of the large number of samples), but she cannot distinguish
b~ /3/2 from b = i1/3/2, for instance. She cannot determine the phase
of b, which is a nontrivial relative phase since she chose a to be real.
Because of that, she cannot create another state exactly like [¢). Even
if someone gives her another 1000 copies, she would not be able to build
her own [¢).

This result can be established more rigorously via the “no-cloning
theorem”:1> 2

There is no unitary operator U that satisfies the relation

Ulb)|¢) = [0)|¥) for arbitrary |).

In other words, there is no way to evolve a quantum system to exactly
replicate the content of another quantum system.
The proof is rather simple and works by contradiction. Suppose that
U existed. Then,
Ul)]¢) = [)|€)

must be true for any |Q) # |¢) as well. Then,
(QUQI= (el TT,
which we can use to write
(QUQL - [¥)¥) = (S(QUTTT ) ).
Since U = U7, then
QUL [y = (8l(Q] - [¥)]9).

i 3
Q) = Q)

The latter can only be satisfied if (Q[)) = 0 or (Q¢) = 1. But |Q)
is supposed to be arbitrary and these conditions are very restrictive.

"Wootters, W. and W. Zurek. 1982. A single quantum cannot be cloned. Nature
299: 802-803
’Dieks, D. 1982. Communication by EPR devices. Phys. Lett. A 92:271-272
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Therefore, we can only conclude that the assumption that U exists is
untenable.

Because it is impossible to clone quantum states, they provide a very
secure way to store information.® Yet. one can transmit a quantum state
even without being able to clone or fully determine it via measurements!
The way to do it is via teleportation.

7.2 QUANTUM TELEPORTATION

Not being able to fully retrieve information about the state of a qubit
does not prevent one from reconstituting that state elsewhere!

It turns out that Alice can send a qubit to Bob using a classical
channel even without knowing exactly the state of the qubit she has,
provided that they share a two-qubit entangled state.*

To understand how this works, we need to introduce a family of
two-qubit entangled states called Bell states (named after John Bell):

\Bo) = ;§<|oo>+|11>)
Bor) = j§<|01>+|1o>)
Bu) = j§<|oo>—|u>>
Br) = —(lo1) - [10)).

S5

2

Suppose that Alice, in addition to having a qubit with state |¢), she and
Bob share a state |Bgg). When we say share, we mean that Alice has in
her possession one of the qubits making up the state |Bgg) while Bob
has the other one.” Call

[¥) = 0} + B[1)

the state Alice wants to send to Bob, with |a|? + |3|> = 1. Instead of
physically transporting this qubit to Bob, she can transmit the infor-
mation encoded in [¢)) to a qubit that is already in Bob’s possession,
namely, to Bob’s qubit that is entangled to Alice’s other qubit.

30ne may even say it is too secure since retrieving the complete information
stored therein is impossible!

4Bennett, C. H., G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Woot-
ters. 1993. Teleporting an unknown quantum state vial dual classical and FEinstein-
Podolsky-Rosen channels. Phys. Rev. Lett. 70: 1895-1899

5This means that sometime in the past Alice and Bob were able to let their qubits
interact long enough to become entangled.
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Notice that there are three qubits in this story: Alice has two and
Bob has one (which is entangled with one of Alice’s qubits, but not with
the other).

The initial state of the 3-qubit system is

|¥) @ |Boo) = (]0) + B]1)) @ —=(|00) + [11)).

1
V2
e Interlude: how can this state be obtained? One way is to apply the

circuit of Fig. 7.1. Imagine that Alice has a qubit (e.g., a photon)
which she initializes to 0, passes through a Hadamard gate, and
then sends to Bob via a quantum channel (e.g., a noiseless quantum
fiber that preserves quantum coherence) to act as a control of a
CNOT gate he applies to a target qubit that he had initialized to
0.

Alice |0y —— H I

1
=M+ 1))
Bob 0 V2

10102
1
\/——2(|O>+|1>)|0>

Figure 7.1 Circuit to prepare Bell’s |By) state.

Let us look more closely at the 1) ® |Byg) state. Expanding the tensor
product, we arrive at

|¥) ® |Boo) = \}é(a|000> + «|011) + 3[100) + B]111)).

We can rewrite each term on the r.h.s. of this expression in a way that
reveals a little more about their content.® For instance,

1
a|000) = 3 [a]000) + a]000)]

[@]000) + 5]001) 4 «|000) — 3]001)]

— N =

= 5 [100) ® (a]0) + 5[1)) + 100} (]0) — 5[1))]

— 3 [o0y@ )+ 100y @ 210)].

50One may ask how could one have come up with such an idea? I ask myself
the same question, but one may suspect that physical intuition led the inventors to
teleportation. Then they had to figure out a mathematical way to derive their result.
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Notice that we rearranged the terms in such a way that now |¢) shows
up on the third qubit (i.e., on Bob’s). Similarly,
1

BINLY) = 3 [B111) +al110) + B111) — af110)
= S[mew - e 2w

alo1) = %mmny+MMm+amn>—ﬂmm]
= %MD®@W+WU®XQW]

8100y — ;kmm+;ﬂmn+ﬁmm—mmn}

1 N o A
= 5 [[10) @ XJw) - 10) © X Z|w)] .
Putting it all together, we find
1 A A
)@ |Boo) = 3 |1 Boo) @ ) + [Bor) ® X[} + [ Buo) © ZJu)
+1Bn) ® XZ[).

This is interesting because the state |¢)) appears in various forms on
Bob’s qubit. If Alice measures her qubits, she can tell Bob which oper-
ators he needs to apply on his qubit to steer it toward the state [¢):

e If Alice measures By, she tells Bob that he got [¢)) already; no
operations are required.

e If Alice measures By, she tells Bob to apply X on his qubit to
turn it into [¢)).

e If Alice measures Bjg, she tells Bob to apply 7 instead.

e Finally, if Alice measures By, she tells Bob to first apply X and
then Z on his qubit.

Alice can transmit her instructions to Bob via classical channels (e.g., a
telephone line or a text message where only bits are transmitted). The
circuit that implements the teleportation protocol is shown in Fig. 7.2.

Because Alice and Bob share a two-qubit entangled state, Alice can
teleport an entire qubit state to Bob by only transmitting two bits of
information. The power of entanglement!

Quantum teleportation has some important applications in quantum
circuitry and quantum communications which we will discuss later on.
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Alice #1
/ S ;

| W> 4 | | Bob
Alice | ?
Alice #2 to Bob |

/7 Bell basis 7:::1:“
| Boo) < ]?ob #1

Figure 7.2 Circuit for teleportation.

7.3 SUPERDENSE CODING

The inverse situation, namely, sending two classical bits of information
in a single qubit, is also possible if the parties share an entangled state
and are connected by a quantum channel . This is referred as superdense
coding.” How does it work?

Support that Alice and Bob share the Bell state

1
V2

(the first qubit is Alice’s and the second qubit is Bob’s).

| Boo) = —=(100) +[11))

e If Alice wants to send “00” to Bob, she does nothing to her qubit
(which is equivalent to applying the identity operator).

e If Alice wants to send “01” to Bob, she applies an X gate to her
qubit.

e To send “107, she applies a A gate.
e To send “117, she first applies an X gate and then a Z gate.

Once Alices is done with her operations, she sends her qubit to Bob,
who measures the two-qubit system (now in his possession) in a Bell ba-
sis, namely, {|Boo), |Bo1), | B1o), | B11) }. The result of Bob’s measurement
encodes the two-bit message that Alice wanted to convey to Bob.

"Bennett, C. and S. Wiesner. 1992. Communication via one- and two-particle
operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69: 2881-2884
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In math form:

0 ooy T2 o0+ ) = )
01" - 7(|00>+|11>) Xf’f 7(|10>+|01>):\Bm>
0" : \1[(|00>+|11>) ij }(I00> |11)) = |Bio)
ooy 7 EET e gon oy = )

The digram in Fig. 7.3 shows a circuit representation of this protocol.

) Y
1ce
’ i Bob
H Alice |
to Bob
X — Z .
| B 00>< Alige h
s PY\ — b
Bob

Figure 7.3 Circuit for superdense coding.

Notice that this form of transmitting information is also secure: if
anyone intercepts Alice’s qubit and measures it, they will not gain any
information, as the outcome will produces either 0 or 1 with equal prob-
ability. In fact, the intercepted qubit is in a maximally mixed state.

7.4 ENTANGLEMENT SWAPPING

A very useful feature of multi-component quantum mechanical systems is
entanglement swapping: given two pairs of entangled systems, by taking
one system from each pair and projecting the new pair onto a Bell state,
the remaining pair becomes entangled even thought the systems in this
pair have not directly interacted.® This is a form of quantum teleporta-
tion, as one does not need to completely know the state of all systems

8Zukowski, M., A. Zeilinger, M. A. Horne, and A. Ekert. 1993. “Event-ready-
detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71:4287-
4290
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involved. Such an entanglement swapping is the basis of quantum re-
peaters, which are used to increase the range of transmission channels
in a quantum network.

Here is how it works. Let (A, B) and (C, D) be the initial pairs of
entangled systems: A is entangled with B and C is entangled with D.
The initial state vector of the total system can be written as a product:

|Win) = |¥) aB ® |®)cD-

For simplicity, let us assume that each system consists of a single qubit,
in which case we can write the following general expressions for the
entangled pair states:

[V)ap = @00|00)ap + 01]01) ap + a@10|10) ap + c11|11) 4B

and

|o)ep = Bool00)ep + Bo1|01)ep + Biol10)ep + Fii|1l)ep,

where the amplitudes are unknown. Now, let us apply the state projector

Pg,, = |Boo) e Bo{Bool,

where the Bell state involves systems B and C:
1
B = — (|00 + |11 .
[ Boo) BO 7 (100)Be + [11)Be)

Applying the project Pp,, onto the product state | ¥y, ), we obtain (after
a bit of algebra) another product,

|\Ijﬁn> = pBOO ’\Pin>
= |Boo)pc @ |w)ap,

1
|w)ap = NG (700100) a0 + Y01101) ap + 710[10) ap + 711]11) aD)

and the amplitudes are defined by the relations

Yoo = o Boo + o1 Bio
Yo1 ago Bo1 + o1 fua
Y10 a0 Boo + a11 Bio

Y1 = aioPBor + a1 Buir-
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Notice that, after the projection, the systems A and D form an entan-
gled pair. Because the states of the initial pairs (A, B) and (C, D) were
unknown (but presumed entangled), the state of the pair (A, D) is also
unknown (i.e., its amplitudes are unknown but uniquely defined by the
amplitudes of the initial state). The only thing known is the state of the
entangled pair (B, C) since it was projected onto a desired Bell state
(Boo in this example). Notice that since we went from 8 to 4 unknowns,
information is not entirely preserved in the process.

7.5 BELLS INEQUALITY

We have not discussed much the foundations of quantum mechanics
and its various interpretations. But there is one result related to these
topics which deserves some explanation, as it reveals how much quantum
mechanics departs from our intuitive understanding of nature. Entire
books have been devoted to it but here we will only provide the essentials
and follow closely an argument named CHSH after its authors.”

Suppose that Charlie prepares pairs of qubits and then sends a qubit
of the pair to Alice and another to Bob. Alice and Bob each can measure
certain properties of these qubits: A; and As for Alice and By and Bs
for Bob. Let us assume that the outcome of each one of these possible
measurements is +1. Each time Alice and Bob receive their qubits, they
either measure one or the other property they have access to, picking
which property randomly and with equal probability. Therefore, for each
qubit pair received by Alice and Bob, there are four possible measure-
ments being performed: (Ay, By), (A1, B2), (As, By), and (Ag, By). By
receiving a large number of qubits, Alice and Bob can build a very accu-
rate estimate of the probability distribution of these four possible joint
measurements.

Non-quantum common sense indicates that we can make two hy-
potheses about this experiment:

e The results of the measurements are predetermined and the only
reason why probabilities are being computed is because Alice and
Bob do not have access to some hidden variables that determinis-
tically describe the state of the qubits received from Charlie.

e Alice’s and Bob’s measurements are performed independently of
each other, namely, they do not affect each other.

9Clauser, J. F, M. A. Horne, A. Shimony, and R. A. Holt. 1969. Proposed exper-
iment to test local hidden-variable theorem. Phys. Rev. Lett. 23:880-884
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Let us carry on and check the consequences of these hypotheses.
Consider the quantity

Q = A1B1+A3B; — A1 By+ Ay By = Al(Bl — BQ) +A2(Bl +B2). (71)

Since each variable in this expression is limited to be 41, it is easy to
see that () = £2 for each pair of qubits received and measured by Alice
and Bob. Therefore, after multiple runs, the following inequality must
hold:

AlBl + AQBl — AlBQ + AQBQ < 27 (72)

where the overline indicates statistical average. This is a special case of
a more general class of inequalities first derived by John Bell.

Let us now check what quantum mechanics can tell us about this
situation. Assuming that each time Charlie prepares a qubit pair, it is

in the state .

) = 7 (10)al1) B = [1)4]0)B) - (7.3)

Moreover, assume that the quantities measured by Alice and Bob are
the following:

Al=2Z, Ay=X, Bi=(X+2)/V2, By=(X-2)/V2. (7.4)

Utilizing the state in Eq. (7.2), after a bit of algebra, one finds the
following expectation values:

(ALBy) = (AsBy) = (AsBy) — —(A1By) — _\}E' (7.5)

Therefore, according to quantum mechanics,
[(A1B1) + (A2B1) — (A1Ba) + (A2 Bo)| = 2V/2, (7.6)

which does not satisfy the inequality in Eq. (7.3)! This result has been
verified experimentally multiple times and with very high accuracy in
the past 50 years. It clearly demonstrates that common-sense assump-
tions break down in quantum mechanics. Either the hidden-variable or
the locality hypotheses (or both!) do not hold. It led John Bell to the
following theorem (here rephrased from the original for clarity):*°

The statistical properties of entangled quantum states cannot be explained
by any theory of local hidden variables.

19Bell, J. S. 1964. On the Einstein-Podolsky-Rosen paradozr. Physica 1:195-200
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This result showed that Einstein’s challenge to the existence of en-
tanglement and his claim that quantum mechanics was an incomplete
theory (the famous EPR paradox'!) did not stand the test of time.
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Quantum Computing. Oxford Univ. Press. Chapter 5.

7.7 EXERCISES AND PROBLEMS

1. Design two-qubit quantum circuits to create all four Bell states
from classical product states.

2. When discussing teleportation, we used the Bell state |Byo) as the
entangled resource shared by Alice and Bob. Find teleportation
circuits appropriate for the other Bell states, namely, |Bo1), |Bio),
and ’Bu>.

3. Write the following two-qubit states in a Bell basis:

(a) |¥) = J5(100) +1[11))
(b) 1) = L (jo1) + [11)).
4. In quantum teleportation, Alice wants to send a one-qubit state

|1)) to Bob after they managed to share a Bell state. Prove the
following relation, which is fundamental for a successful operation:

99100} = 5 [1Boo) )+ 1Bon) (X 19) +1810) (216)) + 1801} (R ZJ)],

where |5oo), |Bo1), |B10), and |B11) are the Bell states.

"Einstein, A., B. Podolsky, and N. Rosen. 1935. Can quantum-mechanical de-
scription of physical reality be considered complete?. Phys. Rev. 47:777-780
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5. Using Qiskit, build a circuit mimicking the teleportation protocol.
Prepare different single-qubit states |¢)) and show that the circuit
produces the expected result.

6. Using Qiskit, build a circuit to implement superdense coding. Test
all classical states Alice can convey to Bob.

7. Derive the expectation values shown in Eq. (7.5).



CHAPTER 8

Quantum Fourier
Transform and
Applications

Because of quantum interference, quantum computers are very efficient
at finding and enhancing periodic structures in data. In 1994, Peter Shor
introduced the first quantum algorithm that explored this property to
solve a mathematical problem of great practical importance: factoring
semi-prime numbers. To understand the algorithm (warning: it is not
simple!), we need first to review some math.

8.1 FOURIER SERIES

Any periodic function f on the real axis with period L that is integrable
over this period can be represented as a series of sines and cosines. If

flx+ L) = f(z)
for any € R and!

< 00,
~L/2

I/L/2 f(x)dz

then

ad 2mnx e [ 2mnx
f(x)zZancos( 7 )—&-;bnsm( 7 )7

n=0

1 .. . . . .
Our condition for the convergence of the Fourier series is not a rigorous one. A
better criterion exists and can be found in textbooks on harmonic analysis.

97
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where the coefficients are given by
L/2
apg = /
L2
B L/2 2nx g
ap = L/L/2 a:cos( 7 ) x,
L/2
b, = L/L//Qf (z sm<27TLmj> dx,
with n > 1. It is common to name the coefficients a,, the even ones, while
the b,, are called the odd ones. That is because the a,, appear multiplying
even functions (the cosines), while the b, multiply odd functions (the
sines).

Let us check how this works for some periodic functions.

Take f(x) = cos(x). The period for this function is L = 27. What
are the Fourier coefficients in this case? The answer is simple (no need
to perform integrations): by visual inspection, we can set ag = 0, a3 = 1,
a, =0 forn > 2, and b, =0 for n > 1.

Take now f(z) = sin?(z). The period of this function is L = 7. What
are its Fourier coefficients? To find them, one can either carry out the
integrations above or notice the following: sin?(z) = [1 — cos(Zx)} /2
Using the latter approach, we immediately identify ag = 2, a; = 2,

a, = 0 forn > 2, and b, = 0 for n > 1. Notice that the latter is
expected since cos(z) is an even function and therefore cannot have odd
functions in its decomposition.

Now consider the sawtooth function with period 27 and amplitude
7 of Fig. 8.1, which is defined as

r, —T<T<mT

1
f(x+27rk)—7r><{ 0 z—-r and k=0,£1,£2,...

o,

S e S
s yZan

<>

T T

Figure 8.1 A sawtooth function.
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Since it is an odd function, we can immediately set a,, = 0 for n > 0.
Performing the integration over sines, we obtain b, = 2 x (—=1)"*1/(7n)
for n > 1. As result, we can write

n+1

Z: sin(nz).

(Those who are familiar with electronic pulses, may recognize this de-
composition.)

Often, we rearrange the Fourier series in a more compact form using
exponential functions, namely,

+o0 ]
Z cne—anz/L’ (81)

where the (possibly complex) coefficients are given by

Cn /L/2 27rznz/de
"L L/2

We will use this form from now on.

8.2 FOURIER TRANSFORM

Functions that do not have a finite periodic can also be expanded in
terms of sines and cosines or exponentials, although for them one must
substitute the infinite summation by an integral:

L—o00 = f(x)= o f(k)e 2k,

where
—+o0

(k) = fz)e* ™ da.

The last equation is called the Fourier transform of f(x).2 It is very
general and is applicable to periodic functions as well. For them, f(k)

2One often sees factors of 1/2 in one or the other expression. Usually, if the 27
factors are included in the exponential, there is no pressing need to also have the
1/27 scaling factors. However, these factors can also be absorbed in f(k), provided
that they are used consistently. For the sake of simplicity, we skip them altogether
here.
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will have maximum amplitude at values of k corresponding to the inverse
of the period of f(x). Interestingly, if a function f(z) is composed of
various oscillating components, its Fourier transform will indicate the
value of the inverse of all periods involved. This is often one of the most
common uses of Fourier transforms.

8.3 DISCRETE FOURIER TRANSFORM

Let us suppose that a continuous function f(x) is to be stored in a digital
format. Obviously, in the processes of storing f(x), we are not allowed to
sample it continuously. Instead, we do it discretely, in equal increments
A (the so-called sampling rate), such that

r—xq=qA, with ¢=0,1,...,N -1
Does this limit the range and granularity of the Fourier transform f (k)?

The answer is yes, and the details are provided by the Nyquist-Shannon
theorem, which states that, in this situation,

n N N
= — ith =——....,0,...,—
k— ky VA with n 5 ,0, o
and ) N1
Flkp) =AY fye*minaN, (8.2)
q=0
where
fo = f(zq).

The theorem basically says that the best resolution we can achieve in the
k-space domain is 1/(NA). Conversely, we cannot detect any structure
or pattern (e.g., periodicity) in f(z) that happens over ranges larger
than NA. Moreover, we cannot detect any oscillation faster than A. We
call the factor 1/(2A) the Nyquist frequency or bandwidth.

The expression in Eq. (8.2) is an example of a discrete Fourier trans-
form (DFT). As we will see later, they play an important role in cryptog-
raphy, as well as in other areas of discrete data analysis. More generally,
we define a DF'T over a set of N data points with complex amplitudes

{fq}qzl,...,N—1 aS3
~ 1 N-l N
fn - Z fqe2mnq : (83)
VN &
wheren =0,...,N — 1.

3The factor of v/N is a convenient way of making the expression of the inverse
transform look the same way, except for a change in the sign of the exponent.
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Notice that the DF'T is nothing but a linear transformation between
two sets of amplitudes. To see this more clearly, let us represent the
amplitudes {f,} and {f,} as column vectors of length N (i.e., matrices
of dimensions N x 1). Borrowing Dirac’s notation, we write

Jo fo
1 fi ~ bil
= — and = )
n="s| 5 |
fn-1 In-1
leading to 3
|f) = Opbrrlf),
where the elements of the DFT N x N matrix ODFT are defined as
[ODFT}nq _ 627rinq/N
= A",

Here, we introduced the phase factor

A\ = 627M/N,

which satisfies A = 1. Notice that given a list of N amplitudes {f,}, N?
multiplications are needed to compute the list of N amplitudes { fn} We
say that the computation complexity of computing f is of order O(N?).
When we know that f, is periodic with period 7, we can actually
compute a closed expression for the Fourier transform amplitudes:

n \/» Z fq 27mnq/N

2r—1 N-1

qu 2ming/N + Z f e27rmq/N 4+ Z fq€27rmq/N
\f oy

q —r

Z fq 27rmq/N + f 27rm(q+r)/N 4+ fq+N_T62Trin(q+N—r)/N]

1 r—1
qu anq/NDJrZJr 4 M 1},
where z = 62’”’”/ N and m = N/r. Notice the geometric series inside the

square brackets:

m ifz=1

14+2z4...+2m :{ (Zm_l)/(z_l) le#l
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Since 2™ = e?™" = 1 for all n, we can put all these steps together and
write

;o { 0, if nr/N is not an integer (8.4)

n — m r—1 27ri N . . .
N >a—ofa€ mina/N if pr/N is an integer

We managed to reduce the computation of the nonzero coefficients to a
summation involving only data points within the period r. How does this
summation behave? We can answer this question through an example.

Ezample: consider the following binary map f : {0,1}* — {0,1}
where fo = f3 =1, fi = fo = 0, and f,, = f;, with r = 4. This
function is defined over N = 2* = 16 points and repeats the pattern
(1,0,0,1), going through a total of 4 cycles. See Fig 8.2.

0123456789101112131415
Figure 8.2 Periodic function with period r = 4.

Employing Eq. (8.4), we find that f is trivially zero for all values of
n but 0,4, 8,12. For these four values, we obtain

fo = 2
f4 = 1+ 637ri/2 — \/§€—ﬂi/4
fg = 1+ €3m =0

f12 _ 1_'_e7ri/2 _ \/ie”i/4.

A convenient way to represent the DF'T is via a “power spectrum”, which
is basically a graph of | f,|* versus n, see Fig. 8.3.4

|| R

0123456 7389101112131415

I

Figure 8.3 Power spectrum of the periodic function f, from Fig. 8.2.

The peaks in the power spectrum reveal information about the pe-
riodicity of the oscillations in f,. The peak at n = 0 indicates that the

4Recall that the coefficients f, can be complex, which is indeed the case in this
example.
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function has a nonzero average value. The fact that there is a peak at
n = 4 should come as no surprise since N/r = 16/4 = 4. Peaks at n = 8
and n = 12 are also expected because these values are integer multiples
of 4. The relative amplitudes of these peaks are uniquely related to the
structure of f, within a single period. Curiously, interference eliminates
the fs coefficient (this is also a manifestation of the particular form of
fq within a period).

From the DFT, we can extract a lot of information about f,. Isolated,
periodic peaks appear are the hallmark of a periodic f,. If f, contains
more than one periodic oscillation, then multiple nonperiodic peaks ap-
pear. When f, is not periodic, than nonzero amplitudes may appear for
all values of n.

The best known classical algorithm for the computation of a DFT —
the Fast Fourier Transform (FFT) — explores the structure of the matrix
Obrr to obtain the exact result with just O(Nlog N) steps when N is
large.

This seems pretty good, but when NV is itself exponentially large, as
in N = 2™, where n is the number of bits needed to express N, it would
take an enormous number of steps to implement an FFT. Unfortunately,
such a situation is not uncommon, with n ranging in the hundreds.

But a quantum computer can crack this problem with many fewer
steps! Why? It is all about phases.

8.4 A QUANTUM ALGORITHM FOR FOURIER TRANSFORMS

To build a quantum algorithm to compute the DFT, let us begin by
recalling the effect of a Hadamard gate on a generic one-qubit state.’
Defining

[z) = l0) + B[1),
we have 5
Hlz) = ﬁ(|0> + (1)) + ﬁ(!@ = [1)).

Let us now assume that x represents a classical bit, i.e., z = 0 (o = 1
and f =0)or x =1 (o =0 and § = 1), in which case |z) is a classical
state and we have

1 —1)*
= Lo+ S,
V2 V2
SCoppersmith, D. 1994. An Approzimate Fourier Transform Useful in Quantum
Factoring. IBM Research Report RC 19642; arXiv:quant-ph/0201067

f]\@ )+




104 W Introduction to Quantum Information Processing

We can rewrite this expression in the following suggestive form:

Hlz) f > (=D)"y), (8.5)

ye{0,1}

with 2 € {0, 1}. The dot product in the exponent represents the bit-wise
multiplication. This seems like an overkill of a notation, but hang in
there. Notice that the Hadamard gate encodes information about x in the
relative phase factor between the two basis states.® It is straightforward
to see that applying a second Hadamard gate decodes that information.
A Hadamard gate essentially implements a one-bit DFT.

We can generalize this result for a register with n qubits by applying
a Hadamard gate to each individual qubit,

Aoy = 2= 2 (1)) (5.6)

ye{0,1}»

where z € {0,1}". The dot product now describes a modulo-2 bit-wise
scalar product: for z = (xg,21,...,2p-1) and ¥y = (Yo, Y1, -, Yn—1)s
Ty =20Yo Dr1Yy1 D - D IN-1Yn-1-

The phase factor —1 = '™ appearing in Egs. (8.5) and (8.6) is a
special case of a more general one, 2™ .7 In those equations, w = 27!
but imagine a state where w could be any number in the range [0 : 1).
Such a state would then encode more information, similarly to f,, in the
DFT of Eq. (8.3).

Or, consider the following (inverted) problem: given an n-qubit quan-
tum state with relative phases derived from a root phase factor e?™™

‘ n \/272 2mw ‘y \/272 27rzyw’y (87)

find w (i.e., decode w from the state) assuming w € [0; 1). Such a problem
is called a phase estimation.® It turns out that it is easier to solve this
problem than the DFT one (at least for beginners), so let us present a

5This phase factor is smartly explored in Deutsch’s and Deutsch-Jozsa’s algo-
rithms.

"Here, the real variable w has nothing to do with the complex variable w = e
used in the previous section. We adopt the same Greek letter to stay close to the
notation used in the literature.

8Kitaev, A. Yu. 1995. Quantum measurements and the Abelian stabilizer problem.
arXiv:quant-ph /9511026

27i/N
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quantum algorithm for it and figure out a way to obtain the DFT based
on the phase estimation solution.
Because w < 1, we can represent it in the binary form

w = 0wwowg:---
= w 271 4+ wo 272 + w3 23 +
where w; = 0,1, we = 0,1, wg = 0,1, etc. This is very much analogous
to the binary decomposition of integers, except that we are decomposing
w in powers of 271 and the exact decomposition may require an infinite

number of terms. If you multiply w by a positive power of 2, for instance
2% you move the fraction point “.” to the left, namely,

k
2 W=WlWwWaWwsg *-* Wk Wg+1 Wk+2 "

2mil

Since e“™ =1 for any integer [, we can write

6271'1'(2’“44)) _ 627ri(w1 W W3+ W Wh41 Wh42°*" )
627ri(w1 wa w3 - wk)€27ri(0‘wk+1 Wrt2)

_ 6271"L'(0. W1 Wg2° ) (88)

Only the fractional part survives.
Thus, let us go back to the state in Eq. (8.7) and consider the case
n = 1 with a single bit to represent the fractional part:

1
’\I/1> _ Z 2miy- (0w1)|y

_ E : 2miy-w12~

1 )
B ﬁZe’”ywww
= Z ) y),

which is the form expected when a Hadamard gate acts on a qubit in the
classical state |w;). We can then apply a second Hadamard to retrieve
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the value of w; (since A1 = H):

W) = A3 (-1
.1 o
= A [I0)+ (1))
= o)

By measuring the qubit after the Hadamard gate has been applied, we
can obtain w; and then estimate w up to one bit of precision.

If we want more precision, we simply add more bits. Suppose w =
0.wy w2 (two bits of precision). Then,

E E 27 Z( 22 =+ ]2 )(0 w]wg)

L } A
— 5 Z Z €2my2(0-9ﬂ2)62my1(0~w1wz)’y1>|y2>

1
2Tyt (0. w1 w2) |y1>) ( Z e2miy2 (0. wo2) |y2>)

y2=0

1 .
_ 72(|O> +€27m(0.w1w2)|1>)

1

1
V2
4 1
= —(lo +€2ﬂ1(0.w1w2)1 -
7500 1)
We can thus extract wo by applying a Hadamard on the second qubit
and measuring it. Since |Ws) is a product state of two one-qubit states,

[Wa) = [Y)) @ |Y2),

such an operation will not affect the state of the first qubit. If we deter-
mine that ws = 0, then we apply a Hadamard gate on the first qubit,
measure it, and retrieve x; directly. If we find that we = 1 instead, a
Hadamard followed by a measurement of the first qubit will not be suf-
ficient to determine wy. In this case, we need to first apply a phase gate
U, with a proper phase,

A 1 0 1 0
Uy = ( 0 e 2mi27? > = ( 0 e 2mi(0.01) > )

(10) + i)

[[0) + (=1)**[1)].
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to the first qubit:
Wy = Ualvy)
(‘O> +€27ri(0.w11)’1>)

>

Sl

— 2

|0> + e?m(O‘wll)ef%ri(O‘Ol)’1>)

S ‘
[\
—_

= (0 + ey
= S ll0)+ (1)

G-

Now a Hadamard gate followed by a measurement on the first qubit
will do the trick and reveal w;. The diagram in Fig. 8.4 is the complete
circuit that implements these operations (notice that we are displaying
bits from bottom up).

|\|f(2)> —1 H h — M,
(W) U, H h —,

Figure 8.4 Phase estimation circuit with two-bit precision.

Can we generalize this approach where we want three bits of precision
on the estimation of w? Certainly. Check the circuit in Fig 8.5, where
with w = 0. w; wy w3 and

1 )

v = 5(0)+ O
1 )

|w(2)> _ ﬁ(‘0>+€2m(0.w2w3)’1>)
1 .

V@) = —=(10) + M Ow)).

5

2

In this case, we made use of the following single-qubit phase gates:”
A 1 0
Uk = ( 0 e—27ri2’k ) )

9Tt is straightforward to show that a phase gate is equivalent to an R. rotation
gate up to an overall phase factor.

with k = 2, 3.




108 W Introduction to Quantum Information Processing

w“ al{ulfu ]
Figure 8.5 Phase estimation circuit with three-bit precision.

The fact that we are displaying bits bottom up may not be pleasant
to the eye. In fact, before the layer of measurements, the three-qubit
system is in the state |wswsw;), rather than the standard |wy wgws).
There is a simple way to circumvent this shortcoming: apply a series of
SWAP gates.'’

When we want to go further in the precision of the phase estimation
and extend it to n bits, say w = 0.wiws - - wp_1, it is straightforward
to generalize the circuit used for three bits.

In general, the number of gates needed to implement this algorithm
is O(n?), which is a very reasonable computation complexity cost.

This algorithm allowed us to solve the following problem: given

> e y), (8.9)

find w up to n bits of precision using O(n?) computational steps and a
reversible quantum circuit. Good!

But let us consider the inverse of this problem, namely, given an n-
qubit classical state |w), find its DFT, which is basically what Eq. (8.9)
represents [recall Eq. (8.3) and set N = 2"]. Therefore, we can conclude
that it is possible to compute the DFT of a set of N data points by
applying the inverse of the phase estimation circuit! Because the circuit
is essentially a unitary operation, it is always reversible. And we can
do so by incurring only in a computational cost of O(n?), with n =
logy, N. That is a huge (exponential!) speed up in comparison to FFT
and any other known classical algorithm! We call the inverse of the phase
estimation algorithm a quantum Fourier transform (QFT). QFT has
computational complexity O(n?) whereas FFT has O(n 2"), thus QFT
offers an exponential speedup.

10While this seems innocuous at first, it does have some implications for the clas-
sical simulability of such quantum circuits! SWAP gates can increase entanglement,
which is always difficult to handle in a classical computer.
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The diagram in Fig. 8.6 shows a circuit that implements the QFT
algorithm.

\m)% H HU;% fffff { U;'} fffff )
) e U U )

Figure 8.6 QFT circuit.

There are a few important points to make:

1. Notice that the phase gates appear inverted in comparison to the
phase estimation circuit. The Hadamard operators are also in-
verted, but since H~! = H they show up the same.

2. This circuit can only compute the DFT (or QFT) when N = 27,
i.e., when z is exactly represented by n bits. This is because the

phase estimation circuit retrieves phases that are an integer mul-
tiple of 1/2™.

3. As we will discuss shortly, we can retrieve phases using this algo-
rithm even when they are not exact multiples of 1/2". We can do
so with accuracy O(1/2™) when we use n qubits.

4. Since our QFT algorithm relies entirely on unitary gates, the QFT
itself can be thought of as an n-qubit gate:

Uopr|w)n 2wy 8.10
QFT‘ \/27 Z |y ( )

Let us return to the case when the phase we want to determine is
not an exact multiple of 1/2™:

where w € [0;1]. How do we find w?
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Upon applying the phase estimation algorithm to |¢) via a QFT, one

obtains the state A
Ugrrlt) = ap(w)lz

|2 is the probability of the outcome z. Calling & = x/2", we
k

where |a, (w)
can say that @ is a good approximation to w with probability |o,(w)
peaked around the integer x such that @ is the closest multiple integer
of 1/2™ to w. One can prove that this is true with probability at least
4/m? (about 40.5%). This result guarantees that we can determine w
with accuracy O(1/2™) when we use n qubits:

8.5 APPLICATION OF QFT: FINDING PERIODS AND
CRACKING RSA

Let us define a periodic state as

m—

|pr; b) \/» zz: ljr +b),

where r is the period, b is a shift, and m is the number of repetitions.

Assume that all these parameters are integers and 0 < b < r — 1. Given
L =m x r (the range of the state), can we find r?

One may be tempted to use a QFT to extract r, similarly to how we

would do for a continuous function (we expect that a QFT transform

will have a peak at = r). However, the problem is more subtle.
Let

UQFT _ Z e —2mix- y/L‘y

where {]0),|1),...,|L — 1)} are basis states. Then,

1 m—1 .
QFT - QFT| b
|¢)T7 > \/m]:() mr ‘]T‘—F >
_ 1 7o mil 672”i(j7ﬂ+b)y/mr‘y>
Jm

g’
B

J y=0

mr—1 m
_ mi/; Z e—2miby/mr (Z 27”]y/m) >

y=0
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Notice that

m—1 . . .
Z o~ 2mijy/m _ ) M if y is a multiple of m
0, otherwise destructive interference

Therefore,
UQFT ’¢T7 67271’21)]@/7“ ]k’m)
-Z2¥

(we set y = km). If we measure the resultlng state in the computational
basis we will obtain km for some value of k = 0,1,...,r — 1. Since we
know mr, we could in principle compute

km k

mr r

to retrieve . However, this only works when k£ and r have no common
factor. For instance, let mr = 60 and km = 24. Then, km/mr = k/r =
24/60 = 12/30 = 6/15 = 2/5. Is r = 60, 30, 15, or 57 You cannot tell!

One way to pin down 7 is to repeat the procedure many times, so
that at least once we hit a value of k that does not have a common
factor with r. One can show that the number of repetitions needed is
O(loglogr), which is not much. However, the real cost of this method is
the number of steps in the execution of the QFT, which is O(n?), which,
in this context, is equivalent to O(log?r).

Good! What about the situation when we do not know m? Namely,
when

e 1 is known (or given) and

e a black box generates the state
1

1ib) = —= S ljr + b,

orit) = 7 2l + )

where 0 < jr +b < 2" and M is some constant value that makes
the state normalized.

How do we find r in this case? Answer: by using the inverse of a QFT,
i.e., phase estimation! We can obtain a value x such that x/2" is close
to k/r for some integer k € {0,1,2,...,r}. How close? We will state the
answer without proving it: it is
x k 1
Z <« )

2n — 2Mr
The probability of obtaining such a value of x is at least (M/2")(4/72).
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Using this result and a technique called continuous fraction, we can
arrive at r with high probability and accuracy. We thus reduced the
computation cost of the solution from O(2") steps to O(n?) steps. That
is an exponential speed up!

The period finding algorithm just described was invented by Peter
Shor in 1994 to solve another problem: factoring of large semi-prime
numbers.!! This is an extremely important application because the most
common asymmetric cryptosystem in use today is based on the presumed
difficulty to factor semi-prime numbers, the so-called RSA encryption
protocol (RSA stands for the name of the inventors).'? To understand
this application, we need to delve in cryptography.

8.5.1 RSA and period finding

RSA is an example of a public-private key cryptosystem (also known as
asymmetric encryption). Imagine that Alice wants people to send her
encrypted messages that only she can decrypt. Here is a procedure for
realizing this tasks:

e Alice takes two large odd primes, p and ¢, and computes n = pq.
e Alice also chooses an integer e such that 1 < e < (p—1)(¢g —1).1?
e Alice computes d such that de=1 mod (p —1)(¢ — 1).'% 1°
e Alice broadcasts her public key (n,e) and keeps d private.

If Bob wants to send a message to Alice, he uses her public key to encode
it. Calling Bob’s plaintext message N and its ciphertext (encrypted)
version C', Bob can compute C by exponentiating N e times, modulo n.
Namely,

C = N°modn.

(Modular exponentiation can be done quite efficiently in a classical com-
puter.)

Y Shor, P. W. 1994. Algorithms for quantum computation: discrete logarithm and
factoring. Proceedings of the 35th Annual Symposium on Foundation of Computer
Science, Santa Fe, NM, USA: 124-134

12Rivest, R., A. Shamir, L. Adleman. 1978. A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM 21: 120-126

3¢ should be a co-prime of (p —1)(¢g — 1).

1 is the inverse of e, modulo (p — ¢)(¢ — 1).

I5Tf you are not familiar with modular operations, consider the example 7 x
2mod5 = 14mod5 = (2 x5+ 4)mod5 = 1.
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Once Alice receives Bob’s ciphertext C, she can retrieve the plaintext
N by performing the operation

N = C%modn.

Because only Alice has the private key d, she is the only person who can
retrieve the plaintext N efficiently. Anyone else would have to extract p
and ¢ from n, i.e., would need to factorize n into its prime factors, and
then compute d from e, p, and ¢ (this last part is easy). Since n typically
has hundreds of decimal digits, it can reach thousands of bits in size. All
known classical algorithms to factor n require an exponential number
of operations to perform factoring. The best one, the sieve algorithm,
scales as O (ev lnnlnln").

It turns out that factoring a semi-prime number can be reduced to
finding the periodicity of a function, thanks to Miller’s algorithm. Let
fly) = zYmodn for a given x < y, where x and n have no common
factor. If you can find the smallest 7 such that f(r) = 1, then the prime
factors of n are the greatest common divisors of (27/2+1) and (z"/%2 —1)
with respect to n. But solving for f(r) = 1 is the same as finding the
period of f(y): since

fly+r) = 2" modn

= [(zY modn)(z"modn)] modn,
if 2" modn =1 then

fly+r) = [2Ymodn|modn
= 2Ymodn

= f(y)

Therefore, r is the period of f(y).

We have a powerful quantum algorithm to find r, one which requires
only O(n?) steps!

Therefore, a quantum computer capable of implementing a QFT cal-
culation over thousands of qubits (that is a lot of qubits!) would crack
RSA. This discovery by Peter Shor set in motion a race to realize quan-
tum computing in practice. It also attracted the attention of multiple
funding agencies, especially defense ones, which were eager to explore
and acquire such a technology.

The current generation of quantum computers is still very far from
having the thousands of qubits needed to accommodate the number bits
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used in the RSA cryptosystem, but it is possible that in the near future
these machines will reach that limit. In that case, RSA will be trivially
broken and this is a very troubling scenario because adversaries and bad
actors may be already collecting sensitive RSA-encrypted data today to
decrypt them once QFT is readily available.'® This has lead government
agencies around the globe to pursue new encryption schemes that do
not rely on RSA and are “post-quantum” secure. In the USA, NIST has
recently selected a number of new cryptosystems that are believed (but
not rigorously proven) to fall into this category.!”

8.6 OTHER APPLICATIONS OF QFT

8.6.1 Eigenvalue estimation

Another application of QFT where there is an exponential speed up in
relation to known classical algorithms is the estimation of eigenvalues
of a unitary operator that has a known eigenvector. Let us define the
problem more precisely.
Find w in
U|W) = 2| o)

for 0 < w < 1 when both I/ = Ut and |¥) are known.

Notice that simply applying U to |¥) does not allow one to retrieve
w since it shows up in the exponent of a global phase factor of |[¥). We
need another strategy.

The basic idea is to create a superposition state where the phase
factor e?™™ appears as a relative phase.

Let U be an n-qubit unitary gate and Cy its control version (the
control is performed by an extra, ancillary qubit). Set the control qubit
initially to 1 and apply Cu:

Culhy@|0) = |)eUW)

‘1> ® 627riw|\IJ>
627riw|1> ® |\P>

18T practice, one often uses RSA just to perform key exchanges, while actual
data encryption is performed by other symmetric methods that are not known to be
crackable, such as AES. But commercial transactions and even most cryptcurrencies
are completely reliant on RSA or variants that are also crackable by a powerful-
enough quantum computer.

https://csre.nist.gov/projects,/ post-quantum-cryptography
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You can see that the phase factor pops up. Now, use instead a superpo-
sition state for the control qubit:

Cu(alo) +811) @ W) = (a]0) + 5e[1)) ® [0).

The phase factor e?™ is now a relative phase. It can be retrieved via
a quantum interference procedure. What procedure? Phase estimation!
(i.e., the inverse of QFT.) Let us go through the steps.

First you use QFT to build an appropriate superposition state. Then
you use that state to control U. Finally, you use the inverse of QFT to
retrieve the phase. All these steps combined yield the circuit shown in
Fig. 8.7:

|0) — QFT QFT'— = o

W) U 2

Figure 8.7 Eigenvalue estimation circuit.

Here, the multi-qubit operator U~ represents a sequence of Cy gates,
each one being a descending power of the original U operator. For ex-
ample: U211 U2 . U.

8.6.2 Discrete logarithms

This is another problem relevant to cryptography in which quantum
computers can have an edge. Let us first define the discrete logarithm
problem.

Given a and b in Z} such that a = bt where t is an integer from the
set {0,1,...,r — 1} and r is of the order of a, find ¢.

t is called the discrete logarithm of b. Here, Z; denotes the set of
integers that relate to each other via addition and multiplication modulo
p, such that any element of this set is co-prime with p. Z; combined with
such a multiplication is called the multiplicative group of ring Z,.

This is clearly a very abstract mathematical problem, but is at the
core of some cryptosystems. Security of these systems is based on the
difficulty of finding ¢ when a and b are large (i.e., when many bits are
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required to represent these two numbers). It turns out that the phase
estimation algorithm can be used to solve this problem as well. The
protocol is similar to that used in the eigenvalue estimation problem but
more control registers are needed. We will not discuss it further in this
book, but you should be aware of this application.

8.6.3 Hidden subgroup problem

There is a more general class of problems that can be tackled with super-
polynomial speed up with a quantum computer capable of implementing
a QFT: the hidden subgroup problem. Let us define it.

Let f : G — X where G is a group and X represents a finite set. Let
S € G (S is a subgroup of GG) such that for any x,y € G, f(x) = f(y) if
and only if  + S =y + S. Find S.

This is a generalization of Simon’s problem discussed in Ch. 6.

It turns out that all previous problems we discussed (and a few more
that we have not) can be cast as hidden subgroup problems! Thus, this is
an essential class of problem as far as quantum algorithms are concerned,
albeit its abstract definition.

The generic protocol that tackles the hidden subgroup problem is
beyond the scope of this book!'®
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8.8 EXERCISES AND PROBLEMS

1. Prove that these two representations of a Fourier series (using
cosines and sines or exponentials) are equivalent. What property
do the ¢, coefficients in Eq. (8.1) need to satisfy for this to be

true?

2. Show that |¥,,) in Eq. (8.7) is a product state.

3. Starting from Eq. (8.10), find (A]ééT

4. Show that UQFT = H forn = 1.

5. Using Qiskit, build a quantum circuit that implements a QFT
(Quantum Fourier Transform) for a register containing four qubits.
Your construction should include the following steps:

qubits numbered from 0 to 3;

an ordered list of gates (including gate type and which qubits
the gate acts on);

a diagram showing all the gates in the circuit;

a brief explanation of the role played by all stages of the
circuit;

the Qiskit code defining the circuit;

results of a few experiments to verify that the output proba-
bility distribution is consistent with what is expected from a
QFT.

6. Based on the results you obtained in problem 3, build a circuit that
implements the inverse QFT for a register containing four qubits.
Your construction should include the following steps:

qubits numbered from 0 to 3;

an ordered list of gates (including gate type and which qubits
the gate acts on);

a diagram containing all the gates in the circuit;
the Qiskit code defining the circuit;

results of a a few experiments to verify that the output prob-
ability distribution is consistent with what is expected from
an inverse QFT.
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7. Show that the circuits obtained for problems 3 and 4 (QFT and its
inverse), when concatenated, produce the equivalent of an identity
circuit. Hint: run experiments and show that, for any input state,
an output state is equal to the input state.



CHAPTER 9

Quantum Search and
Applications

There is another class of quantum algorithms that do not rely on quan-
tum phase estimation. For algorithms in this other class, the speedup
is only polynomial with respect to classical algorithms. However, they
tackle problems of great practical importance and are of wider relevance.
Their paradigm is the solution of a search of an unstructured database,
which is performed via quantum amplitude amplification.

9.1 GROVER'S ALGORITHM

Suppose you have a set of N unsorted books and you want to find one or
more books that have the word “We” on its first page. How many trials
would it take you to find at least one book with the desired property? If
you are very lucky, one trial (i.e., the very first book you pick); if you are
very unlucky and there is only one book with such a property in the set,
N trials. On average, it should take about a fraction of N trials (more
precisely, N/2 trials if there is only one book with the desired property).
Thus, it seems that any attempt to solve this problem will have to go
through O(N) trials in general.

It turns out that no known classical algorithm can do better than
O(N). However, Lov Grover showed in 1996 that a quantum computer

can solve this class of problems with just O (\/ N ) trials.! That is a
polynomial speed up in relation to classical algorithms.

1Grover, L. K. 1996. A fast quantum mechanical algorithm for database search.
Proceedings of the 28th annual ACM symposium on theory of computing: 212-219

119
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Grover’s algorithm solves the following generic problem: let U ¢ be
a black-box operator (i.e., an oracle, using the language of computer
science) that computes f(x) given x, where f: {0,1}" — {0,1}. Find z
such that f(z) =

In the worst-case scenario, the algorithm requires O (\/27) queries to
the oracle, namely, the application of the black-box operator. It explores
quantum parallelism and amplitude amplification. But how does it work?

To understand it, for simplicity, let us assume that f(x) = 1 for only
one (unknown) value z = w. We start with an n-qubit register for « and
a single target qubit y. Then, applying the black-box operator U ; we
find

Usla)ly) = o)y @ f(2))

(this should be familiar to those who recall Deutsch’s algorithm). If we
set y = 0 initially, then

Uyl2) 0) = [2)| ().

Applying the operator ﬁf on the initial state |x)|0) is a way to query
the oracle (through a measurement of the target qubit) but does not yet
yield w. For that, let us prepare the control register in a superposition of
all possible values. We can do that by applying a sequence of Hadamard
gates, H ®n one for each qubit in the control register, initially set to
|0)®™, yielding

e

(We employ the superscript n to remind us that this is an n-qubit state
vector.) Formally, we can split this superposition into two parts: one that
contains the solution and another that does not, namely,

—1
),

where

0= = 2l

z;éw
Now, let us apply the operator U + to this superposition:

it (jzfnw " \/2"2;1!9>) 0) = =l 1)+ g li0).
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If we now measure the target qubit we will get 1 with probability 1/2",
and the control register will contain the solution w. This is not yet very
satisfying (since the probability of success is exponentially low) and does
not differ much from the ordinary trial-and-error classical approach.

But we can do better by first putting the target qubit in a superpo-
sition. Why? Check it out:

Oty () = rla) (22 )
1

= —5(Osla)|0) ~ Tyla)ln))

= (D@ - WIS @ 1)
(=17 () [0) — |«)[1)

—1) @) (A1), 0.1)

=

S

I
LuEl-S

Encoding the target qubit in a superposition state produces a phase shift
upon acting with the black-box operator Uy on the (n 4 1)-qubit state
vector. Looking at Eq. (9.1), it is clear that we can associate this phase
shift to the control register only, namely,

Uslz) = (~1)7 @),

so long as we use ﬁ|1> to prepare the target qubit. From now on, we
will implicitly assume that the target qubit is in that superposition state
and will drop it from the state vector expressions. We will only explicitly
indicate the vector associated to the control register.

It is convenient to introduce an auxiliary operator to take care of the
phase shift. Consider an operator Py such that

Rule) —{ oo 270

o =0

Let us now use this operator to build another one, which incorporates
the sequence of Hadamard gates and the black-box operator,

G = " By 1o 0

(the first operator to act is the black-box one and the last is a Hadamard
battery). A diagrammatic representation of G is shown in Fig. 9.1.
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Cof- TuHaE s

Figure 9.1 The Grover iterate.

This operator is called the Grover iterate and it amplifies the prob-
ability of finding w. To see that, consider the following steps.
First, define two state vectors,

) = HE™|0)®"

and
|p) = H®"|z) for z # 0 only,

and notice that these two vectors are orthogonal to each other,
(¢l) =0

for all |¢) (there are 2" — 1 such |¢) vectors).
Second, notice that

APy A"y = H®" Pyl0)®"
= HE"|)®n
= [¥)

and

HEm By HOMg) = A" Byla)
= —H®"|z)
= —9).

Let us call
Pw:H®”POH®",
such that
Pyl = [o)
Pylo)y = —[¢)

for all |¢)(™. We can then rewrite the Grover iterate as

G- P,0,
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Third, let us now go back and split the n-qubit state vector into the
solution plus the non-solution parts, namely,

1 2n —1
= _ Q
9) = =l + L),
where (w|2) = 0. The vectors |w) and |Q2) define a two-dimensional

subspace. For convenience, we associate their amplitudes to sine and
cosine functions of the same angle, namely,

1 2n — 1
sin(fl) = —— and cos(f) = ,
0= 7 0) =5
where ¢ = sin™!(27"/2). For convenience (and to save some algebra), we
can then build another vector |¢)) that, together with |¢), also spans a
two-dimensional subspace:

\1@ = sin(f)|w) + cos(9)|2)
) = cos(@)lw) — sin(0)),

with (1]¢)) = 0. Now, let us apply first the black-box operator U £,

Uflw) = —sin(6)[w) + cos(6)[)

= cos(20)|y) — sin(20)[x)),

and then apply the modified phase shifter,

PUsl0) = cos(28)lu) +sin(26)]7)
= sin(30)|w) + cos(36)|€2)

(there is some algebra and trigonometric relations involved in this last
step). Thus, R
G|¢) = sin(30)|w) + cos(36)[2).

Notice that the result is a vector quite similar to [¢)), but coefficients
where the angle is multiplied by a factor of 3. Even though 6 is small,
an increase by a factor of 3 means that G|¢) is closer to the solution |w)
than [¢) was.

Repeating this process k times, we arrive at

(G)M ) = cos(2kO)[v) + sin(2kd)[v)
= sin[(2k + 1)0]|w) + cos[(2k + 1)0]|€2). (9.2)
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The idea now is to get sin[(2k + 1)60] as close as possible to 1, such that
the state vector is nearly identical to the solution vector |w) and all other
orthogonal contributions are filtered out. Then w can be obtained by a
direct (single shot) measurement of the state in the computational basis.
This is illustrated in Fig. 9.2.

|y G4lv)

Figure 9.2 Schematic illustration of the amplitude amplification process
through the Grover iterate.

To get sin[(2k + 1)0] ~ 1 and cos[(2k + 1)0] ~ 0, we need to have
(2k + 1)0 ~ 7/2, which amounts to

T 1

E = ——=
40 2
4

for n > 1. Therefore, by applying the Grover iterate G on |)™ k times,

where k = H\/Qi"— %J, we can find the solution of f(z) = 1 with

probability at least O (1 — %;), where N = 2". Therefore, we can obtain

the solution with O(1/N) accuracy by iterating G (i.e., calling the oracle)
only v/N times. This is pretty good! We sped up the solution of the
problem by a factor of v/N compared to the classical algorithm.

A few comments:

e The method of amplitude amplification used in Grover’s search can
be generalized to obtain the solution of any problem of the oracle
type (namely, when it is efficient to verify whether a solution is
correct or not).
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e In the case of Grover’s search, one builds a uniform superposi-
tion n-qubit states via a layer H®" of Hadamard gates, but other
superposition states are also possible and can be tailored to the
particular problem at hand.

e The amplitude amplification method can also be used to count
(approximately) the number of solutions of a problem such as find
x such that f(x) = 1, as well as to prove if there are two distinct
values x and y such that f(z) = f(y).

9.2 APPLICATIONS

Because of its generality, Grover’s search algorithm can be plugged into
or adapted to various more specialized algorithms. Here, we list a few
of them. They also target mathematical problems rather than specific
practical challenges, but are very useful nevertheless.

9.2.1 Collision problem

Suppose you have black-box access to a multi-variable Boolean func-
tion f : {0,1}" — {1,0}", where n is even. You are told that f is a
two-to-one functon: it takes exactly two different inputs to the same
output. The collision problem amounts to finding x and y such that
x # yand f(x) = f(y). It has an obvious application in cryptography:
breaking hash functions. The best possible classical algorithm can solve
this problem with O(nl/ 2) queries, but Brassard, Hgyer, and Tapp were
able to apply Grover’s search to this problem and solve it with O(n'/?)
queries.? Their algorithm works as follows:

e randomly select n'/? inputs, query them classically (i.e., compute
their corresponding f values), and sort them (e.g., in ascending
order);

2/3

e run Grover’s search algorithm over n“/® additional random inputs

to f;

e select each input z of the second query whenever f(z) = f(y) for
one of the y inputs of the first query (this is where the sorting
performed in the first step comes in handy).

Notice that the total number of queries to f is n'/3 + vn2/3 = O(n!/3).

2Brassard, G., P. Hoyer, and A. Tapp. 1998. Quantum cryptanalysis of hash and
claw-free functions. Springer, Lecture Notes in Computer Science, vol. 1380.
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9.2.2 Quantum polling

Consider a string of N bits. How many bits do you need to check in order
the estimate the number of bits with value 1 within an error margin of
+eN7? The classical way requires one to randomly and uniformly sample
O(1/£?) bits from the string and then take the average. Using Grover’s
search, it is possible to answer the question with just O(1/e) queries.

9.2.3 Quantum walks

There is an important class of algorithms named quantum walks that,
while distinct from Grover’s search, employs several elements from the
latter. A quantum walk is defined on a graph, which is a collection of
vertices connected by edges. The edges are typically directed, meaning
they can only be taken in a given direction. In its classical version, the
walker starts at a certain vertex; the walker then moves to an adjacent
vertex specified by the result of a coin flip. The process continues in dis-
crete time steps until the walker reaches the desired destination. Hence,
random walks can be interpreted as a search on database with a graph
structure.

In the quantum version, the coin is quantum and therefore super-
positions of multiple adjacent vertices are allowed. Similarly to Grover’s
search, the quantum version offers a quadratic speed up with respect to
the best classical algorithm: for a graph with N nodes, a quantum walk
algorithm requires only O(v/N) discrete steps (i.e., calls to the oracle).?

Quantum random walks have been used as part of other quantum
algorithms. For instance, consider the problem of computing the parti-
tion function of an interacting spin system (there are many important
models of magnetic systems that fall into this category). Let E(x) be
the total energy of a configuration * = (x1,...,2y) of an N-spin sys-
tem. The partition function is defined as weighed sum over all possible

configurations,
Z(T) = Z e_E(I)/kBT7
€T

where T is the system’s temperature. From this function, one can com-
pute properties such as specific heat, which can be readily measured
experimentally to confirm the accuracy of the model. The lower the tem-
perature, the harder it becomes to even approximately compute Z(T'),

3Szegedy, M. 2004. Quantum speed-up of Markov chain based algorithms, Pro-
ceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science:
32-41
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as a larger number of contributions need to be taken into consideration.
A combination of Grover’s search, quantum walks, and phase estimation
allows one to reduce the complexity of the calculation from O(N?/§e?)
in the classical calculation to O(N?/v/d¢), where § is the energy dif-
ference between the two lowest energies the system can have and ¢ is
the desired accuracy of the computation.* The quantity J, the so-called
spectral gap, is typically the most relevant scaling parameter, as its de-
pendence on N can vary a lot (from constant to exponential).

9.3
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EXERCISES AND PROBLEMS

. In the explanation of Grove’s algorithm, we did not complete all

steps in the derivations. You will do that here.

(a) Show that
H®nPOJ_H®n|w>(n) — |¢>(n)

and o
H®npd_H®n|¢> (n) — _’¢>(”)'

(b) Show that

Usl)™ = cos(26) 1)) — sin(26)[¢) ™

4Wocjan, P., C.-F. Chiang, D. Nagaj, and A. Abeyesinghe. 2009. Quantum algo-
rithm for approximating partition functions. Phys. Rev. A 80:022340
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and
HE" P AU yp) ™ = sin(30)|w)™ + cos(36)]Q) ™.
(Recall your trigonometric relations!)

2. Derive Eq. (9.2).

3. Build a “black-box” (oracle) operator U ¢ that implements the re-

lation
Usl2)® @ yw) = [2)P @ | f(z) © y),

where |z)® represents a two-qubit computational basis state and
ly) represents a single-qubit state, also in the computational basis.

For this problem, the two-bit function f(x) is defined as

f(x)—{éj s

(Notice: 2 in decimal is equal to 10 in binary.) Hint: Find the
unitary operator Uy in the three-qubit computational basis. What

does it do?



CHAPTER 1 O

Density Matrices and
Their Uses

So far we have dealt with quantum systems in a well-defined state,
namely, systems that can be fully described by a single state vector
|1). Such states are called pure. Here we will learn how to describe situ-
ations where knowing the state vector is not enough because the system
is under the influence of another, typically larger, system which we know
little about. This kind of interaction degrades the “quantumness” of the
system we are interested to describe. The mathematics used to described
this phenomenon is also suitable for establishing the degree of entangle-
ment present in a quantum system, being it in a pure state or not.

10.1  MIXED STATES

Pure states are not the most general in quantum mechanics. In some
situations, we cannot describe the state of a quantum system using a
single state vector. This is typically the case when the system interacts
with other systems or with its environment in a way that we cannot
predict or control exactly. In these cases, we need to use a probabilistic
approach to describe the state of the system. For instance, by associating
probabilities to all possible state vectors that the system may have:

{<p1’ ’¢1>)7 (p2’ ’¢2>)7 Tt (pmv W}m»}

Here, py, is the probability associated to a possible state vector |¢), with
0<pr<land k=1,...,m.

This description is called an ensemble or a mixture of states. One
refers to it as a mized state, for short.

129
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When you want to compute the expectation value of an operator O
for a system in a mixed state, you resort to

(0) = ipk<1/}k|é|¢k>7

i.e., you perform an ensemble average of all the expectation values of the
same operator for all vector states that they system may have, weighed
by their respective probabilities.

10.2 DENSITY MATRICES

Working with probabilities can be cumbersome; there is actually an
equivalent but more compact way to handle mixed states that takes
the probabilities into account without explicitly writing them down. It
is called the density matrix formulation. Density matrices are defined as

=3 pulun) . (10.1)
k=1

Since Yy~ pr = 1, the trace of this matrix must be 1:

Te[p] = ) (nlpln)

n

= 53 mulnldaln)

n k=1

= > ey [(nfe)?
k=1 n

= > m
k=1

= 1.

(Here, we made use of a complete basis {|n)(n|} and assumed that the
states {|¢x)} are normalized.)

It is straightforward to check that p is Hermitian, namely, p7 = p.

For an n-qubit system, we have 1 < m < 2". Because the states
|tk) are n-dimensional, the matrix p has dimensions 2" x 2". Another
important property of density matrices is that they are semi-positive:
they can only have zero or positive eigenvalues. This is manifest by the
semi-positive matrix elements along the main diagonal.
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Notice that a pure state is representable by a single state vector, say
|1}, since m = 1. Hence, the corresponding density matrix is the outer
product

p= 1)l

p? in this case (the density matrix of a pure state is

Moreover, p = p
idempotent).

It is straightforward to compute expectation values with density ma-
trices: for an operator O, we have

(0) =T [p0].

Since any quantum state (pure or mixed) can be represented by a density
matrix, given a density matrix, how do we know whether the state is pure
or mixed? To answer this question, notice that, from Eq. (10.1), we can
write

Pr Pk [Uk) (V|| 0nr) (U |

I
NE
NE

/

1

=~
Il

—
-~

Dk Dk | Vk) Ok (V|

I
NE
NE

/

i
N
o

1

i [Vr) (Y.

[
NE

k=1

Therefore,
m
T |7 = Y pk-
k=1
Since > it pr = 1, using the triangular inequality it follows that
ﬂ@ﬂgy

The equal sign is only possible if the state is pure, namely, when m = 1.
In summary,

Tr [ﬁﬂ =1 = pure state

Tr [/32} <1 = mixed state.
There is another, somewhat more laborious way to determine if the state

is pure or mixed: if the eigenvalues of p are all either 0 or 1, the state is
pure.
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10.2.1 Single-qubit mixed states

We have seen that pure single-qubit states can be visualized as points
on the surface of the Bloch sphere. What about mixed states? They
correspond to points inside the Bloch sphere! In fact, a maximally mixed
state corresponds to a point at the center of the sphere.

(A maximally mixed state in the context of single-qubit states cor-
responds to the ensemble {(1,10)), (3, |1))}.)

We will not go into all the mathematical details here, but the con-
nection between the single-qubit density matrix and the Bloch sphere
can be established as follows:

1. Since p is a 2 x 2 matrix, it can decomposed in terms of Pauli
matrices, namely,

1 ~ A A A
/325 [[—i—arX—l—ayY—i—azZ .
2. The three-dimensional vector defined by the amplitudes d@ =

(ag,ay,a,) is called the Bloch vector.

3. The polar and azimuth angles can be obtained through the stan-
dard spherical coordinate decomposition:

a, = |d|siné coso
ay = |d|sinf sin¢g
a, = |d|cosb.

4. Because Tr [p?] < 1, it follows that a2 + a2 4 a2 < 1 as well. For a
pure state, |@| = 1 and the tip of the Bloch vector is on the surface
of the sphere. For mixed states, |@| < 1 and the tip of the vector
is inside the sphere.

10.2.2 Reduced density matrices

Consider a system of two qubits in a pure product state,
[Yap) = [Ya) ® [¥5).
The corresponding density operator is

pap = [Yag)(Yas]
[Va) (WA @ [YB) (V8|
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Since the state is pure, we must have (check it!)

Tr [ 5] = 1. (10.2)

The trace here is taken over all basis states, including degrees of freedom
(i.e., variables) of both qubits. We can define a partial trace that sums
over only the degrees of freedom of one qubit:!

Trplpas] = [a)(¥al x Te[lve)(¥s]]
Tra(pas] = Tr[lva)(@al] x [¥p) (sl

We associate to each partial trace a reduced density matriz,
pa="Trp[pap] and pp="Tralpap].

The partial trace amounts to a Hilbert space reduction. If the original
density matrix pap had dimensions 2" x 2" and n = na + np, then the
reduced density matrices p4 and pp will have dimensions 2™4 x 24 and
2"B x 2B respectively. Essentially, we are summing over one qubit while
the other qubit stays as a spectator.

Because we started with a product state, notice that

pa = |ba)(Wal and pp = [Vp) (V5]
since Tr[|1a)(a|] = 1 and Tr[|¢p)(¥p||] =1 as well. Therefore,
T[] =1 and Tr[ph] =1

Both qubits A and B are in pure states after the partial traces. But what

if we had started with an entangled state? For example, the state vector
1 1

ﬁ(\on ®|1)p+[1)a®|0)5) =

which yields the density matrix

[Yap) = (101) +[10)),

S

2

Bap = %(\o1><o1| +[01)(10] + |10)(01] + |10)(10]).

"When the trace has no subscript, it is implicitly assumed that the sum is over
all degrees of freedom, resulting in a scalar.
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(Notice that Tr [p% 5] = 1 since this is still a pure state.) Let us take a
partial trace:

A

pa = Trp[pas]

= % (10)COFTe[J1) (L[] + 10) (| Te[[1) (0[] + [1)¢0 Tr |0} (1][]
+ (1)1 Tr[J0)(0[]) -

Since

Tr[|0)(0[] = Tr[[1)(1[]] =1 and Tr[J0){1]] = Tr[[1){0]] =0,

we obtain

pa = 5(10)(0] + 1)),

which describes a single-qubit in a mixed state. Let us check:

This

tems

1.

T[] = iTr [(10) (0] + [1) (1) (|0) (O] + [1)(1])]
_ %Tr[\0><0\+‘1><1u
1
- -

result provides an insight into the inner workings of quantum sys-

The partial trace operation can be thought of as a way to impose
our ignorance about one of the subsystems. For instance, suppose
that our focus is only subsystem A and thus we trace B out. We
will then run into one of two possible outcomes:

(a) a pure state for subsystem A if A and B were not entangled
(e.g., because they had not previously interacted with each
other);

(b) a mixed state for subsystem A if A and B were entangled.

If subsystem A is in a mixed state, it means that A was entangled
to subsystem B.

. It is interesting to revisit two-qubit protocols such as teleportation

in light of these findings. One can prove that that if Alice and Bob
share an entangled state, nothing that Alice does to her qubits
affects Bob’s reduced density matrix. Thus there is no instanta-
neous information propagation. Quantum mechanics and special
relativity are compatible!
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10.2.3 State purification

Given a mixed state, is it possible to construct a pure state by enlarging
the system? The answer is positive and the process is called purification.
Here is how it works.

1. Let .
pa = prlte)a{atl

k=1
represent a mixed state in the space Ha.

2. Find the eigenvalues and eigenvectors of pg,
paldj) = Ajloj), (10.3)
with 7 =1,...,2™,

3. Select m eigenvalues and eigenvectors of p4. Combine them with
the states of another system, B which is a copy of A, as in

[VaB) =D Dk [Pr)a ® |dk) B-
k=1

4. Now, |1)4p) is a pure state and

Trp([Yas)(VaBl|] = pa-

10.2.4 Equation of motion for density matrices

Let us recall the equation of motion that describes the time evolution of
a ket state vector (i.e., Schrodinger’s equation):

d —4 A
$|¢> = fHW%

where H is the Hamiltonian operator of the system. Similarly, for the
bra version of the state vector,

d 1 A
@@N = %<1/)|H.

We can employ these expressions to derive an equation of motion for the
density matrix. We start with

p=>_ pr|tr) (Wl
!
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Taking the time derivative, we obtain?
d

= = Zpk[( |¢k><1/)k|+|1/)k> (i@ﬂﬂ
= prk —H ) (il + [voi) (| H))

= — Zpk[f{v |tr) (Y]
k

1 4
= H
zh[ i

where we introduced the commutator [A, B] = AB — BA. This first-
order differential equation is fully equivalent to Schrodinger’s equation,
but applicable to density matrices.

Recall that there is another approach to time evolution which resorts
to the use of operators. For state vectors, we have

[4(1)) = U(t, 0)[4(0)).
When a similar approach is applied to density matrices, we find
pt) = U(t.0)p(0) [U(t0)]
= U(t,0)p(0)U(0,1).

10.3 DECOHERENCE

We now show how to extend the equation of motion to include interac-
tions with an environment, which leads the system to lose its quantum
identity via a process called decoherence. When the information from
the quantum system is rapidly dissipated within the environment, it is
possible to disregard memory effects and derive a simply local-in-time
correction to the density matrix equation-of-motion in an weak-coupling
approximation:

d. 1. R
a’ = ih[H’p]_'_Ek:(QLkaL_{L};Lkap}), (10.4)

where {---} denotes an anticommutator: {A, B} = AB + BA. This ex-
pression is called the Lindblad equation and L are called Lindblad op-
erators.? They are judiciously chosen, on a case-by-case basis, depending

2For those more versed in quantum mechanics: do not confound this result with
Heisenberg’s equation of motion for operators!
3Lindblad operators do not need to be Hermitian.
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on the relevant system-environment interactions. An important aspect
of the Lindblad equation is that it preserves key properties of the density
matrix, such as unit trace and hermiticity.

Let us put it to use. Consider a qubit system with no interactions
other than the one with an environment that favors a transition from
the state |1) to the state |0),* which can be captured by the Lindblad
operator

i—ﬁ|o><1|—<8 §>,

where A is a positive coupling constant. Denoting the density matrix as

5= £oo  Po1
po pi1 )’

after some algebra, we obtain the following Lindblad equation:

d 2 _
2 Poo Por ) _ P11 po1 . (10.5)
dt \ pio pn —p1o —2p11

This matrix equation represents a system of four first-order linear dif-

ferential equations (two of them coupled) on the variables poo, po1, P10,
and pi1. Its general solution is derived in Appendix A.4 and results in

(mw pm<t>>_<1—pn<o>e-w por(0) ) (10.6)

po(t) pult) | pro(0) e p1i(0) e
Let us assume that the system starts in the pure superposition state
[$(0)) = —= (10) +]1)
=% 7

which can be cast as a density matrix by setting poo(0) = po1(0) =
p10(0) = p11(0) = 3. Inserting these values in Eq. (10.6), we find

R 1 1— 672)\75 67)\t
pt) = B ( sy o2 |

Notice that this density matrix describes mixed state since Tr [p%] < 1. It
is clear that for times larger 1/\, the system decays toward the |0) state.

“For example, if |0) and |1) are low- and high-energy electronic states of an atom,
this interaction would correspond to the emission of a photon.
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The characteristic time associated to the decay toward a (classical) basis
state is called relaxation time and denoted as 7. It can be retrieved by
inspecting the time dependence of the diagonal matrix elements. In this
example, 77 = 1/(2\).

Notice that the off-diagonal matrix elements also decay, but twice as
slow, with a characteristic time Ty = 1/, which is called dephasing time.
It is possible to have dephasing without relaxation. Consider another
type of system-environment interaction where the Lindblad operator is

given by” A A
L=vV\Z, (10.7)
implying a Lindblad equation of the form
d [ poo po1 0 pn
— = =2\ . 10.8
dt ( P10 P11 po 0O (10.8)

It is clear that now the diagonal matrix elements are constant while the
off-diagonal ones decay with a characteristic time T5 = 1/(2)).

10.4 ENTANGLEMENT ENTROPY

We can quantify the amount of mixing present in a mixed state, and by
the same token the amount of entanglement in an entangled state. The
method to do so goes back to Claude Shannon, a pioneer of classical in-
formation theory who was interested in quantifying information content
in the early days of telecommunications.%

Suppose there is a message m with length [ (e.g, the number of bits
needed to express the message). Among all possible messages of length [,
let p,, be the probability of m. Shannon defined the information content
of the message m as

Ly, = —logy(pm)-

The smaller the chances of the message m occur, the higher its informa-
tion content.

Since I,,, is itself a stochastic (i.e., random) variable, we can define
its ensemble average as

H=1,=- me logy (Pm)-

5This interaction corresponds to the environment randomly flipping the relative
phase of the qubit.

SShannon, C. E. 1948. A mathematical theory of communications. Bell System
Technical Journal 27: 379-423, 623-656
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H is called Shannon information entropy.
We can apply the same concept to a mixed state, namely,

{(p1,]¢1)), (P2, [12)), - .}, in which case we define

S==> prIn(ps)-
B

In the context of quantum mechanics, S is known as the von Neumann
entropy. In terms of density matrices, we find that

§ = ~Tr[pln(p)].

(Notice the natural logarithm as opposed to the logarithm base 2 of
Shannon entropy.)

Recall that we can express the logarithm of an operator as a Taylor
series expansion. For instance,

R I IS 1, -
n(p) = (p=D) =500 +50-17 -
when expanded around the identity operator. After a bit of algebra, we

find

P = po-D|I-56-D+g6-12 =]
= P-p|-50-Dr56-DP -]

Thus, for a pure state, since p = p?, we find S = 0. A pure state has
zero von Neumann entropy. A mixed state, however, will have a finite von
Neumann entropy. Therefore, computing S is another way to distinguish
between pure and mixed states.

But there is more we can do with the von Neumann entropy.

Going back to entangled states, consider a system formed by two
subsystems A and B. We can quantify the amount of entanglement be-
tween A and B through the entropy associated to the reduced density
matrix:

Sa=—=Tr[palnpal,

where pa = Trg[pap]. Similarly,
Sp = —Tr[pplnpgl],

where pp = Tra[pap]. When pap represents a pure stay, Sq4 = Sg. The
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higher the value of S4 (or Sp), the more entanglement there is between
A and B. The von Neumann entropy is upper bounded by the dimension
of the Hilbert space, namely,

0< S < In(d),

where d = 2" for a system of n qubits.

There are many other ways to quantify entanglement. Interestingly,
they are all equivalent to each other in some way, and are monotonic
functions of each other (although findings these functional relations can
be extremely difficult).

Yet, from a computational perspective, calculating these measures
of entanglement is always hard, typically exponentially hard, requiring
O(2™) operations when using a classical computer. In fact, it has been
rigorously proved that deciding whether a given p4p matrix represents
a product or an entangled state is an NP-hard problem, in general.

There are many other interesting properties related to entanglement
entropies, but they are beyond the scope of this book.
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10.6 EXERCISES AND PROBLEMS
1. Verify that Eq. (10.2) is valid.

2. Consider the two-qubit entangled pair in the teleportation pro-
tocol. Show that the reduced density matrix for Bob’s qubit is
independent of the state of Alice’s qubit.
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. Prove that when a system composed of two subsystems A and B
is in a pure state, the entanglement entropies of those subsystems
are equal, namely, S4 = Sp.

. Derive Eq. (10.5) starting from the general Lindblad equation
(10.4))and the choice of Lindblad operator shown in Eq. (10.3).

. Similarly, derive Eq. (10.8).

. Show that Eq. (10.6) represents a solution of Eq. (10.5). If you feel
ambitious, you can employ the method of Appendix A.4, although
in this particular case substantial simplifications are possible.
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CHAPTER 1 1

Quantum Error
Correction

All physical systems that provide a good template for the implementa-
tion of qubits and quantum gates suffer from some degree of decoherence.
The reason is simple: no physical system exists in complete isolation; if
it did exist, it would be useless for quantum computing since you would
not be able to interact with it! Any physical system, even when well
protected, will eventually interact with its environment in a way that
we cannot predict or completely control. As a result, coherence, which
is essential for quantum information processing, is progressively lost. In
the field of quantum computation, it was realized early on that strategies
must be employed to mitigate not only imprecisions in the instrumen-
tation but also errors associated to decoherence and relaxation due to
interactions with the environment. These strategies, when employed at
the quantum circuit level, are called quantum error correction (QEC).

Errors do not afflict only quantum information processing. They are
also common in classical information processing, from computing to com-
munications. Very clever error correction methods have been devised to
deal with such errors, and QEC borrows heavily from those methods.
Typically, one introduces extra, “redundant” bits and extra encoding to
build “logical bits” which employ several physical bits to represent, say,
a single binary state. The same strategy is adopted in QEC, but there
are some important differences. Firstly, in classical computing, errors
amount to bit flips whereas for qubits one also needs to worry about
“phase” flips. As a result, QEC employs more complex encoding than
classical error correction. Secondly, we cannot copy or clone qubit states
as we do for bits.
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The encoding in QEC must be such that one can not only detect
errors when they occur but also correct for them. Since one cannot clone
quantum states, the task of detecting and recovering is far from trivial.
Moreover, the fact that qubits can accumulate errors continuously and
that any attempt to measure a qubit irreversibly collapses its quantum
state further complicate the problem.

For those reasons, many people thought that quantum computers,
despite their amazing powers (e.g., they can implement Shor’s factoring
algorithm), were completely impractical. But Peter Shor came to the
rescue: in 1995, soon after proposing his famous quantum algorithm, he
also showed that a robust, single-qubit QEC code existed (it utilizes
9 physical qubits in total).! In addition, he showed how to quantum
compute directly on logical spaces. These developments, as well as similar
work done by others, brought back the hope that quantum computing
was actually possible. Since then, many other people have contributed
to this area and even better quantum error correction schemes have been
proposed. Nowadays, there is little doubt that QEC will play a major role
in any large-scale implementation of quantum information processing.

QEC is itself a vast and well-developed subfield of QIP. Let us look
at some basic QEC strategies.

11.1  DEALING WITH QUBIT-FLIP ERRORS

A simple way to detect bit flip errors (which are classical errors) is via a
majority rule: instead of using only one physical qubit to store |0) and
|1) states, we can use three qubits, as in [000) and |[111), and find out
through some kind of measurement if one of these physical qubits has
flipped (we assume that enough time has elapsed between preparation
and measurement such that a flip might have happened due to the inter-
action with the environment). In the case that a flip was detected and
identified, we can then proceed to correct it.

This is easier said than done because of the no-cloning theorem, but
here is a strategy. Let us start with the encoding.

1. Consider a single-qubit in a generic (unknown) state
[¥) = a0) + 5I1).

2. Initialize two ancillary qubits to |0).

1Shor, P. W. 1995. Scheme for reducing decoherence in quantum computer mem-
ory. Phys. Rev. A 52: R2492-R2496
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0) '®)

Figure 11.1 Encoding for a three-qubit logical qubit.

3. Apply two CNOT gates in succession, using the qubit on the |¢)
state as control and setting targets on the ancillary qubits, as
shown in Fig. 11.1, resulting in the three-qubit state

W) = 0) @0) @ [) = |0) ©]0) @ (]0) + 5[1)) = «|000) + 5[111).

We have basically encoded the single-qubit state into a higher-
dimensional Hilbert space. Any single-qubit flip will rotate the state
vector |W), but only within a well-defined subspace of the higher-
dimensional Hilbert space. How do we detect such a rotation? The circuit
in Fig. 11.2 is an example which requires adding another ancillary qubit
(recall that a control-X gate is the same as a CNOT gate).

(N 2) (3) 4

Figure 11.2 QEC circuit for a qubit flip.

The circuit in Fig. 11.2 detects and corrects for a flip on the first
qubit in |¥) (we enumerate the qubits from the bottom). Let us see how
this works.

First, notice that if the state |0) ® |000) was input into this circuit,
it would go through it without any alteration (check it!). However, if the
state [0) ®|111) was input instead it would transform twice and then be
reconstituted at the end of the circuit (check that too!).

This means that the two “logical” states

0z = ]000)
Ly = J111)
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are not affected by the circuit. What about a state with a bit flip error,
say one where the third qubit has been flipped? This would have been
caused by an error that can be represented by the operator

E=IoleX.
In fact,
E(a]000) + B|111)) = «|001) + 3|110).

Let us check step-by-step the evolution of the states |001) and [110)
(which represent a bit flip on the third qubit) as they go through the
circuit. We start with [001):

@stagel :  |0), ® |001)
@stage2:  |0), ® |001)
@stage3:  [1), ®[101)
@staged :  |1), ® |000).

Notice that the flip error on the third qubit was corrected. A measure-
ment on the ancillary qubit will reveal the occurrence of the error. Now
let us consider |110):

@stagel: |0
@stage? : 11
@stage3 : 11
@stage4 : 11

)a ®[110)
)a ® [110)
)a ®[110)
)o ®|111).
Similarly, the error was corrected and a measurement of the ancillary
qubit will reveal the error occurrence without affecting the state of the
logical qubit.

Notice, however, that if the bit flip error had occured in any of the
other two qubits (i.e, the first or the second), the circuit would fail to
detect and correct for that error.

We can generalize this circuit to one where qubit flip errors in any
physical qubit of the logical qubit can be corrected, see Fig. 11.3. Notice
that two ancillary qubits are necessary in this case.

There is an alternative way to perform the syndrome part (i.e., the
error detection part) which is more suitable in practice and more useful
for correcting other types of errors. It relies on the circuit identity shown
in Fig. 11.4. The result is shown in Fig. 11.5.
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P)

[

} o|000) + B|111)
X] X—

possibly detection part correction part
one—flip ("syndrome") ("recovery")
corrupted

state

Figure 11.3 Circuit to correct for a qubit flip in any physical qubit of the

logical qubit.
1Z]

Figure 11.4 CNOT decomposition in terms of Hadamard and Ctrl-Z gates.

Formally, we have found a way to keep the codewords |000) and |111)
protected against the following error operators:

Ey = Ioiel

B, = Xelel

By = IeXel

By = TeoleX.

Calling USM the unitary operator for the complete error correction cir-
cuit (syndrome + recovery parts combined), we have

ﬁs—}—r : (|00>a & Ek|\p>) = ‘¢>a b2y |\Ij>7

where k£ = 0,1,2,3. Here, |00), and |¢), stand for the ancillary qubits
on input and on output, respectively.
Note: in terms of the density matrices defined in Chapter 10, we have

Pin = 00)44(00] @ [¥)(¥| (product state)

= tra(pi) = [U)(V
pin + error = 0044 (00] @ Ex|W)(W|E  (product state)
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0), —{H [H]
0), —H| H|
‘ 71 |
' = :
) = j ; «|000) + B|111)
’*Z—‘ : :

syndrome recovery

Figure 11.5 Same as in Fig. 11.3 but incorporating the circuit identity of
Fig. 11.4. Notice that we have reverted back to the standard notation
for CNOT and Toffoli gates.

A

Pout = Usir pin +err- Us+7«
= s+r'(!00>aa<00\®Ek!‘I’><‘I’\ET) ULT
= Uapr - (100)a B[ W) (W] EL, (00]) - UL,
= [0)a @ |¥)(¥] @ a(d]

= tra(Pout) = V) (Y.

Very important note: the circuit only corrects for a single qubit-flip error.
If two qubit-flips occur simultaneously, they will not be properly detected
and corrected. More ancillary qubits and a more complex circuit would
be needed to properly handle such errors. However, on physical grounds
one expects double errors to be much less probable than single errors: if
qubit-flip errors are statistically independent and uncorrelated, then the
probability of a double error relates to the probability of a single error
as

2
Pdouble = Psingle-

Therefore, we can conclude that

Pdouble K Psingle

so long as psingle < 1, which is a reasonable assumption (else, we picked
a very bad quantum system to begin with!).

11.2 PHASE-FLIP ERRORS

This type of error occurs in quantum systems only and amounts to a
spurious change in the internal relative phase of a quantum state. For
instance,

[¥) = al0) + B[1) — [¢') = a|0) — B[1).
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In this particular example, the phase-flip error can be represented by the
action of the Z operator. (The phase-flip error is very much analogous
to the ordinary flip error, but in a rotated basis.) We will adopt the
Z operator to describe phase-flip errors; other descriptions are possible
upon a suitable change of basis states. Notice that

ZI+)=|-) and Z|-)=|+),

where

1
V2

Thus, we need to encode |¢) into an entangled state involving |+) and

|—) single-qubit states in order to handle phase-flip errors. For instance,

|+) (10) £ [1))-

al0) + B|1) — al+++) + 5]— — ).

The way to do it is via a layer of Hadamard gates, as shown in Fig. 11.6.

g 10— {H-

fio {HF— ) M) -alv + Bl
) [}

al0)+ 1)

Figure 11.6 Enconding for phase-flip error correction.

Except for the addition of Hadamard gates, the error correction cir-
cuit for phase-flip errors is similar to that used for bit-flip errors, see
Fig. 11.7.

To understand the role of the layers of Hadamard gates before the
syndrome and after the recovery stages, notice that

HI4+)=10) and H|-)=1).

The Hadamard gates essentially rotate the qubit states to a basis where
errors can be detected and corrected like bit flips, and then return the
states to the original basis.
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0, —{# ]

0, —H] "

{uf—A2] - {n}
) zHz] —HF O ++++ B |——)
| A Z—- [H}
possibly syndrome recovery

one—phase—flip
corrupted state

Figure 11.7 Circuit for phase-flip error correction.

11.3 MORE GENERAL ERRORS

We have taken care of bit-flip and phase-flip errors. What about more
general errors? And what if we do not know which form of error is
prevalent in the qubit system we are interested?

Shor’s 1996 QEC code takes care of the most general single-qubit
error possible, which is of the form

E:a[f—l—axf(—l—ayf/—i—azZA,

where ay, is some amplitude coefficient, with k = I, z,y, z. (Notice that
I is not an error but is included to cover the case when no error has
taken place, which is always a possibility.) The code requires 9 physics
qubits. The codewords are

1

0), = 8(\000) + [111)) ® (|000) + [111)) ® (]000) 4 |111))

1

V8

or, equivalently but more compactly,

S5

) (1000} — [111)) @ (1000} — 1)) ® (|000) — [111)).

0z = ++H)S[+++H @ [+++)
Ve = [-==)®-==)®|-=-)

(Make sure you understand that these are nine-qubit states.) The encod-
ing, syndrome, and recovery circuits appropriate for this encoding are
generalizations of those used for the bit-flip and phase-flip errors; the
methodology is the same. The circuits are too large to show here. The
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reader is asked to check the end-of-chapter references for the diagram-
matic representations of those circuits.

There are other classes of quantum error correction codes beyond
Shor’s, including some very clever ones. For instance, Andrew Steane
has showed that using the encoding

1
0), = ﬁ(]OOOOOOO) +1(1010101) + |0110011) + |1100110))
+ 10001111 + [1011010) + [0111100) + [1101001))
1
1y, = ﬁ“lllllll) +0101010) + |1001100) + [0011001))
+ 1110000 + [0100101) + [1000011) + |0010110)),

which involves “only” seven physical qubits, it is possible to correct for
any single-qubit error, just like in Shor’s encoding. Others have shown
that five-qubit quantum codes that correct for any error do exist. It
seems that no such a code with less than five qubits exist.

It is understandable that, for newcomers, the whole QEC business
looks opaque, and more art than science. But it turns out that there is a
theoretical framework backing it up and it goes by the name of stabilized
theory.? It is a beautiful but somewhat complicated theory created by
Daniel Gottesman. Here we will only cover its fundamentals, so that you
can get a general idea about how it works.

11.4 STABILIZER THEORY

Consider the two-qubit state (which happens to be a Bell state ):

1
W) = *2(|0>1 @ [0)2 + [1)1 @ [1)2).
Notice that

X1 X5|0) = )
and
1 Zs|U) = | ).

We say that |0) is stabilized by the operators M; = X1 X, and My =
Z1Z5 since it is invariant under the action of these operators (a.k.a.
stabilizers). Actually, it turns out that |U) is uniquely defined by its

2Gottesman, D. 1997. Stabilizer codes and quantum error correction. Ph.D. thesis,
California Institute of Technology, Pasadena, CA
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stabilizers, up to a global phase. The idea of the stabilizer theory is to
work with the stabilizers of a state instead of the state itself. This has
many advantages, among them the ability to unify all different quantum
error correction codes in a more concise description (a family of codes is
described by their common stabilizer set).

Let us go back to Shor’s nine-qubit code, which has codewords

0, = ++HR+++H) Q|+ ++)
D = [-=—9)@|-——)&|-—-).

One can check that the set of operators

A~

Ml = X6X5X4X3X2Xl

My = XoXsXr X X5 X4
My = Zoy
My = 232,
Ms = ZsZy
Ms = ZsZs
My = ZsZ
My = ZyZs

stabilize the logical states |0);, and |1) 1, namely,

M0y, = |0)p
M) = [1)r
for j =1,...,8. Moreover,
[Mj,Mj/] = 0

for all j, 7', i.e., the stabilizers commute amongst themselves.
These operators are members of a larger set called the Pauli group.
(A group is basically a set that closes in itself upon an operation such as
multiplication.) The size of the Pauli group depends on the number of
qubits involved in the operations. The single-qubit Pauli group is given
by?
P = {if, +il + X, +iX, 4V, 4V, +2, iiZ}.

3For 9 qubits, the Pauli group comprises 4x4° = 4'° = 20%° = (2!%)% = (1024)% =~
1,000, 000 elements. Therefore, it is too large to be enumerated here! But the nine-
qubit code stabilizer group is much smaller.
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Notice that any product of two elements results in another element of
the same set, and that is why we call this set a group. A stabilizer group
is a subgroup of the Pauli group for the given number of qubits where
two conditions must be satisfied: the —I operator is excluded and all
elements commute.

The eight operators M]— are special because they span (i.e., gener-
ate) all elements of the stabilizer group of 9 qubits. Notice that they
themselves do not form a subgroup.

Each codeword set (and Shor’s encoding being a particular case) has
its own stabilizer group.

The most interesting feature of the stabilizer theory is that any op-
erator in the Pauli group P, that is not part of a stabilizer group S
anticommutes with the elements of S. Therefore, any error that can be
cast as an operator outside a stabilizer group S can be detected and
corrected by measuring the operators in S. Here is a protocol for that:

1. if all measurements of operators in S yield 41, no error is detected
and no recovery is needed;

2. if a subset of measurements yield —1, then an error has occurred
and must be corrected; the specific recovery operation varies de-
pending on the set of +1 values measured, as each type of single-
qubit error produces a different signature.

To understand point 2, suppose that O represents an error that is not
part of the space S and let M; be one of the stabilizers which anticom-
mutes with O. Let [¢)') = O|y) be the affected state. Then,

(WIML) = (|0 Ofy)
= —(|0'0 M)
= ()
= -1

Measurments of the stabilizer M; will yield —1, indicating that an error
of type O has occurred. The particular set of stabilizers that yield —1
upon measurements constitutes a “fingerprint” of the error.

11.5 FAULT-TOLERANT QUANTUM COMPUTING

QEC provides a framework for a more robust (but costly!) way to process
quantum information, often referred as fault tolerant quantum comput-
ing. The basic idea is to compute on logical states (which are encoded
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with multiple physical qubits) rather than on individual physical qubits.
For instance, to use logical Pauli gates such as in

Xplo)y = 1)
Xp|l) = 1[0)r.

The logical operator X likely involves multiple operations on the phys-
ical qubits encoding the logical states. The hope is that this approach
will be less prone to errors at the logical level than when doing com-
putations directly with physical qubits.* There is actually a rigorous
proof that this strategy works, so long as one can hierarchically build
more and more levels of logical qubits and gates, depending on how high
the single-qubit error probability is. The original concept dates back to
von Neumann, one of the pioneers of modern classical computing and is
illustrated by the diagram in Fig. 11.8:

Figure 11.8 Schematic representation of fault-tolerant quantum error cor-
rection.

[ = 0: physical level

[ = 1: first logical level

[ = 2: second logical level

and so on. The process is called concatenation. For instance, using
as an example Shor’s nine-qubit code,

0y, 1)+ 1=0
0,1, ¢ (=1
’0>L27’1>L2 . l:2

4Shor, P. 1996. Fault-tolerant quantum computation. Proceedings of 37th Confer-
ence on Foundations of Computer Science: 56-65
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0y, = |+++)+++)+++) (9 physical qubits involved)
D = [-=—=)-—=)--—-)

0)r2 = [+ ++)[+++)[+++)r (81 physical qubits involved)
B = |- - )l — )l — o

Therefore, the amount of resources needed for fault-tolerant quantum
computing increases rapidly (exponentially) with the hierarchy level.
However, the reduction in the probability of uncorrected errors decreases
even faster: if p is the error probability at level 0 (p < 1), the error prob-
ability at level [ goes as pzl (an exponential of an exponential in 7). For
a fixed p, the net result is that the amount of resources needed scales
polynomially with the number of gates and qubits at level 0, whenever
a fixed error rate € per operation is required or acceptable. For instance,
when the goal is p; < ¢, it is straightforward to show that [ < 10g2(11§§;>,
which indicates very shallow hierarchical encodings may be enough.

This result is called the threshold theorem and is more rigorously
stated as: provided that p < p*, to achieve a fixed single-qubit error rate
€ one only needs a polynomial amount of resources to implement fault
tolerance.’

This looks very good! But there is a caveat: the theorem is based on
the (often implicit) hypothesis that errors at the physical level (I = 0)
are uncorrelated in time and space. There are known deviations from
this theorem when this assumption is not satisfied. Solid-state qubits in
particular are prone to correlated errors.

Notes:

e One often speaks of stabilizer gates (CNOT, Hadamard, P), as well
as of stabilizer circuits, which are circuits made entirely of stabi-
lizer gates. It turns out that stabilizer circuits fall into the class of
Clifford circuits and can be efficiently simulated by classical com-
puters (Gottesman-Knill theorem). This is the reason why IBM
Quantum offers a simulator called “stabilizer”, with thousands of
qubits. These are not real qubits, but classically simulated ones.
The reason why one can reach such a large number of “qubits”
is that Clifford gates do not form a universal set and therefore

5The actual value of p* varies from one type of encoding to another.
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11.6

cannot generate intricate entangled quantum states, the types of
which are required for quantum algorithms that offer exponential
speed up (like Shor’s).

In practice, non-stabilizer gates are much harder to implement
than stabilizer ones!
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EXERCISES AND PROBLEMS

. Show that the circuit in Fig. 11.3 corrects for flip errors in any of

the physical qubits comprising the logical qubit.

. Prove the circuit identity shown in Fig. 11.4.

. Consider a three-qubit quantum code |[0);, = |000) and |1); =

|111) that protects against qubit flip errors.

(a) Define a circuit to perform encoding for this quantum error
correction code, namely, a circuit that takes |¢) = «|0) + 3|1)
into ), = «|0)r, + B|1) L.

(b) Show that if, at most, one one-qubit flip error occurs on the
codeword, after decoding using the inverse of the encoding
circuit, a Toffoli gate will recover the original state [¢)) on
the first qubit and the error will be transferred to ancillary
qubits.



CHAPTER 12

Alternative Forms of
Quantum Computing

The approach we considered so far for computing using quantum me-
chanics relies on preparing a suitable initial state, applying single and
two-qubit quantum gates, and performing measurements. It is known as
the circuit model of quantum computing. Howeveer, this is not the only
approach. In this chapter, we will cover a few alternatives. Some still rely
on circuits to some extend, but they either explore alternative paradigms
of fault tolerance, utilize protocols that do not require entangling gates,
or avoid multi-shot computations. One of these alternative approaches
is entirely based on measurements. Another requires fine tunning gates
and repeating measurments.

12.1  ADIABATIC QUANTUM COMPUTING

The fundamental physical principle behind this method is rather old (it
goes back to the pioneering years of quantum mechanics), but it was
only first applied to quantum computing in 2000.!

Let H; be a Hamiltonian operator such that its ground state encodes
the solution of a computation problem of interest. For example, imagine
that we want to find the value of x € {0,1}" such that f(z) is minimal.
This function could be the sum of pairwise interactions, such as

fl@) =) ay (%‘— ;) (»”Cj— ;),

7]

'Farhi, E., J. Goldstone, S. Gutman, M. Sipser. 2000. Quantum computation by
adiabatic evolution. arXiv:quant-ph/0001106

157
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where a;; are random coefficients quantifying the interaction between
sites 7 and j on a lattice. (This particular functional form applies to
a large class of combinatorial optimization problems.) H is usually en-
tirely classical and its ground state is also classical (i.e., a product state).
Yet, finding its exact ground state can be a very hard problem to solve.

Now, imagine that there is another Hamiltonian, ﬁo, which has a
very simple, easy-to-prepare ground state. The idea of the method is
to prepare qubits in the ground state of Hy and act on these qubits
with a Hamiltonian that continuously and slowly deforms Hy into H,
so that when the deformation is completed, the qubits find themselves
in the ground state of Hy, thus encoding the desired solution. In other
words, the method drives the qubit state from the “easy” ground state
to the “complicated” one. At the end of the process, one can retrieve
the solution by just measuring the state of the qubits in the compu-
tational basis. (Since, at this point, the state should be classical, the
measurements yield the solution with 100% certainty.)

Formally, let the total (time-dependent) Hamiltonian be defined as

H(t) = (1 - ;) Hy + (;) H,,

where T is some suitable time interval. Notice that

A

H(0)=Hy and H(T)= H,.

Therefore, H (t) continuously interpolates between the two extreme
Hamiltonians.

The hope is that by adopting a large-enough 7', the system will
remain in the instantaneous ground state of H (t) at all times 0 <t < T.
In fact, there is a well-known theorem in quantum mechanics that assures
success of this strategy when the following condition is satisfied: if

R(4),
then
1
(o)) > 1 — ¢, (12.2)
where

e [t)o(t)) is the instantaneous ground state of H(t) with correspond-
ing energy Ey(t);
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|1/1§1)> is the ground state of Hj;

Apin = min[Fy (t) — Ep(t)]o<t<r is the smallest energy gap between
ground and first excited state during the evolution (see Fig. 12.1);

|41 (t)) is the first excited state of H(t) with energy Fi(t);

dt
of the H(t) between ground state and first-excited state.

. <dH >1 - (1 (t) ‘%‘ Yp(t)) is the matrix element of the derivative

E(1) E\(1)

—

Tax

T Em

0 T !

Figure 12.1 Schematic representation of the gap between the ground state
and first-excited state during an adiabatic evolution.

Notice that <%>1 , measures the rate of change of the Hamiltonian.

The larger the rate (i.e., the shorter the T), the harder it becomes to
satisfy condition (12.1). That is why the method is called “adiabatic”
(in reference to slow processes in thermodynamics, where there is no
heat exchange with the environment). Together, the inequalities (12.1)
and (12.2) are known as the adiabatic theorem. When T is too large,
the system can jump into a superposition between ground and excited
states, scrambling the measurements and corrupting the solution.

The adiabatic approach has been proved to be equivalent to the
circuit model of quantum computing. Both approaches lead to universal
quantum computing. The main question is whether the adiabatic method
provides a quantum speed up in comparison to classical computing. The
answer lies on how A, scales with the number of qubits n. Since

() &
dt 10 T

where E, is some characteristic energy of the system (presumably weakly
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dependent on size or number of qubits), then, for a fixed e,

hE, 1 E,
7C<A2. > 1 > — ¢
T =T A,

When Apin ~ O(1/nP) for some positive power p, T' ~ O(n?P), which
implies polynomial complexity. Good! But when A, ~ O(e™™), then
T ~ O(e*™), i.e., exponential complexity. Not good!

There is a large literature showing that for most problems of practi-
cal interest, Ap, either vanishes (really bad!) or becomes exponentially
small somewhere between ¢ = 0 and ¢ = T. The physical reason for
the vanishing gap is that the Hamiltonian undergoes a first-order phase
transition for any trajectory in the parameter space connecting Hy and
H;. For these kinds of transitions, the ground and first excited energy
levels either cross each other or become extremely close, leading to an
exponential slow down.

There exist some encodings that try to circumvent first-order tran-
sitions but usually other issues pop up, such as super-slow relaxations.

Nevertheless, these difficulties have not prevented people from build-
ing hardware to implement adiabatic quantum computing. A pioneer in
this business is D-Wave in Canada. Their latest processors contain sev-
eral thousands of qubits. But much still remains to be studied in this
area, including the role of error correction and approximate solutions.
For instance, approximate solutions to optmization problems obtained
via adiabatic quantum computing could be used in conjunction with
machine learning or be a component of it.

12.2 MEASUREMENT-BASED QUANTUM COMPUTING

In the circuit-based model of quantum computing, it is essential to be
able to perform at least one type of two-qubit entangling operation,
such as a CNOT, in addition to one-qubit operations. But high-fidelity
two-qubit operations are usually hard to implement in hardware and
on-demand (in particular when they involve photonic qubits), hence the
question arises whether it would be possible to do universal quantum
computation without them. The answer is yes, but a shift in paradigm
is needed. The alternative is based on the preparation of special types of
entangled states before the actual computation. The computation then
proceeds by suitable measurements of these states using a particular ba-
sis, as well as the application of single-qubit gates. Basically, the idea is
to start with a many-qubit state that contains all the resources needed to
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perform the computation, and then just steer the system toward the tar-
get state which contains the result of the computation. And the steering
is performed through measurements and single-qubit operations only. It
is no surprise that the underlying foundation of this method is telepor-
tation.

Here is how it works.

Start with two single-qubit states [¢)) and |¢) and two Bell-state
pairs of the type |Byo). See Fig. 12.2, which comprises two teleportation
circuits side-by-side.

‘ \V> o] Bell :‘E}

>W>¢>

Bell

Figure 12.2 Building block circuit for measurement-based quantum com-
puting.

The Bell boxes in Fig. 12.2 correspond to the inverse Bell-state prepa-
ration circuits used in the teleportation protocol, as shown in Fig. 12.3.

T Bell | 4‘ .
I

Bell
T Sy

Figure 12.3 Bell state boxes.

We do not know what the states [¢)) and |¢) are, but we are certain
that, on output, the operations described in the double teleportation
circuit diagram result in a two-qubit product state |¢)) ® |¢).

If we want to apply a CNOT gate on this two-qubit product state,
we add such a gate to the output side and incorporate it into the
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measurements. But how? Here is a way: we can add two CNOT gates
between the middle bitlines (since CNOT gates are their own inverse,
applying two of them in sequence has no net effect). See Fig. 12.4.

Figure 12.4 CNOT insertions for the measurement-based circuit.

We can then incorporate one of the CNOTs on the left into the
measurements and use the other CNOT to modify the Bell states, as
shown in Fig. 12.5.

| W> o Bell :@

< E
[
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Figure 12.5 Implementation of measurement-based CNOT gate.

Notice the two dashed-line boxes, #1 and #2. Box #1 describes a
new, four-qubit entangled state,

1
) = 5(10000) + [0011) + [1101) + [1110)).

|2) is a special four-qubit entangled state that can be prepared in ad-
vance, stored in memory, and used on demand, namely, every time one
needs to perform a CNOT operation on the single-qubit states |1)) and

|¢)-
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Box #2 is equivalent to two original (disconnected) sequences of X
and Z operators, but controlled by four integers my, mo, mg, and my
instead of the original My, My, M3, and My. In other words, it is possible
to convert { My, My, M3, My} into {my, ms, ms, my} in such a way that
the two CNOT operators in that box are absorbed.

We then conclude that, provided we can:

1. prepare the four-qubit state |©2)

2. make measurements directly in the Bell basis and apply single-
qubit gates,

we can avoid explicitly applying a CNOT gate when we need to perform
such an operation on two single-qubit states |1)) and |®).

Of course, it is not always obvious that avoiding entangling gates is
a good tradeoff, given the additional preparation overhead and qubits
needed. But for optical realizations of quantum computing, this ap-
proach was a tremendous boost when invented by D. Gottesman and
I. Chuang in 1999.2 The reason is because soon after, in 2001, E. Knill,
R. Laflamme, and G. Milburn showed that it could be used to imple-
ment universal quantum computing with only linear optical elements
and photodetectors (a method coined LOQC for linear optics quantum
computing).® Since then, it has been experimentally demonstrated. The
nonlinearity needed for quantum computing is embedded in the state |2)
and in the measurements. This method is referred as teleportation-based
quantum computing.*

It turns out that one can extend this method further and drop single-
qubit gates as well; it is possible to run the computation entirely through
measurements. This is possible so long as a special type of multi-qubit
entangled states, known as cluster states, can be prepared and utilized
as initial states of the quantum processor. Essentially, cluster states con-
tain all the resources needed to achieve the desired computation, with
measurements being used just to steer the state toward the desired out-
come. This approach is called “one-way quantum computing” and was

2Gottesman, D. and I. L. Chuang. 1999. Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations. Nature 402:
390-393

3Knill, E., R. Laflamme, and G. J. Milburn. 2001. A scheme for efficient quantum
computation with linear optics. Nature 409: 46-52

“Here, for simplicity, we have omitted an important fact: the two-qubit entangling
gate in LOQC, a control-Z gate, is actually probabilistic; to increase its success rate
to practical levels, a quantum teleportation version of it is employed.
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invented by Robert Raussendorf and Hans Briegel in 2001.° This method
has also been proved to achieve universal quantum computing. However,
the preparation of the cluster states can be extremely challenging. The
method is also popular in the linear optics community, as well as in the
area of optical lattices.

One-way quantum computing can also be used in conjunction with
another form of quantum computing called topological (see Sec. 12.3).

There have not been many attempts to implement one-way quantum
computing experimentally. In addition to being difficult to prepare clus-
ter states, measuring individually (often closely-packed) qubits is hard.

12.3 TOPOLOGICAL QUANTUM COMPUTING

We have seen that quantum error correction, combined with fault-
tolerant approaches, can reduce the effects of noise on qubits. However,
these mitigation methods introduce a large hardware overhead, not to
mention complex operations.

In 1997, Alexei Kitaev came up with the idea of encoding quantum
information (i.e., qubits) in topological degrees of freedom that are im-
mune to local errors.® The fundamental physics behind this idea is that
environmental noise acts locally, thus if the logical qubit states are en-
coded in a non-local way, they becomes resilient to noise up to a very
high degree. Topological states offer such nonlocality because they in-
volve a multitude of physical degrees of freedom yet can be defined by
just a few indices or numbers. A topological state can be “deformed”,
but as long as their characteristic indices do not change, the state does
not change either.

The standard example of topological invariance is a torus of genus
1 (i.e., a three-dimensional object with a single piercing hole). A donut
falls into this category, but so does a coffee mug with a single handle:
in principle, one can continuously deform a coffee mug into a donut and
vice versa without changing is topology (i.e., the genus). See Fig. 12.6.
By the same reasoning, a solid sphere and solid cube are topologically
indistinguishable (both have genus 0).

There are electronic and spin states in condensed matter systems that
mimic the donut-mug scenario, namely, they can be reshaped without

SRaussendorf, R. and H. J. Briegel. 2001. A one-way quantum computer. Phys.
Rev. Lett. 86: 5188-5191

SKitaev, A. Yu. 2003. Fault-tolerant quantum computation by anyons. Ann. Phys.
(N.Y.) 303: 2-30
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Figure 12.6 A mug can be made into a dognut by a continuous deforma-
tion.

losing their topological indices. If you just disturb the state a little and
locally, without changing its topological nature, information encoded in
the state is not lost. As a result, such states are extremely resilient to
noise. In recent years, more and more of such states have been proposed
theoretically; some have even been experimentally verified (still, theory
is far ahead of experiments in this area as topological systems are very
difficult to synthesize).

We would need an entire chapter (and a lot of physics) to review in
detail the various systems proposed for topological quantum computing.
Here is a partial list of the most prominent candidates with succinct
explanations:

e non-Abelian excitations with fractional statistics (they appear in
certain materials in the presence of strong magnetic fields);

e excitations that behave like a special type of fermion called Majo-
rana (they are believed to exist in semiconductor nanowires capped
with superconductor films);

e spin-1/2 systems on square lattices with four-body interactions, or
where four-body measurements are possible (nature does not seem
to provide such a system, so it would have to be built artificially);

e vortices in a class of superconductors where electronic states have
some peculiar (topological) features (several candidate materials
exist).

Not a single one of these proposed topological systems has produced any
usable qubit yet. Still, hopes are high and a large number of researchers
continue to study and investigate this topic. The challenges in materials
synthesis and device fabrication are enormous.
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12.4 VARIATIONAL QUANTUM COMPUTING

While we wait for high-fidelity, large-scale qubit systems to become a
reality, we need to find ways to make use of noisy, intermediate-scale
quantum (NISQ) hardware that is currently available. This hardware
is not suitable for the implementation of complex and resource-hungry
quantum algorithms like Shor’s and Grover’s, much less quantum error
correction, but they can be utilized for tasks that do not require universal
quantum computing capabilities. In particular, one can use present-day
hardware, where the number of qubits ranges from a few tens to a few
hundred, to solve for the ground state of physical systems relevant to ma-
terials science and chemistry. The reason is that finding accurately the
ground state of certain compounds and molecules is extremely difficult
because of the large Hilbert space that one needs to mimic when us-
ing a classical computer. But when one can directly translate electronic
orbits into quantum mechanical degrees of freedom such as qubits, the
calculation may be possible.

The methodology for this kind of quantum mechanical calculation is
based on the variational theorem: let H be the Hamiltonian operator of
the system of interest. For any trial state |¢), the quantity

H
o W)
(¥[¥)
always satisfies the inequality
E > EO;

where Fj is the ground state energy (i.e., lowest eigenvalue) of H ,
namely, H|io) = Eolt), with |1)) being the ground state of H (i.e.,
the eigenvector corresponding to the eigenvalue Ep).”

The basic idea of the method is to build a quantum circuit which
can be adjusted to yield as output a state that minimizes (E). In other
words, one tweaks the gates in the circuit until the output state is close
enough to desired ground state |¢)g). The lower the value of (E), the
closer one is to [¢g).5

"This theorem implicitly assumes that the operator H is lower bounded, which
is usually expected on physical grounds.

8Peruzzo, A., J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. Love, A.
Aspuru-Guzik, J. L. O’Brien. A variational eigenvalue solver on a photonic quantum
processor. Nat. Comm. 5: 4213
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Let U = Uy, --- Uy Uy be the sequence of m gates making up the
variational circuit. Each unitary operator in this sequence represents a
gate that is parametrized by a set of “angles” {6;}, as in Uy, = Ur({6;}),
with £ = 1,...,m. For example, consider layers of single-qubit phase
gates surrounded by fixed layers of entangling two-quibt gates, the so-
called hardware-friendly ansatz, as shown in Fig 12.7.

fixed 2—qubit gates
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adjustable 1-qubit gates
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Figure 12.7 Schematic representation of a circuit for variational quantum
computing.

Basically, one prepares an initial state |¥;,), runs it through the
quantum circuit U({6;}), obtain |[Wsy) = U|¥;,), and then mea-
sures the expectation value of a Hamiltonian operator H , namely,
E = (\Ilout]ﬁ |Wout). One then repeats these steps after making small
changes to the parameters, 0; — 6, = 60; + §6;, keeping the same in-
put state |¥y,) and obtaining as output state |, .). After computing

out
E = (W |H|W ), if E' < E, one accepts {#}} as the new parameter
values and tries another change starting from these values; if £/ > FE,
one discards the changes and try again with a different set of changes,
starting again from {6;}.

There are different strategies to generate the small changes. The gen-
eration of changes and analysis of the results (the so-called optimization
procedure) can be performed by a classical computer using methods
such as gradient descent. As a result, the quantum hardware is just an

evaluator of expectation values, which is typically the toughest task to
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replicate efficiently in a classical computer since it requires dealing with
entangled states (i.e., large computational basis).

This method is often called variational quantum eigensolver (VQE)
and was first proposed in 2017. There are also several variations of it,
some actually dating a few years earlier. They are all examples of hybrid
approaches, where both classical and quantum hardware are used in
combination.

Variational methods have been implemented experimentally in a va-
riety of quantum hardware system and there is already a very large liter-
ature about it. These days, when someone talks about doing a quantum
computation in hardware, they usually mean implementing a variational
quantum algorithm.

Noise also plagues variational quantum computations. Moreover, cur-
rent hardware only allows for relatively shallow circuits. The large num-
ber of measurements required to compute expectation values is also
problematic. Critical to the accuracy and efficiency of the method is
the choice of the variational circuit.

In addition to materials science and chemistry, VQE and related
methods have applications in finances and machine learning (there is
some similarity between optimizing the parameters in a variational quan-
tum circuit and training an artificial neural network). So far, results have
been interesting but not yet groundbreaking. There are some fundamen-
tal challenges to the method (e.g., the insensitivity of the cost function
to parameter variations once the circuits become very large, the so-called
barren plateau) that researchers around the world are trying to sort out.
But we are still in the early days of this approach.
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CHAPTER 13

Quantum
Communication

We have seen that Shor’s order finding algorithm is capable of factoring
semi-prime numbers in polynomial run time. This created a real chal-
lenge to some of the most important and widespread public-private key
cryptosystems in current use, like RSA and ECC (elliptic curve).

But as much as quantum mechanics breaks cryptography, it can also
fix it. There are secure communication protocols based on quantum in-
formation processing that allow one to build theoretically unbreakable
cryptosystems — at least when all operations are carried out in ideal
conditions. The security is not based on the difficulty of solving certain
mathematical problems but rather on the physical principles of quantum
mechanics.

Once a quantum-based, secure protocol is established for the ex-
change of information, a network can be established.

To understand how quantum communication protocols work, we will
start by introducing a fundamental concept from cryptography. We will
then go through the most important protocols in detail. We will then
wrap up the chapter with a description of a quantum network for trans-
ferring quantum states between quantum sensors and quantum proces-
SOTS.

13.1 THE ONE-TIME-PAD CRYPTOSYSTEM

Suppose that Alice wants to send a message x to Bob, where z € {0, 1}™.
If Eve is eavesdropping on the channel that Alice uses to communicate
with Bob, she will be able to retrieve the message, and likely with Alice

171
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and Bob never noticing it. If they want to prevent that from happening,
they can use a one-time pad encryption. For that, Alice and Bob must
share an n-bit string of random bit values, k, called the key, and known
only to them. Then, Alice can encode the plaintext message z into a
cipher message y by applying the bit-wise XOR operation

y=x®k.

Alice sends y to Bob, who can decrypt it back to by a similar operation,
namely,
r=y®k.

(check it out to make sure you understand it). If Eve intercepts y, she has
no way of telling what z (the plaintext message) is other than use pure
guessing. If k is a truly random bit string, the odds of Eve retrieving the
correct (i.e., exact) message are 1 in 2". In other words, it is exponentially
hard!

The one-time pad is the most secure cryptosystem possible if:

1. Alice and Bob share a truly random key;
2. the key is used for encryption only once;

3. no one else has access to the key.

While condition (3) requires a high level of trust between the two parties,
conditions (1) and (2) can be addressed very objectively. Condition (1)
can be satisfied if Alice and Bob use a quantum-based random number
generator. Condition (2) means that Alice and Bob must have in storage
as many keys as they will ever need to send encrypted messages to each
other. But what if they miscalculated the number of keys and now need
fresh ones?

This brings to the forefront the so-called key distribution problem:
how to securely exchange encryption keys? This is where quantum in-
formation processing offers a solution.

13.2 QUANTUM KEY DISTRIBUTION

There are several ways to accomplish secure quantum key distribu-
tion (QKD). In fact, the main principle predates Shor’s algorithm by
a decade. We will only survey the most fundamental protocols, starting
with BB&84.

It is worth noting that QKD is already a technically viable strategy,
with some remarkable demonstrations in recent years.
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13.2.1 BB84

This protocol is named after its inventors, Charles Bennett and Gilles
Brassard, and the year of its publication.! Here is the sequence of steps:

1.

2.

Alice generates a string of random bits, x € {0, 1}".

Alice generates another string of random bits of the same size,
y € {0,1}".

. Alice encodes each bit in x as a qubit in the following way:

o if y, =0, then
mﬁ_{m,ﬁ@_l
o if y; = 1, then

H|0), if 2; =0
[Ti) = ¢ 5 o
H|l), ifz;=1

where ¢ = 1,...,n. The {|0),|1)} set is called the R basis and the
{H]0), H|1)} set is called the D basis.

. Alice sends the |z) = |z1) ® - -+ ® |x,,) qubit product state to Bob

via a quantum channel (she can send one qubit at a time).

. Before receiving Alice’s qubits, Bob generates his own random

string ¢ € {0, 1}". He then uses his random string to decide which
basis to decode each one of Alice’s qubits:

if yi=0 = DbasisR
if yi=1 = Dbasis D

. Alice and Bob share with each other (via a classical public channel)

which basis they used for the encoding and measurement, namely,
the strings y and y'. They discard any bit z; for which y; and y; do
not match. The result is a set of bit values known only to them.
That is their shared (but private) key.

!Bennett, C. and G. Brassard. 1984. Quantum cryptography: Public key distribu-
tion and coin tossing. Proceedings of the International Conference on Computers,
Systems Signal Processing 1: 175-179.
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Since Alice and Bob publicly tell each other about their strings y and
y', and use an insecure quantum channel for transmitting and receiving
the qubits |z), is it possible for some to eavesdrop and obtain the key?
The answer is yes for eavesdropping, but no for obtaining the key. Why?

Suppose that Eve intercepts the qubits that Alice is sending to Bob,
measures them, and then relays each qubit to Bob according to what
she measured. In this process, she may have modified the qubit states
or not. Here are the two scenarios:

e if Eve uses the R basis to measure a qubit encoded by Alice in the
R basis, the measurement will not modify the qubit, and similarly
if the Eve’s basis is D and Alice’s is D;

e if Eve uses the D basis to measure a qubit encoded by Alice in the
R basis, the measurement will modify the qubit; for instance, a |0)
may become %(\0) + 1)) after Eve’s measurement.

e The qubit will also be modified if Eve uses the R basis when Alice
encoded the qubit with the D basis.

So, overall, Eve has a 50% chance of using the correct basis. It is a toss
up.

When Alice and Bob compare bases, if they find that their bases for
a certain qubit are different, they will discard that qubit; if that was a
qubit intercepted by Eve, she will have gained no knowledge about the
key. But what if Alice and Bob have the same basis? Because of Eve’s
eavesdropping, there is now a 50% chance that Eve knows the bit value
that is going to be incorporated into the key (namely, she may have
picked the correct basis). To avoid such a scenario, Bob uses a public
channel to send some key bit values back to Alice, who can check if
Bob got the correct values. If there is a mismatch, Alice warns Bob and
they throw out that entire key, knowing that someone had intercepted
it. They then try to obtain a key again. If the number of bits in the
string is large, Alice and Bob will eventually get perfect matching of
their sacrificial key bits. Eve’s chance of success in this scenario becomes
exponentially small.

Let us provide a concrete example.

Alice’s z = {0,1,1,0,0,1,1,1,0,1,0,1}

Alice’sy = {D,R,D,R,D,R,D,R,D,D, R, R}
Bob'sy' = {D,R,R,R,D,D,D,D,R,D,R, D}
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Upon measuring the qubits sent by Alice, Bob finds the values
{0,1,0,0,0,1,1,0,1,1,0,0}.

After comparing basis choices, Alice and Bob find out that they had the
same basis for qubits 1, 2, 4, 5, 7, 10, and 11. Thus they discard all other
bit values, arriving at the following shared key:

{Oa 1a B Oa 07 ] 177 ) 1707 7}

(the discard bit values are replaced by a dash). Now Bob reveals the first
three remaining bit values to Alice: 0, 1, 0.

e If Eve eavesdropped and chose the same basis as Alice and Bob
{D, R, R} for the corresponding qubits, there is no way for Alice
and Bob to find out. Eve will know these three bits of the key.
Notice that Eve will certainly know that she succeeded because
y and 3 are publicly known, as well as those three sacrificial bit
values that Bob sent to Alice for checking. There is a 272 = 1/8
probability of that happening.

e If Eve chose any other basis combination, there is at least a 50%
chance that one of Bob’s measured qubits will have the wrong
value, which Alice will immediately detect. For instance, this would
be the case if Eve chose the basis sequence {D, R, D} for those
three qubits and Bob measured {0, 1,1}.

Alice and Bob can keep trying until they are satisfied that no eavesdrop-
ping has happened. If they use a large number of bits in the string and
a good portion of them for verification, they can reduce Eve’s chances
of success exponentially! The best Eve can do is to disturb the commu-
nication between Alice and Bob by constantly eavesdropping.

The BB84 protocol is very suitable for an optical implementation.
The requirements are:

1. a source of single photons (for Alice);
2. a photon polarizer (for Alice);
3. a birefringent crystal and a single-photon detector (for Bob).

All these resources are readily available nowadays. Notice that coher-
ence requirements are minimal (photons can retain their polarization
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over very long distances when traveling in free space). In addition, no
entanglement is necessary.

There is an extension to this protocol where an extra basis is used,
namely, {%(\@ +14|1)), %(!@ — @\1))} It is called the six-state pro-
tocol (known as B98) and was proposed by Dagmar Bruss in 1998.2 It
further reduces the probability of success of an eavesdropper.

13.2.2 B92

In 1992, Charles Bennett showed that only two orthogonal states are
needed for QKD (instead of the four used in BB84 and the six in B98).3
Here is how this protocol works (we will assume photon qubits).

1. Alice uses a random number generator to create a string of bit
values = € {1,0}".

2. Alice and Bob previously agreed that if she wants to transmit a 0
(x; = 0), she encodes the qubit as |0); to transmit a 1 (z; = 1),
she uses H|1) instead. Notice that these states are not orthogonal.

3. Bob generates his own random bit string, y € {0, 1}".

4. Bob measures the polarization of each qubit sent by Alice with a
linear polarizer.*

5. If y; = 0, Bob tests for a 0 by setting his polarizer to the orientation
%QO) +|1)). Thus, if Alice sent a 1, the photon will be fully
absorbed; if she sent a 0, it will pass through the polarizer with
probability 1/2.

6. If y; = 1, Bob tests for 1 by setting his polarizer to the orientation
|1), in which case a 0 will be totally absorbed but a 1 will pass
through with probability 1/2.

2Bruss, D. 1998. Optical Eavesdropping in quantum cryptography with siz states.
Phys. Rev. Lett. 81: 3018-3021

3Bennett, C. H. 1992. Quantum cryptography using any two nonorthogonal states.
Phys. Rev. Lett. 68: 3121-3124

4A linear polarizer lets through a photon without any attenuation only when
the photon’s polarization is aligned with the main axis of the polarizer; when the
main axis of the polarizer is orthogonal to the photon’s polarization, the photon
is completely absorbed. For any other relative orientation of the polarization with
respect to the polarizer’s main axis, the photon passes through the polarizers with
a probability 0 < p < 1.
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Bob sees only 1/4 of the photons pass through. But for the ones
that pass through, he can be absolutely sure about their state (]0)
and H |1), depending on which polarizer he used). Therefore, he
just needs to communicate to Alice which qubits passed through,
without telling her their values. Alice will know what they are;
they will form the shared (private) key.

How to detect eavesdropping in this scheme? Similarly to BB84. Alice
and Bob disclose to each other a subset of the key bit values. If the
values are identical, they keep the key; if the values are not identical,
they can tell with certainty that someone eavesdropped and therefore
the key must be abandoned and the protocol restarted.

13.2.3 EO91

So far, no QKD protocol required entanglement. The first protocol to
make use of entanglement was proposed by Artur Ekert in 1991 and
works as follows:®

1.

Alice and Bob share a string of entangled qubit pairs; for instance,
n Bell-state pairs |¥) = |By1).

. Alice generates a random n-bit string = € {0, 1}".

. Bob independently generates his own random n-bit string y €

{0, 1}
Alice measures her qubits as follows: she measures X when z; =0
and Z when z; = 1.

Bob measures his qubits using X when y; = 0 and Z when y; = 1.

When they happen to choose the same operator for the i-th pair,
notice that

(W[ X4 Xp|W) = —1

(V[Zazpl¥) = —1,
which implies that when Alice measures a +1, Bob measures a —1,
and vice versa. When they choose different operators,

(U|X4Zp|T) = 0
(U|ZAXp|0) = o0,

SEkert, A. K. 1991. Quantum cryptography based on Bell’s theorem. Phys. Rev.
Lett. 67: 661-663
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which means that Alice’s and Bob’s measurements are uncorre-
lated.

7. Bob discloses to Alice his operator choices without telling her the
actual values of the measurements; Alice tells Bob which choices
match hers; they discard all bits where the bases did not match.

8. Bob’s sequence of measurements for the remaining qubits is com-
plementary to Alice’s, so he just flips the sign of his measurements
for those qubits. They now share a private key.

Eavesdropping can be detected similarly to BB84 and B92.

13.3 QKD IN PRACTICE

QKD protocols such as BB84 and E91 have been modified for optimal
implementation in realistic experimental setups. Other QKD protocols
based on the principles of BB84 and E91 have also been invented for the
same reason, including protocols that allow one to retrieve more than
one bit per photon. There have been multiple experimental implemen-
tations of QKD using standard telecommunication optical fibers, with
distances starting in the tens of kilometers a couple decades ago and now
reaching the thousands through dedicated networks. QKD has also been
demonstrated in free space, starting with distances of a few kilometers
and now reaching low-orbit satellites.® Space agencies of various nations
have started QKD satellite programs. Key rates of 100 Mbits per second
over 10-kilometer optical fibers are now possible, making QKD a real-
istic option for certain specialized earthly uses.” There exist multi-node
QKD-networks in various countries around the globe.

Despite these remarkable advances, QKD still faces several challenges
and limitations.

The BB84 protocol relies on Alice and Bob being able to generate
perfectly random bit strings; any correlation in the bit string could be
exploited to reduce security. Deterministic algorithms for random num-
ber generators, like those employed with digital computers, are never
truly random (and for this reason are called pseudorandom). Thus, for

5Lu, C.-Y., Y. Cao, C.-Z. Peng, and J.-W. Pang. Micius quantum ezperiments in
space. 2022. Rev. Mod. Phys. 94:035001

"Li W., et al. High-rate quantum key distribution exceeding 110 Mb/s. Nature
Photon. 17:416-421
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QKD applications one often relies on quantum hardware-based sources
of random bits.

Two other possible issues are known for QKD protocols. One is
the so-called person-in-the-middle attack, when Eve impersonates Bob.
There is no remedy for that in the BB84 protocol other than Alice and
Bob start with a short common secret key in order to recognize each
other before implementing the protocol (this is known as source authen-
tication). Alternatively, they can use an asymmetric, public-private cryp-
tosystem for authentication. The other issue is side-channels, which can
happen if Alice inadvertently encodes more than one degree of freedom
which Eve could measure without Alice’s or Bob’s knowledge. Fortu-
nately, a solution has been proposed, the so-called measurement-device-
independent QKD.®

An issue that appears in the implementation of all QKD protocols
is noise, which can corrupt the qubits and introduce errors that may
be perceived as the result of eavesdropping. Two techniques have been
devised to deal with such a situation.

e Error reconciliation: Alice and Bob need to fix key discrepancies
without revealing information to Eve. They can use parity checking
protocols such as CASCADE.?

e Privacy amplification: to make any discovery more difficult for Eve,
Alice and Bob can use their error-reconciled key to generate an-
other, shorter key. For that, they can use pre-established hash func-
tions. (Hash functions map inputs of any size to fixed-size output
values. Cryptographically-secure hash functions exist and they can
be used for authentication.)

In practice, it is believed that the best approach is to combine the
one-time-pad afforded by QKD (which consumes lots of qubits but is
presumed secure) with a classical block cipher such as AES (which is
very economical but not known to be absolutely secure). The one-time
pad works by rekeying AES every so often, making it more difficult for
an attacker, as the key is constantly changing.

Finally, even though, ideally, the security of QKD is guaranteed by

8Lo, H.-K., M. Curty, and B. Qi. Measurement-device-independent quantum key
distribution. 2012. Phys. Rev. Lett. 108:130503

9Martinez-Mateo, J., C. Pacher, M. Peev, A. Ciurana, and V. Martin. 2014.
Demystifying the information reconciliation protocol CASCADE. arXiv:1407.3257
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the laws of physics, in reality it is not unconditional. It is highly depen-
dent on the accuracy of the hardware design and its implementation.
At the moment, the error rates and vulnerabilities induced by hardware
are still too high to satisfy the stringent security criteria needed for the
most sensitive cryptography applications, such as national security.'’

13.4 QUANTUM NETWORKS

QKD offers a solution to a very important practical problem by exploit-
ing quantum mechanical principles such as superposition, uncertainty,
and possibly entanglement. But once the secret key has been established
and shared securely, all encrypted communications can proceed clas-
sically, namely, without resorting to interference or entanglement and
using standard classical channels.

What if we need to transmit quantum states on a regular basis? For
instance, when interconnecting quantum sensors or distributing a quan-
tum algorithm workload over several quantum processors? For these pur-
poses, the concept of quantum networks was introduced. The basic idea
is to gather, process, and store quantum information locally in quantum
nodes, and use photons as flying qubits to transport quantum states
from one node to another, similarly to what is done in the Internet.
The photons can be in the optical range (e.g., traveling through opti-
cal fibers) or in the radio and microwave range (traveling through free
space).!! Just like in the case of the Internet, in addition to transmis-
sion channels, a quantum network requires components such as trans-
mitters, receivers, memories, and repeaters, as well as transducers. How-
ever, differently from the Internet, these components must operate in
phase-coherent conditions, allowing entanglement to be distributed and
preserved. While single-photon emitters and detectors are readily avail-
able, quantum memories and repeaters are still being researched, tested,
and perfected. Transducers are needed to convert quantum signals of a
frequency range into another (e.g., microwave to optical) and are also
being intensively researched and developed.

It is difficult to discuss quantum networks without going into techni-
cal details of how the physical realizations of various components work.

Yhttps://www.nsa.gov/Cybersecurity /Quantum-Key-Distribution-QKD-and-
Quantum-Cryptography-QC/

"Fiber optic wavelengths for telecommunications are usually 850, 1300, and
1500 nm, falling in the infrared; microwave frequencies range from 300 MHz to
300 GHz, with corresponding wavelengths going from 1 m to 1 mm.
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Figure 13.1 (a) Illustration of a quantum network where quantum states
are transmitted from one node to another. The larger cubes represent
quantum nodes and the solid lines are quantum channels. The smaller
cubes are quantum repeaters. (b) A protocol for transferring a quantum
state [¢) from node A to node B via a flying photon qubit. (c¢) Schematic
illustration of the DLCZ protocol for a quantum repeater: write and read
operations on an atomic gas ensemble (which functions as a quantum
memory), with the emission of a herald photon (upper panel); their use
for entangling two ensembles (lower panel).

Therefore, here we will confine ourselves to some general concepts. Ref-
erences at the end of the chapter provide in-depth, technical descrip-
tions. The layout of a quantum network is illustrared in Fig. 13.1a while
Fig. 13.1b shows a protocol for transferring a quantum state [¢) from

node A to node B.!? Suitably timed pulses Q(At) and Qp(t) are em-
ployed to induce transitions within nodes A and B (typically atomic cav-
ities) which emit and absorb photons, respectively. These photons travel
through the quantum channel connecting the two nodes. The diagrams
in Fig. 13.1c illustrate a protocol (named DLCZ, after its inventors) for

12Cirac, J. 1., P. Zoller, H. J. Kimble, and H. Mabuchi. 2007. Quantum state
transfer and entanglement distribution among distant nodes in a quantum network.
Phys. Rev. Lett. 78:3221-3224
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implementing a quantum repeater.!®> A low-intensity “write” light pulse
hits an ensemble of N identical atoms kept at their ground states. A
photon of this pulse is absorbed by the ensemble creating a quantum su-
perposition where N — 1 atoms remain in the ground state and one atom
is excited to a long-living state. During the excitation process, a herald
photon is emitted by the ensemble, signaling that the system is storing
the desired quantum state. To retrieve the stored state, another weak
pulse is sent to the ensemble, taking all N atoms back to their ground
state and resulting in the emission of another herald photon. Using this
method for writing and reading states in parallel for two atomic ensem-
bles and passing the emitted photon pair through an interferometer, one
can created entangled states across a network.
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13.6 EXERCISES AND PROBLEMS

1. Reformulate the E91 protocol to employ the |Bgg) Bell state.

2. (Adapted from C. P. Williams, Explorations in Quantum Com-
puting, 2nd edition.) The BB84 protocol employs single, non-
entangled qubits to perform QKD, while the E91 protocol is based
on entangled qubit pairs. Despite this physical difference, they are
surprisingly similar.

(a) Verify that the following identity holds for arbitrary one-qubit
gates Uy and Us:

A oA A A AT
(U1 ® Us)|Boo) = 1 ® (UsUy1 )| Boo),

where |Byy) is the first Bell state and the superscript 7' de-
notes transposition. Hint: represent operators and vectors in
the two-qubit computational basis.

(b) Explain how this identity can be used to find a connection
between BB84 and E91.
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CHAPTER 14

Quantum Sensing

In quantum sensing, one uses the properties of a quantum system such
as energy quantization, interference, or entanglement to detect and mea-
sure physical quantities of other systems. The goal is to achieve higher
sensitivity, precision, and resolution than what is possible using stan-
dard (non quantum) devices. For that, one exploits the high sensitivity
quantum states have to external perturbations.

One can say that quantum sensing is the oldest form of information
processing reliant on quantum properties. For decades, superconducting
quantum interference devices (SQUIDs) have been used to measure weak
magnetic fields; atomic clocks were introduced even before SQUIDS. But
the area has greatly progressed since those pioneering devices and a va-
riety of new quantum sensors, often at a single-atom level, have entered
the scene in recent times, vastly improving and expanding the applica-
tions of quantum sensing. New terminologies have also been introduced,
such as “quantum metrology” and “quantum-enhanced sensing” to more
clearly indicate the key role played by unique quantum properties such
as entanglement. While quantum computing gets most of the attention
these days, in reality quantum sensors will have a much more profound
economical impact in the short and long terms given their wide range of
uses.

14.1 TYPES OF QUANTUM SENSING

There are three types of quantum sensing, depending on the particular
quantum property utilized by the sensor:

1. energy quantization sensors (i.e., sensing relying on the existence
of discrete energy levels),
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2. quantum coherence sensors (i.e., sensor exploiting the ability of a
quantum system to retain spatial or temporal superpositions), and

3. quantum entanglement sensors (multi-component sensors that use
the sensitivity of entanglement to external perturbation).

Whatever physical system is chosen to realize a quantum sensor, it must
satisfy certain criteria to properly function:! energy levels must be well
defined and sufficiently separated to be distinguishable; the system must
be initializable in a suitable quantum state and its states accessible to
readout; the system must remain coherent during manipulations (i.e.,
decoherence times must be longer than the operation time); and the
interaction of the system with a suitable external field must cause de-
tectable internal changes. The latter two attributes are the hardest to
achieve: the system must be very sensitive to a particular signal and
at the same time be immune to noise. Often, these conditions compete
against each other.

14.2 A QUANTUM SENSING PROTOCOL

Because of the largest variety of quantum sensors and their uses, proto-
cols for their operation can be bespoke. However, there is a generic theo-
retical framework which fits most cases of type (1) or (2) and which helps
one understand the principles involved in quantum sensing. It starts by
setting up the Hamiltonian of the sensor:

H(t) = Hy + Hy (t) + Hen (1),

where Hy is the internal Hamiltonian, Iflv(t) encodes the interaction
with an external signal V (¢), which is the quantity to be measured, and
Flctrl(t) represents the control exerted on the sensor by the operator. The
signal V (t) affects the sensor’s dynamics through Hy (¢), which is to be
counterbalanced by Hei(t). Out of this counterbalance, one infers V(t).

In its simplest form, a quantum sensor may consist of a two-level
system (a qubit): .

Hy = Eo |0)(0 4 Ex [1)(1],

where Fy and F; are the energy eigenvalues associated to the eigenstates
|0) and |1), respectively. Here, we will adopt these two eigenvectors as a

!This also applies to qubits used in quantum computing and quantum commu-
nications; see Sec. 15.1.
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computational basis and assume hwg = E1 — Fy > 0. Then, an appro-
priate signal Hamiltonian has the form

Hy(t) =7 [Va(t) X + V() ¥ + V(1) 2],

where v is the so-called transduction parameter and V;, V,,, and V, are
the different components of the external field with respect to the space
of Pauli operators specific to the qubit. ﬁctrl(t) encodes the application
of standard quantum gates such as Hadamard or a sequence of pulses,
such as 7/ and 7.

Once a system is established in these terms, the protocol for obtain-
ing V() consists of the following steps:

1. Initialize the sensor, say, at state |0).

2. Use pulses to bring the sensor to a desired sensing state: |¢g) =

0prep ‘ 0> :

3. Let the sensor evolve for a time ¢, when FIO and ﬁv(t) are acting
on it, to reach the state

(1)) = Un [tbo) = coltoo) + c1lihr),

where Up the evolution operator for that time period and |¢;) is
a state orthogonal to |¢)y). The evolution induces a superposition
of the [tho) and |t)1) states.?

4. Apply the inverse sequence of pulses to return the sensor back to
the computational basis:

W)ﬁnal) = Ugrep|¢(t)> = CO|0> + 6i0 Cl|1>7
where 6 is an unimportant phase.?

5. Read out the final state of the sensor.

Upon repeating steps 1-5 multiple times, one obtains an estimate of the
transition probability p,

p=1—|c|* = |aa]®.

2Notice that because of the two-qubit state, given |to), |¢1) is unique up to a
phase factor.
3As an exercise, the reader is invited to derive this relation.
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To infer V(¢) from p, one can repeat the protocol varying the time in-
terval t or any other parameter that may help deconvolute V' (¢) from a
set of estimated probabilities.

To illustrate the procedure, consider the following example known as
Ramsey measurement, where the goal is to measure a static longitudinal
perturbation V (t) = V, Z:

1. Initialize the sensor in the state |0).
2. Apply a 7/2 pulse to bring the sensor to the superposition state
) = —= (10) + 1)
0 o) .

3. Let the sensor evolve for a time ¢, such that its state becomes

1
V2

where global phases have been neglected and w = wg + vV, /A.

o) (10) +e" 1)) .

4. Apply another 7/2 pulse to bring the sensor back to the original
state, resulting in

[Yfina1) = % [(1 + e_w) 0) + (1 - e‘i“t) |1>} :

5. Read out the final state in the computational basis.

Upon repeating the procedure and sweeping over a range of time periods,
one can obtain the transition probability p as a function of time, which
should follow the relation
1 1
p(t) = 575 cos(wt).

One can then extract V, by subtracting wg from w. Ideally, one could
start with a qubit system where wy = 0, in which case the oscillation
frequency corresponds directly to V. /h. These oscillations are known as
Ramsey fringes.

A similar procedure can be employed to measure a static transverse
field V(t) = V, X. In this case, there is no need for steps #2 and #4
and the oscillations of the time-dependent transition probability, known
as Rabi oscillations, directly determine V.
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14.3 ENTANGLEMENT-BASED QUANTUM SENSORS

While single-qubit sensors can beat the sensitivity of classical devices,
even better results can be obtained when an ensemble of those sensors is
employed. In the context of metrology, one calls the standard quantum
limit the maximum precision achievable when the qubits in the ensemble
are uncorrelated. In this limit, for a fixed measurement time, the preci-
sion scales as 1/ VN , where N is the number of qubits in the ensemble.
The gain by employing more than one qubit in this case is merely sta-
tistical. However, upon allowing the qubits to interact and build a fully
entangled state, one can go beyond that and move toward the so-called
Heisenberg limit, where the precision scales as 1/N. There has been re-
cent progress in exploring this effect on ensembles neutral atoms. There
are also proposals for employing quantum networks to entangle atomic
clocks and enhance their performance, with applications ranging from
better GPS systems to scientific, such as the detection of gravitational
waves and dark matter.

One can understand the advantage of employing entangled states by
going back to the protocol of Sec. 14.2 and using instead of a single
qubit, an ensemble of N qubits initially prepared in the |0---0) state
and then brought to the sensing state (known as the GHZ state)

1
|t0) = 7 (10---0) +1---1)).

Using the same H,y Hamiltonian for each qubit, the N-qubit state picks
up a phase enhanced by a factor of N, namely, Nwqt after evolving for a
time t. The end result of the protocol is that the transition probability
of any of the qubits (and we need to measure only one of them) becomes
p = sin?(Nwot/2), indicating an increase in the oscillation frequency by
a factor of IV, and, consequently, a reduction in the measurement time
by the same factor.

A common approach for implementing entanglement-based sensing
is to use spin squeezed states. These are states prepared in such a way
that the uncertainty associated to one angular momentum component
is reduced at the expense of increasing the uncertainty of the others
(hence the connection to “squeezing”). Indeed, applying Eq. (4.1) to the
Cartesian components of the total spin angular momentum operator,
which satisfy the commutation relation [J,, J,] = ifiJ., we find

(ATs) (Ady) > SI()].



190 W Introduction to Quantum Information Processing

Thus, if the state is prepared such that AJ, < +/h[(J:)|/2, then
AJ, > \/h|(J;)|/2. Usually, achieving this situation is only possible
through entanglement. In this case, one can take advantage of the smaller
uncertainty in J, to improve sensitivity. Going back to the protocol of
Sec. 14.2, an appropriate “squeezing” Hamiltonian must then be em-
ployed during the state preparation.

The most critical issue for entanglement-based quantum sensing is
decoherence and noise. Left unchecked, noise can remove all the scaling
advantages of entanglement. This challenge is being tackled in a number
ways, from using specially engineered entangled states that are robust to
the prevailing noise type to the application of quantum error correction.
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Physical Realizations of
Qubits

In the mid 1990s, with the advent of quantum algorithms that could
solve hard problems of practical interest, a race to develop qubits be-
gan. A myriad of approaches were proposed and tried, from nuclear spins
in molecules to trapped ions and electrons to superconducting circuits,
not to mention photons. Some of these qubit realizations were far more
advanced than others from a technical standpoint (such as nuclear spins
and superconducting circuits), thanks to decades of fundamental studies
and applications in areas other than quantum computing. Other propos-
als were untested but very promising such as defect states in insulating
materials and Rydberg atomic systems.

By the 2010s, it was clear that ion traps and superconducting circuits
offered the best tradeoff between scalability and quality, at least in the
short term. Much was invested in their development and they are, by
now, far more established than other physical realizations of quantum
processors. Yet, other approaches continue to be pursued either because
of their promise of superior qubit quality or their ability to scale, if
successful. An example of the latter are qubits based on defects in crystal
lattices. Recently, quantum processors based on Rydberg atoms have also
made tremendous progress and are now commercially available. Photonic
qubits continue to evolve. The verdict to which physical realization will
prevail is still unclear, including the possibility of something entirely
new. It is likely that different realizations will find its own niche use.

Below, we provide brief explanations of the inner workings of the
prevailing types of qubits today. But before going into that, we list what
is expected of a good qubit.
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15.1 DIVINCENZO’S CRITERIA

In 2000, David DiVincenzo proposed a series of requirements that any
serious quantum computing hardware contender needs to satisfy.! They
are now called DiVincenzo’s criteria and are essentially the following:

1. A scalable system must have well-defined qubits (i.e., well-defined
two-level quantum states).

2. It must be possible to initialize qubits to a fiducial state, say, |0).

3. Decoherence times must be much larger than the gate operation
times.

4. A universal set of quantum gates must be possible (e.g., H, T,
CNOT).

5. It must be possible to readout qubit states, i.e., make measure-
ments.

For quantum communication hardware, two additional criteria are nec-
essary:

1. It must be possible to transmit flying qubits between separate
locations.

2. It must be possible to convert stationary to flying qubits, and vice-
versa.

We will now look into a few physical systems that satisfy DiVincenzo’s
criteria.

15.2 TRAPPED IONS

The quantized energy levels in atoms are a natural qubit basis, provided
that the lowest-energy states can be isolated from other states. However,
addressing individual atoms and controlling their interactions is very
hard for neutral atoms.? The solution is to use charged atoms, namely,
ions. Since the 1950s, techniques for trapping individual ions have been

'DiVincenzo, D. P. 2000. The physical implementation of quantum computers.
Fortschr. Phys. 48: 9-11

2An exception is the so-called Rydberg atoms, which have very large orbital
states. See Sec. 15.5.
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developed and constantly improved, starting with the Paul trap.® It is
impossible to confine charged particles in three-dimensional space using
solely static electric fields.* However, one can build a configuration of
time-dependent electric fields that, on average, confine in all three spa-
tial dimensions. If the switching between confining and anti-confining
potentials happens sufficiently fast, faster than the time it takes for the
particle to escape, the particle remains trapped inside a well defined re-
gion. That is the principle of a Paul trap. One way to visualize this effect
is to consider a rotating saddle, as shown schematically in Fig. 15.1

<

Figure 15.1 Schematic representation of a rotating saddle potential.

The saddle potential can be formed by an alternating quadrupole
field configuration, as the one shown in Fig. 15.2

Figure 15.2 Alternating quadrupole field configurations.

Given the particle’s mass, electrical charge, and the profile of the
saddle potential, there is a range of frequencies such that the particle re-
mains confined in a stable configuration. For ions, this typically happens
in the radiofrequency range.

3 After Wolfgang Paul, who invented it in 1953 and received a Nobel Prize for it
in 1989.

4This is known as Earnshaw’s theorem and is a direct consequence of Gauss’ law.
There can be no stable equilibrium point in a free electromagnetic static field, only
saddle points.
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In order to be able to individually access ions (each ion being a qubit),
they need to be sufficiently apart, so that laser beams can be pointed at
each one without affecting its neighbors. Since most transitions of rele-
vance to ion qubits are in the visible range of the electromagnetic spec-
trum, the lasers employed to manipulate qubit states have wavelengths
in the micrometer range, and that is the typical spatial separation of
trapped ions, see Fig. 15.3.

@/ \@J @/

d d

Figure 15.3 lon trapping in one dimension. In practice, d &~ 1 pm.

But that alone is not enough to operate an ensemble of ions as qubits.
They also have to be cooled down to very low temperatures. This requires
the emission and absorption of vibrations at the individual ion level,
avoiding disturbing other ions. By cooling the ions (i.e., reducing their
jiggling motion) and exploring their long-range Coulomb interactions
with each other, one can turn the ions in a trap into a “rigid” system,
like atoms in a crystal, with very little relative motion. As a result,
photons of certain wavelengths can only be absorbed by the totality of
the ions; the photon linear momentum is then distributed among all
ions, causing only a very small collective displacement (this is called the
Méssbauer effect).

Let us consider the energy levels of a Ca™ ion shown in Fig. 15.4,
which is a common choice for ion traps. It has a single electron in its
outer shell, thus resembling a bit a hydrogen atom.

| aux>
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laux

AE

Oaux

1>
0>

Figure 15.4 Energy levels in a Ca™ qubit. The energy scales are: AEy =
1.69eV, AE]_aux = 1.45 eV, and AEy_,ux = 3.14 €V. The corresponding
photon wavelengths are 732 nm, 854 nm, and 393 nm, respectively.
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The ground state plays the role of the |0) state. The first excited
state is the |1) state. The latter is metastable, with a lifetime of ap-
proximately 1 s. This seems short, but in practice is a very long time.
A third, auxiliary higher-energy state, |aux),with a very short lifetime
(7 ns) is used for measurement purposes, as well as for other operations.

The ground state of a Ca™ ion is actually double degenerate, so
optical pumping is needed to select a single low-energy |0) state, as
shown in Fig. 15.5.

hv:AEOaux

>
82> 0>

Figure 155 Qubit initialization via optical pumping in Ca™ qubits.

By sending only photons with frequency AFEy_aux/c, with the ap-
propriate polarization, transitions between the unwanted ground state
|g2) and the auxiliary state |aux) are induced, but not between the |0)
and |aux) states. The auxiliary state decays back to one of the ground
states; when it decays to |0), it stays there, but when it decays to the
unwanted state, it is eventually excited again. Therefore, over time, the
ions converge toward the |0) state.

The auxiliary state and its fast decay can be explored for performing
measurements: by sending a photon with frequency AFEj_,u/c, if the
qubit is in the state |1), the state |aux) is excited and rapidly decays
toward the ground states, emitting a photon that can be detected; if no
photon is emitted and detected, one can infer that the qubit was in the
state |0) and therefore was not excitable by the incoming photon. Alter-
natively, if a photon of frequency AFg_.ux is used, it will stimulate an
excitation from |0) to |aux), ensuing a rapid response (i.e., the emission
of a photon); in this case, if the qubit was in the state |1), no emission
is expected.

What about qubit operations?

Single-qubit operations can be performed by sending laser pulses
with frequencies tuned to AFy; and with a duration corresponding to a
particular Bloch vector angle to perform a rotation in the Bloch sphere.
For instance, a m pulse can take from 1 to 10 us. We will skip the
derivation of the effective Hamiltonian behind such a qubit operation
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when a resonant laser is employed. The resulting evolution operator, in
the standard computational basis, is

0(t0) = e™0t/2 cos Q1) ie?(0twot/2) sin Q(t)
T de 0ot 6in Q) e 0t 2 cos Q(t) )7

where Q(t) = A x t/2, wg = AFEp1/h, ¢ is a laser phase parameter, and
A is a laser-atom coupling parameter. For a pulse of duration ¢ = 37 /wy,
A = wy/6, and 6 = 37/2, one finds

A 1 1 1 N

U__\/§<1 _1>——2H,
namely, a Hadamard gate up to an overall phase factor. Other gates,
including phase gates can be obtained in a similar faction, by a proper
choice of parameters.

Two-qubit gate operations are more challenging but can also be per-
formed by exploiting the inter-ion interactions. As mentioned earlier,
because the ions are trapped and cooled, the only residual interaction
left is their mutual Coulomb repulsion. The ions, when confined in a
linear trap, form a chain which can hold quantized vibrational modes,
the so-called phonons. The phonon energy is given by

E =nhwp,

where n = 0,1,2,... and wpy is an angular frequency related to the
stiffness of the linear chain and the ion masses. We have to think of such
a system as a collection of qubits attached to quantized phonon modes,

H = H,® Hy,

(i.e., the product of two Hilbert spaces). The phonons can intermediate
interactions among qubits and in a controllable way. How?

Consider what happens when we shine light with angular frequency
wop &£ wpp on an ion:

10)g ® [1)ph Wo + wop [1) @ |n+1) "blue sideband”
0 P

10)q ® |n)ph o — o 1) ®|n—1) "red sideband”.
0~ %p

We can alter the individual qubit state at the same time we either in-
crease or decrease the number of phonon modes in the chain. By pulsing
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the laser at these frequencies in a selective way, we can create entangled
superpositions between an ion and a phonon:

10)g @ [0)ph — —=(10)g ® [0)pn + [1)g @ [1)pn)-

\[

Bringing a second ion, we can have

|O>qA ® |O>q3 ® |O>ph — (|O>QA ® ’0>q5 ® |O>ph + |1>qA ® ’0>q5 ® |1>ph)

f
Sending a second laser pulse, this time targeting the second ion and a
resonance frequency wy (the so-called carrier frequency), we get

1

7(’O>QA ® ’0>q3 ® ’0>ph + ‘1>QA ® ’0>QB ® ’1>ph)
V2

1
— 7(’0>(IA ® ’1>q3 ® ’O>ph + ‘1>¢1A ® ’1>q3 ® ’1>ph)'
V2

Now we can send a third laser pulse, also targeting the second ion but
at a frequency wy — wpn, leading to

1
E(‘OMA ® ‘1>¢IB ® ’0>ph + ‘1>(IA ® ‘1>q3 ® ‘0>ph)
1
ﬁ(‘mm ® ‘1>QB + |1>qA ® |0>q3) ® |0>ph

The net result is a two-qubit gate between the two ions:

10)gs ®0)g© — V/f(|0>q,4 ® [1)gs +11)ga ©10)g5),

which is a maximally entangled state. This approach is known as the
Cirac-Zoller mechanism and can be extended to produce other gates and
states.” Nowadays, in practice, another approach is used, the Mglmer-
Sgrensen procedure.’ It employs two detuned lasers (a “blue” and a “red”
one), Wiser = wWo & dw. This combination induces an effective interaction
among the ions that resembles that between magnetic dipoles,

H = J5 X X; + JL VY, + J; Z:2;,

5Cirac, J. I. and P. Zoller. 1995. Quantum computations with cold trapped ions.
Phys. Rev. Lett. 74:4091-4094

5Sgrensen, A. and K. Mglmer. 1999. Quantum computation with ions in thermal
motion. Phys. Rev. Lett. 82:1971-1974
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where the couplings Ji; are controlled by laser parameters and the detun-
ing dw. (This type of Hamiltonian is called the Heisenberg model.) The
biggest advantage of the Mglmer-Sgrensen method is that it is less sen-
sitive to the collective motion of the ion chain, thus it can be employed
even when the chain is not at rest. Also, it is faster than the Cirac-Zoller
method, which is an important quality given that the states, including
those with phonons, can lose coherence. That advantage stems from the
fact that ions do not need to be individually addressed, therefore sav-
ing operation time. It also covers a wider range of unitary two-qubit
operations.

There are other ways to create states |0) and |1) in an ion. For
instance, via a hyperfine coupling to the nuclear spin. In Yb™, the lowest-
lying electronic state is split into two due to the hyperfine coupling, as
shown schematically in Fig. 15.6

11> —
0> —

triplet
AEy,

singlet

Figure 15.6 The hyperfine split in Yb™, where AEy ~ 58 peV, with a
corresponding photon wavelength equal to 2.3 cm (12.6 GHz).

In this case, the state |1) has an infinite lifetime and transitions
between |0) and |0) are induced by microwave pulses, without the need
of any auxiliary intermediate state. The state |1) can be further split by
an external magnetic field. (In practice, one still uses an auxiliary state
to excite |0) — |1) transitions.) The biggest advantage of using hyperfine
ion qubits is their resilience to decoherence, which leads to much longer
tie spans to implement sequences of quantum gates.

Ton trap qubits have made tremendous progress since their inception
in the late 1990s. There are currently ion-based quantum processors
with more than 100 qubits. Yet, they do have some intrinsic issues. The
main one is the reliance on vibrational modes in the ion chair to im-
plement two-qubit gates. The more ions you pack together, the closer
the vibrational frequencies become (wp, ~ 1/L, where L is the chain
length). Small frequencies make tuning hard, and at some point impos-
sible. Trying to compensate by employing weaker coupling slows down
the gates and reduces the number of operations within the coherence
time. To address this issue, shorter linear chairs coupled at their end-
points have been proposed. A example is the quantum charge-coupled
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device (QCCD), where certain ions are shuttled from one chain to an-
other, as illustrated in Fig. 15.7.

CXCICNCICHC Y

DO OO G

Figure 15.7 Shuttling ions between two chains to perform two-qubit op-
erations. The dotted line encircles the interaction region.

However, shuttling ions creates its own problem, as charge in motion
couples to a variety of environmental degrees of freedom, inducing ad-
ditional decoherence channels. So far, the best QCCD architecture can
achieve only six qubits and two interaction zones. Alternative architec-
tures keep the long chains and try to use pulse engineering to shorten
the gate duration.

Another issue of ion trap qubit systems is photon loss. One way to
remediate it is to employ microwave cavities.

Nevertheless, these difficulties have not prevented the commercial-
ization of ion-trap quantum technologies. Several companies are active
in this area.

15.3 SUPERCONDUCTING CIRCUITS

All qubits based on superconducting circuits exploit a phenomenon
called Josephson effect, named after Brian Josephson, who proposed it
in the early 1960s while a graduate student at Cambridge University in
the United Kingdom (he eventually received a Nobel Prize in Physics for
it in 1973). To understand it, let us go through some basic facts about
superconductors first.

Some materials (mainly metals), when cooled below a certain crit-
ical temperature (which varies from one material to another), loose all
electrical resistivity (see Fig. 15.8), becoming perfect conductors (“su-
perconductors”).

This phenomenon is also accompanied by the “expulsion” of mag-
netic fields, namely the lack of penetration by external magnetic fields
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p

0
I T

Figure 15.8 Resistivity as a function of temperature for a superconducting
material. T, is the critical temperature.

(the so-called Meissner effect). It turns out that conduction electrons
in superconductors pair up, creating a coherent collective state that be-
comes immune to lattice defects and other mechanisms that scatter sin-
gle electrons and cause finite resistivity. But this coherent superposition
of paired electrons is relatively fragile; it needs low temperatures and
can be destroyed if an applied magnetic field exceeds a certain magni-
tude. In standard metals such as aluminum, lead, niobium, and tin, the
critical temperature T, varies between 1.2 and 9.3 kelvin; in some com-
pounds containing rare-earth elements, 7, can go as high as 125 kelvin
at ambient pressure (these are the so-called high-temperature supercon-
ductors). Unfortunately, no one has been able to synthesize a compound
that superconducts at room temperature and ambient pressure.”

When two superconductors are separated by a thin insulator, some-
thing very peculiar can happen: a dc (i.e., direct) current flows between
them in the absence of applied bias voltage. The current comprises elec-
tron pairs (called Cooper pairs) that tunnel through the insulating bar-
rier, as shown schematically in Fig. 15.9.

A //6\\/’“\@ B

superconductor insulator superconductor
Figure 15.9 Cooper pair tunneling through a Josephson junction barrier.

The electron pairs are the ones in the tunneling process; individual
electrons do not participate.

"Superconductors with T. very close to room temperatures exist but only when
submitted to impractical high pressures.
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When a voltage bias is applied across the junction, an ac (i.e., alter-
nating) current is generated.

It turns out that superconductors can be described by a single quan-
tum probability amplitude,

Y~ /e,

where n is the Cooper pair density and ¢ is a phase. In a Josephson
junction between superconductors A and B with individual phases 4
and ¢p, respectively, and a bias Vs, the current is given by

I = I sin(y)
where p = @4 — @p, with

dp 2e

W Vias~

at — h "

Here, Iy is the so-called critical current and is a characteristic of the
junction.

Since the Josephson junction is essentially a capacitor, if we denote
the excess charge it stores as (), we can write

Q =2e(ng —np) xV,

with V' denoting the junction volume and n4 and np are the Cooper
pair densities of each superconductor. Recalling that
dQ

I:_E and Q:VbiasCK7

where C'; is the junction capacitance, we find

dp 2 Q dQ .
22X and 5% =—1,sin(p),

it~ he, M a sin(e)

which describe the evolution of an oscillator. When ¢ < 1 (i.e., in
the regime of small oscillations), we can write an approximate classi-
cal Hamiltonian function on the variables ) and & = ¢ x ®y, with
®y = h/2e (called flux quantum):

Q2 @2

Hy =< 2 L 0.,(®), 15.1
JJ 20J+2LJ+U1() (15.1)

where the constant L; = ®g/Iy has the dimensions of an inductance.
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The nonlinear potential Uy, comprises ®-dependent terms beyond the
quadratic form. This part is important and cannot be neglected (as far
as qubit applications are concerned). When quantized, the quadratic,
harmonic oscillator yields equally-spaced energy levels, making it im-
possible to distinguish transitions; the nonlinear potential breaks that
and allows for each transition to be individually identified, as they cor-
respond to emission or absorption of photons with different frequencies;
see Fig. 15.10.

harmonic
)

anharmonic

Figure 15.10 The effect of anharmonicity in a confining potential.

The two lowest-lying energy levels of a Josephson junction can be
employed to define a qubit. However, there are various circuit imple-
mentations. Calling the Josephson junction a circuit element composed
of a capacitor, an inductor, and a nonlinear barrier (see Fig. 15.11), we
highlight a few fundamental implementations:

G Ly = % Ey

Figure 15.11 The Josephson junction circuit element.

o Charge qubits: see Fig. 15.12. In this setup one utilizes the two low-
est states of the “Cooper pair box” as states [0) and |1). The an-
harmonicity created by the nonlinear potential allows these states
to be accessed without populating other states. This kind of qubit
was important in the early days of quantum computing but are
too prone to decoherence and have been replaced by an alterna-
tive called transmon (see below).

o Fluzx qubits (a.k.a. RF-SQUID qubit): see Fig. 15.13. In this setup,
the variable ® is modulated by a magnetic field flux f, such that
¢ — ¢ — (2m/Py) x f. Another term is added to the effective
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Cooper
| pair box

Figure 15.12 Circuit layout of a superconductor charge qubit.

Hamiltonian, resulting in a modulated “washboard” potential (see
Fig. 15.14). There are multiple wells in the potential, each one
corresponding to a different number of flux quanta. The two lowest-
energy configurations are symmetric/antisymmetric pairs and are
used as states |0) and |1).

e,

Figure 15.13 Circuit layout of a superconductor flux qubit.

U(q)) A

Figure 15.14 A modulated “washboard” potential (thick line) and its two
lowest eigenstates (thin lines).

e Phase qubits (a.k.a. current-biased qubits): see Fig. 15.15. In this
setup, a current source is applied directly to the Josephson junc-
tion. The net result is to add a linear term to the “washboard”
potential, see Fig. 15.16. The current can be adjusted to allow
for only two states on a well (the other states leak out and are
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not stably populated); in fact, such a leakage can be exploited for
measurement purposes.

I E;

Figure 15.15 Circuit layout of a superconductor phase qubit.
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Figure 15.16 A tilted “washboard” potential (thick line) and the qubit
states (thin lines).

There are many other implementations and architectures, such as
transmons, Xmons, fluxoniums, quantoniums, etc. Most of them are hy-
brid and combine elements of those three fundamental setups. Trans-
mons in particular are based on the Cooper pair box concept but have
an added large shunting capacitance allowing E; to be much larger than
the charging energy Ec = €?/2C;,t, where Cio is the total capacitance
of the box. The biggest advantage is that the qubit energy spectrum
becomes less dependent on the charge, reducing the qubit susceptibility
to environmental electric field fluctuations (the so-called charge noise).
This helps reduce decoherence. The drawback is that the states |0) and
|1) become closer and the anharmonicity weaker, complicating the ad-
dressability of those states. Yet the treadoff is mostly positive and has
lead to qubits of high quality. Google, IBM, and Rigetti have adopted
the transmon architecture in their quantum processors.

Single-qubit gates are implemented with the help of transmission
lines that resonate at frequencies w corresponding to the energy separa-
tion between |0) and |1) states: w = (Ey — Ep)/h. Each individual qubit
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has its own attached transmission line and operate at a slightly different
resonant frequency than the others. To perform two-qubit gates, qubits
are physically coupled by tunable circuit elements such as capacitors and
inductors; in this case, only nearest-neighbor (local) gates are possible.
Alternatively, the qubits can be coupled to a cavity with quantized elec-
tromagnetic modes and these modes can be utilized to selectively couple
pairs of qubits.

All operations in superconductor-based qubits use microwave pulses
since Fy and E¢ fall into that range of frequencies in the electromag-
netic spectrum. As a result, these qubits can only operate at millikelvin
temperatures (1 kelvin is approximately equivalent to 20 GHz).

Superconductor-based qubits benefited from decades of fundamental
and applied research on Josephson junctions. They can also be readily
fabricated with standard techniques (their sizes are in the micrometer
range) and packed inside a chip. However, because of all the circuitry
involved in their setups and the need to run microwave transmission
lines and attached them to cavities, qubits are in close proximity and
suffer from crosstalk. Moreover, the qubits are not true two-level sys-
tems and leakage can occur. It might be that they have already reached
the lowest possible decoherence that nature affords them, in which case
superconductor-based systems may never reach large-enough scales to
run complex quantum algorithms. But they remain very popular and
several companies are betting in this technology, not only for quantum
computing but also other applications such as sensing and transduction.

15.4 DEFECT-BASED QUBITS

There is a variety of qubit realizations based on localized electronic states
in solid-state systems, and they often originate from lattice defect. The
defects can be naturally occurring or induced (e.g., via implantation of
foreign atoms into a crystal, in which case the defective atom is named a
dopant). They can involve a single atom in a crystal or multiple adjacent
atoms. Some are addressable optically and/or via microwaves; others
are fully electric or are a combination of electric and magnetic. Here we
will only describe two of the most popular realizations: NV centers in
diamond and charge donors (typically phosphorus) in silicon. They are
paradigmatic in the sense that other defect-based qubits tend to follow
the same physical principles of these two.
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15.4.1 NV centers in diamond

Diamond is a particularly suitable substrate for qubits based on the
electron’s spin. It is an insulator with a very large band gap (5.47 V),
making it naturally immune to electronic (charge) excitations at room
temperature. It is also transparent — the small amount of color one sees
in some diamonds is actually due to lattice defects and dopants which are
thus called color centers. Being transparent means that one can use light
to access states located inside diamond. Finally, the predominant carbon
isotope, 12C, has zero nuclear spin, leading to an absence of hyperfine
coupling and suppression of this decoherence channel (at least to carbon
nuclear spins).

How can one create localized spin states in diamond? It turns out
that they occur naturally, but can also be induced by irradiation. In
particular, the absence of a carbon atom (a lattice vacancy) next to a
nitrogen dopant creates a color center known as NV. This defect induces
electronic states suitable for a spin qubit.

The electrons bound to the NV center have total spin S = 1, induc-
ing three sublevels with projection spin numbers m = 0,41, —1; only
m = 0 and m = —1 are used as qubit states. They can be accessed via
microwave pulsing and show decoherence times ranging from microsec-
onds to milliseconds. Most of the decoherence comes from coupling to
the nuclear spins in the nitrogen dopant and from any '3C isotopic con-
taminants. However, the nitrogen nuclear spins are actually a blessing,
as they themselves can be considered super quiet qubits, with decoher-
ence times close to 1 second! Transitions between the nuclear spin states,
facilitated by the NV center electronic spin states, fall in the MHz range
and can be easily accessed to create logic qubit systems.

Many techniques borrowed from quantum optics can be applied to
NV centers to prepare, manipulate, and detect qubit states with very
high fidelity.

The main challenge of NV center-based qubits is how to implement
two-qubit gates. Two routes have been proposed: magnetic dipole-dipole
interactions (qubit-qubit distances would need to be within the 10 nm
range) and the use of optical waveguides to couple qubits coherently
over larger distances. There have been some demonstrations of the latter
where entanglement between two NV centers was achieved. Yet, it is
unclear how this approach could be made to scale.
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15.4.2 Phosphorus in silicon (P in Si)

Silicon is another material with a relatively large band gap and no nu-
clear spin in its predominant isotope (?*Si). The biggest advantage over
diamond is the vast knowledge and experience in manipulating it at
industrial scale, thanks to many decades of its use in electronics. For
instance, one can selectively dope Si, including with 3!P, an isotope of
phosphorus that has a nuclear spin 1/2. The combination of the rela-
tively inert silicon substrate with the 3'P nuclear spin provides a local-
ized qubit with very long decoherence times, from tens of milliseconds
to seconds!

The original Si(P) qubit proposal called for P being a shallow dopant
(i.e., near the Si surface) that could be controlled via electric gating, see
Fig. 15.17. Recent advances in lithography and a more precise placement
of P in Si allow deeper implantation.

25 nmI

‘ 20 nm

R S

Figure 15.17 Schematic of a Si(P) qubit system, with approximate average
dimensions.

Unfortunately, it turns out that accessing directly the nuclear spin of
P is very difficult. But one can readily access its excess valence electron;
P effectively acts as a hydrogen-like atom embedded in a Si substrate.
The valence electron can be removed from or added to P by electrostatic
gating, and its spin used as a qubit. Moreover, it can be detected using
a single-electron transistor (SET) placed nearby, see Fig. 15.18.

By monitoring the changes in the conductance of the SET, one can
tell when the donor is charged or not with an extra valence electron. A
combination of magnetic fields, microwave pulses, and current monitor-
ing (in addition to gate pulsing) can be used to initialize, manipulate,
and readout the electron’s spin state.

Two-qubit operations can be performed by placing donors sufficiently
close to each other, so that their electron spins can interact via exchange
which can be controlled by electrostatic gates as well.

The main challenge in this approach is how to precisely control
(within 1 nm) the location of implanted donors, or, alternatively, to
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Figure 15.18 Schematic of a Si(P) qubit setup with a SET. The potential
energy profile is also shown.

couple donors that are far apart and when their exact locations are not
known. Yet, much progress has been made in recent years, including the
realization of small quantum processors.®

15.5 RYDBERG ATOMS

Finally, we discuss a qubit system which has progressed intensively in
the last few years. It consists of laser-cooled, neutral atoms trapped
by optical tweezers and magnetic means within a vacuum chamber, see
Fig. 15.19. Arrays with hundreds of atoms are currently achievable. The
main feature of these atoms (typically heavy alkali such as Rb or Cs),
is that their valence electron is excited to a very large main quantum
number n, putting them into states with very large radii, of the order of
1 pm.? A qubit can be encoded in the single-electron state via Zeeman
splitting (i.e., using an external magnetic field), or through the hyperfine
coupling to the nucleus spin. Both mechanisms produce doublets split
by frequencies in the GHz range, which allows for their manipulation
through microwave pulsing. It is also possible to employ all-electronic
states for a qubit basis states, in which case manipulations can be per-
formed with optical fields at the individual atom level. Similarly to ions
in the ion-trapped-based qubits, qubit states in Rydberg neutral atoms
also have nearby excited states which can be used for qubit initialization
and readout.

8Thorvaldson, I., D. Poulos, C. M. Moehle, S. H. Misha, H. Edlbauer, J. Reiner,
H. Geng, B. Voisin, M. T. Jones, M. B. Donnelly, L. F. Pena, C. D. Hill, C. R.
Myers, J. G. Keizer, Y. Chung, S. K. Gorman, L. Kranz, and M. Y. Simmons. 2024.
arXiv:2404.08741

9Recently, other alkali earth atoms such as Sr, which has two valence electrons,
have also been employed due to some technical advantages.
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Figure 15.19 Schematic illustration of a setup for trapping Rydberg atoms
in a regular array. AOD stands for acousto-optic deflector and EM-
CCD for electron-multiplying charge-coupled device camera. Courtesy
of Hebin Lin.

The intrinsic lifetime of large-n Rydberg states due to spontaneous
decay is very large due to the weak dipole coupling to low-n states. Thus,
in practice, the limiting factor in the lifetime of a Rydberg atom qubit
is the coupling to external agents, such as radiation, confining fields, or
non-trapped gaseous atoms. Ty dephasing times of hundreds of ms can
be achieved, but there are indications that they could be soon extended.
Recent reports indicate a T5 time of 20 s for single a Cs atom, and up
to half a minute for Sr arrays. The physical trapping of the atom itself
can last a very long time, reaching an hour.

The Rydberg atoms kept in a regular arrangement are typically a few
pm apart. That allows for some small overlap of their orbital states and
the appearance of van der Waals interactions. However, the prevalent
form of interaction between Rydberg atoms in an array is dipole-dipole.
This allows for a phenomenon called Rydberg blockade, where no two or
more atoms within a certain radius cannot be simultaneously excited.

Single-qubit operations are performed via microwave pulsing but
need to be combined with ways to spatially distinguish atoms for in-
dividual qubit addressability. This is usually done via magnetic-field
gradients. An alternative is to use focused lasers, which can either in-
duce energy shifts or populate auxiliary excited states that intermediate
transitions between qubit states, as shown in Fig. 15.20.

Two-qubit operations explore the Rydberg blockade effect. For in-
stance, a control-Z gate can be implemented by a sequence of pulses
to the atoms involved when simultaneous occupancy of an intermediate
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Figure 15.20 A flip operation between |0) and |1) states in Rydberg atom
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qubit utilizing an intermediate excited atomic state |e) and two pulses
of frequencies wy and wy.

state in the atoms is forbidden. The scheme is shown in Fig. 15.21. An
interesting characteristic of Rydberg atom-based systems is that they
also allow for multi-qubit gates, which could be advantageous in terms
of efficiency in implementing quantum algorithms.
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Figure 15.21 (a) Pulse scheme for implementing a control-Z gate (up to
an overall minus sign). The first qubit is the control and the second is
the target. Three pulses are applied: a 7 pulse to the control qubit, a 27
pulse on the target bit, and a second 7 pulse on the control bit again.
(b,c) Depending on the initial state, transitions involving the auxiliary
state |r) are allowed or not due to detuning or the Rydberg blockade.
Dashed lines indicate forbidden transitions.

In addition to implementing universal quantum computers, Rydberg
atoms can be utilized for performing quantum simulations not only be-
cause they realize different array configurations but also for the tunabil-
ity of inter-qubit interactions. In particular, they can be used to simulate
spin-based magnetic systems of relevance to materials physics and whose
properties are hard to compute with standard quantum computers.
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There are still a few challenges to Rydberg atom quantum comput-
ing, but progress to overcome them has been steady. Loading the traps
uniformly used to be very time consuming, with efficiencies as low as
50% per trap. But there are recent reports of loading efficiency reaching
90%. Another issue is scaling: arrays as large as 30 x 30 can be regularly
obtained, but it is not obvious how to increase array sizes to many thou-
sands of qubits, which will be likely necessary to implement quantum
error correction at the level needed for running ambitious quantum al-
gorithms such as Shor’s and others. But progress on this front has been
happening, with a recently reported 6,000-atom array being achieved, as
well as a successful demonstration of moving the optical tweezers and
shuttling atoms in the trapping region.

Rydberg quantum processors and quantum simulations are already
commercially available.

15.6 PHOTONIC QUBITS

Photons are natural qubits since they intrinsically support two orthog-
onal polarization modes, see Fig. 15.22.1% They can be easily and inex-
pensively produced and detected. They are also very resilient to deco-
herence and can travel very long distances. These qualities are balanced
by an important caveat: photons interact very weakly, making it hard
to implement multi-qubit operations. Their first use in quantum infor-
mation processing was in the implementation of QKD protocols, where
they serve as quantum channels (flying qubits). They are also impor-
tant in quantum sensing. Their use for quantum computation is not as
widespread as compared to other physical realizations but continues to
evolve and improve.

While polarization is an obvious way to implement qubit states with
photons, it is often not the most practical way.!! Time bins, frequency,
and spatial location can also be employed. Consider the example in
Fig. 15.23, which shows time-bin qubit encoding: an incoming photon
can take either of the two paths (short versus long one, typically with
equal probability) after passing through a Mach-Zehnder interferometer
(MZI).'? Calling the short one “0” and the long one “1”, the state of

OFor instance, vertical x horizontal for linear polarization or right x left for
circular polarization.

1pglarization can be unstable in optical fibers.

12A Mach-Zehnder interferometer consists of two beam splitters and two mirrors
that create two optically identical paths for an incoming beam.
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linear polarization circular polarization
horizontal vertical counter clockwise clockwise
(right hand) (left hand)

Figure 15.22 Two types of light polarization modes: linear (static) and
circular (rotating). Polarization is defined by the orientation of the elec-
tric field carried by the photon, which is always perpendicular to the
direction of propagation. For each type of polarization, there are two
orthogonal photon states.

the photon at the point where the two paths merge again is a super-
position 1)) = (|0) + ¢*®|1))/+/2. By changing the difference in length
between the two paths, Al = [; — [, one can vary the relative phase
(¢ = 2w Al/X mod 27, where ) is the photon wavelength). One can mea-
sure the state of the qubit by recording the photon’s time of arrival at
a detector (“0” will arrive before “1”). The difference in arrival time
between the two states is determined by the difference in path lengths:

= Al/c.

Mach-Zehnder 5
interferometer

-

—<I0>+e’¢’|1>)

Figure 15.23 Scheme for creating a single-photon superposition state using
time binning. A Mach-Zehnder interferometer is used to split the photon
beam into two beams, with the beams taking path of different lengths
before rejoining to create a superposition state.

Spatial encoding is another way to create a photonic qubit. In this
case, it is the presence or absence of a photon that characterizes the basis
states “0” and “1”. The concept is illustrated in Fig. 15.24, where single-
and dual-rail qubits are shown. In the single-rail encoding, one builds
a superposition state through the presence or absence of a photon in a
single mode. For dual-rail encoding, two spatially separate modes are
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employed and the superposition is between the two possible occupations
for a single photon.

Dual rail can also be implemented more generally, with modes that
are not necessarily spatially separated, e.g., two polarization modes colo-
cated in the same optical fiber. The original proposal for LOQC men-
tioned in Ch. 12 employs dual-rail encoding. While simpler to implement,
single-rail encoding does not allow for universal quantum computing
when combined only with linear optical elements; dual rail does.

) (- e (-
|0 |1) () ) =)
|0) |1
single rail dual rail

Figure 15.24 Spatial encoding of a single-photon qubit: single and dual
rail using optical fibers. The empty empty and full ellipses represent
unpopulated and populated photon modes, respectively.

Another way to encode quantum states with photons is through
energy-time entanglement.'® The concept originates from the Franson
interferometer, which is illustrated in Fig. 15.25a: the monochromatic
photons of an intense coherent light source pass through a nonlinear
crystal and are “down converted” into a pair of photons.'® Each one of
these twin photons has an uncertain energy; however, the sum of their
energy equals the energy of the incoming laser photon and is thus well
defined.' Both photons are created at the same time (thus their ages
are identical), but the exact moment of creation is uncertain. If we now
split the photon path into two and direct each path toward a suitable
interferometer with adjustable delays, we can create a Bell-state pair of
the type |00) + |11). Qubit states are encoded in the detection times.

We can simplify the energy-time entanglement setup to produce a
single photon qubit suitable for implementation of the BB84 protocol,
see Fig. 15.25b: replace the intense laser and the nonlinear crystal with
a low-intensity light source, able to emit a single photon at a time, and

3Franson, J. D. 1989. Bell inequality for position and time. Phys. Rev. Lett.
62:2205-2208

14The yield of such a process is very low in practice, as low as 1 in 10%, and therefore
most of the time a single photon emerges from the crystal for each incoming photon.
Single-photon events are discarded.

15Recall that, for photons, energy and frequency are directly related: E = Af.
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Mach-Zehnder
intense photon nonlinear interferometer

source crystal

)

¢
Mach-Zehnder
interferometer ‘ 1 >
(a) (b)
0)
0y
single-photon -
source
Mach-Zehnder quantum channel Mach-Zehnder
interferometer [ ===============-----s---e-soomnnn- interferometer
L 0g
Alice

(©

Figure 15.25 (a) A photonic Bell-state setup based on energy-time entan-
glement and the Franson interferometer. (b) The MZI used in (a) shown
in more detail, with the long (/1) and short (l3) paths indicated, as well
as the adjustable phase ¢. When both photons travel along the long
arms or the short arms of their MZIs, they arrive simultaneously at the
detectors; in this case, because each path is made equally probable, the
Bell state |00) +|11) is produced and detected. (¢) A single-photon qubit
implementation inspired by the setup in (a) and suitable for the BB84
protocol. The computational basis states correspond to photons arriving
at one or the other detector.

two adjustable MZIs (one for Alice and another for Bob) to control the
relative phase. In this case, the photon state will be a superposition of
distinct arrival times. There are four possible scenarios, depending on the
paths taken in the MZIs: short-short (SS), short-long (SL), long-short
(LS), and long-long (LL). The SL and LS have the same time delay but
are modulated by different phases (¢p and ¢4, respectively). This setup
is much more stable than one relying on polarization encoding.

Finally, one can also employ frequency encoding using the dual-rail
approach, with each mode corresponding to a distinct frequency.'®

18T ukens, J. M. and P. Lougovski. 2017. Frequency-encoded photonic qubits for
scalable quantum information processing. Optica 4:8-16
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As mentioned earlier, regardless of the quantum state encoding
adopted, for photonic qubits, multi-qubit gates are much harder to im-
plement than single-qubit ones. In principle, a possible strategy is to em-
ploy a nonlinear medium: the passage of a photon alters some medium
property, which in turn changes the state of another photon that is also
passing through, creating a control-like two-qubit gate. Unfortunately,
the magnitude of such an effect is exceedingly small, making it imprac-
tical. A better strategy is to employ ancillary photons, measurements,
and protocols such as quantum teleportation. In this case, the “interac-
tion” needed to realize a two-qubit gate results from the detection and
measurement of ancillary photons.!” Another strategy is to start with a
multi-photon state which already carries some amount of entanglement,
and perform only single-qubit operations and measurements. We have
seen a few examples of these more efficient strategies in Ch. 12. They
are all probabilistic, requiring multiple runs to reach the desired result
within a preestablished accuracy. Recently, progress has been achieved
with non-probabilistic two-qubit gates by employing hybrid systems that
combine photonic qubits with atomic cavities (to enhance nonlinear-
ity).1®
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APPENDIX A

Practicalities

A.1  MATRIX DIAGONALIZATION

Suppose we have an operator A with eigenvalues {a, } and corresponding
eigenvectors {|a,)}, with n = 1,..., D and D being the dimension of

~

the space where A acts. We can then write
Alayn) = ap |an) (A1)

for all n.

The process of finding the eigenvalues and eigenvectors of A is usu-
ally performed by first obtaining a matrix representation of A. Let
{|¢x) }k=1,...,p be a complete orthonormal basis in the space of dimension
D where A acts, namely,

(Or|s) = Ok - (A.2)

The matrix elements of A are then given by
Arj = (oxlAlgy)- (A.3)

Since the basis is complete and orthonormal, we can decompose the
eigenvectors as

‘an> = Z<¢k‘an>’¢k>7

k=1

D
= Z Qllen, ‘gbk>, (A4)
k=1
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where ag, = (¢r|a,) is a scalar. Now, applying the operator A to both
sides of Eq. (A.4), we obtain

D

Alan) = 3 v A1) (A5)

Combining Egs. (A.1), (A.4), and (A.5), we obtain
D
> cun Alr) = anzakn |Pk)- (A.6)
k=1 k=1

Finally, contracting the ket-like Eq. (A.6) with a bra (¢;| and employing
Eq. (A.2), we obtain

D
Zakn Ajk = Qp Qjn, (A7)

where j can vary from 1 to D. The latter equation can be cast in a
matrix form:

An A ... Aip A1n U1n
Ay Ay ... Ayp %) &%)

"l=a | . (A8
Apir Ap2 ... App Qpn Qpn

This form is likely familiar to those who have some experience with
matrix algebra. We can take an extra step and incorporate the right-
hand side term of Eq. (A.8) into its left-hand side after noticing that

Qin a, 0 ... 0 Qinp
oy, 0 a, ... O oy,
a’TL . - . . . . . bl (A'9)
Qpn 0 0 ... ap Qpn
resulting in
A —ay Aq . Aip Q1p
A Agp —ayn ... Asp Qon

=0. (A.10)

ADl ADZ cee ADD — Gnp & pn
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Equation (A.10) represents a homogenous system of D coupled linear
equations on the variables {a;y }j=1,.. p. Therefore, to have a nontrivial
solution of the system equation, the determinant of the matrix part must
be zero, namely,

AH — Ap, Alg . AID
A Ay —a, ... A
det . 2o 0 —0. (A.11)
ADl AD2 ADD_an

The determinant of the matrix part is equal to a polynomial of order D
on the unknown variable a,,. Equation (A.11) says that the roots of this
polynomial are the sought eigenvalues.
Consider an operator A acting on D = 3 space with the following
matrix form:
2 V2 0

A=| V2 2 V2
0 V2 2

(notice that the matrix is Hermitian and therefore we expect all eigen-
values to be real and the eigenvectors to form a complete orthonormal
set). Let us call a the eigenvalue variable, in which case we can write

2—a 2 0
det V2 2—a V2 = 0.
0 V2 2-a

Applying standard rules for computing determinants, we obtain
(2—a)®—4(2—a)=0. (A.12)

Solving for a, we obtain the three eigenvalues a; = 0, a = 2, and a3 = 4.
What about the eigenvectors corresponding to these eigenvalues? A
simple way to get them is to substitute the eigenvalue back into the
matrix in Eq. (A.10) and use all but one of the coupled equations to find
the amplitudes o;y,.
For instance, let us determine the eigenvector corresponding to a; =
0. The following set of equations need to be satified:

200, +V2a9 =
V2ai1 +2a9 +V2a3 =
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resulting in

ap = —V2an

Q31 = 0q1.

To find a value for a;1, we impose that the eigenvector is normalized,
which you can easily show to correspond to the condition

]0411|2 + ]0421|2 + ’0431|2 =1,

which in this case results in |aq1]| = 1/2. Since this is the first eigenvector
we computed, we are free to set it real and positive and can choose
a1 = 1/2

What about the other eigenvectors? We follow the same procedure.
Consider the second eigenvalue, ag = 2. Substituting it in Eq. (A.10) and
this time dropping the first equation, we get the set of coupled equations

\/§a12+\60¢32 =0
V2an = 0

resulting in agy = 0 and ags = —ag9. Imposing normalization, we find
|aia| = 1/v/2 and pick a2 = 1/4/2. Notice that this eigenvector the sec-
ond is orthogonal the first one we found, as expected. Finally, to obtain
the third and last eigenvector, we can either substitute ag in Eq. (A.10)
and follow the same procedure used for the two other eigenvectors, or
notice the following: since the three eigenvectors form a complete or-
thonormal set, the third one must be orthogonal to the other two and
have norm 1. Except for an overall phase factor, these conditions com-
plete restrict which vector can be the third eigenvector. It is easy to
verify that the amplitudes aj3 = azs = 1/2 and ags = 1//2 satisfy
these conditions and correspond to the eigenvalue ag.

In practice, one hardly ever tries to find by hand the eigenvalues
and eigenvectors of matrices larger than 2 x 2. Unless the matrices have
symmetries, the polynomial root equations can be tough to solve even
for 3 x 3 matrices and possibly impossible for matrices larger than 4 x
4. There are other methods based on similarity transformations and
reduction to a tridiagonal form which are more suitable for large matrices
and can be easily coded if numerical solutions are required. Packages and
libraries such as NumPy (for Python) and LAPACK (for fortran) offer
various methods for computing eigenvalues and eigenvectors of a matrix.
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A2 PROJECTORS

A projector is an operator that extracts from a state vevtor its projec-
tion onto a particular subspace. Let us illustrate this concept through
examples. Suppose you have a two-qubit state

[¢) = |01) + B[11)

with |a|? +|8]? = 1. If you want to determine the probability of measur-
ing the second qubit and obtaining 1, you use the following projector:

P=1®(|1)(1]),,

where the subscript 1 signifies that the operator acts on the subspace of
the first qubit while the subscript 2 does similarly for the second qubit.
Then,

p(2nd qubit = 1) = (| Py).

In words: the probability is equal to the expectation value of the appro-
priate projector. In this case,

p(2nd qubit =1) = (a*(01]+ ") (@ (|1)(1])2) (a]01) + B[11))

= (a*(01]+ g*(11]) (alo1) + BJ11))

= o>+ 18
1.

Let us now ask: what is the probability of measuring the first qubit
and obtaining 07 To answer this question, we use the projector

P = (0)(0]); ® Iy
and compute

p(Ist qubit =1) = (¢|Py)
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A.3 TENSOR PRODUCTS OF OPERATORS

We often encounter situations where we need to multiply two or more
operators acting on different qubits or subspaces:

O0=A0Be(C®....

We call such an operation a tensor product. Let us use a tensor product
of two single-qubit operators to illustrate how to implement this opera-
tion. We assume that the single-qubit operators are represented in their
computational bases, namely,

A— [ @o aon and B — boo  bot '
aip ail blO bll

The tensor product is then given by

boo bol bOO bOl

.. @00 bio bi1 dot bio bn
AR B =

a boo b()l a bOO bOl

O\ b bi M\ bt b

aoo boo @00 bo1 a1 boo  ao1 bo1
agobio  agob11  ao1bio  ap1 b11
aioboo aiobor aiiboo a11bor
ajobio @b aiibip a1 b

It is straightforward to generalize this implementation to operators in-
volving subspaces with dimensions larger than 2.

Notice that the dimensionality of the operator resulting from a tensor
product is always equal to the product of the dimensions of the operators
involved. In this case, because dim(A) = 2 and dim(B) = 2, dim(A ®
B) = dim(A) dim(B) = 4.

In the case of a tensor product involving more than two operators,
we implement the product by parts. For instance,

O:A@(B@é)

Here, we first carry out the tensor product of B and ¢ (call it OBC),
and then the tensor product between A and OBC.

It is important to notice that while operators in a tensor product
commute (since they act on different subspaces), the implementation of
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a tensor product in a matrix representation requires a fixed order, and
the same order needs to be employed when taking the tensor product
of corresponding state vectors. To understand this point, consider again
the example of the two single-qubit operators Aand B presented above.
Let [14) and |¢p) and be single-qubit state vectors in the subspaces of
A and B , respectively. In their computational basis, we can write

6a) = aol0)a + arl 1) = ( % )

(651

and

[YB) = [ol0) + Fill)B = < go > )
1

The tensor product of these two single-qubit state vectors can be
straightforwardly computed with basis kets:

[Va) ® [vB) = (a1|0)a + a2ll)a) @ (B1|0)5 + B2|1)B)
a0 50]0)4]0) B + a9 £1]0) a|1) B + a1 So|1) 4|0) 5
+ aq ﬁ1|1>A|1>B~

The proper tensor product in a matrix representation, compatible with
that used for A ® B, is then equal to

Bo ag 1
Qo
o 51 . Q) 61
[V4) & [p) = 5 =1 o
a 51 a B

A.4 SOLVING A LINEAR MATRIX DIFFERENTIAL EQUATION

Let M (t) represent a time-dependent, N x N square matrix satisfying
the first-order differential equation

d ~
%M(t) =AM(t), (A.13)
where A is a linear superoperator, namely, a linear operator that acts
on matrices. When A is time independent and given some initial matrix
M (0), this equation can be formally solved:

M(t) = M M(0). (A.14)
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In practice, without exploring any symmetries or simplifications that
may exist in /A\7 we deal with the exponentiation of a superoperator
by employing diagonalization. Let us start by introducing indices in
Eq. (A.13):
dM; ;
dt

N
=Y Aijeg My (A.15)
k=1

Next, let us introduce single indices I and K that run over all values of
the indices (7, j) and (k, 1), respectively. One way to do that is to write

I = (i—1)N+j
K = (k—1)N+1,

for i,j,k,l =1,..., N. Notice that both I and J run over N? values. We
can then recast Eq. (A.15) as

av, Y
WI = 3" Arx Mg. (A.16)
K=1

The matrix M is now a vector of length N? and the superoperator A is a
N? x N? matrix. When this matrix is diagonalizable, we can decompose
it as

A=VAIVL
where \ is a diagonal matrix and V is some N2 x N? invertible square
matrix. Then, we can rewrite Eq. (A.16) as

dM; -

— =M A7

L =\ i, (A17)

where M = V' M. The differential equation (A.17) is diagonal and can
be readily solved element-by-element to yield

M;(t) = Mt M (0), (A.18)

which can be rewritten in terms of the vector components of the original

matrix M as ,
N
_ o A Yr—1
Ml(t)_Kzzjl ey L,K M (0).

Comparing this equation to Eq. (A.14), we identify

M=V eMyL, (A.19)
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Qiskit

B.1 INSTALLATION

Qiskit is constantly evolving and therefore we recommend that the reader
checks the installation instructions provided in the package distribution
website, which is currently found at

https://docs.quantum.ibm.com/guides/install-qiskit

Here, we list the main steps found on that website at the time when
the book was going to press (Qiskit version 1.0).

1. If you do not already have it, install the latest version of Python
(the programming language) on your computer:

https://www.python.org/

2. If pip is not included with your Python installation, install it:
https://pip.pypa.io/en/stable/installation/
3. Create a directory in your computer to run your qiskit codes; we

suggest naming it “qip-qiskit”. Open a shell command window and
go to that directory.

4. Within that directory, create a Python virtual environment
through the commands:
— for Mac or Linux:
python3 -m venv /path-to-gip-giskit
source /path-to-gip—giskit/bin/activate

— for Windows:
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B.2

python3 -m venv c:\path-to-gip-giskit
c:\path-to—-gip-giskit\Scrips\Activate.psl

where “path-to-qip-qiskit” is the path in your system to the direc-
tory qip-qiskit.

. Install Qiskit and a couple more useful packages through the com-

mands:
pip install giskit[visualization]
pip install giskit-aer

pip install giskit-ibm-runtime

. Use the command line to install JupyterLab for composing and

executing Qiskit codes:

pip install Jjupyter

Now you are ready to start a jupyter session and create/open note-
books. Enter the command

jupyter notebook

KEY COMMANDS

Loading common qiskit modules:

from giskit import QuantumCircuit

from giskit.quantum_info import Statevector
from giskit.quantum_info import Operator

from giskit.primitives import StatevectorSampler
from giskit.visualization import plot_histogram

from giskit.visualization import plot_state_city

from giskit.visualization import plot_bloch_vector

from giskit.visualization import \

plot_bloch_multivector

Create a n-qubit circuit object (qubits set to |0) by default):

circuit = QuantumCircuit (n)

Apply a Hadamard gate to qubit 0:

circuit.h(0)
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Apply an R, (6) gate to qubit 0, where 6 is the angle:

circuit.rx (theta, 0)

Apply an R, () gate to qubit 0, where ¢ is the angle:
circuit.ry(theta,0)

Apply a phase gate to qubit 9 with a phase ¢:
circuit.p (phi)

Apply a CNOT gate to qubits 0 (control) and 1 (target):

circuit.cx (0, 1)

Apply a control phase gate on qubits 0 and 1 with a phase ¢:
circuit.cp(phi, 0, 1)

Obtain and print the state vector at the current output of a circuit:
state = Statevector (circuit)

print (state)

Draw a circuit using MatPlotlib:

circuit.draw (“mpl”)

Plot a state vector on the Bloch sphere given Cartesian coordinates
(x,y, 2):

plot_bloch_vector([x,vy,z])

Plot a state vector on the Bloch sphere given spherical coordinates
(r,0,0):

plot_bloch_vector([r,theta,phil]),

coord_type = ’'spherical’)

Plot a state vector on the Bloch sphere
plot_bloch_multivector (state)

Apply measurements to all qubits in the circuit:

circuit.measure_all ()
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e Run a sampling evaluator n times and retrieve results:

sampler = StatevectorSampler (default_shots=n)
job = sample.run([circuit])
result = job.results()

e Extract counts from measurements and print them:
data = result[0].data
counts = data.meas.get_count ()

print (£”Counts: counts”)

e Plot a histogram of counts:

plot_histogram(counts)

e Plot the elements of the density matrix given the state vector:

plot_state_city(state)

e Retrieve the unitary operator represented by a circuit and print it:
op = Operator.from_circuit (circuit)

op.draw (“latex”)



APPENDIX C

Complexity Classes

Computational problems are classified according to their type and com-
plexity. Some problems are of the decision type, when one is asked
whether a solution exists or not. Others are of the determination type,
where one is asked to find at least one solution if it exists. There are also
problems of the counting type, where one is asked how many solutions
exist.

As far as complexity, classical decision problems have four main
classes. The time scaling is relative to the size of the problem (i.e., num-
ber of variables involved).

e P (polynomial time) — decision problems solvable by a standard,
deterministic processor in polynomial time.

e NP (nondeterministic polynomial time) — decision problems for
which there is a known deterministic polynomial-time algorithm
to verify a “yes” answer.

e NP-hard — problems to which every NP problem can be reduced
to in polynomial time.

e NP-complete — problems that are in the NP and in the NP-hard
classes.

According to these definitions, if one could solve any problem in the
NP-hard class in polynomial time, then all problems in NP would also
be solvable in polynomial time. In this case, P = NP. This is widely
believed to be impossible, implying P#£NP, although there is no known
rigorous proof. An example of an NP problem is factoring: it takes no
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more than a polynomial-size computation to verify if a given set of num-
bers {X,Y,...} factorizes another one, Z (all you need to perform mul-
tiplications and check if X-Y - -+ = Z). But we do not know any classical
algorithm that finds the factors in polynomial time.

Examples of NP-complete problems are the traveling salesman, 3-
SAT, sudoku, battleship, graph coloring, integer programming, and
knapsack. All NP-complete problems are also NP-hard, but the reverse
is not true. An example of the latter is the famous halting problem in
computer science (“given a program and its input, will it run forever?”).

There are also complexity classes that invoke quantum computa-
tions. A very important one is BQP (bounded-error quantum polyno-
mial time) — decision problems that can be solved in polynomial time
by a quantum computer. Since quantum computers can simulate classi-
cal ones efficiently (i.e., with a polynomial overhead), it is known that
PCBQP. However, the reverse is not known. For instance, factoring is
in BQP (because of Shor’s algorithm), but it is not known to be in P.

Currently, it is not known if NPCBQP. We do not know if all prob-
lems in NP can be solved in polynomial time by a quantum computer.
In fact, this is a big open question in quantum complexity theory. We
do not even known the answer to the reverse question: is BQPCNP? It
is plausible that there problems solvable by a quantum computer whose
answer cannot be easily verified classically, but a rigorous proof is still
lacking.

In addition to time, one can also consider other resources needed
to solve a computational problem. An obvious one is space, which we
can roughly translate as the amount of “memory” needed. In this case,
an important complexity class emerges: PSPACE (polynomial space)
— problems solvable in a digital computer using a polynomial amount of
memory but possibly an exponential amount of time. P is included in
PSPACE, and so is NP and BQP (the latter has been proved by Bern-
stein and Vazirani).! Thus, our best bounds for BQP at the moment is
PCBQPCPSPACE. As a result, we do not know, for instance, if factor-
ing is not in P. Any proof of PZBQP requires P#PSPACE, which is an
unsolved problem on its own. Our most current understanding of these
complexity classes is illustrated in Fig. C.1.

Finally, there is another complexity class known as QMA (quantum
Merlin Arthur) that is analogous to NP but uses a quantum computer to

'Bernstein, E. and U. Vazirani. 1997. Quantum complexity theory. SIAM J. Com-
put. 26:141101473
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PSPACE

Figure C.1 Relations among various complexity classes as currently known
or suspected.

verify the validity of the solution.? QMA contains BQP, as well as P and
NP. But it is larger than NP and BQP. An example of a problem in QMA
that is outside both NP and BQP is whether a n-qubit Hamiltonian with
local interactions has an eigenvalue smaller than a or if all eigenvalues
are larger than b, where b—a > O(1/n). QMA is contained in PSPACE.

2Since the verification uses a quantum computer, it is always probabilistic.
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