
®

F R O M C O N C E P T S T O C O D E

A N D R E W G L A S S N E R

Q U A N T U M
C O M P U T I N G

THE F INEST IN GEEK ENTERTA INMENT ™

nostarch.com
®

®

Q
U

A
N

T
U

M
 C

O
M

P
U

T
IN

G
G

L
A

S
S

N
E

R

$49.99 US ($65.99 CDN)

A F R I E N D LY I N T R O D U C T I O N

T O Q U A N T U M P R O G R A M M I N G

What if you had a computer that could process billions
of different inputs at the same time?

Quantum computing is a radically new way to think
about algorithms and data. It can feel mysterious or
technically challenging, but it doesn’t have to be. If you
want to understand how quantum computers work—
and how to program them—this friendly, self-contained
guide is for you.

This approachable yet rigorous book walks you step-by-
step through quantum computing fundamentals, such as
superposition, quantum gates, interference, entanglement,
and measurement, then teaches you how to write real
quantum programs.

Along the way, you’ll:

• Understand how to store and transform quantum
information

• Grasp the surprising process of quantum measurement

• Explore Simon’s, Grover’s, and Shor’s algorithms

• Write and run your own quantum code using free
simulators and live hardware

Author Andrew Glassner is known for turning complex
topics into accessible and enjoyable learning experiences.
In this book, he brings visual thinking, clarity, context, and
precision to the strange and fascinating world of quantum
programming. All the ideas and math are built up slowly
so you’ll master every step.

Whether you’re a programmer, student, educator, scientist,
poet, or anyone else who loves new ideas that stretch
your mind, this is the guide that will take you from “What
is a qubit?” to writing and running working quantum
algorithms with curiosity, creativity, and confi dence.

A B O U T T H E A U T H O R

Andrew Glassner, PhD, is a principal research scientist
at Weta FX, where he uses deep learning to help artists
produce visual effects for fi lm and TV. He was technical
papers chair for SIGGRAPH ‘94, founding editor of the
Journal of Computer Graphics Techniques, and editor in
chief of ACM Transactions on Graphics. His prior books
include Deep Learning: A Visual Approach (No Starch
Press), the Graphics Gems series, and the textbook
Principles of Digital Image Synthesis. In his free time,
he paints, writes novels, and plays jazz piano.

4/1 (CV 2–3 prints PMS 7478 U)

QUANTUM COMPUTING

QUANTUM
COMPUTING

FromConcepts to Code

by Andrew Glassner

®

San Francisco

QUANTUM COMPUTING. Copyright © 2025 by Andrew Glassner.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

First printing

29 28 27 26 25 1 2 3 4 5

ISBN-13: 978-1-7185-0-400-4 (print)
ISBN-13: 978-1-7185-0-401-1 (ebook)

® Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Miles Bond
Developmental Editors: Annie Choi and Suzanne Olivier
Cover Illustrator: Josh Kemble
Interior Design: Octopod Studios
Technical Reviewer: Ronald T. Kneusel
Copyeditor: Rachel Head
Proofreader: Daniel Wolff

Library of Congress Control Number: 2025010328

For customer service inquiries, please contact info@nostarch.com. For information on distribution, bulk sales,
corporate sales, or translations: sales@nostarch.com. For permission to translate this work: rights@nostarch.com.
To report counterfeit copies or piracy: counterfeit@nostarch.com. The authorized representative in the EU
for product safety and compliance is EU Compliance Partner, Pärnu mnt. 139b-14, 11317 Tallinn, Estonia,
hello@eucompliancepartner.com, +3375690241.

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc. Other product
and company namesmentioned hereinmay be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person
or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in it.

[E]

About the Author
Andrew Glassner is a distinguished research scientist at Wētā FX, where he
applies computer graphics and machine learning to help artists produce
amazing visual effects for film and television.

Glassner served as Papers Chair of the SIGGRAPH ’94 Papers Com-
mittee, founding editor of the Journal of Computer Graphics Techniques, and
editor in chief of ACM Transactions on Graphics. His many books include the
Graphics Gems series, the textbook Principles of Digital Image Synthesis, and
Deep Learning: A Visual Approach (also from No Starch Press).

Glassner has written and directed live-action and animated films, and
was the creator-writer-director of an online multiplayer murder-mystery
game for The Microsoft Network. He has written three novels and several
short and feature screenplays. He has carried out research at labs such as
the NYIT Computer Graphics Lab, Xerox PARC, Microsoft Research, and
Wētā FX.

Andrew holds a PhD in computer science from the University of North
Carolina at Chapel Hill. In his spare time, Andrew paints, composes music,
plays jazz piano, writes fiction, and hikes. He can be followed on Bluesky as
@glassner.com.

About the Technical Reviewer
Ronald T. Kneusel is a computer scientist, an expert in machine learning,
and a lover of fine craft beers. Kneusel has been working with machine
learning in industry since 2003 and has a PhD inmachine learning from the
University of Colorado, Boulder, and a master’s in physics from Michigan
State University. He’s the author of several books from No Starch Press:
Math for Programming (2025), How AI Works (2023), Strange Code (2022),
Practical Deep Learning (2021), andMath for Deep Learning (2021).

BRIEF CONTENTS

Acknowledgments . xvii
Introduction . xix

PART I: STATES, OPERATORS, AND SYSTEMS

Chapter 1: A Curious Deck of Cards . 5
Chapter 2: Quantum States . 27
Chapter 3: Operators . 83
Chapter 4: Working with Qubits . 99
Chapter 5: Systems . 109
Chapter 6: Measurement . 157

PART II: QUANTUM ALGORITHMS

Chapter 7: Teleportation . 207
Chapter 8: Deutsch’s Algorithm . 227
Chapter 9: Deutsch–Jozsa’s Algorithm . 251
Chapter 10: Bernstein–Vazirani’s Algorithm . 269
Chapter 11: Simon’s Algorithm . 277
Chapter 12: Grover’s Algorithm. 295
Chapter 13: Shor’s Algorithm . 315
Chapter 14: Next Steps . 337

Appendix: Notation . 351
Bibliography . 359
Index. 377

CONTENTS IN DETA IL

ACKNOWLEDGMENTS xvii

INTRODUCTION xix
What Is Quantum Computing? . xix
Why Should You Read This Book? . xx
Who This Book Is For . xxi
What You’ll Learn . xxi
How We’ll Do It . xxi

Using Metaphors . xxii
Using Math . xxiv
Reading Math . xxvi
Proving Things . xxvii

Is Quantum Weird? . xxvii
What You’ll Need . xxviii
Who Wrote This Book? . xxix
Overview . xxix

Part I: States, Operators, and Systems . xxix
Part II: Quantum Algorithms . xxx

PART I
STATES, OPERATORS, AND SYSTEMS

1
A CURIOUS DECK OF CARDS 5
Electronic Playing Cards . 6
States . 7

Superposition . 9
Initialization . 10

Measurement . 11
Operating on Cards . 12
Amplitudes and Probabilities . 16
Interference . 18
Entanglement . 19

Entangled Cards . 19
Entanglement in Action . 21

Summary . 24

2
QUANTUM STATES 27
Getting Started . 27
Postulate 1 . 28
Numbers . 28

Sets and Lists . 29
Types of Numbers . 30

Complex Numbers . 32
Working with i . 33
Visualization . 34
Conjugation . 37

Working with Complex Numbers . 41
List Structure . 48
Vectors . 49

Linearity . 51
Bases . 54

The Dot Product . 56
Using the Dot Product . 61
Projection . 62
Change of Basis . 65

The Inner Product . 66
Defining the Inner Product . 67
Finding a Complex Vector’s Magnitude . 68
Choosing Which Term to Conjugate . 69
Projection with the Inner Product . 69

Braket Notation . 71
Looking at the Braket . 74
Conjugating the Braket . 78

Qubits . 79
Summary . 81

3
OPERATORS 83
Postulate 2 . 84
Linear Operators . 84
Operators I, X, and H . 88

The Identity Operator I . 88
The NOT Operator X . 89
The Hadamard Operator H . 90

A Few Matrix Operations . 91
Unitary Operators . 94
Naming a Matrix Element . 97
Revisiting I, X, and H . 97
Putting It All Together . 98
Summary . 98

x Contents in Detail

4
WORKING WITH QUBITS 99
Hello, World! . 99
Introducing Hello, XWorld! . 100
Superpositions . 101

Properties of H . 103
Qugates and Basis States . 104
Initializing with H . 104

Interference . 105
Summary . 107

5
SYSTEMS 109
Postulate 3 . 110
Combining Quantum States . 110
The Tensor Product . 111
Product States . 115

Exploring Product States . 117
More Qubits . 122

Quantum Algorithm Diagrams . 124
Systems of Qugates . 127

Horizontal Systems of Qugates . 127
Vertical Systems of Qugates . 128
Horizontal and Vertical Rules . 130

A Circuit Analysis . 131
Analysis by Algebra . 132
Analysis by Matrix Elements . 132
Analysis by Direction . 133

The No-Cloning Theorem . 138
The CX Qugate . 141

CX as a Switch . 142
CX as a Copier . 146

Entanglement . 146
Entangled Pairs . 147
Other Controlled Qugates . 151

Other Multi-Qubit Qugates . 152
Single-Qubit Qugates . 154
Summary . 156

6
MEASUREMENT 157
The Main Ideas of Measurement . 158
Measuring Qubits . 160
Postulate 4 . 161
Meters . 161

Contents in Detail xi

Experiments . 162
Measuring Hello, World! . 162
Measuring X |0⟩ . 164
Measuring H |0⟩ . 164
Measuring HH |0⟩ . 166
Measuring an Unequal Superposition . 167

Amplitudes from Projection . 171
The Outer Product . 172
Back to Measurement . 177

Measuring Multiple Qubits . 179
Measuring Some Qubits . 182

Computing Probabilities . 185
Returning to Measurement . 187

Partial Measurement . 189
Measurement and Entanglement . 190

Introducing Bell States . 190
Measuring Bell States . 193

Phase . 197
Global Phase . 197
Relative Phase and Interference . 199

Summary . 201

PART II
QUANTUM ALGORITHMS

7
TELEPORTATION 207
The Teleportation Thought Experiment . 209
The Teleportation State |τ⟩ . 210
The Teleportation Process . 212

Building |τ⟩ . 212
Alice Measures Her Qubits . 218
Alice Tells Bob the Measurements . 219
Bob Recovers |σ⟩ . 219

Drawing the Teleportation Protocol . 221
Probabilistic Teleportation . 221
Summary . 225

8
DEUTSCH’S ALGORITHM 227
Deutsch’s Problem . 228
Oracles . 229

Quantum Oracles . 232
Promise Oracles . 234

xii Contents in Detail

Quantum Parallelism . 234
The Three Steps of Deutsch’s Algorithm . 238

Step 1: Initialization . 239
Step 2: Querying the Oracle . 240
Step 3: Postprocessing and Measurement . 242

Phase Kickback . 243
Analyzing Deutsch’s Algorithm with Phase Kickback . 244
Deutsch’s Algorithm Revisited . 245

CX Terminology . 247
Return to Quantum Parallelism . 247

Revisiting Phase Kickback . 248
Summary . 250

9
DEUTSCH–JOZSA’S ALGORITHM 251
Introducing Deutsch–Jozsa . 252
The Three Steps of Deutsch–Jozsa’s Algorithm . 255

Step 1: Initialization . 255
Step 2: Querying the Oracle . 257
Step 3: Postprocessing and Measurement . 258

Results in Constant and Balanced Cases . 264
A Constant Function . 264
A Balanced Function . 265

Actual Results of Deutsch–Jozsa’s Algorithm . 266
Why Does the Math Work So Well? . 266
Summary . 267

10
BERNSTEIN–VAZIRANI’S ALGORITHM 269
The Classical Solution . 270
The Bernstein–Vazirani Circuit . 270
Circuit Analysis After Deutsch–Jozsa . 271
Running the Algorithm . 273
Simplifying with a Quantum Identity . 274
Summary . 275

11
SIMON’S ALGORITHM 277
Exponential Growth . 278
Simon’s Oracle . 279
The Classical Solution . 283
The Quantum Part of the Algorithm . 285
Rewriting x and Measuring . 287
Combining the Quantum Outputs . 289

Contents in Detail xiii

An Example of Simon’s Algorithm . 291
The Balancing Act . 293
Summary . 294

12
GROVER’S ALGORITHM 295
An Overview of Grover’s Algorithm . 297
Reflections . 298
The Stages of Grover’s Oracle . 300

G1: Marking . 301
G2: Diffusion . 305

Iterating the Grover Oracle . 308
An Example of Grover’s Algorithm . 310
Observations and Discussion . 313
Summary . 314

13
SHOR’S ALGORITHM 315
Primes and Encryption . 316
Shor’s Algorithm . 318
Period Finding . 319
Analyzing the Circuit . 322

Applying the QFT . 324
Finding the Probability of |k⟩ . 326
Connecting to Prime Factoring . 330

An Example of Shor’s Algorithm . 331
Discussion . 333
Summary . 334

14
NEXT STEPS 337
Further Ideas . 338

Superdense Coding . 338
POVM and the Density Matrix . 339
Quantum Encryption . 340
Quantum Error Correction . 341
Other Diagrams . 341

Quantum Advantage . 342
Further Reading . 343

Quantum Mechanics Books . 343
Quantum Computing Books . 343
Quantum Computing Lecture Notes . 343
Quantum Computing Online . 343

xiv Contents in Detail

Quantum Computing Resources . 344
Simulators . 344
Other Software . 344
Real Hardware . 344
Drawing Circuits . 345
Getting Help . 345

The Philosophy of Quantum Mechanics . 346
Applications . 348

Maze Solving . 348
Ray Tracing . 349
Games . 350
Other Applications . 350

Wrapping Up . 350

APPENDIX: NOTATION 351

BIBLIOGRAPHY 359

INDEX 377

Contents in Detail xv

ACKNOWLEDGMENTS

Nobody writes a book alone. Many people offered me their time, support,
expertise, and insight during the development and writing of this book.

For encouragement and help in ways big and small over the years it
took to write this book, it gives me great pleasure to thank (in alphabetical
order): Mike, Jenn, and Georgia Ambrose; Eric Braun andWendyMeg Siegel;
Steven Drucker and Lourdes Romao; Luca Fascione; Adam Finkelstein; Bruce
Glassner and Lisa DeGisi; Eric and Cathy Haines; and Tom Rieke.

Several people generously offered to read an early version of this book.
For their valuable time and thoughtful suggestions for improvement, I thank
Paul Beardsley, Amir Ebrahimi, John Kalaigian, JarnoMielikäinen, Del Rajan,
Oliver Rosten, and Ramon Montoya Vozmediano. Of course, any errors or
problems that remain are my own.

My employer, Wētā FX, supported this project in the midst of its won-
derful and creative atmosphere. Big thanks to Navi Brouwer, Peter Hillman,
Daniel Hodson, Julia Whyman Jones, Joe Letteri, Millie Maier, Joe Marks,
Melissa Roberts, Kimball Thurston, and all my other colleagues and friends
in the beautiful cities of Wellington, New Zealand, and Vancouver, Canada.

The fine folks at No Starch Press brought this book to life. Thank you
to Miles Bond, Annie Choi, Jill Franklin, Rachel Head, Suzanne Olivier, and
Bill Pollock, and everyone else who helped bring this book to life.

Thanks also to many of the fine independent coffee shops in Seattle and
Vancouver, where I worked on this book: Diva Espresso, Cafe Ladro, Cafe
Vita, Distant Worlds Coffeehouse, Firehouse Coffee, The Fremont Coffee
Company, Fuel Coffee, and JJ Bean on Alberni Street. Somehow, wrestling
with a tricky bit of math is more enjoyable in a warm and friendly coffee shop.

INTRODUCT ION
A hundred thousand welcomes!

—William Shakespeare, The Tragedy of Coriolanus, 1605 [192]

Welcome! This book’s purpose is to give
you all the information you need to write

and run programs on quantum computers.
You’ll find that the journey is mind-stretching, exhilarating, challenging,

and rewarding. Your brain will thank you for giving it a treat, and by the end
of this book you’ll have developed skills that put you ahead of the curve for
the next big revolution in computer programming.

This stuff is fantastic, which is why I was drawn to it in the first place.
Because I love to share cool stuff with cool people, I’ve written this book to
help you join the party and discover and master these exciting new ideas.

What Is Quantum Computing?
The term quantum computing sure sounds exotic, but what does it mean?
Quantum computing is an entirely new way to think about and execute algo-
rithms. It involves a kind of programming that runs on a quantum computer,
an electronic device specifically designed to let you manipulate objects at the
incredibly tiny quantum scale. Objects at this scale behave in ways that are

nothing like what we’re used to. We can write programs that use these quan-
tum behaviors to carry out tasks that are wildly beyond the range of those
that we can perform on conventional computers.

For example, we can evaluate an algorithm using billions, trillions, or
even trillions of trillions of different inputs simultaneously. The catch is that
each time we run the program, only a single one of these results is available
to us as output. But if we’re clever, we can make it likely that the output we
want is the one we get.

Popular articles on quantum computing sometimes imply that these sys-
tems will replace conventional computing, essentially making it all go faster.
That’s not the case! This new type of hardware runs new types of programs,
often targeted at new classes of problems that are beyond the reach of con-
ventional computers. It’s a whole new way to think about computing.

Why Should You Read This Book?
You should read this book if quantum computing sounds intriguing to you,
or if you want to write your own programs to realize your own ideas. This is
an especially exciting time to get into this field. It’s still barely a blip on most
people’s radars, so there’s a good chance that whatever you want to do with
quantum computing, you’ll be the first person to do it.

Right now, there are only a few real quantum computers in the world,
and most of them don’t have a whole lot of computational power. But these
computers are real, and they work. Some are even on the web, where you
can use them for free! People are working hard on the formidable engineer-
ing efforts that will enable us to scale up these machines so that they’re more
powerful, more reliable, and easier to use.

Many people (including me) believe that the quantum computing field
is on a trajectory much like that charted by classical computers. The com-
puters we’re used to today started out as physically hulking devices that were
incredibly finicky and expensive to operate. Now they’ve evolved into the
microchips that are in everything from your favorite cloud server to your
wristwatch and toaster.

Whether we have to wait a few years, or a few years more, quantum com-
puters will emerge that are powerful, reliable, and affordable. They will have
a tremendous impact not just on computing but on society at large, because
of the scope and scale of problems they can help us solve. When that hap-
pens, many people will suddenly turn their focus to quantum computing,
and the field will blossom. By getting familiar with the subject now, you’ll be
ahead of the curve and ready to lead the way for others.

Quantum computing is radically different from conventional program-
ming: There are no loops, no functions, and no data structures. We can’t
even make copies of variables! Almost everything that makes up classical
programming gets thrown out the window, and we need to start over with
entirely new concepts organized in entirely new ways.

It’s wonderful and challenging stuff that engages both your intellect
and your imagination. If you love new ideas, and seeing the world in new

xx Introduction

ways, you’re going to love this stuff. It’s not just forward-looking technology,
it’s fun.

Who This Book Is For
This book is for people who want to understand quantum computing, and
even design and write their own quantum algorithms. If you flipped through
the book and were put off by what seemed like a whole lot of intimidating
math, please, don’t worry! As I’ll discuss next, I’ve tried hard to make it com-
fortable, even if you haven’t had the greatest relationship with math and its
notation in the past. The whole point of the math is to communicate ideas,
so I focus on an informal approach designed to make that communication
work for you.

We’ll take it slow, and you’ll see that once you get familiar with pulling
apart mathematical expressions into their components, everything fits to-
gether smoothly and without mystery.

Although the symbols used in quantum computation, and therefore in
this book, might look unfamiliar, most of them are shorthands for different
lists of numbers. If you remember some high school math, you’re all set.

By the time we’re done, you should be able to glance at almost any of
the math in the book, state it in words, and immediately nod and think,
“Yup, sure, that’s reasonable.” It’s really just a matter of knowing what the
symbols mean and how to parse them in context.

What You’ll Learn
This book will show you how quantum algorithms work and how to write
your own.

Quantum computers can seemingly calculate billions of solutions to a
problem simultaneously. They enable us to teleport the state of a quantum
object to another quantum object anywhere in the universe, instantly. And
they can crack the encryption software used today that protects most of the
world’s online secrets.

They also have unique limitations. For example, we can’t make a copy
of an arbitrary piece of quantum information. We sometimes get incorrect
outputs. And while a quantum computer can evaluate vast numbers of in-
puts simultaneously, we can only get a single output as the result of any run
of the program, and we usually can’t even choose which of the many possi-
ble outputs we’ll get (though, as mentioned earlier, with some effort we can
increase the likelihood of getting a useful answer).

It’s a whole new world out there!

How We’ll Do It
Let’s address the elephant in the room right away: I do not expect that you’re
amath whiz or a physicist.

Introduction xxi

If you’ve flipped through the pages of this book, you’ve probably seen
lots of stuff that looks like unfamiliar and strange math. It may seem off-
putting, particularly if you’re not comfortable with math and its unusual
notation.

Don’t worry. Let’s first see why the math is necessary for this book, and
then I’ll explain how I’ve organized things so that the math will be a friendly
companion for you, rather than a challenge.

Using Metaphors
Oneway to bypass anymath is to describe everything using words and pictures,
expanding on related ideas we’re already familiar with. That is, metaphors.

I love metaphors, because they’re a great way to understand something
new and unfamiliar. In fact, all of Chapter 1 is one big metaphor.

Metaphors are a wonderful way to share experiences and get comfort-
able with new ideas. They’re the soul of much poetry, song, and other arts.
A great metaphor can open new doors of understanding, help people con-
nect, and even help us understand our place in the universe.

Some books on quantum computing embrace these wonderful quali-
ties and use metaphors to describe most or even all of the ideas unique to
quantum computing. They describe quantum objects and their behavior
using pictures, stories, and references to everyday objects like baseballs or
rain clouds. For people who only want a rough understanding of the quan-
tum world, these approaches can be both appealing and helpful, as long as
they’re not taken too seriously or literally.

But my goal in this book is to help you learn how to read and write quan-
tum programs that actually run and produce useful results. Since I love
metaphors and visual explanations, I tried hard to use these techniques in
this book rather than math, but I couldn’t find a way.

The problem is that metaphors are, unavoidably, approximations. This
means they are sometimes incomplete, misleading, or just plain wrong.
Figure 1 illustrates these problems.

Figure 1: A silhouette of Mount Rainier, along with two curves acting as a metaphor for
its shape

This image shows a silhouette of Mount Rainier, whose shape we want
to understand. The two curved lines are a metaphor for the mountain’s

xxii Introduction

shape. This metaphor is a goodmatch to the silhouette in some places, but
in other places it’s wrong. Some parts of the silhouette aren’t captured by the
metaphor at all. In short, this metaphor, like most metaphors, is incomplete
and sometimes incorrect. If we reason about the mountain’s shape based just
on these curves, we’re likely to be misled.

The problems shown in Figure 1 aren’t surprising. After all, if a metaphor
were an exact match to the subject matter, it would be the subject matter, not
a metaphor!

The limitations of metaphors for understanding quantum computing
are a serious problem. The core issue is that the behavior of quantum-scale
objects is deeply unfamiliar to us, so we tend to be bad at dealing with the
problems in any metaphor that tries to describe it.

For example, where a metaphor is incomplete, we usually fill in the gaps
using our intuition and experience. Unfortunately, this is a quick ticket to
misunderstanding in the quantum realm. We simply cannot use our com-
mon sense and reason when dealing with quantum objects and their behav-
ior, because they’re fundamentally different from what we’re used to. When
we fill in the holes inevitably left by a metaphor, we draw conclusions that
make sense to us but don’t match the real world at the quantum scale.

Just as bad are the places where metaphors are incorrect, because they
don’t accurately describe the phenomena they reference. Here, we’re misled
by believing the metaphor when it’s actually a poor description of what it
represents.

Figure 2 illustrates both of these problems. The dotted lines show con-
clusions we might reasonably draw about the shape of the mountain, based
on our sometimes incomplete and incorrect metaphor.

Figure 2: Drawing incorrect conclusions from the metaphor of Figure 1

Where the metaphor is incomplete, it’s too easy to guess incorrectly at
what’s left out and develop the wrong idea of the mountain’s shape, as we
can see at the peak and on the sides. When the metaphor is just wrong at
matching the shape it represents, as shown in the inset, we can miss what
could be critical details, without any idea that we’re overlooking something
essential.

In quantum computing, these problems can have disastrous conse-
quences: Our programs won’t work, and we won’t know why. Our mental
model of the quantum world is simply wrong, leading us astray.

Introduction xxiii

We need some other way to describe the quantum world that is com-
prehensible, accurate, and complete. The good news is that we have such
a description. The bad news, perhaps, is that it’s written in the language of
mathematics, with its terse notation.

Using Math
For our present work, where complete generality based on exquisitely
precise terminology is not the goal, we only need a light dose of some of
the fundamental notions.

—Brad Osgood, The Fourier Transform and Its Applications,
2007 [153]

At its core, mathematical notation is really no different from a recipe for
baking lemon cookies, the instructions for assembling a bookshelf, or a pro-
gram listing in a computer language like Python. Each of these examples is
described by a sequence of steps and relationships, using its own language,
conventions, and symbols. A Python programmer needs to know what def
means, a baker needs to know that tbsp refers to a tablespoon, and someone
assembling a bookshelf has to know that “23x7x1” refers to the dimensions
of a shelf. Practically every field of human endeavor has its own special lan-
guage and symbols.

Math is no different. But math notation can look a lot less approachable
than the special notations used by photographers or people keeping score
at a bowling alley. Long ago, mathematicians decided that brevity mattered
more than almost anything. They wanted the most compact possible way to
write down the relationships between different objects.

This choice persists, and it can make written math much harder to read
and comprehend than it needs to be.

Other fields that aren’t obsessed with this kind of minimalism often
produce notations that are easier for people to deal with. For example,
consider conventional programming. If we’re keeping track of the number
of apples in a store, we might use a variable called numApples. That’s just
a label, so it could have been numberOfApples, or appleCount. What it would
almost never be is the single letter a. But if you were reading an equation
that referred to the number of apples in a store, that variable might well be
written as just a. If a were already being used, say for the number of apricots,
then the author writing that equation would likely pick some other letter,
such as g. There would be almost no way to guess at the meaning of g, and
if you missed the spot where the author told you that it stood for a quantity
of apples (assuming that they remembered to tell you), you’d probably never
figure it out. The equation using g, and everything that came after it, would
be incomprehensible.

Now throw in weird symbols like + and ⟩ and ⊗ and ∆ and Σ, and it can
turn into a hopeless jumble that becomes so frustrating you just walk away
from the whole mess. I get it. I’ve been there. So I’ve been careful to lessen
the frustration.

xxiv Introduction

In this book, I’ll introduce every bit of the math when it appears, with
discussion and context. If you flip through the book, you’ll see that I anno-
tate almost every line of a series of expressions with a note explaining what’s
going on. There’s a glossary of all the notation in the Appendix. I’ll also use
many letters consistently. For example, d, i, and N always mean the same
thing throughout the book.

So why use this problematic, super-compressed math notation here?
Why not replace it with something better?

The reality is that math is how everyone, the world over, discusses quan-
tum computing and writes quantum programs. This book is meant to in-
troduce you to the world of quantum computing. If I used some custom
approach instead of math, I would ultimately not be doing you any favors.
I want you to be able to read other quantum computing books and resources
if you want, and to be equipped to read other people’s programs and write
your own. It’s also important to be able to communicate with other peo-
ple. Everyone doing any kind of quantum computing uses mathematical
language and its dense notation, so if you’re not familiar with it, those re-
sources will be unavailable to you.

The other reason we use math is that it works. It doesn’t work like a
metaphor, with gaps and mistakes. The math of quantum computing has
been refined to the point where it is both accurate and complete. Simply put,
it has always correctly predicted nature. This is astonishing! The math in
this field has never been wrong, meaning that it has always perfectly predicted
how a quantum computer will behave.

What this completeness and accuracy gives us is something that makes
the effort of learning the math and its notation worth it: If the math tells us
that manipulating a quantum particle in a particular way will give us a partic-
ular result, then that’s what will happen. We can count on it. No surprises,
no mysteries, no approximations, and no gaps. We don’t have to guess, ei-
ther by reason or by analogy. The math matches the reality, without omis-
sions, without exceptions. That’s amazing.

So, we use the math because we must. It’s the only description of the
quantum world that is so accurate and so complete that we can unquestion-
ingly rely on it when writing quantum algorithms.

Why this math is such a perfect match to the real world is a puzzle that
nobody really understands (we’ll come back to this a couple of times in the
book). For our purposes, it’s enough to know that it simply works.

This is a book that usesmath, but it’s not a math book. We’re not study-
ing math for its own sake (though much of it is beautiful in its own way, and
offers its own rewards). I’ve used math here because not using math would
be a disservice to you.

Therefore, I’ve taken a careful but informal approach to the math in this
book. I use the ideas and notation that help us get our work done, but I skip
going into lengthy definitions, proofs, and edge cases. For those who want
to go more deeply and broadly into all the math I discuss here, I’ve provided
lots of references that fill in all the details.

Introduction xxv

My hope is that as you work your way through this book, regardless of
your previous experience with math and its notation, you’ll come to actively
appreciate and even enjoy (yes, enjoy!) the values of this language. Equations
can be concise to a fault, but they can also be exquisitely precise and elo-
quent. In addition to the utility of a well-expressed mathematical expres-
sion, there is often beauty, and I want to help you appreciate both its utility
and its beauty.

Reading Math
When I go to a performance of a play by Shakespeare, I often find it’s ini-
tially hard to understand the language. It takes a few minutes until I catch
the rhythm, and his unfamiliar syntax starts making sense again.

It can also take some time to catch the rhythm of mathematical writing.
If you’re not familiar with the kind of math writing in this book, I promise
you that you can master it. The good news is that there’s a pleasant and ef-
fective process for reading and understanding math that almost everyone
uses. I follow this process myself, and I recommend that you do, too.

Generally speaking, most big batches of equations are meant to change
one kind of expression into another. Most of the time, the exact mechanics
that get us from start to finish are less important than the new result. So on
first exposure, just skim the steps (really, just look them over without too
much attention), and focus on the first and last lines.

Those steps are important, though, because they demonstrate the kind
of thinking you’ll follow yourself when you write new quantum algorithms.
So later, return to the math, and this time read it more carefully. Try to de-
scribe in words what the math is talking about. Break it down, explain it to a
friend (or imagine doing so), draw pictures, or whatever helps you to trans-
late the math notation into meaning inside your own head. When you feel
like you’ve had enough, move on. If you feel like there’s more to learn, come
back again later.

Each return visit can be fun and rewarding, because each time you’ll
see more depth and more connections, and the pieces will begin to lock to-
gether in ways that feel natural. You’ll develop mastery. You’ll be learning
how to write quantum programs. It’s a great feeling!

To summarize, the first time you see an unfamiliar block of math, I
recommend that you don’t try to understand it by steamrollering your way
through. Just skim it and read on. Then return later for a closer look. You’ll
find that making a few relaxed revisits is the fastest and most pleasant way to
catch the rhythm and meaning of the math, and understand what it’s saying.

Another thing to keep in mind when reading the math in this book is
that you’re seeing the final version of every equation and sequence. Not my
many false starts, dead ends, and mistakes. These occupy a shelf full of pads
in my office, each filled up in succession as I worked on this book. Some
expressions took many attempts over many days until I finally found a clean
way to represent an idea or make a well-reasoned chain of steps from one
expression to another.

xxvi Introduction

I’d show you these failures if I thought they would be helpful, but your
process and difficulties will differ frommine. The best I can do is to show you
the clearest math I can write, and encourage you to seek the same goals in
your own work. It’s mostly about persistence and trying different approaches
until one works. Also remember that just as we all edit our writing, it’s
important to also edit our math. Revise and rethink your equations to make
them as clear as you can.

Just as it takes practice and time to learn how to throw a baseball, play an
instrument, or draw a likeness of a person, it also takes time and practice to
learn how to read and write math, particularly when the ideas and notation
are new to you. When you write math, don’t expect to produce clean and
useful results on your first try, even when you’re expressing ideas you already
know. Thinking in new abstractions can be hard. Be patient and gentle with
yourself, practice, and embrace the struggle, and I promise that you’ll develop
increasing fluency, reading and writing the math of quantum computing with
confidence.

Proving Things
Many times throughout this book, we’ll look at the mathematical relation-
ships between objects, written in symbolic form as equations.

You might wonder where these equations come from. Are they sup-
posed to be obvious? No, they’re rarely supposed to be self-evident; if they
were, I wouldn’t be presenting them to you! Usually, these relationships
were originally developed by someone who had an insight, or maybe just a
hunch, and worked on the idea until they found a way to verify it. Then they
worked out a way to prove their result, other people read the description
(called a proof) and agreed it was valid, and the idea became part of the fab-
ric of the subject.

Since these relationships will be important to us, I want you to under-
stand them. However, because this is an informal book, I won’t show you
rigorous proofs [203]. Instead, my goal is to help you develop an intuitive
understanding of why these statements are true. So, I’ll usually approach
each new idea in one of three ways:

• Deriving the relationship from concepts we’ve already covered

• Presenting a non-rigorous argument suggesting its validity

• Demonstrating that it holds by showing an example

I’ll choose the method that’s clearest and most convincing for each
case. While I hope this will be satisfying for most readers, those interested
in more detail will be able to find it in the citations.

Is Quantum Weird?
In popular writing, it’s common to see the behaviors of objects at the quantum
scale described as “weird,” “strange,” or even “bizarre.” Those descriptions

Introduction xxvii

carry a negative connotation. They are unfair and even misleading. These
phenomena are simply unfamiliar to us.

There’s no hard rule for what size we mean when we refer to the quan-
tum scale, but it’s usually incomprehensibly smaller than we’re used to. The
smallest physical size that most people can directly perceive visually is about
0.1 millimeters, which is roughly the thickness of a piece of paper [184].
Let’s compare this to an electron, which is typically considered a quantum
object. Objects that small don’t have a well-defined size, but we can infor-
mally say that since an electron is part of every atom, it’s surely smaller than
a hydrogen atom. That puts the size of an electron somewhere less than
5.3× 10–8 (or 0.000000053) millimeters [253].

It’s a different world down there. It might have turned out that these
ultra-tiny things behave just like apples, trees, mountains, and other objects
we can directly perceive. These are the objects that gave rise to all of our
common sense and intuition.

But that’s just not how the universe operates. At the quantum scale, ob-
jects behave in ways that are unusual to us. I don’t think it’s fair to call them
“bizarre” just because they’re outside of our experience. They’re different,
sure. But it’s a big universe, with room for everyone.

In quantum computing, we make use of four particular properties of
these quantum objects. Chapter 1 will show you a metaphor that illustrates
how these four essential properties work. They will feel reasonable because
we’ll simulate them in software. And we’ll use no math. That chapter will
make it easier for you to get comfortable with the quantum world, so that
when we later discuss these ideas in the context of quantum computing, they
will already be familiar.

What You’ll Need
Of course, you’ll need to have a quantum computer on your desk. Just
kidding!

Once you start writing quantum programs, you’ll have two ways to exe-
cute them.

The first is to use a quantum simulator, a piece of software you can run
on your home computer (or on a cloud service, if you prefer) that simulates
a real quantum computer. Written by experts, these simulators are faithful
representations of what real hardware would actually do. Free, open source
simulators are available in a wide variety of programming languages for dif-
ferent operating systems (Chapter 14 offers some starting points).

The second option is to use someone else’s quantum computer. Then
it’s their job (not yours) to spend millions of dollars to craft these delicate
machines and keep them tuned up, calibrated, and otherwise maintained.
Using a web interface, you submit your quantum program to a queue, and
you wait your turn. When your program gets to the front of the line, it’s
loaded on the computer and run, the outputs are collected, and they’re sent
back to you. Some big companies offer a limited amount of free time on
their quantum computers each month to anyone who wants to use them.

xxviii Introduction

Between the free simulators and the available free time on real hard-
ware, you can develop and run real quantum algorithms. If you want or need
more time or a bigger computer, you can get these additional resources on-
line as well, for a fee.

We’ll return to these topics when we start looking at complete quantum
programs in Part II.

Who Wrote This Book?
As of 2025, AI-based systems that are capable of producing text (in addition
to generating other media) are changing the landscape of writing. People
are using chatbots to write office memos, term papers, business proposals,
newspaper articles, technical reports, and probably anything else that’s based
on text, from love letters to birthday cards.

It can be hard to know whether you’re reading something written by a
person or the output of a program trained to produce text that is statistically
similar to that written by a person. The result is that it can be challenging
to know how much trust we can place in anything we read: Are we reading
something produced by a real person, or a clever simulation?

So, I think it’s important for you to know where this book came from.
It came from me, Andrew, the guy whose name is on the cover. Every word,
every letter, every comma and parenthesis came from me (or one of my won-
derful human editors). With the exception of plots showing actual data and
circuit diagrams produced by a library following my explicit instructions,
I drew every figure by hand. I used a wide variety of software tools to help
me write text, create images, run quantum programs, check the math, and
provide other support, but none of them wrote any of the book.

I conceived of, outlined, wrote, rewrote (and rewrote), illustrated, and
otherwise created this book. It was then produced by other skilled humans
who turned my manuscript into a final, printed book. We’re all people. We
made this book for you.

Overview
This book is organized into two parts. The first part builds up all the ideas,
terminology, pictures, and math you’ll need to understand and write quan-
tum programs. The second part teaches you quantum programming by go-
ing through some of the most famous and important quantum algorithms.
Once you know those algorithms, you’ll be ready to write your own quantum
programs.

Here’s an overview of what each chapter covers.

Part I: States, Operators, and Systems
Part I starts at ground level and gradually presents the ideas, language, graph-
ics, and math that make up quantum computing.

This foundation is vital, because it will serve as our bedrock when we
start doing things with quantum objects that are far beyond our intuition.

Introduction xxix

By the end of Part I, you’ll know all the math and core concepts of quan-
tum computing.

Chapter 1: A Curious Deck of Cards Before we get into the details
of quantum computing, I’ll present a metaphor to explain what makes
this field different from classical computing. We’ll cover the four critical
ideas, called superposition, entanglement, interference, and measure-
ment. This informal introduction will help you see what’s special about
these ideas in a comfortable, everyday setting.

Chapter 2: Quantum States Just as the core of classical programming
is the bit, the core of quantum programming is the qubit (pronounced
CUE-bit). The description of the information in a qubit is called its state.
We’ll see how states are represented and what rules they obey. Along
the way, we’ll cover some of the key ideas and math that underlie the
description of a qubit.

Chapter 3: Operators Programming is about change: turning inputs
into outputs. In quantum programming, we apply a series of transforma-
tions to qubits to turn them from their default input states into useful
output states. These transformations are performed by objects we call
operators. We’ll see how to describe operators and how they change the
state of the qubits they transform.

Chapter 4: Working with Qubits Now that we know what qubits are
and how operators transform them, we’ll put those ideas together. We’ll
meet a few important operators and see why they’re useful for manipu-
lating quantum states.

Chapter 5: Systems Useful classical programs require large numbers
of bits. Quantum programs are similar, requiring large numbers of
qubits. We’ll see how to assemble lots of qubits together into a single
representation called a system. Happily, the same techniques will also
let us combine multiple operators into their own systems. These new
representations will allow us to efficiently describe how groups of opera-
tions transform groups of qubits, which is a common way to think about
quantum programming.

Chapter 6: Measurement The last step of a program on any kind of
computer is to get an output. In quantum computing, we say that we
get our output by measuring the states of the qubits at the end of an
algorithm. Ultimately, we get back a classical bitstring of 0s and 1s. But
even with perfect knowledge of the states of the qubits, we usually can’t
predict with certainty what we’ll measure at the output. We’ll explore
why this is the case, how to represent what we might measure, and how
we can still create algorithms that will produce useful results.

Part II: Quantum Algorithms
In Part II, we’ll use the tools from Part I to write quantum programs!

We’ll look at several famous quantum algorithms, usually named for
the people who invented them. Each of these algorithms will introduce

xxx Introduction

one or more new ideas that have become part of the toolbox of quantum
programming.

Chapter 7: Teleportation This quantum algorithm doesn’t compute
anything in the usual sense. Instead, it transports, or teleports, a quan-
tum state from one quantum object to another, located anywhere in
the universe. And it does this instantly, faster than the speed of light.
Though this appears to violate one of the basic rules of the theory of
relativity, this phenomenon has been experimentally confirmed many
times. The quantum world is full of surprises!

Chapter 8: Deutsch’s Algorithm Our first real quantum program
solves a small problem. On any classical computer, solving this prob-
lem requires calling a function two times, once for each of two inputs.
There’s just no way around it. But on a quantum computer, we only
need to call that function once, because quantum computers can eval-
uate both inputs simultaneously. Mind blown.

Chapter 9: Deutsch–Jozsa’s Algorithm The program in Chapter 8
uses only single qubits as inputs and outputs. We’ll see how to extend it
to handle multiple qubits.

Chapter 10: Bernstein–Vazirani’s Algorithm We start with an oracle,
the name we use for a small quantum program that we can run but are
not allowed to examine. This oracle holds a secret bitstring. We’ll see
how, by querying the oracle only once, we can discover the entire secret
string.

Chapter 11: Simon’s Algorithm Now we’ll use a more complicated
oracle, which we’re still not allowed to examine. This oracle also holds
some secret information we want to discover. We’ll use a quantum al-
gorithm along with a classical algorithm that runs on a conventional
computer. Together, this team can discover the oracle’s secret far more
quickly than any classical algorithm by itself ever could.

Chapter 12: Grover’s Algorithm Searching problems come up all the
time in computer science. Suppose we’re told that in a database of ob-
jects, there’s one object that will satisfy some set of conditions. Our job
is to find it. This algorithm does just that. It doesn’t work every time,
but we usually need just a few runs to get the right answer, no matter
how large the database is. This algorithm (and its variations) has be-
come a component in many quantum programs.

Chapter 13: Shor’s Algorithm Hey, you know all those secrets on the
internet? They’re kept safe through a method called encryption, which
scrambles a piece of information in a way that turns it into nonsense for
everyone except someone who knows the secret method for unscram-
bling it.

The great majority of the information we use today is protected by
algorithms that perform an encryption step that nobody has found a
practical way to undo, unless you’ve been given the secret key. This

Introduction xxxi

technique is used to encrypt bank balances, direct messages, industrial
secrets, military secrets, love letters, business plans, and just about every-
thing on the internet. This protection would fall apart if we could break
that encryption. With quantum computers, we can do just that.

The method is another hybrid algorithm, with a quantum algorithm
in the middle of two classical algorithms. The quantum part of this al-
gorithm requires quantum computers that are significantly bigger and
more reliable than those we have now. So, for the moment, our privacy
is safe. But someday, quantum hardware will become powerful enough
to reveal all of the secrets encrypted using today’s systems.

Chapter 14: Next Steps Now that you can write your own quantum
programs, what’s next? I’ll suggest a number of ways you can build on
the topics covered in the book.

I’ll also give you resources for your next steps, such as references to
learn from, free software simulators of quantum computers to download
and use, and some online services offering real quantum hardware on
which to run your programs.

Then I’ll survey some applications, such as maze solving, creating
pictures, and even a few quantum games.

Appendix: Notation The appendix summarizes all the mathematical
symbols, variables, and graphics that I use in this book for easy refer-
ence. If you ever forget what any symbol, letter, or shape refers to, you
can find it here.

xxxii Introduction

PART I
STATES, OPERATORS, AND

SYSTEMS

If I had 10 hours to cut down a tree, I’d spend
the first 9 sharpening my axe.

—Abraham Lincoln (apocryphal), ~1860

The universe cannot be read until we have learnt the language and
become familiar with the characters in which it is written.

—Galileo Galilei, Opere Il Saggiatore, 1585 [68]

We’re at the start of an exciting journey!
If this were a book on river rafting, we’d talk about rocks and currents

and reading the river. If it were about photography, we’d learn about f-stops
and exposures. Every field has its language and its notation, and quantum
computing is no different.

In this first half of the book, we’ll explore the language and symbols that
let us talk about quantum computing. In the second half, we’ll use what we
learn here to write quantum programs!

The first chapter of the book presents a metaphor for the quantum
world. Here, we’ll meet the four key ideas of superposition, measurement,
interference, and entanglement that make quantum computing special. We’ll
see them in an everyday setting with equipment that we could build in an
evening. With a general sense of these ideas under our belts, we’ll then leave
the metaphor behind for the real stuff.

We’ll begin by seeing how to describe the information that can be held
in a quantum computer. Quantum programs are all about creating and
manipulating information. We call each piece of quantum information a
quantum state, and those will be our focus in Chapter 2.

To control these states, we’ll use quantum operations to gradually change
them from their initial values into new values that can help us solve problems.
Chapter 3 describes several of these operations and shows how they’re used.

In Chapter 4, we’ll put these pieces together and see our first quantum
program!

Most quantum programs need to manipulate lots of information. We’ll
see in Chapter 5 how to assemble many quantum states and quantum oper-
ations into collections, or systems. This will make it convenient to build up
big programs without getting lost in a maze of details.

Finally, the goal of every computer program is to ultimately give us an
answer to the problem we created it to solve. In quantum computing, we say
that we measure the output of the computation to get our answer. We’ll look
at measurement in Chapter 6, and learn about the many surprises that are
part of making quantum measurements.

Figure P-1 shows a more detailed breakdown of the chapters that make
up Part I.

Figure P-1: An overview of Part I

Here, each chapter is represented as a tower, where we start at the bot-
tom and work our way up, building and extending our ideas as we go.

You can see that most chapters build up to a postulate. This is a short
description of a key quality of quantum computers that details a vital aspect
of what makes them different from the classical computers we’re used to.
The postulates are short, but they each embrace a broad variety of ideas.
Each chapter begins where the previous one left off and slowly builds up
new pieces to reach another postulate, until we’ve covered all four of them.
Then we’ll be ready to start writing programs!

The blocks in each column of Figure P-1 roughly correspond to that
chapter’s outline. Many of the terms in the blocks may be new to you and
mean little or nothing at all, and that’s fine. After all, if you knew all this
stuff, you wouldn’t be reading this book! My job is to help you become

2 Part I

fluent with every one of these concepts. Eventually, you’ll be as comfortable
with every one of these ideas as a plumber talking about different pipes and
their uses, or an artist talking about different kinds of paints and color sys-
tems, or a playwright discussing the tools of story structure and dialog.

Many of the ideas in Part I belong to the field of mathematics, so I’ll be
writing them using mathematical notation. If this isn’t your cup of tea, don’t
worry! Whatever experience you’ve had with math in the past, set it aside.
In this book, math is our helper and friend, not a mountain to be overcome.
We’ll take it slowly and carefully, and you’ll see that the notation we’ll use
is little more than a way to express what we could say in words, only much
more compactly.

The math in this book is deliberately informal. I use just enough detail
to get across each point. I won’t go into all the nooks and crannies, and I’ll
rarely prove anything formally. Again, the math is to help us, and we only
need it to the extent that it’s helpful.

The math we’ll use in this book all belongs to a field called linear algebra.
My approach to this math is illustrated in Figure P-2.

Figure P-2: (a) The world of linear algebra. (b) The ideas in that world. (c) How the ideas
make up the whole. (d) What we’ll cover in this book. (Photo by Chevanon Photography
from pexels.com.)

In Figure P-2(a), I’ve represented the world of linear algebra with a pic-
ture of two adorable puppies. Figure P-2(b) represents each of the many
ideas that make up the field as a jigsaw piece. I’m using a jigsaw puzzle here
because over many years, mathematicians have honed each of these ideas so
that it interlocks perfectly with the others. In Figure P-2(c), we see how the
many aspects of linear algebra combine to make up the whole.

But we won’t be covering all of the pieces! We won’t even cover most of
them. Instead, this book will be like Figure P-2(d). I’ll pick and choose just
the pieces we need to become quantum programmers, and skip the others.
And as I said, I’ll take an informal approach and won’t even dig into most of
those included pieces very deeply.

As Figure P-2(d) suggests, when we’re done with our partial jigsaw, you’ll
clearly understand the parts of linear algebra that will be useful to us as
quantum programmers. The essential parts will all be there. If you prefer a
more formal approach than the one I use here, or if you crave more details,

Part I 3

there are many wonderful resources for linear algebra on the web and in
books [211] [117] [220].

My goal in Part I is to give you the tools that will let you dig into the
quantum programs in Part II. By the end of this book, you’ll be fully pre-
pared to write your own quantum programs!

Now you know what we’re up to and what we’ll be talking about for the
next few chapters.

The big idea is to meet and become comfortable with the ideas, lan-
guage, and symbols that we use to discuss quantum information and how
we manipulate it.

It’s going to be pretty wild.
Let’s get started!

4 Part I

1
A CURIOUS DECK OF CARDS

Now, let’s use this utterly contrived situation that will never occur in order to build intuition
about the real world.

—Zach Weinersmith, Saturday Morning Breakfast Cereal, 2023 [229]

This chapter is an optional, math-free in-
troduction to the key concepts of quantum

computing. I recommend reading this chap-
ter because the context you’ll gain here will help

you get comfortable with the formal representations
that make up the body of the book. If you’re keen to
jump right into the mechanics, though, you can go
straight to Chapter 2.

Quantum computing is exciting stuff! It stretches our brains with a
bunch of new, challenging, and cool ideas. This chapter is all about getting
familiar with these ideas.

Our discussion here is deliberately not technical. While you’re reading
this chapter, I encourage you to switch off the part of your brain that focuses
on details and give free rein to the wild, free-associating part of your brain
that soaks up cool new ideas. We’ll come back to the details later.

Today’s computers are called von Neumann machines, after themathema-
tician John vonNeumann [269]. They’re also called conventional computers or

classical computers. The physical implementations of these computers are
built around electronic devices that early programmers directly manipu-
lated. Most of us today prefer to use high-level languages that abstract away
the details of the underlying electronics. We may have a general sense that
there are things happening at the level of electrons, but we usually think
about programs in terms of abstract ideas like iteration and subroutines.
Those ideas all grew out of the capabilities of the hardware.

Quantum computing is based on a hardware model that has little in
common with the hardware of classical computers. This new type of hard-
ware leads to a new philosophy of solving problems that, while still algorith-
mic, is so radically different from that of conventional languages that it’s
essentially a new way to think about programming. For example, there are
no data structures, no loops, and no subroutines (though there might be,
one day).

To keep our wits when working with these devices, we need some kind
of mental model that describes what they can do, and how. In this chapter,
I’ll present a mental model based on a metaphor, where quantum objects
are represented by electronic playing cards.

Electronic Playing Cards
We’ll use electronic playing cards as stand-ins for the quantum-scale objects
that will be our main focus in this book. These imaginary cards are unusual,
but they’re not radical. You could build them right now with everyday parts
if you wanted to.

Our cards will approximate the behavior of the real quantum objects
we’ll meet later, but because they’re only a metaphor, the match won’t be
perfect.

These cards have four unusual properties, called superposition, mea-
surement, interference, and entanglement. Our goal in this chapter is to
become familiar with these four ideas by seeing how the cards work.

Each card is a little computer with a display and some other electronics,
as shown in Figure 1-1.

Figure 1-1: An electronic playing card

6 Chapter 1

Every card we’ll use in this discussion looks like the one in Figure 1-1.
With an exception we’ll get to at the end of the chapter, I’ll assume that all
the cards that are manufactured have identical hardware and software.

Each card is a thin box. Its most obvious feature is a display that takes
up almost all of one side of the box. There’s also a light sensor next to the
display, and an antenna on top for communications. Inside the box, there’s
a computer, some memory, and a battery.

The cards are shipped from the manufacturer in standby mode, where
the computer is turned off and the display is blank.

This display is unusual because it’s write-once: It starts out blank, but
once we draw a picture on the display, it retains that picture forever.

When we first open up the box containing our cards, each card’s light
sensor notes that its environment has gone from dark to light. When we
later place the card face down on a table, the light sensor detects that it’s
no longer receiving light.

At some point, when the card is turned face up, the sensor detects that
it’s receiving light again, and it sends a signal to the computer to tell it that
the card has been turned over. The computer responds by determining the
value of the card (using a process we’ll discuss soon), then drawing the cor-
responding picture on the display.

To prevent cheating, we can never directly access the card’s memory.
Only the card’s computer can read from, or write to, its internal memory.
But we get some limited, one-way access through the card’s antenna, with
which we can send instructions to the computer telling it to manipulate the
memory on our behalf. The computer will carry out the instructions we
send it, but aside from the picture it draws on the display when the card is
turned face up, there’s no way for the computer to report back to us any-
thing else, including what’s in the memory.

After it has received the light sensor’s signal that the card has been turned
face up and drawn a picture on the display, the computer erases its internal
memory and turns off all the electronics. All the circuitry inside the card
is now useless. The image on the display remains that way, fixed forever.
From then on, the card is functionally no different from one printed on card
stock.

States
To play with these cards, we start by placing them on a table with their dis-
plays down. As we discussed, when any card is then turned face up, the light
sensor detects the change in light, and it triggers the computer inside to
draw a picture on the display.

The computer determines what picture to draw based on the informa-
tion in its memory. For example, if upon being triggered the computer
determines that the card should be a three of diamonds, it will draw the pic-
ture for a three of diamonds on the display, and the display will stay that way
forever.

A Curious Deck of Cards 7

Figure 1-2 shows a visual summary of these steps. Note that everything
happens immediately as soon as any light hits the sensor, so by the time we
can see the display it’s already holding its final picture.

Figure 1-2: Turning a card over so we can see its face

In Figure 1-2(a), the card is face down and the display is blank. In step
(b), we imagine that we have lifted one edge and started to turn the card
over. The light sensor detects this event and turns on the electronics. Im-
mediately, the computer consults its internal memory and chooses one card.
The computer then draws the corresponding picture on the display, clears
the memory, and turns off all electronics, shutting itself down. We can think
of all the parts of step (b) as happening instantly. In parts (c) through (e), we
finish turning over the card, so we can clearly see the picture of the chosen
card on the display.

Since the computer decides what to draw on the display based on what’s
in the memory, let’s look more closely at what gets stored there.

The memory holds a list of card values, like the ace of spades, three of
clubs, and nine of diamonds. Each such value has an associated probability,
which is a real number from 0 to 1. This identifies how likely it is that, when
the card is turned over, the computer will pick that value for the card.

There’s a nice, more general word that we can use to describe the value
of any object: It’s called a state. We say that an object that has the value of a
state is in that state.

For example, suppose the list holds the three of clubs and the nine of
diamonds, each with a probability of 1/2, as in Figure 1-3.

Figure 1-3: A list inside the
memory containing two states

Because the probability of each state tells us the chance that the com-
puter will select it, and these two states have equal probabilities, the card
is equally likely to end up as a three of clubs or nine of diamonds. Alterna-
tively, suppose the list looks like Figure 1-4.

8 Chapter 1

Figure 1-4: A different list inside
the memory containing the same
two states we saw in Figure 1-3,
but with different probabilities

Here, the three of clubs has a probability of 2/3 and the nine of dia-
monds has a probability of 1/3. That means the computer is twice as likely
to choose the three as the nine.

Superposition
A list of one or more states, each with a probability, is called a superposition.
The concept of a superposition is critical to quantum computation, and it’s
used by almost every quantum algorithm. A superposition is never empty.
In our cards, the memory holds a superposition that contains at least one
state, but possibly many more, each with a probability. The memory in each
card is used to store a single superposition (that is, a list of states and their
probabilities), and nothing else.

Though we usually write a superposition as a list, the order in which the
states are listed is irrelevant, as shown in Figure 1-5.

Figure 1-5: The order of the states (and their probabilities) in the
superposition doesn’t matter.

The superposition in part (a) of Figure 1-5 is the same as the superposi-
tion in part (b). Writing the superposition as a list requires that the states are
listed in some order. To get closer to the idea that the order doesn’t matter,
it might be helpful to think of a superposition not as a list, but as a bag full
of objects representing states. These objects can have any shape we like, such
as cubes, balls, or whales. To choose a state, we close our eyes and reach into
the bag. The greater a state’s probability, the larger its physical representa-
tion is, making it more likely that we’ll select it.

Because the computer inside the card chooses a state using the proba-
bilities in the superposition when the card is turned over, we are fundamen-
tally unable to predict which card value will end up on the display. The best
prediction we can make is to write out the superposition itself, identifying
each possible state the card can end up in, along with the probability of that
state being selected by the computer.

A Curious Deck of Cards 9

We sometimes say that before the card is turned over, its state is the su-
perposition in its memory. That is, the superposition is itself the state of the
card before the computer’s choice is made.

Since only one picture ends up on the display, it’s natural to want to un-
wind this process and recover what the superposition was before we turned
the card over.

But this is impossible! Remember that I said that after the computer
chooses a state, it draws the corresponding picture on the display, erases the
memory, and shuts itself down. So there’s no way to unravel the process to
figure out what the superposition was, based just on what is displayed after
we turn the card over.

Let’s return to a face-down card. If the card’s memory holds, say, a su-
perposition of three states (with their probabilities), it might be tempting
to think of this as the card being in “all three states at once,” but that would
be a misleading description. If the card were in all three states, it would be
showing all three pictures on the display. Instead, it’s in the superposition
state, which is a hybrid idea composed of these three states and their proba-
bilities. It’s a collection of possible outcomes.

When all the probabilities in a superposition are the same, we say that
we’re working with an equal superposition or uniform superposition.

Initialization
When the manufacturer makes our cards, they have to determine how to
initialize them, or set the starting contents of each card’s memory.

If they wanted to emulate traditional cards, then the manufacturer could
make a deck of 52 cards where each card’s memory is a superposition of just
one state, with a probability of 1. If each card is initialized with a different
single state in its superposition, then when we turn over all the cards we’ll
get one of each of the 52 cards in a normal deck.

What a waste of potential! We might as well have just bought a deck
of normal cards. Let’s make this more interesting. By changing the initial
memory, we’ll make our cards unsuitable for many existing games, but we
open the door to new games.

We could initialize every card to a uniform superposition that contains
each of the card’s 52 possible states, each with the same probability of 1/52,
as shown in Figure 1-6.

Figure 1-6: Each of the 52 states has a probability of 1/52.

This is unlike shuffling a traditional deck: There’s nothing preventing
the same state from being chosen by multiple cards, since each card makes
its own random selection from its own memory. For example, it’s perfectly
possible that if we turned over the first five of these cards, we could get the
jack of clubs for each one.

10 Chapter 1

We’d definitely need to come up with new rules for games played with a
deck initialized this way. Imagine a poker game where you reveal your win-
ning hand is five aces of hearts, as in Figure 1-7, only to find your opponent
has the identical hand!

Figure 1-7: Even if you get this terrific hand,
your opponent might also hold the same cards.

This illustrates the point that until a card is turned over, it has no defi-
nite value (and thus nothing on the display). The value ultimately shown on
each card when it’s turned face up is independent of the value shown on any
other card.

Measurement
We say that when we turn over a card, we’re observing the card, or making an
observation. If we use a camera or some other device to observe the state of the
card, we refer to this process asmeasuring the card, ormaking a measurement.
In practice, we usually treat observation and measurement (and their related
terms) as synonyms and use them interchangeably.

When we measure a card (that is, turn it over), we’re triggering an auto-
matic and unavoidable process where the computer in the card consults the
superposition in its memory, chooses a single state based on its probability,
draws that card on the display permanently, erases the memory, and finally
shuts itself down. This all happens essentially instantaneously. We can’t stop
the process, pause it, peek at intermediate results, or modify the steps in
any way.

Drawing on the mathematical language for this process, we say that mak-
ing a measurement or observation causes the superposition to collapse. One
way to think of this term is to imagine all of the states in the superposition
stacked up like a delicate tower of blocks. The act of making a measurement
causes the tower to collapse. When the dust settles, all the blocks have crum-
bled and disappeared except for one.

If we’re given a card that hasn’t yet been observed, its superposition will
be a mystery to us, because the computer is prohibited from ever telling us
what’s in its memory. In the next section we’ll see commands that we can
send to the computer to get it to change the memory on our behalf, but we
get no feedback on those requests.

A Curious Deck of Cards 11

Measurement is the only way we ever get to learn anything about the ac-
tual contents of a card’s memory. And even then, we learn only one thing,
and it’s about the past: We learn that the state shown on the display was in
the memory before it was wiped clean. We don’t learn about the identities
of any other states in the superposition, or even if there were other such
states. And we don’t learn about the probabilities of any states at all, except
that the one that appears on the display had a probability that wasn’t 0.

The inability to read a card’s memory makes it hard to check if the cards
were properly initialized, or if the computer inside each card has been cor-
rectly executing our instructions. For example, suppose we are given a card
and we’re told nothing of its current state. Then we turn it over, and it shows
the three of hearts. For all we know, that card’s superposition could have
actually been just that single state, with a probability of 1. Or the three of
hearts could have been one of several states in the card’s superposition.
There’s absolutely no way to know.

There is a way to check up on the manufacturer, though. We could
gather up lots of cards that they assure us are all initialized to the same su-
perposition, and turn them all over. We’d expect that after enough cards
have been turned over (or measured), the relative populations of each card
value will reveal the common superposition that all the cards started with.
This is illustrated in Figure 1-8.

Figure 1-8: (a) The starting superposition of every card. (b) The number of cards of
each value observed when we turn over 100 such cards.

This time-consuming process is the only way we can learn more about a
card’s superposition.

Operating on Cards
So far, I’ve discussed what happens when we turn over a card that was initial-
ized by the manufacturer.

12 Chapter 1

But we’d like to actually do things with our cards, like play games with
them. Since we can’t read the memory inside a card, we can imagine betting
games based on what state will show up when a card is turned over.

The manufacturer may tell us the superposition that they put into each
card’s memory at the time it was made. We could use this information to
create interesting games. Let’s assume that some particular card was initial-
ized with an equal superposition for every value, but we’ve placed a bet that
we’ll see a seven (of any suit) when we turn it over. To increase our odds of
winning, we need to make the states corresponding to the sevens more prob-
able and the other states less probable.

To change these probabilities from their initial values, we’ll use the an-
tenna on the top of the card. The antenna is connected to the card’s com-
puter, so we can send messages to the computer instructing it to manipulate
the superposition in the card’s memory for us.

Imagine you and a friend are playing a game with three cards. The cards
are fresh from the manufacturer, who has told you that every card’s memory
was initialized with an equal superposition of all 52 possible card values. To
play the game, you and your friend each secretly change each card’s super-
position just a little on each turn.

Maybe your bet is that, when the cards are turned over, all the values will
be less than five, and your friend is betting that they will all be diamonds. In
this case, it’s conceivable either or both of you could win.

But if you’re betting that all three cards will be less than five, and your
friend is betting that they will all be greater than seven, at least one of you is
bound to lose.

Each message that either of you sends to a card will consist of the name
of a routine that the computer knows how to execute, perhaps followed by a
list of numbers and states that tell that routine exactly what to do.

Using the language of mathematics, we call each of these routines an
operator, and we say that when we tell the computer to execute one of these
operators, we’re operating on the card, or applying an operator. Each of the
numbers and states that accompanies an operator is called an argument.

Let’s start with an operator I’ll name include. This takes two arguments:
a state and a probability.

When the computer receives this message, it first looks in its memory to
see if that state is in the current superposition. If the state isn’t there, then
the computer appends the state and its probability to the superposition.
Parts (a) through (c) in Figure 1-9 illustrate this process.

Figure 1-9: Using include to introduce a new state and probability
into the superposition

A Curious Deck of Cards 13

Let’s examine what’s happening in each part of this figure:

(a) This is the starting superposition, before the message arrives.

(b) The include message introduces the state three of diamonds with a
probability of 0.6.

(c) Since the three of diamonds isn’t already in the superposition, the
computer appends it to the list with the probability 0.6.

(d) The probabilities are then uniformly scaled so that they add up to 1.

Part (d) is an additional step that we perform after executing every op-
erator: We divide all the probabilities by their sum after the operator is ap-
plied. The result is a new list of scaled probabilities that add up to 1 (since
I’m showing only the first few digits of each floating-point number in this
figure and those to follow, their total might be slightly more or less than 1).

In this example, the sum in part (c) is 0.4 + 0.6 + 0.6 = 1.6, so we divide
each probability in (c) by 1.6 to get the final probability values in part (d).
This means that the final probability of the two of hearts is 0.4 / 1.6 = 2/8
= 1/4 = 0.25, that of the jack of clubs is 0.6 / 1.6 = 3/8 = 0.375, and that of
the three of diamonds is also 0.6 / 1.6 = 3/8 = 0.375. Adding up these re-
sults, we have 2/8 + 3/8 + 3/8 = 1.

This process is called normalization, and it’s important because the def-
inition of probabilities demands that in any complete list of outcomes, the
sum of their probabilities must add up to 1. Since we want the computer to
treat the numbers in the superposition as probabilities, we must make sure
we satisfy that definition, and therefore we scale the numbers so they add up
to 1.

Every operation we perform from now on will automatically be followed
by a normalization step, which I’ll explicitly show in the figures.

Now let’s consider what happens if the state is already present. Since
we’re just making things up right now, we can define include to behave in any
way we like. For this discussion, I’ll say that when we give it an existing state,
the computer should replace the current probability for that state with the
sum of that current probability and the probability in the argument. This
process is shown in Figure 1-10.

Figure 1-10: An include message referring to an existing state

14 Chapter 1

Let’s look at Figure 1-10 step by step:

(a) This is the superposition before the message arrives.

(b) The include message introduces the state two of hearts with a proba-
bility of 0.4.

(c) Since the two of hearts is already in the superposition with a proba-
bility of 0.3, the computer replaces that probability with 0.3 + 0.4 = 0.7.

(d) The probabilities are then uniformly scaled so that they add up to 1.

Let’s look at a few more possible operations we might ask our cards to
carry out for us. The more operators we have, the more different kinds of
games we can invent.

Suppose we have an operator called flip. Given a single state as an argu-
ment, this operator causes the computer to replace the current probability
for that state with 1 minus that current probability (and then the whole su-
perposition is normalized, as always). If the state isn’t already in the super-
position, then we pretend it was there with a probability of 0, so we append
that state to the list with a probability of 1 – 0 = 1.

So, if the argument to flip is the two of hearts, and the current probabil-
ity for the two of hearts is 0.4, then the computer will replace that 0.4 with
1 – 0.4 = 0.6, as shown in Figure 1-11 (in this figure and those that follow,
I’ve rounded numbers to 2 digits of precision).

Figure 1-11: Carrying out the flip operator

Let’s look at this operation step by step:

(a) These are the initial probabilities for a card.

(b) The flip message arrives, with the argument two of hearts.

(c) The probability of the two of hearts becomes 1 – 0.4 = 0.6.

(d) As usual, we follow up the command with a normalization step.

The flip command specified a single state to modify. Now let’s imagine
a new operator called swap. This command takes two arguments that identify
two states and exchanges their probabilities, as shown in Figure 1-12.

A Curious Deck of Cards 15

Figure 1-12: Carrying out the swap operator

Here, since we’ve only moved the probabilities around, normalizing the
superposition doesn’t have any effect. In this figure:

(a) These are the initial probabilities for a card.

(b) The swap instruction with the arguments “two of hearts” and “queen
of diamonds” arrives.

(c) These are the probabilities after executing the instruction.

(d) After normalizing step (c), there is no change.

The key thing to remember about all of the manipulations we’ve dis-
cussed so far (and others we can imagine) is that while the computer can
read from its memory and write to it, we can’t do either. There is no way for
us to read back the values of these probabilities, ever. Our one and only way
to learn anything about the memory is to turn the card over. Then, we can
infer that the value shown on the display had a nonzero probability before
the card was turned over. Otherwise, we just have to trust that our opera-
tions are being carried out correctly.

In Figures 1-9 through 1-12, I assumed that we knew the card’s super-
position before the message arrived, and I assumed that each operation was
carried out perfectly. If we were mistaken about the starting superposition,
or the computer messed up the operation somehow, the final column in
each figure wouldn’t represent the superposition in the card’s memory, and
there would be no way for us to know. Again, all we can learn by turning
over the card is that the state shown was in the superposition.

Amplitudes and Probabilities
Over the course of play, we’ll often want to increase or decrease the prob-
abilities of different states. We can measure any card after any operation
because we know that, thanks to performing normalization after every oper-
ation, the probabilities in the superposition are guaranteed to add up to 1.
Thus, the computer can legitimately use the rules of probability to randomly
select one state.

But what if we decrease the value of a probability so much that it be-
comes negative? The normalization step we’ve seen doesn’t do anything to
address that possibility. Is that going to be a problem?

16 Chapter 1

A negative probability is just fine while we’re applying operators to the
card, because eventually we might change that probability again and make it
greater than 0 when we get around to measuring it. But what if the probabil-
ity is still negative at the time of measurement?

If the measurement step encounters a number that’s supposed to repre-
sent a probability, but it’s less than 0 or greater than 1, then that number is
not actually a probability. As a result, calculations with that number would
probably create nonsense, perhaps ultimately causing the card’s computer to
crash. That’s not good!

We can be confident that the numbers that are supposed to represent
the probabilities of states won’t be greater than 1, thanks to our normaliza-
tion step. But there’s nothing right now to stop those numbers from drop-
ping below 0. We would like to be able to freely change probabilities without
constantly worrying about whether they become negative.

We can solve this problem by changing the numbers we store in our su-
perpositions. Rather than storing a probability with each state, we instead
store a different number called the amplitude. Unlike a probability, an ampli-
tude can be negative.

To find the probability of a state, wemultiply the state’s amplitude (which
we’ll see will always be between –1 and 1) with itself. The result, sometimes
called the square of the amplitude, will always be a real number between
0 and 1. This two-step mechanism means that we don’t have to constantly
check if the number associated with a state in a superposition is going nega-
tive and, if so, do something about it.

For example, if some command causes a state’s amplitude to become
–0.3, it’s no problem, because (–0.3)2 = 0.09, which is a valid probability. So,
this mechanism of storing the amplitude and squaring it to get the probabil-
ity ensures that all the values used by the measurement will be positive, and
we’re back in business. The downside is that we can’t just read the probabili-
ties directly from a superposition anymore. Instead, the superposition gives
us the amplitude of each state, which we need to square to find that state’s
probability.

We’ll need to make a corresponding change to our normalization step,
so from now on, we’ll say that normalization scales the amplitudes in a su-
perposition so that their squared values add up to 1. That is, it’s the proba-
bilities that add up to 1, and not necessarily the amplitudes. From this point
forward, when I refer to normalization and show it in figures, it will always
mean this new version.

Now we can manipulate the amplitudes freely. Normalization will make
sure that the squares of the amplitudes in a superposition are all between 0
and 1 and all add up to 1. The measuring process will always work, and the
card will never crash.

Whew.
Figure 1-13 shows an example of this new convention.

A Curious Deck of Cards 17

Figure 1-13: Subtracting some probability from a state

Here, we use the include instruction as before, only now with an ampli-
tude of –0.7. The amplitude of the two of diamonds goes from 0.1 to –0.6.
To check if the numbers in column (c) are normalized, we square each value
and then add them together. That gives us 0.65. Since that’s not 1, we need
to scale each number in (c) by

√
0.65. This gives us the results to the right

of column (d). Note that the new amplitudes don’t add up to 1. But if we
square these numbers to turn them into probabilities, and add up those
probabilities, we get 1 as desired.

Interference
When two amplitudes are added together, we call this process interference,
using language from physics that describes how waves interact.

When the result of interference is an amplitude for a state that’s less
than the amplitude it started with, we call this destructive interference. You
can think of the term destructive as telling us that the starting amplitude is
reduced, causing it to become less than it was. In Figure 1-13, we saw how
the amplitude can become negative.

The opposite effect is where the sum of the old and new amplitudes cre-
ates a new value of increased amplitude. That’s called constructive interference.
You might think of the word constructive as meaning that the values combine
to construct a new, larger value.

By adding positive and negative amounts to the amplitudes for every
state in the superposition, we can adjust them so that the state we want to
measure has a large probability and all other states have small probabilities.
That way, when we turn over the card, there’s a good chance we’ll see the
card we want.

Carried to an extreme, we can completely remove a state from a super-
position by using destructive interference to set that state’s amplitude to 0.
The computer could literally then remove that state from the superposition
in memory, or leave it there with an amplitude of 0. Either way, it will have a
probability of 0 and thus will never be chosen and will never show up on the
display.

The trick to removing a state from a superposition is to send the card an
include command with an amplitude that’s exactly the opposite of the value
it currently has, as in Figure 1-14.

18 Chapter 1

Figure 1-14: Removing a state from a superposition

The process is as follows:

(a) This is the superposition before the message arrives.

(b) The include message says to introduce the state nine of diamonds
with an amplitude of –0.2.

(c) Since the nine of diamonds is already in the superposition with an
amplitude of 0.2, the computer adds the old amplitude and the new to
get 0.2 + (–0.2) = 0.

(d) The amplitudes are then uniformly scaled so that their squared val-
ues add up to 1.

Pulling off this maneuver requires knowing the value of the state’s am-
plitude, so we can cancel it exactly. If we know how the card was initialized,
and every change we’ve made to it since then, then we can work out the
right message to send the card to send a state’s amplitude to 0. But when
our friend is making secret changes in addition to our changes, all we can do
is guess at the appropriate amplitude. That’s part of the fun of the game.

When we measure our card at the end of a calculation, if our desired
state has a much larger probability than any other state, there’s a good chance
we’ll observe that answer on the display.

Entanglement
Let’s give our cards one last ability, called entanglement. Entanglement refers
to a special link between objects (in our case, pairs of cards).

This relationship involves the antenna on each card. Until now, we’ve
only used each card’s antenna as a way to give its computer commands to
execute. Now, pairs of cards will use their antennas to communicate with
one another.

Entangled Cards
Let’s revisit Figure 1-6, which illustrated an initial state for a deck where ev-
ery card has a superposition of all 52 states, each with a probability of 1/52.

Let’s say that before sealing up this deck of cards, the manufacturer
picks two cards from the deck (which two cards doesn’t matter, since they’re
all the same), and links them together.

A Curious Deck of Cards 19

It creates this linkage by including two new routines in the computer
software for each card: one for sending a message, and the other for receiv-
ing it.

The sending routine is triggered when either card is turned over (for
this discussion, I’ll assume that one card is always turned over before the
other card, even if only by a tiny fraction of a second).

As usual, the first card’s computer collapses its superposition down to
a single state and draws the corresponding picture on the display. But just
before it turns off its power, it sends a secret message via its antenna (so, I’ll
call this card the sender). This message says only that the sender has been
observed, and names the value that its superposition collapsed to. As soon
as that message makes it out of the antenna, the sender’s computer shuts
down completely and permanently.

This message is completely secret, and the only card that can read it, or
even know it was sent, is the other half of the pair.

When this other card (the receiver) receives this message, it’s still face
down. Nevertheless, the instant the message arrives, the receiver’s computer
collapses its superposition to the same state as that in the message, draws the
corresponding picture on the display, and turns itself off permanently. As
always, this all happens essentially simultaneously and instantly. If and when
we turn the receiver over, we are guaranteed to see the same picture that was
on the sender.

Figure 1-15 shows the idea visually.

Figure 1-15: When one card of an entangled pair is observed, the other card’s state
collapses immediately to the same value.

In part (a), we start with a pair of linked cards, both face down. Suppose
the left card is turned over first. In part (b) we see that it collapsed to the
two of clubs. This card is now called the sender, and in part (b) it sends a
message to the other card in the pair, the receiver, carrying the fact that the
sender has been turned over and is showing the two of clubs. Immediately,
the receiver collapses its own superposition to the two of clubs, draws this on
its display, and shuts down. In part (c) I’ve shown a kind of X-ray view of the
card, so we can see what’s now on its display even though the card is still face
down. As we see in part (d), if and when the receiver is turned over, it will
show the two of clubs as well.

We say that two cards linked together in this way are entangled.
The manufacturer might mark entangled pairs of cards by printing a

shared mark on the back of each. For example, they could put a letter A on
the backs of the first pair that they entangle, a letter B on the next pair, and
so on. The order in which these labels are applied doesn’t matter. Their

20 Chapter 1

only purpose is to let us identify pairs of entangled cards. If we don’t want
to know about which cards are entangled, there’s no need to mark them.

The manufacturer could create entangled groups of any number of
cards, but we’ll stick with pairs for this discussion.

Every card in the deck could, in principle, be entangled with another
card, so a deck of 52 cards could contain up to 26 entangled pairs. Not all
cards must be part of an entangled pair.

Recall that when both cards in an entangled pair are face down, our ini-
tialization means that every state is in the superposition with a probability of
1/52. So, when the first card is turned over, it can be in any of the 52 pos-
sible states. The effect of entanglement is to then change the other card so
that, when it’s turned over, it will show the same state as the first card.

Entanglement is an intimate connection. Although each card has its own
computer and memory, we can think of the pair as conceptually sharing a
single superposition. When either card is measured, because they’re con-
nected, that shared superposition collapses. This is a strange idea: two sep-
arate physical devices that are described by a shared state, such that if that
state changes, both devices are immediately affected.

If we take this point of view, then we can’t really talk about the two cards
as having separate identities, or separate superpositions. Because we can’t
talk about the superposition of one card without including the other, we
think of the two cards as a single unit, or a pair that shares a superposition.

Entanglement in Action
Let’s use entanglement to get out of a tricky situation. Suppose you run a
small casino that specializes in the card game 21, or Blackjack. If you’re not
familiar with the game, here’s a brief recap of a typical version of the core
gameplay.

Initially, the dealer has a face-down deck of cards and you (the player)
have none. Play proceeds in independent rounds called hands. Let’s suppose
it’s just you and the dealer. You start a hand by placing a bet. The dealer
gives you two private cards, dealt face down, and then gives themselves two
cards, one face-down and one face-up. You can look at your private cards,
but you don’t reveal them to anyone else. Your goal is to keep asking for
cards to reach a total as close as you can get to 21 without going over (every
number card is worth its numerical value, royalty cards are worth 10 points,
and each ace can be individually either 1 or 11 at your choice, which you
don’t have to declare until the hand is over).

To play, you can announce either that you want one more card or that
you’re stopping. If you ask for another card, it’s dealt face up, so we call it
a public card. You can keep asking for more public cards, one at a time, un-
til you decide to stop or your total (including your private cards) is at or
over 21.

If you hit exactly 21, you win immediately and get back your bet and
more. If you go over 21, you lose immediately and the dealer collects your
bet. If you stop before reaching 21, the dealer turns over their private card
and then gives themselves more cards according to fixed rules, until the

A Curious Deck of Cards 21

rules tell them to stop, they hit exactly 21, or they go over 21. If the dealer
goes over 21, or your total is greater than the dealer’s total, you win and get
back your bet and some more.

There are rules for ties, and lots of variations, but this is all we’ll need
for our discussion. Usually the game is played with one dealer and multiple
players, each of whom is playing independently against the dealer. For this
discussion, I’ll say that when the hand is over, everyone turns over their two
private cards for all to see.

Unlike your competitors, your casino uses our electronic cards. You
buy the cards initialized with an equal superposition of all 52 values, so ev-
ery card has an equal probability of showing any value when it’s looked at.
These unusual cards give your casino an extra spice nobody else can offer
(it also means that your customers can’t improve their odds, and reduce
your profits, by counting cards). We’ll say that when a player peeks at each
of their private cards, that lets enough light hit the sensor to trigger the col-
lapse into a single state that’s drawn on the display. As usual, only the player
is allowed to view their private cards.

One day, you get a call from a famous, rich, but elusive player. They’d
like to play at your casino next week and spend a whole lot of money. Great
news! But they’ve recently had some bad press, and they don’t want to go
out in public. You promise them every kind of privacy, but they aren’t inter-
ested. Instead, they suggest playing from home with a two-way video system.
Both you and they will have cameras pointed straight down at the cards.

You really want this player, and you have no reason not to trust them,
but you’ve seen too many spy movies to not be suspicious of this kind of
video setup, particularly when large sums of money are involved. There are
just too many opportunities for foul play.

And then it hits you: Use entanglement! You can entangle the cards so
that nobody has to trust anyone else. It’s not a big deal to include this, since
you’re already using electronic cards.

You suggest to the player that you order two decks of cards from the
manufacturer, just like your usual cards, except that the manufacturer entan-
gles the top two cards of each deck, and the next two, and so on. The result
is that each deck of 52 cards is card-by-card entangled with the other deck, as
in Figure 1-16. You can order multiple such decks if you expect the game to
go on for a while.

Figure 1-16: Two decks of cards where the pair of cards at the same position
in each deck are entangled with each other

22 Chapter 1

You propose that your dealer and the player each play with one of these
decks. Every time the dealer deals a card from their deck, the player does
the same thing with their own deck. Otherwise, the game plays as usual.

Happily, the player agrees, the cards are ordered, the manufacturer
ships one deck to you and the other deck to the player, and the game is on!

Let’s see why neither party now needs to trust the other. Each hand be-
gins with the dealer dealing two cards for the player from their deck, which
they place face down. The player mirrors this action with their own deck,
dealing themselves two face-down cards. Because they’re electronic cards
where every value is equally likely, at this point nobody can say what the
values of the cards are. Now the player privately looks at their cards, caus-
ing their superpositions to collapse and the displays to show their final,
randomly chosen values. At that moment, the two face-down cards on the
dealer’s table also collapse to those same states!

The game continues this way. Each time the player asks for another
card, the dealer takes one from their deck and places it on the table face
up. At the same time, the player deals one card from their deck and places
it face up. Thanks to entanglement, while nobody can predict what these
cards will show, once turned face up they will always show the same value.

The real benefit of this comes at the end of the hand, when everyone
turns over their private cards. We’re guaranteed that they will match! If they
don’t, either the cards have malfunctioned or someone cheated. Neither
party has to trust the other.

We’ve solved the trust problem!
Well, not quite. While we’ve prevented one way of cheating, we’ve cre-

ated another.
Suppose that the player, upon receiving their deck of cards in the mail,

immediately opens it up and looks at every card. Their cards all collapse
to specific values, and so do all the cards in the dealer’s deck, which might
still be in the mail. Now the player stacks their cards back up and carefully
puts them back in the box. Later, in the actual game, the player can play per-
fectly, since they always know what card is coming next. It’s a clean cheat
because there’s no way for the dealer to know that the player peeked at the
cards beforehand.

In other words, when the player looked at their deck, they not only caused
their cards to collapse to individual values, they also caused the dealer’s cards
to collapse to those same values. There’s no way for the dealer to detect this
because they can’t ever get any information from a card except by turning it
over and looking at it. There’s no way to even check that the display is blank
without looking at it, which would instantly collapse the card (if it wasn’t
already collapsed).

The moral of this tale is that entanglement is powerful because it lets
the observation of one card immediately affect another card, but its implica-
tions can be subtle.

We can make an interesting variation on entanglement: Instead of both
cards showing the same state, they could show opposite states. Playing cards
don’t have natural opposites, so for the moment let’s say that the opposite

A Curious Deck of Cards 23

of any card is the card with the same number, but with the other suit of the
same color. For example, if we have the three of clubs, its opposite is the
three of spades, since spades is the other black suit. In the same way, the
opposite of the eight of hearts is the eight of diamonds.

The idea is shown in Figure 1-17.

Figure 1-17: Two types of entanglement

Assume that Player 1 turns over their cards first. If the cards are entan-
gled identically, then Player 2 will find their cards are the same. If the cards
are entangled oppositely, then Player 2 will see the opposite (the other suit
of the same color) of each of Player 1’s cards.

Whether both cards of an entangled pair will show the same or opposite
states is a decision made by the manufacturer when they create the cards.

We can make up lots of cool new games for these electronic playing
cards. If you’re feeling inspired, you could build and program these cards
tonight. Or you could write software to simulate them.

Summary
If you come across an analogy that improves your understanding, by all
means, embrace it. But don’t love it too much, or too long.

—Willy McAllister, “Basic Electrical Quantities:
Current, Voltage, Power” [134]

The metaphor of electronic playing cards has done its job, and now we’ll bid
it farewell.

The purpose of the cards was to help us get a sense of the four features
of superposition, measurement, interference, and entanglement. These are
the fundamental pillars of quantum computing. I had to adapt these ideas
a little from their quantum forms to make them fit into our playing card
metaphor. In the following chapters, I’ll revisit these principles and replace
the approximations in this chapter with the real things.

Our goal from now on will be to construct a careful description of the
quantum world as revealed by experiments and explore how we can use that
information to create algorithms.

24 Chapter 1

We need this formal approach because quantum objects don’t behave
the way objects at a human scale behave, so our intuitions about how objects
work are initially unreliable at the quantum scale. The precise and logical
formalism that we’ll develop, expressed in mathematical notation, will help
us stick to the experimentally discovered laws that describe the behavior of
quantum objects.

From here on out, we’ll forget about playing cards and focus on real
quantum objects.

In Chapter 2, we’ll see how we represent a quantum bit. To fully under-
stand this description, we’ll meet a range of ideas, terms, and mathematical
tools that form the core of quantum computing, and these will all become
good friends as we use them throughout the rest of this book.

Strap in, because it’s going to be an exciting ride!

A Curious Deck of Cards 25

2
QUANTUM STATES

For the great doesn’t happen through impulse alone, and is a succession of little things that
are brought together.

—Vincent van Gogh, Letter to Theo van Gogh, 1882 [223]

Quantum algorithms work by manipulat-
ing quantum information. This chapter is

about how we represent and describe that
information.

Much of our discussion will refer to mathematical ideas. To ease our way
into this, I’ll introduce the background math that we’ll use in this book. To
keep things focused, I’ll cover only the math we’ll need. I’ll keep it accurate
but informal, and I won’t go into details that won’t matter to us. My inten-
tion is to bring you up to speed as quickly and clearly as I can. If some or all
of this material is already familiar to you, I suggest at least skimming the text
so that you’ll know what notation and conventions I use in this book.

Getting Started
A traditional computer (also called a conventional or classical computer) is
based on manipulating the simplest unit of information, called a bit. A bit
can represent one of two possible states, which have been given the names
0 and 1.

A quantum computer follows the same general idea and manipulates the
simplest unit of quantum information, called a qubit (pronounced CUE-bit).

Quantum algorithms run on quantum computers, which are explic-
itly designed to take advantage of the physics of objects at incredibly small
scale, called the quantum scale. Here, the word quantum refers to both the
tiny physical size of the objects we’re discussing and their unusual behavior,
which is described by the theory of quantum mechanics.

The core concepts of quantum mechanics can be captured in a set of
basic principles. Each of these ideas is variously called a law, principle, axiom,
or, my favorite, an ansatz. All of these words are used, but most commonly
they’re called the postulates of quantum mechanics. Different authors ex-
press these principles in different ways.

To cover just enough quantum mechanics to let us understand and de-
sign quantum algorithms, I’ll state these ideas in the form of four postulates,
which summarize what we’ve learned from experiments. These postulates
can’t be derived from some simpler set of principles. Rather, they are the
principles, based on physical observations, from which everything else is
derived.

We’ll begin with the postulate that defines the qubit, and in the follow-
ing chapters we’ll take on each of the remaining postulates one at a time.

Postulate 1
There are many different ways to phrase the postulates of quantum mechan-
ics, even when we narrow them down to quantum computing [71] [146] [293].
They vary based on their generality, their mathematical language, and how
much physics they refer to. In this book, I’ll write the postulates using ideas
and terms that are the most helpful when discussing quantum computing
(if you go on to study quantum mechanics, you’ll see that our postulates are
usually special cases of larger ideas).

Let’s begin with Postulate 1 [71]:

Postulate 1 An isolated quantum system, or qubit, is described by a
two-element complex vector of magnitude 1.

Don’t worry if this has little to no meaning for you right now. This chap-
ter is all about unpacking this statement and building it back up, so that it
makes perfect sense to you. Along the way, we’ll meet terminology and nota-
tion that we’ll use throughout the book.

We’ll start with different types of numbers and then combine them into
new abstractions, along with some new notation that was custom-designed
for quantum objects. When we revisit this postulate at the end of this chap-
ter, you’ll know exactly what it’s saying.

Numbers
In this book, we’ll use several different types of numbers. Each type of num-
ber is organized into a structure called a set. In this section, we’ll first look

28 Chapter 2

at sets and the related idea of lists. Then we’ll discuss the different types of
numbers we’ll use in this book. We’ll look closely at the types of numbers
called imaginary and complex, because they are at the heart of quantum
computing.

Sets and Lists
A set is an unstructured collection of objects [246]. The objects are called the
elements of the set.

In a set, there’s no order or sequencing associated with the elements.
It’s like a bag full of marbles, where we can pull out the marbles one at a
time, but we can’t predict which one we’ll get. If there are two or more iden-
tical elements in a set, we usually ignore any duplicates and pretend there’s
just a single instance of each.

I’ll usually write a set by placing its elements between curly brackets and
separated by commas. To name a set, I’ll use a capital, italic roman letter (a
full list of all the notation I use in this book can be found in the Appendix).
For example, Equation 2.1 shows two sets, each of which contains the names
of three fruits as elements.

S = {kiwi, watermelon, apple}

T = {watermelon, kiwi, apple}
(2.1)

The sets S and T are the same, because the order in which we write the
elements of a set doesn’t matter.

Speaking generally, if a set has a specific number of elements, we call it a
finite set. If there’s a limitless number of elements, we call it an infinite set.

Unlike a set, a list is a collection of objects in a specific order [242] [117].
A list may also be called a sequence or ordered list.

I’ll usually write the objects in a sequence between square brackets and
separated by commas. Depending on the context, I’ll name our lists with
different typography. For now, I’ll name a list with a lowercase roman letter
in boldface. Equation 2.2 shows two different lists, v and w, with the same
elements as the sets in Equation 2.1.

v = [kiwi, watermelon, apple]

w = [watermelon, kiwi, apple]
(2.2)

These lists, or sequences, are distinct, because the order in which we
write their elements matters.

Remember that curly brackets describe an unordered set, and square
brackets describe an ordered list.

When I refer to a particular element of a sequence, I use the name of
the sequence (but without the boldface), subscripted by the entry index,
numbering from left to right, starting with 0. For example, in Equation 2.2,
v0 is “kiwi” and w2 is “apple.” Some authors retain the boldface when refer-
ring to list elements, but dropping the boldface for elements is a common
convention. I like this approach because it reminds us that names such as v0
refer to elements of a sequence and not sequences themselves.

Quantum States 29

Unfortunately, the world has yet to agree on whether we should start
numbering objects from 0 or 1. As a general rule, if an author is discussing
computing, they start numbering with 0, while everyone else starts with 1.
But there are so many exceptions that unless an author states their choice
explicitly, it’s the reader’s job to infer which convention is being used. This
is primarily a computing book, so I’ll start numbering with 0. This is impor-
tant enough to highlight:

Numbering from 0 In this book, I always number items starting
with 0.

Note that I’m referring to numbering here, or giving numerical labels to
elements. When we’re counting objects, I start with 1, as we usually do.

If a set or list is finite, we don’t refer to its number of elements as a
“length.” That word already has too many meanings! To prevent confusion,
we call the number of elements in a set A its dimensionality. We write this as
dim(A) or dimA (another term for this is the cardinality of the set A, written
#A). These same terms and notations are also used when describing lists.

In this book, dimensionality is always an integer, and I will always repre-
sent dimensionality with the letter d. I won’t use d to mean anything other
than dimensionality.

Types of Numbers
We’ll use five different types of numbers in this book. Some of these will
match our everyday idea of a “number,” while others may be new to you.

Each type of number belongs to its own set, with its own name. Four of
these sets are nested inside one another like matryoshka dolls, so that each
set also contains all the elements of every set it contains. Figure 2-1 shows
these five sets (there are other common sets of numbers, but we won’t be
using them).

Figure 2-1: The five sets of numbers we’ll use in this book

Let’s start with the nested sets on the left. The innermost set is called the
set of natural numbers, also called the counting numbers. We write this with the
special symbol N (said out loud as “blackboard N,” or just “N”). Curiously,
mathematicians don’t agree on whether the set N should include 0 or not
[272] [243]. For this book, I’ll say that N is an infinite set that starts at 0, then
continues with 1, 2, 3, and so on. We can write this as in Equation 2.3, where
the three dots mean that this pattern continues forever.

N = {0, 1, 2, 3, . . .} (2.3)

30 Chapter 2

Sometimes we say that N contains the non-negative integers, meaning all
the positive whole numbers and 0.

Suppose we want to say that some variable x is a natural number, or
equivalently, that x refers to an element of N. To express this symbolically,
we use the symbol ∈, which means “is a member of.” So, x ∈ N is a compact
way to say “the variable x is a member of the set N,” “x belongs to N,” or “x is
in N.” All of these mean “x is an integer 0 or greater.”

Working outward, the next set contains all the integers, including the
negative ones. This set is named Z (from the German word zahlen, meaning
integer numbers [129]). This set is also infinite.

Continuing outward, we reach the set R, an infinite set containing all
the real numbers. This set contains every integer as well as every number with
a fractional part. For example, the number of ladybugs on a patch of grass
might be 17, while their total weight in grams might be 0.357 [8]. These are
both real numbers. Classical programmers often refer to real numbers as
floating-point numbers.

Finally, we reach the most general type of number we’ll be using. The
set C is an infinite set that contains the complex numbers. The word complex
here doesn’t mean “complicated,” but rather is a technical term that de-
scribes a generalized version of the real numbers. We’ll explore complex
numbers in the next section.

On the right side of Figure 2-1, we have the set B all by itself. This is the
set of bits, which contains only 0 and 1. That is, it’s the finite set {0, 1}. You
might expect this set to be nested inside the natural numbers, but there are
a few reasons why most mathematicians keep it separate. One reason is that
all the sets on the left are said to be closed under addition, which means that if
you take any two elements from the set (you can choose the same one twice)
and add them together, the result is also in the set. For example, consider
the natural numbers. The numbers 3, 4, and 8 are all in N, and the sums
3 + 3 = 6 and 4 + 8 = 12 are also in N. But B does not have this property, be-
cause while 1 ∈ B, the integer sum 1 + 1 = 2 is not in B. For this and other
reasons, we usually don’t place B inside the hierarchy on the left [92].

In this book, I’ll write names for bits, natural numbers, integers, and
real numbers with lowercase, italic roman letters, like a and b, and I’ll write
complex numbers with lowercase Greek letters, like α and β.

We can use the ∈ symbol for any of these sets, so x ∈ B, x ∈ N, x ∈ Z,
and x ∈ R mean “x is a bit,” “x is a natural number,” “x is an integer,” and
“x is a real number,” respectively. I’ll write α ∈ C when I want to emphasize
that α is a complex number.

Postulate 1 tells us that the basic unit of quantum information, a qubit,
is described by a complex vector. This is a reference to complex numbers, so
let’s see what these complex numbers are all about.

Quantum States 31

Complex Numbers
All such expressions, as

√
–1,

√
–2,

√
–3,

√
–4, etc. are consequently

impossible, or imaginary numbers, since they represent roots of negative
quantities; and of such numbers we may truly assert that they are neither
nothing, nor greater than nothing, nor less than nothing; which necessar-
ily constitutes them imaginary, or impossible.

—Leonhard Euler, Elements of Algebra, 1765 [57]

That this subject [of imaginary magnitudes] has hitherto been considered
from the wrong point of view and surrounded by a mysterious obscurity,
is to be attributed largely to an ill-adapted notation. If for instance, +1,
1, and

√
–1 had been called direct, inverse, and lateral units, instead of

positive, negative, and imaginary (or even impossible), such an obscurity
would have been out of the question.

—Carl Friedrich Gauss, Theoria Residiorum Biquadraticorum,
Commentario Secunda, 1832 [70]

A complex number has two defining characteristics. First, it involves a special
number that doesn’t show up explicitly in the sets of numbers in Figure 2-1.
Second, we’ll see that it involves two real numbers.

The special number I just referred to is a unique object that is defined to
have the value

√
–1. Don’t worry if it isn’t clear to you intuitively what the

square root of –1 might mean. When we’re getting used to new types of
numbers, they can seem awkward or strange. In fact, many people resisted
the idea of negative numbers, thinking them meaningless and confusing
[178], and now we use them every day. So for now, just take this as a defini-
tion. Later, we’ll see a nice way to interpret

√
–1 geometrically.

In this book, I’ll refer to
√
–1 with the label i. While almost everyone

uses this letter for
√
–1, some engineers use the letter j instead. Adding to

the confusion, many math and computer books use the letter i as the name
for a variable holding a generic or temporary integer. I’ll never use the label
i in this book to mean anything other than

√
–1.

I’ll mark definitions using a triangle over an equal sign. Equation 2.4
uses this notation to define i.

i
∆
=
√
–1 (2.4)

We call i an imaginary number. Don’t read too much into the word
“imaginary,” though. Mathematicians have a history of giving different types
of numbers interesting and colorful names. We’ve already seen real num-
bers (though they’re no more real than any others). Some other names for
types of numbers include perfect, amicable, social, and surreal [174]. So, while
the name “imaginary” originated because these numbers seemed strange
to the people doing the naming, they’re now considered a perfectly fine
kind of number, no more or less “imaginary” than any other numbers. The
name, however, has stuck.

Mathematicians also have a long history of asking hypothetical questions
and seeing where they lead. In this case, they started by assuming that

√
–1

had meaning and saw what might come of that. Later, engineers discovered

32 Chapter 2

that many difficult problems they faced could be solved using
√
–1. In short,

whatever
√
–1 might mean, using it in calculations was of enormous practical

value.
As you may have guessed, when people tried to describe the results of

experiments that probed the nature of quantum objects, they found that
using i in the equations let them write those results compactly and elegantly.
This idea is now deeply embedded in quantum computing, so let’s get more
familiar with numbers that involve i and how we work with them.

Working with i
Because i will be such an important tool for us, let’s look at it a little more
closely.

We can treat i like a more familiar real number in many ways. For ex-
ample, we can multiply it by a real number, so 3i and –17.45i are both fine
imaginary numbers. We can add and subtract imaginary numbers, too; for
example, 3i + 2.2i = 5.2i.

We’ll often use powers of i, or values created by multiplying i with itself
one or more times. Exponentiation is defined so that any number (except
0) raised to the power of 0 is 1, so by that definition, i0 = 1 [285]. Since any
number raised to the power of 1 is defined to be itself, we also have i1 = i.
From i =

√
–1, it follows that i2 = –1. Multiplying i by itself one more time,

we find i3 = (i2)i = (–1)i = –i. Going forward, we find that the powers of i
form a repeating cycle of four values. One full cycle and the start of a second
are shown in Equation 2.5.

i0 = 1

i1 = i

i2 = (i1)i = i i = –1

i3 = (i2)i = (–1)i = –i

i4 = (i3)i = (–i)i = 1

i5 = (i4)i = 1i = i

(2.5)

It’s fine to use i inside of equations, but we need to eventually get rid of it
for final answers that have physical meaning. For example, suppose a calcu-
lation uses imaginary numbers as part of the process of predicting howmany
liters of root beer we need to buy for an upcoming party, and the next to last
result is –5i. We can’t buy –5i liters of anything. But if the final step of the
calculation is to multiply that value by i, we’ll get (–5i)i = –5(i2) = –5(–1) = 5,
and we can buy 5 liters of root beer.

Negative numbers are similar to imaginary numbers in this way. We can
use negative numbers while performing calculations, but we’d be in trouble
if our final result was that we needed to buy –5 liters of root beer. Negative
and imaginary numbers are useful, but not for describing physical amounts.

Let’s now use imaginary numbers to form a complex number (the word
“complex” is just another label and doesn’t mean complicated).

Quantum States 33

We can think of a complex number as a list of two values. The first is
a real number, which for the moment I’ll call a. The second is formed by
taking another real number, which I’ll call b, and multiplying it by i, creating
the imaginary number b× i. Following convention, two variables that are
next to one another with no explicit operation should be multiplied, so bi is
short for b× i.

Rather than write this pair of values a and bi in typical list form (that is,
[a, bi]), the convention is to write them as a summation. Thus, the complex
number γ built from a and bi is written as in Equation 2.6.

γ = a + bi (2.6)

Equation 2.6 describes a complex number for any values of the real
numbers a and b. In symbols, a ∈ R and b ∈ R, while γ ∈ C.

The first element in this list, a, is called the real part or real component of
γ, written as Re(γ). The second element, bi, is called the imaginary part or
imaginary component and is written Im(γ). Some authors use a special type-
face and write the real part as ℜ(γ) and the imaginary part as ℑ(γ).

When adding real numbers, we can reduce 3 + 5 to its equivalent, 8. But
a single complex number can’t be reduced this way. The sum a + bi repre-
sents a combination of two fundamentally incompatible objects.

A big reason for writing a complex number using the plus sign rather
than as an explicit list is pragmatic: When we use complex numbers in cal-
culations, treating the two parts as elements that have been added works out
just as it would if we were working with the sum of two real numbers. For ex-
ample, multiplying 3 + 2i by 5 gives us 5(3 + 2i) = 15 + 10i. So, we can treat a
complex number just like any other sum of two numbers.

Visualization
There are two popular ways to visualize complex numbers, and they lead to
different but equally useful ways to think about and compute with them.

Both visualizations rely on using a two-dimensional plane (like the sur-
face of this page). We call this plane the complex number plane, the complex
plane, or, most commonly, just the number plane.

One way to start is to draw two perpendicular axes on the page and label
the horizontal axis Real and the vertical axis Imaginary (or R and I). Then we
can plot a complex number as though it were a point, using the real and imag-
inary values as the distances along these axes. Figure 2-2 shows an example.

34 Chapter 2

Figure 2-2: Plotting a complex
point α = 3 + 5i along the real (R)
and imaginary (I) axes

This version of the number plane is also called a rectangular coordinate
system, a rectangular diagram, an Argand diagram [231] (after Jean Robert
Argand [151]), or a Cartesian diagram (after René Descartes [90]). The point
where the real and imaginary axes cross is called the origin.

Alternatively, we can locate points on the number plane by using a polar
coordinate system in which lines radiate out from a common origin, with cir-
cles of increasing radii around that origin, as shown in Figure 2-3.

Figure 2-3: The complex point
α = (r, θ) plotted on a polar
coordinate system

We describe a point in a polar system using the notation (r, θ), where r
is a real number that gives us the distance of the point from the origin and
θ is a real number representing an angle (in this section, I’ll use θ to refer to
an angle, which is a real number). The historical convention for these points,
like the Cartesian points (x, y), uses parentheses, but they’re lists where the
order matters.

We call r the magnitude of the complex number and θ its phase. The
(r, θ) notation is called the polar form of a complex number. Because r is a
distance, it’s always 0 or positive. In this book, we’ll always measure angles
counterclockwise from the three o’clock axis.

When we’re doing geometry, we often think of the r in a number written
in polar form as “radius,” as in the radius of a circle that includes that point.

Quantum States 35

But since we’re using these points to visualize complex numbers, I’ll always
refer to r as the magnitude.

When you’re drawing the number plane, you can choose to draw the
rectangular form in Figure 2-2, the polar form in Figure 2-3, or both at the
same time. In this book, I’ll usually draw the rectangular diagram, since it
is graphically more sparse than the polar diagram and so makes it easier to
highlight whatever objects I’m drawing on that diagram. If it’s helpful, you
can always imagine the circles and radii of the polar diagram drawn on top
of the rectangular axes.

We can convert between polar and rectangular forms using the trigonom-
etry of a right triangle, as shown in Figure 2-4 (if you’re not feeling on solid
ground with trigonometry and sines and cosines, there are great introduc-
tions on the web [113] [148]).

Figure 2-4: How the polar form (r, θ)
and rectangular form a + bi are related

We can also use the formulas in Equation 2.7 to convert between polar
and rectangular forms.

Given a + bi Given (r, θ)

r = |
√
a2 + b2| a = r cos θ

θ = tan–1(b/ a) b = r sin θ

(2.7)

In Equation 2.7, tan–1 is the inverse tangent (or arctangent) function from
trigonometry that takes as input the tangent of an angle and returns the angle
itself.

In practice, computing θ with tan–1(b/ a) can suffer numerical problems
when a is 0 or nearly so. Modern computer libraries avoid that problem by
providing a routine (usually named atan2) that takes the values of b and a as
separate arguments.

Around 1740, Leonhard Euler (pronounced OY-ler) discovered some-
thing amazing. He wrote out the formulas for sine and cosine in a special
way called a power series, and he recognized that these expressions looked
similar to the power series for a different expression that he already knew
[212]. He found that he could make things match by writing the relationship
as in Equation 2.8, which is now known as Euler’s formula [260].

r eiθ = r cos θ + i r sin θ (2.8)
36 Chapter 2

Here, e is a real number called Euler’s number, and it has a value of about
2.718 [259]. In this book, I will never use an e by itself as a name for any-
thing other than Euler’s number (sometimes we call this Napier’s number,
in honor of JohnNapier, who wrote about this number decades before Euler
did [144]).

Writing a complex number as r eiθ is called writing it in exponential form
(sometimes we casually also call this the polar form). The term e iθ may look
strange. Here we are just getting used to imaginary numbers, and now we’re
using one as an exponent. What could we possibly mean by raising the real
number e to an imaginary number iθ? Getting into this would take us too far
away from our focus on math for quantum computing, but if you dive into
this question, you’ll find that you can rewrite such things as more normal
looking complex numbers without exponents [217].

What’s important for us is that Equation 2.8 gives us a way to turn the
polar coordinates r and θ (that is, two real numbers) into a single mathemat-
ical object that combines both values. We’ll see that the exponential form is
often the most convenient way to work with complex numbers when we’re
performing calculations.

We can write any complex number as either r eiθ or a + bi. Both are cor-
rect and fine, and we can go back and forth with Equation 2.7. We’ll use
both forms in this book.

For the rest of this book, I’ll use the word number to refer to a complex
number. Note that if we have a complex number α = a + 0i with no imag-
inary part, then that’s a real number. And if this a has no fractional part,
then α is an integer. On the other hand, if α = 0 + bi, and b is not 0, then
there is no real part and α is an imaginary number. So, the word number in-
cludes the reals, integers, and counting numbers, as we saw graphically in
Figure 2-1. When I want to refer specifically to a real number, an integer, or
a counting number, I’ll say so explicitly unless I think it’s clear from context.

Conjugation
People found that when they worked with complex numbers, such as the
number a + bi, the related complex number a – bi frequently popped up as
well. This happened often enough that they gave this expression its own
name and symbol.

Given any complex number α = a + bi, the related complex number a – bi
goes by the polysyllabic name of complex conjugate, or conjugate for short. I’ll
indicate the action of turning a number into its complex conjugate by draw-
ing a little line, or bar, over the original complex number. Thus, if α = a + bi,
then α stands for a – bi, and vice versa. If the imaginary part is negative this
still holds, so if β = c – di, then β = c + di (some authors use an asterisk as a
superscript for conjugation, writing α∗ instead of α). We call α the conju-
gate of α, and vice versa.

When we write a complex number in polar form, we can see from
Equation 2.7 that the conjugate is formed by replacing θ with –θ. Thus, if
α = r eiθ, then α = r e–iθ.

Quantum States 37

Equation 2.9 summarizes conjugation in notation for both the rectangu-
lar and polar forms.

a + bi = a – bi

r eiθ = r e–iθ
(2.9)

Figure 2-5 shows conjugation graphically on the number plane. We can
interpret the operation as reflecting, or mirroring, the point around the
horizontal axis. Conjugating a complex number twice in a row returns us
to where we started.

Figure 2-5: Plotting complex numbers (solid dots)
and their complex conjugates (empty dots)

A handy property of complex numbers is that the product of any com-
plex number α with its conjugate is commutative (that is, the order of the ar-
guments doesn’t matter). In symbols, αα = αα. This is because the order in
which we multiply any two numbers (including complex numbers) doesn’t
affect the result. More familiarly, 3× 5 = 5× 3.

An important quality of a complex number is its magnitude, which we’ve
seen is the distance from the origin to the complex point when it’s plotted
on the number plane. The magnitude of a complex number α is written |α|
(or sometimes ∥α∥). The single vertical bar form sure looks like an absolute
value operation, and that’s no accident, because the magnitude, being a dis-
tance, must always be 0 or positive.

If we write a complex number in polar form, then we know the mag-
nitude right away, since it’s r. If we have the Cartesian form, we saw in
Equation 2.7 that we can find the value r from r = |

√
a2 + b2|. We need the

absolute value signs here because we know that any positive number has
two square roots [247]. For example, the square roots of 25 are 5 and –5,
since 52 = (–5)2 = 25. Because r is a distance and therefore by definition
must be positive, we use the absolute value |

√
a2 + b2| for r. From now on,

I’ll assume we’re always using the positive square root.
In this book, we’ll often work with complex numbers of magnitude 1.

That means r = 1, so we can represent these complex numbers as eiθ for
some value of θ and leave off the r term.

38 Chapter 2

Every complex number with a magnitude of 1, when plotted on a polar
coordinate system, will lie on a circle of radius 1 around the origin. This is
shown in Figure 2-6.

Figure 2-6: All points eiθ have a radius r = 1,
so they all lie on a circle of radius 1 around
the origin.

The complex conjugate gives us a compact way to compute the squared
magnitude of a complex number. All we have to do is multiply that complex
number with its conjugate! Let’s check that this is true. Equation 2.10 shows
the steps to find the squared magnitude of an arbitrary complex number, α,
in Cartesian form.

αα = (a + bi)(a – bi) Expand α using Eq. 2.9

= a2 – abi + bai – (bi)2 Multiply the terms

= a2 – b2i2 Replace (ba – ab)i with 0

= a2 – –(b2) Replace i2 with –1

= a2 + b2 Since – –(b2) = b2

= r2 Eq. 2.7 tells us a2 + b2 = r2

= |α|2 Because r2 = |α|2

(2.10)

Keep in mind that αα gives us the squared magnitude of α, not its magni-
tude. If we want its magnitude, we need to take the square root of this result.

We can summarize what we’ve just seen as shown in Equation 2.11. We’ll
often use these properties to calculate |α| and |α|2.

|α|2 = αα

|α| =
√
αα

(2.11)

Since αα = αα, the relations in Equation 2.11 also hold for αα.
I placed Equation 2.11 in a box because it’s particularly important. I’ll

use boxes like this throughout the book as the mathematical equivalent of

Quantum States 39

setting text in boldface, to signal math that is particularly worth slowing
down and paying attention to.

We’ll often multiply two complex numbers together, as we just did. Let’s
look more closely at this operation for the general case of any two complex
numbers. I’ll start with the Cartesian forms, as in Equation 2.12.

αβ = (a + bi)(c + di) Expand the complex numbers

= ac + adi + bci + bd(i2) Multiply the terms

= (ac – bd) + (ad + bc)i Group real and imaginary

(2.12)

That’s nice to know, but to me it’s just a big mess of letters that doesn’t
offer intuitive insight into how the result is related to α and β. Maybe the
result will be easier to interpret if we try it again in exponential form, so let’s
do that, as in Equation 2.13.

αβ =
(
rα eiθα

) (
rβ e

iθβ

)
Expand in polar form

=
(
rα rβ

) (
eiθα eiθβ

)
Gather similar terms

=
(
rαrβ

)
ei(θα+θβ) Because ea eb = ea+b

(2.13)

Now that is a lot more informative! It says that when we multiply com-
plex numbers together, their magnitudes multiply and their angles add.
Figure 2-7 shows the process visually.

Figure 2-7: Multiplying complex numbers α and β. (a) The starting α and β. (b) Their
product, αβ.

In Figure 2-7(a), themagnitude of α is 0.75 and themagnitude of β is 2.
When we form αβ in Figure 2-7(b), the magnitudes multiply to produce a
new magnitude of 1.5. We can also see that the angles are added together.

Conjugation has a property we’ll find useful: The conjugation of a prod-
uct is the product of the conjugates. That’s a mouthful, but it’s simpler in
the notation shown in Equation 2.14.

αβ = αβ (2.14)

It’s almost always worthwhile to check these kinds of claims. Doing so
gives us practice with manipulating the notation, building our confidence
and fluency. This skill will help you become a talented and creative quan-
tum programmer, so I encourage you to try to prove these sorts of things for
yourself (even informally) before seeing how I do it.

40 Chapter 2

I’ll show that Equation 2.14 is true by writing everything out, using the
complex numbers α = a + bi and β = c + di. Equation 2.15 shows the steps. In
the last line, I used some temporary variables, s and t, to simplify the results.

αβ = αβ The goal

(a – bi)(c – di) = (a + bi)(c + di) Expand numbers

(ac – bd)︸ ︷︷ ︸
s

– (ad + bc)︸ ︷︷ ︸
t

i = (ac – bd)︸ ︷︷ ︸
s

+ (ad + bc)︸ ︷︷ ︸
t

i Group and name groups

s – ti = s + ti Definition of conjugation

(2.15)

Now that we have a handle on what complex numbers are, let’s look at
how to work with them.

EULER’S IDENTITY

Many people feel that an expression known as Euler’s identity is one of the most
beautiful and elegant equations in all of mathematics. I agree with them.

Euler’s identity is a special case of Euler’s formula from Equation 2.8, where we
set r = 1 and θ = π. The result is shown in Equation 2.16.

eiπ + 1 = 0 (2.16)

This relationship is Euler’s identity.

Just to check that it’s correct, we can expand out the eiπ term using Equation 2.8,
giving us cosπ + i sinπ = (–1) + 0i = –1, and that gives us (–1) + 1 = 0. That’s the
whole thing. But oh, what a thing.

Euler’s identity ties together five fundamental branches of mathematics in one
short equation, with nothing missing and nothing left over. Reading left to right,
we have Euler’s number, e, which comes to us from calculus; the number i, which
is the essence of imaginary numbers; the number π, which is fundamental to geo-
metry; the integer 1, which is the identity element from algebra (that is, 1x = x for
every x); and the number 0, which is not just the identity element of arithmetic
(that is, 0 + x = x for every x) but is unique from all other real numbers because
it is neither positive nor negative.

This just scratches the surface. You could write an entire book about just this
one compact equation. Or two books [143] [286].

For me, Euler’s identity is like a waterfall. It’s both simple and sophisticated.
This is what people mean when they say that mathematics can be beautiful.

Working with Complex Numbers
Most vagabonds I knowed don’t ever want to find the culprit
That remains the object of their long relentless quest
The obsession’s in the chasing and not the apprehending
The pursuit, you see, and never the arrest

—TomWaits, “Foreign Affair,” 1977 [227]

Quantum States 41

Postulate 1 tells us that a quantum bit is described by a “complex vector,”
which we’ll see refers to a list of complex numbers. Manipulating these num-
bers is therefore central to quantum programming.

To become quantum programmers, we need to be as comfortable with
complex numbers as we are with integers and real numbers. This section is
intended to help you develop that comfort by working with complex numbers
in a few basic ways. My goal is to help you feel at ease with these numbers,
rather than to derive specific results for later use.

I’ll illustrate much of this section with pictures drawn in the two-
dimensional number plane. This lets us think about algebraic operations
on complex numbers as geometric operations. A nice reward for this geo-
metric approach is that we’ll find a way to think about i in strictly geomet-
ric terms, removing any mystery around the expression

√
–1.

To get into the right frame of mind, let’s visit the classical real number
line, shown in Figure 2-8.

Figure 2-8: The number line

This picture may seem trivial to you, but the number line is a concep-
tually deep and elegant construction that unifies a long series of gradual
expansions of the concept of a number [172] [135]. Roughly speaking, peo-
ple in the Neolithic era got the number ball rolling with their use of counting
numbers. Around the year –1800, people in Egypt developed reciprocals (like
1/2 and 1/3). The Greeks introduced irrational and real numbers around
–500. The negative numbers were developed in China around –200. The idea
of 0 was introduced in India around 600, but it didn’t get firmly established
as a number until around 1600. Uniting these separate developments into
the simple, geometric number line was a brilliant step of intuition and syn-
thesis. Today we take the number line so much for granted that we teach it in
elementary school!

The number line has a few wonderful qualities. Perhaps the most impor-
tant is that it’s not just an approximate visualization of real numbers, but it
is exquisitely faithful to them. For example, every real number that we could
ever imagine has a single, unique point on the number line, and that point
in turn corresponds to that exact number. Structurally, numbers that we
consider close to other numbers are also close geometrically to the points
associated with those numbers. Thanks to these properties, and many oth-
ers, points on the number line and their corresponding real numbers are
intimate partners.

The number plane has the same qualities, only the plane offers a two-
dimensional space for representing complex numbers. These complex num-
bers are just as much “numbers” as the integers and the reals.

To accommodate complex numbers graphically, we complement the
number line with a second, vertical axis. Every complex number we can
imagine has a unique corresponding point in the number plane, and that
point in turn corresponds to that single number. This relationship is so tight

42 Chapter 2

that I will sometimes refer to points in the number plane as numbers, and
vice versa.

The value of drawing complex numbers in the number plane is that it
gives us another way to think about them. We’ve seen that we can write com-
plex numbers as expressions, like a + bi or r eiθ, and then manipulate them
algebraically. But we can also draw them as points in the complex plane and
then think about algebraic operations in geometric terms. The beauty is that
these geometric operations are perfect analogs to the algebraic operations.

We’ve seen this once already, when in Figure 2-5 we observed that com-
plex conjugation corresponds to reflection across the real axis.

The trick to seeing the geometry of this operation, and those we’ll look
at next, is to think about multiplication in a particular way. Consider multi-
plying two real numbers, such as a× b. Think of that expression as starting
with a and then changing it by multiplying it with b, producing a new value
of a, which we can call a′. Then, we could write this as a process that pro-
duces a transformed value of a, or a′ = a× b. We could equally well think of
a× b as starting with b and transforming it by a if that better fits what we’re
doing, so we could write b′ = a× b. For this discussion, I’ll always think of
the first term as an input that gets modified to produce a new version of it.
I’ll also drop the explicit multiplication sign, so the product of two complex
numbers α and β will be αβ.

Suppose we start with a complex number α, and we’d like to double its
magnitude (that is, its distance from the origin) without changing its angle.
The idea is shown in Figure 2-9(a).

Figure 2-9: Extending α. (a) Our starting point α and its intended new version, α′.
(b) The point β = 2 + 0i. (c) The product αβ is the α′ we want.

We can create this transformed version of α by multiplying it with the
complex number β = 2 + 0i, shown in Figure 2-9(b). Note that β forms an
angle of 0 with the real axis (because it’s on the real axis), and it has a magni-
tude of 2. Thus, when we form α′ = αβ, the magnitude of α doubles, but the
angle remains the same, as shown in Figure 2-9(c). Bingo!

There was nothing special about the choice of 2 here. Multiplying any α
with the complex point β = c + 0i scales the magnitude of α by c. This holds
for any real number c, including values that are between 0 and 1 (which pull
α closer to the origin) and even negative values (which move α to the other

Quantum States 43

side of the origin), as shown in Figure 2-10. An important special case is
when β = –1 + 0i. Then αβ = (–1)α = –α, as shown in Figure 2-10(c).

Figure 2-10: Scaling α. The dashed circle shows the starting magnitude of α for
reference. (a) A value α scaled by 0.6. (b) Scaling α by –1.3. (c) Scaling α by –1.

Next, let’s look at the part of Equation 2.13 that tells us that when com-
plex numbers are multiplied, their angles add. Another way to say this is
that complex multiplication creates rotation!

To see this, suppose we want to rotate some arbitrary complex number
α counterclockwise around the origin by 90 degrees, or π/2 radians, with-
out changing its magnitude. To prevent the magnitude of α from changing,
any number β we’ll multiply with α will need a magnitude of 1. To rotate α
by π/2 radians (that is, to add π/2 radians to the angle of α), that β needs
to form an angle of π/2 with the real axis. Those requirements completely
determine that β = 0 + 1i, as shown in Figure 2-11(a).

Figure 2-11: Rotation of α by complex multiplication. (a) The
point β = 0 + 1i, or i. (b) The point α and the new point α′ = αβ,
rotated 90 degrees from α.

We can more casually refer to 0 + 1i simply as i, so we can view the multi-
plication of any α with i as a rotation of α by 90 degrees. This works for any
α anywhere on the number plane, as shown in Figure 2-11(b).

This geometric viewpoint has a simply marvelous property: It puts to
rest the problem of trying to interpret i =

√
–1. We’ve just seen that multiply-

ing a complex number α by i (or 0 + 1i), creating α′ = iα, has the effect in the

44 Chapter 2

number plane of rotating α by 90 degrees. If we multiply α′ by i again, we’ll
form α′′ = iα′, or the original α rotated by a total of 180 degrees. That gives
us –α, or exactly the same result as –1× α, as shown in Figure 2-12.

Figure 2-12: Rotating α. (a) The starting α. (b) The product iα is α rotated 90 degrees.
(c) Rotating α by another 90 degrees by forming i2α gives us –α.

The result of this operation, α′′, can be written as iα′ = i(iα) = i2α. That
is, applying the rotation twice means multiplying by i twice, or once by i2.

We’ve found that i2α = –α, so i2 = –1. When we take the positive square
root of both sides of i2 = –1, we get i =

√
–1. This is just a way to write down

the observation that multiplying any complex number by i twice gives us a
180-degree rotation of that number in the number plane, which is the same
result we get from multiplying that number by –1.

In short, i is that number that we can multiply with any other number α
to cause α to rotate by 90 degrees in the number plane.

For this reason, you’ll sometimes hear people say something like “multi-
plying by i causes a 90-degree rotation.” That’s true!

More generally, it’s also true that we can rotate a complex number by
any angle θ. We need only to multiply that number with another complex
number that has a magnitude of 1 and forms an angle θ with the real axis.

If you’ve worked in computer graphics, or you’ve done a lot of tradi-
tional 2D geometry, you’re probably used to thinking of rotating a point
around the origin by an angle θ in terms of explicit sines and cosines, which
you find by drawing a bunch of right triangles. That approach is perfectly
valid, but it can get a little complicated. Multiplying any complex number by
a complex number with a magnitude of 1 and at an angle of θ with the real
axis, or e iθ, does the same job more simply.

Because complex numbers are vital to quantum computing and will ap-
pear throughout this book, let’s spend a few more moments with them. I
won’t introduce any important formulas here; the point is just to illuminate
the landscape, not to snag a reward.

Our goal will be to find the square root of i. We have no particular need
for this result, but it challenges us to combine what we know about i with
what we know about other things, like the square root. It’s a good little men-
tal workout, so let’s jump in.

We can reason our way to an answer algebraically, but let’s first see how
nice it is to do it geometrically.

Quantum States 45

We’ve seen that multiplying a number α with i produces a version of α
rotated by 90 degrees. So, the square root of i would be a complex number
β that rotates α by 45 degrees. Then, applying β twice, or applying β2 once,
would be the same as multiplying by i. That is, β2 = i, so β =

√
i.

If we want the coordinates of β, we can find them by drawing a classical
45–45–90 triangle, as in Figure 2-13. The number β has a magnitude of 1
and makes an angle of 45 degrees (or π/4 radians) with the real axis.

Figure 2-13: The point β is (1/
√
2) + (1/

√
2)i.

Multiplying any α by this β will rotate α counterclockwise by 45 degrees
around the origin, as shown in Figure 2-14(a). Multiplying it by β twice, as in
Figure 2-14(b), rotates α by 90 degrees, just like multiplying it by i, confirm-
ing that β2 = i, or β =

√
i.

Figure 2-14: Rotating α. (a) The point α and the new α′ =αβ, rotated
45 degrees from the original α. (b) Rotating α by 45 degrees again,
or forming αβ2, gives us the original α rotated by 90 degrees.

Note that applying β twice means multiplying by β twice, which is β2,
not 2β.

Because the number plane is such an exquisitematch to the complex num-
bers themselves, this geometry is all we need to be sure that this β =

√
i. But

for completeness, let’s check this result algebraically. The classical trig of the
45–45–90 triangle in Figure 2-13 tells us that β = 1/

√
2 + (1/

√
2)i. We can

find β2 by multiplying this with itself, and hope that we can manipulate that
result to show that it’s the same as i. One series of steps that gets us there is
shown in Equation 2.17.

46 Chapter 2

ββ =
(

1√
2
+

1√
2
i
)(

1√
2
+

1√
2
i
)

Expand β

=
(

1√
2

)2
+ 2
(

1√
2

)(
1√
2

)
i +
(

1√
2

)2
i2 Multiply the terms

=
1
2
+ 2
(
1
2

)
i –

1
2

Collect and simplify

= i

(2.17)

Great! We’ve confirmed using algebra what we found by geometry:
Squaring β = 1/

√
2 + 1/

√
2i gives us i. In other words, β =

√
i.

But wait a second, we’re missing something! We know that square roots
come in pairs. For example, both 3 and –3 are the square roots of 9, because
32 = (–3)2 = 9. So, there must be a second choice of β that will also give us
β2 = i, that comes from following the other square root of i. To find that
other β, let’s return to thinking geometrically. What other rotation, applied
twice, would give us i? The geometry of Figure 2-15 shows us that this is a
rotation of –135 degrees, or –3π/4 radians clockwise from the real axis.

Figure 2-15: The square roots of i. (a) The points β and –β are both a distance of 1 from
the origin. (b) Rotating an arbitrary point α by multiplying it with –β. (c) Multiplying α by
–β twice, or α(–β)2, gives us the original α rotated by 90 degrees.

We can see from Figure 2-15 that this rotation, which I’ll call β′, is the neg-
ative of β (that is, β′ = –β) at coordinates –β = (–1/

√
2) + (–1/

√
2)i. If youmul-

tiply out the terms of (–β)(–β), you’ll get the same result as in Equation 2.17,
confirming that multiplying any complex number with (–β)2 is the same
as multiplying it by β2, with both causing the same 90-degree rotation pro-
duced by i. So, β and –β are the two square roots of i.

The algebraic approach to this problem gives us the same answers. Let’s
look at the complex exponential form of the complex numbers involved. I’ll
start by writing i as the complex point 0 + 1i, or eiπ/2. To find its square root,
we’d like to find a new complex point eib for some real number b, so that
(eib)2 = eiπ/2. Rewriting (eib)2 as the equivalent ei(2b), we get 2b = π/2, telling
us that b = π/4. The complex number eiπ/4 is the same point β that we saw
in Figure 2-13. Phew! The same reasoning confirms that e–i3π/4 is the other
square root of i.

Quantum States 47

The complex number plane gives us a beautiful way to think about com-
plex numbers and operations with them. It tells us that instead of thinking
of i as a mysterious quantity,

√
–1, we can instead think of it geometrically,

where multiplying any complex number α with i causes α to rotate around
the origin of the number plane counterclockwise by 90 degrees.

List Structure
Throughout this book, we’ll create many lists of numbers. For example, the
description of a quantum object will be a list of two numbers.

In this section, we’ll look at list structure and a standardized way to add
up the elements of a list (which we’ll do often). Let’s start by coming up with
a concise way to describe what types of numbers are in a list and how many
there are.

We’ll start with a 2D point, which we can view as a list of two real num-
bers. We can describe that list by writing its structure, or format, as R× R.
When combining sets, the × symbol (called the Cartesian product in this con-
text) doesn’t mean multiplication as we’re used to it, but instead stands for a
different mathematical operation. For our needs in this book, it can be con-
sidered a shorthand for “is attached to” or “is followed by.” So, R× R means
that we’re describing a list containing a real number followed by another
real number. If we wanted to describe the structure of a 3D point, we could
write it as R× R× R, or three real numbers in a sequence.

This notation won’t scale well for a list of, say, 512 dimensions. So even
though × here doesn’t mean multiplication, we’ll pretend it does so that
we can use exponentiation for repeated multiplication. Just as 5× 5 can be
written 52, so too can our structure of a 2D list of real numbers be written
R2 and our 3D list as R3. We can use this notation for any kind of list and
numbers, so a list of 512 complex numbers could be described as having the
structure C512.

We’ll often want to process all the items in a set or list one by one and
then add up the results. Let’s say we’re working with a list named v that
has a dimensionality of d (that is, it contains d elements). We’d like to ap-
ply some arbitrary function f to each element in the list, then add up those
results. We’re going to do this a lot! For this discussion, I’ll use the letter n
for the number of elements, because that’s another widespread convention
that’s worth being familiar with.

Authors write this operation in a few different ways. Let’s start with the
most traditional form in Equation 2.18, where we use an integer, arbitrarily
named k, to step through the values from 0 up to and including n – 1 for the
n elements in the list. We’ll use these values to extract the elements of v one
by one and give them to our function f.

n–1∑
k=0

f (vk) = f (v0) + f (v1) + · · · + f (vn–1) (2.18)

Since we’ll do this so often, I’ll introduce a shortcut to reduce some
of the clutter. I’ll write the sequence containing all the integers from 0 up

48 Chapter 2

to and including n – 1 as [n]. For example, [4] refers to the list of integers
[0, 1, 2, 3]. The definition is given in Equation 2.19.

[n]
∆
= [0, 1, 2, . . . ,n – 1] (2.19)

Note that [n] is a sequence, not a set, because the elements are in a spe-
cific order. Using this new notation, we can rewrite Equation 2.18 a little
more simply as Equation 2.20. ∑

k∈[n]

f (vk) (2.20)

In this context, the expression k ∈ [n] under the big sigma tells us to use
each integer from [n] in sequence, one at a time.

I’ll use this form frequently throughout the book.
Another way to write these indices is in binary form. A bitstring is a se-

quence of 0s and 1s. Together, they form a binary number. For example,
the bitstring 1101 is the binary equivalent of the decimal number 13. We
will often work with sets and lists that contain 2n elements, for some integer
n. Such lists are indexed by values from 0 to 2n – 1, and every decimal num-
ber from 0 to 2n – 1 has a unique corresponding bitstring of n elements. We
can write the set of all of these bitstrings as Bn, which contains every combi-
nation of n elements that are 0 or 1. That means we can write Equation 2.20
as Equation 2.21. ∑

k∈Bn

f (vk) (2.21)

I’ll often use the capital N for 2n, so we can also write the range of values
from 0 to 2n – 1 as [N]. Thus, the four expressions in Equation 2.22 are all
equivalent.

2n–1∑
k=0

f (vk) =
N–1∑
k=0

f (vk) =
∑
k∈Bn

f (vk) =
∑
k∈[N]

f (vk) (2.22)

I think the rightmost two versions are the easiest to read and compre-
hend, so I’ll use them almost exclusively in this book.

The version in Equation 2.20 is the form I’ll use for lists with n elements,
for any integer n.

Vectors
I need to clarify the term vector. As you know, we use this term to indicate
an object in ordinary space that has a magnitude and a direction. . . .
I want you to completely forget about that concept of a vector.

—Leonard Susskind and Art Friedman, Quantum Mechanics: The
Theoretical Minimum, 2014 [213]

You may be used to using the term vector to refer to an arrow in 2D or
3D space. Those arrows are indeed vectors, but the term embraces a much

Quantum States 49

broader and more abstract class of objects [282]. That is, arrows are just one
special case of what a vector can be.

Postulate 1 refers to “complex vectors.” Because complex vectors are at
the core of quantum computing, my goal in this section is to help you feel
comfortable working with these objects.

For our purposes, the term vector will refer to a list of numbers.
Since Postulate 1 refers to a complex vector, we know that vectors made

of complex numbers will be important to us. We call these complex-valued
vectors, or complex vectors, to distinguish them from real-valued and integer-
valued vectors, composed of reals or integers, respectively. For now, I’ll con-
tinue to write these vectors with bold, lowercase roman letters like v and w.
I’ll write the elements of complex vectors with Greek letters like ν and ω,
respectively, to emphasize that they’re complex.

I’ll write each of these objects as a matrix, or grid of elements, made
of a single column, with the elements written from top to bottom. This is
called a column matrix. For example, I’ll write a three-element complex vec-
tor v as a column matrix of three elements, read from top to bottom, as in
Equation 2.23.

v =

ν0ν1
ν2

 (2.23)

Like with any other list, the number of elements in a vector is called its
dimensionality. We write this as dim v, or with parentheses, as in dim(v). Be
careful not to refer to the dimensionality of a vector as its “length”!

Even though we use vectors as the fundamental data structure for quan-
tum information, we will modify them in only a few ways. Everything else
will be built from these operations.

The first operation is called scalar multiplication. For our purposes, a scalar
is a number of any type. For generality, let’s use a complex number, σ. We’ll
define the operation of multiplying together a vector v and a scalar σ as mul-
tiplying each element of v by σ. This definition is illustrated in Equation 2.24,
for a vector with three elements. For later reference, I’ve given this defini-
tion the name V1.

σv
∆
= σ

ν0ν1
ν2

 =

σ ν0σ ν1

σ ν2

 V1 (2.24)

The second operation is called vector addition. We write this operation
using a + sign between two vectors and define v + w to be the operation
of adding their corresponding elements. This definition is illustrated in
Equation 2.25 for two vectors with three elements each. I’ve named this
definition V2.

50 Chapter 2

v + w
∆
=

ν0ν1
ν2

 +

ω0ω1
ω2

 =

ν0 + ω0ν1 + ω1
ν2 + ω2

 V2 (2.25)

This definition requires that v and w have the same dimensionality, or
number of elements. If they don’t, the definition doesn’t apply, and v + w is
a meaningless string of symbols.

Linearity
Chaos should be taught, he argued. It was time to recognize that the
standard education of a scientist gave the wrong impression. No matter
how elaborate linear mathematics could get. . . . May argued that it
inevitably misled scientists about their overwhelmingly nonlinear world.

—James Gleick, Chaos: Making a New Science, 1987 [77]

The majority of the math in this book belongs to a field called linear algebra
[211]. Roughly speaking, this is the study of vectors and transformations of
vectors.

A key property of linear algebra is in its first word, linear, which refers
to the idea that all the objects we work with share a characteristic called
linearity.

To be called linear, an object needs to have (or satisfy) two properties.
One property is based on scalar multiplication and the other on vector addi-
tion. These properties closely mirror the V1 and V2 properties we just saw.

Let’s illustrate these two properties with a function. Assume that we
have a function f that takes in a vector x of any dimensionality as input and
produces a vector y of the same dimensionality as output [241]. We can
write this as y = f (x) for input x and output y.

The first property of linearity we’ll consider tells us that if we multiply
an input by some number, that’s the same as leaving the input alone and
multiplying the output by that same number. I’ve written this in symbols in
Equation 2.26 for some complex number σ and some complex vector v. For
later reference, I’ll call this property L1.

f (σv) = σ f (v) L1 (2.26)

The second property, which I’ll call L2, says that if we add two vectors
and apply f, we get the same result as we would if we instead applied f to each
vector and then added the outputs, as shown in Equation 2.27.

f (v + w) = f (v) + f (w) L2 (2.27)

We’ll use these two properties so often in this book that they’ll become
second nature to you. They’re that useful.

Quantum States 51

In Equation 2.28, I’ve written out these properties by showing all the
elements (often called the tableau form) for vectors of dimensionality 3.

f


σ ν0σ ν1

σ ν2


 = f

σ
ν0ν1
ν2


 = σf


ν0ν1
ν2


 L1

f


ν0 + ω0ν1 + ω1
ν2 + ω2


 = f


ν0ν1
ν2


 + f


ω0ω1
ω2


 L2

(2.28)

Let’s try out these definitions. I’ll pick a tiny function that takes in a
single real number (or a real vector of dimensionality 1) and returns a real
number. The function is f (x) = x + 1. It gets to be called linear only if it satis-
fies both properties L1 and L2. Let’s test f using a = 3 and b = 4, as shown in
Equation 2.29. The left column checks property L1, and the right column
checks L2.

f (x) = x + 1

a = 3, b = 4

L1 L2

a f (b)
?
= f (ab) f (a) + f (b)

?
= f (a + b)

3 f (4)
?
= f (3× 4) f (3) + f (4)

?
= f (3 + 4)

3× 5
?
= f (12) 4 + 5

?
= f (7)

15 /= 13 9 /= 8

(2.29)

Surprise! Despite its simplicity, this function fails both tests. We’ve found
that f is not a linear function.

Let’s try another function, g. This function’s inputs and outputs are again
real numbers (that is, real vectors of dimensionality 1). Let’s say g(x) = 2x. I’ll
check for properties L1 and L2 as before, in the left and right columns of
Equation 2.30, again using a = 3 and b = 4.

g(x) = 2x

a = 3, b = 4

L1 L2

a g(b)
?
= g(ab) g(a) + g(b)

?
= g(a + b)

3 g(4)
?
= g(3× 4) g(3) + g(4)

?
= g(3 + 4)

3× 8
?
= g(12) 6 + 8

?
= g(7)

24 = 24 14 = 14

(2.30)

Because both tests are satisfied, g is a linear function.

52 Chapter 2

Well, maybe. While the counterexample for f is a definite proof that f
is not linear, I only demonstrated that g was linear for a = 3 and b = 4. Maybe
it’s not linear if I use other values. As I mentioned in the Introduction, some-
times an example is all we need to get the gist of an idea, and I think that’s
the case here. You can develop a formal proof for the linearity of g (or any
other function), but it takes a little more work [150].

The moral of these examples is that even if a function appears simple,
we can’t assume it’s linear. If we’re not sure that a function is linear, we need
to check.

Linearity is so important that the study of almost any physical phenome-
non begins by simplifying it to create an approximation where all the equa-
tions needed to describe that approximation are linear. Once we’ve gotten
as much out of this simplified version as we can, we gradually include op-
erations that are not linear, or nonlinear. Nonlinear operations include tak-
ing a square root, or taking the sine or cosine of some value. Anything that
doesn’t satisfy both conditions L1 and L2 is nonlinear.

We need nonlinear operations to accurately describe the weather, the
sounds of a piano, how water waves move, how trees grow, and how human
languages spread. Almost any useful description of a real-world phenomenon
requires nonlinear operations. This is unfortunate, because nonlinear op-
erations cause our math to become more complicated and harder to under-
stand. But we need these nonlinearities, becausemost linear approximations
are bad at making accurate predictions.

To see how a strictly linear model can fail, consider the time it takes a
person to run some distance. An adult male can typically run a 1-kilometer
(1K, or 1,000 meter) race in about 4 minutes [181].

Now suppose we want to estimate how long it would take that person
to run a marathon. A linear model would say that since there are about
42,000 meters in a marathon, there are 42,000 / 1,000 = 42 segments of
1,000 meters each. In symbols, where f (x) is the time it takes to run xme-
ters, the linear model would say f (42,000) = 42× f (1,000) = 42× 4 = 168,
so it would take 168 minutes, or about 2 hours and 50 minutes, to complete
the marathon. But that can’t be right, because in a 1K race you can burn
up all your energy quickly and run fast, while you have to conserve your en-
ergy and run at a slower pace to complete a marathon. In fact, the average
marathon time for an adult male is about 270minutes, or about 3 hours and
30minutes [130].

The linear model underestimated the marathon time by about 40 min-
utes, which is significant for a race of a few hours.

Cooking is also non-linear. Suppose that a particular recipe tells you
to cook a dish for 100 minutes at 450 degrees Fahrenheit. If cooking were
linear, you’d get the same results by cooking the dish for 1/10 the time at
10 times the temperature, or 10 minutes at 4,500 degrees. You’d also get
the same results by cooking it for 1 minute at 45,000 degrees. That’s over
four times the heat at the surface of the sun [51]! While nobody would com-
plain that the resulting black lump was undercooked, I don’t think it would

Quantum States 53

be nearly as tasty as if you’d followed the recipe’s original advice. Cooking
times and temperatures are definitely not linear.

There’s nothing special about running or cooking. Almost everything
in the real world is nonlinear. This makes it astonishing that the core of
quantum mechanics is linear—not an approximation, but actually linear.
Nobody really knows why this is the case, but it is. The result is that our
math is going to be accessible and comprehensible to a degree we’d never
have guessed from our experience with describing running, cooking, or al-
most any other real-world phenomenon. This is a gift we’re going to make
use of frequently, by using the linearity properties L1 and L2 to simplify our
equations.

Bases
Let’s use linearity right away to make vectors easier to work with, by repre-
senting them as sums of simpler vectors.

Imagine a vector where every element is 0 except for one element, which
has the value 1. In this section, I’ll call this vector bk, where the integer in-
dex k tells us where the 1 is located, numbering from top to bottom and, as
always, starting at 0. I’ll assume that the dimensionality of these vectors will
be clear from context, matching the dimensionality of any other vectors be-
ing discussed. For any dimensionality d, there will be d of these vectors, each
one with a single 1. I’ve shown them in Equation 2.31 for d = 3.

b0
∆
=

10
0

 , b1
∆
=

01
0

 , b2
∆
=

00
1

 (2.31)

We call these vectors basis vectors or bases (notice that the i changed to an
e). Together, they form a basis set, or basis for short. We call a basis set built
from this recipe a computational basis or conventional basis of d dimensions [49].

Even though our vectors will generally have complex elements, these
basis vectors are composed only of the numbers 0 and 1.

Basis vectors are important because they let us break up other vectors
into their individual elements, or assemble such elements into a single vec-
tor. For example, in the traditional 2D Cartesian coordinate system, the X
and Y axes are more formally represented as basis vectors, and every point in
that 2D plane is created by scaling those basis vectors and then adding them.

Just as in the Cartesian coordinate system, we can write any vector v as
a sum of scaled basis vectors. The steps are shown in Equation 2.32, using
our vector properties in their most basic form, by assuming that the function
f returns its input as its output (that is, f (x) = x). That means we can ignore
the function (and those giant parentheses). Remember that each νk is a com-
plex number.

54 Chapter 2

v =

ν0ν1
ν2



=

ν00
0

 +

 0
ν1

0

 +

 0

0
ν2

 Use property V2

= ν0

10
0

 + ν1

01
0

 + ν2

00
1

 Use property V1

= ν0b0 + ν1b1 + ν2b2

(2.32)

We can generalize this pattern for vectors of any dimensionality d, giv-
ing us Equation 2.33. We call each value νk in Equation 2.33 a coefficient or
coordinate of v in the basis b.

v =
∑
k∈[d]

νkbk (2.33)

I boxed this equation because we’ll often write vectors in this form. It
lets us manipulate a vector by changing its individual elements νk, which is
frequently more convenient than modifying the whole vector all at once.

The basis vectors bk that I defined in Equation 2.31, generalized for any
number of dimensions, will be our default for the rest of the book. From
now on, every time I refer to “a basis” or “the basis vectors,” I will always
mean vectors in the form of those in Equation 2.31 (and their extensions
to any number of dimensions). Any time I use some other set as a basis, I’ll
say so explicitly.

Before we move on, I want to point out that we define the computa-
tional basis vectors bk in this way for two reasons. First, this is the basis used
in almost every discussion of quantum computing, so it’s a good thing to get
used to. Second, it’s a great choice for a basis, because these basis vectors
make the math of quantum algorithms particularly clear. If you want, you
can create an infinite number of other basis sets, and as long as they satisfy
a few rules [283] [248], each one will be just as useful as the computational
basis (though perhaps harder for people to interpret).

There are a few more things to learn about vectors and bases that will
be of great value throughout the rest of the book. These will be our focus in
the next few sections.

Quantum States 55

The Dot Product
You don’t have to be a mechanic (quantum or otherwise) to appreciate a
good multitool. A Swiss army knife, Leatherman, or other multipurpose
tool seems to solve an unlimited number of everyday problems.

In quantum computing, a function called the inner product is our version
of a multitool. Much of what we do with this tool is abstract and algebraic,
largely because our vectors will be of high dimensionality and thus contain
many complex numbers. This makes the actions we perform difficult to vi-
sualize, since the pictures we can draw on the page are limited to two dimen-
sions (or three, if we’re careful and we agree on a lot of conventions).

Happily, there’s a stripped-down version of the inner product that ap-
plies nicely to two-dimensional vectors of real numbers. This mini-tool is
called the dot product.

With 2D vectors and the dot product, we can draw pictures of many of
the operations we’ll use in this book. Building our intuition with these 2D
pictures can help us reason about what these operations will do when we
apply their full versions in abstract spaces of higher dimensions.

Thus, in this section we’ll see a bunch of useful operations that we can
perform in 2D using the dot product.

There are three main reasons for introducing these ideas to you here,
even though you might not see the value of learning all of this now.

First, we’ll be able to carry out much of our discussion in two dimen-
sions, where we can draw pictures and grasp the geometry directly. Second,
by covering these ideas now, together, we can build each idea on the previ-
ous ones while they’re still fresh in our minds. Finally, having these ideas
even roughly in place now will be of great value later. We’ll be able to con-
sider more complicated ideas in a smooth and coherent flow, rather than
having to constantly stop to introduce a piece of technique, resume the dis-
cussion, and then stop again to talk about the next underlying idea. What
we do here will pay off later.

The vectors we’ll work with in this section will each be made up of only
two real numbers. To stress this limitation, I’ll call them arrows. We can draw
arrows by putting their tails at the origin and their heads at a location given
by two real numbers representing distances along the X and Y axes, in that
order. Because arrows are vectors (though a very special case), I’ll name
them like vectors, with lowercase, bold roman letters like v and w.

For just this section, I’ll label angles with lowercase Greek letters, like α
and θ. Remember that these are real numbers, not just because they’re 2D
angles, but also because complex numbers don’t appear in this section (I’ll
let you know when we switch back to complex vectors, starting at the section
on inner products).

56 Chapter 2

Also for this section only, I’ll do everything in the 2D Cartesian coor-
dinate system you learned about in high school. As usual, it has two axes
named X and Y, set at right angles to one another. The point where they
meet is called the origin and has coordinates (0, 0). Figure 2-16 shows an
arrow a in the plane.

Figure 2-16: An arrow a in a typical 2D
plane with perpendicular axes X and Y

The components of this arrow a are real numbers ax and ay.
Our first goal will be to find the angle between two known arrows.

Figure 2-17 shows an arrow a that makes an angle α with the X axis and
an arrow b that makes an angle β. We want to find the angle γ between a
and b.

Figure 2-17: Finding the angle γ between
a and b

For now, all we know are the coordinates of a and b. Let’s use these to
label the sides of the right triangles formed by these vectors, as in Figure 2-18.

Quantum States 57

Figure 2-18: Drawing a right triangle for each arrow

The components of a and b can be read off the right triangles they form
with the X axis. I’ve written the coordinates in Equation 2.34.

ax = |a| cosα, ay = |a| sinα

bx = |b| cosβ, by = |b| sinβ
(2.34)

I’ve written |a| for themagnitude of a, or the distance from the origin to
the tip of a. This is a real number. Similarly, |b| is a real number represent-
ing themagnitude of b. We can find thesemagnitudes from the Pythagorean
rule, using the coordinates we just identified in Equation 2.34, giving us
Equation 2.35.

|a| =
√
ax2 + ay2, |b| =

√
bx2 + by2 (2.35)

The next step will come out of nowhere. I’ll assert that by forming the
sum axbx + ayby, we’ll get back an expression that tells us how to compute γ.

Havingmade this claim, let’s see that it’s true. In Equation 2.36, the first
line shows this expression involving the starting combination of coordinates,
and the last line gives us an expression involving γ.

(axbx) + (ayby)

= (|a| cosα |b| cosβ) + (|a| sinα |b| sinβ) From Eq. 2.34

= |a| |b|(cosα cosβ + sinα sinβ) Rearrange

= |a| |b| cos(α – β) (⋆)

= |a| |b| cos γ Write γ = α – β

(2.36)

58 Chapter 2

The linemarked with a star uses a rule from trigonometry that is eas-
ily forgotten, even if you’ve seen it before. It’s called the cosine double-angle
rule, and it tells us that the mess on the right end of the second line of
Equation 2.36 is just a complicated way of writing cos(α – β). If this isn’t fa-
miliar, or seems unlikely, you can rederive the rule yourself [60].

The last line of Equation 2.36 gives us an expression involving the angle γ
between the two arrows. The expression requires their magnitudes, but since
we know the components of the arrows, we can get their magnitudes from
Equation 2.35.

The number |a| |b| cos γ that we get from Equation 2.36 is the dot prod-
uct I mentioned at the start of this section. Since each line of Equation 2.36
is a different expression for the same number, any of them could be used as
the definition of the dot product. Traditionally, we use the expression either
on the last line or at the start of the first line. We write this relationship by
placing a vertically centered dot between the arrow names, as in a · b, which
we read aloud as “a dot b” (hence the name “dot product”). With these agree-
ments, the definition of the 2D dot product is thus given in Equation 2.37.

a · b ∆
= ax bx + ay by
= |a| |b| cos γ

(2.37)

We can solve for cos γ, or γ itself, from Equation 2.37 to give us
Equation 2.38.

cos γ =
a · b

|a| |b|

γ = cos–1
(

a · b
|a| |b|

) (2.38)

The angle γ between two arrows tells us to what extent they point in the
same direction. If γ = 0, then the arrows point in exactly the same direction
(though they might have different magnitudes). If γ = π (or 180 degrees),
then they point in exactly opposite directions. And if the angle is π/2 or –π/2
(that is, either 90 or –90 degrees), then the two arrows are perpendicular to
one another. A synonym for perpendicular is orthogonal.

Figure 2-19 shows several different pairs of arrows with different angles γ
and their dot products beneath them. For this figure, I set bothmagnitudes
to 1 (that is, |a| = |b| = 1), so cos γ = a · b.

Quantum States 59

Figure 2-19: Rows 1 and 2: The angle γ for each pair in radians and degrees. Row 3: A pair of arrows,
each of magnitude 1, with that γ. Bottom: The cosine curve from 0 to π, showing the dot product for each
pair of arrows, along with all the other possible pairs of arrows.

Equation 2.35 shows us how to compute themagnitude of an arrow from
its components. We can also findmagnitudes with the dot product.

To see this, I’ll again just give you the formula that I know will do the job,
and then prove that it works. In this case, themethod is to find the dot prod-
uct of an arrow with itself, which will give us the squaredmagnitude of the
arrow.

Let’s first run through it using components. Using the definition of
Equation 2.37, we can find a · a as shown in Equation 2.39.

a · a = ax ax + ay ay

= ax2 + ay2
(2.39)

Comparing this to Equation 2.35, we see that a · a gives us the square of
themagnitude of a, or in symbols, |a|2 = a · a.

To build up our skills at manipulating these kinds of relationships, let’s
look at a different way to show that a · a is the squaredmagnitude of a.

I’ll start with the version of the dot product given by the last line of
Equation 2.36. The steps are in Equation 2.40.

a · a = |a| |a| cos γ From Eq. 2.36

= |a| |a| cos 0 The angle γ between a and
itself is 0

= |a| |a| Since cos 0 = 1

= |a|2 Matching Eq. 2.35

(2.40)

60 Chapter 2

We can use the dot product to answer two important questions about
arrows. First, given an arrow, does it have amagnitude of 1? This will be im-
portant to us because this is a condition required of the vectors that describe
quantum states.

Second, given two arrows, are they perpendicular to one another? This is
useful to know because perpendicular arrowsmake themost convenient ba-
sis (the basis vectors bk we saw in Equation 2.31 are all perpendicular to one
another). It also reduces our conceptual overhead when operations get com-
plicated, since we can focus our attention on just one component at a time.

Let’s see how the dot product helps us with checking both of these
conditions.

Using the Dot Product
Let’s first look at how the dot product lets us check if an arrow has a
magnitude of 1. Equation 2.40 tells us that the squared magnitude of a is
given by a · a. So if this dot product has a value of 1, we know that |a| = 1.
Boom, done!

Now let’s check if the two arrows are perpendicular. I’ll start with the
form of the dot product on the second line of Equation 2.37. If the arrows
each have a nonzero magnitude, but their dot product is 0, then we know
that cos γ must be 0. That can only happen if γ = π/2 or γ = –π/2, both of
which correspond to a right angle, which we can see visually in the middle
of Figure 2-19. So, to check if two arrows are perpendicular, we can com-
pute their dot product. If that result is 0, then we know that the arrows
are perpendicular. If the result is anything other than 0, they are not per-
pendicular (though the closer the result is to 0, the closer they are to being
perpendicular).

The dot product of any arrowwith itself, given in Equations 2.39 and 2.40,
generalizes to arrows of any number of dimensions d. We create the product
of every pair of corresponding entries, as we did for the first two entries in
Equation 2.37, and then add up all of these products. The resulting formula
is given in Equation 2.41. Remember that [d] stands for the sequence of
integers from 0 to d – 1.

a · b =
∑
k∈[d]

ak bk (2.41)

We’ll often want to find themagnitude of a vector. Equation 2.40 showed
us how to compute that using the dot product. Let’s write the formulas for
the squared magnitude, and the magnitude itself, in one place for easy refer-
ence. They’re in Equation 2.42.

|a|2 = a · a
|a| =

√
a · a

(2.42)

Quantum States 61

We’ve seen how the dot product helps us determine if an arrow has a
magnitude of 1 and how to find the angle between two arrows. Recall that
we’re learning these things in 2D, using the dot product, because all of these
operations will be useful when we later generalize the dot product to do sim-
ilar operations using vectors that describe quantum states, which are made
up of many complex numbers. That’s a world that we can’t draw direct pic-
tures for. Let’s continue with another 2D operation that we can draw, and
which we’ll also later generalize for these larger, more abstract vectors.

Projection
Let’s pull another gadget from our dot product multitool. It’s a technique
called projection, which involves a pair of arrows. We want to determine how
much of an arrow a is, in some sense, a part of, or contained in, another ar-
row b. That’s pretty vague, so let’s tighten it up and draw a picture of the
process.

Think of someone with a flashlight, standing far away from the two ar-
rows. They’re shining the light onto a from a direction perpendicular to b,
as shown in Figure 2-20(a). This causes the arrow a to cast a shadow, or pro-
jection, onto b.

Figure 2-20: Shining a light on a from a direction perpendicular to b casts a
shadow, or projection, of a onto b.

Figure 2-20(b) shows the shadow, and the thick line shows the projection
of a onto b. The geometry in part (b) tells us that the magnitude of the pro-
jection is given by |a| cos θ. As we’ve seen, we can find both |a| and cos θ
using the dot product.

What if b is pointing the other way, so a doesn’t fall onto it at all, as in
Figure 2-21? We can still compute the magnitude of the projection of a onto
b using the dot product, just as before. In this case, we’ll get back a negative
real number, since the cosine curve is negative for angles greater than π/2
(as shown in Figure 2-19).

62 Chapter 2

Figure 2-21: Projecting arrow a onto b when the angle is
greater than π/2

If all we care about is the magnitude of the projection, we’re done. But
frequently, we’ll want to produce a new arrow, a′, in the same direction as b,
but with a magnitude given by the dot product with a. This new arrow is, in
some loose sense, the amount of a that is also part of b. Figure 2-22 shows
the idea.

Figure 2-22: Creating a′ from
the projection of a onto b

The ability to find this arrow (well, the generalized version of this arrow)
will prove to be useful when we work with quantum states, so let’s see how to
find it in the 2D world.

We know from Figure 2-22 that the magnitude of a′, or |a′|, is |a| cos θ.
Using cos θ from Equation 2.38, we can write Equation 2.43.

|a′| = |a| cos θ From Fig. 2-22

= |a|
a · b

|a| |b|
Use cos θ from Eq 2.38

=
a · b
|b|

Cancel |a| / |a|

(2.43)

How do we scale b to this magnitude? The easiest, and usual, way is to
make a version of b that has a magnitude of 1 and then scale it by the quan-
tity in Equation 2.43. We call an arrow with a length of 1 a unit arrow, and we
say it has unit magnitude. Similarly, we call any vector with a length of 1 a unit
vector. So in this situation, we want to create a unit arrow in the direction of b.

To make a version of b with a magnitude of 1, we can scale b by dividing
it by its magnitude, producing b/ |b|. This will be an arrow pointing in the
same direction as b, but with a magnitude of 1. We sometimes call this a unit
arrow (some authors use a hat to mark that an object has a magnitude of 1,
so b̂ = b/ |b|). The process is shown in Figure 2-23(a).

Quantum States 63

Figure 2-23: (a) The arrow b/ |b| is an arrow pointing in the direction of b with a
magnitude of 1. (b) Scaling b/ |b| with the value in Equation 2.43 gives us a′, the
projection of a onto b.

To find a′, we multiply the unit arrow in the direction of b by the scalar
given in Equation 2.43. The result is shown in Equation 2.44.

a′ =
a · b
|b|

b
|b|

Scale b/ |b| by Eq. 2.43

=
a · b
b · b

b Use |b|2 = b · b from Eq. 2.42

(2.44)

In the second line, I replaced |b| |b| with b · b because it saves us the
trouble of explicitly computing the magnitude of |b|. The arrow a′ we just
made is shown in Figure 2-23(b).

The beautiful thing about this expression for a′ is that it doesn’t explic-
itly involve the coordinates of the arrows. We call this a coordinate-free expres-
sion. These types of expressions are indispensable when we write quantum
algorithms with vectors that have large numbers of dimensions. If we had to
write out all the coordinates, the expressions could become gigantic; how-
ever, the coordinate-free versions don’t change at all, whether our arrows
have 2 dimensions or 200.

Suppose that we project a onto b, and then we project that result onto
b again. I suggest you pause for a moment and think about this. If you were
in charge of setting up all of these relationships, what would you want the
result to be?

Here’s how it works out. Start by noting from Equation 2.44 that pro-
jecting a onto b gives us a scaled version of b. I’ll write the scaling term as s,
so the projection can be written sb. Now I’ll apply Equation 2.44 to project
sb onto b, giving us Equation 2.45.

sb · b
b · b

b = s
b · b
b · b

b = sb (2.45)

The dot products cancel one another.
So, we’ve found that if we have the projection of a onto b, we can project

that result back onto b again as many times as we like, and it doesn’t change.
In other words, the projection of sb onto b is just sb, unchanged. Is this what
you’d have wanted it to be?

64 Chapter 2

I find this result reassuring, because to me it makes geometric sense:
The shadow of sb onto b is just sb itself.

Let’s unfold one final gadget from our dot product multitool.

Change of Basis
Using projection, we can find the coordinates of any arrow as a combination
of other arrows. For us, this other set of arrows will usually be the computa-
tional basis. The idea is similar to representing a conventional 2D point (x, y)
as a combination of the X axis scaled by x and the Y axis scaled by y.

Figure 2-24(a) shows an arrow p and a pair of orthogonal arrows a and
b. For simplicity, I’ll assume that all arrows in this section have a magnitude
of 1 (that is, they are of unit magnitude). In symbols, |a| = |b| = |p| = 1.
This convention will make the math simpler. If you prefer the more general
case, you can replace every instance of each arrow, say a, with a/ |a|.

Figure 2-24: (a) All three arrows have unit
magnitude. (b) The coordinates pa and pb
of p with respect to a and b.

In Figure 2-24(b), we see that the coordinates of p with respect to a and
b are the projections of p onto each of these arrows. We can write this in
symbols in Equation 2.46.

p = paa + pbb = (p · a)a + (p · b)b (2.46)

Let’s rotate the basis arrows a and b and call the rotated pair c and d, as
in Figure 2-25(a).

Figure 2-25: (a) Rotating the basis arrows a and b from Figure 2-24,
which I’ve renamed c and d. (b) The coordinates pc and pd of p.

Quantum States 65

We can find the coordinates of p, shown in Figure 2-24(b), from
Equation 2.47.

p = pcc + pdd = (p · c)c + (p · d)d (2.47)

The generalization of this approach is called a change of basis. Given the
coefficients of an arrow with respect to one set of basis arrows, and a second
set of basis arrows we can find the coefficients of that arrowwith respect to the
second set. This is sometimes a useful step in quantum algorithms, enabling
us to represent an operation in a more compact form [211] [117] [220].

This wraps up our discussion of 2D arrows in the plane. Quantum com-
puting generalizes our arrows into complex vectors, sometimes with many
dimensions. The wonderful thing about this process is that all the math
we’ve developed will carry over into the new realm with only small changes.
The sad thing is that we won’t be able to draw pictures of objects and spaces
that have huge numbers of dimensions. That’s why developing our experi-
ence and intuition for these processes in 2D was so important.

Our next step will be to explore and embrace this generalization so that
high-dimensional complex vectors will feel nearly as natural and convenient
as 2D arrows.

The Inner Product
Now that we’ve built up some intuition with 2D, real-valued vectors, we’ll
return to discussing the complex vectors that we use in quantum computing.

Greek letters will now once again refer to complex numbers, not angles.
Lowercase bold roman letters like v and w will refer to vectors, now made up
of complex numbers. (You might expect that for consistency we’d use bold
Greek letters for vectors of complex numbers, and I think that would make a
lot of sense. Alas, that’s not how the standard notation developed.)

Postulate 1 tells us that we represent quantum information with vectors
of complex numbers, also called complex-valued vectors, or complex vectors for
short.

Since they have the word vector in their name, we can be sure that com-
plex vectors obey the scalar multiplication and vector addition properties
(V1 and V2) that we met in Equations 2.24 and 2.25. This is good, as those
properties will help us keep our math short and comprehensible.

The dot product was a great multitool for real-valued vectors, or ar-
rows. We’d like to generalize it to a version that produces similar results for
complex-valued vectors.

That’s a pretty vague desire. We can imagine lots of different ways to
produce similar results. Let’s start with the condition that when we use this
new version with real-valued vectors, we get the same results that we get
from the dot product.

In computer science terms, we’d like our new operation to degrade
gracefully. Thus, it will give us useful results for complex vectors and the
same results we got from the dot product when we give it real vectors.

66 Chapter 2

Of the many possible ways to define a generalized dot product for com-
plex vectors, one in particular has become typical. It has two great qualities.
First, it does indeed match the dot product for real vectors. Second, it makes
only a small change to the dot product formula. This means that it will pro-
duce results that are much like the dot product’s. This is important, because
it means we can leverage some of our geometric intuition from the 2D dot
product when understanding this bigger and more abstract function.

This is the moment where pictures and geometric reasoning largely end
and the symbolic manipulation of algebra pretty much takes over. Now we
have to reason not by looking at pictures, but by thinking about behavior.
Our objects are no longer friendly arrows, but single letters that represent
vectors made of many complex numbers. And our operations aren’t like
shining a flashlight and looking at the shadow, but rather manipulating these
letters algebraically. Having 2D experience and intuition gives us helpful
analogies to refer to in this world of abstract objects and relationships.

For now, let’s advance slowly and carefully.

Defining the Inner Product
Our generalization of the dot product is called the inner product. For the mo-
ment, I’ll write it as a function named “inner product.” It takes two vectors
as arguments and returns a number.

Let’s build things up starting with real numbers. We know that for any
real number a, its squared magnitude is a2, giving us its squared distance
from the origin of the number line (for example, 32 = (–3)2 = 9). When we
find the dot product of a real vector with itself, we find the squared magni-
tude of each element and then add all of these products together.

Let’s follow this pattern for complex vectors. For any complex number
α, Equation 2.10 tells us that its squared magnitude can be written αα. So,
let’s say that to form the inner product (whatever that will be) of a vector v
of many complex numbers, we’ll use Equation 2.10 to get the squared mag-
nitude of each element and then add them together.

My provisional version of the inner product will conjugate the first argu-
ment, as shown in Equation 2.48.

inner product(a, a) =
∑
k∈[d]

αkαk (2.48)

If we want to find the dot product of two real vectors a and b, we multi-
ply all the corresponding terms together and add them up. So, I’ll say that
we’ll do the same thing with our inner product, multiplying together each
pair of terms. But as we’ve seen, one of them will be conjugated. The result
is the two-vector version of the inner product shown in Equation 2.49.

inner product(a,b) =
∑
k∈[d]

αkβk (2.49)

Structurally, this looks a lot like the dot product in Equation 2.41, so
that’s good. And if we give it two real vectors, then the conjugation does

Quantum States 67

nothing, so we multiply together corresponding terms and add them up.
Hey, that means we get back the same value as we did from the dot product!
We’ve achieved both of our goals.

In fact, we’ve just come up with the formula for the inner product that
we normally use in quantum computing.

It would be nice to have a more compact way to write the left side of
Equation 2.49. What notation should we choose?

We could write the two complex vectors with a symbol between them,
like we did with the dot product. Heck, we might even use a dot again! But
mathematicians developed a different notation.

The inner product of two complex vectors a and b is written by naming
the vectors in order with a comma between them and placing that sequence
between narrow angle brackets, ⟨ and ⟩. With these symbols, the inner prod-
uct of a and b is written ⟨a,b⟩. The expression ⟨a,b⟩ is read out loud as “the
inner product of a and b.”

The brackets are not the less-than and greater-than symbols < and >
because they are much taller and narrower. Sometimes these symbols are
called chevrons. The LaTeX typesetting system refers to the symbols ⟨ and ⟩
respectively as langle and rangle, which seems reasonable to me.

We can now write the inner product as a sum of products, each created
from the conjugate of a term from the first vector multiplied with its corre-
sponding term in the second vector. I’ve summarized this in Equation 2.50.

⟨a,b⟩ ∆
=
∑
k∈[d]

αk βk (2.50)

Equation 2.51 expands Equation 2.50 to show its explicit components.

⟨a,b⟩ = α0β0 + α1β1 + · · · + αd–1 βd–1 (2.51)

Since taking the conjugate of a real number causes no change, if we use
real-valued vectors, the terms αkβk can be written ak bk. That matches the
dot product in Equation 2.41, confirming that the inner product degrades
gracefully, just as we wanted!

Finding a Complex Vector’s Magnitude
Just as the dot product of a real vector with itself gives us the squared mag-
nitude of that vector, the inner product of a complex vector with itself gives
us the squared magnitude of that vector. I’ve written this in symbols in
Equation 2.52.

⟨a, a⟩ =
∑
k∈[d]

αk αk = |a|2 (2.52)

Equally important is the magnitude of a, which is the positive square
root of Equation 2.52, shown in Equation 2.53.√

⟨a, a⟩ = |a| (2.53)

68 Chapter 2

Choosing Which Term to Conjugate
We’ve seen that the inner product of two complex numbers is given by
Equation 2.50, where the first term in each product is conjugated. We could
have conjugated the second argument instead. Why did we choose the first
argument?

No good reason, really. The choice is essentially arbitrary. It’s like ask-
ing why, in a 2D coordinate system, we label the axes X and Y, and point X
to the right and (usually) Y upward. It’s just tradition.

To everyone’s misfortune, mathematicians and physicists have differ-
ent traditions for which argument gets conjugated when forming the inner
product. Historically, mathematicians conjugate the second argument [120]
[153], while physicists (including people in the quantum computing field)
conjugate the first argument [213] [146]. This is important because the in-
ner product is not commutative; we’ll see that the order of the arguments
matters.

Most authors conjugate the term that’s conventional in their field with-
out explicitly identifying it, so this inconsistency can cause all kinds of confu-
sion and trouble. Keep this in mind when you read any reference material,
and make sure that you know whether the author is using the physics-based
convention of conjugating the first term or the mathematician’s convention
of conjugating the second term instead.

Both mathematicians and physicists are mostly consistent in their own
fields, so in quantum computing discussions (including this book) it’s almost
always the first term that gets conjugated when forming the inner product.

This choice has a big impact when we use the inner product to project
one complex vector onto another, as we’ll see next.

Projection with the Inner Product
The asymmetry of the inner product is important when we use it to project
one complex vector onto another. It’s essentially the same operation we per-
formed for real vectors, except that if we project one complex vector of d
elements onto another we have 2d complex numbers, and helpful pictures
are hard to create. That’s why we looked at the dot product version first.

To set the stage for this projection, recall that Equation 2.44 showed us
how to project a 2D arrow a onto an arrow b, getting back a scaled version of
b, or sb for some real number s. As we saw in Equation 2.45, projecting that
result onto bmade no change, giving us back sb again.

We’d like to get the same behavior from the inner product. But because
the inner product isn’t commutative, we have to choose in which order to
write our vectors. Now that we have complex vectors, I’ll write the projection
of vector v onto some other vector w as αw, or the vector w scaled by some
complex number α.

To project αw back onto w, we form the inner product of αw and w.
Should we write this inner product with our scaled vector first, giving us the
vector ⟨αw,w⟩w, or with the scaled vector second, ⟨w,αw⟩w? We know that

Quantum States 69

these two expressions return different vectors, because they conjugate dif-
ferent numbers. For consistency with the dot product, we want the version
that, when we project αw onto w, gives us back αw again.

Let’s try it out both ways, starting with ⟨αw,w⟩ in Equation 2.54. Since
we want to stay close to the dot product, I’ll use the form of Equation 2.44
to compute the projection, but I’ll use the inner product rather than the dot
product. Our hope is to get back our starting vector, αw. As usual, when
expanding the inner product I’ll assume our vectors are of dimension d (that
is, they have d elements, numbered 0 to d – 1).

αw
?
=
⟨αw,w⟩
⟨w,w⟩

w Try αw as the first argument

?
=

∑
k∈[d] αwk wk∑
k∈[d] wk wk

w Expand the inner products

?
= α

∑
k∈[d] wk wk∑
k∈[d] wk wk

w Pull the constant α out front

/= αw The fraction is 1

(2.54)

That’s not good. We’re getting back αw, which is not our starting vector
αw (unless α has no imaginary component).

Let’s try the other order, placing αw in the second position of the inner
product, as shown in Equation 2.55.

αw
?
=
⟨w,αw⟩
⟨w,w⟩

w Try αw as the second argument

?
=

∑
k∈[d] wk αwk∑
k∈[d] wk wk

w Expand the inner products

?
= α

∑
k∈[d] wk wk∑
k∈[d] wk wk

w Pull the constant α out front

= αw Just what we started with!

(2.55)

Success! It makes sense that αw belongs in the second argument, be-
cause then α never gets conjugated. Our problem in Equation 2.55 came
from placing α in the first argument, so that we ended up with αw rather
than our starting vector, αw.

We can summarize this by saying that when we use the inner product to
project one complex vector onto another, the vector we’re projecting goes in
the second position and the vector we’re projecting it onto goes in the first
position.

70 Chapter 2

So that we can easily refer to it later, I’ve summarized this rule as
Equation 2.56.

Write projections as ⟨onto, from⟩ (2.56)

Forgetting this rule and putting the arguments in the wrong order is an
easy error to make when writing and analyzing quantum programs, so I rec-
ommend that you commit it to memory and save yourself some debugging
sessions!

We’ve just seen a special case of a more general property of the inner
product: If we reverse the order of the arguments, we conjugate the result.
In symbols, we can write ⟨α,β⟩ = ⟨β,α⟩. This property is called conjugate
symmetry.

Don’t forget that we’re using the physicist’s convention of conjugating
the first argument, not the mathematician’s convention of conjugating the
second [120]. This inconsistency is a sad situation, and it can easily cause all
kinds of needless misunderstandings. If you’re not certain which conven-
tion is being used by an author, check! In this book, I follow the tradition in
quantum computing and conjugate the first argument in a complex inner
product, so our projections will always follow Equation 2.56.

Braket Notation
Our last big topic in this chapter is a fun one. We’ll make all of our math
simpler and easier to comprehend with a new piece of notation for complex
vectors.

Everyone uses this notation, so it’s definitely worth getting familiar with.
It may look strange at first blush, but it will soon become second nature.

This style is called braket notation (or bra–ket notation), pronounced like
the word bracket. The notation and its name were devised by the physicist
Paul Dirac in 1939 [50]. It’s also referred to as Dirac notation, in his honor
[140] [255].

In braket notation, a complex vector is written not as a bold letter like
v or w, but as a lowercase Greek letter with a vertical bar on the left and a
rangle on the right, such as |α⟩ or |β⟩. Together, this bundle of symbols is
called a ket. We pronounce |α⟩ out loud as “ket alpha.”

Note that this new symbol is not a single complex number, which in this
book is represented by a lowercase Greek letter by itself, like α or β. When
a lowercase Greek letter is wrapped in ket notation, like |α⟩ or |β⟩, it refers
to a vector of complex numbers, usually with many elements. It’s the ket sym-
bols that tell us that we have a vector and not a single number.

I’ll use the words vector and ket interchangeably from now on. When you
see a ket, such as |α⟩, you know you’re looking at a vector of one or more
complex elements. Sometimes authors will place a subscript after the ket to
indicate the number of elements, or dimensionality. So, |γ⟩8 is a complex

Quantum States 71

vector with 8 elements. This kind of explicit subscript is rare, however, since
the dimensionality is usually clear from the discussion.

Using the language of linear algebra, we represent a ket as a column
matrix, which we’ve seen is a grid of numbers that has one column and d
rows, one for each of the ket’s dimensions. For example, Equation 2.57
shows a ket |α⟩made up of four complex numbers, named α0 through α3.
We start numbering at the top and proceed downward. Note that the ele-
ments, like α0, aren’t wrapped in ket notation, so they’re just complex num-
bers, not vectors.

|α⟩ =


α0

α1

α2

α3

 (2.57)

We’d like to be able to multiply kets together, for example to form inner
products. But there’s a problem. The usual rules of matrix multiplication
require that when two matrices are multiplied, the number of columns in
the left matrix and the number of rows in the right matrix must be the same.
This prohibits us from multiplying a ket with another ket (if matrix multi-
plication is unfamiliar to you, or you’ve forgotten the details, check out the
many online websites and videos on the topic, such as [271] and [116]).

On the other hand, we canmultiply a column matrix with a row matrix
of the same number of elements. If we could turn a ket into a row matrix,
then we could multiply a ket in its usual column matrix form with another
ket written as a row matrix and get back a single complex number. In other
words, if we conjugated the first ket and also turned it from a column into a
row, we could compute an inner product by multiplying the two matrices.

Let’s find a way to do that. The effort will return massive rewards. We’ll
see in later chapters that quantum algorithms are built from treating all of
our objects as matrices and combining them with matrix multiplication.

Happily, if we want to write the elements of a ket in a row, rather than
a column, there’s nothing stopping us from simply writing it that way. This
row won’t be a ket anymore, but it’s something that we can multiply with a
ket. Problem solved! To prevent confusion, we need a new piece of notation
that helps us keep track of when a list of complex numbers is being written
as a column (that is, a ket) or as a row. This is important because, as we’ll
see, rows and columns will describe different kinds of mathematical objects.

There is a standard name for turning a column matrix into a row matrix:
It’s called taking the transpose of the matrix. The transpose of a column is a
row, and the transpose of a row is a column (we’ll see in Chapter 3 that we
can also transpose matrices of many rows and/or columns).

To indicate the process “take this matrix and form its transpose,” we
augment the matrix name with a superscript of a capital roman T. So if we
have a ket |ω⟩, its transpose |ω⟩T is a row of the same elements, now written
left to right, as shown in Equation 2.58.

72 Chapter 2

|ω⟩ =


ω0

ω1

ω2

ω3

 , |ω⟩T =
[
ω0 ω1 ω2 ω3

]
(2.58)

We can now multiply any ket |α⟩ with any other ket |β⟩ by first turning
one of these column matrices into a row matrix. For the rest of this chapter,
I’ll always turn the first column into a row (in Chapter 6, we’ll see the result
of multiplying a column on the left with a row on the right).

Equation 2.59 shows an example of multiplying two kets |α⟩ and |β⟩ in
this way, where I’ve transposed the first ket, |α⟩.

|α⟩ |β⟩ → |α⟩T |β⟩ =
[
α0 α1 α2

]β0β1
β2

 = α0β0 + α1β1 + α2β2 (2.59)

The most common reason we’ll want to do this is to compute an inner
product. That means we have to conjugate the elements of the first ket. For
example, to find the inner product of |ω⟩ and |α⟩, we can turn |ω⟩ into a row
by transposing it, and then we’ll have to conjugate every element of |ω⟩T.

We can indicate that we want to also conjugate the elements of |ω⟩T by
including the bar for conjugation along with the T for transposition. Since
these two operations don’t affect one another, we can perform them in ei-
ther order.

Let’s see this. Equation 2.60 starts with |ω⟩, then transposes it and
conjugates it to form |ω⟩T. To keep track of the order, read the symbols
from the inside out, so we start with the ket |ω⟩, then transpose it, and then
conjugate.
ω0

ω1

ω2

ω3

 , |ω⟩T =
[
ω0 ω1 ω2 ω3

]
, |ω⟩T =

[
ω0 ω1 ω2 ω3

]
(2.60)

In contrast, Equation 2.61 goes in the other order, starting with ket |ω⟩,
which is first conjugated and then transposed to get |ω⟩T.

|ω⟩ =


ω0

ω1

ω2

ω3

 , |ω⟩ =


ω0

ω1

ω2

ω3

 , |ω⟩T =
[
ω0 ω1 ω2 ω3

]
(2.61)

Equations 2.60 and Equation 2.61 produce the same result: |ω⟩ both
conjugated and transposed.

Quantum States 73

Now we can compute the inner product of |ω⟩ and |α⟩ using matrix
multiplication, by multiplying the row matrix |ω⟩T (or |ω⟩T) with the col-
umn matrix |α⟩, as shown in Equation 2.62.

⟨|ω⟩ , |α⟩⟩ =
[
ω0 ω1 ω2 ω3

]

α0

α1

α2

α3

 = ω0α0 + ω1α1 + ω2α2 + ω3α3 (2.62)

We’ll write lots of inner products in the chapters ahead, and every time
we do so, we’ll want to express it in this matrix multiplication form. That
means we’ll both transpose and conjugate the first ket. We could write this
explicitly as |ω⟩T or |ω⟩T, but linear algebra offers us a ready-made name
and symbol that combines both operations.

The conjugated transpose (or transposed conjugate) of a vector is called
the adjoint of the vector, and we write it using a dagger symbol (†) as a super-
script. This is shown in Equation 2.63, where the first term is called the ad-
joint of the ket. This is easier to read and write.

|ω⟩† = |ω⟩T = |ω⟩T =
[
ω0 ω1 ω2 ω3

]
(2.63)

We pronounce |ω⟩† out loud as “the adjoint of ket omega.” If we know
from context that “omega” refers to a ket, we can more simply say “omega
adjoint,” “adjoint omega,” or “omega dagger.”

Now we can form an inner product of two kets by taking the adjoint of
the first and then multiplying the matrices. The adjoint takes care of both
turning the first column into a row (so we can multiply it with a column) and
conjugating each element (because the inner product requires that).

The inner product of two kets |ω⟩ and |α⟩ as a matrix multiplication is
shown in Equation 2.64.

⟨|ω⟩ , |α⟩⟩ = |ω⟩† |α⟩ (2.64)

Forming the adjoint of a ket is so common and important that Dirac
gave the result its own symbol and name. He called it a bra and wrote it with
the ket symbols flipped around, so we place a langle on the left and a vertical
bar on the right. Thus, we get the definition in Equation 2.65.

⟨α| ∆
= |α⟩† (2.65)

In the same way, if we take the adjoint of a bra, we form its correspond-
ing ket, so ⟨α|† = |α⟩. This tells us that if we take the adjoint of a ket |α⟩
twice, we get |α⟩ back again, and the same holds for a bra.

Together, the bra and ket give us bra–ket, or braket, notation.

Looking at the Braket
Let’s write the inner product using our new ket and bra notation. The sec-
ond argument is a ket and the first argument is a bra, or a ket that has been

74 Chapter 2

transposed and conjugated (that is, we use its adjoint). The ket is a column
matrix and the bra is a row matrix, so if we place them side by side we’re im-
plicitly saying that we want to multiply these two matrices together.

We want to project a vector |α⟩ (our starting or from vector) onto an-
other vector |ω⟩ (our target or onto vector). Equation 2.56 tells us that |ω⟩
comes first in the inner product. Equation 2.66 shows five different but
equivalent ways to write down this inner product.〈

|ω⟩ , |α⟩
〉
= |ω⟩T |α⟩ = |ω⟩† |α⟩

= ⟨ω| |α⟩ = ⟨ω|α⟩
(2.66)

In the final form of this expression, I did away with the repeated vertical
bars and just mushed the bra and ket together.

The final expression in Equation 2.66, ⟨ω|α⟩, is how we normally write
the inner product of any two complex-valued vectors |α⟩ and |ω⟩. Note that
|ω⟩ is a ket, but when it’s the first argument in an inner product we use its
adjoint, written as the bra ⟨ω|.

And now we can see where the names bra and ket come from. In math,
any pair of matched grouping symbols (like parentheses or square brackets)
is called a bracket (note the c in that word) [233]. Dirac apparently viewed
the notation ⟨ω|α⟩ as a kind of bracket itself, and he gave the symbols those
names so that, used together to form an inner product, they form a “bra–ket.”
Thus, we call an inner product like ⟨ω|α⟩ a “braket.” I think it’s a pretty weak
pun, but that terminology is here to stay.

We pronounce ⟨ω|α⟩ out loud as “the inner product of omega and alpha,”
or “bracket omega alpha.”

In Equation 2.67, I’ve written out the components of the bra and ket ma-
trices in a braket in tableau form. Here, the vectors are of dimension d = 3.

⟨ω|α⟩ =

〈ω0ω1
ω2

 ,

α0α1
α2

〉

=
[
ω0 ω1 ω2

]α0α1
α2

 = ω0α0 + ω1α1 + ω2α2

(2.67)

The more general expression for any dimensionality is shown in
Equation 2.68.

⟨ω|α⟩ =
[
ω0 ω1 . . . ωd–1

]

α0

α1
...

αd–1

 =
∑
k∈[d]

⟨ω|k |α⟩k =
∑
k∈[d]

ωkαk (2.68)

Quantum States 75

Let’s connect the braket explicitly to the inner product defined in
Equation 2.50. They are two ways to write the same thing. That is, the braket
is the inner product we use in quantum computing (and thus, in the rest of
this book). In symbols, we can write Equation 2.69.

⟨ω|α⟩ =
∑
k∈[d]

ωkαk =
〈
|ω⟩ , |α⟩

〉
(2.69)

Now let’s take our braket out for a spin. I’ll use it to compute the magni-
tude of a ket |α⟩ of dimension d. That’s the inner product of |α⟩ with itself.
The steps are in Equation 2.70. In the second line, if we know that we’re
working with ket |α⟩, then we can write each element of |α⟩more simply
as αk.

⟨α|α⟩ =
∑
k∈[d]

⟨α|k |α⟩k Expand using Eq. 2.68

=
∑
k∈[d]

αk αk Conjugate the first argument

=
∑
k∈[d]

|αk|
2 Use |α|2 = αα from Eq. 2.10

(2.70)

The final result is of the same form as Equation 2.42, which we can now
restate in Dirac notation as shown in Equation 2.71.

||α⟩ |2 = ⟨α|α⟩

||α⟩| =
√
⟨α|α⟩

(2.71)

The expressions on the left are a little clumsy to read and write due to
those repeated vertical bars. The term ||α⟩ |2 refers to the squared magni-
tude of the vector represented by |α⟩.

Let’s lock down this new notation using something we’ve already seen:
representing a vector with respect to a set of bases, as we did for arrows in
Equation 2.46. That is, we’ll project a vector onto the basis vectors.

To keep our equations tidy and easier to read, I’ll use a symbol called
the Kronecker delta, named for Leonard Kronecker [240]. We write it as the
lowercase Greek letter δ with two integer subscripts, like this: δa,b (some-
times people leave out the comma). The symbol δa,b stands for a number
that is 1 when a = b, and otherwise is 0. I’ve summarized this definition in
Equation 2.72.

δk,m
∆
=

0, if k /= m

1, if k = m
(2.72)

76 Chapter 2

This symbol gives us a convenient way to pick out, or sift, one element
from a list. Equation 2.73 shows an example.∑

k∈[d]

δa,kαk = αa (2.73)

In Equation 2.73, δa,k is 0 for all terms except when a = k, when it’s 1.
This means that every term in the summation is 0 except αa, which is there-
fore the result of the summation. This symbol might seem unnecessary,
since if we know a, we could just write αa right away. But we’ll see in a mo-
ment that the Kronecker delta is useful for simplifying expressions.

We often use the Kronecker delta when we’re working with multiple ba-
sis states. In the computational basis, every basis state has a magnitude of
1. That is, it has unit magnitude, or it’s normalized or, more simply, normal
(note that this is a specialized use of the word “normal” and doesn’t imply
the vector is typical in some way). We also say the vector has unit norm. Ev-
ery computational basis state is perpendicular to every other, which we ex-
press by saying that they are all orthogonal to one another. We capture both
mutual orthogonality and unit magnitude together in the portmanteau word
orthonormal.

One reason we use the computational basis exclusively in this book is be-
cause it is orthonormal (there are an infinite number of orthonormal bases,
but the computational basis is the most convenient for us humans because
each state has a single 1 element, and all the rest are 0).

For generality, in this example I won’t use the computational basis vec-
tors. I’ll only assume that the basis vectors are orthonormal.

I’ve written out the projection process in Equation 2.74, using vector
notation on the left and braket notation on the right. In vector terms, we
want to find the coordinates of vector a with respect to one of the d basis
vectors, w. I said earlier that orthonormal basis vectors can help us simplify
our equations, and we’ll see that in action here.

I’ve written the vector we want to represent (a or |α⟩) as a sum of each
basis vector k (wk or |ωk⟩) scaled by γk. Our goal is to find the coordinate
(or value of γk) for one specific basis vector, wm or |ωm⟩. We can repeat the
process using each basis vector in turn to find its corresponding coordinate.

In Equation 2.74, I’ve written each step on its own line so you can see
the one thing that changes from one step to the next. Both sides of each line
mean the same thing. There’s no room for comments, so I’ve numbered the
lines and will discuss them right after the math.

Quantum States 77

Vector Notation Braket Notation

⟨wm, a⟩ (1) ⟨ωm|α⟩

=

〈
wm,

∑
k∈[d]

γkwk

〉
(2) =

〈
ωm

∣∣∣∣∣ ∑
k∈[d]

γk |ωk⟩

〉

=
∑
k∈[d]

⟨wm, γkwk⟩ (3) =
∑
k∈[d]

⟨ωm| γk |ωk⟩

=
∑
k∈[d]

γk⟨wm,wk⟩ (4) =
∑
k∈[d]

γk ⟨ωm|ωk⟩

=
∑
k∈[d]

γkδm,k (5) =
∑
k∈[d]

γkδm,k

= γm (6) = γm

(2.74)

Since the braket notation on the right is the new stuff, I’ll focus on that
in this discussion.

Recall that our goal is to find the coefficient, or scaling factor, that re-
sults from projecting a onto wm (or |α⟩ onto |ωm⟩). This factor is given by
the inner product. Line 1 writes the inner product (or braket) of ket |α⟩
onto the basis ket |ωm⟩. Note that the arguments in the braket are in the
order onto then from, following Equation 2.56.

Line 2 expands |α⟩ as a sum of some coefficient γk on each basis |ωk⟩.
On line 3, I moved the bra ⟨ωm| inside the summation, since it doesn’t de-
pend on the summation index k and thus is constant throughout the sum-
mation loop. Note that the expression ⟨ωm| γk |ωk⟩ inside the summation is
nothing new, though it might look new. It’s the bra ⟨ωm|, times the number
γk, times the ket |ωk⟩.

On line 4, since multiplication doesn’t care about the order of its terms,
I moved the number γk one position left, leaving us with a braket. On line 5, I
used the fact that the basis is orthonormal, so the inner product of any basis
on any other is 0 unless they’re both the same basis, in which case the result
is 1. That relationship is perfectly captured by the Kronecker delta. In this
situation, δm,k is 0 except when m = k, when it’s 1.

Finally, on line 6, the Kronecker delta sifts out only the coefficient γm
(since the terms for all other values of k end up as 0), and we’re done.

We’ve confirmed that γm, the coefficient of |α⟩ projected onto basis
|ωm⟩, is given by the braket (or inner product) ⟨ωm|α⟩.

For the rest of this book I’ll use the braket notation in the right column,
since that’s the notation used in quantum computing.

Conjugating the Braket
Let’s get a little practice with the braket by seeing what happens if we conju-
gate it. The result will prove useful in Chapter 6.

78 Chapter 2

I’ll start with a braket, or inner product, of two arbitrary kets |ϕ⟩ and
|ψ⟩ in that order, written ⟨ϕ|ψ⟩. Then I’ll conjugate it, giving us ⟨ϕ|ψ⟩.
Equation 2.75 shows how to derive another way to write this inner product.

⟨ϕ|ψ⟩ =
∑
k∈[d]

ϕk ψk Expand with Eq. 2.69

=
∑
k∈[d]

ϕk ψk Because ϕk = ϕk

=
∑
k∈[d]

ψk ϕk Multiplication of numbers
is commutative

= ⟨ψ|ϕ⟩ Definition of inner product

(2.75)

That’s quite nice! To find the conjugate of an inner product, we need
only reverse the order of the terms.

Qubits
We’ve covered a lot of material in this chapter! We’ll use these mathematical
tools throughout the book as we create and modify qubits to perform quan-
tum computation.

With these techniques now under our belts, we can write down what we
mean by a qubit, or a unit of quantum information.

Qubit A qubit is described by a two-dimensional ket, or a column vec-
tor with two complex numbers, that has a magnitude of 1.

Why complex numbers? Why two of them? Why must the ket have a
magnitude of 1? In Chapter 6, we’ll see that these requirements work out
nicely for our math, but nature isn’t interested in our convenience. We de-
fine a qubit this way because it is the simplest and most economical way that
anyone has found to match, or model, the experimental data. Most “rules”
of nature have exceptions: Some giraffes are born with short necks [119],
and some watermelons weigh more than Bernese Mountain Dogs [84] [7].
But some things are fixed, like the speed of light in a vacuum or the charge
of an electron. Just as nobody has ever found a counterexample to those val-
ues, nobody has ever found a qubit that doesn’t match this description.

A qubit is a theoretical abstraction. It’s a unit of information. But in
practice, we often use the word qubit to refer to this unit, and to the physi-
cal object it describes, and to the information represented by that physical
object. These three ideas are so closely related that there’s rarely any confu-
sion, but be aware that the word has multiple interpretations.

Since a qubit is represented by a two-element complex vector, its two
coefficients describe the scaling factors on two basis vectors. Thus, we need
to know which basis vectors it’s referring to.

In this book, we’ll always use the computational basis. The first two com-
putational basis vectors are used so widely that they have been given their own
labels. These labels could have been anything, but by long-standing conven-
tion they’re called |0⟩ and |1⟩. They’re defined in Equation 2.76.

Quantum States 79

|0⟩ ∆
=

[
1

0

]
, |1⟩ ∆

=

[
0

1

]
(2.76)

Note that these bases are both normal (have unit magnitude), and they
are orthogonal to one another, as we can see from their inner products in
Equation 2.77. Therefore, we say that this pair of basis states is orthonormal.

⟨0|0⟩ =
[
1 0

] [1
0

]
= 1, ⟨1|0⟩ =

[
0 1

] [1
0

]
= 0

⟨0|1⟩ =
[
1 0

] [0
1

]
= 0, ⟨1|1⟩ =

[
0 1

] [0
1

]
= 1

(2.77)

You might be surprised to see that the state labeled |0⟩ has a 1 at index
0 (as always, numbering from the top and starting at 0), but this naming con-
vention will generalize nicely going forward. The rule is that if a ket is de-
scribed by an integer, like |0⟩ or |1⟩, every element in the ket has a value of
0 except for the element at the integer index given by the ket’s name, which
has the value 1. So |0⟩ is 0 everywhere except for a 1 at index 0, and |1⟩ is 0
everywhere except for a 1 at index 1.

Now, finally, we can write a qubit!
A qubit is represented by a unit magnitude combination of the two com-

putational basis vectors, each scaled by a complex number, as in Equation 2.78.

|ψ⟩ = α |0⟩ + β |1⟩ , |α|2 + |β|2 = 1 (2.78)

Just as we often use the letter θ for some generic angle when doing 2D
geometry, we often use |ψ⟩ and |ϕ⟩ for generic qubits.

We can also write this |ψ⟩ in tableau form, as in Equation 2.79.

|ψ⟩ = α |0⟩ + β |1⟩ = α

[
1

0

]
+ β

[
0

1

]
=

[
α

β

]
, |α|2 + |β|2 = 1 (2.79)

Equation 2.79 gives us three equivalent ways to write out the elements of
the ket describing a qubit.

While it’s common to use α and β for the coefficients of a single qubit,
you can also use subscripts on the name. So, for a state |ψ⟩, the coefficients
α and β can also be written with ψ0 and ψ1, respectively. This latter form
generalizes better to larger vectors, like those we’ll see later in the book.

We say that the information held within a qubit and represented by a
two-element complex vector with unit norm is a quantum state, or state vector.
Sometimes the last term is mushed together into one big word, statevector,
which is itself often shortened to state. I’ll treat all of these as synonyms.

Thus, we say that Equation 2.78 is a statevector that describes a quantum
state, or a qubit.

80 Chapter 2

When describing a quantum state, we can be formal and say something
like, “The qubit of information that is held by this physical object may be de-
scribed by a state vector |ψ⟩ with amplitudes α and β.” That’s way too much
to repeat over and over, though, so we write this informally as “The state
of the qubit is |ψ⟩” or even just “The qubit is |ψ⟩.” If I think there’s ever a
chance of confusion, I’ll clarify what’s being discussed.

I’d love to draw a picture that represented a qubit, but we can’t do that
in two dimensions. The problem is that a qubit involves two complex num-
bers, and thus four real numbers, so a qubit would be a point in a four-
dimensional space. Despite many attempts, nobody has found an intuitive
way to draw such spaces.

All is not lost, because the requirement that |α|2 + |β|2 = 1 lets us re-
move one of those dimensions. This leaves us with a three-dimensional pic-
ture, which we can even draw on the page.

Themost common 3D representation of a qubit is called the Bloch sphere,
named for Felix Bloch [261]. Unfortunately, despite having some attractive
features, the Bloch sphere has some unusual properties that can make it
tricky to master. It would also be a substantial detour for us to go into, so
I won’t describe the Bloch sphere here. If you’re curious, there are many
references (in books and online) that dive into the Bloch sphere and how to
interpret it [252].

Summary
Wow. This has been quite a journey!

We’ve done a ton of work in this chapter. Let’s see how it fits together,
starting by revisiting Postulate 1, repeated here for reference:

Postulate 1 An isolated quantum system, or qubit, is described by a
two-element complex vector of magnitude 1.

Let’s interpret this one piece at a time using our new language and nota-
tion. We start with “an isolated quantum system, or qubit,” which refers to a
physical object of quantum scale that is sufficiently well shielded from its en-
vironment that it is unaffected by anything around it. We use this condition
so that we can discuss quantum states without always explicitly including
their environment and its effects.

No such isolated quantum system exists. Every physical object has some
kind of connection to the world around it, whether it’s heat from the ventila-
tion system, the change in humidity caused by someone nearby sneezing, or
gravity waves from a collapsing star in a galaxy far, far away.

But thanks to the work of many scientists and engineers, we can now
build quantum computers that approach this ideal. For the purposes of
this book, we’ll pretend that we’re working with truly isolated systems, so
our quantum systems are independent of the influences of the often unpre-
dictable natural forces around them.

Next up is the phrase “a two-element complex vector.” This refers to a
list of two complex numbers that obeys the properties of being a vector. We

Quantum States 81

write such a vector as |ψ⟩, which describes a column matrix that we call a
ket. Experiments have shown that all the information we need from a quan-
tum object to perform quantum computing is captured in these two com-
plex numbers.

Finally, we have the requirement that every ket must have “magnitude 1.”
This is included because experiments have shown that, like the speed of
light, this is simply how our universe operates. It will also let us easily talk
about the probabilities of what we’ll see when we measure a qubit.

Let’s conclude with a final bit of terminology about vectors and collec-
tions of them.

We say that a set of vectors (including complex vectors, such as kets),
along with the rules for scalar multiplication and vector addition, form a
vector space [248]. Here, the word space does not refer to a physical space, but
rather to an abstract collection of objects and the properties that describe
them. This usage has even moved into popular language, where people who
build houses are said to work in the construction space, or people who work
in banks are said to work in the financial space.

When we pick a specific inner product (as we did when we picked the
braket), the vector space and inner product together are called a Hilbert
space [239], in honor of the mathematician David Hilbert.

The kets in this book qualify as vectors that form a vector space. Along
with our inner product, we’ve defined a Hilbert space. You’ll sometimes
hear people say that quantum computing is made up of operations in a
Hilbert space, or that quantum information is described by objects in a com-
plex Hilbert space. This is a shorthand way to say that we’re working with
complex-valued vectors, and we’ve picked a specific formula for finding in-
ner products.

Now that we know what a qubit is, let’s look at how to write quantum
algorithms to modify its complex numbers.

You have gained 1 quantum essence.

—Starfield, Bethesda Game Studios, 2023 [20]

82 Chapter 2

3
OPERATORS

Operator,
Give me in . . . formation.

—William Spivery, “Operator,” 1944 [206]

In Chapter 2, we saw that a qubit is repre-
sented by a complex-valued vector with two

elements and a magnitude of 1.
One qubit is great, but most quantum programs start with lots of qubits.

Each qubit begins in some specific initial state, and then the program mod-
ifies the state of each qubit until collectively they hold the answer to a prob-
lem. We perform these modifications in steps, changing one or more qubits
each time.

Physicists have discovered that nature allows us to perform only a single,
narrowly defined class of operations on qubits during a calculation. There
are an infinite number of operations in this class, so there’s plenty of com-
putational power to go around, but we have to be careful when designing
algorithms to choose only actions that belong in this category.

This chapter is all about describing that class of operations and becom-
ing familiar with some of the most common and powerful instances. We’ll
start by looking at matrices, because they will be our standard way of spec-
ifying quantum operations throughout the book. Then we’ll look at three
important operations, named I, X, and H.

We’ll draw a lot of diagrams representing quantum circuits. Figure 3-1
shows the first of these diagrams, presenting a graphical version of a tiny
quantum algorithm. In this diagram, the qubit starts at the left, where it
has been initialized to an initial value (the quantum state |0⟩), then moves
rightward into a box marked H that does . . . something, and that’s it. In
this chapter we’ll see what goes on inside that box, and how the qubit that
leaves the right side of the box has been changed.

|0⟩ H

Figure 3-1: A tiny
quantum algorithm

By itself, this drawing doesn’t give us the answer to any particular prob-
lem, but it does something incredible: It creates a superposition, a kind of
information that, as we saw in Chapter 1, is utterly unlike anything we’re
used to from our everyday lives. Prior to a century ago, this was pure science
fiction. And it’s only in the last few decades that hardware for executing this
algorithm has become practical. Now you can design your own quantum
superpositions and make them yourself for free using quantum computers
available on the internet.

By assembling multiple operations like H artfully, we can use the science
fiction–like powers of quantum objects to create algorithms unlike any we’ve
seen before.

Postulate 2
Our motivation for this chapter comes from another postulate of quantum
mechanics. This postulate describes a mathematical model for an observed
fact of nature. Like the other postulates, it can be expressed in different
ways. Here’s the version we’ll use in this book [71]:

Postulate 2 Quantum states are changed by unitary operators.

When we talk about “changing” a quantum state, we mean altering the
complex numbers that describe it. For a single qubit, we’re changing the
complex numbers that serve as the weights on the basis states |0⟩ and |1⟩.

The new element in this postulate is the reference to a unitary operator,
which we’ll discuss later in this chapter. Along the way to that discussion, I’ll
point out some computational tools that we’ll use throughout the book to
develop quantum algorithms.

Linear Operators
The mathematical definition of an operator is rather abstract, because it
can be applied to a wide variety of objects [244]. In a nutshell, we can think
of an operator as a process that modifies another mathematical object. For
example, the negation sign – is an operator which turns a positive number
like 3 into the negative number –3.

84 Chapter 3

We’ll use operators to make changes to vectors. Once we’ve selected a
basis for our vectors (like the computational basis introduced in Chapter 2),
we can write an operator as a matrix. Since we’ll always use the computa-
tional basis in this book, we can treat the name of an operator and its matrix
representation as two ways to refer to the same thing [34].

For our purposes, we’ll use the term operator to refer to a matrix that
takes in a matrix as input and produces a new matrix as output. [34]. Each
such input matrix could be a one-column matrix (a ket like |α⟩), a one-row
matrix (a bra like ⟨α|), or another matrix of multiple rows and columns.
In fact, all of our operator matrices will have an equal number of rows and
columns. Since writing down the elements forms a square, each such matrix
is called a square matrix.

When we use a matrix to modify a state, we choose the matrix elements
(which are numbers) to manipulate that state in a specific way. The values of
these elements also depend on what basis we’re using to describe our quan-
tum states. Because we’ll always use the computational basis in this book, we
can write each matrix using the numbers appropriate for that basis. If you
ever want to use another basis, the numbers I’ll be showing for our opera-
tors will need to change to match the new basis [85].

Matrices are linear operators, meaning that they share the same proper-
ties of linearity that we saw in Equations 2.26 and 2.27. Let’s rewrite those
rules using matrix notation.

I’ll write matrices using italic, uppercase roman letters likeM or P.
Suppose that we have a matrixM and we want to use it to transform

a ket |ψ⟩. We write this operation asM |ψ⟩, which tells us to multiply to-
gether the square matrixM and the column matrix |ψ⟩. I’ve drawnM |ψ⟩
in tableau form in Equation 3.1 for a two-element ket.

M |ψ⟩ =

[
µ00 µ01

µ10 µ11

][
ψ0

ψ1

]
=

[
µ00ψ0 + µ01ψ1
µ10ψ0 + µ11ψ1

]
=

[
ψ0

′

ψ1
′

]
= |ψ′⟩ (3.1)

Equation 3.1 shows how I’ll refer to the elements of a matrix. When our
matrices have complex elements, I’ll use lowercase Greek letters, as I have
here. Each element is indexed by two subscripts. The first index indicates
the row, numbering as usual from the top down and starting with 0. The
second index indicates the column, numbering from left to right and again
starting with 0. Normally, we separate these two indices with a comma, but
when there are just single-digit numbers of rows and columns and there’s
no risk of confusion, we sometimes reduce clutter and omit the comma, as
I did here.

As I mentioned earlier, matrices are linear operators. We can write
the linearity properties from Equations 2.26 and 2.27 in matrix terms as in
Equation 3.2. Here, σ is any complex number, and |ψ⟩ and |ϕ⟩ are any two
arbitrary kets.

M(σ |ψ⟩) = σM |ψ⟩ L1

M(|ψ⟩ + |ϕ⟩) = M |ψ⟩ +M |ϕ⟩ L2
(3.2)

Operators 85

We’ll use these properties so often in this book that it’s worth confirm-
ing them. Equation 3.3 shows why property L1 holds, by writing out every-
thing in the components.

M(σ |ψ⟩) =

[
µ00 µ01

µ10 µ11

][
σψ0

σψ1

]
Expand the terms

=

[
σµ00ψ0 + σµ01ψ1
σµ10ψ0 + σµ11ψ1

]
Multiply the matrices

= σ

[
µ00 µ01

µ10 µ11

][
ψ0

ψ1

]
Extract σ and write as matrices

= σM |ψ⟩ Use definitions of M and |ψ⟩

(3.3)

To demonstrate property L2, I’ll take things slowly. I’ve written out
each step in Equation 3.4. It’s a lot like Equation 3.3, but with twice as many
pieces to keep track of. The first three lines expand out the matrix multipli-
cation, and then the rest of the lines gather things back together. It’s really
just a lot of bookkeeping.

M(|ψ⟩ + |ϕ⟩) =
[
µ00 µ01

µ10 µ11

][
ψ0 + ϕ0
ψ1 + ϕ1

]
Expand the terms

=

[
µ00(ψ0 + ϕ0) + µ01(ψ1 + ϕ1)

µ10(ψ0 + ϕ0) + µ11(ψ1 + ϕ1)

]
Multiply the matrices

=

[
µ00ψ0 + µ00ϕ0 + µ01ψ1 + µ01ϕ1
µ10ψ0 + µ10ϕ0 + µ11ψ1 + µ11ϕ1

]
Expand the products

=

[
(µ00ψ0 + µ01ψ1) + (µ00ϕ0 + µ01ϕ1)

(µ10ψ0 + µ11ψ1) + (µ10ϕ0 + µ11ϕ1)

]
Gather ψ and ϕ terms

=

[
µ00 µ01

µ10 µ11

][
ψ0

ψ1

]
+

[
µ00 µ01

µ10 µ11

][
ϕ0

ϕ1

]
Write as matrices

= M |ψ⟩ +M |ϕ⟩ Use definitions

(3.4)

It was worth confirming that the two matrix operations in Equation 3.2
really are linear because we’re going to use those linearity properties fre-
quently when we work with multiple operators.

Speaking of multiple operators, let’s see what happens if we apply two
operators in a row.

We’ll start with a ket |ψ⟩ and apply a single operator A to it, getting
back a new ket |ψ′⟩ (in this example, the letter A stands for a generic lin-
ear operator, in the same way that |ψ⟩ refers to a generic ket). In symbols,
|ψ′⟩ = A |ψ⟩. Figure 3-2 illustrates this.

86 Chapter 3

|ψ⟩ |ψ′⟩A

Figure 3-2: Applying A to |ψ⟩

We start with |ψ⟩ on the left, and it moves to the right, where it’s modi-
fied by an operator A (that is, it’s multiplied by a matrix named A), produc-
ing the result |ψ′⟩ on the right.

We usually write this operation as A |ψ⟩, but for the moment let’s treat
A as though it’s a function. We can then write this as A(|ψ⟩), where the
parentheses make it clear that |ψ⟩ is the input to A.

Now let’s run |ψ⟩ through two arbitrary operators B and C, in that
order, as in Figure 3-3.

|ψ⟩ |ψ′⟩B C

Figure 3-3: Applying B to |ψ⟩, then
applying C

The first operator to be applied is B, so its output is B(|ψ⟩). Then we ap-
ply C to that output, producing C(B(|ψ⟩)). Let’s drop the parentheses now,
so the output |ψ′⟩ = CB |ψ⟩.

Notice that in the picture, reading left to right, we see B on the left and
C on the right. But in the algebraic notation for |ψ′⟩, written CB |ψ⟩, C is on
the left and B is on the right. The left-to-right order has been reversed!

This is because the convention in math is to apply operators from right
to left, unless other conventions or parentheses explicitly tell us otherwise
(this rule comes from an idea called the composition of functions [125]). For
example, 4× 2 + 1 is 8 + 1 = 9, because the convention is to perform all
multiplications before additions. But 4× (2 + 1) = 4× 3 = 12, thanks to the
parentheses.

Both the picture and the algebra produce the same result, but this change
in the apparent order of operations can definitely be confusing.

When going between an expression (that is, the algebraic form) and a
picture (that is, the visual form), it’s super easy to mess up the order of the
matrices, but it’s vital to use the operations in the proper order. The reason
is that matrix multiplication is not commutative. This means that, generally,
BC /= CB. Writing the matrices in the wrong order will almost always give us
the wrong result.

Many people have tried to find a way to prevent this kind of apparent
(but illusory) inconsistency between the picture and the algebra [137], but
each fix seems to introduce new problems of its own. Ultimately, the stan-
dard ways to read English, diagrams, and math just inherently conflict in this
situation. Remember that when you see multiple operators in an algebraic
expression, they are applied right to left. Thus, CB |ψ⟩means first compute
B |ψ⟩, then apply C to that. This will soon become second nature, but until
that habit kicks in, read and write these expressions with care.

Operators 87

Operators I, X, and H

Next, we’ll look at three operators that are used in almost every quantum al-
gorithm, usually many times. I’ll introduce each one, show you what it does,
and present its matrix form in the computational basis.

The Identity Operator I
The identity operator, written I, is the operator that passes its input to its out-
put unchanged. In other words, multiplying a state by I is like multiplying a
number by 1: Nothing changes.

The matrix form of the identity operator is called an identity matrix. This
is always a square grid of all 0 elements, but with 1 elements on the main
diagonal, or the line from the upper-left to the lower-right corner. The iden-
tity matrix of d dimensions is a square matrix of d elements on each side.
Equation 3.5 shows I2, the identity matrix for d = 2, and I4, the identity ma-
trix for d = 4. Normally we leave off the subscript, inferring the dimensional-
ity of the matrix from context.

I2 =

[
1 0

0 1

]
, I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (3.5)

The identity matrix has this name because of its similarity to other op-
erations that pass their input to their output unchanged. For example, 0 is
the identity element for addition because 0 + x = x for any number x, and 1
is the identity element for multiplication because 1x = x for any number x.
In the same way, applying I to any ket |ψ⟩ gives us back |ψ⟩, or in symbols,
I |ψ⟩ = |ψ⟩. I’ve drawn this in tableau form in Equation 3.6.

I |ψ⟩ =

[
1 0

0 1

][
ψ0

ψ1

]
=

[
ψ0

ψ1

]
(3.6)

If we want to multiply a bra and an identity matrix, we need to put the
identity on the right, so that we have a legal matrix multiplication. Thus,
⟨ψ| I = ⟨ψ|.

If we multiply the identity matrix with any other square matrixM of the
same dimensionality, we get backM unchanged. This is true whether we
multiply with the identity on the left or right ofM. In symbols, we express
this as IM = MI = M.

The identity matrix may not seem to be of much value, but it will turn
out to be super important in Chapter 5, when we build up systems of multi-
ple qubits and multiple operators.

88 Chapter 3

The NOT Operator X
Our next operator goes by two equivalent names, NOT and X. For brevity,
I’ll usually use X in this book. Given an input of two elements, X swaps those
elements. Equation 3.7 shows the Xmatrix.

NOT = X =

[
0 1

1 0

]
(3.7)

Notice that this looks like the identity matrix, only the 1 elements are on
the other diagonal, from the upper right to lower left.

Like with I, we can keep this pattern going for a square matrix of any
size. The symbol Xn tells us to make a square matrix of n elements on a side
that are all 0, except for those on the diagonal from the upper-right to the
lower-left corner, which are all 1. Without a subscript, the operator X always
means X2, the two-by-two matrix shown in Equation 3.7.

When we compute X |ψ⟩, the two elements of the ket are swapped, as
shown in Equation 3.8.

X |ψ⟩ =

[
0 1

1 0

][
ψ0

ψ1

]
=

[
ψ1

ψ0

]
(3.8)

Similarly, ⟨ϕ|X swaps the elements of a bra, as shown in Equation 3.9.

⟨ϕ|X =
[
ϕ0 ϕ1

] [0 1

1 0

]
=
[
ϕ1 ϕ0

]
(3.9)

If we multiply X and a matrixM, we swap the rows ofM if we form XM,
and we swap the columns ofM if we formMX, as shown in Figure 3-4.

Figure 3-4: The operation XM swaps the rows of M, while MX
swaps the columns of M.

These results are different. Generally speaking, XM /= MX, demonstrat-
ing the need to take care when writing the products of matrices.

Operators 89

The Hadamard Operator H
Our third operator is the Hadamard operator, named for Jacques Hadamard
[268]. I’ll have much to say about the H operator in this book, but for now
let’s just scratch the surface.

The matrix for H is shown in Equation 3.10.

H =

 1√
2

1√
2

1√
2

–1√
2

 (3.10)

We’ll see a lot of those 1/
√
2 factors throughout the rest of the book. To

reduce clutter and potential errors, my shorthand is to use the symbol ∨ for
this value, as defined in Equation 3.11.

∨ ∆
=

1√
2

(3.11)

We pronounce this symbol out loud as “vee,” so the expression ∨2
would be pronounced as “vee squared.” Using this definition, we can re-
write Equation 3.10 as Equation 3.12, which is the form I’ll usually use in
this book. Here, the ∨multiplies every number in the matrix.

H = ∨

[
1 1

1 –1

]
(3.12)

Much better! We’ll often see powers of ∨, so I’ve summarized the first
few in Equation 3.13.

∨0 = 1

∨1 = 1/
√
2

∨2 = 1/2

∨3 = 1/(2
√
2)

∨4 = 1/4

(3.13)

From now on, I’ll usually write the matrix form of H as in Equation 3.12.
It’s vital that you don’t forget the ∨, because without it, states operated upon
by H will change in magnitude, violating Postulate 1 of quantum mechanics.
Remember to include that ∨!

Sometimes it’s inconvenient to have ∨ dangling out in front of the H
matrix, as in Equation 3.12. If that factor is making an expression more com-
plicated rather than simpler, we can explicitly include the ∨ factor in the H
matrix, as in Equation 3.14.

H =

[
∨ ∨
∨ –∨

]
(3.14)

90 Chapter 3

Let’s take H out for a spin on the quantum state |ψ⟩, as shown in
Equation 3.15.

H |ψ⟩ = ∨

[
1 1

1 –1

][
ψ0

ψ1

]
= ∨

[
ψ0 + ψ1
ψ0 – ψ1

]
(3.15)

This is a potent result. We’ve taken a state described by two complex
numbers and turned it into a state where both of those numbers are present
in each coefficient, once as a sum and once as a difference. We’ll see that
combining the elements of a state this way opens the door to many of the
special properties of quantum computing, making H perhaps the most im-
portant matrix in this book.

A Few Matrix Operations
Because we’ll use matrices to manipulate qubits, we’ll use a lot of matrices in
this book. There are a few common ways to manipulate these matrices that
will make our expressions simpler and easier to understand, so let’s pause
for a moment to review these matrix operations. If these are unfamiliar to
you, check out any good linear algebra reference [211] [117] [220]. We’ve
already seen these operations applied to our special matrices of a single col-
umn (a ket) and a single row (a bra), and now we’ll see how they work with a
square matrix.

Transposition refers to the process of exchanging every entry µj,k of a
matrixM with the entry at µk,j. We can think of this as turning rows into
columns, or columns into rows, or reflecting (or mirroring) thematrix along
the diagonal line from its upper left to lower right. Figure 3-5 illustrates
these three interpretations, which all produce the same result. We call the
result of transposition the transpose of the original.

Figure 3-5: Three ways to visualize applying transposition to a
three-by-three matrix M

Operators 91

In the top row of Figure 3-5, we think ofM in terms of rows; we rotate
each row into a column and place them left to right instead of top to bottom.
The middle row is like the top, but we start with columns that turn into rows.
At the bottom of the figure, we first lock down the elements along the main
diagonal, then swap each element with the element on the other side of the
main diagonal.

We write the transpose of a matrixM with a superscript of T, orMT.
There are two important special cases of transposition: Transposing a

matrix of a single column produces a matrix of a single row, and vice versa.
A nice property of transposition is that the transpose of the product of

two matrices is the product of their transposes in the opposite order. The
proof of this takes some effort [162], and I don’t think it offers much il-
lumination, so I’ll just summarize this in symbols for matrices A and B in
Equation 3.16.

(AB)T = BT AT (3.16)

Conjugation is the operation of replacing every element with its complex
conjugate. This is the same operation we discussed in Chapter 2, but now
applied to each element in a matrix. If the elements are real numbers, this
operation has no effect.

We write the conjugated matrix asM, with elements µi,j.
The adjoint is the result of applying both transposition and conjugation.

Since transposition and conjugation have independent effects, applying
them in either order produces the same result. So, the conjugate of the
transpose, MT, is the same as the transpose of the conjugate, MT. Either
sequence of operations produces the adjoint. We write the adjoint of ma-
trix M with a superscript of a dagger, giving us M† (some people use an
asterisk, writing the adjoint asM∗).

To put everything in one place, Equation 3.17 shows a matrixM and its
transpose, conjugate, and adjoint.

M =

[
µ00 µ01

µ10 µ11

]

MT =

[
µ00 µ10

µ01 µ11

]
, M =

[
µ00 µ01

µ10 µ11

]
, M† =

[
µ00 µ10

µ01 µ11

] (3.17)

As we saw in Chapter 2, the adjoint is an important tool for us, because
it’s the mechanism that lets us transform a ket (a column matrix) into its as-
sociated bra (the corresponding row matrix with conjugated values), and
vice versa. In symbols, |α⟩† = ⟨α|. This is illustrated in tableau form in
Equation 3.18.

92 Chapter 3

|α⟩† =


α0

α1
...

αd–1


†

=
[
α0 α1 . . . αd–1

]
= ⟨α| (3.18)

The adjoint of a bra, ⟨α|† = |α⟩, is shown in Equation 3.19.

⟨α|† =
[
α0 α1 . . . αd–1

]†
=


α0

α1
...

αd–1

 = |α⟩ (3.19)

In Equation 3.19, I wrote the elements in the bra as conjugated versions
of the elements in the ket so that everything matched up with Equation 3.18.
The key thing is that the elements in the bra and ket are the complex con-
jugates of each other, regardless of which one is considered the “starting”
value and which is the conjugate.

The transpose, conjugation, and adjoint all undo themselves if applied
twice. That is, (MT)T = M = (M†)† = M.

The inverse of a matrixM is a new matrix, writtenM –1. It’s defined so
that when it’s multiplied withM we get back the identity matrix I.

In this book, all of our inverses work from both sides, giving us
Equation 3.20.

MM –1 = M –1M = I (3.20)

Computing the inverse of a matrix is a mechanical process, but it re-
quires some work (details of the process are given in any linear algebra ref-
erence, such as those I mentioned earlier). Not every matrix has an inverse
[267]. Such matrices are called singular, non-invertible, or degenerate.

The process of computing the inverse for a matrix will fail if the matrix
has no inverse. We won’t need to worry about such conditions, because all of
thematrices in this book for which we want to find inverses will be invertible,
meaning that they all have a well-defined inverse. So, you can be sure that
any time I writeM –1, that inverse will exist.

A common trick when we see a matrix at the start of either side of an
equality is to multiply the start of both sides of the equality by that matrix’s
inverse. Equation 3.21 shows how this works if we want to isolate the vector
|ψ⟩ in the equalityM |ψ⟩ = |ϕ⟩.

M |ψ⟩ = |ϕ⟩ Starting relationship

M–1M |ψ⟩ = M–1 |ϕ⟩ Multiply both sides by M–1

I |ψ⟩ = M–1 |ϕ⟩ On left side, replace M–1M with I

|ψ⟩ = M–1 |ϕ⟩ Since I |ψ⟩ = |ψ⟩, remove the I

(3.21)

Operators 93

This is a nice process to keep in mind if we’re given the state |ϕ⟩ as a
result of applyingM to |ψ⟩, but we’d really prefer to know what the starting
|ψ⟩ was.

We can now show that the adjoint of the product of two matrices is the
same as the product of their adjoints in the opposite order. The steps are
shown in Equation 3.22.

(AB)† = ABT The definition of the adjoint

= (AB)T Using Eq. 2.14 for matrices

= BT AT Use Eq. 3.16

= B† A† The definition of the adjoint

(3.22)

This property will come in handy in Chapter 6, when we look at how to
measure quantum states.

Unitary Operators
In quantum computing, we can only use one particular type of linear oper-
ator in our programs. In this section, we’ll see why that’s the case and what
characterizes these operators.

We saw in Chapter 2 that inner products are useful tools for character-
izing the relationships between two states. In this section, we’re looking at
the effects of operators on states. So, let’s find the inner product of two ar-
bitrary states |ϕ⟩ and |ψ⟩, apply some arbitrary operatorM to one of them,
and find their new inner product. This will give us some insight about what
effect multiplying one state byM has on the relationship between the states.

I’ll choose to project |ψ⟩ onto |ϕ⟩, so the inner product is ⟨ϕ|ψ⟩, and
I’ll choose to applyM to |ψ⟩. This gives us a new inner product, written in
Equation 3.23.

⟨ϕ|
(
M |ψ⟩

)
(3.23)

Like any inner product, this gives us back a scalar. Because matrix mul-
tiplication is associative, we can write this expression by bundling together
⟨ϕ|M first. And since the order in which we compute the matrix products
doesn’t matter, we don’t need the parentheses at all, letting us write the
same expression in three ways, as in Equation 3.24.

⟨ϕ|
(
M |ψ⟩

)
=
(
⟨ϕ|M

)
|ψ⟩ = ⟨ϕ|M |ψ⟩ (3.24)

The rightmost version might look like something new, but it’s just telling
us to multiply together three matrices: the row matrix ⟨ϕ|, the square matrix
M, and the column matrix |ψ⟩.

Now let’s include a vital condition. Remember that Postulate 1 tells us
that all quantum states have unit norm, or a magnitude of 1. Since the inner
product of any ket with itself gives us the squared magnitude of that ket, this
inner product will always be 1, as shown in Equation 3.25.

⟨ψ|ψ⟩ = 1, for all |ψ⟩ (3.25)

94 Chapter 3

So if we start with any quantum state |ψ⟩ (which must have unit norm),
and we transform it with some operatorM to makeM |ψ⟩, that output is a
new quantum state, which also must have unit norm.

Thus, we can only use operators that preserve unit magnitude. That is,
when the input has a magnitude of 1, so does the output. We need that con-
dition because nature doesn’t let us create quantum states that don’t have
unit norm! If you tried to apply an operator that didn’t obey this rule on ac-
tual quantum computing hardware, you might not even be able to do it. If
you could somehow perform the operation, things would go wrong in some
way, depending on the particular technology.

It would be nice to have a simple rule that characterized such operators.
Of course, I only suggested that because there is such a rule! Let’s find it.

Since the output of an operator must have unit norm, the inner product
of that output with itself must be 1. Suppose we have a candidate operator
U. Applying it to some arbitrary state |ψ⟩ would give us U |ψ⟩. Let’s write
the inner product of this result with itself, starting in Equation 3.26, where
I’ve expanded the inner product into the product of two matrices.〈

U |ψ⟩
∣∣∣U |ψ⟩

〉
=
(
U |ψ⟩

)† (U |ψ⟩
)

(3.26)

The trick to simplifying the right-hand side is to find a different way to
write (U |ψ⟩) †. Let’s pause for a moment to work that out. Then we’ll substi-
tute it into Equation 3.26 and keep rolling on our quest to characterize those
operators that we can use in quantum computing.

I think the easiest approach is to write out the matrices and observe that
they have a simpler form. The steps are shown in Equation 3.27.

(
U |ϕ⟩

)†
=

([
υ00 υ01

υ10 υ11

][
ϕ0

ϕ1

])†

Expand the matrices

=

[
υ00ϕ0 + υ01ϕ1
υ10ϕ0 + υ11ϕ1

]†

Multiply the matrices

=
[
υ00ϕ0 + υ01ϕ1 υ10ϕ0 + υ11ϕ1

]
Form the adjoint

=
[
υ00 ϕ0 + υ01 ϕ1 υ10 ϕ0 + υ11 ϕ1

]
Because α + β = α+β

=
[
ϕ0 ϕ1

] [υ00 υ10

υ01 υ11

]
Write as a matrix
multiplication

= ⟨ϕ|U † Simplify

(3.27)

I’ve summarized what we just learned in Equation 3.28.(
U |ϕ⟩

)†
= ⟨ϕ|U † (3.28)

Operators 95

We can use this to simplify Equation 3.26, as in Equation 3.29.(
U |ψ⟩

)† (U |ψ⟩
)
=
(
⟨ψ|U †) (U |ψ⟩

)
Eq. 3.26 with Eq. 3.28

= ⟨ψ|U † U |ψ⟩ Remove parentheses

= ⟨ψ| (U † U) |ψ⟩ Gather middle two matrices

(3.29)

Phew, this is much more manageable.
Now if it turned out that U †U = I, then that term would go away, leaving

us with just ⟨ψ|ψ⟩, which we know is 1.
And that is our simple test for permissible operators! If it so happens

that U †U = I, then we can simplify Equation 3.29 as in Equation 3.30.

⟨ψ| (U † U) |ψ⟩ = ⟨ψ| I |ψ⟩ Apply U †U = I

= ⟨ψ|ψ⟩ Remove I
(3.30)

That tells us that if U obeys the property U †U = I, then U is a permissi-
ble operator in quantum computing. In fact, because unit norms must be
maintained in any program, the only operators we can use are those obeying
this rule.

Operators that obey this rule are called unitary operators. Think of “uni-
tary” as referring to the unit norm of the quantum states, which is what these
operators preserve: A unit norm vector goes in, and a unit norm vector
comes out. This defining property of unitary matrices is summarized in
Equation 3.31 for any arbitrary operatorM.

IfMM † = M † M = I, thenM is unitary. (3.31)

The condition holds either way you choose tomultiply thematrices [281].
Notice that both forms of Equation 3.31 multiply a matrixM with an-

othermatrix to give us the identity. Therefore, that othermatrix is the inverse
matrix we met in Equation 3.20. In symbols, ifM is unitary, thenM † = M –1.
I’ve summarized this in Equation 3.32.

IfM –1 = M †, thenM is unitary. (3.32)

Equations 3.31 and 3.32 say the same thing in different ways, so we can
use either one to test if an operator is unitary.

Be careful not to conclude that this means that unitary operators are
their own inverses. This slip is easy to make because some unitary opera-
tors indeed are their own inverses, like the operators I, X, and H that we saw
earlier. But many unitary operators are not their own inverses. To know for
sure, we have to check each operator by computing its inverse and compar-
ing that to the original.

In this book, every operator in a quantum program must transform an
input with unit norm into an output with unit norm.

96 Chapter 3

Unitary matrices have the property of being reversible, meaning that if
we use a unitary matrix to transform a state, it’s always possible to undo that
operation and recover the original state. For example, if we transform some
state with a unitary matrix U to get U |ψ⟩, we can recover |ψ⟩ with the ad-
joint of U, since U †U |ψ⟩ = I |ψ⟩ = |ψ⟩.

Naming a Matrix Element
Expressions of the form ⟨ϕ|M |ψ⟩ have a special case that can sometimes
make complicated expressions easier to understand. Suppose that r and c
are integers. We can use them to form the bra ⟨r| and ket |c⟩, respectively.
Then, ⟨r|M|c⟩ is another name for the element ofM at row r and column c.

Let’s see an example of this. I’ve written out ⟨r|M|c⟩ for states with four
terms in Equation 3.33, using r = 2 and c = 3. I first found ⟨2|M and then
formed ⟨2|M|3⟩. Because matrix multiplication is associative, we’d get the
same results by first findingM |3⟩.

⟨2|M|3⟩ =
[
0 0 1 0

]

µ00 µ01 µ02 µ03

µ10 µ11 µ12 µ13

µ20 µ21 µ22 µ23

µ30 µ31 µ32 µ33



0

0

0

1

 Expand the
matrices

=
[
µ20 µ21 µ22 µ23

]

0

0

0

1

 = µ23 Multiply ⟨2|M
with |3⟩

(3.33)

We can summarize this in general as in Equation 3.34.

⟨r|M |c⟩ = µr,c (3.34)

Sometimes we’ll form expressions like the one on the left in the course
of doing algebra, so it’s nice to be able to replace that big chunk with the
explicit matrix element on the right.

Revisiting I, X, and H

The three operators we saw in this chapter are all their own transpose. We
can see this by noting that they’re each symmetrical with respect to the main
diagonal. This means that they’re each their own conjugate, since they’re
composed of only real numbers.

Even better, each is its own inverse. Just multiply the matrix for I, X, or
H with itself, and you’ll get back the identity matrix every time.

Best of all, because each matrix is its own inverse and adjoint, that means
the inverse and adjoint are equal, so each matrix is unitary. If they weren’t,
they wouldn’t be of any use for manipulating quantum states, and I wouldn’t
have discussed them in the first place!

Operators 97

Putting It All Together
We can now return to Postulate 2 and interpret it. Here’s the postulate again,
for reference:

Postulate 2 Quantum states are changed by unitary operators.

This postulate flows directly from Postulate 1, which tells us that quantum
states must always have a magnitude of 1, and our study of linear operators
and their matrices. We use the label “unitary” to refer to those operators
that preserve the unit magnitude (that is, a magnitude of 1) of their inputs.

Because we need the output of every operator to be a state that repre-
sents a physical quantum object, those outputs need to have a magnitude
of 1, like their inputs, and thus those operators must preserve the magni-
tude of their inputs. Unitary operators are the ones that have this property.

There are an infinite number of unitary operators. We saw three of
them in this chapter, and we’ll meet more in coming chapters.

It’s nice that there’s a short test that we can apply to any matrix to deter-
mine if it’s unitary. We’ve just seen two such tests, Equations 3.31 and 3.32,
which tell us that any operator A is unitary if its inverse is its adjoint, or
A–1 = A†. Any matrix that satisfies this rule may be used for quantum com-
putation, and any matrix that does not satisfy this rule may not be used for
quantum computation.

Summary
In this chapter, we looked at how to change quantum states, the process at
the heart of quantum computing. These changes are performed by opera-
tors, which in a given basis (such as the computational basis that we’re using)
can be represented as specific square matrices.

We met the identity operator I, which does nothing to its input; the X
(or NOT) operator, which exchanges the two complex numbers in its input;
and the Hadamard operator H, which modifies both of the complex num-
bers in its input.

We saw that quantum operations must preserve the norm of their in-
puts. The square matrices that have this property are those whose adjoint
(the transpose of their conjugated elements) is the same as their inverse.
We call these unitary matrices. For any such matrix U, we can be sure that
U † = U –1.

We looked at the notation ⟨ϕ|M |ψ⟩ and saw that it’s three matrices
multiplied together. When |ϕ⟩ and |ψ⟩ are computational basis states, then
they extract a single element from the matrixM.

Now we know how to describe a quantum state and how to change it.
We’re well on our way to writing quantum algorithms.

98 Chapter 3

4
WORKING WITH QUBITS

You see it all, don’t you? You can see how everything is just a random rearrangement of
particles in a vibrating superposition.

—Daniel Kwan and Daniel Scheinert, Everything Everywhere All at Once, 2022 [118]

In the previous two chapters, we’ve seen
what quantum states look like and how we

can modify them with quantum operators.
We can now put these two ideas together. In

this chapter, we’ll assemble a few operators to make
our first quantum algorithm!

Generally, a quantum algorithm has three stages. First, we initialize one
or more qubits to a known state. Second, we process or modify those qubits
with operators. Third, we measure the results.

The art of quantum programming is in the second step, where we de-
sign a sequence of operators that each modify the qubit states in such a way
that our final measurement will give us a useful answer. We often do this by
exploiting the unconventional properties of quantum states and operators.

Hello, World!
Probably the most famous computer program has no official name but is
widely known as Hello, World! (with or without the exclamation point) [266].

It became so well known because it was the first program in the first book
on the C programming language, which has influenced untold numbers of
programmers (including me) since it appeared in 1978 [112].

It’s not much of a program, since all it does is print Hello, World!,
like a child opening their eyes for the first time and beholding the world
around them.

The point of this little program was that if you could get it running,
you’d have solved many essential practical steps in programming, from log-
ging in to the computer and using a text editor to compiling the program
and getting the computer to run it. If you could get the computer to print
out Hello, World!, then you could build from there and get it to do anything.

There isn’t a consensus yet, but I think that the quantum computing ver-
sion of Hello, World! is the algorithm shown in graphical form in Figure 4-1.

|0⟩ b

Figure 4-1: My vote for
the quantum computing
version of Hello, World!

Starting at the left in this figure, we have a qubit that’s been initialized
to the state |0⟩. Moving to the right along a solid line, that qubit enters a
device called a meter (indicated by the triangle) that measures the qubit. The
double line coming out of the meter represents a classical bit, which I’ve
called b. The meter is set up so that if the state |0⟩ comes in, it produces a
signal that we agree to interpret as a classical bit with the value 0. Similarly,
if the meter’s input is the state |1⟩, its output is a bit with value 1. In this
figure, the input of the meter is always |0⟩, so its output will always be 0.

Instead of using a triangle to represent the meter, as in Figure 4-1, many
people use a simplified version of a sound level meter, like one you might
find on a piece of audio equipment (you can see the different icons in the
Appendix).

Introducing Hello, XWorld!
Let’s make our Hello, World! algorithm in Figure 4-1 a little more interesting
by getting it to do some quantum computation. We’ll make an addition be-
tween the initialized qubit and the output meter. The new element is a box
with the letter X inside. This new algorithm, which I’ll call Hello, XWorld!, is
shown in Figure 4-2.

|0⟩ bX

Figure 4-2: The Hello,
XWorld! algorithm

This new box is a quantum gate, or qugate (pronounced CUE-gate). Many
people refer to this simply as a “gate,” but I prefer the term qugate; not only

100 Chapter 4

is it consistent with qubit, but it also helps us distinguish quantum gates
from the logic elements used in classical logic diagrams, which have been
called gates for many decades.

The X inside the box tells us that this qugate applies the X operator that
we met in Chapter 3 and defined in Equation 3.7. Its input arrives via the
line on the left side of the box. Its output is represented by the line coming
out of the right side of the box.

Let’s break down what’s happening in Figure 4-2 step by step. This is
how we usually analyze quantum algorithms, whether simple or complicated.

To help, I’ll add some labels to the drawing in Figure 4-2 so I can talk about
the value of the qubit at different stops along its journey from the left side to
the right. I’ve labeled these stops with kets |ψ0⟩ and |ψ1⟩ in Figure 4-3. These
labels, and the vertical dashed lines associated with them, aren’t part of the
algorithm. They’re just there to help us unambiguously discuss the qubit’s
value at the marked locations.

|0⟩ bX

|ψ0⟩ |ψ1⟩

Figure 4-3: A labeled version of
Hello, XWorld! from Figure 4-2

The algorithm begins at the far left, with a single qubit in state |0⟩. I’ve
labeled that as |ψ0⟩, so |ψ0⟩ = |0⟩.

Now the qubit enters the X qugate. The output of the qugate is marked
|ψ1⟩, so we can write this as |ψ1⟩ = X |ψ0⟩.

If we want to know the components of |ψ1⟩, we can write out |ψ0⟩ and
X in matrix form, so |ψ1⟩ is the result of multiplying those matrices. I’ve
written that out in Equation 4.1.

|ψ1⟩ = X |ψ0⟩ = X |0⟩ =

[
0 1

1 0

][
1

0

]
=

[
0

1

]
= |1⟩ (4.1)

Finally, the output of |1⟩ goes into the meter. When the meter receives
|1⟩, it always produces a classical bit with value 1. I’ve called this output b, so
in this algorithm, the classical output b always has a value of 1.

Superpositions
We know that a quantum state is described by a two-element complex vector.
The complex elements of this vector, called amplitudes, are the complex coef-
ficients α and β on the basis states |0⟩ and |1⟩, as shown in Equation 4.2.

|ψ⟩ = α |0⟩ + β |1⟩ , where |α|2 + |β|2 = 1 (4.2)

This kind of state, which involves more than one ket, is called a superposition.

Working with Qubits 101

When α is 1 and β is 0, the superposition degenerates to just the state
|0⟩. Similarly, when α is 0 and β is 1, the superposition is just the state |1⟩.
The more interesting case is when both α and β are not 0. Then, the super-
position is some combination of the states |0⟩ and |1⟩. What does the meter
show if we measure such a superposition?

I’ll state the result informally for now (we’ll come back to this topic in
more detail in Chapter 6). When we measure a state in superposition, the
superposition disappears, and the state of the quantum object is replaced by
exactly one of the basis states that make it up (in this book I always use the
computational basis, so a qubit will always become either |0⟩ or |1⟩).

When we measure the single qubit from Equation 4.2, it turns into ei-
ther |0⟩ or |1⟩, producing a meter output of either 0 or 1, respectively. This
replacement is an unpredictable process in which each state has a proba-
bility of being “selected” given by the squared magnitude of its amplitude.
In symbols, when we measure |ψ⟩, the probability of it becoming |0⟩ and
the meter showing 0 is |α|2, and the probability of it becoming |1⟩ and the
meter showing 1 is |β|2. For any given measurement of a state in superposi-
tion, we cannot say for sure whether it will output a 0 or a 1. All we know for
sure are these probabilities of measuring a 0 or a 1.

Suppose we have 100 independent qubits that have all been set to the
same state, |ψ⟩ = α |0⟩ + β |1⟩. If we measure them all, about 100|α|2 times
the meter will report 0, and the remaining 100|β|2 measurements will be 1.
If we measure those same qubits again any number of times, they will always
return the same bits, since the process of measuring them has caused them
to become either |0⟩ or |1⟩.

This tells us why we have the condition |α|2 + |β|2 = 1. Since each mea-
surement has only two possible results, and we always get one of them, their
probabilities must add up to 1. We’ll look more closely at measurements in
Chapter 6.

Let’s look at this in action. I’ll create a quantum state that’s an equal
combination of |0⟩ and |1⟩ and then measure it. The circuit is shown in
Figure 4-4.

|0⟩ H

Figure 4-4: Computing and
then measuring H |0⟩

You can think of this circuit as a quantum coin flipper. Each time we
run it, we’ll get back either 0 or 1, with equal probability. We can never say
which bit we’ll observe, but we can say that over time we’ll get back about the
same number of 0s and 1s.

The heart of this process is the Hadamard qugate, written H. The beauty
of the H qugate is that it can create superpositions from states that are not in
superposition. This is an essential step in almost every quantum algorithm.

Let’s look more closely at the H qugate to see how it performs this in-
credible, and incredibly useful, feat.

102 Chapter 4

Properties of H
Let’s start our discussion of the Hadamard qugate by looking at what it does
to some important quantum states.

We can work out what H does to |0⟩ and |1⟩ by explicitly multiplying
the matrix and each ket, as in Equation 4.3. I’ll use the form of the Hmatrix
given in Equation 3.12. Remember, ∨ is a real number with value 1/

√
2.

H |0⟩ = ∨

[
1 1

1 –1

][
1

0

]
= ∨

[
1

1

]
=

[
∨
∨

]

H |1⟩ = ∨

[
1 1

1 –1

][
0

1

]
= ∨

[
1

–1

]
=

[
∨

–∨

] (4.3)

These two output states have standard shorthand names: |+⟩ and |–⟩,
respectively. They’re defined in Equation 4.4 as H |0⟩ and H |1⟩.

|+⟩ ∆
= H |0⟩ = ∨

[
1

1

]
=

[
∨
∨

]
= ∨(|0⟩ + |1⟩)

|–⟩ ∆
= H |1⟩ = ∨

[
1

–1

]
=

[
∨
–∨

]
= ∨(|0⟩ – |1⟩)

(4.4)

Equation 4.4 shows a few different equivalent ways to write |+⟩ and |–⟩.
We’ll use |+⟩ and |–⟩ frequently throughout this book, so it’s worth tak-

ing a moment to memorize these definitions (remember that all the nota-
tion in this book is collected in the Appendix).

We know from “Revisiting I, X, and H” in Chapter 3 that H is its own
inverse, so we’d expect that HH |0⟩ = H |+⟩ should be |0⟩, and similarly
HH |1⟩ = H |–⟩ should be |1⟩. A little matrix multiplication confirms those
expectations, as shown in Equation 4.5.

H |+⟩ = ∨

[
1 1

1 –1

][
∨
∨

]
= ∨

[
2∨
0

]
=

[
2∨2

0

]
=

2(1√
2

)2
0

 =

[
1

0

]
= |0⟩

H |–⟩ = ∨

[
1 1

1 –1

][
∨
–∨

]
= ∨

[
0

2∨

]
=

[
0

2∨2

]
=

 0

2
(

1√
2

)2
 =

[
0

1

]
= |1⟩

(4.5)

The four results we’ve just seen appear frequently in quantum comput-
ing and in this book. I’ve collected them all in Equation 4.6.

Working with Qubits 103

H |0⟩ = |+⟩
H |1⟩ = |–⟩
H |+⟩ = |0⟩
H |–⟩ = |1⟩

(4.6)

Equation 4.6 is a nice demonstration that H is its own inverse. In sym-
bols, H 2 = I, so HH |ψ⟩ = |ψ⟩ for any |ψ⟩.

Thanks to H being linear, if we know what H does to the basis states |0⟩
and |1⟩, then we know what it does to all states, since they’re just sums of
scaled versions of these basis states.

Let’s demonstrate this using the linearity properties L1 and L2. We can
write the operation of H on an arbitrary ket |ψ⟩ = α |0⟩ + β |1⟩, shown in
Equation 4.7.

H |ψ⟩ = H
(
α |0⟩ + β |1⟩

)
Expand |ψ⟩

= H(α |0⟩) +H(β |1⟩) Use linearity property L2

= αH |0⟩ + βH |1⟩ Use linearity property L1

= α |+⟩ + β |–⟩ From definitions in Eq. 4.6

(4.7)

The series of steps shown in Equation 4.7 are a useful guide for under-
standing how any qugate works. Let’s see why.

Qugates and Basis States
Equation 4.7 showed us that the operation of H on any arbitrary state |ψ⟩
was the effect of H on each of the basis states |0⟩ and |1⟩, which is given by
the final line.

In the rest of this book, we’ll often look at how qugatesmanipulate quan-
tum states by working out their effects on the computational bases |0⟩ and |1⟩.
Because all qugates are linear, we can always follow the steps of Equation 4.7
with a new qugate in place of H, and we’ll get back the effect of that qugate
on any state |ψ⟩.

So in general, to find the result of applying an arbitrary qugate A to an
arbitrary state |ψ⟩, the third line of Equation 4.7 gives us Equation 4.8.

A |ψ⟩ = αA |0⟩ + βA |1⟩ (4.8)

So, if we know A |0⟩ and A |1⟩, we know exactly what A does to any arbi-
trary ket |ψ⟩.

Initializing with H
Let’s return to the Hadamard qugate. A remarkable property of H is that
it creates a superposition state out of either |0⟩ or |1⟩. Creating superpo-
sitions from basis states is of tremendous practical value, because quantum
computing hardware usually encourages (or even requires) us to initialize

104 Chapter 4

qubits to |0⟩. Running those qubits through an H qugate turns each |0⟩ into
a |+⟩, which is an equal superposition of |0⟩ and |1⟩. Putting each of our in-
put qubits into superposition is the key step that enables many of the other
useful properties of quantum computing.

As a result, many quantum algorithms begin with a bunch of qubits ini-
tialized to |0⟩, which immediately go into H qugates. Then we do some
computing and finally measure the qubits. Figure 4-5 shows this common
architecture using k qubits.

|0⟩

|0⟩

|0⟩

...
...

|0⟩

k qubits

H

Computation A binary string of k bits

H

H

H

Figure 4-5: Sending k qubits, each initialized as |0⟩, through an H qugate,
performing a computation on those qubits, and then measuring them

Each qubit coming out of its H qugate in Figure 4-5 is in the state |+⟩,
or an equal superposition of |0⟩ and |1⟩. Suppose for the moment that the
box marked Computation does nothing, and we immediately measure these
qubits. Each meter will then produce either a 0 or a 1, with equal probabil-
ity. So, the output of the algorithm is a binary string of k bits, though we
can’t predict the specific values of those bits. In fact, each time we run this
algorithm, we’ll usually get back a completely different string of bits. Inter-
preting these bits as a k-bit binary number, we could get outputs from 0 up
to and including 2k – 1.

Many quantum algorithms boil down to replacing that big box in
Figure 4-5 with a sequence of quantum gates. The goal is to transform the
qubits so that, when they’re measured, the outputs of the meters are a bi-
nary number that solves (or helps us to solve) our problem.

Interference
Let’s look at another important operation that we use frequently in quan-
tum algorithms. When H processes an input state in superposition, it can
change the state’s coefficients. This moment is when those coefficients can
interact. This interaction is called interference.

Interference is one of the key phenomena that distinguish quantum
computing from classical computing. Typically, classical bits don’t interact
unless we tell them to. And even then, we can’t nudge a 0 a little bit toward
a 1, or vice versa.

Working with Qubits 105

But qubits do interact, or interfere, with one another and can change
one another in small or large ways. Interference can change the amplitudes
of a qubit, which in turn changes the probabilities of what we measure at the
final output. By controlling these interactions, we can change the states of
our qubits to increase the probability that the final value we measure from
our algorithm will be useful to us.

Let’s see interference in action with another small algorithm. As usual,
I’ll start with one qubit in the initial state |0⟩. Then I’ll apply two H qugates
in a row, and wrap up with a meter. Figure 4-6 shows the algorithm.

|0⟩ bH H

|ψ0⟩ |ψ1⟩ |ψ2⟩

Figure 4-6: A small quantum
algorithm of two H qugates

We know that H |0⟩ = |+⟩, so I’ll pick up the analysis at the location
marked |ψ1⟩, where the qubit has the value |+⟩. The analysis itself is in
Equation 4.9. These steps start out using braket notation but then switch
to explicit matrices so we can more clearly see the interaction between the
amplitudes.

H |+⟩ = H
(
∨ (|0⟩ + |1⟩)

)
Expand |+⟩ using Eq. 4.4

= H(∨ |0⟩ + ∨ |1⟩) Distribute the number ∨
= ∨H |0⟩ + ∨H |1⟩ Use L2 to distribute H

= ∨ |+⟩ + ∨ |–⟩ Use shorthands for H |0⟩
and H |1⟩

= ∨

[
∨
∨

]
+ ∨

[
∨

–∨

]
Write matrices for |+⟩ and |–⟩

=

[
∨2

∨2

]
+

[
∨2

–∨2

]
Multiply each matrix by ∨

=

[
∨2 + ∨2

∨2 – ∨2

]
=

[
2∨2

0

]
(⋆) Interference happens!

=

[
2(1/2)

0

]
Use ∨2 = 1/2

=

[
1

0

]
= |0⟩ The result is H |+⟩ = |0⟩

(4.9)

The magic is at the line marked with a star. That’s interference! This
is where the coefficients on the |1⟩ state in the superposition cancel one
another out. The result is that the amplitude of the |1⟩ state goes to 0 and
thus disappears from the superposition. We call this destructive interference.

106 Chapter 4

At the same time, the coefficients for |0⟩ add together to produce an
amplitude of 1. This effect of increasing the amplitude is called constructive
interference.

Interference is a key tool in quantum computing, and we’ll see it many
more times.

Summary
In this chapter, wemet our first quantum algorithms and saw how to follow
the state of a qubit as it is operated upon by quantum gates, or qugates.

We began with the quantum version of the classic, minimal Hello,
World! program, and then we added an X qugate so that it actually com-
puted something.

TheHadamard qugate,H, is a key tool in quantum algorithms, because
it can both create and destroy superpositions. We saw how it creates the su-
perpositions |+⟩ and |–⟩ from inputs |0⟩ and |1⟩, respectively. Applying H
to those superpositions destroys them, turning |+⟩ to |0⟩ and |–⟩ to |1⟩.

We also looked at the phenomenon of interference, where amplitudes
combine to produce a smaller or larger value for one or more basis states.

With these basics under our belt, we’re now ready to move past single
qubits and see how to build more powerful algorithms that work with multi-
ple qubits.

Working with Qubits 107

5
SYSTEMS

True stability results when presumed order and presumed disorder are balanced. A truly stable
system expects the unexpected, is prepared to be disrupted, waits to be transformed.

—Tom Robbins, Even Cowgirls Get the Blues, 1976 [173]

One does not discover new lands without consenting to lose sight
of the shore for a very long time.

—André Gide, The Counterfeiters: A Novel, 1927 [72]

A classical computer that uses only a single
bit can’t do much. The same is true for a

quantum computer with a single qubit. To
do interesting work, we’ll need lots of qubits.

To represent a group of qubits, in this chapter we’ll use a new mathe-
matical operator that builds a collection of qubits. That same operator will
also let us build up collections of qugates. We’ll call each of these collections
a system. Together, these systems will enable us to work with groups of qubits
and operators, which is essential to understanding existing quantum algo-
rithms and designing new ones.

Postulate 3
In this chapter we’ll pull apart and then reassemble another of the postu-
lates of quantum mechanics. Here’s a version that’s appropriate for our use
in this chapter [146, p. 94]:

Postulate 3 A system of multiple quantum objects can be represented
by the tensor product of those objects.

This postulate introduces a new term, tensor product. This is a mathemat-
ical operator that lets us combine qubits or qugates. This chapter is about
understanding this mathematical tool and how we use it to build systems of
multiple qubits and qugates.

We’ll first look at how the tensor product works to build these collections.
Then we’ll see the style of drawings that are typically used to represent

quantum algorithms (rather than, say, a text listing). The drawings are great
because they offer us a useful overview of how an algorithm processes the
qubits that flow through it.

We’ll then bring in the tensor product to help us simplify and analyze
these drawings and develop their corresponding algebraic representations.
We’ll see in Part II that it’s these algebraic representations that we usually
depend on to analyze and understand how a quantum algorithm works.

Finally, we’ll meet a new kind of quantum gate called a controlled qugate,
and we’ll discuss the most important one of these, called the CX qugate.

Combining Quantum States
If we build a quantum computer that contains multiple qubits, it would be
useful to come up with one unified description that describes the collection
of qubits rather than always having to list them out one by one. How should
we build such a description?

Let’s start with an analogy. Suppose that a married couple lives up the
street from you. You might refer to them as an aggregate entity, saying some-
thing like “That couple has two children.” By referring to them this way,
you’re treating the couple as a single, unified object. But you can always
distinguish the two people as individuals, perhaps saying “Niko got a nice
haircut today.”

However, there are situations where combined objects cannot be sep-
arated into their components. For example, suppose you order a latte at
your favorite coffee shop. This is a combination of espresso and milk. Once
they’ve been mixed together, you can’t separate the milk from the coffee.
They’re now a single, indivisible combined unit.

When wemathematically combine the states of two qubits, sometimes we
can treat them like the couple up the street and refer to them either collec-
tively or individually. For example, we might operate on a combined state
with some qugate, producing a new combined state. Or we might prefer to
separate the combined state into its individual qubits, operate on those qubits,
and then assemble them back into a combination. We’re free to choose which-
ever approach is more convenient or informative.

110 Chapter 5

But we don’t always have this choice. Sometimes combined quantum
states are like the milk and coffee in a latte and cannot be separated. In that
case, we must treat them as a single object.

If we can’t assign individual values to the two nonseparable qubits, what’s
going on inside the quantum computer? We know that there are two distinct
physical entities that are serving as our qubits. So we could physically carve
up the computer into two pieces and take one qubit to the north pole and
the other one to the south pole. Surely those two qubits, so widely separated
and physically distinct, each have their own state, regardless of whether we
choose to write them in a merged way. That’s just common sense.

And in this case, common sense is just plain wrong. Our intuition for the
behavior of nature at the sizes and time scales we’re used to just isn’t reliable
in the quantum realm. Sometimes, when we have two separate objects, they
don’t have separate states. They are two objects in one shared state, not merely
mixed together like milk and coffee but inextricably linked, even though
they’re physically distinct, or even far apart. Knowing about either one tells
us about the other. However unlikely this seems, it has been experimentally
verified countless times, proving that this phenomenon really does exist. It’s
an important practical building block for many quantum algorithms.

Let’s dig into the details of the tensor product, which will enable us to
understand how collections of qubits and qugates are formed.

The Tensor Product
Let’s start by looking at how we might combine two states, |ψ⟩ and |ϕ⟩.

One approach would be to list one after the other, producing a sequence
of four complex numbers (two each from each state). While reasonable,
that’s not going to work in the long run, because that operation won’t gen-
eralize to usefully combine the matrices that describe operators. We’d like
one tool that lets us combine both quantum states and quantum operators.
Happily, the tensor product is just that tool.

The tensor product combines states by multiplying together each ele-
ment of |ψ⟩ with each element of |ϕ⟩. We could visualize the four terms
created by this process in the form of a two-by-two matrix, as shown in
Figure 5-1. In part (a) I’ve written out the elements, and in part (b) I’ve
shown a graphical version using shapes and colors.

Figure 5-1: Combining states. (a) The elements of |ψ⟩ and
|ϕ⟩. (b) A graphical interpretation using shapes and colors.

Systems 111

If we agreed on how to sequence the elements of the left-hand grid,
we’d have an unambiguous list of four elements that describes both of its
component states at once. Unfortunately, like just making a list, this grid
won’t generalize nicely to handling operators.

A third choice would be to use the combining process called the tensor
product. This operation not only generalizes the grid of Figure 5-1, but also
will let us make combinations of operators.

The tensor product will be a central tool in this book. It will greatly sim-
plify all of our work with quantum algorithms, from analyzing existing pro-
grams to writing new ones. Let’s dig in!

Most of us are used to building up collections of things by simply listing
one after another. Mathematically, we call this building a Cartesian product,
and we represent it with the × operator. In this context, × doesn’t mean
multiplication but rather is a kind of glue to assemble a list.

We saw this use of × in Chapter 2 when we created lists of numbers.
For example, a point in traditional 3D space is given as a list of three real
numbers, (x, y, z), which we can say is described by the structure, or format,
R× R× R, or R3.

Let’s look at another way to build a collection of objects in lists. We’ll
create a new list that contains the product of every pairing of an object from
the first list with an object from the second.

For example, consider two lists named A and B. List A contains dim(A)
elements, and list B contains dim(B) elements. Let’s fill these up with shapes,
as in Figure 5-2. I’ve drawn these as column vectors because we’ll ultimately
use these techniques with quantum states, so we might as well start with
their column matrix structures. In Figure 5-2, list A has three elements and
list B has two.

Figure 5-2: Two column matrices,
A and B, each composed of shapes

When our lists are made of numbers (as they usually will be), we’ll com-
bine pairs of elements by multiplying them. Thus, I’ll say we form their
product. When we’re using pictures for elements, as in Figure 5-2, let’s say
that their product (or the result of multiplying them) is a new picture with
the two pictures side by side, with the first picture on the left and the second
on the right. Note that order matters when we form this pairing.

I’ll describe the process of forming the tensor product first, so you’ll
know what it does. That process is a little complicated, so I’ll then show you
a shortcut that everyone uses.

112 Chapter 5

We start with an empty list, which I’ll name C. The process begins by se-
lecting the first element ofA (named a0) and the first element of B (named b0).
We multiply these two elements together to produce a0 b0, and we place this
result into C. At this point, C is a column matrix that has one element: a0 b0.
Because B has more than one element, we’ll hang on to this element from A
and now get the next element of B and form the new product a0 b1. We tack
that onto the bottom of C, so it’s now a column matrix with two elements:
a0 b0 followed by a0 b1. We keep doing this until we’ve paired a0 with every
element from B. Then we take the next element of A and repeat the process,
forming a1 b0, then a1 b1, and so on. We keep this up until we’ve paired ev-
ery element of A with every element of B. For our A and B in Figure 5-2, the
result is shown in Figure 5-3.

Figure 5-3: The tensor
product A ⊗ B

We call the result the tensor product of A and B. We write this as A⊗ B,
pronounced “A tensor B.”

Let’s write this process a little more formally, as a series of steps:

1. Create a new column matrix, C, with no elements.

2. Set the integer v← 0.

3. Set the integer w← 0.

4. Create the product av bw and append it to the bottom of C.

5. If w < dim(B) – 1, then set w← w + 1 and go to step 4.

6. If v < dim(A) – 1, then set v← v + 1 and go to step 3.

7. Return C, now referred to as A⊗ B.

Programmers will recognize this process as a pair of nested loops.
In practice, we rarely think of the tensor product operation in terms of

these steps. We can get the same result with less conceptual overhead by fol-
lowing the shortcut I promised you, illustrated by the three graphical steps

Systems 113

shown in Figure 5-4. First, we create the overall structure of A⊗ B by mak-
ing a new column matrix that has every entry of the first list, A, written indi-
vidually, followed by the symbol B representing the second list. Second, we
replace each instance of B with an explicit column matrix of its elements. Fi-
nally, wemultiply each element ofAwith each of the elements in B to its right,
and we drop the brackets that we drew around the B entries. This technique
always gives us the same result as the stepwise process. With some experi-
ence, you can often do one or more of these steps in your head.

Figure 5-4: Picturing the steps of creating the tensor product A ⊗ B

Both the formal approach and the shortcut produce the same results in
the same order. This is important, because when we use tensor products to
represent systems of qubits and qugates, keeping everything in a consistent
order is vital to getting the results we want.

The tensor product is not commutative, so in general, A⊗ B /= B⊗ A. To
illustrate this, I’ve drawn B⊗ A in Figure 5-5.

Figure 5-5: Creating the tensor product B ⊗ A

114 Chapter 5

Figure 5-6 shows A⊗ B from Figure 5-4 alongside B⊗ A from Figure 5-5.
As is usually the case, they are not the same! Even if we ignore the ordering of
the two pictures in each element, the top to bottom sequences are different.

Figure 5-6: Tensor products are
usually not commutative, as shown
here for A ⊗ B and B ⊗ A.

How many elements will A⊗ B have? We know that A has dim(A) ele-
ments and B has dim(B) elements, and since every element of A is eventu-
ally paired up with every element of B, the tensor product A⊗ B will have
dim(A)× dim(B) elements (where we’re using × for multiplication). That
is, the number of elements in the new list is the product of the number of ele-
ments in the input lists. In the figures we just saw, dim(A) = 3 and dim(B) = 2,
so dim(A⊗ B) = 3× 2 = 6.

This is all we’re going to need from the tensor product, though it’s just
the tip of a mathematically deep and powerful idea. There’s much more to
learn about the tensor product if you’re intrigued [24] [41] [79] [114] [115].

Product States
From this viewpoint [of tensor products], the situation with quantum
systems is extremely paradoxical. . . . One might wonder where nature
finds the extra storage space when we put these two subsystems together.

—Umesh Vazirani, Hilbert Spaces, Tensor Products, Teleportation,
2021 [224]

When we use the tensor product to combine quantum states, we call the re-
sult a tensor product state, or just a product state for short. In this section, we’ll
look at the structure of these product states.

We’ll begin by going back to Postulate 3, which tells us that we can create
systems of multiple qubits using the tensor product. Let’s try this now.

Systems 115

I’ll tensor together the states |ψ⟩ and |ϕ⟩. Each is a vector composed of
two complex numbers. I’ve written them out in Equation 5.1.

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩ =

[
ψ0

ψ1

]
, |ϕ⟩ = ϕ0 |0⟩ + ϕ1 |1⟩ =

[
ϕ0

ϕ1

]
(5.1)

Following the steps in Figure 5-4, I’ll first write a new state that has each
element of |ψ⟩ listed explicitly, followed by the ket |ϕ⟩. Then I’ll replace
each |ϕ⟩ by its elements. We then multiply the elements and remove the
inner square brackets, which gives us a new four-element vector |ψ⟩ ⊗ |ϕ⟩,
as shown in Equation 5.2. Each element of |ψ⟩ ⊗ |ϕ⟩ is the product of two
complex numbers, one each from |ψ⟩ and |ϕ⟩.

|ψ⟩ ⊗ |ϕ⟩ =
[
ψ0 |ϕ⟩
ψ1 |ϕ⟩

]
=


ψ0

[
ϕ0
ϕ1

]

ψ1

[
ϕ0

ϕ1

]


=


ψ0 × ϕ0
ψ0 × ϕ1
ψ1 × ϕ0
ψ1 × ϕ1

 =


ψ0ϕ0

ψ0ϕ1

ψ1ϕ0

ψ1ϕ1

 (5.2)

What is this new four-element column matrix we’ve just made? It’s a sin-
gle mathematical object that describes both qubits, taken together.

Note that Equation 5.2 represents a single quantum state. Just as the
expression |ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩ represents a single quantum bit, the four-
element column matrix |ψ⟩ ⊗ |ϕ⟩ represents a system of two quantum bits.
It’s a single state built from the two qubits. With larger operators, we can
manipulate this single state just as we manipulated single-qubit states and
thereby change both qubits in one operation.

As discussed in Chapter 2, in regular algebra, we often drop the multi-
plication sign between objects and leave it implied. For example, the prod-
uct a× b of two numbers a and b is often written ab. In the same way, rather
than always writing the tensor product of two states as |ψ⟩ ⊗ |ϕ⟩, we can
write them side by side, like |ψ⟩ |ϕ⟩, where the tensor product sign is im-
plied. We’ll write the tensor product of two states so often that we frequently
compress expressions like |ψ⟩ |ϕ⟩ even further and drop the middle sym-
bols, writing just |ψϕ⟩.

In short, |ψ⟩ ⊗ |ϕ⟩, |ψ⟩ |ϕ⟩, |ψϕ⟩, and the four-element column vec-
tor at the right of Equation 5.2 are all equivalent ways to write the quantum
state that describes a system built from the qubits |ψ⟩ and |ϕ⟩.

The elements of the final matrix in Equation 5.2 appear in this some-
what strange form because it will dovetail perfectly with the corresponding
form we’ll get from creating the tensor products of operators. If you square
each element of |ψ⟩ ⊗ |ϕ⟩ and add up the results, you’ll be relieved to find
that they add up to 1, so this is a valid quantum state.

The key thing to remember as you get used to tensor products is that the
tensor product |ψ⟩ ⊗ |ϕ⟩ is not the two coefficients of |ψ⟩ in the top two
positions and those of |ϕ⟩ under them in the lower two positions.

116 Chapter 5

This can be a tempting mental picture, but it leads only to confusion
and sorrow. The vector |ψ⟩ ⊗ |ϕ⟩ contains the combinations, or interactions,
of the qubit coefficients, not the isolated coefficients. The elements of
|ψ⟩ ⊗ |ϕ⟩ are four entirely new values created from the four possible ways to
multiply an element from the first state with an element from the second,
written in a specific order.

Exploring Product States
Let’s start exploring product states.

The left side of Figure 5-7 shows two qubits that both start out initialized
to |0⟩. Our goal is to write the two-qubit state marked |ψ0⟩ as a single math-
ematical object. The steps are shown on the right.

|0⟩

|0⟩

|ψ0⟩

|ψ0⟩ = |0⟩ ⊗ |0⟩ =

1 |0⟩
0 |0⟩

 =


1

[
1

0

]

0

[
1

0

]
 =


1× 1

1× 0

0× 1

0× 0

 =


1

0

0

0


Figure 5-7: Writing a two-qubit system as a single state

We’ve combined two state vectors of two elements each into a single sys-
tem state vector of four elements. We’ll see that with each additional qubit
we include in our system, the dimensionality of the system vector doubles.
That means a system of three qubits (represented by a vector of 23 = 8 el-
ements) is as big as we’re ever going to want to actually write down on the
page (and even that’s almost too big for comfort). So, to avoid drawing huge
column matrices, it seems that we need a new, compact notation for repre-
senting product states of multiple qubits.

And . . . drum roll please . . . we don’t need a new notation! You may
recall that in Chapter 2 I explained that the labels |0⟩ and |1⟩ referred to
vectors where every element had a value of 0 except for a single 1 at index
0 and 1, respectively. That probably sounded somewhat strange at the time,
as “every element” referred to only one element. But now we can see the
purpose behind that convention. The rightmost vector in Figure 5-7 follows
the same pattern as |0⟩, because it’s 1 at index 0 and 0 everywhere else. So,
the rightmost vector of Figure 5-7 is written |0⟩.

Now we have a new problem, because we already used the label |0⟩ for
the two-element states we’ve been using until now. We usually deal with this
problem by ignoring it. When we write the product state of two qubits, we
know that the result must be a vector with four elements, so in this context,
|0⟩ is unambiguously a vector of four elements, three of which are 0, with a
single 1 at index 0. We usually rely on context to tell us how many elements
are in a vector we write as |0⟩.

Systems 117

When the context isn’t clear, or we otherwise want to emphasize the
dimensionality of a state, we write the dimensionality with a subscript. If
there’s any chance of confusion, we can write the final state of Figure 5-7 as
|0⟩4. Because adding subscripts to every state makes expressions more clut-
tered and harder to read (and also prevents us from using that subscript slot
for anything else), I’ll follow the usual convention in this book and mostly
rely on context, except when there’s any ambiguity.

Just as |0⟩ refers to a state with a 1 at index 0 and |1⟩ refers to a state
with a 1 at index 1, putting any integer inside a ket refers to a state that is 0
everywhere except for a single 1 at that integer’s location. If the ket has d
elements, then the integer needs to be in the range [d]. So, |3⟩ refers to a
state of at least four elements that are all 0 except for a 1 at index 3. Four
such four-element states are shown in Equation 5.3.

|0⟩ =


1

0

0

0

 , |1⟩ =


0

1

0

0

 , |2⟩ =


0

0

1

0

 , |3⟩ =


0

0

0

1

 (5.3)

For the rest of this book, |k⟩ refers to a state of at least k + 1 elements
that is 0 everywhere except for a 1 at index k. Almost always, the dimension-
ality of |k⟩ will be a power of 2 that needs to be inferred from context.

These states, written |k⟩, are special. They are the computational basis states!
We will use them for every system of qubits in this book, including those
we’ve seen so far with only a single qubit.

Any four-element state can be written as a sum of the four basis states in
Equation 5.3, each scaled by a number. Equation 5.4 shows the mechanics
for an arbitrary four-element state.

α

β

γ

δ

 = α


1

0

0

0

 + β


0

1

0

0

 + γ


0

0

1

0

 + δ


0

0

0

1

 = α |0⟩ + β |1⟩ + γ |2⟩ + δ |3⟩ (5.4)

We know that we can write the system |0⟩ ⊗ |0⟩ more compactly as
|00⟩. This is not the same state as |0⟩! When we have multiple numbers
inside a ket, we’re not multiplying them, so |00⟩ /= |0⟩. The former, |00⟩, is
a four-element product state of two kets, |0⟩ ⊗ |0⟩, while the latter, |0⟩, is a
two-element state. When you see multiple digits inside a ket, remember that
they refer to the tensor product of their individual states.

118 Chapter 5

This notational convention is summarized in Equation 5.5 for two arbi-
trary states. They don’t need to be of the same dimensionality (that is, |ψ⟩
and |ϕ⟩may have different numbers of elements, as we saw in Figure 5-4).

|ψ⟩ ⊗ |ϕ⟩ = |ψ⟩ |ϕ⟩ = |ψϕ⟩ (5.5)

Let’s look at an algorithm, and the product state that describes it. In
Figure 5-8, I’ve inserted an X qugate on the upper qubit, so its state at the
position marked |ψ0⟩ is |1⟩.

|0⟩

|0⟩

X

|ψ0⟩

|ψ0⟩ = |1⟩ ⊗ |0⟩ =

0 |0⟩
1 |0⟩

 =


0

[
1

0

]

1

[
1

0

]
 =


0× 1

0× 0

1× 1

1× 0

 =


0

0

1

0

 = |2⟩

Figure 5-8: Finding the elements of the two-qubit system |10⟩

Using our new convention, we can write the final state |ψ0⟩ in Figure 5-8
as |2⟩, or |2⟩4 if we want to clarify that the vector has four elements.

Figure 5-8 illustrates another convention in this book: When I tensor
together a system of qubits, I write them from left to right, corresponding to
reading their diagram version from top to bottom. Many, but not all, authors
use this convention. If you’re reading someone else’s work and the equa-
tions don’t seem to match the diagrams, it’s worth checking to see if they’re
tensoring the qubits in a diagram from top to bottom (as I do in this book)
or from bottom to top.

Let’s take on a more challenging diagram. Building on Figure 5-8, I’ll
insert an H qugate on the lower qubit, so at |ψ0⟩ that qubit has the state
H |0⟩ = |+⟩, as shown in Figure 5-9.

|0⟩

|0⟩

X

H

|ψ0⟩

|ψ0⟩ = |1⟩ ⊗ |+⟩ =

0 |+⟩
1 |+⟩

 =


0

[
∨
∨

]

1

[
∨
∨

]
 =


0× ∨
0× ∨
1× ∨
1× ∨

 =


0

0

∨
∨


Figure 5-9: Writing the system |1⟩ ⊗ |+⟩

That’s an interesting result! Unlike the states we saw previously, we can’t
write this in the form |k⟩, because the elements aren’t all 0 with a single 1.
But, like every other quantum state, we can write it as a sum of scaled basis

Systems 119

states. Equation 5.6 shows four equivalent ways to write the final state of
Figure 5-9. All of these expressions describe the quantum state of the system
|ψ0⟩ in Figure 5-9.

0

0

∨
∨

 =


0

0

∨
0

 +


0

0

0

∨

 = ∨


0

0

1

0

 + ∨


0

0

0

1

 = ∨ |2⟩ + ∨ |3⟩ = ∨(|2⟩ + |3⟩) (5.6)

As Figure 5-9 shows, we can also write |ψ0⟩ as the product state |1⟩ ⊗ |+⟩,
or |1+⟩, explicitly identifying the qubits involved. The version ∨(|2⟩ + |3⟩)
describes the system in another way, by multiplying out the tensor product
|1⟩ ⊗ |+⟩. All of these descriptions of |ψ0⟩ are fine, and we’re free to choose
the one that’s most helpful or informative at any time.

Let’s look at one last system, where I’ll pass each of two qubits (both ini-
tially |0⟩) through their own H qugates. As Figure 5-10 shows, this means
both qubits will be in the state |+⟩when they get to the positionmarked |ψ0⟩.
The final system is a four-element column vector where each entry is 1/2.

|0⟩

|0⟩

H

H

|ψ0⟩

|ψ0⟩ = |+⟩ ⊗ |+⟩ =

∨ |+⟩
∨ |+⟩

 =


∨

[
∨
∨

]

∨

[
∨
∨

]
 =


∨2

∨2

∨2

∨2

 =
1
2


1

1

1

1


Figure 5-10: Writing the system |+⟩ ⊗ |+⟩; remember that ∨2 = (1/

√
2)2 = 1/2

This is an important result! Let’s dig into why.
First, let’s make sure it’s a valid quantum state. As we know, every phys-

ically realizable state (that is, not merely a vector of complex numbers but
a vector that can describe an actual quantum object) must have a magni-
tude of 1. This tensor product describes a state made of two qubits, but
it’s still a single quantum state and thus must have a magnitude of 1. Each
term in the final state of Figure 5-10 has an amplitude of 1/2. Squaring that
gives us a probability of (1/2)2 = 1/4. There are four terms in the state, and
4× (1/4) = 1, so yes, this is a valid quantum state.

Recall that I said that Figure 4-5 was a common way to start a quantum
algorithm. Nowwe can better understand why that’s the case. Figure 5-10 is a
two-qubit version of the left side of Figure 4-5. Equation 5.7 expands the final
state of Figure 5-10 in terms of the four basis states for a four-element ket.

120 Chapter 5

|ψ0⟩ =
1
2


1

1

1

1

 =
1
2



1

0

0

0

 +


0

1

0

0

 +


0

0

1

0

 +


0

0

0

1




=
1
2

(
|0⟩ + |1⟩ + |2⟩ + |3⟩

)
(5.7)

We can write this result more compactly as shown in Equation 5.8.

|ψ0⟩ =
∑
k∈[4]

1
2
|k⟩ = 1

2

∑
k∈[4]

|k⟩ = 1
2

∑
k∈B2

|k⟩ (5.8)

In the rightmost version of Equation 5.8, I used the set B2 as the range
of values for k. Recall that this set contains all of the bitstrings of two ele-
ments. These four bitstrings, 00, 01, 10, and 11, correspond to the digits 0,
1, 2, and 3 in the sequence [4].

Each basis vector |k⟩ has a magnitude of 1 (that is, each vector is normal-
ized). Recall that the braket (or inner product) of a vector with itself, ⟨ψ|ψ⟩,
gives us the squared magnitude of |ψ⟩, so for every basis state |k⟩, we have
⟨k|k⟩ = 1.

Each basis vector is also orthogonal to all the others. Because the in-
ner product is a generalization of the dot product, the inner product of two
different vectors, ⟨ϕ|ψ⟩, depends on the angle between them. When both
vectors have nonzero magnitudes but their inner product is 0, it means that
the cosine of the angle between them is 0, or they are at right angles to one
another. So, two basis vectors |k⟩ and |m⟩ are orthogonal if ⟨k|m⟩ = 0.

We can summarize both of these conditions in the expression given in
Equation 5.9, using the Kronecker delta we defined in Equation 2.72. This is
a compact way of stating that our set of basis vectors is orthonormal.

⟨k|m⟩ = δk,m (5.9)

We used this relationship on line 5 of Equation 2.74, and we’ll use it
again in this book to simplify equations into forms that will be easier for us
to manipulate and understand.

The tensor product preserves the norm of its inputs. That is, given two
states that each have a magnitude of 1 (as they must), their tensor product
also has a magnitude of 1. Proving this directly for states of many qubits in-
volves a lot of bookkeeping. If you’re inclined to check, try first expanding
everything out and then grouping the results.

Systems 121

More Qubits
Two qubits are fine, but how about three?

Let’s roll up our sleeves and work out the state vector for a system of
three qubits. As I said before, a state vector for such a system has 23 = 8 ele-
ments, and that’s about as complicated as I like to go when writing out all of
these components. Equation 5.10 shows the steps.

|ψ⟩ ⊗ |ϕ⟩ ⊗ |τ⟩ =
(
|ψ⟩ ⊗ |ϕ⟩

)
⊗ |τ⟩

=


ψ0ϕ0

ψ0ϕ1

ψ1ϕ0

ψ1ϕ1

⊗ |τ⟩ =


ψ0ϕ0 |τ⟩
ψ0ϕ1 |τ⟩
ψ1ϕ0 |τ⟩
ψ1ϕ1 |τ⟩



=



ψ0ϕ0

[
τ0

τ1

]

ψ0ϕ1

[
τ0

τ1

]

ψ1ϕ0

[
τ0

τ1

]

ψ1ϕ1

[
τ0

τ1

]



=



ψ0ϕ0τ0

ψ0ϕ0τ1

ψ0ϕ1τ0

ψ0ϕ1τ1

ψ1ϕ0τ0

ψ1ϕ0τ1

ψ1ϕ1τ0

ψ1ϕ1τ1



(5.10)

Because the tensor product is associative, we’re free to group the opera-
tions in any order, as long as we never change the order of the states. In the
first line, I chose to begin by tensoring |ψ⟩ and |ϕ⟩, but you could also first
tensor |ϕ⟩ and |τ⟩, then tensor |ψ⟩ with that (a list of many more properties
of the tensor product appears in the Appendix).

There are eight coefficients in the state at the end of Equation 5.10.
Let’s call this state |λ⟩. We can name the elements λ from top to bottom,
so λ0 = ψ0ϕ0τ0, λ1 = ψ0ϕ0τ1, and so on. Then we can write the conclusion of
Equation 5.10 more succinctly, as shown in Equation 5.11, assuming that we
know the value of each λk.

|ψ⟩ ⊗ |ϕ⟩ ⊗ |τ⟩ =
∑
k∈[8]

λk |k⟩ , where
∑
k∈[8]

|λk|
2 = 1 (5.11)

We can write Equation 5.11 as an explicit sum of the basis states in tableau
form, as shown in Equation 5.12.

122 Chapter 5

ψ0ϕ0τ0



1

0

0

0

0

0

0

0


+ ψ0ϕ0τ1



0

1

0

0

0

0

0

0


+ ψ0ϕ1τ0



0

0

1

0

0

0

0

0


+ ψ0ϕ1τ1



0

0

0

1

0

0

0

0


+

ψ1ϕ0τ0



0

0

0

0

1

0

0

0


+ ψ1ϕ0τ1



0

0

0

0

0

1

0

0


+ ψ1ϕ1τ0



0

0

0

0

0

0

1

0


+ ψ1ϕ1τ1



0

0

0

0

0

0

0

1



= ψ0ϕ0τ0 |0⟩ + ψ0ϕ0τ1 |1⟩ + ψ0ϕ1τ0 |2⟩ + ψ0ϕ1τ1 |3⟩ +
ψ1ϕ0τ0 |4⟩ + ψ1ϕ0τ1 |5⟩ + ψ1ϕ1τ0 |6⟩ + ψ1ϕ1τ1 |7⟩

(5.12)

At this point, you might be wondering why we’re combining qubits with
the tensor product rather than in some other way. The answer is both sim-
ple and profound: This matches experimental observations. In Chapter 6,
we’ll see that when we model groups of qubits and operators using the ten-
sor product, the outputs that come from that description match the mea-
sured outputs produced by actual hardware. That’s why Postulate 3 says that
collections of qubits (and, later in this chapter, qugates) are created with ten-
sor products.

Like Newton’s laws, or Einstein’s theory of general relativity, we use the
mathematical tools that match the reality we observe. Exactly why the uni-
verse works this way, and not some other way, nobody can say with certainty.
What we can say is that combining quantum objects with the tensor prod-
uct describes and correctly predicts the world we live in, to the limits of our
ability to observe and measure it.

Systems 123

Quantum Algorithm Diagrams
We often draw quantum algorithms in picture form, at least while discussing
them at a high level. This is not at all how we write conventional programs.

Themajority of today’s conventional programs are created in text form,
which is then compiled, or transformed, into lower-level operations that hard-
ware can execute. We also sometimes create classical programs with diagrams
and graphics, though there’s usually some text in there as well. These graphi-
cal approaches, used in languages like Scratch [190] and LEGOMINDSTORMS
[121], are often appealing for writing casual programs and for introducing
people to the craft of programming. They’re also used in specialist software
when a primary task is controlling the flow of information, such as in the
Houdini computer graphics system [197] or the Max system for music and
sound design [42].

In the same way, quantum algorithms can be written in multiple ways,
including text, equations, and graphics. All three are equivalent in power,
and we can turn any description into any other. Currently, equations and
graphics are the most common forms, with graphics dominating when the
algorithm is not too complicated or when discussing a particular part of the
algorithm that has a nice visual interpretation. In this book, I’ll usually use
diagrams to present the structure of an algorithm and math to discuss how
it processes qubits to achieve its goal.

There is a standard visual language for drawing quantum algorithms,
which we’ve already seen in small examples. The big idea is that we draw
qubits starting on the left, and the algorithm works by applying a series of
qugates to those qubits as we read from left to right. You can think of this
horizontal flow as a timeline, where the qubits begin with initial values at
the left, are transformed over time as they move to the right, and then are
(usually) measured at the end, at the far right. This structure is somewhat
like the schematics we use to represent electronic circuits, so these quantum
diagrams are also sometimes called circuit diagrams, or just circuits. I’ll use
these terms interchangeably in this book.

In quantum computing, our operations on qubits are discrete rather
than continuous. A continuous process is one that has a smoothly chang-
ing description, like the height of a balloon as it flies away into the clouds.
In contrast, a discrete process is described by a series of individual jumps,
like an old-fashioned digital clock whose display only switches after each sec-
ond, rather than changing smoothly. We often think of the real numbers
as a model for continuous changes and the integers as a model for discrete
changes.

In quantum computing, qubits are like those digital clocks. They only
change when they are being processed by a qugate. Between qugates the
qubit is unchanged, retaining its state until it reaches another qugate that
might change it (this is an idealization, but hardware designers are making it
ever closer to reality).

Let’s see this in action. Figure 5-11 shows a generic quantum algorithm
that I’ll use to discuss quantum circuits, or diagrams. The qugates are arbi-
trarily named A, B, and C so that we can discuss them and don’t refer to any
specific operators.

124 Chapter 5

q1 |0⟩ b1

q0 |0⟩ b0

A B

C

|ψ0⟩ |ψ1⟩ |ψ2⟩

Figure 5-11: A simple quantum circuit
showing most of the usual elements

Every qubit is represented by a single unbroken horizontal line. I’ll of-
ten name the qubits so I can refer to them. In Figure 5-11, the qubits are
named q1 and q0. My convention is to name the qubits starting with 0 at the
bottom and adding 1 to each line as we go upward. Note that these names
aren’t kets, because they’re labels, not states. Assigning the labels from bot-
tom to top means that when we combine final measurements in our usual
order from top to bottom, we’ll get back a binary number in the form we’re
used to from classical computing. In this example, we’d get the binary num-
ber b1 b0, with the most significant bit, b1, at the left, where it belongs. This
convention will prove to be convenient in many algorithms that produce a
binary number as output.

To the right of each qubit’s name in this figure is its initial value. This
is almost always |0⟩, as that’s often a convenient state for the hardware to
create. When an initial state is not explicitly provided, it’s usually assumed to
be |0⟩ (that is, the two-element state |0⟩2).

People often treat a diagram, or circuit, as being the same as the algo-
rithm itself, just as we often treat a piece of classical program text as being
the same as the program that’s run on the hardware. Different implemen-
tations of a classical or quantum algorithm can have different performance
characteristics, so when that matters, it’s important to distinguish the ab-
stract description from any specific realization of it.

We follow each qubit rightward from its label and starting value at the
left, through the qugates that modify it. We call the qubit’s changing val-
ues its evolution, and we say that the algorithm sequentially evolves the qubit
through a sequence of states.

The most common thing to see on a line is a qugate. A single-input
qugate appears as a box with the qugate’s name inside. People try to keep
these names short so the boxes don’t grow too big.

On the top line of Figure 5-11, qubit q1 first goes into an A qugate. Re-
call that here I’m using letters such as A and B as generic qugate names.
They could stand for I, X, H, or any other specific qugate. The output of
the A qugate goes into B. The triangular meter that comes next indicates
measurement. Measurement is a big topic, and it’s the focus of Chapter 6.
For now, we’ll stick with the description given in Chapter 3 that measuring
a qubit will produce one of two possible observations, named 0 and 1, like
classical bits. We draw the output of the meter with two parallel lines to in-
dicate that they carry a classical bit, rather than a single line, which carries a
quantum bit. I’ve labeled that output bit b1.

Systems 125

Similarly, qubit q0 starts out in state |0⟩, is modified by the single-qubit
qugate C, and finally is measured, producing output b0.

I drew C directly under B. Generally speaking, we like the qugates to
line up vertically, because that usually makes the circuit easier to analyze and
discuss. In this case, I could have drawn C under A, if that made more con-
ceptual sense for this circuit.

As mentioned in Chapter 4, it’s often useful to write down the values of
the qubits at various moments along their evolution. We mark each of these
particular moments of interest with a vertical dashed line, named with a ket
above or below. In this example, |ψ0⟩, |ψ1⟩, and |ψ2⟩ refer to different four-
element product states |q1⟩ ⊗ |q0⟩, using the values of the qubits named q1
and q0 at the moment marked by the associated dashed vertical line. You’ll
rarely see subscripts on such states to identify their dimensionality, since
their dimensionality can be inferred from the diagram.

These dashed vertical lines reinforce the idea that computation proceeds
in discrete steps. In short, we start with initialized qubits. Then we apply
qugates to them. Then we apply more qugates to them. We keep doing that
until we’re done and we measure the qubits. That’s a quantum algorithm.

Often we pair quantum algorithms with classical programs, so each type
of computer can do the sorts of tasks it’s best at. For example, a classical
computer might itself construct the quantum algorithm based on the nature
of the input data, or it might preprocess the data in some way, or it might
postprocess themeasurements from the quantum circuit to give us more use-
ful results. We call these classical–quantum collaborations hybrid algorithms.

Quantum circuits are programs. Some online quantum computers allow
you to create your program using their web-based drawing tools that enable
you to interactively place qugates, meters, and other symbols. Then you sub-
mit this drawing for execution. Classical programmers often refer to the text
of their programs as code. That language works just as well for quantum pro-
grams, whose text representation can be extracted from a diagram.

Quantum circuit diagrams follow a few rules.
Generally speaking, we don’t have any explicit storage of variables as we

think of them in classical computing. The variables in our computation are
the values of the qubits. This means that there are no explicit higher-level
data structures.

A quantum diagram is called a directed acyclic graph (DAG). It’s directed
because the flow is generally left to right, acyclic because there are no cycles
(or loops), and a graph because it’s made up of lines and nodes.

Today’s quantum computers and programming environments lack many
of the conveniences of modern classical programming, such as subroutines,
functions, data structures, classes, and loops. These might come someday,
as the field matures. Today’s systems don’t even provide mathematical oper-
ations such as addition and multiplication on arbitrary integers or floating-
point numbers, though libraries of circuits for these operations are starting
to emerge [64] [86].

A keystone of conventional programming is the ability to test a variable
and then perhaps branch to another piece of code. We call this an if-then
construction (or if-then-else). In quantum algorithms, we have only one

126 Chapter 5

rudimentary kind of test, which essentially either enables or disables one or
more qugates that operate on other qubits. This test itself is a qugate, and
we’ll meet it in “The CXQugate” on page 141.

Finally, lines carrying qubits cannot split.
Wait, no, that can’t be right! Splitting a line in two would correspond

to copying the qubit. Copying bits is a foundational tool of conventional
computers. Copying variables lets us say things like a = b + 1, which requires
making a copy of b that we then add 1 to and store in a. Without such assign-
ment statements, most of the programs written today would become useless.
Surely we can perform the equivalent of num_apples = num_oranges in a quan-
tum computer?

Nope! Nature forbids copying qubits, and we’ll see exactly why in “The
No-Cloning Theorem” on page 138. That is going to have a profound effect
on how we think when we write quantum programs.

Systems of Qugates
Just as we can combine multiple qubits into a single mathematical object,
we can also combine multiple qugates. But qugates are a little more interest-
ing because we combine them in two different ways, depending on whether
they’re acting serially (one after another on the same qubits) or in parallel
(acting simultaneously but independently on different qubits).

Let’s take the serial case first.

Horizontal Systems of Qugates
Consider the fragment of a quantum algorithm in Figure 5-12(a). Think of
this as a piece extracted from some larger algorithm, so there aren’t any ini-
tializations or measurements.

|ψ⟩ |ψ′⟩

|ϕ⟩ |ϕ′⟩

A B

C D

|ψ⟩ |ψ′⟩

|ϕ⟩ |ϕ′⟩

J

K

(a) (b)

Figure 5-12: (a) Treating A and B as a single system, and the same for C
and D. (b) Using one qugate for each system, where J = BA and K = DC.

In this diagram, we have two qubits, each following its own independent
path through the algorithm. The upper qubit starts out in state |ψ⟩, gets
processed by generic qugates A and then B, and finally emerges in some new
state, |ψ′⟩. Similarly, the lower qubit enters as |ϕ⟩, is transformed by C and
then D, and emerges in the new state |ϕ′⟩.

Qugates A and B can be considered a single horizontally aligned system,
so in Figure 5-12(a) I joined them inside a shaded box. We can also think of
C and D as a system, so they’re in a box as well.

Systems 127

Let’s focus on the operationsA and B that affect the top qubit. A and
B are aligned to one another in the horizontal direction. Both A and B are
qugates, and we know that every qugate has an associated matrix.

The upper qubit starts as |ψ⟩, becomes A |ψ⟩, then exits as B(A |ψ⟩), or
more simply BA |ψ⟩ (remember that although the qugates are applied in the
order A then B, we write them in the order BA because we apply algebraic
operators from right to left). The key insight is to recognize that |ψ⟩, A, and
B are all matrices and thus can be multiplied together (|ψ⟩ is a column ma-
trix, while the others are square). Because matrix multiplication is associa-
tive, for any three matrices P, Q, and R, (PQ)R = P(QR), so we can regroup
the operations on |ψ⟩ in the form shown in Equation 5.13.

B(A |ψ⟩) = (BA) |ψ⟩ (5.13)

We can group the qugates C and D that operate on |ϕ⟩ in the same way, giv-
ing us (DC) |ϕ⟩.

In the expression (BA) |ψ⟩, it looks like the matrices B and A are mul-
tiplied together in that order, and then that result is applied to |ψ⟩. And
that’s exactly right!

We can combine A and B, and also C and D, with ordinary matrix mul-
tiplication. We can replace each of these pairs of qugates with a single new
qugate that holds the product of multiplying its corresponding matrices.
Let’s say J = BA and K = DC, so we can draw the simpler diagram shown in
Figure 5-12(b).

The general rule is that to combine qugates that come one after another,
we just multiply their matrices. Drawing all the qugates in a diagram is use-
ful to get a visual sense of the structure, while writing out the operations
algebraically gives us a more abstract representation of the same process.

Vertical Systems of Qugates
Let’s group our quantum objects in the vertical direction this time, as shown
in Figure 5-13(a).

|ψ⟩ |ψ′⟩

|ϕ⟩ |ϕ′⟩

A B

C D

(a)

|ψ⟩ ⊗ |ϕ⟩ A⊗ C B⊗ D |ψ′⟩ ⊗ |ϕ′⟩

(b)

Figure 5-13: (a) Interpreting each vertical column of
qubits and qugates as a single system. (b) Expressions
for each system.

128 Chapter 5

We know from “Product States” on page 115 that we can write the sys-
tems of qubits at the left and right ends of this diagram using the tensor
product, so the shaded boxes for the input and output states can be written
as |ψ⟩ ⊗ |ϕ⟩ and |ψ′⟩ ⊗ |ϕ′⟩, respectively.

How about the shaded boxes in the middle? We also combine vertical
qugates with the tensor product.

To tensor two matrices, we use the very same procedure that we used to
form the tensor product of states. The steps are shown in Equation 5.14. We
begin by creating a new matrix that has every element of the first matrix fol-
lowed by the name of the second. Then we replace every one of those names
with the second matrix itself. Finally, the elements are complex numbers, so
we multiply each pair together and get rid of the intermediate square brack-
ets, which gives us our result, the tensor product of the two matrices. When
our two-by-two starting matrices are tensored together, we get back a new
four-by-four matrix.

A⊗ C =

[
a00 a01
a10 a11

]
⊗ C Expand A into its elements

=

[
a00C a01C

a10C a11C

]
Multiply each element with C

=


a00

[
c00 c01
c10 c11

]
a01

[
c00 c01
c10 c11

]

a10

[
c00 c01
c10 c11

]
a11

[
c00 c01
c10 c11

]


Replace each C with
its matrix

=


a00c00 a00c01 a01c00 a01c01
a00c10 a00c11 a01c10 a01c11
a10c00 a10c01 a11c00 a11c01
a10c10 a10c11 a11c10 a11c11

 Multiply the elements

(5.14)

Whew! The good news is that much of the time we’ll be working with
matrices that have lots of 0 and 1 elements, so that after some practice with
this recipe, we’ll often be able to write down the final four-by-four matrix
by eye.

Note that I’m tensoring together the operators in top-down order in the
diagram. This matches our convention of tensoring together the qubits in
left-to-right order following the top-down order. This consistency is impor-
tant! You can do both of them bottom-up if you prefer (a few authors do),
but you have to always tensor both qubits and operators in the same direc-
tion for the algebra to properly match the diagram.

Systems 129

Now that we have the matrix A⊗ C, we have a horizontal system again.
We have a single starting matrix, |ψ⟩ ⊗ |ϕ⟩, going into a single qugate ma-
trix, A⊗ C, to produce a new state matrix. Let’s write that down symbolically
in Equation 5.15.

(A⊗ C)(|ψ⟩ ⊗ |ϕ⟩) (5.15)

Does this make sense as a matrix multiplication? The matrix (A⊗ C) is
four by four, and the matrix |ψ⟩ ⊗ |ϕ⟩ has four rows and one column, so
Equation 5.15 obeys the rules of matrix multiplication. We get back a new
matrix of one column and four rows.

Returning to Figure 5-13, the next step is to run this intermediate result
into the vertical system described by B and D. Following our rule that vertical
qugates combine with the tensor product, this box is the four-by-four matrix
B⊗ D. Given Equation 5.15 as input, its output is a four-element column
matrix, which we can write as the product state |ψ′⟩ ⊗ |ϕ′⟩.

As with tensoring states, I haven’t presented any reason for why tensor-
ing vertical qugates is the right way to combine them. It’s pretty great that
we didn’t have to come up with something new. But why should we use the
tensor product to make systems from vertically aligned qugates? Again, the
reason is ultimately because it matches what we observe. Our math is a tool
that we use to help us understand how nature works and predict how na-
ture will behave in new situations (like when we execute new quantum algo-
rithms). The tensor product is the process that works. Because nobody can
say exactly why, we just accept this as how it is and raise that process up to
the level of the fundamental postulate at the start of this chapter. It’s been
over 100 years, and nobody’s yet seen a single instance where using the ten-
sor product to combine states and operators didn’t match nature. We can
never be sure it won’t fail a half hour from now, but until someone finds a
repeatable situation where the tensor product doesn’t correctly describe and
predict observations, we’ll keep using it.

Another way to look at this is that we started with observations of quan-
tum states and created a mathematical representation for them. That led us
to define operations on those states, which in turn led us to use the tensor
product to combine those operations.

In that sense, the road from states and qubits to tensor products was de-
termined when we established that states were two-element complex column
vectors. We might someday make observations that compel us to find new
representations and ways to combine them. Until then, column vector kets,
unitary matrix qugates, and matrix and tensor products for combining them
into systems give us a tightly interlocked and mutually compatible system of
mathematical manipulations that matches reality.

Horizontal and Vertical Rules
We’ve just used both horizontal and vertical combinations to give us two dif-
ferent ways to make combined systems of qugates.

130 Chapter 5

Let’s summarize those two rules:

Horizontal When qugates A and B are horizontal neighbors in the cir-
cuit diagram, sequentially operating on the same qubit(s), we can com-
bine them left to right with ordinary matrix multiplication to form the
system BA (note the order), which we can draw as a single qugate.

Vertical When qugates A and B are vertical neighbors in the circuit
diagram, we can combine them with the tensor product to form the sys-
tem A⊗ B (again, note the order), which we can draw as a single qugate
that takes in a multi-qubit system and produces a new multi-qubit system
as output.

I’ve done something sneaky here without mentioning it. Until now,
we’ve only seen qugates like I, X, and H that take a single qubit as input and
produce a single qubit as output. Naturally, we call these one-qubit qugates or
single-qubit qugates.

Using the tensor product, we’ve created a new class of qugates that take
in systems of multiple qubits as input and return systems of multiple qubits
as output. We call these multi-qubit qugates.

Later in this chapter, we’ll meet a few new qugates of both varieties.
These can all be combined horizontally as long as their matrices are the
same size, because that’s a requirement of matrix multiplication of square
matrices. Because the tensor product doesn’t have that restriction, we can
combine any qugate vertically with any other, regardless of the sizes of their
matrices.

A Circuit Analysis
Let’s get some experience with our horizontal and vertical techniques by
analyzing the circuit fragment in Figure 5-14. Note that this fragment is just
for illustration and doesn’t have any deliberate computational purpose.

q1 |0⟩ |ψ⟩

q0 |1⟩ |ϕ⟩

H X

H

Figure 5-14: A small fragment of a circuit

In this fragment, the qubits labeled q1 and q0 are arriving in the states
|0⟩ and |1⟩, respectively. I arbitrarily placed the lower H under the X, but
I could have placed it anywhere, though to keep things neat the only other
choice would be under the upper H. We usually pick the position that makes
the most sense to us in understanding the diagram, because both versions
produce the same output.

We’ll find the outputs of this fragment in three ways: by algebra, by ma-
trix elements, and by direction. That is, we’ll first work with a directly alge-
braic representation of the drawing and simplify that to find the output.

Systems 131

Then we’ll replace the operators in the algebraic approach with matrices
and multiply them explicitly with the qugates to find the circuit’s output.
Finally, we’ll combine the matrices of the last step with our horizontal and
directional techniques to simplify them and then apply those results to the
input to produce the circuit’s output.

All three of these approaches will return the same result, but they use
different tools to get there. Being familiar with these approaches will be
helpful when we work with more complicated circuits.

Analysis by Algebra
We can find both |ψ⟩ and |ϕ⟩ algebraically by applying the qugates to the
input qubits, as shown in Equation 5.16.

|ψ⟩ = XH |0⟩ = X(H |0⟩) = X |+⟩ = |+⟩
|ϕ⟩ = H |1⟩ = |–⟩

(5.16)

For this simple fragment, the algebraic approach is short and gives us
an answer right away. But when the quantum circuit we’re working with be-
comes complicated, the algebra describing it can become correspondingly
complicated.

Analysis by Matrix Elements
Let’s now plug in the matrix expression for each operator and check that
we get the same final results. This will show us explicitly how the operators
are manipulating the states. When quantum algorithms become complex,
sometimes following the matrices and watching the states that emerge can
help us follow the computation.

Let’s compute the output of the circuit by explicitly multiplying out the
elements of the matrices we just wrote down. Equation 5.17 shows how we
can find the output state |ψ⟩.

|ψ⟩ = XH |0⟩ The circuit for |ψ⟩

= X

(
∨

[
1 1

1 –1

][
1

0

])
Expand H and |0⟩

= X

(
∨

[
1

1

])
Multiply the matrices

=

[
0 1

1 0

]
∨

[
1

1

]
Expand X

= ∨

[
1

1

]
= |+⟩ Multiply the matrices to find |ψ⟩

(5.17)

132 Chapter 5

Equation 5.18 shows the same process for |ϕ⟩.

|ϕ⟩ = H |1⟩ The circuit for |1⟩

= ∨

[
1 1

1 –1

][
0

1

]
Expand H and |1⟩

= ∨

[
1

–1

]
= |–⟩ Multiply the matrices to find |ϕ⟩

(5.18)

This is the same result as Equation 5.16.

Analysis by Direction
Calculating explicit matrices, as we just did, can provide useful insights. But
it can also become tedious and error-prone when there are lots of matrices.

It’s often helpful to group operators (and their matrices) into clusters.
Then we can approach the whole circuit hierarchically. We can start at the
bottom of the hierarchy, as in the last section, and write out every matrix.
We can then go up one level of the conceptual hierarchy and combine ma-
trices into small clusters that we understand. This lets us look at the whole
circuit from a more abstract viewpoint. Repeating this process of collecting
the matrices together, horizontally and vertically, gives us increasingly ab-
stract ways to look at the overall flow of information.

To that end, let’s use our techniques for merging matrices. When we
use them together, I call it a bidirectional analysis, to let us know that we’re
combining qugates both horizontally and vertically.

Horizontal Analysis
Let’s start with a purely horizontal approach. In Figure 5-15(a), I’ve marked
the two qubit systems in gray boxes.

q1 |0⟩ |ψ⟩

q0 |1⟩ |ϕ⟩

H X

H

q1 |0⟩ |ψ⟩

q0 |1⟩ |ϕ⟩

XH

H

(a) (b)

Figure 5-15: (a) Combining qugates horizontally. (b) An equivalent circuit.

Because the two qugates applied to q1 are horizontally aligned, we can
combine them with ordinary matrix multiplication. The combined system
XH is shown in Equation 5.19.

XH =

[
0 1

1 0

]
∨

[
1 1

1 –1

]
= ∨

[
1 –1

1 1

]
(5.19)

Systems 133

Now we can apply this system XH to the qubit q0, giving us the output
|ψ⟩ in Equation 5.20.

|ψ⟩ = (XH) |0⟩ = ∨

[
1 –1

1 1

][
1

0

]
= ∨

[
1

1

]
= |+⟩ (5.20)

Since the system for |ϕ⟩ is just a single qugate, we don’t need to actu-
ally compute that system. Just looking at either part of Figure 5-15, we can
immediately write |ϕ⟩ = H |1⟩ = |–⟩.

This is a great set of results. So far, all of our results have agreed that
|ψ⟩ = |+⟩ and |ϕ⟩ = |–⟩.

Vertical Analysis
Now let’s analyze the circuit using purely vertical techniques. Figure 5-16
shows the two vertical groupings of the qubits at the ends and the two verti-
cal groupings of qugates in the computational part of the circuit.

q1 |0⟩ |ψ⟩

q0 |1⟩ |ϕ⟩

H X

H

Figure 5-16: A first try at combining qugates vertically.
This drawing is flawed.

As this drawing stands, we can’t write the math for the output states of
the qubits. To see why, start by grouping the input qubits to form q1 ⊗ q0.
From their initial values, we get |0⟩ ⊗ |1⟩, or |01⟩. We know that this is a
four-element column matrix.

But the diagram has this matrix going into a system composed only of
the qugate H, represented by a two-by-two matrix. Because the tensored in-
puts are horizontally aligned with this box, the matrices will be multiplied
together. But linear algebra doesn’t let us multiply a four-by-one matrix on
the left with a two-by-two matrix on the right.

Our vertical approach seems to have created a mathematical dead end.
To fix this, I’ll include an identity qugate I on qubit q0. This operator does
nothing to its input, so it doesn’t affect the computation carried out by the
circuit. But now we can form the tensor product of H and I to create a four-
by-four matrix, appropriate for modifying the four-by-one column vector
from the input.

The new version of the circuit fragment is shown in Figure 5-17, along
with a few markers so we can discuss the qubit at different moments along
its journey.

134 Chapter 5

q1 |0⟩ |ψ⟩

q0 |1⟩ |ϕ⟩

H X

I H

|λ0⟩ |λ1⟩ |λ2⟩

Figure 5-17: Combining qugates vertically. Including an I
qugate in the left system fixes the problem in Figure 5-16.

Let’s work out the first labeled qubit state, |λ0⟩. That’s q1 ⊗ q0, written
out in tableau form in Equation 5.21.

|0⟩ ⊗ |1⟩ =

1 |1⟩
0 |1⟩

 =


1

[
0

1

]

0

[
0

1

]


=


0

1

0

0

 = |01⟩ (5.21)

This goes into the system H⊗ I (remember that our convention is to
always tensor objects reading from top to bottom in the diagram). We find
the components of that in Equation 5.22.

H⊗ I = ∨

[
1I 1I

1I –1I

]
= ∨


1

[
1 0

0 1

]
1

[
1 0

0 1

]

1

[
1 0

0 1

]
–1

[
1 0

0 1

]



= ∨


1 0 1 0

0 1 0 1

1 0 –1 0

0 1 0 –1



(5.22)

We can now find |λ1⟩, as in Equation 5.23.

|λ1⟩ = (H⊗ I) |01⟩ = ∨


1 0 1 0

0 1 0 1

1 0 –1 0

0 1 0 –1



0

1

0

0

 = ∨


0

1

0

1

 (5.23)

Systems 135

The state system we just got from Equation 5.23 goes into our next
vertical qugate system, X⊗H. We find the matrix form of that system in
Equation 5.24.

X⊗H =

[
0H 1H

1H 0H

]
= ∨


0

[
1 1

1 –1

]
1

[
1 1

1 –1

]

1

[
1 1

1 –1

]
0

[
1 1

1 –1

]



= ∨


0 0 1 1

0 0 1 –1

1 1 0 0

1 –1 0 0



(5.24)

We can now find |λ2⟩, as in Equation 5.25. Remember to include the ∨
from both Equations 5.23 and 5.24.

|λ2⟩ = (X⊗H) |λ1⟩ = ∨


0 0 1 1

0 0 1 –1

1 1 0 0

1 –1 0 0

 ∨

0

1

0

1

 = ∨2


1

–1

1

–1

 (5.25)

This output is a single state made up of two qubits. If we want to write
the individual qubit values, in this case we can (we’ll see later that this is not
always possible). This breakdown is shown in Equation 5.26.

|λ2⟩ = ∨2


1

–1

1

–1

 = ∨

[
1

1

]
⊗ ∨

[
1

–1

]
= |+⟩ ⊗ |–⟩ (5.26)

Equation 5.26 tells us that the output of the circuit can be written as |+⟩
on the upper qubit and |–⟩ on the lower qubit. This exactly matches all of
our previous analyses!

To summarize this approach, we can write our original circuit in the
form of Figure 5-18.

q1 |0⟩ |ψ⟩

q0 |1⟩ |ϕ⟩
H⊗ I X⊗H

Figure 5-18: Writing Figure 5-14 in vertical form

136 Chapter 5

This is excellent news, as it confirms that creating horizontal systems
with matrix multiplication gives the same result as creating vertical systems
with the tensor product. (At least it confirms that for this example. If you go
through the algebra, you can demonstrate that this example wasn’t special,
and these two approaches always produce the same result).

Bidirectional Analysis
We can simplify our vertical analysis further by following it up with a hor-
izontal analysis. Because Figure 5-18 contains two operators that are hori-
zontally aligned, we can combine them with ordinary matrix multiplication,
using H⊗ I from Equation 5.22 and X⊗H from Equation 5.24. As always,
we write the systems (represented by operators) that appear left to right
in the figure in the right-to-left order that we use to compose operators, so
we’ll compute the matrix product (X⊗H)(H⊗ I). This gives us the circuit in
Figure 5-19, which contains only a single qugate.

q1 |0⟩ |ψ⟩ k

q0 |1⟩ |ϕ⟩
(X⊗H)(H⊗ I)

Figure 5-19: Interpreting all of our qugates as a single
system formed by the horizontal matrix multiplication of
two vertical systems, each formed by a tensor product

The explicit components of this qugate can be found by multiplying out
the matrices, as in Equation 5.27.

(XH) (HI) = ∨


0 0 1 1

0 0 1 –1

1 1 0 0

1 –1 0 0

 ∨

1 0 1 0

0 1 0 1

1 0 –1 0

0 1 0 –1



= ∨2


1 1 –1 –1

1 –1 –1 1

1 1 1 1

1 –1 1 –1


(5.27)

Let’s check that this one matrix still gives us the same results as before.
Equation 5.28 applies (XH)(HI) directly to the input |01⟩.

∨2


1 1 –1 –1

1 –1 –1 1

1 1 1 1

1 –1 1 –1



0

1

0

0

 = ∨2


1

–1

1

–1

 = |+⟩ ⊗ |–⟩ (5.28)

Systems 137

Yes! We get the same answer as before. Our tools all work together.
We’re going to use all of these techniques frequently throughout the book.

We can summarize the horizontal and vertical approaches using a little
fragment of four arbitrary qugates, as in Figure 5-20. I’ve named the qugates
this way so that the equation we’re about to write reads nicely.

B A

D C

=

B A

D C

(a) (b)

Figure 5-20: Four arbitrary qugates. (a) Two horizontal
systems that are tensored together vertically. (b) Two
vertical systems that are matrix multiplied together
horizontally.

We can write the system of qugates in Figure 5-20(a) as a pair of hori-
zontal systems that form a vertical system. Qugates B and Amake AB and
qugates D and Cmake CD, giving us the vertical system (AB)⊗ (CD). We
can also write the system of qugates as shown in Figure 5-20(b), treating it
as a pair of vertical systems that form a horizontal system, or (A⊗ C)(B⊗ D).
These give us the same result, as summarized in Equation 5.29.

(AB)⊗ (CD) = (A⊗ C)(B⊗ D) (5.29)

Equation 5.29 is a powerful tool that goes by the name of the mixed-
product property. It tells us that we can think of fragments like the one in
Figure 5-20 using either the vertical or the horizontal approach, choosing
and mixing these approaches in any way we like. This relationship is the
heart of bidirectional analysis, and we’ll use it throughout the book.

The No-Cloning Theorem
Now that we know about multi-qubit qugates, we can revisit my earlier claim
that we can’t branch in a quantum algorithm, which would be equivalent to
making a copy of a qubit.

The reason we prohibit branching and copying in our circuits is that
nature prohibits it. We fundamentally cannot create a mechanism that can
flawlessly copy, or clone, an arbitrary quantum state. We’re demanding per-
fection, so we’re excluding any approach that could make copies of some
states or make approximate copies of all states.

The statement that we cannot perfectly clone arbitrary quantum states
is called the no-cloning theorem. Let’s look at this important principle.

138 Chapter 5

I’ll show you that the theorem is true using a proof technique called
contradiction [203]. The general idea is that we’ll assume that we canmake
a clone of a qubit and see what that implies. We’ll find that it leads to two
expressions that should be the same but aren’t (that is, they contradict each
other). Because our only new assumption in this process will be that we can
create clones, we’ll conclude that this assumption must be wrong.

As with many important insights, there are multiple ways to prove the
no-cloning theorem [171]. I’ll pick an approach that uses only the tools we
already have.

As promised, I’ll start by assuming that we can clone an arbitrary quan-
tum state. The operation will be embodied in some unitary operator (let’s
call it K) that can perfectly clone any quantum state from one qubit to an-
other. As shown in Figure 5-21, K takes in two qubits.

s |σ⟩ |σ⟩

t |τ⟩ |σ⟩
K

Figure 5-21: The concept of
a cloning two-qubit qugate K

Let’s call the upper qubit s, for source, and say it starts in state |σ⟩. This
is the state we want to clone. The other input is t, for target, which starts in
state |τ⟩. The qugate outputs two qubits, both in the state |σ⟩. I’ll assume
that the input states |σ⟩ and |τ⟩ are different, since if they’re the same we
have no need for K in the first place.

Using our standard shortcut notation to write |σ⟩ ⊗ |τ⟩ = |στ⟩, we can
express the operation we want from K as in Equation 5.30.

K |στ⟩ = |σσ⟩ (5.30)

To keep the math manageable, I’m going to assume |τ⟩ is |0⟩, and we’ll
see that we can’t clone |σ⟩. I’ll return to this limitation at the end of the
section.

Now let’s expand Equation 5.30 into component form as shown in
Equation 5.31. For this step, it doesn’t matter what starting state qubit t is
in, as it’s immediately replaced by |σ⟩.

K |στ⟩ = |σσ⟩ =


σ0

[
σ0

σ1

]

σ1

[
σ0

σ1

]
 =


σ0σ0

σ0σ1

σ1σ0

σ1σ1


= σ0σ0 |00⟩ + σ0σ1 |01⟩ + σ1σ0 |10⟩ + σ1σ1 |11⟩

(5.31)

Systems 139

So far, we’ve just written down what we want K to do. Let’s do it again,
only this time instead of expanding the output product state |σσ⟩, we’ll ex-
pand the input product state |στ⟩ and then apply K to it. Because K is lin-
ear, we should get the same result.

This will take a few steps, shown in Equation 5.32. This should yield the
same results we got from Equation 5.31. Recall that I’m setting |τ⟩ = |0⟩ for
convenience for the moment.

K |σ0⟩ = K
(
(σ0 |0⟩ + σ1 |1⟩)⊗ |0⟩

)
Expand state |σ⟩

= K(σ0 |00⟩ + σ1 |10⟩) Form product states

= σ0K |00⟩ + σ1K |10⟩ Move K onto each state
because it’s linear

= σ0 |00⟩ + σ1 |11⟩ Apply K to each state

(5.32)

In the last line, I used the definition of K to replace K |00⟩ with |00⟩ and
K |10⟩ with |11⟩. That is, I just made the state of the second qubit the same
as the first, which is what K does.

We’ve got a major problem here. Equations 5.31 and 5.32 are completely
incompatible. Not only are the coefficients on |00⟩ and |11⟩ different, but
also Equation 5.32 is missing the states |01⟩ and |10⟩ that are present in
Equation 5.31.

The results of these two approaches can only be equal if they’re the
same, as shown in Equation 5.33.

Equation 5.31 Equation 5.32
σ0σ0

σ0σ1

σ1σ0

σ1σ1

 ?
=


σ0

0

0
σ1

 (5.33)

There are three ways to assign values to these variables that will satisfy
this equality. First, we can set σ0 = 1 and σ1 = 0, corresponding to the input
state |σ⟩ = |0⟩. Second, we can set σ0 = 0 and σ1 = 1, corresponding to the
input state |σ⟩ = |1⟩. Finally, we can set both σ0 and σ1 to 0. Not only is this
last one a boring vector, but also because it doesn’t have a magnitude of 1,
it’s not even physically possible.

So, our qugate K can “clone” the states |0⟩ and |1⟩, but no others. Thus,
K cannot clone general states (that’s the contradiction I promised!). The
only assumption we made here (besides that |τ⟩ = |0⟩, which we’ll return to
in a moment) was that K is a unitary operator that satisfies Equation 5.30.
Since that led to a contradiction, something in our assumptions about K
must be wrong. The part that says K is unitary can’t be wrong because
Postulate 2 tells us all operators we use in quantum computing must be uni-
tary, so the assumption that K |τσ⟩ = |σσ⟩must be wrong. That is, no K can
exist that can clone any state.

We’ve proven that the no-cloning theorem is true!
Or have we? Quantum computing is notoriously counterintuitive. Maybe,

for some subtle reason, the choice of how we initialize |τ⟩makes a difference.

140 Chapter 5

Maybe the steps in Equation 5.32 would have worked if we hadn’t assumed
that |τ⟩ was |0⟩. Using an arbitrary |τ⟩ creates a lot of bookkeeping that
ends up in the same contradiction, confirming that the choice of |τ⟩ doesn’t
make a difference. This closes the only loophole, and we’re left with the
strange restriction that when we write a quantum algorithm, we are unable
to make exact copies of arbitrary quantum states.

When we get a surprising result like this, we ought to check our math
against the real world. Maybe our math has diverged from how reality works,
and this conclusion is a bunch of symbols that don’t accurately describe
what happens in nature. But like the rest of the math we use in this book,
this result has stood up in the face of countless experiments and the atten-
tion of countless clever people who have tried to find a flaw. Until we have
surprising new observations, the no-cloning theorem is here to stay.

While perfect cloning is forbidden, there are some sneaky ways to do
imperfect cloning. For example, we can write algorithms that can clone ar-
bitrary states sometimes, though we can’t predict when they’ll do it properly
[53] [52]. And under some conditions, we can approximately clone quantum
states [180]. In the next section, we’ll see a qugate that can apparently clone
some specific states.

Because we can’t generally clone any state, however, the lines carrying
qubits in circuit diagrams cannot be split.

You might be wondering if you could get around the no-cloning theo-
rem by measuring a qubit and then somehow preparing many new qubits in
that state. Unfortunately, that loophole is closed to us as well because of how
the measurement process itself works, as we’ll see in Chapter 6.

Not being able to copy a qubit makes quantum algorithms harder to cre-
ate, but that challenge is part of what makes this new field so fascinating.

Before we move on, I’ll make good on my promise to return to the de-
cision where we set |τ⟩ to |0⟩. I did that to simplify the math, but it’s not a
choice that’s required to prove the no-cloning theorem. If you’re motivated,
it’s a fun exercise in algebra to prove that the theorem is true even when
|τ⟩ starts out in any arbitrary state. It does take some careful bookkeeping,
though, as I mentioned earlier. The general idea is to start with K |στ⟩ and
write the ket |τ⟩ as τ0 |0⟩ + τ1 |1⟩. Then, follow the outline of Equation 5.32
by expanding everything out, applying K to each of the terms, and simplify-
ing. You’ll get a more complicated set of conditions on |00⟩ and |11⟩, but
there will again be no set of values that satisfies them both simultaneously.

The CX Qugate
We’ve seen that when we combine qugates vertically, the resulting qugate is
a larger unitary square matrix. We can say generally that every matrix that
describes a qugate takes as input a state vector that represents one or more
qubits, represented as a column vector with the same number of rows as the
qugate’s matrix, and produces a new state vector of the same number of ele-
ments. The output state will be of magnitude 1, or unit norm.

Systems 141

Probably the most important multi-qubit qugate is called the CX qugate,
where the X refers to the X qugate. Because the X qugate is also called the
NOT qugate, the CX qugate is also called the CNOT qugate. The C stands for
“controlled” or “conditional,” so this qugate is also referred to as controlled-X,
controlled-NOT, conditional-X, or conditional-NOT. I’ll stick with the short CX
in this book.

The CX qugate is versatile! We’ll use it in four important ways in quan-
tum algorithms: It’s a switch, it’s a narrowly limited copier, it’s part of creating
entanglement, and we use it to perform phase kickback. We’ll look at the first
two uses here, and we’ll see the third in “Entanglement” on page 146. The
fourth application, phase kickback, will come up when we look at Deutsch’s
algorithm in Chapter 8.

In all of its uses, CX takes as input two qubits, and produces two qubits
as output.

Figure 5-22 shows three equivalent ways to draw the CX qugate.

k |κ⟩ |κ′⟩

t |τ⟩ |τ ′⟩
CX

k |κ⟩ |κ′⟩

t |τ⟩ |τ ′⟩X

k |κ⟩ |κ′⟩

t |τ⟩ |τ ′⟩

(a) (b) (c)

Figure 5-22: Three equivalent ways to draw the CX qugate. The labels k and t
refer to control and target.

In Figure 5-22(a), I’ve drawn CX as a generic two-qubit qugate. Two
qubits come in on the left, and two qubits emerge on the right. Because
CX is so frequently used, it has two special shortcut versions, shown in parts
(b) and (c). In these diagrams, the upper qubit (marked k, with state |κ⟩)
is called the control qubit, and the lower qubit (marked t, with state |τ⟩) is
called the target qubit.

The labels “control” and “target,” and even the name CX, are all some-
what troublesome. The problem is that they really only make sense when we
use CX as a switch.

By analogy, suppose you meet someone at a party and they tell you a
monkey joke. You could then refer to that person for the rest of your life as
“the monkey joke teller.” That name isn’t incorrect, but it’s a limiting way to
refer to someone who has many other qualities.

With that in mind, our first use of CX will be to treat it as a switch. This
is the usage that gave us the terms “controlled-X,” “control,” and “target,” so
we’re on solid ground using them for now.

CX as a Switch
In this section, we’ll see how to use CX as a switch. We’ll broaden its inter-
pretation and use as the book continues.

142 Chapter 5

Just for a moment, let’s think of CX as a classical gate that uses two con-
ventional bits as input and output. The truth table for this classical version
of CX is shown in Figure 5-23.

Inputs Outputs

Control Target Control Target
0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

CX |00⟩ = |00⟩
CX |01⟩ = |01⟩
CX |10⟩ = |11⟩
CX |11⟩ = |10⟩

Figure 5-23: Left: The truth table for CX interpreted as a classical
gate with input and output bits. Right: The operation of the
quantum CX on two-qubit systems.

Figure 5-23 tells us that the control bit is passed, unchanged, to its out-
put. When the control input is 0, the target bit is also passed to the output
without change. But, and here’s the key contribution of CX, when the con-
trol input is 1, the target output is the opposite of its input. That is, when the
control is 1, we apply an X (or NOT) operation to the target input to produce
the target output.

This technique of first looking at some quantum operations as though
they were classical operations working on bits is a nice way to meet some
quantum gates. Be careful in such moments, though, because the transition
from the classical version to the quantum version sometimes involves some
change of behavior. When this happens, I’ll point it out.

The transition from bits to the quantum world usually means replacing
the classical bit 0 with the quantum state |0⟩, and similarly replacing 1 with
|1⟩. You can see this on the right side of Figure 5-23, where I’ve shown the
behavior of the CX qugate by making these replacements.

Now we can see where the name “controlled-X” comes from, because
the control qubit determines whether or not the X qugate is applied to the
target qubit. In Figures 5-22(b) and (c), the control qubit is marked with a
small black circle. It’s connected by a vertical line to a qugate on another
quantum line. In this case, we either write that qugate as a typical X qugate
(that is, a box with X inside) or use the special symbol of a circle with what
looks like a plus sign inside (this symbol by itself is also occasionally used for
a typical, or uncontrolled, X). Although the target qubit always appears to
be acted on by the X qugate, the vertical line coming into that qugate tells
us that it’s controlled and only gets applied if the control is |1⟩. Otherwise,
it’s as if the X isn’t even there, and the target output is the same as the target
input.

When used as a switch in this way, CX is the closest that quantum com-
puting gets to the if-then construction in classical programming languages.
That is, Figure 5-23 tells us that we can interpret CX as saying, “If the control
is |1⟩, then apply X to the target.”

Systems 143

To see how it does this, let’s start with the matrix for CX, given in
Equation 5.34. As usual, this matrix uses the convention that we read our
diagrams from top to bottom, so the control line is directly above the tar-
get line.

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =

 I 0

0 X

 (5.34)

If you multiply CX by itself, you’ll get the four-by-four identity matrix.
That is, CX is its own inverse, or CX = CX –1. Note that the name CX could be
confusing if you think it’s describing the product of two qugates in a row, C
and X. There’s currently no standard qugate named C, so any time you see a
C used at the start of a qugate name like this, you can assume it’s referencing
a controlled version of the qugate named after the C. Thus, CX refers to a
single qugate. It’s a kind of clumsy piece of notation, but it’s ubiquitous now.

On the right side of Equation 5.34, I’ve written CX as a block matrix, where
I replaced each two-by-two square with a single symbol. The upper-left block
is the two-by-two identity matrix I, the lower-right block is the two-by-two
matrix for X, and the other two blocks are all 0s.

The block matrix form is the key to understanding how CX is able to
conditionally control whether another qugate is applied. To see why, let’s
apply CX to an input system when k = |0⟩. I’ve written the input state in
Equation 5.35, ending with a block matrix that summarizes the two vertical
blocks, each of shape two by one.

|0τ⟩ = |0⟩ ⊗ |τ⟩ =

[
1

0

]
⊗

[
τ0

τ1

]
=


τ0

τ1

0

0

 =

 |τ⟩

0

 (5.35)

Notice that in the final block form, the upper two elements are the ket
|τ⟩, while the lower two elements are both 0. I wrote them as a 0 without the
ket because this is a column vector of two 0 elements, unlike |0⟩, which has
a 1 for the upper element. I hope it’s clear from context that the shape of
this 0 is a column vector of two elements, both of which are 0, while the 0
in the CX block matrix of Equation 5.34 is a two-by-two matrix where every
entry is 0.

Now we can apply the block form of CX from Equation 5.34 to the block
form of |0τ⟩ from Equation 5.35, as shown in Equation 5.36.

CX |0τ⟩ =

 I 0

0 X

 |τ⟩

0

 =

 I |τ⟩

0

 =


τ0

τ1

0

0

 = |0⟩ ⊗ |τ⟩ (5.36)

144 Chapter 5

The lower entry in the third term is 0 rather than, say, X0, because 0
times anything is 0. Equation 5.36 confirms that when the control is |0⟩, the
output system is the same as the input system.

Now let’s set the control to |1⟩. The new input system to CX is shown in
Equation 5.37.

|1τ⟩ = |1⟩ ⊗ |τ⟩ =

[
0

1

]
⊗

[
τ0

τ1

]
=


0

0
τ0

τ1

 =

 0

|τ⟩

 (5.37)

And now the payoff, applying the system |1τ⟩ to CX, as in Equation 5.38.

CX |1τ⟩ =

 I 0

0 X

 0

|τ⟩

 =

 0

X |τ⟩

 =


0

0
τ1

τ0

 = |1⟩ ⊗ X |τ⟩ (5.38)

Hooray, now X has been applied to the second qubit!
Another way to look at what’s going on here is to think of the input

product state |κτ⟩ as a kind of binary mask applied to the matrix CX. When
|κ⟩ = |0⟩, the lower elements of the system |κτ⟩ are both 0, which “turns
off” the lower part of the matrix CX by multiplying everything by 0. The
result is that |τ⟩ is affected only by the I in the upper part of the CX block
matrix, giving us an output of I |τ⟩ = |τ⟩. But when |κ⟩ = |1⟩, it’s the upper
part of |κτ⟩ that becomes 0 and thus “turns off” the upper half of the CX
matrix by multiplying it by 0. The result is that |τ⟩ is affected only by the X
in the lower part of the CX block matrix, giving us an output of X |τ⟩.

The CX qugate choreographs this dance between the 0 and 1 elements,
the tensor products of the input qubits, and the structure of the CXmatrix
itself to give us a valuable tool for selectively enabling or disabling qugates.

With some effort, we can turn this into an if-then-else operation.
Figure 5-24 shows two approaches. We can control any single-qubit qugate
by placing its matrix in the bottom-right corner of the four-by-four matrix
in Equation 5.34. That is, to make, say, a controlled-Hmatrix, we place an H
matrix where that block matrix uses an Xmatrix. Here, I’ve used two arbi-
trary qugates that I’ve named A and B.

k |κ⟩

a |1⟩

t |τ⟩ A B

k |κ⟩

t |τ⟩

X X

A B

Figure 5-24: Two ways to implement the construction “if |κ⟩ = |1⟩, then apply
qugate A to qubit t, else apply qugate B to t”

Systems 145

Our goal here is to perform the statement, “If k is 1, then apply A, else
apply B.”

On the left side of Figure 5-24, the topmost qubit k arrives in state |κ⟩.
This is our control, which I’ll assume is either |0⟩ or |1⟩. The middle qubit,
named a for auxiliary, starts out in state |1⟩. Finally, our target t starts out
as |τ⟩.

Suppose that k = |1⟩. Then the CX flips a from |1⟩ to |0⟩. Since k = |1⟩,
qugate A is applied to t, and because a = |0⟩, qugate B is not applied. We’ve
achieved the statement “If k = |1⟩, then apply A but not B.” Alternatively,
if k = |0⟩, then a remains as |1⟩, so A is not applied and B is, giving us “If
k = |0⟩, then apply B but not A.”

On the right side, I skipped the auxiliary qubit a but included another
X qugate. If k = |1⟩, then we apply A. Then k goes through an X, setting it
to |0⟩, so B is not applied, and then we use another X to put k back into its
original state. If k = |0⟩, then we don’t apply A, the X flips k to |1⟩, we apply
B, and then again we return k to its starting state.

Both of these little circuits give us the behavior we were after, described
by “If k = |1⟩, then apply A, else apply B.”

CX as a Copier
In the CX truth table in Figure 5-23, when both inputs are 0, the target out-
put is the same as the control input (that is, they’re both 0). When the input
control is 1 and the input target is 0, the target gets flipped and is also out-
put as a 1, the same as the input target.

Wemight be tempted to see CX as an exception to the no-cloning theo-
rem. After all, the target always comes out with the same value as the control!

But CX doesn’t clone as we’ve used the term, because it can’t make a
perfect copy of any input state. It does put the target into the same state as
the control, but only when the control is a basis state and the target starts
out as |0⟩.

For these reasons, I think of using CX in this way as an extremely special-
purpose copier. Even that might be too general a term, but “thing that copies
a single basis state into a second qubit when that second qubit starts in state
|0⟩” is a mouthful!

Entanglement
The third way we use the CX qugate is to help us create a relationship among
qubits called entanglement. As we saw in Chapter 1, along with superposition,
interference, and measurement, entanglement is one of the four qualities
that distinguishes quantum computing from classical computing, and we’ll
see that it plays a vital role in many quantum algorithms.

To study entanglement, I’ll begin innocently enough and set the control
qubit of a CX qugate to a superposition. To make a superposition, I’ll run a
qubit initialized to |0⟩ through an H qugate to put it in the state |+⟩. That
will be our control, as shown in Figure 5-25 (note that this drawing contains
a flaw, which we’ll fix once we understand the problem).

146 Chapter 5

k |κ⟩ |0⟩ |κ′⟩

t |τ⟩ |0⟩ |τ ′⟩

H

|ψ0⟩

Figure 5-25: A (flawed) drawing that
applies CX to a control of |+⟩ and
target of |0⟩

We find the components of the input state |+0⟩ at |ψ0⟩ in Equation 5.39.

|ψ0⟩ = |+0⟩ = |+⟩ ⊗ |0⟩ = ∨

[
1

1

]
⊗

[
1

0

]
= ∨


1

0

1

0

 (5.39)

Now we’ll apply CX to this, as shown in Equation 5.40. I’ll name the re-
sulting state |γ⟩.

CX |+0⟩ =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


∨


1

0

1

0


 = ∨


1

0

0

1

 = |γ⟩ (5.40)

If we can pull |γ⟩ apart into the tensor product of two states, then we
can use those states to label the outputs in Figure 5-25. Let’s try to do that.

Entangled Pairs
Spoiler: We won’t be able to write |γ⟩ as a product state. Given any four-
element complex column vector with a norm of 1 (that is, any two-qubit
state), there is an algorithm for checking whether it’s a product state [109].
It uses some ideas that we haven’t covered, so instead I’ll show that the spe-
cific state |γ⟩ can’t be written as the tensor product of two smaller states.

Like the no-cloning theorem, this proof hinges on a contradiction. I’ll
assume that |γ⟩ is a product state. Then I’ll write out the terms of that tensor
product, and we’ll find that we get boxed into a corner where no numbers
satisfy the equations. I’ll start with the generic product state in Equation 5.41.

|ψ⟩ ⊗ |ϕ⟩ = (ψ0 |0⟩ + ψ1 |1⟩)⊗ (ϕ0 |0⟩ + ϕ1 |1⟩)

= ψ0ϕ0 |00⟩ + ψ0ϕ1 |01⟩ + ψ1ϕ0 |10⟩ + ψ1ϕ1 |11⟩
(5.41)

Systems 147

The state |γ⟩ can be written as a scaled sum of the four basis states, as
shown in Equation 5.42.

|γ⟩ = ∨


1

0

0

1

 = ∨

1


1

0

0

0

 + 0


0

1

0

0

 + 0


0

0

1

0

 + 1


0

0

0

1




= ∨ |00⟩ + 0 |01⟩ + 0 |10⟩ + ∨ |11⟩

(5.42)

If |ψ⟩ is a product state, we can write it in the form of Equation 5.41.
Matching up Equations 5.41 and 5.42 gives us the four expressions in
Equation 5.43.

ψ0ϕ0 = ∨
ψ0ϕ1 = 0

ψ1ϕ0 = 0

ψ1ϕ1 = ∨

(5.43)

To write |γ⟩ as a product state, we need to find the four numbers that
satisfy the four equations in Equation 5.43. And that’s the problem.

To see why, let’s start with the second relation in Equation 5.43. It tells
us that ψ0ϕ1 = 0, so either (or both) of these numbers must be 0. Let’s arbi-
trarily pick ψ0 and say that it’s 0.

Since ψ0 = 0, then ψ0ϕ0 will be 0 as well. But Equation 5.43 tells us that
ψ0ϕ0 must be ∨ = 1/

√
2, so ψ0 can’t be 0.

The only other choice is to set ϕ1 = 0. But then ψ1ϕ1 will be 0, and again
Equation 5.43 tells us that this needs to be ∨, so we have the same problem.

We’re stuck, because we require incompatible products of these four
numbers. We are equally stymied if we start with the third relation, ψ1ϕ0 = 0.
There’s no way to pick the four elements of |ψ⟩ and |ϕ⟩ so that all four rela-
tionships in Equation 5.43 are satisfied to make |γ⟩.

Something has gone terribly wrong. But we made only one assumption:
that |γ⟩ is a product state. So that assumption must be wrong, and |γ⟩ can-
not be written as the tensor product of two states of two elements each.

We call such a state an entangled state.
But wait! If the problem is that some expressions in Equation 5.43 seem-

ingly need to be both 0 and not 0, maybe superposition can save us? Un-
fortunately, it can’t. While superposition is a powerful tool, the problem
here isn’t one that it can fix. The source of the contradiction isn’t that some
terms need to have different values, but rather that no values match all four
conditions. That is, there is no consistent set of numbers, even in superposi-
tion, that can satisfy all four requirements simultaneously.

But wait again! Suppose we ignore all of this discussion, build the circuit
shown in Figure 5-25, and actually measure one or both qubits. This is sure
to return something. Doesn’t that give us the values of the qubits and resolve
our problem?

148 Chapter 5

Surprisingly, no. While we can certainly measure either or both qubits,
and we do indeed get back results, those measurements won’t let us write
|γ⟩ as a tensor product. We’ll see the reason for this strange situation when
we discuss measurement in Chapter 6.

An entangled state is truly a different beast than a product state.
Note that it’s not the tensor product alone that’s creating entanglement.

We can tensor together two states, such as |0⟩ ⊗ |1⟩, and that system isn’t en-
tangled. Entangled systems of two qubits are those that cannot be constructed
by tensoring together the states of two (or more) qubits.

In any random collection of arbitrary two-qubit systems, there will be
far fewer product states than entangled states. In fact, product states are
extremely rare. If you make a random four-element complex vector with
a norm of 1, it’s a valid quantum state, but it will only rarely be a product
state. Almost all states are entangled.

I said earlier that something was wrong with our drawing in Figure 5-25.
Let’s return to that and fix things up. The problem is that when we draw an
entangled state, we can’t put any meaningful labels on the individual output
wires.

If we write names for the states on the output lines, this implies that
their tensor product is the output of the circuit. But as we saw, the output
state |γ⟩ cannot be written as a product state. The flaw in Figure 5-25 was
that the two wires were labeled with the named output states |κ′⟩ and |τ ′⟩.
That implies that the output can be written as the product state |κ′⟩ ⊗ |τ ′⟩,
but we’ve just seen that this cannot be done.

Although we can’t identify these individual states, we know that the sys-
tem’s output is |γ⟩, so let’s write that as the state of the pair of values com-
ing out of this CX. The convention for naming entangled qubits in a circuit
like this is to join the qubit lines with a curly bracket, and then name the
system rather than the individual qubits. Figure 5-26 shows the correct ver-
sion of our circuit. The output of this circuit is an entangled pair, shown
with a curly bracket. The wires don’t have individual values.

|0⟩

|0⟩

H
|γ⟩

Figure 5-26: A corrected
version of Figure 5-25

The curly bracket is also used for showing groupings, as I did in Figure 4-5.
Usually its meaning is clear from context, and I’ll mention it explicitly when
I think there’s any ambiguity.

To see entanglement in a slightly different way, let’s look at the algebra
that creates this new type of state. As in Figure 5-26, Equation 5.44 shows
how to find |γ⟩ without writing down the elements of a single matrix.

Systems 149

CX |+0⟩ = CX(|+⟩ ⊗ |0⟩) Expand the product state

= CX
(
∨ (|0⟩ + |1⟩)⊗ |0⟩

)
Expand |+⟩

= ∨CX
(
(|0⟩ ⊗ |0⟩) + (|1⟩ ⊗ |0⟩)

)
Pull out ∨ and distribute ⊗

= ∨CX(|00⟩ + |10⟩) Compact the tensor products

= ∨(CX |00⟩ + CX |10⟩) Distribute CX

= ∨(|00⟩ + |11⟩) Use Fig. 5-23

(5.44)

To directly compare this to the result of Equation 5.40, let’s write down
the component forms of the results, as in Equation 5.45.

∨(|00⟩ + |11⟩) = ∨



1

0

0

0

 +


0

0

0

1


 = ∨


1

0

0

1

 (5.45)

Yes! Equations 5.42 and 5.45 agree. I find that two-qubit systems (and
their four-by-four qugate matrices) are usually tolerable to explicitly write
down and multiply, but for three qubits or more, the algebraic approach is
much faster and offers less opportunities for minor (but disastrous!) errors
when explicitly computing matrix elements.

We’ve just seen a concrete demonstration of why CX cannot be used as a
cloner. Given |+0⟩, a cloner should produce |++⟩, but the output of CX |+0⟩
is ∨(|00⟩ + |11⟩).

Entanglement is a key tool when building quantum algorithms. Entan-
gled states don’t require any kind of special handling, and they can be pro-
cessed by qugates like any other systems of qubits. Conceptually, one feature
of entanglement is that it lets us distribute information among multiple
qubits. They can then be processed in different ways (or even by different
people, in different places at different times!), and the operations we apply
to either qubit have an influence on the other. We’ll use entanglement in
Chapter 7, when we teleport a quantum state from one place to another, as
well as in other algorithms in Part II.

We saw the usual way to draw an entangled pair in Figure 5-26, redrawn
in Figure 5-27(a). This graphic works well when the entangled qubits are
directly above and below one another and are not used in computation later.

Figure 5-27: Four ways to indicate entanglement in a quantum circuit

150 Chapter 5

The other three graphics in Figure 5-27 show alternative ways to notate
entanglement. Part (b) tells the reader that the pair of wires are entangled
and then go on to be used in more computation. Part (c) is my own inven-
tion for showing entangled lines. I designed it to solve the problem of show-
ing entanglement when the lines are not immediately one above the other.
In that case, the curly bracket can be misleading (it could seem to suggest
that the intermediate wires were entangled as well). Connecting the two
pairs of adjacent circles with a line lets us assert that two qubits are entan-
gled even if they’re not directly adjacent. For example, part (d) shows a cir-
cuit with four qubits, where the top and bottom lines are entangled.

Other Controlled Qugates
We can take the block matrix we used to analyze the CX qugate and replace
the X in the lower-right corner with any other qugate represented by a two-
by-two matrix.

Let’s call the matrix for this qugate U (for unitary). Then, a controlled-U
(CU) qugate could be drawn as in Figure 5-28. Note that I left the outputs
bare. If the outputs for a particular set of inputs form a product state, we
could give them names, but if they’re entangled, we’d want to mark them
with one of the symbols in Figure 5-27.

k

t U

Figure 5-28: A
controlled-U qugate

We can summarize the operation of this qugate in the block matrix of
Equation 5.46.

CU =

 I 0

0 U

 (5.46)

This works by the same logic as CX. When the control is |0⟩, the U part
of the matrix has no effect, because all of its elements are multiplied by 0.
When the control is |1⟩, the I part of the matrix is multiplied by 0 and the U
block operates on the two elements of the target state.

Like the CX qugate, if we place the control k in an equal superposition
|+⟩, the CU qugate will return a new equal superposition of |0⟩ |τ⟩ and
|1⟩ (U |τ⟩).

Sometimes we want to control a qugate using the opposite of the normal
convention, so it’s applied when the control is |0⟩ and bypassed when the
control is |1⟩. The usual way to draw this is shown in Figure 5-29.

Systems 151

k

t U

Figure 5-29: Controlling
a qugate so it’s applied
only when k is |0⟩

In this diagram, the qugate is being controlled by the qubit k, using an
open dot for the control. The open dot means that the U qugate is applied
only if the control k is |0⟩.

Other Multi-Qubit Qugates
There are a few other multi-qubit qugates that are good to know about. Some
of these I’ll use in Part II, but others I won’t refer to again. I’ll show them to
you here because they sometimes appear in algorithms that you’ll see in
publications and other discussions. I’d like you to have some knowledge
of them now, so when you see their names (and graphics), you won’t be
surprised.

Let’s look at a few of these useful multi-qubit qugates.
The swap qugate, often written SWAP, exchanges two qubits. There are

two different but commonly used symbols for the SWAP qugate, shown in
Figure 5-30(a) and (b).

Figure 5-30: (a), (b) Two ways to draw the SWAP qugate. (c) Creating
SWAP from CX qugates.

The matrix form of the SWAP qugate is shown in Equation 5.47.

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (5.47)

We don’t need to copy or clone a qubit to perform the swap. To see this,
consider the diagram of three CX qugates shown in Figure 5-30(c). This se-
quence of qugates implements SWAP. The center CX qugate is inverted from
the way we usually draw it. This form has the matrix shown in Equation 5.48,
where I’ve temporarily named it CX′ [131].

152 Chapter 5

CX′ =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 (5.48)

We can check that this describes a CX with the control on the lower
line by running through all four possible inputs. I’ve shown the results in
Figure 5-31.

Inputs Outputs

Control Target Control Target
0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 1

CX′ |00⟩ = |00⟩
CX′ |01⟩ = |11⟩
CX′ |10⟩ = |10⟩
CX′ |11⟩ = |01⟩

Figure 5-31: Left: The truth table for CX′ interpreted as a classical
gate with input and output bits. Right: The operation of the quantum
CX′ on two-qubit systems.

Figure 5-31 shows the inputs and outputs of the middle qugate in
Figure 5-30(c), as defined in Equation 5.48. Here, when the second qubit
is |1⟩, it flips the first qubit, matching the drawing that puts the control on
the lower line and the target on the upper line.

The three CX qugates in Figure 5-30(c) are horizontally aligned, so we
know that they can be formed into one system using matrix multiplication.
If you multiply the matrices (CX)(CX′)(CX), you’ll get the same matrix as
SWAP in Equation 5.47.

Just as we can control one qugate with a qubit, we can put a qugate un-
der the control of two other qubits, so that the controlled qugate is applied
only if both controls are |1⟩. When we do this for an X (or NOT) qugate, we
call this a controlled-controlled-NOT or conditional-conditional-NOT qugate and
write it as CCX or CCNOT. It’s also called a Toffoli qugate, after its inventor,
Tommaso Toffoli [279]. Its icon is shown in Figure 5-32(a).

We can apply this approach to control the application of any qugate. In
particular, if we use it to control a SWAP qugate, we call the result a controlled-
SWAP or Fredkin qugate, named for its inventor, Edward Fredkin. It’s usu-
ally drawn as shown in Figure 5-32(b) [263].

Figure 5-32: (a) A CCX, or Toffoli, qugate.
(b) A Fredkin, or controlled-SWAP, qugate.

Systems 153

I won’t write out the matrices for the Toffoli and Fredkin qugates, as
they’re both eight-by-eight grids of 0 and 1 entries that don’t reveal much
just by looking at them.

Single-Qubit Qugates
While we’re discussing qugates, let’s wrap up with a few single-qubit qugates
(and one two-qubit qugate) that are commonly used in quantum circuits in
addition to the I, X, and H qugates that we already know [98].

For completeness, the matrices for I and H are repeated here in
Equation 5.49 (recall that ∨ = 1/

√
2).

I =

[
1 0

0 1

]
, H = ∨

[
1 1

1 –1

]
(5.49)

The X qugate is an old friend by now. This is actually one of a trio of
qugates named X, Y, and Z. These are also called the Pauli qugates, after the
physicist Wolfgang Pauli [284].

We’ve seen the X qugate in action many times. I’ve summarized it in
Equation 5.50.

X |ψ⟩ =
[
0 1

1 0

][
α

β

]
=

[
β

α

]
(5.50)

We haven’t used the Y qugate yet, and generally speaking, you’ll see it
more rarely than X. Its matrix and action on a generic state are shown in
Equation 5.51.

Y |ψ⟩ =

[
0 –i

i 0

][
α

β

]
=

[
–iβ

iα

]
= i

[
–β

α

]
(5.51)

Finally, the Z qugate negates the amplitude of the |1⟩ basis state. Its
matrix and operation are summarized in Equation 5.52.

Z |ψ⟩ =

[
1 0

0 –1

][
α

β

]
=

[
α

–β

]
(5.52)

The controlled version of the Z qugate, called controlled-Z, conditional-Z,
or, most often, CZ, is particularly interesting. For the two-qubit inputs |00⟩,
|01⟩, and |10⟩, the output of CZ is the same as the input. But the input |11⟩
is negated to become –|11⟩, as shown in Equation 5.53.

CZ |11⟩ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 –1



0

0

0

1

 =


0

0

0

–1

 (5.53)

Because CZ has this effect only when both inputs are |1⟩, it doesn’t
really matter which we call the “control” and which we call the “target.” The

154 Chapter 5

CZ qugate has been given a special, symmetrical shortcut because of this
property. The generic form of the CZ qugate is shown in Figure 5-33(a), and
the special symbol is shown in part (b).

Z

(a) (b)

Figure 5-33: Two ways to draw the
controlled-Z, or CZ, qugate

Next up is the P qugate, also called the phase qugate. When we modify
a state |ψ⟩ = α |0⟩ + β |1⟩ with P, we multiply β by a complex number with
magnitude 1. In other words, we multiply it by eiθ for some value of an an-
gle represented by the real number θ. The S and T qugates are versions of
the P qugate for θ = π/2 and θ = π/4, respectively. These qugates are shown
in Equation 5.54.

P =

[
1 0

0 eiθ

]
, S =

[
1 0

0 eiπ/2

]
, T =

[
1 0

0 eiπ/4

]
(5.54)

Setting θ = π in the phase qugate gives us Z. The angles in the Z, S, and
T qugates are closely related, so we can write S = T 2 and Z = S 2.

Finally, we can write down a completely generic two-by-two unitary ma-
trix, often labeled U. You’ll rarely see this in practice, and I won’t use this
qugate in this book, but every now and then it does pop up in the literature.
Every unitary two-by-two matrix, including all those we’ve just seen, can be
made from this U with an appropriate choice of parameters. Different au-
thors write the elements of the Umatrix differently. One form of the matrix
for U is given in Equation 5.55 [146].

U(α,β, γ, δ) =

[
ei(α–β–δ) cos γ –ei(α–β+δ) sin γ

ei(α+β–δ) sin γ ei(α+β+δ) cos γ

]
(5.55)

You might be wondering if we need all of these different qugates. In
fact, only a few qugates are absolutely necessary. A set of qugates that allow
any quantum computation at all is called a universal set or universal family of
qugates. Usually these sets are of only theoretical interest, because we of-
ten need impractically huge numbers of these qugates to simulate what the
other qugates can do. There are multiple universal families, such as the set
of CX and the generic single-qubit qugate U in Equation 5.55; the set of CX,
H, and the phase qugates; and the set of the Toffoli and H qugates [225].
The smallest universal set is a single qugate. For example, the Toffoli qugate

Systems 155

is universal, so you can build any quantum circuit out of enough Toffoli
qugates. In practice, having lots of different qugates at our disposal makes
designing and implementing quantum algorithms a lot easier.

Summary
This chapter has taken us from single, isolated qubits and qugates to collec-
tions, or systems, of qubits and qugates working together.

We started with the tensor product, a mathematical tool that combines
two matrices by creating every combination of their elements in a specific
order. When we tensored together two kets describing the state of two quan-
tum objects, we called the resulting ket a product state. Every state, includ-
ing product states, can be written as a unique sum of the basis vectors.

We looked at quantum algorithms in diagram, or circuit, form. These
diagrams typically have multiple horizontal lines, one per qubit, and each
qubit flows from the left to the right, transformed by qugates along the way.
Qubits may be given names so we can refer to them (usually shown at the far
left of each line), and we can insert some vertical dashed lines with labels to
discuss the states of the qubits at different locations along the diagram.

We saw that one way to work out what’s happening to the qubits in the
circuit is to follow each qubit’s changes, or evolution, as it flows from the left
to the right. We call this a horizontal analysis.

Alternatively, we can collect vertically aligned qubits together into a sin-
gle system. We can also collect qugates into systems and then follow the evo-
lution of the entire qubit system as it passes from one qugate system to the
next. We call this a vertical analysis.

Both techniques give us the same final answer, but in any given diagram
one may be more convenient or make more sense to us than the other. We
can also use both methods, if that makes the calculation more sensible or
convenient.

We saw that we cannot reliably make perfect copies of arbitrary qubits,
which is proven by the no-cloning theorem. This means our quantum di-
agrams can’t branch, as that would require making a copy of the state just
before the branch.

We saw that the CX qugate takes two inputs, a “control” and a “target.”
When the control is in state |1⟩, the target has the X qugate applied to it;
otherwise, it is unaffected. This gave us a rudimentary if-then test, which
we could extend with a few more qugates (or auxiliary qubits) into an
if-then-else test.

Using CX and H qugates, we saw how to make entangled pairs, which
can only be written as a system and not as a tensor product of two qubits.

Finally, we reviewed our single- andmulti-qubit quantum gates and briefly
noted a few others.

All that remains to build working quantum algorithms is to see how to
use measurements to extract a final answer. This is the topic of our next
chapter.

156 Chapter 5

6
MEASUREMENT

We read the world wrong and say that it deceives us.
—Rabindranath Tagore, Stray Birds, 1916 [216]

There are two worlds: the world we can measure with line and rule, and the world that we feel
with our hearts and imagination.

—Leigh Hunt, The Farmer’s Wife, 1933 [93]

Up to this point, we’ve seen that quantum
computations begin with qubits in an ini-

tial state and are then operated upon repeat-
edly with quantum gates, changing their states.

This is a pretty good model of computation.
To make this model practical, however, we have to include an output

step. That is, we need to be able to determine the final states of the qubits at
the end of the computation. Obtaining useful output is, after all, the whole
purpose of running the computer in the first place!

In a classical computer, this measurement is straightforward. We have
devices that can objectively measure the status of a bit and report that it ei-
ther does or does not have some property. For example, we might measure
how much electrical charge is on an object representing a bit. Any charge
below some threshold is considered a 0, and otherwise it’s a 1.

Notice an important aspect of this process: To measure something, we
must interact with it. We typically try to make this interaction so small that

it has no noticeable effect on our measurement. In our everyday world, this
is often not a problem. For example, suppose someone holds out their hand
and offers us a grape. We can determine that they are actually holding a
grape by looking at it, which requires photons from some light source to in-
teract with the grape and eventually reach our eyes. That interaction doesn’t
have much effect on it (the grape might warm up a little, if there are enough
photons).

In quantum computing, measurements have a more dramatic impact on
the carriers of quantum bits. In fact, the very act of measuring a quantum
bit changes it fundamentally.

And as if that weren’t unusual enough, remember that a superposition
is a new state of being that seems to be best described as a list of possible
states and probabilities. The act of measurement causes that list to collapse
into a single state. Nobody knows for sure how that happens, or why. We
don’t even know exactly what constitutes a measurement.

And yet, if quantum computing is to have any practical value to us, we
need to somehow find a way to determine if each qubit emerging from the
computer is a 0 or a 1.

Figuring out how to make such determinations required the work of
many scientists and engineers. And while there are still open questions (like
exactly what qualifies as a “measurement”), we now have practical solutions
that let us obtain outputs from quantum computers.

Those solutions are the subject of this chapter.

The Main Ideas of Measurement
Let’s start with the big ideas that will guide the rest of this chapter. Different
kinds of quantum computing hardware use different technologies to repre-
sent qubits. In this book, we’re not concerned with these technologies, but
only with their shared ability to represent a qubit. For the sake of simplicity,
I’ll refer to the carrier of a quantum bit as a quantum particle, but don’t take
the “particle” part too literally. There are lots of different ways to represent
qubits, and not all of them look anything like what we’d call a particle. So
this is not a literal term, but just a catch-all for any technology representing a
qubit.

Suppose we have some physical device that can detect the state of a
qubit. Each type of technology that is used to represent qubits will require
its own specific type of measuring device, constructed specifically to mea-
sure the properties of whatever that technology uses to represent a qubit.

In quantum computing, we abstract all of this away and say that every
quantum computer comes equipped with one or more measuring devices,
each of which we generically call a meter.

When a qubit enters a meter, we say that the meter measures the qubit
or that we’re performing a measurement on, or an observation of, the qubit.
We sometimes say that we obtain the result of the measurement or obser-
vation, though we also refer to finding, getting, or seeing the result. We also
say that themeter reports or shows its result. I’ll treat all of these variations as
synonyms.

158 Chapter 6

While the word measure is probably familiar to you, quantum measure-
ments are decidedly unlike those we’re used to on an everyday, human scale.

A quantum meter provides a binary output. That is, it has only two out-
put states. Following the usual language of information theory, we refer to
a meter’s output as a “bit” and label its states 0 and 1 [193]. We use these
same two labels regardless of what physical process they’re actually referring
to (for example, whether an electric charge has or has not been detected, or
whether light is or is not present in some location).

When a quantum bit is measured, no matter what goes into the meter,
one of two things happens: either the meter reports a 0 and the qubit leaves
the meter in state |0⟩, or the meter reports a 1 and the qubit leaves the me-
ter in state |1⟩. That’s it.

Well, it can get more complicated, but not if we’re using the computa-
tional basis, which is the most common basis and the only one I use in this
book (in other bases, we still get 0 or 1 from the meter, but the possible
states of the qubit after measurement might not be the states |0⟩ and |1⟩).

If the qubit going into the meter is in the basis state |0⟩, then the meter
will always report a 0 and the qubit will leave the meter unchanged, in the
basis state |0⟩. Similarly, if the qubit going into the meter is in the basis state
|1⟩, then the meter will always report a 1 and the qubit will leave the meter
unchanged, in the state |1⟩.

Suppose instead that the qubit is in a superposition α |0⟩ + β |1⟩, where
neither α nor β is 0. This is the general case and so will be our main focus
in this chapter. When a state in superposition arrives at a meter, we cannot
predict with certainty what the meter will report, or what state the qubit will be in
after measurement. Either the meter will report 0 and the qubit will emerge
in state |0⟩, or the meter will report 1 and the qubit will emerge in state |1⟩,
but we can’t say for sure which of these will happen.

I mean this literally. Nobody can accurately state what the output of
the meter will be when the input is in superposition. Not now, not ever. Not
future humans, not sentient gas clouds [176], not even hyperintelligent pan-
dimensional creatures [3]. It’s not a question of lacking some information or
not being able to compute a simulation accurately enough. In this situation,
the universe is probabilistic, which means we can’t state with certainty just what
will happen next. It is inherently, fundamentally, inescapably unpredictable.

You may find this hard to believe. Albert Einstein famously refused to
accept it, arguing that “He does not play dice with the universe” (referring not
to any specific religious being but rather a “personification of nature” [175]).

Luckily, just as with physical dice, we can make statistical predictions
about what we’ll see. When we roll a normal (but ideal) die, every one of its
six faces has an equal probability of coming up on top. In a quantum mea-
surement, we can compute the exact probability of the meter reporting either
0 or 1, but until we perform the measurement, we can’t be sure which out-
put will emerge. Remarkably, even when a qubit enters the meter in a super-
position, it emerges as only either |0⟩ or |1⟩, corresponding to the meter’s
output.

These facts make the design and use of quantum algorithms a challenging
task. The rest of this chapter focuses on how to determine these probabilities

Measurement 159

and how to think about making measurements of some or all of the qubits in
a multi-qubit circuit.

Measuring Qubits
Let’s look more closely at how classical and quantum measurements differ.

Classical algorithms are repeatable. As long as the hardware is working
properly, running the same program with the same starting conditions over
and over will always produce the same outputs. We also describe this by say-
ing that classical algorithms are deterministic, because the inputs and the pro-
gram itself completely determine everything that is computed, including the
outputs.

Determinism in this context is a good thing. If you’re tracking some-
one’s banking records, working out the servicing schedule on amajor bridge,
or planning medical treatment, you want the same inputs to produce the
same outputs every single time. Determinism is a cornerstone of classical
computing.

Quantum computing is different. While the computation is determinis-
tic, the output is not. That’s because of the nature of measurement.

In this chapter, we’ll see that when we measure the output of a quantum
circuit, in all but the simplest circumstances the values we get back are not
deterministic. They are probabilistic, or nondeterministic.

I use the word probabilistic rather than unpredictable because the latter
suggests that we don’t know anything about what we’ll measure. We do know
the probabilities of the different outcomes, so they’re not totally unpredict-
able. We just don’t know specifically which outcome we’ll see after any given
run of the algorithm. Even though words like predictable and unpredictable
are imprecise in this context, many people use them when discussing mea-
surement, and I’ll do the same in this book.

The probabilistic nature of the outcomes wemeasure gives a random qual-
ity to our measurements. This isn’t a simulated, pseudorandom process like
that provided by libraries on classical computers. This is truly random, or a re-
sult that nobody, anywhere, with any technology, can determine beforehand.

All of these words are sometimes used to describe quantum measure-
ment. Unpredictable and nondeterministic are probably the best fits, but they’re
bulky. Many people prefer to use the more compact word random, and I’ll
use that as well, but keep in mind that we might know the possible outcomes
and their probabilities.

The nondeterministic nature of measurement is a fundamental and in-
escapable trait of quantum measurement. It cannot be avoided. Too much
unpredictability would make our outputs useless, so we’re fortunate that its
effects here are narrow and specific. Even so, we’ll see that this unpredictabil-
ity has profound implications for how we design quantum algorithms and
how we use quantum computers.

To stay focused, I’m going to ignore some advanced topics in measure-
ment, such as accounting for the influence of the environment on our
hardware, or representing qubits that are in one specific state (that is, not

160 Chapter 6

a superposition) that is guaranteed to be an element in a list of states but
where we don’t know which one it is. Skipping these topics lets us avoid a
bunch of new math and stay focused on the core ideas.

Happily, our simpler approach is ultimately just as powerful as the more
complicated methods, so we’re not losing anything by taking this gentler
path [146, p. 87].

Postulate 4
We’ll begin with our fourth and final postulate of quantummechanics, stated
in terms that will be useful for us [146].

Postulate 4 A measurement of a state |ψ⟩ ∈ Cd is created from a set of
projection operators Πk for k ∈ [d].

This postulate has three components:
1. The probability of measuring outcome k is ⟨ψ|Πk |ψ⟩.
2. The projection operators are complete:

∑
k∈[d]

Πk = I.

3. If outcome k is observed, the system immediately has the state
Πk |ψ⟩√
⟨ψ|Πk |ψ⟩

.

Don’t be spooked by this complicated postulate! It’s not as ferocious as
it appears. In this chapter, we’ll unpack everything.

This postulate will be a practical tool for us. It tells us how to predict the
different outcomes of a measurement, which helps us design our algorithms
so that the outcomes we want are more likely.

We’ll also see that it leads to a powerful principle whereby we can mea-
sure just some of the qubits from a calculation. This act narrows down the
possible values of the qubits we didn’t measure. Knowing this, we can apply
additional operators to those unmeasured qubits so that they’ll give us even
more useful information when we ultimately do measure them.

Meters
Meters in quantum circuits are often represented with an icon like one of
the shapes in Figure 6-1. The binary output of the meter is shown with two
parallel lines leaving the right side of the icon, representing a classical bit.
There’s no standard notation for the qubit that emerges from the meter.

b b

(a) (b)

Figure 6-1: (a) My icon for a meter. (b) An alternative icon.

Measurement 161

Although the drawing in Figure 6-1(b) is popular, I find it misleading,
because it looks like the kind of meter you’d find on a piece of audio equip-
ment, swinging back and forth with the volume of its input. This action
nicely represents real numbers, but not the binary bits we get from quantum
measurements. I prefer the triangular icon on the left because it suggests
that the general quantum state α |0⟩ + β |1⟩ is narrowed down into either
|0⟩ or |1⟩, with no other options.

Experiments
I’m here to talk about music with lots of saxophone, a little saxophone,
and . . . nope, I’m looking here, and those are the only two types of music.

—Kirk Hamilton, Strong Songs podcast, 2023 [88]

A common description of the scientific method starts with a question: “What
is going on with this thing that’s caught my attention?” To answer that ques-
tion, we perform experiments, make observations, and collect data. Then we
look at the data and think, and try one idea after another, in an attempt
to work out some story, or hypothesis, that makes sense of the data. Usually
in physics that hypothesis is phrased in mathematical form. So we concoct
a description (which we might call a model or theory), often composed of a
bunch of equations, that enables us to make a prediction. That is, we predict
the result of performing a brand-new experiment with a given set of starting
conditions. Then we perform the experiment and see if our prediction was
correct.

Usually, when we’re just getting started, we’ll find that our prediction is
wrong, by either a little or a lot. So we run the loop again, make more obser-
vations, gather more data, mess around with our math, make a new predic-
tion, run the new experiment, and see what happens. We do that again and
again, and eventually, with luck, persistence, and skill, we may end up with a
body of math that makes accurate predictions.

For our study of quantum computing, we are fortunate because we have
working devices available today that make it possible to run our own experi-
ments, collect data, and develop theories. So, rather than me just telling you
how measurement works, we’ll discover it.

In this chapter, I’ll present actual data. IBM provides limited but free
online access to a few small quantum computers where you can run your
own algorithms [95]. I used one of their five-qubit machines to run most of
the algorithms in this chapter and produce the data in the figures.

The value of running quantum programs on real quantum hardware is
that there is no simulation and no guesswork. It doesn’t matter what our
math might or might not say. We get to see what actually happens in the
physical world.

Measuring Hello, World!
Let’s start small, with the Hello, World! algorithm from Chapter 4. I’ve re-
peated the circuit on the left side of Figure 6-2, and the results I got from

162 Chapter 6

the actual hardware are shown on the right. To generate this figure, I ran
the algorithm 1,024 times. Each run is often called a shot.

q |0⟩ b

Figure 6-2: The Hello, World! quantum circuit, and the results of running this
circuit 1,024 times

The circuit starts with a quantum bit that I named q. It’s initialized to
the state |0⟩ and then goes directly into a meter. I said earlier that every
time the meter receives a qubit in state |0⟩, it reports the bit 0 and the qubit
leaves the meter in state |0⟩. But if we look at the figure, we see that we
don’t always get 0. What’s happening here?

The problem is that I described an idealized, perfect quantum com-
puter, and the hardware we have now is not perfect (and may never be per-
fect). Every now and then, something goes wrong. The problems are due
to a wide variety of internal and external influences that we often lump to-
gether and call noise. Sources of noise include heat, vibrations, flaws in the
computer’s components, a star exploding in another galaxy, someone sneez-
ing near the hardware, a spike in the power supply, and a seemingly endless
collection of other causes.

Classical computers also make errors. For example, the designers of the
computers aboard the Apollo spacecraft that took humans to the moon and
back in the 1960s and ’70s knew that cosmic rays and other physical phe-
nomena could disrupt the computer’s memory and processing units, which
could lead to giving the astronauts incorrect, and possibly fatal, output. To
reduce this risk, the spacecraft carried three identical copies of the onboard
computer. Every calculation was run simultaneously on all three comput-
ers, and the results were fed into yet another computer. If there was ever
disagreement between the three inputs, this final computer chose the most
popular answer and passed that on to the rest of the system and the astro-
nauts. This approach was called triple modular redundancy [219] [280]. Today,
errors in classical computers still happen regularly, due to many different
causes, but these errors are detected and corrected by a wide variety of hard-
ware and software techniques.

Finding and correcting errors in quantum computers is the focus of
a field called quantum error correction (QEC). We won’t get into those tech-
niques here. The important thing is that although the situation is improving,

Measurement 163

it’s hard to get away from errors when using today’s hardware. People some-
times refer to our current era of quantum computing as the NISQ era, an
acronym that stands for noisy intermediate-scale quantum [273]. This means
that most of our quantum computers are of an “intermediate” size (usually,
up to a few hundred qubits) and make uncorrected errors due to noise.

One way to compensate for noise is to run a circuit many times. The
hope is that the noise will be uncorrelated, or unrelated, from one run to
the next. Generally speaking, we hope that while some errors will probably
creep in, no one specific type of error will happen significantly more fre-
quently than any other. Thus, the theoretically correct result will be seen
most frequently, amid a sea of less frequent erroneous results.

That’s just what we’re seeing in the graph in Figure 6-2, where after
1,024 shots, the theoretical answer 0 dominates the erroneous 1. We’ve suc-
cessfully run Hello, World! on an actual quantum computer! From now on,
while every result will have some noise, I’ll focus on the dominant results.

Measuring X |0⟩
Suppose we expand our Hello, World! circuit from Figure 6-2 by inserting
an X qugate, as shown on the left side of Figure 6-3. The input to the meter
should be |1⟩ every time, and thus the meter should report 1 every time.
Though there’s some noise, the graph on the right side of Figure 6-3 con-
firms this expectation.

q bX

Figure 6-3: Sending |1⟩ to the meter, and the results of running this circuit
1,024 times

Measuring H |0⟩
Now let’s get a little more ambitious and replace the X qugate with an H.
This means the meter will receive the superposition H |0⟩ = |+⟩. The circuit
and its output are shown in Figure 6-4.

164 Chapter 6

q |0⟩ bH

Figure 6-4: Inserting an H qugate into the circuit of Figure 6-2 before measurement,
and the results of running this circuit 1,024 times

Does this make sense? The output of H |0⟩ is shown in Equation 6.1.

H |0⟩ = |+⟩ = ∨ |0⟩ + ∨ |1⟩ (6.1)

This looks symmetrical to me, so I’d expect symmetrical measurements
as well. Why do we see so many more |0⟩ results than |1⟩?

Remember that we’re trying to discover how measurement works. When
we get surprising data, we need to look more closely at it to either confirm
the surprise (and then account for it) or declare it to be an anomaly.

To decide how much we should trust these results, let’s run the circuit
many more times and collect all that new data. I ran it for 20,000 shots, get-
ting the results in Figure 6-5(a).

(a) (b)

Figure 6-5: (a) Running the circuit of Figure 6-4 for 20,000 shots on a five-qubit computer. (b) Running
it on a seven-qubit computer.

That’s not much more symmetrical. Perhaps part of the problem is due
to known sources of error that we can address. Today’s quantum computers
are highly sensitive instruments that can require regular calibration to keep
their errors in check. So, I ran the same circuit on a larger, seven-qubit com-
puter that had been more recently calibrated. This produced the results in
Figure 6-5(b).

Measurement 165

As you can see, measuring |+⟩ on a larger, more recently calibrated quan-
tum computer for 20,000 shots returns about equal numbers of 0 and 1 mea-
surements. I’ll take that as ourmost accurate observation for this experiment.

But what is this telling us? Why is measuring the superposition return-
ing a roughly equal number of 0 and 1 outputs? Let’s dig deeper.

Measuring HH |0⟩
We don’t observe superpositions themselves. Whether or not they are real
depends on whether you think the math is itself reality or just a tool we
use to describe it.

—Jon Cartwright, An Inventory of the Quantum Realm, 2023 [31]

We can use our actual hardware to look more closely at the nature of a
superposition. That is, when we say that a physical quantum object has
the state |+⟩ = ∨(|0⟩ + |1⟩), what does that really mean? And what happens
when we measure it? As a first hypothesis, let’s suppose that this is a mathe-
matical way of writing our own uncertainty.

As an analogy, suppose that we have just flipped a coin and it has landed
on a table in front of us. Before we look at it, we know that it’s showing ei-
ther heads or tails. That’s the reality of the coin, independent of us or our
observations. When we do finally look at the coin to see if it’s showing heads
or tails, we only discover the coin’s preexisting condition. Our knowledge in-
creased, but our observation had no effect on the coin’s status. Objectively,
in the real world, the coin was either showing heads or tails. Our choice of
when (or even if) to look is irrelevant to the coin’s real, existing status.

In the same way, the approach we’re tentatively considering says that
our qubit is not actually in a superposition, but rather it’s in one of the ba-
sis states |0⟩ or |1⟩. Then, writing its state as a superposition is just a math-
ematical way to say that we haven’t looked yet, so we don’t know which of
these states it’s in.

Let’s test this hypothesis! I’ll make a circuit with two H qugates in a row,
as in Figure 6-6. The right-hand side of this figure shows the results of run-
ning the circuit 1,024 times on a five-qubit computer.

q |0⟩ bH H

|ϕ0⟩ |ϕ1⟩ |ϕ2⟩

Figure 6-6: The circuit of Figure 6-4 with a second H qugate, and the measurements
from 1,024 shots

166 Chapter 6

The theory we’re considering says that |ϕ1⟩ is definitely either |0⟩ or
|1⟩, just as the coin was either showing heads or tails, but we don’t know
which. Let’s suppose it’s |0⟩. Then, the value |ϕ2⟩ going into the meter is
given by Equation 6.2.

|ϕ2⟩ = H |ϕ1⟩ = H |0⟩ = |+⟩ (6.2)

So this theory predicts that the meter is receiving |+⟩. We just ran that
experiment and got the results in Figures 6-4 and 6-5. Compare those to the
results of our new circuit, shown on the right side of Figure 6-6. Even in the
presence of noise, they aren’t close. This looks just like Figure 6-2, which
told us that (ignoring noise) we always measure |0⟩.

These observations on real-world devices tell us that our tentative inter-
pretation of ∨(|0⟩ + |1⟩) must be wrong. This cannot describe something
like the coin, which is either |0⟩ or |1⟩, and we just don’t know which. This
superposition state is . . . something else.

This is all good news! Using actual hardware, we’ve learned something
important. A qubit in superposition is nothing like a coin on a table. It is
not either |0⟩ or |1⟩, with only our ignorance preventing us from knowing
which.

Instead, a superposition is some kind of subtle, novel kind of existence
involving those two states. And measuring it isn’t as simple as looking at a
coin on a table.

Let’s see if we can figure out what happens when we measure a super-
position by running more experiments, observing their output, and then
thinking about that data to form a theory.

Measuring an Unequal Superposition
In the state |+⟩, both |0⟩ and |1⟩ have the same amplitude, ∨. And we saw
that in the long run, with the seven-qubit computer, we measured 0 and 1
about the same number of times. Could the measurement results be related
to the amplitudes?

Let’s try measuring a qubit in an unequal superposition (that is, where
the amplitudes aren’t the same) and see what happens. I’ll arbitrarily pick
the superposition in Equation 6.3 (we’ll soon see why those square roots are
in there).

|ψ⟩ =
√
0.4 |0⟩ +

√
0.6 |1⟩ (6.3)

I wrote a small circuit that initializes a qubit in this state and then im-
mediately feeds that into a meter. Let’s run this program many times and
plot the running ratio of the results. For this experiment, I used IBM’s high-
quality quantum simulator [95].

Figure 6-7 shows the results for two different runs of 100 and 1,000 shots.
The dotted line shows the running percentage of measurements that were 0,
and the solid line shows the same thing for 1.

Measurement 167

Figure 6-7: Measuring |ψ⟩ =
√
0.4 |0⟩ +

√
0.6 |1⟩ on a quantum simulator; (left) 100 shots,

(right) 1,000 shots

Remember, right now we’re trying to find a hypothesis. Our task is to
look at the data and devise an explanation, which we’ll then test.

When I look at the results in Figure 6-7, it seems that the probability of
measuring a 0 is settling in at about 0.4 and the probability of measuring a 1
is about 0.6.

Let’s do a quick probability check. Every measurement produces one
of two possible results, so the sum of these probabilities must be 1. Sure
enough, 0.4 + 0.6 = 1, so these results make sense so far.

I also notice the seeming coincidence that the amplitude of |0⟩ is
√
0.4

and the probability of measuring a 0 is about 0.4. Furthermore, the ampli-
tude of |1⟩ is

√
0.6, and the probability of measuring a 1 is about 0.6.

So, I’ll suggest the hypothesis (that is, I’ll guess) that the probability of
measuring either state is given by the square of its amplitude.

Let’s test this hypothesis. I’ll try the new state given in Equation 6.4.

|ψ⟩ =
√
0.75 |0⟩ +

√
0.25 |1⟩ (6.4)

I predict we’ll find that the probability of measuring state |0⟩ will be
(
√
0.75)2 = 0.75, and the probability of measuring state |1⟩ will be given by

(
√
0.25)2 = 0.25. The output of the simulator is shown in Figure 6-8.

Figure 6-8: Measuring the superposition |ψ⟩ =
√
0.75 |0⟩ +

√
0.25 |1⟩ on a quantum

simulator; (left) 100 shots, (right) 1,000 shots
168 Chapter 6

Yes! I’ll tentatively accept this hypothesis as true. In the real world, we’d
run many more experiments, but you and I both know the answer we’re
working toward, and I’m not leading you astray.

Does our theory work if the amplitudes are complex numbers? Suppose
that we replace the amplitude of |0⟩ with i

√
0.75, as in Equation 6.5.

|ψ⟩ = i
√
0.75 |0⟩ +

√
0.25 |1⟩ (6.5)

Because the amplitude of |1⟩ hasn’t changed, our hypothesis says that
the probability of getting a 1 is still 0.25, and so the probability of getting
a 0 must still be 0.75. That is, the coefficient i

√
0.75 has to give us the same

probability that we got from
√
0.75, somehowmaking the factor of i irrelevant.

The same argument lets us also put an i in front of the amplitude of |1⟩.
Since the probability of getting a |0⟩ is still 0.75, the probability of getting a
1 from the amplitude i

√
0.25 must also still be 0.25.

Do we need to refine our hypothesis so that
√
0.25 and i

√
0.25 both give

us a probability of 0.25? Yes, because (i
√
0.25)2 = –0.25. Not only does a neg-

ative probability make no sense, it also differs from the positive 0.25 that we
measured in Figure 6-8. We need to get rid of that minus sign.

There are many different mathematical operations we could try to re-
move the influence of that i, but rather than go down lots of dead ends, I’ll
jump to the approach that works best in the long run. We’ll find the proba-
bility of measuring 0 or 1 by squaring the magnitude of the amplitudes of |0⟩
and |1⟩, respectively, rather than the amplitudes themselves. For a complex
amplitude α, that squared magnitude is |α|2.

Recall from Equation 2.11 on page 39 that |α|2 = αα. We can also com-
pute the magnitude explicitly from the components of α in either rectangu-
lar or polar form.

To stress-test this new wrinkle to our hypothesis, I’ll make up a state using
arbitrary complex numbers for α and β. For no reason, I chose α = 0.3 + 0.7i
and 0.4 for the real part of β. We know that the probabilities have to add up
to 1 (that is, |α|2 + |β|2 = 1), so we can find the imaginary part of β bymulti-
plying everything out. Then

√
1 – (0.32 + 0.72 + 0.42) ≈ 0.5, so I’ll write β as

0.4 + 0.5i. Our test state |ψ⟩ is given in Equation 6.6.

|ψ⟩ = (0.3 + 0.7i) |0⟩ + (0.4 + 0.5i) |1⟩ (6.6)

Let’s predict what we’ll see. The amplitude of |0⟩ is α = 0.3 + 0.7i. Com-
puting αα gives us |α|2 = 0.58. The amplitude of |1⟩ is β = 0.4 + 0.5i, and
ββ gives us |β|2 = 0.42. As we’d expect, the probabilities add up to 1.

This tells us that if we prepare many qubits in the state |ψ⟩ and measure
them, about 58 percent of the measurements will be 0 and about 42 percent
will be 1. Figure 6-9 shows the results.

Measurement 169

Figure 6-9: Measuring the state (0.3 + 0.7i) |0⟩ + (0.4 + 0.5i) |1⟩; (left) 100 shots,
(right) 1,000 shots

Our prediction matches the experiment!
These few examples are not remotely numerous, precise, or rigorous

enough to let us claim that our hypothesis is correct. But in the century or
so since this math was first proposed, it has been tested countless times, and,
except for noise, it has always correctly predicted actual measurements.

Let’s summarize this discussion. Given a state |ψ⟩ = α |0⟩ + β |1⟩, I’ll
write the probability of measuring a 0 as Pr|ψ⟩(0) and the probability of mea-
suring a 1 as Pr|ψ⟩(1). Then, the probabilities of measuring these outputs for
a state |ψ⟩ = α |0⟩ + β |1⟩ can be written as in Equation 6.7.

Pr|ψ⟩(0) = |α|2

Pr|ψ⟩(1) = |β|2
(6.7)

Nobody can say exactly why Equation 6.7 describes actual observations.
Maybe this math is modeling somemechanism in nature that we’re not aware
of. Maybe something else is going on. As of today, it’s a beautiful mystery.
But whatever the reason, this math consistently predicts how nature behaves.
Chalk one up for mathematics!

The probabilities expressed in Equation 6.7 are the consequence of some-
thing called the Born rule [254]. These probabilities must be normalized, or
add up to 1. After all, something has to happen as the result of a measurement.
We can write this normalization requirement in Equation 6.8.

|α|2 + |β|2 = 1 (6.8)

Nature doesn’t have to obey our logic, but every test of quantum theory
has upheld this relationship. We sometimes say that nature only allows quan-
tum states that satisfy this normalization rule and does not allow any others.

170 Chapter 6

Amplitudes from Projection
In the previous section, I referred to the amplitudes of a state |ψ⟩ as α and
β. That’s fine, but it won’t scale well when we move to systems with lots of
qubits.

Measuring multiple qubits is going to require a few new ideas, so this
section will be a little denser than usual. I’ll explain what’s going on as we
go, so take your time.

Let’s find a systematic way to write the coefficients (or amplitudes) in
qubit values without having to give them unique names. Because α and β
are the coefficients of |ψ⟩ with respect to the basis states |0⟩ and |1⟩, we
can find them by projecting |ψ⟩ onto each of these states.

Recall from Equation 2.56 that we can write the projection of state from
onto state onto with the inner product ⟨onto, from⟩. Equation 6.9 uses the
braket form of this operation to project |ψ⟩ onto |0⟩.

⟨0|ψ⟩ = ⟨0|(α |0⟩ + β |1⟩)⟩ Expand |ψ⟩
= ⟨0|α |0⟩ + ⟨0|β |1⟩ Distribute ⟨0|
= α ⟨0|0⟩︸ ︷︷ ︸

1

+ β ⟨0|1⟩︸ ︷︷ ︸
0

From orthonormality, ⟨j|k⟩ = δj,k

= α

(6.9)

In the third line, I used the fact that the computational basis is orthonor-
mal, so the inner product of any basis state with itself is 1 and the inner prod-
uct with any other basis state is 0. Equation 6.9 tells us that ⟨0|ψ⟩ is another
name for α. Computing ⟨1|ψ⟩ following the same process shows us that it’s
another name for β.

Because ⟨0|ψ⟩ gives us α, and the probability of obtaining ameasurement
of 0 from |ψ⟩ is |α|2, we can put these two statements together. The proba-
bility of measuring state k (where k is either 0 or 1) is given by Equation 6.10.

Pr|ψ⟩(k) = | ⟨k|ψ⟩ |2 (6.10)

This is a valuable result, because not only does it tell us the probabilities
of measuring k = 0 or k = 1 for a single qubit, but it also gives us the probabil-
ity of measuring a larger binary number k from a system of qubits. We’ll get
to that soon.

For now, let’s take a closer look at Equation 6.10. I’ll expand the right
side and regroup, as shown in Equation 6.11.

| ⟨k|ψ⟩ |2 = ⟨k|ψ⟩ ⟨k|ψ⟩ Use Eq. 2.11

= ⟨ψ|k⟩ ⟨k|ψ⟩ Use Eq. 2.75

= ⟨ψ|
(
|k⟩ ⟨k|

)
|ψ⟩ Regroup

(6.11)

What’s that term in the middle, between the parentheses?
Let’s take a closer look.

Measurement 171

The Outer Product
Since both bras and kets are matrices, an expression like |k⟩ ⟨k| is a matrix
multiplication. To understand its result, consider the general case of mul-
tiplying two matrices. If the first matrix is of shape m by n (that is, it has m
rows and n columns), then the second matrix must be of shape n by p (that
is, n rows and p columns). We might write this multiplication in terms of
shapes as (m,n)× (n, p). Matrix multiplication requires that the “inner” di-
mensions (here, n) must be the same. The resulting matrix has a size given
by the “outer” dimensions, or m by p. Let’s apply this idea to the products of
bras and kets.

When we formed an inner product of a bra and a ket, because the bra
was a 1-by-d row matrix and the ket was a d-by-1 column matrix, we got back
a matrix with only a single element (which we usually interpret as a number,
rather than a matrix of size 1 by 1).

When the order is reversed, we’re multiplying a ket of shape d by 1 with
a bra of shape 1 by d, giving us a matrix with the shape d by d.

We can visualize this construction with a picture. Equation 6.12 shows
the basic idea for a ket |ψ⟩ with components a and b and a bra ⟨ϕ| with com-
ponents c and d.

|ψ⟩⟨ϕ|→

[
c d

][
a

b

][
· ·
· ·

]
→

[
c d

][
a

b

][
ac ad

bc bd

]
→

[
ac ad

bc bd

]
(6.12)

In words, we make an empty 2-by-2 matrix, place |ψ⟩ to its left, and ⟨ϕ|
above. Now each term in the matrix is formed by the product of the element
in the row matrix to its left and the element in the column matrix above it.

We call an expression of the form |ψ⟩⟨ϕ| the outer product, or ketbra, of
|ψ⟩ and |ϕ⟩. As we’ve seen, the outer product is a matrix.

Let’s return to Equation 6.11 and write the matrix for the outer product
|k⟩⟨k|, as shown in Equation 6.13.

Pr|ψ⟩(k) = ⟨ψ|
(
|k⟩ ⟨k|

)
|ψ⟩ Eq. 6.11

≈ ⟨ψ|


[
k0 k1

]
[
k0
k1

][
· ·
· ·

]
 |ψ⟩ Structure of the

outer product

= ⟨ψ|

[
k0k0 k0k1
k1k0 k1k1

]
|ψ⟩ Compute outer product

(6.13)

172 Chapter 6

This shows an interpretation of Equation 6.11 as the product of three
matrices (not four): the bra ⟨ψ|, the outer product |k⟩⟨k|, and the ket |ψ⟩.

Now that we know how to form the outer product, let’s take a deeper
look at it. I’ll start with a few of its useful properties, and then I’ll show how
the outer product lets us define a new operator that will play a central role
in writing quantum measurements.

One useful property arises when each state in an outer product has di-
mensionality d. In this case, the outer product |ψ⟩⟨ϕ| is a square matrix of
dimensions d by d. If that matrix is unitary, we could use it as an operator.

If the two states we’re using are both basis states, their outer product
matrix takes on a special, simple form. Let’s find the outer product of |r⟩⟨c|,
where c and r are integers, so |c⟩ and |r⟩ are both basis states. The result,
shown in Figure 6-10, is a matrix that is 0 everywhere except for a single 1
at row r and column c.

Figure 6-10: The outer product of the basis
states |r⟩ and |c⟩

We can express this relationship in a few other useful ways.
If we “sandwich” a matrixM between ⟨r| and |c⟩, we extract the element

µr,c. This is like running the picture in Figure 6-10 in reverse. We can write
this in Equation 6.14. Recall that I write the elements of matrixM as µ to
emphasize that they’re complex numbers.

⟨r|M |c⟩ = µr,c (6.14)

I sometimes call an expression like ⟨r|M |c⟩ a bramket, because it’s a
braket with a matrix (genericallyM) in the middle (hey, the term “braket”
itself is a pun!).

Measurement 173

IfM = |r⟩ ⟨c|, then we can confirm that element µc,r is 1, as shown in
Equation 6.15.

⟨r|M |c⟩ = ⟨r|
(
|r⟩⟨c|

)︸ ︷︷ ︸
M

|c⟩ Because we said M = |r⟩⟨c|

= ⟨r|r⟩︸︷︷︸
1

⟨c|c⟩︸︷︷︸
1

Regroup

= 1 Basis states have magnitude 1

(6.15)

In the third line, I used the fact that in this book we only use computa-
tional basis states, which are orthonormal, so the inner product of any basis
state with itself is 1. We can show that every other element is 0 in the same
way, as the inner product of any basis state with any other basis state is 0.
Let’s do this. I’ll replace |r⟩ with |k⟩ (where r /= k) while keeping the sameM,
giving us Equation 6.16.

⟨k|M |c⟩ = ⟨k|
(
|r⟩⟨c|

)︸ ︷︷ ︸
M

|c⟩ = ⟨k|r⟩︸ ︷︷ ︸
0

⟨c|c⟩︸︷︷︸
1

= 0 (6.16)

We can summarize this result for any c and r in the single statement of
Equation 6.17.

⟨r|
(
|r⟩ ⟨c|

)
|c⟩ = ⟨r|M |c⟩ = δr,c (6.17)

Finally, we come to the special case when c and r have the same value.
Let’s call that k. Then we’re finding |k⟩⟨k|, which is what got us started on
this topic in Equation 6.11. This outer product is a matrix that is 0 every-
where, except for a single 1 at µk,k.

Particularly useful instances of this special case are the matrices when
k = 0 and k = 1, because those correspond to our basis states |0⟩ and |1⟩. I’ll
give these matrices the special names Π0 and Π1. (The capital Greek letter
pi, Π, is conventional in the field for these matrices. As we’ll see later, the
choice of the Greek equivalent of “P” is motivated because these are called
projectionmatrices.) Their definitions are given in Equation 6.18.

Π0
∆
= |0⟩⟨0| =

[
1 0

0 0

]
, Π1

∆
= |1⟩⟨1| =

[
0 0

0 1

]
(6.18)

More generally, the outer product of any basis state |k⟩ with itself is
named Πk and is defined as in Equation 6.19.

Πk
∆
= |k⟩⟨k| (6.19)

Projection operators (and their matrix representations) have a special
property: Applying them two ormore times is the same as applying them
once. That is, once the operator has done its job, repeated applications make
no additional changes. It’s like snuffing out a candle flame by pinching
the wick with your fingers. Once you’ve extinguished the flame, pinching the
wick again doesn’t change anything.

174 Chapter 6

If this reminds you of the projection operation we looked at in Chapter 2,
you’re on the right track! We’ll see that these projection matrices do a job
much like our projection of an arrow onto another arrow.

There’s a formal term for operators that, once applied, make no further
changes on repeated applications. We call them idempotent. We can capture
the idea symbolically for any projection matrix Π as in Equation 6.20, which
says that applying Πk twice (or three times, or four, or more) is the same as
applying it once.

Πk
2 = Πk (6.20)

We can see why this is so in Equation 6.21.

Πk
2 = ΠkΠk Expand Πk

2

=
(
|k⟩⟨k|

)(
|k⟩⟨k|

)
Write each Πk as in Eq. 6.19

= |k⟩ ⟨k|k⟩︸ ︷︷ ︸
1

⟨k| Regroup center terms

= |k⟩⟨k| Because ⟨k|k⟩ = 1

= Πk From Eq. 6.19

(6.21)

There’s another observation that will prove useful: A projection matrix
is the same as its adjoint. The reason why is shown in Equation 6.22.

Πk
† = Πk

T Definition of the adjoint

= Πk
T Because every element of Πk is real

= Πk Because Πk is 0 off of the main diagonal

(6.22)

Remember that we can use a square matrix as an operator in a quantum
circuit only if it’s unitary. As you may have noticed, projection matrices are not
unitary. We can see that because they cannot be undone, or reversed. If we
apply a projection matrix such as Π0 or Π1 to a two-element quantum state,
either α or β goes to 0. There’s no way to undo that operation and recover
the original value of that coefficient. Thus, we cannot use projection matri-
ces as a computational part of a quantum algorithm.

So why have we just discussed them? It’s because these matrices will
be just right for representing the meters that can come at the very end of
a quantum circuit. As the meters aren’t part of the computational process,
it’s okay to model them with operators that can’t be used for computation.

Because we’ll use projection matrices to model measurements, let’s get a
little more experience with them. I’ll see if we can use them to find the vector
representing the projection of some state |ψ⟩ onto some basis state |k⟩.

As we’ve seen, we can write any state |ψ⟩ as a sum of weighted basis
states, as Equation 6.23.

|ψ⟩ =
∑
k∈[d]

ψk |k⟩ =
∑
k∈[d]

|k⟩ψk (6.23)

Measurement 175

Each coefficient ψk is the amount of |ψ⟩ that is due to basis vector |k⟩.
In other words, it’s the projection of |ψ⟩ onto |k⟩, or ⟨k|ψ⟩. Multiplying that
by |k⟩ gives us |k⟩ ⟨k|ψ⟩, the scaled version of that basis vector. I’ve written
that expression out in tableau form in Equation 6.24. I compute the inner
product first by multiplying the two rightmost matrices, and then I use that
to scale |k⟩. In each of these matrices, the 1 element is at position k.

|k⟩ ⟨k|ψ⟩ =



0
...

1
...

0


[
0 · · · 1 · · · 0

]


ψ0
...
ψk
...

ψd–1


Write out the matrices

=



0
...

1
...

0


ψk =



0
...
ψk
...

0


= ψk |k⟩ Multiply right matrices

(6.24)

And that’s our projection. Now let’s try it again, but this time using
outer products. Instead of computing the inner product ⟨k|ψ⟩ first by mul-
tiplying the matrices on the right, in Equation 6.25 I’ll compute the outer
product |k⟩ ⟨k| (or Πk) first by multiplying the matrices on the left. The 1
element in the outer product matrix is at position k, k.

|k⟩ ⟨k|ψ⟩ =



0 · · · 0

... 1
...

0 · · · 0





ψ0
...
ψk
...

ψd–1


Form outer product |k⟩ ⟨k| = Πk

=



0
...
ψk
...

0


= ψk |k⟩ Multiply matrices

(6.25)

Both approaches give us the same result, the basis vector |k⟩ scaled by ψk.
As I mentioned, we’re going to use the outer product to create the oper-

ators that let us make measurements. Let’s get right into that.

176 Chapter 6

Back to Measurement
Recall that Equation 6.10 showed us that when we measure a qubit, the prob-
ability of the meter reporting a 0 or a 1 depended on the state’s amplitudes
on the basis states |0⟩ and |1⟩.

We expanded Equation 6.10 into Equation 6.11, which introduced the
outer product |k⟩⟨k|. Now we can use Equation 6.19 to replace that |k⟩⟨k|
with Πk, giving us Equation 6.26. This tells us the probability of measuring
output k if we measure |ψ⟩.

Pr|ψ⟩(k) = ⟨ψ|Πk |ψ⟩ (6.26)

If Equation 6.26 looks familiar, that’s because it’s the first statement in
Postulate 4!

We went through a lot of work to write the probability of measuring k in
this form. All that work will pay off when we see how nicely this generalizes
to characterizing the probabilities of measuring systems of multiple qubits.

Now we can knock out the other two statements of Postulate 4 as well.
Statement 2 tells us that if a measurement has m possible outcomes, the

sum of all the Πk, one for each outcome, is the identity matrix I.
This is a generalization of the normalization rule, telling us that the sum

of the probabilities for all measurements must be 1. But now our probabilities
are those given by Equation 6.26. For a single qubit, there are only two
projection matrices, Π0 and Π1. Using their definitions in Equation 6.18, we
can add them together directly, as in Equation 6.27.

Π0 + Π1 =

[
1 0

0 0

]
+

[
0 0

0 1

]
=

[
1 0

0 1

]
= I (6.27)

Later, we’ll have systems of qubits where there are d possible outcomes.
Remember that each matrix Πk has a 1 at index (k, k) and is 0 everywhere
else. So each Πk contributes a single 1 along the main diagonal from the
upper left to the lower right. If we sum up the dmatrices Π0 through Πd–1,
we’ll get a d-by-dmatrix that is 0 everywhere except for a 1 at each entry
along the main diagonal. That’s a description of the identity matrix!

The third statement of the postulate is another fact of nature, not some-
thing we can derive or work out by reasoning. That is, it’s a statement of what
the world shows us.

When we measure a system of qubits, each qubit enters its own meter.
The output of that meter depends only on that qubit’s probabilities. The
result is that each meter produces one of two results that we call 0 and 1.

In addition to presenting a bit at the meter’s output, another effect of
measurement is that the qubit emerges in a state consistent with the meter’s
output. This means that every time we measure a 0, the qubit exits the meter
in the state |0⟩, and every time we measure a 1, the qubit exits the meter in
the state |1⟩. No matter what state a qubit is in when it enters the meter, it

Measurement 177

leaves as either |0⟩ or |1⟩, matching the 0 or 1 shown by the meter. That’s
what nature does. We’ll see soon how the math models this.

We say that the superposition collapses to one of its basis states.
Be wary of interpreting this to mean that there’s some kind of mecha-

nism inside the meter that first collapses the qubit to |0⟩ or |1⟩ and then
outputs the corresponding bit 0 or 1. Maybe this happens, or something like
it. But maybe not. Nobody really knows the mechanism that causes superpo-
sitions to collapse upon measurement. All we do know is that, somehow, the
qubit emerges as |0⟩ or |1⟩, and the meter reports the corresponding bit.

I’d like to write this experimentally observed behavior of the meter sym-
bolically. I’ll start by using the projection operators we met recently.

I said earlier that projection operators aren’t used in quantum compu-
tations, and it’s essential that you keep this in mind. Projection operators are
never used within quantum circuits. They appear only at the end. (There are spe-
cial exceptions to this rule, but we won’t use them in this book.)

They’re not qugates. As we discussed, they’re not even unitary. They’re
a special mathematical operation that we use only for the purpose of com-
puting probabilities, so we can characterize what outputs we’re likely to see.
This is vital to remember, so I’ll say it again: Projection operators are never used
in quantum circuits.

But! They are a convenient way to describe measurements that happen
at the very end of these circuits. That’s how we’ll get to the third statement
of Postulate 4.

I’ll begin by observing that if we measure |ψ⟩ and get outcome k (for
a single qubit, that’s either 0 or 1), then that output is almost the same as
Πk |ψ⟩, as shown in Equation 6.28 for Π0.

Π0 |ψ⟩ =

[
1 0

0 0

][
α

β

]
=

[
α

0

]
= α |0⟩ (6.28)

This is almost but not quite the same as just |0⟩.
In the same way, Π1 |ψ⟩ = β |1⟩. We can more generally say that the

operation Πk |ψ⟩ gives us a state of the same dimensionality as |ψ⟩, whose
elements are 0 everywhere except at location k, where it has value ψk, as il-
lustrated in Figure 6-11.

Figure 6-11: The operation Πk |ψ⟩

Unfortunately, unless |ψ⟩ is itself a basis state, the result Πk |k⟩ will not
have a magnitude of 1 and thus cannot exist in nature.

178 Chapter 6

But that’s easily fixed! To get the state ψk |k⟩ to have a magnitude of 1,
we need only divide it by ψk, the coefficient of |ψ⟩ with respect to basis state
|k⟩. That will leave us with just |k⟩, which is a basis vector and therefore has
a magnitude of 1. If we know ψk we can just do the division, but what if we
don’t know that value? Can we still normalize the result without using an
explicit value for ψk?

We know that ψk is the amplitude for state k, so |ψk|2 is the probability
that we’ll observe outcome k. And we know, at this point in our discussion,
that we did observe outcome k.

So, to turn any Πk |ψ⟩ into a physically realizable state, we can divide
by the square root of |ψk|2. The probability |ψk|2 of measuring state k is
given by ⟨ψ|Πk |ψ⟩, as we saw in Equation 6.26. I’ve put all of this together
in Equation 6.29.

Πk |ψ⟩
|Πk |ψ⟩ |

=
Πk |ψ⟩√
Pr|ψ⟩(k)

=
Πk |ψ⟩√
⟨ψ|Πk |ψ⟩

(6.29)

And that is themathematical part of the third statement of Postulate 4.
It’s a lot of symbols to represent the basis state |k⟩, which is the state the
qubit has when it leaves a meter that reported k. In words, if we know that
we have a meter output of k when measuring |ψ⟩, then we can write this as
a projection of |ψ⟩ onto |k⟩, or Πk |ψ⟩, divided by the amplitude of that pro-
jection,

√
⟨ψ|Πk |ψ⟩.

Since the end result of all this work is just the basis vector |k⟩, why go
through all the complicated stuff in Equation 6.29? The value of that form
is that it generalizes to systems with multiple qubits. So let’s look at such
systems!

Measuring Multiple Qubits
We’ve seen how to measure one qubit. But one-qubit quantum computers
aren’t any more attractive than one-bit classical computers. So let’s get some
more qubits in there, and measure them all!

Figure 6-12 shows a circuit made up of three qubits. They all start as |0⟩
and get processed by a quantum circuit, and then we measure each qubit.

q2 |0⟩ |ψ2⟩ b2

q1 |0⟩ |ψ1⟩ b1

q0 |0⟩ |ψ0⟩ b0

Circuit

Figure 6-12: A three-qubit computation that starts
as |000⟩ and is operated upon; then we measure
the output qubits

Measurement 179

Assembling the output bits from top to bottom, we can combine them
into the three-bit binary number b = b2b1b0. For example, if our measure-
ments gave us 1 for b2 and b1 and 0 for b0, that would correspond to the bi-
nary number 110, or 6 in our everyday (base 10) decimal notation.

This is why I’ve been numbering qubits in descending order as we move
from the top line in a diagram to the bottom, putting q0 on the bottom-
most line.

You could number them the other way, but then if we measured a 6 at
the output it would be represented by the binary string 011. Computer sci-
entists say that putting the most significant bit at the left end, or writing 6
as 110, is the big-endian way to write the number, while writing the most
significant bit at the right is the little-endian way. Most people use the big-
endian approach, and that’s what I use in this book. In case you’re curious,
the terms big-endian and little-endian come from the classic satire Gulliver’s
Travels [214]. One day, the son of the king of Lilliput cut his fingers while
breaking an egg at the little end. In response, the king issued an edict that
all citizens must henceforth break their eggs at the big end. A long and ter-
rible war broke out between supporters of this law and rebels who still pre-
ferred to break their eggs at the little end. The terms were introduced to
computer science as part of a plea to prevent a similarly meaningless catas-
trophe over how to write binary numbers [40].

Suppose we want the output of Figure 6-12 to be 5, or 101 in binary.
Given the three states |ψ2⟩, |ψ1⟩, and |ψ0⟩, what’s the probability that we’ll
get 101 from a measurement?

Since the measurements in this circuit come after all computation has
been done, the qubits are no longer influencing one another. We say that
they’re now independent of one another.

The rules of probability tell us that the probability of getting multiple
independent results (also called uncorrelated or unrelated results) is the product
of the probability of each result. For example, if we want to know the proba-
bilities that it’s a sunny day, and that there’s a reggae song playing on a radio
nearby, and that we’ve recently had a haircut, then we find the probability
for each of these individual conditions and multiply them together.

Because at this point our qubits are independent, the probability of
measuring 101 from our circuit can be expressed as shown in Equation 6.30,
where ×means scalar multiplication.

Pr(b2 = 1)× Pr(b1 = 0)× Pr(b0 = 1) (6.30)

Let’s generalize this to a bitstring b of m bits. Each bit bk is either 0 or 1.
From Postulate 4 (or Equation 6.26), we can find the probability that each
state |ψk⟩ gives us a measured value bk from ⟨ψk|Πbk |ψk⟩. Multiplying those
probabilities together gives us Equation 6.31. (The large Π at the start is
the multiplicative version of the big sigma Σ at the start of a summation. It
works like that sigma, telling us to run a loop and multiply together all the
elements it generates.)

180 Chapter 6

Pr|ψ⟩(b) = ⟨ψ0|Πb0 |ψ0⟩ ⟨ψ1|Πb1 |ψ1⟩ · · · ⟨ψm–1|Πbm–1 |ψm–1⟩

=
∏
k∈[m]

⟨ψk|Πbk |ψk⟩
(6.31)

Equation 6.31 tells us the probability that our output will, upon mea-
surement, give us the binary number b, but it requires us to loop over every
qubit. It would be nice to find an expression that doesn’t require this ex-
plicit looping.

One way to interpret Equation 6.31 is that it’s basically Figure 6-12 in-
terpreted using our horizontal grouping strategy from Chapter 5. That’s
because we’re not treating the qubits as a system. Instead, we’re finding the
probability that each qubit will produce the result we want, and then we’re
multiplying those probabilities together.

Let’s see this visually. I’ve drawn the output of a circuit of m qubits in
Figure 6-13(a). These m qubits have states |ψm–1⟩ through |ψ0⟩. To compute
the probability that each qubit will, upon measurement, produce the corre-
sponding bit from b, I’ve shown each qubit going “into” a circle labeled with
the projection matrix for that bit. Remember, the projection matrices are not
qugates! They’re just a tool we use for computing probabilities. This tells us
that Figure 6-13(a) is not a quantum circuit diagram but only a visualization
of how we compute a probability. That’s also why I’ve put these operators in
a circle rather than the boxes we use for qugates.

Figure 6-13: Computing the probability of the output of a circuit in three ways

In Figure 6-13(b), I’ve grouped the operations horizontally. This is a way
to visualize Equation 6.31, explicitly running each qubit into its own projec-
tion matrix.

Measurement 181

Let’s compare this grouping with a vertical interpretation, as shown in
Figure 6-13(c). We know that we can create a system of qubits by tensoring
the states from top to bottom, as in Equation 6.32. I’ve given the resulting
system state the name |ϕ⟩.

|ϕ⟩ = |ψm–1⟩ ⊗ |ψm–2⟩ ⊗ · · · ⊗ |ψ1⟩ ⊗ |ψ0⟩ (6.32)

Each projector Π can be written as a matrix, so we can tensor them to-
gether, too, in the same top-to-bottom order, as in Equation 6.33. I’ve given
the resulting system state the name Πb.

Πb = Πbm–1 ⊗Πbm–2 ⊗ · · · ⊗Πb1 ⊗Πb0 (6.33)

We can summarize the vertical interpretation as telling us that |ϕ⟩ is a
column matrix of dimension 2m (that is, it contains 2m complex numbers)
and Πb is a square matrix of 2m elements on a side.

To find Pr|ϕ⟩(b), the probability that the qubit system |ϕ⟩ will, when
measured, produce the bitstring b, we need only apply Postulate 4. The ex-
pression is shown in Equation 6.34.

Pr|ϕ⟩(b) = ⟨ϕ|Πb |ϕ⟩ (6.34)

In other words, when wemultiply together threematrices (a row, a square,
and a column), the result is a number between 0 and 1 indicating the proba-
bility that, if wemeasure a qubit system in the state |ϕ⟩, we’ll get the bitstring
b. One bramket does the whole job.

This is why we went to all of the trouble of getting to Equation 6.29. In
addition to being part of Postulate 4, it also paved the way to this compact
and efficient way to find the probability of measuring the bitstring b from
multiple qubits.

I promised you that writing Postulate 4 in a general form was going to
pay off!

What state are the qubits in, after measurement, if the results match bit-
string b? It’s the state |ϕ′⟩made by tensoring together |0⟩ and |1⟩ according
to the bits in b. If we want to be formal about it, we can use the third state-
ment in Postulate 4 to write that state, as in Equation 6.35.

|ϕ′⟩ = Πb |ϕ⟩√
⟨ϕ|Πb |ψ⟩

(6.35)

The state |ϕ′⟩ is the quantum state equivalent of the bitstring b. Because
each qubit is now either |0⟩ or |1⟩, and thus not in a superposition, measuring
our qubits again will give us the same bitstring b. This new measurement
leaves the qubits in the same state, so everything now is stable. We can mea-
sure as many times as we like; we’ll always get back the same b, and the qubits
after measurement will always be in the same states as before measurement.

Measuring Some Qubits
Quantum measurement has a cool trick up its sleeve just waiting for us to
discover it. The trick is that if we measure just some of the qubits in a system,

182 Chapter 6

we can force the other, unmeasured qubits to partially collapse their super-
positions! If we perform this action carefully, our measurements can push
those unmeasured qubits into superpositions that contain only those states
that are more likely to give us a useful output.

Let’s see how this trick is done. In this section, our mathematical tools
will really pay off.

Figure 6-14(a) shows a visualization of how we’d compute the probability
that, if we measure only qubits 4, 1, and 0 of a five-qubit system (leaving the
others untouched), we’ll find them to have the desired bit values b4, b1, and b0.

Figure 6-14: Computing the probability of the output of a circuit. (a) The output of a
circuit of five qubits, measuring only bits 4, 1, and 0. (b) Interpreting part (a) horizontally.
(c) Interpreting part (a) vertically.

If we’re thinking horizontally, as in Figure 6-14(b), then we can just ig-
nore states |ψ3⟩ and |ψ2⟩. We’ll measure the three qubits we’re interested
in, get back the probabilities that they will have the values we want, multiply
those probabilities together, and we’ll have our result.

Thinking vertically, we can construct a system like that of Figure 6-14(c)
by placing measurement operators on the qubits we want to measure and
identity operators elsewhere. We use identity matrices I to indicate we’re
doing nothing to qubits |ψ3⟩ and |ψ2⟩. The thinking is similar to the situa-
tion in Figure 5-17, where we needed to insert an identity operator to build a
complete vertical system.

Even though identity operators are valid qugates, in this context I’ve
drawn them with circles to indicate that we’re not actually applying them
as qugates. Rather, in this context they’re placeholders where projection
operators could have been.

To evaluate Figure 6-14(c), we can first build each vertical system. So,
we’d make an input system by tensoring together all the qubits, and then
assemble a measurement system by tensoring together the measurement
operators and identity operators.

Measurement 183

To find the probability that the three qubits we’re interested in will pro-
duce the bits we desire, we can use Equation 6.35.

Let’s take these ideas out for a run. Suppose a three-qubit quantum cir-
cuit has produced the output state |ψ⟩ given in Equation 6.36.

|ψ⟩ = i
2
|010⟩ + 1√

8
|011⟩ + 1 + i

2
√
2
|100⟩ +

√
3

2
√
2
|110⟩ (6.36)

I’ve deliberately chosen complicated-looking coefficients, but you can
see from their squared magnitudes (that is, their probabilities) in Figure 6-15
that their probabilities aren’t too messy. Note that only these four states in
|ψ⟩ have nonzero probabilities.

k 0 1 2 3 4 5 6 7

ψk 0 0 i
2

1√
8

1 + i
2
√
2

0
√
3

2
√
2

0

|ψk|
2 0 0 1/4 1/8 1/4 0 3/8 0

Figure 6-15: Amplitudes and squared magnitudes of the
four states in a superposition |ψ⟩

The bottom row of Figure 6-15 adds up to 1, so this is a valid quantum
state.

What’s the probability that, when we measure this three-qubit system,
we’ll get back a 1 for the middle qubit?

According to our previous discussion, our measurement system has an
I on the first and third qubits and a Π1 for the second qubit, as we want the
probability that the qubit will return a 1. The measurement system is thus
I⊗Π1 ⊗ I.

These are each two-by-two matrices, so their tensor product is an eight-
by-eight matrix. Writing out huge matrices isn’t that informative, so I’ll just
summarize the results using |ψ⟩ from Equation 6.36 and the measurement
system I⊗Π1 ⊗ I that we just made. That result is in Equation 6.37, where I
used the squared magnitudes from Figure 6-15.

⟨ψ|
(
I⊗Π1 ⊗ I

)
|ψ⟩

= 0 |ψ0|
2 + 0 |ψ1|

2 + 1 |ψ2|
2 + 1 |ψ3|

2 +

0 |ψ4|
2 + 0 |ψ5|

2 + 1 |ψ6|
2 + 1 |ψ7|

2

= 0 + 0 +
1
4
+
1
8
+ 0 + 0 +

3
8
+ 0

=
3
4

(6.37)

Does this make sense? Writing the states in binary, Equation 6.37 sums
the probabilities for finding the states |ψ2⟩ = |010⟩, |ψ3⟩ = 011, |ψ6⟩ = 110,
and |ψ7⟩ = 111. Those are all the states with a 1 in the middle. Three of
those states have nonzero probabilities. So, this says that the probability of
measuring a 1 for the middle qubit is the sum of the probabilities of all the
three-qubit states that have a 1 in the middle. That’s three states out of four,
matching our result of 3/4. It worked!

184 Chapter 6

Note that I’m adding probabilities here, but in Equation 6.31 I multi-
plied them. Why the switch? Probability is a big subject, but let’s make a
quick digression to see why we add probabilities in some situations and mul-
tiply them in others.

Computing Probabilities
Let’s look at probabilities using a decidedly non-quantum example, so we
can focus on the ideas.

Suppose you and a friend are visiting an ice cream shop. The shop sells
three flavors, vanilla, chocolate, and strawberry, and they offer one mix-in
with each serving: either cookie dough, nuts, or toffee. Your friend is spon-
taneous and likes all the flavors and mix-ins equally, so you can never be sure
what they’ll order.

Let’s first ask for the probability that your friend will choose chocolate
and cookie dough. We can draw this situation graphically as in Figure 6-16,
where each combination of flavor andmix-in has its own cell, and I’ve marked
the one for both chocolate and cookie dough.

Figure 6-16: Of the nine choices,
your friend has selected chocolate
ice cream and a cookie dough mix-in.

There are nine possible combinations of flavor and mix-in, so the proba-
bility of your friend picking any particular combination is 1 in 9, or 1/9.

Let’s consider this a different way. Looking at Figure 6-17, we see that
three combinations involve chocolate, so there’s a 3/9 = 1/3 chance that your
friend will order chocolate. And three of the combinations involve a cookie
doughmix-in, so there’s a 1/3 chance of your friend choosing cookie dough.

Figure 6-17: The probability that your friend will pick chocolate is
1/3, and the probability of cookie dough is 1/3. The probability
of both is 1/3 × 1/3 = 1/9.

Measurement 185

To find the probability of your friend ordering both chocolate and cookie
dough, wemultiply the two probabilities we just found: 1/3× 1/3 = 1/9, as
we found before.

The key elements of this situation are that the flavor andmix-in choices
are uncorrelated, or independent of one another. Knowing either one doesn’t
tell you anything about the other. We call this a joint probability, and we com-
pute it bymultiplying the individual probabilities. We can recognize this kind
of situation by the use of the word and in the setup.

Let’s ask another question. What’s the chance that your friend’s choice
of flavor will be either vanilla or chocolate, regardless of their choice of
mix-in? I’ve drawn this situation in Figure 6-18.

Figure 6-18: The probability of your friend ordering vanilla is
1/3, and the probability of them ordering chocolate is also 1/3.
The probability of either is 1/3 + 1/3 = 2/3.

Because your friend can only choose one or the other, we say that these
options aremutually exclusive. The figure shows that the chance of them or-
dering vanilla is 1/3 and the chance of them ordering chocolate is 1/3, so the
chance of your friend ordering one or the other comes from adding the prob-
abilities, giving us 1/3 + 1/3 = 2/3. We can recognize this kind of situation by
the use of the word or in the setup.

Finally, let’s ask for the probability that your friend will order either straw-
berry or the toffeemix-in. I’ve drawn this in Figure 6-19.

Figure 6-19: The probability of your friend ordering strawberry is 1/3, and the proba-
bility of them ordering toffee is 1/3. The probability of them ordering either one is 5/9,
because we remove 1/9 to prevent double counting the combination of the two choices.

We can see that the probability of strawberry is 1/3, and the probability
of toffee is also 1/3. It might be tempting to add the probabilities as we did in
the previous example, but in this case the options are not mutually exclusive.

186 Chapter 6

If we added the probabilities, the combination of strawberry and toffee would
be included twice, so we need to subtract one of those instances from the to-
tal. Looking at Figure 6-19, we want to count the bottom-right cell only once.
That choice has a probability of 1/9, so to avoid double counting that cell we
have to remove it once. Thus, the probability of your friend ordering either
strawberry or toffee is 1/3 + 1/3 – 1/9 = 5/9.

Let’s apply this reasoning to ourmeasurement. We wanted the probabil-
ity that themiddle state was a 1. That means we wanted the probability that
the state wemeasured was the first state, or the second state, or the fourth.
Therefore, we add up those three probabilities. Because these options are
mutually exclusive, there was nothing to subtract since no conditions were
double counted.

Returning to Measurement
Let’s run the measurement of Figure 6-14(a) on a simulator and see if the
results match our discussion. Equation 6.37 tells us to expect to see a state
with a 1 in themiddle three-fourths of the time, or with a probability of 0.75.
Figure 6-20 shows the results of 10,000 repetitions of preparing a qubit in
state |ψ⟩ from Equation 6.36 and then measuring it. The counts, reading
left to right, are 2,465 for state |010⟩, 1,206 for state |011⟩, 2,501 for state
|100⟩, and 3,828 for state |110⟩.

Figure 6-20: Evaluating the state |ψ⟩ of Equation 6.36
for 10,000 shots on a quantum simulator

When we add up the number of times we measured the states 010, 011,
and 110 and divide by the total number of shots, we get the expression
(2,465 + 1,206 + 3,828) / 10,000 = 0.7499. Pretty close to 0.75!

Measurement 187

If we run through the same process but use Π0 to find the probability
that qubit q1 is measured as a 0, we get Equation 6.38.

⟨ψ|
(
I⊗Π0 ⊗ I

)
|ψ⟩

= 1 |ψ0|
2 + 1 |ψ1|

2 + 0 |ψ2|
2 + 0 |ψ3|

2 +

1 |ψ4|
2 + 1 |ψ5|

2 + 0 |ψ6|
2 + 0 |ψ7|

2

= 0 + 0 +
1
4
+ 0

=
1
4

(6.38)

Here, we’re summing the probabilities of all three-qubit states that have
a 0 in the middle. The only state in |ψ⟩ like that is |100⟩, with squared mag-
nitude |ψ4|2 = 1/4, or a probability of 0.25. The results in Figure 6-20 gave
us this state with probability 2,501 / 10,000 = 0.2501. Again, pretty close
to 0.25!

The second statement in Postulate 4, which confirms that all of our
probabilities add up to 1 (just as we found 3/4 + 1/4 = 1), is called the
completeness relation.

You can perform the same calculations for measuring any number
of qubits by placing projectors where you want to measure and identity
operators everywhere else. This technique for finding the probability re-
lated to measuring just some of the qubits in a system is called the partial
measurement rule, the principle of partial measurements.

Note that each of the probabilities in Equations 6.37 and 6.38 involved
|ψk|2. As we’ve discussed, another way to write this amplitude is |Πk |ψ⟩ |2.
The square of the amplitude written this way matches the form that’s given
in Postulate 4. The steps are shown in Equation 6.39.

|Πk |ψ⟩ |2 =
〈

Πk |ψ⟩
∣∣∣Πk |ψ⟩

〉
Magnitude as inner product,
Eq. 2.71

=
(

Πk |ψ⟩
)† (

Πk |ψ⟩
)

Write bra as ket adjoint from
Eq. 3.18

=
(
|ψ⟩† Πk

†
)(

Πk |ψ⟩
)

Apply adjoint from Eq. 3.22

= ⟨ψ|Πk
† Πk |ψ⟩ Remove parentheses

= ⟨ψ|Πk Πk |ψ⟩ Since Πk
† = Πk from Eq. 6.22

= ⟨ψ|Πk |ψ⟩ Because Πk
2 = Πk from Eq. 6.21

(6.39)

This is a pretty fantastic result! It tells us something important: There
are two quite different ways to write the probability of getting the number
k when we measure the state |ψ⟩. As we develop quantum algorithms, we’ll
want to manipulate our qubits so that we’re most likely to measure the re-
sults that are useful to us. These expressions give us two different ways to
evaluate the probability that we’ll observe any specific k, so we can check
that our algorithms are working the way we want, even before running them.

188 Chapter 6

I love how Equation 6.39 brings together so many ideas that we’ve
seen throughout the book.

Because this relationship is so important, I’ve summarized it in
Equation 6.40.

|Πk |ψ⟩ |2 = ⟨ψ|Πk |ψ⟩ (6.40)

In the pictures we’ve seen so far, I’ve been drawing all the measure-
ments as if they’re happening at the same time (or nearly the same time),
but there’s no need for that. The probabilities associated with a measure-
ment don’t depend on when we make that measurement. So whether we
measure a certain qubit now, or a week from now, or a million years from
now, the probabilities of its results are the same. This tells us that we can
move all of our measurements to the end of a computation. This is called
the principle of deferred measurement [146, p. 186]. As we’ll see in Part II, this
can be useful for making some algorithms simpler to draw or analyze.

Partial Measurement
Some quantum algorithms use a technique where they measure only some
of the qubits partway through the circuit. Remarkably, this can tell us some-
thing about the qubits we didn’t measure!

Suppose we have two groups of qubits, which I’ll call Data and Helper.
The Data group contains the information we care about for solving our prob-
lem, and theHelper group contains helper, or auxiliary, qubits that are used
as part of the process to get the Data qubits into the right states, but whose fi-
nal values we don’t care about. I’ve drawn this setup in Figure 6-21. The curly
brackets here do not indicate entanglement, but just group the Data and
Helper qubits together.

Data

Circuit 1

Circuit 2

Helper

|ψ0⟩ |ψ1⟩

Figure 6-21: Measuring the Helper qubits, then continuing
to compute. The curly brackets indicate grouping.

Here, I’m measuring the Helper qubits before the data qubits are fur-
ther processed.

Measurement 189

Let’s suppose that the output of the first compute block, marked as
|ψ0⟩, is an equal superposition of the four states |0011⟩, |1011⟩, |0101⟩,
and |1010⟩, as in Equation 6.41.

|ψ0⟩ =
1
2
(|0011⟩ + |1011⟩ + |0101⟩ + |1010⟩) (6.41)

Now suppose that when we measure the Helper qubits, we find that
both meters report 1.

At this point, even though we haven’t measured them, we know that
the Data qubits are either |00⟩ or |10⟩! That’s because |ψ0⟩ contained only
two states that had |11⟩ for the Helper qubits, and they were the ones with
|00⟩ or |10⟩ in the Data qubits. We say that the superposition has now
partially collapsed, so that the state at |ψ1⟩ contains only those states consis-
tent with the Helper qubits being |11⟩. The superposition |ψ1⟩ is shown in
Equation 6.42, where I’m writing only the Data qubits, as the Helper qubits
have been measured.

|ψ1⟩ = ∨(|00⟩ + |10⟩) (6.42)

In this case, we know even more about the second Data qubit: It must be
|0⟩, because the only states in the superposition at |ψ0⟩ that are consistent
with a measurement of 1 for both Helper qubits are |00⟩ and |10⟩. Without
doing anything with the second Data qubit, we’ve learned that it’s |0⟩. Wow.
We can use that information in further computations.

We can say that the measurement of the Helper qubits eliminated, or
filtered out, the states in the superposition that were not consistent with a
measurement of 1 for both Helper qubits. This is what we mean by saying
that the superposition of the four qubits has partially collapsed. Alternatively,
we can view this as saying that the measurement selected only the states that
were consistent with measuring 1 for both Helper qubits, suggesting that
these states survived, or were retained, after that measurement.

Partial measurement is powerful! We typically use it to filter the Data
qubits so that they have some specific structure. We’ll see examples of this
technique in action in our survey of quantum algorithms in Part II.

Measurement and Entanglement
When we discussed entanglement, I promised that we’d see more of the
mystery and power of that important phenomenon when we got to measure-
ment. Well, here we are, so let’s dig in!

Let’s start by meeting and naming the four most famous entangled quan-
tum pairs. They will be important to us now, and again in Part II when we
discuss quantum algorithms.

Introducing Bell States
In 1964, the physicist John Bell wrote about a set of four entangled two-qubit
states. They are now called Bell states in his honor [250] [165]. The four states
are defined in Equation 6.43.

190 Chapter 6

|Ψ+⟩ = |βs+⟩ = ∨(|00⟩ + |11⟩)
|Ψ–⟩ = |βs–⟩ = ∨(|00⟩ – |11⟩)
|Φ+⟩ = |βm+⟩ = ∨(|01⟩ + |10⟩)
|Φ–⟩ = |βm–⟩ = ∨(|01⟩ – |10⟩)

(6.43)

The notations using Φ and Ψ are common, but I find them hard to re-
member. I created the β (for Bell) versions to be more descriptive. Their
subscript is either s or m, referring to whether the two qubits have the same
or mixed values, respectively. In both cases, the first qubit in the first system
is always |0⟩. The superscript + or – tells us if the two states are to be added
or subtracted.

Another naming scheme writes the states as β(x, y) for two single-bit vari-
ables x and y. I’ll temporarily use a tilde above one of these variables to indi-
cate “not,” so if x = 0, then x̃ = 1, and vice versa. With this, we can write each
of the four Bell states from the single formula in Equation 6.44.

|β(x, y)⟩ = ∨
(
|0y⟩ + (–1)x |1ỹ⟩

)
(6.44)

This version of the definition is worth knowing about because it can
sometimes be convenient, and it sometimes appears in the literature. I won’t
use it in this book.

For completeness, Equation 6.45 shows all three naming schemes in the
same place.

|βs+⟩ = |Ψ+⟩ = |β(0, 0)⟩ = ∨
(
|00⟩ + |11⟩

)
|βm+⟩ = |Φ+⟩ = |β(0, 1)⟩ = ∨

(
|01⟩ + |10⟩

)
|βs–⟩ = |Ψ–⟩ = |β(1, 0)⟩ = ∨

(
|00⟩ – |11⟩

)
|βm–⟩ = |Φ–⟩ = |β(1, 1)⟩ = ∨

(
|01⟩ – |10⟩

) (6.45)

In a Bell state, it’s the superposition that’s special, not so much the indi-
vidual states in that superposition.

That’s because the states that make up a Bell state are familiar product
states. For example, |01⟩ is the product state |0⟩ ⊗ |1⟩. But when we make
|βm+⟩ by combining |01⟩ and |10⟩, we get an entangled state, because there’s
no way to write |βm+⟩ as a tensor product of two smaller states.

A pair of qubits in an entangled state is, in many ways, like any other
pair of qubits in superposition. We can operate on them with qugates and
measure them, with each measurement producing either a 0 or a 1.

What’s special about being entangled is that if we measure either qubit
in an entangled pair, we know the value of the other qubit, whether we measure it
or not. In quantum language, after measuring either qubit of a Bell pair, we
know the value of the other qubit with certainty.

This is a startling result that can be challenging to get used to, so let’s
express it again another way. When we measure one qubit in an entangled
pair (it doesn’t matter which one), that qubit collapses probabilistically to
either |0⟩ or |1⟩. At that moment, we know what we’d get from measuring the
other qubit. We can think of this as if that qubit’s state had collapsed as well.

Measurement 191

If the state we’re measuring is |βs+⟩ or |βs–⟩, the other qubit will always be
the same as the one we measured. If the state is |βm+⟩ or |βm–⟩, the other
qubit will always be the other basis state (that is, if we measured 0, measur-
ing the other qubit will produce 1, and vice versa).

One way to say this is that measuring either qubit tells us the state of
the other qubit. This is immediate. It doesn’t matter if that other qubit
is a nanometer away, on the other side of the Earth, or orbiting a distant
star. Experiments have proven time and again that this collapse happens
instantaneously. The collapse of the second qubit doesn’t happen soon after
the measurement of the first qubit, or even in the time it would take light
to travel from the first qubit to the second (as far as we know, the top speed
that anything, material or otherwise, can move). The collapse is immediate,
no matter the distance. Of course, as with all experimental conclusions, we
really only know this to be true to the precision and accuracy of our current
instruments and methodology. There may be a delay between measuring one
qubit and the collapse of the other, but if so, it’s faster than anyone has ever
been able to observe or measure.

Another way to look at an entangled pair is to say that they share a single
superposition. That is, the two qubits are inextricably linked together in a sin-
gle superposition. When we measure one qubit, that shared superposition
collapses, which collapses the other qubit.

In an entangled quantum pair, the two objects are not in a preexisting
state that we are discovering. They are not like a flipped coin, where the up-
per side is objectively heads or tails before we’ve looked. Before any mea-
surement, they are in a shared superposition. Neither qubit has a definite state.
It is, after all, in a superposition, which we’ve seen is a novel state of existence
described by a set of measurement outcomes, each with a probability. Only
upon measurement of one of the qubits does that qubit, and its entangled
partner, collapse to specific states.

Instead of a superposition describing just one qubit, in an entangled
pair that superposition describes two qubits.

Suppose that the superposition is |βs+⟩ = ∨(|00⟩ + |11⟩). Then we know
that the entire system of two qubits is either |00⟩ or |11⟩. If we measure ei-
ther qubit and it’s |0⟩, then the other qubit must collapse to |0⟩, because
both qubits belong to the same system. Think of this like a partial measure-
ment, where we’ve measured |0⟩ for the first qubit. The entire system can
only be |00⟩ or |11⟩. The only system state consistent with a measurement
of |0⟩ for the first qubit is for the second qubit to also be |0⟩. The system
describing the two qubits simply does not include a state where one of them
is measured as 0 and the other is 1.

Because the collapse of an entangled object happens instantaneously
when its companion is measured, no matter how far apart the objects are,
entanglement might sound like a great way to send a signal faster than the
speed of light. We call this idea superluminal transport, and everything we
know says that it’s impossible [293]. Entanglement doesn’t do the impossi-
ble, because we cannot use it to send information faster than the speed of
light [71].

192 Chapter 6

Here’s the general argument. Suppose you and a friend generate an
entangled pair in your basement (say, |βs–⟩) and then your friend goes to
Pluto for a vacation and takes one of the qubits with them. You both agree
that you won’t look at the qubits for a year, but then you can measure them
any time afterward. So a year passes, and then on some arbitrary day when
you feel the urge, you measure your qubit. That means you know the state of
your friend’s qubit. In fact, you don’t know that your friend hasn’t measured
their qubit already, causing your qubit to collapse, maybe an hour ago, or last
week. The only way for the two of you to work out what went on is to share
some information in a classical way, such as with a radio signal or by getting
back together for lunch and comparing notes.

So, although measuring one entangled qubit instantaneously collapses
the other, wherever it may be, there’s no way to harness this phenomenon
in any way to communicate information unless you also trade some other
information classically. And your communications are still limited, at best,
by the speed of light. The details of this argument can become subtle, but if
you dig into them you can prove that there aren’t any loopholes in this pro-
cess. You just can’t send information without also sending some additional
information by classical means [293].

The idea that measuring either qubit in an entangled pair also collapses
the other qubit is a radical notion. We now have all the tools we need to ex-
press entanglement and its measurement precisely, so let’s do it.

Measuring Bell States
So far we’ve been treating each measurement of a qubit as something that
affects only that qubit. But with entangled pairs, measuring just one qubit
tells us everything about the other. We know, with certainty, what we’ll find for
that other qubit if and when we measure it.

Suppose we have a two-qubit system in state |βs+⟩ = ∨(|00⟩ + |11⟩), and
we measure either qubit. Before we make any measurements, each qubit
measured alone has an equal probability of showing a 0 or a 1 on the me-
ter. But this story changes the instant we measure one of the qubits. At that
moment, we know with certainty that the other qubit will produce the same
result, whether or not we measure it. So if we measure one qubit and find that
it’s 0, then we can use the other qubit in later computations, confident that
it, too, has collapsed and is now in state |0⟩.

The key thing to remember is that prior to any measurement, the qubits
have no fixed value. Each is in a superposition and could produce either 0
or 1 when measured. But after one qubit has been measured, the state of the
other qubit is immediately known, no matter where it is.

Let’s run some measurements to illustrate this phenomenon. I’ll arbi-
trarily use |βs+⟩ = ∨ (|00⟩ + |11⟩).

We’ll start by measuring just one qubit at a time. We can measure either
of two qubits and look for either of two values, giving us a total of four possi-
ble measurements. I’ve shown them in Table 6-1.

Measurement 193

Table 6-1: The measurement probabilities of |βs+⟩ when we measure only one qubit
Diagram Formula Mag. Prob.

(Π0 ⊗ I) |βs+⟩ =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




∨
0

0

∨

 =


∨
0

0

0

 ∨ 1/2

(Π1 ⊗ I) |βs+⟩ =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




∨
0

0

∨

 =


0

0

0

∨

 ∨ 1/2

(I ⊗ Π0) |βs
+⟩ =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




∨
0

0

∨

 =


∨
0

0

0

 ∨ 1/2

(I ⊗ Π1) |βs
+⟩ =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1




∨
0

0

∨

 =


0

0

0

∨

 ∨ 1/2

In each row of Table 6-1, we start out with |βs+⟩ and we measure one
qubit with either Π0 or Π1. We apply the identity operator to the other qubit,
because right now we care only about the qubit we’re measuring. In the first
row, Π0 ⊗ I is the system we use to compute the probability that the first
qubit is 0, regardless of the second. The remaining rows represent the prob-
abilities of measuring the first qubit as 1, the second qubit as 0, and the sec-
ond qubit as 1, each independently of the other qubit. The Formula column
writes out the algebra, matrices, and result for each diagram, interpreting
the operations in circles as a vertical system. The Mag. and Prob. columns
give the magnitude and probability of that row’s measurement, respectively.

Table 6-1 tells us that if we measure either qubit alone from |βs+⟩, we
have an equal probability of getting back a 0 or a 1. This is correct, but in-
complete. What this isn’t telling us is that because the qubits are entangled,
we can’t use the same calculations for the second qubit. The probabilities for the
second qubit are not given by applying Table 6-1 again to that second qubit.

The problem with applying Table 6-1 again is that it would ignore the
information we have: The qubits are entangled, and the first qubit is now
|0⟩ as a result of being measured as 0. We can’t just ignore that information.
One way to think about this is that each row of Table 6-1 begins with |βs+⟩,
but after we’ve measured one of the qubits, it’s collapsed to either |0⟩ or
|1⟩. Therefore, we don’t have the state |βs+⟩ anymore, and Table 6-1 doesn’t
apply.

194 Chapter 6

Happily, we can learn about both qubits in an entangled pair (like a Bell
pair) by measuring them both. That is, we ask for the probability of observ-
ing an entire state, rather than its individual qubits. With two qubits, there
are four possible system states to consider. The calculations are shown in
Table 6-2.

Table 6-2: The measurement probabilities of |βs+⟩ when we measure both qubits
Diagram Formula Mag. Prob.

(Π0 ⊗ Π0) |βs
+⟩ =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




∨
0

0

∨

 =


∨
0

0

0

 ∨ 1/2

(Π0 ⊗ Π1) |βs
+⟩ =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




∨
0

0

∨

 =


0

0

0

0

 0 0

(Π1 ⊗ Π0) |βs
+⟩ =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




∨
0

0

∨

 =


0

0

0

0

 0 0

(Π1 ⊗ Π1) |βs
+⟩ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




∨
0

0

∨

 =


0

0

0

∨

 ∨ 1/2

Table 6-2 indicates that if we measure both qubits, half of the time we’ll
get back the bitstring 00 and the other half of the time we’ll get 11. We’ll
never get 01 or 10, because the probability of each of those outcomes is 0.

This tells us how to interpret the results of measuring a single qubit fol-
lowing the approach of Table 6-1. It correctly shows that half the time we’ll
get back either a 0 or a 1 for either qubit, but because it doesn’t take into ac-
count entanglement, it doesn’t tell us about the other qubit. Table 6-2 takes
both qubits into consideration at once. It tells us that when the qubits are
entangled, we find that after measuring either qubit we know what the other
qubit’s measurement will be, whether or not we actually measure it someday.

What we’ve confirmed is that, somehow, measuring one qubit of a Bell
state causes not just a collapse of the qubit we’re measuring, but also a com-
pletely predictable measurement of the other qubit.

You could apply the principle of deferred measurement to put off the
other measurement until some later time, as shown in Figure 6-22.

Measurement 195

Figure 6-22: (a) Measuring q1 first, then q0.
(b) A way to model the measurement.

As Figure 6-22(b) indicates, we can model that measurement with the
vertical system (Πa ⊗ I) followed by a projector Πb on the lower qubit. So,
delaying the measurement in time doesn’t affect the result that knowing
the first qubit’s value immediately tells us the other qubit’s value, even if we
measure it much later.

The properties of entanglement may not sit well with you, and if so,
you’re in good company. In 1935, Albert Einstein and colleagues Boris
Podolsky and Nathan Rosen published a now famous and influential paper
(known as the “EPR paper” for their initials) [55] in which they argued that
because quantum mechanics allowed one to create entangled states, some-
thing was wrong. Either quantummechanics was “incomplete” because it was
missing some additional piece that would make sense of entangled states, or
there was some other fundamental omission or error in the theory. Near the
end of their paper, they recap the problem of entangled states and conclude,
“No reasonable definition of reality could be expected to permit this.”

Wow.
In these quotes, they’re talking about objective reality, the notion that

objects have definite properties regardless of our attention. In other words,
measurement only reveals those properties that existed before we looked
[202] [293]. As children grow, at some point they usually conclude that the
world doesn’t actually cease to exist when they close their eyes, and then
suddenly pop back into existence when they open them again. Yet this is just
what entanglement, like superposition, is telling us: Before measurement,
the qubits do not have well-defined values. Until we turn our attention to it,
an entangled qubit has no single preexisting value. It may be hard to believe,
but it is the very act of observing that causes one of the qubit’s potential values
to become a reality and causes us to definitely know what we’d find from
measuring the other qubit.

The idea that observing the world brings it into being is a challenging
one. The physicist Abraham Pais tells a lovely anecdote about the reality of
the world persisting when we close our eyes: “I recall that during one walk
Einstein suddenly stopped, turned to me and asked whether I really believed
that the moon exists only when I look at it” [156].

You’re now well equipped to read the EPR paper (it’s short and well
written) and evaluate their arguments for yourself.

Few people today argue that entangled states don’t exist, or that they
don’t behave as we’ve discussed. In fact, entangled states are used in a wide
variety of applications [71]. In Part II, we’ll see that the algorithms we create
for quantum computers can use entangled states, and when we run those

196 Chapter 6

algorithms on actual hardware, they work as described. Developing a better
understanding of entanglement is so difficult, and so important, that three
physicists involved in that work won the Nobel Prize in Physics in 2022
[179] [293, §6.A].

What entanglement reveals to us about reality, as discussed in the EPR
paper and countless follow-ups, is still a matter of philosophical debate [215].

I’ve been pretty casual in this discussion, and you might see loopholes or
sneaky ways to send information at superluminal speeds with entanglement.
Before going off too far in that direction, I encourage you to dig deeper into
the details and mechanics, and the experiments that people have performed
to understand entanglement [81]. After a century of searching, nobody has
found a way, in either theory or practice, to use this instantaneous collapse
at any distance to send information.

Phase
There’s one more topic that is important both when we’re running quantum
programs and when we measure their outcomes.

Recall from Chapter 2 that in a complex number eiθ, the word phase
refers to the value of θ. The term eiθ is often called a phase factor, though
sometimes people casually refer to it as just the phase. Generally, it’s clear
from context whether the word “phase” applies just to the angle θ or to the
complex exponential eiθ.

We usually distinguish two types of phase, called global and relative.
Let’s look at them both.

Global Phase
We’ve seen that experimental measurements and reasoning about probabil-
ities have led us to say that every quantum state must have a magnitude of 1.
Unitary operators change a state but maintain this magnitude.

Another way to change a state without affecting its magnitude is to mul-
tiply it by 1 or –1. More generally, we can multiply a state by any complex
number eiθ and it won’t change in magnitude, because |eiθ| = 1 (in this
section, θ will always refer to a real, not complex, number). The real num-
bers 1 and –1 that I just mentioned are special cases of eiθ for the values
θ = 0 (|ei0| = |e0| = 1) and θ = π (|eiπ| = | – 1| = 1).

When we multiply a state |ψ⟩ by eiθ to create eiθ |ψ⟩, we call θ (or eiθ) a
global phase because it’s applied “globally” to every amplitude in the state,
even if it’s a superposition.

To see what effect this phase factor has on measurements, let’s look at
a single qubit. I’ll define two states that differ only by a global phase. The
states, which I’ve named |ψ⟩ and |ϕ⟩, are shown in Equation 6.46, where, as
always, |α|2 + |β|2 = 1.

|ψ⟩ = α |0⟩ + β |1⟩

|ϕ⟩ = eiθ |ψ⟩ = eiθ(α |0⟩ + β |1⟩)
(6.46)

Measurement 197

We know that the probabilities of measuring |ψ⟩ as 0 or 1 are |α|2 and
|β|2, respectively. In Equation 6.47, we find the probability of measuring 0
for |ϕ⟩, which has the global phase.

Pr|ϕ⟩(0) = ⟨ϕ|Π0 |ϕ⟩ From Eq. 6.26

=
[
e–iθα e–iθβ

] [1 0

0 0

][
eiθα
eiθβ

]
Expand the terms

=
[
e–iθα e–iθβ

] [eiθα
0

]
Multiply the rightmost
two matrices

=
(
e–iθα

)(
eiθα

)
Multiply the matrices

= ei(θ–θ)αα Gather the exponents

= αα Because ei(θ–θ) = ei0 = e0 = 1

= |α|2 As in Eq. 2.11

(6.47)

So, multiplying a state by a global phase has no effect on the probability
of measuring a 0 for that state.

Writing out the same steps with Π1 shows that the probability of mea-
suring |ϕ⟩ as 1 is |β|2. Because the probabilities of measuring 0 and 1 are
the same for both |ϕ⟩ and |ψ⟩, we’ve found that multiplying a state |ψ⟩ by a
global phase factor eiθ has no effect on the probabilities of the measurements
of |ψ⟩.

This is a big deal.
It means that two expressions that differ only by a global phase describe

exactly the same state. A global phase has no effect on the observable (or
measurable) aspects of a qubit.

There’s another way to write quantum states called the density matrix. In
this notation, multiplying a state by a global phase has no effect on the matrix
describing the state. While the density matrix is more general than Dirac
notation, it’s also more complicated. I haven’t used it here because we don’t
need that extra power and complexity in this book.

Let’s illustrate the difference between these notations with a metaphor.
Suppose that you’re writing a script for an actor to read for a radio com-
mercial, so you’re only concerned with how things sound. If the actor isn’t
experienced in English, they might be confused by the words “knight” and
“night.” These homonyms look distinct, but they sound alike. The actor
might interpret the k in “knight” as being acoustically meaningful, and try
to pronounce it in some way. In the more specialized notation of the Inter-
national Phonetic Alphabet, both words would be written /naIt/, and the
illusion of their difference (and the extraneous silent k) would disappear.

In this case, the “simple” representation (in everyday English) included
some information that was not just superfluous, but possibly misleading, and
obscured the fact that these two words sound alike. Using a more complex
representation made this illusory difference disappear.

Just as I’ve written this book in English, and not the International Pho-
netic Alphabet, so too I’ve written the math using Dirac notation. Despite

198 Chapter 6

obscuring the fact that two states that differ only by global phase are the same
state, it’s still the clearest notation for everything we’ll do here.

Relative Phase and Interference
As we’ve seen, a global phase is a factor that we apply to both amplitudes in
a state. But what if we apply a factor eiθ to just one of the amplitudes, rather
than both? We call this a relative phase or local phase.

Like global phase, relative phase cannot be detected by a direct measure-
ment. But unlike global phase, two states that differ only by relative phase are
different states, and can lead to measurable differences.

The mechanism for this influence is based on the interaction of the rela-
tive phases in the different states.

We’ve already seen this effect, which we call interference. We know that
H |0⟩ = |+⟩ and H |1⟩ = |–⟩. Both states |+⟩ and |–⟩ have equal probabilities
of returning 0 or 1 when measured. The only difference between |+⟩ and
|–⟩ is that |–⟩ has a relative phase of eiπ = –1 applied to the |1⟩ state. Even
though no immediate measurement (that is, one applied right away) can dis-
tinguish |+⟩ from |–⟩, the relative phase –1 on |–⟩ can be inferred by apply-
ing the H qugate again and then measuring, as detailed in Equation 6.48 for
both |+⟩ and |–⟩.

H |+⟩ = ∨

[
1 1

1 –1

]
∨

[
1

1

]
= ∨2

[
2

0

]
=

[
1

0

]
= |0⟩

H |–⟩ = ∨

[
1 1

1 –1

]
∨

[
1

–1

]
= ∨2

[
0

2

]
=

[
0

1

]
= |1⟩

(6.48)

Unlike states that differ only by relative phase, two states that differ only
by a local phase are different states. They behave differently in circuits and can
result in different measurements. If we were to compute the density matrices
for |+⟩ and |–⟩ we’d find that they are different, confirming that they are
indeed different states, despite the fact that we cannot distinguish them by an
immediate measurement.

Let’s look at a few other aspects of relative phase.
When writing a single qubit, the convention is to write the coefficient

on |0⟩ with no explicit phase, instead placing any relative phase information
into the coefficient of |1⟩. This makes it easier to visually compare states,
since we only need to look at one phase term rather than two (you can al-
ways write phase terms on both basis states if you want).

Let’s see why this convention works, using the two superposition states
shown in Equation 6.49. The state |ψ⟩ has a phase of eiθ on |0⟩, while |ϕ⟩
has the complementary phase, e–iθ, applied to |1⟩.

|ψ⟩ = eiθα |0⟩ + β |1⟩

|ϕ⟩ = α |0⟩ + e–iθβ |1⟩
(6.49)

Measurement 199

In Equation 6.50, we work through the probability of measuring a 0
for |ψ⟩.

Pr|ψ⟩(0) = ⟨ψ|Π0|ψ⟩ Probability of measuring 0

=
[
e–iθα β

] [1 0

0 0

][
eiθα
β

]
Expand the matrices

=
[
e–iθα β

] [eiθα
0

]
Multiply right matrices

= ei(θ–θ)αα Multiply and combine exponents

= αα Probability of measuring 0

(6.50)

Now let’s apply the same process to |ϕ⟩, as shown in Equation 6.51.

Pr|ϕ⟩(0) = ⟨ϕ|Π0|ϕ⟩ Probability of measuring 0

=
[
α eiθβ

] [1 0

0 0

][
α

e–iθβ

]
Expand the matrices

=
[
α eiθβ

] [α
0

]
Multiply right matrices

= αα Probability of measuring 0

(6.51)

Though this isn’t a proof, it is an example of the general case. If we have a
phase on |0⟩, we can apply the opposite phase to |1⟩ instead and not change
the probability of measuring a 0 or a 1. So, we can always collect any relative
phase terms onto the coefficient of |1⟩ and leave |0⟩ without a phase term.
This is the usual way to write a state with relative phase.

When we look at quantum algorithms in Part II, we’ll see that relative
phases often make important contributions to creating the desired final
measurement.

As we saw earlier, the two states |+⟩ and |–⟩ differ by a relative phase,
and are different states, but we can’t distinguish them by an immediate
measurement (that is, placing the meter immediately after the creation of the
state with no additional processing). This is an odd state of affairs: the qubit
contains a piece of information that we can’t directly access.

We can roughly capture this idea with a metaphor. If you’ve written
programs for conventional computers, you’re probably familiar with the
idea of a class. Speaking broadly, a class is a blueprint for objects made of
variables and functions [256]. A programmer can manufacture objects from
the blueprint, modify their variables, and call their functions. Most classes
offer a special variety of variable called a private variable that can be used only
by objects created from that class’s blueprint. No other part of the program
can modify a private variable. In fact, no other part of the program can even
detect that such variables exist. They are, truly, private to the object. (Since
this is a metaphor, it’s imperfect. Sometimes there are sneaky ways to get at
private variables from outside the class.)

200 Chapter 6

A relative phase is like a private variable. A qubit’s relative phase is a
purely internal piece of information that it can use, and which can affect
calculations that the state is involved in. Yet, we cannot make any immedi-
ate measurement that will reveal that information. In terms of immediate
measurements, relative phase is a secret, known only to the qubit.

As to how nature manages to pull this off, nobody knows.

Summary
In this chapter, we looked at how we model the measurement of a quantum
system and what happens to that system as a result of that measurement.

We saw that experiments consistently show that when we measure a
state given by α |0⟩ + β |1⟩, the probability of measuring 0 is |α|2 and the
probability of measuring 1 is |β|2. These are idealized results, though, as
quantum computers (like all computers) occasionally make errors. We use
the term “noise” to refer to these errors collectively. Because noise is mostly
uncorrelated, we often run algorithms many times (we say we run many
shots), and we expect that the correct answer will dominate.

We also looked at measurement of a superposition. This confirmed
that superpositions are not states that have preexisting single identities but
rather a new and abstract kind of existence, described by a list of possible
states and associated probabilities.

To form a more general way to talk about measurements, we defined
projection operators. Though these are matrices, they are not unitary and
may not be used in a quantum algorithm. They’re strictly a mathematical
convenience for calculating and discussing measurements.

Along the way, we saw that the outer product, or ketbra, is a matrix
described by a ket followed by a bra.

We saw that we could measure just some of the qubits in a system and
find the probabilities for different partial measurements.

We looked at entangled states, including Bell states, and saw that they
cannot be described as a tensor product state. The entangled particles appear
to share a single, common superposition. When that superposition collapses,
we know the state of the other qubit. While this collapse is instantaneous, we
cannot use it to send information faster than the speed of light.

Finally, we looked at global and relative phase. Relative phases cannot be
detected by a direct measurement, but they can affect computations.

Whew. We have covered a lot of stuff since the beginning of the book!
Now you know about qubits and qugates, how wemodify qubits, how wemake
systems of multiple qubits andmultiple qugates, and how tomeasure qubits.

You’ve seen the four fundamental postulates of quantum mechanics,
expressed in forms useful for quantum computing.

That’s it for the preparations! Now we have everything we need to move
on to Part II, where we’ll discuss some of the most famous quantum algo-
rithms and see how they work. You’ll be able to use these circuits for your
own work, or invent your own original quantum algorithms!

Measurement 201

PART II
QUANTUM ALGORITHMS

Don’t you understand that we need to be childish in order to
understand? Only a child sees things with perfect clarity, because it hasn’t
developed all those filters which prevent us from seeing things that we

don’t expect to see.
—Douglas Adams, Dirk Gently’s Holistic Detective Agency, 1987 [2]

It is not because things are difficult that we do not dare, but because we do
not dare, things are difficult.

—Seneca the Younger,Moral and Political Essays, 40 [191]

Quantum programming is exciting, because writing quantum programs is
nothing like anything we’re used to, including programming.

Early conventional programs were written in assembly language. These
programs invoked specific actions executed by the hardware and offered
little in the way of larger conceptual operations. As a result, they were diffi-
cult to read and write. In 1957, IBM released the first version of the Formula
Translating System, also called the FORTRAN programming language [89]
[262]. This changed programming forever.

Most of us now think of ideas like variables, conditional tests, subrou-
tines, and so on as basic conceptual tools of programming, and even of pro-
cedural thinking in general. These ideas were part of FORTRAN and have
been adopted and extended by many other programming languages ever
since. As a result of the increasing expressive power of programming lan-
guages, and their integration with the computer’s underlying operating
systems, most of us never need to think about complexities like memory
management, process scheduling, and reliable parallel execution. This free-
dom has helped lead to the stunning evolution of computers from “number
crunchers” to devices that help us create images, write music, stay healthy,

manage businesses and governments, and enjoy a real-time global communi-
cations network.

Quantum programming is an entirely different way to think about algo-
rithms. Few of the old rules apply, and almost none of the features of modern
programming languages are available to us (at least, not yet). We’re currently
at the equivalent of the assembly language phase, where our programs are
usually sequences of instructions that correspond to specific actions executed
by the hardware.

But quantum programs have abilities that conventional computers can’t
touch. Perhaps the most prominent is quantum parallelism. A quantum com-
puter can apparently perform computations on arbitrary numbers of dif-
ferent inputs, simultaneously. It lets us search for a needle in a haystack by
looking at, and evaluating, every object in the haystack at the same time.
No matter how large the haystack is, we can examine every piece of it in the
same amount of time it takes to examine a single piece.

Our goal is to embrace these new capabilities and use them to their
fullest extent.

As quantum programmers, we face at least two key challenges. First, we
need to find ways to use the available building blocks to create an algorithm
that solves the problem at hand. Second, we have to extract useful informa-
tion from the results of that algorithm.

The building blocks are quantum gates, like the I, X, H, and CX qugates
we’ve already met. Because any unitary square matrix can be used as a quan-
tum gate, there are an infinite number of possibilities to draw from. In prac-
tice, however, we usually restrict ourselves to one or two dozen qugates that
have well-understood and useful properties.

The extraction process involves somehow narrowing the sometimes as-
tronomical number of possible results created by an algorithm down to just
a small number of useful ones, and making those results likely to be mea-
sured at the computer’s output.

We can view the development of quantum programming so far as a se-
ries of breakthroughs. These arose from different people coming to grips
with different aspects of these problems and using those insights to produce
functioning algorithms of increasing complexity, subtlety, and utility.

I think the best way to learn quantum programming is to follow in their
footsteps. In this part of the book, I’ll present several important quantum
algorithms, in roughly their chronological order of development and pub-
lication. By studying each algorithm, we can become familiar with the new
ideas introduced by each and internalize those ideas into our understanding
of what it means to create a quantum algorithm.

By the time we’re done, we’ll be familiar with not just a new set of pro-
gramming tools, but a new set of fundamental ideas about how we can
represent, process, and extract information from machines that exploit the
particular properties of quantum objects.

This is exciting, heady stuff. I find that quantum computing offers the
kind of invigorating stimulation that kicks my neurons into a higher gear,

204 Part II

breaks patterns that had calcified without my notice, and sparks sudden and
unexpected ideas.

Reaping these benefits takes some effort. I encourage you to take your
time with these algorithms and let their structures and mechanisms sink in
until they become comfortable for you. The reward is that you’ll then be
able to use them in creative and original ways for your own projects.

Chapter 7 starts us off with quantum teleportation, which enables us
to transfer the state of one quantum object to another. Then, in Chapters 8
through 11, we’ll look at a series of algorithms that each take as an input a
small quantum circuit that we’re not allowed to look at, but that we can feed
inputs to and get back outputs from. Each of these algorithms is designed to
reveal something about an increasingly interesting set of mystery circuits.

Chapter 12 presents a general-purpose routine for finding which ele-
ments in a database satisfy some criterion we’re searching for. After that,
Chapter 13 looks at an algorithm that can break the most popular security
used on the internet today. Chapter 14 wraps things up with a discussion
and pointers to useful quantum computing resources.

If you’d like to run the algorithms as we discuss them, Chapter 14 also
describes how you can run small programs on real quantum computers on
the web for free [95] [6]. Alternatively, you can download a free quantum
computer simulator for almost any operating system or language and run
it on your home computer [166] [44]. These simulators can only process a
handful or so of qubits, but that’s enough to run real quantum programs
and build up your programming skills.

Part II 205

7
TELEPORTAT ION

Hey, hey, hey.
You know, don’t be mean.
We don’t have to be mean.

’Cuz remember, no matter where you go . . .
there you are.

—Earl Mac Rauch, The Adventures of Buckaroo Banzai Across the 8th Dimension,
1984 [170]

In this chapter, we’ll meet our first com-
plete quantum algorithm! This algorithm

doesn’t perform a calculation or give us the
answer to a specific problem. Instead, it per-

forms a unique, fascinating task: moving the quantum
state of one qubit to another qubit, located anywhere
in the universe. And it does this instantaneously.

Wait, the no-cloning theorem from Chapter 5 tells us we can’t do this,
right? The theorem does say that we can’t make a copy of a quantum state,
but it doesn’t prohibit us from moving a state from one qubit to another,
leaving the original qubit in a different state from how it started.

This process has an exciting name: quantum teleportation, or just
teleportation. It’s not quite teleportation the way the term is used in sci-
ence fiction like Star Trek, though. We really do communicate the states
of a quantum bit from here to there, but there are four big differences.

The first is that we’re not transferring any kind of matter. We’re only
communicating the state of a qubit. Even if we transferred the state of enor-
mous numbers of qubits, we still don’t have any means for assembling the
physical objects that have been put into those states into a grumpy but hu-
mane doctor, an exploding warp drive, or even a rock.

The second difference is that we can’t send the description of the qubit
anywhere we like. We can only transfer the state of a qubit to another qubit
it’s already been entangled with, and which is already present at the receiv-
ing site.

The third difference is that to reliably transfer the state of a quantum
bit from one place to another, we must also exchange two classical bits over
normal, classical channels, such as radio. That means we can’t rely on this
method to share information unless we also share some classical bits over
conventional channels.

Finally, the fourth difference is that when we move a quantum state
from one qubit to another, the state of the original qubit is changed, and
we can’t recover its original value.

Given all of these qualifiers, it might be better to call this quantum state
transfer rather than teleportation. It’s not Star Trek by a long shot, but trans-
ferring the state of one quantum particle to another quantum particle is still
pretty cool.

Three features that real quantum teleportation has over the fictional ver-
sion are that distance doesn’t matter, nothing can interfere with the process, and the
original must be destroyed to be transported. The first property means that the
source and target can be literally anywhere in the universe. The second two
properties protect us from ever accidentally creating an “evil Spock” [176].

In this chapter, we’ll work a lot with explicit qubit states and the matri-
ces of the operators that modify them. This is unusual. Most of the time,
when we analyze a quantum algorithm, we work entirely (or nearly so) with
algebra and rarely get down to the level of coefficients. Most of the rest of
this book follows that approach. But sometimes working with the actual
coefficients can be illuminating, bringing us a little closer to the mechan-
ics of quantum computing. It also allows us to view an algebraic result in a
different way, if there aren’t too many qubits involved. For these reasons,
in this chapter we’ll spend most of our time with components, and we’ll see
explicitly how the operator matrices manipulate the elements of the ket ma-
trices. You won’t need to memorize any of these eight-by-eight matrices, as
they’re all built up from the smaller two-by-two matrices that we’re already
familiar with.

Okay, enough prep. Let’s get teleporting!

208 Chapter 7

The Teleportation Thought Experiment
A great way to think about teleportation is in terms of a story, or what physi-
cists call a thought experiment. This story involves two characters. In physics
thought experiments with two characters, they are almost always named
Alice and Bob, so I’ll carry on that tradition here.

In this story, we imagine that Alice and Bob are separated by a great dis-
tance: Maybe Alice is on Earth, and Bob is on Mars. Alice has run some al-
gorithm that produces a quantum state, which I’ll call the signal, described
by a ket s with the state |σ⟩ = α |0⟩ + β |1⟩, where as always |α|2 + |β|2 = 1.
Producing this state is only the first part of a two-part computation. Bob
is ready to take over from here and finish the computation, so he needs to
have a qubit in the state |σ⟩.

Alice could send her physical qubit to Bob, so he can work with it. But
let’s say that Bob is so remote, and sending things is so slow and expensive,
that there’s no practical way for Alice to physically send her qubit to Bob.

To get around this limitation, suppose that Bob has taken a qubit named
b to Mars. Taken together, Alice’s qubit s and Bob’s qubit b form a two-qubit
system s⊗ b. When we think of s and b as a system, it doesn’t matter that the
qubits are far apart from one another.

Because s is in the state |σ⟩, it would be great if there were some sequence
of operations that Alice, or Bob, or both of them could follow that would
give them the qubit system state |σ⟩ ⊗ |σ⟩. Then Bob’s qubit b would also
be in the state |σ⟩, and they’d have teleported the signal! Unfortunately, this
means making a copy of |σ⟩, and we know that the no-cloning theorem pro-
hibits that.

Maybe we can avoid cloning if Alice’s qubit is changed during teleporta-
tion. For example, it might go from |σ⟩ to some other state, |ω⟩. Now if we
can put |σ⟩ onto Bob’s qubit, the new system will be |ω⟩ ⊗ |σ⟩. There will
be no cloning, and they’ll have teleported the signal!

That would be great, but nobody has found a way to do it.
A way that does work requires giving Alice one more qubit. This extra

qubit (let’s call it a, for auxiliary) will help us perform teleportation.
But how does this help Alice, in her lab on Earth, modify Bob’s qubit

onMars? The answer is to link all three qubits together, so that when Alice
manipulates her qubits s and a, those operations have an effect on Bob’s
qubit b.

We know how to do that: Use entanglement! If Alice and Bob created
an entangled pair before Bob left, and each kept one qubit of the pair with
them, operations on either qubit could affect the other.

We still need some way for Alice to move |σ⟩ onto Bob’s qubit. The key
idea is to create a system state of three qubits that I call the teleportation state,
which I’ll write as |τ⟩. This is the heart of the whole algorithm. Figure 7-1
shows the teleportation algorithm in two steps.

Teleportation 209

Figure 7-1: The teleportation algorithm can be
viewed as two steps.

We can view the first step as climbing a hill to put the qubits into the
teleportation state |τ⟩. We plant our flag (the state |τ⟩) at the top of the hill
and then head down the other side, using |τ⟩ to put Bob’s qubit b into the
state |σ⟩ that Alice’s qubit s was initially in. We don’t care about the final
states of qubits s and a, so I’ve left them blank in the figure.

Because the teleportation state |τ⟩ is at the center of the whole process,
let’s take a closer look at it.

The Teleportation State |τ⟩
Let’s write the qubits s, a, and b in the teleportation state. A 3-qubit state has
23 = 8 elements. Creating the teleportation state takes only a few quantum
gates, and I’ll show you that circuit later in this chapter. For now, I’ll ask you
to take it on faith that Alice and Bob can create |τ⟩.

The teleportation state involves the qubits s, a, and b. Let’s write these
in order from top to bottom, as in Figure 7-2. We’ll see that the three qubits
are entangled together, so their output is the single entangled state |τ⟩.

s

a

b

|τ⟩

Figure 7-2: The three qubits
s, a, and b arranged from
top to bottom, making up
the entangled state |τ⟩

The teleportation state |τ⟩ is an equal superposition of four states. Each
is the original |σ⟩, perhaps transformed by one or two specific operators.

210 Chapter 7

The state |τ⟩ is shown in Equation 7.1.

|τ⟩ = 1
2

(
|00⟩ I |σ⟩ + |01⟩X |σ⟩ + |10⟩Z |σ⟩ + |11⟩XZ |σ⟩

)
(7.1)

At first glance, it looks like we’ve cloned |σ⟩ not just once but three
times. But a closer look reveals that there’s been no cloning. What we’ve
done is create additional states involving α and β in a single superposition.

We’ve been doing this kind of thing for several chapters now. For exam-
ple, suppose we apply an H qugate to |σ⟩. The resulting state is shown on
the right side of Equation 7.2 (recall our convention that ∨ = 1/

√
2).

H |σ⟩ = ∨
[
1 1

1 –1

][
α

β

]
= ∨

[
α + β

α – β

]
(7.2)

The final state is an equal superposition of (α + β) |0⟩ and (α – β) |1⟩.
Both coefficients α and β appear twice, but we haven’t cloned anything.
Eventually, we’ll make a measurement, causing this superposition to col-
lapse, and only one of the states will be associated with the qubit. The same
is true of |τ⟩.

Let’s return to |τ⟩ in Equation 7.1. It’s composed of four states in an
equal superposition.

In the first state, |00⟩ I |σ⟩, the |00⟩ term refers to the two-qubit state
|0⟩ ⊗ |0⟩. We then tensor this with I |σ⟩. This is really just |σ⟩, but I in-
cluded the I for consistency with the other states.

The second state, |01⟩X |σ⟩, tells us to first form |0⟩ ⊗ |1⟩ and then ten-
sor that with X |σ⟩, or the result of applying the X qugate to the original |σ⟩.

The third state, |10⟩Z |σ⟩, is like the previous one. We first form the
state |1⟩ ⊗ |0⟩ and then tensor that with Z |σ⟩.

Finally, |11⟩XZ |σ⟩ tensors together |1⟩ ⊗ |1⟩ with the state made by ap-
plying Z and then X (in that order) to |σ⟩ (remember that we read algebraic
operators from right to left).

It’s the structure of |τ⟩ that enables teleportation. In Figure 7-2, the
first two qubits of |τ⟩ correspond to s and a and the third to b.

If Alice measures qubits s and a, then as usual she’ll get back a single bit
for each. Let’s say she finds s = 1 and a = 0. Then the law of partial measure-
ment tells us that the superposition describing the entire systemmust collapse
to contain only those states that are consistent with Alice’s measurement.
There is only one such state in |τ⟩, |10⟩Z |σ⟩, and therefore, with certainty,
Bob’s qubit b is now in the state Z |σ⟩. Bob knows that Z is its own inverse,
or ZZ = I, so he can apply Z to this state to get ZZ |σ⟩ = |σ⟩.

Voilá, Bob’s qubit b has the state |σ⟩. Teleportation achieved!
As promised, there’s been no cloning. In order for Alice’s signal |σ⟩ to

make it to Bob’s qubit, Alice had to measure both s and a. The process of
measuring s collapsed it to either |0⟩ or |1⟩, destroying Alice’s copy of |σ⟩,
thereby enabling us to move |σ⟩ to Bob’s qubit without cloning.

Teleportation 211

The Teleportation Process
We can think of teleportation as a four-step process. This will enable us to
view the big picture in four smaller chunks that we can then assemble at
the end.

The four steps are how Alice and Bob make the teleportation state |τ⟩,
how Alice measures the state of the qubits, how Alice tells Bob which of the
four states |τ⟩ collapsed to, and how Bob applies the correct qugates to get
the original |σ⟩. Let’s take these in order.

Building |τ⟩
Alice and Bob build the teleportation state |τ⟩ in three steps. The first step
entangles the qubits a and b, the second entangles swith the other two qubits,
and the third performs one final step of processing.

Alice and Bob start everything off while they’re still together on Earth.
After lunch one day, they head to Alice’s lab to make two qubits, named a
and b, both in state |0⟩. They entangle a and b in the same way that we saw
in Figure 5-26. The traditional way to write this in a teleportation circuit is
for Bob to apply H to b and then apply a CX using b as a control and a as a
target, as shown in Figure 7-3(a).

a |0⟩

b |0⟩
|βs+⟩

H

I⊗H CXba

a |0⟩

b |0⟩

I
|βs+⟩

H

(a) (b)

Figure 7-3: (a) Entangling a and b. (b) Explicitly including an identity on a and
naming the operator systems.

This CX is drawn upside down compared to how I’ve usually drawn
it before, with the control under the target. We saw this previously in
Equation 5.48, where I called it CX′. We confirmed there that this works
just as we’d hoped, with the target on the lower line controlling the applica-
tion of the X qugate on the upper line. In this algorithm, I’ll call the qugate
CXba to emphasize that qubit b is controlling qubit a. As a reminder, the
matrix form of CXba from Equation 5.48 is given in Equation 7.3.

CXba =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 (7.3)

212 Chapter 7

Returning to our entanglement step, our experience from Chapter 5
tells us that the output of Figure 7-3 should be |βs+⟩. We can confirm this by
first tensoring together a = |0⟩ and b = |0⟩ to make the starting state |00⟩,
thenmodifying them by the system I⊗H shown in Figure 7-3(b). This qugate
system is written out in Equation 7.4.

I⊗H =

[
1 0

0 1

]
⊗ ∨

[
1 1

1 –1

]
= ∨


1 1 0 0

1 –1 0 0

0 0 1 1

0 0 1 –1

 (7.4)

The second system is CXba, which we just found. Let’s apply both sys-
tems to the starting state |00⟩, as shown in Equation 7.5.

CXba(I⊗H) |00⟩ = CXba((I⊗H) |00⟩) Apply I ⊗ H first

= CXba

∨

1 1 0 0

1 –1 0 0

0 0 1 1

0 0 1 –1



1

0

0

0


 Use I ⊗ H from Eq. 7.4

= CXba ∨


1

1

0

0

 Multiply the matrices

=


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 ∨

1

1

0

0

 Use CXba from Eq. 7.3

= ∨


1

0

0

1

 Multiply the matrices

= ∨(|00⟩ + |11⟩) = |βs+⟩ The Bell state |βs+⟩

(7.5)

Great! Figure 7-3 does indeed give us the Bell state |βs+⟩.
In our thought experiment, Bob now places qubit b in a special bottle

and takes it with him to Mars. Alice also places a in a special bottle and puts
it somewhere safe in her lab.

A year passes. One day, Alice completes her experiment, resulting in a
qubit named s in the state |σ⟩. This is the state she wants to send to Bob.

Teleportation 213

Alice can only modify s and a, the qubits that she has with her on Earth.
In order for Alice to cause operations on the qubits s or a to affect Bob’s qubit
b far away, qubits s and a need to be entangled with b. She can create that
entanglement by using s as the control on a CX targeting either a or b. Of
these, only a is in the lab with Alice, so she entangles s with a. This second
entanglement step is shown in Figure 7-4. I’ve written CXsa for the CX in the
usual orientation, using s as a control on a.

s |σ⟩

a

b
|βs+⟩

|ϕ0⟩ |ϕ1⟩ CXsa ⊗ I

s |σ⟩

a

b
|βs+⟩

I

|ϕ0⟩ |ϕ1⟩

(a) (b)

Figure 7-4: (a) Entangling s and a. (b) Including the implied I qugate.

Because we’re focusing here on matrix elements, let’s write out the com-
ponents of the qubit system |ϕ0⟩, the system just before Alice entangles s
with a. This is |σ⟩, the state of Alice’s qubit s, tensored with |βs+⟩, which we
derived in Equation 7.5. The result is shown in Equation 7.6.

|ϕ0⟩ = |σ⟩ ⊗ |βs+⟩ =

[
α

β

]
⊗ ∨


1

0

0

1

 = ∨



α

0

0

α

β

0

0
β


(7.6)

Now we’ll entangle s with a. Figure 7-4(a) shows using s as a control on
a. As usual, it omits the identity qugate I we could place on the b line. But
although it’s not in the picture, that identity must be in our operator!

214 Chapter 7

Let’s write out this matrix, as shown in Equation 7.7. Because CXsa ap-
plies a control on the topmost line to a target immediately below it, its ma-
trix is the familiar CXmatrix.

CXsa ⊗ I =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⊗
[
1 0

0 1

]
=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


(7.7)

Now we can apply the system CXsa ⊗ I to the state |ϕ0⟩ we found in
Equation 7.6 to get |ϕ1⟩, as shown in Equation 7.8.

|ϕ1⟩ = (CXsa ⊗ I) |ϕ0⟩ =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


∨



α

0

0

α

β

0

0
β


= ∨



α

0

0

α

0

β

β

0


(7.8)

I’ll be pragmatic now. Looking at |ϕ1⟩ in Equation 7.8, what would it
take to turn this into the teleportation state |τ⟩ in Equation 7.1?

The trick is to write out |τ⟩ as a single state and compare it to |ϕ1⟩ in
Equation 7.8. Then we’ll see if we can find a sequence of operations that
juggle around the elements of |ϕ1⟩ so that they match |τ⟩.

I’ll find this explicit form of |τ⟩ in two steps. First, I’ll expand each basis
state |00⟩ through |11⟩ into its corresponding four-element ket, and then I’ll
replace each modified version of |σ⟩ with the coefficients of its matrix.

As Equation 7.1 shows, we’ll need four transformations in all, one for
each basis state.

Teleportation 215

Equation 7.9 summarizes those four transformations for reference. In
the fourth row, I applied Z and X operators (in that order) to make the com-
bined operator XZ.

I |σ⟩ =

[
1 0

0 1

][
α

β

]
=

[
α

β

]

X |σ⟩ =

[
0 1

1 0

][
α

β

]
=

[
β

α

]

Z |σ⟩ =
[
1 0

0 –1

][
α

β

]
=

[
α

–β

]

XZ |σ⟩ =

[
0 –1

1 0

][
α

β

]
=

[
–β

α

]
(7.9)

With these in hand, let’s rewrite |τ⟩. The steps are in Equation 7.10.
The first line repeats |τ⟩ from Equation 7.1. The second line expands the
basis states into kets, and the third replaces each modified version of |σ⟩
with its state from Equation 7.9. In this last line, the rules of operator prece-
dence tell us to perform the tensor operations before the additions.

|τ⟩ = 1
2

(
|00⟩ I |σ⟩ + |01⟩X |σ⟩ + |10⟩Z |σ⟩ + |11⟩XZ |σ⟩

)

=
1
2



1

0

0

0

 I |σ⟩ +


0

1

0

0

X |σ⟩ +


0

0

1

0

Z |σ⟩ +


0

0

0

1

XZ |σ⟩



=
1
2



1

0

0

0

⊗
[
α

β

]
+


0

1

0

0

⊗
[
β

α

]
+


0

0

1

0

⊗
[
α

–β

]
+


0

0

0

1

⊗
[
–β

α

]

(7.10)

Finally, let’s explicitly compute the tensor products in the last line of
Equation 7.10, giving us Equation 7.11.

|τ⟩ = 1
2





α

β

0

0

0

0

0

0


+



0

0

β

α

0

0

0

0


+



0

0

0

0

α

–β

0

0


+



0

0

0

0

0

0

–β
α




=
1
2



α

β

β

α

α

–β

–β
α


(7.11)

216 Chapter 7

Great! Now we have an eight-element ket for |τ⟩. This is the very same
τ we originally saw in Equation 7.1, but it’s now represented as a single state
vector, where all three qubits are entangled together.

This |τ⟩ is our goal. We want to turn the |ϕ1⟩ in Equation 7.8 into this
|τ⟩. How can we do this? Is there some operator A (or some sequence of
operators that we can multiply together to make A) that we can plug into
Equation 7.12 to do the trick?

A |ϕ1⟩ = |τ⟩ , or ∨ A



α

0

0

α

0

β

β

0


=
1
2



α

β

β

α

α

–β

–β
α


(7.12)

Happily, we can indeed build an operator A that does just what we want.
If you write down Equation 7.12 with a big empty matrix for A, then you can
work through each element and fill in the entries. You’ll find some elements
must be 1, others –1, and still others must be 0. And to turn the ∨ in |ϕ1⟩
into the 1/2 in |τ⟩, the matrix will need to include another factor of ∨. The
resulting matrix is shown in Equation 7.13.

∨



1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 0 –1 0 0 0

0 1 0 0 0 –1 0 0

0 0 1 0 0 0 –1 0

0 0 0 1 0 0 0 –1


= ∨

 I4 I4

I4 –I4

 (7.13)

You can pull this pattern apart, as shown by the block matrix on the
right. In the upper-left, upper-right, and lower-left blocks, we have the 4-by-4
identity matrix given by I4 = I⊗ I. In the bottom-right block, we have its neg-
ative, –(I⊗ I). This pattern of positives and negatives is just what we get from
forming H⊗ (I⊗ I). The parentheses aren’t needed, but I’ve put them there
to emphasize that we’re thinking of I⊗ I as one matrix that gets tensored
with H.

In other words, thematrix in Equation 7.13 that takes us from |ϕ1⟩ to |τ⟩
is given byH⊗ I4, orH⊗ I⊗ I. In the circuit diagram, we draw anH on the
top line and usually just imply the I qugates, as in Figure 7-5(a). Figure 7-5(b)
shows what it looks like with the I qugates drawn explicitly.

Teleportation 217

s

a

b

H

|ψ1⟩ |τ⟩ H⊗ I⊗ I

s

a

b

H

I

I

|ψ1⟩ |τ⟩

(a) (b)

Figure 7-5: (a) Applying the final H to the top qubit, giving us the
teleportation state |τ⟩. (b) Including the implied I qugates.

This process demonstrates that sometimes we build up a circuit from prin-
ciples, and sometimes we just create something that performs a specific task.

Let’s put it all together. Starting with qubits a and b in the state |0⟩,
we entangle them with an H and CXba, then we apply CXsa, and finally we
apply an H to s to create the teleportation state |τ⟩. The process is shown in
Figure 7-6.

s |σ⟩

a |0⟩

b |0⟩

H

|τ⟩

H

Figure 7-6: The full setup step for teleportation

This is the conceptual peak of the argument: We’ve created the telepor-
tation state |τ⟩. The hard work is done! Now we’re on the downhill slope
from Figure 7-1.

Alice Measures Her Qubits
Now that the teleportation state has been set up, Alice will collapse it to just
one state. This will push the state |σ⟩ onto Bob’s qubit (because it will have
nowhere else to go) and simultaneously collapse the qubit s that has held |σ⟩
until now.

Alice can measure her two qubits s and a in either order, or even at
the same time. Appending this measurement to our existing circuit from
Figure 7-6 gives us Figure 7-7. I’m labeling the output bits with the letter m
(for measurement) rather than my usual b (for bit) because we’re already
using b for Bob’s qubit.

218 Chapter 7

s |σ⟩ ms

a |0⟩ ma

b |0⟩

H

H

Figure 7-7: After the circuit of Figure 7-6, Alice measures
her qubits.

Let’s write the measured values from this system as a bitstring msma.
Suppose that Alice measures ms = 0 and ma = 1, or the bitstring 01. The

law of partial measurement says that the system state |τ⟩must collapse to
states that are consistent with this measurement. That is, the system collapses
to include only those states that start with |01⟩. There is only one such state
in |τ⟩ from Equation 7.1, and that’s |01⟩X |σ⟩. So in this case, after the
measurement, Alice’s qubits a and s are now |0⟩ and |1⟩ respectively, and
Bob’s qubit bmust be X |σ⟩.

Alice Tells Bob the Measurements
When Alice’s measurements are complete, our three-qubit system has col-
lapsed to one of the four states in Equation 7.1. That is, depending on what
Alice measured, Bob is holding a qubit that is in the state I |σ⟩, or in the
state X |σ⟩, or in the state Z |σ⟩, or in the state XZ |σ⟩.

If Bob can determine the state of his qubit, he can apply the correct
qugates to leave him with |σ⟩. So the big question is, how can Bob tell which
state he has?

That depends on what Alice measured. So the new question is, how can
Bob determine what Alice saw on her meters?

The answer is that he can’t! Alice has to tell him.
There’s no quantum way for Alice to tell Bob anything, because Alice

has already collapsed their entangled states.
The only remaining way for Alice to tell Bob what she measured is by

using classical means. She can send the values of her two measurements via
radio, or she can use a laser to bounce light off the moon, or she can send
him a newspaper with the measurements printed somewhere. No matter
how she chooses to send this information to Bob, she needs to use classical
means, which are limited by the speed of light.

Bob Recovers |σ⟩
Once Bob receives the two classical bits that Alice sent, telling him what she
measured, he can recover |σ⟩ from his qubit. His work is made easier by
another remarkable feature of the structure of the teleportation state: Bob
will need only two qugates!

Teleportation 219

The idea is that Bob will use the received classical bits as controls on a
controlled-X qugate and a controlled-Z qugate. We’ve only discussed using
quantum bits as controls, but we can use classical bits as well. Think of ini-
tializing a pair of qubits using the corresponding bits.

To see what Alice’s measurements tell Bob, I’ve repeated the teleporta-
tion state |τ⟩ from Equation 7.1 here as Equation 7.14.

|τ⟩ = 1
2

(
|00⟩ I |σ⟩ + |01⟩X |σ⟩ + |10⟩Z |σ⟩ + |11⟩XZ |σ⟩

)
(7.14)

Bob’s actions to recover |σ⟩ are shown in Figure 7-8.(
ma

((
ms

(
b |σ⟩X Z

Figure 7-8: Bob decoding his qubit
based on Alice’s classical bits

Let’s look at the four possible pairs of bits that Bob might receive.
If Alice measured 00, then ma = ms = 0. Equation 7.14 tells us that when

Alice measures 00, Bob has I |σ⟩ = |σ⟩. Since both controls are 0, neither
qugate is applied. This is just right, because Bob already has I |σ⟩ = |σ⟩, and
he’s done.

If Alice measured 01, then ms = 0 and ma = 1. Equation 7.14 tells us that
Bob’s qubit is in state X |σ⟩. Bob applies the controlled-X qugate, and because
X is its own inverse, this gives him XX |σ⟩ = |σ⟩, and he’s recovered |σ⟩.

If Alice measured 10, then ms = 1 and ma = 0. This tells Bob to apply
the controlled-Z qugate. Like the X qugate, Z is its own inverse, so Bob gets
ZZ |σ⟩ = |σ⟩.

Finally, If Alice measured 11, then ma = ms = 1, and Bob knows that his
qubit is XZ |σ⟩. To undo the transformation XZ, Bob applies X and then Z
in that order, which is equivalent to applying the single operator ZX (re-
member to read the operators from right to left). The steps are shown in
Equation 7.15.

ZX(XZ) |σ⟩ = Z(XX)Z |σ⟩ Regroup matrix multiplies

= ZZ |σ⟩ Since XX = I

= |σ⟩ Since ZZ = I

(7.15)

It’s important to keep the order of the operations at each point in the
algorithm clear in your mind. If Alice’s qubit is in the state XZ |σ⟩, then to
recover |σ⟩ Bob has to apply the inverse of operator XZ, which is ZX.

And we’re done. For each of Alice’s four possible measurements, Bob
has successfully ended up with his qubit in the state |σ⟩. We’ve teleported
|σ⟩ from Alice to Bob!

220 Chapter 7

Drawing the Teleportation Protocol
Let’s now put all the pieces together, giving us Figure 7-9.

s |σ⟩

a |0⟩

b |0⟩ |σ⟩

H

H X Z

|τ⟩

Figure 7-9: The full teleportation circuit as it’s normally drawn, with the
teleportation state |τ⟩ marked

Figure 7-9 is the complete, traditional quantum teleportation protocol.
This theoretical process has been experimentally confirmed [22].

However, Figure 7-9 may be somewhat misleading, because it shows all
three qubits at the far left, suggesting that Alice and Bob have them all in
their control at the start of the process. But if Alice already has s in the state
|σ⟩, and Bob is standing there, she could just hand the s qubit (protected
carefully) to Bob, and there would be no need for teleporting anything!

For that reason, I prefer drawing this as in the overall recap of Figure 7-10.
The delayed introduction of s clarifies that s isn’t yet in the state |σ⟩ when
Alice and Bob are entangling a and b. Only later does Alice compute s, and
then continue the protocol.

Figure 7-10: A recap of the quantum teleportation algorithm

Teleportation is usually drawn as in Figure 7-9, so keep in mind that in
practice, the qubit s is usually not in the state |σ⟩ at the start, when Alice and
Bob are creating their entangled pair.

Probabilistic Teleportation
We’ve seen that after Alice has measured her qubits, Bob’s qubit is in one
of the four states in the superposition |τ⟩, but he doesn’t know which one.
Alice has to tell him by sending him two classical bits by classical means.

Teleportation 221

But let’s suppose that for some reason, Alice can’t send Bob her bits. Is
the situation hopeless for Bob, or is there some way, perhaps with a combi-
nation of effort and luck, that he will be able to recover |σ⟩ from his qubit?

Let’s try another thought experiment.
Suppose that there’s been a terrible accident onMars. The habitat blew

up when Bob was out on amission, leaving Bob the only survivor. The explo-
sion also damaged the rocket he and his colleagues were going to use to return
to Earth, and almost all the fuel has leaked out. There’s enough fuel to lift off
the surface, but there isn’t nearly enough to get the rocket back to Earth.

Bob’s supplies will run out long before a rescue mission can reach him,
so he needs to find a new way home.

Luckily, an earlier Mars mission placed an emergency rescue satellite
in Mars orbit. If Bob can reach it, the resources there will not only keep
him alive, but he’ll also be able to repair his rocket. And there’s enough fuel
there to fill the rocket’s tanks. It’s a plan to get home!

Getting his damaged rocket safely up to the rescue satellite will require
an elaborate flight plan with multiple steps that he’ll have to perform at the
right moments. The specific plan for any given day will depend a lot on the
local weather.

Unfortunately, Bob doesn’t have access to the weather satellites above
Mars. But he does have a working radio, and he contacts Alice, who can read
the weather satellite data without a problem. They agree that Alice will use
that data to work out a flight plan for the next day and send it to Bob. Be-
cause these flight plans are complicated, she’ll encode the entire plan into
a single state, |σ⟩. This is a good strategy for them, because before Bob left,
he and Alice created lots and lots of entangled pairs to use for teleporting
states over the duration of Bob’s mission. Bob’s half of each pair survived
the accident. So once Alice tells him her measurements, Bob can take down
the bottle containing the next qubit to be used and apply Alice’s bits to put
it into the state |σ⟩.

On Mars, Bob has cobbled together a decoder to turn a quantum state
sent by Alice into a flight plan. He’s also written a simulation program that
will look at a flight plan and tell him whether it’s safe and he’ll reach the
satellite, or it’s unsafe and the rocket will blow up, along with Bob.

The next morning, as Bob prepares to hear from Alice what her mea-
surements were, Bob’s radio won’t even turn on. It’s busted, and he doesn’t
have the parts to fix it, so now he’s lost all touch with Alice. He can’t get her
measurements, so he can’t confidently process his qubit to turn it into |σ⟩.

Bob isn’t completely without hope, though. He can just plain old guess.
Suppose he guesses that Alice measured 00, so his qubit is in the state I |σ⟩,
and he doesn’t have to process it. He has a three in four chance of being
wrong, but more optimistically, a one in four chance of being right!

So he feeds his qubit into the decoder, which gives him a flight plan. He
then gives that to the safety testing program. If he’s lucky, the test will tell
him that he guessed correctly and that the flight plan makes sense and is
safe. But if he’s unlucky, then his guess was wrong (that is, his qubit wasn’t
in the state |σ⟩, but one of the other states in |τ⟩). In that case, the decoder
will have produced a nonsensical flight plan, and the test will tell him that
following that plan would end in disaster.

222 Chapter 7

If Alice and Bob were sharing only a single entangled pair, this would
be the end of the story. Bob would have no option but to launch the rocket
anyway and hope for the best.

Is there some way, any way, that Bob can improve his odds?
Recall that Alice and Bob created not one entangled pair before Bob

left, but many dozens or hundreds of them. They intended to use them to
teleport different quantum states over the course of Bob’s mission. But now
that Alice knows Bob’s radio is out, she’ll use them all right away. Alice will
run the quantum protocol to teleport the same state |σ⟩ over every pair of
entangled qubits. Since she can’t clone the |σ⟩ she’s made, she runs her
plan-making program many times, creating many distinct qubits that are all
|σ⟩. She plugs each of these qubits into the teleportation protocol, and even
measures the output bits, though she can’t send them to Bob. At this point,
she’s done all she can.

Back on Mars, suppose that Bob’s guess for his first qubit resulted in a
meaningless and unsafe flight plan. He hopes that Alice is following their
backup plan, and gives her some time to compute and entangle |σ⟩ on all of
their remaining pairs.

After a little while, he’ll take down the next of his entangled qubits,
guess again, and process the qubit according to his guess of what state the
qubit is in (he could just guess it’s |σ⟩ every time, and apply no qugates to
it). Then Bob will decode his qubit and test the resulting flight plan, hoping
it will be safe.

The process is shown graphically in Figure 7-11. Alice measures s and
a, producing classical bits ms and ma, but she does nothing with them. The
measurements were just to collapse the states of the qubits. Bob then feeds
his qubit b into the decoding algorithm G that turns that qubit into a flight
path, represented by the binary number g that comes from measuring the
output of G. Because g is a classical binary number, Bob can make as many
copies of it as he pleases.

So, Bob makes a copy of g and feeds it into his test, along with whatever
other inputs it needs. If the test says the flight plan is safe, then he can fol-
low the steps in g and he’s all set for launch!

Figure 7-11: After Alice has measured her qubits, Bob guesses that he has |σ⟩, computes
the binary bitstring g, and then tests that bitstring to see if it’s a safe flight plan.

Teleportation 223

If the test tells him that the flight plan is unsafe, he takes down his next
qubit b, makes another guess, and tries again.

Because there’s no way for Bob to be sure beforehand that a given qubit
actually has the value he’s guessing, we might call this process probabilistic
teleportation.

An important thing to keep in mind is that Bob doesn’t really care about
the state |σ⟩. He’ll use each qubit, rather than study it, and it’s the results of
the decoder and test that he cares about.

Once Bob has guessed at the state of any qubit b, he has a one in four
chance, or a probability of 0.25, that he’ll have guessed correctly and the test
will tell him the plan is safe. Those aren’t great odds.

What are the chances that when Bob uses this approach, he will ulti-
mately guess right, and thereby get a safe flight plan that could save his life?

To see Bob’s chances of success, consider his odds of failure. After one
guess (and any processing it might require), there’s a three in four chance
that b is not in the state |σ⟩. Thus, Bob has a 0.75 probability of being wrong
(and getting an unsafe plan). But this means he has a 1 – 0.75 = 0.25 prob-
ability of being right (and getting a safe plan). After two repeats of the tele-
portation, his probability of guessing incorrectly both times is 0.75× 0.75
= 0.752 = 0.5625. Thus, his probability of being correct at least once is
1 – 0.5625 = 0.4375. Much better!

After n repeats of the protocol, the probability that Bob has guessed
correctly at least once is 1 – 0.75n, which I’ve graphed in Figure 7-12.

Figure 7-12: A plot of 1 – 0.75n for n from 1 to 20

After 10 repeats, Bob has about a 0.94 probability of having been right
at least once. After 20 repeats, his probability of having been right at least
once is almost 0.997.

If Alice and Bob are willing to share 20 entangled qubits before Bob
leaves, and Alice computes her side of the protocol from scratch 20 times,
and Bob runs his decoder and test 20 times, there’s about a 99.7 percent
likelihood that Bob will have guessed correctly at some point and obtained a
safe flight plan. He only needs one safe flight plan, and he can stop as soon
as he has it.

224 Chapter 7

After 50 attempts, Bob’s chance of never guessing right, even once, is
less than 1 in a million. But even though the odds of Bob guessing correctly
go up with each repeat, if he’s super unlucky, he might never guess correctly.
Worse, Bob has no way to tell Alice if he’s guessed correctly or not.

When Alice and Bob are able or willing to share two classical bits, they
can run the classical protocol once and teleport the qubit for sure. If they
don’t want to share those classical bits, or they’re unable to, they can hope
to teleport the qubit, but they’ll have to put in a lot of extra effort, and they
might still fail.

To be guaranteed success, Alice needs to send the two classical bits rep-
resenting her measurements to Bob, using classical means. If they can’t do
that, they can hope that luck is on Bob’s side and he’ll get an answer that
passes his test before he runs out of qubits.

This is only one of many interesting modifications to the basic telepor-
tation algorithm [4] [158] [289]. You can read up on the references, or try
your own ideas. Exploring variations on circuits you already understand is a
great way to gain experience with quantum algorithms.

Summary
The teleportation protocol lets us transfer a quantum state from one qubit
to another, which can be arbitrarily far away. The process requires that Alice
and Bob already share an entangled pair of qubits, and that Alice can trans-
mit two classical bits to Bob. Alice’s measurements cause qubit s to collapse.
This means that there is never more than one qubit in the state |σ⟩.

The big surprise of teleportation is that the state we’ve transferred con-
tains two complex numbers, each of which is built from two real numbers,
for a total of four real numbers. These numbers can require arbitrary num-
bers of digits if written out, but they will be transferred with perfect precision.

Once Bob has operated on his state, he can measure it. As always, mea-
surement will give him only a 0 or a 1, so there’s no way to extract those four
real numbers that were transmitted. But before measurement, Bob can use
his qubit, now in state |σ⟩, in further computations. So Bob can then build
on Alice’s work, using her result as an input to his own algorithm.

Although the collapse of Bob’s qubit is immediate after Alice’s mea-
surements, the need to then share classical bits prevents us from using this
protocol to send information faster than the speed of light. That’s too bad,
but it doesn’t change the fact that quantum teleportation is still a pretty
amazing feat.

If Alice and Bob have lost all classical communication, and they have
some additional resources, they can use a probabilistic approach that is likely
to give Bob the state |σ⟩ eventually. But he’ll probably have to try several
different instances of b (independently computed by Alice) and then test
each result.

In this chapter, we looked at the matrix elements behind Alice’s com-
putation of the teleportation state |τ⟩, and then we unpacked that state
to teleport |σ⟩ to Bob. We had to deal with a few big matrices, but they

Teleportation 225

were manageable. In general, a system of n qubits will need an operator de-
scribed by a matrix 2n elements on a side, which quickly becomes too big to
write out and manually compute with. So from now on, we’ll focus on the
algebraic approach most of the time, rather than writing out the matrices
and kets.

Teleportation is an amazing algorithm, and it shows the power of en-
tanglement for sharing information at a great distance. It’s pretty incredible
that Alice can perform some quantum operations on qubits on Earth and
change the states of Bob’s qubits on Mars (or even a planet in orbit around a
star millions of light years away).

In the next few chapters, we’ll look at more quantum algorithms, each of
which introduces one or more new concepts into our quantum repertoire.

226 Chapter 7

8
DEUTSCH’S ALGORITHM

Is you is or is you ain’t my baby?
Way you’re acting lately makes me doubt.

Yous is still my baby, baby.
Seems my flame in your heart’s done gone out.

—Louis Jordan, “Is You Is or Is You Ain’t My Baby?,” 1943 [105]

Now it’s time to put the “computing” into
quantum computing! In this chapter, we’ll

meet a quantum circuit that actually com-
putes the solution to a problem.

Don’t set your expectations too high, though. The problem we’ll solve is
a contrived, toy problem. You’ll probably never need to solve it in practice,
and if you did, you could do so with a one-line program on any classical com-
puter. However, this quantum algorithm will solve the problem in a way that
no classical computer ever could.

The big idea is that we’re given a small quantum circuit that we’re prom-
ised belongs to one of two possible categories, but we’re not told which.
We’re allowed to feed an input to the circuit and collect its output, which
we call a single evaluation of the circuit. Our goal is to determine which
category the circuit belongs to by evaluating it the smallest possible num-
ber of times. In the classical world, we must evaluate the circuit twice. But
Deutsch’s algorithm uses quantum computing to get the answer with only
one evaluation!

This algorithm is worth our attention because it serves as a terrific intro-
duction to many of the important ideas that enable today’s more complex
and useful quantum algorithms. We’ll look at circuit fragments that get used
time and time again, we’ll see the ideas behind those fragments, and we’ll
cover mathematical idioms and analysis techniques that will be useful parts
of our standard toolbox when we look at more complex algorithms. Most
importantly, we’ll see our first example of quantum parallelism, which (when
fully unleashed) lets us evaluate astronomical numbers of inputs simultane-
ously. Getting used to these ideas in the context of this small problem is a
great way to become familiar with them without distractions.

This chapter uses the problem we want to solve as a running thread, but
we’ll make several digressions along the way to meet new tools. As you’ll see,
each tool will move us a little further along in our analysis. By the time we’re
done, we’ll have a complete solution to the problem and a whole lot of use-
ful tools under our belts.

Deutsch’s algorithm is historically one of the first demonstrations of the
power of quantum algorithms, and it’s considered essential knowledge for
everyone working in quantum computing.

Deutsch’s Problem
I’ll start with the problem we want to solve. This problem, and its solution,
were originally proposed by David Deutsch, so they are now known as
Deutsch’s problem and Deutsch’s algorithm [49].

Suppose that we’ve been given a tiny classical function f that takes a sin-
gle bit as input and produces a single bit as output. There are only four pos-
sible functions that fit this description. I’ve written them out in Table 8-1
with the names f 00, f 01, f 10, and f 11 (this frees up the subscript for later
use). Note that these superscripts are labels, not exponents. Each column
in the table gives the outputs of that function for the inputs x = 0 and x = 1.

Table 8-1: The four functions for Deutsch’s problem
x f 00(x) f 01(x) f 10(x) f 11(x)

0 0 0 1 1

1 0 1 0 1

Constant Balanced Balanced Constant

In Table 8-1, I also gave a “category” name to each function. If the out-
put is the same for both inputs (that is, it’s f 00 or f 11), then I’ve labeled it as
a constant function. If the output is different for the two inputs (that is, it’s
f 01 or f 10), then I’ve labeled it as a balanced function. Every one-bit function
is either one or the other.

We are not allowed to know which of these four functions we’ve been
given. All we can do is give the mystery function inputs, wait for them to be
processed, and then collect its outputs. Each such evaluation of the function
is also called a query of the function.

228 Chapter 8

The problem is to determine, with the smallest number of queries,
whether the function is constant (f 00 or f 11) or balanced (f 01 or f 10). It’s
important to be clear that we are not trying to find out which function we
have, and we’re not interested in the particular output for any given input.
We only want to determine which of these two categories the function be-
longs to.

I said earlier that this problem could be solved in a single line on a classi-
cal computer. Let’s see how.

I’ll write a one-line routine that takes as its argument a function named f.
This function takes an input that’s either 0 or 1 and returns either 0 or 1.
Our goal is to return True if f is balanced (so one input returns 0 and the
other returns 1) and False otherwise. The code, in a Python-like language,
is shown in Listing 8-1.

def is_balanced(f):

return f(0) != f(1)

Listing 8-1: A classical solution to Deutsch’s problem

We have to call the function f twice to determine if it’s balanced or not.
We say that on a classical computer, Deutsch’s problem requires a minimum
of two queries.

There seems to be no way around this. We have to evaluate the function
once for the input 0 and then a second time for the input 1. Then we can
look at the outputs and declare which category the function belongs to. This
is just what is_balanced does when it evaluates both f(0) and f(1).

The beauty of Deutsch’s algorithm is that it can answer this problem
with only one evaluation of the function, rather than the two evaluations re-
quired by any classical algorithm. That takes half the time!

Oracles
At the heart of Deutsch’s algorithm lies the function we want to evaluate.
Therefore, we need some way to include the function in the algorithm’s
quantum circuit. This embedding of an unknown function into a quantum
circuit is part of many quantum algorithms, including several we’ll see later
in this book.

The general approach is to abstract away the function we want to learn
about and wrap it up in an oracle. This word has multiple meanings, from a
person who claims to speak for a deity [139] (such as the famous Oracle of
Delphi [35]) to an unspecified mechanism that can solve a computational
problem [275].

An oracle is also called a black box. Like the word oracle, this phrase means
different things in different fields, from the flight recorder on an airplane
or other vehicle [138] to an early medical instrument [21]. For us, the terms
oracle and black box are synonymous.

In quantum computing, we use the term oracle to refer to a fragment of
quantum circuitry that we can query, but which we cannot examine. All we
can do is give it inputs and receive its outputs.

Deutsch’s Algorithm 229

Often, though not always, we initially define the oracle classically in
terms of the classical bits 0 and 1. We then adapt that description to the
quantum world by using the states |0⟩ and |1⟩ instead and making any nec-
essary adjustments. I’ll follow that approach here and initially discuss this
oracle in terms of classical bits, not qubits.

We can draw such an oracle as a box that takes in a query and produces
a response. Usually, the query is named x and enters on the left. The re-
sponse, f (x), leaves on the right, as in Figure 8-1. This figure is not a quan-
tum circuit! It’s a block diagram of a classical algorithm, where the single
lines carry classical bits and the boxes contain classical functions. The rest
of the figures in this section will also be classical diagrams (our figures will
return to being quantum circuits at the start of the next section, “Quantum
Oracles”).

x f (x)f

Figure 8-1: A classical
one-bit oracle. This is a
classical block diagram,
not a quantum circuit.

This form of oracle isn’t appropriate for quantum computing because
it’s not reversible. Recall that in Chapter 3 we found that all quantum op-
erators (that is, qugates) must be unitary, and all unitary operators are
reversible, meaning that we can undo them (any given operator might or
might not be its own inverse, but for every operator, there’s some set of
operations out there that can undo it). In other words, given the output of
an operator, we can always recover its input. But the oracle in Figure 8-1
doesn’t give us that power. If we don’t know the function f, then having
only the output bit isn’t enough information to say what the input was (in
fact, even if we know f, that might still not be enough information).

You can probably imagine several ways to fix this problem. One approach
is to propagate the input as a second output, as in Figure 8-2.

x x

f (x)

f

Figure 8-2: Propagating
an oracle’s input query
as an output

This is better, but it’s still not reversible. The problem can be seen as a
question of conservation of information. If two bits come out, then to be
reversible, two bits need to go in.

230 Chapter 8

To achieve this, let’s add another input, which we usually call y. So now x
and y go in, and x and f (x) come out, as in Figure 8-3.

x x

y f (x)

f

Figure 8-3: A classical
oracle with two inputs
and two outputs

It’s now easy to recover the input x, as we have it at the output, but how do
we recover y? A clever solution involves using the exclusive OR operation [141].

We still propagate the input x to an output, but instead of presenting
f (x) on the second line, we present the exclusive OR of y and f (x). You may
recall that the exclusive OR of two bits a and b, written a⊕ b, is 0 if the bits
are the same and 1 if they aren’t (that is, it’s 1 if either bit is 1, but not both).
The truth table for the exclusive OR (usually written XOR) is shown in
Table 8-2.

Table 8-2: The XOR truth table
a b a ⊕ b

0 0 0

0 1 1

1 0 1

1 1 0

Using XOR, an improved version of the oracle with classical bits is shown
in Figure 8-4. This approach will generalize nicely when the inputs and out-
puts are bitstrings rather than single bits. The y input is called a helper, ancilla,
or auxiliary input.

x x

y y⊕ f (x)

f

Figure 8-4: The final version
of our classical one-bit oracle

Have we made the application of f reversible? If so, might this little block
diagram be self-inverse? The answer to both questions is yes! Running two
copies of the oracle, one after the other, brings us back to our starting point.
To see why, consider Figure 8-5.

Deutsch’s Algorithm 231

x x x

y y⊕ f (x) (y⊕ f (x))⊕ f (x) = y

f f

Figure 8-5: Applying the oracle twice recovers the original inputs.

We end up with y at the end of the lower line because the XOR of any
bit with itself is 0 and the XOR of any bit with 0 is itself, as summarized in
Table 8-3. Here, I’ve given the three properties names (X1–X3) so we can
refer to them later.

Table 8-3: Some properties of the XOR, or ⊕, operator
Property Name

x ⊕ x = 0 X1
x ⊕ 0 = x X2

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) X3

Equation 8.1 uses these properties on the lower output from Figure 8-5
to show that the oracle is self-inverse.(

y⊕ f (x)
)
⊕ f (x) = y⊕

(
f (x)⊕ f (x)

)
Apply property X3

= y⊕ 0 Apply property X1

= y Apply property X2

(8.1)

This confirms that if we run the oracle twice, we recover both inputs x
and y.

So far, we’ve discussed classical oracles that work with bits. Let’s now
bring oracles into the quantum world.

Quantum Oracles
To turn Figure 8-4 into a quantum operator, we need to somehow turn the
classical bits into quantum bits. We usually do this by corresponding each
classical 0 with the state |0⟩ and each 1 with |1⟩. Because all the inputs and
outputs in Figure 8-4 are bits, this means we can create the quantum output
by replacing x with |x⟩, y with |y⟩, and y⊕ f (x) with |y⊕ f (x)⟩.

This correspondence will make our notation easier both here and in the
rest of the book. If we know that a particular qubit can be only |0⟩ or |1⟩,
then we can also write it as its corresponding classical bit 0 or 1.

A nice example of this philosophy of casually interpreting bits as states
and vice versa is represented by the expression |y⊕ f (x)⟩. Because we know
that our quantum input x can be only |0⟩ or |1⟩, we interpret it as 0 or 1.
Now we can give that bit to the classical function f and get back a classical 0
or 1 as output. Qubit y is also either |0⟩ or |1⟩, so we also interpret it as a
bit and form the XOR of y with f (x). That classical result of either 0 or 1 is

232 Chapter 8

then promoted back into the quantum realm, where 0 becomes |0⟩ and 1
becomes |1⟩. We do that by wrapping the output value in a ket. So, qubits x
and y come in and we treat them classically, perform the whole calculation,
and then promote the output |y⊕ f (x)⟩ to a ket. This agreement helps us
keep the notation relatively clean.

For the same reason, we often allow qubit names to refer to either bits
or qubits depending on the context. For example, suppose that we have a
qubit that we’ve given the name q. The state of the qubit could then be writ-
ten |q⟩. In the special case where |q⟩ is either |0⟩ or |1⟩, we can treat it as
a classical bit and refer to that bit’s value as q. Therefore, the symbol q can
refer to either the name of the qubit, its quantum state, or its binary equiv-
alent. This overloading of the symbol q definitely has the potential for con-
fusion, but this is a widely used convention, so it’s worth getting used to. If
there’s ever a chance of confusion, it’s the author’s job to make things clear.

Making the changes we just discussed to Figure 8-4 gives us the two equiv-
alent oracles of Figure 8-6, one with the labels outside the box and one with
the labels inside. These are both popular ways to draw this sort of operator.
I prefer the version on the left, as the text is usually larger and easier to read.
Note that our figures now illustrate quantum circuits again.

|x⟩ |x ′⟩

|y⟩ |y⊕ f (x)⟩

Uf Uf

|x⟩ |x ′⟩

|y⟩ |y ⊕ f (x)⟩

Figure 8-6: A quantum oracle in two equivalent forms; note the use of
a prime in the upper output

We sometimes label a quantum gate implementing f with Uf, as I’ve
done here, to remind us that this box now represents a unitary quantum op-
erator rather than a classical function. For simplicity, I’ll leave it as f for the
rest of this chapter.

In Figure 8-6, I’ve written the upper output as |x ′⟩, even though the clas-
sical oracle in Figure 8-4 showed this as x itself. This is a vital distinction be-
tween the classical and quantum versions of this oracle. Curiously, it’s rarely
noted explicitly, and figures in the literature often casually label the upper
qubit as |x⟩, thereby asserting that it is identical to the upper input. But fre-
quently this won’t be the case.

The reason we need to write the upper output as |x ′⟩ rather than |x⟩
is because qubits are more complicated than classical bits. While the out-
put will often be |x⟩, sometimes the |x⟩ input is changed inside the oracle,
producing a new output on the upper qubit. We’ll see that the oracle in
Deutsch’s algorithm can indeed output an |x ′⟩ that is different from its in-
put |x⟩. Labeling the output |x ′⟩ reminds us that this output might not be
|x⟩ itself.

Some oracles can, in the course of whatever actions they perform, pro-
duce entangled outputs. In this case, we should write the output of the

Deutsch’s Algorithm 233

oracle using one of the graphic symbols for entanglement in Figure 5-27.
But even when entanglement happens, we usually don’t mark it explicitly
unless that entanglement is essential to understanding the algorithm.

Sometimes an oracle will be drawn as in Figure 8-7. This drawing may
seem to suggest that the output of f is being split in horizontal and vertical di-
rections, violating the no-cloning theorem, even though there is no cloning
involved. I think the pictures in Figure 8-6 are clearer, so I’ll use that style in
this book.

|x⟩ |x ′⟩

|y⟩ |y⊕ f (x)⟩

f

Figure 8-7: An alternative
drawing of an oracle

The time and memory requirements, or costs, of any circuit are called its
computational complexity. When we discuss circuits that use oracles, we usu-
ally assume that the complexity of the oracle dominates the overall complex-
ity of the entire circuit. As a result, we often describe the complexity of the
entire circuit by counting only the number of queries we make to the oracle
while ignoring all the other costs, such as the number of other qugates and
their execution times. We call the number of times we evaluate the oracle the
oracle complexity of the circuit [71]. We usually want the oracle complexity of
any circuit to be as small as we can make it, so the circuit uses a minimum of
resources, runs quickly, and thereby also minimizes the impact of noise.

Promise Oracles
The oracle that we’ll use in Deutsch’s algorithm, as well as in many other al-
gorithms, is not a completely arbitrary function. It’s a function that we are
told, ahead of time, has certain properties. We usually exploit these proper-
ties to simplify the calculations, or even make them work at all.

We often say that such an oracle comes with a promise, or a guarantee,
that it will fulfill certain conditions. We call these promise oracles.

In Deutsch’s algorithm, the promise is that the oracle is either constant
or balanced.

Quantum Parallelism
The surprise of Deutsch’s algorithm is that it only needs to evaluate the oracle
a single time. Our little classical algorithm in Listing 8-1 called the function
f twice, and it’s hard to see how to avoid that. But with quantum computers,
we can! The essence of the idea is a remarkable feature of quantum gates that
we’ve already seen a few times but now will embrace in earnest.

Suppose we have some system of n qubits that’s in a superposition of
many states. Let’s name the superposition |ψ⟩ and assert that it is made up
of s states. I’ll call each such state |ϕk⟩, where k runs from 0 to s – 1, and I’ll

234 Chapter 8

say that each of these states has an amplitude γk. Then we can write |ψ⟩ as in
Equation 8.2.

|ψ⟩ =
∑
k∈[s]

γk |ϕk⟩ , where
∑
k∈[s]

|γk|
2 = 1 (8.2)

Now we’ll take this system of n qubits, containing s states in superposi-
tion, and feed it into some n-qubit qugate that I’ll name A. If it were up to
us, what would we choose for A to do?

Maybe it should apply itself to just one of the input states. But which
one? However we pick, there are probably situations where we would wish
we’d chosen differently.

If we could pick any action for A we wanted, I think the most general
one would be this: Disassemble the input superposition into its individual states,
apply A to each state, and then assemble those results into a new superposition. That
new superposition would be the output of A.

Let’s write this operation in symbols, as shown in Equation 8.3.

|ψ′⟩ = A |ψ⟩ =
∑
k∈[s]

γk A |ϕk⟩ , where
∑
k∈[s]

|γk|
2 = 1 (8.3)

The corresponding circuit diagram is shown in Figure 8-8.

|ψ⟩ |ψ′⟩A

Figure 8-8: A circuit diagram
of Equation 8.3

A conceptual illustration of this idea is shown in Figure 8-9. It illustrates
the idea that applying A to |ψ⟩ produces a result as if the superposition |ψ⟩
were split apart into its individual states, they were each operated upon by
A, and those results were then summed up to create a new output superposi-
tion |ψ′⟩.

Figure 8-9: A conceptual illustration of quantum parallelism

Whatever the actual underlying mechanism might be, the result corre-
sponds to what we’d get if we applied A to every state in the superposition
simultaneously (or in parallel) and then combined all of those results into a
new superposition.

Deutsch’s Algorithm 235

We could perform the operation in Figure 8-9 on a classical computer.
For instance, suppose we had a list of 10,000 possible sets of initial condi-
tions for a complicated simulation (maybe water waves tossing a boat around
in a storm, or the flames produced by a roaring fire), and we wanted to find
the set of conditions that caused the simulator to produce the closest match
to our desired results (for example, almost tipping the boat over three times,
but never completely). We might evaluate all 10,000 inputs, one by one, and
then give each output a numerical score that describes how well it matched
the result we wanted. Then we’d return the starting set with the best score.

If it took mminutes to run the simulation once, it would take 10,000m
minutes to process every set of inputs.

Now suppose that we did this on a quantum computer that behaved as
I described earlier. We’d create a superposition of all 10,000 initial condi-
tions and run them through a quantum version of the simulation, evaluating
all 10,000 inputs in parallel. In the time it takes to process only a single state,
our circuit would evaluate every input state in the superposition simultaneously
and would produce an output superposition containing all the outputs.

This is how quantum gates actually seem to work! When a quantum
gate receives a superposition as input, it appears to evaluate every input in
the superposition simultaneously and then output a new superposition of
those results, as we saw in the conceptual diagram in Figure 8-9. We call
this quantum parallelism, and it’s one of the reasons people are so excited by
quantum computers.

Note that I hedged the description a little and said that qugates “seem”
to work this way. That’s because we don’t know if that’s exactly how a qugate
is accomplishing this feat. Does it really do just what I described, processing
all those inputs in parallel? It appears that way. But how could that possibly
be happening? It defies common sense. What if the input superposition has
billions of states? Where is all that compute power coming from? Where
is the energy to drive it coming from? Where is all that information being
stored? In short, by what means could quantum parallelism possibly occur?

Nobody knows. All we can say is that countless experiments and quan-
tum circuits, including Deutsch’s algorithm, are built on the observation
that, however it’s achieved, the output of a quantum gate appears to be a
superposition of its output for every state in its input superposition. Every
quantum gate, from I to X to H to CX and all the other qugates we’ve seen
and haven’t seen, appear to process input superpositions in this parallel
fashion. For this reason, quantum parallelism is a great functional description
of how quantum gates process superpositions: It tells us the what of their
behavior but is silent on describing the how.

It’s also possible that quantum parallelism is a mirage, and what’s ac-
tually going on is due to a more subtle phenomenon that we’re currently
unaware of. For now, quantum parallelism seems to be the simplest way to
understand how quantum gates process an input in superposition, though
there’s still an aura of mystery around how they do so.

Quantum parallelism is a central element of most quantum algorithms,
including those that use oracles. Because a quantum oracle is built from

236 Chapter 8

qugates, it enjoys the same ability to process its inputs in parallel that’s of-
fered by the individual qugates. In other words, the entire oracle processes
its inputs in parallel and returns a superposition of all the results.

Returning to Deutsch’s algorithm, we want to find the outputs of an
oracle f given the inputs |0⟩ and |1⟩. Therefore, we create a superposition
of those inputs and give them to the oracle, which processes both states
simultaneously and returns those results in superposition. In symbols, we can
write this as in Equation 8.4.

f (∨ |0⟩ + ∨ |1⟩) = ∨f |0⟩ + ∨f |1⟩ (8.4)

In words, applying f just once to a superposition of |0⟩ and |1⟩ produces
the same result as if we’d applied f to each state separately and then summed
the results to produce a new superposition.

By analogy, suppose that the two input states are walls in a room that
you want to paint, and the function f refers to the process of painting them.
Then, the left side of Equation 8.4 tells us that we can take the two walls as
a single conceptual unit and apply paint to that combined unit. The right
side tells us to paint each wall on its own. In practical terms, both viewpoints
would give us the same result: two painted walls. The special magic of quan-
tum gates is that using the form on the left, both walls get painted in the
time it takes to paint only one.

Wait a minute. We’ve seen that when H gets the superposition |+⟩ as in-
put, it doesn’t return a superposition as output, but instead just |0⟩. Doesn’t
that contradict my claim that if a superposition goes into a qugate, a super-
position comes out?

It’s not a contradiction because when the individual outputs of H are
summed to create a new superposition, they interfere with each other. The
result is still a superposition, but it’s a particularly simple one with just one
state. We saw this phenomenon in Equation 4.9, and I’ve shown it in dia-
gram form in Figure 8-10. As claimed, H does process each input individu-
ally, in parallel. But when those output states are summed to construct the
output superposition, they interfere, causing |1⟩ to have an amplitude of 0
and thus not contribute to the output superposition.

Figure 8-10: A conceptual illustration of how states interfere when computing H |+⟩

You might say that quantum parallelism is “just” linear algebra, since
we’re applying a matrix to every element in a vector. That’s fair. But what’s
special here is that this linear algebra appears to be actually manifested in
the real world, at massive scale!

Now that we have quantum parallelism covered, let’s see how it’s used by
Deutsch’s algorithm.

Deutsch’s Algorithm 237

The Three Steps of Deutsch’s Algorithm
Deutsch’s algorithm uses quantum parallelism at the core of a three-step
process. The first step is to create a uniform superposition of |0⟩ and |1⟩,
the second is to evaluate f (once!) on that superposition to produce a super-
position of f |0⟩ and f |1⟩, and the third is to cleverly process this output su-
perposition to determine whether its two results are the same or not.

Using the terms we introduced in previous sections, we say that Deutsch’s
algorithm is a promise oracle algorithm that solves a promise problem [182]. The
oracle is a quantum circuit that implements one of the four one-bit func-
tions in Table 8-1. As we’ve seen, its promise is that whatever function it
implements, that function is either constant, returning the same output for
both inputs, or balanced, returning a different output for each of the two
possible inputs. For a one-bit function, this isn’t so much a promise as an
unavoidable description, but in Chapter 9 we’ll generalize the algorithm to
bitstrings of arbitrary length and then the promise will be more general.

Our job will be to query the oracle and somehow determine which cate-
gory of function it implements. As I mentioned earlier, we aren’t trying to de-
termine which of the four functions we have, only which of the two categories
it belongs to. One way to look at this is to ask the question, “Is this function
balanced?” A final result of 1 will mean yes, and a final result of 0 will mean
no (meaning that it must be constant, since it must be one or the other).

As with most oracle algorithms, we’ll be given a quantum circuit for the
oracle, but we’re not allowed to examine that circuit and figure out what it’s
doing. We can only query it with inputs and then process its outputs.

Let’s start with the quantum block diagram of Figure 8-11, which shows
the general structure of Deutsch’s algorithm.

|x⟩ b

|y⟩
Preprocess f Postprocess

Figure 8-11: A block diagram for Deutsch’s algorithm

The preprocessing in the starting block puts both input qubits into su-
perposition. The oracle f evaluates each input in the superposition, producing
a superposition of the outputs. The postprocessing block performs inter-
ference to refine the oracle’s output. Then the measurement collapses the
superposition. Figure 8-12 shows a more specific block diagram.

|x⟩ b

|y⟩
Superposition f Interference

Figure 8-12: An improved block diagram for Deutsch’s algorithm

238 Chapter 8

Let’s fill in the blocks and get a preview of the whole algorithm, shown
in Figure 8-13. This figure is just to show you where we’re going, so don’t
worry if it means little to you right now.

x |0⟩ b

y |0⟩

H
f

H

X H

Figure 8-13: Deutsch’s algorithm

There’s much more going on than meets the eye in this relatively un-
complicated diagram!

An interesting feature of this algorithm is that we ignore the lower out-
put of the oracle. There’s definitely a quantum state on that wire (and we’ll
later see exactly what that state is), but we don’t need it to solve our prob-
lem. Ultimately, if the bit b at the upper right has the value 0, then the ora-
cle holds one of the constant functions (f 00 or f 11) Otherwise, the bit is 1,
and the oracle holds one of the balanced functions (f 01 or f 10).

Analyzing Deutsch’s algorithm will take us over a threshold we haven’t
passed yet. For most of us, what’s going on here is more complex and subtle
than we are able to immediately grasp purely from an initial look at the cir-
cuit. This is when all our effort in setting up the mathematics in Part I will
start paying off. As we continue, the math will become indispensable.

Let’s work our way through Deutsch’s algorithm in the same way the
quantum bits do, from left to right [71].

Step 1: Initialization
The first three checkpoints are shown in Figure 8-14.

x |0⟩

y |0⟩

H

X H

|ψ0⟩ |ψ1⟩ |ψ2⟩

Figure 8-14: The preprocessing
step of Deutsch’s algorithm

Immediately upon starting, both qubits are initialized to |0⟩, so they form
the qubit system state |00⟩. The y qubit goes through an X qugate, giving
us the system |01⟩. Then both qubits go through H qugates, transforming x
from |0⟩ to |+⟩ and y from |1⟩ to |–⟩. This gives us the new system |+ –⟩. For
reference, I’ve written these states down in Equation 8.5.

Deutsch’s Algorithm 239

|ψ0⟩ = |00⟩
|ψ1⟩ = |01⟩
|ψ2⟩ = |+ –⟩

(8.5)

This wraps up the first step. It might be unclear to you why we produced
this particular state, and that’s normal when you read almost any quantum
algorithm for the first time. The whole circuit is a carefully balanced se-
quence of qubit manipulations, and it’s often not clear how all the pieces
go together until you can grasp the whole circuit at once. So let’s just keep
rolling for now.

Step 2: Querying the Oracle
The next step is to apply |ψ2⟩ to the oracle, as shown in Figure 8-15. Here,
I’ve labeled the input x and y qubits with their values from |ψ2⟩.

x |+⟩ |x ′⟩

y |–⟩ |y⊕ f (x)⟩
f

|ψ2⟩ |ψ3⟩

Figure 8-15: Applying the oracle

In Figure 8-6, we saw that the oracle’s outputs are |x ′⟩, a possibly mod-
ified version of the input |x⟩, on the upper wire and |y⊕ f (x)⟩ on the lower
wire. Thus, remembering that f stands for a quantum circuit, we can write the
action of the oracle on any input |x y⟩ as in Equation 8.6.

f |x y⟩ = |x ′⟩ |y⊕ f (x)⟩ (8.6)

We’ll have a lot of operations involving f (x) in this chapter, and all of
those parentheses around the x’s are going to clutter up our equations and
make them harder to understand visually. For this reason, I’ll write fx for f (x)
for the rest of this chapter.

I’ll also use another shortcut. For any bit b, the expression 1⊕ b gives us
0 if b is 1 and 1 if b is 0. That is, it gives us the classical NOT of b. I’ll write
the NOT of b using a tilde above the label, so b̃ = 1⊕ b. Finally, we’ve already
seen in property X2 in Table 8-3 that the exclusive OR of any bit with 0 is
the bit itself, unchanged. I’ve summarized these statements in symbols in
Equation 8.7.

f (x) = fx
1⊕ b = b̃

0⊕ b = b

(8.7)

240 Chapter 8

Let’s now apply f to |ψ2⟩, producing |ψ3⟩, as shown in Equation 8.8.

|ψ3⟩ = f |ψ2⟩ Apply the oracle to |ψ2⟩
= f |+ –⟩ Use |ψ2⟩ from Eq. 8.5

= f (∨2(|00⟩ – |01⟩ + |10⟩ – |11⟩)) Expand |+ –⟩ into basis states

(8.8)

Because f is a linear operator, we can apply f to each term, as shown in
Equation 8.9.

|ψ3⟩ = ∨2(f |00⟩ – f |01⟩ + f |10⟩ – f |11⟩) (8.9)

It’s time for quantum parallelism! Let’s apply the oracle in Equation 8.6
to each term, giving us Equation 8.10. The hardware appears to apply the
oracle to all four states simultaneously.

|ψ3⟩ = ∨2
(
|0⟩ |0⊕ f0⟩ – |0⟩ |1⊕ f0⟩ +

|1⟩ |0⊕ f1⟩ – |1⟩ |1⊕ f1⟩
)

Apply Eq. 8.6 to
each term

= ∨2
(
|0f0⟩ – |0f̃0⟩ + |1f1⟩ – |1f̃1⟩

)
Use 1 ⊕ b = b̃ from Eq. 8.7

(8.10)

This is what I meant earlier when I said we were going to rely on the
math! I wouldn’t have guessed at this final expression just by looking at the
illustration in Figure 8-13.

Conceptually, we’re just about done, though themechanics of the next few
steps involve a lot of symbol manipulation. I think it’s worth going through
this process because it helps us become comfortable with this kind of work,
which is often just alternating steps of expanding things out and collecting
other things back together. When we reach the conclusion and know how
the algorithm works, I’ll show you a nice shortcut that will allow us to repeat
the analysis with less effort and end up at the same conclusion.

Let’s dig in! I’ll take it slowly. We’ll look at the next step twice: once
when the oracle is a constant function, and again when it’s balanced.

A Constant Oracle
Let’s begin by supposing that f is constant. If it is, then f0 = f1 and f̃0 = f̃1.
So let’s replace each f1 and f̃1 in the last line of Equation 8.10 with f0 and
f̃0, respectively, giving us |ψ3C⟩ (using C for “constant”), as shown in
Equation 8.11.

|ψ3C⟩ = ∨2
[
|0f0⟩ – |0f̃0⟩ + |1f0⟩ – |1f̃0⟩

]
Replace f1, f̃1 in
Eq. 8.10 with f0, f̃0

= ∨2
[
(|0⟩ + |1⟩) |f0⟩ – (|0⟩ + |1⟩) |f̃0⟩

]
Gather terms on |f0⟩
and |f̃0⟩

= ∨2
[
(|0⟩ + |1⟩)(|f0⟩ – |f̃0⟩)

]
Because (|0⟩ + |1⟩) is shared

= ∨
[
|+⟩ (|f0⟩ – |f̃0⟩)

]
Use definition of |+⟩

(8.11)

Deutsch’s Algorithm 241

Well isn’t that interesting! The first qubit, x, has a state of |+⟩, just as
it had when it went into the oracle. We know that H |+⟩ = |0⟩, so if f is con-
stant, and we apply an H to the upper qubit of |ψ3C⟩ and measure, we’re
guaranteed to get back 0.

A Balanced Oracle
Let’s repeat the same process, but now assuming that f is a balanced or-
acle. In this case, f1 = f̃0 and f̃1 = f0. Let’s make these substitutions into
Equation 8.10, as shown in Equation 8.12.

|ψ3B⟩ = ∨2
[
|0f0⟩ – |0f̃0⟩ + |1f̃0⟩ – |1f0⟩

]
Replace f1, f̃1 in Eq. 8.10
with f̃1, f0

= ∨2
[
(|0⟩ – |1⟩) |f0⟩ – (|0⟩ – |1⟩) |f̃0⟩

]
Gather terms on |f0⟩
and |f̃0⟩

= ∨2
[
(|0⟩ – |1⟩)(|f0⟩ – |f̃0⟩)

]
Because (|0⟩ – |1⟩) is shared

= ∨
[
|–⟩ (|f0⟩ – |f̃0⟩)

]
Use definition of |–⟩

(8.12)

Another interesting result! The state of the upper qubit, x, was |+⟩ when
it entered the oracle but |–⟩ when it left. We know that H |–⟩ = |1⟩, so if f
is balanced, and we apply H to the first qubit of |ψ3B⟩ and measure, we will
always get a meter reading of 1.

Step 3: Postprocessing and Measurement
Now that we’ve evaluated the oracle, we’ll apply its output to the H qugate
I’ve been mentioning and then measure the upper qubit. The H qugate and
the meter are shown in Figure 8-16.

|x⟩ b

|y⊕ f (x)⟩

H

|ψ3⟩ |ψ4⟩

Figure 8-16: The last steps in Deutsch’s
algorithm

We’ll read b = 0 when the function in the oracle is constant and b = 1
when the oracle is balanced.

Done! Deutsch’s algorithm has solved our problem with just one query
of the oracle. We’ve now done something that no classical computer could
ever do.

Now you can see why I used the label |x ′⟩ for the upper output of the
quantum version of the oracle. The input |x⟩ is |+⟩, but the output is either
|+⟩ or |–⟩.

You may have noticed that I haven’t done anything with the output of
the bottom line in Figure 8-16. That’s because we have no need of it, since

242 Chapter 8

b holds the output we care about. That seems a little strange: We’re using
a qubit in the computation, but we don’t care about its output value. That
qubit is important, though. Let’s see why.

Phase Kickback
We went through a lot of math in the previous section to get from |ψ2⟩, the
input to the oracle, to a final state that we could interpret.

But there’s an easier way! When the second input to this oracle is |–⟩,
we can write its output for any input |x –⟩ in a nicely compact form. The
steps are shown in Equation 8.13.

f |x –⟩ = f |x ∨ (|0⟩ – |1⟩)⟩ Expand |–⟩
= f |∨(|x0⟩ – |x1⟩)⟩ Write states compactly

= ∨(f |x0⟩ – f |x1⟩) Distribute f to both states

= ∨
[
|x⟩ |0⊕ fx⟩ – |x⟩ |1⊕ fx⟩

]
Apply f using Eq. 8.6

= ∨ |x⟩ (|fx⟩ – |f̃x⟩) Extract common term |x⟩

(8.13)

Let’s look at this result for the two possible values of fx. If fx = |0⟩, we
get Equation 8.14.

∨ |x⟩ (|0⟩ – |1⟩) = ∨ |x –⟩ (8.14)

If fx = |1⟩, we get Equation 8.15.

∨ |x⟩ (|1⟩ – |0⟩) = – ∨ |x –⟩ (8.15)

These two results are the same except for a global phase of –1 at the
start.

We can write both results in one form with a little mathematical trick
that we’ll use a few times in this book. Recall that (–1)0 = 1 and (–1)1 = –1.
The only difference between Equations 8.14 and 8.15 is that when fx = 1, we
introduce a factor of –1. So, we can put (–1) fx in front and write f |x –⟩ as in
Equation 8.16.

f |x –⟩ = (–1) fx |x –⟩ (8.16)

Equation 8.16 tells us that no matter what function is implemented by f, if
we give it an input of |x–⟩, that state comes out unchanged, except for a possible
global phase of –1. We say that the relative phase of –1 in |–⟩ = ∨(|0⟩ – |1⟩) is
kicked back as a global phase to the upper qubit. This phenomenon is called
phase kickback.

It may seem that this is a useless operation, since we know that global
phase is unobservable (and thus irrelevant) to the state of a qubit. But that’s
because the equation only applies when x is one of the individual basis states
|0⟩ and |1⟩. It can’t be directly applied to a superposition.

The magic appears when we apply this to all the states in a superposition.
Because Equation 8.16 is linear, we apply it independently to each term.

Deutsch’s Algorithm 243

Since the resulting terms are summed, the kicked-back global phase, in a
superposition, becomes a relative phase. And that’s what makes phase kickback
so useful! It kicks back the global phase in – |–⟩ into the superposition, where
the –1 factor changes the relative phases between different terms. Unlike
global phases, different relative phases describe different states, which can
lead to different results. So while phase kickback appears pointless when
applied to basis states, it’s powerful when applied to superpositions.

Let’s apply this tool to Deutsch’s algorithm.

Analyzing Deutsch’s Algorithm with Phase Kickback
Because Deutsch’s algorithm always presents the oracle with an input of the
form |x –⟩, we can apply phase kickback to each term in x to interpret the
final step of the circuit more efficiently.

Let’s pick up the discussion from |ψ2⟩, all the way back in Equation 8.5.
Applying f to this gives us the form of |ψ3⟩ shown in Equation 8.17.

|ψ3⟩ = f |+ –⟩
= f [∨(|0⟩ + |1⟩) |–⟩] Expand |+⟩

= f
[
∨ (|0–⟩ + |1–⟩)

]
Combine kets

= ∨
[
f |0–⟩ + f |1–⟩

]
Extract ∨ and apply f to each term

= ∨
[
(–1) f0 |0–⟩ + (–1) f1 |1–⟩

]
Apply phase kickback from Eq. 8.16

(8.17)

As before, let’s consider this for both the constant and balanced cases.
If the oracle implements a constant function, then f1 = f0, and the last

line of Equation 8.17 turns into the first line of Equation 8.18.

|ψ3C⟩ = ∨
[
(–1) f0 |0–⟩ + (–1) f0 |1–⟩

]
Replace f1 in Eq. 8.17 with f0

= ∨(–1) f0[|0–⟩ + |1–⟩] Pull out common term (–1) f0

= ∨(–1) f0[(|0⟩ + |1⟩) |–⟩] Gather factors on |–⟩

= (–1) f0 |+ –⟩ Definition of |+⟩

(8.18)

Because the global phase has no influence on the measurement of a
qubit, if we apply H to the top qubit and measure, we’ll get back |0⟩.

What if we have a balanced function? We start by replacing f1 with f̃0, as
shown in Equation 8.19.

|ψ3B⟩ = ∨
[
(–1) f0 |0–⟩ + (–1) f̃0 |1–⟩

]
(8.19)

We can’t simplify this, so let’s break it into two cases for different values
of f0. If f0 = 0, then we get Equation 8.20.

∨
[
|0–⟩ – |1–⟩

]
= ∨
[
(|0⟩ – |1⟩) |–⟩

]
= |– –⟩ (8.20)

If f0 = 1, then the signs are reversed and we get Equation 8.21, producing the
term – |– –⟩. This might look kind of weird, but it’s a compact way of writing
(–1) |– –⟩.

∨
[
– |0–⟩ + |1–⟩

]
= – ∨

[
(|0⟩ – |1⟩) |–⟩

]
= – |– –⟩ (8.21)

244 Chapter 8

In both cases, running the upper qubit through H and measuring will give
us 1.

Using phase kickback, we’ve reached the same conclusion as before:
When the oracle is constant, we measure a 0, and when it’s balanced, we
measure a 1. But we got there a lot faster.

Let’s look at this result in another way. In Table 8-4, I’ve written down
the four functions and the results of applying the phase kickback process
from Equation 8.16 to the superposition |+ –⟩. I’ve done this by thinking of
that superposition as (∨ |0⟩ + |1⟩) |–⟩.

Table 8-4: Applying Equation 8.16 to the oracle’s input
Function f0 f1 (–1) f0 |0–⟩ (–1) f1 |1–⟩ New first qubit Matrix and ket

f 00 0 0 |0–⟩ |1–⟩ |0⟩ + |1⟩ ∨
[
1

1

]
= |+⟩

f 01 0 1 |0–⟩ – |1–⟩ |0⟩ – |1⟩ ∨
[

1

–1

]
= |–⟩

f 10 1 0 – |0–⟩ |1–⟩ – |0⟩ + |1⟩ ∨
[
–1

1

]
= – |–⟩

f 11 1 1 – |0–⟩ – |1–⟩ – |0⟩ – |1⟩ ∨
[
–1

–1

]
= – |+⟩

The rightmost two columns show the first qubit that results. Note that
constant functions produce either |+⟩ or – |+⟩, which becomeH |+⟩ or –H |+⟩,
respectively. Because global phase doesn’t affect measurements, measuring
either result will produce the bit 0. In the same way, the balanced functions
produce either |–⟩ or – |–⟩. These then become H |–⟩ and –H |–⟩, both of
which give us a measured value of 1.

Deutsch’s Algorithm Revisited
Deutsch’s original algorithm, published in 1985 [49], wasn’t what we’ve seen
here. It was actually probabilistic and delivered the correct answer only
about half the time [258]. The algorithm was extended and simplified by
Cleve et al. into the form I’ve shown here [39]. Nevertheless, it’s still known
as Deutsch’s algorithm in honor of its original inventor.

Let’s look at the whole algorithm again, in Figure 8-17.

x |0⟩ b

y |0⟩

H
f

H

X H

Figure 8-17: A repeat of Deutsch’s algorithm

Deutsch’s Algorithm 245

Inside the oracle, the local phase of –1 on the y input gets “kicked back”
up to the x superposition. From the classical definition of the oracle, this
makes no sense, because there’s no such thing as a “negative bit.” But in the
quantum realm, things are different. Computing f on the combined state
|+ –⟩ sometimes changes the upper qubit from |+⟩ to |–⟩.

Let’s confirm this experimentally. Figure 8-18 shows the four functions
from Figure 8-1 in circuit form, ready to be dropped into the f box in
Figure 8-17.

f 00, constant f 01, balanced f 10, balanced f 11, constant

|x⟩

|y⟩

|x⟩

|y⟩

|x⟩

|y⟩ X

|x⟩

|y⟩ X

Figure 8-18: Implementations of the four functions from Table 8-1 as the oracle f

Figure 8-19 shows the results of running these circuits for 1,024 shots on
a five-qubit quantum computer, and then measuring the upper qubit to get
an output bit of either 0 or 1.

Figure 8-19: The results of evaluating all four oracles in Figure 8-18. Top row: f 00 and
f 01. Bottom row: f 10 and f 11.

There’s some noise (as usual), but the results generally match our predic-
tions. The two functions f 00 and f 11 both almost always return a measured

246 Chapter 8

bit of 0, telling us that they are constant. Similarly, the two functions f 01 and
f 10 both usually return a measured bit of 1, telling us that they are balanced.

Deutsch’s algorithm gets the right answer with just a single evaluation of
the oracle, which no classical algorithm can do!

CX Terminology
In Figure 8-18, I used a CX qugate to build the balanced oracles. The language
we use when discussing the CX qugate is sometimes a good match to what
it’s doing, but sometimes it can be misleading. This came up when we dis-
cussed this qugate in Chapter 5, where I mentioned that the terms control
and target, and even the name CX, were all “somewhat troublesome.” Now
we can see what I meant by that.

Consider our implementation of f 01 in Figure 8-18. It’s just a single CX
qugate, apparently using x as a control and y as a target.

But as Equation 8.16 tells us explicitly, when y is in the state |–⟩, it is
not changed, no matter what state x is in. Instead, a relative phase of –1 is
kicked back up to the superposition. Thus, the control changes and the target
doesn’t!

This is why I said those names had issues. While “control” and “target”
make sense when we use CX as a switch, in other situations, those names
don’t apply and can even be misleading. In this case, a better approach to
describing CX is to forget about calling the lines control and target and in-
stead just treat this as a two-qubit qugate that operates on two inputs to pro-
duce two outputs.

Return to Quantum Parallelism
Because quantum parallelism is so critical to quantum computing, let’s re-
visit the idea once more.

At its core, Deutsch’s algorithm can’t get around the need to evaluate
the oracle for two different inputs, just as we required in the classical case.
The magic of the technique is that those two evaluations are performed
simultaneously.

The input qubit x is put into the superposition |+⟩ before it’s given to
the oracle. Thanks to linearity, the oracle evaluates both inputs, |0⟩ and |1⟩,
and combines both outputs to create a new superposition.

When we increase the number of input qubits to our algorithms, we can
operate on hundreds, or hundreds of millions, or almost any number of in-
puts simultaneously, in the time that it takes to operate on only one qubit.

From a purely mathematical point of view, we might say that this result
is nothing special or surprising. After all, the action of a system of qugates
on a system of qubits in superposition, as we saw in Equation 8.4, boils down
to multiplying matrices, and a conventional computer can do that. All of
that is entirely true. Aside from the fact that quantum measurements are
truly unpredictable, there’s nothing that a quantum computer can compute
that a classical computer can’t (in theory, anyway). That’s why we can run
quantum simulators on classical hardware.

Deutsch’s Algorithm 247

But in practice, they can be worlds apart. In the next chapter, we’ll gen-
eralize Deutsch’s algorithm to functions that use an arbitrary number of
qubits. As quantum algorithms become more complicated, the sheer num-
ber of computations required to solve the problem when there are a large
number of inputs (that is, the number of multiplications and additions in
the matrix operations) can become astronomical. Depending on the num-
ber of inputs and the size of our classical computer, simulating a given quan-
tum circuit on a classical computer could take from minutes to centuries,
or even longer. This is why most quantum simulators that run on classical
computers are limited to small numbers of qubits.

Computer scientists like to joke that in programming, there are only
three integers: 0, 1, and “any.” Deutsch’s algorithm shows us how to use
quantum parallelism to evaluate two inputs in parallel, putting the number
of inputs in the “any” category.

Quantum parallelism is one of the key ideas that influences the design
of quantum algorithms, enabling us to evaluate enormous numbers of com-
putations simultaneously. Yet to get anything out of the system, we must
measure the qubits involved, and we then obtain exactly one result.

Deutsch’s algorithm, along with a few others we’ll see later, is a rare case
where the output is guaranteed. The upper line is ultimately either |0⟩ or
|1⟩, so we know with certainty that we’ll measure either 0 or 1, respectively.

But the usual case is that the output qubits will be in superpositions.
Therefore, we can’t be sure what our measurements will show us. The result
of measurement will be that we obtain a single state that existed in the su-
perposition with a nonzero probability. If we run the algorithm only once,
we’ll have no idea what other states were in the superposition, or even if one
of them was vastly more probable than the one we measured.

It’s not hard to create superpositions of unimaginably vast numbers
of states. You need only start with a few hundred qubits in state |0⟩ and
run them all through H qugates. Then, any qugates you apply to those
qubits seem to affect all the states in the superposition simultaneously. But
although all of that information is apparently right there, tantalizingly close,
nobody has ever found a way to access it except by measuring the qubits,
and thereby losing every state in the superposition except for one. Address-
ing this phenomenon is one of the most interesting and challenging aspects
of designing quantum algorithms.

Revisiting Phase Kickback
Phase kickback is so important that it’s worth a closer look. The essential
piece of the mechanism using a CX qugate is isolated in Figure 8-20.

|ψ⟩

|–⟩

Figure 8-20: Phase kickback
with a CX qugate

248 Chapter 8

Suppose first that |ψ⟩ = |0⟩. Then the CX qugate is not applied, and the
output state is |ψ⟩ |–⟩.

Next, suppose that |ψ⟩ = |1⟩. Then the CX qugate is applied, and the |–⟩
turns into X |–⟩ = – |–⟩. That minus sign before the lower output is the key
thing to keep your eye on.

Finally, suppose that the upper qubit |ψ⟩ is in some superposition
α |0⟩ + β |1⟩ (if we choose |ψ⟩ = |+⟩, then α = β = ∨). Since the control line is
in superposition, quantum parallelism kicks in, and we get a superposition of
both outputs. This is shown on the first line of Equation 8.22.

α |0⟩ |–⟩ + β |1⟩ (– |–⟩) Output of Figure 8-20

α |0⟩ |–⟩ + β |1⟩ (–1) |–⟩ Write – |–⟩ as (–1) |–⟩(
α |0⟩ + β |1⟩ (–1)

)
|–⟩ Factor out the |–⟩(

α |0⟩ – β |1⟩
)
|–⟩ Apply the (–1) to β |1⟩

(8.22)

What’s happened is that the relative phase of –1 in the lower qubit has
been propagated to the upper qubit.

I think the term “phase kickback” for this phenomenon could be a little
misleading for two reasons. First, it’s not clear whether it refers to a global
or relative phase. Second, a kickback is usually a response to some inciting
event, and while we might call “applying a qugate” an inciting event, we do
that all the time without this effect. It might be more helpful to think of phase
kickback as “propagation of relative phase to a superposition,” clarifying the
type of phase involved, and that the relative phase on the lower qubit isn’t
lost, but is passed on, or propagated, to the upper qubit.

This is actually a special case of a more general phenomenon. Let’s
say that instead of a CX qugate we have a more general controlled-U qugate
for some unitary operator U. For any U, there will be some inputs |ϕ⟩ for
which the output U |ϕ⟩ = eiθ |ϕ⟩, where the θ generally depends on which
|ϕ⟩ is applied. We call these inputs the eigenstates (or eigenvectors) of U. Phase
kickback will happen for any controlled qugate U as long as the control is in
superposition, and the input to U is one of its eigenstates.

We can show this by rewriting the first line of Equation 8.22 as in
Equation 8.23, using an input |ϕ⟩ that’s an eigenstate of U. Factoring out
the common term |ϕ⟩ has the effect of propagating eiθ to the upper qubit.

α |0⟩ |ϕ⟩ + β |1⟩ (eiθ |ϕ⟩) Output of system(
α |0⟩ + eiθβ |1⟩

)
|ϕ⟩ Propagate eiθ to upper qubit

(8.23)

In particular, the X qugate turns |–⟩ into – |–⟩ = eiθ |–⟩ for the value
θ = π. Therefore, |–⟩ is an eigenstate of X, and the relative phase eiπ = –1
gets propagated to the upper input. In this book we’ll always use CX and its
eigenstate |–⟩ for our phase kickbacks, but we can produce phase kickback
with any controlled qugate as long as its control is in a superposition state,
and the input to the qugate is one of its eigenstates.

Deutsch’s Algorithm 249

Summary
In this chapter, we met our first complete quantum algorithm. Deutsch’s
algorithm is designed to tell us if an unknown one-qubit function does or
does not return the same value for both possible inputs.

We characterized the unknown function as an oracle or black box, a
piece of quantum circuitry that someone has given us, but which we cannot
examine. All we can do is give it inputs and get back its corresponding out-
puts. We saw that Deutsch’s problem could be described as using a promise
oracle, where we are assured that the oracle satisfies certain conditions.

If we send a superposition of states into an oracle (or any quantum gate),
what seems to happen is that the oracle (or qugate) is simultaneously ap-
plied to every state in the superposition, and then all the results are com-
bined into a single new superposition. This happens in parallel, taking no
more time than that required to evaluate a single input. We call this quan-
tum parallelism. In the final combination, the coefficients on the states can
interfere, changing their amplitudes.

We often describe the cost of running an algorithm that involves an or-
acle in terms of oracle complexity, or the number of times the oracle must
be called. Deutsch’s algorithm manages to describe which kind of oracle we
have by calling the oracle only once.

Deutsch’s algorithm uses quantum parallelism to characterize the oracle
f by giving it a superposition of |0⟩ and |1⟩, and thus getting back as out-
put a superposition of f |0⟩ and f |1⟩. It then applies an H qugate, leading
to a measured output of 0 if the oracle always returns the same value and 1
otherwise.

We can analyze Deutsch’s algorithm more efficiently by using the idea
of phase kickback. We also looked at this phenomenon of propagation of
relative phase, for any type of controlled qugate.

In later chapters, the ideas of an oracle, quantum parallelism, and phase
kickback will come up repeatedly. They are essential building blocks of many
quantum algorithms.

This is a great time to pause and reflect. We’ve seen a fundamentally
new way to solve a problem: quantum parallelism. Though it was a simple
problem, we used a whole new suite of tools and ideas. The final algorithm
is a carefully interlocked sequence of steps that interact in ways that can be
surprising.

You now know how to solve a problem using some of the unique capabil-
ities of quantum computers. In the following chapters, we’ll see how to solve
bigger and more interesting problems.

250 Chapter 8

9
DEUTSCH– JOZSA’S ALGORITHM
If something is there, you can only see it with your eyes open, but if it isn’t there,
you can see it just as well with your eyes closed. That’s why imaginary things are

often easier to see than real ones.
—Norton Juster, The Phantom Tollbooth, 1961 [108]

One qubit is a fine thing. Deutsch’s algo-
rithm in Chapter 8 uses a one-qubit oracle,

and we’ve seen that it’s a great example of
quantum computing.

But now we’ll move on to multiple qubits, by generalizing Deutsch’s or-
acle to one that operates on a bitstring of multiple bits. The result is called
the Deutsch–Jozsa algorithm, after its creators, David Deutsch and Richard
Jozsa [258].

Analyzing the Deutsch–Jozsa algorithm will introduce us to a few new
pieces of notation and some new mathematical idioms that we’ll find useful
for many other quantum algorithms, including those that we’ll see later in
this book.

Introducing Deutsch–Jozsa
As in Deutsch’s algorithm, we start with a function that someone has given
us, implemented as a promise oracle.

The input to the oracle, in classical terms, is a bitstring of n bits. To-
gether, the different combinations of 0 and 1 among these bits represent
2n possible inputs to the oracle.

For each input, the oracle produces a single bit of output. We are prom-
ised that the output of the oracle obeys one of three conditions: either the
output is always 0 for every input, the output is always 1 for every input, or
the output is 0 for exactly half of the inputs, and 1 for the other half. The
oracle definitely follows one of these three rules.

Table 9-1 shows four such functions, named f0 through f3.

Table 9-1: Four possible oracles
x f0(x) f1(x) f2(x) f3(x)

000 0 1 0 1

001 0 1 0 1

010 0 1 0 0

011 0 1 0 1

100 0 1 1 0

101 0 1 1 0

110 0 1 1 0

111 0 1 1 1

If the oracle always produces either 0 or 1, we say it’s constant. Other-
wise, its output is 0 for exactly half the inputs and 1 for the other half, and
we say it’s balanced. In Table 9-1, functions f0 and f1 are constant and func-
tions f2 and f3 are balanced. Since 2n is always even, such a split of the out-
puts into two equal-sized collections is always possible.

As with Deutsch’s algorithm, we’d like to determine whether the func-
tion inside the oracle is constant or balanced using the smallest possible
number of queries to the oracle.

In the classical case, we’d need to test the inputs one by one, though we
can try them in any order. If we’re lucky, then the first two inputs we try will
give us different outputs: a 0 for one and a 1 for the other. The only way this
can happen is if the oracle is balanced, so we have our answer and we can
stop testing.

But if both outputs are the same, we have to keep trying new inputs.
Suppose that we’ve tested half of the total number of possible inputs, and
every one has given us the same number as output. It sure looks constant,
but it might be balanced, and we just happened to guess all the inputs that
gave us the same output. Function f2 in Table 9-1 would give us this behav-
ior. We have to try one more input. If it gives us the same output again, the
oracle is constant; otherwise, it’s balanced.

252 Chapter 9

The conclusion is that in the worst case, we’d have to try one more than
half the total number of possible inputs to be sure which category the func-
tion belongs to. So, classically, we could need as many as (2n /2) + 1 queries
of the oracle.

As you might be anticipating, we can characterize our oracle in just one
query using the Deutsch–Jozsa algorithm. And we’ll do it using a similar
strategy to Deutsch’s algorithm. This time, we’ll create a superposition of all
2n possible inputs and evaluate them all at once with quantum parallelism.
Then we’ll use interference to process the results. If the function is constant
and the outputs are all the same, the outputs will interfere so that the mea-
sured output will be all 0s. But if the function is balanced, the oracle’s out-
puts will interfere so that the measured output will be something other than
all 0s (we don’t need to characterize that output any more precisely, since
the conditions “all 0s” and “not all 0s” are all we need to distinguish the two
possible classes). I’ll write a bitstring of n bits of value 0 as 0n, and similarly
write 1n for a bitstring of n bits that are all 1.

The block diagram in Figure 9-1 looks a lot like Deutsch’s algorithm
(Figure 8-12), only we now have n + 1 input qubits: the x qubits named xn–1
to x0, and the single y input. The output bits are named bn–1 to b0.

xn–1 |0⟩ bn–1

...
...

x1 |0⟩ b1

x0 |0⟩ b0

y |0⟩

x
Superposition f Interference

b

Figure 9-1: An abstract block diagram for the Deutsch–Jozsa algorithm

In Figure 9-1, all qubits start in the state |0⟩. In this diagram, the big
braces at the start and end don’t indicate entanglement, but rather clus-
ters of qubits or bits that we can think of as a group (this is a common over-
loading of the brace symbol, relying on context to distinguish entanglement
from grouping).

Let’s open up the boxes and see the whole algorithm, shown in Figure 9-2.
This also looks similar to the representation of Deutsch’s algorithm in
Figure 8-13, but with the upper line repeated n times.

Deutsch–Jozsa’s Algorithm 253

xn–1 |0⟩ bn–1

...
...

...

x1 |0⟩ b1

x0 |0⟩ b0

y |0⟩

x

H

f

H

b

H H

H H

X H

Figure 9-2: A block diagram for the Deutsch–Jozsa algorithm

There’s a more compact way to draw Figure 9-2, shown in Figure 9-3.
Note that at the end, the letter b refers to the entire output bitstring of
n bits.

⊗nn
x |0⟩⊗n b

y |0⟩

H⊗n

f
H⊗n

X H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Figure 9-3: A compact form of Figure 9-2

There are two new conventions in this diagram. First, to represent a
bundle of qubits we use a single wire but place a slash on it, along with the
number of wires (or qubits) in the bundle. Here, the upper-left horizon-
tal line represents a bundle of n qubits. This declaration continues for that
wire through the rest of the circuit, unless it’s explicitly changed. Therefore,
in Figure 9-3, the upper line coming out of f still represents a bundle of n
qubits. That bundle then goes into a bundle of nmeters. The collective out-
put of the meters is a bitstring of n classical bits.

Treating multiple qubits as a group in this way often makes our dia-
grams simpler and easier to interpret (compare Figures 9-2 and 9-3). It also
helps us conceptually, since now we only need to think about the group of
qubits rather than each one individually. We call each such bundle of qubits
a register.

The second new notation is the ⊗n exponent. This indicates that a state,
qugate, or meter is tensored with itself n times. For example, we can write
|0⟩⊗3 = |0⟩ ⊗ |0⟩ ⊗ |0⟩ = |000⟩, and H⊗3 = H⊗H⊗H. Similarly, a meter
with ⊗3 above and to its right represents a stack of three meters, applied to
each of three qubits.

In this case, the input |0⟩⊗n tells us that x is a system created by tensor-
ing together n qubits, each in state |0⟩. This bundle is then run throughH⊗n,

254 Chapter 9

a vertical system of qugates composed of n copies of H stacked up and ten-
sored together. They all go through f, along with y. The qubits of x are then
fed into another system of n copies of H, and then each qubit is measured
independently, creating the n-bit output bitstring b. Figures 9-2 and 9-3 de-
scribe the same circuit.

Youmay see |0⟩⊗n written as |0n⟩ or |0⟩n, and similarly (but more rarely)
sometimes people write H⊗n as Hn. I won’t use those notations in this book.

The Three Steps of Deutsch–Jozsa’s Algorithm
As with Deutsch’s algorithm, we’ll go through Deutsch–Jozsa in three steps.
These steps correspond to the elements of the block diagram in Figure 9-1.

Step 1: Initialization
Like with Deutsch’s algorithm, I’ll begin with the initialization step. Our
qubits all start out as |0⟩. The y qubit is inverted by an X qugate, and then
each qubit in both x and y goes into an H qugate, as shown in Figure 9-4.

n
x |0⟩⊗n

y |0⟩

H⊗n

X H

|ψ0⟩ |ψ1⟩ |ψ2⟩

Figure 9-4: The preprocessing step of
Deutsch–Jozsa’s algorithm

As we proceed, it will be convenient to keep the x register distinct from
the y qubit. Therefore, I’ll write many of the system states of the Deutsch–
Jozsa algorithm with the x register first, tensored with the y register. These
first states are shown in Equation 9.1

|ψ0⟩ = |0⟩⊗n |0⟩
|ψ1⟩ = |0⟩⊗n |1⟩
|ψ2⟩ = |+⟩⊗n |–⟩

(9.1)

Note that the y register is |–⟩. If you’re thinking that this is to set up
phase kickback in the oracle, you’re right!

The x register in |ψ2⟩ is a special state in quantum computing: It’s the
equal superposition of all n-qubit states, also called a uniform superposition.

Recall that H |0⟩ = ∨ |0⟩ + ∨ |1⟩, which is an equal superposition of the
two one-qubit computational basis states. If we apply (H⊗H) to (|0⟩ ⊗ |0⟩),
which we can write as H⊗2 |00⟩, we get ∨2(|00⟩ + |01⟩ + |10⟩ + |11⟩). If we
apply H⊗n to |0⟩⊗n, we get back all 2n possible states of n qubits, scaled by
∨n so that the state has a magnitude of 1. We often write this state as |+⟩⊗n.

Deutsch–Jozsa’s Algorithm 255

This superposition is how Deutsch–Jozsa will query the oracle for all
2n inputs simultaneously. It’s a common starting point for many quantum
algorithms. Putting the register x into the state |+⟩⊗n puts the qubits of that
register in a state that is an equal superposition of every possible combination
of n qubits in the basis states (that is, either |0⟩ or |1⟩).

I’ve written this in mathematical form in Equation 9.2.

|+⟩⊗n = ∨n
∑
k∈Bn

|k⟩ (9.2)

In this notation, writing k ∈ Bn is a way to say that k takes on every one
of the 2n bitstrings of n bits. It’s equivalent to k ∈ [2n], but it emphasizes
that we’re thinking of these values as bitstrings. So, Equation 9.2 describes a
loop in which k takes on every n-bit binary number, one at a time, and then
all of the states |k⟩ are summed together.

For example, when n = 3, the expression |+⟩⊗3 can be interpreted as any
of the forms in Equation 9.3.

|+⟩⊗3 = ∨3
∑
k∈B3

|k⟩ = ∨3
∑
k∈[8]

|k⟩ = ∨3
7∑
k=0

|k⟩

= ∨3
(
|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩

)
= ∨3

(
|0⟩ + |1⟩ + |2⟩ + |3⟩ + |4⟩ + |5⟩ + |6⟩ + |7⟩

)

= ∨3





1

0

0

0

0

0

0

0


+



0

1

0

0

0

0

0

0


+



0

0

1

0

0

0

0

0


+



0

0

0

1

0

0

0

0


+



0

0

0

0

1

0

0

0


+



0

0

0

0

0

1

0

0


+



0

0

0

0

0

0

1

0


+



0

0

0

0

0

0

0

1




= ∨3



1

1

1

1

1

1

1

1



(9.3)

Thanks to linearity and quantum parallelism, applying one or more
qugates to this superposition means that those qugates will be applied to
every one of these states simultaneously.

Let that soak in. Suppose n = 30. Then 2n = 230 = 1,073,741,824, and
applying a qugate to |+⟩⊗30 applies it to every one of these 1 billion states
simultaneously, in the time it takes to apply the qugate to a single state. Try
doing that with a classical computer!

All the states in |+⟩⊗n start with the same amplitude, ∨n. Typically, the
algorithm’s goal will be to change the amplitudes and/or the phases on
some states, ultimately giving the state (or states) that we want to measure

256 Chapter 9

a larger amplitude when we make our measurements. Ideally, if there’s just
one solution to our problem, that state will end up with an amplitude of 1
(and thus a probability of 1), while all others will have an amplitude of 0 (and
thus a probability of 0), so that we measure the output we want with certainty.
Usually, however, we have to settle for making the probabilities close to these
values and running the circuit many times to find our answer, which will be
the most frequently produced result.

Let’s use our new notation to write |ψ2⟩ from Equation 9.1 as shown in
Equation 9.4.

|ψ2⟩ = |+⟩⊗n |–⟩ = ∨n
∑
k∈Bn

|k⟩ |–⟩ (9.4)

It doesn’t matter if we sum up the terms |k⟩ |–⟩ or sum up only the |k⟩
terms and tensor on the |–⟩ to that sum afterward, since the |–⟩ term is the
final part of every state. This is illustrated in Equation 9.5.

∨n
(∑

k∈Bn

|k⟩
)
|–⟩ = ∨n

∑
k∈Bn

(
|k⟩ |–⟩

)
(9.5)

Because both forms are the same, we don’t need the parentheses. But
when I write these kinds of expressions, I usually have the left-hand version
of Equation 9.5 in the back of my mind.

Step 2: Querying the Oracle
Now that we have placed x into an equal superposition of all possible inputs
for n qubits and placed y into |–⟩, we’re ready to give those inputs to the ora-
cle. The diagram for this operation is shown in Figure 9-5.

n
|+⟩⊗n

|–⟩
f

|ψ2⟩ |ψ3⟩

Figure 9-5: Applying f to |ψ2⟩ to
get |ψ3⟩

As we know, thanks to quantum parallelism, the oracle will process each
of the states in the superposition |ψ2⟩ at the same time and produce a new
superposition |ψ3⟩ as output. Each state in the output superposition is the
result of querying the oracle with the corresponding state in the input super-
position.

Since every input to the oracle is in the form |k⟩ |–⟩, we can find the
output of the oracle by applying phase kickback from Equation 8.16. This
gives us |ψ3⟩, as shown in Equation 9.6.

Deutsch–Jozsa’s Algorithm 257

|ψ3⟩ = f |ψ2⟩

= f ∨n
∑
k∈Bn

|k⟩ |–⟩ Replace |ψ2⟩ with Eq. 9.4

= ∨n
∑
k∈Bn

f |k–⟩ Use linearity property L2

= ∨n
∑
k∈Bn

(–1) fk |k–⟩ Apply phase kickback from Eq. 8.16

(9.6)

We’ve now got the result of applying the oracle, in one step, to every pos-
sible input of n qubits. This is a new superposition that contains the output
for every input. Each such output has the same form: the input state |k⟩ ten-
sored with the y input |–⟩, multiplied by either 1 or –1, depending on the
oracle’s response to that input.

Step 3: Postprocessing and Measurement
Our next job is to turn the oracle’s output into something that we can mea-
sure, enabling us to determine whether the outputs are all the same (cor-
responding to a constant oracle) or half 0 and half 1 (corresponding to a
balanced oracle).

The superposition |ψ3⟩ holds all the information we need, though we
need to manipulate it into a form that’s appropriate for measuring in the
standard basis.

Because we’ve seen Figure 9-3, we know the next step is to apply an H
qugate to every qubit in register x, as in Figure 9-6.

⊗nn
bH⊗n

|ψ3⟩ |ψ4⟩

Figure 9-6: Applying H⊗n to the
upper register after f

But imagine you didn’t know that. Suppose you were developing your
own algorithm to solve the problem of distinguishing a balanced function
from a constant one. As you worked on the problem, trying different ap-
proaches, at one point you produced |ψ3⟩, as in Equation 9.6.

Would you know that you were almost done? Would it be clear to you
that you basically had the problem solved? Would you know what to do next?

These questions reveal one of the great challenges of quantum algorithm
design. Even when you’re on the verge of a solution, you might not know it.
Every step of the algorithm can be subtle and complicated and hard to pre-
dict, and each step interlocks with the rest of the algorithm, like a big jigsaw
puzzle. We have the advantage here of following along in the footsteps of

258 Chapter 9

Deutsch and Jozsa, who worked out what this step should be, and its analysis
by Sevag Gharibian [71].

Let’s first look at where we’re headed. We’ll take the oracle’s output
|ψ3⟩ from Equation 9.6 and run all the qubits in the upper register through
H qugates. From this point on, we can ignore the y qubit. Its purpose was
to create the conditions for phase kickback. That’s done now, so we have no
further use for this qubit.

Let’s temporarily write |ψ3⟩x for the x register (that is, the first n qubits
of |ψ3⟩, excluding the |–⟩ at the end). Applying H to each of these gives us
Equation 9.7.

|ψ4⟩ = H⊗n |ψ3⟩x From Fig. 9-6

= H⊗n ∨n
∑
k∈Bn

(–1) fk |k⟩ Use |ψ3⟩ from Eq. 9.6

= ∨n
∑
k∈Bn

(–1) fkH⊗n |k⟩ Because H is linear

(9.7)

The last line of Equation 9.7 is correct, because it’s a transformation of
the first line, but what does it mean? It’s pretty complicated, and it would be
hard to express in just a few words. I would really like to simplify it.

We’ll get a more sensible version of that expression if we find a simpler
expression for each H⊗n |k⟩. The most efficient way to do that, ironically, is
to write the Hadamard transform in a more complicated way!

Another Way to Write H
We’re about to embark on another digression, but it’s an important one,
because along the way we’ll encounter three new tools. First, we’ll see a new,
flexible way to write H |0⟩ and H |1⟩. Second, we’ll meet the bitstring dot
product, which will come in handy in many algorithms. Third, we’ll develop
a new way to represent applying H to every qubit in a register. These three
tools are just what we need to see why Equation 9.7 is already holding the
answer to our problem of categorizing the function inside the oracle.

To get started, let’s write H |0⟩ in a more complicated way. I know, that
sounds like a bad idea, but it will turn out that this complicated form will let
us simplify our analysis.

Remember that, by definition, (–1)0 = 1 and (–1)1 = –1. Equation 9.8
shows a new, expanded expression for H |0⟩.

H |0⟩ = ∨
(
1 |0⟩ + 1 |1⟩

)
= ∨
(
(–1)0 |0⟩ + (–1)0 |1⟩

)
(9.8)

Writing H |1⟩ is similar, only now we’ll multiply |1⟩ by –1, or (–1)1.
Equation 9.9 shows the result.

H |1⟩ = ∨
(
1 |0⟩ – 1 |1⟩

)
= ∨
(
(–1)0 |0⟩ + (–1)1 |1⟩

)
(9.9)

Let’s summarize these by looking at H |s⟩, where s can be either 0 or 1.
Then we can write H |s⟩ as in Equation 9.10.

H |s⟩ = ∨
(
(–1)0 |0⟩ + (–1)s |1⟩

)
(9.10)

Deutsch–Jozsa’s Algorithm 259

Let’s write the right-hand side of Equation 9.10 as a tiny loop of only
two values. I’ll use an index k that takes on the values 0 and 1. The result is
shown in Equation 9.11. Here, the expression skmeans we’re multiplying s
and k.

H |s⟩ = ∨
∑
k∈B

(–1)sk |k⟩ (9.11)

As I promised, this looks complicated, so let’s check it. First, I’ll write ev-
erything out for s = 0. In Equation 9.12, I’ve used the× sign formultiplication.

H |0⟩ = ∨
∑
k∈B

(–1)0×k |k⟩ Eq. 9.11 for s = 0

= ∨
(
(–1)0×0 |0⟩ + (–1)0×1 |1⟩

)
Expand the loop

= ∨(1 |0⟩ + 1 |1⟩) Apply exponents to –1 terms

= ∨(|0⟩ + |1⟩) Simplify

= |+⟩ Definition of |+⟩

(9.12)

This confirms that Equation 9.11 gives us |+⟩ for H |0⟩. Let’s try it again
for s = 1, in Equation 9.13.

H |1⟩ = ∨
∑
k∈B

(–1)1×k |k⟩ Eq. 9.11 for s = 1

= ∨
(
(–1)1×0 |0⟩ + (–1)1×1 |1⟩

)
Expand the loop

= ∨(1 |0⟩ + (–1) |1⟩) Apply exponents to –1 terms

= ∨(|0⟩ – |1⟩) Simplify

= |–⟩ Definition of |–⟩

(9.13)

As we’d hope, Equation 9.11 gives us |–⟩ for H |1⟩.
Great, we’ve come up with a way to write the Hadamard transform of a

single qubit that’s both more complicated and harder to read. But the value
here is that we can generalize this result to just what Equation 9.7 needs.

I think the easiest way to see this generalization is to write it down for
increasing numbers of qubits and then observe the pattern. Let’s start with
a system of two qubits, apply H to both using Equation 9.11, and see what
comes out. The intermediate steps get messy, but then we’ll clean things up.

Suppose we have a quantum state |g⟩. For our starting system of two
qubits, I’ll write |g⟩ in terms of its qubits, as |g1 g0⟩ or |g1⟩ ⊗ |g0⟩.

Let’s apply Equation 9.11 to this system.

H⊗2 |g⟩ = H(|g1⟩ ⊗ |g0⟩) Expand |g⟩
= H |g1⟩ ⊗H |g0⟩ Because H is linear

= ∨
∑
k∈B

(–1)kg1 |k⟩ ⊗ ∨
∑
k∈B

(–1)kg0 |k⟩ Apply Eq. 9.11 to
each term

(9.14)

260 Chapter 9

Expanding the loops in the last line of Equation 9.14 gives us
Equation 9.15.

H⊗2 |g⟩ = ∨2
((

(–1)0g1 |0⟩ + (–1)1g1 |1⟩
)
⊗
(
(–1)0g0 |0⟩ + (–1)1g0 |1⟩

))
(9.15)

Carrying out the tensor products in Equation 9.15 gives us the four
terms in Equation 9.16.

H⊗2 |g⟩ = ∨2
(
(–1)0g1(–1)0g0 |00⟩ + (–1)0g1(–1)1g0 |01⟩ +

(–1)1g1(–1)0g0 |10⟩ + (–1)1g1(–1)1g0 |11⟩
) (9.16)

That’s a whole lot of stuff! Let’s simplify it a little by gathering together
the exponents on (–1) for each state, giving us Equation 9.17.

H⊗2 |g⟩ = ∨2
(
(–1)0g1+0g0 |00⟩ + (–1)0g1+1g0 |01⟩ +

(–1)1g1+0g0 |10⟩ + (–1)1g1+1g0 |11⟩
) (9.17)

We can write this as a summation. Suppose we write an index k that
loops over all four bitstrings of two bits. Writing each bitstring k as k1k0,
where each of k1 and k0 refer to a single bit that’s 0 or 1, we can greatly sim-
plify Equation 9.17 as Equation 9.18.

H⊗2 |g⟩ = ∨2
∑
k∈B2

(–1)k1g1+k0g0 |k⟩ (9.18)

In this expression, k1g1 is the product of the bits k1 and g1, and k0g0
is the product of the bits k0 and g0. Remember that the expression k ∈ B2

under the summation means that k takes on the four values 00, 01, 10, and
11 as the loop executes.

We can make Equation 9.18 even more compact with a new piece of no-
tation. I’ll define a new operation on two bitstrings. I’ll use the centered dot
symbol · for this and call it the bitstring dot product, because structurally it’s
similar to the dot product we saw in Equation 2.37.

In words, we start with two bitstrings, a and b, each with the same number
of bits (let’s say there are d bits). We take the leftmost bit of each bitstring,
ad–1 and bd–1, and multiply them together. This gives us 1 if both bits are 1;
otherwise, it’s 0. Then we take the next pair of bits, ad–2 and bd–2, multiply
them together, and so on, all the way down to a0 and b0. Finally, we add up
all of these products and then find the result modulo 2 (written mod 2). This
gives us back the remainder after dividing the sum by 2. In other words,
it gives us 0 if the sum is even or 1 if the sum is odd. We write this as in
Equation 9.19 (some authors don’t include the mod 2 in this definition, but
include it later when the dot product is used).

Deutsch–Jozsa’s Algorithm 261

a · b ∆
=

∑
k∈[d]

akbk

 mod 2 (9.19)

The sum in parentheses in Equation 9.19 tells us how many pairs of bits
are both 1. By taking the result modulo 2, we get back 0 if the number of
these pairs is even, and 1 if the number of such pairs is odd.

Another way to write the bitstring inner product is to compute the XOR
of the product of each pair of bits, as in Equation 9.20.

a · b = a0b0 ⊕ a1b1 ⊕ . . .⊕ ad–1bd–1 (9.20)

As before, if there are an even number of products where akbk = 1, this
XOR will be 0, and otherwise it will be 1.

You’ll sometimes see Equation 9.20 written using a big ⊕ sign, as in
Equation 9.21. This is an iterator, like a big Σ sign, telling us to run a loop
and compute the elements on the right for each value of k in [d], then com-
bine those elements using the ⊕ operator.

a · b =
⊕
k∈[d]

akbk (9.21)

Equations 9.19, 9.20, and 9.21 are all equivalent descriptions of the bit-
string dot product, so any time we see something like a · b for bitstrings a
and b and we want to find its value, we’re free to use whichever of these ver-
sions is most convenient in that situation.

With the bitstring dot product, we can simplify Equation 9.18. I’ll re-
place the exponent on –1 with the dot product of the bits of k and the bits
of g, as in Equation 9.22.

k1g1 + k0g0 = k · g (9.22)

This gives us a compact form for the result of applying the H qugate to
each of the bits in a two-bit bitstring g, shown in Equation 9.23.

H⊗2 |g⟩ = ∨2
∑
k∈B2

(–1)k·g |k⟩ (9.23)

That’s what we get from applying H to both qubits of a two-qubit system.
It’s kind of a long-winded way to write that result, but now we can easily gen-
eralize it to larger numbers of qubits and see the pattern that emerges.

Repeating this analysis for three qubits gives us Equation 9.24.

H⊗3 |g⟩ = ∨3
∑
k∈B3

(–1)k·g |k⟩ (9.24)

262 Chapter 9

All of these results would work out similarly if there were 4 qubits, or
4 million. The general result for n qubits requires only replacing each 2 in
Equation 9.23, or each 3 in Equation 9.24, with n. This gives us the final form
in Equation 9.25.

H⊗n |g⟩ = ∨n
∑
k∈Bn

(–1)k·g |k⟩ (9.25)

This is what we wanted! It’s an explicit representation of what we get if
we apply H⊗n to a bitstring g of n bits.

Equation 9.25 is the third of the three tools I mentioned at the start of
this section. Recall that most quantum algorithms begin with all qubits in
the state |0⟩. The first step of many algorithms, including Deutsch–Jozsa’s,
is to put all of those qubits into the equal superposition |+⟩ by running each
of them through an H qugate, giving us the n-qubit system |+⟩⊗n.

Equation 9.25 is a way to write the result of applying H to each specific
state g in the input superposition. The result is already normalized by ∨n for
n qubits, so we can just apply Equation 9.25 to each state |g⟩ in |+⟩⊗n and
add up the results, giving us H⊗n |+⟩⊗n.

We’ll see that having explicit access to the result of applying H to each
state in the superposition will allow us to combine those output states in use-
ful ways.

In this digression, we’ve seen three results that will be useful not only
as we wrap up Deutsch–Jozsa but also in many other algorithms, including
those we’ll see in later chapters.

Back to Step 3
Let’s put our new tools to use. I’ll take the expression for |ψ4⟩ from the last
line of Equation 9.7 (the output of the oracle, processed by H qugates) and
substitute Equation 9.25, for each state, as shown in Equation 9.26. We’re
going to end up with something that probably won’t look like an improve-
ment, but it will be! The variable z introduced in the second line is an arbi-
trary letter that takes on the values of every bitstring from 0⊗n to 1⊗n.

|ψ4⟩ = ∨n
∑
k∈Bn

(–1) fkH⊗n |k⟩ Eq. 9.7

= ∨n
∑
k∈Bn

(–1) fk

∨n ∑
z∈Bn

(–1)z·k |z⟩

 Replace H⊗n |k⟩ with
Eq. 9.25

= ∨2n
∑
k∈Bn

∑
z∈Bn

(–1) fk(–1)z·k |z⟩ Group terms together

= ∨2n
∑
k∈Bn

∑
z∈Bn

(–1) fk+z·k |z⟩ Combine exponents

(9.26)

Deutsch–Jozsa’s Algorithm 263

As I mentioned earlier, it’s often hard to know when you’re near the end
of a quantum algorithm. Though it probably won’t appear this way, the last
line of Equation 9.26 is what we’ve been aiming for all along. We’ll see why
in the next section, where that expression will help us find the solution to
our problem.

Results in Constant and Balanced Cases
Now we can follow the same pattern that we followed in Chapter 8 for
Deutsch’s algorithm and look at Equation 9.26 for each category of oracle.

First, we’ll look at the last line of Equation 9.26 under the assumption
that our oracle contains a constant function. Using that assumption, we can
simplify the expression until it tells us that we will always measure an output
that is all 0s or all 1s.

Then we’ll return to the last line of Equation 9.26, but this time we’ll
assume that the oracle is balanced. We’ll see that the result of the simplifica-
tions due to this second assumption is that we will always measure an output
that is not all 0s.

Thus, if we measure all 0s, we’ll know the oracle is constant, and other-
wise it’s balanced. Let’s see how we draw that conclusion by looking at each
category of oracle.

A Constant Function
Let’s assume that the function is constant. Then every fk is the same (either
all 0s or all 1s). That means we can pull the (–1) fk part out of the last line of
Equation 9.26. Because in this case fk is the same for every choice of k, I’ll
arbitrarily use f0. I’ll also swap the order of the two big sigma signs, so we
can group things as in Equation 9.27.

|ψ4⟩ = (–1) f0
∑
z∈Bn

∨2n ∑
k∈Bn

(–1) z·k

 |z⟩ (9.27)

Now comes a trick. Well, not really a trick, but a step that might have
been tricky to predict. I’ll guess that if we measure all 0s from this state, it
might tell us something interesting. So what’s the amplitude (and thus the
probability) that we’ll measure an output bitstring of all 0s? This is the am-
plitude of the state |0⟩⊗n in |ψ4⟩, given by Equation 9.27.

If we’re interested only in the amplitude of |0⟩⊗n, then that’s the only
value of z in Equation 9.27 that we want to look at. Therefore, the amplitude
of this state can be found by setting z to the bitstring of n elements that are
all 0. We can also lose the summation over z, since we’re interested only in
the single case when z is all 0. These observations give us the amplitude of
|0⟩ in Equation 9.28. Note that in the next-to-last line, the denominator is√
2 raised to 2n, not 2n. This is equivalent to 2n.

264 Chapter 9

(–1) f0 ∨2n
∑
k∈Bn

(–1)0·k Eq. 9.27 with z = 0

= (–1) f0 ∨2n
∑
k∈Bn

(–1)0 Since 0 · k = 0

= (–1) f0 ∨2n
∑
k∈Bn

1 Because (–1)0 = 1

= (–1) f0 ∨2n 2n Sum up 2n copies of 1

= (–1) f0
1

(
√
2)2n

2n Use the definition of ∨

= (–1) f0 Since (1/2n)2n = 1

(9.28)

Because f0 is a bit, the amplitude of |0⟩⊗n given by Equation 9.28 is ei-
ther –1 or 1. Squaring this tells us that the probability of measuring the state
of all 0s is 1.

Since all probabilities in a superposition must add up to 1, we can con-
clude that if the function is constant, all of the probabilities for all 2n states are
on state |0⟩⊗n. The probability for every other state is 0. Because there’s a
probability of 1 that our measurement will produce the output string 0n, we
know with certainty that if we measure this state at the end of the algorithm,
we’ll get an n-bit bitstring of all 0 elements.

In short, if the function is constant, we are guaranteed to measure a 0
for every bit in the output.

A Balanced Function
If the function is balanced, we can’t factor out the (–1) fk term. So let’s go
back to |ψ4⟩ from the last line of Equation 9.26, and again we’ll set z = 0
to see the probability of measuring all 0s at the output. The steps are in
Equation 9.29.

∨2n
∑
k∈Bn

∑
z∈Bn

(–1) fk+z·k Eq. 9.26

= ∨2n
∑
k∈Bn

(–1) fk+0·k Set z = 0

= ∨2n
∑
k∈Bn

(–1) fk

(9.29)

What is the last summation? If f is balanced, then we’re promised that
it has exactly as many 0 outputs as 1 outputs. So for every (–1)0 = 1 value,
we will have a matching (–1)1 = –1 value, with the result that we are adding
equal numbers of 1s and –1s. Thus, everything cancels out, and the value of
the summation is 0. In other words, Equation 9.29 tells us that if the func-
tion is balanced, the amplitude of the state |0⟩⊗n is 0. That is, there is no
possibility of measuring all 0s at the output, since that state has an amplitude
(and therefore a probability) of 0, and doesn’t even exist in the superposition.

Deutsch–Jozsa’s Algorithm 265

So, any measurement other than all 0s at the output means that the
function is balanced. We don’t care what the output value is, just that it’s
not all 0s.

Actual Results of Deutsch–Jozsa’s Algorithm
Let’s try this out. I ran the Deutsch–Jozsa circuit on a three-qubit quan-
tum computer. The results from a constant oracle are on the left side of
Figure 9-7, and the results from a balanced oracle are on the right side. In
this graph, and others like it to come, only the states that were measured at
least once are shown, so any state that doesn’t have an associated bar was
never measured at the output. This helps keep the images legible when
there are many possible output states but only a few were observed.

Figure 9-7: Left: The results from a constant oracle. Right: The results from a balanced
oracle.

As we’d expect, most of the constant results were all 0s, with a little
noise for other outputs, and most of the balanced results were not all 0s.
We’ve got our solution: If the measured output is all 0s, then we have a con-
stant function; otherwise, it’s balanced.

Once again, the y input, which we needed for phase kickback in the ora-
cle, is not measured. It’s like an enzyme in chemistry, which helps reactions
proceed but isn’t itself altered by the process.

Why Does the Math Work So Well?
I hope at this point it’s becoming clear to you why we spent so much time on
the math in Part I. It’s because understanding all but the simplest quantum
algorithms requires analyzing the actions algebraically, rather than visually
or intuitively.

The failure of our intuition to handle quantum algorithms (at least, until
we’ve had a lot of experience with them) is disappointing, but not surpris-
ing. Our intuition is tuned for what happens at the scales of time and space
we can directly perceive. Operations at the quantum scale, and their logic,
are entirely unfamiliar and therefore outside our experience.

266 Chapter 9

The range of sensory phenomena that we can directly perceive is some-
times called our umwelt (pronounced OOM-velt). The limits of our umwelt
are all around us. For example, birds show each other beautiful plumage in
the ultraviolet range, which other birds can see but most people can’t [17].
Sharks sensemagnetic fields to help them navigate [226], as do some plants
[133], cattle [33], birds [25], and even monarch butterflies [1]. Most people’s
senses seem completely unable to perceive that those fields even exist.

Mountains grow and change on the scale of thousands of years [80],
and subatomic objects blink into and out of existence faster than any cell
in our body can respond to their presence [126]. Without direct perception
of these phenomena, and evolution-honed physical and mental tools to in-
terpret them, they are simply beyond our immediate reach and experience.

Quantum phenomena are outside of our everyday perceptions in many
ways: They’re too small, too fast, and too different. If we throw a ball into
the air we have a sense of what will happen, but for even moderately com-
plicated quantum interactions, our untrained experience and intuition are
unreliable guides.

For reasons nobody exactly knows, the body of symbol manipulation
tools that we call mathematics is apparently able to capture and describe not
only an abundance of natural phenomena, but also the behavior of objects
at the quantum scale. These equations tell us how things work and let us pre-
dict new results. Nobody can say why they are so successful at this, but they
are. Our math is an augmentation of our own capacities. It’s a wheelchair, a
microscope, or a rover on Mars. We don’t really know why it’s so capable at
describing and predicting quantum phenomena, though there is no short-
age of theories. What we do know is that it works so extraordinarily well that
we are able to use it to build everything from GPS satellites and cell phones
to medical imaging scanners and quantum computers.

In short, until we have a better understanding of the universe, we may
not know why our abstract symbols, obeying specific rules, are so amazingly
effective at describing reality at the quantum scale. But they are, and thanks
to that astonishing fact, we can build quantum computers and design quan-
tum algorithms to run on them.

Summary
In this chapter, we explored Deutsch–Jozsa’s algorithm, which generalizes
Deutsch’s algorithm for functions of many qubits.

As with Deutsch’s algorithm, this function is given to us as a promise or-
acle, which promises that either it returns the same output for every possible
input or the outputs are evenly split between two values.

We developed three important new ideas in our analysis. First, we saw
a new expression for the Hadamard qugate. Second, we met the bitstring
dot product, which takes two bitstrings, counts the number of times both bit-
strings have a 1 in the same place, and tells us if that count is even or odd.
Third, we introduced an explicit way to write the result of applying an H
qugate to every one of n input qubits.

With our expanded quantum toolkit, we’re prepared to tackle more so-
phisticated algorithms!

Deutsch–Jozsa’s Algorithm 267

10
BERNSTE IN–VAZ IRAN I ’S

ALGORITHM
Anything will give up its secrets if you love it enough.

—George Washington Carver (apocryphal), approx. 1934 [32]

You know what would be really cool? Solv-
ing a brand-new quantum algorithm with a

circuit we’ve already seen. Guess what we’ll
do in this chapter?

Not only will we look at a new kind of problem, but we’ll also see a new
way of looking at some oracle problems. Our goal this time is to guess a se-
cret bitstring that’s hidden inside the oracle.

As we’ve done before, we’ll start by looking at our oracle in terms of
classical bits.

Suppose the oracle contains a secret bitstring s made up of n bits. If
we give the oracle an input x that also has n bits and a helper bit y, the or-
acle promises to compute s · x, the bitstring dot product of s and x from
Equation 9.19. Remember that the bitstring dot product counts the number
of locations where both bitstrings are 1 and then finds that result modulo 2,
so the output is 0 if there are an even number of such locations; otherwise,
the output is 1.

The oracle takes s · x (the bitstring dot product of the secret bitstring s
and the input x), forms the exclusive OR of that with y, and returns that bit
in the output y register. The x input is passed to the output unchanged.

Figure 10-1 shows the idea. As in Figure 9-1, the braces here indicate group-
ing, not entanglement.

xn–1

...
...

x1

x0

y y⊕ (s · x)

x
f

x

Figure 10-1: The Bernstein–Vazirani
oracle for classical bits

Equation 10.1 describes the quantum version of the oracle.

f |xy⟩ = |x′⟩ |y⊕ (s · x)⟩ (10.1)

We’d like to discover the secret bitstring s while making the fewest num-
ber of queries to the oracle.

The Classical Solution
To solve this classically, one approach is to query the oracle d times, once for
each bit in the secret bitstring s. Each query will be all 0s except for a single 1.
We won’t repeat queries, so since there are d bits to test, we’ll have d inputs.

Because 1⊕ 1 = 0, if the output of any of these queries is 0, then we
know that the bit in the secret bitstring at the position given by the 1 in our
query must also be 1. If the output is not 0, then because 1⊕ 0 = 1, we know
the bit at that position is 0. However we proceed, we need n queries to be
sure of getting the answer [293].

The Bernstein–Vazirani Circuit
The Bernstein–Vazirani circuit uses superposition and interference to find
the secret bitstring s in a single query of the oracle. It’s named for its inven-
tors, Ethan Bernstein and Umesh Vazirani [251] [18].

A compact version of this circuit is shown in Figure 10-2.

⊗nn
x |0⟩⊗n b

y |0⟩

H⊗n

f
H⊗n

X H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Figure 10-2: The Bernstein–Vazirani algorithm
270 Chapter 10

I introduced the conventions for this compact form in Chapter 9. If it
still seems somewhat terse to you, compare it to the expanded version in
Figure 10-3.

xn–1 |0⟩ bn–1

...
...

...

x1 |0⟩ b1

x0 |0⟩ b0

y |0⟩

x

H

f

H

b

H H

H H

X H

Figure 10-3: An expanded diagram of Figure 10-2

Is something looking familiar? These diagrams are identical to Figures 9-2
and 9-3 for the Deutsch–Jozsa algorithm. The same circuit solves both prob-
lems! The only differences are that we’re using a different oracle and we in-
terpret the output differently.

We’ll perform the same sequence of creating a superposition, evaluat-
ing the oracle, and then interfering its output, only this time the output we
measure, b, is the secret bitstring s. Let’s see how that works.

Circuit Analysis After Deutsch–Jozsa
Since the Bernstein–Vazirani circuit in Figure 10-3 is identical to the Deutsch–
Jozsa circuit in Figure 9-2, we can pick up from the end of our analysis of
that circuit. If you look back at Chapter 9, we’re going to start now just af-
ter Equation 9.26, where we found an expression for the state at |ψ4⟩. As
we can see from Figure 10-2, this is the final state of the system immediately
before measurement.

We can do this because nothing in our analysis of Deutsch–Jozsa up to
that point used any knowledge of the function in the oracle. This means that
we can start with |ψ4⟩, only this time our next step will be to process that
expression using features from our new oracle function in Equation 10.1.

Equation 9.26 is repeated here as Equation 10.2. As before, we’re look-
ing only at the n qubits in the x register, and we’re ignoring that final |–⟩ in
the auxiliary qubit.

|ψ4⟩ = ∨2n
∑
k∈Bn

∑
z∈Bn

(–1) fk+z·k |z⟩ (10.2)

Later, it will be useful for us to have the summations in the opposite or-
der. This makes no change to the computation. Therefore, going forward,
I’ll use the version of |ψ4⟩ in Equation 10.3.

Bernstein–Vazirani’s Algorithm 271

|ψ4⟩ = ∨2n
∑
z∈Bn

∑
k∈Bn

(–1) fk+z·k |z⟩ (10.3)

Now let’s plug in our oracle. For an input bitstring k, the oracle evaluates
the function f (k) = s · k, or the bitstring dot product of the input x and the se-
cret string s. Let’s put that into our expression for |ψ4⟩, as in Equation 10.4.

|ψ4⟩ = ∨2n
∑
z∈Bn

∑
k∈Bn

(–1)(s·k)+(z·k) |z⟩ Eq. 10.3 with our
new oracle for fk

= ∨2n
∑
z∈Bn

∑
k∈Bn

(–1)(s+z)·k |z⟩ Collect common factor k
(10.4)

Suppose we want to find the amplitude (and thus, the probability) of
some specific state z0. Then we can drop the summation over all the states z
and use z0 instead, giving us Equation 10.5.

Amplitude of |z0⟩ = ∨2n
∑
k∈Bn

(–1)(s+z0)·k (10.5)

The state we’re actually hoping to measure is |s⟩, the secret bitstring. To
find its probability, let’s set |z0⟩ to |s⟩, giving us Equation 10.6.

Amplitude of |s⟩ = ∨2n
∑
k∈Bn

(–1)(s+s)·k (10.6)

Whatever the value of s, we know from Table 10-1 that because s is a bit,
(s + s) is 0 because bit addition is modulo 2 (since bits can be only 0 or 1).

Table 10-1: Comparing (a + b) mod 2 and a ⊕ b

a b (a + b) mod 2 a ⊕ b

0 0 (0 + 0) mod 2 = 0 0

0 1 (0 + 1) mod 2 = 1 1

1 0 (1 + 0) mod 2 = 1 1

1 1 (1 + 1) mod 2 = 0 0

Since both (0 + 0) mod 2 and (1 + 1) mod 2 are 0, the s + s term in the ex-
ponent on –1 in Equation 10.6 is always 0. That means the whole exponent
is 0, and we end up with Equation 10.7.

Amplitude of |s⟩ = ∨2n
∑
k∈Bn

1 =
1
√
22n

2n =
1
2n

2n = 1 (10.7)

This tells us something remarkable! The amplitude of state |s⟩ in the
superposition is 1. This means the amplitudes of all the other states must be
0. We are therefore certain to measure the secret string s at the output!

272 Chapter 10

Running the Algorithm
Once again, we’ve solved a problem using a circuit in three stages: Create an
input superposition of all input states, evaluate them all at once in the oracle
(that is, make use of quantum superposition), and then interfere the results
together to produce our output.

Let’s try it out. I made a circuit of three qubits and set the secret string
to 011, as shown in Figure 10-4. The top qubit (corresponding to the bit 0)
is unaffected by the oracle, while the two lower qubits (corresponding to the
bits 1 and 1) each go through a step of phase kickback.

Oracle

x2 |0⟩ b2

x1 |0⟩ b1

x0 |0⟩ b0

y |0⟩

H H

H H

H H

X H

Figure 10-4: The Bernstein–Vazirani algorithm for the secret string 011

I ran this circuit on a five-qubit quantum computer, getting the results
shown in Figure 10-5. As usual, this plot omits the states that were never
measured.

Figure 10-5: Output from running the Bernstein–Vazirani
circuit with a secret string of 011

Aside from the usual noise, the result 011 stands out. As always, the
theory worked!

Bernstein–Vazirani’s Algorithm 273

Simplifying with a Quantum Identity
Everything we’ve done so far is fine, but there’s another way to look at this
oracle. Surprisingly, this point of view has almost no “quantum-like” feeling
to it [137] [293].

A quantum identity is a way to write one qugate using other qugates.
Sometimes this makes things easier to understand, or leads to simplifica-
tions. In a moment, I’ll use a CX qugate mirrored vertically from the orien-
tation we’ve been using so far, placing the control on the lower line and the
target on the upper line. It will operate the same way as a CX in the more
usual orientation after we surround it with H qugates. This equivalence, or
identity, is shown in Figure 10-6.

=
H H

H H

Figure 10-6: The CX′ qugate with the control on the lower
line is equivalent to a CX with the control on the upper
line, sandwiched between H qugates.

To confirm the identity in Figure 10-6, I wrote out the matrix for
CX′ = H⊗2 CXH⊗2 in Equation 10.8.

CX′ = H⊗2 CXH⊗2

= ∨2


1 1 1 1

1 –1 1 –1

1 1 –1 –1

1 –1 –1 1



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ∨2

1 1 1 1

1 –1 1 –1

1 1 –1 –1

1 –1 –1 1



= ∨4


4 0 0 0

0 0 0 4

0 0 4 0

0 4 0 0

 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



(10.8)

The matrix in Equation 10.8 matches the matrix given in Equation 5.48
where the control is on the lower line, so we’ve confirmed the identity in
Figure 10-6.

If we widen the block marked “Oracle” in Figure 10-4 to embrace the H
qugates on each side of it, we get Figure 10-7, where I gave this new block
the label “Block A.”

274 Chapter 10

Block A

x2 |0⟩ b2

x1 |0⟩ b1

x0 |0⟩ b0

y |0⟩

H H

H H

H H

X H H

Figure 10-7: Enlarging the oracle block in Figure 10-4

Combining Block A with the identity in Figure 10-6 lets us lose all the H
qugates, giving us the simpler Figure 10-8. In this figure, Block B performs
the identical function as Block A in Figure 10-7.

Block B

x2 |0⟩ b2

x1 |0⟩ b1

x0 |0⟩ b0

y |0⟩ X

Figure 10-8: Redrawing Figure 10-7 using the identity
of Figure 10-6

This circuit is equivalent to the full Bernstein–Vazirani algorithm for the
secret string 011! Looking at Figure 10-8, it’s no surprise that this works as
the oracle. The bottom qubit enters the block in the state |1⟩, the others are
|0⟩, and the CX qugates flip x1 and x0. The output is then certainly 011. No
superpositions, no interference!

Sometimes our problems can vanish when we look at them in a new way.

Summary
In this chapter, we analyzed the Bernstein–Vazirani algorithm, another
promise oracle algorithm. This time our oracle holds a secret bitstring, and
for any multi-qubit input, it returns the bitstring dot product of that input
(interpreted as a bitstring) and the secret string. Our goal was to find the
secret bitstring.

Except for the oracle, the Bernstein–Vazirani circuit is identical to the
Deutsch–Jozsa circuit, so we had little work to do in our analysis except at

Bernstein–Vazirani’s Algorithm 275

the very end of the algorithm. It’s amazing that the same set of quantum
gates can solve such different problems.

We also saw that there was a way to construct the oracle so that we
didn’t need even a single superposition. This suggests that, with some work
and luck, we might be able to find surprisingly simple forms for other quan-
tum algorithms, including our own.

276 Chapter 10

11
S IMON’S ALGORITHM

JIM: A good assistant knows what their superior is thinking before they even think it.
Meredith, what number am I thinking of right now?

MEREDITH: Uh, two.
JIM: Nine hundred and eighty-five trillion . . . seventeen.

—Greg Daniels, Brent Forrester, and Ricky Gervais, The Office, “A.A.R.M. Part 1” [43]

In this chapter, I’ll broaden our survey of
oracle problems to Simon’s algorithm. This

will introduce us to not just one, or two, but
three new features.

First, unlike the algorithms we’ve seen so far, Simon’s algorithm doesn’t
give us a single answer at the end that solves a problem. Rather, each time
we run it, we usually measure a unique output. After running the algorithm
several times, we’ll have accumulated multiple different outputs. Then we’ll
combine these outputs (and we’ll see just how this is done) to find the solu-
tion to our problem.

Second, this step of combining and processing the outputs of the quan-
tum algorithm is performed by a classical computer running a classical algo-
rithm. We say that taken together, the two processes form a hybrid algorithm
comprising a quantum step and a classical step.

The third feature is actually the most exciting. The previous algorithms
we’ve seen can produce results more quickly than classical computers, but
the increase in speed wasn’t huge. That changes now.

Exponential Growth
Simon’s algorithm provides us with an exponential speedup over classical algo-
rithms. It’s important to be clear about what this means.

In popular use, the word exponential has taken on a new life, distinct from
its technical origins, to become an adverb that is roughly a synonym for
“much” or “a lot.” It’s common to hear people say things like, “Today is ex-
ponentially hotter than yesterday.”

The original (though more nerdy) meaning of the word refers to a spe-
cific type of mathematical function that raises a variable to an exponent
[236]. Generally, an exponential function is given by f (x) = abcx+d. The heart
of the function is the bx part, which tells us that the complexity, or cost, of
our problem grows by a factor of b raised to x, the size of the problem. This
is the meaning of exponential in this book.

When people speak of the exponential function in the sciences, they
mean the function e x, also written exp(x), where e is called Euler’s number or
Napier’s number. It has a value of about 2.718.

Exponential functions grow quickly, which is why people have adopted
the word to imply staggering growth. When referring to a computation,
exponential growth means that the problem eventually starts demanding
overwhelming amounts of resources such as memory or running time. The
best classical algorithms that we know of to solve Simon’s problem are expo-
nential [292]. Because of their dramatically increasing demands, such algo-
rithms quickly become impractical for large problems.

Simon’s algorithm, by contrast, is not exponential. Even though we have
to execute the algorithm multiple times to produce a solution, the number
of repeats is expressed linearly, or in the form ax for a fixed a and x related
to the size of the task. As we use Simon’s algorithm to solve larger and larger
problems, its computational requirements increase far more slowly than an
exponential algorithm’s. Because it replaces an exponential algorithm with
a linear one, we say that Simon’s algorithm provides an exponential speedup
over classical approaches.

Simon’s algorithm was the first to show that a quantum computer could
provide exponential speedups to problems, giving us answers beyond the
practical reach of today’s classical computers.

Like the problems we’ve seen in previous chapters, the problem we’ll
solve here is just a toy that you’ll probably never encounter in practice. By
keeping things simple, we’ll be able to see how the new ideas work without
the extra burden of a complicated problem to solve.

Before we get to the algorithm itself, let’s note a couple of things about
exponential algorithms. The explosive growth of exponential functions of-
ten catches people off guard, as we’re not used to this kind of effect at our
usual human scales of time and space.

For problems that involve small inputs (the precise meaning of small de-
pends on the algorithm), an algorithm that scales exponentially can still be
attractive and practical. The problem with these algorithms is that as the size
of the problem increases, the rate at which the algorithm consumes time,
memory, energy, or other resources increases at an astounding pace.

278 Chapter 11

Getting a feeling for this phenomenon can be challenging. The physicist
Albert Bartlett noted that the principle of growth so revered by capitalists,
economists, and investors is rooted in exponential behavior. Such growth
is certain to lead to calamity because in the world we inhabit, resources are
finite. The unending pursuit of growth will consume all resources until none
are left, causing widespread suffering. Bartlett lamented this distressing ob-
servation compactly, asserting that “the greatest shortcoming of the human
race is man’s inability to understand the exponential function” [15].

Algorithms that demand exponential resources such as time and space
are usually not considered great solutions to large, real-world problems.

In previous chapters, we ran each algorithm once, and we knew that our
measurement at the end would hold the solution to our problem. With prac-
tical quantum algorithms, that ideal situation is rare. Usually, we have to run
the algorithm, measure an output, and then check the result (often with a
classical computer) to see if it solves our problem. If not, we run the quan-
tum algorithm again, check the result again, and repeat the loop until we
measure an output that solves our problem. This is often efficient, because
checking an answer can be far easier than computing it.

One way that computer scientists classify programs is in terms of how
long the computer might take to produce an answer. This doesn’t mean that
every run of the program will take that long to produce an answer, but only
that it could. Problems like the one we’re looking at in this chapter belong to
a category called the NP complexity class [274]. This means that their answers
can be verified in an amount of time given by a polynomial equation. In
practice, this usually means that even if it’s hard to find an answer, it’s quick
to confirm whether the answer is correct. For example, solving fiendishly
hard Sudoku games of arbitrary size is in the NP complexity class [91]. It
might take you a long time to complete a grid, but you can check your solu-
tion quickly.

This kind of problem is like finding a pair of comfortable shoes. You
can read all the reviews you like, but there’s no substitute for going to the
shoe store and trying on one pair after another until you find shoes that feel
good on your feet. Finding the best pair of shoes can be time-consuming
(even with expert help), but you can usually tell right away if the pair you’re
wearing is comfortable or not.

There are many other classes of classical complexity, and there’s a cor-
responding theory of quantum complexity classes [47, §12]. Analyzing the
complexity of an algorithm can be difficult, because we have to be sure to
take into account every possible step in its computation. In this book, I won’t
do any complexity analysis except in the broadest terms.

Simon’s Oracle
This chapter’s focus is Simon’s algorithm, named for its inventor, Daniel
Simon [200]. It’s centered around a promise oracle that takes a bitstring as
input and produces a new bitstring as output.

Simon’s Algorithm 279

The promise made by Simon’s oracle is a little strange. It seems un-
like anything that would come up in practice, and that’s because it didn’t!
In fact, according to Simon, the algorithm came about as the result of a
thought problem. Casting about for a quantum algorithm that would show
an exponential speedup, he first created the circuit and then looked for an
oracle to fit it [182].

As usual, let’s meet the oracle as a classical system that uses bits rather
than qubits, and then move it to the quantum world.

Like the Bernstein–Vazirani oracle in Chapter 10, Simon’s oracle con-
tains a secret bitstring. The number of bits in the bitstring is its dimensional-
ity. Usually I’d give that the name d, but in this algorithm the number of bits
in the secret string will also be the number of qubits we’re working with, and
we usually use n for that quantity. We’ll be spending a lot of time with the
qubits, so I’ll use n for the number that describes both the number of bits in
the oracle and the number of qubits in the algorithm.

All the bitstrings we’ll work with in this chapter will have the same di-
mensionality, or number of bits, n.

The oracle doesn’t make any promises about its specific outputs; it only
promises that its outputs satisfy a specific (though weird) property. Many
outputs will satisfy this property, so there’s no single result we’re hoping to
measure. That is, we’re not going to directly measure the secret bitstring s at
the output of the algorithm. Instead, we’ll run the algorithm multiple times
and amass lots of measurements, and then we’ll combine those measure-
ments classically to uncover the secret bitstring.

The oracle’s definition is based on the XOR operation, whose truth ta-
ble we saw in Table 8-2. Keep in mind going forward that the XOR opera-
tion is symmetrical, or commutative, so a⊕ b = b⊕ a.

Simon’s oracle generalizes this operation to work with bitstrings, using
the bitstring XOR operation. Given two bitstrings a and b of the same num-
ber of bits, writing a⊕ bmeans we apply XOR to each corresponding pair
of bits to produce a new bitstring of the same number of bits. Equation 11.1
shows the idea.

a⊕ b = an–1 ⊕ bn–1, an–2 ⊕ bn–2, . . . , a0 ⊕ b0 (11.1)

For example, suppose we have two bitstrings, each with three bits. We
could write a in terms of its bits as a2a1a0 and b similarly as b2b1b0. The bit-
string XOR applies a⊕ b to each corresponding pair of bits, producing the
new three-bit bitstring (a2 ⊕ b2), (a1 ⊕ b1), (a0 ⊕ b0).

Simon’s oracle promises to use a secret bitstring s such that the output
of f (x) (for any x) and f (x⊕ s) will be the same, and different from any other
outputs.

This is a strange function, without an obvious use (though it might be
helpful in some form of cryptography). In fact, as I mentioned, Simon in-
vented this function by starting with a simple quantum circuit and looking
for something, anything, it could do better than a classical circuit, and con-
trived this function to fill that role [182].

280 Chapter 11

Another way to express the oracle’s promise is to say that for bitstrings
x and y, if y = x⊕ s, then f (x) = f (y). Equation 11.2 shows that the situation is
symmetrical, so we could also XOR the secret string with y to get x.

x⊕ s = y Starting relationship

(x⊕ s)⊕ s = y⊕ s XOR both sides with s

x⊕ (s⊕ s) = y⊕ s Since XOR is associative

x = y⊕ s Because s ⊕ s = 0 and x ⊕ 0 = x

(11.2)

This tells us that Simon’s algorithm produces outputs that come in pairs.
For any input x, the output f (x) will also be the output for f (y) if y = x⊕ s, and
this shared output will not appear for any other input. If x and y are different,
then we call this a two-to-one function, as it sends pairs of inputs to the same
output. I’ll give this the shorthand name of an F2 function.

Let’s get a feeling for an F2 function by building one. Remember that
the oracle doesn’t have to produce any specific outputs for these inputs, as
long as they obey the rule that f (x) = f (x⊕ s).

I’ll pick a secret string s with the value 101. A possible function for this
secret string is shown in Table 11-1. The leftmost column shows the eight
possible inputs, and the column to its right shows the output f (x) for each
input.

Table 11-1: An F2 function for s = 101

x f (x) x ⊕ 101 f (x ⊕ 101)

000 001 101 001

001 110 100 110

010 011 111 011

011 100 110 100

100 110 = f (001) 001 110

101 001 = f (000) 000 001

110 100 = f (011) 011 100

111 011 = f (010) 010 011

To better understand what’s going on here, let’s rebuild this function
one step at a time. We’ll start by imagining that the table is empty except for
the inputs x in the leftmost column and the XOR of those inputs with the
secret string x in the third column, labeled x⊕ 101. We’ll fill in the second
and fourth columns by assigning outputs to inputs, working our way from
top to bottom.

The first input is x = 000. We can give it any three-bit bitstring we like
as an output. I’ll arbitrarily assign it the output 001 and place that in the
f (x) column. The other input is found from y = x⊕ s = 000⊕ 101. The third
column, labeled x⊕ 101, tells us that this value is 101. Therefore, when the
input is 101, the function will produce 001, just as it did for the input 000.
So, we also assign 001 to the output of input 101. I’ve placed 001 in the first

Simon’s Algorithm 281

row of the rightmost column as well, because we’ve just found that it’s also
the output of x⊕ 101.

The fragment of the table we’ve just filled in is in Table 11-2.

Table 11-2: Filling in Table 11-1
x f (x) x ⊕ 101 f (x ⊕ 101)

000 001 101 001

001 100

010 111

011 110

100 001

101 001 = f (000) 000 001

110 011

111 010

That’s the first pair done. Now let’s move down the table. Input 001
doesn’t have an assigned output, so we can give it any unused output value.
I’ll arbitrarily assign it 110. Following the same process as before, we find
y = 001⊕ 101 = 100, so we assign the output 110 to the input 100 as well.

Continuing down, input 010 also has no output, so I’ll arbitrarily assign
it the output 011. Once again, we find y by computing 010⊕ 101 = 111 and
assign the same output, 011, to the input 111.

Finally, I’ll give input 011 the output 100 and assign the same input to
the other input element of this pair, y = 011⊕ 101 = 110.

And that’s a perfectly fine definition of a Simon’s oracle of type F2. We
can assign the outputs any way we like so long as each f (x) = f (x⊕ s) and
each output belongs to exactly one of the pairs. Because the outputs come
in pairs, half of the possible outputs never appear.

That would be the end of our discussion of Simon’s oracle, except for
one snag: When s = 0 (that is, s is a bitstring of the same length as x, where
every bit is 0). In this special case, every y is y = x⊕ 0 = x, so every “pair” of
inputs degenerates to a single input, as x and y have the same value. In other
words, every input has a unique output. For this special case of s = 0, we say
that Simon’s oracle is a one-to-one function, as each input produces a unique
output. In other words, every bitstring of n bits appears as an output once.
In shorthand, I’ll call this an F1 function.

An example of an F1 function is shown in Table 11-3. Because the func-
tion is F1, there are eight outputs, which we can assign to the inputs any way
we like. Essentially, the output strings are a shuffled version of the input
strings. This also defines a perfectly fine Simon’s oracle, since f (x) = f (x⊕ s)
for every x. Because s = 0, for every input x we have x⊕ s = x, so every output
is unique.

282 Chapter 11

Table 11-3: An F1 function when s = 0

x f (x)

000 110

001 010

010 001

011 111

100 011

101 101

110 000

111 100

Our goal will be to find the secret string s, whether it’s 0 or not.
As usual, we’ll promote Simon’s oracle to the quantum domain by treat-

ing every bitstring as a quantum state formed by the tensor product of |0⟩
and |1⟩ states, matching the bits in the bitstring. So in Table 11-3, the input
bitstring 100 corresponds to the input state |100⟩, and its output bitstring
011 corresponds to the output state |011⟩.

The Classical Solution
How much computing power do we need from a classical computer to de-
termine the secret string? We’ll continue to use oracle complexity, or the
number of queries to the oracle, as our measure [71].

Finding the oracle complexity rigorously for Simon’s problem is chal-
lenging [30] [38]. The problem is that when algorithms become complicated,
there’s a world of difference between arguing that any specific solution sounds
like the best one and actually proving that no other solution, from anyone,
ever, could be more efficient. Just because nobody’s imagined a better solu-
tion yet isn’t proof that such a solution isn’t out there.

In this case, a quick and informal analysis gives us a result that is close
to the proven answer, but with much less work, so I’ll take this casual route.

If we have n bits, there are 2n possible input bitstrings to the oracle.
We need to find two inputs x0 and x1 for which f (x0) = f (x1). Taking our 2n

strings one by one and plugging them into f, in the worst case of a two-to-one
function we could try half of the inputs and never see a repeated output.
So, we need to try one more input. If its output duplicates a previously seen
result, then we know we have a two-to-one function; otherwise, it’s a one-to-
one function.

For example, in Table 11-1, suppose we tried values starting at the top
and worked our way down. There are 2n = 23 = 8 inputs to try. For the first
half of the inputs, none of the outputs was a duplicate. But the next input,
100, produced the output 110, which matched one of the earlier outputs,
from input 001. It’s only at this moment, after trying one more than half of
the inputs, that we can say that the secret string in Table 11-1 must be given
by 100⊕ 001 = 101.

Simon’s Algorithm 283

The conclusion is that we may have to evaluate (2n /2) + 1 = 2n–1 + 1 in-
puts to find the secret string. We say that the cost of the algorithm, in this
case the number of queries we have to make to the oracle, is of the order 2n.
We drop the other terms because as n grows, the cost of everything else (in-
cluding the division by 2) becomes insignificant in comparison to 2n. Since
the cost of the algorithm is of the form bx (for b = 2), we say that the classical
version of Simon’s problem has exponential cost.

This analysis is the same as the one we use for a famous problem called
the birthday problem. It asks how many people you need to assemble in a
room to have more than some degree of confidence that two of them share
a birthday. For example, if you want to be about 50 percent sure that there’s
a shared birthday, you need only 23 people [12] [232].

The birthday problem (and its many variations) has been carefully stud-
ied [63], bringing the cost down to the expression k2n/2 for some number k
that depends on the specifics of the problem [26].

Whether the exponent on 2 is n–1 or n/2, the cost is still 2 to the some-
thing related to n, which makes it an exponential function. Figure 11-1(a)
shows the function 2n/2, and Figure 11-1(b) shows the function 2n–1.

Figure 11-1: (a) The function 2n/2. The vertical scale is in millions. (b) The function
2n–1. The vertical scale is in hundreds of billions.

As Figure 11-1 shows, the value of the exponent in an exponential func-
tionmakes a big difference, but speaking generally, both shapes have the sud-
den, dramatic increase that is characteristic of exponential growth. Due to
these costs, any exponential classical algorithm quickly becomes impractical.
For example, if you wanted to classify a function in Simon’s problem of 50 bits,
you would need to call the oracle roughly 250, or over a quadrillion, times to
see a cycle. That’s about the number of atoms making up the Earth [61]!

Suppose that for some reason you actually wanted to solve Simon’s prob-
lem for a large number of bits. We’ve just seen that the time required quickly
becomes ridiculously impractical. And that’s our cue to look for a quantum
solution!

284 Chapter 11

The Quantum Part of the Algorithm
Simon’s algorithm isn’t something you’re ever likely to run. It solves a
made-up problem that Simon invented to show off what a quantum com-
puter can do.

One of Simon’s innovations was to design an algorithm in two parts,
one quantum and one classical. The two processes work sequentially, with
the quantum algorithm going first. The classical bitstrings we measure from
multiple runs of the quantum algorithm become the input values for the
classical algorithm.

This is because each output contains some information about the secret
bitstring s. The classical algorithm is designed to combine all this partial in-
formation to determine s.

Simon’s algorithm is in two pieces that are connected by an abstract
mathematical idea. This can make it challenging to understand either piece
in isolation. We’ll look at the quantum circuit first, and then we’ll see how
its outputs will be combined in the classical program [182].

Let’s get started by considering a compact version of the quantum cir-
cuit, shown in Figure 11-2.

⊗n

⊗n

n

n

x |0⟩⊗n b

y |0⟩⊗n c

H⊗n

Uf

H⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩

Figure 11-2: The quantum part of Simon’s algorithm

This is reminiscent of the Deutsch–Jozsa and Bernstein–Vazirani algo-
rithms in Figures 9-3 and 10-3, but it’s not quite the same.

Specifically, the lower input marked y is now also a register of n qubits,
and we measure this register. We’ll see later that we don’t ever use the mea-
sured result c, so we don’t actually have to make these measurements, but
they’re a helpful conceptual step for understanding how the circuit works.
We also don’t put any of the input qubits into the |–⟩ state as we usually did
before, because this algorithm doesn’t use phase kickback.

We can write down the first two steps right away, as shown in Equation 11.3.
As usual, I’ll keep the x and y registers distinct.

|ψ0⟩ = |0⟩⊗n |0⟩⊗n

|ψ1⟩ = |+⟩⊗n |0⟩⊗n (11.3)

Simon’s Algorithm 285

Again using fx as a shorthand for f (x), we can write the output of the
oracle for any specific input x as |x⟩ |y⊕ fx⟩. Since this oracle doesn’t mod-
ify the x register, its upper output is x itself. And because every input y is 0,
|y⊕ fx⟩ is just |fx⟩. With these observations, we can write the output of the
oracle, |ψ2⟩, as shown in Equation 11.4.

|ψ2⟩ = ∨n
∑
x∈Bn

|x⟩ |fx⟩ (11.4)

We’re going to break with tradition now. In the algorithms we’ve seen so
far, the next step was to apply H qugates to the x register and then measure
the results. Instead, we’ll measure the y register first.

Why would we want to measure the y register, particularly since we’re not
going to use the result? It’s to exploit the extended partial measurement rule
from Chapter 6. This tells us that upon measuring any specific output for y,
the remaining qubits (in register x) will collapse to the state (or states) that
are consistent with that measurement. Thus, measuring y is a way to filter the
superposition in x so it’s a smaller, specific set of states.

But do we really need to measure y before we measure x? The principle
of deferred measurement, also discussed in Chapter 6, tells us that we don’t
necessarily need to measure y at any specific moment. We can measure it
at any time we like, perhaps just after the oracle, or maybe next year, or in
1,000 years. We can even make this measurement after we measure the x reg-
ister. No matter when we measure it, the x register will collapse to the states
in the superposition that are consistent with the measurement of y. Since
we can hold off on that measurement as long as we like, in practice we never
need to actually measure y at all!

Once again, quantum computing doesn’t always work the way we’re
used to things working.

For this discussion, I’ll assume we measure y right after the oracle, when
it’s part of the state |ψ2⟩.

Here’s the big picture of the next few steps.
Think of the output of the oracle, |ψ2⟩, as a single system of n + n = 2n

qubits. The fact that we chose to think of this system as made up of two
pieces with different names in Equation 11.4 doesn’t matter to the hard-
ware. To reflect that, I’ll rewrite Equation 11.4 as Equation 11.5, which ex-
presses the qubit system as a superposition of states |x fx⟩.

|ψ2⟩ = ∨n
∑
x∈Bn

|x fx⟩ (11.5)

If the function is of the class F1, getting a specific measurement y0 means
that the x register must hold the corresponding state |x0⟩, and not a super-
position. This is because the only state that is consistent with an F1 function
giving us a measurement of y0 on the output is for the x register to be x0.
That is, f (x0) = y0.

In short, x0 is the only input that could have produced y0, so we’ll mea-
sure x0 with certainty.

286 Chapter 11

However, if the function is of type F2, then measuring y0 tells us that the
x register is necessarily either of the x inputs that produce y. Let’s call them
|x0⟩ and |x1⟩. When we measure a specific y0, the superposition |+⟩⊗n in
register x collapses to ∨(|x0⟩ + |x1⟩), because all the other states in the input
superposition are inconsistent with having measured y0. In other words, our
measurement filtered out all but two input states.

As a result of this collapse of x, we can write the system as |ψ2⟩′, shown
in Equation 11.6.

|ψ2⟩′ = ∨
(
|x0⟩ + |x1⟩

)
|y0⟩ (11.6)

Measuring the upper register will give us either x0 or x1, but we can’t say
which.

Because we’re not sure what output we’ll measure, it’s not clear how we
might process that output to find the secret string we’re after. But if we work
through the math, we’ll see that if we run the algorithm enough times, we’ll
gather enough information for a classical algorithm to extract s from our
measurements.

Rewriting x and Measuring
Our last step in analyzing the quantum part of Simon’s algorithm will be to
characterize |ψ3⟩, the final state that we’re going to measure in the upper
register x.

Let’s focus first on the F1 case. To find |ψ3⟩, we apply H qugates to the
upper register of Equation 11.5. I’ll call this result |ψ3⟩1. Remembering that
we’ve measured some specific output y0 from the y register, the x register
must be |x0⟩. Equation 9.25 lets us apply H to this state, giving us |ψ3⟩1 in
Equation 11.7 (since we’ve now measured the x register, I’ll leave out the y
register for the rest of this discussion). I’ll use the letter z for our summa-
tion, for consistency with the steps to come.

|ψ3⟩1 = H⊗n |ψ2⟩x Apply H⊗n to the x part
of |ψ2⟩

= H⊗n ∨n
∑
z∈Bn

|z⟩ Use Eq. 11.5 for the x part
of |ψ2⟩

= ∨n
∑
z∈Bn

(–1)x0·z |z⟩ Rewrite using Eq. 9.25

(11.7)

As usual, the bitstring dot product x0 · z is the sum of the products of
each pair of values, following the definition in Equation 9.19.

Now let’s assume the oracle is of type F2. To find the expression when
the function is two-to-one, we note that measuring y0 for the y register means
that the x register must be either |x0⟩ or |x1⟩. We can use this to rewrite
Equation 11.6, giving us |ψ3⟩2 in Equation 11.8.

Simon’s Algorithm 287

|ψ3⟩2 = H⊗n |ψ2⟩x Apply H⊗n to the x part
of |ψ2⟩

= H⊗n ∨ (|x0⟩ + |x1⟩) Use Eq. 11.6 for the x part
of |ψ2⟩

= ∨
(
H⊗n |x0⟩ +H⊗n |x1⟩

)
Distribute H⊗n

= ∨n+1
(∑

z∈Bn

(–1)x0·z |z⟩ +
∑
z∈Bn

(–1)x1·z |z⟩
)

Rewrite using Eq. 9.25

= ∨n+1
∑
z∈Bn

(
(–1)x0·z + (–1)x1·z

)
|z⟩ Collect terms

(11.8)

Whew! All this work is going to pay off, though, because now we’re
ready to measure the x register!

Suppose that the oracle is of type F1. Then the last line of Equation 11.7
tells us the state of the system just before measurement. Let’s say that mea-
surement produces a bitstring z. We know by the definition of the oracle
that s · z = 0.

Alternatively, suppose that the oracle is of type F2. Then the last line
of Equation 11.8 tells us that we’ll measure a bitstring z that corresponds to
either |x0⟩ or |x1⟩. I’ll say that x0 and x1 are the bitstrings used by the oracle
associated with these two states.

The trick to proceeding comes from noticing that x0 · z and x1 · zmust
be equal. That’s because if they’re not, the amplitudes in Equation 11.8 can-
cel one another, and we’ll never measure the resulting state because it has an
amplitude of 0. To see this, let’s look at just the coefficient (–1)x0·z + (–1)x1·z.
In Equation 11.9, I’ve written this sum for all four possible values of x0 · z
and x1 · z.

x0 · z x1 · z (–1)x0·z (–1)x1·z Sum

0 0 1 1 2

0 1 1 –1 0

1 0 –1 0 0

1 1 1 1 2

(11.9)

This tells us that if x0 · z /= x1 · z, the resulting state has an amplitude of
0. Since the only states we can measure are those with nonzero amplitudes,
we can conclude that x0 · z = x1 · z. Let’s write that equivalence down and
simplify it as shown in Equation 11.10.

x0 · z = x1 · z Must be equal

x0 · z = (x0 ⊕ s) · z Because x1 = x0 ⊕ s

x0 · z = (x0 · z)⊕ (s · z) Distribute the dot product

0 = s · z Remove the common term x0 · z

(11.10)

Combining what we’ve just seen for the F1 and F2 cases, we’ve found
that any state z we measure from register x in Simon’s algorithm satisfies
s · z = 0.

288 Chapter 11

Although this relationship by itself doesn’t tell us much about s, if we
run the algorithm repeatedly and build up a collection of measured z out-
puts, they can be combined to unlock the secret string s. We’ll do that last
step of processing on a classical computer.

Combining the Quantum Outputs
Imagine that we’ve run and measured the quantum circuit many times, pro-
ducing a bunch of measured outputs. Now we get the payoff: a classical algo-
rithm that combines those outputs to produce the secret string.

Suppose we run Simon’s algorithm r times. Let’s call our measurements
z(k) for k ∈ [r]. Writing k as a superscript leaves the subscript available for us
to use in a moment. Putting parentheses around the k reminds us that this is
an index, not an exponent.

We’ve seen that for both F1 and F2 oracles, finding the bitstring dot prod-
uct of these measured states z(k) with the secret string s will always produce a
result of 0. Let’s write this for rmeasured results, as shown in Equation 11.11.

0 = s · z(0)

0 = s · z(1)

...

0 = s · z(r–1)

(11.11)

As all of our bitstrings have n elements, both s and every z(k) have
n elements, each 0 or 1. We call Equation 11.11 a system of r equations in n
unknowns.

Suppose n = 1, so registers x and y are each a single qubit. Then one
measurement tells us everything we need. Since s · z(0) = 0, we immediately
have s = z(0).

We found the secret bitstring! Well, we found the secret bit.
What if n = 2? To find two values for our two-element bitstring, we’d

need two different values for z. Remember that z(k) is the result of the kth
measurement. Now we’ll use the subscript we kept available earlier to refer
to the bits of each measurement. Numbering the bits from the right and
starting with 0, measurement z(0) has bits z(0)1 and z(0)0 , and measurement z(1)

has bits z(1)1 and z(1)0 . Similarly, we can write s in binary as s1s0.
Our results are then shown in Equation 11.12 (remember that we’re add-

ing bits, so 1 + 1 = 0).

0 = z(0)1 s1 + z
(0)
0 s0

0 = z(1)1 s1 + z
(1)
0 s0

(11.12)

We know the bits of z(0) and z(1), so Equation 11.12 has two equations
with two unknowns (s0 and s1).

Simon’s Algorithm 289

Generalizing this for r runs gives us the messy monster Equation 11.13,
where again all additions are modulo 2.

0 = z(0)n–1sn–1 + z
(0)
n–2sn–2 + · · · z

(0)
1 s1 + z

(0)
0 s0

0 = z(1)n–1sn–1 + z
(1)
n–2sn–2 + · · · z

(1)
1 s1 + z

(1)
0 s0

...

0 = z(r–1)n–1 sn–1 + z
(r–1)
n–2 sn–2 + · · · z

(r–1)
1 s1 + z

(r–1)
0 s0

(11.13)

This is the same as Equation 11.11, but with all the bitstring dot prod-
ucts written out.

There are lots of classical algorithms that take Equation 11.13 as input,
along with the values of the z terms, and efficiently solve for the bits of s.
Most are based on a technique called Gaussian elimination [238] named for
Carl Friedrich Gauss (though special cases for this process were known at
least 1,600 years before his birth [264]). Plug the equations into Gaussian
elimination, and out pops the secret string s.

As long as r > n – 1 (that is, the number of times that we’ve run the algo-
rithm is greater than the number of qubits in xminus 1), we have a chance
of finding each of the n bits in s. But it’s not a sure thing. To be sure we can
get all n bits, Gaussian elimination requires that the equations be linearly
independent. This means that we cannot multiply all the terms in any equa-
tion by a single number and thereby match any of the other equations. If a
set of equations is not linearly independent, we say it is linearly dependent.

If the equations in Equation 11.13 are not linearly independent, then
the Gaussian elimination algorithm will get stuck, and we won’t get an an-
swer. This isn’t a fault of Gaussian elimination, because any other system
would also get stuck. We just don’t have enough information yet.

Because s = 0 is always a solution, we want n – 1 linearly independent
equations (rather than n) [14]. Each run of Simon’s algorithm gives us one
equation, but we could get unlucky and get back some measurements that
lead to equations that are multiples of equations we already have. How many
times do we have to run Simon’s algorithm to be sure that we have n – 1 lin-
early independent equations?

Because quantum measurement is probabilistic, we can never be com-
pletely sure. It’s possible that we could measure the same result over and
over again, no matter how many times we run the algorithm (the odds of
this happening plummet with each additional run, and can become astro-
nomically small, but they never reach 0).

One way to go is to run Simon’s algorithm n – 1 times and then try to
apply Gaussian elimination. The algorithm will fail if there aren’t enough
linearly independent equations (in practice, this usually means the library
routine reports an error). Then we can go back, run the algorithm a few
more times, append the new equations onto our list from Equation 11.11,
and repeat the process until Gaussian elimination succeeds and we get back s.

290 Chapter 11

If we collect a great many outputs and Gaussian elimination still fails, we
usually just declare that the secret string is all 0s, though there can always be
a shred of doubt.

I won’t go into the details, but you can prove that the number of times
you need to run Simon’s algorithm to almost surely obtain n – 1 indepen-
dent equations and thus discover s is an, or some constant a times the num-
ber of bits n [182] [14]. In other words, the growth of Simon’s algorithm is
linear in n, not exponential.

As I mentioned before, because we never use the measurement of y, the
principle of partial measurement (which we discussed in Chapter 6) tells us
that we can put that measurement off for a few minutes, or a few millennia.
Since we get all the information we need from measuring x, we don’t actually
ever need to measure y.

This is wild! The mere fact that we could measure y forces x to be consis-
tent with that measurement, even if we don’t actually measure y. Quantum
computing is full of surprises.

A version of Figure 11-2 without this measurement is given in Figure 11-3.

⊗nn

n

x |0⟩⊗n z

y |0⟩⊗n

H⊗n

Uf

H⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩

Figure 11-3: Simon’s algorithm without measurement of y

This is a strange situation. We need to measure the y register to get the
x register into the state we want. But since we know that we canmeasure y,
we don’t have to, because we can always measure it later. That is, if we mea-
sure y, then we know x will collapse to a superposition consistent with that
measurement of y, regardless of when we make it. So if we agree that we’ll
measure it, say, in a hundred million years, we can in practical terms just
drop that measurement from the circuit, and proceed as if we had made it.

Wow.

An Example of Simon’s Algorithm
Let’s run an example. Designing an oracle for Simon’s algorithm that uses
an arbitrary secret string can require some delicate logical thinking [111], so
let’s pick a small, specific situation. I’ll say that our input is three qubits, and
the secret bitstring is s = 010. The complete circuit, including the oracle, is
shown in Figure 11-4. I’ve left off the measurement of the y register, because
it’s not needed.

Simon’s Algorithm 291

Traversal f

x2 |0⟩ b2

x1 |0⟩ b1

x0 |0⟩ b0

y2 |0⟩

y1 |0⟩

y0 |0⟩

H H

H H

H H

Figure 11-4: A circuit for Simon’s algorithm with the secret string s = 010

The oracle is between the dashed lines. I’ve split it into two pieces, shaded
in gray. First, I placed a CX qugate from each qubit of the x register to its
corresponding qubit in the y register. That is, x2 is the control for its target,
y2. Similarly, x1 is the control for its target y1, and x0 is the control for its tar-
get y0. This pattern of qugates is sometimes called a traversal. Then I applied
the oracle for the function f, which performs x⊕ s = x⊕ 010.

Note that the f operation, involving a single CX qugate, is the same as
the second CX in the traversal, so they undo one another. We could there-
fore simplify this diagram (and the demands on the hardware that executes
it) by removing both of these qugates. I left them both in place here to illus-
trate the use of a traversal.

A summary of the inputs and the result of applying f to each one is
shown in Table 11-4.

Table 11-4: Values involved in Simon’s algorithm for the secret string s = 010

x y x ⊕ s x · s
000 000 010 0

001 001 011 0

010 000 000 1

011 001 001 1

100 100 110 0

101 101 111 0

110 100 100 1

111 101 101 1

In Table 11-4, there are four values of x for which x · s = 0: 000, 001, 100,
and 101. So when we run this algorithm many times, we should expect to get
each of these four results with equal frequency, and no others.

I ran this for 1,024 shots on a seven-qubit quantum computer, and got
back the results in Figure 11-5.

292 Chapter 11

Figure 11-5: Running Simon’s algorithm with s = 010 using
the circuit of Figure 11-4 on a seven-qubit quantum computer

Pretty nice! Those short bars are due to the noise we can’t really avoid
these days, but the dominant results show that we definitely received the
results we predicted.

The Balancing Act
We’ve seen the steps of Simon’s algorithm, but you might be left wondering
how it all came together.

If so, don’t let it get to you. This system is complicated, despite its de-
ceptively simple circuit diagram.

And remember that Simon didn’t set out to solve this problem. As I
mentioned, he started with a circuit containing an oracle, then searched
for some interesting function the oracle could compute. He eventually as-
sembled a scheme where the oracle implemented a strange and unfamiliar
function. Because he knew about solving systems of linear equations, Simon
engineered this function so that it could produce a set of n – 1 linearly in-
dependent equations, which is just what Gaussian elimination (or any other
solver of linear systems) needs as input. The result is a set of equations that
Gaussian elimination can solve to produce the bits that make up that secret
string.

It’s all a balancing act. The whole mechanism is unlikely and artificially
constructed, but it does do something. And it does it exponentially faster
than you can do it on a conventional computer, which is a great demonstra-
tion (though mostly a theoretical one) of the power of quantum computing.

The performance gain of Simon’s hybrid algorithm versus a classical
algorithm, where cost is measured in the number of queries of the oracle, is
shown in Figure 11-6.

Simon’s Algorithm 293

Figure 11-6: The costs of the classical solution to Simon’s
problem and the hybrid quantum–classical solution. The
vertical scale is in millions.

No matter what range we pick for n, the curves always have this form:
The cost of Simon’s algorithm hardly grows, while the classical cost explodes
exponentially.

Simon’s algorithmwas a breakthrough in quantum computing because it
was the first quantum algorithm that demonstrated an exponential speedup,
confirming many people’s expectations that quantum algorithms could dra-
matically outperform their classical counterparts [182].

Simon’s algorithm is a great example of the subtlety and sophistication
of quantum algorithms. Its elegant but complex technique is belied by its
apparently simple quantum circuit.

Summary
In this chapter, we looked at Simon’s algorithm, which expanded our quan-
tum repertoire in three ways.

First, each run produces an output that doesn’t solve the problem on its
own, but contributes one piece of information to the final result. Second,
it’s a hybrid algorithm, because its measured outputs are processed by a clas-
sical computer to extract an answer from them. Third, the algorithm shows
an exponential speedup relative to the classical solution.

In Simon’s problem, we are given a function that contains a secret bit-
string that it uses to create a two-to-one or one-to-one mapping of its inputs,
and we want to learn that bitstring.

By collectingmultiple outputs, we can build a system of linear equations.
Then, a classical computer can use a traditional method such as Gaussian
elimination to find the secret bitstring.

Simon’s algorithm was the first to demonstrate an exponential speedup
over the best classical algorithm. Though it doesn’t solve a problem of much
practical interest, it stimulated new work in quantum computing, and the
important ideas it introduced are now a part of every quantum program-
mer’s toolkit.

294 Chapter 11

12
GROVER’S ALGORITHM

Yeah, I’ve been searchin’
A-searchin’

Oh, yeah, searchin’ every which a-way . . .
—Jerry Leiber and Mike Stoller, “Searchin,’” 1957 [122]

So far, we’ve focused on contrived, or toy,
problems. Now we’ll move past those and

see our first real, useful algorithm! Its pur-
pose is to help us locate objects in an unorga-

nized, or unstructured, database.
The algorithm we’ll look at in this chapter is called Grover’s algorithm, for

Lov Grover, who published it in 1996 [82] [83].
Our discussion of Grover’s algorithm will follow the same general flow

as in the previous chapters: We’ll discuss what the algorithm is for, see how
to construct and execute it, look at results, and finally wrap up with some
observations.

Let’s get a general feeling for the task that Grover’s algorithm addresses
with an analogy. Suppose that you would like to put up a poster for your
favorite movie in your home. You visit a movie memorabilia store, and the
staff point you to a bin full of many different, unorganized posters. You
have no choice but to flip through each poster in the bin, checking to see
if it’s a poster for your favorite film. This bin of posters is analogous to an

unstructured database, meaning that it holds information (movie posters) but
has not been organized (or structured) in a way that helps your search.

Suppose that, instead, the storekeeper always put posters into the bin in
alphabetical order by movie title. This would make it much faster to find the
one you want, because that order introduces structure into the database.

In practice, many difficult database problems are made much easier by
creating some kind of structure for the database, like putting the posters
in alphabetical order or ordering them by their release date. Building this
structure can take some time, but if there are lots of queries to the database,
the one-time cost of working out the structure is recovered many times over
by the time saved in each query.

Grover’s algorithm is helpful for those problems where our database is
unstructured, so it has no organization we can exploit. What we do have is
an oracle that can tell us, for any given element in the database, whether it’s
the entry (or one of the entries) that we want.

Extending our movie poster analogy, suppose that you’re with a friend,
and you’re looking for your friend’s favorite movie. But they’re moody to-
day and won’t tell you what that movie is. Instead, you have to show them
each poster one by one; they’ll say “no” every time until you happen to show
them the poster for their favorite film, and then they’ll say “yes.” If this
sounds terribly inefficient to you, then you know why people prefer struc-
tured databases!

But sometimes we’re given an unstructured database, and we need to
work with it.

Grover’s algorithm is designed for this kind of situation. Like your friend
at themovie memorabilia store, Grover’s oracle returns one result for every
input element that fits your search criteria and a different result for all
others.

I’m going to assume in this chapter that we’re looking for only one en-
try in the database. This is just to keep the notation a little clearer and the
discussion a little shorter. If we have a situation where there are multiple el-
ements that fit our criteria, the oracle we’ll see here will identify all of them,
and the overall algorithm will return one such element, chosen at random.

We say that the oracle marks, or labels, our desired entry. Suppose that
we query the oracle with a string of n qubits, so we can make 2n possible
queries. If the database has no structure, there’s no alternative in the classi-
cal case except to run through every possible element until we happen to try
the entry that the oracle marks. At worst, the marked entry corresponds to
our final query, so it can take up to 2n – 1 tests to get our answer (the –1 is
there because if we’re certain there’s at least one entry to be marked, we can
skip the final query).

As you may expect, Grover’s algorithm will save us time! As usual, we’ll
measure the cost of the algorithm using oracle complexity, or the number of
times we need to call the oracle. It usually won’t be just once, but it will be
far less than 2n.

296 Chapter 12

An Overview of Grover’s Algorithm
Before we dig into details, let’s get an overall picture of Grover’s algorithm.
The general flow is like what we’ve seen before: We start with a register x of
multiple qubits all in the state |0⟩, and a register y containing a single qubit
in the same state. We apply an X qugate to y, and then we put all the qubits
into superpositions with H qugates. Next, we run an oracle, though in this
case we apply many copies of the same oracle in a row. There’s no final post-
processing; we just take the output of the final oracle and measure it.

Figure 12-1 shows this process in circuit form.

m times

⊗nn
x |0⟩⊗n . . . g

y |0⟩ . . .

H⊗n

G G G

X H

|ψ0⟩ |ψ1⟩

Figure 12-1: Grover’s algorithm

The opening stages probably look familiar by now. We start with an
upper register named x containing n qubits, all initialized to |0⟩. Each of
these qubits goes into an H qugate, producing an equal superposition |+⟩⊗n

of all 2n states from |0⟩ to |2n – 1⟩. The register y contains a single qubit,
also initialized to |0⟩. An X qugate turns that into |1⟩, and then an H qugate
turns it into |–⟩. Together, we have |ψ0⟩ in Equation 12.1.

|ψ0⟩ = |+⟩⊗n |–⟩ (12.1)

We use |ψ0⟩ as the starting input to a chain, or sequence, of identical
oracles, each of which I’ve named G. They’re all the same, and there are m
of them. We’ll see later in this chapter how to determine m. We’ll also see
that each G is actually two operations in sequence.

After this chain of operations, we get an output state |ψ1⟩. We measure
the n qubits of this state to get a final bitstring g of n bits.

Since there’s no looping in quantum circuits today, this approach re-
quires us to build a new quantum circuit containing m copies of G for each
value of m we want to use.

Table 12-1 summarizes the symbols we’ll use most often in this chapter.
Recall that all of the other notation I use in the book is summarized in the
Appendix.

Table 12-1: Symbols used in this chapter
Name Meaning

n Number of qubits
N 2n, the number of basis states
t Bitstring for the marked entry
|τ⟩ State corresponding to bitstring t

|σ⟩ |+⟩⊗n – |τ⟩, or the superposition of all basis states except |τ⟩

Grover’s Algorithm 297

The steps inside of each G qugate are two versions of the same opera-
tion, called a reflection. Let’s look at this idea in a general form first. Then
we’ll return to Grover’s algorithm and see how we use reflection to find our
marked entry.

Reflections
By three methods we may learn wisdom: first, by reflection, which is
noblest; second, by imitation, which is easiest; and third, by experience,
which is the bitterest.

—Confucius (apocryphal), approx. –500 [221]

An appealing quality of Grover’s algorithm is that we can draw the oracle’s
operations using traditional 2D geometry. In fact, all we need are two types
of reflections of arrows.

It’s worth getting familiar with these operations now, so that when we
get into Grover’s algorithm we can just pull them out and use them, and not
have to stop to see how they work.

Let’s first visualize reflections using arrows in a plane. I’ll name those ar-
rows v and w. Because we’ll ultimately turn the arrows into quantum states,
I’ll assume all the starting arrows in this section have a magnitude of 1.

I want to derive a formula that starts with the arrows v and w and re-
flects v around w. I’ll temporarily call the new arrow v↷w. We’ll later turn
this formula into an operator that we’ll use in Grover’s oracle.

The geometry for reflecting v around w is illustrated in Figure 12-2.

Figure 12-2: Reflecting v around w

Step (a) shows our two arrows, with an angle θ between them. We want
to reflect v through the line that is defined by w. In step (b), I’ve drawn a
line from the tip of v to w, perpendicular to w. As discussed in Chapter 2,
the distance from the origin to this intersection point is given by the dot
product v · w. Step (c) scales w by this distance to give us the arrow (v · w)w.
In step (d), I added this arrow to itself. In step (e), I subtracted v (that is, I
added –v) to this arrow).

298 Chapter 12

The angle formed in the upper right is again θ, because v and –v are par-
allel. If we flip this triangle around its short edge, as in step (f), we find that
the hypotenuse of this new triangle is exactly the arrow we want. In fact, all
three triangles in step (f) are the same right triangle, just flipped into differ-
ent orientations.

Step (g) shows the result of this whole operation, the arrow v↷w. The
formula is summarized in Equation 12.2.

v↷w = 2(v · w)w – v (12.2)

Let’s promote this to quantum states. I’ll rename v to |ν⟩ and w to |ω⟩.
We need to be careful when replacing the dot product with a braket, because
while the order of the arguments doesn’t matter for the dot product, it does
matter for quantum states. Recall from Equation 2.56 that we project the
from state onto the onto state by writing the onto state first. So, to project
|ν⟩ onto |ω⟩, we replace the dot product with the braket, or inner product,
⟨ω|ν⟩.

This gives us Equation 12.3, where I named the reflection of |ν⟩ around
|ω⟩ with Ref(|ν⟩ , |ω⟩).

Ref(|ν⟩ , |ω⟩) = 2 ⟨ω|ν⟩ |ω⟩ – |ν⟩ (12.3)

The other reflection we’ll need for Grover’s oracle is a reflection of
v around the line perpendicular to the vector w. The geometry is shown in
Figure 12-3, where I temporarily named the result v↷⊥w.

Figure 12-3: Reflecting v around the perpendicular to w

Steps (a) through (c) are the same as before. But this time, in step (d),
I reversed the arrow 2(v · w)w and drew it starting at the center of the cir-
cle. In step (e), I added v and the vector –2(v · w)w that we just built to get a
new point on the unit circle. This gives us two new right triangles. Because
–2(v · w)w is parallel to w, all three triangles in step (e) are the same right
triangle, so the smaller angle of each is the same θ we started with. I’ve re-
moved the construction lines in step (f). The arrow pointing down and to

Grover’s Algorithm 299

the left is the reflection of v through the line perpendicular to w. The for-
mula is shown in Equation 12.4.

v↷⊥w = v – 2(v · w)w (12.4)

As before, I’ll promote these arrow operations to states by turning v into
|ν⟩ and w into |ω⟩. This gives us Equation 12.5, where |ω⟩⊥ refers to the
state corresponding to the vector perpendicular to w.

Ref(|ν⟩ , |ω⟩⊥) = |ν⟩ – 2 ⟨ω|ν⟩ |ω⟩ (12.5)

The arrow forms of these two operations, shown in Equations 12.3 and
12.5, are the same except for their signs, as summarized in Equation 12.6.

Ref(|ν⟩ , |ω⟩) = –Ref(|ν⟩ , |ω⟩⊥) (12.6)

Equations 12.2 and 12.4 combine the same two arrows, only with a re-
versed order of subtraction. That tells us that the two arrows point in exactly
opposite directions! That’s pretty cool. Figure 12-4 shows this relationship.

Figure 12-4: New arrows that point in exactly opposite directions

It’s worth keeping one more nice piece of geometry in the back of our
minds. Though I won’t go through the steps here, we can prove that any two
reflections performed in a row can always be written as a single rotation, and
vice versa [132].

The Stages of Grover’s Oracle
In the overview of Grover’s algorithm in Figure 12-1, I showed the oracle as a
series of boxes marked G. In fact, each of those boxes is made up of a pair of
operations, applied in sequence. Let’s call them G1 and G2.

G1 is called the marking stage, because it identifies which states in the su-
perposition we’re looking for. G2 is called the diffusion stage, referring to the
mechanism it uses to increase the probability that we’ll ultimately measure
one of the desired, or marked, states in the superposition.

300 Chapter 12

We first apply G1 to mark the state we want, then G2 to increase its prob-
ability of being measured. Unfortunately, that step also removes the mark,
so we mark it again with G1, increase the probability with G2, and so on, un-
til we’ve repeated this pair of operations a total of m times.

Let’s look at these two stages in turn.

G1: Marking
We’ll start with G1. As usual, we’ll begin with a definition of the function
it implements using bitstrings for inputs and outputs. I’ll use the name t
for the “target” bitstring we want to mark (that is, the one we’re searching
for). The value of t is known to the oracle, but not to us. Recalling our exam-
ple involving movie posters, the G1 stage plays a similar role to our moody
friend who won’t tell us their favorite movie’s name, but will tell us when we
show them its poster, corresponding to t.

For any input x, the oracle responds with 0 if x is not our marked entry t
and 1 if it is t. I’ve written this in Equation 12.7, where I’ve again used fx as a
shorthand for f (x).

fx =

0, x /= t

1, x = t
(12.7)

The quantum version of the oracle uses this function to perform phase
kickback on the input, thanks to the y = |–⟩ coming in on the lower regis-
ter in Figure 12-1. So, we can write this function as G1 in Equation 12.8. I’ll
focus here just on the upper register, x. When the input is the marked bit-
string t, I’ll say that its corresponding state is |τ⟩, so the output of G1 will
be – |τ⟩.

G1 = (–1) fx |x⟩ =

|x⟩ , x /= t

– |τ⟩ , x = t
(12.8)

We sometimes call this a phase oracle, because its entire job is to “mark”
the entry we’re looking for by applying a phase of eiπ = –1 to it.

I promised earlier that each of the steps in G is a reflection. We can
see why this is true for G1 by grouping all the input states into two sets: all
those that are |τ⟩ (that’s a set with one element), and all those that are not
|τ⟩ (that’s a bigger set, with 2n – 1 elements). I’ll write this latter group col-
lectively as |σ⟩, a superposition containing all basis states except |τ⟩. With
these definitions, we can write the x register of |ψ0⟩ as a single superposition
made up of two parts, |σ⟩ + |τ⟩.

Because all the states in the superposition |ψ0⟩ are basis states, they’re
all orthogonal to one another. This includes |τ⟩, so we can say that |τ⟩ is
orthogonal to the whole set |σ⟩.

Let’s draw these two sets of states in a Cartesian diagram. This will be a
conceptual aid, and it doesn’t illustrate the states in any direct way. I’ll place
|τ⟩ on the vertical axis and the collection of all the other states |σ⟩ on the
horizontal axis, as shown in Figure 12-5(a). The axes |τ⟩ and |σ⟩ are perpen-
dicular because the states are orthogonal.

Grover’s Algorithm 301

Figure 12-5: We can break up all inputs into the state |τ⟩
and all other states, |σ⟩. (a) When there is only one state
in |σ⟩. (b) When there are two states in |σ⟩.

You can think of the horizontal axis as all the states that aren’t |τ⟩ some-
how combined together. Taken individually or as a group, they’re all orthog-
onal to |τ⟩. If there were two states in |σ⟩, we could draw them as a plane,
as in part (b) of Figure 12-5. Part (a) would be this 3D diagram viewed from
a point on the plane, so the plane appears as a line. We can imagine a corre-
sponding operation for any number of states in |σ⟩. For simplicity, I’ll stick
to the 2D version in part (a).

Let’s look at the mechanics of G1. Suppose that the x input register is
in the input state |ψ⟩. We can write that as a sum of the N = 2n states in the
input superposition, each scaled by some number. I’ll call the scaling factors
γk. I’ve written out the terms in Equation 12.9.

|ψ⟩ =
∑
k∈[N]

γk |k⟩ = γ0 |0⟩ + γ1 |1⟩ + · · · + γτ |τ⟩ + · · · + γN–1 |N – 1⟩ (12.9)

I’ve written this with our desired answer, |τ⟩, somewhere in the middle
of the superposition. As the order of the states in a superposition doesn’t
matter, we can always make sure it’s away from the ends, which lets us avoid
notational clutter to represent those special cases.

Let’s group this into two superpositions |τ⟩ and |σ⟩, as in Equation 12.10.
I’ll list all the states in |σ⟩ first, skipping over |τ⟩, and then add |τ⟩ back in
at the end.

|ψ⟩ = γ0 |0⟩ + γ1 |1⟩ + · · · +

skip γτ|τ⟩︷ ︸︸ ︷
γt–1 |t – 1⟩ + γt+1 |t + 1⟩ + · · · + γN–1 |N – 1⟩ + γτ |τ⟩

=

∑
k∈[N]
k /=t

γk |k⟩

 + γτ |τ⟩
(12.10)

We can simplify this a little. At the start of Grover’s algorithm, all of the
states will be in an equal superposition. If there are n qubits, then we know
each state will have amplitude ∨n. Since each γk in Equation 12.10 will be
∨n, we can just use a single value of γ for all of them. I’ll write this as γσ , giv-
ing us Equation 12.11.

302 Chapter 12

|ψ⟩ = γσ |σ⟩ + γt |τ⟩ (12.11)

This will be convenient because as Grover’s algorithm proceeds, the value
of γτ will increase, while all the other amplitudes will decrease together. In
other words, every state in |σ⟩will always have the same amplitude.

We can think of Equation 12.11 as telling us that |ψ⟩ is made up of two
components: some |σ⟩ and some |τ⟩. It’s just like a point in the 2D Euclidean
plane, which is some amount of the x basis vector and some amount of y.

Because all theN = 2n states in the initial superposition have the same
amplitude, that common amplitude is

√
1/N = 1/

√
N. Therefore, we can

write |ψ⟩ as in Equation 12.12.

|ψ⟩ = 1√
N

|τ⟩ + N – 1√
N

|σ⟩ (12.12)

We can draw this state conceptually as in Figure 12-6. I’ve labeled the an-
gle between |ψ⟩ and the |σ⟩ axis as θ. At the start of Grover’s algorithm, θ will
be extremely small, so I’ve exaggerated its value for this figure.

Figure 12-6: We can write the
amplitude for |ψ⟩ in terms of
the angle θ.

We can rewrite Equation 12.12 using this right triangle as in Equation 12.13.

|ψ⟩ = sin θ |τ⟩ + cos θ |σ⟩ (12.13)

Comparing Equations 12.11, 12.12, and 12.13 tells us that γτ is given by
two equivalent expressions: γτ = sin θ = 1/

√
N.

This means that the probability of measuring |τ⟩ is sin2 θ = 1/N (the
notation sin2 θ is equivalent to (sin θ)2 without the parentheses). When we
have a large database,N is large, so the amplitude sin θ = 1/

√
Nwill be nearly

0. The value of the probability sin2 θ = 1/N drops to 0 as well, but even faster,
as shown in Figure 12-7.

Grover’s Algorithm 303

Figure 12-7: As N increases, the amplitude 1/
√
N

approaches 0, while the probability sin2 θ = 1/N
goes to 0 even more quickly.

This is not encouraging news. Figure 12-7 tells us that there’s only a small
probability 1/N that, if wemeasured |ψ⟩ right now, it would collapse to state
|τ⟩ and we’d observe the desired bitstring t. IfN is large, we’ll rarely measure t
at the output. This is pretty disappointing.

However, the good news is that we can make |τ⟩ more likely to be
measured by increasing its amplitude. Visually, we’ll rotate the superposition
|ψ⟩ in Figure 12-6 counterclockwise, bringing it closer to |τ⟩ and simultane-
ously farther away from |σ⟩. This process conventionally goes by the allitera-
tively awkward name of amplitude amplification.

Let’s run |ψ⟩ from Equation 12.11 through the oracleG1. The oracle’s
definition in Equation 12.8 tells us that the first term, γσ |σ⟩, will be unchanged.
The second term, γτ |τ⟩, will be multiplied by –1. I’ve written this in symbols
in Equation 12.14.

G1 |ψ⟩ = γσ |σ⟩ – γτ |τ⟩ (12.14)

We can draw the result as in Figure 12-8.

Figure 12-8: The geometry of G1

304 Chapter 12

Figure 12-8 shows that we can picture the action of the oracleG1 as a re-
flection of |ψ⟩ around the |σ⟩ axis. Part (a) shows the state |ψ⟩ as a sum of
γσ |σ⟩ and γτ |τ⟩. In part (b),G1 negates γτ . In part (c), we see thatG1 |ψ⟩
is the reflection of |ψ⟩ around |σ⟩. Remember that these diagrams aren’t
explicit drawings of the states, but rather are geometric versions of their
relationships.

We can write the action ofG1 explicitly using Equation 12.3, where |ψ⟩
plays the role of |ν⟩ and |σ⟩ is |ω⟩. The result of this substitution is shown in
Equation 12.15.

G1 |ψ⟩ = Ref(|ψ⟩ , |σ⟩)
= 2 ⟨σ|ψ⟩ |σ⟩ – |ψ⟩

(12.15)

After all this effort, we’re more likely tomeasure the state |τ⟩, right? Well,
no. Figure 12-9 shows the new situation. The probability of measuring |τ⟩
hasn’t changed at all. The amplitude is now negative, so it’s –sin θ, but squar-
ing that to find its probability gives us sin2 θ = 1/N, just as before.

Figure 12-9: The amplitude of G1 |ψ⟩
is –sin θ, so its probability sin2 θ is
the same as the probability of |ψ⟩.

So what was the point of applyingG1?
Earlier, I said that the overall operation of qugateG in Figure 12-1 was

made up of two steps: Wemark the state that we’re looking for, and then we
make it more probable. We’ve just seen howG1 performs that marking step,
turning |ψ⟩ intoG1 |ψ⟩.

Remember that |ψ⟩ is the state of our x register, so the more we can
rotate that state toward |τ⟩, the more likely we are to get back |τ⟩when we
measure |ψ⟩.

Now we’ll adjust the probabilities tomake |τ⟩more likely to bemeasured.
Let’s see how.

G2: Diffusion
Now things get clever! We want to increase the probability of measuring our
marked state. This is done by the next stage of G, called the diffusion step. As

Grover’s Algorithm 305

mentioned earlier, it’s just another reflection. But this time, we’ll reflect the
new state we just made, G1 |ψ⟩, around the original |ψ⟩.

Figure 12-10 shows the geometry.

Figure 12-10: (a) G2 reflects G1 |ψ⟩ around |ψ⟩. (b) Labeling
the angles.

Referring to part (b) of Figure 12-10, the new state G2G1 |ψ⟩makes an
angle of 3θ with the |σ⟩ axis, so it has an amplitude of sin 3θ on the |τ⟩ axis.

We’ve done it! As long as we have four or more qubits, then θ < π/6
which means that sin 3θ is going to be larger than sin θ, and we’ll be more
likely to measure |τ⟩!

We need θ to be less than π/6, because otherwise the reflected |τ⟩ can
overshoot the top of the circle, perhaps reducing the probability of measur-
ing it. Happily, as long as we have four or more qubits, the original value
of θ meets this criterion (if we have fewer than four qubits, there are only a
maximum of eight states to check, so we can skip Grover’s algorithm and test
them one by one without too much expense).

The step where we apply G2 is called diffusion because it spreads, or
diffuses, amplitudes away from the superposition |σ⟩ and into the state |τ⟩.
Specifically, the value of γτ increases, and the shared amplitude of every
other state, γσ , decreases.

Applying the oracle and then the diffuser is sometimes called a Grover
iteration or Grover operation. Note that when we increase the probability of
measuring t, we’re also decreasing the probability of measuring anything else,
as normalization requires the probabilities of all states to add up to 1.

Happily, we already know how to write down G2, because we saw it ear-
lier in the chapter. We only need Equation 12.5, using G1 |ψ⟩ for |ν⟩ and
|ψ⟩ for |ω⟩. The resulting formula is given in Equation 12.16.

G2G1 |ψ⟩ = Ref(|ϕ⟩ , |ψ⟩)
= G1 |ψ⟩ – 2 ⟨ψ|ϕ⟩ |ψ⟩

(12.16)

Both G1 and G2 are reflections, and thus unitary operations, so they are
both qugates that we can implement in real hardware.

When we measure G2G1 |ψ⟩, the probability of measuring t is sin2 3θ.
That means we have a probability of cos2 3θ of measuring any other state, all

306 Chapter 12

of which are collected in |σ⟩. All of those states have an equal probability of
being measured because they all started out with the same amplitude 1/

√
N,

and we haven’t done anything to any of those states individually.
This combination of reflections is the qugate G, as summarized in

Equation 12.17.
G = G2G1 (12.17)

I mentioned earlier that any sequence of two reflections can be written
as a single rotation. Figure 12-10 shows the combined operations G2G1 as a
single counterclockwise rotation of the original |ψ⟩ by 2θ.

In the preceding figures, I drew θ pretty large so that it would be easy to
see. But if there are many qubits, then N will be a big number, so sin θ = 1/N
will be small. The effect of G2G1 |ψ⟩ will be to rotate |ψ⟩ toward the |τ⟩
axis, but not by much, as shown in Figure 12-11. Even here, I’ve exaggerated
the geometry a lot for clarity.

Figure 12-11: Each Grover iteration
rotates |ψ⟩ counterclockwise toward
the|τ⟩ axis by an angle of 2θ.

To significantly increase the amplitude |ψ⟩ in this situation, we’ll need
to apply the Grover operation multiple times. Because we can’t build a loop
in a quantum circuit, to apply G repeatedly we need to explicitly place it in
the circuit multiple times, as I did in Figure 12-1. We can replace the gray
box in that diagram with the expanded view in Figure 12-12.

Iteration 0 Iteration 1 Iteration m – 1

. . .

. . .

G1 G2 G1 G2 G1 G2

Figure 12-12: The Grover operation repeated m times

This gives us only one loose end to tie up: How many times should we
repeat the Grover operation G2G1? Let’s find out.

Grover’s Algorithm 307

Iterating the Grover Oracle
Taken together, we call G2G1 a single Grover iteration, written G without a
subscript. As we just saw, applying G once makes the state we want to mea-
sure more probable, but not by a lot. If we repeat the marking and diffusion
steps again, measuring the state we’re after will become even more proba-
ble. We can repeat this process over and over until we’ve made our goal state
very likely to be measured.

How many times should we repeat the Grover operation on |ψ⟩? Ide-
ally, we should repeat it enough times so that the probability γτ is 1. Refer-
ring back to Figure 12-9, that means we want the angle θ to be π/2, which is
the same as saying that we want sin θ = 1. The top row of Figure 12-13 shows
three different starting angles, corresponding to different numbers of qubits,
marked with a heavy line and a black dot. The bottom row of the figure
shows the results of applying the Grover iteration many times. The dots
from left to right in each plot in the bottom row correspond to the counter-
clockwise rotation of the starting state |ψ⟩ in the plot above. Note that each
column uses a different number of steps.

Figure 12-13: Top row: Applying multiple Grover iterations to different starting states |ψ⟩, marked with a
heavy line and a dot. Bottom row: Plotting sin θ for the angle of each line in the top row.

An interesting result is that Grover’s algorithm can overshoot the goal.
For a while, the output gets closer to |τ⟩, but then if we keep applying the
operation, the output goes past |τ⟩ and keeps rotating counterclockwise,
getting farther away from it. Our goal will be to pick just the right number
of iterations so that we get as close as possible to |τ⟩.

A little algebra tells us how many times to apply the iteration.
Figure 12-10 shows that each time we apply G, we rotate the input state

by 2θ, where θ is the original angle of our input state |ψ⟩ with the horizon-
tal axis |σ⟩. Therefore, the sequence of angles that we get, starting with the
original input, is shown in Equation 12.18.

θ, 3θ, 5θ, 7θ, . . . (12.18)

308 Chapter 12

We can write this using the variable m to refer to the number of itera-
tions. The angle θm after m steps is given in Equation 12.19.

θm = θ + 2mθ = θ(1 + 2m) (12.19)

We’d like to find the value of m that gets this result to π/2. We can do
this by setting θm = π/2 and solving for m, as in Equation 12.20.

θ(1 + 2m) = π/2

m =
(
π/2
θ

– 1
)
/2

=
π

4θ
–
1
2

(12.20)

Recall that we found that sin θ = 1/
√
N, so θ = sin–1(1/

√
N). Let’s plug

that into Equation 12.20 for θ, giving us Equation 12.21.

m =
π

4 sin–1(1/
√
N)

–
1
2

(12.21)

We could stop here, but that inverse sine is clumsy. When N is big (and
it usually will be, as N = 2n for n qubits), then sin–1(1/

√
N) is well approxi-

mated by just 1/
√
N itself, as shown in Figure 12-14.

Figure 12-14: As N grows, 1/
√
N (the solid line)

becomes a good approximation for sin–1(1/
√
N)

(the dashed line).

So let’s replace sin–1(1/
√
N) in Equation 12.21 with 1/

√
N, giving us the

more pleasant expression in Equation 12.22.

m =
π

4/
√
N

–
1
2

=
π

4

√
N –

1
2

(12.22)

Grover’s Algorithm 309

The values of m for different Ns are plotted in Figure 12-15(a). As the
values in Figure 12-15(b) show, those results, when rounded to the nearest
integer, tell us how many times we need to apply the Grover iteration to get
the best chance of measuring the marked bitstring t (which might involve
overshooting, as we can see in Figure 12-13).

(a) (b)

Figure 12-15: The value of m for different values of N. (a) The results of Equation 12.22.
(b) The values on the left rounded to the nearest integer.

All this analysis tells us that to maximize the probability of measuring
the state we’re looking for, we should repeat the two stages of the Grover
iteration m times, where m can be computed from Equation 12.22.

An Example of Grover’s Algorithm
Enough theory! Let’s implement Grover’s algorithm. The G1 step inverts
only the single target state, so it needs to somehow identify when its input
qubits match the pattern for that target state. A common way to do this is to
use a CX qugate that treats each input line as a control.

Although we’ve only seen controlled qugates with a single control, we
can build up a controlled qugate with any number of control inputs [187].
In practice, most hardware and simulators provide built-in support for only
one or two control inputs, so I’ll use two qubits in this example. Since there
are two controls, we’ll name this qugate CCX. When a qugate is controlled
by multiple qubits, it’s applied only if all the controls are |1⟩. Thus, if there
are two controls, then bothmust be |1⟩ for the qugate to be applied. If there
are three controls, then all threemust be |1⟩, and so on.

Because we have only two qubits, there are only four states to test. There’s
no need for Grover’s algorithm, since we could test each one of these explic-
itly. But let’s plunge ahead anyway to see how the pieces come together.

Let’s say the target bitstring t is 10, so we want the circuit to end up in a
superposition where |10⟩ is far more likely than any other state.

To get going, we’ll create an equal superposition of the two input qubits
by applying H to each. To enable phase kickback in the oracle, we’ll also put

310 Chapter 12

the auxiliary qubit into the state |–⟩. This initialization step is shown in
Figure 12-16.

x1 |0⟩

x0 |0⟩

y |0⟩

H

H

X H

Figure 12-16: The initialization
step for our implementation of
Grover’s algorithm

Now we’ll implement the oracle. So far in this book, I’ve always used
controlled qugates where a control state of |1⟩means the operation is ap-
plied and |0⟩ means it’s not. We can call this a 1-active control line. But
sometimes it’s more convenient to reverse those controls, so |0⟩means the
operation is applied and |1⟩means it’s not, which we can call a 0-active con-
trol line.

We can use a typical, or 1-active, control line as a 0-active line by sur-
rounding it with X qugates. A CCX controlled by one control of each type
is shown in Figure 12-17(a).

X X

(a) (b)

Figure 12-17: Two equivalent ways to write an
oracle for the target state 10

A notational shortcut for this operation is shown in Figure 12-17(b), where
the empty circle represents a 0-active control. The X qugate at the bottom is
applied only if both control conditions are satisfied. Both versions of this or-
acle for the target bitstring 10 tell us that the X qugate is applied only when
the upper line is |1⟩ and the middle line is |0⟩.

The goal of the diffuser is to reflect all states around the state that went
into the oracle. To do this, we’ll use H qugates to put the superposition state
onto the |0⟩ axis, then reflect all of the states that aren’t |0⟩ around that
axis. Finally, we’ll use H qugates to put everything back where it was.

So, we’ll start with H qugates to undo the initial round of H qugates. If
we apply a CZ qugate immediately, that will negate only |11⟩. Therefore,
we’ll wrap the CZ in X qugates so it will apply to all inputs except |00⟩, the

Grover’s Algorithm 311

original superposition. Then we’ll apply H qugates again to restore the su-
perposition before this step. This diffusion step is shown in Figure 12-18.

H X X H

H X X H

Figure 12-18: A diffusion circuit

The whole circuit is assembled in Figure 12-19.

Initialize Oracle Diffuser

x1 |0⟩ b1

x0 |0⟩ b0

y |0⟩

H H X X H

H X X H X X H

X H

Figure 12-19: Figures 12-16, 12-17, and 12-18 assembled into one circuit

I ran this for 1,024 shots on a five-qubit quantum computer and got the
results in Figure 12-20.

Figure 12-20: The result of running Grover’s
algorithm in Figure 12-19 for 1,024 shots

Most of the time we measured 10, our target bitstring! Success!
Let’s push things a lot further and look for a four-bit marked string. The

architecture is about the same as in the previous example, except that we’ll
need a CCCCX with four controls in the oracle and a CCCZ with three con-
trols in the diffuser. Figure 12-21 shows the circuit for themarked state 1000.

312 Chapter 12

Initialize Oracle Diffuser

x3 |0⟩ b3

x2 |0⟩ b2

x1 |0⟩ b1

x0 |0⟩ b0

y |0⟩

H H X X H

H X X H X X H

H X X H X X H

H X X H X Z X H

X H X

Figure 12-21: Finding the marked state 1000

As mentioned previously, as of 2025, qugates that depend on more
than two controls are not native to all quantum simulators and computers.
You can create these qugates out of simpler qugates, but it can take a lot of
those qugates [145] [186]. Some systems automatically expand multiply con-
trolled qugates into equivalent circuits that the simulator or hardware can
handle. A direct implementation of such qugates is offered by a demon-
stration project that runs in the free Wolfram Player [287]. The project is
not a general quantum computing library but is hardcoded specifically for
Grover’s algorithm. Nevertheless, it offers many interactive choices for the
number of qubits, the number of iterations, and the identity of the marked
state [161].

Using this system, I ran the circuit of Figure 12-21 with just one iteration
of the oracle and diffuser. This idealized simulator with no noise returns the
target state 1000 about 69 percent of the time. A second iteration gets us to
95 percent, and a third improves this to 98 percent. If we apply the Grover
iteration four times, we go right past our optimum and accuracy drops to
76 percent. As 24 = 16, Figure 12-15 accurately tells us that three iterations is
the sweet spot.

Observations and Discussion
Let’s look at a few aspects of Grover’s algorithm and our presentation that
can help us better appreciate the technique.

Recall that we often discuss oracle-based quantum algorithms in terms
of oracle complexity, or the number of times we need to call the oracle (im-
plicitly assuming that everything else makes a negligible impact on the com-
puting resources we need). In Grover’s algorithm, we call the oracle once
per iteration, so the number of iterations tells us the algorithm’s oracle
complexity.

We found in Equation 12.22 that the number of iterations we need from
Grover’s algorithm depends on

√
N. Figure 12-15 shows this behavior graph-

ically. This is more than the single query needed by some of the algorithms
we looked at in the previous chapters, but it’s way better than the exhaustive
search of all 2n – 1 states required by conventional algorithms. We say that
Grover’s algorithm provides a quadratic speedup compared to conventional

Grover’s Algorithm 313

algorithms. This isn’t just good; it’s the best we can hope to achieve. For this
specific searching problem, it’s been proven that no quantum algorithm can
do better than a quadratic speedup over the conventional approach [16] [99].

We can extend Grover’s algorithm to situations where we have more
than one marked item [71], and we can tune the algorithm to improve its
efficiency [23]. A generalized version of Grover’s algorithm, called amplitude
estimation, is probably used more often now [27].

Finally, because the answer we seek rarely ends up with a probability of
1, Grover’s algorithm can sometimes return the wrong result. We can iden-
tify this just by testing the answer, which is usually an efficient operation (or
at least, more efficient than finding the solution we’re testing). If this check
shows us that our candidate answer is wrong, we usually just run the algo-
rithm again. Grover’s algorithm is great for unstructured data where solu-
tions are hard to find, but easy to check. If there is any kind of structure to
the data, or properties that we can exploit, that information can often help
us perform search queries more efficiently than using Grover’s algorithm.

I’ve taken a geometric approach to Grover’s algorithm. If you go more
deeply into the algebra, you can use this approach to explicitly build the re-
flection operators for any number of dimensions [249].

Summary
In this chapter, we looked at Grover’s algorithm. It’s a first for us in this
book because it doesn’t solve a toy, or contrived, problem. Grover’s algo-
rithm is a practical step used in many quantum algorithms.

The big idea is that we’re given an unstructured database that contains
one or more “special” items. In this chapter, we limited ourselves to data-
bases with only one such item. We don’t know which item is special, but
we’re given an oracle that does know. We want to use the oracle to help
us ultimately measure that item without having to test every entry in the
database, one by one.

As usual, we start with a uniform superposition of n qubits, each state
representing the index of one item in a database of 2n entries. To find the
marked entry, we repeat a two-step process.

The first step is to “mark” the special entry. The second step uses this
mark (erasing it in the process) to increase the amplitude of that state, which
necessarily decreases the amplitudes of all the other states. Repeating these
two steps increases the probability of measuring the entry we want at the end
of the algorithm.

Both steps can be interpreted geometrically as reflections in the plane.
We can build unitary matrix descriptions of these operations, so they can be
used as quantum gates. We place several pairs of these qugates in succession
to apply the pair of reflections multiple times.

Surprisingly, if we repeat the steps too many times, we actually start to
decrease the marked item’s amplitude. We found a formula that tells us just
howmany times we should apply the Grover iteration tomaximize the ampli-
tude of the state we want so it will be themost likely one that we’ll measure.

314 Chapter 12

13
SHOR’S ALGORITHM

Listen
Do you want to know a secret?
Do you promise not to tell?

Whoa oh oh
Closer

Let me whisper in your ear
Say the words you long to hear

I’m in love with you, ooh
—John Lennon and Paul McCartney, “Do You Want to Know a Secret?,” 1964 [123]

Secrets are important. When we have
something private to say, we want to trust

both the medium we use to share the secret
and the person receiving it.

When we share secrets over the internet, such as our credit card num-
bers, personal medical information, business plans, romances, or anything
else we want to keep confidential, we trust the encryption algorithms built
into our browsers, email systems, and other applications to make certain
that even if someone intercepts our messages, they won’t be able to read
them. The message is replaced by something that looks like nonsense to any-
one but the intended recipient, who is the only one with the secret knowl-
edge needed to decrypt it.

Most of the encryption systems for today’s web are built on a single tech-
nique: a mathematical process that nobody knows how to efficiently reverse.

If anyone does find a way to reverse that process, virtually all of today’s se-
crets will be exposed. This is the Achilles’ heel of today’s internet security.

You may know where I’m going with this: The algorithm we’ll see in this
chapter can, if run on a large and reliable enough quantum computer, re-
verse that operation and break the encryption, laying bare every secret we’ve
shared to any casual reader. That day isn’t here yet, because a quantum com-
puter big enough and accurate enough hasn’t yet been built, but it surely will
be someday.

That’s pretty important stuff. Before we look at the algorithm, let’s first
look at the operation that underlies today’s encryption.

Primes and Encryption
In this book, we’ve been using mathematics as a representation of the real
world. Our kets are mathematical objects that follow mathematical rules like
matrix multiplication and tensor products, and using them lets us predict
what will happen when we perform those operations on real objects. We
often call this applied mathematics.

However, sometimes mathematics isn’t used as a model of the real world
but more abstractly, to describe structures and relationships involving purely
conceptual objects. We sometimes call such work theoretical mathematics,
meaning essentially math for its own sake.

Surprisingly often, those two worlds overlap. One famous such case is
the form of encryption that is used to protect today’s secrets, ranging from
credit card numbers to private conversations and even military and indus-
trial information.

Many of these secrets are protected by a form of encryption built around
properties of prime numbers. A prime number is any number greater than 1
that has no integer divisors other than 1 and itself [245]. For example, the
number 6 is not a prime because it has the divisors 2 and 3 (that is, when
we divide 6 by either 2 or 3, we get back an integer). We say that both 2 and
3 divide 6, meaning that there is no remainder from 6/2 or 6 / 3. Similarly,
the number 9 is not a prime because it has a divisor of 3 (that is, 3 divides 9),
and 16 is not a prime because it has the divisors 2, 4, and 8. In contrast, 7 is a
prime, and so is 13.

The list of primes starts out with 2, 3, 5, 7, 11, 13, 17 . . . and continues
without end [201]. Prime numbers have many properties that are interesting
to mathematicians, and they have been studied extensively [235].

A natural question to ask about any integer is whether it’s prime. A
number that isn’t prime is called non-prime, or composite. Any integer can be
in only one category or the other. That is, either it has divisors other than
1 and itself, or it doesn’t. If we determine somehow that a given integer is
composite, the next question is often to ask which prime numbers divide it.

Suppose we start with 75. This is not a prime, because it’s divisible by
3 and 25. But 25 is itself divisible by 5, so 75 = 3× 25 = 3× 5× 5 = 3× 52

(using× for multiplication). Note that in this expression, 3 and 5 are both
primes, so we’ve reduced 75 to its prime factors 3 and 5.

316 Chapter 13

A central pillar of the theory of prime numbers is that every non-prime
can be written as a product of prime numbers, and this product is unique.
This property is so important to the theory of mathematics that it’s called the
fundamental theorem of arithmetic [237].

In summary, there is only one possible set of prime numbers that can be
multiplied together to produce any composite number.

We’re drifting pretty far from quantum computing here! But there’s
something of great practical importance in all of this. Suppose that we have
some huge integer, made up of hundreds of digits (or even more). Also
suppose that we know, somehow, that it’s composite. Now we’d like to find
its prime factors. Nobody knows how to do this efficiently on a classical
computer.

By efficiently, I mean in any range of time that we’d normally like to wait,
like less than a dozen years, or a dozenmillennia. Theremight be an algo-
rithm out there that works more quickly, but a lot of people have worked hard
to find one, and nobody has yet. Our best prime factoring algorithms are slow
enough in practice that people generally consider it impractical to factor, or
find the prime factors of, integers with huge numbers of digits. In everyday
terms, we treat prime factoring of arbitrarily large numbers as something that
we just can’t do.

This is an asymmetrical situation. If we have two prime numbers, say p
and q, then it’s entirely practical to find their productm = pq. But given anm
of hundreds of digits, it’s just not feasible to find either p or q. We call themul-
tiplication of two large primes a one-way function, meaning that it is, in practi-
cal terms, not invertible.

This observation is the basis of RSA cryptography (named for its three in-
ventors, Ron Rivest, Adi Shamir, and Leonard Adleman). Suppose you want
to enable people to send you secret messages. In one version of RSA, you pick
two big prime numbers, p and q, andmultiply them together to find n. Then
you publicly publish n, along with another number you derive. This is called
a public key. People then encrypt their messages using these numbers. You’re
the only person who can read thosemessages, because decrypting them re-
quires knowledge of the two primes, p and q. Even though you published their
product n, it’s impractical for anyone else to find those starting prime num-
bers, so themessage is secure. This description barely scratches the surface of
the RSA system, which is a fascinating topic [11].

The key takeaway is that we trust this form of encryption to keep our se-
crets safe because finding the prime factors of enormous integers is impracti-
cal, even on today’s biggest and fastest conventional computers.

The impracticality of factoring large prime numbers is used to protect
almost everything on the internet today, from state and industrial secrets
to banking and healthcare data, individual emails, and even private direct
messages. It’s the reason we trust that these important secrets are safe on the
internet.

Shor’s Algorithm 317

The prime and composite numbers used by today’s encryption algo-
rithms are often hundreds of digits long. The 2015 US government encryp-
tion standards for this technique require the prime factors to have about
310 decimal digits each, resulting in a published composite number of about
617 digits. The expectation is that any algorithm on a classical computer
would take decades to find the prime factors of this number and thus crack
the encryption [199] [270].

This expectation has been valid for decades, and it probably will remain
valid for a while longer. But when quantum computers become sufficiently
large and accurate, all of that security will be lost, and all the secrets this en-
cryptionmethod is protecting will be revealed. Let’s see why.

Shor’s Algorithm
In 1994, Peter Shor published a paper that showed how to use a quantum
algorithm as part of a hybrid system to factor a composite number [195].
This algorithm, now known as Shor’s algorithm, is probably the most famous
quantum algorithm because of its implications for breaking the security that
many individuals and institutions rely on every day.

Shor’s algorithm pierces the key mechanism behind RSA cryptography
because it provides an efficient way to factor numbers that are the product
of two primes, even when those primes are huge.

The quantum part of Shor’s algorithm doesn’t directly find these prime
numbers. Instead, it solves a related problem whose solution can then be
used to determine the prime factors. The algorithm doesn’t always succeed,
because you start with a number that you guess. But it succeeds often enough
that you will almost certainly find the prime factors you’re seeking in less
than 10 attempts [198, §11.9].

The catch is that the algorithm requires a quantum computer that has
many thousands of qubits, along with error-correcting methods to make sure
that the computation proceeds reliably. As of 2025, no publicly revealed
quantum computers meet these requirements. But quantum computers are
getting bigger and more reliable every day, so while using Shor’s algorithm
to break internet-level cryptography isn’t practical today, it seems likely to be
practical someday.

I mentioned that Shor’s algorithm solves a problem related to prime
factoring. This problem is called period finding, and it will be our focus in
this chapter.

The connection between period finding and prime factoring is compli-
cated. It uses a bunch of ideas from a branch of mathematics called number
theory [196]. Unfortunately, all of this has little to do with quantum com-
puting, and getting into it would be a huge detour for us. So I’ll skip all of
that and focus on the problem of period finding, which we’ll solve with a hy-
brid algorithm. If you want to dig into how period finding helps us factor
prime numbers, there are lots of great discussions to choose from [11] [47]
[71] [137] [198] [294]. The good news is that if you’re willing to put in some
work, you can build enough working knowledge of all the pieces to see how
Shor’s algorithm works from beginning to end.

318 Chapter 13

Shor’s algorithm is a hybrid technique that uses a conventional com-
puter at the start and end and a quantum computer in the middle. As I said,
that quantum step is designed to solve the period-finding problem. If we can
efficiently get useful results from the quantum part of the algorithm, we’ll
have managed the hardest and (by classical standards) most time-consuming
part of factoring a composite number. So let’s dig in and solve period finding.

Period Finding
Let’s start with the big picture of the period-finding problem. Suppose that
we have a sequence that is made up of r unique integers. We’ll make another
sequence that I’ll call S by repeating this sequence over and over. Let’s say
that we repeat all r elements in the original list a total of m times, so S has rm
numbers. Equation 13.1 shows an example for a sequence S created from a
list of r = 4 elements repeated m = 3 times, for a list of 12 elements.

sequence = 3, 7, 2, 4

S = 3, 7, 2, 4︸ ︷︷ ︸, 3, 7, 2, 4︸ ︷︷ ︸, 3, 7, 2, 4︸ ︷︷ ︸ (13.1)

We say that r is the repeat length, or period, of the sequence that makes up
the list, and m is the number of repeats of that list in S.

The period-finding problem starts with a list that is promised to be made
up of such a repeating sequence. Our goal is to find r, the period of that
sequence.

Classically, we can find the period of the sequence by checking the items
of the list one by one, looking for a repeated value. For example, given a se-
quence S, we start by looking at the integer s0. Then we look at s1 and see if
it’s the same as s0. If so, the period is 2. Otherwise, we check s2, then s3, and
so on, until for some integer k we find that sk = s0. Because we’re promised
that no entry in the repeating sequence is duplicated, we’re done, and we
can report that the period is k.

This approach can be practical if nothing gets too big. For example, if
we’re given the list explicitly, we’d like something that can fit into our com-
puter’s memory. It can overflow somewhat, but if the list has many billions
of entries, the mere process of retrieving each element may become unac-
ceptably slow. Alternatively, we might not be given the elements of the list at
all, but instead a function that takes in a list index, does some computation,
and returns the corresponding entry. If that function is time-consuming to
evaluate, then the period can’t be too long or we’ll spend all of our time exe-
cuting the function instead of comparing items and looking for repeats.

It would be great to bypass these limitations and be able to solve this prob-
lem for huge lists, made up of absolutely enormous repeating sequences,
however they’re represented.

Enter, of course, quantum parallelism!
Before we continue, we need to decide if we’re going to tackle this prob-

lem in its full generality. The fully general approach starts with N = 2n qubits
and allows the period r to be anything that’s N – 1 or less.

Shor’s Algorithm 319

A special case that makes the math simpler to read and write assumes
that r divides N. That is, there are an integer number of complete repeats
of the sequence in our N states, or N/ r is an integer. For example, in
Equation 13.1, we have N = 12 and r = 4, so N/ r = 3, an integer.

The quantum circuit for both cases is the same, while the classical part
of the algorithm is simpler for the case where r divides N.

As our focus is on the quantum part of the algorithm and not the de-
tails handled by the classical computer, I’m going to discuss the special case
where r divides N. We’ll still see all the key ideas, but our math will be kept
to a minimum. The references throughout this chapter show you how to ex-
tend the mechanics of the classical part of the algorithm to cover any value
of r.

So for us, N = mr for some integer m. We can also write this for m as in
Equation 13.2.

m =
N
r

(13.2)

Remember that, for us, r always divides N, so m is an integer. To further
simplify the math that’s coming, I’ll create a function f that takes as input
any integer x and returns an integer value x mod r for some period r. For
this chapter, f (x) is defined as in Equation 13.3.

f (x) = x mod r (13.3)

Note that we’re implicitly assuming that r is known (in programming
terms, this definition assumes that r is a global variable). By leaving r im-
plicit, I can write f (x) rather than the bulkier f (x, r).

Equation 13.3 tells us that inputs x = 0 to x = r – 1 produce the outputs of
f (x) from 0 to r – 1, then inputs x = r to x = 2r – 1 also produce outputs from
0 to r – 1, and so on. Figure 13-1 shows the idea for the period r = 4.

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m mod 4 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

Figure 13-1: The value of m mod 4 for increasing values of m

Sometimes I’ll write a number x in the form x = b + jr for integers b and
j. In this form, j tells us how many full repetitions of the repeating sequence
with period r have preceded x, and then b tells us how far we are into the
final repetition (numbering, as always, starting with 0). We can solve for j
and b by finding j = ⌊k/ r⌋ and b = x mod r (the notation ⌊a⌋means that we
take the integer part of a, rounded toward 0).

These definitions don’t do a lot for us now, but they will make themath
a little easier going forward. A graphical version of this numbering scheme is
shown in Figure 13-2, illustrating the values in Figure 13-1.

320 Chapter 13

Figure 13-2: The sequence of 4 elements repeats completely 3 times.
The entry at index 14 is at index 2 in the repeating sequence.

Figure 13-3 shows the circuit we’ll be using to help us find the period r for
a given sequence. For now, we’ll just look at the big picture. We’ll get to the
boxmarkedQFT shortly.

⊗n

⊗n

n

n

v |0⟩⊗n y

w |0⟩⊗n b

H⊗n

f

QFT

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Figure 13-3: Shor’s circuit for period finding

A key idea of this algorithm is that the boxmarked f implements our func-
tion f (x) = x mod r from Equation 13.3. This sounds like a serious problem,
because r is the very thing we’re trying to find!

Not to worry. The first steps of Shor’s hybrid algorithm, which run on
a classical computer, take an integer that we guess and turn that into a can-
didate for a value of r. Given that value of r, we build the circuit and run it
as described in the following section. If we ultimately don’t find the prime
factors of the number we’re trying to factor, wemake a new guess, get a new
candidate for r, make a new circuit for the qugate marked f, and try again. As
I mentioned, the candidates for rwill be so good that we will likely never have
to guess more than 10 times. You can think of the quantum part of Shor’s al-
gorithm as an efficient way to validate, or confirm, that a candidate value for r
is correct.

Let’s walk through an overview of the circuit. We’ll start our process as
we often do, bymaking a register of n qubits, all initialized to |0⟩, and then
running them all throughHadamard qugates, creating the uniform superpo-
sition |+⟩⊗n of allN = 2n input states. Let’s call that the v register. We’ll also
make a second register, which I’ll call the w register, also of n qubits, all ini-
tially |0⟩. We’ll run these two registers through a big qugate marked f that im-
plements our function f (x) = x mod r. The top register emerges unchanged,
while the lower register emerges with a superposition of all the values of f(v).

Shor’s Algorithm 321

This brings us to the location |ψ2⟩ in Figure 13-3. Though we’ve been
thinking of our qubits as two registers, we can also view them as a single reg-
ister that combines all inputs x in the top n qubits and all outputs f (x) in the
lower n qubits. Thus, by the principle of partial measurement, if we imagine
measuring the top register and get an output bitstring b, we can be certain
that the lower register, should we choose tomeasure it, would give us the bit-
string f(y) = b mod r.

We can go the other way, too, and note that if wemeasure the bottom
register and get back a bitstring b, then the top register must be in a superpo-
sition of all the states that produce an output of b mod r. That is, the upper
register is in a superposition of the state |b⟩, and |b + r⟩, and |b + 2r⟩, and so
on, up to |b + (m – 1)r⟩. So, if wemeasure the lower register and observe b,
then the only states that remain in the upper register are those consistent with
observing b in the lower register. This means the upper register holds the su-
perposition of states that can be written in the form |b + jr⟩ for some integer j,
and no others.

If we nowmeasured the upper register, we wouldn’t learnmuch, as there
are two unknowns: j and b. If we could somehow get rid of one of them, we
might have a chance of measuring the other.

To accomplish this, we’ll use a quantum version of a staple algorithm in
signal processing called the Fourier transform [73] [66] [152]. Its quantum ver-
sion is the quantum Fourier transform, orQFT [198, §11.10] [249]. Discussing
theQFTwould take us on a long detour, so I’ll just use the formula for the
QFTwhen we get to it. You can find thorough discussions of the algorithm in
the references.

TheQFT turns a state |b + jr⟩ into the form eγ(b+jr) |k⟩ for some complex
number γ and state |k⟩. We can write this coefficient as the product eγbeγjr.
This gives us useful separation of one term involving b and one term involving
j and r.

We’ll discuss later how collecting a few of these terms enables us to elimi-
nate the j, leaving us with our goal, the original period r.

This overview has introduced a lot of new ideas. Let’s see how to turn
these concepts into an algorithm.

Analyzing the Circuit
We’ll start as we often do, with two sets of quantum registers. In this case,
each has n qubits, all initialized to |0⟩. Then we’ll apply H qugates to the
upper register to place it into a uniform superposition of all N = 2n states.
The next step is to run both registers through a qugate that places x mod r
in the lower register for each input x in the upper register. These steps are
shown in Figure 13-4.

322 Chapter 13

n

n

v |0⟩⊗n

w |0⟩⊗n

H⊗n

f

|ψ0⟩ |ψ1⟩ |ψ2⟩

Figure 13-4: The start of a circuit for period finding

Let’s write down the three checkpoints in Figure 13-4, starting with |ψ0⟩
and |ψ1⟩ in Equation 13.4.

|ψ0⟩ = |0⟩⊗n |0⟩⊗n

|ψ1⟩ = ∨n
∑
k∈[N]

|k⟩ |0⟩ (13.4)

After applying the function f, we get |ψ2⟩ in Equation 13.5.

|ψ2⟩ = ∨n
∑
k∈[N]

|k⟩ |k mod r⟩ (13.5)

The w register is thus a superposition of the r states from |0⟩ to |r – 1⟩.
There are only two steps to go. First, we measure the w register, as shown

in Figure 13-5.

⊗n

n

n

v |0⟩⊗n

w |0⟩⊗n b

H⊗n

f

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩

Figure 13-5: Measuring the w register

We’ll get a bitstring b from 0 to r – 1, as those are the only values pro-
duced by the function f. Let’s interpret the bitstring b as a decimal number,
which I’ll also write as b.

The principle of partial measurement, which we discussed in Chapter 6,
tells us that when we have a superposition of states and we measure some of
the qubits, the remaining qubits collapse to values that are consistent with
what we measured. Therefore, knowing that the w register has collapsed to
the state |b⟩, we also know the entire system will collapse to a superposition
of the states from the original superposition that end with this |b⟩. These

Shor’s Algorithm 323

are the states |(jr + b) b⟩. Thus, the v register is in a superposition of states
described by |jr + b⟩ for different values of j.

At this point, the w register has done its job by partially collapsing the v
register. We don’t need the w register anymore.

Let’s think about what’s just happened. State |ψ2⟩ can be viewed as a
collection of states, each described by jr + b in the v register and b in the w
register. And we just measured b. The value b appears in the w register just
once in each set of r states, and there are m such sets. Thus, after measur-
ing b in the w register, we’re left with a superposition of m states given by
b +mr. Because there are m states with equal amplitudes, each must have am-
plitude 1/

√
m (this makes their probabilities add up to 1, as they must, since

m(1/
√
m)2 = m/m = 1). We can write this superposition as in Equation 13.6.

|ψ3⟩ =
1√
m

∑
k∈[m]

|b + kr⟩ (13.6)

Can we find r just from |ψ3⟩? After all, we now know b, and if we mea-
sure |ψ3⟩, we’ll get back some integer b +mr. If we can factor out the m, we’ll
be left with our goal, r.

This might sound a little like brute force. But programmers are fond of
saying “Never underestimate the power of brute force,” so let’s give it a shot.

Suppose that we run the circuit of Figure 13-5 a few thousand times
using N = 100 and r = 10. Then we’ll probably (though not definitely) mea-
sure some particular value of b at least a few times. Let’s call that value b ′,
and throw out all the runs that gave us any other value of b. We could then
gather up the corresponding upper register outputs. Let’s call them b ′ + k0r,
b ′ + k1r, and so on. Next, we could subtract b ′ from each, giving us the se-
quence k0r, k1r, . . . , knr, and from that find r. Success!

For example, suppose b ′ = 3 and r = 5. We’ll make two measurements,
corresponding to k = 5 (giving us 3 + (5× 5) = 28) and k = 11 (giving us
3 + (5× 11) = 58). Remember that we don’t know the values of k, only the
measurements 25 and 58. Subtracting b ′ = 3 from each, we get 25 and 55.
Their greatest common divisor is 5, and we’ve recovered our value of r.

This scheme is, unfortunately, impractical when applied to cryptography,
where the numbers used are often larger than hundreds of bits [270]. The
number of runs of the algorithm we’d need to perform to gather enough
measurements would be overwhelming. Brute force, as many would-be con-
querors, despots, and authoritarians have discovered, doesn’t scale up well.

Let’s take a different approach.

Applying the QFT
We’re going to leave the conceptual picture now in favor of working the
math, because this is where the magic happens. There will be a bunch of
equations, so I’ll take it one step at a time.

Earlier I said that we would wrangle the term b + kr into an exponent.
If we can compute eb+kr = eb ekr, then we might be able to set eb aside. To get

324 Chapter 13

us to that point, I’ll apply the QFT to |ψ3⟩ and see what we get from it.
Appending the QFT to the top register of Figure 13-5 gives us Figure 13-6.

⊗n

n

n

v |0⟩⊗n

w |0⟩⊗n b

H⊗n

f

QFT

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Figure 13-6: Applying the QFT to the v register

Because we’re not going to delve into the workings of the QFT, let’s just
treat it as a normal function. Then the result of applying the QFT to |ψ3⟩ is
|ψ4⟩, given in Equation 13.7 (from here on out, I’ll drop the w register since
we don’t need it anymore).

|ψ4⟩ = QFT(|ψ3⟩)

= QFT

 1√
m

∑
j∈[m]

|b + jr⟩

 From Eq. 13.6
(13.7)

The QFT is a quantum gate and therefore is linear, so we can move it
inside the summation, giving us Equation 13.8.

|ψ4⟩ =
1√
m

∑
j∈[m]

QFT(|b + jr⟩) Because the QFT is linear (13.8)

Now I’ll substitute the formula for the QFT. This formula is the final
step in a logical process, but not one we can summarize in just a few lines.
You can find discussions of the QFT, and its derivation, in many references
[37] [97] [277].

Substituting the definition of the QFT into Equation 13.8 gives us
Equation 13.9, where the big square brackets contain the result of applying
the QFT to |b + jr⟩.

|ψ4⟩ =
1√
m

∑
j∈[m]

 1√
N

∑
k∈[N]

ω(b+jr)k |k⟩

 Write out the QFT of |b + jr⟩ (13.9)

This expression uses a variable ω, defined in Equation 13.10. As always
in this book, N = 2n for n qubits.

ω
∆
= ei2π/N (13.10)

With this definition, ω(b+jr)k is a short way of writing the longer (and
much messier) term exp(i2π(b + jr)k/N) (remember that exp(x) is another
way to write ex that saves us the effort of squinting at all those symbols in tiny
type as an exponent).

Shor’s Algorithm 325

Now that we have the QFT applied to |ψ4⟩, we can juggle things around.
I’ll reverse the order of the summations and expand the exponential. That
will give us a term ωbk that we can pull out of the innermost sum. The steps
are in Equation 13.11.

|ψ4⟩ =
1√
m

∑
j∈[m]

 1√
N

∑
k∈[N]

ω(b+jr)k |k⟩

 Eq. 13.9

=
1√
mN

∑
j∈[m]

∑
k∈[N]

ω(b+jr)k |k⟩ Pull 1/
√
N to the front

=
1√
mN

∑
k∈[N]

∑
j∈[m]

ω(b+jr)k |k⟩ Reverse order of sums

=
1√
mN

∑
k∈[N]

∑
j∈[m]

ωbk ω jrk |k⟩ Expand exponential

=
1√
mN

∑
k∈[N]

ωbk
∑
j∈[m]

ω jrk |k⟩ Move ωbk out of final summation

(13.11)

Recall that the thorn in our brute-force approach was that it depended
on obtaining the same bmultiple times, and that became increasingly un-
likely for large values of N. By using the QFT, we’ve gotten the term involv-
ing b outside of the inner loop. This means we don’t have to hope that we’ll
luckily measure many states with the same b. Next, we’ll get rid of the b en-
tirely, giving us a clear path to our goal, finding the value of r.

Finding the Probability of |k⟩
We’ll now find the probability of measuring one particular, but arbitrary,
state, and we’ll see how that leads us to r.

I’ll start by isolating the amplitude of just one specific state |k⟩ from
Equation 13.11, which I’ll square to get the probability of measuring k, writ-
ten Pr(k). This is shown in Equation 13.12. I’ve removed the loop over k, as
we’re now interested in only one specific value of k.

Pr(k) =

∣∣∣∣∣∣ 1√
mN

ωbk
∑
j∈[m]

ω jrk

∣∣∣∣∣∣
2

(13.12)

Let’s clean this up. First, notice that ωbk is now a constant. Thus, we can
pull it out front, giving us Equation 13.13.

Pr(k) = |ωbk|2

∣∣∣∣∣∣ 1√
mN

∑
j∈[m]

ω jrk

∣∣∣∣∣∣
2

(13.13)

Recall that ωbk is a shorthand for exp(i2π(bk)/N). Although the phase is
complicated, this is a complex number with a magnitude of 1, so its square

326 Chapter 13

is also 1. As multiplying the probability by 1 doesn’t change that probability,
we can just drop this term.

Whoa, we did it; we just got rid of b!
The resulting simpler expression is shown in Equation 13.14.

Pr(k) =

∣∣∣∣∣∣ 1√
mN

∑
j∈[m]

ω jrk

∣∣∣∣∣∣
2

(13.14)

Since b doesn’t show up at all anymore, there’s no need to run the algo-
rithm multiple times to get a bunch of outputs with the same b. Thanks to
the QFT, we’ve replaced brute force with finesse.

We can keep simplifying, and things get even better. First, let’s pull the
fraction at the start out of the expression. Noting that (1/

√
mN)2 = 1/(mN),

we get Equation 13.15.

Pr(k) =
1
mN

∣∣∣∣∣∣
∑
j∈[m]

ω jrk

∣∣∣∣∣∣
2

(13.15)

We’ll soon find it useful to get the 1/m part of the opening fraction into
the squared expression. Let’s get started by rewriting the fraction 1/mN as
in Equation 13.16.

1
mN

=
1

m2r
Use N = mr from Eq. 13.2

=
1
r

(
1
m

)2 (13.16)

The fraction 1/m is getting squared while 1/r isn’t, so we can keep the
1/r out front and move 1/m inside the absolute value. The result of this
move is Equation 13.17.

Pr(k) =
1
r

∣∣∣∣∣∣ 1m
∑
j∈[m]

ω jrk

∣∣∣∣∣∣
2

(13.17)

Let’s expand the ω term using Equation 13.10, and then substitute N
with rm as shown in Equation 13.18.

Pr(k) =
1
r

∣∣∣∣∣∣ 1m
∑
j∈[m]

exp
(
i2πjrk/N

) ∣∣∣∣∣∣
2

Expand ω

=
1
r

∣∣∣∣∣∣ 1m
∑
j∈[m]

exp
(
i2πjrk/(rm)

) ∣∣∣∣∣∣
2

Substitute N = rm

=
1
r

∣∣∣∣∣∣ 1m
∑
j∈[m]

exp
(
i2πjk/m

) ∣∣∣∣∣∣
2

Cancel the r values
in the exponent

(13.18)

Shor’s Algorithm 327

This is nice. We’ve now isolated r at the start of this expression. If we
can figure out the value of the term between the absolute value bars, we’ll
know r. We’re just about done!

Having been down this road before, I can report back that if we examine
the probability of measuring some specific values of k, we’re going to learn
something useful. In particular, suppose that k = cm for some integer c. That
is, k is a multiple of m, the number of repeats of our pattern in the original
input.

Let’s plug k = cm into Equation 13.18 and see what happens. The steps
are shown in Equation 13.19.

Pr(k = cm) =
1
r

∣∣∣∣∣∣ 1m
∑
j∈[m]

exp(i2πj(cm)/m)

∣∣∣∣∣∣
2

Use k = cm

=
1
r

∣∣∣∣∣∣ 1m
∑
j∈[m]

exp(i2πjc)

∣∣∣∣∣∣
2

Cancel the m terms

=
1
r

∣∣∣∣∣∣ 1m
∑
j∈[m]

1

∣∣∣∣∣∣
2

Since j, c ∈ Z, exp(i2πjc) = 1

=
1
r

∣∣∣∣ 1mm
∣∣∣∣2 Add up m values of 1 to m

=
1
r

The probability of measuring k = cm

(13.19)

The next-to-last step is why I put the 1/m term back inside the squared
expression. When we measure |ψ4⟩, the probability that we’ll get back a
value cm is 1/r. This tells us that in our running example, when |ψ4⟩ has
four states, it can be drawn as in Figure 13-7.

Figure 13-7: The superposition |ψ4⟩ resulting from applying the QFT to |ψ3⟩

How many of those values are there? They start with c = 0, then c = 1,
and so on, up to some largest nonzero value of c that I’ll call cmax. Whatever
this is, we know that cmaxm = N, so cmax = N/m = r. So when we measure
|ψ4⟩, we can get back any one of r different states cm, for c ranging from 0
to r – 1.

328 Chapter 13

But hold on. If there are r possible such states, and each has a probabil-
ity of 1/r of being measured, then the probability of measuring one of these
states is r(1/r) = 1.

This is huge news! It means that when wemeasure |ψ4⟩, we are guaranteed
to get back a state cm. We will never get back any other state, because there’s
no probability left over for any other state to take on.

We’re definitely going to measure a state cm = cN/ r. We know N, so col-
lecting enough values of cm will let us recover r. The beauty of the QFT in
this algorithm is that it gets us to this conclusion regardless of what we measure
in the lower register.

The QFT transformed |ψ3⟩ into a form that let us eliminate any depen-
dence on b, and ultimately led us to measure a very specific superposition
that we could use to find r.

And that’s how we use a quantum computer to find the period r of some
input sequence. The whole algorithm is shown in one place in Figure 13-8.
Our final measurement y in this circuit will always be some number cN/ r,
where we know N and we also know c is an integer.

⊗n

⊗n

n

n

v |0⟩⊗n y

w |0⟩⊗n b

H⊗n

f

QFT

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Figure 13-8: The full quantum circuit for period finding

As I said at the start of this discussion, I’ve been assuming that the initial
sequence repeats an integer number of times, or that N/ r is an integer. We
used that assumption several times to simplify the math. Assuming that r di-
vides N is a major assumption, however, and it’s unlikely to be true for most
sequences we’d work with in practice.

Ifwe relax this assumption, we can still carry out the circuit of Figure 13-8,
and we still get |ψ4⟩ as in Equation 13.11 and the probability of measuring k
in Equation 13.12. But after that, things get more complicated. Specifically,
it’s the classical part of the algorithm that comes after this quantum step
that gets more complicated, because we can’t isolate r as neatly as we did in
Equation 13.19.

Generally speaking, even when r doesn’t divide N, the closer a state is to
an integer value of N/ r, the more likely that state is to be measured. By run-
ning the circuit multiple times and combining multiple measurements, we
can still recover r during the classical step by using a few more mathematical
techniques [196] [47] [71] [198].

Shor’s Algorithm 329

Connecting to Prime Factoring
I said earlier that connecting period finding to prime factoring would be too
big a detour for this discussion. But we can still consider the big picture, so
let’s look at Shor’s algorithm in overview and demonstrate it in action. I’ll
just state the steps here, and you can find justification for everything from
the references.

We’ll use two ideas from number theory in this process. The first is
modulo arithmetic, which we’ve already seen.

The second is the gcd, which stands for the greatest common divisor. Given
two positive integers a and b, their greatest common divisor, written gcd(a, b),
is the largest integer that divides both a and b. For example, gcd(12, 16) = 4,
because while both 4 and 2 divide both 12 and 16, the larger of these divi-
sors is 4. Using some larger numbers, gcd(35, 40) = 5, because 35 has the
divisors 5 and 7 and 40 has the divisors 2, 4, 5, 8, 10, and 20, so the largest
divisor they have in common is 5.

If the gcd of two numbers is 1, like in gcd(7, 15), then we say that the
two numbers are relatively prime (we also say that they are coprime to one an-
other, or that they are coprimes). This doesn’t mean that either number is a
prime number (for example, gcd(9, 16) = 1 even though neither 9 nor 16 is
prime), but only that they have no prime factors in common.

The gcd can be quickly computed with a process called the Euclidean
algorithm [234], which is available as a function in almost every classical math
library. The process is deterministic, so there’s no guessing, and it’s simple
enough that it doesn’t require any external reference data, such as a table of
prime numbers [265].

Shor’s algorithm is a hybrid sandwich: It starts and ends with classical
computing and performs the quantum algorithm we saw earlier in the mid-
dle. I’ll outline the basic process with a step-by-step approach [198]. The
quantum part is in step 5:

1. Setup: We’re given some integerM that we’re promised is the prod-
uct of two prime numbers, p and q. We want to find these two primes
(we really only need one, say p, as it’s practical to compute q = M/ p
on a classical computer).

2. Pick circuit size: Find the smallest n such that 2n > M2. That n will
be the number of qubits in each register of our network, represent-
ing N = 2n states.

3. Guess a: Guess a random integer a in the range [2,
√
M].

4. See if we’re lucky: Find gcd(a,M). If this is not 1, then we were
lucky: a andM have a common factor greater than 1, and we’ve
achieved our goal. We stop here and return gcd(a,M). Otherwise,
we continue to step 5.

5. Go quantum: Run the quantum algorithm of Figure 13-8, where the
function f (x) is x mod a. Measure the registers.

330 Chapter 13

6. Compute a candidate: Because we generally won’t have an inte-
ger number of repeats (that is, m = N/ r won’t be an integer), we
use some math we haven’t discussed to process the measurement y,
along with any previous measurements, into a guess for r.

7. Check this r: Before we go further, we check that this guess for r
satisfies two conditions. Specifically, if r is odd or if the expression
ar/2 + 1 mod M = 0, we go back to step 3 and try a new guess for a.
Otherwise, we continue.

8. Try to factorM: Find gcd(ar/2 – 1,M) and gcd(ar/2 + 1,M). If either
of these is not 1, we’ve found a prime factor, so we return it. Other-
wise, we go back to step 3 and try a new choice for a.

We’re doing some guessing in this algorithm, so it falls under the cat-
egory of a probabilistic algorithm. Using some analysis of each guess, we can
compute that the probability of failing to find a prime number after 10 times
through this loop is about 10–10, or 1 in 10 billion [198, §11.9].

An Example of Shor’s Algorithm
Let’s run through Shor’s algorithm, using the popular example of factoring
M = 15 [146, §5.4].

I’m going to pick a = 7 for the example, so let’s look at the pattern
7x mod 15 for increasing values of x, as shown in Table 13-1.

Table 13-1: The function 7x mod 15 for the first few values of x
x 7x 7x mod 15

0 1 1

1 7 7

2 49 4

3 343 13

4 2,401 1

5 16,807 7

6 117,649 4

7 823,543 13

8 5,764,801 1

9 40,353,607 7

10 282,475,249 4

11 1,977,326,743 13

This tells us that the period r has the value 4, as 7x mod 15 repeats every
four terms.

Shor’s Algorithm 331

I’m going to pick n = 11 qubits, giving us 211 = 2,048 states. Conveniently,
N/ r = 2,048 / 4 = 512, which is an integer, so we have exactly m = 512 repeti-
tions of the sequence (1, 7, 4, 13) in our 2,048 starting states.

Now let’s go through the same steps outlined in the previous section
using these values:

1. Setup: We’re givenM = 15.

2. Pick circuit size: BecauseM2 = 225, any value of n ≥ 8 will do, as
28 = 256 > 225. Let’s arbitrarily pick n = 11.

3. Pick a: Arbitrarily pick a = 7.

4. See if we’re lucky: Find the gcd of a andM. Because gcd(7, 15) = 1,
we weren’t lucky, so we continue.

5. Go quantum: Build the quantum gate that implements the function
x mod 7. Run the quantum algorithm of Figure 13-8, where the
function f (x) is 7x mod 15. When we measure the second register,
Table 13-1 tells us that we could get 1, 7, 4, or 13. I’d like this example
to complete successfully, and I know that getting 4 will get us there,
so let’s suppose we measure 4 (if we didn’t, one of the later steps
would fail, and we’d return to step 3). Then we know that |ψ3⟩ is a
superposition of all 512 states |x⟩ where 7x mod 15 = 4, as shown in
Equation 13.20 (the first few values come from Table 13-1).

|ψ3⟩ =
1√
512

∑
k∈[512]

|4k + 2⟩

=
1√
512

(
|2⟩ + |6⟩ + |10⟩ + · · · + |2,046⟩

) (13.20)

This superposition has a nice graphical interpretation, shown in
Figure 13-9.

Figure 13-9: The superposition |ψ3⟩. Each of these 512 states has a
probability of 1/512.

Now we apply the QFT. The upper register turns into an equal su-
perposition of the four values cm, or 512c, for c ∈ [r], or 0, 1, 2, 3.

332 Chapter 13

Thus, |ψ4⟩ is given in Equation 13.21.

|ψ4⟩ =
1√
4

∑
k∈[4]

|512k⟩

=
1√
4

(
|0⟩ + |512⟩ + |1,024⟩ + |1,536⟩

) (13.21)

Once again, we can draw this superposition graphically, as shown in
Figure 13-10.

Figure 13-10: The superposition |ψ4⟩. Each of the 4 states
has a probability of 1/4.

6. Compute a candidate: Suppose when wemeasure |ψ4⟩we get 1,536.
Then, using a technique called continued fractions, from a starting
point of 1,536 / 2,048 = 3/4, we get a guess of r = 4.

7. Check this r: First, r = 4 is even, so we pass the first test. Second,
74/2 + 1 mod 15 = 50 mod 15 = 5, and that’s not 0, so we pass that
test as well and continue to step 8.

8. Try to factorM: We now find gcd(74/2 – 1, 15) = gcd(48, 15) = 3 and
gcd(74/2 + 1, 15) = gcd(50, 15) = 5. These are both not 1, so we’ve
found the prime factors of 15, or 15 = 3× 5. Encryption cracked!

Discussion
I mentioned earlier that we can almost surely factor a prime number using
Shor’s algorithm in just 10 runs. So that’s the end of internet security, right?

Not quite. The first problem is simply one of size. To crack security sys-
tems used in 2025, we’d need a reliable, low-noise quantum computer of
somewhere between 5,000 and 24,000 qubits [67]. As of 2025, the largest
publicly announced quantum computer is 1,121 qubits [69]. Quantum com-
puters are growing in size and reliability, but getting up to many thousands
of useful qubits may take a while.

Another issue, though more easily accommodated, is that we have to
create a new quantum circuit for each value of a that we want to test, be-
cause each choice of a requires a new circuit to evaluate f(x) = x mod a. That
might take some work [297].

Shor’s Algorithm 333

To counter the possibility of a large quantum computer opening up
all the secrets now protected by the RSA system, a new field of quantum
cryptography is developing ways to protect information. The goal is to find prac-
tical methods that cannot be efficiently cracked by a quantum computer [11].

New encryption methods don’t change the fact that Shor’s algorithm
could be used retroactively, to decrypt everything that is, or was, encrypted
with a system like RSA. A lot of this stuff won’t matter, like everyday credit
card transactions from decades ago. But some of those old secrets might still
be important, such as military or industrial plans, or people’s private health
histories, or their diaries and photos, videos, and other personal, confiden-
tial records. Even if you re-encrypt these with some new kind of quantum
cryptography, if the old versions still exist in some archives, or on old hard
drives, or anywhere else, they will still be vulnerable.

This isn’t a new situation. The history of cryptography is filled with tech-
niques that were eventually broken and replaced with better methods, leav-
ing the old secrets open to discovery by anyone with the means of accessing
them. Even so, there are some famous examples of secret messages, ciphers,
and codes that have not been cracked. Some are ancient and presumably
were actually used in practice (like the Linear A script found on tablets in
Crete), while others may be one-off mysteries (or hoaxes) that might never
be undone [54].

It’s probably best to always treat any encryption scheme as temporary
and find additional ways to protect information you really don’t want any-
one to be able to read for a long time. Almost nothing is forever, including
encryption.

Summary
Shor’s algorithm is probably the most famous quantum algorithm. It can
solve a problem that is so time-consuming for classical computers that it is
used as the core of encryption techniques around the world.

The idea behind many of those techniques begins with two huge prime
numbers that are multiplied together to get a new, even bigger number.
Given that bigger number, we’d like to reverse the process and find its two
prime factors.

Shor’s algorithm solves this problem by breaking it down into pieces.
First, the work is shared between classical and quantum computers, so the
complete system forms a hybrid algorithm. Second, through some clever
number theory that we didn’t discuss, the factoring problem is replaced with
a different problem that asks us to find the period of a repeating sequence
in a sequence of numbers. We start the process by making a guess, and if
our guess doesn’t lead us to the prime numbers we seek, we make a different
guess and try again.

In this chapter, we assumed that the period, or length of the repeating
sequence divided the total length of the input. This meant that we have
an integer number of full instances of the repeating sequence in the in-
put. With a more complicated classical algorithm, this restriction can be
removed.

334 Chapter 13

Shor’s algorithm is not yet a practical tool for breaking the widespread
RSA encryption system and its variants. Cracking RSA would require a reli-
able quantum computer with more qubits than anyone’s been able to build.
But we will probably have such computers one day, and then the secrets pro-
tected today by encryption algorithms such as RSA, which depend on the
difficulty of factoring prime numbers, will be exposed.

To address this, researchers are working on new encryption algorithms,
native to quantum computers, that aren’t vulnerable to Shor’s algorithm.

Shor’s Algorithm 335

14
NEXT STEPS

If the quantum circuit model really does capture everything that happens in physics, then we’ll
be able to use quantum computers in the future to explore fundamental physics at a very deep
level. But if not, that’s even more exciting. It means that Nature will ultimately allow even
more powerful information processors than the quantum computers we currently foresee.

—John Preskill, Quantum Computing 40 Years Later, 2021 [160]

Study hard what interests you the most in the most undisciplined, irreverent and original
manner possible.

—Richard Feynman, The Quotable Feynman, 1965 [62]

We’ve covered a lot of material in this book,
but there is much more to be discovered

in the field of quantum computing. To help
you launch yourself in new directions and em-

brace new ideas, in this final chapter I’ll present some
advanced ideas, ways for you to run your own quan-
tum programs on real and simulated quantum com-
puters, and a bunch of cool applications to inspire your
own programs.

Further Ideas

Let’s start by looking at a few topics that you might find useful to explore if
you decide to pursue quantum computing in more depth.

Superdense Coding
The technique of superdense coding (also called dense coding) is kind of the flip
side of the quantum teleportation protocol we discussed in Chapter 7.

Rather than using entanglement and two classical bits to transfer a quan-
tum state from one quantum object to another, superdense coding is a way
to communicate two classical bits by exchanging one quantum bit [278].

In this scenario, we imagine a world in which Alice and Bob once again
want to exchange some information. As in quantum teleportation, I’ll as-
sume that they each share one qubit from a previously entangled pair.

The goal is to enable Alice to send two classical bits to Bob. Perhaps
she’s worried that if she sent those bits using some classical method, like
radio or in print, an eavesdropper could intercept them. Even if they were
encrypted, there’s some chance the eavesdropper could crack that encryp-
tion and learn the information in the bits.

To prevent this possibility, Alice can securely communicate her two clas-
sical bits to Bob by physically sending him a single quantum bit. Then, Bob
can use that qubit to recover the classical bits.

The circuit is shown in Figure 14-1.

Alice

b0 b1

|0⟩ b1

|0⟩ b0

H X Z H

Figure 14-1: A quantum circuit for superdense coding

We start as in teleportation, creating the Bell pair |βs+⟩, as we saw in
Figure 7-3. Now Alice and Bob go their separate ways, each with one of the
entangled pair of qubits. Some time elapses, as shown by the dots on the
qubit lines.

Later, Alice has two bits, named b1 and b0, that she wants to send to Bob.
Recall that she can’t (or doesn’t want to) send her two bits to Bob. Instead,
as shown in the box marked “Alice,” she uses her classical bits as controls on
two qugates applied to her qubit, a controlled-X and then a controlled-Z.

Now Alice hands her qubit to a courier, who physically delivers it to Bob.
This also takes some time, represented by the dots.

When Bob receives this qubit, he applies a CX and then an H qugate to
the system of qubits that are both now in his possession. Bob then measures
the two particles and recovers Alice’s two classical bits.

338 Chapter 14

Superdense coding offers a secure way for Alice to send her information
to Bob. If an eavesdropper (conventionally given the delightful name Eve)
intercepts the quantum particle that Alice sends to Bob, she is lacking Bob’s
half of the entangled pair and thus can’t extract Alice’s information from
the intercepted qubit.

Like quantum teleportation, superdense coding has been proven to
work in real hardware.

POVM and the Density Matrix
Our discussion of measurement focused on projection operators, because
they let us make measurements without requiring us to cover additional
math. There is a more general approach to measurement that instead uses
positive operator-valued measures (POVMs) [194] [276].

You might need to learn a few new mathematical tools to master this
approach to measurement, like the trace operator, which adds up the ele-
ments along the main diagonal of a matrix. But then you’ll be able to mea-
sure systems that are less well defined than the states we’ve talked about in
this book.

Let’s see what this approach offers us, starting with an analogy. Suppose
that you work with a bookstore that sends out curated boxes of books to
different organizations once a month. Each box has its own set of books
tailored to that type of organization, so there might be one box of books
selected for children’s hospitals, a different box of selections for high school
libraries, another box for senior community centers, and so on. They’ve sent
you a list of the contents of each of this month’s boxes, and you’ve selected
and ordered one box for your group.

Each month, the bookstore creates a summary sheet listing how many
boxes of each kind were ordered and emails that to everyone along with
their invoice. Unfortunately, the bookstore employee who filled the boxes
this month forgot to label them and sent each recipient a random box. As
a result, when you receive your order, you won’t know which selection of
books you’ve received until you open the box and look.

Now let’s replace the books with quantum states and the boxes with su-
perpositions. Suppose you’re working with a provider who creates systems
of qubits, where each system is in one of a number of known superpositions
of different states. Each month, they provide a summary that describes the
different superpositions their customers ordered and indicates how many
systems of each superposition were sent out. But, like the bookstore worker,
this month the person doing the packaging forgot to add the labels and sent
out the boxes containing the qubits haphazardly, so you don’t know which
superposition describes the qubits you received.

In other words, you have a system of qubits, and you know it’s in one of
the superpositions in the list. You also know how many systems in each su-
perposition were sent out. However, you don’t know which superposition
you have. It would be nice to be able to represent this scenario in mathemat-
ical terms, so you can work with the probabilities of the different superposi-
tions you might have received and the different states you might measure.

Next Steps 339

You canmathematically model this situation with a density matrix [19]
[257]. A nice advantage of the density matrix approach is that it doesn’t
assume we’re working with isolated quantum systems. Let’s see what that
means.

In this book, I’ve assumed that our qubits (and the systems we made
from them) are isolated from the environment. In fact, that condition was
part of Postulate 1 in Chapter 2. Isolation means that qubits don’t interact
with one another (unless we specifically cause them to), they don’t inter-
act with the electronics or mechanical devices that make up the quantum
computer, and they’re not affected by heat or vibration or gravity waves
or anything else. They are isolated from the rest of the universe. We did
briefly discuss how these outside phenomena introduce noise in our mea-
surements, but we didn’t try to model that noise.

The density matrix formulation lets us represent our quantum bits and
systems more realistically, as part of the universe we all inhabit. We don’t
have to make the assumption that they are isolated, in their own little pocket
universes. With this mathematical model, we can explicitly acknowledge the
universe’s effects on our qubits and make the universe a part of our com-
plete quantum system. We can then use mathematical techniques to remove
the parts of the universe we don’t want to deal with at any given moment,
thus isolating just the parts that interest us.

Quantum Encryption
We saw in Chapter 13 that Shor’s algorithm can break public-key encryption
schemes such as RSA encryption (or at least, it will be able to do so when
quantum computers get big and reliable enough).

Recall that RSA is based on the observation that nobody knows of an
efficient way to use a classical computer to factor a huge composite number
into its prime factors. But just because nobody’s found a way to do this yet
doesn’t mean nobody will ever find a way.

In response to these issues, a field of research known as post-quantum
cryptography (or sometimes just quantum cryptography) has emerged [11]. The
goal of the field is to find encryption schemes that are safe from being bro-
ken even by quantum computers. In other words, quantum cryptographers
aim to develop algorithms that are known (or at least, strongly believed) to
be theoretically impractical (or even impossible) for both classical or quan-
tum computers to crack, not just for some cases, but in every use.

An important problem is that the field of cryptography has shown us
time and again that no matter how clever an encryption system is, there is
almost always someone equally or more clever who can break it. So unless
a scheme can be rigorously proven to be uncrackable, there’s always the pos-
sibility that someone will come along and find a way to read the secrets it
protects.

Nevertheless, as the RSA and other public-key schemes have shown us,
having cryptography that works well today is definitely better for protecting
secrets than no cryptography at all.

340 Chapter 14

Quantum encryption is becoming an increasingly real technology. In
late 2024, the US National Institute of Standards and Technology (NIST)
announced a set of new encryption standards that are intended to resist
decryption even by quantum computers [149].

Quantum Error Correction
As we’ve seen, quantum computers make mistakes, whether due to imper-
fections in the computers themselves, unintended interactions among the
qubits, or the influence of some event or phenomenon happening some-
where in the universe where the quantum computers are located. No man,
and no quantum computer, is an island.

Taken together, all of these effects that disrupt the ideal functioning of a
quantum computer are called noise.

We will probably never be free of noise and its effects. The universe is a
busy place, and things happen everywhere, all the time.

Noise isn’t unique to quantum computers. Classical computers make
lots of errors and are also subject to events happening in the universe. For
example, cosmic rays are particles resulting from the explosions of stars, per-
haps many millions of years ago. If a cosmic ray smashes into a classical com-
puter chip, it can flip one or more bits [159]. As programmers, we rarely
have to deal with this problem because engineers and scientists have spent
decades improving hardware resistance to cosmic rays and other events and
building software tools to automatically detect and correct errors when they
do happen.

Quantum computers are newer, and we don’t have these robust error
management tools yet. This is why people sometimes say that we’re currently
in the noisy intermediate-scale quantum (NISQ) era [273] (the “intermediate-
scale” part is a deliberately vague term that refers to the number of reliable
qubits we can currently build in a single quantum computer, which is more
than a handful but less than thousands).

To help us deal with errors, there’s a robust field of research and devel-
opment collectively known as quantum error correction (QEC) [177]. People
are working hard to bring quantum error detection and correction up to the
same level of reliability that we’re used to with classical computers, so that
users of quantum computers don’t have to think about these kinds of errors.

Thanks to these efforts, quantum computers are becoming more reli-
able. Google’s Willow quantum computing chip, announced in late 2024,
demonstrated exponential quantum error correction, with the number of
errors actually decreasing as the qubits are assembled into increasingly larger
clusters [147].

Other Diagrams
In this book, I’ve used the well-known circuit diagram approach for drawing
quantum circuits. This technique is popular because it shows every step in
detail.

Next Steps 341

There’s another graphical representation for quantum circuits that takes
a more abstract view. They’re called ZX-diagrams, associated with a concep-
tual approach called the ZX-calculus [222] [142]. The technique offers a nice
visual way to present the conceptual structure of some quantum calculations
while hiding many of their details.

Quantum Advantage
As of 2025, quantum computers and their software are still in their relatively
early days of development compared to classical computers. Quantum com-
puters today are not able to solve a lot of practical problems faster or more
cheaply than classical computers.

The term quantum advantage refers to a change in this situation marked
by the demonstration of a quantum computer solving a problem that no
classical computer can solve with reasonable amounts of time and memory
(this is sometimes called quantum supremacy).

There have been claims of particular systems reaching quantum suprem-
acy [9]. However, they are often met with caution, because it’s hard to know
if there are more efficient classical solutions waiting to be discovered.

In fact, quantum advantage has become something of a cat-and-mouse
game between quantum and classical researchers. When the former claim
to have demonstrated a quantum computation that beats all classical ap-
proaches, the latter often develop new classical solutions that run not just
faster than previous classical algorithms, but faster than the quantum demon-
stration [204]. Then the quantum researchers improve their hardware and
software to beat the classical versions (perhaps on other problems), and the
classical hardware and software are improved to beat the quantum solutions,
and so it goes.

Like many people, I believe that eventually quantum computers will
someday achieve useful quantum advantage. That is, they will produce re-
sults for a variety of practical problems more quickly than any classical com-
puter could hope to match, perhaps even theoretically. Nobody knows when
that day will come.

But it might not be too long, because quantum computing technology is
developing rapidly. One popular measure of the power of a quantum com-
puter is how many qubits it contains. The largest publicly announced quan-
tum computer as of early 2025 is the IBM Condor, which offers 1,121 qubits
[69]. Regardless of the particular hardware, superpositions are essential to
quantum computing. But superpositions are delicate and notoriously diffi-
cult to maintain, with lifetimes that are often measured in tiny fractions of a
second. Recently, a group of researchers used a collection of ytterbium iso-
topes to build and maintain an isolated superposition state for a whopping
23 minutes [155] [291]. The representations of qubits themselves are also
improving, with new and advancing technologies. Surprisingly, an entirely
mechanical qubit has even been developed [290]. New methods for repre-
senting qubits are still being discovered and developed [295].

342 Chapter 14

Further Reading
There are lots of places to go to learn more about everything I’ve talked
about in this book. In addition to the references included in the text, here
are a few pointers to get you started.

Quantum Mechanics Books
Quantum computing is built on the theory of quantum mechanics. There
are many fine introductory books on this subject, including a few that I par-
ticularly like for non-physicists who want an introduction to the field [213]
[81] [188]. There are so many books on this topic that it’s worth taking the
time to look at a few to find the best fit for you.

Quantum Computing Books
The king of quantum computing textbooks is Quantum Computation and
Quantum Information, by Michael Neilsen and Isaac Chuang [146]. It has all
the benefits and drawbacks of being a comprehensive, detailed, university-
level textbook. A more approachable book is Quantum Computer Science: An
Introduction, by N. David Mermin [137]. While authoritative and clear, it’s
also idiosyncratic in its notation and style of figures.

There are many other books on quantum computing that take a variety
of different approaches, from casual to rigorous. An online search (or better
yet, a visit to your local technical bookstore) is the best way to browse the
books that are available and find one that suits your experience and interests.

Quantum Computing Lecture Notes
Some professors have put complete course notes for their university-level
courses online, and they can be a treasure trove of readable, accessible
information. I referred to three sets of lecture notes while writing this book
[71] [198] [293].

Quantum Computing Online
There are many websites, videos, blogs, and other online media related to
quantum computing. Their styles, content, and accuracy vary considerably.
And while new resources pop up frequently, I find that they also often disap-
pear without warning. If you want to pursue these online resources, spend
some time with your favorite search engine and sample the options that are
available to you now.

The most important thing to attend to, in my experience, is that the ma-
terial is explained clearly and completely, at a technical level that matches
your current expertise. If something is too hard for you now, bookmark it
and come back to it later (if it’s still there!). There’s no need to get frustrated
trying to comprehend material that is opaque to you when there are so many
other options out there.

Next Steps 343

One site that I’ve found that has been stable and offers good informa-
tion is IBM’s Qiskit project [96].

Quantum Computing Resources
There are some terrific resources for quantum computing available online.
These include simulators, real hardware, and tools for drawing circuits.

Simulators
You can write and run quantum algorithms today on a wide variety of sim-
ulators, some of which can even run on your home computer. Big lists of
simulators for many languages and platforms can be found online [166] [44].

As of 2025, well-known environments for building and simulating quan-
tum circuits include Qiskit [96] and the IBM Quantum Platform [95] (the
latter of which offers a high-quality simulator capable of up to 32 qubits).

Time on bigger simulators can be purchased from a variety of online
vendors. A web search will return your current options and what they cost.

Other Software
There are several free libraries that let you create and manipulate quantum
objects, operators, and programs in any way you choose. Be cautious, be-
cause while these systems are designed for flexibility and accuracy, you’re
the one in control, and most of them will let you casually break the laws of
physics if you’re not careful!

As of 2025, just a few of the popular quantum libraries for the Python
language that appear to be under active development include Qiskit [164],
Cirq [78], QCpy [65], and QuTiP [169] [103] [102].

A terrific hub for quantum computing software and information is the
Quantum Open Source Foundation (QOSF) [168]. Among its projects, the
QOSF maintains an extensive and diverse list of open source projects in
quantum computing for many different programming languages and oper-
ating systems [167]. Browse for any project that might speak to you or could
help you in your work. If you find some software you love on that list, it’s
probably written and maintained by volunteers, so consider chipping in and
helping out!

Real Hardware
Though this isn’t a book on the hardware of quantum computers, it can be
interesting to see how different organizations are building these machines
[249] [160].

Challenges remain on many fronts. For example, classical computers are
dependent on random-access memory, but it’s not clear when (or even if)
we’ll have quantum versions of this ubiquitous storage mechanism [101].

There are companies that own real, working quantum computers and
will sell you time on their systems. IBM’s and Amazon’s services have been

344 Chapter 14

around for a while, and as of 2025 they both offer their customers 10 min-
utes of free quantum computation per month, usually on machines with
single-digit numbers of qubits [95] [6]. Other offerings seem to come and
go, and prices and plans change frequently. If you need more computing
time or power than the free tiers offer, I urge you to do an online search
and find a provider who offers services and prices that meet your needs.

There’s nothing like running your code on a real, live quantum com-
puter to be sure that you know what you’re doing!

Drawing Circuits
A great way to share your quantum circuits is to draw them.

There are several packages that are designed to make good-looking cir-
cuits in LaTeX, such as quantikz [110], qcircuit [185], and yquant [46].

All of these are built on LaTeX, so they’re as brittle and unforgiving as
LaTeX itself and inherit that system’s problematic error messaging. In this
book (which I wrote in LaTeX), I used quantikz version 2 to make all of the
circuit diagrams, because I like its simple syntax and have found that I can
usually (though not always) coerce it into drawing what I want. I build up my
circuits one small step at a time, recompiling the LaTeX after each change,
so I can isolate and fix errors as they happen.

Getting Help
Everyone gets lost or stuck sometimes. Maybe some idea just doesn’t click,
or two things don’t go together properly, or an algorithm doesn’t produce
the answers you expect. You may find yourself wanting help. If you don’t
personally know an expert in quantum computing, being lost can feel lonely,
stressful, and difficult.

At these times, it can seem appealing to talk to AI systems such as digital
assistants and chatbots. They’re friendly and responsive, are available at any
time of day or night, and can provide comprehensible answers.

But I urge caution. Compared to many other topics, there is not a lot
of data for these systems to train on, or even consult in real time. Making
things worse, as of 2025, most AI systems are poor at the kind of math that
we use in quantum computing. As a result of these limitations, they make
a lot of mistakes, ranging from major conceptual blunders regarding basic
principles to subtle missteps in carrying out the mechanics.

In other words, when we ask most of today’s AI systems about quantum
computing, they frequently get things a little wrong, or even wildly wrong.
Or they speak nonsense. And they do it all with total confidence!

I’ve tried it myself, and I’ve found that asking these systems for help
with quantum computing is often a frustrating and fruitless experience.
Even when you know they’re wrong, and tell them, they cheerfully agree
(and might even apologize), and then typically give you a different answer
that’s wrong in a new way.

So what can you do if you get stuck? Throughout this book there are
references relevant to the topics I’ve discussed. If you have questions those

Next Steps 345

references don’t answer, or the answers are unclear to you and a search for
better answers doesn’t help, there are online boards where you can ask ques-
tions and often get back expert responses.

In particular, I’ve found that Stack Exchange [207] is a great place to
start. Among its many specialized boards, you can find experts on mathe-
matics [208], physics [209], and quantum computing [210]. It’s free to sign
up, search answers to previous questions, and post your own questions. My
experience is that if you respectfully and clearly ask one specific question
per post, and explain what you’ve already done to answer it for yourself,
there’s a good chance that you’ll get back a helpful response. A little friendli-
ness and humility go a long way.

The Philosophy of Quantum Mechanics
The universe is not only queerer than we suppose, but queerer than we
can suppose.

—J.B.S. Haldane, Possible Worlds and Other Essays, 1927 [87]

The philosophy of quantummechanics, and by extension quantum comput-
ing, is fascinating. What is a superposition, really? How does entanglement
actually work? Who can make a measurement? How does measurement
cause a superposition to collapse? Exactly how does quantum parallelism
work? Arguments over answers to these andmany other questions have been
raging for over a century, with no sign of stopping or even slowing down.

The different ways of trying to understand what quantum mechanics
“means” are called interpretations of quantum mechanics.

Not everyone thinks that looking for an interpretation of quantum
mechanics is a worthwhile pursuit. There is a contingent of physicists who
believe that our mathematical theory has been shown to make correct pre-
dictions about the results of experiments, and that’s the end of the story.
The extreme version of this view is that any attempt to find a deeper mean-
ing, or understanding, of the math is pointless. The math works, and that’s
not just all that we know, it’s all that we can know, ever. This is usually called
the Copenhagen interpretation [59]. Some adherents of this approach urge us
to therefore ignore what quantum mechanics might mean, or why the quan-
tum world behaves as it does, and instead just “shut up and calculate” [136].

We can follow this line of thought further and conclude that mathemat-
ics doesn’t just provide an accurate description of nature, or even a model of
nature, but is the essential stuff of nature itself. This can lead us to the con-
clusion that “our universe is not just described by mathematics—it ismathe-
matics” (emphasis added) [218].

An attractive quality of this philosophy is that it easily wins the Occam’s
razor argument: The simplest explanation for why mathematics has been so
successful at describing the universe is because mathematics is the universe.

I can see the appeal of this argument. There is much beauty in math-
ematics, from the elegant precision of a graceful equation to the sophisti-
cated relationships among abstract concepts. Sometimes I feel that’s enough,

346 Chapter 14

or even far more than enough, to make a universe as deep and meaningful
as I could ever want.

But I doubt that the universe actually is mathematics. Even getting past
our arbitrary symbols and syntax, I feel that there’s more to existence than
patterns wheeling and forming and breaking. There’s a gap between the
soaring abstractions of invisible patterns and the graspable magic of the ev-
eryday, real world that I feel that I inhabit. I admit that feeling could be an
illusion, and my perception of myself could be merely an accidental side
effect created by the flow and turbulence of a mathematical universe. But
my sense of conscious awareness is so strong, and so appealing, that I’ll part
with it only if convincing evidence forces me to. So far, I haven’t seen such
evidence.

Thus, I like to think of the math as a description of the universe, a way
to see its footprints or hear the echoes of its calls, perhaps to other uni-
verses. The math works because we have, seemingly with incredible luck,
found a way to use it to track some aspects of the reality that unfolds around
us. This idea fits nicely with Plato’s allegory of the cave, which suggests that
we perceive only the shadows of reality [205]. In this story, the shadows tell
us much of reality, but there is so much that we are unable to perceive, or
perhaps even comprehend, that we will be forever unaware of the universe’s
true nature.

I find that thinking about interpretations of quantum mechanics is great
fun. It’s letting your fantasy and imagination run wild, building on a founda-
tion of experimental evidence.

Personally, my favorite interpretations involve time travel. There’s some-
thing so cool about a causally bidirectional universe, the future and the past
cocreating everything dynamically. Sometimes we refer to a model where
current events can alter what’s happened in the past as retrocausal. One way
to use retrocausality is to imagine that every state in a superposition has its
own corresponding reality, and an observation tomorrow changes yesterday
to bring about the universe we experience today.

One good way to get started with interpretations is to read ideas from
the physicists who discovered (or invented) quantum mechanics. Some were
interested in interpretations and discussed them lucidly. This is a great way
to see how to play the game, and then you can branch out into the theories
that came later [55] [215] [230] [189].

The many-worlds interpretation of quantum mechanics has recently be-
come part of popular culture. This interpretation says that when someone
makes a quantum observation, they split into multiple copies of themselves,
one copy for each possible outcome of the measurement. Each of these
copies of the observer lives in their own newly created universe, which is
identical to all the others except for that single measurement. These new
universes are now independent, and each evolves on its own from that in-
stant. This splitting happens every time a quantum observation is made, cre-
ating an infinite branching tree of independent observers and universes. So
each time you look at something, and thereby observe a photon, you branch
into multiple copies of yourself, each in their own reality.

Next Steps 347

What a breathtaking idea! The original paper presenting this idea is an
exciting read that you’re now well equipped to understand and enjoy [58].

An extension of this idea, called themultiverse, combines themany-worlds
hypothesis with ideas from computation, evolution, and the philosophy of
science. The result is a wild conception of many different, independent
universes existing simultaneously [48]. As with so many of the wild ideas
in quantum mechanics, some people think that the multiverse is real, and
others don’t [29].

From these starting points, you can find nearly limitless variations and
new interpretations, and you can even make up your own. Go nuts, but
don’t get carried away into pseudoscience! The explanations that are the
most fun are the ones that are solidly rooted in science, anyway; after all,
the whole incentive is to forge a closer relationship with the amazing uni-
verse we inhabit.

Be cautious with videos, blog posts, and other media that are not based
on mathematics. As I discussed in the Introduction, metaphors are inher-
ently incomplete and inaccurate, so reasoning from them can lead to drawing
seemingly reasonable conclusions that are more fantasy than true reflections
of the world we inhabit. The only description of quantum phenomena that
has proven itself to be reliably accurate and predictive is mathematical. In-
terpretations that are not based on the math are built on quicksand and risk
telling us more about the person doing the interpretation than the universe
we share.

Inventing new interpretations of quantum phenomena is a rewarding
activity that feels endless, partly because it naturally leads us to all the other
great unsolved questions: What is reality? What is consciousness? What does
it mean to lead a good life? Who am I? Why are we here?

Applications
Let’s look at a few uses of quantum computing for science and fun.

Maze Solving
Hedge mazes (also called corn mazes) are great fun. They’re usually set in
a big field, with tall hedges (or corn plants) planted to form a person-sized
maze. You walk into the entrance and are immediately facing a corridor
lined with opaque hedges on both sides. Soon the corridor splits, and you
need to pick a new direction. The goal is to find the exit and emerge from
the maze. Some of these mazes even offer bridges, tunnels, and other varia-
tions to make the solving process more interesting and fun [163].

There are lots of classical strategies for solving a maze. One of the sim-
plest, and most famous, is the right-hand rule [107]. Just put your right hand
on the wall to your right as you enter the maze, and never lose contact. You’ll
eventually find the exit (it’s not a fun way for people to solve a maze, but it’s
effective if you’re a computer).

348 Chapter 14

Can a quantum computer solve a maze? One way to approach this prob-
lem is to ignore the geometry, or layout, of the maze, and instead think of
it as a bunch of straight corridors joined by intersections. We can draw this
abstractly as a graph of lines and vertices, mark two vertices as the “entrance”
and “exit,” and see if a quantum computer can get from the entrance to the
exit. The answer is yes, it can, but surprisingly, it’s kind of useless if you’re
out there walking around in the maze. The problem is that while a quantum
algorithm can find the exit, it cannot tell you what path it took to get there
[36]! It seems that the algorithms we have now must “forget” the path in the
course of finding the exit.

Quantum computing is full of these kinds of surprising results.

Ray Tracing
An appealing application of quantum computing involves the computer
graphics algorithm called ray tracing [10]. The idea is to create a synthetic
image, perhaps for a game, TV show, or film, using the principles of classical
optics. In this approach, we follow light rays through a mathematical version
of a 3D environment, using the color of the light they carry to build up a
description of what we would see if we were actually viewing that scene.

Because light rays in this approach don’t interact with one another, the
computations that work out the colors of the light rays can be carried out in-
dependently for each ray. We sometimes say that ray tracing is embarrassingly
parallel.

Since modern images and animated sequences can require many mil-
lions (or even billions) of these independent rays to be traced, and quantum
computers can evaluate information about vast numbers of rays simultane-
ously, using quantum computers to accelerate ray tracing sounds like a great
match!

You can read a variety of approaches to this problem in the graphics
literature [157] [74] [75] [76] [104] [5] [128] [183] [296].

Suppose that the input to one of these quantum algorithms is a super-
position of all the rays we want to trace for a scene, and our circuit can find
the intersections of rays and objects. The allure is that if we could intersect
every ray with every object in parallel, then we could process this list of in-
tersections to find the first object hit by each ray. But we’re stymied by the
same problem that everyone runs into when trying to use quantum paral-
lelism to accelerate conventional algorithms: We can measure only a single
outcome at a time. That is, even if the quantum circuit can intersect 10 or
100 million rays with a million objects simultaneously, the information in
the resulting superposition exists only inside the computer. Any measure-
ment at the end will return a single ray–object intersection pair. Quantum
ray tracing remains appealing because of the hope that somehow we’ll figure
out how to extract something more useful from that huge bundle of infor-
mation, which is tantalizingly close but just out of reach.

Next Steps 349

Games
We can learn a lot from games! Games can offer highly structured environ-
ments that reward clever insight and problem solving, and they frequently
provide clear metrics for evaluating performance and quantifying improve-
ments in skill.

You might enjoy getting into a quantum algorithm for the board game
Battleship [94]. If you’d rather play a quantum version of Bulls and Cows (sold
commercially as Mastermind, and more recently reinvented in word form as
Wordle), you can play that as well [124]. One of the first video games ever,
Pong, is still fun, and you can download source code for its quantum version,
QPong [228].

A couple of nice roundups of some basic andmore sophisticated games
that can be solved by, or played on, quantum computers offer a nice way to get
into the subject [56] [127]. There’s also a fun personal essay describing one
person’s work on quantum games, including another version of Battleship
and the wonderfully named Quantum Awesomeness [288].

Other Applications
The majority of published quantum algorithms have been focused on math-
ematical and scientific topics. A great list called the Quantum Algorithm Zoo
contains descriptions and pointers to many of these algorithms [106]. The
diverse topics currently listed include cryptography, mathematics, physics,
and AI. By clicking on the links provided in the descriptions, you can read
the original papers and learn all the details.

There has also been work on finding quantum algorithms that are versa-
tile enough to solve a range of real-world problems [154] [13].

It’s fascinating and instructive to read through the descriptions of quan-
tum algorithms and see the variety of clever and imaginative ways that peo-
ple have applied quantum computing to diverse tasks.

Wrapping Up
This brings us to the end of our journey.

This book has been a multiyear labor of love. I poured endless hours
and energy into creating this book because I find this topic absolutely fasci-
nating and beautiful, and I wanted to help you see that beauty as I do.

We’re only at the beginning of what I’m sure will turn out to be an amaz-
ing adventure. I look forward to learning about the incredible things you’ll
do with quantum computing!

350 Chapter 14

APPENDIX: NOTAT ION
Nothing is more easy than the invention of notation, and nothing of worse example and

consequence than the confusion of mathematical expressions by unknown symbols.
—Augustus De Morgan, A Treatise on the Calculus of Functions, 1836 [45]

Oh no. No. No. I meant no scheme. I merely posed a little academic accounting theory.
It was just a thought.

—Mel Brooks, The Producers, 1967 [28]

Table A-1: Constants
e Euler’s number, 2.7182 . . .
i Imaginary number, defined as

√
–1

π The ratio of a circle’s circumference to its radius, 3.1415 . . .
∨ 1/

√
2 =

√
1/2 =

√
2/2

Table A-2: Sets
B The set of bits (0 and 1)
C The set of complex numbers
N The set of natural (or counting) numbers
R The set of real numbers
Z The set of integer numbers

R × R The set of all pairs of real numbers
Rn The set of all tuples of n real numbers

{a, b, c . . .} A set of elements
a ∈ X a belongs to set X
Bn A bitstring of n elements

Table A-3: Sequences and ranges
[a, b] The integers from a up to and including b

(a, b) The integers from a + 1 up to and including b – 1

[d] The sequence of integers from 0 up to and including d – 1

Table A-4: Common symbols
⊕ Exclusive OR
⊗ Tensor product

A⊗n An operator A tensored with itself n times
|ψ⟩⊗n A state |ψ⟩ tensored with itself n times
0n A bitstring of n bits, all 0s
1n A bitstring of n bits, all 1s
a · b For bitstrings a and b, a0b0 ⊕ a1b1 ⊕ . . .⊕ an–1bn–1
δj,k Kronecker delta for integers j, k; returns 1 if j = k, else 0

Table A-5: Common variables
d The dimensionality (or number of elements) of a vector
n Often the number of qubits in a circuit
N 2n for a given n

k A generic integer
θ When discussing geometry, a generic angle

|ψ⟩, |ϕ⟩ Generic kets
⟨ψ|, ⟨ϕ| Generic bras

ω ei2π/N

λ ei2π

Table A-6: Common variable types by typography
b Roman lowercase italic b: a bit or bitstring
r Roman lowercase italic: a real or integer
A Roman uppercase italic: a list, set, operator, or matrix
α Greek lowercase: a complex number
v Roman lowercase bold: a vector

Table A-7: Numbering and counting
1 First number when counting
0 First number when numbering

Top down Order for numbering elements in a column vector
Left to right Order for numbering elements in a row vector
Top down Order for tensoring operators in a circuit diagram
Top down Order for tensoring states in a circuit diagram

352 Appendix: Notation

Table A-8: XOR properties
x ⊕ x = 0 X1
x ⊕ 0 = x X2

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) X3

Table A-9: Complex numbers
α The complex conjugate of α
α∗ An alternative form of α
a + bi The Cartesian form of a complex number
r eiθ The polar form of a complex number

Table A-10: Vectors, quantum states, and operations
a · b The dot product of a and b

⟨a, b⟩ The inner product of a and b

|ψ⟩ A ket (a complex column matrix)
⟨ψ| A bra (a complex row matrix)

⟨ϕ|ψ⟩ A braket (or inner product) of |ϕ⟩ and |ψ⟩
|ϕ⟩⟨ψ| A ketbra (or outer product) of |ϕ⟩ and |ψ⟩

⟨onto, from⟩ Projection using the inner product

Table A-11: Properties of vectors
|v| Magnitude of a vector

dim(v) Dimensionality of a vector

Table A-12: Vector and linearity properties

σv = σ

 ν0

ν1

ν2

 =

 σ ν0

σ ν1

σ ν2

 V1

v + w =

 ν0

ν1

ν2

 +

 ω0

ω1

ω2

 =

 ν0 + ω0
ν1 + ω1
ν2 + ω2

 V2

f (σv) = σ f (v), σ ∈ C L1

f (v + w) = f (v) + f (w) L2

Table A-13: Matrix operations
A The complex conjugate of matrix A

AT The transpose of matrix A

A† The adjoint of matrix A

A–1 The inverse of matrix A

AB Ordinary matrix multiplication of matrices A and B

Appendix: Notation 353

Table A-14: Tensor product properties
A ⊗ B = A ⊗ B Conjugate distributivity

(A ⊗ B)–1 = A–1 ⊗ B–1 Tensor inverse property

(A ⊗ B)T = AT ⊗ BT Tensor transpose property

(A ⊗ B)† = A† ⊗ B† Tensor adjoint property

A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C) Tensor product is distributive

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C Scalar tensor property

c(A ⊗ B) = (cA) ⊗ B

= A ⊗ (cB)
For any c ∈ R

(A ⊗ B)(C ⊗ D) = AC ⊗ BD Mixed-product property

Table A-15: Bitstring operations

a · b =
(∑

k∈[d] an ⊕ bn
)
mod 2 Bitstring dot product

a ⊕ b = an–1 ⊕ bn–1, . . . , a0 ⊕ b0 Bitstring XOR

Table A-16: Common states

|0⟩ =

[
1

0

]
, |1⟩ =

[
0

1

]
, |+⟩ = ∨

[
1

1

]
, |–⟩ = ∨

[
1

–1

]

Table A-17: Integer bras and kets
|k⟩ For integer k, a ket of all 0 elements except a 1 at index k

⟨k| A bra of all 0 elements except a 1 at index k, or |k⟩†

Table A-18: Superpositions
α |ϕ⟩ + β |ψ⟩ Superposition of 2 states, |α|2 + |β|2 = 1∑
k∈[n] αk |ϕk⟩ Superposition of n states,

∑
k∈[n] |αk|

2 = 1

∨n
∑
k∈[n]

|k⟩

=H⊗n |0⟩⊗n

= |+⟩⊗n

Uniform superposition of 2n states

354 Appendix: Notation

Table A-19: Operations on quantum states∣∣|ψ⟩
∣∣ The magnitude of |ψ⟩∣∣⟨ϕ|∣∣ The magnitude of ⟨ϕ|

⟨ϕ|M |ψ⟩ A bramket of |ϕ⟩, M, and |ψ⟩

⟨r|A |c⟩ Element ar,c for integers r and c

⟨ϕ|A |ψ⟩ = (⟨ϕ|A) |ψ⟩
= ⟨ϕ| (A |ψ⟩)

Matrix products are associative

|ψϕ⟩ = |ϕ⟩ |ψ⟩ = |ϕ⟩ ⊗ |ψ⟩ Ways to write a product state

Table A-20: Hadamard operations on common states
H |0⟩ = |+⟩

H |1⟩ = |–⟩

H |+⟩ = |0⟩

H |–⟩ = |1⟩

Table A-21: Algebraic expressions for H |j⟩
H |j⟩ = ∨

∑
k∈B(–1)

j·k |k⟩ For j ∈ B

H |j⟩ = ∨(|0⟩ + ei2π(j/2) |1⟩) For j ∈ B

H |j⟩ = ∨(|0⟩ + λ j/2 |1⟩) For j ∈ B

Table A-22: Bell states
|βs+⟩ = |Ψ+⟩ = |β(0, 0)⟩ = ∨

(
|00⟩ + |11⟩

)
|βm+⟩ = |Φ+⟩ = |β(0, 1)⟩ = ∨

(
|01⟩ + |10⟩

)
|βs–⟩ = |Ψ–⟩ = |β(1, 0)⟩ = ∨

(
|00⟩ – |11⟩

)
|βm–⟩ = |Φ–⟩ = |β(1, 1)⟩ = ∨

(
|01⟩ – |10⟩

)
Table A-23: Measurement operators

Πk Projection matrix |k⟩⟨k|
Π0 Projection matrix |0⟩⟨0|
Π1 Projection matrix |1⟩⟨1|

Pr|ψ⟩(k) Probability that measuring |ψ⟩ will return k

Table A-24: Eigenthings
εk Eigenvector k
λk Eigenvalue k

Appendix: Notation 355

Table A-25: Common qugate matrices in the computational basis

I The identity of any size; for example, I2 =

[
1 0

0 1

]

CX, CNOT Controlled-X or controlled-NOT,


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



CX′ CX with control below target,


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


H Hadamard, ∨

[
1 1

1 –1

]

P Phase,

[
0 1

1 eiθ

]

S π/2 phase,

[
0 1

1 eiπ/2

]

T π/4 phase,

[
0 1

1 eiπ/4

]

SWAP Swap,


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



U Generic unitary,

 cos
(
θ
2

)
–eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

)


356 Appendix: Notation

Table A-26: Pauli matrices

X, NOT Pauli X, also σx,

[
0 1

1 0

]

Y Pauli Y, also σy,

[
0 –i

i 0

]

Z Pauli Z, also σz,

[
1 0

0 –1

]

Table A-27: Common geometrical matrices

Rot(θ) Rotation by θ counterclockwise,

[
cos θ – sin θ

sin θ cos θ

]

Ref(θ) Reflection by line θ counterclockwise from X axis,

[
cos 2θ sin 2θ

sin 2θ –cos 2θ

]

Table A-28: Circuit symbols: general

A quantum wire

A classical wire

n
A group of n qubits

A A quantum gate implementing operator A

A⊗n
A vertical system of n copies of qugate A

Alternate form of an X qugate

A two-qubit SWAP qugate

Alternate form of a two-qubit SWAP qugate

Appendix: Notation 357

Table A-29: Circuit symbols: measurement and entanglement

A meter

⊗n A system of n meters tensored
together

Alternate form of a meter

An entangled pair

Alternate form of an entangled pair

Table A-30: Circuit symbols: controlled qugates

U
A controlled-U qugate enabled only if the control is |1⟩

U
A controlled-U qugate enabled only if the control is |0⟩

Common shortcut for a CX qugate

Common shortcut for a CZ qugate

U
A U qugate controlled by a classical bit

U

A controlled-U qugate enabled only if both controls are |1⟩

358 Appendix: Notation

BIBL IOGRAPHY

I dabbled in bird-watching once. Well, by dabbled, I mean I bought a bird guide
and put it up on the shelf and looked up at it sometimes.

—Scott Jacobson, Bob’s Burgers, “Crows Encounters of the Bird Kind,” 2023 [100]

Whenever possible, I’ve tried to use free and accessible online refer-
ences. I cited books and other traditional references when they are the su-
perior choice or offer a unique perspective.

[1] Ackerman, Jennifer, and Eleanor Grant. “Born to Move.” https://www
.imdb.com/title/tt1776626, 2010.

[2] Adams, Douglas. Dirk Gently’s Holistic Detective Agency. Pocket
Books, 1987.

[3] Adams, Douglas. The Hitchhiker’s Guide to the Galaxy. Pan Books, 1978.

[4] Agrawal, Pankaj, and Arun K. Pati. “Probabilistic Quantum Teleporta-
tion.” https://arxiv.org/pdf/quant-ph/0210004, 2002.

[5] Alves, Carolina, Luís Paulo Santos, and Thomas Bashford-Rogers. “A
Quantum Algorithm for Ray Casting Using an Orthographic Cam-
era.” In 2019 International Conference on Graphics and Interaction, 2019.
https://repositorium.sdum.uminho.pt/bitstream/1822/71756/3/Quantum
_Algorithm.pdf.

[6] Amazon Web Services. “Amazon Braket.” https://aws.amazon.com/
braket/, 2025.

[7] American Kennel Club. “Breed Weight Chart.” https://www.akc.org/
expert-advice/nutrition/breed-weight-chart/, 2023.

[8] Answers.com. “How Much Does a Ladybug Weigh?” https://www
.answers.com/Q/How_much_does_a_ladybug_weigh, 2023.

[9] Arute, Frank, Kunal Arya, Ryan Babbush, et al. “Quantum Supremacy
Using a Programmable Superconducting Processor.” Nature 574
(2019): 505–10. https://www.nature.com/articles/s41586-019-1666-5.

[10] Arvo, James, Robert L. Cook, Andrew Glassner, Eric Haines, Pat
Hanrahan, Paul S. Heckbert, and David Kirk. An Introduction to Ray
Tracing. Morgan Kaufmann, 1989.

https://www.imdb.com/title/tt1776626
https://www.imdb.com/title/tt1776626
https://arxiv.org/pdf/quant-ph/0210004
https://repositorium.sdum.uminho.pt/bitstream/1822/71756/3/Quantum_Algorithm.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/71756/3/Quantum_Algorithm.pdf
https://aws.amazon.com/braket/
https://aws.amazon.com/braket/
https://www.akc.org/expert-advice/nutrition/breed-weight-chart/
https://www.akc.org/expert-advice/nutrition/breed-weight-chart/
https://www.answers.com/Q/How_much_does_a_ladybug_weigh
https://www.answers.com/Q/How_much_does_a_ladybug_weigh
https://www.nature.com/articles/s41586-019-1666-5

[11] Aumasson, Jean-Philippe. Serious Cryptography: A Practical Introduction
to Modern Encryption. No Starch Press, 2017.

[12] Azad, Kalid. “Understanding the Birthday Paradox.” Better Explained
blog, 1997. https://betterexplained.com/articles/understanding-the-birthday
-paradox/.

[13] Babbush, Ryan, DominicW. Berry, Robin Kothari, Rolando D. Somma,
and Nathan Wiebe. “Exponential Quantum Speedup in Simulating
Coupled Classical Oscillators.” Physical Review X 13 (2023): 041041.

[14] Bacon, Dave. “CSE 599d—Quantum Computing: Simon’s Algorithm.”
University of Washington, 2006. https://courses.cs.washington.edu/
courses/cse599d/06wi/lecturenotes8.pdf.

[15] Bartlett, Albert A. “The Exponential Function—Part 1.” The Physics
Teacher 14, no. 7 (1976): 393–401. https://doi.org/10.1119/1.2339436.

[16] Bennett, Charles H., Ethan Bernstein, Gilles Brassard, and Umesh
Vazirani. “Strengths andWeaknesses of Quantum Computing.” https://
arxiv.org/pdf/quant-ph/9701001, 1997.

[17] Berger, Cynthia. “True Colors: How Birds See the World.” https://
www.nwf.org/Magazines/National-Wildlife/2012/AugSept/Animals/Bird
-Vision, 2012.

[18] Bernstein, Ethan, and Umesh Vazirani. “Quantum Complexity
Theory.” SIAM Journal on Computing 26, no. 5 (1997): 1411–73.
http://wpage.unina.it/pieroandrea.bonatti/didattica/complexity/slides/
Bernstein-Vazirani.pdf.

[19] Bertlmann, Reinhold, and Nicolai Friis. “Density Matrices.” InModern
Quantum Theory: From Quantum Mechanics to Entanglement and Quan-
tum Information, 321–49. Oxford University Press, 2023.

[20] Bethesda Game Studios. “Starfield.” https://www.imdb.com/title/
tt8545540, 2023.

[21] Beutlich, Robert E. “Radionics and the Little Black Box.” https://altered
-states.net/barry/update183/radionics2.htm.

[22] Bouwmeester, Dik, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald
Weinfurter, and Anton Zeilinger. “Experimental Quantum Teleporta-
tion.” https://arxiv.org/pdf/1901.11004, 1997.

[23] Boyer, Michel, Gilles Brassard, Peter Høyer, and Alain Tapp. “Tight
Bounds on Quantum Searching.” Fortschritte der Physik 46, no. 4–5
(1998): 187–99. https://www.researchgate.net/publication/227992557
_Tight_Bounds_on_Quantum_Searching.

[24] Bradley, Tai-Danae. “The Tensor Product, Demystified.” https://www
.math3ma.com/blog/the-tensor-product-demystified, 2018.

[25] Brahic, Catherine. “Birds Can ‘See’ the Earth’s Magnetic Field.” New
Scientist, 2008. https://www.newscientist.com/article/dn13811-birds-can-see
-the-earths-magnetic-field/.

360 Bibliography

https://betterexplained.com/articles/understanding-the-birthday-paradox/
https://betterexplained.com/articles/understanding-the-birthday-paradox/
https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes8.pdf
https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes8.pdf
https://doi.org/10.1119/1.2339436
https://arxiv.org/pdf/quant-ph/9701001
https://arxiv.org/pdf/quant-ph/9701001
https://www.nwf.org/Magazines/National-Wildlife/2012/AugSept/Animals/Bird-Vision
https://www.nwf.org/Magazines/National-Wildlife/2012/AugSept/Animals/Bird-Vision
https://www.nwf.org/Magazines/National-Wildlife/2012/AugSept/Animals/Bird-Vision
http://wpage.unina.it/pieroandrea.bonatti/didattica/complexity/slides/Bernstein-Vazirani.pdf
http://wpage.unina.it/pieroandrea.bonatti/didattica/complexity/slides/Bernstein-Vazirani.pdf
https://www.imdb.com/title/tt8545540
https://www.imdb.com/title/tt8545540
https://altered-states.net/barry/update183/radionics2.htm
https://altered-states.net/barry/update183/radionics2.htm
https://arxiv.org/pdf/1901.11004
https://www.researchgate.net/publication/227992557_Tight_Bounds_on_Quantum_Searching
https://www.researchgate.net/publication/227992557_Tight_Bounds_on_Quantum_Searching
https://www.math3ma.com/blog/the-tensor-product-demystified
https://www.math3ma.com/blog/the-tensor-product-demystified
https://www.newscientist.com/article/dn13811-birds-can-see-the-earths-magnetic-field/
https://www.newscientist.com/article/dn13811-birds-can-see-the-earths-magnetic-field/

[26] Brassard, Gilles, and Peter Høyer. “An Exact Quantum Polynomial-
Time Algorithm for Simon’s Problem.” https://arxiv.org/pdf/quant-ph/
9704027.pdf, 1997.

[27] Brassard, Gilles, Peter Høyer, Michele Mosca, and Alain Tapp. “Quan-
tum Amplitude Amplification and Estimation.” In AMS Contemporary
Mathematics Series, vol. 305. American Mathematical Society, 2002.
https://arxiv.org/pdf/quant-ph/0005055.

[28] Brooks, Mel. The Producers, 1967. https://www.imdb.com/title/tt0063462.

[29] Brooks, Michael. “How a Quantum Innovation May Quash the Idea
of the Multiverse.” New Scientist, 2025. https://www.newscientist.com/
article/mg26435252-200-how-a-quantum-innovation-may-quash-the-idea-of
-the-multiverse/.

[30] Cai, Guangya, and Daowen Qiu. “Optimal Separation in Exact Query
Complexities for Simon’s Problem.” Journal of Computer and System
Sciences 97 (2018): 83–93. https://doi.org/10.1016/j.jcss.2018.05.001.

[31] Cartwright, Jon. “The Quantum World: A Concise Guide to the Par-
ticles That Make Reality.” https://www.newscientist.com/article/2367423
-the-quantum-world-a-concise-guide-to-the-particles-that-make-reality/, 2023.

[32] Carver, George Washington. “Quotefancy.” Approx. 1934. https://
quotefancy.com/george-washington-carver-quotes.

[33] Castelvecchi, Davide. “Magnetic Sense Shows Many Animals theWay to
Go.” Scientific American, 2012. https://www.scientificamerican.com/article/
the-compass-within/.

[34] Cherney, David, Tom Denton, and Andrew Waldron. “7.1: Linear
Transformations and Matrices.” In Linear Algebra, LibreTexts. https://
math.libretexts.org/Bookshelves/Linear_Algebra/Map%3A_Linear_Algebra
_(Waldron_Cherney_and_Denton)/07%3A_Matrices/7.01%3A_Linear
_Transformations_and_Matrices.

[35] Chesser, Preston. “Oracle of Delphi.” https://ehistory.osu.edu/articles/
oracle-delphi.

[36] Childs, AndrewM., MatthewCoudron, and Amin Shiraz Gilani. “Quan-
tum Algorithms and the Power of Forgetting.” https://arxiv.org/pdf/
2211.12447, 2022.

[37] Clark, Bryan. “Quantum Fourier Transform.” University of Illinois
Urbana-Champaign, 2022. https://courses.physics.illinois.edu/phys498cmp/
sp2022/QC/QFT.html.

[38] Cleve, Richard. “Classical Lower Bound for Simon’s Problem.” Univer-
sity of Waterloo, 2011. https://cs.uwaterloo.ca/∼cleve/courses/F11CS667/
SimonClassicalLB.pdf.

[39] Cleve, Richard, Artur Ekert, Chiara Macchiavello, and Michele Mosca.
“Quantum Algorithms Revisited.” Proceedings of the Royal Society of
London A 454 (1998): 339–54. https://doi.org/10.1098/rspa.1998.0164.

Bibliography 361

https://arxiv.org/pdf/quant-ph/9704027.pdf
https://arxiv.org/pdf/quant-ph/9704027.pdf
https://arxiv.org/pdf/quant-ph/0005055
https://www.imdb.com/title/tt0063462
https://www.newscientist.com/article/mg26435252-200-how-a-quantum-innovation-may-quash-the-idea-of-the-multiverse/
https://www.newscientist.com/article/mg26435252-200-how-a-quantum-innovation-may-quash-the-idea-of-the-multiverse/
https://www.newscientist.com/article/mg26435252-200-how-a-quantum-innovation-may-quash-the-idea-of-the-multiverse/
https://doi.org/10.1016/j.jcss.2018.05.001
https://www.newscientist.com/article/2367423-the-quantum-world-a-concise-guide-to-the-particles-that-make-reality/
https://www.newscientist.com/article/2367423-the-quantum-world-a-concise-guide-to-the-particles-that-make-reality/
https://quotefancy.com/george-washington-carver-quotes
https://quotefancy.com/george-washington-carver-quotes
https://www.scientificamerican.com/article/the-compass-within/
https://www.scientificamerican.com/article/the-compass-within/
https://math.libretexts.org/Bookshelves/Linear_Algebra/Map%3A_Linear_Algebra_(Waldron_Cherney_and_Denton)/07%3A_Matrices/7.01%3A_Linear_Transformations_and_Matrices
https://math.libretexts.org/Bookshelves/Linear_Algebra/Map%3A_Linear_Algebra_(Waldron_Cherney_and_Denton)/07%3A_Matrices/7.01%3A_Linear_Transformations_and_Matrices
https://math.libretexts.org/Bookshelves/Linear_Algebra/Map%3A_Linear_Algebra_(Waldron_Cherney_and_Denton)/07%3A_Matrices/7.01%3A_Linear_Transformations_and_Matrices
https://math.libretexts.org/Bookshelves/Linear_Algebra/Map%3A_Linear_Algebra_(Waldron_Cherney_and_Denton)/07%3A_Matrices/7.01%3A_Linear_Transformations_and_Matrices
https://ehistory.osu.edu/articles/oracle-delphi
https://ehistory.osu.edu/articles/oracle-delphi
https://arxiv.org/pdf/2211.12447
https://arxiv.org/pdf/2211.12447
https://courses.physics.illinois.edu/phys498cmp/sp2022/QC/QFT.html
https://courses.physics.illinois.edu/phys498cmp/sp2022/QC/QFT.html
https://cs.uwaterloo.ca/~cleve/courses/F11CS667/SimonClassicalLB.pdf
https://cs.uwaterloo.ca/~cleve/courses/F11CS667/SimonClassicalLB.pdf
https://doi.org/10.1098/rspa.1998.0164

[40] Cohen, Danny. “On Holy Wars and a Plea for Peace.” IEEE Com-
puter 14, no. 10 (1981): 49–54. https://gwern.net/doc/cs/algorithm/1981
-cohen.pdf.

[41] Conrad, Keith. “Tensor Products.” https://kconrad.math.uconn.edu/
blurbs/linmultialg/tensorprod.pdf.

[42] Cycling ’74. “What Is Max?” https://cycling74.com/products/max.

[43] Daniels, Greg, Brent Forrester, and Ricky Gervais. “A.A.R.M.”
(The Office, Season 9, Episode 17). https://www.imdb.com/title/
tt2669740, 2013.

[44] Dargan, James. “Top 63 Quantum Computer Simulators for 2024.”
https://thequantuminsider.com/2022/06/14/top-63-quantum-computer
-simulators-for-2022/.

[45] De Morgan, Augustus. A Treatise on the Calculus of Functions, 1836.

[46] Desef, Benjamin. “Yquant.” https://github.com/projekter/yquant.

[47] deWolf, Ronald. “QuantumComputing: Lecture Notes.” QuSoft, CWI
and University of Amsterdam, 2023. https://arxiv.org/pdf/1907.09415.

[48] Deutsch, David. The Fabric of Reality. Viking, 1997.

[49] Deutsch, David. “Quantum Theory, the Church—Turing Principle and
the Universal Quantum Computer.” Proceedings of the Royal Society A.
85, no. 400 (1985): 97–117. https://doi.org/10.1098/rspa.1985.0070.

[50] Dirac, Paul. “A New Notation for Quantum Mechanics.” In Mathemat-
ical Proceedings of the Cambridge Philosophical Society, vol. 35, 416–18,
1939. https://doi.org/10.1017/S0305004100021162.

[51] Dobrijevic, Daisy. “How Hot Is the Sun?” https://www.space.com/17137
-how-hot-is-the-sun.html, 2023.

[52] Duan, Lu-Ming, and Guang-Can Guo. “Probabilistic Cloning and
Identification of Linearly Independent Quantum States.” https://arxiv
.org/pdf/quant-ph/9804064, 1997.

[53] Duan, Lu-Ming, and Guang-Can Guo. “Two Non-Orthogonal States
Can Be Cloned by a Unitary-Reduction Process.” https://arxiv.org/pdf/
quant-ph/9704020, 1987.

[54] Dunin, Elonka. “Famous Unsolved Codes and Ciphers.” https://elonka
.com/UnsolvedCodes.html, 2023.

[55] Einstein, Albert, Boris Podolsky, and Nathan Rosen. “Can Quan-
tum Mechanical Description of Physical Reality Be Considered Com-
plete?” Physical Review 47 (1935): 777–80. https://doi.org/10.1103/
PhysRev.47.777.

[56] Etim, Inemesit. “10 Quantum Games That Can Help You Learn the
Field of Quantum Computing.” https://quantumzeitgeist.com/10-quantum
-games-that-can-help-you-learn-the-field-of-quantum-computing/, 2022.

[57] Euler, Leonhard. Elements of Algebra. Longman, Rees, Orme, and
Co., 1765. 2015 update of 1828 translation by John Hewlett of the

362 Bibliography

https://gwern.net/doc/cs/algorithm/1981-cohen.pdf
https://gwern.net/doc/cs/algorithm/1981-cohen.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/tensorprod.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/tensorprod.pdf
https://cycling74.com/products/max
https://www.imdb.com/title/tt2669740
https://www.imdb.com/title/tt2669740
https://thequantuminsider.com/2022/06/14/top-63-quantum-computer-simulators-for-2022/
https://thequantuminsider.com/2022/06/14/top-63-quantum-computer-simulators-for-2022/
https://github.com/projekter/yquant
https://arxiv.org/pdf/1907.09415
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1017/S0305004100021162
https://www.space.com/17137-how-hot-is-the-sun.html
https://www.space.com/17137-how-hot-is-the-sun.html
https://arxiv.org/pdf/quant-ph/9804064
https://arxiv.org/pdf/quant-ph/9804064
https://arxiv.org/pdf/quant-ph/9704020
https://arxiv.org/pdf/quant-ph/9704020
https://elonka.com/UnsolvedCodes.html
https://elonka.com/UnsolvedCodes.html
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://quantumzeitgeist.com/10-quantum-games-that-can-help-you-learn-the-field-of-quantum-computing/
https://quantumzeitgeist.com/10-quantum-games-that-can-help-you-learn-the-field-of-quantum-computing/

original Vollständige Anleitung zur Algebra. https://ia800308.us.archive
.org/2/items/ElementsOfAlgebraLeonhardEuler2015/ElementsOfAlgebra
_LeonhardEuler_Edition2015.pdf.

[58] Everett III, Hugh. ““Relative State” Formulation of Quantum Mechan-
ics.” Reviews of Modern Physics 29, no. 3 (1957): 454–62. https://typeset
.io/papers/relative-state-formulation-of-quantum-mechanics-3crdqguh8o.

[59] Faye, Jan. “Copenhagen Interpretation of Quantum Mechanics.” In
Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter
2019 Edition). https://plato.stanford.edu/archives/win2019/entries/qm
-copenhagen/.

[60] Feldman, Joel. “Trig Identities—Cosine Law and Addition Formulae.”
https://personal.math.ubc.ca/∼feldman/m100/trigId.pdf, 2000.

[61] Fermilab. “Physics Questions People Ask Fermilab.” https://www.fnal
.gov/pub/science/inquiring/questions/atoms.html, 2014.

[62] Feynman, Richard P. “From a Letter to Ms. J. M. Szabados of Victoria,
Australia.” https://en.wikiquote.org/wiki/Richard_Feynman, 1965.

[63] Fisher, Trevor, Derek Funk, and Rachel Sams. “The Birthday Problem
and Generalizations.” https://d31kydh6n6r5j5.cloudfront.net/uploads/
sites/66/2019/04/birthday_comps.pdf, 2013.

[64] Florio, G., and D. Picca. “Quantum Implementation of Elementary
Arithmetic Operations.” https://arxiv.org/pdf/quant-ph/0403048, 2004.

[65] Freeze, Brennan T., Aundre Barras, Paris Osuch, Soren Sevier
Richenberg, and Suzanne Rivoire. “QC.py: Quantum Comput-
ing Simulation and Visualization Suite.” In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education, vol. 2, 2023.
https://doi.org/10.1145/3545947.3576334.

[66] Gabel, Robert A., and Richard A. Roberts. Signals and Linear Systems
(2nd ed.). John Wiley & Sons, 1980.

[67] Gagliardoni, Tommaso. “Quantum Attack Resource Estimate: Using
Shor’s Algorithm to Break RSA vs DH/DSA vs ECC.” https://research
.kudelskisecurity.com/2021/08/24/quantum-attack-resource-estimate-using
-shors-algorithm-to-break-rsa-vs-dh-dsa-vs-ecc/, 2021.

[68] Galilei, Galileo. Il Saggiatore. 1623. Quoted at https://mathshistory.st
-andrews.ac.uk/Biographies/Galileo/quotations/.

[69] Gambetta, Jay. “The Hardware and Software for the Era of Quantum
Utility Is Here.” IBMQuantum Research Blog, December 2023. https://
www.ibm.com/quantum/blog/quantum-roadmap-2033.

[70] Gauss, Carl Friedrich. Theoria Residiorum Biquadraticorum, Commen-
tario Secunda. Dieterich, 1832. Quoted in Robert Edouard Moritz.
Memorabilia Mathematica (Macmillan, 1914). https://www.gutenberg.org/
cache/epub/44730/pg44730-images.html.

Bibliography 363

https://ia800308.us.archive.org/2/items/ElementsOfAlgebraLeonhardEuler2015/ElementsOfAlgebra_LeonhardEuler_Edition2015.pdf
https://ia800308.us.archive.org/2/items/ElementsOfAlgebraLeonhardEuler2015/ElementsOfAlgebra_LeonhardEuler_Edition2015.pdf
https://ia800308.us.archive.org/2/items/ElementsOfAlgebraLeonhardEuler2015/ElementsOfAlgebra_LeonhardEuler_Edition2015.pdf
https://typeset.io/papers/relative-state-formulation-of-quantum-mechanics-3crdqguh8o
https://typeset.io/papers/relative-state-formulation-of-quantum-mechanics-3crdqguh8o
https://plato.stanford.edu/archives/win2019/entries/qm-copenhagen/
https://plato.stanford.edu/archives/win2019/entries/qm-copenhagen/
https://personal.math.ubc.ca/~feldman/m100/trigId.pdf
https://www.fnal.gov/pub/science/inquiring/questions/atoms.html
https://www.fnal.gov/pub/science/inquiring/questions/atoms.html
https://en.wikiquote.org/wiki/Richard_Feynman
https://d31kydh6n6r5j5.cloudfront.net/uploads/sites/66/2019/04/birthday_comps.pdf
https://d31kydh6n6r5j5.cloudfront.net/uploads/sites/66/2019/04/birthday_comps.pdf
https://arxiv.org/pdf/quant-ph/0403048
https://doi.org/10.1145/3545947.3576334
https://research.kudelskisecurity.com/2021/08/24/quantum-attack-resource-estimate-using-shors-algorithm-to-break-rsa-vs-dh-dsa-vs-ecc/
https://research.kudelskisecurity.com/2021/08/24/quantum-attack-resource-estimate-using-shors-algorithm-to-break-rsa-vs-dh-dsa-vs-ecc/
https://research.kudelskisecurity.com/2021/08/24/quantum-attack-resource-estimate-using-shors-algorithm-to-break-rsa-vs-dh-dsa-vs-ecc/
https://mathshistory.st-andrews.ac.uk/Biographies/Galileo/quotations/
https://mathshistory.st-andrews.ac.uk/Biographies/Galileo/quotations/
https://www.ibm.com/quantum/blog/quantum-roadmap-2033
https://www.ibm.com/quantum/blog/quantum-roadmap-2033
https://www.gutenberg.org/cache/epub/44730/pg44730-images.html
https://www.gutenberg.org/cache/epub/44730/pg44730-images.html

[71] Gharibian, Sevag. “Introduction to Quantum Computation.” Pader-
born University, 2021. https://groups.uni-paderborn.de/fg-qi/courses/UPB
_INTRO_QUANTUM/S2021/notes/IQC_Masterfile.pdf.

[72] Gide, André. The Counterfeiters: A Novel. Knopf, 1927.

[73] Glassner, Andrew. “An Introduction to the Fourier Transform.” In
SIGGRAPH Courses ’24, 2024. https://dl.acm.org/doi/10.1145/3664475
.3664537.

[74] Glassner, Andrew. “Quantum Computing, Part 1.” https://www
.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-07-Quantum
-Computing-1-July01.pdf, 2001.

[75] Glassner, Andrew. “Quantum Computing, Part 2.” https://www
.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-09-Quantum
-Computing-2-Sept01.pdf, 2001.

[76] Glassner, Andrew. “Quantum Computing, Part 3.” https://www
.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-11-Quantum
-Computing-3-Nov01.pdf, 2001.

[77] Gleick, James. Chaos: Making a New Science. Viking, 1987.

[78] Google Quantum AI. “Cirq.” https://quantumai.google/cirq.

[79] Gowers, Timothy. “How to Lose Your Fear of Tensor Products.” https://
www.dpmms.cam.ac.uk/∼wtg10/tensors3.html.

[80] Graham, Ian. “What Is the Geological Time Scale?” https://australian
.museum/learn/australia-over-time/evolving-landscape/the-geological-time
-scale/, 2020.

[81] Griffiths, David J., and Darrell F. Schroeter. Introduction to Quantum
Mechanics (3rd ed.). Cambridge University Press, 2018.

[82] Grover, Lov K. “A Fast Quantum Mechanical Algorithm for Database
Search.” https://arxiv.org/pdf/quant-ph/9605043, 1996.

[83] Grover, Lov K. “Quantum Computers Can Search Arbitrarily Large
Databases by a Single Query.” Physical Review Letters 79 (1997):
4709–12. https://arxiv.org/pdf/quant-ph/9706005.pdf.

[84] Guinness World Records. “Heaviest Watermelon.” https://www
.guinnessworldrecords.com/world-records/heaviest-watermelon.

[85] Haber, Howard E. “Coordinates, Matrix Elements and Changes of
Basis.” University of California, Santa Cruz, 2006. http://scipp.ucsc.edu/
∼haber/archives/physics116A06/basis.pdf.

[86] Haener, Thomas, Mathias Soeken, Martin Roetteler, and Krysta M.
Svore. “Quantum Circuits for Floating-point Arithmetic.” https://arxiv
.org/pdf/1807.02023, 2018.

[87] Haldane, J.B.S. Possible Worlds and Other Essays. Chatto & Windus, 1927.

[88] Hamilton, Kirk. “‘Soul Vaccination’ by Tower of Power.” Strong Songs
podcast, 2023. https://strongsongspodcast.com.

364 Bibliography

https://groups.uni-paderborn.de/fg-qi/courses/UPB_INTRO_QUANTUM/S2021/notes/IQC_Masterfile.pdf
https://groups.uni-paderborn.de/fg-qi/courses/UPB_INTRO_QUANTUM/S2021/notes/IQC_Masterfile.pdf
https://dl.acm.org/doi/10.1145/3664475.3664537
https://dl.acm.org/doi/10.1145/3664475.3664537
https://www.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-07-Quantum-Computing-1-July01.pdf
https://www.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-07-Quantum-Computing-1-July01.pdf
https://www.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-07-Quantum-Computing-1-July01.pdf
https://www.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-09-Quantum-Computing-2-Sept01.pdf
https://www.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-09-Quantum-Computing-2-Sept01.pdf
https://www.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-09-Quantum-Computing-2-Sept01.pdf
https://www.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-11-Quantum-Computing-3-Nov01.pdf
https://www.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-11-Quantum-Computing-3-Nov01.pdf
https://www.glassner.com/wp-content/uploads/2014/04/CG-CGA-PDF-01-11-Quantum-Computing-3-Nov01.pdf
https://quantumai.google/cirq
https://www.dpmms.cam.ac.uk/~wtg10/tensors3.html
https://www.dpmms.cam.ac.uk/~wtg10/tensors3.html
https://australian.museum/learn/australia-over-time/evolving-landscape/the-geological-time-scale/
https://australian.museum/learn/australia-over-time/evolving-landscape/the-geological-time-scale/
https://australian.museum/learn/australia-over-time/evolving-landscape/the-geological-time-scale/
https://arxiv.org/pdf/quant-ph/9605043
https://arxiv.org/pdf/quant-ph/9706005.pdf
https://www.guinnessworldrecords.com/world-records/heaviest-watermelon
https://www.guinnessworldrecords.com/world-records/heaviest-watermelon
http://scipp.ucsc.edu/~haber/archives/physics116A06/basis.pdf
http://scipp.ucsc.edu/~haber/archives/physics116A06/basis.pdf
https://arxiv.org/pdf/1807.02023
https://arxiv.org/pdf/1807.02023
https://strongsongspodcast.com

[89] Harper, David, and L.M. Stockman. “The History of Fortran.” https://
www.obliquity.com/computer/fortran/history.html, 2013.

[90] Hatfield, Gary. “René Descartes.” https://plato.stanford.edu/entries/
descartes/, 2023.

[91] Hoexum, Eline Sophie. “Revisiting the Proof of the Complexity of
the Sudoku Puzzle.” Master’s thesis, Rijksuniversiteit Groningen,
June 2020. https://fse.studenttheses.ub.rug.nl/22745/1/bMATH_2020
_HoexumES.pdf.pdf.

[92] Hughes, John. Personal communication, 2023.

[93] Hunt, Leigh. As quoted in The Farmer’s Wife, 36, 1933. https://en
.wikiquote.org/wiki/Leigh_Hunt.

[94] Hunziker, Markus, David A. Meyer, Jihun Park, James Pommersheim,
andMitch Rothstein. “The Geometry of Quantum Learning.”Quantum
Information Processing 9, no. 3 (2003): 321–41. https://arxiv.org/abs/
quant-ph/0309059.

[95] IBM. “IBM Quantum Platform.” https://quantum.ibm.com.

[96] IBM. “Qiskit Documentation.” https://www.ibm.com/quantum/qiskit.

[97] IBM. “Quantum Fourier Transform.” https://github.com/Qiskit/textbook/
blob/main/notebooks/ch-algorithms/quantum-fourier-transform.ipynb, 2022.

[98] IBM. “Single Qubit Gates.” https://qiskit.org/textbook/ch-states/single
-qubit-gates.html, 2023.

[99] IBM Quantum Learning. “Grover’s Algorithm.” https://learning
.quantum.ibm.com/tutorial/grovers-algorithm.

[100] Jacobson, Scott. “Crows Encounters of the Bird Kind” (Bob’s Burgers,
Season 13, Episode 17). https://www.imdb.com/title/tt27003633, 2023.

[101] Jaques, Samuel, and Arthur G. Rattew. “QRAM: A Survey and Cri-
tique.” https://arxiv.org/pdf/2305.10310.pdf, 2023.

[102] Johansson, J.R., P.D. Nation, and Franco Nori. “QuTiP 2: A Python
Framework for the Dynamics of Open Quantum Systems.” Computer
Physics Communications 184, no. 4 (2013): 1234–40. https://doi.org/10
.1016/j.cpc.2012.11.019.

[103] Johansson, J.R., P.D. Nation, and Franco Nori. “QuTiP: An Open-
Source Python Framework for the Dynamics of Open Quantum Sys-
tems.” Computer Physics Communications 183, no. 8 (2012): 1760–72.
https://doi.org/10.1016/j.cpc.2012.02.021.

[104] Johnston, Eric. “An Exploratory Study in Quantum Acceleration of
Ray Tracing.” https://www.machinelevel.com/qc/doc/Quantum%20Ray%
20Tracing.pdf, 2015.

[105] Jordan, Louis, and Billy Austin. “Is You Is or Is You Ain’t My
Baby?” https://open.spotify.com/track/0IzMBujKJ24egd9HIK3OhG?si
=a2a3cd66a3d54515, 1943.

Bibliography 365

https://www.obliquity.com/computer/fortran/history.html
https://www.obliquity.com/computer/fortran/history.html
https://plato.stanford.edu/entries/descartes/
https://plato.stanford.edu/entries/descartes/
https://fse.studenttheses.ub.rug.nl/22745/1/bMATH_2020_HoexumES.pdf.pdf
https://fse.studenttheses.ub.rug.nl/22745/1/bMATH_2020_HoexumES.pdf.pdf
https://en.wikiquote.org/wiki/Leigh_Hunt
https://en.wikiquote.org/wiki/Leigh_Hunt
https://arxiv.org/abs/quant-ph/0309059
https://arxiv.org/abs/quant-ph/0309059
https://quantum.ibm.com
https://www.ibm.com/quantum/qiskit
https://github.com/Qiskit/textbook/blob/main/notebooks/ch-algorithms/quantum-fourier-transform.ipynb
https://github.com/Qiskit/textbook/blob/main/notebooks/ch-algorithms/quantum-fourier-transform.ipynb
https://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://learning.quantum.ibm.com/tutorial/grovers-algorithm
https://learning.quantum.ibm.com/tutorial/grovers-algorithm
https://www.imdb.com/title/tt27003633
https://arxiv.org/pdf/2305.10310.pdf
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.02.021
https://www.machinelevel.com/qc/doc/Quantum%20Ray%20Tracing.pdf
https://www.machinelevel.com/qc/doc/Quantum%20Ray%20Tracing.pdf
https://open.spotify.com/track/0IzMBujKJ24egd9HIK3OhG?si=a2a3cd66a3d54515
https://open.spotify.com/track/0IzMBujKJ24egd9HIK3OhG?si=a2a3cd66a3d54515

[106] Jordan, Stephen. “Quantum Algorithm Zoo.” https://quantum
algorithmzoo.org, 2025.

[107] Joyce, Alex. “Why Right-Hand Rule for Mazes Works.” https://www
.nytimes.com/1989/09/06/opinion/l-why-right-hand-rule-for-mazes-works
-075389.html, 1989.

[108] Juster, Norton. The Phantom Tollbooth. Epstein & Carroll, 1961.

[109] Kay, Alastair (DaftWullie). “How Do I Show That a Two-Qubit
State Is an Entangled State?” https://quantumcomputing.stackexchange
.com/questions/2263/how-do-i-show-that-a-two-qubit-state-is-an-entangled
-state, 2018.

[110] Kay, Alastair. “Tutorial on the Quantikz Package.” https://arxiv.org/
pdf/1809.03842, 2023.

[111] Kay, Alastair (DaftWullie). “Understanding Oracles for Simon’s Algo-
rithm.” https://quantumcomputing.stackexchange.com/questions/32360/
understanding-oracles-for-simons-algorithm, 2023.

[112] Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Lan-
guage. Pearson, 1978.

[113] Khan Academy. “Intro to the Trigonometric Ratios.” https://www
.khanacademy.org/math/geometry-home/right-triangles-topic/intro-to-the
-trig-ratios-geo/v/basic-trigonometry, 2011.

[114] Kun, Jeremy. “How to Conquer Tensorphobia.” https://jeremykun.com/
2014/01/17/how-to-conquer-tensorphobia/, 2014.

[115] Kun, Jeremy. “Tensorphobia and the Outer Product.” https://jeremy
kun.com/2016/03/28/tensorphobia-outer-product/, 2014.

[116] Kuttler, Ken. “Multiplication of Matrices.” https://math.libretexts.org/
Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/,
02%3A_Matrices/2.02%3A_Multiplication_of_Matrices, 2023.

[117] Kuttler, Kenneth. Linear Algebra, Theory and Applications. 2012. https://
resources.saylor.org/wwwresources/archived/site/wp-content/uploads/2012/
02/Linear-Algebra-Kuttler-1-30-11-OTC.pdf.

[118] Kwan, Dan, and Daniel Scheinert. Everything Everywhere All at Once.
https://www.imdb.com/title/tt6710474, 2022.

[119] Lanese, Nicoletta. “Short-Necked Giraffe Relative Discovered in
China. It Used Its Helmet Head to Bash Rivals.” https://www.live
science.com/extinct-giraffe-relative-fossils, 2022.

[120] Lankham, Isaiah, Bruno Nachtergaele, and Anne Schilling. “9.1: In-
ner Products.” https://math.libretexts.org/Bookshelves/Linear_Algebra/
Book%3A_Linear_Algebra_(Schilling_Nachtergaele_and_Lankham)/09%
3A_Inner_product_spaces/9.01%3A_Inner_Products.

[121] LEGO. “MINDSTORMS Reference.” https://makecode.mindstorms.com/
reference, 2018.

366 Bibliography

https://quantumalgorithmzoo.org
https://quantumalgorithmzoo.org
https://www.nytimes.com/1989/09/06/opinion/l-why-right-hand-rule-for-mazes-works-075389.html
https://www.nytimes.com/1989/09/06/opinion/l-why-right-hand-rule-for-mazes-works-075389.html
https://www.nytimes.com/1989/09/06/opinion/l-why-right-hand-rule-for-mazes-works-075389.html
https://quantumcomputing.stackexchange.com/questions/2263/how-do-i-show-that-a-two-qubit-state-is-an-entangled-state
https://quantumcomputing.stackexchange.com/questions/2263/how-do-i-show-that-a-two-qubit-state-is-an-entangled-state
https://quantumcomputing.stackexchange.com/questions/2263/how-do-i-show-that-a-two-qubit-state-is-an-entangled-state
https://arxiv.org/pdf/1809.03842
https://arxiv.org/pdf/1809.03842
https://quantumcomputing.stackexchange.com/questions/32360/understanding-oracles-for-simons-algorithm
https://quantumcomputing.stackexchange.com/questions/32360/understanding-oracles-for-simons-algorithm
https://www.khanacademy.org/math/geometry-home/right-triangles-topic/intro-to-the-trig-ratios-geo/v/basic-trigonometry
https://www.khanacademy.org/math/geometry-home/right-triangles-topic/intro-to-the-trig-ratios-geo/v/basic-trigonometry
https://www.khanacademy.org/math/geometry-home/right-triangles-topic/intro-to-the-trig-ratios-geo/v/basic-trigonometry
https://jeremykun.com/2014/01/17/how-to-conquer-tensorphobia/
https://jeremykun.com/2014/01/17/how-to-conquer-tensorphobia/
https://jeremykun.com/2016/03/28/tensorphobia-outer-product/
https://jeremykun.com/2016/03/28/tensorphobia-outer-product/
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/02%3A_Matrices/2.02%3A_Multiplication_of_Matrices
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/02%3A_Matrices/2.02%3A_Multiplication_of_Matrices
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/02%3A_Matrices/2.02%3A_Multiplication_of_Matrices
https://resources.saylor.org/wwwresources/archived/site/wp-content/uploads/2012/02/Linear-Algebra-Kuttler-1-30-11-OTC.pdf
https://resources.saylor.org/wwwresources/archived/site/wp-content/uploads/2012/02/Linear-Algebra-Kuttler-1-30-11-OTC.pdf
https://resources.saylor.org/wwwresources/archived/site/wp-content/uploads/2012/02/Linear-Algebra-Kuttler-1-30-11-OTC.pdf
https://www.imdb.com/title/tt6710474
https://www.livescience.com/extinct-giraffe-relative-fossils
https://www.livescience.com/extinct-giraffe-relative-fossils
https://math.libretexts.org/Bookshelves/Linear_Algebra/Book%3A_Linear_Algebra_(Schilling_Nachtergaele_and_Lankham)/09%3A_Inner_product_spaces/9.01%3A_Inner_Products
https://math.libretexts.org/Bookshelves/Linear_Algebra/Book%3A_Linear_Algebra_(Schilling_Nachtergaele_and_Lankham)/09%3A_Inner_product_spaces/9.01%3A_Inner_Products
https://math.libretexts.org/Bookshelves/Linear_Algebra/Book%3A_Linear_Algebra_(Schilling_Nachtergaele_and_Lankham)/09%3A_Inner_product_spaces/9.01%3A_Inner_Products
https://makecode.mindstorms.com/reference
https://makecode.mindstorms.com/reference

[122] Leiber, Jerry, and Mike Stoller. “Searchin’.” https://genius.com/The
-coasters-searchin-lyrics, 1957.

[123] Lennon, John, and Paul McCartney. “Do You Want to Know a Secret?”
https://music.youtube.com/watch?v=uRQ7ecvU56k, 1964.

[124] Li, Lvzhou, Jingquan Luo, and Yongzhen Xu. “Playing Mastermind on
Quantum Computers.” https://arxiv.org/pdf/2207.09356, 2023.

[125] LibreTexts. “1.5: Composition of Functions.” In Precalculus 2e (Open-
Stax). https://math.libretexts.org/Bookshelves/Precalculus/Precalculus_2e
_(OpenStax)/01%3A_Functions/1.05%3A_Composition_of_Functions.

[126] Lincoln, Don. “Quantum Foam, Virtual Particles, and Other Cu-
riosities.” https://www.pbs.org/wgbh/nova/article/quantum-foam-virtual
-particles-and-other-curiosities, 2012.

[127] Livingston, Morgan, and Richard Liu. “Games Round Up: Quan-
tum Computing.” https://www.wilsoncenter.org/blog-post/games-round
-quantum-computing, 2022.

[128] Lu, Xi, and Hongwei Lin. “A Framework for Quantum Ray Tracing.”
https://arxiv.org/pdf/2203.15451, 2022.

[129] Ludwig, Howard. “Why Is the Set of All Integers Denoted by Z?”
https://www.quora.com/Why-is-the-set-of-all-integers-denoted-by-mathbb-Z,
2019.

[130] Luff, Christine. “How Long Does It Take to Run a Marathon?”
https://www.verywellfit.com/how-long-does-it-take-to-run-a-marathon
-2911423, 2024.

[131] Martinez, Josu Etxezarreta. “How to Construct Matrix of Regular and
‘Flipped’ 2-qubit CNOT?” https://quantumcomputing.stackexchange.com/
questions/5179/how-to-construct-matrix-of-regular-and-flipped-2-qubit-cnot,
2019.

[132] Mathoma. “Geometric Algebra in 2D—Two Reflections Is a Rotation.”
https://www.youtube.com/watch?v=Hy2gbdbrJZ8, 2016.

[133] Matsos, Helen. “How Animals Sense Earth’s Magnetic Field.” https://
phys.org/news/2020-05/animals-earth-magnetic-field.html, 2020.

[134] McAllister, Willy. “Basic Electrical Quantities: Current, Voltage,
Power.” https://www.khanacademy.org/science/physics/circuits-topic/
circuits-resistance/a/ee-voltage-and-current.

[135] Merino, Orlando. “A Short History of Complex Numbers.” https://
www.math.uri.edu/~merino/spring06/mth562/ShortHistoryComplex
Numbers2006.pdf , 2006.

[136] Mermin, N. David. “Could Feynman Have Said This?” Physics Today
57, no. 5 (2004): 10–11. https://doi.org/10.1063/1.1768652.

[137] Mermin, N. David. Quantum Computer Science: An Introduction. Cam-
bridge University Press, 2007.

Bibliography 367

https://genius.com/The-coasters-searchin-lyrics
https://genius.com/The-coasters-searchin-lyrics
https://music.youtube.com/watch?v=uRQ7ecvU56k
https://arxiv.org/pdf/2207.09356
https://math.libretexts.org/Bookshelves/Precalculus/Precalculus_2e_(OpenStax)/01%3A_Functions/1.05%3A_Composition_of_Functions
https://math.libretexts.org/Bookshelves/Precalculus/Precalculus_2e_(OpenStax)/01%3A_Functions/1.05%3A_Composition_of_Functions
https://www.pbs.org/wgbh/nova/article/quantum-foam-virtual-particles-and-other-curiosities
https://www.pbs.org/wgbh/nova/article/quantum-foam-virtual-particles-and-other-curiosities
https://www.wilsoncenter.org/blog-post/games-round-quantum-computing
https://www.wilsoncenter.org/blog-post/games-round-quantum-computing
https://arxiv.org/pdf/2203.15451
https://www.quora.com/Why-is-the-set-of-all-integers-denoted-by-mathbb-Z
https://www.verywellfit.com/how-long-does-it-take-to-run-a-marathon-2911423
https://www.verywellfit.com/how-long-does-it-take-to-run-a-marathon-2911423
https://quantumcomputing.stackexchange.com/questions/5179/how-to-construct-matrix-of-regular-and-flipped-2-qubit-cnot
https://quantumcomputing.stackexchange.com/questions/5179/how-to-construct-matrix-of-regular-and-flipped-2-qubit-cnot
https://www.youtube.com/watch?v=Hy2gbdbrJZ8
https://phys.org/news/2020-05/animals-earth-magnetic-field.html
https://phys.org/news/2020-05/animals-earth-magnetic-field.html
https://www.khanacademy.org/science/physics/circuits-topic/circuits-resistance/a/ee-voltage-and-current
https://www.khanacademy.org/science/physics/circuits-topic/circuits-resistance/a/ee-voltage-and-current
https://www.math.uri.edu/~merino/spring06/mth562/ShortHistoryComplexNumbers2006.pdf
https://www.math.uri.edu/~merino/spring06/mth562/ShortHistoryComplexNumbers2006.pdf
https://www.math.uri.edu/~merino/spring06/mth562/ShortHistoryComplexNumbers2006.pdf
https://doi.org/10.1063/1.1768652

[138] Merriam-Webster. “Black Box.” https://www.merriam-webster.com/
dictionary/black%20box.

[139] Merriam-Webster. “Oracle.” https://www.merriam-webster.com/
dictionary/oracle.

[140] Microsoft Azure Quantum Documentation. “Dirac Notation in
Quantum Computing.” https://learn.microsoft.com/en-us/azure/
quantum/concepts-dirac-notation, 2025.

[141] Microsoft Azure Quantum Documentation. “Understanding Quan-
tum Oracles.” https://learn.microsoft.com/en-us/azure/quantum/concepts
-oracles, 2024.

[142] Miller-Bakewell, Hector, and John van de Wetering. “The ZX-calculus.”
https://zxcalculus.com.

[143] Nahin, Paul J. Dr. Euler’s Fabulous Formula: Cures Many Mathematical
Ills. Princeton University Press, 2017.

[144] Najera, Jesus. “The History of Euler’s Number (e).” https://www
.cantorsparadise.org/the-history-of-eulers-number-e-8c982994a39b/, 2020.

[145] Nakanishi, Ken M., Takahiko Satoh, and Synge Todo. “Quantum-Gate
Decomposer.” https://arxiv.org/pdf/2109.13223, 2021.

[146] Neilsen, Michael A., and Isaac L. Chuang. Quantum Computation
and Quantum Information (10th anniv. ed.). Cambridge University
Press, 2011.

[147] Neven, Hartmut. “Meet Willow, Our State-of-the-Art Quantum Chip.”
https://blog.google/technology/research/google-willow-quantum-chip/, 2024.

[148] Nicholas, Jackie, and Peggy Adamson. “Introduction to Trigonometric
Functions.” https://www.sydney.edu.au/content/dam/students/documents/
mathematics-learning-centre/introduction-trigonometric-functions.pdf, 1998.

[149] NIST. “NIST Releases First 3 Finalized Post-Quantum Encryption
Standards.” https://www.nist.gov/news-events/news/2024/08/nist-releases
-first-3-finalized-post-quantum-encryption-standards, 2024.

[150] Nykamp, Duane Q. “Linear Transformations.” https://mathinsight.org/
linear_transformation_definition_euclidean.

[151] O’Connor, J.J., and E.F. Robertson. “Jean Robert Argand.” https://
mathshistory.st-andrews.ac.uk/Biographies/Argand/, 2019.

[152] Oppenheim, Alan V., and Ronald W. Schafer. Digital Signal Processing.
Prentice-Hall, 1975.

[153] Osgood, Brad. “Lecture Notes for EE 261: The Fourier Transform
and Its Applications.” https://see.stanford.edu/materials/lsoftaee261/book
-fall-07.pdf, 2007.

[154] Padavic-Callaghan, Karmela. “Quantum Computers Have Finally Ar-
rived, But Will They Ever Be Useful?” New Scientist, 2025. https://www
.newscientist.com/article/2467128-quantum-computers-have-finally-arrived
-but-will-they-ever-be-useful/.

368 Bibliography

https://www.merriam-webster.com/dictionary/black%20box
https://www.merriam-webster.com/dictionary/black%20box
https://www.merriam-webster.com/dictionary/oracle
https://www.merriam-webster.com/dictionary/oracle
https://learn.microsoft.com/en-us/azure/quantum/concepts-dirac-notation
https://learn.microsoft.com/en-us/azure/quantum/concepts-dirac-notation
https://learn.microsoft.com/en-us/azure/quantum/concepts-oracles
https://learn.microsoft.com/en-us/azure/quantum/concepts-oracles
https://zxcalculus.com
https://www.cantorsparadise.org/the-history-of-eulers-number-e-8c982994a39b/
https://www.cantorsparadise.org/the-history-of-eulers-number-e-8c982994a39b/
https://arxiv.org/pdf/2109.13223
https://blog.google/technology/research/google-willow-quantum-chip/
https://www.sydney.edu.au/content/dam/students/documents/mathematics-learning-centre/introduction-trigonometric-functions.pdf
https://www.sydney.edu.au/content/dam/students/documents/mathematics-learning-centre/introduction-trigonometric-functions.pdf
https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://mathinsight.org/linear_transformation_definition_euclidean
https://mathinsight.org/linear_transformation_definition_euclidean
https://mathshistory.st-andrews.ac.uk/Biographies/Argand/
https://mathshistory.st-andrews.ac.uk/Biographies/Argand/
https://see.stanford.edu/materials/lsoftaee261/book-fall-07.pdf
https://see.stanford.edu/materials/lsoftaee261/book-fall-07.pdf
https://www.newscientist.com/article/2467128-quantum-computers-have-finally-arrived-but-will-they-ever-be-useful/
https://www.newscientist.com/article/2467128-quantum-computers-have-finally-arrived-but-will-they-ever-be-useful/
https://www.newscientist.com/article/2467128-quantum-computers-have-finally-arrived-but-will-they-ever-be-useful/

[155] Padavic-Callaghan, Karmela. “Quantum ‘Schrödinger’s Cat’ Sur-
vives for a Stunning 23 Minutes.” New Scientist, 2024. https://www
.newscientist.com/article/2453356-quantum-schrodingers-cat-survives-for-a
-stunning-23-minutes/.

[156] Pais, A. “Einstein and the Quantum Theory.” Reviews of Modern Physics
51 (1979): 863–914. https://eclass.aegean.gr/modules/document/file.php/
511165/quantum_mechanics/einstein_quantum.pais%281979%29.pdf.

[157] Pevzner, Vadim, and Karl Hess. “Quantum Ray Tracing: A New
Approach to Quantum Transport in Mesoscopic Systems.” In K.
Hess, J.P. Leburton, and U. Ravaioli (eds.), Computational Electronics,
227–30. The Springer International Series in Engineering and Com-
puter Science, vol. 113. Springer, 1991. https://doi.org/10.1007/978-1
-4757-2124-9_45.

[158] Pirandola, Stefano, Jens Eisert, Christian Weedbrook, Akira Furu-
sawa, and Samuel L. Braunstein. “Advances in Quantum Telepor-
tation.” Nature Photonics 9 (2015): 641–52. https://arxiv.org/pdf/1505
.07831.

[159] Pomeroy, Ross. “Did Your Computer Crash? It Might Have Been
a Cosmic Ray.” https://bigthink.com/hard-science/cosmic-rays-computer
-crash/, 2022.

[160] Preskill, John. “Quantum Computing 40 Years Later.” https://arxiv
.org/pdf/2106.10522.pdf, 2021.

[161] Prokopenya, Alexander. “Quantum Circuit Implementing Grover’s
Search Algorithm.” https://demonstrations.wolfram.com/Quantum
CircuitImplementingGroversSearchAlgorithm/#popup1, 2011.

[162] ProofWiki. “Transpose of Matrix Product.” https://proofwiki.org/wiki/
Transpose_of_Matrix_Product, 2024.

[163] Puzzling World. “The Great Maze.” https://www.puzzlingworld.co.nz/
attractions/the-great-maze.

[164] Qiskit authors. “Qiskit.” https://pypi.org/project/qiskit/.

[165] Quantiki. “Bell State.” https://quantiki.org/wiki/bell-state, 2015.

[166] Quantiki. “List of QC Simulators.” https://quantiki.org/wiki/list-qc
-simulators, 2024.

[167] Quantum Open Source Foundation. “Open-Source Quantum Soft-
ware Projects.” https://github.com/qosf/awesome-quantum-software, 2025.

[168] Quantum Open Source Foundation. “Public Repository.” https://
github.com/qosf, 2025.

[169] QuTiP developers and contributors. “QuTiP: Quantum Toolbox in
Python.” https://qutip.org, 2024.

[170] Rauch, Earl Mac. The Adventures of Buckaroo Banzai Across the 8th
Dimension. https://www.imdb.com/title/tt0086856, 1984.

Bibliography 369

https://www.newscientist.com/article/2453356-quantum-schrodingers-cat-survives-for-a-stunning-23-minutes/
https://www.newscientist.com/article/2453356-quantum-schrodingers-cat-survives-for-a-stunning-23-minutes/
https://www.newscientist.com/article/2453356-quantum-schrodingers-cat-survives-for-a-stunning-23-minutes/
https://eclass.aegean.gr/modules/document/file.php/511165/quantum_mechanics/einstein_quantum.pais%281979%29.pdf
https://eclass.aegean.gr/modules/document/file.php/511165/quantum_mechanics/einstein_quantum.pais%281979%29.pdf
https://doi.org/10.1007/978-1-4757-2124-9_45
https://doi.org/10.1007/978-1-4757-2124-9_45
https://arxiv.org/pdf/1505.07831
https://arxiv.org/pdf/1505.07831
https://bigthink.com/hard-science/cosmic-rays-computer-crash/
https://bigthink.com/hard-science/cosmic-rays-computer-crash/
https://arxiv.org/pdf/2106.10522.pdf
https://arxiv.org/pdf/2106.10522.pdf
https://demonstrations.wolfram.com/QuantumCircuitImplementingGroversSearchAlgorithm/#popup1
https://demonstrations.wolfram.com/QuantumCircuitImplementingGroversSearchAlgorithm/#popup1
https://proofwiki.org/wiki/Transpose_of_Matrix_Product
https://proofwiki.org/wiki/Transpose_of_Matrix_Product
https://www.puzzlingworld.co.nz/attractions/the-great-maze
https://www.puzzlingworld.co.nz/attractions/the-great-maze
https://pypi.org/project/qiskit/
https://quantiki.org/wiki/bell-state
https://quantiki.org/wiki/list-qc-simulators
https://quantiki.org/wiki/list-qc-simulators
https://github.com/qosf/awesome-quantum-software
https://github.com/qosf
https://github.com/qosf
https://qutip.org
https://www.imdb.com/title/tt0086856

[171] Reany, P. “The No-Cloning Theorem Made Easy.” https://advancedmath
.org/Physics/Quantum/QM1/No-Cloning-Theorem.pdf, 2023.

[172] Richman, Lynne. “The History and Evolution of Numbers.” https://
sites.math.rutgers.edu/∼zeilberg/math436/projects/RichmanP.pdf, 2017.

[173] Robbins, Tom. Even Cowgirls Get the Blues. Houghton Mifflin, 1976.

[174] Roberts, Molly. “Numbers With Cool Names: Amicable, Social,
Friendly.” https://tomrocksmaths.com/2023/05/10/numbers-with-cool
-names-amicable-sociable-friendly/, 2023.

[175] Robinson, Andrew. “Did Einstein Really Say That?” Nature 557 (2018).
https://www.nature.com/articles/d41586-018-05004-4.

[176] Roddenberry, Gene, and Jerome Bixby. “Mirror, Mirror” (Star Trek,
Season 2, Episode 4). https://www.imdb.com/title/tt0708438, 1970.

[177] Roffe, Joschka. “Quantum Error Correction: An Introductory Guide.”
Contemporary Physics 60, no. 3 (2019): 226–45. https://arxiv.org/pdf/
1907.11157.

[178] Rogers, Leo. “The History of Negative Numbers.” https://nrich.maths
.org/articles/history-negative-numbers, 2011.

[179] The Royal Swedish Academy. “Nobel Prize in Physics 2022: Popular
Information.” https://www.nobelprize.org/prizes/physics/2022/popular
-information/, 2023.

[180] Rui, Pinshu, Wen Zhangx, Yanlin Liao, and Ziyun Zhang. “Part Prob-
abilistic Cloning of Linearly Dependent States.” https://arxiv.org/pdf/
1603.07036, 2016.

[181] Running Level. “1k Run Times.” https://runninglevel.com/running
-times/1k-times.

[182] Salton, Grant, Daniel Simon, and Cedric Lin. “Exploring Simon’s Al-
gorithm With Daniel Simon.” https://aws.amazon.com/blogs/quantum
-computing/simons-algorithm/, 2021.

[183] Santos, Luís Paulo, Thomas Bashford-Rogers, João Barbosa, and Paul
Navrátil. “Towards Quantum Ray Tracing.” https://arxiv.org/pdf/2204
.12797, 2022.

[184] Scale of Universe. “How Big Is the Smallest Object Visible to the
Naked Eye?” https://scaleofuniverse.com/en/universe/smallest-object
-visible-to-the-naked-eye, 2023.

[185] Scholten, Travis L., Bryan Eastin, and Steven Flammia. “Qcircuit—
Macros to Generate Quantum Circuits.” https://www.ctan.org/pkg/
qcircuit, 2018.

[186] Schuch, Norbert. “How to Construct a Multi-qubit Controlled-Z From
Elementary Gates?” https://quantumcomputing.stackexchange.com/
questions/4078/how-to-construct-a-multi-qubit-controlled-z-from-elementary
-gates, 2018.

370 Bibliography

https://advancedmath.org/Physics/Quantum/QM1/No-Cloning-Theorem.pdf
https://advancedmath.org/Physics/Quantum/QM1/No-Cloning-Theorem.pdf
https://sites.math.rutgers.edu/~zeilberg/math436/projects/RichmanP.pdf
https://sites.math.rutgers.edu/~zeilberg/math436/projects/RichmanP.pdf
https://tomrocksmaths.com/2023/05/10/numbers-with-cool-names-amicable-sociable-friendly/
https://tomrocksmaths.com/2023/05/10/numbers-with-cool-names-amicable-sociable-friendly/
https://www.nature.com/articles/d41586-018-05004-4
https://www.imdb.com/title/tt0708438
https://arxiv.org/pdf/1907.11157
https://arxiv.org/pdf/1907.11157
https://nrich.maths.org/articles/history-negative-numbers
https://nrich.maths.org/articles/history-negative-numbers
https://www.nobelprize.org/prizes/physics/2022/popular-information/
https://www.nobelprize.org/prizes/physics/2022/popular-information/
https://arxiv.org/pdf/1603.07036
https://arxiv.org/pdf/1603.07036
https://runninglevel.com/running-times/1k-times
https://runninglevel.com/running-times/1k-times
https://aws.amazon.com/blogs/quantum-computing/simons-algorithm/
https://aws.amazon.com/blogs/quantum-computing/simons-algorithm/
https://arxiv.org/pdf/2204.12797
https://arxiv.org/pdf/2204.12797
https://scaleofuniverse.com/en/universe/smallest-object-visible-to-the-naked-eye
https://scaleofuniverse.com/en/universe/smallest-object-visible-to-the-naked-eye
https://www.ctan.org/pkg/qcircuit
https://www.ctan.org/pkg/qcircuit
https://quantumcomputing.stackexchange.com/questions/4078/how-to-construct-a-multi-qubit-controlled-z-from-elementary-gates
https://quantumcomputing.stackexchange.com/questions/4078/how-to-construct-a-multi-qubit-controlled-z-from-elementary-gates
https://quantumcomputing.stackexchange.com/questions/4078/how-to-construct-a-multi-qubit-controlled-z-from-elementary-gates

[187] Schuch, Norbert, and Jens Siewert. “Programmable Networks for
Quantum Algorithms.” Physical Review Letters 91, no. 2 (2003):
027902. https://arxiv.org/pdf/quant-ph/0303063.

[188] Schwichtenberg, Jakob. No-Nonsense Quantum Mechanics. No Nonsense
Books, 2020.

[189] Schwitzgebel, Eric. “How to Wrap Your Head around the Most
Mind-bending Theories of Reality.” New Scientist, 2024. https://www
.newscientist.com/article/mg26134833-100-how-to-wrap-your-head-around
-the-most-mind-bending-theories-of-reality/.

[190] Scratch Consortium. “Scratch Reference.” https://scratch.mit.edu.

[191] Seneca the Younger. “Moral and Political Essays.” https://en.wikiquote
.org/wiki/Seneca_the_Younger, 40.

[192] Shakespeare, William. The Tragedy of Coriolanus. 1605. https://www
.folger.edu/explore/shakespeares-works/coriolanus/read/.

[193] Shannon, C.E. “A Mathematical Theory of Communication.” Bell Sys-
tem Technical Journal 27, no. 3 (1948): 379–423. https://people.math
.harvard.edu/∼ctm/home/text/others/shannon/entropy/entropy.pdf.

[194] Shor, Peter. “18.435/2.111 POVM Lecture.” Massachusetts Institute of
Technology, 2008. https://math.mit.edu/∼shor/18.435/POVM-lecture.pdf.

[195] Shor, Peter. “Algorithms for Quantum Computation: Discrete Log-
arithms and Factoring.” In Proceedings, 35th Annual Symposium on
Foundations of Computer Science, 124–34. IEEE Computer Society
Press, 1994. https://math.mit.edu/∼shor/papers/algsfqc-dlf.pdf.

[196] Shor, Peter. “Lecture Notes for 8.360/18.435 Quantum Computa-
tion.” Massachusetts Institute of Technology, 2022. https://math.mit
.edu/∼shor/435-LN/.

[197] SideFX. “Houdini.” https://www.sidefx.com/products/houdini/, 2025.

[198] Simha, Rahul. “Introduction to Quantum Computing.” https://www2
.seas.gwu.edu/∼simhaweb/quantum/modules.html, 2024.

[199] Simmons, Gustavus J. “RSA Encryption.” https://www.britannica.com/
topic/RSA-encryption, 2022.

[200] Simon, Daniel R. “On the Power of Quantum Computation.” SIAM
Journal on Computing 26, no. 5 (1997): 1474–83. https://doi.org/10
.1137/S0097539796298637.

[201] Sloane, N. J. A. “The On-Line Encyclopedia of Integer Sequences.”
https://oeis.org/A000040, 2025.

[202] Smith, Kurt. “Descartes’ Theory of Ideas.” https://plato.stanford.edu/
Archives/fall2013/entries/descartes-ideas/, 2013.

[203] Solow, Daniel. How to Read and Do Proofs (6th ed.). Wiley, 2013.

Bibliography 371

https://arxiv.org/pdf/quant-ph/0303063
https://www.newscientist.com/article/mg26134833-100-how-to-wrap-your-head-around-the-most-mind-bending-theories-of-reality/
https://www.newscientist.com/article/mg26134833-100-how-to-wrap-your-head-around-the-most-mind-bending-theories-of-reality/
https://www.newscientist.com/article/mg26134833-100-how-to-wrap-your-head-around-the-most-mind-bending-theories-of-reality/
https://scratch.mit.edu
https://en.wikiquote.org/wiki/Seneca_the_Younger
https://en.wikiquote.org/wiki/Seneca_the_Younger
https://www.folger.edu/explore/shakespeares-works/coriolanus/read/
https://www.folger.edu/explore/shakespeares-works/coriolanus/read/
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://math.mit.edu/~shor/18.435/POVM-lecture.pdf
https://math.mit.edu/~shor/papers/algsfqc-dlf.pdf
https://math.mit.edu/~shor/435-LN/
https://math.mit.edu/~shor/435-LN/
https://www.sidefx.com/products/houdini/
https://www2.seas.gwu.edu/~simhaweb/quantum/modules.html
https://www2.seas.gwu.edu/~simhaweb/quantum/modules.html
https://www.britannica.com/topic/RSA-encryption
https://www.britannica.com/topic/RSA-encryption
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796298637
https://oeis.org/A000040
https://plato.stanford.edu/Archives/fall2013/entries/descartes-ideas/
https://plato.stanford.edu/Archives/fall2013/entries/descartes-ideas/

[204] Sparkes, Matthew. “Google’s Claim of Quantum Supremacy Has Been
Completely Smashed.” New Scientist, 2024. https://www.newscientist.com/
article/2437886-googles-claim-of-quantum-supremacy-has-been-completely
-smashed/.

[205] Sparknotes authors. “The Allegory of the Cave.” https://www.sparknotes
.com/philosophy/republic/themes/.

[206] Spivery, William. “Operator.” https://www.youtube.com/watch?v=WEAtD
mTbpu4, 1944.

[207] Stack Exchange. “All Sites.” https://stackexchange.com/sites#.

[208] Stack Exchange. “Mathematics Stack Exchange.” https://math.stack
exchange.com.

[209] Stack Exchange. “Physics Stack Exchange.” https://physics.stack
exchange.com.

[210] Stack Exchange. “Quantum Computing Stack Exchange.” https://
quantumcomputing.stackexchange.com.

[211] Strang, Gilbert. Introduction to Linear Algebra (6th ed.). MIT Press,
2023.

[212] Strogatz, Steven. “How Infinite Series Reveal the Unity of Mathemat-
ics.” https://www.quantamagazine.org/how-infinite-series-reveal-the-unity-of
-mathematics-20220124/, 2022.

[213] Susskind, Leonard, and Art Friedman. Quantum Mechanics: The Theo-
retical Minimum. Basic Books, 2014.

[214] Swift, Jonathan. Gulliver’s Travels into Several Remote Nations of the
World. Benjamin Motte, 1726. https://www.gutenberg.org/files/829/829
-h/829-h.htm.

[215] Szabó, László E. “The Einstein—Podolsky—Rosen Argument and the
Bell Inequalities.” https://arxiv.org/pdf/0712.1318, 2007.

[216] Tagore, Rabindranath. Stray Birds. Macmillan, 1916. https://www
.gutenberg.org/files/6524/6524-h/6524-h.htm.

[217] Tavares, Américo. “Understanding Imaginary Exponents.” https://
math.stackexchange.com/questions/9770/understanding-imaginary
-exponents, 2010.

[218] Tegmark, Max. “Shut Up and Calculate.” https://arxiv.org/pdf/0709
.4024, 2007.

[219] Tomayko, James E. Computers in Spaceflight: The NASA Experience.
1988. https://history.nasa.gov/computers/Source2.html.

[220] Treil, Sergei. Linear Algebra Done Wrong. 2017. https://www.math.brown
.edu/streil/papers/LADW/LADW_2017-09-04.pdf.

[221] University of Alberta, Centre for Teaching and Learning. “Why Re-
flect on Your Teaching?” https://www.ualberta.ca/centre-for-teaching
-and-learning/teaching-support/reflection/why-reflect-on-your-teaching/
index.html.

372 Bibliography

https://www.newscientist.com/article/2437886-googles-claim-of-quantum-supremacy-has-been-completely-smashed/
https://www.newscientist.com/article/2437886-googles-claim-of-quantum-supremacy-has-been-completely-smashed/
https://www.newscientist.com/article/2437886-googles-claim-of-quantum-supremacy-has-been-completely-smashed/
https://www.sparknotes.com/philosophy/republic/themes/
https://www.sparknotes.com/philosophy/republic/themes/
https://www.youtube.com/watch?v=WEAtDmTbpu4
https://www.youtube.com/watch?v=WEAtDmTbpu4
https://stackexchange.com/sites#
https://math.stackexchange.com
https://math.stackexchange.com
https://physics.stackexchange.com
https://physics.stackexchange.com
https://quantumcomputing.stackexchange.com
https://quantumcomputing.stackexchange.com
https://www.quantamagazine.org/how-infinite-series-reveal-the-unity-of-mathematics-20220124/
https://www.quantamagazine.org/how-infinite-series-reveal-the-unity-of-mathematics-20220124/
https://www.gutenberg.org/files/829/829-h/829-h.htm
https://www.gutenberg.org/files/829/829-h/829-h.htm
https://arxiv.org/pdf/0712.1318
https://www.gutenberg.org/files/6524/6524-h/6524-h.htm
https://www.gutenberg.org/files/6524/6524-h/6524-h.htm
https://math.stackexchange.com/questions/9770/understanding-imaginary-exponents
https://math.stackexchange.com/questions/9770/understanding-imaginary-exponents
https://math.stackexchange.com/questions/9770/understanding-imaginary-exponents
https://arxiv.org/pdf/0709.4024
https://arxiv.org/pdf/0709.4024
https://history.nasa.gov/computers/Source2.html
https://www.math.brown.edu/streil/papers/LADW/LADW_2017-09-04.pdf
https://www.math.brown.edu/streil/papers/LADW/LADW_2017-09-04.pdf
https://www.ualberta.ca/centre-for-teaching-and-learning/teaching-support/reflection/why-reflect-on-your-teaching/index.html
https://www.ualberta.ca/centre-for-teaching-and-learning/teaching-support/reflection/why-reflect-on-your-teaching/index.html
https://www.ualberta.ca/centre-for-teaching-and-learning/teaching-support/reflection/why-reflect-on-your-teaching/index.html

[222] van de Wetering, John. “ZX-calculus for the Working Quantum Com-
puter Scientist.” https://arxiv.org/pdf/2012.13966, 2020.

[223] van Gogh, Vincent. Letter to Theo van Gogh. https://vangoghletters
.org/vg/letters/let274/letter.html, 1882.

[224] Vazirani, Umesh V. “Lecture 3: Hilbert Spaces, Tensor Products, Tele-
portation.” https://people.eecs.berkeley.edu/∼vazirani/f04quantum/notes/
lec3.pdf, 2004.

[225] Vazirani, Umesh V. “Lecture 4: Quantum Circuit Model, Solovay—
Kitaev Theorem, BQP.” https://people.eecs.berkeley.edu/∼vazirani/
f04quantum/notes/lec4.pdf, 2004.

[226] Vernimmen, Tim. “Sharks Can Navigate Via Earth’s Magnetic Field,
Study Confirms for the First Time.” https://www.nationalgeographic
.com/animals/article/sharks-can-navigate-via-earths-magnetic-field-study
-confirms-for-the-first-time, 2021.

[227] Waits, Tom. “Foreign Affair.” https://www.youtube.com/watch?v=
-iTLk3gjEec, 1977.

[228] Weaver, James, Huang Junye, Jarrod Reilly, and Anastasia Jeffery.
“QPong,” 2019. https://github.com/QPong/QPong, https://github.com/
QPong/QPong-Unity, and www.youtube.com/watch?v=a1NZC5rqQD8.

[229] Weinersmith, Zach. “Saturday Morning Breakfast Cereal.” https://www
.smbc-comics.com/comic/contrived, 2023.

[230] Weisberger, Mindy. ““God Plays Dice With the Universe,” Einstein
Writes in Letter About His Qualms With Quantum Theory.” https://
www.livescience.com/65697-einstein-letters-quantum-physics.html, 2019.

[231] Weisstein, Eric W. “Argand Diagram.” https://mathworld.wolfram.com/
ArgandDiagram.html.

[232] Weisstein, Eric W. “Birthday Problem.” https://mathworld.wolfram.com/
BirthdayProblem.html.

[233] Weisstein, Eric W. “Bracket.” https://mathworld.wolfram.com/Bracket.html.

[234] Weisstein, Eric W. “Euclidean Algorithm.” https://mathworld.wolfram
.com/EuclideanAlgorithm.html.

[235] Weisstein, Eric W. “Euclid’s Theorems.” https://mathworld.wolfram
.com/EuclidsTheorems.html.

[236] Weisstein, Eric W. “Exponential Function.” https://mathworld.wolfram
.com/ExponentialFunction.html.

[237] Weisstein, Eric W. “Fundamental Theorem of Arithmetic.” https://
mathworld.wolfram.com/FundamentalTheoremofArithmetic.html.

[238] Weisstein, Eric W. “Gaussian Elimination.” https://mathworld.wolfram
.com/GaussianElimination.html.

[239] Weisstein, Eric W. “Hilbert Space.” https://mathworld.wolfram.com/
HilbertSpace.html.

Bibliography 373

https://arxiv.org/pdf/2012.13966
https://vangoghletters.org/vg/letters/let274/letter.html
https://vangoghletters.org/vg/letters/let274/letter.html
https://people.eecs.berkeley.edu/~vazirani/f04quantum/notes/lec3.pdf
https://people.eecs.berkeley.edu/~vazirani/f04quantum/notes/lec3.pdf
https://people.eecs.berkeley.edu/~vazirani/f04quantum/notes/lec4.pdf
https://people.eecs.berkeley.edu/~vazirani/f04quantum/notes/lec4.pdf
https://www.nationalgeographic.com/animals/article/sharks-can-navigate-via-earths-magnetic-field-study-confirms-for-the-first-time
https://www.nationalgeographic.com/animals/article/sharks-can-navigate-via-earths-magnetic-field-study-confirms-for-the-first-time
https://www.nationalgeographic.com/animals/article/sharks-can-navigate-via-earths-magnetic-field-study-confirms-for-the-first-time
https://www.youtube.com/watch?v=-iTLk3gjEec
https://www.youtube.com/watch?v=-iTLk3gjEec
https://github.com/QPong/QPong
https://github.com/QPong/QPong-Unity
https://github.com/QPong/QPong-Unity
www.youtube.com/watch?v=a1NZC5rqQD8
https://www.smbc-comics.com/comic/contrived
https://www.smbc-comics.com/comic/contrived
https://www.livescience.com/65697-einstein-letters-quantum-physics.html
https://www.livescience.com/65697-einstein-letters-quantum-physics.html
https://mathworld.wolfram.com/ArgandDiagram.html
https://mathworld.wolfram.com/ArgandDiagram.html
https://mathworld.wolfram.com/BirthdayProblem.html
https://mathworld.wolfram.com/BirthdayProblem.html
https://mathworld.wolfram.com/Bracket.html
https://mathworld.wolfram.com/EuclideanAlgorithm.html
https://mathworld.wolfram.com/EuclideanAlgorithm.html
https://mathworld.wolfram.com/EuclidsTheorems.html
https://mathworld.wolfram.com/EuclidsTheorems.html
https://mathworld.wolfram.com/ExponentialFunction.html
https://mathworld.wolfram.com/ExponentialFunction.html
https://mathworld.wolfram.com/FundamentalTheoremofArithmetic.html
https://mathworld.wolfram.com/FundamentalTheoremofArithmetic.html
https://mathworld.wolfram.com/GaussianElimination.html
https://mathworld.wolfram.com/GaussianElimination.html
https://mathworld.wolfram.com/HilbertSpace.html
https://mathworld.wolfram.com/HilbertSpace.html

[240] Weisstein, Eric W. “Kronecker Delta.” https://mathworld.wolfram.com/
KroneckerDelta.html.

[241] Weisstein, Eric W. “Linear Function.” https://mathworld.wolfram.com/
LinearFunction.html.

[242] Weisstein, Eric W. “List.” https://mathworld.wolfram.com/List.html.

[243] Weisstein, Eric W. “Natural Number.” https://mathworld.wolfram.com/
NaturalNumber.html.

[244] Weisstein, Eric W. “Operator.” https://mathworld.wolfram.com/
Operator.html.

[245] Weisstein, Eric W. “Prime Number.” https://mathworld.wolfram.com/
PrimeNumber.html.

[246] Weisstein, Eric W. “Set.” https://mathworld.wolfram.com/Set.html.

[247] Weisstein, Eric W. “Square Root.” https://mathworld.wolfram.com/
SquareRoot.html.

[248] Weisstein, Eric W. “Vector Space.” https://mathworld.wolfram.com/
VectorSpace.html.

[249] Whitfield, James D., Jun Yang, Weishi Wang, Joshuah T. Heath, and
Brent Harrison. “Quantum Computing 2022.” https://arxiv.org/pdf/
2201.09877.pdf, 2022.

[250] Wikipedia. “Bell State.” https://en.wikipedia.org/wiki/Bell_state.

[251] Wikipedia. “Bernstein—Vazirani Algorithm.” https://en.wikipedia.org/
wiki/Bernstein%E2%80%93Vazirani_algorithm.

[252] Wikipedia. “Bloch Sphere.” https://en.wikipedia.org/wiki/Bloch_sphere.

[253] Wikipedia. “Bohr Radius.” https://en.wikipedia.org/wiki/Bohr_radius.

[254] Wikipedia. “Born Rule.” https://en.wikipedia.org/wiki/Born_rule.

[255] Wikipedia. “Bra—ket Notation.” https://en.wikipedia.org/wiki/Bra%
E2%80%93ket_notation.

[256] Wikipedia. “Class (Computer Programming).” https://en.wikipedia.org/
wiki/Class_(computer_programming).

[257] Wikipedia. “Density Matrix.” https://en.wikipedia.org/wiki/Density
_matrix.

[258] Wikipedia. “Deutsch—Jozsa Algorithm.” https://en.wikipedia.org/wiki/
Deutsch-Jozsa_algorithm.

[259] Wikipedia. “e (Mathematical Constant).” https://en.wikipedia.org/wiki/
E_(mathematical_constant).

[260] Wikipedia. “Euler’s Formula.” https://en.wikipedia.org/wiki/Euler%27s
_formula.

[261] Wikipedia. “Felix Bloch.” https://en.wikipedia.org/wiki/Felix_Bloch.

[262] Wikipedia. “Fortran.” https://en.wikipedia.org/wiki/Fortran.

[263] Wikipedia. “Fredkin Gate.” https://en.wikipedia.org/wiki/Fredkin_gate.

374 Bibliography

https://mathworld.wolfram.com/KroneckerDelta.html
https://mathworld.wolfram.com/KroneckerDelta.html
https://mathworld.wolfram.com/LinearFunction.html
https://mathworld.wolfram.com/LinearFunction.html
https://mathworld.wolfram.com/List.html
https://mathworld.wolfram.com/NaturalNumber.html
https://mathworld.wolfram.com/NaturalNumber.html
https://mathworld.wolfram.com/Operator.html
https://mathworld.wolfram.com/Operator.html
https://mathworld.wolfram.com/PrimeNumber.html
https://mathworld.wolfram.com/PrimeNumber.html
https://mathworld.wolfram.com/Set.html
https://mathworld.wolfram.com/SquareRoot.html
https://mathworld.wolfram.com/SquareRoot.html
https://mathworld.wolfram.com/VectorSpace.html
https://mathworld.wolfram.com/VectorSpace.html
https://arxiv.org/pdf/2201.09877.pdf
https://arxiv.org/pdf/2201.09877.pdf
https://en.wikipedia.org/wiki/Bell_state
https://en.wikipedia.org/wiki/Bernstein%E2%80%93Vazirani_algorithm
https://en.wikipedia.org/wiki/Bernstein%E2%80%93Vazirani_algorithm
https://en.wikipedia.org/wiki/Bloch_sphere
https://en.wikipedia.org/wiki/Bohr_radius
https://en.wikipedia.org/wiki/Born_rule
https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Density_matrix
https://en.wikipedia.org/wiki/Density_matrix
https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm
https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm
https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Euler%27s_formula
https://en.wikipedia.org/wiki/Euler%27s_formula
https://en.wikipedia.org/wiki/Felix_Bloch
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Fredkin_gate

[264] Wikipedia. “Gaussian Elimination.” https://en.wikipedia.org/wiki/
Gaussian_elimination.

[265] Wikipedia. “Greatest Common Divisor.” https://en.wikipedia.org/wiki/
Greatest_common_divisor.

[266] Wikipedia. “‘Hello, World!’ Program.” https://en.wikipedia.org/wiki/
%22Hello,_World!%22_program.

[267] Wikipedia. “Invertible Matrix.” https://en.wikipedia.org/wiki/Invertible
_matrix.

[268] Wikipedia. “Jaques Hadamard.” https://en.wikipedia.org/wiki/Jacques
_Hadamard.

[269] Wikipedia. “John von Neumann.” https://en.wikipedia.org/wiki/John
_von_Neumann.

[270] Wikipedia. “Key Size.” https://en.wikipedia.org/wiki/Key_size.

[271] Wikipedia. “Matrix Multiplication.” https://en.wikipedia.org/wiki/
Matrix_multiplication.

[272] Wikipedia. “Natural Number.” https://en.wikipedia.org/wiki/Natural
_number.

[273] Wikipedia. “Noisy Intermediate-Scale Quantum Era.” https://en
.wikipedia.org/wiki/Noisy_intermediate-scale_quantum_era.

[274] Wikipedia. “NP (Complexity).” https://en.wikipedia.org/wiki/NP
_(complexity).

[275] Wikipedia. “Oracle Machine.” https://en.wikipedia.org/wiki/Oracle
_machine.

[276] Wikipedia. “POVM.” https://en.wikipedia.org/wiki/POVM.

[277] Wikipedia. “Quantum Fourier Transform.” https://en.wikipedia.org/
wiki/Quantum_Fourier_transform.

[278] Wikipedia. “Superdense Coding.” https://en.wikipedia.org/wiki/
Superdense_coding.

[279] Wikipedia. “Toffoli Gate.” https://en.wikipedia.org/wiki/Toffoli_gate.

[280] Wikipedia. “Triple Modular Redundancy.” https://en.wikipedia.org/
wiki/Triple_modular_redundancy.

[281] Wikipedia. “Unitary Matrix.” https://en.wikipedia.org/wiki/Unitary
_matrix.

[282] Wikipedia. “Vector (Mathematics and Physics).” https://en.wikipedia
.org/wiki/Vector_(mathematics_and_physics).

[283] Wikipedia. “Vector Space.” http://en.wikipedia.org/wiki/Vector_space.

[284] Wikipedia. “Wolfgang Pauli.” https://en.wikipedia.org/wiki/Wolfgang
_Pauli.

[285] Wikipedia. “Zero to the Power of Zero.” https://en.wikipedia.org/wiki/
Zero_to_the_power_of_zero.

Bibliography 375

https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Jacques_Hadamard
https://en.wikipedia.org/wiki/Jacques_Hadamard
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Noisy_intermediate-scale_quantum_era
https://en.wikipedia.org/wiki/Noisy_intermediate-scale_quantum_era
https://en.wikipedia.org/wiki/NP_(complexity)
https://en.wikipedia.org/wiki/NP_(complexity)
https://en.wikipedia.org/wiki/Oracle_machine
https://en.wikipedia.org/wiki/Oracle_machine
https://en.wikipedia.org/wiki/POVM
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
https://en.wikipedia.org/wiki/Superdense_coding
https://en.wikipedia.org/wiki/Superdense_coding
https://en.wikipedia.org/wiki/Toffoli_gate
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/Unitary_matrix
https://en.wikipedia.org/wiki/Unitary_matrix
https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics)
https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics)
http://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Wolfgang_Pauli
https://en.wikipedia.org/wiki/Wolfgang_Pauli
https://en.wikipedia.org/wiki/Zero_to_the_power_of_zero
https://en.wikipedia.org/wiki/Zero_to_the_power_of_zero

[286] Wilson, Robin. Euler’s Pioneering Equation: The Most Beautiful Theorem
in Mathematics. Oxford University Press, 2018.

[287] Wolfram. “Wolfram Player.” https://www.wolfram.com/player/.

[288] Wootten, James. “Making Games With Quantum Computers.” https://
decodoku.medium.com/games-computers-and-quantum-84bfdd2c0fe0, 2020.

[289] Yang, Jianhao M. “Probabilistic Quantum Teleportation.” https://arxiv
.org/pdf/1601.02501, 2017.

[290] Yang, Yu, Igor Kladaric, Maxwell Drimmer, et al. “A Mechanical
Qubit.” Science 386, no. 6723 (2024): 783–88. https://www.science.org/
doi/10.1126/science.adr2464.

[291] Yang, Y.A., W.-T. Luo, J.-L. Zhang, S.-Z Wang, Chang-Ling Zou, T.
Xia, and Z.-T. Lu. “Minutes-scale Schrödinger-cat State of Spin-5/2
Atoms.” Nature Photonics 19 (2024): 89–94. https://arxiv.org/pdf/2410
.09331v1.

[292] Young, Peter. “Simon’s Algorithm.” https://web.archive.org/web/
20231004205621/https://young.physics.ucsc.edu/150/simon.pdf, 2019.

[293] Young, Peter. “An Undergraduate Course on Quantum Computing”
(4th ed.). University of California, Santa Cruz, 2024. https://bpb-us-e1
.wpmucdn.com/sites.ucsc.edu/dist/7/1905/files/2025/03/phys_150_all.pdf.

[294] Young, Peter. “Using Period Finding to Factor an Integer.” https://web
.archive.org/web/20221028100132/https://young.physics.ucsc.edu/150/
period.pdf, 2019.

[295] Zhang, Naiyuan J., Ron Q. Nguyen, Navketan Batra, et al. “Excitons
in the Fractional Quantum Hall Effect.” Nature 637 (2025): 327–32.
https://doi.org/10.1038/s41586-024-08274-3.

[296] Zhang, Yingwen, Antony Orth, Duncan England, and Benjamin Suss-
man. “Ray Tracing With Quantum Correlated Photons to Image a
Three-dimensional Scene.” Physical Review A 105 (2022): L011701.
https://doi.org/10.1103/PhysRevA.105.L011701.

[297] Zhu, Sebastian, William Yue, and Vincent Fan. “Shor’s Algorithm and
the Period Finding Problem.” https://math.mit.edu/research/highschool/
primes/materials/2019/December/Fan-Yue-Zhu_Shor_s_Algorithm_and_the
_Period_Finding_Problem.pdf, 2019.

376 Bibliography

https://www.wolfram.com/player/
https://decodoku.medium.com/games-computers-and-quantum-84bfdd2c0fe0
https://decodoku.medium.com/games-computers-and-quantum-84bfdd2c0fe0
https://arxiv.org/pdf/1601.02501
https://arxiv.org/pdf/1601.02501
https://www.science.org/doi/10.1126/science.adr2464
https://www.science.org/doi/10.1126/science.adr2464
https://arxiv.org/pdf/2410.09331v1
https://arxiv.org/pdf/2410.09331v1
https://web.archive.org/web/20231004205621/https://young.physics.ucsc.edu/150/simon.pdf
https://web.archive.org/web/20231004205621/https://young.physics.ucsc.edu/150/simon.pdf
https://bpb-us-e1.wpmucdn.com/sites.ucsc.edu/dist/7/1905/files/2025/03/phys_150_all.pdf
https://bpb-us-e1.wpmucdn.com/sites.ucsc.edu/dist/7/1905/files/2025/03/phys_150_all.pdf
https://web.archive.org/web/20221028100132/https://young.physics.ucsc.edu/150/period.pdf
https://web.archive.org/web/20221028100132/https://young.physics.ucsc.edu/150/period.pdf
https://web.archive.org/web/20221028100132/https://young.physics.ucsc.edu/150/period.pdf
https://doi.org/10.1038/s41586-024-08274-3
https://doi.org/10.1103/PhysRevA.105.L011701
https://math.mit.edu/research/highschool/primes/materials/2019/December/Fan-Yue-Zhu_Shor_s_Algorithm_and_the_Period_Finding_Problem.pdf
https://math.mit.edu/research/highschool/primes/materials/2019/December/Fan-Yue-Zhu_Shor_s_Algorithm_and_the_Period_Finding_Problem.pdf
https://math.mit.edu/research/highschool/primes/materials/2019/December/Fan-Yue-Zhu_Shor_s_Algorithm_and_the_Period_Finding_Problem.pdf

I N D E X

Note: Italicized page numbers refer
to figures or tables.

Numbers
0-active control line, 311
1-active control line, 311

A
Adams, Douglas, 203
adjoint, 74, 92–93
Adleman, Leonard, 317
algorithms

Bernstein–Vazirani, 269–276
Deutsch–Jozsa, 251–267
Deutsch’s, 227–249
Euclidean, 330
Grover’s, 295–314
hybrid, 126
probabilistic, 331
Shor’s, 315–335
Simon’s, 277–294

amplitude, 101
amplification, 304
electronic playing cards

metaphor, 16–18
estimation, 314
outer product, 172–176
from projection, 171–179
square of, 17
squaring magnitude of, 169

analysis
by algebra, 132
bidirectional, 137–138
by direction, 132–138
horizontal, 133–134
by matrix elements, 132–133
vertical, 134–137

ancilla, 231
Apollo spacecraft, 163

applied mathematics, 316
arctangent, 36
Argand, Jean Robert, 35
Argand diagram, 35
argument, 13
arrows, 56, 57, 58, 63
assembly language, 203
auxiliary input, 231

B
balanced function

Deutsch–Jozsa algorithm, 265–266
Deutsch’s algorithm, 228

balanced oracle, 242, 252
Bartlett, Albert, 279
bases, 54–55
basis

change of, 65–66
computational, 54
conventional, 54

basis set, 54
basis vectors, 54
Battleship game, 350
Bell, John, 190
Bell states, 190

equations, 191
measuring, 193–197
superposition, 191–192

Bernstein, Ethan, 270
Bernstein–Vazirani algorithm, 269–276.

 See also quantum
algorithms

classical solution, 270
compact version of circuit, 270
expanded diagram for, 271
oracle for classical bits, 270–271, 271
running, 273
simplified oracle, 275
simplifying with quantum identity,

274–275

378 Index

bidirectional analysis, 133, 137–138
big-endianness, 180
birthday problem, 284
bits, 27, 31, 159
bitstrings, 49

bitstring dot product, 261
black box, 229
Blackjack, 21
Bloch sphere, 81
block matrix, 144
bra, 74
braket notation, 71–79
bramket, 173
branch, 126
Brooks, Mel, 351
Bulls and Cows game, 350
bundle, 254

C
cardinality, 30
Cartesian diagram, 35
Cartesian product, 48, 112
Cartwright, Jon, 166
Carver, George Washington, 269
CCNOT qugate (CCX qugate, conditional-

conditional-NOT qugate),
153–154

chevrons, 68
Chuang, Isaac, 343
circuit analysis

analysis by algebra, 131–138
analysis by direction, 132–138
analysis by matrix elements,

132–133
bidirectional analysis, 137–138
after Deutsch–Jozsa algorithm,

271–272
horizontal analysis, 133–134
probability of k, 326–328
quantum Fourier transform,

324–326
Shor’s algorithm, 322–331
systems, 131–138
vertical analysis, 134–137

circuit diagrams, 124
Cirq, 344
class, 199
classical computers, 5–6, 27, 163

clone, 138
closed loop, 382
closed under addition, 31
CNOT qugate See CX qugate
code, 126
coefficient, 55
collapse, 178
column matrix, 50, 72
commutative, 38, 87, 114
completeness relation, 188
complex conjugate, 37
complexity, computational, 234
complex magnitude, 68
complex number plane, 34
complex numbers, 31, 32, 41–48

complex conjugate, 37
exponential form, 36–37
imaginary component/part, 34
magnitude, 35
multiplication, 40
phase, 35
polar form, 35
real component/part, 34
visualization, 34–36

complex-valued vectors, 50, 66
complex vectors, 42, 66, 68
composite numbers, 316
composition of functions, 87
computational basis, 54
computational basis states, 118
computational complexity, 234
computers

classical, 5–6, 27, 163
conventional, 5–6, 27
von Neumann machines, 5

Confucius, 298
conjugate, 37
conjugate symmetry, 71
conjugation, 37–41, 69, 92
constant function

Deutsch–Jozsa algorithm,
264–265

Deutsch’s algorithm, 228
constant oracle, 241–242
constructive interference, 18.

See also interference
continued fractions, 333
continuous processes, 124

Index 379

contradiction in proofs, 139
controlled-SWAP qugate, 153–154
controlled-U qugate, 151–152, 152
controlled-X qugate See CX qugate
controlled-Z qugate, 154–155
control qubit, 142
conventional basis, 54
conventional computers, 5–6, 27
coordinate, 55
coordinate-free expression, 64
Copenhagen interpretation, 346
copier, 142, 146
coprimes, 330
cosine double-angle rule, 59
counting numbers, 30
cryptography

post-quantum, 340–341
quantum, 334, 340–341
RSA, 317

CU qugate, 151–152, 152
CX qugate (conditional/controlled-NOT

qugate, conditional/
controlled-X qugate), 141–146

as copier, 146
entangled pairs, 147–151
entanglement, 146–150
as switch, 142–146
symbols, 142

CX ′ qugate, 153, 212, 274
CZ qugate, 154–155

D
DAG (directed acyclic graph), 126
Daniels, Greg, 277
database, unstructured, 296
deferred measurement,

principle of, 189
degenerate matrix, 93
De Morgan, Augustus, 351
density matrix, 339–340
Descartes, Rene, 35
destructive interference, 18, 106.

See also interference
deterministic, classical algorithms as, 160
Deutsch, David, 228, 251
Deutsch–Jozsa algorithm, 251–267. See

also quantum algorithms
abstract block diagram for, 253

actual results of, 266
balanced function, 252, 265–266
block diagram for, 254
circuit analysis after, 271–272
compact block diagram, 254
constant function, 252, 264–265
four functions, 252–253
Hadamard transform, 259–263
initialization step, 255–257
postprocessing and measurement,

258–259, 263–264
querying the oracle, 257–258

Deutsch’s algorithm, 227–249. See also
quantum algorithms

block diagram, 238
Deutsch’s problem, 228–229
four functions, 228, 228–229, 245
function implementations, 246
improved block diagram, 238
initialization step, 239, 239–240
oracles, 229–234
phase kickback, 243–245
postprocessing and measurement,

242, 242–243
quantum parallelism, 234–237,

247–248
querying the oracle, 240, 240–242

Deutsch’s problem, 228–229
diagram, circuit, 124
diffusion stage, Grover’s algorithm,

305–307, 312
dimensionality, 30, 50
Dirac notation, 71
Dirac, Paul, 71, 74
directed acyclic graph (DAG), 126
division, 316
dot product, 56–66

bitstring, 261
change of basis, 65–66
defined, 56
projection, 62–65

E
Einstein, Albert, 159, 196
electronic playing cards, 6–7

amplitudes, 16–18
entanglement, 19–24, 20, 22, 24
illustration of, 6

380 Index

electronic playing cards (continued)
initialization, 10, 10–11, 11
interference, 18–19, 19
measurement, 11–12
operators, 12–16
probabilities, 18
states, 7–9, 8, 9
superposition, 9, 9–10

elements, 28
embarrassingly parallel, 349
encryption, 315

overview, 315–316
primes and, 316–318

entangled pairs
CX qugate, 147–151
electronic playing cards

metaphor, 21–24
entangled state, 148
entanglement, 1, 19, 146. See also

superposition
Bell states, 190
CX qugate, 146–150
electronic playing cards

metaphor, 19–24, 20,
22, 24

measurement and, 190–197
types of, 23–24, 24

EPR paper, 196
equal superposition, 10
Euclidean algorithm, 330
Euler, Leonhard, 32
Euler’s formula, 36–37
Euler’s identity, 41
Euler’s number, 37, 278
evaluation, 227, 228
evolution, 125
exclusive, mutually, 186
exclusive OR, 231
experiments, 162
exponential form, 37
exponential function, 278
exponential speedup, 278, 294

F
F 1 function, 282
F 2 function, 281
factor, 317
Feynman, Richard, 337

finite set, 29
floating-point numbers, 31
Forrester, Brent, 277
FORTRAN programming

language, 203
Fourier transform, 322
Fredkin qugate, 153–154
Friedman, Art, 49
functions

balanced, 228
composition of, 87
constant, 228
Deutsch–Jozsa algorithm,

265–266
exponential, 278
one-to-one, 282
one-way, 317
query of, 228

fundamental theorem of
arithmetic, 317

G
Galilei, Galileo, 1
games, 350
gate

classical, 100–101
quantum, 100

Gauss, Carl Friedrich, 32, 290
Gaussian elimination, 290, 293
gcd (greatest common divisor), 330
Gervais, Ricky, 277
Gide, André, 109
Gleick, James, 51
global phase, 197–199
graph, 349, 126
greatest common divisor (gcd), 330
Grover, Lov, 295
Grover iteration, 306–307, 307
Grover operation, 306–307, 307
Grover’s algorithm, 295–314. See also

quantum algorithms
amplitude estimation, 314
diffusion stage, 305–307, 312
example of, 310–313
ideal number of steps, 308–310
initialization step, 310
marking stage, 301–305
observations, 313–314

Index 381

oracle, 308–310
oracle complexity, 313
overshoot, 308
quadratic speedup, 313–314
reflections, 298–300
symbols, 297
unstructured database and, 296

Gulliver’s Travels, 180

H
Hadamard, Jacques, 90
Hadamard operator, 90–91, 97.

See also operators
Hadamard qugate, 102

basis states, 104
initializing with, 104–105
measurement, 164–166
properties, 103–104
superposition, 166–167

Hadamard transform, 259–263
Haldane, J.B.S., 346
Hamilton, Kirk, 162
hands, 21
hardware, 344–345
hedge mazes, 348
Hello, World!, 99–100

graphical form, 100
measuring, 162–164

Hello, XWorld!, 100–101
helpers, 231
Hilbert, David, 82
Hilbert space, 82
horizontal analysis, 133–134
horizontal systems of qugates,

127–128
Houdini computer graphics

system, 124
Hunt, Leigh, 157
hybrid algorithm, 126
hypothesis, 162

I
i, 32

multiplying by, 44
square root, 45–47

IBM Condor, 342
IBM Quantum Platform, 344
idempotent, 175

identity matrix, 88
identity operator, 88, 97.

See also operators
if-then, 126
if-then-else, 126
imaginary numbers, 32
imperfect cloning, 141
infinite set, 29
initialization

Deutsch’s algorithm, 239,
239–240

electronic playing cards metaphor,
10–11

Hadamard operator,
104–105

inner product, 56, 66–71
defined, 67
projection, 69–71

integers, 31
list of (from 0), 49
non-negative, 31

integer-valued vectors, 50
interference, 1, 18–19, 105–107

constructive, 18, 107
destructive, 18, 106
relative phase and, 199–201

interpretations, 346
inverse matrix, 93
inverse tangent, 36
invertible matrix, 93
irrational numbers, 42

J
jigsaw puzzle, 3
joint probability, 186
Jordan, Louis, 227
Jozsa, Richard, 251
Juster, Norton, 251

K
ketbra, 172
kets, 71
Kronecker, Leonard, 76
Kronecker delta, 76–77, 121

L
L1 property, 51, 85
L2 property, 52, 85

382 Index

langle, 68
LaTeX, 345
LEGO MINDSTORMS, 124
Leiber, Jerry, 295
Lennon, John, 315
Lincoln, Abraham, 1
linear algebra, 3, 51
linearity, 51

property L1, 51
property L2, 51

linearly dependent equations, 290
linearly independent equations, 290
linear operators, 84–87
lists

ordered, 29
structure, 48–49

little-endianness, 180
local phase, 199
loop, closed, 378

M
magnitude, 35, 38, 95
main diagonal, 88
many worlds, 347
marking stage, Grover’s algorithm,

301–305
Mastermind game, 350
matrix, 50

adjoint, 74
block, 144
column, 50, 72
conjugation, 92
degenerate, 93
elements, 97
identity, 88
inverse, 93
invertible, 93
linearity properties, 85
linear operator as, 85
main diagonal, 88
non-invertible, 93
projection, 174, 181
row, 72
singular, 93
square, 85
transposition, 72, 91, 91–92

matrix elements, analysis by, 132–133
Max system, 124

maze solving, 348–349
McAllister, Willy, 24
McCartney, Paul, 315
measurement, 1, 11, 125

amplitudes from projection,
171–179

Bell states, 193–197
Deutsch–Jozsa algorithm, 258–259,

263–264
Deutsch’s algorithm, 242–243
electronic playing cards metaphor,

11–12
entanglement and, 190–197
experiments, 162–170
Hadamard qugate, 164–166
Hello, World!, 162–164
H qugates, 164–166
main ideas, 158–160
meters, 161–162
multiple qubits, 179–182
partial collapse, 189–190
phases, 197–201
positive operator-valued measures,

339–340
Postulate 4, 161
principle of deferred

measurement, 189
principle of partial

measurement, 188
of qubits, 160–161
tensor product, 129–130
two H qugates, 166–167
unequal superposition, 167–170
X qugate, 164

Mermin, N. David, 343
meter, 100, 158, 161–162
mixed-product property, 138
model, 162
modulo, 261–262, 269, 290, 330
multiple qubits, 179–182
multi-qubit qugates, 131, 152–154
multitool, 56
multiverse, 348
mutually exclusive, 186

N
Napier’s number, 37, 278
natural numbers, 30

Index 383

negative numbers, 42
Neilsen, Michael, 343
nested sets, 30
NISQ (noisy intermediate-scale

quantum) era, 164, 341
no-cloning theorem, 138–141
noise, 163, 164
nondeterministic nature of

measurement, 160
non-invertible matrix, 93
nonlinearity, 53

cooking example, 53
non-negative integers, 31
non-prime numbers, 316
normalization, 14, 77
NOT operator, 89, 97
NP complexity class, 279
numbering, 30
number line, 42, 42
number plane, 34
numbers, 28–31

complex, 31
counting, 30
floating point, 31
imaginary, 32
natural, 30
real, 31
types of, 29–30

number theory, 318–319

O
objective reality, 196
observation, 11, 158
Occam’s razor, 346
one-qubit qugates, 131
one-to-one function, 282
one-way function, 317
operators, 84–98

electronic playing cards metaphor,
12–16

Hadamard, 90–91, 97
identity, 88, 97
linear, 84–87
NOT, 89, 97
projection, 174–175, 178
unitary, 94–97

oracle complexity, 234, 313
oracles, 229

balanced, 242
Bernstein–Vazirani algorithm,

270–271, 271
classical one-bit, 230, 231
constant, 241–242
Deutsch–Jozsa algorithm, 252,

257–258
Deutsch’s algorithm, 229–234,

240–242
Grover’s algorithm, 300–310
phase, 301
promise, 234
propagating input query as an

output, 230
quantum, 232–234
querying, 240–242, 257–258
Simon’s algorithm, 279–282

order, 284
ordered list, 29
origin, 35, 57
orthogonal, 59, 77
orthogonal state spaces, 302
orthonormal, 77
outer product, 172–176

P
Pais, Abraham, 196
partial collapse, 189–190
partial measurement rule, 188
Pauli, Wolfgang, 154
Pauli qugates, 154
period finding, 319–322
phase, 35, 155

global, 197–199
local, 199
relative, 199–201

phase factor, 197
phase kickback, 243,

244–245
phase oracle, 301
phase qugate, 155
Plato’s allegory of the cave, 347
Podolsky, Boris, 196
polar coordinate system, 35
polar form, 35
Pong game, 350
positive operator-valued measures

(POVMs), 339–340

384 Index

postprocessing
Deutsch–Jozsa algorithm, 258–259,

263–264
Deutsch’s algorithm, 242–243

post-quantum cryptography, 340–341
postulates, 2, 28

Postulate 1, 28
Postulate 2, 84, 98
Postulate 3, 110
Postulate 4, 161

POVMs (positive operator-valued
measures), 339–340

power series, 36
P qugate, 155
prediction, 162
Preskill, John, 337
prime factors, 316–317, 330–331
primes, 316–318
principle of deferred measurement, 189
principle of partial measurement, 188
private cards, 21
private variable, 199
probabilistic algorithm, 331
probabilistic teleportation, 221–225, 223
probabilistic values, 160
probability, 159

amplitude and, 16–18
computing, 185–187
electronic playing cards metaphor,

8–9
joint, 186
negative, 16–17

product states, 115–121
projection, 62–65

amplitude from, 171–179
dot product, 62–65
inner product, 69–71

projection matrices, 174, 181
projection operators, 174–175, 178
promise oracle algorithm, 238
promise oracles, 234
promise problem, 238
proof by contradiction, 139
pseudorandom, 159
public cards, 21
public key, 317

Q
qcircuit, 345
QCpy, 344
QEC (quantum error correction),

163, 341
QFT (quantum Fourier transform),

322, 324–326
Qiskit, 344
QOSF (Quantum Open Source

Foundation), 344
QPong game, 350
quadratic speedup, 313–314
quantikz, 345
quantum advantage, 342
quantum algorithms

Bernstein–Vazirani, 269–276
Deutsch–Jozsa, 251–267
Deutsch’s, 227–249
diagrams, 124–127
Euclidean, 330
Grover’s, 295–314
overview, 203–205
Shor’s, 315–335
Simon’s, 277–294
teleportation, 207–226

Quantum Algorithm Zoo, 350
Quantum Awesomeness game, 350
Quantum Computation and Quantum

Information (Neilsen/
Chuang), 343

Quantum Computer Science
(Mermin), 343

quantum computing
applications of, 348–350
books, 343
hardware, 344–345
lecture notes, 343
online, 343–344
overview, 5–6
resources, 344–346
simulators, 344
software, 345

quantum cryptography, 334, 340–341
quantum encryption, 340–341
quantum error correction (QEC),

163, 341
quantum Fourier transform (QFT),

322, 324–326

Index 385

quantum gates. See qugates
quantum identity, 274–275
quantum mechanics

Copenhagen interpretation, 346
many-worlds interpretation, 347
philosophy of, 346–348
Postulate 1, 28
Postulate 2, 84
Postulate 3, 110
Postulate 4, 161

Quantum Open Source Foundation
(QOSF), 344

quantum operations, 2
quantum oracles, 232–234
quantum parallelism, 204, 228, 234–248

circuit diagram, 235
conceptual illustration, 235
described, 236
oracles and, 236–237

quantum programming, 203–205
quantum scale, 28
quantum states, 1, 80

braket notation, 71–79
combining, 110–111
complex numbers, 32–48
dot product, 56–66
inner product, 66–71
numbers, 28–31
Postulate 2, 84
qubits, 79–81
vectors, 49–55

quantum supremacy, 342
qubits, 28, 79–81, 122–123

control, 143
evolution, 125
measurement, 160–161, 179–189,

218–219
multiple, 179–182
target, 143

query, of function, 228
qugates, 100–101

CCNOT (CCX, conditional-
conditional-NOT), 153–154

controlled, 151–152
controlled-SWAP, 153–154
CU, 151–152, 152
CX (CNOT, conditional-NOT,

controlled-NOT), 141–146

CX ′, 153, 212, 274
CZ, 154–155
Fredkin, 153–154
horizontal rules, 130–131
horizontal systems, 127–128
multi-qubit, 131, 152–154
one-qubit, 131
Pauli, 154
phase (P), 155
single-bit, 154–156
single-qubit, 131
SWAP, 152
Toffoli, 153–156
U, 155
universal set/family, 155–156
vertical rules, 130–131
vertical systems, 128–130
X, 154
Y, 154
Z, 154

QuTiP, 344

R
radius, 35–36
random, 159
rangle, 68
Rauch, Earl Mac, 207
ray tracing, 349
real numbers, 31, 42
real-valued vectors, 50
receiver, 20. See also entanglement
rectangular coordinate system, 35
rectangular diagram, 35
reflections, 298–300
register, 254
relatively prime numbers, 330
relative phase, 199–201
repeat length, 319
retrocausal, 347
reversible matrices, 97
right-hand rule, 348
Rivest, Ron, 317
Robbins, Tom, 109
Rosen, Nathan, 196
row matrix, 72
RSA cryptography, 317

386 Index

S
scalar multiplication, 50
Scratch, 124
self-inverse, 231
sender, 20. See also entanglement
Seneca the Younger, 203
sequences, 29
serial action, 127
sets, 29–30

basis, 54
finite, 29
infinite, 29
nested, 30

Shamir, Adi, 317
Shor’s algorithm, 315–335. See also

quantum algorithms
circuit analysis, 322–331
example of, 331–333
overview, 297–298, 318–319
period finding, 319–322
prime factoring, 330–331
primes and encryption, 316–318
probability of k, 324–326
quantum Fourier transform,

324–326
step by step, 330

shot, 163
sift, 77
Simon, Daniel, 279
Simon’s algorithm, 277–294. See also

quantum algorithms
vs. classical algorithm, 293–294, 294
classical solution, 283–284
combining quantum outputs,

289–291
example, 291–292
exponential speedup, 278, 294
oracle, 279–282
quantum part of, 285, 285–287
rewriting x and measuring,

287–289
secret string, 291–292, 292
without measurement of y, 291

simulators, 344
single-bit qugates, 154–156
single-qubit qugates, 131
singular matrix, 93
software, 344

Spivery, William, 83
squared amplitude, 7
square matrix, 85
Stack Exchange, 346
states, 80. See also quantum algorithms

Bell. See Bell states
computational basis, 118
electronic playing cards metaphor,

7–9
entangled, 148
measurement of, 161
product, 115–121
teleportation, 210–211
tensor product, 115–121

state vector, 80
Stoller, Mike, 295
superdense coding, 338, 338–339
superluminal transport, 192.

See also entanglement
superposition, 1, 101–105.

See also entanglement
Bell states, 191–192
collapse, 11, 12
electronic playing cards metaphor,

9–10
equal, 10
partially collapsed, 191
shared, 21
unequal, 167–170
uniform, 10, 255

Susskind, Leonard, 49
SWAP qugates, 152
switch, 142–146
systems

circuit analysis, 131–138
CX qugate, 141–146
defined, 109
no-cloning theorem, 138–141
Postulate 3, 110
quantum algorithm diagrams,

124–127
qugates, 127–131
tensor product, 111–115

T
tableau form, 52
Tagore, Rabindranath, 157
target, 142

Index 387

target qubit, 143
teleportation, 207–226. See also quantum

algorithms
algorithm, 210
probabilistic, 221–225, 223
process, 212–220
properties of, 208
protocol, 221, 221
quantum versus fictional, 208
qubit measurement, 218–219
signal, 209
state, 210–211
thought experiment, 209–210

tensor product, 110, 111–115, 129–130
tensor product states, 115–121
testing variables, 126
theoretical mathematics, 316
theory, 162
thought experiment, 209–210
Toffoli qugate, 153–156
transposition, 91, 91–92
traversal, 292
triple modular redundancy, 163
two-to-one function, 281

U
U qugate, 155
umwelt, 267
uncorrelated noise, 164, 186
unequal superposition, 167–170
uniform superposition, 10, 255
unique product, 317
unit arrow, 63
unitary operators, 94–97
unit magnitude, 63, 65, 77, 80, 95
unit norm, 77
unit vectors, 63
universal qugates, 155
universal set/family of qugates, 155–156
unstructured database, 295–296

V
V1 property, 50
V2 property, 51
van Gogh, Vincent, 27
variables

private, 199
testing, 126

Vazirani, Umesh, 115, 270
vector addition, 50
vectors, 49–55. See also quantum states

adjoint, 74
basis, 48, 54
coefficient, 55
complex-valued, 50, 66
conjugated transpose, 74
coordinate, 55
dimensionality of, 50
integer-valued, 50
linearity, 51–54
real-valued, 50
unit, 63

vector space, 82
vertical analysis, 134–137
vertical systems of qugates, 128–130
von Neumann, John, 5
von Neumann machines, 5–6

W
Waits, Tom, 41
Weinersmith, Zach, 5
write-once, 7

X
X1 property, 232
X2 property, 232
X3 property, 232
XOR, 231, 262, 280

bitstring, 280
properties, 232

X qugate, 154, 164

Y
yquant, 345
Y qugate, 154

Z
zero, 42
Z qugate, 154
ZX-calculus, 342
ZX-diagrams, 342

The fonts used in Quantum Computing are New Baskerville, Futura, The Sans
Mono Condensed, and Dogma. The book was typeset with LATEX2ε package
nostarch by Boris Veytsman with many additions by Alex Freed, Miles Bond,
and other members of the No Starch Press team.

The book was created on a Mac Studio. I wrote the text in iTerm2 win-
dows running the vi text editor. I proofed the results, and tweaked the math-
ematical typesetting from LATEX2ε, using TeXStudio and TeXShop. Circuit
diagrams were made with the quantikz library. The outputs of quantum pro-
grams on real hardware were generated by running those programs using the
IBM Quantum service. Local simulations were mostly performed in Python
using the Qiskit library. I drew the figures with Adobe Illustrator and Photo-
shop, using a Wacom tablet. Other programming was done in Python, using
primarily the numpy, scipy, sympy, scikit-image, and matplotlib libraries.

NO STARCH PRESS

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
sales@nostarch.com
WEB:
www.nostarch.com

THE MANGA GUIDE TO LINEAR
ALGEBRA
BY SHIN TAKAHASHI, IROHA INOUE,
and TREND-PRO CO., LTD.
264 pp., $24.99
isbn 978-1-59327-413-9

MATH FOR PROGRAMMING
Learn the Math, Write Better Code
BY RONALD t. KNEUSEL
504 pp., $49.99
isbn 978-1-7185-0358-8

MATH FOR DEEP LEARNING
What You Need to Know to Understand
Neural Networks
BY RONALD t. KNEUSEL
344 pp., $49.99
isbn 978-1-7185-0190-4

HOW AI WORKS
From Sorcery to Science
BY RONALD t. KNEUSEL
192 pp., $29.99
isbn 978-1-7185-0372-4

COMPUTER ARCHITECTURE
From the Stone Age to the Quantum Age
BY CHARLES fox
560 pp., $59.99
isbn 978-1-7185-0286-4

DEEP LEARNING
A Visual Approach
BY ANDREW GLASSNER
768 pp., $99.99
isbn 978-1-7185-0072-3
full color

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/quantum-computing for errata and more information.

®

F R O M C O N C E P T S T O C O D E

A N D R E W G L A S S N E R

Q U A N T U M
C O M P U T I N G

THE F INEST IN GEEK ENTERTA INMENT ™

nostarch.com
®

®

Q
U

A
N

T
U

M
 C

O
M

P
U

T
IN

G
G

L
A

S
S

N
E

R

A F R I E N D LY I N T R O D U C T I O N

T O Q U A N T U M P R O G R A M M I N G

What if you had a computer that could process billions
of different inputs at the same time?

Quantum computing is a radically new way to think
about algorithms and data. It can feel mysterious or
technically challenging, but it doesn’t have to be. If you
want to understand how quantum computers work—
and how to program them—this friendly, self-contained
guide is for you.

This approachable yet rigorous book walks you step-by-
step through quantum computing fundamentals, such as
superposition, quantum gates, interference, entanglement,
and measurement, then teaches you how to write real
quantum programs.

Along the way, you’ll:

• Understand how to store and transform quantum
information

• Grasp the surprising process of quantum measurement

• Explore Simon’s, Grover’s, and Shor’s algorithms

• Write and run your own quantum code using free
simulators and live hardware

Author Andrew Glassner is known for turning complex
topics into accessible and enjoyable learning experiences.
In this book, he brings visual thinking, clarity, context, and
precision to the strange and fascinating world of quantum
programming. All the ideas and math are built up slowly
so you’ll master every step.

Whether you’re a programmer, student, educator, scientist,
poet, or anyone else who loves new ideas that stretch
your mind, this is the guide that will take you from “What
is a qubit?” to writing and running working quantum
algorithms with curiosity, creativity, and confi dence.

A B O U T T H E A U T H O R

Andrew Glassner, PhD, is a principal research scientist
at Weta FX, where he uses deep learning to help artists
produce visual effects for fi lm and TV. He was technical
papers chair for SIGGRAPH ‘94, founding editor of the
Journal of Computer Graphics Techniques, and editor in
chief of ACM Transactions on Graphics. His prior books
include Deep Learning: A Visual Approach (No Starch
Press), the Graphics Gems series, and the textbook
Principles of Digital Image Synthesis. In his free time,
he paints, writes novels, and plays jazz piano.

4/1 (CV 2–3 prints PMS 7478 U)

	ABOUT THE AUTHOR
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	ACKNOWLEDGMENTS
	INTRODUCTION
	What Is Quantum Computing?
	Why Should You Read This Book?
	Who This Book Is For
	What You'll Learn
	How We'll Do It
	Using Metaphors
	Using Math
	Reading Math
	Proving Things

	Is Quantum Weird?
	What You'll Need
	Who Wrote This Book?
	Overview
	Part I: States, Operators, and Systems
	Part II: Quantum Algorithms

	PART I: STATES, OPERATORS, AND SYSTEMS
	CHAPTER 1: A CURIOUS DECK OF CARDS
	Electronic Playing Cards
	States
	Superposition
	Initialization

	Measurement
	Operating on Cards
	Amplitudes and Probabilities
	Interference
	Entanglement
	Entangled Cards
	Entanglement in Action

	Summary

	CHAPTER 2: QUANTUM STATES
	Getting Started
	Postulate 1
	Numbers
	Sets and Lists
	Types of Numbers

	Complex Numbers
	Working with i
	Visualization
	Conjugation

	Working with Complex Numbers
	List Structure
	Vectors
	Linearity
	Bases

	The Dot Product
	Using the Dot Product
	Projection
	Change of Basis

	The Inner Product
	Defining the Inner Product
	Finding a Complex Vector's Magnitude
	Choosing Which Term to Conjugate
	Projection with the Inner Product

	Braket Notation
	Looking at the Braket
	Conjugating the Braket

	Qubits
	Summary

	CHAPTER 3: OPERATORS
	Postulate 2
	Linear Operators
	Operators I, X, and H
	The Identity Operator I
	The NOT Operator X
	The Hadamard Operator H

	A Few Matrix Operations
	Unitary Operators
	Naming a Matrix Element
	Revisiting I, X, and H
	Putting It All Together
	Summary

	CHAPTER 4: WORKING WITH QUBITS
	Hello, World!
	Introducing Hello, XWorld!
	Superpositions
	Properties of H
	Qugates and Basis States
	Initializing with H

	Interference
	Summary

	CHAPTER 5: SYSTEMS
	Postulate 3
	Combining Quantum States
	The Tensor Product
	Product States
	Exploring Product States
	More Qubits

	Quantum Algorithm Diagrams
	Systems of Qugates
	Horizontal Systems of Qugates
	Vertical Systems of Qugates
	Horizontal and Vertical Rules

	A Circuit Analysis
	Analysis by Algebra
	Analysis by Matrix Elements
	Analysis by Direction

	The No-Cloning Theorem
	The CX Qugate
	CX as a Switch
	CX as a Copier

	Entanglement
	Entangled Pairs
	Other Controlled Qugates

	Other Multi-Qubit Qugates
	Single-Qubit Qugates
	Summary

	CHAPTER 6: MEASUREMENT
	The Main Ideas of Measurement
	Measuring Qubits
	Postulate 4
	Meters
	Experiments
	Measuring Hello, World!
	Measuring X|0
	Measuring H|0
	Measuring HH|0
	Measuring an Unequal Superposition

	Amplitudes from Projection
	The Outer Product
	Back to Measurement

	Measuring Multiple Qubits
	Measuring Some Qubits
	Computing Probabilities
	Returning to Measurement

	Partial Measurement
	Measurement and Entanglement
	Introducing Bell States
	Measuring Bell States

	Phase
	Global Phase
	Relative Phase and Interference

	Summary

	PART II: QUANTUM ALGORITHMS
	CHAPTER 7: TELEPORTATION
	The Teleportation Thought Experiment
	The Teleportation State |t>
	The Teleportation Process
	Building |t>
	Alice Measures Her Qubits
	Alice Tells Bob the Measurements
	Bob Recovers |s>

	Drawing the Teleportation Protocol
	Probabilistic Teleportation
	Summary

	CHAPTER 8: DEUTSCH'S ALGORITHM
	Deutsch's Problem
	Oracles
	Quantum Oracles
	Promise Oracles

	Quantum Parallelism
	The Three Steps of Deutsch's Algorithm
	Step 1: Initialization
	Step 2: Querying the Oracle
	Step 3: Postprocessing and Measurement

	Phase Kickback
	Analyzing Deutsch's Algorithm with Phase Kickback
	Deutsch's Algorithm Revisited
	CX Terminology
	Return to Quantum Parallelism

	Revisiting Phase Kickback
	Summary

	CHAPTER 9: DEUTSCH–JOZSA'S ALGORITHM
	Introducing Deutsch–Jozsa
	The Three Steps of Deutsch–Jozsa's Algorithm
	Step 1: Initialization
	Step 2: Querying the Oracle
	Step 3: Postprocessing and Measurement

	Results in Constant and Balanced Cases
	A Constant Function
	A Balanced Function

	Actual Results of Deutsch–Jozsa's Algorithm
	Why Does the Math Work So Well?
	Summary

	CHAPTER 10: BERNSTEIN–VAZIRANI'S ALGORITHM
	The Classical Solution
	The Bernstein–Vazirani Circuit
	Circuit Analysis After Deutsch–Jozsa
	Running the Algorithm
	Simplifying with a Quantum Identity
	Summary

	CHAPTER 11: SIMON'S ALGORITHM
	Exponential Growth
	Simon's Oracle
	The Classical Solution
	The Quantum Part of the Algorithm
	Rewriting x and Measuring
	Combining the Quantum Outputs
	An Example of Simon's Algorithm
	The Balancing Act
	Summary

	CHAPTER 12: GROVER'S ALGORITHM
	An Overview of Grover's Algorithm
	Reflections
	The Stages of Grover's Oracle
	G1: Marking
	G2: Diffusion

	Iterating the Grover Oracle
	An Example of Grover's Algorithm
	Observations and Discussion
	Summary

	CHAPTER 13: SHOR'S ALGORITHM
	Primes and Encryption
	Shor's Algorithm
	Period Finding
	Analyzing the Circuit
	Applying the QFT
	Finding the Probability of |k>
	Connecting to Prime Factoring

	An Example of Shor's Algorithm
	Discussion
	Summary

	CHAPTER 14: NEXT STEPS
	Further Ideas
	Superdense Coding
	POVM and the Density Matrix
	Quantum Encryption
	Quantum Error Correction
	Other Diagrams

	Quantum Advantage
	Further Reading
	Quantum Mechanics Books
	Quantum Computing Books
	Quantum Computing Lecture Notes
	Quantum Computing Online

	Quantum Computing Resources
	Simulators
	Other Software
	Real Hardware
	Drawing Circuits
	Getting Help

	The Philosophy of Quantum Mechanics
	Applications
	Maze Solving
	Ray Tracing
	Games
	Other Applications

	Wrapping Up

	APPENDIX: NOTATION
	BIBLIOGRAPHY
	INDEX

	Blank Page

