

Quantum Computing

Concepts

Fundamentals, circuits, and code

Sudeep Satheesan

Sri Mounica Kalidasu

www.bpbonline.com

https://www.bpbonline.com/

First Edition 2025

Copyright © BPB Publications, India

eISBN: 978-93-65898-637

All Rights Reserved. No part of this publication may be

reproduced, distributed or transmitted in any form or by any

means or stored in a database or retrieval system, without

the prior written permission of the publisher with the

exception to the program listings which may be entered,

stored and executed in a computer system, but they can not

be reproduced by the means of publication, photocopy,

recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and

the best of author’s and publisher’s knowledge. The author

has made every effort to ensure the accuracy of these

publications, but publisher cannot be held responsible for

any loss or damage arising from any information in this

book.

All trademarks referred to in the book are acknowledged as

properties of their respective owners but BPB Publications

cannot guarantee the accuracy of this information.

www.bpbonline.com

https://www.bpbonline.com/

Dedicated to

Schrödinger’s Cat

and

The Next Generation of Quantum Pioneers

•

•

About the Authors

Sudeep Satheesan is an Enterprise Architect with

over two decades of experience in machine learning,

cloud, distributed computing, Generative AI and

quantum computing. He began exploring quantum

computing six years ago and has conducted sessions at

reputed institutes such as NIT Raipur and SRM

University.

Sudeep has co-authored a research paper related to

quantum computing titled A Scalable 5,6-Qubit

Grover’s Quantum Search Algorithm. He recently

published an article exploring the application of the

Bernstein-Vazirani algorithm to the classic household

game ‘Chor-Police.’

Outside of his professional pursuits, Sudeep is deeply

passionate about football and chess. In addition to his

love for strategy and sports, he channels his creativity

into storytelling and is the author of two fiction books.

Sri Mounica Kalidasu is a software engineer with 8

years of experience specializing in Data Science,

Generative AI, cloud technologies and quantum

computing. She has 6 months of experience in

quantum computing and holds a bachelor’s degree in

Physics from IIT Guwahati. She further pursued a

postgraduate degree in Business Analytics and

Applications from IIM Trichy.

She has co-authored a research paper related to

quantum computing titled A Scalable 5,6-Qubit

Grover’s Quantum Search Algorithm. With a strong

foundation in both classical and quantum computing

paradigms, she actively explores advancements in

quantum algorithms, machine learning applications,

and cloud-based quantum computing platforms.

❖

❖

About the Reviewers

Dr. Tahir Manzoor is working as an Assistant

Professor at JBIET, Hyderabad. His areas of expertise

are Mathematics and Quantum Technology. He is

engaged in applying the Clifford algebra approach in

quantum computing, quantum information theory, and

quantum cryptography. Additionally, he participates in

the review process of books and research articles

related to his field of expertise. He has recently been

awarded the title of Excellent Reviewer by a peer-

reviewed journal. He is continuously exploring new

subdomains of quantum technology.

Madhuri Konnur is a Freelancer, quantum enthusiast,

and hackathon activist. She has over 14 years of IT

experience in various domains like Retail, Energy,

EdTech, Transport, and Supply Chain, among others.

Her recent focus has been on research related to real-

time implementations of quantum computing in areas

like Security quantum key distribution (QKD),

Quantum Secure Direct Communication (QSDC),

Quantum Sensors, and Quantum AI. Having had

opportunities to solve complex problems in Data

Science and machine learning like Replenishment

Optimization in SCM, customer churning in EdTech

marketing, X-ray prediction during Covid, etc., it is

more promising to work on Quantum real-time problem

solving. She has also been part of Womanium Global

Quantum, Women in Optics and Photonics (WOPI).

She has authored various technical articles on Medium

and LinkedIn. She enjoys networking with Research

scientists and startup enthusiasts in various events

organized by companies, to understand the latest

trends/innovations/ideas and where the IT market is

heading.

Acknowledgements

Quantum computing may be a field of probabilities, but one
thing we are certain of is that this book would not have
been possible without the invaluable support of many
individuals and organizations.
We extend our deepest gratitude to BPB Publications for
their guidance and expertise in bringing this book to life.
The journey of refining and structuring this work has been
an adventure, made possible by the insightful collaboration
of reviewers, technical experts, and editors who
contributed their time and knowledge to ensure the highest
quality content.
Writing about quantum computing has felt at times like
wielding an Infinity Gauntlet, each concept adding a new
dimension of power but requiring immense precision to
avoid unintended paradoxes. We sincerely appreciate the
pioneers in this field whose research has laid the
groundwork for this book, making it possible for others to
explore and understand the quantum realm.
Finally, to the readers, whether you are enthusiasts,
students, researchers, or future quantum computing
superheroes, thank you for your curiosity and passion. The
quantum revolution is just beginning, and much like the
Avengers assembling to face challenges beyond
imagination, the collective effort of bright minds will shape
the future of computation.

Preface

Quantum computing is ushering in a new era of
computational capabilities, challenging the fundamental
limitations of classical computing and opening doors to
unprecedented possibilities. As researchers, engineers, and
enthusiasts navigate this rapidly evolving landscape, a solid
understanding of quantum principles, algorithms, and
applications is essential.
This book serves as a comprehensive guide to the core
concepts of quantum computing, from foundational
quantum mechanics to practical implementations using
contemporary tools such as Qiskit and IBM Q. By exploring
topics such as superposition, entanglement, quantum gates,
quantum error correction, and quantum communication,
this book aims to provide readers with the knowledge
required to grasp the nuances of quantum information
processing and computation.
Throughout this book, we cover various aspects of quantum
computing, starting with the fundamental principles that
distinguish it from classical computing. We examine the
different types of quantum computers and their
architectures, ensuring readers understand the diverse
approaches taken in the field. Moving forward, we explore
quantum gates and circuits, their mathematical
representations, and their role in quantum computation.
Practical tools such as Qiskit and IBM Q are introduced to

help readers experiment with quantum algorithms and gain
hands-on experience. Additionally, the book covers crucial
topics like quantum communication, error correction, and
the design of classical gates using quantum gates, offering
a holistic perspective on the potential and challenges of
quantum computing.

Chapter 1: Principles of Quantum Computing-

Introduces the fundamental concepts of quantum
computing, including the nature of subatomic particles,
fundamental quantum mechanics principles, and key
quantum phenomena such as superposition and
entanglement.

Chapter 2: Types of Quantum Computers- Provides an
overview of different types of quantum computers, their
architectures, and how they differ from classical computing
paradigms.

Chapter 3: Superposition and Entanglement- Explores
the key quantum principles that distinguish quantum
computing from classical computing and their implications
for computational efficiency.

Chapter 4: Quantum Gates and Circuits- Covers the
basic building blocks of quantum circuits, including various
quantum gates and their mathematical representations.

Chapter 5: Introduction to Qiskit and IBM Q-

Introduces readers to the Qiskit framework and IBM Q,
providing hands-on experience in running quantum
experiments.

Chapter 6: Design of Classical Logic Gates Using

Quantum Gates- Examines how classical logic gates can

be designed using quantum gates and their implications in
computational models.

Chapter 7: Quantum Communication- Discusses key
aspects of quantum communication, including superdense
coding, quantum teleportation, and quantum key
distribution.

Chapter 8: Quantum Error Correction- Explains the
necessity of error correction in quantum computing and
various techniques used to mitigate errors.

Chapter 9: Quantum Algorithms- Introduces
fundamental quantum algorithms such as Grover’s search
and Shor’s algorithm, demonstrating how quantum
computing can outperform classical methods in specific
problem domains.

Chapter 10: Applications of Quantum Computers

Across Industries- Explores how quantum computing is
revolutionizing various industries, including cryptography,
optimization, healthcare, material science, and artificial
intelligence.
This book is designed for students, researchers, and
professionals who are eager to understand and apply
quantum computing principles. Whether you are new to the
field or seeking to deepen your knowledge, this book
provides structured guidance with theoretical insights,
mathematical foundations, and practical examples to bridge
the gap between theory and application.
By the end of this book, readers will have a strong
foundation in quantum computing concepts, an
appreciation for the current state of the technology, and a
clear vision of the transformative impact quantum

computing may have on fields such as cryptography,
optimization, artificial intelligence, and beyond. I hope this
book serves as a valuable resource in your journey into the
fascinating world of quantum computing.

Code Bundle and Coloured Images

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/8a7jd7a

The code bundle for the book is also hosted on

GitHub at

https://github.com/bpbpublications/Quantum-

Computing-Concepts.

In case there’s an update to the code, it will be

updated on the existing GitHub repository.

We have code bundles from our rich catalogue of

books and videos available at

https://github.com/bpbpublications. Check them

out!

Errata

We take immense pride in our work at BPB

Publications and follow best practices to ensure the

accuracy of our content to provide with an indulging

reading experience to our subscribers. Our readers

are our mirrors, and we use their inputs to reflect and

improve upon human errors, if any, that may have

occurred during the publishing processes involved. To

let us maintain the quality and help us reach out to

https://rebrand.ly/8a7jd7a
https://github.com/bpbpublications/Quantum-Computing-Concepts
https://github.com/bpbpublications

any readers who might be having difficulties due to

any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly

appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions

of every book published, with PDF and ePub

files available? You can upgrade to the eBook

version at www.bpbonline.com and as a print

book customer, you are entitled to a discount

on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a

collection of free technical articles, sign up for

a range of free newsletters, and receive

exclusive discounts and offers on BPB books

and eBooks.

Piracy

If you come across any illegal copies of our works

in any form on the internet, we would be grateful

if you would provide us with the location address

or website name. Please contact us at

mailto:errata@bpbonline.com
https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/

business@bpbonline.com with a link to the

material.

If you are interested in becoming an

author

If there is a topic that you have expertise in, and

you are interested in either writing or

contributing to a book, please visit

www.bpbonline.com. We have worked with

thousands of developers and tech professionals,

just like you, to help them share their insights

with the global tech community. You can make a

general application, apply for a specific hot topic

that we are recruiting an author for, or submit

your own idea.

Reviews

Please leave a review. Once you have read and

used this book, why not leave a review on the

site that you purchased it from? Potential readers

can then see and use your unbiased opinion to

make purchase decisions. We at BPB can

understand what you think about our products,

and our authors can see your feedback on their

book. Thank you!

For more information about BPB, please visit

www.bpbonline.com.

mailto:business@bpbonline.com
https://www.bpbonline.com/
https://www.bpbonline.com/

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New

Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Table of Contents

1. Principles of Quantum Computing

Introduction

Structure

Objectives

Fundamental principles of quantum behavior

Quantum stage

Quantum ensemble and the role of subatomic particles

Entanglement and quantum synchronization

Electrons

Discoveries about photons in the field of quantum

mechanics

Evolution of quantum mechanics

Birth of quantum mechanics

Wave-particle duality

Uncertainty principle and matrix mechanics

Quantum entanglement

Birth of quantum electrodynamics

Quantum information and computing

Quantum teleportation and quantum entanglement

experiments

Quantum technologies and quantum supremacy

Superposition

Schrödinger’s wave mechanics

Matrix mechanics

Copenhagen interpretation

Many-worlds interpretation

Quantum field theory

Quantum entanglement for computational advantage

Key features of quantum entanglement

Quantum wave theory

Quantum leap

Quantum tunneling

No-cloning theorem

Heisenberg’s uncertainty principle

Copenhagen interpretation

Double-slit experiment

Conclusion

Multiple choice questions

Answer key

Questions

2. Types of Quantum Computers

Introduction

Structure

Objectives

Quantum annealing and D-Wave

Trapped-ion and IonQ, Honeywell

Quantum topological computers and Microsoft

Quantum photonics-based computers and Xanadu

Neutral atoms and Atom Computing

Superconducting chips and IBM, Google, Rigetti

Cryogenic cooling in superconducting qubits

Universal quantum computers

Noisy Intermediate-Scale Quantum computers

Performance comparison of quantum computers

Conclusion

Multiple choice questions

Answer key

Questions

3. Superposition and Entanglement

Introduction

Structure

Objectives

Introduction to quantum states

Classical vs. quantum states

Representation of quantum states

Importance of superposition and entanglement

Mathematical formalism

Key concepts

Quantum states in quantum computing

Superposition as the basis of quantum computing

Mathematical representation of superposition

Examples of superposition in quantum systems

Importance of superposition in quantum algorithms

Entanglement and quantum correlations beyond classical

intuition

Mathematical representation of entangled states

Examples of entanglement in quantum systems

Entanglement in quantum communication and

processing

Experimental realization of superposition and

entanglement

Key experiments demonstrating superposition and

entanglement

Challenges and advances in experimental quantum

computing

Harnessing superposition and entanglement in quantum

computing

Quantum gates and circuits using superposition

Quantum algorithms leveraging superposition and

entanglement

Superposition and entanglement in quantum networks

EPR paradox and origins of Bell pairs

Quantum bits, superposition, and entanglement

Bell pairs

Bell pairs in quantum networks

Going beyond Bell pairs

Analogies to explain

Potential speedups and advantages of quantum

computing

Limitations and challenges

Decoherence is the enemy of superposition and

entanglement

Error correction and fault tolerance in quantum

computing

Scalability issues and practical constraints

Future directions and applications

Emerging technologies and research areas

Potential applications beyond computing

Implications for science, industry, and society

Conclusion

Multiple choice questions

Answer key

Questions

4. Quantum Gates and Circuits

Introduction

Structure

Objectives

Quantum gates

Unitary matrix

Bloch sphere

Types of quantum gates

Representation of gates as matrices

Kronecker product

Conclusion

Multiple choice questions

Answer key

Questions

5. Introduction to Qiskit and IBM Q

Introduction

Structure

Objectives

Tools in quantum computing

Python in quantum computing

Jupyter Notebook in quantum computing

IBM Qiskit open-source quantum framework

IBM Q cloud-based quantum computing access

Getting started with Qiskit and IBM Quantum

Introduction to programming with Qiskit

Python setup for Qiskit and Quantum Lab

Components of Qiskit

Running Hello World in Qiskit

Optimization levels and their impact

Building quantum circuits

Circuit design basics

Classical feedforward and control flow

Qiskit’s limitations on real quantum hardware

Grover’s search using Qiskit

Practical applications of Grover’s search

Understanding the Oracle with a real-world analogy

Grover operator

Full Grover circuit

Overview of Quantum Composer

Quantum Composer

Key features

Potential of quantum computing

Fundamentals of qubits and gates

Overview of quantum circuits

Tools in our quantum toolbox

Classical gates

Phase gates

Non-unitary operators

Modifiers

Hadamard gate

Quantum gates

Conclusion

Multiple choice questions

Answer key

Questions

6. Design of Classical Logic Gates Using Quantum

Gates

Introduction

Structure

Objectives

Classical gates using quantum gates

NOT gate

AND gate

NAND gate

OR gate

NOR gate

XOR gate

XNOR gate

Quantum circuit design

IBM Q composer

NOT gate

AND gate

NAND gate

OR gate

NOR gate

XOR gate

XNOR gate

IBM Qiskit SDK

NOT gate

Quantum simulator

Quantum hardware

AND gate

Quantum simulator

Quantum hardware

NAND gate

Quantum simulator

Quantum hardware

OR gate

Quantum simulator

Quantum hardware

NOR gate

Quantum simulator

Quantum hardware

XOR gate

Quantum simulator

Quantum hardware

XNOR gate

Quantum simulator

Quantum hardware

Advantages of using quantum gates

Disadvantages of using quantum gates

Conclusion

Multiple choice questions

Answer key

Questions

7. Quantum Communication

Introduction

Structure

Objectives

Introduction to quantum communication

Quantum superdense coding

Message 00

Message 01

Message 10

Message 11

Quantum teleportation

Quantum key distribution

Post-quantum cryptography

Conclusion

Multiple choice questions

Answer key

Questions

8. Quantum Error Correction

Introduction

Structure

Objectives

Overview of quantum error correction

Types of quantum errors

Techniques for quantum error mitigation

Techniques for quantum error correction

Quantum circuit design for QEC

3-qubit circuit for bit flip error

3-qubit circuit for phase error

Shor’s code for QEC

Conclusion

Multiple choice questions

Answer key

Questions

9. Quantum Algorithms

Introduction

Structure

Objectives

Phase kickback

Grover’s algorithm

Shor’s algorithm

Deutsch-Jozsa algorithm

Bernstein–Vazirani algorithm

Conclusion

Multiple choice questions

Answer key

Questions

10. Applications of Quantum Computers Across

Industries

Introduction

Structure

Objectives

Sector-wise applications of quantum computing

Examples of real-world impact

Challenges and ongoing research

Cryptography and cybersecurity

Challenges in implementing post-quantum

cryptography

Standardization efforts in post-quantum

cryptography

Industry contributions

Finance and risk analysis

Industry contributions

Challenges and outlook

Pharmaceuticals and drug discovery

Industry leaders and collaborations

Challenges and outlook

Materials science

Real-world implications

Artificial intelligence and machine learning

Quantifiable benefits

Industry leaders

Logistics and supply chain

Challenges and outlook

Climate modeling and weather forecasting

Healthcare

Telecommunications

Industry leaders

Recent developments

Energy

Potential challenges

Industry leaders

Conclusion

Multiple choice questions

Answer key

Questions

Index

Chapter 1

Principles of Quantum

Computing

Introduction

Quantum computing is a groundbreaking field that
challenges classical computing paradigms by leveraging
the principles of quantum mechanics. Unlike traditional
computers that process data in binary form (0s and 1s),
quantum computers utilize quantum bits (qubits) that can
exist in multiple states simultaneously due to properties
such as superposition and entanglement. These
fundamental principles enable quantum computers to solve
complex problems exponentially faster than their classical
counterparts.
This chapter explores the foundational concepts of
quantum computing, including the nature of subatomic
particles, fundamental quantum mechanics principles, and
key quantum phenomena such as superposition,
entanglement, and quantum wave theory. By understanding
these core principles, readers will gain insight into the

•

•

•

•

•

•

•

•

•

•

•

mechanisms that power quantum computers and their vast
potential in fields such as cryptography, optimization, and
artificial intelligence.

Structure

The following topics are covered in this chapter:

Fundamental principles of quantum behavior

Electrons

Discoveries about photons in the field of quantum

mechanics

Evolution of quantum mechanics

Superposition

Quantum entanglement for computational advantage

Quantum wave theory

No-cloning theorem

Heisenberg’s uncertainty principle

Copenhagen interpretation

Double-slit experiment

Objectives

This chapter aims to provide readers with a solid
foundation in quantum computing principles by exploring
the key concepts and theories that define the field. By the
end of this chapter, readers will understand the
fundamental building blocks of quantum mechanics,
including electrons, photons, and subatomic particles. They
will also gain insight into the historical evolution of
quantum mechanics and its impact on modern computing.

Additionally, the readers will be able to comprehend key
quantum principles such as superposition, entanglement,
and quantum wave theory, and their implications in
quantum computation. We will learn about crucial quantum
theories, including the No-cloning theorem and
Heisenberg’s uncertainty principle, and their significance
in quantum information processing. Also, we will explore
major interpretations of quantum mechanics, such as the
Copenhagen interpretation and the double-slit experiment,
to understand how quantum behaviors are observed and
analyzed.
By mastering these topics, readers will be well-equipped to
delve deeper into quantum computing technologies and
their applications in scientific and industrial domains.

Fundamental principles of quantum

behavior

At the subatomic scale, particles exhibit behaviors that
diverge significantly from classical expectations. Quantum
mechanics governs this domain, where principles such as
superposition, entanglement, and wave-particle duality
dictate the dynamics of elementary entities. Understanding
these foundational phenomena is crucial for exploring
quantum computing, as the operation of quantum systems
relies on the non-classical properties of quantum bits
(qubits). This chapter introduces the essential quantum
mechanical concepts that form the basis for quantum
information processing.

Quantum stage

Picture a stage, not with grandiose curtains and dazzling
lights, but one where the theatre of existence unfolds at

scales inconceivably small. At this quantum stage, entities
such as electrons, photons, and quarks emerge as
protagonists in a narrative that challenges the very fabric
of reality. These entities, far from the billiard ball simplicity
of classical particles, embody the dual nature of waves and
particles—a paradox encapsulated in the wave-particle
duality.
The process is represented in the following figure:

Figure 1.1: The collision of an up quark and an up antiquark

A virtual photon can violate some laws of physics, as long
as its lifetime is less than a value determined by the
photon’s energy and a physical constant (called Planck’s

constant). This loophole is related to something called
Heisenberg’s uncertainty principle. A virtual photon
briefly lives and then decays into new particles. This
process shows how particles interact and transform,
revealing the fascinating ways nature works at the smallest
scales.
Virtual photons are important because they act as carriers
of force between particles, helping us understand
interactions in particle physics, virtual photons are

•

•

•

•

essential as they mediate electromagnetic interactions
between charged particles, even though they exist only
briefly and cannot be directly observed. Their role helps
explain processes like particle annihilation, scattering, and
decay, revealing the underlying forces and interactions that
govern the quantum world. For example, when a quark and
an antiquark collide, they can briefly create a virtual
photon, which then decays into other particles like an
electron and a positron. (Figure 1.1)
Here is one simple example of a quark-antiquark
interaction:

An up quark (electric charge +2/3) interacts with a

down antiquark (charge: 2/3).

They form a virtual photon, which has no charge but

does have a mass. (A photon with mass is a violation of

the laws of physics).

The virtual photon decays within the time limit allowed

by Heisenberg’s uncertainty principle, sometimes into

an electron (charge –1) and an anti-electron, called a

positron (charge +1).

A quark and antiquark that annihilate each other can

form other quark pairs and other elementary particle

pairs such as a muon and an anti-muon. Nature

provides many other ways that quarks can combine.

Imagine electrons gracefully surfing probability waves,
their trajectories uncertain until the moment of
observation. The quantum dance introduces an
indeterminacy that fuels the excitement of discovery and
innovation in the realm of quantum computing. It is within

this dance that the promise of qubits, the quantum bits that
power quantum computers, materializes.

Quantum ensemble and the role of

subatomic particles

As the curtain rises on the quantum stage, subatomic
particles take center stage. Quarks, the elemental
constituents of protons and neutrons, showcase their
vibrant personalities, each with distinct flavors that
contribute to the symphony of matter. Gluons, the glue
holding quarks together, emphasize the interconnectedness
of the quantum world, much like the intricate choreography
of a ballet. Refer to the following figure:

Figure 1.2: Biphoton state holographic reconstruction

Photons, the carriers of light and electromagnetic force,
waltz through space and time, transcending classical
limitations. Meanwhile, neutrinos, the elusive particles with
almost negligible mass, play hide-and-seek, traversing the
cosmos without much interaction. Together, these
subatomic actors form an ensemble that orchestrates the
quantum mechanics spectacle, captivating scientists and
enthusiasts alike. Figure 1.2 depicts the quantum

entanglement of photons observed for the first time by
researchers at the University of Ottawa, in collaboration
with Danilo Zia and Fabio Sciarrino from the Sapienza
University of Rome, who recently demonstrated a novel
technique that allows the visualization of the wave function
of two entangled photons, the elementary particles that
constitute light, in real-time.

Entanglement and quantum

synchronization

As we explore the quantum narrative, the concept of
entanglement emerges, a phenomenon that Einstein
famously referred to as spooky action at a distance.
Entanglement is the quantum sync, where particles become
entwined in such a way that the state of one
instantaneously influences the state of the other,
regardless of the physical distance separating them. This
connection underpins the potential for quantum computers
to perform complex computations exponentially faster than
their classical counterparts. In this unfolding quantum
drama, the entities and subatomic particles showcase a
dance that challenges our understanding of reality. As we
peer into the intricacies of the quantum world, the promise
of harnessing these phenomena for computation beckons,
promising a revolution that transcends the boundaries of
classical computing.
Imagine you have two identical dice that are magically
connected. You roll one dice in India, and the moment it
lands on a number, the dice in New York instantly shows
the same number, even though no one touched it. This
mysterious connection happens faster than any signal could
travel between them, it is as if the dice knew what the

•

•

•

other rolled, no matter how far apart they are. That is how
quantum sync, or entanglement, works in the quantum
world.

Electrons

In the quantum realm, where classical limits dissolve into
the limitless possibilities of quantum superposition and
entanglement, one entity stands as the true author of this
groundbreaking narrative—the electron (e− or β−).
Electrons, those elementary particles that whiz around
atomic nuclei, reveal their true prowess in the quantum
domain and their distribution is described by atomic
orbitals. These orbitals are three-dimensional regions
around the nucleus where electrons are likely to be found
(Figure 1.3). Atomic orbitals come in different types, each
denoted by a unique set of quantum numbers. The primary
types of atomic orbitals include:

S orbitals (spherical): S orbitals are spherical in

shape and are characterized by the principal quantum

number (n). As the principal quantum number

increases, the size of the spherical region increases.

Each energy level (shell) in an atom can have one or

more S orbitals.

P orbitals (dumbbell-shaped): P orbitals have a

dumbbell or figure-eight shape and come in sets of

three (px, py, and pz), each oriented along one of the

three coordinate axes. They are associated with the

azimuthal quantum number (l = 1) and can exist in

different planes within a given energy level.

D orbitals (cloverleaf-shaped): D orbitals have

more complex shapes, including cloverleaf and double-

•

dumbbell configurations. There are five D orbitals (dxy,

dyz, dzx, dx2-y2, and dz2), corresponding to l = 2.

They appear in higher energy levels than S and P

orbitals.

F orbitals (intricate shapes): F orbitals have even

more intricate shapes, and there are seven different F

orbitals (and 14 electrons in total), corresponding to l =

3. These orbitals appear in even higher energy levels

than D orbitals.

The number of orbitals in each subshell is determined by
the magnetic quantum number (ml), which can take values
from -l to +l. For example, in an S orbital (l = 0), there is
only one orbital (ml = 0). In a P orbital (l = 1), there are
three orbitals (ml = -1, 0, +1).
These orbitals provide a framework for understanding the
distribution of electrons in an atom and play a crucial role
in chemical bonding and the overall behavior of atoms in
chemical reactions. The Pauli Exclusion Principle and
the Aufbau Principle guide the filling of these orbitals
with electrons, ensuring the stability and energy
minimization of the atom. Their quantum states, governed
by the laws of quantum mechanics, form the foundation
upon which quantum bits or qubits, the fundamental units
of quantum information, are built. The book aims to shed
light on the electron’s role, exploring how its spin, charge,
and quantum states contribute to the creation of quantum
gates—the building blocks of quantum algorithms. It is
shown in the following figure:

Figure 1.3: Shapes of atomic orbitals

In his groundbreaking 1924 dissertation Recherches sur la

théorie des quanta (Research on quantum theory), French
physicist Louis de Broglie proposed a revolutionary
hypothesis, suggesting that all matter possesses both
particle and wave-like characteristics. This wave-particle
duality, akin to the behavior of light, indicated that under
specific conditions, electrons and other matter could
exhibit properties of both particles and waves.

Experimental confirmation of this dual nature emerged in
1927 when George Paget Thomson, Alexander Reid, Clinton

Davisson, and Lester Germer demonstrated interference
patterns in beams of electrons, mirroring the wave-like
behavior observed in light. De Broglie’s wave hypothesis
inspired Erwin Schrödinger to formulate a wave equation
for electrons within atoms, leading to the development of
quantum mechanics. Schrödinger’s equation, established in
1926, not only successfully described the propagation of
electron waves but also introduced the concept of
probability distribution, emphasizing the likelihood of
finding an electron at a particular position. The evolution of
quantum mechanics continued in 1928 with Paul Dirac’s

Dirac equation, incorporating relativity theory and
predicting the existence of the positron—the antimatter
counterpart of the electron. The subsequent discovery of
the positron in 1932 by Carl Anderson validated Dirac’s
theory. Further advancements, such as Willis Lamb and
Polykarp Kusch’s findings in 1947, revealed the Lamb shift
and anomalous magnetic dipole moment of the electron,
challenging existing theories. The resolution to these
anomalies came with the development of quantum

electrodynamics (QED) in the late 1940s by Sin-Itiro

Tomonaga, Julian Schwinger, and Richard Feynman. Their
groundbreaking work not only explained these phenomena
but also marked a significant leap forward in our
understanding of quantum mechanics, laying the
foundation for subsequent quantum advancements. We will
cover the intriguing world of superposition, where
electrons can exist in multiple states at once, challenging
our classical intuition and paving the way for exponentially
faster computations. We explore the concept of

•

•

entanglement, where electrons become entwined across
vast distances, sharing information instantaneously, an
ability that holds the key to quantum communication and
the development of quantum networks. As we disentangle
the complexities of quantum algorithms and their
applications, the electron takes center stage, guiding us
through the maze of quantum gates, quantum circuits, and
the promise of solving problems exponentially faster than
classical computers.

Discoveries about photons in the field

of quantum mechanics

The history of discoveries about photons in the field of
quantum computing is a fascinating journey marked by key
milestones that have shaped our understanding and
applications of quantum phenomena. Here is a concise
overview of some significant events:

1920s wave-particle duality: The concept of wave-

particle duality, initially proposed by Louis de Broglie,

laid the foundation for understanding the dual nature

of particles, including photons. In 1927, experiments by

Clinton Davisson and Lester Germer demonstrated the

wave-like behavior of electrons, extending the wave-

particle duality principle to particles beyond light.

Quantum electrodynamics: The development of

QED in the late 1940s by renowned physicists such as

Sin-Itiro Tomonaga, Julian Schwinger, and Richard

Feynman provided a theoretical framework for

understanding the behavior of photons and electrons in

quantum systems. QED became an essential tool for

describing the interaction between light and matter.

• Quantum entanglement (1935): The concept of

quantum entanglement, where particles become

interconnected regardless of distance, was introduced

by Albert Einstein, Boris Podolsky, and Nathan Rosen in

a 1935 paper. Though initially a subject of debate

between Einstein and Niels Bohr, entanglement later

became a key resource in quantum computing,

including the entanglement of photons as shown in

Figure 1.4. The spontaneous parametric down-

conversion process can split photons into type II

photon pairs with mutually perpendicular polarization.

•

Figure 1.4: Entanglement of photons

Quantum cryptography (1984): Physicist David

Deutsch proposed the concept of quantum

cryptography, leveraging the principles of quantum

mechanics for secure communication. In quantum key

distribution (QKD) protocols, the transmission of

photons is used to establish secure cryptographic keys,

exploiting the unique properties of quantum states.

•

•

•

•

Quantum computing algorithms (1990s): The

1990s saw the development of groundbreaking

quantum algorithms, including Peter Shor’s algorithm

for factoring large numbers exponentially faster than

classical algorithms and Lov Grover’s algorithm for

searching unsorted databases. Photons played a crucial

role in these algorithms, especially in implementations

of quantum parallelism and quantum interference.

QKD experiments (2000s): Experimental

implementations of QKD became a reality in the 2000s,

with researchers achieving secure communication

using the principles of quantum entanglement and the

transmission of individual photons.

Quantum teleportation (1997): The successful

demonstration of quantum teleportation, transferring

the quantum state of a photon to another photon at a

distant location, by a team of scientists including Anton

Zeilinger, showcased the potential of quantum

communication using entangled photons.

Photonic quantum computing (Current era):

Contemporary research focuses on the development of

photonic quantum computing platforms. Various

technologies, such as linear optics, photon detectors,

and integrated photonics, are being explored to

manipulate and measure the quantum states of

photons for quantum information processing.

The history of discoveries related to photons in quantum
computing reflects the continuous evolution of our
understanding of quantum mechanics and the innovative
applications of these principles in emerging technologies.

The narrative extends beyond the confines of quantum
computing, touching upon the implications of photon-driven
quantum technologies for cryptography, sensing, and
secure communication. Through the pages of this book,
readers gain a profound understanding of how photons, as
the radiant scribes of quantum computing, are shaping the
future of information processing.

Evolution of quantum mechanics

The evolution of quantum mechanics is a captivating
journey marked by groundbreaking discoveries and
paradigm shifts in our understanding of the fundamental
nature of the quantum world. Here is a brief overview of
key evolutions in the field.
In the nascent years of the 20th century, the landscape of
physics underwent a revolutionary transformation with the
birth of quantum mechanics. Pioneered by Max Planck and
propelled forward by Albert Einstein, this epoch marked
the emergence of a groundbreaking paradigm shift.
Planck’s daring quantum hypothesis in 1900 and
Einstein’s groundbreaking work on the photoelectric

effect in 1905 collectively set the stage for the unraveling
of a new understanding of the fundamental nature of
energy and light. As we delve into the foundational years of
quantum mechanics (1900-1925), we witness the birth of
concepts that would redefine the very fabric of physics,
challenging classical notions and laying the groundwork for
a quantum revolution.

Birth of quantum mechanics

In the vibrant intellectual ferment of the 1920s, the realm
of quantum mechanics witnessed a profound revelation—

•

•

wave-particle duality. Spearheaded by the visionary
insights of Louis de Broglie and further crystallized through
the ingenious formulations of Erwin Schrödinger and
Werner Heisenberg, this transformative era reshaped our
understanding of the fundamental nature of particles. De

Broglie’s audacious proposal of matter waves for particles
like electrons challenged conventional wisdom, ushering in
an era where particles defied the constraints of classical
categorizations. As we traverse the landscape of the 1920s,
we encounter pivotal contributions—from de Broglie’s
conceptual breakthrough to Schrödinger and Heisenberg’s

complementary formulations—forming the cornerstone of
wave-particle duality and laying the groundwork for the
enigmatic and exhilarating world of quantum mechanics:

Planck’s quantum hypothesis (1900): Max Planck

introduced the concept of quantized energy, laying the

foundation for quantum theory by suggesting that

energy is emitted or absorbed in discrete packets

called quanta.

Einstein’s photoelectric effect (1905): Albert

Einstein extended quantum theory by proposing that

light consists of quantized particles called photons,

explaining the photoelectric effect.

Wave-particle duality

In the crucible of quantum exploration during the pivotal
year of 1927, the foundations of quantum mechanics were
further solidified with Werner Heisenberg’s uncertainty
principle and Paul Dirac’s unifying synthesis of wave and
matrix mechanics. Heisenberg’s groundbreaking principle
introduced a fundamental limit to our precision in

•

•

simultaneously measuring certain pairs of properties,
challenging classical notions of determinism. Concurrently,
the profound work of Paul Dirac harmoniously melded the
disparate realms of wave and matrix mechanics into a
singular, comprehensive framework. As we delve into the
quantum landscape of 1927, Heisenberg and Dirac’s

contributions not only unveiled the inherent limits of our
understanding but also forged the path toward a more
profound and nuanced comprehension of the quantum
realm:

De Broglie’s matter waves (1924): Louis de Broglie

suggested that particles, like electrons, exhibit both

wave and particle properties.

Wave mechanics and matrix mechanics (1925):

Erwin Schrödinger formulated wave mechanics, while

Werner Heisenberg developed matrix mechanics,

providing two equivalent formulations of quantum

mechanics.

Uncertainty principle and matrix

mechanics

In the annals of quantum physics, the year 1935 bore
witness to the emergence of quantum entanglement—a
phenomenon that both perplexed and captivated the minds
of physicists. It was a time when Albert Einstein, Boris

Podolsky, and Nathan Rosen, in their landmark paper on
the EPR Paradox, illuminated the seemingly paradoxical
nature of particles entangled in quantum states.
Concurrently, Erwin Schrödinger’s enigmatic thought
experiment, famously known as Schrödinger’s Cat,
introduced a feline paradox that would become emblematic

•

•

of the bizarre and counterintuitive facets of quantum
mechanics. As we delve into this era of quantum
entanglement, we explore the intellectual conundrums
posed by EPR and the whimsical paradox of Schrödinger’s
Cat—two thought experiments that challenged the very
fabric of our classical intuitions and propelled the
exploration of the quantum world into uncharted
territories:

Heisenberg’s uncertainty principle: Werner

Heisenberg proposed the uncertainty principle, stating

that certain pairs of properties (like position and

momentum) cannot be simultaneously known with

arbitrary precision.

Dirac’s quantum mechanics (1927): Paul Dirac

unified wave and matrix mechanics into a single,

comprehensive formulation.

Quantum entanglement

In the post-war scientific renaissance of the 1940s and
1950s, the quantum realm experienced a profound
maturation with the birth of QED. The collaborative
endeavors of visionaries such as Richard Feynman, Julian

Schwinger, and Sin-Itiro Tomonaga heralded a
transformative era in theoretical physics. QED emerged as
a comprehensive and elegant framework, providing
unparalleled insight into the intricate dance between
matter and electromagnetic fields. As we delve into this
period, we witness the crystallization of QED as a
cornerstone in the edifice of quantum field theory, marking
a watershed moment where theory and experiment
converged to unveil the intricate tapestry of the quantum
world:

•

•

Einstein-Podolsky-Rosen (EPR) paradox: Albert

Einstein, Boris Podolsky, and Nathan Rosen presented

a thought experiment highlighting the apparent

paradoxes of quantum entanglement.

Schrodinger’s Cat (1935): Erwin Schrödinger

introduced a thought experiment involving a cat in a

superposition of states, illustrating the peculiar aspects

of quantum mechanics.

Birth of quantum electrodynamics

Embarking on a trajectory of innovation that transcends the
boundaries of classical computation, the realm of quantum
information and computing has unfolded as a captivating
frontier since the 1980s. At its genesis, David Deutsch’s

groundbreaking proposal in 1984 introduced the concept of
quantum cryptography, harnessing the unique properties of
quantum systems to forge a new era of secure
communication. The momentum of this quantum revolution
gained further impetus with Peter Shor’s seminal
contribution in 1994—Shor’s algorithm—a computational
marvel capable of factoring large numbers exponentially
faster than classical counterparts, laying bare the
transformative potential of quantum computers. As the
theoretical foundations solidified, the 21st century
witnessed experimental endeavors in QKD, where the
application of quantum principles emerged as a practical
avenue for securing communication channels. In the
unfolding narrative of quantum information and computing,
these milestones not only illuminate the past but also cast a
brilliant light on the ever-expanding horizons of the
quantum landscape, where the interplay of theory and

•

experimentation continues to redefine the possibilities of
information processing and secure communication:

Quantum electrodynamics (QED): The development

of QED by Feynman, Schwinger, and Tomonaga

provides a complete framework for understanding the

interactions between matter and electromagnetic

fields.

Quantum information and computing

Venturing into the awe-inspiring realm of quantum
phenomena, the 1990s marked an epoch of remarkable
strides with the advent of quantum teleportation and
ongoing experiments probing the mysteries of quantum
entanglement. In the year 1997, a pivotal breakthrough
unfolded as scientists achieved the seemingly miraculous
feat of quantum teleportation—transferring quantum states
between particles with unprecedented precision. This
remarkable achievement not only captivated the
imaginations of physicists but also laid the groundwork for
a future where the instantaneous transmission of quantum
information could redefine the boundaries of
communication. Simultaneously, the scientific community
embarked on a sustained journey of exploration, delving
deeper into the enigmatic realm of quantum entanglement.
Rigorous experiments were conducted to scrutinize and
verify these intricate quantum phenomena, including
meticulous tests of Bell’s inequalities. As we navigate
through the evolving narrative of quantum teleportation
and entanglement experiments, we witness a saga of
scientific ingenuity unraveling the mysteries of quantum
mechanics and pushing the boundaries of our
understanding of the fundamental nature of reality:

•

•

•

Quantum cryptography (1984): David Deutsch

proposed quantum cryptography, utilizing quantum

properties for secure communication.

Shor’s algorithm (1994): Peter Shor developed an

algorithm for factoring large numbers exponentially

faster than classical algorithms, showcasing the

potential of quantum computers.

Quantum key distribution (QKD): Experimental

implementations of QKD protocols for secure

communication.

Quantum teleportation and quantum

entanglement experiments

In the current era, the landscape of quantum technologies
has evolved into a realm where scientific innovation
converges with practical applications, propelling us into a
new frontier of computational possibilities. At the forefront
of this evolution is the rapid advancement of photonic
technologies for quantum information processing, offering
unprecedented potential for harnessing the unique
properties of quantum systems. Concurrently, a watershed
moment in the field occurred in 2019 when Google’s
Sycamore processor achieved quantum supremacy. This
groundbreaking achievement marked a pivotal juncture as
the quantum processor outpaced the most sophisticated
classical supercomputers in performing a specific task. As
we navigate the unfolding developments in quantum
technologies and witness the realization of quantum
supremacy, we find ourselves at the threshold of a
transformative era where the fusion of theoretical
innovation and practical applications redefines the

•

•

•

•

landscape of computation and ushers in a new era of
technological possibilities:

Quantum teleportation (1997): The successful

teleportation of quantum states between particles is

achieved.

Quantum entanglement experiments: Continued

exploration and verification of quantum entanglement

phenomena, including tests of Bell’s inequalities.

Quantum technologies and quantum

supremacy

The field of quantum mechanics has witnessed continuous
evolution, from its early conceptual foundations to the
emergence of practical quantum technologies. Ongoing
research continues to unveil new facets of quantum
phenomena, promising revolutionary advancements in
computation, communication, and information processing:

Photonic quantum computing: Advancements in

photonic technologies for quantum information

processing.

Quantum supremacy (2019): Google’s Sycamore

processor achieves quantum supremacy by performing

a specific task faster than the most advanced classical

supercomputers.

Superposition

Quantum superposition is a fundamental principle in
quantum mechanics that describes a quantum system’s
ability to exist in multiple states or configurations
simultaneously. It is a key feature that differentiates

•

quantum systems from classical systems, where objects
typically exist in well-defined states.

Schrödinger’s wave mechanics

In the midst of the quantum revolution during the early
20th century, a radical departure from classical physics
was underway, spearheaded by groundbreaking
contributions that would redefine our understanding of the
microscopic world. Among these pivotal advancements,
Erwin Schrödinger’s wave mechanics emerged as a
cornerstone, unveiling a new mathematical framework that
elegantly described the behavior of particles at the
quantum scale. As we delve into the narrative of
Schrödinger’s wave mechanics, we embark on a journey
through the intricacies of wave-particle duality and the
profound implications of superposition. This transformative
period not only challenged the conventional tenets of
classical physics but also laid the groundwork for a
comprehensive and nuanced understanding of quantum
mechanics, setting the stage for a paradigm shift that
continues to shape our comprehension of the quantum
realm:

Formulation: Erwin Schrödinger developed wave

mechanics in 1926, introducing a wave equation that

describes the behavior of quantum systems. Erwin

Schrödinger crafted a thought experiment that has

since become an iconic symbol of the peculiarities

inherent in the quantum world—the paradox of

Schrödinger’s Cat. Imagine a sealed box containing a

curious amalgamation of elements: a cat, a vial of

poison, a Geiger counter, and a radioactive substance

as shown in Figure 1.5:

•

Figure 1.5: A cat is placed inside a sealed box along with a radioactive

substance, a Geiger counter,

and a vial of poison

Superposition in wave mechanics: The Schrödinger

equation allows for the superposition of quantum

states. A particle’s wavefunction is a combination of

multiple possible states, and the actual state is

determined upon measurement. Schrödinger’s

hypothetical scenario delves into the conundrums of

superposition, entangling the fate of the cat with the

unpredictable decay of a radioactive particle. As we

peer into the confines of this conceptual box, we enter

a realm where the traditional boundaries of classical

reality blur, challenging our intuitions and beckoning us

to contemplate the perplexing nature of quantum

states and the paradoxes they present as depicted in

the Figure 1.6:

Figure 1.6: Schrödinger’s Cat

Matrix mechanics

In the crucible of quantum innovation during the mid-
1920s, a profound divergence in the mathematical
formulations of quantum mechanics unfolded, giving rise to
Werner Heisenberg’s matrix mechanics. Introduced as an
alternative to Erwin Schrödinger’s wave mechanics, matrix
mechanics presented a novel approach to describing the
behavior of particles at the quantum scale. Within the
framework of matrix mechanics, the concept of
superposition emerged, mirroring its counterpart in wave
mechanics. Quantum states found expression through
matrices, and the superposition principle allowed the
seamless combination of these states, portraying a
quantum world defined by inherent uncertainties. As the
mathematical foundations of quantum mechanics solidified,
Paul Dirac, in the late 1920s and 1930s, introduced Dirac

notation and the abstract concept of Hilbert space. This
formalization not only provided a rigorous mathematical
language for quantum mechanics but also emphasized the
ubiquitous role of superposition, wherein quantum states
are represented as vectors in Hilbert space—a realm where
the linear combinations of these vectors illuminate the
intricacies of quantum superposition:

•

•

•

•

Formulation: Werner Heisenberg independently

formulated matrix mechanics in 1925 as an alternative

to Schrödinger’s wave mechanics.

Superposition in matrix mechanics: Matrix

mechanics also supports the concept of superposition.

Quantum states are represented by matrices, and the

superposition principle allows for the combination of

different states.

Dirac notation and Hilbert space: Paul Dirac, in the

late 1920s and 1930s, introduced Dirac notation and

the concept of Hilbert space to formalize quantum

mechanics mathematically.

Superposition in Hilbert space: Quantum states are

represented as vectors in Hilbert space, and

superposition is expressed through the linear

combination of these vectors.

Copenhagen interpretation

In the labyrinth of quantum mechanics, where the rules
defy classical intuition, the Copenhagen interpretation
emerges as a cornerstone, shaping our conceptualization of
the quantum realm. Propounded by the visionary minds of
Niels Bohr and Werner Heisenberg, this interpretative
framework places a unique emphasis on the interplay
between measurement and the observer’s influence within
quantum systems. Within the confines of the Copenhagen
interpretation, the enigmatic concept of superposition
takes center stage, portraying a quantum reality where a
system exists in a simultaneous confluence of multiple
states until subjected to measurement. As we unravel the
tenets of this interpretative paradigm, we delve into a

•

•

philosophical and theoretical exploration that underscores
the profound impact of observation on the very nature of
quantum entities, offering both insight and intrigue into the
intricate dance between particles and perception:

Interpretation: The Copenhagen interpretation,

championed by Niels Bohr and Werner Heisenberg,

emphasizes the role of measurement and observer

effects in quantum systems.

Superposition in Copenhagen interpretation:

Superposition is a fundamental aspect of the

Copenhagen interpretation, where a quantum system

is considered to exist in a superposition of states until

measured.

Many-worlds interpretation

In the expansive landscape of quantum interpretations, the
many-worlds interpretation stands as a provocative and
audacious proposition, challenging our conventional
understanding of reality. Conceived by Hugh Everett III in
1957, this interpretative framework ventures into the realm
of the extraordinary, suggesting that every conceivable
outcome of a quantum measurement unfolds across distinct
branches of a vast and ever-expanding multiverse. As we
delve into the intricacies of the many-worlds interpretation,
the very fabric of quantum superposition reveals itself as a
natural consequence within this paradigm. Within the
tapestry of the multiverse, all potential states coexist, each
in their own branch, presenting a quantum reality that
transcends the confines of a singular, deterministic
outcome. Embarking on a journey through the theoretical
corridors of many-worlds, we explore a cosmos where the
quantum possibilities are not merely potentialities but

•

•

tangible and concurrent realities within the infinite
expanse of parallel universes:

Interpretation: Proposed by Hugh Everett III in 1957,

the many-worlds interpretation suggests that all

possible outcomes of a quantum measurement occur,

each in a separate branch of the universe.

Superposition in many-worlds interpretation:

Superposition is a natural consequence of this

interpretation, as all possible states coexist in different

branches of the multiverse.

Quantum field theory

Quantum field theory (QFT), developed in the mid-20th
century, extends quantum mechanics to include fields and
particles. Quantum fields can exist in superpositions of
states, and particles are excitations of these fields,
exhibiting superposition properties.
These theories collectively form the foundation of quantum
mechanics and provide a conceptual framework for
understanding and applying the principle of superposition
in diverse quantum phenomena. Superposition is a central
feature in the quantum world, contributing to the unique
and often counterintuitive behavior observed at the
quantum scale.

Quantum entanglement for

computational advantage

Quantum entanglement is a phenomenon in quantum
mechanics where two or more particles become correlated
and instantaneously affect each other’s properties,
regardless of the physical distance that separates them.

•

These particles, often referred to as entangled particles,
exhibit a strong, non-local connection that cannot be
explained by classical physics.
Analyzing the fundamental properties of quantum
entanglement, we elucidate the distinctive characteristics
that underscore its role as one of the most profound and
non-classical phenomena in quantum mechanics. These
features redefine the boundaries of classical physics,
inviting us to explore the entangled states, non-local
correlations, and the instantaneous influence between
particles. As we navigate through the fundamental
principles of quantum entanglement, we embark on a
journey that transcends the conventional notions of
physical reality, revealing a tapestry woven with threads of
entangled connections and opening new dimensions of
inquiry into the very nature of the quantum universe.

Key features of quantum

entanglement

Despite its seemingly paradoxical nature, quantum
entanglement has been experimentally observed and
verified, making it a central and fascinating aspect of
quantum mechanics. Understanding and harnessing
entanglement is crucial for the development of quantum
technologies with transformative implications for
communication, computing, and information processing:

Correlation beyond classical limits: Entangled

particles exhibit correlations that surpass classical

limits. Changes in the state of one particle are

immediately reflected in the state of the entangled

partner, violating the principle of local realism.

•

•

•

Non-locality: The influence between entangled

particles occurs instantaneously, regardless of the

spatial separation between them. This apparent

“spooky action at a distance,” as Einstein called it,

challenges classical notions of causality.

Entangled states: Entanglement is typically

described using quantum states called entangled

states. These states cannot be factored into

independent states for each particle, emphasizing the

inseparability of their properties.

Entanglement creation: Entanglement can be

created through various processes, such as

spontaneous parametric down-conversion or the decay

of certain particles. Once entangled, the properties of

the particles are interdependent.

Enter the realm of the quantum entanglement and

measurement image, a visual abstraction that seeks to

capture the elusive nature of entangled particles and

the intricate dance between measurement and

quantum states. In this visual exploration, we navigate

the complexities of rendering a snapshot of entangled

particles at the moment of measurement, where the

act of observation precipitates a collapse of quantum

probabilities into tangible realities as shown in Figure

1.7:

•

•

•

•

Figure 1.7: Quantum entanglement and measurement

Quantum measurement: When a measurement is

performed on one entangled particle, it instantaneously

determines the state of the other, regardless of the

distance between them. This phenomenon persists

even if the measurement is made before the particles

can communicate through any known means.

Quantum entanglement and information:

Quantum entanglement is essential for quantum

information processing and quantum computing.

Entangled particles can be used as qubits, the basic

units of quantum information, enabling the creation of

quantum gates and circuits.

Bell’s theorem: Physicist John Bell formulated Bell’s

theorem, which provides a way to test the predictions

of quantum entanglement against classical models.

Experiments based on Bell’s theorem support quantum

predictions and challenge local realistic theories.

Applications: Quantum entanglement has practical

applications in quantum communication, where it can

be used for secure communication channels through

QKD. It is also explored for its potential role in quantum

teleportation and quantum cryptography.

Quantum wave theory

Quantum wave theory, also referred to as wave mechanics,
constitutes a pivotal aspect of quantum mechanics,
elucidating the conduct of particles at the quantum scale.
Originating to surmount the constraints of classical physics
in explicating phenomena on minute scales, particularly
observable in electrons and other subatomic entities, this
theory incorporates key principles.
It introduces the concept of wave-particle duality, positing
that particles like electrons and photons can manifest both
wave-like and particle-like attributes. Described by a
mathematical expression termed the wave function, this
dual nature encapsulates the probability amplitude of
locating a particle in a specific state. Governed by the
Schrödinger equation, the evolution of wave functions over
time characterizes the behavior of quantum systems. The
square of the wave function produces the probability
density, signifying the inherently probabilistic nature of a
particle’s location—a departure from classical determinism.
Each quantum system aligns with a distinctive evolving
wave function, constituting a complete orthonormal basis of
potential states. Quantum superposition allows particles to
exist in multiple states concurrently, contrasting classical
physics. Localized disturbances in a wave function, termed
wave packets, illustrate wave-particle duality and the
uncertainty principle. Quantum tunneling, where particles
traverse energy barriers deemed impenetrable in classical
physics, is explained by the wave function. Finally,
quantum entanglement, wherein the wave functions of
entangled particles instantaneously correlate, regardless of
distance, is a foundational concept. This potent framework

challenges classical determinism, paving the way for
quantum technological advancements.

Quantum leap

It suggests a sudden and profound shift, akin to the
instantaneous and discontinuous jumps observed at the
quantum level. For example, one might say there has been
a quantum leap in technology to highlight a rapid and
groundbreaking advancement in technological capabilities.

Quantum tunneling

Quantum tunneling is a phenomenon in quantum
mechanics where particles, such as electrons, can pass
through energy barriers that classical physics would
predict as impenetrable. In classical physics, particles are
confined by potential energy barriers and cannot move
through them unless they possess sufficient energy to
overcome the barrier.
However, in the quantum realm, particles exhibit wave-
particle duality. According to the principles of quantum
mechanics, particles can exist in multiple states
simultaneously, and their behavior is described by a wave
function. Quantum tunneling occurs when a particle’s wave
function extends into a region beyond the energy barrier,
allowing the particle to pass through it, even if its energy is
technically lower than the energy of the barrier. Refer to
the following figure:

Figure 1.8: Classical vs. quantum tunneling

This phenomenon challenges classical intuitions and
underscores the probabilistic nature of quantum
mechanics. Quantum tunneling has been observed in
various contexts, such as in nuclear fusion processes within
stars and in the operation of tunnel diodes in electronics.
The probability of tunneling decreases exponentially with
the thickness and height of the barrier. Despite its
counterintuitive nature, quantum tunneling has practical
applications, including in the development of tunneling
microscopes and certain electronic devices. The concept
plays a crucial role in understanding the behavior of
particles at the quantum level, where traditional notions of
barriers are redefined by the probabilistic nature of
quantum wave functions.

No-cloning theorem

The no-cloning theorem is a fundamental concept in
quantum mechanics that states an arbitrary unknown
quantum state cannot be duplicated exactly. Proposed by
physicist Wootters and Zurek in 1982, this theorem has
significant implications for quantum information theory and
the nature of quantum systems.

In classical information theory, one can make a perfect
copy of any information. However, in the quantum realm,
the situation is different due to the principles of
superposition and measurement disturbance.
The no-cloning theorem can be succinctly stated as follows:
It is impossible to create an identical copy of an arbitrary
unknown quantum state. Mathematically, if |ψ⟩ represents
an arbitrary quantum state, there is no unitary operation U
and a blank state |0⟩ such that U(|ψ⟩ ⊗ |0⟩) = |ψ⟩ ⊗ |ψ⟩.
This has profound implications for quantum computing and
quantum communication. In classical computing, copying
information is a routine operation (like copying a file on a
computer). However, the no-cloning theorem implies that
quantum information cannot be copied in the same
straightforward manner.
This principle is crucial for the security of quantum
communication protocols. For example, QKD relies on the
fact that any eavesdropping attempt will inevitably disturb
the quantum states being transmitted, providing a
detectable trace of interference.
In summary, the no-cloning theorem is a foundational
concept in quantum mechanics, setting a fundamental limit
on the replication of quantum information and influencing
the design of quantum information processing systems.

Heisenberg’s uncertainty principle

Heisenberg’s uncertainty principle is a fundamental
concept in quantum mechanics, formulated by German
physicist Werner Heisenberg in 1927. This principle
establishes a fundamental limit on the precision with which

•

•

•

certain pairs of properties, such as a particle’s position and
momentum, can be simultaneously known.
The uncertainty principle challenges the classical notion of
definite, simultaneous values for all physical properties of a
particle. Specifically, it states that the more precisely the
position of a particle is known, the less precisely its
momentum can be known, and vice versa. Mathematically,
the principle is expressed as:

where:

Δx is the uncertainty in position

Δp is the uncertainty in momentum

ℏ is the reduced Planck constant (ℎ/2π)

This principle introduces an inherent fuzziness or
uncertainty into the nature of quantum systems. It implies
that there are intrinsic limits to the precision with which
certain pairs of properties can be simultaneously
measured. This is not due to limitations in measurement
devices but is a fundamental aspect of the quantum nature
of particles.
In this intricate snapshot, we witness the interplay of
particles—incident photons, scattered photons, and
recoiling electrons—capturing a moment that reflects the
inherent uncertainties governing the quantum realm.
Werner Heisenberg’s revolutionary principle, etched into
the very fabric of this visual tableau, comes to life as the
simultaneous measurement of position and momentum
unravels, revealing the fundamental limitations imposed by
quantum mechanics as depicted in the image Figure 1.9:

Figure 1.9: Heisenberg’s uncertainty principle

The uncertainty principle has profound implications for our
understanding of quantum mechanics. It underscores the
probabilistic nature of quantum systems and challenges the
deterministic worldview of classical physics. Additionally, it
has practical consequences, influencing the design and
interpretation of experiments in the quantum realm.

Copenhagen interpretation

The Copenhagen interpretation, a pivotal stance in
quantum mechanics, traces its roots to discussions held in
the 1920s among luminaries such as Niels Bohr and Werner

Heisenberg in Copenhagen. This interpretation furnishes a
theoretical framework, emphasizing the central role of
observation and measurement in understanding quantum
phenomena.
At its core, the Copenhagen interpretation acknowledges
the dual nature of particles, recognizing their ability to
exhibit both wave-like and particle-like characteristics. The
crux lies in the notion that a quantum system exists in a
superposition of states until subjected to measurement. The

act of measurement precipitates the system’s collapse into
a specific state, and the outcome is inherently probabilistic.
A distinctive feature is the emphasis on the observer’s role
in quantum systems. The interpretation posits that the
conscious act of observation or measurement significantly
influences and determines the properties of a particle. This
aligns with Werner Heisenberg’s uncertainty principle, a
key tenet stating inherent limits to simultaneously knowing
certain pairs of properties, such as position and
momentum.

The concept of complementarity, introduced by Niels Bohr,
adds another layer. Complementarity asserts that particles
may exhibit seemingly contradictory behaviors depending
on the experimental conditions, highlighting the contextual
nature of quantum phenomena.
While the Copenhagen interpretation has significantly
shaped quantum theory, it remains a subject of
philosophical discourse. Debates persist around the role of
consciousness, the nature of measurement, and the concept
of wave function collapse. Nevertheless, its enduring
influence underscores its status as a cornerstone in the
understanding of the intricate and perplexing realm of
quantum mechanics.

Double-slit experiment

The double-slit experiment shows that particles, like
electrons, can behave like waves, creating interference
patterns similar to those seen with light or water. This
surprising result reveals the dual nature of particles; they
can act as both particles and waves, depending on how
they are observed. The experiment involves shining a beam

•

•

•

•

of particles through two closely spaced slits onto a screen.
The resulting pattern on the screen provides insights into
the nature of particles and waves.
The interference pattern observed on the screen is a key
feature of the experiment. This pattern is analogous to the
interference patterns observed when waves, such as light
waves, interact with each other. Mathematically, this
interference pattern can be described using the following
formula:

In this formula:

I(θ) represent the intensity of the pattern at a

particular angle θ.

 is the maximum intensity of the pattern.

d is the distance between the two slits.

λ is the wavelength of the particles.

This formula demonstrates the wave-like nature of
particles, where the interference pattern depends on the
wavelength and the geometry of the experiment.
In the captivating interplay of light and matter, this visual
representation encapsulates one of the most profound
experiments in the history of quantum physics. As we
uncover this image, we enter the realm where particles
exhibit both wave and particle properties, challenging our
classical intuitions. The double-slit configuration, a simple
yet profound setup, becomes a stage for the manifestation
of quantum behaviors that defy our everyday
understanding of reality as shown in Figure 1.10:

Figure 1.10: Double-slit experiment

However, the experiment becomes more intriguing when
particles are sent through one at a time. Even with
individual particles, over time, an interference pattern still
emerges. This suggests that each particle is behaving as a
wave and interfering with itself. The mathematical
formalism for this scenario involves probability amplitudes
and is described by the quantum mechanics formalism,
including wavefunctions and superposition.
The experiment takes a dramatic turn when attempts are
made to determine which slit a particle passes through.
The introduction of measurement or observation collapses
the wave function, erasing the interference pattern. The act
of measurement disrupts the delicate quantum state,
showcasing the dual nature of particles and the role of
observation in quantum phenomena.

Conclusion

Our exploration of quantum computing has taken us
through the fascinating world of quantum mechanics,
where we have learned about the tiny particles, like
electrons and photons, that form the basis of this

1.

a.

b.

c.

d.

groundbreaking field. We have seen how these particles
behave in strange and surprising ways, which is essential
to understanding how quantum computers work.
In the next chapter, we will look at different approaches to
building quantum computers. We will explore technologies
like quantum annealing, developed by D-Wave, and
trapped-ion systems from companies like IonQ and
Honeywell. We will also dive into exciting innovations, like
Microsoft’s topological quantum computing, Xanadu’s work
with photons, and Atom Computing’s focus on neutral
atoms. Additionally, we will examine superconducting
chips, used by companies like IBM, Google, and Rigetti, and
their potential to achieve powerful, universal quantum
computing. As we continue our journey, we will also discuss
the concept of Noisy Intermediate-Scale Quantum

computers (NISQs) and how they fit into the current state
of quantum computing. Finally, we will explore how we
measure the performance of quantum computers through a
metric called quantum volume, which takes into account
factors like the number of qubits, error rates, and
coherence.

Multiple choice questions

What are the fundamental building blocks of

quantum computing often referred to as?

Protons

Subatomic entities

Neutrons

Atoms

2.

a.

b.

c.

d.

3.

a.

b.

c.

d.

4.

a.

b.

c.

d.

5.

a.

b.

In the context of quantum mechanics, which

term describes the simultaneous existence of

multiple states in a particle?

Superposition

Entanglement

Quantum leap

Quantum tunneling

Which of the following phenomena challenges

classical notions by allowing particles to exhibit

interconnectedness over large distances?

Quantum tunneling

Wave theory

Entanglement

Copenhagen interpretation

The concept of wave-particle duality is

experimentally exemplified by which iconic

experiment?

Quantum leap

No-cloning theorem

Double-slit experiment

Heisenberg’s uncertainty principle

Which principle, introduced by Werner

Heisenberg, states that certain pairs of

properties cannot be simultaneously known with

arbitrary precision?

Quantum tunneling

Superposition

c.

d.

1.

2.

3.

4.

5.

1.

2.

3.

Heisenberg’s uncertainty principle

Quantum leap

Answer key

b

a

c

c

c

Questions

Explain the concept of superposition and its

significance in the realm of quantum computing.

Answer: Superposition allows quantum bits (qubits) to

exist in multiple states simultaneously, forming the

basis for quantum parallelism and potential

computational advantages.

How does the phenomenon of entanglement challenge

classical intuitions about particle behavior?

Answer: Entanglement involves a correlation between

particles that surpasses classical limits, and changes in

the state of one particle are immediately reflected in

the state of the entangled partner, challenging

classical notions of local realism.

Compare and contrast the wave and particle aspects of

electrons in the context of quantum mechanics.

Answer: Electrons exhibit both wave and particle

properties. In wave theory, electrons are described by

4.

5.

6.

7.

wavefunctions, and in certain situations, they behave

like particles.

Discuss the implications of Heisenberg’s uncertainty

principle on the precision of measurements in quantum

systems.

Answer: Heisenberg’s uncertainty principle imposes a

fundamental limit on the precision with which certain

pairs of properties (for example, position and

momentum) can be simultaneously known. It

introduces inherent uncertainties in measurements.

Elaborate on the experimental setup and observations

of the double-slit experiment, emphasizing its

relevance in quantum mechanics.

Answer: The double-slit experiment involves shining

light or particles through two slits, creating an

interference pattern. It demonstrates the wave-particle

duality of particles, showing that they can exhibit both

wave and particle behaviors.

Explore the philosophical implications of the

Copenhagen interpretation in the context of quantum

mechanics.

Answer: The Copenhagen interpretation raises

questions about the role of observation in determining

reality, challenging the classical notion of an objective

and independent reality.

Provide a detailed explanation of the no-cloning

theorem and its significance in quantum information

theory.

Answer: The No-cloning theorem states that an

arbitrary unknown quantum state cannot be perfectly

8.

9.

10.

copied. This has implications for quantum

communication and quantum cryptography.

Analyze the practical applications of quantum

tunneling and its potential impact on future

technologies.

Answer: Quantum tunneling is crucial in technologies

such as tunnel diodes and scanning tunneling

microscopes. Its potential impact includes

advancements in electronics and nanotechnology.

Discuss the role of quantum leap in the energy

transitions of particles and its consequences in

quantum systems.

Answer: Quantum leap refers to an abrupt transition

of a particle between energy levels. It is fundamental

to the emission and absorption of quantized energy

and plays a key role in quantum systems.

Evaluate the importance of subatomic entities in the

foundational principles of quantum computing,

considering their unique behaviors and characteristics.

Answer: Subatomic entities, such as electrons and

photons, are essential in quantum computing as they

exhibit quantum properties like superposition and

entanglement, forming the basis for quantum

information processing.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New

Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

•

Chapter 2

Types of Quantum

Computers

Introduction

Quantum computers represent a revolutionary approach to
computing that leverages the principles of quantum
mechanics to perform calculations. Unlike classical
computers, which use bits as the fundamental unit of
information (either 0 or 1), quantum computers use
quantum bits or qubits, which can exist in multiple states
simultaneously thanks to a property known as
superposition (where qubit exists in combinations of 0
and 1 at the same time allowing faster computations). This
ability to exist in multiple states simultaneously enables
quantum computers to perform certain calculations much
more efficiently than classical computers.

Structure

The topics to be covered in this chapter are as follows:

Quantum annealing and D-Wave

•

•

•

•

•

•

•

•

Trapped-ion and IonQ, Honeywell

Quantum topological computers and Microsoft

Quantum photonics-based computers and Xanadu

Neutral atoms and Atom Computing

Superconducting chips and IBM, Google, Rigetti

Universal quantum computers

Noisy Intermediate-Scale Quantum computers

Performance comparison of quantum computers

Objectives

By the end of this chapter, you will have a comprehensive
understanding of various quantum computing technologies
and the companies leading their development. You will
explore quantum annealing through D-Wave’s approach,
and delve into trapped-ion methods as employed by IonQ
and Honeywell, gaining insight into their unique
advantages and challenges. The chapter will also cover
Microsoft’s work on topological quantum computing,
highlighting the potential for error resistance and stability
in these systems. You will learn about quantum photonics-
based computing, focusing on Xanadu’s use of photonic
qubits, as well as neutral atom quantum computing, with
Atom Computing’s innovative approaches at the forefront.
Additionally, the chapter will provide an analysis of
superconducting chips used by industry giants like IBM,
Google, and Rigetti, and explain the concept of universal
quantum computers and their capabilities. You will also
explore Noisy Intermediate-Scale Quantum (NISQ)
computers, which represent the current generation of
quantum devices, and assess the performance of various

•

•

quantum computing technologies by understanding the key
metrics and benchmarks used to evaluate their
effectiveness. Through these topics, the chapter aims to
equip you with a solid understanding of the diverse
landscape of quantum computing.

Quantum annealing and D-Wave

Quantum annealing is a computational technique that
leverages quantum mechanics to solve optimization
problems. It is a specific approach to quantum computing,
distinct from gate-based quantum computing, and is
designed to address a class of problems known as
combinatorial optimization problems. Quantum
annealers, like those from D-Wave, are particularly well-
suited for solving problems described by the Ising model,
a mathematical model of interacting spins. The Ising model
describes how magnetic spins interact, with each spin
being either up or down. It is used to simulate how
particles in a material behave, especially during phase
transitions. In quantum annealing, the Ising model helps
find the lowest energy state of a system, which is key for
solving optimization problems. Quantum annealers use this
model to explore multiple solutions at once, offering faster
solutions than classical methods.
The following are key aspects of quantum annealing:

Annealing process: The term annealing is borrowed

from classical physics, where it refers to a process of

slowly cooling a material to remove defects and

optimize its structure.

Quantum annealing: In the quantum context,

annealing involves initializing a quantum system in a

simple, known state and then gradually evolving it

toward the desired solution to an optimization problem.

Refer to the following figure:

Figure 2.1: Energy diagram changes over time as the quantum annealing

process runs and a bias is applied

The physics underlying this process can be visualized

through an energy figure, as depicted in Figure 2.1,

which evolves, as illustrated in panels (a), (b), and (c).

The annealing process can be considered to find the

lowest point in a bumpy landscape. Imagine a ball

rolling across the surface, it wants to settle into the

lowest valley. Initially, there is only one valley (a) with a

clear lowest point. As the process continues, a barrier

forms, creating two valleys (b). These valleys represent

the two possible states of the qubit: 0 and 1. At the end

of the annealing process, the qubit settles into one of

these valleys, corresponding to its final state.

Under identical conditions, the probability of the qubit

ending in either the 0 or 1 state is equal (50 percent).

However, by applying an external magnetic field to the

qubit (c), the likelihood of it assuming the 0 or 1 state

can be controlled. This field inclines the double-well

potential, heightening the probability of the qubit

occupying the lower well. Termed a bias, this

programmable parameter governs the qubit’s response

to the external magnetic field.

Yet, the bias term alone lacks utility. The true efficacy

of qubits emerges when they are interconnected to

influence each other, achieved through a device known

as a coupler.

Biases and couplers help control how qubits behave. A

bias is like tilting a hill so that a ball (the qubit) rolls to

one side, encouraging it to choose a particular state.

Couplers, on the other hand, connect qubits and make

them influence each other, similar to springs pulling or

pushing between two balls. These connections can

make qubits adopt the same state or opposite states.

By programming these biases and couplings, we define

the problem that the D-Wave quantum computer

solves. Refer to the following figure:

Figure 2.2: Energy diagram showing the best answer

The employment of a coupler entails harnessing

another quantum phenomenon termed entanglement.

When two qubits are entangled, they form a singular

entity with four potential states. Illustrated in Figure

2.2, this concept manifests as a potential with four

states corresponding to various combinations of the

two qubits: (0,0), (0,1), (1,1), and (1,0), that the valleys

represent possible states that the qubit can settle into.

The energy of each state is contingent upon the biases

of the qubits and the coupling between them.

Throughout the annealing process, the qubit states

undergo potential delocalization within this landscape

before ultimately converging to (1,1) upon completion

of the anneal.

Each qubit possesses a bias, and interactions between

qubits are mediated by couplers. When formulating a

problem, users specify values for these biases and

couplers, collectively defining an energy landscape.

Quantum annealing in the D-Wave quantum computer

entails identifying the minimum energy state within

this landscape.

As qubits are incrementally added, system complexity

escalates: two qubits afford four potential states for

defining an energy landscape, while three qubits yield

eight. With each additional qubit, the number of states

for defining the energy landscape doubles, resulting in

exponential growth with the qubit count.

In summation, the system initiates with qubits in a

superposition state of 0 and 1, devoid of coupling.

Through quantum annealing, the introduction of

couplers and biases precipitates qubit entanglement.

Consequently, the system enters an entangled state,

harboring numerous potential solutions. By the anneals

conclusion, each qubit attains a classical state

representing the problem’s minimum energy state or a

closely proximate one. Remarkably, these operations

transpire within microseconds within D-Wave quantum

computers.

•

○

○

○

○

The following section provides a detailed overview of D-
Wave quantum annealers, exploring their approach to
quantum computing, the technology behind their systems,
and the innovations they bring to the field:

D-Wave quantum annealers:

Function of D-Wave: D-Wave focuses on quantum

computing, recognizing the limitations of classical

systems in addressing intricate problems arising

from the exponential growth of data. Quantum

computing offers a novel solution to the world’s

most challenging problems.

Approaches in quantum computing: Two

prominent approaches in quantum computing are

gate-model and quantum annealing. Gate-model

quantum computing employs quantum gates to

implement algorithms, similar to classical Boolean

gates. In contrast, quantum annealing initializes the

system in a low-energy state, gradually introducing

problem parameters to reach an optimal solution.

Quantum annealing at D-Wave: D-Wave employs

quantum annealing in its quantum computers, like

the Advantage™ system. This scalable approach

enables the creation of quantum processing

units (QPUs) with over 5000 qubits, surpassing the

state of the art for gate-model quantum computing.

D-Wave quantum computer systems: D-Wave’s

quantum computer includes a QPU that operates at

cryogenic temperatures near absolute zero.

Achieving these temperatures involves a closed-loop

cryogenic dilution refrigerator system. The QPU,

composed of superconducting metal loops, becomes

quantum-mechanical below 9.2 kelvin. The

advantage system, with over 5,000 qubits and

○

○

○

35,000 couplers, is the most complex

superconducting integrated circuit, as shown in

Figure 2.3:

Figure 2.3: D-Wave environment

D-Wave software environment: Users interact

with the D-Wave quantum computer through a web

user interface and open-source tools communicating

with the Solver API (SAPI). SAPI handles user

interaction, authentication, and work scheduling. It

connects to back-end servers, routing problems to

QPUs and additional solvers in different

geographical regions.

Leap™ quantum cloud service: Leap™, D-Wave’s

quantum cloud service, allows users to explore

problem-solving capabilities, run demos, contribute

ideas, and engage with a community of users. It

provides an accessible entry point to quantum

computing.

Ocean SDK: D-Wave’s Python-based open-source

software development kit (SDK), Ocean,

streamlines quantum application development and

•

○

○

•

○

○

facilitates collaboration. It offers a range of tools for

quantum computing projects.

In summary, D-Wave pioneers quantum computing with

a focus on quantum annealing, utilizing

superconducting QPUs operating at cryogenic

temperatures. The company provides accessible

interfaces like Leap™ and collaborative tools like the

Ocean SDK, contributing to the evolution of quantum

computing technology.

Applications and limitations:

Optimization applications: Quantum annealing

has applications in finance, logistics, machine

learning, and cryptography.

Limitations: Quantum annealing machines are

sensitive to noise, and their effectiveness depends

on factors such as the specific problem being

solved, the machine’s coherence time, and the

nature of the quantum states involved.

Quantum advantage:

Potential speedup: Quantum annealers have the

potential to provide speedup over classical

algorithms for certain optimization problems.

Quantum supremacy: While not yet demonstrated

for practical problems, quantum annealers

contribute to the broader goal of achieving quantum

supremacy over classical computers in certain

domains.

Quantum annealing represents a specialized and promising
approach to quantum computing. It addresses specific
classes of optimization problems by exploiting the
principles of quantum mechanics.

•

○

○

•

○

Trapped-ion and IonQ, Honeywell

Trapped-ion quantum computers use individual ions, held
in electromagnetic traps, as qubits to perform quantum
information processing. Certain ions, like calcium or
ytterbium, are chosen because they are highly stable and
their quantum states can be precisely controlled using
lasers. This stability and controllability make them ideal for
maintaining coherence and performing accurate
operations, which are critical for reliable quantum
computation. Trapped-ion quantum computers have gained
attention for their potential to address challenges faced by
other quantum technologies, with companies like IonQ and
Honeywell leading the way.
Here are the key aspects of quantum-trapped-ion
computers:

Qubits and ion traps:

Qubits: The fundamental units of quantum

information in trapped-ion computers are individual

ions, usually of elements like calcium, magnesium,

or ytterbium.

Ion traps: Electromagnetic traps confine individual

ions in a three-dimensional (3D) space. These

traps create stable environments for the qubits to

be manipulated and measured.

Quantum gates and operations:

Quantum gates: Quantum operations, or gates,

are performed on the qubits to manipulate their

quantum states. This is typically achieved using

laser pulses and magnetic fields to induce

transitions between different quantum states of the

ions.

○

•

○

○

Entanglement: Quantum gates are used to create

entanglement between qubits, a fundamental

property for quantum computing.

IonQ architecture:

IonQ employs stable and identical trapped atomic

ions as qubits, forming a chain of qubits using ion

trap chips. The key advantage lies in achieving all-

to-all connectivity among the qubits, enabling

efficient quantum algorithm execution. Refer to the

following figure:

Figure 2.4: Scale model of quantum computing demonstrator in two 19-inch

racks

As shown in Figure 2.4, modules are color-coded for

easy identification: red signifies optical systems,

green denotes communication and readout, blue

represents electronics and amplifiers, yellow

indicates fiber routing and switching, and purple is

reserved for miscellaneous core modules. The

optics rack primarily hosts light generation,

switching, and routing modules, along with

associated electronics. It also accommodates the

○

•

○

coherent radio frequency (RF) and digital signal

generation module. The trap rack houses the main

trap module, complete with associated drive

electronics, and serves as the communications and

remote-control hub. Interconnections between

modules and racks are facilitated by both electrical

and optical patch cords. A semi-transparent red

module is designated for the planned 729 nm light

generation.

Similar to classical CPUs, IonQ faces limitations in

the size of individual QPUs due to the complexity of

entangling gates. To overcome this, IonQ plans to

implement multicore QPUs using a Reconfigurable

Multicore Quantum Architecture (RMQA). This

approach involves dynamically forming quantum

computing cores by manipulating multiple ion

chains, exponentially increasing computational

power. The demonstration showcases configurations

combining chains into cores, allowing parallel

quantum operations. IonQ anticipates integrating

RMQA into its systems, paving the way for triple-

digit qubit counts on a single chip and Parallel

Multicore QPUs in the future.

Quantinuum architecture:

Quantum Charge-Coupled Device (QCCD)

architecture, the H1 system is highlighted as a 20-

qubit universal quantum computer with high two-

qubit gate fidelities (99.87%). The hardware allows

mid-circuit measurement, enabling the

measurement of select qubits during algorithm

execution without inadvertently measuring others.

This feature is crucial for fault-tolerant quantum

computing and facilitated the first-ever

demonstration of real-time quantum error

•

○

○

•

○

•

○

○

•

correction. Additionally, the hardware’s capability to

move and regroup qubits into arbitrary pairs during

a circuit provides all-to-all connectivity, reducing

computational steps and overhead in near-term

quantum computing applications, resulting in

higher-fidelity results.

Decoherence and error correction:

Decoherence: Trapped ion systems are known for

having relatively long coherence times, which refer

to the time when quantum information is preserved

before being affected by external factors.

Error correction: While trapped-ion systems

inherently exhibit low error rates, error correction

techniques are still explored to enhance the fault

tolerance of quantum computations.

Quantum parallelism:

Parallel processing: Trapped ion computers

leverage the principles of quantum superposition to

perform computations in parallel, potentially

enabling them to solve certain problems more

efficiently than classical computers.

Scalability:

Challenges: Scaling up trapped-ion systems to a

large number of qubits presents challenges, such as

addressing and controlling individual ions within

larger arrays.

Advancements: Researchers and companies are

actively working on addressing scalability

challenges and improving the overall performance

of trapped-ion quantum computers.

Research and development:

○

○

•

○

Companies and institutions: Several companies

and research institutions, including IonQ, Honeywell,

and the University of Maryland, are actively involved

in the research and development of trapped-ion

quantum computers.

Benchmarking: Trapped ion systems are assessed

by comparing their performance against various

metrics, including gate fidelities, coherence times,

and error rates.

Applications:

Optimization and simulation: Trapped ion

quantum computers hold promise for applications in

optimization problems, quantum simulation, and

potentially in solving problems in quantum

chemistry and materials science.

Quantum-trapped-ion computers represent a promising
avenue in the field of quantum computing, offering unique
advantages and capabilities that contribute to the broader
goal of realizing scalable and fault-tolerant quantum
information processing.

Quantum topological computers and

Microsoft

Quantum topological computers, as pursued by Microsoft,
represent a distinct approach to quantum computing that
relies on the principles of topological quantum computing.
Microsoft’s quantum computing division is actively
researching and developing this quantum computing
architecture, aiming to create a scalable and fault-tolerant
quantum computer using topological qubits.

•

○

○

•

○

○

○

Here are the key aspects of Microsoft’s quantum
topological computers:

Topological qubits:

Unique properties: Topological qubits are based

on anyons, exotic particles with nontrivial braiding

properties that can exist in certain two-

dimensional (2D) materials.

Braiding operations: The key to topological

quantum computing is the manipulation and

braiding of anyons, which induces quantum gates

and allows for quantum computation.

Majorana fermions:

Particle type: Microsoft’s approach involves using

a type of anyon known as Majorana fermions, which

are expected to exhibit topological properties that

make them more robust against certain errors.

Braiding Majoranas: The braiding of Majorana

fermions forms the basis for implementing quantum

gates in Microsoft’s topological qubit architecture.

Majorana zero modes: MZMs are a pivotal feature

of topological qubits, which are constructed by

positioning a semiconductor nanowire in close

proximity to a superconductor. When brought into

proximity with the superconductor, the

semiconductor nanowire acquires superconductivity.

Under specific conditions—such as an appropriate

magnetic field along the wire and the application of

voltages to the device—the semiconductor nanowire

transitions into a topological phase. In this

topological phase, MZMs emerge at each end of the

wire, accompanied by an energy gap throughout the

rest. This gap refers to a region devoid of allowed

•

○

○

•

○

○

quantum mechanical states. The appearance of

MZMs in the topological phase is attributed to the

presence of Majoranas, which carry current in the

wire and are notable for being their antiparticles.

MZMs facilitate the unhindered flow of current in the

wire and manifest as heightened conductance

without voltage. Moreover, the energy gap, often

termed the topological gap, shields the current-

conducting Majoranas from local noise and

disruptions. Microsoft has developed a topological

gap protocol (TGP) designed to detect these

phenomena in device measurements, thereby

enabling the characterization and utilization of

MZMs in topological qubits.

Topological quantum computation:

Fault tolerance: Topological qubits have the

potential for increased fault tolerance due to their

inherent protection against certain types of errors

through their topological properties.

Quantum error correction: Microsoft is exploring

techniques for quantum error correction within the

topological quantum computing framework.

StationQ project:

Dedicated research initiative: Microsoft’s

quantum computing division initiated the StationQ

project, which focuses on developing topological

qubits for quantum computation.

Collaborations: Microsoft collaborates with various

institutions and researchers globally to advance the

understanding and implementation of topological

quantum computing.

•

○

○

○

StationQ and Microsoft Quantum Development

Kit:

Development tools: Microsoft provides the

Quantum Development Kit, a set of tools and

resources for researchers and developers to

experiment with quantum algorithms and

programming languages, including the Q#

programming language, as shown in Figure 2.5:

Figure 2.5: Stages of a quantum program

Azure aims to make scaled quantum computing a

reality and deliver its benefits seamlessly to

customers. Microsoft’s unique topological qubit

design enhances fault tolerance, but stable

operation requires advanced software and

significant compute power. The quantum machine

will be integrated with Peta scale classical compute

in Azure, enabling bandwidths between quantum

and classical systems exceeding 10–100 terabits per

second. Continuous interactions between the

quantum and classical computers, occurring at

every logical clock cycle, ensure the quantum

computer remains operational and produces reliable

output solutions. Azure is positioned as a key

enabler and differentiator in Microsoft’s strategy to

bring quantum computing at scale to the world.

Integration with Azure: Microsoft is integrating

quantum computing resources into its cloud

•

○

○

•

○

computing platform, Azure, to provide users with

access to quantum computing capabilities.

Challenges and progress:

Technical challenges: Implementing topological

qubits poses technical challenges, including the

requirement for stable and precisely controlled

physical systems.

Progress: Microsoft has made strides in the

understanding and control of Majorana fermions,

marking progress toward the realization of

topological qubits.

Applications:

Quantum algorithms: Microsoft’s topological

quantum computing efforts aim to enable the

execution of quantum algorithms for solving

complex problems in areas such as cryptography,

optimization, and materials science.

Microsoft’s pursuit of topological quantum computing
reflects a commitment to exploring innovative approaches
to quantum information processing, with the goal of
creating robust and scalable quantum computers that can
tackle problems beyond the reach of classical computers.

Quantum photonics-based computers

and Xanadu

Photonic quantum computers use particles of light, called
photons, as qubits to perform quantum computations.
Photonic qubits are particularly useful for transmitting
information over long distances, making them ideal for
applications like quantum communication and secure
networks. Quantum photonics, as pursued by Xanadu

•

○

○

•

○

○

•

○

Quantum Technologies, represents an innovative
approach to quantum computing that leverages the
properties of photons (quantum particles of light) for
quantum information processing. Xanadu is a Canadian
quantum technology company that focuses on developing
and commercializing quantum computing and quantum
communication technologies.
The following are the key aspects of Xanadu’s quantum
photonics approach:

Photonic qubits:

Encoding information: Xanadu’s quantum

computing architecture is built on the use of

photonic qubits, where quantum information is

encoded in properties of individual photons, such as

polarization and path.

Superposition and entanglement: Photonic

qubits can exist in superposition states and can be

entangled, allowing for quantum parallelism and the

creation of quantum correlations between distant

photons.

Continuous-variable quantum computing:

Quantum states in phase space: Xanadu

explores continuous-variable quantum computing,

where quantum states are represented in the phase

space of position and momentum variables.

Gaussian states: Xanadu’s approach

characteristically uses Gaussian states, which are

states with Gaussian distributions in phase space.

Integrated photonics:

On-chip components: Xanadu’s quantum photonic

processors are implemented using integrated

○

•

○

○

photonic circuits, where beam splitters, phase

shifters, and detectors are miniaturized onto a chip.

Precision and scalability: Integrated photonics

provides a platform for precise control of quantum

states and scalability for building larger quantum

processors. Refer to the following figure:

Figure 2.6: Full-stack photonics quantum computing XANADU

Quantum algorithms and quantum machine

learning:

Applications: Xanadu focuses on developing

quantum algorithms for solving specific problems,

including applications in quantum machine learning,

optimization, and simulation.

Variational quantum algorithms: Xanadu has

contributed to the development of variational

quantum algorithms, where the quantum processor

is trained to find optimal solutions to problems. The

Full-Stack photonics architecture is provided in

Figure 2.6.

•

○

○

•

○

•

○

○

PennyLane software:

Quantum software platform: Xanadu provides

PennyLane, an open-source platform designed for

quantum computing using photonic qubits. It

enables users to program and simulate quantum

algorithms.

Integration with other quantum devices:

PennyLane supports the integration of quantum

processors from various quantum computing

platforms, fostering collaboration and comparison.

Quantum communication:

Quantum key distribution (QKD): In addition to

quantum computing, Xanadu is involved in

developing quantum communication technologies,

including quantum key distribution for secure

communication.

Collaborations and research partnerships:

Industry collaborations: Xanadu collaborates with

industry partners and research institutions to

advance the development and applications of

quantum photonics.

Quantum community engagement: Xanadu

actively engages with the broader quantum

computing community to contribute to the field’s

collective understanding and progress.

Xanadu’s focus on quantum photonics represents a unique
and promising approach to quantum computing, where the
use of photons allows for efficient processing of quantum
information and integration with existing
telecommunication infrastructure. The company’s efforts

•

○

○

•

○

○

•

aim to push the boundaries of quantum technology for
practical applications in computation and communication.

Neutral atoms and Atom Computing

Quantum computing using neutral atoms, as explored by
Atom Computing, represents a novel approach to quantum
information processing. Atom Computing is a company
dedicated to advancing quantum computing technologies,
and its work with neutral atoms involves manipulating
individual atoms to perform quantum computations.
The following are the key aspects of quantum neutral atoms
as pursued by Atom Computing:

Neutral atom qubits:

Neutral atom qubits: In contrast to ions, which

are charged atoms, neutral atom qubits involve

manipulating neutral atoms for quantum

information processing.

Alkaline earth atoms: Atom Computing uses

alkaline earth atoms, such as strontium or calcium,

as the basis for their neutral atom qubits.

Optical tweezers and traps:

Individual atom manipulation: Atom Computing

uses advanced techniques such as optical tweezers

and magnetic traps to precisely trap and manipulate

individual neutral atoms.

Lattice configurations: Neutral atoms are often

arranged in optical lattice configurations, allowing

for controlled interactions between neighboring

atoms.

Quantum gate operations:

○

○

•

○

○

•

○

○

•

○

Quantum gates: Quantum gates are implemented

by using lasers to induce controlled interactions

between neutral atoms, allowing for the creation of

entanglement and execution of quantum algorithms.

Entanglement: Neutral atom qubits can be

entangled, forming a critical component for

quantum computation.

High-fidelity operations:

Fidelity: Atom Computing aims for high fidelity in

quantum operations, ensuring that the quantum

states of neutral atoms are manipulated with

precision and minimal errors.

Coherence time: The coherence time of neutral

atom qubits, which measures the time during which

quantum information is preserved, is an important

parameter for the performance of quantum

computations.

Scalability and connectivity:

Scalability: Neutral atom qubits hold promise for

scalability due to their potential for precise control

and manipulation, allowing for the creation of larger

quantum processors.

Connectivity: The ability to establish and control

interactions between distant neutral atom qubits is

crucial for building practical and powerful quantum

computers.

Quantum error correction:

Error correction techniques: Atom Computing

will likely explore quantum error correction

techniques to enhance the fault tolerance of

quantum computations using neutral atoms.

•

○

○

•

○

○

Applications and algorithms:

Quantum algorithms: Atom Computing’s work

involves developing quantum algorithms that

efficiently execute their neutral atom quantum

processors.

Potential applications: Quantum chemistry

simulations, optimization problems, and machine

learning are among the applications that may

benefit from quantum computing using neutral

atoms.

Research and development:

Ongoing research: Atom Computing is actively

engaged in research and development efforts to

advance the capabilities of quantum computing

using neutral atoms.

Industry collaboration: Collaboration with

research institutions and industry partners to pool

resources and expertise is common in the quantum

computing landscape.

Atom Computing’s pursuit of quantum computing with
neutral atoms represents a cutting-edge approach that
leverages the unique characteristics of neutral atoms for
quantum information processing. This approach contributes
to the broader landscape of quantum computing
technologies with the potential for scalability and enhanced
control.

Superconducting chips and IBM,

Google, Rigetti

Quantum superconducting chips are a key technology in
the field of quantum computing. Several leading

•

○

○

companies, including IBM, Google, and Rigetti, are actively
working on developing and implementing quantum
processors based on superconducting circuits.
Superconducting qubits, the fundamental units of quantum
information in these systems, exhibit unique quantum
properties when operated at extremely low temperatures.
The following is an overview of quantum superconducting
chips from IBM, Google, and Rigetti:

IBM Quantum processors:

Qubit technology: IBM uses transmon qubits, a

type of superconducting qubit, in their quantum

processors, as shown in Figure 2.7:

Figure 2.7: IBM superconducting quantum computer setup

Gate-model quantum computing: IBM’s

approach is based on gate-model quantum

computing, where quantum gates are used to

manipulate qubits and perform quantum operations.

○

○

Open quantum system: IBM provides access to its

quantum processors through the IBM Quantum

Experience, allowing researchers and developers to

run quantum experiments on real hardware. It also

provides a software experience via the Qiskit library

and IBM Quantum Composer.

IBM Quantum scalability: IBM Quantum is making

significant strides in the scalability of quantum

computing with its advanced infrastructure and

hardware innovations. With two global data centers,

IBM Quantum supports a network of quantum

systems that provide access to cutting-edge

quantum technology. The quantum systems run 3

trillion circuits, demonstrating their capability to

handle extensive quantum workloads. IBM Quantum

operates over ten utility-scale quantum systems

globally, making quantum computing more

accessible and enabling a wide range of research

and development opportunities. Notably, the Heron

chip, which houses 133 qubits, showcases IBM’s

achievement in developing high-qubit processors

with real-time classical communication capabilities

between processors, as shown in Figure 2.8. This

advanced architecture represents a major milestone

toward realizing scalable, practical quantum

computing for a variety of applications across

industries.

•

○

▪

▪

▪

Figure 2.8: IBM Heron chip, which houses 133 qubits

Google quantum processors:

Architecture and achievements:

Superconducting qubits: Google’s quantum

processors use superconducting qubits, which are

based on the principles of superconductivity and

Josephson junctions. These qubits are typically

implemented as transmon qubits, which are a

type of superconducting qubit known for their

long coherence times and relative ease of

control.

2D and 3D architectures: Google has explored

both 2D and 3D architectures for arranging

qubits on a chip. The qubits are typically

arranged in a grid pattern, allowing for

connections between neighboring qubits. This

configuration enables entanglement and other

quantum operations necessary for quantum

computing.

Control and measurement: Google’s quantum

processors use microwave pulses to control qubit

states and manipulate quantum information. The

measurement of qubit states is typically done

▪

▪

▪

using resonators and amplifiers to detect

changes in the qubits’ quantum states.

Noise and error mitigation: Google Quantum

AI has developed advanced error correction

techniques and noise mitigation strategies to

improve the performance and reliability of its

quantum processors. These efforts are essential

for achieving higher fidelity operations and

scalability.

Bristlecone and Sycamore processors:

Google’s quantum processors include Bristlecone

and Sycamore as shown in Figure 2.9., both

based on superconducting qubits.

Figure 2.9: Google Sycamore Chip

Quantum supremacy: In 2019, Google

announced that it had achieved quantum

supremacy with its 53-qubit processor, named

Sycamore. This milestone demonstrated that a

quantum processor could perform a specific

calculation faster than the world’s fastest

classical supercomputers. This achievement

marked a significant breakthrough in the field of

quantum computing.

▪

•

○

○

○

○

○

▪

Quantum error correction: Google is actively

researching and developing quantum error

correction techniques to improve the reliability

and scalability of their quantum processors.

Rigetti quantum processors:

Hybrid quantum-classical computing: Rigetti

employs a hybrid quantum-classical computing

model, integrating superconducting qubits with

classical computing resources.

Forest Quantum Cloud Services: Rigetti offers

access to their quantum processors, as shown in

Figure.2.10, through the Forest Quantum Cloud

Services platform, allowing users to run quantum

algorithms and experiments.

Full-stack quantum computing: Rigetti focuses

on providing a full-stack quantum computing

solution, including quantum hardware, control

software, and cloud services.

Qiskit integration: Rigetti’s quantum processors

are compatible with Qiskit, a popular open-source

quantum computing framework. This integration

provides developers with a seamless experience for

designing and executing quantum algorithms.

Architecture:

Superconducting qubits: Rigetti’s quantum

processors use superconducting qubits, based on

circuits that exhibit quantum properties when

cooled to near absolute zero. These qubits can be

controlled and manipulated using microwave

pulses.

▪

▪

▪

•

○

Figure 2.10: The Rigetti 19Q superconducting processor

Transmon qubits: The company primarily uses

transmon qubits, a type of superconducting qubit

known for its long coherence times and robust

performance. These qubits offer good stability

and coherence, making them ideal for quantum

computing.

Circuit connectivity: Rigetti’s quantum

processors feature various connectivity

architectures, allowing qubits to interact and

perform entanglement operations. These

architectures range from linear chains to more

complex grid-like topologies, enabling a higher

degree of qubit interaction.

Control and readout: The quantum processors

are controlled using microwave pulses that

manipulate the qubits’ quantum states. The

qubits’ states are typically read out using

resonant circuits that convert the quantum

information into classical signals.

Superconducting qubit properties:

Coherence time: Coherence time measures how

long a qubit can maintain its quantum state without

significant information loss. In superconducting

○

○

○

qubits, coherence times can range from

microseconds to milliseconds. Achieving longer

coherence times is crucial for the practical

implementation of quantum computing, as it allows

qubits to perform more complex operations and

calculations before losing their quantum state.

Josephson junctions: Josephson junctions are

critical components in superconducting qubit

circuits. They consist of two superconductors

separated by a thin insulating barrier, allowing

quantum tunneling of Cooper pairs (pairs of

electrons) across the junction. This quantum

mechanical effect gives the circuit unique

properties, such as nonlinearity and the ability to

oscillate at specific frequencies. Josephson junctions

enable the creation and control of qubits by allowing

for precise manipulation of the qubit’s quantum

state through microwave pulses and magnetic

fields.

In addition to these properties, superconducting qubits

often have other notable characteristics, such as:

Energy levels: Superconducting qubits usually

have a set of quantized energy levels, with the

lowest two levels representing the qubit’s states (0

and 1). By manipulating these levels, qubits can

perform various quantum operations.

Control and measurement: Superconducting

qubits can be controlled using microwave pulses,

allowing for precise manipulation of their quantum

states. Measurement is typically done using

resonant circuits or amplifiers to detect changes in

the qubit’s state.

○

•

○

○

•

○

Scalability and connectivity: Superconducting

qubits can be interconnected using various circuit

architectures, such as transmon qubits or flux

qubits, allowing for the construction of more

complex quantum processors.

Overall, superconducting qubits hold great promise for the
development of practical quantum computers due to their
potential for scalability and their compatibility with existing
microwave and electronic control technologies. However,
researchers are continually working to overcome
challenges related to coherence times and qubit control to
make large-scale quantum computing a reality.

Cryogenic cooling in superconducting

qubits

This sub-section outlines the critical aspects of cryogenic
cooling in superconducting qubits and explores the
quantum advantage and challenges associated with
superconducting quantum processors:

Cryogenic cooling:

Operation at low temperatures: To maintain

their superconducting states, superconducting

qubits operate at temperatures close to absolute

zero, typically around a few millikelvins.

Dilution refrigeration: Quantum processors are

housed in sophisticated cryogenic systems, such as

dilution refrigerators, to achieve low temperatures.

Quantum advantage and challenges:

Quantum advantage: Superconducting quantum

processors have demonstrated a quantum

advantage for certain tasks, showcasing their

○

•

○

potential impact on specific computational

problems.

Challenges: Challenges include addressing

quantum errors, improving qubit connectivity, and

increasing the number of qubits for more complex

computations.

IBM, Google, and Rigetti are at the forefront of the
quantum computing industry, actively contributing to the
development and advancement of superconducting
quantum processors. Their efforts aim to unlock quantum
computing’s potential for practical applications and
scientific discovery.

Universal quantum computers

Universal quantum computers are a type of quantum
computing architecture designed to perform various
quantum algorithms and computations. Unlike specialized
quantum computing approaches, such as quantum
annealing or specific quantum processors tailored for
certain tasks, universal quantum computers are intended to
be programmable and capable of executing a broad set of
quantum applications.
The following are the key features and aspects of universal
quantum computers:

Qubits and quantum gates:

Quantum bits (qubits): Universal quantum

computers use qubits as the basic units of quantum

information. Qubits can exist in superposition states,

allowing them to represent multiple classical bits

simultaneously.

○

•

○

○

•

○

•

○

•

○

Quantum gates: Quantum gates are the basic

building blocks of quantum circuits. They perform

operations on qubits, manipulating their quantum

states to execute quantum algorithms.

Gate-model quantum computing:

Universal quantum gates: In gate-model

quantum computing, a universal set of quantum

gates is used to construct any quantum algorithm.

Common universal gates include single-qubit gates

and entangling two-qubit gates.

Quantum circuit model: Quantum algorithms are

represented as sequences of quantum gates in a

quantum circuit.

Quantum entanglement:

Entanglement: Universal quantum computers

leverage entanglement, a quantum phenomenon in

which qubits become correlated so that the state of

one qubit is dependent on the state of another,

even if separated by large distances. Entanglement

is crucial for quantum parallelism.

Quantum error correction:

Error correction: Universal quantum computers

face challenges due to quantum errors caused by

environmental noise and imperfections in quantum

hardware. Quantum error correction techniques are

essential for mitigating errors and preserving the

integrity of quantum information.

Algorithms and applications:

Shor’s algorithm: Universal quantum computers

can potentially execute algorithms that offer

exponential speedup over classical counterparts,

○

•

○

•

○

○

•

○

○

such as Shor’s algorithm for factoring large

numbers.

Grover’s algorithm: Another significant algorithm

is Grover’s algorithm, which provides a quadratic

speedup for searching unsorted databases.

Superposition and parallelism:

Superposition: Universal quantum computers

utilize superposition to explore multiple

computational paths simultaneously. This feature

enables parallelism, allowing quantum algorithms to

process information in parallel and potentially solve

certain problems faster than classical computers.

Physical implementations:

Superconducting qubits: Many universal

quantum computers are based on superconducting

qubits, implemented using superconducting circuits

operating at extremely low temperatures.

Trapped ions: Another approach involves using

trapped-ions as qubits, where individual ions are

manipulated using electromagnetic fields.

Challenges and scalability:

Decoherence and noise: Maintaining quantum

coherence is challenging due to environmental

factors and noise. Quantum computers need to

operate in highly controlled environments to

minimize these effects.

Scalability: Universal quantum computers face a

significant challenge in achieving scalability, which

means increasing the number of qubits while

maintaining low error rates.

•

○

○

•

Leading companies and research institutions, including
IBM, Google, Microsoft, and others, are actively pursuing
the development of universal quantum computers to unlock
the potential for solving complex problems currently
intractable for classical computers.

Noisy Intermediate-Scale Quantum

computers

NISQ stands for Noisy Intermediate-Scale Quantum
computers. These are a class of quantum computers
characterized by Intermediate-Scale Quantum processors
with many qubits but with limitations such as higher error
rates and challenges in maintaining quantum coherence.
NISQ devices are considered noisy due to errors in
quantum operations and intermediate-scale because they
fall short of the large-scale, fault-tolerant quantum
computers envisioned for the future.
The following are the key characteristics and
considerations related to NISQ:

Intermediate-Scale Quantum processors:

Number of qubits: NISQ devices typically have

tens to hundreds of qubits, representing an

intermediate scale between small-scale quantum

processors and large, fault-tolerant quantum

computers.

Quantum volume: Quantum volume is a metric

that combines factors like the number of qubits,

gate fidelities, and connectivity, providing a

measure of the computational power of a quantum

processor.

Higher error rates:

○

○

•

○

○

•

○

○

•

Noisy quantum operations: NISQ devices exhibit

higher error rates in quantum operations compared

to the fault-tolerant quantum computers that are

envisioned for the future.

Decoherence and noise: Factors such as

decoherence, which is the loss of quantum

information due to interactions with the

environment, contribute to errors and noise in NISQ

devices.

Challenges in error correction:

Quantum error correction: Implementing robust

quantum error correction is challenging in NISQ

devices due to their higher error rates. This limits

the ability to perform fault-tolerant quantum

computations.

Variational quantum algorithms: Some

approaches in the NISQ era involve using variational

quantum algorithms that mitigate the impact of

errors by optimizing quantum circuits.

Applications and quantum advantage:

Demonstrating quantum advantage: Despite

limitations, NISQ devices aim to demonstrate

quantum advantage, solving certain problems more

efficiently than classical computers. This could

include applications in optimization, quantum

chemistry simulations, and machine learning.

Quantum supremacy: Quantum supremacy,

achieved by demonstrating a quantum computer’s

ability to perform a specific task faster than the best

classical supercomputers, is a milestone associated

with NISQ devices.

Contributions to quantum research:

○

○

•

○

○

Quantum algorithms and software

development: NISQ devices provide a platform for

researchers to develop and test quantum

algorithms, as well as explore the potential

applications of quantum computing.

Quantum software ecosystem: The development

of a quantum software ecosystem, including

quantum programming languages and algorithms, is

a significant aspect of the NISQ era.

Industry and research initiatives:

Leading companies: Various companies, including

IBM, Google, Rigetti, and others, are actively

working on NISQ devices and exploring their

potential applications.

Research institutions: NISQ devices are the focus

of research and development efforts in both industry

and academia, contributing to advancements in

quantum computing.

The NISQ era represents a transitional phase in the
development of quantum computing, providing a glimpse
into the potential of quantum processors with intermediate-
scale qubit counts. While NISQ devices have limitations,
they play a crucial role in advancing quantum research and
paving the way for the eventual realization of fault-tolerant
quantum computers.

Performance comparison of quantum

computers

This section introduces key concepts and techniques
fundamental to understanding quantum computing. These
topics encompass quantum hardware, error correction,

•

○

○

○

•

○

○

○

○

measurement mitigation, benchmarking, and quantum
state representation:

Quantum hardware using quantum circuits:

Quantum hardware refers to the physical

implementation of quantum bits (qubits) and the

components necessary for quantum computation.

Quantum circuits are sequences of quantum gates

that manipulate qubits to perform specific quantum

algorithms.

Quantum hardware includes elements like

superconducting qubits, trapped-ions, topological

qubits, and other technologies, each with its own

advantages and challenges.

Introduction to quantum error correction via the

repetition code:

Quantum error correction (QEC) is crucial for

mitigating errors in quantum computations caused

by noise and decoherence.

The repetition code is a simple quantum error

correction code where a logical qubit is encoded into

multiple physical qubits, and the information is

redundantly stored.

Errors can be detected and corrected by comparing

the redundant copies of the information.

The repetition code involves encoding a logical qubit

|ψ⟩ into a physical qubit state |0⟩ or |1⟩ using

multiple copies. For example, for a 3-qubit repetition

code:

○

•

○

○

○

○

○

•

○

○

○

○

The decoding process involves majority voting or

other techniques to correct errors.

Measurement error mitigation:

Measurement errors can occur due to imperfections

in quantum devices or environmental noise during

measurements.

Measurement error mitigation techniques aim to

correct or mitigate the impact of errors in the

outcomes of quantum measurements.

This involves using additional measurements or

calibration procedures to improve the reliability of

the obtained results.

Error mitigation involves using a calibration matrix

M to correct the measured probabilities p according

to the formula:

The calibration matrix is determined through

additional measurements and calibration

procedures.

Randomized benchmarking:

Randomized benchmarking is a technique used to

assess the overall error rates of quantum gates in a

quantum processor.

It involves applying random sequences of quantum

gates and measuring the fidelity of the output

compared to an ideal (error-free) scenario.

The results provide a benchmark for the overall

performance of the quantum processor.

The average gate fidelity can be calculated

using the formula:

○

•

○

○

○

•

○

○

○

○

Where d is the Hilbert space dimension (2 for a

qubit) and is the average gate error rate.

Measuring quantum volume:

Quantum volume is a metric developed by IBM to

assess the capabilities of a quantum computer,

taking into account factors like gate errors,

connectivity, and qubit coherence.

It provides a single-number quantification of the

potential computational power of a quantum device.

Think of quantum volume like the horsepower of a

car—just as higher horsepower indicates a more

powerful and capable vehicle, a higher quantum

volume means a more powerful and reliable

quantum computer, capable of solving more

complex problems.

The density matrix and mixed states:

In quantum mechanics, the density matrix is a

mathematical representation of a quantum system’s

state.

For a pure state ∣ψ⟩, the density matrix ρ is given by:

ρ = ∣ ψ ⟩ ⟨ ψ ∣
For a mixed state with probabilities pi and

corresponding pure states ∣ψ
i
⟩ the density matrix is:

ρ = ∑
i
p

i
∣ ψ

i
⟩ ⟨ ψ

i
∣

These formulas provide a foundation for

understanding and implementing the respective

concepts in quantum computing. However, practical

applications may involve additional considerations

○

○

and adaptations based on the specific quantum

computing hardware and experimental conditions.

Mixed states describe situations where a system is

in a statistical mixture of pure states, reflecting

uncertainty or lack of knowledge about the exact

state.

The density matrix is a powerful tool for describing

quantum states in both pure and mixed scenarios.

These concepts collectively form a foundational
understanding of quantum computing, addressing aspects
of hardware, error correction, measurement mitigation,
benchmarking, and quantum state representation. Further
exploration and study of each topic can provide a deeper
understanding of the complexities and challenges in
quantum computing.

Conclusion

This chapter has provided a comprehensive overview of the
different types of quantum computers and their underlying
technologies. We have explored various approaches to
quantum computing, each with its unique advantages and
challenges. From annealing with D-Wave to trapped-ions
with IonQ and Quantinuum, and from topological qubits
with Microsoft to photonics with Xanadu, each technology
offers a distinct pathway toward advancing quantum
computing. Additionally, we examined neutral atoms with
Atom Computing and superconducting chips with industry
leaders such as IBM, Google, and Rigetti.
The chapter also highlighted the concept of universal
quantum computers and the current state of near-term

intermediate-scale quantum (NISQ) devices, which offer
promising applications while quantum hardware continues

to evolve. In the performance comparison section, we
discussed critical metrics such as quantum volume, which
encompasses the number of qubits, error rates, qubit
connectivity, and crosstalk, as well as coherence. These
factors play a pivotal role in assessing the capabilities and
potential of different quantum computing architectures.
Overall, as quantum computing progresses, the ongoing
research and development across these diverse
technologies will drive the field closer to realizing scalable
and practical quantum computing solutions. This chapter
has laid the groundwork for understanding the multifaceted
landscape of quantum computers and their impact on the
future of computation.
In the next chapter, we will look at the foundational
quantum principles of superposition and entanglement in
detail. These phenomena are central to the power and
potential of quantum computing, providing the basis for
many advanced quantum algorithms and applications. We
will begin with an in-depth examination of superposition,
which allows qubits to exist in multiple states
simultaneously. This property enables quantum computers
to perform complex computations more efficiently than
classical computers, as they can process many possibilities
at once. Next, we will explore the concept of entanglement,
which describes the strong correlation between qubits that
share a quantum state. Entanglement enables qubits to
interact in ways that give quantum computers
extraordinary capabilities, such as teleportation and
quantum communication. A key focus of the chapter will be
on Bell states, which are specific entangled states that
serve as a fundamental building block for many quantum
communication and computation protocols. We will discuss

1.

a.

b.

c.

d.

2.

a.

b.

c.

d.

3.

a.

b.

c.

d.

how these states can be prepared and manipulated in
quantum systems and their significance in demonstrating
the non-classical nature of quantum mechanics. To
understand these complex concepts, we will present
analogies and illustrative examples throughout the chapter.
These analogies will help bridge the gap between the
abstract nature of superposition and entanglement and
more familiar classical concepts.

Multiple choice questions

Which quantum computing approach uses qubits

based on superconducting circuits?

Trapped ion

Annealing

Photonics

Superconducting chips

Which company is known for its research in

topological qubits?

D-Wave

IonQ

Microsoft

Xanadu

What is a key characteristic of neutral atom-

based quantum computers?

They use photons to carry information.

They trap ions in electromagnetic fields.

They manipulate individual atoms with lasers.

They are based on superconducting circuits.

4.

a.

b.

c.

d.

5.

a.

b.

c.

d.

1.

2.

3.

4.

5.

1.

2.

Which term describes the intermediate stage of

quantum computers with limited capabilities?

Universal quantum computers

NISQs (Near-term intermediate-scale quantum

computers)

Classical computers

Quantum annealers

Quantum volume is a metric that measures:

The speed of quantum processors

The overall performance of a quantum computer

The number of quantum gates in a circuit

The size of quantum data storage

Answer key

d

c

c

b

b

Questions

Explain the key differences between the trapped-ion

and superconducting chip approaches to quantum

computing. What are the advantages and challenges of

each method?

Describe the concept of quantum volume and discuss

how it is used to compare the performance of different

quantum computers.

3.

4.

5.

6.

7.

8.

9.

10.

Compare and contrast the annealing approach of D-

Wave with the neutral atom approach of Atom

Computing. Include the types of problems each

approach is best suited for.

Discuss the potential of universal quantum computers

and how they differ from NISQ devices. What are the

challenges in developing universal quantum

computers?

How do qubit connectivity and crosstalk impact the

performance of a quantum computer? Provide

examples from different types of quantum computer

architectures.

Fill in the blank: D-Wave is known for its __________

approach to quantum computing.

Answer: Annealing

True or False: Photonics-based quantum computers

use lasers and other optical components to manipulate

qubits.

Answer: True

Fill in the blank: The term __________ refers to the

interaction between qubits that can cause unwanted

interference and errors.

Answer: Crosstalk

True or False: Neutral atom quantum computers

manipulate ions using electromagnetic fields.

Answer: False (Neutral atom quantum computers

manipulate atoms with lasers)

Fill in the blank: __________ is a key factor in

determining the overall coherence time of a quantum

computer.

Answer: Error rates

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New

Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Chapter 3

Superposition and

Entanglement

Introduction

In quantum computing, the phenomena of superposition
and entanglement are the bedrock upon which
revolutionary advancements are built. While exploring the
fundamentals of quantum computing, we will look at these
concepts comprehensively in this chapter.
This chapter serves as a guide to understanding the
intricacies of quantum states and their pivotal role in
shaping the landscape of quantum information processing.
From delineating the distinctions between classical and
quantum states to unraveling the mathematical
underpinnings of superposition and entanglement, each
section looks at the essence of these phenomena. As we go
through the definition, representation, and significance of
superposition, we uncover its profound implications for
quantum algorithms and computational paradigms.
Similarly, our expedition into the realm of entanglement

•

•

•

•

•

•

unveils its enigmatic nature, transcending classical
intuition and opening pathways to quantum communication
and information processing.
Furthermore, we illuminate the experimental endeavors
that have materialized these theoretical constructs, paving
the way for groundbreaking advancements in quantum
computing. Through meticulous examination, we confront
the challenges posed by decoherence while also envisaging
the boundless possibilities that lie ahead in the quantum
computing landscape. Ultimately, this chapter serves as a
beacon of knowledge, guiding readers through the
foundational concepts, applications, and future prospects of
superposition and entanglement in the realm of quantum
computing.

Structure

The topics covered in the chapter are as follows:

Introduction to quantum states

Superposition as the basis of quantum computing

Entanglement and quantum correlations beyond

classical intuition

Experimental realization of superposition and

entanglement

Limitations and challenges

Future directions and applications

Objectives

By the end of this chapter, you will have a solid
understanding of the foundational concepts and
experimental aspects of quantum computing. The topics

covered will guide you through an introduction to quantum
states, where you will learn about the essential nature of
quantum systems. You will explore superposition, the core
principle that allows quantum computers to process
information in ways classical computers cannot.
Additionally, the chapter discusses entanglement, a
phenomenon that creates quantum correlations beyond
classical intuition, providing insights into the power of
quantum computing. You will also examine the
experimental realization of superposition and
entanglement, showing how these abstract concepts are
brought to life in the lab. The chapter will address the
limitations and challenges facing quantum computing
today, preparing you to understand the hurdles that must
be overcome for further advancement. Finally, you will look
at future directions and applications of quantum
computing, exploring how this technology may evolve and
impact various fields. Through these topics, you will build a
comprehensive understanding of both the theoretical and
practical aspects of quantum computing.

Introduction to quantum states

Quantum mechanics, the theoretical framework governing
the behavior of particles on the smallest scales, introduces
a profound departure from classical physics. At the heart of
quantum mechanics lies the concept of quantum states,
which are mathematical descriptions representing the
properties of physical systems. This chapter is a
foundational introduction to quantum states, elucidating
their significance, mathematical formalism, and relevance
to quantum computing.

Classical vs. quantum states

In classical physics, the state of a system is fully
determined by precisely specifying its properties, such as
position and momentum. This deterministic worldview is
fundamentally challenged by quantum mechanics, where
the state of a system is described probabilistically.
Quantum states embody the inherent uncertainty and
indeterminacy of quantum systems, reflecting the wave-
particle duality and the uncertainty principle.Wave-particle
duality refers to the idea that particles, like electrons or
photons, can behave as both waves and particles,
depending on how they are observed. For example, light
can act like a wave when it creates interference patterns,
such as in the double-slit experiment, but it also behaves
like a particle when it is detected as individual photons, like
tiny packets of energy. This dual behavior is a key concept
in quantum mechanics and helps us understand the strange
nature of the quantum world.

Representation of quantum states

Quantum states are represented by vectors in a complex
vector space known as a Hilbert space. These vectors
encapsulate all possible configurations of a quantum
system, each corresponding to a different combination of
properties. The state of a quantum system evolves over
time according to the Schrödinger equation, which
describes how the state vector changes in response to the
system’s Hamiltonian.

Importance of superposition and

entanglement

Two fundamental phenomena in quantum mechanics,
superposition and entanglement, play a central role in

shaping quantum states. Superposition allows a qubit to
exist in a combination of both 0 and 1 states
simultaneously, unlike classical bits, which are either 0 or
1. This unique property enables quantum computers to
process many possibilities at once, greatly enhancing their
computational power for specific problems. A concept
famously illustrated by Schrödinger’s Cat, which is both
alive and dead until observed. Entanglement, on the other
hand, describes the intricate correlations between particles
that defy classical intuition, influencing each other’s states
instantaneously across vast distances. It is like having a
pair of magic gloves, if you put one on in New York and it is
a right glove, the other glove in Tokyo will instantly be a
left glove, even though they are separated by thousands of
miles. This mysterious connection is what makes
entanglement so fascinating and useful in quantum
computing.
Understanding quantum states lays the groundwork for
exploring the profound implications of superposition and
entanglement, which are crucial for harnessing the power
of quantum computing.

Mathematical formalism

Quantum states are represented mathematically using ket
notation, where a state vector |ψ⟩ corresponds to a unique
ket in the Hilbert space. These vectors can be manipulated
using linear algebra operations, such as addition, scalar
multiplication, and inner products. The inner product of
two ket vectors yields a complex number known as the
probability amplitude, providing the basis for probabilistic
predictions in quantum mechanics.

•

•

•

Key concepts

Several key concepts elucidate the properties and behavior
of quantum states. They are as follows:

Normalization: Quantum states must be normalized

to ensure that the sum of their probabilities equals one,

reflecting the certainty that the system exists in some

state.

Orthogonality: Orthogonal states are mutually

exclusive, with no overlap in their probability

distributions. Orthogonal states form a basis for the

Hilbert space, allowing any quantum state to be

expressed as a linear combination of basis states.

Measurement: Measurement collapses the quantum

state onto one of its possible outcomes, resulting in a

probabilistic outcome consistent with the probabilities

encoded in the state vector. This collapse is unique to

quantum systems and differs from classical systems,

where the state of a system is well-defined and

unaffected by observation. In quantum mechanics, the

act of measuring directly influences the system, forcing

it into a specific state, unlike in classical physics where

measurements do not alter the state in such a

fundamental way, projecting it onto a specific

eigenstate of the measured observable.

Quantum states in quantum

computing

Quantum computing harnesses the unique properties of
quantum states to perform computational tasks with
unprecedented speed and efficiency. Quantum bits, or

qubits, represent the fundamental units of information in
quantum computing, embodying the principles of
superposition and entanglement. By exploiting these
quantum phenomena, quantum algorithms can outperform
their classical counterparts in tasks such as factorization,
optimization, and simulation.
To summarize, quantum states form the bedrock of
quantum mechanics, embodying the probabilistic nature
and wave-particle duality of quantum systems.
Understanding quantum states is essential for
comprehending the profound phenomena of superposition
and entanglement, which underpin the revolutionary
potential of quantum computing. As we proceed, a solid
grasp of quantum states provides the necessary foundation
for exploring the frontiers of quantum technology and
computation.

Superposition as the basis of

quantum computing

Superposition is a fundamental principle of quantum
mechanics that allows quantum systems to exist in multiple
states simultaneously. Unlike classical systems, where the
state is uniquely determined, quantum systems can be in a
linear combination of different states. This means that a
quantum system can occupy a state of being both here and
there, up and down, or any other combination of possible
states until measured.
The concept of superposition challenges our classical
intuition, as it implies a departure from the notion of
definite properties and locations for particles. Instead,
particles can exhibit a wave-like behavior, spreading out

and existing in a multitude of states simultaneously.
Superposition lies at the heart of many quantum
phenomena and technologies, including quantum
computing, quantum cryptography, and quantum
communication.

Mathematical representation of

superposition

In quantum mechanics, superposition is mathematically
represented using ket notation within the framework of
Hilbert spaces. A quantum state vector |ψ⟩ can be
expressed as a linear combination of basis states |0⟩ and |1⟩
as shown in Figure 3.1, representing the two possible
states of a qubit:

Figure 3.1: Quantum superposition

Mathematically, this is written as:
|ψ⟩ = α|0⟩ + β|1⟩

Here, α and β are complex probability amplitudes,
reflecting the probability of finding the qubit in the |0⟩ or
|1⟩ state, respectively. The coefficients α and β satisfy the
normalization condition |α|² + |β|² = 1, ensuring that the
total probability adds up to one.

This mathematical formalism captures the essence of
superposition, allowing us to describe and manipulate
quantum states with precision. By controlling the
coefficients α and β, we can engineer complex
superposition states tailored to specific quantum
algorithms and applications.

Examples of superposition in

quantum systems

Superposition manifests in various quantum systems, from
individual particles to composite systems. One of the most
famous examples is the double-slit experiment, where a
single particle, such as an electron or photon, exhibits
interference patterns indicative of being in a superposition
of multiple paths simultaneously.
Another example is the state of a qubit in a quantum
computer, which can be prepared in a superposition of the
|0⟩ and |1⟩ states. This superposition allows quantum
algorithms to explore multiple computational paths in
parallel, potentially leading to exponential speedups over
classical algorithms for certain problems.
A great example of this is Grover’s algorithm, which uses
superposition to search through an unsorted database
faster than any classical algorithm. While a classical
computer would check each item one by one, a quantum
computer can evaluate multiple possibilities at once,
drastically reducing the time needed to find the correct
answer. This makes superposition a powerful resource for
solving certain computational problems more efficiently.
Additionally, superposition plays a crucial role in quantum
cryptography protocols, where qubits are manipulated to

encode information in superposition states, providing
security against eavesdropping and tampering.

Importance of superposition in

quantum algorithms

Superposition lies at the heart of quantum algorithms,
enabling quantum computers to perform computations in
parallel across a vast array of possible states. Quantum
algorithms exploit superposition to explore multiple
computational paths simultaneously, leveraging
interference effects to amplify the correct solution and
suppress incorrect ones.
For example, in Shor’s algorithm for integer factorization,
quantum superposition allows the algorithm to
simultaneously evaluate multiple candidate factors of a
composite number, exploiting interference to extract the
correct factors efficiently. Similarly, Grover’s algorithm for
unstructured search harnesses superposition to search
through a database of N items in √N steps, offering a
quadratic speedup over classical algorithms.
The ability to encode and manipulate superposition states
is essential for realizing the full potential of quantum
computing. By harnessing the power of superposition,
quantum algorithms promise to revolutionize fields such as
cryptography, optimization, machine learning, and
simulation, paving the way for a new era of computational
capabilities.
In conclusion, superposition is a foundational concept in
quantum mechanics, allowing quantum systems to exist in
multiple states simultaneously. Mathematically represented
using ket notation, superposition enables the exploration of

parallel computational paths and underpins the operation
of quantum algorithms. Understanding and controlling
superposition states are essential for realizing the
transformative potential of quantum computing and
unlocking new frontiers in technology and science.

Entanglement and quantum

correlations beyond classical intuition

Entanglement is one of the most intriguing phenomena in
quantum mechanics. It describes the intricate correlations
between particles that defy classical intuition. When two or
more particles become entangled, their states become
inseparably linked, such that the state of one particle
instantaneously influences the state of the other(s),
regardless of the distance between them. This
phenomenon, famously referred to by Einstein as spooky

action at a distance, challenges our classical understanding
of locality and realism.
Entanglement arises from the superposition of composite
quantum systems, where the individual states of the
particles cannot be described independently. Instead, the
entangled states of the particles exhibit correlations that
cannot be explained by classical theories, highlighting the
fundamentally non-classical nature of quantum mechanics.

Mathematical representation of

entangled states

Entangled states are mathematically represented using
tensor products within the framework of Hilbert spaces.
For a system of two qubits, the general form of an
entangled state can be expressed as:

|Ψ⟩ = α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩
Here, α, β, γ, and δ are complex probability amplitudes
that determine the entanglement properties of the system.
The entangled state |Ψ⟩ cannot be factored into separate
states for each qubit, illustrating the inseparable nature of
entanglement.
Entanglement is quantified mathematically using measures
such as entropy and concurrence, which capture the
degree of correlation between the entangled particles.
These measures provide insights into the strength and
structure of entanglement, allowing researchers to
characterize and manipulate entangled states effectively.
Refer to the following figure:

Figure 3.2: Quantum entanglement

Examples of entanglement in

quantum systems

Entanglement manifests in various quantum systems,
ranging from simple two-particle systems to complex
multipartite systems. One of the most well-known examples
is the phenomenon of spin entanglement in pairs of
particles, such as electrons or photons. When two particles
are prepared in an entangled state, measuring the spin of
one particle instantaneously determines the spin of the

other particle, regardless of the distance between them, as
shown in Figure 3.2.

Another example is the phenomenon of Einstein-

Podolsky-Rosen (EPR) pairs, where two particles are
prepared in a special type of entangled state exhibiting
strong correlations in position and momentum. EPR pairs
played a pivotal role in Einstein’s critique of quantum
mechanics and later became a cornerstone of quantum
information theory.
Entanglement also arises in systems of multiple particles,
where complex interactions give rise to intricate patterns
of correlation. Quantum many-body systems, such as those
studied in condensed matter physics and quantum
chemistry, exhibit emergent phenomena driven by
entanglement, leading to novel phases of matter and exotic
quantum states.

Entanglement in quantum

communication and processing

Entanglement plays a central role in quantum
communication and information processing protocols,
enabling secure communication and enhanced
computational capabilities. In quantum cryptography,
entangled particles can be used to establish secure
cryptographic keys through protocols such as quantum

key distribution (QKD). By encoding information in the
entangled states of particles, quantum cryptography
ensures that any eavesdropping attempts are immediately
detected, preserving the integrity and confidentiality of the
communication channel.

In quantum information processing, entanglement is a
valuable resource for performing tasks such as
teleportation, superdense coding, and quantum error
correction. Entangled states can be manipulated to transfer
quantum information between distant locations
instantaneously, surpassing the limitations of classical
communication channels. Moreover, entanglement-based
algorithms, such as the quantum phase estimation
algorithm and quantum Fourier transform, exploit
entangled states to achieve exponential speedups over
classical algorithms for certain problems.
Quantum teleportation is a fascinating concept where the
state of a particle is transferred from one location to
another, without physically moving the particle itself. This
is possible through entanglement: two particles become
linked in such a way that the state of one can instantly
affect the state of the other, no matter how far apart they
are. In quantum teleportation, information about the state
of one particle is sent to another particle at a distant
location, using a combination of classical communication
and entanglement. This allows the original state to be
teleported to the other particle, even though the particles
never physically move. It is important to note that this does
not mean faster-than-light travel or communication, but it
does demonstrate the power of quantum entanglement and
could have applications in secure communication and
quantum networking.
In conclusion, entanglement represents a fundamental
aspect of quantum mechanics, illustrating the non-local
correlations that defy classical intuition. Mathematically
represented using tensor products, entangled states exhibit
inseparable connections between particles, enabling novel

applications in quantum communication and information
processing. Understanding and harnessing entanglement
are essential for realizing the transformative potential of
quantum technologies and unlocking new frontiers in
communication, computation, and cryptography, which
have a great potential for secure communication because
any attempt to intercept or measure the entangled particles
would immediately disturb the system, revealing the
presence of eavesdropping. This makes quantum
entanglement a promising foundation for unbreakable
encryption and highly secure communication networks.

Experimental realization of

superposition and entanglement

Experimental verification of superposition and
entanglement lies at the heart of quantum mechanics
research, providing empirical evidence for the theory’s
counterintuitive predictions. Experimentalists employ
various techniques to manipulate and measure quantum
systems, ranging from precision control of individual
particles to complex setups involving entangled states of
multiple particles.
One common technique is laser cooling and trapping, which
allows researchers to cool atoms to ultra-low temperatures
and confine them in optical traps. This enables precise
control and manipulation of individual atoms, essential for
studying quantum phenomena such as superposition and
entanglement. Other techniques include cavity quantum

electrodynamics (QED), ion traps, superconducting
qubits, and photonic systems, each offering unique
advantages and challenges for experimental quantum
research.

Key experiments demonstrating

superposition and entanglement

Numerous groundbreaking experiments have demonstrated
the reality of superposition and entanglement, providing
compelling evidence for the quantum nature of the
universe. One of the earliest and most famous experiments
is the double-slit experiment, which demonstrates the
wave-particle duality of quantum particles. By observing
interference patterns produced by individual particles
passing through two slits, researchers confirmed the
existence of superposition at the microscopic scale.
Another seminal experiment is the EPR experiment, which
tests the entanglement of pairs of particles. In this
experiment, two particles are prepared in an entangled
state, and measurements of their properties reveal
instantaneous correlations, violating classical notions of
locality and realism. The success of the EPR experiment
provided strong support for the concept of entanglement
and sparked intense debate about its implications for the
nature of reality.
More recent experiments have demonstrated increasingly
complex forms of superposition and entanglement,
including multipartite entanglement and quantum
teleportation. These experiments push the boundaries of
our understanding of quantum mechanics and pave the way
for practical applications in quantum communication,
computation, and cryptography.

Challenges and advances in

experimental quantum computing

Despite the remarkable progress in experimental quantum
computing, significant challenges remain on the path
towards practical quantum technologies. One major
challenge is decoherence, the loss of coherence due to
interaction with the environment. Decoherence introduces
errors and limits the lifetime of quantum states, posing a
significant obstacle to building reliable quantum
computers.
To address decoherence, researchers have developed
techniques such as quantum error correction, which
redundantly encodes quantum information to protect
against errors. Quantum error correction codes enable
fault-tolerant quantum computation, allowing quantum
computers to perform reliable calculations even in the
presence of noise and imperfections.
Another challenge is scalability, as current experimental
platforms are limited in the number of qubits they can
reliably control and manipulate. Scaling up quantum
systems requires overcoming technical barriers related to
precision control, noise mitigation, and inter-qubit
connectivity. Advances in fabrication techniques, materials
science, and engineering are driving progress toward
scalable quantum technologies, with efforts focused on
improving qubit coherence times, minimizing crosstalk, and
developing scalable architectures.
Despite these challenges, recent advances in experimental
quantum computing have been promising, with
demonstrations of small-scale quantum processors capable
of executing simple quantum algorithms. As experimental
techniques continue to improve and mature, researchers
are increasingly optimistic about the prospects of realizing
large-scale, fault-tolerant quantum computers capable of

solving practical problems beyond the reach of classical
computers.
In conclusion, the experimental realization of superposition
and entanglement represents a cornerstone of quantum
mechanics research, providing empirical validation of the
theory’s predictions. Key experiments have demonstrated
the existence of superposition and entanglement,
confirming the non-classical nature of quantum systems.
Challenges such as decoherence and scalability remain but
advances in experimental techniques and quantum
engineering offer hope for the eventual realization of
practical quantum technologies with transformative
capabilities.

Harnessing superposition and

entanglement in quantum computing

Harnessing superposition and entanglement is fundamental
to the power of quantum computing. Superposition allows
quantum bits (qubits) to exist in multiple states
simultaneously, enabling quantum computers to process
vast amounts of information at once. Entanglement,
conversely, creates strong correlations between qubits,
allowing them to influence each other instantly, even when
separated by large distances. Together, these phenomena
enable quantum computers to perform complex
computations more efficiently than classical computers,
offering potential breakthroughs in areas like
cryptography, optimization, and materials science.

Quantum gates and circuits using

superposition

Quantum computing harnesses the unique properties of
superposition and entanglement to perform computational
tasks with unprecedented speed and efficiency. Central to
quantum computing are quantum gates, analogous to
classical logic gates, which manipulate qubits to perform
quantum operations. Quantum gates exploit superposition
and entanglement to process information in parallel across
a vast array of possible states, enabling exponential
speedups over classical computing for certain problems.
Quantum gates operate on qubits by applying unitary
transformations to the quantum state vector. Common
quantum gates include the Hadamard gate, which creates
superposition states, and the CNOT gate, which entangles
pairs of qubits. By combining these basic gates into
quantum circuits, researchers can construct complex
algorithms capable of solving problems that are intractable
for classical computers.

Quantum algorithms leveraging

superposition and entanglement

Quantum algorithms leverage the power of superposition
and entanglement to solve computational problems with
remarkable efficiency. One of the most famous quantum
algorithms is Shor’s algorithm for integer factorization,
which exploits the quantum Fourier transform and modular
exponentiation to efficiently factor large composite
numbers. Shor’s algorithm demonstrates the potential for
exponential speedups over classical algorithms for certain
problems, posing a significant threat to classical
cryptographic schemes such as RSA.

Another influential quantum algorithm is Grover’s
algorithm for unstructured search. This algorithm
leverages amplitude amplification to search through a
database of N items in √N steps, offering a quadratic
speedup over classical search algorithms. Grover’s
algorithm has applications in various domains, including
database search, optimization, and machine learning,
where it promises to revolutionize computational tasks that
are computationally intensive for classical computers.
Quantum algorithms also enable advances in areas such as
quantum simulation, quantum chemistry, and quantum
machine learning. Quantum computers can efficiently
simulate complex quantum systems, discover new materials
and drugs, and train powerful quantum neural networks.
These applications leverage the inherent parallelism and
computational power of quantum systems, offering
transformative capabilities for scientific research and
technological innovation.

Superposition and entanglement in

quantum networks

Classical networks facilitate the transmission of data from
sender to receiver, forming the backbone of modern
communication systems. However, quantum networks
introduce a paradigm shift by offering the generation of
end-to-end quantum entanglement between endpoints,
paving the way for novel applications in quantum
computing, communication, and cryptography. At the heart
of many quantum networking protocols lie Bell pairs, which
play a fundamental role in enabling quantum
entanglement-based operations. In this discussion, we will

look at the history and significance of Bell pairs, as well as
their applications in quantum networking protocols.

EPR paradox and origins of Bell pairs

The EPR paradox, proposed by Albert Einstein, Boris

Podolsky, and Nathan Rosen in 1935, challenged the
principles of quantum mechanics by describing a scenario
that seemingly violated the principle of locality. According
to locality, no object can influence another object
instantaneously, implying that there must be a hidden-
variable theory underlying quantum mechanics to reconcile
this violation. However, in the 1960s, John S. Bell

demonstrated that such a hidden-variable theory was not
necessary and introduced Bell pairs as a means to
understand and exploit quantum entanglement.
Bell pairs, also known as EPR pairs, are a specific set of
entangled quantum states that defy classical intuition.
These pairs serve as a cornerstone in the study of quantum
mechanics, revealing the non-local correlations that
emerge between entangled particles. Bell’s formulation of
the EPR paradox showcased the inherent strangeness of
quantum entanglement and laid the foundation for
developing quantum information theory.

Quantum bits, superposition, and

entanglement

Quantum bits, or qubits, are the fundamental units of
information in quantum computing, analogous to classical
bits in classical computing. Unlike classical bits, which can
exist in either a 0 or 1 state, qubits can exist in a
superposition of both states simultaneously. This
superposition enables quantum computers to perform

parallel computations and explore multiple computational
paths simultaneously.
Measurement of a qubit collapses its superposition into a
definite state, with probabilities determined by the initial
superposition. Additionally, entanglement allows for the
correlation of quantum states across multiple qubits,
resulting in non-local correlations that defy classical
intuition. Bell pairs exemplify this entanglement, serving as
maximally entangled states that exhibit unique properties
under measurement.

Bell pairs

Bell pairs encompass four entangled two-qubit quantum
states, collectively known as the four Bell states. These
states exhibit distinct patterns of entanglement, with two
pairs resulting in both qubits sharing the same state upon
measurement and the other two pairs resulting in opposite
states. The properties of Bell pairs enable them to serve as
fundamental resources in quantum networking protocols
and algorithms.
Bell states, also known as EPR pairs, are a set of maximally
entangled quantum states involving two qubits. These
states are of great importance in quantum information
theory, as they exhibit perfect correlations and form the
basis for many quantum communication and computation
protocols.
Mathematically, the Bell states are represented using the
tensor product of two-qubit states. There are four possible
Bell states, often denoted ny ∣Φ+⟩, ∣Φ−⟩, ∣Ψ+⟩, and ∣Ψ−⟩.
Each of these states is a superposition of the two-qubit

1.

2.

3.

4.

basis states ∣00⟩ and ∣11⟩for the Φ states, or ∣01⟩ and ∣10⟩
for the Ψ states.
The following are the mathematical representations of the
Bell states:

∣Φ+⟩: This state is a superposition of the ∣00⟩ and ∣11⟩
states:

∣Φ+⟩ = 1/√2((∣00⟩ + ∣11⟩))
∣Φ-⟩: This state is a superposition of the ∣00⟩ and ∣11⟩
states, with a minus sign in front of the ∣11⟩ state:

∣Φ-⟩ = 1/√2((∣00⟩ – ∣11⟩))
∣ Ψ +⟩: This state is a superposition of the ∣01⟩ and ∣10⟩
states:

∣Ψ +⟩ = 1/√2((∣01⟩ + ∣10⟩))
∣ Ψ -⟩: This state is a superposition of the ∣01⟩ and ∣10⟩
states, with a minus sign in front of the ∣10⟩ state:

∣Ψ -⟩ = 1/√2((∣01⟩ – ∣10⟩))
These Bell states are orthonormal, meaning they are
mutually orthogonal and normalized. They are also
maximally entangled states, as they exhibit perfect
correlations between the two qubits. In other words,
measuring one qubit instantly determines the state of the
other qubit. This property makes Bell states fundamental to
quantum teleportation, QKD, and other quantum
information protocols.
Each Bell pair exhibits unique properties that make them
suitable for various quantum networking applications. For
instance, the entanglement between qubits in Bell pairs
enables instantaneous correlations across vast distances,

making them valuable resources for quantum teleportation
and secure communication protocols.

Bell pairs in quantum networks

Quantum teleportation relies on the consumption of Bell
pairs to transmit quantum states between distant parties.
By sharing a Bell pair and performing measurements, two
parties can effectively teleport quantum information from
one qubit to another, leveraging the principles of
entanglement to achieve secure and efficient
communication.
QKD, a cornerstone of quantum cryptography, also uses
Bell pairs to establish secure communication channels
between parties. Protocols such as the E91 protocol utilize
entanglement-based techniques to generate cryptographic
keys with enhanced security properties, leveraging the non-
local correlations inherent in Bell pairs.

Going beyond Bell pairs

While Bell pairs serve as essential resources in quantum
networking, some applications require the generation of
entanglement across multiple qubits. States such as the
Greenberger-Horne-Zeilinger (GHZ) and W states offer
entanglement across three or more qubits, enabling
advanced quantum network functionalities. Future
research in quantum networking will explore the
generation and utilization of multipartite entangled states
for enhanced communication, computation, and
cryptography.

Analogies to explain

•

•

•

Understanding Bell states, with their complex quantum
properties, can be daunting. However, analogies offer
valuable tools to grasp their significance and behavior
more intuitively:

Dancing partners analogy: Imagine two dancers

executing a choreographed routine. In the ∣Φ+⟩∣Φ+⟩
state, both dancers move synchronously, performing

identical steps simultaneously. Conversely, in the ∣Φ−⟩
∣Φ−⟩ state, the second dancer executes the routine in

reverse, mirroring the first dancer’s steps but in an

inverted order. Transitioning to the ∣Ψ+⟩∣Ψ+⟩ state, the

dancers perform complementary steps, synchronized

but with one performing the opposite movement of the

other. Lastly, in the ∣Ψ−⟩∣Ψ−⟩ state, the second dancer

mirrors the first but inversely, creating a

complementary yet reversed sequence of movements.

Twin telepathy analogy: Picture a pair of twins with

an uncanny telepathic connection. In the ∣Φ+⟩∣Φ+⟩
state, both twins share the same thoughts

simultaneously, as if reading each other’s minds

effortlessly. Conversely, in the ∣Φ−⟩∣Φ−⟩ state, the

second twin experiences contrasting thoughts,

diverging from the first twin’s mental state.

Transitioning to the ∣Ψ+⟩∣Ψ+⟩ state, the twins’ thoughts

complement each other, one thinking the opposite of

the other yet in perfect harmony. Finally, in the ∣Ψ−⟩
∣Ψ−⟩ state, the second twin’s thoughts mirror the

first’s, but in reverse, creating a complementary yet

inverse mental dialogue.

Coin flipping analogy: Envision two coins entangled

in their outcomes when flipped simultaneously. In the

∣Φ+⟩∣Φ+⟩ state, both coins land on the same side,

exhibiting a synchronous outcome. Conversely, in the

∣Φ−⟩∣Φ−⟩ state, the second coin lands on the opposite

side, creating a reverse outcome compared to the first

coin. Moving to the ∣Ψ+⟩∣Ψ+⟩ state, the coins land on

opposite sides, presenting a complementary outcome—

one head and one tail. Finally, in the ∣Ψ−⟩∣Ψ−⟩ state,

the second coin lands on the opposite side of the first

coin, but the outcomes are reversed, leading to a

complementary yet inverted result.

These analogies offer tangible scenarios to visualize the
behavior of Bell states, capturing their intricacies and non-
local correlations in a relatable manner. While they may
simplify the complexity of quantum mechanics, they
provide valuable insights into the entangled nature of
quantum systems, aiding in comprehending quantum
phenomena and their applications in quantum networking
protocols.
In conclusion, Bell states represent a cornerstone of
quantum mechanics, demonstrating the intricate
correlations that arise in entangled quantum systems.
Analogies such as the dancing partners, twin telepathy, and
coin flipping help to elucidate the properties of Bell states
and their significance in quantum information processing.
Understanding and harnessing Bell states are essential for
realizing the potential of quantum technologies and
unlocking new frontiers in computation, communication,
and cryptography.

Potential speedups and advantages

of quantum computing

The potential speedups and advantages of quantum
computing stem from its ability to explore exponentially
large computational spaces in parallel. Classical computers
rely on binary bits to represent information, limiting their
computational power to linear scaling with the number of
bits. In contrast, quantum computers employ qubits, which
can exist in superposition states, allowing them to explore
2^n possible states simultaneously for n qubits.
This exponential scaling enables quantum computers to
tackle problems that are intractable for classical
computers, such as integer factorization, discrete
optimization, and quantum simulation. Quantum algorithms
exploit this parallelism to efficiently solve these problems,
offering exponential speedups over classical algorithms and
fundamentally changing the landscape of computation.
Moreover, quantum computers offer advantages beyond
speedups, including enhanced security through quantum
cryptography, improved accuracy in quantum sensing and
metrology, and novel approaches to machine learning and
artificial intelligence. Quantum computing has the potential
to revolutionize industries ranging from finance and
healthcare to materials science and cybersecurity,
unlocking new opportunities for innovation and discovery.
In conclusion, harnessing superposition and entanglement
for quantum computing offers unparalleled computational
capabilities with the potential for exponential speedups and
transformative applications across various domains.
Quantum gates and circuits exploit the principles of
superposition and entanglement to manipulate qubits and
perform quantum operations, while quantum algorithms
leverage these phenomena to solve computational problems
with remarkable efficiency. The potential speedups and

advantages of quantum computing promise to revolutionize
computation, offering unprecedented opportunities for
scientific discovery, technological innovation, and societal
impact.

Limitations and challenges

Quantum computing holds immense promise for
revolutionizing various fields with its unparalleled
computational power. However, several limitations and
challenges hinder the realization of practical quantum
technologies. This chapter delves into the primary
obstacles hindering the development of quantum
computing, including decoherence, error correction, fault
tolerance, scalability issues, and practical constraints.

Decoherence is the enemy of

superposition and entanglement

Decoherence arises from the interaction of quantum
systems with their environment, leading to the loss of
coherence and the destruction of superposition and
entanglement states. Quantum systems are extremely
sensitive to their surroundings, making them prone to
decoherence from factors such as temperature fluctuations,
electromagnetic interference, and material imperfections.
Decoherence poses a significant challenge to quantum
computing, as it limits the coherence time of qubits and
degrades the performance of quantum algorithms.
Mitigating decoherence requires careful engineering of
quantum hardware and developing error correction
techniques to protect against environmental noise.

Error correction and fault tolerance in

quantum computing

Error correction is essential for overcoming the detrimental
effects of noise and errors in quantum systems. Unlike
classical computers, which employ redundancy and error
correction codes to mitigate errors, quantum error
correction faces unique challenges due to the fragile nature
of quantum states and the no-cloning theorem, which
prohibits perfect replication of arbitrary quantum states.
Quantum error correction codes, such as the surface code
and the Shor code, encode quantum information
redundantly to detect and correct errors caused by
decoherence and other noise sources. Fault-tolerant
quantum computation relies on the redundancy introduced
by error correction to ensure the reliable operation of
quantum algorithms, even in the presence of errors.
Achieving fault-tolerant quantum computation requires
stringent error thresholds, typically on the order of 10^-3
to 10^-4, which necessitate high-fidelity quantum gates,
long coherence times, and low error rates in physical
qubits. Overcoming these challenges is essential for
realizing fault-tolerant quantum computers capable of
solving practical problems.

Scalability issues and practical

constraints

Scalability is another critical challenge facing the
development of quantum computing. Current experimental
quantum systems are limited in the number of qubits they
can reliably control and manipulate, making it difficult to

scale up to large-scale quantum processors capable of
solving complex problems.
Scalability issues arise from technical limitations such as
inter-qubit connectivity, crosstalk, and fabrication
constraints. Quantum architectures must address these
challenges to achieve the necessary qubit density and
connectivity for performing meaningful computations.
Moreover, practical constraints such as cost, power
consumption, and physical footprint impose additional
challenges on the development and deployment of quantum
computing technologies. Building and operating quantum
computers require substantial resources and expertise,
limiting their accessibility and widespread adoption.
Addressing scalability issues and practical constraints
requires interdisciplinary collaboration between physicists,
engineers, materials scientists, and computer scientists.
Advances in quantum hardware, error correction
techniques, and system integration are essential for
overcoming these challenges and realizing quantum
computing’s full potential.
In conclusion, limitations and challenges such as
decoherence, error correction, fault tolerance, scalability
issues, and practical constraints pose significant obstacles
to developing practical quantum computing technologies.
Overcoming these challenges requires innovative
approaches to quantum hardware, error correction
techniques, and system integration, as well as
interdisciplinary collaboration and investment in research
and development.
Despite these challenges, the potential of quantum
computing to revolutionize computation, communication,

and cryptography motivates ongoing efforts to overcome
these obstacles and realize the transformative promise of
quantum technologies. By addressing the limitations and
challenges discussed in this chapter, researchers aim to
unlock the full potential of quantum computing and usher
in a new era of computational capabilities.

Future directions and applications

Quantum computing has the potential to transform various
fields, offering unprecedented computational power and
capabilities. As researchers continue to push the
boundaries of quantum technologies, new directions and
applications emerge with far-reaching implications for
science, industry, and society. This section explores the
future directions and potential applications of quantum
computing, including emerging technologies, research
areas, and their implications.

Emerging technologies and research

areas

Advances in quantum computing research have led to the
emergence of several promising technologies and research
areas. Quantum hardware development remains a focal
point, with efforts focused on improving qubit coherence
times, reducing error rates, and scaling up qubit counts.
Novel approaches to quantum control and manipulation,
such as topological qubits and error correction schemes,
hold promise for achieving fault tolerant quantum
computation.
Quantum networking and communication represent
another exciting research area, aiming to leverage
quantum entanglement for secure communication and

distributed computing. Quantum repeaters, QKD, and
quantum internet protocols enable the establishment of
secure communication channels resistant to eavesdropping
and hacking, with applications in cryptography, finance,
and national security.
Quantum simulation and optimization offer transformative
capabilities for solving complex problems in physics,
chemistry, materials science, and finance. Quantum
simulators can accurately model quantum systems that are
computationally intractable for classical computers,
enabling advances in drug discovery, materials design, and
energy optimization. Quantum optimization algorithms
promise to revolutionize fields such as logistics, supply
chain management, and financial modeling by efficiently
solving large-scale optimization problems with quantum
speedups.

Potential applications beyond

computing

The impact of quantum computing extends beyond
traditional computational tasks, with potential applications
in diverse fields. Quantum sensing and metrology leverage
quantum principles to achieve unprecedented levels of
precision and sensitivity, enabling advances in medical
imaging, environmental monitoring, and navigation
systems. Quantum sensors can detect minute changes in
magnetic fields, gravitational waves, and electromagnetic
radiation, offering insights into fundamental phenomena
and practical applications.
Quantum machine learning and artificial intelligence
represent another frontier of research. Quantum

algorithms and quantum neural networks promise to
outperform classical counterparts in pattern recognition,
data analysis, and optimization tasks. Quantum machine
learning holds potential applications in fields such as drug
discovery, image recognition, and autonomous vehicles,
where computational efficiency and accuracy are
paramount.
Quantum materials and quantum sensing technologies are
poised to revolutionize the electronics industry, offering
novel materials with unique electronic, optical, and
magnetic properties. Quantum devices, such as quantum
dots, superconducting qubits, and spintronics devices,
enable advances in quantum computing, quantum
communication, and quantum sensing applications, with
implications for information technology,
telecommunications, and renewable energy.

Implications for science, industry,

and society

The widespread adoption of quantum technologies has
profound implications for science, industry, and society.
Quantum computing promises to accelerate scientific
discovery by enabling simulations of complex quantum
systems, elucidating fundamental physical phenomena, and
solving longstanding computational challenges. Quantum
cryptography and secure communication protocols enhance
data privacy and cybersecurity, protecting sensitive
information and critical infrastructure from cyber threats
and attacks.
In industry, quantum computing offers competitive
advantages in areas such as optimization, logistics, finance,

and drug discovery, where computational efficiency and
accuracy drive innovation and cost savings. Quantum
technologies also enable advances in materials science,
renewable energy, and environmental monitoring,
addressing pressing global challenges such as climate
change, resource depletion, and pollution.
On a societal level, quantum technologies have implications
for education, workforce development, and economic
competitiveness. Investment in quantum research and
education programs prepares the next generation of
scientists, engineers, and innovators to harness the
potential of quantum technologies and drive future
advancements. Quantum literacy and awareness initiatives
raise public understanding of quantum principles and their
impact on everyday life, fostering a culture of innovation
and collaboration.
In conclusion, the future of quantum computing is bright,
with emerging technologies, research areas, and potential
applications poised to transform science, industry, and
society. Advances in quantum hardware, algorithms, and
applications promise to unlock unprecedented
computational power and capabilities, revolutionizing fields
such as materials science, cryptography, and machine
learning. By embracing the opportunities presented by
quantum computing and investing in research, education,
and infrastructure, we can harness the transformative
potential of quantum technologies to address global
challenges and drive innovation in the 21st century.

Conclusion

Throughout this study of quantum computing, we have
explored its fundamental principles, applications,

challenges, and future directions. From the foundational
concepts of superposition and entanglement to the
practical considerations of error correction and scalability,
we have uncovered its potential and limitations.
Key points highlighted include the probabilistic nature of
quantum states, represented mathematically through ket
notation within Hilbert spaces. Superposition allows
quantum systems to exist in multiple states simultaneously,
while entanglement creates intricate correlations between
particles, defying classical intuition.
In quantum computing, harnessing superposition and
entanglement enables exponential speedups over classical
computing for certain problems. Quantum gates and
circuits exploit these phenomena to perform operations on
qubits, and quantum algorithms leverage them to solve
complex computational tasks efficiently.
However, quantum computing faces significant challenges,
including decoherence, error correction, and scalability
issues. Decoherence, arising from interaction with the
environment, disrupts quantum states, while error
correction techniques are essential for protecting quantum
information from noise and errors. Scalability constraints
limit the size and complexity of current quantum systems,
necessitating advances in hardware and architecture.
In the next chapter, we will explore the foundational
elements of quantum computing, focusing on the building
blocks that enable the execution of quantum algorithms:
quantum gates and circuits. The next chapter will provide a
comprehensive overview of various topics that are essential
for understanding and manipulating quantum information.

1.

a.

b.

c.

d.

2.

a.

b.

c.

d.

3.

a.

b.

c.

d.

4.

a.

b.

c.

d.

Multiple choice questions

Which of the following represents the

superposition of a qubit state?

∣0⟩
∣1⟩
α∣0⟩+β∣1⟩
0⟩⊕∣1⟩

What is the primary use of Bell pairs in quantum

communication?

Quantum simulation

Quantum error correction

Quantum teleportation

Quantum gates

Which term describes the process of collapsing a

quantum state to a definite state during

measurement?

Coherence

Entanglement

Decoherence

Superposition

What is the mathematical representation of the

Bell state ∣Ψ−⟩?

1/√2((∣00⟩+∣11⟩))
1/√2((∣00⟩−∣11⟩))
1/√2((∣01⟩+∣10⟩))
1/√2((∣01⟩−∣10⟩))

5.

a.

b.

c.

d.

1.

2.

3.

4.

5.

1.

2.

Which analogy best describes entanglement?

A coin flip

Twins sharing the same thoughts

Dancers performing identical steps

A spinning top

Answer key

c

c

c

d

b

Questions

Explain the concept of superposition in quantum

mechanics and provide a mathematical representation

of a qubit in superposition.

Answer: Superposition is a fundamental principle

where a qubit exists in a linear combination of both

basis states |0⟩ and |1⟩ simultaneously:

|ψ⟩ = α|0⟩ + β|1⟩, where α and β are complex numbers

satisfying |α|² + |β|² = 1.

Discuss the role of Bell pairs in quantum teleportation.

How do Bell pairs enable the transmission of quantum

information over a distance?

Answer: Bell pairs are maximally entangled qubit pairs

used in quantum teleportation to share quantum

information; they act as a quantum channel between

3.

4.

5.

sender and receiver.The sender performs a joint

measurement on their qubit and one half of the Bell

pair, collapsing the receiver’s qubit into the desired

state after classical communication and correction.

Define entanglement and explain its significance in

quantum communication. Provide an example of a

quantum protocol that relies on entanglement.

Answer: Entanglement is a quantum correlation where

the state of one particle instantly influences another,

regardless of distance. Quantum key distribution

(QKD), such as Ekert’s protocol (E91), relies on

entanglement to detect eavesdropping and ensure

secure communication.

Describe how quantum states can be measured and

how measurement affects the state of a qubit.

Answer: Quantum measurement collapses a

superposed qubit state to one of the basis states, |0⟩ or

|1⟩, with probabilities |α|² and |β|², respectively.This

process irreversibly changes the state, destroying any

superposition or entanglement it had.

Provide an analogy to explain the concept of Bell states

and their different types. How can this analogy help in

understanding the properties of Bell states?

Answer: Bell states can be analogized as perfectly

synchronized coin flips between two distant players —

if one gets heads, the other always gets tails (or the

same, depending on the state).

This analogy helps illustrate their perfect correlations

and mutual dependence, despite spatial separation,

which is key to understanding quantum entanglement.

6.

7.

8.

9.

10.

Fill in the blank: The process of collapsing a quantum

state to a definite state during measurement is known

as __________.

Answer: decoherence

True or False: Quantum entanglement allows for

instantaneous correlations between qubits regardless

of distance.

Answer: True

Fill in the blank: Quantum teleportation relies on

__________ to transmit quantum states between two

parties.

Answer: Bell pairs

True or False: In quantum mechanics, a qubit can

exist in both states |0⟩ and |1⟩ simultaneously due to

superposition.

Answer: True

Fill in the blank: The mathematical representation of

the Bell state ∣Φ+⟩ is __________.

Answer: 1/√2((∣00⟩+∣11⟩))

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New

Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

•

•

•

•

Chapter 4

Quantum Gates and

Circuits

Introduction

This chapter explores the fundamental components of
quantum computing, known as quantum gates. We will
delve into the various types of quantum gates and their
mathematical representation using matrices, as well as the
use of Kronecker product in quantum gate operations.
Additionally, this chapter will cover the concept of unitary
matrix and representation of qubits on the Bloch sphere.

Structure

The chapter covers the following topics:

Quantum gates

Unitary matrix

Bloch sphere

Types of quantum gates

•

•

Representation of gates as matrices

Kronecker product

Objectives

In this chapter, we will learn the concept of quantum gates,
its mathematical representation as matrices, and its
significance in quantum computing. We will also familiarize
with the unitary matrix, its properties, and how it differs
from classical gates. This chapter aims to help the reader
gain an understanding of the Bloch sphere and how it is
used to visualize quantum states and operations.
Additionally, we will learn about the different types of
quantum gates and their specific functions. This chapter
will also help the reader to become proficient in using the
Kronecker product to represent composite quantum
operations.
Mastering these topics is crucial for executing quantum
algorithms effectively, as a deep understanding of quantum
gates and their operations forms the foundation of quantum
computation. By grasping the nuances of quantum gate
operations and their mathematical underpinnings, readers
will be better equipped to design and implement
sophisticated quantum algorithms.

Quantum gates

Quantum gates are fundamental components in the realm
of quantum computing and play a crucial role in
manipulating and processing information in a quantum
system. Unlike classical gates which operate on bits (0s
and 1s), quantum gates operate on quantum bits or qubits,
which are the fundamental units of quantum information.
One of the key differences between quantum and classical

gates is the principle of superposition, where a qubit can
exist in multiple states simultaneously, whereas a classical
bit can only hold one value at a time. This property allows
quantum gates to perform computations and operations on
a vast number of possible states simultaneously, making
them much more powerful and efficient than classical
gates. Additionally, quantum gates also exhibit a
phenomenon called entanglement, where two or more
qubits can become correlated, allowing for highly complex
computations to be performed in parallel. This is in
contrast to classical gates, which can only process
information sequentially. Quantum gates are designed to
manipulate qubits in specific ways, such as flipping their
state, rotating their phase, or creating superpositions.
These operations are essential for executing quantum
algorithms, which are different from classical algorithms
and utilize the unique properties of qubits. While classical
gates are limited in their ability to process and manipulate
information, quantum gates open a whole new realm of
possibilities and have the potential to solve problems that
are practically impossible for classical computers to tackle.
In essence, quantum gates represent a significant
advancement in the field of computing and hold promise for
revolutionizing various industries and fields, such as
cryptography, pharmaceuticals, artificial intelligence, and
many more.

Unitary matrix

Before we get into quantum gates, let us see what makes
them different from classical gates. A quantum gate is
reversible. If an input generates a certain output, that
output when passed through the quantum gate will
generate the original input. This is not true for all classical

gates. An output of the OR gate, when passed back as input
to the gate will not generate the original inputs. An
example of reversibility in classical gates is the NOT gate.
An input value of 1 will generate 0, and when that 0 is
passed through the NOT gate as input, the original 1 will
be the output. So, what makes a quantum gate reversible?
It is because of the property of unitary matrix.

Note: Quantum gates are operations, while unitary

matrices are their mathematical representation. All

quantum gates are represented by unitary matrices,

but not all unitary matrices necessarily represent

useful quantum gates.

A unitary gate is a quantum gate that is represented by a
unitary matrix. It is a fundamental building block in
quantum computing that performs a unitary transformation
on a quantum state. It performs a specific logical operation
on one or more input signals to produce one or more output
signals. A unitary gate is considered an ideal gate, as it
does not introduce any loss or noise into a circuit. It is also
reversible, which means that it can be undone by feeding
the output signal back into the gate, resulting in the
original input signal. Unitary gates have two main
properties that distinguish them from other gates: they
preserve the normalization of quantum states, and they are
linear, meaning that the output is a linear function of the
input. In simple terms, this means that the sum of
probabilities of all possible combinations of outputs (e.g. 0
and 1) must come up to 1, and the output must be directly
proportional to the input. These gates are commonly used
in quantum computing to manipulate qubits and perform
logical operations such as flipping or swapping qubit

states. Unitary gates can be implemented in various
physical systems, including optical systems, quantum
circuits, and even classical electronic circuits. They are an
integral part of quantum computing and play a crucial role
in enabling quantum algorithms and protocols.
Quantum gates are represented by unitary matrices. In
mathematical terms, a matrix is unitary if the conjugate
transpose is also its inverse. The conjugate transpose,
also known as the Hermitian transpose, is a fundamental
concept in linear algebra, particularly in the context of
complex matrices. For a given complex matrix U, the
conjugate transpose is denoted by U* in the given
equations. It is obtained by taking complex conjugate of
each element and the transpose of the matrix.
That is, for a unitary matrix:

U
*
U = UU

*
 = UU

-1
 = I,

where I is the identity matrix.
As quantum gates are essentially matrices, it is important
to understand the concept of unitary matrices when
building new types of gates or matrices. Let us look at an
example of a unitary matrix.
Let us first understand what a conjugate is. To find the
conjugate of a given matrix, replace each element of the
matrix with its complex conjugate. In simple terms, a
conjugate of a matrix can be derived by reversing the signs
of the imaginary element. Let us look at a 2-dimensional
matrix

Complex conjugate:

Transpose:

UU* becomes,

The matrix is unitary and can represent a quantum gate.
Incidentally, this is a Pauli-Y quantum gate (covered in a
later section).
Let us look at another matrix and apply conjugate
transpose on it

Complex conjugate:

Transpose:

UU* becomes,

The result is not an Identity matrix. Hence, it cannot be
used for a quantum gate.

Bloch sphere

The Bloch sphere, named after physicist Felix Bloch, serves
as a geometric illustration of the pure states within a two-
state quantum mechanical system.
It is a three-dimensional unit sphere representing the pure
states of the quantum system, where the north pole
represents state 0 and the south pole represents state 1.
The equator of the sphere represents equal probability
superposition states of 0 and 1. The points located on the
surface of the sphere represent the pure states of the
system, while the points inside the sphere represent the
mixed states.
The Bloch sphere is commonly used to represent the state
of a qubit, which is the smallest unit of quantum
information. A qubit can exist in a superposition of states,
and is depicted as a point on the surface of the Bloch
sphere. The north pole corresponds to the state |0⟩, while
the south pole corresponds to the state |1⟩. The equator
represents superpositions of these two states. The Bloch
sphere also allows for the visualization of quantum
operations, such as rotations and measurements. Any
operation on a qubit can be illustrated with a point on the
sphere’s surface, and the result of the operation is a new
point on the sphere.
The Bloch sphere represents both the amplitude and the
phase of the qubit. Phase is an important concept in
quantum mechanics that describes the state of a system at
a particular point in time. It can be understood by
considering interference. When two waves combine, their
amplitudes can either add constructively (in-phase) or
destructively (out-of-phase), resulting in a different overall
amplitude. Similarly, in a quantum system, the combination
of two basis states with different phases can lead to

interference effects, affecting the probability of measuring
a particular state. Phase is essential in quantum computing
and quantum communication. In quantum computing, the
ability to control and manipulate the phase of a system is
crucial for performing quantum operations and algorithms.
In quantum communication, the phase of a system can be
used to encode information and ensure its secure
transmission.

In Bloch sphere (Figure 4.1), phase is represented by the
angle of rotation ϕ around the Z-axis, where ϕ ranges from
0 to 2π radians. The probability amplitude of finding a
particle in a specific state is determined by the angle θ
made with respect to the Z-axis, where θ ranges from 0 to
π radians. The amplitude of the state is and the
amplitude of the state is . At the equator, θ is π/2.
Therefore, the amplitudes of states and on the positive
X-axis (where ϕ = 0) will be and corresponding
probabilities will be the square of amplitudes, that is 0.5.
The Bloch sphere is a powerful tool for understanding and
visualizing quantum states and operations, making it a
fundamental concept in the study of quantum mechanics.

Figure 4.1: Bloch sphere

Let us look at how to read the Bloch sphere. If the qubit is
at positive Z-axis, it denotes the state |0⟩. If it is at negative
Z-axis, it denotes the state |1⟩. Anywhere else represents
the state of superposition.
The matrix representation of state |0⟩ at positive Z-axis is .
The matrix representation of state |1⟩ at negative Z-axis is

The positive X-axis represents a superposition state where
the amplitude of qubit is equal to and phase 0. When
there is a phase shift of π radians, the qubit is at negative
X-axis.
At positive X-axis, the superposition state is represented as
|+⟩, and matrix representation is
At negative X-axis, the superposition state is represented as
|-⟩, and matrix representation is
The Y-axis represents the complex phase of the quantum
state. At positive Y-axis, the superposition state can be
represented as |i⟩, and matrix representation is

At negative Y-axis, the superposition state can be
represented as |-i⟩, and matrix representation is .
The state of superposition of a qubit can be represented by
the following equation:

Equation 4.1: Qubit superposition state

Where, θ is the angle with respect to positive Z-axis and ϕ
is the angle in the XY plane from the positive X-axis.

•

•

•

Different kinds of quantum gates can be applied to observe
the states and phases of qubit on the Bloch sphere. One can
try these various states at the following link:

https://javafxpert.github.io/grok-bloch/.

Types of quantum gates

There are several categories of quantum gates. In this
section, we will look at the functions of all such gates. In a
later section, we will go through the matrix values of the
gates and their manipulations.
Here are the different categories of gates along with their
specific function and operation:

Single-qubit gates: These gates manipulate one

qubit at a time to change its state. These gates can be

represented as 2x2 unitary matrices and are used to

rotate the state of a qubit on the Bloch sphere. Few

examples of single-qubit gates are the Pauli gates (X,

Y, Z), Hadamard gate, and phase gate.

Multi-qubit gates: These gates manipulate two or

more qubits at the same time and change the joint

state of the qubits. These gates can be represented as

larger unitary matrices with dimensions that depend on

the number of qubits they act on. Some examples of

multi-qubit gates include the Controlled-NOT (CNOT)

gate, Controlled-Z (CZ) gate, and SWAP gate.

Entangling gates: These gates are a type of multi-

qubit gate that create entanglement between qubits.

Entanglement is a phenomenon in quantum mechanics

where the state of one qubit becomes correlated with

that of another, even if they are physically separated.

•

•

•

Some examples of entangling gates include the CNOT

gate, CZ gate, and Controlled-U (CU) gate.

Measurement gates: These gates are used to

measure the state of a qubit. These gates collapse the

qubit’s superposition state into one of its basis states

(0 or 1) and provide a classical output. It performs a

measurement along a specific basis (axis) and projects

the state of a qubit onto that basis. Since

measurement changes the qubit’s state, these gates

can only be used once in a quantum circuit.

Phase gates: These gates are single-qubit gates that

introduce a phase shift to a qubit’s state. This phase

shift can be either a rotation or a multiplication of the

qubit’s state by a complex number. Phase gates are

used in quantum algorithms to manipulate the phase of

a qubit’s state and perform quantum phase estimation.

Universal gates: These are a set of gates that can be

used to implement any quantum operation on a qubit.

A universal gate set can include single-qubit gates,

multi-qubit gates, and measurement gates. They form

the building blocks from which any quantum circuit can

be constructed. A common universal set includes

Hadamard, CNOT and T gates. For example, repeatedly

applying the T gate enables the construction of any Z-

axis rotation. Another example would be the

combination of Hadamard and CNOT that enables the

creation of superposition and entanglement, which are

essential for many quantum computing operations.

There are several types of quantum logical gates, and they
are as follows:

•

○

○

Pauli gates: These gates are the basic building blocks

of quantum circuits, which are used to manipulate and

transform quantum states. Their function includes

flipping the state of a qubit, flipping the phase of a

qubit, or a combination of the two. The following are

three types of Pauli gates:

Pauli X: The X gate flips the state of the qubit and

is equivalent to the NOT gate in classical computing.

If the input state is |0⟩, it is flipped to |1⟩, and vice-

versa. When applied to a superposition of states,

the Pauli X gate has the effect of flipping the

amplitudes of the |0⟩ and |1⟩ states. For example, if

the input state is a superposition of |0⟩ and |1⟩ with

higher amplitude for |0⟩ with respect to |1⟩, the

output state will be a superposition of |1⟩ and |0⟩
with |1⟩ having the higher amplitude. This is

because the X gate flips the amplitudes of the two

basis states, effectively switching their roles in the

superposition.

Pauli Z: This gate operates on a single qubit,

executing a π radians rotation around the Z-axis on

the Bloch sphere. This gate is commonly used to

introduce a phase shift of either 0 or π (180°) to a

qubit, depending on the state of the qubit before the

gate is applied. If the qubit is in the state |0⟩, the

gate will not change the state. If the qubit is in the

state |1⟩, the gate will introduce a phase shift of π

radians to change the state to -|1⟩. The Pauli Z gate

is valuable in quantum computing because it

introduces a phase shift into the quantum state.

This phase shift is an important parameter in

various quantum algorithms, such as the Deutsch-

Jozsa algorithm and the Grover’s algorithm. It is also

○

•

used in quantum error correction codes to detect

and correct errors in quantum states.

Pauli-Y: The Y gate rotates the state of the qubit

around the Y-axis by an angle of π radians. This gate

will introduce a phase shift of π/2 radians around the

Z-axis, landing the qubit state on the imaginary

plane, which is the Y-axis. If the qubit is in the state

|0⟩, the gate will change the state to i|1⟩. If the qubit

is in the state |1⟩, the gate will change the state to

i|0⟩. The gate is equivalent to a bit and phase flip.

This gate is often used in quantum algorithms for

quantum state manipulation and quantum error

correction.

These gates find use in most of the use cases such as

quantum error correction, quantum teleportation,

various quantum algorithms etc.

Hadamard gate: The Hadamard gate (H gate) is a

single qubit gate that is used to create superposition

states. It maps the basis state |0⟩ or |1⟩ to a

superposition of |0⟩ and |1⟩. It is a 2 x 2 matrix that

rotates the qubit around the X and Z axes of the Bloch

sphere, resulting in a state that is equally likely to

collapse into either |0⟩ or |1⟩ when measured. It takes a

qubit as input in either the state |0⟩ or |1⟩, and outputs

a superposition state, denoted as |+⟩ or |-⟩.

Let us see how this happens:

Hadamard gate rotates the qubit at state |0⟩ around Y-

axis by 90
0
 and it lands on positive X-axis. So, θ is 90

0

(refer Figure 4.1). The rotation around Z-axis is 0. So, ϕ
is 0. Let us look at the equation:

•

•

If we substitute the values,

If the qubit is at |1⟩, the same operation by Hadamard

gate will land the qubit on negative X-axis. θ is still 90
0
,

but ϕ is 1800. Substituting the values in the equation:

we get:

Now,

This will yield 

The Hadamard gate is pivotal in creating entangled

states in quantum computing. When combined with a

Controlled-NOT (CNOT) gate, the Hadamard gate can

entangle two qubits. Th gate is often employed in a

variety of quantum algorithms, including quantum

cryptography, quantum Fourier transform, amplitude

amplification, among others.

CNOT gate (CX): The Controlled-NOT gate (CNOT or

CX gate) is a two-qubit gate that flips the target qubit’s

state if the control qubit is |1⟩ and does nothing if the

control qubit is |0⟩. It is a controlled operation that

changes the target qubit’s state only when the control

qubit is 1. This gate is essential for entangling two or

more qubits, and is used in use cases such as quantum

teleportation, quantum error correction, etc.

CY gate: The CY gate, also known as the controlled-Y

gate, is a two-qubit quantum gate that performs a

conditional phase shift operation on the target qubit,

•

•

•

based on the state of the control qubit. The CY gate

works by applying a phase shift of π radians around the

Y-axis to the target qubit if the control qubit is in the

state |1⟩. No phase shift is applied to the target qubit if

the control qubit is in the state |0⟩. In simple words, it

applies Pauli Y operation on the target qubit only when

the control qubit is 1. This gate is useful for creating

entangled states, performing certain types of quantum

algorithms, and correcting errors in quantum

algorithms.

CZ gate: The CZ gate performs a controlled phase

shift operation on the target qubit, based on the state

of the control qubit. It leaves the control qubit

unchanged and applies a phase of π to the target qubit

if the control qubit is in the state |1⟩. However, it does

nothing if the control qubit is |0⟩. This gate is

commonly used in quantum algorithms such as

quantum error correction and quantum teleportation. It

is also a building block for more complex multi-qubit

gates.

SWAP gate: As the name suggests, this gate swaps

the states of two qubits. This gate is useful for

reordering qubits in a quantum circuit, and it is also

used in quantum algorithms such as quantum phase

estimation and quantum search.

Toffoli gate (CCNOT): The Toffoli gate is a three qubit

gate that is also known as the Controlled-Controlled-

NOT (CCNOT) gate. When both the control qubits are

|1⟩, this gate performs a NOT operation on the target

qubit. Otherwise, it leaves the target qubit’s state

unchanged. Thus, it creates entanglement among three

•

•

•

qubits. This gate is useful in implementing reversible

classical logic operations without loss of information,

which is essential for implementing classical logic in

quantum systems, seamless integration between

quantum and classical systems and robust error

correction.

CCZ gate: The quantum Controlled-Controlled-Z

(CCZ) gate is a three qubit gate that executes a

controlled phase shift operation on the third qubit

based on the state of the two control qubits. The state

of the target gate will remain unchanged except when

the two control qubits are both in the state |1⟩, in which

case the third qubit will be phase shifted by π. This

property makes the CCZ gate a crucial component in

various quantum algorithms such as quantum error

correction, reversible logic, and quantum teleportation.

Phase gates (S, T): Phase gates allow manipulation

of the phase of qubits and are used for precise control

of the quantum state in quantum algorithms. They are

single-qubit gates that introduce a phase shift of to

the qubit state, where ‘n’ is 4 for S gate and 8 for T

gate. There are custom phase gates as well where ‘n’

can take any integer value. Phase gates are essential

for implementing quantum algorithms such as the

quantum Fourier transform and quantum phase

estimation.

Rotation phase gates (RX, RY, RZ): These are

phase gates that induce a phase shift by rotating the

state of qubit around X, Y and Z axis respectively.

Unlike S and T gates, the phase angle is not pre-

determined. It can be set to custom values by

appropriate rotation around different axes.

•

•

•

Controlled phase gates (CRX, CRY, CRZ):

Controlled phase gates operate on multiple qubits

simultaneously. The control qubit determines whether

target qubit’s phase has to be rotated or not. If the

control qubit is |1⟩, rotation is applied. These gates are

essential in implementing algorithms such as quantum

error correction and quantum information processing.

Inverse phase gates (S
†
, T

†
): These are quantum

gates that operate by applying a phase shift of to

qubits, as opposed to the usual shift applied by

regular phase gates. They are typically denoted as S
†

or T
†
 and are the inverse operation of S and T gates.

They are important components in quantum computing

as they allow for the manipulation of the quantum

state by applying different relative phases to the

qubits. This, in turn, enables a wider range of

operations and calculations to be performed, making

them crucial in quantum algorithms and protocols.

Identity gate: Quantum identity gate, also known as

the I gate or the identity operator, is a basic quantum

gate used in quantum computing. It is a single-qubit

gate that leaves the state of the qubit unchanged. In

other words, it performs the identity operation on the

qubit, hence the name. Mathematically, the quantum

identity gate is represented by the 2x2 identity matrix,

which is a diagonal matrix with 1’s on the main

diagonal and 0’s elsewhere. In a quantum circuit, the

identity gate is typically used as a placeholder or a

control for other gates. It can also be used to

synchronize multiple qubits in a circuit. One of the key

properties of quantum identity gate is that the gate is

•

○

its own inverse. This makes it a useful component in

quantum algorithms that require reversible operations.

To summarize, this list represents some of the most
common types of quantum gates, each with its unique
functionality and purpose. While the Pauli, Hadamard, and
phase gates are used for preparing states and rotations, the
C-series and Toffoli gates are crucial for implementing
complex quantum operations and entangling qubits.
Understanding these gates and their operations is essential
for designing and implementing quantum circuits and
algorithms.

Representation of gates as matrices

Unitary matrices serve as mathematical representations of
quantum gates, and ensure that the total probabilities of all
possible quantum state outcomes always sum to 1. This
characteristic makes the quantum gate reversible; this is
one of the defining properties of quantum gates. This
means that the operation performed by the gate can be
undone by applying the same gate again. In other words,
the input and output states of the gate can be reversed,
allowing the initial state to be recovered.
Let us look at the matrix representation of commonly used
quantum gates:

Pauli gates: All Pauli gates are represented by a 2-

dimensional matrix.

Pauli X:

Matrix:

Symbol:

○

○

•

•

Pauli-Y:

Matrix:

Symbol:

Pauli Z:

Matrix:

Symbol:

Hadamard gate:

Matrix:

Symbol:

CNOT gate:

Matrix:

•

•

Symbol:

CY gate:

Matrix:

Symbol:

CZ gate:

Matrix:

Symbol:

•

•

SWAP gate:

Matrix:

Symbol:

Toffoli gate (CCNOT):

Matrix:

 o r ,

Symbol:

•

•

○

CCZ gate:

Matrix:

Symbol:

Phase gates:

S gate:

Matrix:

○

•

Symbol:

T gate:

Matrix:

Symbol:

Identity gate:

Matrix:

Symbol:

Kronecker product

The Kronecker product is a mathematical operation that
plays a crucial role in the field of quantum computing. This
concept is named after Leopold Kronecker, a renowned
mathematician, in the 19th century. Its application in the
world of quantum computing has been revolutionary. In
quantum computing, the basic building blocks are qubits,

which exist in a state of superposition. This feature enables
quantum computers to execute complex calculations at an
exponentially faster rate than classical computers. The
Kronecker product comes into play when we need to
represent a system with multiple qubits. Similar to how
classical computers use bits to represent information,
quantum computers use qubits to encode data. However, in
quantum computing, qubits can be entangled with each
other, meaning that the state of one qubit can affect the
state of another qubit. This entanglement is key to quantum
computing’s power, as it allows for more efficient
calculations. To represent a system with two or more
qubits, we need to use the Kronecker product to combine
the states of individual qubits into a single, larger state.
This process allows for the representation of more complex
and larger quantum systems, making it an essential tool in
quantum computing algorithms. Moreover, the Kronecker
product is also used in quantum gates, which are
operations that manipulate the state of qubits. These gates
are the fundamental operations that enable quantum
computers to perform calculations. The Kronecker product
helps in constructing gates that act on multiple qubits
simultaneously, making quantum computation even more
efficient. In addition to its use in quantum gates and
representing qubit states, the Kronecker product is also
essential in designing quantum error correcting codes,
which are crucial for maintaining the delicate quantum
states and protecting them from noise and unwanted
interactions. In effect, the Kronecker product is a powerful
tool in quantum computing that has enabled the
development of revolutionary algorithms and technologies.
Its ability to combine qubits and represent the state of
multiparticle quantum systems has helped pave the way for

the advancement of this cutting-edge field. As quantum
computing continues to evolve and push the boundaries of
traditional computing, the Kronecker product remains a
fundamental concept in its development.
Kronecker product is denoted by the symbol ⊗ and is also
called tensor product in quantum theory. It is a product of
two matrices or vectors. In Kronecker product, each
element from the first matrix is multiplied with the entire
second matrix. Let us look at an example of how it is
applied to combine states of multiple qubits:
Consider two qubits, one having a state S1 = and the
other having the state S2 =

The Kronecker product of the two states is as follows:

Let us take an example where S1 is in state and S2 is

The ket state is represented in matrix form in the follow
way: the top row in matrix represents the first state, the
second row represents the second state, and so on.
Therefore, S1 in matrix form will be:

, where 1 and 0 are amplitudes corresponding to the
states and . Since S1 has just state , hence, the
amplitude for state is 0.

Similarly, S2 can be represented as

Their Kronecker product will be:

The same result can be achieved by multiplying the two
states arithmetically using ket notations.
If S1 is |0⟩ and S2 is (|00⟩ + |01⟩ + |10⟩+ |11⟩), then S1 x S2
is (|00⟩ + |01⟩ + |10⟩ + |11⟩).
Let us look at another example of how Kronecker product is
applied to combine multiple quantum gates to form
composite gates, which then manipulates the quantum
state of qubits.
Assume two qubits, both at state |0⟩. Pauli X gate and Pauli
Z gate are respectively applied to the two qubits.

Pauli X ⊗ Pauli Z =

The combined state of the two qubits is |00⟩, which in matrix

form is

Apply the composite gate on the two qubits using standard
matrix multiplication.

1.

a.

Note: Standard matrix multiplication is employed to

manipulate qubit state by quantum gates.

The preceding result is correct. Pauli X on the first qubit
flips the state from to . Meanwhile Pauli Z has no effect on ,
and so the state will continue to be .
Therefore, the final state is .

Conclusion

This chapter has provided a comprehensive overview of
quantum gates and their significance in the realm of
quantum computing. By delving into the mathematical
representation of quantum gates as matrices, the use of
unitary gates, and the visualization of qubits on the Bloch
sphere, a deeper understanding of the fundamental
components of quantum computing has been achieved.
Furthermore, the discussion on the different types of
quantum gates and the use of Kronecker product has
equipped readers with the necessary knowledge to perform
composite quantum operations. With this knowledge,
readers can now begin to explore more advanced topics in
quantum computing. The upcoming chapter focuses on the
IBM Q cloud and its associated tools and frameworks,
including the GUI-based composer and the Qiskit SDK.

Multiple choice questions

What is the primary function of quantum gates in

a quantum system?

To store information like classical bits.

b.

c.

d.

2.

a.

b.

c.

d.

3.

a.

b.

c.

d.

4.

a.

b.

To operate strictly on 0s and 1s.

To solve only problems that classical computers can

handle.

To manipulate qubits for executing quantum

algorithms.

What is the mathematical definition of a unitary

matrix U?

A matrix U is unitary if its determinant is zero.

A matrix U is unitary if its transpose is equal to its

inverse.

A matrix U is unitary if its conjugate transpose (U*)

is also its inverse, meaning U*U=UU*=I, where I is

the identity matrix.

A matrix U is unitary if it only contains real numbers.

On the Bloch sphere, what do the points located

on the surface represent?

Mixed states of the system

Superposition states of 0 and 1

Pure states of the quantum system

Quantum operations and algorithms

Which of the following statements about

quantum gates is incorrect?

Single-qubit gates are represented as 2x2 unitary

matrices and rotate the state of a qubit on the Bloch

sphere.

Measurement gates can be used multiple times in a

quantum circuit to repeatedly check a qubit’s state.

c.

d.

5.

a.

b.

c.

d.

1.

2.

3.

4.

5.

1.

Entangling gates are a type of multi-qubit gate that

create correlations between qubits.

Universal gates are a set of gates that can be used

to implement any quantum operation.

What is the primary function of the Kronecker

product in representing a system with multiple

qubits in quantum computing?

To combine the states of individual qubits into a

single, larger state.

To separate the states of individual qubits.

To convert qubits into classical bits.

To reduce the number of qubits in a system.

Answer key

d

c

c

b

a

Questions

Explain the key advantage that quantum gates have

over classical gates.

Answer: The key advantage that quantum gates have

over classical gates is their ability to perform

computations on multiple states simultaneously

(quantum superposition) and to enable complex

parallel computations through entanglement. This

allows quantum computers to process and manipulate

2.

3.

4.

5.

vastly larger amounts of information in parallel than

classical gates, unlocking new computational

possibilities.

What makes a quantum gate reversible?

Answer: A quantum gate is reversible because of the

property of the unitary matrix that represents it.

In the Bloch sphere, what does the angle of rotation ϕ
around the Z-axis represent?

Answer: The Phase.

Explain why Measurement gates can only be used once

in a quantum circuit.

Answer: Measurement gates collapse the qubit’s

superposition state into one of its basis states (0 or 1)

and project the qubit’s state onto a specific basis.

Because this process changes the qubit’s state, it can

only be performed once.

What is the fundamental difference in function between

single-qubit gates (like Pauli, Hadamard, Phase) and

multi-qubit controlled gates (like CNOT, Toffoli) in

quantum computing?

Answer: Single-qubit gates act on individual qubits,

performing arbitrary unitary operations such as

rotations and phase shifts, thereby changing the state

of a single qubit without reference to others. In

contrast, multi-qubit-controlled gates (like CNOT and

Toffoli) apply operations on one or more qubits

conditional on the state(s) of one or more other

“control” qubits, thus enabling entanglement and

essential quantum logic operations.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New

Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

•

Chapter 5

Introduction to Qiskit

and IBM Q

Introduction

Quantum computing is revolutionizing how we approach
complex computational problems, offering unprecedented
capabilities that transcend classical computing limitations.
Power frameworks and tools developed by industry leaders
such as IBM and Google are central to this revolution. This
chapter discusses two pivotal components of the quantum
computing ecosystem: Qiskit and IBM Q. We will explore
how these tools, alongside essential technologies such as
Python and Jupyter Notebook, empower researchers,
developers and enthusiasts to harness the potential of
quantum computing.

Structure

The following topics are covered in this chapter:

Tools in quantum computing

•

•

•

Introduction to programming with Qiskit

Building quantum circuits

Overview of Quantum Composer

Objectives

This chapter aims to provide readers with a thorough
understanding of the tools and frameworks critical to
quantum computing, including Python, Jupyter Notebook,
Qiskit, and IBM Q. By the end of the chapter, readers will
be able to set up Python and Jupyter Notebook
environments for quantum computing development. Also,
they will be able to use Qiskit to create, simulate, and
optimize quantum circuits. The reader will understand the
components of IBM Q, such as Quantum Composer and
Quantum Lab, and their applications in quantum
programming. Additionally, you will gain knowledge on
building and analyzing quantum circuits using a variety of
gates and operations, and learn to leverage the Composer

Operations Glossary to utilize quantum gates and non-
unitary operations effectively.
These outcomes will empower readers to develop quantum
algorithms, experiment with quantum circuits, and engage
with IBM’s quantum computing platforms to solve real-
world problems.

Tools in quantum computing

Quantum computing tools provide an accessible way to
develop and test quantum algorithms. Python, Jupyter
Notebooks, and Qiskit enable users to write and simulate
quantum circuits, while IBM Quantum Composer offers a

visual interface to design and run them on real quantum
hardware.

Python in quantum computing

Python, renowned for its simplicity and versatility, serves
as the backbone of quantum computing development. Its
extensive library ecosystem, readability, and ease of
integration make it the preferred language for
implementing quantum algorithms and managing quantum
circuits. Beyond just programming, Python plays a crucial
role in quantum research, enabling tasks such as quantum
optimization, quantum machine learning, and quantum data
analysis. It provides the foundation for frameworks like
Qiskit and Cirq, allowing seamless interaction with
quantum simulators and real hardware.

Jupyter Notebook in quantum

computing

Jupyter Notebook is an interactive web application that
enhances the quantum computing experience by
integrating live code execution, rich text, and visualizations
into a single document. It provides an ideal environment for
experimenting with quantum circuits, documenting
research, and sharing results. IBM Q seamlessly integrates
with Jupyter, enabling users to write, test, and execute
Qiskit code efficiently. This hands-on approach simplifies
debugging, enhances visualization of complex quantum
algorithms, and fosters an interactive learning experience.

IBM Qiskit open-source quantum

framework

•

•

•

•

Qiskit is IBM’s open-source quantum computing
framework, designed to make quantum computing
accessible to researchers, developers, and educators. It
provides a robust set of tools for developing, simulating,
and executing quantum programs on both simulators and
real quantum hardware via IBM Q.
Qiskit consists of four key components:

Qiskit Terra: For building and optimizing quantum

circuits.

Qiskit Aer: For high-performance simulation of

quantum computations.

Qiskit Ignis: For error correction and noise mitigation

in quantum systems.

Qiskit Aqua: For implementing quantum algorithms

across various domains, including drug discovery,

financial modeling, optimization problems, and

machine learning.

By integrating with IBM Q, Qiskit allows users to test and
execute their quantum algorithms on actual quantum
processors, bridging the gap between theoretical research
and real-world applications. Its versatility and
comprehensive toolset make it an essential resource for
quantum computing development.

IBM Q cloud-based quantum

computing access

IBM Q is IBM’s quantum computing platform that provides
cloud-based access to real quantum processors, enabling
users to design, test, and execute quantum circuits. The
platform supports both free-tier access for beginners

•

•

and paid access for advanced users requiring greater
computational power.

IBM Q grants access to cutting-edge quantum

hardware, including processors built on architectures like
Falcon (27 qubits), Hummingbird (65 qubits), and

Eagle (127 qubits), with more powerful systems under
development.
The platform includes two key tools:

Quantum Composer: A user-friendly graphical

interface that allows users to construct and visualize

quantum circuits using a drag-and-drop approach,

making quantum computing more accessible to

beginners and educators.

Quantum Lab: An integrated development

environment powered by Jupyter Notebooks, offering

advanced capabilities for writing, testing, and running

quantum algorithms on IBM’s quantum systems.

This chapter provides an in-depth exploration of these tools
and frameworks, demonstrating how they collectively
advance quantum computing. By understanding the roles of
Python, Jupyter Notebook, Qiskit, and IBM Q, readers
will gain the knowledge needed to navigate and contribute
to this rapidly evolving field.

Getting started with Qiskit and IBM

Quantum

You can write your Qiskit code in a Jupyter Notebook,
where you can design and simulate quantum circuits. Once
ready, you can execute these circuits on IBM Q’s real

•

•

•

1.

a.

i.

ii.

quantum hardware or simulators via Qiskit’s application

programming interface (API).
For further learning, you can explore:

IBM Quantum Experience for hands-on access to real

quantum systems.

Qiskit textbook for structured learning materials and

tutorials.

Qiskit documentation for API references and example

projects.

Introduction to programming with

Qiskit

Qiskit is designed to be accessible to both quantum
computing novices and experts, offering a Python-based
interface for quantum circuit construction, execution, and
optimization.

Python setup for Qiskit and Quantum

Lab

To start with Qiskit and Cirq, you need to have Python
installed in your system along with a few essential
packages. The following is a step-by-step guide to help you
set up your environment for using these powerful quantum
computing frameworks:

Install Python:

Download Python:

Go to the official Python

website(https://www.python.org/).

Navigate to the Downloads section.

https://www.python.org/

iii.

b.

i.

ii.

2.

a.

b.

c.

d.

e.

•

○

•

○

3.

a.

Download the latest stable version of Python for

your operating system (Windows, macOS, or

Linux).

Install Python:

Run the downloaded installer.

During installation, ensure you check the box

that says Add Python to PATH. This makes it

easier to run Python from the command line.

Install a virtual environment (optional but

recommended): Creating a virtual environment helps

to manage dependencies and avoid conflicts between

different projects. The steps are:

Install virtualenv: Open your command prompt

(Windows) or terminal (macOS or Linux) and run:

pip install virtualenv

Create a virtual environment

Navigate to your project directory:

cd /path/to/your/project

Create a virtual environment:

virtualenv venv

Activate the virtual environment:

On Windows:

venv\Scripts\activate

On macOS or Linux:

source venv/bin/activate

Install Jupyter Notebook: Jupyter Notebook provides

an interactive environment to write and run your code.

Install Jupyter:

b.

4.

a.

b.

c.

d.

pip install jupyter

Start Jupyter Notebook:

jupyter notebook

This command will open the Jupyter Notebook interface

in your default web browser.

Install Qiskit: Qiskit is IBM’s open-source quantum

computing framework. To install Qiskit, follow these

steps:

Install Qiskit:

pip install qiskit

Verify Qiskit installation:

Open a Jupyter Notebook and run the following code

to ensure Qiskit is installed correctly:

import qiskit
print(qiskit.__version__)
If you plan to run jobs on quantum hardware, also

install Qiskit Runtime.

pip install qiskit-ibm-runtime

If you intend to use visualization functionality or

Jupyter Notebooks, it is recommended to install

Qiskit with the extra visualization support

(‘qiskit[visualization]’).

pip install qiskit[visualization]

Components of Qiskit

Qiskit consists of several modules, as shown in Figure 5.1,
each serving a distinct purpose within the framework. The
following are the components of Qiskit:

•

○

○

▪

▪

▪

▪

•

○

○

▪

▪

•

○

Qiskit Terra:

Description: Qiskit Terra is the core module of

Qiskit, providing foundational tools for quantum

circuit construction, optimization and execution.

Key features:

Quantum circuit construction using a high-level

Python interface.

Simulation of quantum circuits on local and

remote backends (simulators and real quantum

devices).

Optimization tools for compiling quantum circuits

to target specific quantum hardware

architectures.

Integration with classical computing for hybrid

quantum-classical algorithms.

Qiskit Aer:

Description: Qiskit Aer is a high-performance

simulator framework for quantum circuits in Qiskit.

It supports noiseless and noisy simulations,

essential for understanding the impact of errors in

quantum computations.

Key features:

Various simulation backends including state

vector simulators, unitary simulators, and noise

models.

Support for parallel execution to accelerate large-

scale quantum circuit simulations.

Qiskit Ignis:

Description: Qiskit Ignis focuses on quantum error

correction and mitigation techniques. It provides

○

▪

▪

•

○

○

▪

▪

tools for studying and improving the performance of

quantum systems through error characterization

and correction.

Key features:

Implementation of quantum error correction

codes (e.g., surface codes, repetition codes).

Error mitigation techniques to reduce the impact

of noise and errors on quantum computations.

Qiskit Aqua:

Description: Qiskit Aqua is dedicated to quantum

applications in domains such as optimization,

chemistry, finance and machine learning. It offers

high-level tools and algorithms for solving specific

problems using quantum computing techniques.

Key features:

Quantum algorithms including Variational

Quantum Eigensolver (VQE), Quantum

Approximate Optimization Algorithm

(QAOA) and Grover’s algorithm.

Domain-specific modules for tasks such as

quantum chemistry simulations and portfolio

optimization.

•

○

Figure 5.1: Qiskit elements

Running Hello World in Qiskit

Once Qiskit is installed, you can run a simple Hello World

program to verify the setup. Following is an example:

Map the problem to a quantum-native format: In

quantum programming, quantum circuits are used to

represent quantum instructions, while operators

correspond to the observables to be measured.

Typically, you create a new quantum circuit object and

add instructions to it sequentially. The following

example demonstrates how to create a Bell state, a

fully entangled state of two qubits:

Note on bit ordering: The Qiskit framework

adopts a least significant bit (LSb) convention for

bit numbering. Let us look at LSb notation in

Qiskit and its impact on quantum

computation.

The Qiskit framework adopts a LSb convention for

bit numbering, meaning that qubit indices are

ordered from right to left. This notation is important

for understanding measurement results and how

quantum circuits map onto classical registers.

Example: Bit ordering in quantum

computation

Consider a simple Bell state circuit using two

qubits:

from qiskit import QuantumCircuit, Aer, execute

qc = QuantumCircuit(2)
qc.h(0) # Apply Hadamard gate to qubit 0

○

qc.cx(0, 1) # Apply CNOT gate with qubit 0 as
control and qubit 1 as target
qc.measure_all()
qc.draw('mpl')
In Qiskit’s LSb convention, qubit 0 is the rightmost

bit when measured. This affects how results are

interpreted. For example, if the output is 01, it

means qubit 1 is in state |0⟩ and qubit 0 is in state

|1⟩.
This ordering differs from other frameworks that use

most significant bit (MSb) notation, where the

leftmost bit represents the lowest-indexed qubit.

Understanding this distinction helps avoid confusion

when comparing results or working across different

quantum computing platforms.

In this system, the nth bit corresponds to the value

2^n or 1 << n.

from qiskit import QuantumCircuit
from qiskit.quantum_info import SparsePauliOp
from qiskit.transpiler.preset_passmanagers import
generate_preset_pass_manager
from qiskit_ibm_runtime import EstimatorV2 as
Estimator
Initialize a QuantumCircuit with two qubits
circuit = QuantumCircuit(2)
Add a Hadamard gate to the first qubit (qubit 0)
circuit.h(0)
Add a controlled-X (CNOT) gate targeting the
second qubit (qubit 1), with the first qubit (qubit 0)

as the control
circuit.cx(0, 1)
Visualize the circuit using Matplotlib
circuit.draw('mpl')
The following is the output:

Figure 5.2: Bell state quantum circuit

When designing quantum circuit, you need to decide the
type of data you want to retrieve post-execution.

Qiskit provides two approaches for retrieving results:
either as a probability distribution of the measured qubits

or as the expectation value of a given observable.

Design your circuit's measurement tasks accordingly
using Qiskit primitives.

Define six distinct observables
from qiskit.quantum_info import SparsePauliOp
observable_labels = ["IZ", "IX", "ZI", "XI", "ZZ", "XX"]
observables = [SparsePauliOp(label) for label in
observable_labels]

The example measures expectation values using the
qiskit.quantum_info submodule with operators
(mathematical objects representing actions or processes
that change a quantum state). This code creates six two-
qubit Pauli operators: IZ, IX, ZI, XI, ZZ, and XX.
Here, the ZZ operator represents the tensor product Z⊗Z,
which means measuring the Z observable on both qubit one
and qubit zero simultaneously, providing information about
their correlation. Expectation values like this are typically
denoted as ⟨Z1Z0⟩.
If the state is entangled, the measurement of ⟨Z1Z0⟩ should
yield 1. This indicates a strong correlation between the two
qubits, characteristic of entanglement.

Note: When running quantum circuits on a device, it

is crucial to optimize the instructions and minimize

the circuit’s overall depth (number of instructions)

to reduce error and noise. Furthermore, the circuit’s

instructions must conform to the device’s

instruction set architecture (ISA), including its basis

gates and qubit connectivity.

The following example demonstrates how to set up a real
quantum device for job execution and adjust the circuit and
observables to be compatible with the device’s ISA:
from qiskit_ibm_runtime import QiskitRuntimeService

If your credentials are not already saved, you can use
this line instead:

#service = QiskitRuntimeService(channel="ibm_quantum",
token="<MY_IBM_QUANTUM_TOKEN>")

•

•

•

•

service = QiskitRuntimeService()

Select the least busy operational backend that is not a
simulator
backend = service.least_busy(simulator=False,
operational=True)

Optimize the circuit and map observables to the selected
backend's ISA
pass_manager =
generate_preset_pass_manager(backend=backend,
optimization_level=1)
isa_circuit = pass_manager.run(qc)

In Qiskit, the pass manager is responsible for optimizing
quantum circuits before execution on a backend. It applies
a series of transformations to improve circuit efficiency,
reduce gate count, and account for hardware constraints.

Optimization levels and their impact

Qiskit provides four optimization levels, each balancing
compilation time and circuit efficiency:

Level 0: No optimization, only basic scheduling and

mapping to hardware.

Level 1: Light optimization, reducing gate count while

preserving circuit structure.

Level 2: More aggressive optimization, including gate

cancellations and qubit reordering.

Level 3: Maximum optimization, applying advanced

techniques to minimize depth and noise effects, but

•

•

may take longer to compile.

Visualize the transformed circuit, hiding idle wires

isa_circuit.draw('mpl', idle_wires=False)
The following is the output:

Figure 5.3: Optimized quantum circuit

After successfully running the Hello World example, you
can proceed to explore more advanced operations using
quantum primitives. These primitives allow you to execute
quantum circuits multiple times and gather meaningful
statistical data. The following explains how to use them:

Execute using the quantum primitives: Quantum

computers can produce random results, so it is

typically necessary to run circuits multiple times to

collect a sample of outputs. To estimate the value of an

observable, you can use the estimator class. The

estimator is one of two primary primitives in quantum

computing, the other is sampler, which is used to

gather data from a quantum computer. Both estimator

and sampler objects have a run() method that

executes a selection of circuits, observables, and

parameters using a Primitive Unified Block (PUB).

Create an instance of the Estimator class:

from qiskit_ibm_runtime import EstimatorV2 as
Estimator

Initialize the estimator with the selected backend

estimator = Estimator(backend=backend)

Note: Use sampler if you need the probability

distribution of measurement outcomes (e.g.,

simulating real quantum measurements). Use

estimator if you need the expectation value of an

observable (e.g., for variational algorithms in

quantum chemistry or optimization).

Configure estimator options

estimator.options.resilience_level = 1

estimator.options.default_shots = 5000

Adjust observables to align with the layout of the
optimized circuit

aligned_observables = [
observable.apply_layout(isa_circuit.layout) for
observable in observables

]

Submit a job with one circuit and multiple
observables

job = estimator.run([(isa_circuit,
aligned_observables)])

•

Display the job ID for future reference

print(f">>> Job ID: {job.job_id()}")

Example output:

>>> Job ID: csbmgsbd3kwg008hdtp0

The job ID can be used later to access the results

job_result = job.result()

Retrieve the result for the single circuit and its
corresponding observables

circuit_result = job_result[0]

This example demonstrates how to use the estimator

to calculate expectation values and the sampler to

collect output data from a quantum circuit, illustrating

how quantum computations can yield meaningful

results through repeated sampling and estimation.

Analysis of results: During the analysis phase, you

typically refine your results using techniques such as

measurement error mitigation or zero-noise

extrapolation (ZNE). These refined results can then

be integrated into another workflow for deeper analysis

or can be used to create visual representations of key

data points. This phase is highly tailored to the specific

challenges of your problem. For instance, in this case,

you would create plots displaying each expectation

value measured for our circuit:

To retrieve the expectation values and standard
deviations for the observables defined in the
estimator,

access `circuit_result.data.evs` for expectation
values and `circuit_result.data.stds` for standard
deviations.

If using a sampler instead, you can use
`circuit_result.data.meas.get_counts()` to get a
dictionary

mapping bitstrings to their measurement counts.

Refer to the "Get started with Sampler"
documentation for additional details.

Importing Matplotlib for visualization

from matplotlib import pyplot as plt

Extract the expectation values and standard
deviations

values = circuit_result.data.evs

errors = circuit_result.data.stds

Plotting the results

plt.plot(observable_labels, values, '-o')

plt.xlabel('Observables')

plt.ylabel('Expectation Values')

plt.title('Expectation Values of Observables')

plt.grid(True)

plt.show()

Notice that for qubits zero and one, the independent

expectation values of both X and Z are zero, while the

correlations (XX and ZZ) are one. This is a hallmark of

quantum entanglement, as shown in Figure 5.4, which

shows the measured expectation values for six

different observables, and highlights the correlation

between qubits in an entangled state.

The following is the output:

Figure 5.4: Entanglement results

Building quantum circuits

Quantum circuits are the foundational structures of
quantum algorithms. They consist of qubits (quantum bits)
and quantum gates that manipulate the qubits’ states. In
Qiskit, you can build circuits using the QuantumCircuit

class, which provides methods to add various quantum
gates and measurements.

Circuit design basics

Qiskit offers flexibility in managing circuits (and to some
extent, operators) across different abstraction levels:
abstract, virtual, physical, scheduled, and pulse programs.
At the highest abstract level, circuits are task-focused
within the circuit library. Operations can also be expressed
abstractly using operators, isometries, and classical or
Boolean functions. Virtual circuits translate these
mathematical abstractions into a concrete representation
using a specific gate set. At the physical level, these
instructions are mapped onto physical qubits with
instructions adapted to reflect the connectivity and native
gates of the target hardware platform. Scheduled circuits
incorporate timing details, while pulse programs represent
signals on channels.
Let us see how to create a simple quantum circuit in Qiskit
and visualize it:
From Qiskit, import QuantumCircuit:
circuit = QuantumCircuit(2)
circuit.qubits
circuit.draw('mpl')
The following is the output:

Figure 5.5: Quantum circuit initialization

•

○

○

○

•

circuit.x(0) # Add X-gate to qubit 0
circuit.data
circuit.draw('mpl')
The following is the output:

Figure 5.6: Single X-gate operation

circuit.x(0) # Apply Pauli X (NOT) gate to qubit 0
circuit.h(1) # Apply Hadamard gate to qubit 1
circuit.cx(0, 1) # Apply CNOT (Controlled-X) gate, using
qubit 0 as control

circuit.draw('mpl')
Qiskit provides a wide range of quantum gates, including
support for multi-controlled gates. The following
demonstrates how to use some of these gates:

Gate functionality:

X-Gate (Pauli X): Flips the qubit state (|0⟩ ↔ |1⟩).
H-Gate (Hadamard): Creates superposition (|0⟩ →
|+⟩, |1⟩ → |−⟩).
CNOT (CX-Gate): Flips the target qubit only if the

control qubit is in state |1⟩.
Multi-controlled gates in Qiskit: Qiskit supports

multi-controlled gates, like the multi-controlled X

(MCXGate) for larger circuits:

from qiskit.circuit.library import HGate, MCXGate

•

circuit = QuantumCircuit(4)

Apply a Hadamard gate to qubit 0

circuit.append(HGate(), [0])

Apply a Multi-Controlled X (MCX) gate

circuit.append(MCXGate(3), [0, 1, 2, 3])

circuit.draw('mpl')

Multi-controlled X-gate: The X operation applies to

the last qubit only when all control qubits are in state

|1⟩.

from qiskit import QuantumCircuit

from qiskit.circuit.library import HGate, MCXGate

mcx = MCXGate(3)

hadamard = HGate()

circuit = QuantumCircuit(4)

circuit.append(hadamard, [0])

circuit.append(mcx, [0,1,2,3])

circuit.draw('mpl')

The following is the output:

•

•

Figure 5.7: Multi-controlled gates

Classical feedforward and control

flow

This guide outlines the capabilities in the Qiskit software

development kit (SDK) for executing classical
feedforward and control flow, often collectively known as
dynamic circuits. Classical feedforward allows for the
measurement of qubits during a circuit and subsequent
quantum operations based on the measurement outcomes.
Qiskit provides four control flow constructs for classical
feedforward, each implemented as a method on quantum
circuit:

If statement: QuantumCircuit.if_test, use if when

deciding between two possible operations based on a

single classical result.

Switch statement: QuantumCircuit.switch, use

multiple if conditions to mimic a switch-case for

handling multiple cases.

•

•

•

For loop: QuantumCircuit.for_loop, use for to

repeat a fixed number of quantum operations without

relying on classical measurements.

While loop: QuantumCircuit.while_loop, use while

for iterative quantum operations based on classical

feedback (e.g., error correction).

Let us look at each of them in detail:

If statement: The if statement is used to conditionally

execute operations based on the value of a classical bit

or register.

In the following example, a Hadamard gate is applied

to a qubit, which is then measured. If the measurement

result is one, an X gate is applied to the qubit, flipping

it back to the zero state. The qubit is then measured

again. The final measurement outcome should be 0

with 100% probability:

Importing necessary modules from Qiskit

from qiskit.circuit import QuantumCircuit,
QuantumRegister, ClassicalRegister

from qiskit_aer.primitives import Sampler

from qiskit.visualization import plot_histogram

Define a quantum register with one qubit and a
classical register with one bit

quantum_register = QuantumRegister(1)

classical_register = ClassicalRegister(1)

quantum_circuit = QuantumCircuit(quantum_register,
classical_register)

Assign variables to the single qubit and classical bit
for clarity

qubit = quantum_register[0]

classical_bit = classical_register[0]

Add a Hadamard gate to the qubit

quantum_circuit.h(qubit)

Perform a measurement from the qubit to the
classical bit

quantum_circuit.measure(qubit, classical_bit)

Add a conditional operation: apply an X gate to the
qubit if the classical bit equals 1

with quantum_circuit.if_test((classical_bit, 1)):

quantum_circuit.x(qubit)

Perform another measurement from the qubit to the
classical bit

quantum_circuit.measure(qubit, classical_bit)

Draw and display the circuit using Matplotlib

quantum_circuit.draw("mpl")

The following is the output:

Figure 5.8: Conditional operation example

Example output counts: {'0': 1000}

Execute the circuit using the Sampler and obtain
the quasi-probability distributions

quasi_dists = Sampler().run(circuit,
shots=1000).result().quasi_dists[0]

Visualize the result using Matplotlib

plot_histogram(quasi_dists)

The output will display the distribution as a
histogram:

Figure 5.9: Measurement histogram

#Conditional if Statement with else

from qiskit import QuantumCircuit, ClassicalRegister

Create a quantum circuit with 1 qubit and 1
classical bit

qc = QuantumCircuit(1, 1)

Apply a Hadamard gate and measure

qc.h(0)

qc.measure(0, 0)

Conditional statement: Apply X gate if measurement
result is 1

with qc.if_test((0, 1)): # Checks if classical bit 0 is 1

qc.x(0)

with qc.else_(): # Else statement for completeness

qc.h(0)

qc.draw('mpl')

#If the measurement result is 1, an X gate is applied.
If the result is 0, an H gate is applied instead.

The with statement can accept an assignment target

that acts as a context manager. This context manager

can be stored and used later to create an else block,

which is executed when the if block is not.

In the following example, we initialize registers with

two qubits and two classical bits. A Hadamard gate is

applied to the first qubit, which is then measured. If the

measurement result is one, Hadamard gate is applied

to the second qubit, otherwise, an X gate is applied to

the second qubit. Finally, the second qubit is measured.

Define a quantum register with two qubits and a
classical register with two bits

qubits = QuantumRegister(2)

clbits = ClassicalRegister(2)

circuit = QuantumCircuit(qubits, clbits)

Assign variables to the qubits and classical bits for
clarity

(q0, q1) = qubits

(c0, c1) = clbits

Apply a Hadamard gate to the first qubit

circuit.h(q0)

Measure the first qubit and store the result in the
first classical bit

circuit.measure(q0, c0)

Add a conditional block: if the first classical bit is 1,
apply a Hadamard gate to the second qubit

Otherwise, apply an X gate to the second qubit

with circuit.if_test((c0, 1)) as else_:

circuit.h(q1)

with else_:

circuit.x(q1)

Measure the second qubit and store the result in the
second classical bit

circuit.measure(q1, c1)

Visualize the circuit using Matplotlib

circuit.draw("mpl")

The following is the output:

Figure 5.10: Conditional Hadamard or X Operation

example output counts: {'01': 247, '11': 254, '10':
499}

The following is the output:

Figure 5.11: Measurement probability of the Conditional Hadamard or X

operation

In addition to conditioning a single classical bit, you

can also condition on the value of a classical register

composed of multiple bits.

In the following example, Hadamard gates are applied

to two qubits, which are then measured. If the result is

01 (meaning the first qubit is measured as one and the

second qubit as zero), an X gate is applied to a third

qubit. Finally, the third qubit is measured. For clarity,

the condition is specified as the third classical bit being

zero in the if statement. In the circuit diagram, the

condition is shown with circles on the classical bits

being conditioned on, a black circle indicates

conditioning on one and a white circle indicates

conditioning on zero.

Create a quantum register with three qubits and a
classical register with three bits

qubits = QuantumRegister(3)

clbits = ClassicalRegister(3)

circuit = QuantumCircuit(qubits, clbits)

Assign variables to the qubits and classical bits for
clarity

(q0, q1, q2) = qubits

(c0, c1, c2) = clbits

Apply Hadamard gates to the first two qubits

circuit.h([q0, q1])

Measure the first and second qubits, storing results
in the corresponding classical bits

circuit.measure(q0, c0)

circuit.measure(q1, c1)

Add a conditional operation: if the classical bits
match the binary value 0b001, apply an X gate to the
third qubit

with circuit.if_test((clbits, 0b001)):

circuit.x(q2)

Measure the third qubit and store the result in the
third classical bit

circuit.measure(q2, c2)

Visualize the circuit using Matplotlib

circuit.draw("mpl")

The following is the output:

Figure 5.12: Multi-bit conditional operations

example output counts: {'101': 258, '011': 258, '000':
252, '010': 232}

The following is the output:

Figure 5.13 Measurement probability of the multibit conditional operators

•

Both Qiskit and OpenQASM support extended circuits,

broadening the range of permissible operations to

include real-time computations on classical values.

Qiskit’s tools for handling this expanded circuit family

is given in detail in the classical feedforward and

control flow section.

Switch statement: The switch statement is used to

select actions based on the value of a classical bit or

register. Unlike an if statement, it allows for multiple

cases in the branching logic. In the following example,

Hadamard gate is applied to a qubit, which is then

measured. If the result is zero, an X gate is applied to

the qubit, if the result is one, a Z gate is applied. This

ensures that the final measurement outcome is one

with 100% probability, shown as follows:

Create a quantum register with three qubits and a
classical register with three bits

qubits = QuantumRegister(3)

clbits = ClassicalRegister(3)

circuit = QuantumCircuit(qubits, clbits)

Assign variables to the qubits and classical bits for
clarity

(q0, q1, q2) = qubits

(c0, c1, c2) = clbits

Apply Hadamard gates to the first two qubits

circuit.h([q0, q1])

Measure the first and second qubits, storing results
in the corresponding classical bits

circuit.measure(q0, c0)

circuit.measure(q1, c1)

Add a conditional operation: if the classical bits
match the binary value 0b001, apply an X gate to the
third qubit

with circuit.if_test((clbits, 0b001)):

circuit.x(q2)

Measure the third qubit and store the result in the
third classical bit

circuit.measure(q2, c2)

Visualize the circuit using Matplotlib

circuit.draw("mpl")

The following is the output:

Figure 5.14: Switch statement

example output counts: {'1': 1024}

Since the previous example used a single classical bit,

there were only two possible cases, making it

achievable with an if-else statement. The switch

statement is particularly useful when branching on the

value of a classical register composed of multiple bits.

The example that we will see will demonstrate this,

including how to construct a default case that is

executed if none of the specified cases match. Note

that in a switch statement, only one of the blocks is

executed; there is no fallthrough.

In the following example, Hadamard gates are applied

to two qubits, which are then measured. If the result is

00 or 11, a Z gate is applied to the third qubit. If the

result is 01, a Y gate is applied. If none of these cases

match, an X gate is applied. Finally, the third qubit is

measured:

Create a quantum register with three qubits and a
classical register with three bits

qubits = QuantumRegister(3)

clbits = ClassicalRegister(3)

circuit = QuantumCircuit(qubits, clbits)

Assign variables to the qubits and classical bits for
clarity

(q0, q1, q2) = qubits

(c0, c1, c2) = clbits

Apply Hadamard gates to the first two qubits

circuit.h([q0, q1])

Measure the first and second qubits, storing the
results in the corresponding classical bits

circuit.measure(q0, c0)

circuit.measure(q1, c1)

Implement a switch-case logic based on the classical
register values

with circuit.switch(clbits) as case:

with case(0b000, 0b011): # If classical bits are
0b000 or 0b011, apply a Z gate to the third qubit

circuit.z(q2)

with case(0b001): # If classical bits are 0b001,
apply a Y gate to the third qubit

circuit.y(q2)

with case(case.DEFAULT): # For all other cases,
apply an X gate to the third qubit

circuit.x(q2)

Measure the third qubit and store the result in the
third classical bit

circuit.measure(q2, c2)

Visualize the circuit using Matplotlib

circuit.draw("mpl")

The following is the output:

•

Figure 5.15: Extended switch conditional logic

example output counts: {'101': 267, '110': 249, '011':
265, '000': 243}

The bitstrings with higher counts correspond to the

states with higher probability amplitudes in the

quantum superposition.

For loop: A for loop is used to iterate over a sequence

of classical values, performing specific operations

during each iteration.

In the following example, a for loop is used to apply

five X gates to a qubit, followed by a measurement.

Since an odd number of X gates are applied, the qubit

is flipped from the zero state to one state:

Create a quantum register with one qubit and a
classical register with one bit

qubits = QuantumRegister(1)

clbits = ClassicalRegister(1)

circuit = QuantumCircuit(qubits, clbits)

Assign variables to the single qubit and classical bit

(q0,) = qubits

•

(c0,) = clbits

Apply a for-loop that repeats five iterations,
applying an X gate to the qubit in each iteration

with circuit.for_loop(range(5)) as _:

circuit.x(q0)

Measure the qubit and store the result in the
classical bit

circuit.measure(q0, c0)

Visualize the circuit using Matplotlib

circuit.draw("mpl")

The following is the output:

Figure 5.16: For loop operation

example output counts: {'1': 1024}

While loop: A while loop is used to repeat

instructions as long as a specified condition is met.

While loops do not run on quantum hardware—they are

evaluated on classical control logic after measurement.

In the following example, Hadamard gates are applied

to two qubits, followed by their measurement. A while

loop is then used to repeat this procedure as long as

the measurement outcome is 11. Consequently, the

final measurement should never be 11, with the other

outcomes appearing with approximately equal

frequency:

Create a quantum register with two qubits and a
classical register with two bits

qubits = QuantumRegister(2)

clbits = ClassicalRegister(2)

circuit = QuantumCircuit(qubits, clbits)

Assign variables to the individual qubits and
classical bits for clarity

q0, q1 = qubits

c0, c1 = clbits

Apply Hadamard gates to both qubits to create
superposition

circuit.h([q0, q1])

Measure the first qubit into the first classical bit and
the second qubit into the second classical bit

circuit.measure(q0, c0)

circuit.measure(q1, c1)

Add a while loop that continues as long as the
classical bits hold the value 0b11

•

with circuit.while_loop((clbits, 0b11)):

Inside the loop, reapply Hadamard gates to both
qubits

circuit.h([q0, q1])

Measure the qubits into their corresponding
classical bits

circuit.measure(q0, c0)

circuit.measure(q1, c1)

Visualize the circuit using Matplotlib

circuit.draw("mpl")

The following is the output:

Figure 5.17: While loop operation

example output counts: {'01': 334, '10': 368, '00':
322}

Qiskit’s limitations on real quantum

hardware

The following are some of Qiskit’s limitations on real
quantum hardware:

Control flow execution constraints:

○

○

•

•

•

•

•

If and while are evaluated on classical hardware

after measurement.

No native quantum loops; quantum circuits must

be predefined before execution.

Noise and decoherence: Real quantum devices

suffer from gate errors and qubit decoherence,

impacting execution reliability.

Limited qubit connectivity: Some backends have

restricted qubit connectivity, requiring additional

SWAP gates, which increase circuit depth.

Grover’s search using Qiskit

Amplitude amplification is a versatile quantum algorithm or
subroutine that offers a quadratic speedup compared to
several classical algorithms. Grover’s algorithm was the
first to showcase this advantage for unstructured search
problems.

Practical applications of Grover’s

search

Grover’s algorithm is a quantum search algorithm that
provides a quadratic speedup for unstructured search

problems. Some practical applications include:

Database search: Finding a specific entry in an

unsorted dataset faster than classical methods.

Cryptography: Breaking symmetric encryption (e.g.,

cracking AES by searching for the correct key in fewer

steps).

Pattern matching: Speeding up search tasks in

machine learning and optimization problems.

Understanding the Oracle with a real-

world analogy

To formulate a Grover’s search problem, an oracle function
is needed to mark specific computational basis states as the
ones we aim to find. Additionally, an amplification circuit
enhances the amplitudes of these marked states while
reducing the amplitudes of the others.

An oracle in Grover’s algorithm is a black box function

that identifies the correct solution by flipping its phase.

Imagine searching for a marked card in a deck of

playing cards. Instead of flipping cards one by one
(classical search), an oracle magically highlights the

correct card, allowing Grover’s algorithm to amplify its
probability and find it faster.
The following example illustrates how to create Grover
oracles and utilize the Grover operator from the Qiskit
circuit library to set up a Grover’s search instance
efficiently. The runtime sampler primitive facilitates the
seamless execution of Grover circuits:

Import standard Python libraries
import math

Import necessary modules from Qiskit
from qiskit import QuantumCircuit
from qiskit.circuit.library import GroverOperator, MCMT,
ZGate
from qiskit.visualization import plot_distribution

○

○

○

•

Import required components from Qiskit Runtime
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_runtime import SamplerV2 as Sampler

Initialize the runtime service and select the backend with
the shortest job queue for hardware execution
service = QiskitRuntimeService(channel="ibm_quantum")
backend = service.least_busy(operational=True,
simulator=False)

operational=True ensures only active quantum

devices are considered.

simulator=False excludes simulators, selecting

only real quantum processors.

least_busy sorts available devices by queue length

and selects the one with the shortest wait time.

This method helps optimize execution time by avoiding

heavily loaded backends.

Display the name of the selected backend

print(backend.name)

Grover’s algorithm leverages an oracle mechanism

designed to identify specific target states to translate

classical information into a quantum framework. Here

is an overview of how this mapping process works:

Map classical inputs to a quantum problem:

Grover’s algorithm utilizes an oracle that identifies

specific computational basis states marked with a

phase of -1. To mark the state corresponding to the

binary representation 1 * 𝑁 (where all 𝑁 bits are 1), a

controlled-Z gate or its multi-controlled counterpart

over 𝑁 qubits is employed. Marking basis states that

include one or more 0’s in their binary representation

involves applying X gates on the respective qubits

before and after the controlled-Z gate, effectively

creating an open-control condition on those qubits.

In the following code, we define an oracle that

implements this marking process for one or more

specified input basis states using their bit-string

representation. The multi-controlled multi-target

(MCMT) gate is utilized to realize the multi-controlled

Z-gate operation:

def create_grover_oracle(marked_states):

"""

Constructs a Grover oracle for identifying multiple
marked states.

Parameters:

marked_states (str or list): Target states to be
marked by the oracle.

Returns:

QuantumCircuit: A quantum circuit representing
the Grover oracle.

"""

Ensure the input is treated as a list, even if a
single string is provided

if not isinstance(marked_states, list):

marked_states = [marked_states]

Determine the number of qubits required for the
circuit

num_qubits = len(marked_states[0])

Initialize a quantum circuit with the required
number of qubits

qc = QuantumCircuit(num_qubits)

Iterate through the marked states to encode
them into the oracle

for target_state in marked_states:

Reverse the target bit-string to align with
Qiskit's bit-ordering

reversed_target = target_state[::-1]

Identify the positions of '0' bits in the reversed
target state

zero_indices = [index for index in
range(num_qubits) if reversed_target[index] == "0"]

Apply X-gates to qubits corresponding to '0'
bits, turning them into open controls

qc.x(zero_indices)

Add a multi-controlled Z gate to mark the
state, using the appropriate controls

qc.compose(MCMT(ZGate(), num_qubits - 1, 1),
inplace=True)

MCMT gates are multi-controlled multi-target gates,

meaning they apply an operation to multiple target

qubits based on the state of multiple control qubits.

•

They are useful in Grover’s algorithm, quantum

arithmetic, and reversible computing.

Reapply X-gates to reset the qubits modified
earlier

qc.x(zero_indices)

Return the constructed quantum circuit

return qc

Specific Grover’s instance: Now that we have the

oracle function, we can define a specific instance of

Grover search. In the following example, we will mark

two computational states out of the eight available in a

three qubit computational space:

Define the list of marked states

target_states = ["011", "100"]

Generate the Grover oracle for the specified states

grover_oracle_circuit =
create_grover_oracle(target_states)

Visualize the oracle circuit using Matplotlib with a
specific style

grover_oracle_circuit.draw(output="mpl", style="iqp")

The following is the output:

Figure 5.18: Grover Oracle

Grover operator

The built-in Qiskit Grover operator takes an oracle circuit
and returns a circuit that is composed of the oracle circuit
itself and a circuit that amplifies the states marked by the
oracle. Here, we decompose the circuit to see the gates
within the operator:

Create the Grover operator using the constructed oracle
grover_operator = GroverOperator(grover_oracle_circuit)

Decompose the Grover operator to display its internal
structure and visualize it
grover_operator.decompose().draw(output="mpl",
style="iqp")
The following is the output:

Figure 5.19: Grover operator

•

•

•

•

The provided visualization represents the quantum circuit
for the Diffusion operator in Grover’s algorithm:

The X gates (blue) flip qubits to shift the amplitude

distribution.

The Hadamard gates (red) create and restore

superpositions.

The controlled operations (purple and blue) perform

phase inversion.

The final Hadamard and X gates return the marked

state with higher probability.

Repeated applications of this grover_op circuit amplify the
marked states, making them the most probable bit-strings
in the output distribution from the circuit. There is an
optimal number of such applications that is determined by
the ratio of marked states to total number of possible
computational states.
The following formula ensures that the algorithm achieves
the highest probability of finding a marked state by
balancing efficiency and accuracy:
optimal_num_iterations = math.floor(

math.pi / (4 * math.asin(math.sqrt(len(marked_states) /
2**grover_op.num_qubits)))

)

Full Grover circuit

A full Grover experiment begins by applying Hadamard
gate to each qubit, creating an equal superposition of all
possible computational basis states. This is followed by
iteratively applying the Grover operator (grover_op) the

optimal number of times. Here, we utilize the
QuantumCircuit.power (INT)(integer value) method to
efficiently repeat the application of the Grover operator:

Initialize a quantum circuit with the same number of
qubits as the Grover operator
quantum_circuit =
QuantumCircuit(grover_operator.num_qubits)

Generate an equal superposition across all possible basis
states
quantum_circuit.h(range(grover_operator.num_qubits))

Apply the Grover operator for the calculated optimal
number of iterations
quantum_circuit.compose(grover_operator.power(optimal_
num_iterations), inplace=True)

Perform measurements on all the qubits in the circuit
quantum_circuit.measure_all()

Visualize the complete quantum circuit using Matplotlib
with the chosen style
quantum_circuit.draw(output="mpl", style="iqp")
The following is the output:

•

Figure 5.20: Full Grover circuit

Optimize problem for quantum execution using

transpilers: Transpiling is the process of converting a

high-level quantum circuit into a form that can be

executed on a specific quantum hardware backend.

This involves optimizing the circuit to reduce the

number of gates and adjusting the circuit layout to

match the connectivity of the quantum device.

Qiskit provides the transpile function, which takes a

quantum circuit and a target backend as input and

produces an optimized circuit. The process includes

gate fusion, qubit reordering and other optimization

techniques to enhance the circuit’s performance.

To execute quantum algorithms efficiently on actual

quantum hardware, it is essential to adapt and

optimize the quantum circuits for the specific

constraints and capabilities of the target device. This

step ensures that the circuits are both functional and

optimized for performance. One key method to achieve

this is through the process of transpilation:

from qiskit.transpiler.preset_passmanagers import
generate_preset_pass_manager

•

Extract the target configuration from the backend

backend_target = backend.target

Create a preset pass manager with the specified
target and optimization level

pass_manager =
generate_preset_pass_manager(target=backend_targe
t, optimization_level=3)

Apply the pass manager to optimize and transform
the quantum circuit

optimized_circuit =
pass_manager.run(quantum_circuit)

Execute using Qiskit primitives: Amplitude

amplification is a sampling task well-suited for

execution using the runtime primitive called Sampler.

It is important to note that the run() method of the

Qiskit Runtime’s SamplerV2 expects an iterable of

PUBs. For a sampler, each PUB is an iterable formatted

as (circuit, parameter_values). At its simplest, it

requires a list of quantum circuits.

For execution on a local simulator:

Utilize the StatevectorSampler from
qiskit.primitives instead

sampler_instance = Sampler(backend=backend)

sampler_instance.options.default_shots = 10_000

Execute the sampler on the optimized circuit and
retrieve the result

execution_result =
sampler_instance.run([optimized_circuit]).result()

Extract the measurement counts from the results

measurement_distribution =
execution_result[0].data.meas.get_counts()

Post-process and visualize the distribution in a
classical format

plot_distribution(measurement_distribution)

The following is the output:

Figure 5.21: Measurement from Grover’s search with 3 Qubit operation

Overview of Quantum Composer

•

•

•

○

The IBM Quantum Composer is an intuitive, user-friendly
platform designed for both beginners and experts to
experiment with quantum circuits. It provides a visual
interface where users can easily design and simulate
quantum algorithms without requiring in-depth
programming knowledge. This makes it an ideal tool for
exploring the principles of quantum computing and testing
ideas in a hands-on manner.

Quantum Composer

IBM Quantum Composer is a graphical tool for quantum
programming that enables users to construct quantum
circuits by dragging and dropping operations. These
circuits can then be executed on real quantum hardware or
simulators.

Key features

The following are the key features of Quantum Composer:

Visualize qubit states: Observes the state of qubits

visually. Changes to your circuit are reflected in

interactive q-sphere representations or histograms

displaying measurement probabilities and state vector

simulations.

Run on quantum hardware: Executes your circuits

on actual quantum hardware to experience the impact

of device noise and other quantum effects.

Simulators versus real hardware: Users can choose

between:

Single-shot statevector simulators (for ideal,

noise-free quantum state visualizations).

○

•

•

•

•

•

Backend execution via “Setup and Run” (for

full, hardware-accurate quantum computations).

Inspect mode: Step through the evolution of qubit

states at each stage of computation, allowing for

deeper analysis of how quantum gates affect state

transformations.

Automated code generation: Instead of manual

coding, automatically generate equivalent OpenQASM

or Python code based on the circuit designed using

Quantum Composer as shown in Figure 5.22. This

feature ensures that the generated code replicates the

behavior of the graphical circuit seamlessly:

Figure 5.22: IBM Quantum Composer interface

Tools panel: Utilize the side panel to access files, jobs,

or documentation. Close the side panel by clicking the

icon for the open tab.

Menu bar: Access various menus to create new

circuits, manage saved circuits and register, customize

your workspace, and more.

Run area: Adjust run settings and execute your circuit

on a quantum system or simulator.

•

•

•

•

•

Composer files: Automatically save and display the

circuits you create in the composer files panel.

Circuit name: Click here to assign a name to your

circuit.

Operations catalog: These are the fundamental

elements used in quantum circuits. Drag and drop

gates and operations onto the graphical circuit editor.

Gates are color-coded for clarity, for instance, classical

gates are dark blue, phase gates are light blue, and

non-unitary operations are grey as shown in Figure

5.23. To explore available gates and operations, right-

click on an operation and select Info to read its

definition.

Figure 5.23: Quantum Composer operations

Code editor: Open or close the code editor using the

view menu. The code editor allows you to view and edit

the OpenQASM or Qiskit code for the circuit.

Graphical circuit editor: This is where you construct

your quantum circuit. Drag gates and operations onto

the horizontal qubit wires that form your quantum

register. To delete a gate from a wire, select the gate

and click the trash can icon. To adjust parameters and

•

•

•

settings on gates that support editing, select the gate

in the graphical editor and click Edit.

Toolbar: Access commonly used tools such as undo

and redo, gate alignment adjustments and switch to

inspect mode. Inspect mode provides a step-by-step

view of qubit states during circuit computation

evolution. For more details, refer to Inspect your

circuit, step-by-step.

Phase disks: The phase of the qubit state vector in

the complex plane is indicated by the line extending

from the center of the diagram to the edge of the grey

disk, rotating counterclockwise around the center

point. Show or hide the phase disks using the view

menu.

Visualizations: Visualizations dynamically represent

your circuit as you build it. They utilize a single-shot

statevector simulator, distinct from the system

specified in the setup and run settings. Note that

visualizations do not account for any measurement

operations you add. Sign in and click Setup and run

to obtain results from the specified backend. To learn

more about visualizations, refer to visualizations.

Potential of quantum computing

In the realm of quantum computing, building quantum
circuits involves a variety of operations that manipulate
qubits. These operations can be broadly categorized into
several types, each serving a distinct purpose within a
quantum algorithm.

Fundamentals of qubits and gates

•

•

•

•

Imagine a world where computers can solve problems
millions of times faster than the ones we use today.
Quantum computing operates on fundamental units called
qubits, which adhere to the principles of quantum
mechanics such as superposition and entanglement.
Instead of just being a 0 or 1 like regular computer bits,
qubits can be 0, 1, or even both at the same time. This
strange behavior opens up incredible possibilities, but to
harness this power, we need tools called quantum gates
and operations. Let us explore them step by step.

Overview of quantum circuits

Think of a quantum circuit as a recipe. To bake a cake, you
follow specific steps, adding ingredients and mixing them
in a certain order. In a quantum computer, the ingredients

are qubits, and the steps are the gates and operations we
use to manipulate them. These gates allow us to:

Flip a qubit from 0 to 1 or vice versa.

Mix two qubits together to form connections.

Adjust the angle of a qubit to make it behave in

specific ways.

Measure a qubit to see its final state.

Tools in our quantum toolbox

The quantum computing ecosystem offers a range of tools
designed to help users build, simulate, and run quantum
circuits efficiently. These tools provide seamless access to
quantum hardware, powerful simulators, and
comprehensive learning resources, enabling both beginners
and experts to explore the potential of quantum computing.

•

•

Let us break down the key tools we use in quantum
circuits.

Classical gates

Classical gates are the simplest tools, similar to what
regular computers use. They are like switches that turn
things on or off, or logic tools that say, If this is true, then

do that.

NOT gate: Like flipping a light switch, this gate

changes a 0 to a 1 or a 1 to a 0. Refer to the following

figure:

Figure 5.24: Classical NOT gate and composer reference in the interface

CNOT gate: This one is a bit fancier. Imagine a light

bulb that only turns on if one switch is already on and

you flip another switch. It connects two qubits, creating

a special link between them. Refer to the following

figure:

•

•

Figure 5.25: Visual representation of classical CNot gate

Toffoli gate: Think of it as teamwork, two switches

work together to decide whether a third one gets

flipped. Refer to the following figure:

Figure 5.26: Visual representation of Toffoli gate

SWAP gate: As the name suggests, this gate swaps

the states of two qubits, like trading places in a game

of musical chairs. The following figure is a

representation of the SWAP gate as depicted in the

Quantum Composer:

•

•

Figure 5.27: Visual representation of swap gate

Identity gate: This gate is like a placeholder, ensuring

no changes happen momentarily. Identity gate

representation in the Quantum Composer is given as

follows:

Figure 5.28: Visual representation of the Identity gate

Phase gates

Phase gates are all about subtle adjustments. Imagine a DJ
tweaking the balance of a song to make it sound just right.
Phase gates change how qubits behave, but without
altering their main state. Let us look at them in detail:

T gate: A small adjustment that is crucial for fine-

tuning quantum calculations. Refer to the following

figure:

•

•

Figure 5.29: Visual representation of T gate

S gate: Adds an imaginary twist to the qubit’s state,

making it ready for more complex operations. Refer to

the following figure:

Figure 5.30: Visual representation of S gate

Z gate: This gate flips part of the qubit’s behavior,

creating a sharper contrast, like adding bass to a song.

Refer to the following figure:

•

•

Figure 5.31: Visual representation of Z gate

RZ gate: Rotates the qubit around an imaginary axis,

adjusting it to the perfect angle for the task at hand.

Refer to the following figure:

Figure 5.32: Visual representation of RZ gate

Non-unitary operators

These are the tools we use to finalize or reset our work in a
quantum circuit. Let us look at them in detail:

Reset operation: Like erasing a chalkboard, this

operation wipes a qubit clean, setting it back to its

starting state of 0. Refer to the following figure:

•

Figure 5.33: Visual Representation of reset operator

Measurement: This is where the magic becomes

reality. When you measure a qubit, it chooses a state,

either 0 or 1. This step turns the quantum result into

something we can use in the real-world. The

measurement gate in Quantum Composer looks as

provided in the following figure:

Figure 5.34: Visual representation of measurement operator

Modifiers

Sometimes, we want an operation to happen only if a
certain condition is met. Modifiers act like traffic lights,
controlling when and how gates are applied.

For example, a control modifier lets you say, Do this

operation only if this qubit is in state 1 It is like adding a
conditional rule to a game.

Hadamard gate

The Hadamard gate is one of the most important tools in
quantum computing. It is like a magic wand that takes a
qubit and makes it exist in two states at once, a

•

superposition. This is the key to quantum parallelism,
where a quantum computer can explore many possibilities
at the same time. The Hadamard gate and its Q-sphere
representation from Quantum Composer is provided in the
following figure:

Figure 5.35: Visual representation of Hadamard gate

Quantum gates

Quantum gates are where things get really exciting. They
can create amazing effects like entanglement, where two
qubits become linked so that the state of one instantly
affects the other, even if they are far apart. Some examples
include:

√X Gate: A softer version of the NOT gate, creating

superposition with a twist. The following figure shows

the representation of this gate in the Quantum

Composer:

•

○

○

Figure 5.36: Visual representation of the quantum not gate

RX and RY gates: These gates rotate the qubit

around different axes, like spinning a globe to point to

a specific location.

RX gate: The RX gate implements 𝑒𝑥𝑝(−𝑖(𝜃/2)𝑋).

On the Bloch sphere, this gate corresponds to

rotating the qubit state around the x-axis by the

given angle as depicted in the following figure:

Figure 5.37: Visual representation of RX gate

RY gate: The RY gate implements 𝑒𝑥𝑝(−𝑖(𝜃/2)𝑌).

On the Bloch sphere, this gate corresponds to

rotating the qubit state around the y axis by the

given angle and does not introduce complex

amplitudes as provided in the following figure:

•

•

Figure 5.38: Visual representation of RY gate

RZZ gate: A gate that connects two qubits and

creates a special shared behavior. The following figure

is a representation of the RZZ gate as depicted in the

Quantum Composer:

Figure 5.39: Visual representation of RZZ gate

U Gate: The ultimate multitool, it can transform into

any single-qubit gate and its circuit icon based pictorial

representation in Quantum Composer is provided in the

following figure:

Figure 5.40: Visual representation of U gate

Quantum gates and operations are the building blocks of
every quantum algorithm. They allow us to solve problems
in ways classical computers never could, like simulating
molecules to design new medicines or optimizing complex
systems like global supply chains. Learning how these tools
work is like learning to play an instrument, you start with
simple notes, but soon you are composing symphonies.
Quantum computing may seem complex, but at its core, it
elegantly balances multiple possibilities. By understanding
the tools and how they interact, you are taking the first
steps toward mastering this exciting new frontier. So,
whether you are dreaming of building quantum circuits or
just curious about the future, remember: the quantum
world is yours to explore. The next chapter will explore
about these gates and circuits in detail.

Conclusion

In conclusion, the integration of Python, Jupyter Notebook,
Qiskit, and IBM Q forms a robust ecosystem that is
propelling quantum computing into the future. Python’s
versatility and extensive library support provide a solid
foundation for quantum algorithm development, while

1.

a.

b.

Jupyter Notebook enhances the interactive and
collaborative aspects of quantum research and
experimentation. Qiskit, as IBM’s open-source framework,
empowers researchers with tools ranging from circuit
creation and simulation to advanced algorithm
implementation across diverse domains. IBM Q
complements this framework by offering cloud-based
access to real quantum processors through intuitive tools
such as Quantum Composer and Quantum Lab, making
quantum computing accessible to both beginners and
experts alike.
Together, these components not only facilitate the
exploration and development of quantum applications but
also pave the way for new discoveries and innovations in
fields such as chemistry, optimization and machine
learning. As quantum computing continues to evolve,
understanding and leveraging these tools will be essential
for anyone looking to harness the full potential of this
groundbreaking technology.
In the upcoming chapter, we will discuss the innovative
approach of leveraging quantum gates to design classical
logic gates. This concept represents a fascinating
intersection of classical computing principles with quantum
computing techniques, showcasing how quantum
mechanics can enhance traditional computational methods.

Multiple choice questions

Which of the following is not a component of

Qiskit?

Qiskit Terra

Qiskit Air

c.

d.

2.

a.

b.

c.

d.

3.

a.

b.

c.

d.

4.

a.

b.

c.

d.

5.

a.

b.

c.

d.

Qiskit Ignis

Qiskit Aqua

What is Jupyter Notebook primarily used for in

the context of quantum computing?

Creating quantum hardware

Writing and testing classical algorithms

Experimenting with quantum circuits

Managing cloud-based services

IBM Q provides access to:

Only classical processors

Real quantum processors via the cloud

Quantum processors for purchase

Quantum processors for academic use only

Python is preferred in quantum computing

mainly due to its:

Speed in executing quantum algorithms

Ability to integrate with quantum hardware

Native support for quantum circuit design

Versatility and extensive library ecosystem

Quantum Composer is best described as:

An open-source quantum computing framework

An integrated development environment for

quantum algorithms

A graphical interface for designing and visualizing

quantum circuits

A simulator for testing quantum algorithms

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Answer key

b

c

b

d

c

Questions

Name one advantage of using Python in quantum

computing development.

Answer: Python’s extensive library ecosystem

supports quantum algorithm implementation and

integration with quantum frameworks.

How does Jupyter Notebook enhance the quantum

computing experience?

Answer: It provides an interactive environment for live

code execution, documentation and visualization of

quantum circuits.

List two key components of IBM Q’s platform.

Answer: Quantum Composer and Quantum Lab.

Briefly explain the role of Qiskit Terra in quantum

computing.

Answer: Qiskit Terra is used for creating and

optimizing quantum circuits.

What is the primary function of Qiskit Aqua?

Answer: Implementing quantum algorithms across

various domains such as chemistry, optimization, and

6.

7.

machine learning.

Compare and contrast the roles of Qiskit Terra and

Qiskit Aqua in quantum computing.

Answer: Qiskit Terra focuses on the creation and

optimization of quantum circuits, the below optimizes a

quantum circuit before execution on real hardware.

from qiskit import QuantumCircuit, transpile

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

optimized_qc = transpile(qc, optimization_level=3)

print(optimized_qc), whereas Qiskit Aqua specializes in

implementing quantum algorithms for specific

applications such as chemistry simulations and

optimization problems

from qiskit.algorithms import VQE

from qiskit.circuit.library import TwoLocal

ansatz = TwoLocal(rotation_blocks=’ry’,

entanglement_blocks=’cz’)

vqe = VQE(ansatz)

This sets up a VQE for solving quantum chemistry

problems.

Discuss the significance of Python in the context of

quantum computing development, citing examples of

its practical applications.

Answer: Python’s versatility makes it essential for

quantum computing, enabling tasks like quantum

8.

9.

circuit simulation, algorithm optimization, and

hardware integration. Libraries such as Qiskit, Cirq, and

PennyLane provide tools for designing, testing, and

executing quantum algorithms efficiently. Its readability

and extensive ecosystem simplify quantum research

and development.

Describe the advantages of using IBM Q’s Quantum

Composer for beginners in quantum computing.

Answer: IBM Q’s Quantum Composer provides a drag-

and-drop interface for designing and visualizing

quantum circuits, making it ideal for beginners. It

allows users to experiment with quantum gates and

concepts without requiring programming skills. In

contrast, Qiskit Terra offers a code-based approach,

giving advanced users more flexibility and control over

circuit optimization and execution on real quantum

hardware.

In what ways do tools like Qiskit and IBM Q contribute

to advancing the field of quantum computing? Provide

examples to support your answer.

Answer: Qiskit provides a comprehensive framework

for quantum algorithm development and simulation,

while IBM Q offers cloud-based access to real quantum

processors. Together, they enable researchers to

explore and implement quantum algorithms across

various disciplines, paving the way for advancements

in fields such as cryptography, materials science, and

artificial intelligence.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New

Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Chapter 6

Design of Classical Logic

Gates Using Quantum

Gates

Introduction

This chapter elucidates the principles of quantum gates and their
efficacy in constructing classical logic gates, providing readers
with a deep, practical understanding of quantum computation. It
sets a strong foundation for exploring the intricate design,
operation, and potential applications of classical logic gates built
from quantum elements.
As essential building blocks of digital circuits, logic gates are
experiencing a transformation through quantum computing. This
chapter examines the theory and application of quantum gates in
creating classical binary logic gates, along with their advantages
and disadvantages.
Furthermore, readers will learn to apply these principles using
IBM Q composer and IBM Qiskit SDK to design and analyze
quantum circuits. By engaging with the various classical logic
gates derived from quantum elements, readers will not only
develop practical skills to design, execute, and optimize

•

•

•

•

algorithms but also learn to apply this knowledge to solve real-
world problems confidently.

Structure

The chapter will be structured in the following way:

Classical gates using quantum gates

Quantum circuit design

Advantages of using quantum gates

Disadvantages of using quantum gates

Objectives

By the end of this chapter, the reader will be able to comprehend
the basics of quantum circuit design and gain the ability to
construct simple quantum circuits. The chapter will familiarize
you with IBM Q composer, demonstrating the capacity to utilize
its tools and features for designing quantum circuits and
executing quantum algorithms.
The reader will gain skills in utilizing IBM Qiskit SDK,
showcasing the ability to execute quantum circuits, analyze
results, and identify potential improvements or modifications.
You will be able to identify the advantages of using quantum
gates, such as superior speed, enhanced computational
capabilities, and complex problem-solving.
You will be able to recognize the limitations of quantum gates,
which can involve issues related to error rates and coherence.
After reading this chapter, the reader will be able to apply the
knowledge and skills acquired throughout the chapter to
practical scenarios, gain confidence in working with quantum
gates, and develop proficiency in quantum circuit design.

Classical gates using quantum gates

This section will explain the implementation of a few classical
gates using quantum gates. All the circuits will begin with input

qubits initialized to |0⟩, unless stated otherwise. The purpose of
this section is to demonstrate how quantum gates can be used to
simulate the behavior of classical gates. The following classical
gates will be covered:

• NOT

• AND

• NAND

• OR

• NOR

• XOR

• XNOR

NOT gate

The Pauli X gate is the equivalent of the classical NOT gate. Note
that NOT gate operates on bits whereas Pauli X operates on
quantum states. The Pauli X flips the state of the qubit, |0⟩ is
flipped to |1⟩, and |1⟩ is flipped to |0⟩. Figure 6.1(b) gives the
circuit for the Pauli X gate, which is denoted by the plus symbol.
In Figure 6.1(b), the gate to the right of Pauli X is the
measurement gate. This gate measures the state of the qubit on
the Z-axis. To recollect from previous chapters, this is the axis
over which the state of the qubit is represented in the Bloch
sphere. Figure 6.1(a) shows the classical NOT gate:

Figure 6.1(a): Classical NOT

Figure 6.1(b): NOT using quantum gate

Table 6.1 gives the truth table for Pauli X gate. As can be seen,
Pauli X flips the state of the qubit, which is a fundamental
quantum operation and not just a simulation of the classical NOT
gate. Pauli X is an essential gate in all quantum algorithms and
implementations.

q[0] Out (Classical)
Quantum Pauli X

gate

0 1 Flips |0⟩ to |1⟩

1 0 Flips |1⟩ to |0⟩

Table 6.1: Truth table for NOT

AND gate

The AND gate is implemented using a CCNOT (Toffoli) gate. In
Figure 6.2(b), the target qubit q[2] is initialized to state |0⟩, and
CCNOT is applied with q[0] and q[1] as control qubits. The
CCNOT gate implements the AND operation by flipping the
target qubit only when both control qubits are |1⟩. Figure 6.2(a)

gives the classical AND gate:

Figure 6.2(a): Classical AND

Figure 6.2(b): AND using quantum gates

Table 6.2 shows the truth table for the CCNOT gate. The first two
columns are the inputs, and the fourth column is the output of
the CCNOT gate. As can be seen, this is identical to the truth
table of the AND gate.

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Descriptio

n

0 0 0 |0⟩
The target

qubit q[2]

becomes 1

only when

both the

control

qubits q[0]

and q[1]

are in the

1⟩ state,

effectively

implementi

ng the AND

operation.

0 1 0 |0⟩

1 0 0 |0⟩

1 1 1 |1⟩, since

control

qubits q[0]

& q[1] are

both 1

Table 6.2: Truth table for AND

NAND gate

The NAND gate is an AND gate followed by a Pauli X gate, which
flips the output state. This is represented in Figure 6.3(b). The
CCNOT gate changes the state of target qubit to |1⟩ only when
both the controls qubits are |1⟩. The Pauli X unconditionally flips
the target qubit’s state after the CCNOT gate. This flip is crucial
to convert the AND behavior into a NAND behavior. Figure 6.3(a)

displays the classical NAND gate:

Figure 6.3(a): Classical NAND

Figure 6.3(b): NAND using two quantum gates, CCNOT followed by Pauli X

Table 6.3 gives the truth table for the quantum NAND gate. This
is identical to the classical NAND gate, wherein the output is 0
only when both the inputs are 1.

•

•

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

0 0 1 |1⟩
The

CCNOT

flips the

target

qubit to

1 only

when

both the

control

qubits

are 1.

The

Pauli X

flips this

1 back

to 0, as

seen in

row #4.

For the

other

three

scenario

s where

at least

one of

the

control

qubits is

0,

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

CCNOT

will not

flip the

target

qubit.

The X

gate,

however

, will flip

it to 1.

This is

the

NAND

behavior

.

0 1 1 |1⟩

1 0 1 |1⟩

1 1 0 |0⟩

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

Table 6.3: Truth table for NAND

OR gate

The OR gate is designed using one CCNOT and two CNOT gates.
This is just one way to design and not the only way. The CNOT
gate flips the target qubit only if the control qubit is in the state
|1⟩. There are two CNOTs in Figure 6.4(b). Together, they ensure
that the target qubit will be flipped from |0⟩ to |1⟩, or |1⟩ to |0⟩,
only if both the control qubits are |1⟩. The CCNOT, also known as
the Toffoli gate, flips the target qubit only if both the control
qubits are in the state |1⟩. The circuit is represented in Figure

6.4(b). Figure 6.4(a) shows the classical OR gate.

Figure 6.4(a): Classical OR

Figure 6.4(b): OR using quantum gates

Table 6.4 explains the truth table for the quantum OR gate:

•

•

•

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

0 0 0 |0⟩
The first

CCNOT

will not

flip q[2],

as control

qubits are

NOT both

1.

The next

two

CNOTs

will also

not flip

q[2] as

q[0] and

q[1] are

0. So,

q[2]

remains

at 0.

0 1 1 |1⟩
The first

CCNOT

will not

flip q[2],

as control

qubits are

NOT both

1.

•

•

•

The next

CNOT will

also not

flip q[2].

However,

the

second

CNOT will

flip q[2]

as q[1] is

1. So,

q[2]

becomes

1.

1 0 1 |1⟩
The first

CCNOT

will not

flip q[2],

as control

qubits are

NOT both

1.

The next

CNOT will

flip q[2]

as q[0] is

1. So,

q[2]

becomes

1. The

second

CNOT will

have no

•

•

effect as

q[1] is 0.

1 1 1 |1⟩
The first

CCNOT

will flip

q[2] as

both

control

qubits are

1. So,

q[2]

becomes

1.

The next

CNOT will

flip q[2]

as q[0] is

1. So,

q[2]

becomes

0. The

second

CNOT will

flip q[2]

again as

q[1] is 1.

So, q[2]

again

becomes

1.

Table 6.4: Truth table for OR

NOR gate

•

The NOR gate is the inverse of the OR gate. Therefore, it has the
same configuration as the OR gate, with a Pauli X gate at the
end, as seen in Figure 6.5(b). The purpose of Pauli X gate is to
unconditionally flip the target qubit. This gate ensures that the
output of OR gate is inverted to replicate the behavior of a NOR
gate. Figure 6.5(a) gives the classical NOR gate:

Figure 6.5(a): Classical NOR

Figure 6.5(b): NOR using quantum gates

Table 6.5 contains the truth table for the quantum NOR gate:

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

0 0 1 |1⟩
The first

CCNOT

will not

flip q[2],

as control

qubits are

NOT both

1.

•

•

•

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

The next

two

CNOTs

will also

not flip

q[2] as

q[0] and

q[1] are

0. So,

q[2]

remains

at 0.

However,

the Pauli

X flips

q[2]

unconditi

onally. So,

q[2]

becomes

1.

0 1 0 |0⟩
As control

qubits are

NOT both

1, the

CCNOT

will not

flip q[2].

•

•

•

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

The first

CNOT will

also not

flip q[2].

However,

the

second

CNOT will

flip q[2]

as q[1] is

1. So,

q[2]

becomes

1.

Finally,

Pauli X

flips it

again to

0.

1 0 0 |0⟩
The

CCNOT

will not

flip q[2],

as control

qubits are

NOT both

1.

•

•

•

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

The first

CNOT will

flip q[2]

as q[0] is

1. So,

q[2]

becomes

1. The

second

CNOT will

have no

effect as

q[1] is 0.

However,

Pauli X

flips q[2]

back to 0.

1 1 0 |0⟩
In this

case q[2]

becomes

1,

because

the

CCNOT

will flip

q[2] as

both the

control

•

•

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

qubits are

1.

The first

CNOT will

flip q[2]

as q[0] is

1. So,

q[2]

becomes

0. The

second

CNOT will

flip q[2]

as q[1] is

1. So,

q[2]

again

becomes

1.

Finally,

Pauli X

flips it to

0.

Table 6.5: Truth table for NOR

XOR gate

The XOR gate performs an exclusive OR operation. It outputs a 1
when the inputs are different (one 0 and the other 1), and a 0
when the inputs are the same (both 0s or both 1s). The XOR gate

can be implemented by adopting the quantum OR gate from the
previous section and removing the CCNOT. Figure 6.6(a) and
Figure 6.6(b) show the classical XOR gate and the quantum XOR
gate, respectively. The CNOT in Figure 6.6(a) will flip the target
qubit only when the control qubit is |1⟩. If either one of the input
qubits is |1⟩, the output will be flipped to |1⟩. In the inputs are
same, the output will be zero.

Figure 6.6(a): Classical XOR

Figure 6.6(b): XOR using quantum gates

Table 6.6 contains the truth table for the quantum XOR gate:

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

0 0 0 |0⟩ Both the

CNOTs will NOT

flip q[2] as the

respective

control qubits

are 0. So, q[2]

remains at 0.

0 1 1 |1⟩ The first CNOT

will have no

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

effect.

However, the

second CNOT

will flip q[2] to

1 as q[1] is 1.

1 0 1 |1⟩ The first CNOT

will flip q[2] to

1 as q[0] is 1.

The second

CNOT will have

no effect.

1 1 0 |0⟩ The first CNOT

will flip q[2] to

1. The second

CNOT will

again flip q[2]

back to 0.

Table 6.6: Truth table for XOR

XNOR gate

The XNOR gate has the same configuration as the XOR gate,
except that there is a Pauli X gate at the end to flip the state of
the output. Figure 6.7(a) and Figure 6.7(b) displays the classical
and quantum equivalent of the XNOR gate.

Figure 6.7(a): Classical XNOR

Figure 6.7(b): XNOR using quantum gates

Table 6.7 gives the truth table for the quantum XNOR gate:

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

0 0 1 |1⟩ Both the CNOTs

will NOT flip

q[2] as the

respective

control qubits

are 0. So, q[2]

remains at 0.

However, Pauli

X will flip it to

1.

0 1 0 |0⟩ The first CNOT

will have no

effect.

However, the

second CNOT

will flip q[2] to

1 as q[1] is 1.

Pauli X will flip

it back to 0.

1 0 0 |0⟩ The first CNOT

will flip q[2] to

q[0] q[1]
Out

(Classical)

q[2]

(output),

initial

state is

|0⟩

Description

1 as q[0] is 1.

The second

CNOT will have

no effect.

However, Pauli

X will flip q[2]

back to 0.

1 1 1 |1⟩ The first CNOT

will flip q[2] to

1. The second

CNOT will

again flip q[2]

back to 0. Pauli

X will flip it

once again to

1.

Table 6.7: Truth table for XNOR

Quantum circuit design

A quantum circuit is a sequence of quantum gates and
measurements applied to a set of qubits and is used to perform
quantum computation. Quantum circuits are built using different
types of quantum gates, followed by a measurement gate to
observe the outcome or result.
While the previous section focused on design of classical gates
using quantum gates, the following section demonstrates actual
implementation of quantum circuits that exhibit the behavior of
classical gates. The examples given in the next section are run on
IBM Quantum platform. Users can write quantum algorithms,
submit them, and receive the results. IBM Q cloud provides both

•

•

•

○

○

○

○

○

○

•

real quantum processors as well as simulators to execute
quantum circuits. Real quantum processors are physical devices
that utilize quantum bits (qubits) to perform computations based
on quantum mechanics. They operate with actual quantum states
and leverage phenomena like superposition and entanglement.
Quantum simulators, on the other hand, are classical computers
or software tools that emulate the behavior of quantum systems
but do not execute genuine quantum computations. They help in
studying quantum algorithms and behaviors without needing a
physical quantum processor.
IBM Q offers quantum computers of different sizes to the public,
researchers, and organizations, enabling them to experiment,
learn, and create quantum algorithms and applications. A few of
the key technical details of IBM Q are given as follows:

Architecture: IBM Q uses the superconducting qubit

architecture.

Qubit count: Qubit count is similar to the transistor count in

classical computers. However, in classical computers, the

higher the transistor count, the greater is the processing

power. In quantum computers, due to decoherence of the

qubits, higher qubit count does not translate into greater

processing power. IBM Q has a qubit count ranging from 5

qubits to 42 qubits.

Processor type: Few of the main processor types are:

IBM canary with 5 to 16 qubits

IBM falcon with 27 qubits

IBM hummingbird with upto 65 qubits

IBM eagle with 127 qubits

IBM heron at 156 qubits

IBM osprey at 433 qubits

Fidelity: A measure of how accurately quantum gates

perform their intended operation. IBM Q provides a fidelity

•

•

approaching 99.9% in two-qubit gates.

Coherence time: The duration a qubit can remain in a

superposition state without losing its quantum information

due to interactions with the environment (decoherence).

Coherence time for qubits range from about 20 to 400

microseconds, varying with design and conditions. High

coherence times allow for longer computation durations and

more complex algorithms, enhancing the reliability of

quantum operations.

Quantum volume: This is a quality metric used by IBM to

measure the performance and capability of a quantum

computer. It takes into account a few parameters such as

number of qubits, how well qubits are interconnected,

coherence and error rates. IBM Q processors demonstrate

quantum volume up to 512.

The previous section represented circuits with both input and
output states set to |0⟩. In this section, we will harness the true
potential of quantum computing by launching the input qubits
into superposition using a Hadamard gate. Launching input
qubits into superposition is essential in quantum computing
because it allows qubits to exist in multiple states
simultaneously, unlike classical bits, which can only be in one
state at a time (0 or 1). This property enables quantum
computers to perform many calculations at once, exponentially
increasing their processing power for certain problems.
In the state of superposition, we will apply quantum gates and
observe the results. All the following examples were executed on
IBM Q cloud.
Two approaches will be covered here, one using IBM Q composer
and the other using a Jupyter Notebook that runs the IBM Qiskit
SDK.

IBM Q composer

IBM Q composer is a graphical interface tool available on IBM
cloud for designing quantum computing circuits. It allows
developers and researchers to build quantum algorithms and
experiments without needing to know the underlying complex
mathematics. Through point-and-click actions, users can add
gates to their circuits, change their orders and run their
experiments on a real quantum computer as well as a simulator
on the IBM cloud. IBM Q composer provides an accessible way to
understand and begin building quantum algorithms and
experiments. This is done by creating, editing and visualizing
quantum circuits, which are sequences of quantum gates that
process quantum information.
Let us look at the updated circuit design where Hadamard gate is
applied to all the input qubits in all the circuits. The Hadamard is
applied to test the gate under all possible input conditions. The
results are generated by executing on IBM Q simulator. The
simulator used here is ibmq_qasm_simulator. It has 32 qubits
capacity, that is, one can build circuits consisting of up to 32
qubits on this simulator. A total of 1024 iterations are run on the
simulator to generate the output. The intent behind 1024
iterations is to provide a significant sample size for estimating
probabilities and reducing statistical noise in the measurement
results. This enhances the accuracy of the estimated outputs
from the quantum system. While iteration count can also be
1000, but since computers operate in binary, using powers of two
aligns well with digital computation. Hence, 1024 is usually
preferred.

NOT gate

Circuit setup: The input qubit q[0] is launched into
superposition using a Hadamard gate. Figure 6.8 shows the
corresponding circuit. Pauli X follows the Hadamard gate. The
Hadamard gate creates a superposition, and the Pauli X gate flips
the qubit within this superposition.

Figure 6.8: NOT gate

Simulation and results: The Hadamard gate spins the qubit
into superposition with equal probabilities of |0⟩ and |1⟩. The
Pauli X gate flips the qubit, and the output is still equiprobability
states of |1⟩ and |0⟩. The measurement gate then collapses the
qubit to either |0⟩ or |1⟩ with equal probabilities.

Figure 6.9 gives the quantum simulator output for the circuit in
Figure 6.8:

Figure 6.9: Composer bar chart for NOT gate

Interpretation of results: The NOT circuit is run on the
simulator for 1024 iterations. The bar chart in Figure 6.9 shows
the spread of the outcome. However, the chart does not show
perfectly equal probabilities. The results show a near 50:50
probability distribution due to the law of large numbers.
However, minor deviations occur because 1024 iterations,
though substantial, do not guarantee perfect convergence to the
theoretical probabilities. This is the reason for the outcomes not
being perfectly 50:50.

AND gate

Circuit setup: The input qubits q[0] and q[1] are launched into
superposition using a Hadamard gate. Figure 6.10 gives the
circuit for this:

Figure 6.10: AND gate

Simulation and results: The output states of q[1] and q[0] after
applying Hadamard gate will be a superposition state, as follows:

When these qubits act as control for the target q[2], the state of
q[2] will be flipped only once, when |q[1] q[0] ⟩ is |11⟩. So, the
output state |q[2] q[1] q[0] ⟩ will be a superposition of |000⟩,
|001⟩, |010⟩ and |111⟩. All four states are equiprobable. This
arises from the uniform superposition of q[0] and q[1] due to the
Hadamard gate, and the deterministic control operation. Figure

6.11 gives the output from quantum simulator for the circuit in
Figure 6.10:

Figure 6.11: Composer bar chart for AND gate

Interpretation of results: Figure 6.11 gives the various states
of inputs and corresponding output. The first qubit under each
bar is the output, and the remaining two qubits are the inputs. In
the first bar, both the inputs are zero and output is zero. In the
second and third bars, the inputs are a combination of 0 and 1,
and output is 0. The last bar has both the inputs as 1, and the
output is also 1. This aligns with the truth table of the AND gate.
Note that the probabilities of the four bars are not identical. The
reason for this is the sampling error, while 1024 iterations is a
sufficiently large number, but it is still not large enough that the
results will converge to theoretical probabilities. However, from
the perspective of demonstrating the AND behavior using
quantum gates, these variations in probabilities do not matter.
The key aspect is the state of the output qubit for different
inputs.

NAND gate

Circuit setup: A Pauli X gate is applied to the output of AND
gate in a quantum NAND circuit. Figure 6.12 gives the
corresponding circuit:

Figure 6.12: NAND gate

Simulation and results: Here too, just like the AND output, the
output state |q[2] q[1] q[0] ⟩ will be a superposition of |000⟩,
|001⟩, |010⟩ and |111⟩ before the Pauli X gate flips the output to
make it a superposition of |100⟩, |101⟩, |110⟩ and |011⟩. Figure

6.13 gives the quantum simulator output for the circuit in Figure

6.12:

Figure 6.13: Composer bar chart for NAND gate

Interpretation of results: In Figure 6.13, the first qubit under
each bar is the output and the remaining two qubits represent
the inputs. In the first bar, both the inputs are 1, but the output
is 0. In the second bar, the output is 1 when both inputs are 0. In
the third and fourth bars, inputs are combination of 0 and 1, and
the output is still 1. This depicts the NAND behavior.

OR gate

Circuit setup: The input qubits q[0] and q[1] are launched into
superposition using a Hadamard gate. Figure 6.14 gives the
corresponding circuit:

Figure 6.14: OR gate

Simulation and results: The output states of q[1] and q[0] after
applying Hadamard gate will be a superposition state

The CCNOT will change the state of q[2] only when both q[1] and
q[0] are 1. These qubits are 1 in the fourth state in the
superposition. Therefore, q[2] becomes only in the fourth state.
In the first three states, q[2] will remain 0. Therefore, the
superposition state of |q[2] q[1] q[0] ⟩ post the application of
CCNOT gate is|000⟩, |001⟩, |010⟩ and |111⟩. Note that q[2] is the
leftmost qubit and q[0] is the rightmost.
The next CNOT will change the state of q[2] only when q[0] is 1.
q[0] is 1 in the second and fourth states. Therefore, q[2] gets
flipped in the second and fourth state. The new superposition
state will be |000⟩, |101⟩, |010⟩ and |011⟩.
The last CNOT will change q[2] only when q[1] is 1. q[1] is 1 in
third and fourth state. Therefore, q[2] gets flipped in the third
and fourth state. The final state will be |000⟩, |101⟩, |110⟩ and
|111⟩. That is, when one or more of q[0] and q[1] is 1, q[2]
becomes 1, which is the OR behavior.

Figure 6.15 gives the output of quantum simulator for the circuit
in Figure 6.14:

Figure 6.15: Composer bar chart for OR gate

Interpretation of results: In Figure 6.15, the first qubit is the
output and the remaining two qubits are the inputs under each
bar. Output is 0 in the first bar when both the inputs are 0.
However, output is 1 in the remaining three bars where at least
one input is 1. This acts as the OR gate.

NOR gate

Circuit setup: The input qubits q[0] and q[1] are launched into
superposition using a Hadamard gate. Figure 6.16 gives the
corresponding circuit:

Figure 6.16: NOR gate

Simulation and results: The NOR gate is OR followed by the
Pauli X gate. The output state |q[2] q[1] q[0] ⟩ of the OR gate, as
seen in Figure 6.16, is |000⟩, |101⟩, |110⟩ and |111⟩.
Applying the Pauli X on q[2] will unconditionally flip its state.
Hence, the new state will be - |100⟩, |001⟩, |010⟩ and |011⟩. This
means that q[2] is 1 only when q[0] and q[1] are 1, otherwise it
is 0. This is the NOR behavior.

Figure 6.17 gives the output from quantum simulator for the
circuit in Figure 6.16:

Figure 6.17: Composer bar chart for NOR gate

Interpretation of results: In Figure 6.17, the first qubit under
each bar is the output and the remaining two qubits represent
the inputs. The output is 0 in the first three bars, when either one
or both the inputs are 1. However, output is 1 when both the
inputs are 0. This represents the truth table of the NOR gate.

XOR gate

Circuit setup: The input qubits q[0] and q[1] are launched into
superposition using a Hadamard gate. Figure 6.18 gives the
corresponding circuit:

Figure 6.18: XOR gate

Simulation and results: The output states of q[1] and q[0] after
applying Hadamard gate will be a superposition state

With q[2] in the initial state of 0, the state |q[2] q[1] q[0] ⟩ will be
|000⟩, |001⟩, |010⟩ and |011⟩. The first CNOT will change the state
of q[2] if q[0] is 1. Therefore, the state |q[2] q[1] q[0] ⟩ becomes
|000⟩, |101⟩, |010⟩ and |111⟩.
The next CNOT will change the state of q[2] when q[1] is 1.
Therefore, the state |q[2] q[1] q[0] ⟩ will change to |000⟩, |101⟩,
|110⟩ and |011⟩. q[2] is 1 only when q[0] and q[1] are different.
This is the expected output of the XOR gate.

Figure 6.19 gives the quantum simulator output for the circuit in
Figure 6.18:

Figure 6.19: Composer bar chart for XOR gate

Interpretation of results: In Figure 6.19, the first qubit under
each bar is the output and the remaining two qubits are the
inputs. As can be seen in the first two bars, output is 0 when both
the inputs are same, either both 0 or both 1. Output is 1 when
the inputs are different in third and fourth bars. This is akin to a
XOR gate truth table, wherein the output is 1 when one of the
inputs is 1, and output is 0 when both the inputs are same.

XNOR gate

Circuit setup: The input qubits q[0] and q[1] are launched into
superposition using a Hadamard gate. Figure 6.20 gives the
corresponding circuit:

Figure 6.20: XNOR gate

Simulation and results: XNOR is XOR followed by a NOT gate.
In quantum circuit, this is XOR followed by the Pauli X gate. As
we have seen in the previous section, XOR superposition state
|q[2] q[1] q[0] ⟩ is |000⟩, |101⟩, |110⟩ and |011⟩. The Pauli X will
unconditionally flip q[2]. Therefore, the final state will be |100⟩,

|001⟩, |010⟩ and |111⟩. Here, q[2] is 1 when both the inputs are
identical, which is the XNOR behavior.

Figure 6.21 gives the quantum simulator output for the circuit in
Figure 6.20:

Figure 6.21: Composer bar chart for XNOR gate

Interpretation of results: Just like the previous figures, Figure

6.21 has the first qubit as output and the remaining two qubits as
the inputs. Here, the behavior is exactly opposite to the XOR
gate. When both the inputs are same in third and the fourth bar,
output is 1. When the inputs are different, as seen in the first and
second bars, output is 0. This is the XNOR gate behavior.

IBM Qiskit SDK

Quantum Information Software Kit (Qiskit) is an open-source
framework developed by IBM for programming and running
quantum computers. It allows users to design, simulate, and
execute quantum circuits on IBM’s quantum hardware and
simulators. With Qiskit, one can run code in Jupyter Notebook or
on an IDE for Python. Qiskit provides quantum simulators for
running circuits on classical hardware, tools for quantum
hardware verification, noise characterization, and error
correction, and a library of quantum algorithms and components
to build quantum applications.
Key features of Qiskit are as follows:

•

•

•

•

•

•

•

Quantum circuit programming: Allows users to create

and manipulate quantum circuits using Python.

Simulation and execution: Run quantum programs on

IBM’s real quantum processors or classical simulators.

Quantum algorithms and applications: Supports

machine learning, chemistry, optimization, and finance

applications.

Modular design: Divided into different components for

flexibility and usability.

In this sub-section, we will implement the same circuits from the
previous section (IBM Q composer), but on a Jupyter Notebook.
These programs will be executed on both IBM Q simulators as
well as real quantum processors. We will look at the updated
circuit design where Hadamard gate is applied to all the input
qubits. The results are generated by executing it on IBM Q
simulator as well as IBM Q processor. The simulator used is
ibmq_qasm_simulator. The IBM Q processor used here depends
on the least busy processor. A block of code will check for the
least busy processor and execute the program there. The
available processors are ibm_brisbane, ibm_osaka, and
ibm_kyoto, which are all 127-qubits processors.
A few of the key differences between a simulator and a real
processor are:

Simulator does not suffer from noise or decoherence since it

is a simulated environment. Qubits experience noise,

decoherence, and gate errors in real processors, leading to

inaccuracies in results.

Simulator can handle quantum circuits efficiently without the

latency of real hardware. In a real processor, jobs are queued

based on the availability of the processor. This can cause a

long waiting time.

In a simulator, the response is consistent across runs, which

is deterministic. In a real processor, response can sometimes

•

•

change depending on the noise and gate errors.

Simulator cannot scale beyond a point because the backend

is still a classical computer. Quantum processors, on the

other hand, have the potential to scale exponentially for

certain use cases.

Real-world experimentation and prototyping must be run on

a real quantum processor to understand the true behavior of

qubits and explore error correction techniques. There is no

value in running such use cases on a simulator.

Before we get into individual gates, let us look at boilerplate code
that will be common for all the gates.
The following are the libraries that are required to run the
quantum circuit on a simulator and a real processor:

Boilerplate code:

Import libraries at the start to avoid runtime errors:
#initialization
from qiskit import Aer, assemble, transpile
from qiskit import QuantumCircuit, ClassicalRegister,
QuantumRegister
from qiskit.providers.ibmq import least_busy
from qiskit.providers.ibmq.job import job_monitor
import enum
import basic plot tools
from qiskit.visualization import plot_histogram
The following Enum represents various logic gates. Each gate is
assigned a unique integer value. Enumerations help in making
code more readable and prevent the use of arbitrary numbers.
#Define enum for different gates.
class gateEnum(enum.Enum):

NOT = 1
AND = 2
NAND = 3
OR = 4
NOR = 5
XOR = 6
XNOR = 7

Note: For NOT gate, change the quantum register count

from three to one in the first line as there is only one

input qubit, and change the classical register count to 1

as only one qubit has to be measured.

#Initialize quantum circuit
Qreg = QuantumRegister(3)
Creg = ClassicalRegister(3)
qc = QuantumCircuit(Qreg, Creg)

Simulator execution:

#Set the backend simulator, assemble the quantum circuit and
submit it.
def output(qc):

Get the quantum simulator backend
aer_sim = Aer.get_backend('qasm_simulator')
Assemble the quantum circuit into an object (Quantum

Object)
qobj = assemble(qc)
Run the circuit on the simulator and get the result
res = aer_sim.run(qobj).result()
Extract the measurement counts (frequency of results)

count = res.get_counts()
return count

count = output(qc)
#Plot the output.
plot_histogram(count)

Processor execution:

The following block of code is to execute the quantum circuit on
a real quantum processor:
#Below block of code will check for the least busy quantum
processor.
Load the IBMQ account (this must be done before accessing
IBM Quantum devices)
provider = IBMQ.load_account()

Get the specific IBMQ provider (IBM provides different hubs,
groups, and projects)
provider = IBMQ.get_provider("ibm-q")

Find the least busy quantum processor that meets the
following conditions: # - Has at least 3 qubits
- Is not a simulator (must be a real quantum device)
- Is currently operational (available for running jobs)
device = least_busy(provider.backends(filters=lambda x:
x.configuration().n_qubits >= 3 and
not x.configuration().simulator and
x.status().operational==True))
print("Find the least busy processor: ", device)
The following code will transpile the quantum circuit on the least
busy processor and run it there. Monitor the execution of the job

in the queue.
Import job_monitor to track the execution status of a quantum
job
from qiskit.tools.monitor import job_monitor
Transpile (optimize) the quantum circuit for the selected
quantum device
- `qc`: The quantum circuit to be transpiled
- `device`: The selected IBM Quantum device to run the circuit
on
- `optimization_level=3`: Maximum optimization level to
increase accuracy and reduce execution time, at the expense of
longer transpilation time.
transpiled_circuit = transpile(qc, device, optimization_level=3)
The following job takes anywhere from few minutes to few hours
to run, depending on the time of the day and the number of users
concurrently executing their jobs. The status of jobs can also be
seen on IBM Q cloud under the Workloads tab. In case the job
fails, rerun the following two lines of code.

Submit the transpiled circuit for execution on the selected
quantum device
job = device.run(transpiled_circuit)

Monitor the status of the job, updating every 2 seconds
job_monitor(job, interval=2)

Retrieve the results of the executed quantum job
results = job.result()

Extract the measurement counts from the results

- This returns a dictionary where keys are measured bitstrings
(e.g., '00', '01', '10', '11')

- Values are the number of times each bitstring was observed
answer = results.get_counts(qc)

Plot a histogram of the measurement results to visualize the
output distribution
plot_histogram(answer)

Setup of superposition:
Launch the qubits into superposition by applying Hadamard. For
NOT gate, comment out the second line as there will be only one
input qubit.
qc.h(0)
qc.h(1)
qc.barrier()

NOT gate

The following code is used to build a quantum NOT gate. Figure

6.22 gives the circuit generated by the code:

#Define the gate.
def NOT(qc):

qc.x(0)
return qc

#Apply the NOT gate and measure
qc = NOT(qc)
qc.measure(0, 0)

#Plot the circuit.
style = {'fontsize':10}
qc.draw(output='mpl', style=style)

Figure 6.22: IBM lab circuit for NOT gate

Let us look at the results when run on a quantum simulator and a
real quantum device.

Quantum simulator

Refer to the explanation for NOT gate results under the IBM Q
composer section. The simulator (ibmq_qasm_simulator) gives an
almost equal probability for the two states after 1024 iterations.
The reason the outcomes are not perfectly equal is that this is
like tossing an unbiased coin 1024 times. While the theoretical
probabilities of getting heads and tails are equal, in reality,
however, they will be close to 50:50 but not perfectly 50:50. That
is the reason why the outcomes in Figure 6.23 are not perfectly
50:50:

Figure 6.23: IBM lab bar chart for NOT gate on simulator

Quantum hardware

The results in Figure 6.24 are from an actual quantum processor,
ibm_kyoto. Just like the simulator, the output probabilities are
close to 50:50 after 4000 iterations.

Figure 6.24: IBM lab bar chart for NOT gate on quantum processor

AND gate

The following is the code for the quantum AND gate. Figure 6.25

gives the circuit generated by the code:

#Define the gate.
def AND(qc):

qc.ccx(0,1,2)
return qc

#Plot the circuit.
qc = AND(qc)
qc.measure(0, 0)
style = {'fontsize':10}
qc.draw(output='mpl', style=style)

Figure 6.25: IBM lab circuit for AND gate

Quantum simulator

The results in Figure 6.26 are similar to those from IBM Q
composer. The qubits are in a superposition of |000⟩, |001⟩, |010⟩,
and |111⟩, wherein the target or output is the leftmost qubit and
the other two qubits are inputs.

Figure 6.26: IBM lab bar chart for AND gate on A simulator

Quantum hardware

The results in Figure 6.27 are from an actual quantum processor,
ibm_brisbane, after 4000 iterations. Unlike the simulator, the
output probabilities are varying. This is because of decoherence
and other interferences that real qubits are susceptible to. That

is the reason for the small probabilities of the states that are not
part of the expected results. However, the superposition states
000, 001, 010, and 111 still stand out, which reflects the AND
behavior.

Figure 6.27: IBM lab bar chart for AND gate on quantum processor

NAND gate

Following is the code for the quantum NAND gate. Figure 6.28

gives the circuit generated by the code:

#Define the gate.
def NAND(qc):

qc = AND(qc)
qc.x(2)
return qc

#Plot the circuit.
qc = NAND(qc)
qc.measure(0, 0)
style = {'fontsize':10}
qc.draw(output='mpl', style=style)

Figure 6.28: IBM lab circuit for NAND gate

Quantum simulator

The results in Figure 6.29 are similar to the results from IBM Q
composer. The qubits are in a superposition of |100⟩, |101⟩, |110⟩
and |011⟩, wherein the target is the leftmost qubit and the other
two qubits are inputs.

Figure 6.29: IBM lab bar chart for NAND gate ona simulator

Quantum hardware

The results in Figure 6.30 are from an actual quantum processor,
ibm_brisbane, after 4000 iterations. Unlike the simulator, the
output probabilities are varying, this is because of decoherence
and other interferences that real qubits are susceptible to. That
is the reason for small probabilities of the states that are not part

of the expected results. However, the superposition states 011,
100, 101 and 110 still stand out, which reflects the NAND
behavior.

Figure 6.30: IBM lab bar chart for NAND gate on quantum processor

OR gate

The following is the code for the quantum OR gate. Figure 6.31

gives the circuit generated by the code:

#Define the gate.
def OR(qc):

qc = AND(qc)
qc.cx(0,2)
qc.cx(1,2)
return qc

#Plot the circuit.
qc = OR(qc)
qc.measure(0, 0)
style = {'fontsize':10}
qc.draw(output='mpl', style=style)

Figure 6.31: IBM lab circuit for OR gate

Quantum simulator

The results in Figure 6.32 are similar to the results from IBM Q
composer. The qubits are in a superposition of |000⟩, |101⟩, |110⟩,
and |111⟩, wherein the target is the leftmost qubit and the other
two qubits are inputs.

Figure 6.32: IBM lab bar chart for OR gate on simulator

Quantum hardware

The results in Figure 6.33 are from an actual quantum processor,
ibm_brisbane, after 4000 iterations. Unlike the simulator, the
output probabilities are varying, this is because of decoherence
and other interferences that real qubits are susceptible to. That
is the reason for the small probabilities of the states that are not
part of the expected results. However, the superposition states

000, 101, 110, and 111 still stand out, which reflects the OR
behavior.

Figure 6.33: IBM lab bar chart for OR gate on quantum processor

NOR gate

The following is the code for the quantum NOR gate. Figure 6.34

gives the circuit generated by the code:

#Define the gate.
def NOR(qc):

qc = OR(qc)
qc.x(2)
return qc

#Plot the circuit.
qc = NOR(qc)
qc.measure(0, 0)
style = {'fontsize':10}
qc.draw(output='mpl', style=style)

Figure 6.34: IBM lab circuit for NOR gate

Quantum simulator

The results in Figure 6.35 are similar to those from IBM Q
composer. The qubits are in a superposition of |001⟩, |010⟩, |011⟩,
and |100⟩, wherein the target is the leftmost qubit and the other
two qubits are inputs.

Figure 6.35: IBM lab bar chart for NOR gate on simulator

Quantum hardware

The results from Figure 6.36 are from an actual quantum
processor, ibm_osaka, after 4000 iterations. Here, the
superpositions 001, 010, 011, and 100 stand out, which reflects
the NOR behavior.

Figure 6.36: IBM lab bar chart for NOR gate on quantum processor

XOR gate

The following is the code for the quantum XOR gate. Figure 6.37

gives the circuit generated by the code:

#Define the gate.
def XOR(qc):

qc.cx(0,2)
qc.cx(1,2)
return qc

#Plot the circuit.
qc = XOR(qc)
qc.measure(0, 0)
style = {'fontsize':10}
qc.draw(output='mpl', style=style)

Figure 6.37: IBM lab circuit for XOR gate

Quantum simulator

The results in Figure 6.38 are similar to the results from the IBM
Q composer. The qubits are in a superposition of |000⟩, |011⟩,
|101⟩, and |110⟩, wherein the target is the leftmost qubit and the
other two qubits are inputs.

Figure 6.38: IBM lab bar chart for XOR gate on simulator

Quantum hardware

The results in Figure 6.39 are from an actual quantum processor
– ibm_kyoto, after 4000 iterations. Here, the superposition states
000, 011, 101 and 110 stand out, which reflects the XOR
behavior.

Figure 6.39: IBM lab bar chart for XOR gate on quantum processor

XNOR gate

Following is the code for the quantum XNOR gate. Figure 6.40

gives the circuit generated by the code.

#Define the gate.
def XNOR(qc):

qc.cx(0,2)
qc.cx(1,2)
qc.x(2)
return qc

#Plot the circuit.
qc = XNOR(qc)
qc.measure(0, 0)
style = {'fontsize':10}
qc.draw(output='mpl', style=style)

Figure 6.40: IBM lab circuit for XNOR gate

Quantum simulator

The results in Figure 6.41 are similar to those from IBM Q
composer. The qubits are in a superposition of |001⟩, |010⟩, |100⟩,
and |111⟩, wherein the target is the leftmost qubit and the other
two qubits are inputs.

Figure 6.41: IBM lab bar chart for XNOR gate on simulator

Quantum hardware

The results in Figure 6.42 are from an actual quantum processor,
ibm_kyoto, after 4000 iterations. Here, the superposition states
001, 010, 100 and 111 stand out, which reflects the XNOR
behavior.

•

Figure 6.42: IBM lab bar chart for XNOR gate, quantum processor

Advantages of using quantum gates

Quantum gates offer several advantages, such as drastically
improved computational speed and power, which enables them to
tackle complex algorithms that are infeasible for classical
computers to compute. Quantum gates can also execute multiple
calculations simultaneously due to the property of superposition,
thus providing parallelism, which is unattainable in classical
computing
The following are the advantages of using quantum gates:

Quantum parallelism: Quantum gates use the principle of

superposition, where qubits can exist in multiple states at

once, as opposed to classical bits that can only exist in one

of two states. Due to this feature, a quantum computer can

process a large number of possibilities at once. This allows

for parallel computation, thereby improving the efficiency

and speed of complex computational tasks exponentially.

Tasks such as factoring large numbers, simulating quantum

systems or optimizing complex systems can be performed

much more efficiently with quantum computers. Algorithms

such as Shor’s factorization, Grover’s search, etc., exploit the

inherent parallelism in quantum processing. This property is

•

•

•

•

•

•

useful in quantum cryptography, search and optimization,

drug discovery and many other use cases.

Quantum entanglement: Another important feature

offered by quantum gates is entanglement, which allows two

qubits to become linked such that the state of one

immediately influences the state of the other no matter the

distance between them. This feature is key to quantum

communication and information processing. Entanglement is

used in quantum teleportation, superdense coding, and

quantum key distribution. The real-world applications of

entanglement are in quantum cryptography, quantum

networking, and quantum communication.

Superior problem-solving capability: Some types of

calculations, which are extremely time-consuming or even

impossible for classical computers, can be performed

efficiently by a quantum computer.

Optimization problems: Quantum gates enable the

resolution of complex optimization problems more efficiently

because of the property of superposition. This feature can be

useful in business logistics, scenario simulation, and risk

management, among other areas.

Advanced data analysis: Quantum gates, due to the

capabilities of quantum computers, allow for the analysis of

vast quantities of data in less time. This ability can

revolutionize fields such as medicine, finance, and big data.

Quantum searches: Quantum gates can be used to

implement quantum search algorithms (such as Grover’s

algorithm) that can perform more efficient searches on

unsorted data than any classical algorithm.

Quantum cryptography and security: By utilizing

quantum gates, we can create cryptographic keys and codes

that cannot be easily deciphered except by the intended

recipient using the correct quantum key. This can

revolutionize cybersecurity.

•

•

Disadvantages of using quantum gates

A major disadvantage is using quantum gates is their
susceptibility to error, as quantum states can easily be affected
by external environmental conditions leading to high error rates.
Additionally, making and maintaining the state of quantum
entanglement necessary for quantum gates is immensely
challenging, limiting the practical implementation of quantum
computing.
The following are the disadvantages of using quantum gates:

Quantum decoherence: Quantum computers require

maintaining coherence of qubits to perform computations.

Decoherence happens because of interference from the

outside environment, leading to loss of quantum properties

and causing errors in computation. Hence, maintaining

coherence over a sufficient period to complete computation

tasks is a significant challenge. There are few methods to

mitigate this error, such as dynamic decoupling, fault

tolerant quantum error correction (QEC), etc. In dynamic

decoupling, the qubits are maintained in superposition state

by applying quick, precisely timed pulses. These pulses

average out the effect of the external noise, thus improving

stability of the qubit. In fault tolerant QEC, redundancy is

added to detect and correct errors. In this, logical qubits are

encoded using multiple physical qubits.

High error rates: Quantum computations at the moment

are prone to errors due to physical operations not being

perfect. Errors in a quantum computer can propagate and

create further errors. Classical error correction methods do

not work here due to the no-cloning theorem of quantum

mechanics. Also, quantum logic gates do not function

deterministically as classical gates do. The fidelity of a

quantum gate operation is not perfect; hence, increasing the

number of gates would also increase the probability of errors.

One of the key measures to enhance the fidelity at the qubit

•

•

•

•

•

level is hardware improvements such as cryogenic cooling of

the quantum processor, better qubit isolation so that they

don’t interfere with each other, etc.

Complex control mechanism: Quantum gates require

highly precise control mechanisms to ensure the accurate

manipulation of qubits. Any small inaccuracies can lead to

drastic computation errors.

Expensive: The building and maintenance of a large-scale

quantum computer presents a huge engineering challenge.

Quantum computers are highly sensitive to environmental

noise, require cooling to near absolute zero temperatures,

and need isolation from all vibrations, making the technology

quite expensive and less accessible than classical computers.

Limited algorithms: While there are particular problems

that quantum computers could theoretically solve more

quickly than classical computers, as of now, the number of

these algorithms is quite limited. This limits the practical

applications of quantum computers.

Scaling: Quantum volume, a measure of the complexity of

problems solvable by a quantum computer, is limited in the

current state of technology. While the number of qubits can

be increased, the precision and coherence of quantum gates

are usually compromised when scaling up, which limits

potential applications. Scaling requires a mix of solutions

such as hybrid processing wherein classical processors

handle certain computations thus reducing quantum

hardware demands, error correction wherein focus is on

logical qubits rather than adding more physical qubits, and a

modular design that connects multiple smaller quantum

processors to operate as a larger system.

Compatibility: Quantum computers use a totally different

computational approach compared to classical computers.

Many classical algorithms will not work on quantum

computers or need to be significantly adapted.

1.

a.

b.

c.

d.

2.

a.

To summarize, while quantum gates present exciting possibilities
to enhance the power, capacity and speed of computing,
overcoming their current challenges requires considerable
scientific and technological advancements.

Conclusion

The chapter provided an in-depth exploration of quantum gates
and their application in constructing classical logic gates.
Through a detailed examination of implementing various classical
gates such as NOT, AND, NAND, OR, NOR, XOR and XNOR using
quantum equivalents, readers were equipped with a fundamental
understanding of the intersection between classical digital logic
and quantum computing paradigms. Furthermore, the use of
tools like IBM Q composer and IBM Qiskit SDK illustrated the
practical aspects of designing quantum circuits, highlighting
both the potential and the challenges of leveraging quantum
hardware and simulators for these purposes. The next chapter
will present different approaches in quantum communication.

Multiple choice questions

If a classical gate, say an OR gate, is to be simulated

using quantum gates as described in this section,

what is the assumed initial state for its input qubits,

unless explicitly stated otherwise?

A superposition of ∣0⟩ and ∣1⟩
∣1⟩
∣0⟩
An uninitialized, random state

Which of the following statements is TRUE regarding

the implementation of quantum AND and NAND gates

in this chapter?

The AND gate is implemented using a single Pauli X gate.

b.

c.

d.

3.

a.

b.

c.

d.

4.

a.

b.

c.

d.

5.

a.

b.

c.

The NAND gate is realized by applying a CCNOT gate

followed by a Pauli X gate to the target qubit.

The output of the CCNOT gate is always |1⟩ regardless of

the control qubits’ states.

The NAND gate does not require any quantum gates for

its implementation.

Why do classical error correction methods NOT work

for quantum computers?

Because quantum logic gates function deterministically

Due to the no-cloning theorem of quantum mechanics

Because quantum computations are not prone to errors

Due to the high fidelity of quantum gate operations

Which of the following is a key difference between a

real quantum processor and a quantum simulator?

Real quantum processors use classical bits, while

simulators use qubits.

Quantum simulators perform computations based on

quantum mechanics, while real processors only emulate

behavior.

Quantum simulators can achieve higher qubit counts than

real quantum processors.

Real quantum processors leverage phenomena like

superposition and entanglement, whereas quantum

simulators do not execute genuine quantum

computations.

What is the primary function of res.get_counts() in the

output(qc) function within the “Simulator execution”

section?

To obtain the frequency of measurement results (counts)

from the simulation.

To retrieve the raw measurement data from the simulator.

To extract the number of qubits used in the simulation.

d.

1.

2.

3.

4.

5.

1.

2.

To plot a histogram of the simulation outcomes.

Answer key

c

b

b

d

a

Questions

From a conceptual standpoint, what does the endeavor to

simulate common classical gates (like NOT, AND, XOR) using

quantum gates signify about the relationship between

classical and quantum computing?

Answer: This endeavor signifies that quantum computing is

not an entirely separate paradigm but rather a more

generalized framework that can encompass and reproduce

classical computation as a specific instance. It demonstrates

a foundational link where classical logic can be viewed

through a quantum lens, suggesting quantum computation

can perform at least what classical computers can,

potentially with additional capabilities.

What is a quantum circuit, and what are its primary

components?

Answer: A quantum circuit is a model for quantum

computation in which a sequence of quantum gates is

applied to a set of qubits to manipulate their states. Its

primary components include qubits (quantum bits), quantum

gates (the operations that change qubit states), and

measurement operations (used to observe or read out the

final state of the qubits).

3.

4.

5.

What are two key technical details used to measure the

performance and capability of an IBM Q quantum computer?

Answer: Two key technical details are fidelity, which

measures how accurately quantum gates perform their

intended operation, and quantum volume, a quality metric

that considers factors like the number of qubits, their

interconnectivity, coherence, and error rates to assess the

overall computational ability of a quantum processor.

What is the role of transpile in the “Processor execution”

section, and what does optimization_level=3 signify?

Answer: The transpile function optimizes a quantum circuit

(qc) for the specific quantum device (device) by adapting the

circuit to the hardware’s constraints and layout, helping it

run more efficiently and accurately. The parameter

optimization_level=3 specifies the highest level of

optimization, which applies the most advanced techniques to

minimize gate errors and circuit depth. This can lead to

longer transpilation time but often results in higher overall

execution accuracy and performance on the real device.

Give examples of few types of problems that quantum gates

can solve more efficiently than classical computers.

Answer: Factoring large numbers, simulating quantum

systems, optimizing complex systems, and quantum search

problems are some examples.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release

and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Chapter 7

Quantum

Communication

Introduction

This chapter aims to elucidate four avenues of quantum
communication, which are, superdense coding, quantum
teleportation, quantum key distribution and post quantum
cryptography. Each of these explores quantum mechanics
from different perspectives, laying the foundations for
future technologies, altering how we think about
information, and perfecting secure communication.
Superdense coding allows transmission of vast amounts of
information with minimal particles without the trade-off of
functionality or accuracy. Quantum teleportation, where
quantum states, instead of physical entities, travel
instantaneously, redefining our understanding of distance
and connectivity. Quantum key distribution secures
communication channels using the principles of quantum
mechanics. Finally, we will delve into post-quantum

cryptography (PQC), which lays the groundwork for the

•

•

•

•

•

security of conventional cryptosystems in the era of
quantum computers. This chapter will help grasp a deeper
understanding of these realms that merges advanced
theoretical concepts with practical applications.

Structure

The chapter will cover the following topics:

Introduction to quantum communication

Quantum superdense coding

Quantum teleportation

Quantum key distribution

Post-quantum cryptography

Objectives

This chapter aims to discuss several key aspects of
quantum communication and cryptography by exploring
principles of quantum mechanics. It explores the principles
and practical implementations of quantum key

distribution (QKD), illustrating how it leverages quantum
mechanics to establish secure communication channels
resistant to eavesdropping. The chapter also analyzes the
process and advantages of quantum teleportation,
highlighting its role in transferring quantum information
with high fidelity over long distances, which is essential for
the future of quantum networks. Additionally, it
investigates the concept and applications of superdense
coding, showcasing its ability to enhance data transmission
efficiency by encoding two classical bits of information
within a single quantum bit (qubit). Furthermore, the
chapter examines the necessity and development of post-

quantum cryptographic algorithms designed to protect
information systems from the potential risks posed by
quantum computing, thereby ensuring the long-term
security and integrity of data.

Introduction to quantum

communication

Quantum communication represents an advanced
technological paradigm exploiting the principles of
quantum physics to transmit information. It provides a new
approach to processing, storing, and transmitting
information in ways that offer capabilities, including
security, compute power, and information density, beyond
what current technology can practically achieve. It involves
the use of quantum mechanical effects to perform
communication tasks that may be impossible or infeasibly
complex using classical communication. These tasks range
from QKD to quantum teleportation to quantum superdense
coding.
The core principles of quantum communication include
quantum entanglement and quantum superposition.
Quantum superposition allows an entity, like a quantum bit
(or qubit), to exist simultaneously in multiple states, each
with a certain probability, which only resolves into a
specific state when measured. It is akin to flipping a coin
but allowing it to be heads and tails simultaneously until
observed. Quantum entanglement links two qubits in such a
way that the measurement of one instantaneously affects
the state of the other, regardless of the distance between
them.

•

•

The following list gives a brief overview of the different
forms of quantum communication:

Quantum superdense coding: Superdense coding is

a technique used in quantum information theory to

send two classical bits of information using only one

qubit, exploiting the phenomenon of quantum

entanglement. It indicates that far more information

can be contained within the same amount of quantum

information than classically possible. One of its

significant applications lies in optimizing bandwidth in

modern networks, as it allows for the efficient use of

communication channels, thereby increasing data

transmission rates without requiring additional physical

resources.

Quantum teleportation: Another profound feature of

quantum communication is quantum teleportation. This

involves the transfer of quantum information from one

point to another, without the physical transportation of

the actual particle carrying the information. This is

achieved using quantum entanglement, where the

states of two or more particles can become linked so

that a change to one will instantly affect the others, no

matter how far apart they are. Though it is not

teleportation in the science-fiction sense, this is an

essential aspect of quantum communication as it

allows for the secure and instantaneous transmission of

information. Bell states play a crucial role in enabling

quantum teleportation. They are specific types of

entangled quantum states that form a shared quantum

link between two qubits. This entanglement provided

by Bell states allows the sender and receiver to

correlate their measurements in a way that makes the

•

•

accurate reconstruction of the original quantum state

at the destination possible.

Quantum key distribution (QKD): One key

application in quantum communication is QKD. It

establishes secure communication by using quantum

physics to randomly generate and share a secret key

between two users. This key is later used for

encrypting and decrypting information. Any third-party

eavesdropping on the communication is detectable

because of a fundamental property of quantum physics

that the act of measuring a quantum system in general

disturbs the system. This feature ensures the security

of the communication. However, one of the limitations

of QKD is a dependency on quantum repeaters for long

distances.

Quantum satellite communication: Recent

advancements in quantum communication have seen

the successful deployment of quantum satellites, such

as the Micius satellite launched by China in 2016.

Quantum satellites can beam pairs of entangled

photons to ground stations on Earth, enabling secure

quantum communication over great distances, ideally

even on a global scale. Micius successfully performed

QKD between ground stations separated by up to 1,200

kilometres (approximately 746 miles). Government and

military can employ satellite-based QKD for ultra-

secure communication channels. The ability to detect

any eavesdropping attempts makes it ideal for

transmitting sensitive information and ensure

confidentiality and integrity of classified information,

which is critical for national security.

• Post-quantum cryptography: It refers to

cryptographic algorithms designed to remain secure

against the potential threats posed by quantum

computers. Unlike classical cryptographic methods,

which could be compromised by quantum algorithms

like Shor’s algorithm, post-quantum cryptographic

techniques, such as lattice-based, hash-based, code-

based, and multivariate polynomial cryptography, aim

to safeguard data and communications in a quantum

era. Current cryptographic practices rely on

mathematical problems like factoring large integers

(RSA) and discrete logarithms (DSA/ECC) that are

considered hard for classical computers but are

vulnerable to future quantum attacks. Quantum-

resistant cryptography employs new algorithms based

on hard problems that remain difficult for quantum

computers. These approaches are vital for ensuring the

confidentiality and integrity of information as quantum

computing capabilities continue to advance. Ongoing

research focuses on developing, standardizing, and

implementing these algorithms to transition seamlessly

from current cryptographic systems. The challenge

remains in integrating these protocols with existing

systems.

Quantum communication presents revolutionary
opportunities in secure communication, giving us
essentially un-hackable modes of transmitting information.
However, the technology is in its infancy and challenges in
practical implementation, such as maintaining quantum
coherence over long distances and creating robust
quantum repeaters, remain to be overcome. Moreover, as a
future-oriented discipline, there is a vast scope for

discovery and many of its potentials remain to be
unearthed by more research and experimentation.

Quantum superdense coding

Superdense coding is a quantum communication protocol
that allows for the transmission of two classical bits of
information by sending just one qubit, given that the two
parties share an entangled pair of qubits in advance.
Essentially, two bits of classical information can be
transferred by physically transmitting just one qubit. The
process begins with the preparation of an entangled pair of
qubits, also known as Bell states. One qubit from this pair
is sent to each communicator, say Alice and Bob. To send
her two-bit message, Alice performs a certain unitary
operation on her qubit, which depends on the message she
wants to send. There are four possible operations she can
perform, corresponding to the four states of classical
information: 00, 01, 10, 11, that she might want to send.
Once this operation is performed, Alice sends the qubit
over to Bob. Upon receiving Alice’s qubit, Bob now holds
both the qubits of the entangled pair and performs a
measurement on them. This measurement allows Bob to
distinguish which of the four operations Alice performed,
thereby allowing him to determine which state of classical
information Alice was trying to send. Note that it is
important to maintain the entanglement and protect the
qubits from decoherence throughout the process.
Superdense coding showcases the power of quantum
entanglement and quantum superposition in achieving
communication efficiencies far beyond the capabilities of
classical systems. It also proves to be extremely secure, as
the information cannot be decoded unless the recipient has

the correct entangled qubit. This security is because of the
property of entanglement. Entangled particles create a
strong correlation between their states, allowing for the
transmission of information between parties without the
risk of eavesdropping. Any attempt to intercept the
quantum states will inevitably disturb the system, thus
alerting any security breaches. Also, intrinsic properties of
quantum mechanics, such as the no-cloning theorem,
prevent unauthorized duplication of the quantum states,
further safeguarding the information from interception.

Figure 7.1 shows the high-level flow diagram for
superdense coding. An entangled pair of qubits are
generated, of which one each is sent to Alice and Bob. Alice
encodes a 2-bit message that she wants to send into her
qubit, which is then sent to Bob. Bob receives the qubit,
and successfully decodes the message using his own qubit.
We will look at the details as follows:
First, entangled pair of qubits are generated by a third-
party. This is done with the help of a Hadamard gate and a
CNOT gate, as shown in Figure 7.1. This results in one of
the Bell states,

Figure 7.1: Flow diagram for Superdense Coding (Source: QISKIT Textbook)

The first qubit, q0 is sent to Alice, who will encode the
message and send to Bob. The second qubit q1 is sent to
Bob by some means. Alice wants to send information
encoded in two classical bits, which means she can send at
the most four messages, that is, – 00, 01, 10, 11. The
communication channel between Alice and Bob is a
quantum channel, such as optical fiber. So, Alice has to
send classical information encoded in the form of qubits. In
superdense coding, the 2-bit classical information is
condensed into one qubit. Depending on what information
Alice wants to send, she will encode it accordingly with
quantum gates.

Table 7.1 gives the various gates that Alice will apply to
encode the four different classical information into a single
qubit:

Intended

message (m0,

m1)

Applied gate

Resulting state

(1/√2) that Alice

sends

00 Identity |00⟩ + |11⟩

01 X |10⟩ + |01⟩

10 Z |00⟩ - |11⟩

11 XZ -|10⟩ + |01⟩

Table 7.1: Encoding of classical information using quantum gates

Note: The qubits under the column ‘Resulting State’

in the previous table displays both Alice’s as well as

Bob’s qubits. The first qubit is Alice’s and second

qubit is Bob’s.

•

•

•

If Alice wants to send 00, she will apply identity gate, which
does nothing. The state of qubit with Alice remains
unchanged. In the previous table, Alice’s qubits are in a
quantum superposition of states ∣0⟩ and ∣1⟩. Bob applies two
gates on the incoming qubit from Alice, a CNOT gate
followed by a Hadamard gate.

So, after CNOT, becomes

After Hadamard, it becomes

This is the original message that Alice had sent. Following
is an example:

Let us say that Alice wants to send 01 now. She will

apply Pauli X gate to her qubit. So, as given in Table

7.1, the state of qubits (Alice + Bob) would be

Bob, on receiving this qubit, will apply CNOT first.

So, becomes

The Hadamard will make it ,

which is the original message that Alice sent.

Let us say Alice wants to send 10. She will apply Paul-Z

gate to her qubit, which will change the state to

At Bob’s end, the CNOT will change the state from

 to

Hadamard will make it , which is

the original message.

Let us say Alice wants to send 11. She will apply both

Pauli X gate and Pauli Z gate. This will change

At Bob’s end, CNOT will make it

Hadamard will make it , which

is the original message.

Table 7.2 gives a summary of the exercise:

Bob receives (1/

√2)

After CNOT gate

(1/√2)

After H gate…

same as Alice’s

original

message

|00⟩ + |11⟩ |00⟩ + |10⟩ |00⟩

|10⟩ + |01⟩ |11⟩ + |01⟩ |01⟩

|00⟩ - |11⟩ |00⟩ - |10⟩ |10⟩

-|10⟩ + |01⟩ -|11⟩ + |01⟩ |11⟩

Table 7.2: Decoding of information at receiver end

Let us look at the implementation of the superdense coding
circuit. Here, IBM Composer has been used to design the
circuit with the aid of the GUI, and the results are obtained
from a real quantum computer, ibm_osaka.

Message 00

Figure 7.2(a) shows the circuit to encode classical
information 00 at Alice’s end, and decode it at Bob’s end.
Here, identity gate is used to encode the message. The bar
chart in Figure 7.2(b) shows that 00 has been correctly
decoded at Bob’s end:

Figure 7.2(a): Circuit to encode message 00 and decode it at the receiver end

Figure 7.2(b): Results of message 00

Message 01

Figure 7.3(a) shows the circuit to encode classical
information 01 at Alice’s end, and decode it at Bob’s end.
Pauli X gate is used to encode the message. The bar chart
in Figure 7.3(b) shows that 01 has been correctly decoded
at Bob’s end:

Figure 7.3(a): Circuit to encode message 01 and decode it at the receiver end

Figure 7.3(b): Results of message 01

Message 10

Figure 7.4(a) shows the circuit to encode classical
information 10 at Alice’s end, and decode it at Bob’s end.
Pauli Z gate is used to encode the message. The bar chart
in Figure 7.4(b) shows that 10 has been correctly decoded
at Bob’s end:

Figure 7.4(a): Circuit to encode message 10 and decode it at the receiver end

Figure 7.4(b): Results of message 10

Message 11

Figure 7.5(a) shows the circuit to encode classical
information 11 at Alice’s end, and decode it at Bob’s end.
The message is encoded using a combination of Pauli X and
Pauli Z gates. The bar chart in Figure 7.5(b) shows that 11

has been correctly decoded at Bob’s end:

Figure 7.5(a): Circuit to encode message 11 and decode it at receiver end

Figure 7.5(b): Results of message 11

Quantum teleportation

Quantum teleportation is a fascinating concept in the realm
of quantum mechanics that deals with transmission of
quantum state from one place to another. Unlike science-
fiction movies where teleportation means transmitting
physical objects instantly across space, quantum

teleportation is about sending the state of a quantum
system from one location to another, not the physical
particle itself.
At the heart of quantum teleportation lies entanglement.
When two quantum particles are entangled, their
properties become irrevocably linked, no matter how far
apart they are. If one is measured, the other instantly
assumes the corresponding state.
In a quantum teleportation process, a pair of entangled
particles is first created. One is sent to the receiver while
the sender retains the other. The sender then preps a third
particle, the one to be teleported, in the desired quantum
state. This third particle interacts with the sender’s half of
the entangled pair, and through a careful measurement
process, the sender can then obtain information to send to
the receiver via a classical communication channel. With
this information, the receiver can manipulate their own
entangled particle to replicate the quantum state of the
third particle. Thus, the quantum state of the third particle
has effectively been teleported to the distant entangled
particle at the receiver’s end. Note that the physical
particle is not teleported, only the quantum state is. Figure

7.6 gives the high-level flow.
It is noteworthy that quantum teleportation not only hinges
on entanglement, but also on classical communication,
which is restricted to the speed of light. Thus, it is not
exactly instantaneous teleportation. Furthermore, in the
process, the original state of the third particle at the
sender’s end is destroyed, due to the properties of quantum
measurement, thereby complying with the no-cloning

theorem in quantum mechanics.

Quantum teleportation opens new avenues for quantum
communication and quantum computing, potentially
revolutionizing the way we secure, transmit, and process
information. Recent experiments have demonstrated
quantum teleportation between different locations on Earth
and even across space to a satellite, albeit with single-
photon qubits. However, there is still some way to go to
make teleportation practically applicable and research is
ongoing to explore its full potential.

Figure 7.6 shows the high-level flow diagram for quantum
teleportation:

Figure 7.6: Flow diagram for quantum teleportation (Source: QISKIT Textbook)

Figure 7.9 shows the circuit for teleportation. As you can
see, the first combination of Hadamard and CNOT is to
entangle the qubits. The first qubit q1 is kept with Alice
(source system), and the second qubit q2 is sent to the
destination, Bob, by some means. The function of next set

•

•

of CNOT and Hadamard gates is to manipulate the states of
q0 and q1. The qubits are measured and the information is
sent to Bob as two classical bits over the classical channel.
Depending on the measure of the bits, Bob applies different
gates on his qubit q2. Table 7.3 gives this mapping:

Bits received
State of Bob’s

qubit q2
Gate applied

00 α0 + β1 I

01 α1 + β0 X

10 α0 - β1 Z

11 α1 – β0 XZ

Table 7.3: Mapping between bits received and quantum gate applied

We will do the math for one of the states of qubit that has
to be teleported, before diving into the code, as follows:

Let us say q0 is in a superposition of α|0⟩ - β|1⟩.

q1 and q2 are in a Bell state | (|00 ⟩ + |11 ⟩)

Combined state of q0, q1 & q2 is (α|000⟩ + α|011⟩ -
β|100 ⟩ - β|111 ⟩)

CNOT is applied on q0 and q1. The new state is as

follows:

 (α|000⟩ + α|011⟩ - β|110
 ⟩ - β|101

 ⟩)

Hadamard is applied on q0 as follows:

 (α|(0+1)00⟩ + α|(0+1)11⟩ - β|(0-1)10
 ⟩ - β|(0-1)01

 ⟩)

 (α(|000⟩+|100⟩+|011⟩+|111⟩) - β(|010⟩-|110⟩+|001⟩-
|101⟩)

 (|00(α0 - β1)⟩ + |01(α1 – β0)⟩ + |10(α0 + β1)⟩ +

|11(α1 + β0)⟩)
This state is in superposition. Let us measure q0 and q1.
The superposition will collapse into one of four eigenstates:
00, 01, 10, 11. Let us take any one state, say, it collapses
into 11. The state 11 will be sent using classical bits to Bob.
Looking at Table 7.3, Bob will apply Pauli X and Pauli Z
gates to q2.
The state of q2 corresponding to 11 is (α1 + β0). After
application of X and Z gates, it will become (α0 - β1), which
is the original state of q0. Hence, the state of q0 has been
successfully teleported to q2.
You can start with any state of q0, and the end result will
be that q2 will possess the same state as q0.
Let us look at the Python code for teleportation. This code
has been run on a local Jupyter Notebook using Aer
simulator of Qiskit:
Import all the libraries:
from qiskit import QuantumCircuit, QuantumRegister,
ClassicalRegister
from qiskit import transpile, assemble, Aer
from qiskit.visualization import plot_histogram,
plot_bloch_multivector, array_to_latex
from qiskit.extensions import Initialize
from qiskit.quantum_info import random_statevector
Create entangled qubits:
def create_bell_pair(qc, a, b):

"""The below gates are used to entangle the qubits a &
b"""

qc.h(a) # Put qubit a into state |+>
qc.cx(a,b) # CNOT with a as control and b as target

Apply CNOT and Hadamard gates to q0 and q1 at Alice’s
end:
def alice_gates(qc, psi, a):

qc.cx(psi, a)
qc.h(psi)

Measure q0 and q1 onto classical bits, which will be sent to
Bob:
def measure_qubits(qc, a, b, crz, crx):

qc.barrier()
qc.measure(a,crz)
qc.measure(b,crx)

This function reads the classical bits to decide which
quantum gates to apply:
def bob_gates(qc, qubit, crz, crx):

Here, c_if is used to control quantum gates with a
classical bit instead of a qubit

qc.x(qubit).c_if(crx, 1) # Apply X if crx is 1
qc.z(qubit).c_if(crz, 1) # Apply Z if crz is 1

Create random 1-qubit state for q0
psi = random_statevector(2)

Display the vector

display(array_to_latex(psi, prefix="|\\psi\\rangle ="))

Figure 7.7: Superposition state

Show it on a Bloch sphere, which helps provide an intuitive
understanding of the quantum state. Refer to the following
figure:

plot_bloch_multivector(psi)

Figure 7.8: Bloch sphere representing superposition state

Create initialization gate, which will represent the
superposition state:
init_gate = Initialize(psi)
init_gate.label = "init"
Build a circuit to teleport and view Bloch sphere for
destination qubit:
Define registers – quantum register for 3 qubits, and 2
classical bits in 2 different registers
qr = QuantumRegister(3, name="q")

crz, crx = ClassicalRegister(1, name="crz"),
ClassicalRegister(1, name="crx")

Declare quantum circuit
teleportation_circuit = QuantumCircuit(qr, crz, crx)

STEP 0

Apply init_gate to q0 to assign it a state of superposition
teleportation_circuit.append(init_gate, [0])
teleportation_circuit.barrier()

STEP 1

Entangle qubits q1 and q2
create_bell_pair(teleportation_circuit, 1, 2)

Use barrier to separate
stepsteleportation_circuit.barrier()

STEP 2

Apply gates on Alice's qubits – q0 and q1
alice_gates(teleportation_circuit, 0, 1)

STEP 3

Measure q0 and q1 onto classical bits, which will be sent
to Bob.

measure_qubits(teleportation_circuit, 0, 1 ,crz ,crx)
teleportation_circuit.barrier()

STEP 4

Apply gates on Bob's qubit depending on message in
classical bits
bob_gates(teleportation_circuit, 2, crz, crx)

Figure 7.9 is the circuit diagram representation of Figure

7.6. The init circuit block launches qubit q0 into
superposition. The state of this qubit is being teleported.
The next pair of Hadamard and CNOT gates entangles two
qubits q1 and q2. The next pair of CNOT and Hadamard are
the gates that Alice applies on q0 and q1. The
measurement gates measure qubits q0 and q1 that gets
stored in classical registers. These bits are sent over
classical network to Bob. The last two gates are applied by
Bob to manipulate the state of q2 based on the classical
bits. Thus, q2 will inherit the state of qubit q0.

Draw the circuit:
teleportation_circuit.draw(output='mpl')

Figure 7.9: Teleportation circuit

Run the circuit on a simulator:

Define the simulator
sim = Aer.get_backend('aer_simulator')
Save the statevector of the quantum circuit for later
viewing on the Bloch sphere
teleportation_circuit.save_statevector()
Assemble the circuit
qobj = assemble(teleportation_circuit)
Execute
job = sim.run(qobj)
Display the state of the quantum circuit. Note that there
are three qubits, so the vectors of all the different
combinations formed by the three qubits will be displayed.
out_vector = job.result().get_statevector()
display(array_to_latex(out_vector, prefix="|\\psi\\rangle
="))

Figure 7.10: Statevector of q2, q1, q0

As can be seen in the figure, there are 8 states formed by
the three qubits (q2, q1, q0) – 000, 001, 010, 011, 100, 101,
110, 111. However, only states 001 and 101 have non-zero
vector values. This means that q1 and q0 have collapsed to
states 0 and 1 respectively due to measurement, while q2 is
in a superposition of 0 and 1 whose amplitudes are
identical to the original amplitudes of q0 as shown in
Figure 7.7.

Let us look at the Bloch sphere. The Bloch sphere will
represent the state vectors of the three qubits that were

derived in the previous step. Refer to the following figure:
plot_bloch_multivector(out_vector)

Figure 7.11: Bloch sphere representing the states of the three qubits

The Bloch sphere of q2 in this figure is identical to the
Bloch sphere of q0 in Figure 7.8. Identical Bloch spheres
highlight the no-cloning theorem, as the state is
transferred, not duplicated. It signifies the successful
transfer of the quantum state from q0 to q2. All properties
of the original qubit, such as its amplitude and phase, have
been transferred without any loss or alteration. The
quantum state of input qubit q0 is exactly reconstructed on
the output qubit q2, even though the qubits themselves are
physically separate.

Quantum key distribution

QKD is a standout technology in the field of quantum
information science, designed to tackle the issues of data
security in data encryption. It leverages the principles of
quantum mechanics, especially quantum superposition and
quantum entanglement, to enable two communicating
parties to share cryptographic keys securely. Even the most
secure encryption algorithm relies heavily on how securely
cryptographic keys are distributed and stored. Intercepting
this key during transmission is one of the common ways to
breach conventional encryption systems. In contrast to

classical key distribution methods, where the security
comes from the computational hardness of certain
mathematical problems, QKD’s security is based on the
laws of quantum mechanics, particularly the Heisenberg
uncertainty principle and the no-cloning theorem.
According to the Heisenberg uncertainty principle, it is
impossible to measure certain properties (e.g., position and
momentum, or the polarization states of a photon) of a
quantum system simultaneously with perfect accuracy. In
the context of QKD, if an eavesdropper tries to measure the
quantum key information (e.g., photon polarization or
phase), the act of measuring inevitably disturbs the system
by altering the quantum state of the photon. This
disturbance leads to detectable errors when the qubit
states are later analyzed by the sending and receiving
parties, say Alice and Bob. By publicly comparing some
portions of the received keys, Alice and Bob can detect
discrepancies introduced by potential eavesdropping. This
means that even with unlimited computational power, an
eavesdropper cannot determine the key without disturbing
the quantum system and revealing its presence.
QKD fundamentally changes the mechanism of key
distribution by utilizing properties unique to quantum
mechanics. For instance, the principle of quantum
superposition allows a quantum system to be in multiple
states simultaneously, thus quantum bits (qubits) can be in
more than one state at a time, making interception
significantly more complex. Moreover, quantum
entanglement is used in QKD to generate correlation
between pairs of qubits such that their states are
instantaneously linked, irrespective of the distance
between them. The cornerstone of QKD’s impenetrability

1.

2.

3.

4.

5.

6.

lies in Heisenberg’s uncertainty principle, stating that the
act of measuring a quantum system, such as a photon,
inevitably disturbs the system. Thus, an eavesdropper
trying to intercept the quantum keys will inadvertently
change the keys and reveal their presence.
In QKD, the sender and receiver will exchange information
over quantum channel using qubits to determine the secret
key. Once that is established, the actual messages will be
encrypted using that key and transmitted over classical
channel.
The following are the different steps in QKD:
(Note that Alice is initiating communication with Bob and
Eve is the eavesdropper.)

Alice and Bob need a common key for symmetric

encryption. So, Alice decides on a random set of qubits.

She encodes this data using a random combination of

X-basis and Z-basis.

Alice transmits the data.

Bob receives the data, and uses his own random set of

X & Z bases to measure the data.

Alice and Bob share with each other their own set of

bases. For common basis, they preserve the qubits in

data.

Alice and Bob select a random sample of qubits from

the previously mentioned preserved set and share with

each other.

If there is no interference (measurement) by Eve,

Alice’s and Bob’s sample qubits will match. The

7.

preserved qubits from Step 4 are retained for key

generation and will form the secret key for encryption.

If there is interference from Eve, the sample qubits in

Step 5 will not match at both Alice’s and Bob’s end.

According to the Heisenberg uncertainty principle, it is

impossible to simultaneously know both the position

and momentum of a particle with perfect accuracy; the

act of measuring one property inevitably affects the

other, altering the particle’s state. Therefore, any

measurement by Eve will disturb the state of the

transmitted qubits, such as collapsing the

superposition, or breaking the entanglement between

qubit pairs. In this scenario, the whole sequence will

restart from Step 1.

The following is an example that will help explain this:

Let us look at Table 7.4 as we walk through the example.
Consider that Alice generated 5 random qubits: 1, 0, 1, 0,
0, as can be seen in row #1. Row #2 gives the random
bases that Alice generated. What are bases? Each of the
qubits are measured on a certain axis, or basis. The first
qubit is measured on Z-axis. So, randomly generate qubit-1
‘1’, is measured on randomly generated basis Z. A value of
1 on Z-axis on Bloch sphere corresponds to |1⟩. Therefore
row #3 shows |1⟩ corresponding to qubit-1. Similarly, qubit-
2 ‘0’ measured on ‘X’ axis is |+⟩. Why? A qubit lying on the
positive X-axis is in a state of superposition of (|0⟩ + |1⟩),
which is represented as |+⟩. Just like states 0 and 1 lie on
the top and bottom of the Z-axis on Bloch sphere, a 0 and 1
on X-axis will lie on the positive and negative ends of X-
axis. Qubit-3 ‘1’ on X-axis lies on negative X-axis and
corresponds to a superposition of (|0⟩ - |1⟩), which is

represented as |-⟩. On Similar lines, qubit-4 ‘0’ on Z-axis is
|0⟩, and qubit-5 ‘0’ on X-axis is |+⟩. All these states are
represented in row #3.

Row #4 shows five qubits in initial state, on which gates in
row #5 are applied in order to generate the states in row

#3. These qubits are then transmitted over a quantum
channel, as shown in row #6. Bob also randomly generates
bases at his end in order to measure the qubits transmitted
by Alice. These bases are depicted in row #7. Bob uses
quantum gates to decode the message. Row #8 gives the
gates. If Bob’s randomly generated measurement basis is Z-
axis, then Identify gate is applied. If Bob’s measurement
basis is X-axis, then Hadamard gate is applied. By applying
the gates in row #8 to the transmitted qubits in row #6,
row #9 is generated. These are keys as decoded by Bob.
Both Alice and Bob will send their bases to each other. If
Bob measures a qubit in the same basis that Alice encoded
it with, then the result must match. If Alice and Bob used a
different basis for a qubit, then the result will not match,
and hence, that basis and qubit will be discarded. This
comparison is done by both Alice and Bob. As can be seen
in the table, Alice and Bob chose same bases for qubits 1,
3, 4, and 5. These are highlighted in bold. Therefore, they
will compare only these qubits. For these four qubits,
Alice’s keys (row #1) and Bob’s keys (row #9) are
identical, again highlighted in bold. This means that the
information was not tampered with. For Alice and Bob to
know this, they will share a random subset of these qubits
and compare. If they are identical, which is true in this
case, it means that Alice and Bob can use the state of these
four qubits (1100) as the key for encryption. In reality, the
sample qubits are discarded from the overall keyset since it

is no longer secret, because it is sent over a network
accessible to public.
What happens if Eve tries to hack the information? Refer to
the following table:

Rows
Categ

ory

Qubit-

1

Qubit-

2

Qubit-

3

Qubit-

4

Qubit-

5

#1 Alice

Key

1 0 1 0 0

#2 Alice

Bases

Z X X Z X

#3 Alice

State

|1⟩ |+⟩ |-⟩ |0⟩ |+⟩

#4 Qubit

initial

state

|0⟩ |0⟩ |0⟩ |0⟩ |0⟩

#5 Gate Pauli X Hadam

ard

P-X +

H

I Hadam

ard

#6 Transm

itted

Qubits

|1⟩ (|0⟩
+ |1⟩)

 (|0⟩ -
|1⟩)

|0⟩ (|0⟩
+ |1⟩)

#7 Bob

Bases

Z Z X Z X

#8 Messa

ge

Decod

er

I I H I H

#9 Bob

Key

|1⟩ (|0⟩
+ |1⟩)

|1⟩ |0⟩ |0⟩

Rows
Categ

ory

Qubit-

1

Qubit-

2

Qubit-

3

Qubit-

4

Qubit-

5

(decod

ed

data)

Table 7.4: Exchange of qubits between Alice and Bob

Table 7.5 shows the state of information when Eve tries to
intercept data sent by Alice to Bob. Information sent by
Alice is same as that given in Table 7.4. Until row #6, data
in Table 7.5 is same that in Table 7.4. Eve, in order to
intercept and measure the data, generates her own random
set of bases. Let us assume she selects X-axis as the
measurement basis for all the qubits (row #7). Row #8

gives the decoder gate - Hadamard for X-basis. Row #9

gives the decoded information after applying gates in row

#8 to qubits in row #6. This is what Eve sees. Eve’s
interception has changed the state of the qubits. Let us see
how Bob views the tampered data. Refer to the following
table:

Rows
Categ

ory

Qubit-

1

Qubit-

2

Qubit-

3

Qubit-

4

Qubit-

5

#1 Alice

Key

1 0 1 0 0

#2 Alice

Bases

Z X X Z X

#3 Alice

State

|1⟩ |+⟩ |-⟩ |0⟩ |+⟩

#4 Qubit

initial

|0⟩ |0⟩ |0⟩ |0⟩ |0⟩

Rows
Categ

ory

Qubit-

1

Qubit-

2

Qubit-

3

Qubit-

4

Qubit-

5

state

#5 Gate Pauli X Hadam

ard

P-X +

H

I Hadam

ard

#6 Transm

itted

Qubits

|1⟩ (|0⟩
+ |1⟩)

 (|0⟩ -
|1⟩)

|0⟩ (|0⟩
+ |1⟩)

#7 Eve

Bases

X X X X X

#8 Eve

Messa

ge

Decod

er

Hadam

ard

H H H H

#9 Eve

Key

(decod

ed

data)

 (|0⟩ -
|1⟩)

|0⟩ |1⟩ (|0⟩
+ |1⟩)

|0⟩

Table 7.5: Eve tries to read information sent by Alice to Bob

Rows #1 to #3 in Table 7.6 contain the same data as rows
#7 to #9 from Table 7.5. Row #3 shows the tampered
qubits. Bob will apply his randomly chosen bases in row #4

on these qubits (row #3) to measure their state. The
decoded information is in row #6. Both Alice and Bob will
send their bases to each other. If Bob measures a qubit in
the same basis that Alice encoded it with, then the result
must match. If Alice and Bob used a different basis for a
qubit, then the result will not match, and hence, that basis

and qubit will be discarded. This comparison is done by
both Alice and Bob. As can be seen in the table, Alice and
Bob chose same bases for qubits 1, 3, 4 and 5. These are
highlighted in bold. Therefore, they will keep only these
qubits and discard the others. Again, Alice and Bob will
share a subset of these qubits over public network to check
whether they are matching.

As can be seen in the highlighted text in Table 7.7 and row

#6 in Table 7.6, all four qubits are mismatching. This
means that someone has tried to intercept the data. So,
Alice starts all over again with a new set of random qubits
and random bases. The process repeats until the selected
qubits match between Alice and Bob.
In reality, a large number of qubits are involved in this
transaction. Alice and Bob will share a large sample size
with each other over public network to verify whether the
protocol worked correctly. Higher the sample size, smaller
is the error rate. These randomly selected samples are
removed from the final keyset, which is then used to
encrypt actual data between Alice and Bob over a classical
channel.

Rows
Categ

ory

Qubit-

1

Qubit-

2

Qubit-

3

Qubit-

4

Qubit-

5

#1 Eve

Bases

X X X X X

#2 Eve

Messa

ge

Decod

er

Hadam

ard

H H H H

Rows
Categ

ory

Qubit-

1

Qubit-

2

Qubit-

3

Qubit-

4

Qubit-

5

#3 Eve

Key

 (|0⟩ -
|1⟩)

|0⟩ |1⟩ (|0⟩
+ |1⟩)

|0⟩

#4 Bob

Bases

Z Z X Z X

#5 Messa

ge

Decod

er

I I H I H

#6 Bob

Key

(decod

ed

data)

 (|0⟩ -
|1⟩)

|0⟩ (|0⟩ -
|1⟩)

 (|0⟩
+ |1⟩)

 (|0⟩
+ |1⟩)

Table 7.6: Information as viewed by Bob after interception by Eve

Catego

ry
Qubit-1 Qubit-2 Qubit-3 Qubit-4 Qubit-5

Alice

Key

1 0 1 0 0

Table 7.7: Alice’s original key

Let us now look at the code to implement this circuit. This
code is run on a local Jupyter Notebook using Aer simulator
of Qiskit.
Import the libraries.
from qiskit import QuantumCircuit, Aer, assemble
from numpy.random import randint

import numpy as np
Encode qubits into respective states using the bases. That
is, it takes qubits in row #4 and transforms it to row #6 in
Table 7.4.
def encode_message(bits, bases):

message = []
Iterate through each bit to encode
for i in range(n):

qc = QuantumCircuit(1,1) # Apply gates as given in
row #5 in table 7.4.

if bases[i] == 0: # Prepare qubit in Z-basis
if bits[i] == 0:

Do nothing for the bit value 0 in Z-basis (|0⟩
state)

pass
else:

Apply X gate to flip the qubit if bit value is 1
qc.x(0)

else: # Prepare qubit in X-basis
if bits[i] == 0:

Apply Hadamard gate to prepare |+⟩ state for
bit value 0

qc.h(0)
else:

Apply X gate to prepare |1⟩ state first

qc.x(0)
Then apply Hadamard gate to get |1⟩ in X-

basis as |-⟩
state
qc.h(0)

qc.barrier()
message.append(qc)

return message
Following function will measure the qubits after applying a
particular gate depending on the basis. That is, it will take
qubits from row #6 in Table 7.4, decode it, and generate
key in row #9.
def measure_message(message, bases):

backend = Aer.get_backend('aer_simulator')
measurements = []
Iterate through all the qubits
for q in range(n):

If basis is Z, then apply Identity gate, or do nothing, just
measure
if bases[q] == 0: # measuring in Z-basis

message[q].measure(0,0)
If basis is X, apply Hadamard gate and then measure

if bases[q] == 1: # measuring in X-basis
message[q].h(0)
message[q].measure(0,0)

Get the Aer simulator backend for running
quantum circuits

aer_sim = Aer.get_backend('aer_simulator')
Assemble the quantum object (qobj) from the

encoded message
qobj = assemble(message[q], shots=1,

memory=True)
Run the quantum object on the simulator and

obtain the result
result = aer_sim.run(qobj).result()
Retrieve the measured bit from the result's

memory
The first element in the memory is converted to an

integer
measured_bit = int(result.get_memory()[0])
Append the measured bit to the measurements list

for further use
measurements.append(measured_bit)

return measurements, message
Alice and Bob will discard qubits where their bases do not
match.
def remove_garbage(a_bases, b_bases, bits):

good_bits = []
for q in range(n):

if a_bases[q] == b_bases[q]:
If both used the same basis, add

this to the list of 'good' bits
good_bits.append(bits[q])

return good_bits
Alice and Bob will select sample qubits from the overall set,
which they will send to each other to verify whether the
protocol worked and there was no eavesdropping.
def sample_bits(bits, selection):

sample = []
for i in selection:

use np.mod to make sure the bit we sample is
always in the list

range
i = np.mod(i, len(bits))
pop(i) removes the element of the
list at index 'i'
sample.append(bits.pop(i))

return sample
The following function prints the results:
def print_results(alice_key, bob_key, bob_sample,
alice_sample):

#print('Alice sample ', alice_sample)
#print('Bob sample ', bob_sample)
print('Alice key ', alice_key)
print('Bob key ', bob_key)
print('Key matches? ', alice_key == bob_key)

print('Sample matches? ',alice_sample == bob_sample)
The following function will verify whether Eve’s
interception was detected or not:
def validate(alice_key, bob_key, bob_sample, alice_sample
):

global detected, undetected
print_results(alice_key, bob_key, bob_sample,

alice_sample)
No eavesdropping
if alice_key == bob_key:

if bob_sample == alice_sample:
print('There was no eavesdropper')

else:
print("Strange error!")

else:
Eve eavesdropped
if bob_sample == alice_sample:

print("Eve went undetected!")
undetected += 1

else:
print("Eve's interference was detected.")
detected += 1

The following function orchestrates the whole flow:
def main(n, sample_size, interception=True):

Step 1

Generate 'n' random bits (0s and 1s) for Alice's
message

alice_bits = randint(2, size=n)
Generate 'n' random bases (0s and 1s) to determine

measurement basis
alice_bases = randint(2, size=n) # Step 2
Encode Alice's bits into quantum messages based on

her chosen bases
message = encode_message(alice_bits, alice_bases)

if interception:
Interception!
Generate 'n' random bases for Eve's measurements
eve_bases = randint(2, size=n)
intercepted_message, eve_mesg =

measure_message(message, eve_bases) else:
eve_mesg = None

Step 3
Generate 'n' random bases to measure the incoming

message by Bob
bob_bases = randint(2, size=n)
Alternative option where Bob can use Alice's bases

(commented out)
#bob_bases = alice_bases
Measure the quantum message using Bob's bases and

retrieve results

bob_results, bob_mesg = measure_message(message,
bob_bases)

Step 4
Alice and Bob will discard qubits where their bases

do not match
bob_key = remove_garbage(alice_bases, bob_bases,

bob_results)
alice_key = remove_garbage(alice_bases, bob_bases,

alice_bits)

Step 5
Select bit positions to determine sample bits
bit_selection = randint(n, size=sample_size)
Bob will select sample bits to send to Alice
bob_sample = sample_bits(bob_key, bit_selection)
Alice will select sample bits to send to Bob
alice_sample = sample_bits(alice_key, bit_selection)

Verify whether Eve's interception was detected or
not

validate(alice_key, bob_key, bob_sample, alice_sample)

Returns eve's and bob's messages
return eve_mesg, bob_mesg

Run the program:
100 qubits will be randomly generated along with the
bases.

n = 100
Sample size of qubits that will be shared by Alice and
Bob
sample_size = 5
Initialize counts.
detected, undetected = 0, 0
Run the main function 10 times.
for i in range(10):

print(f'Result {i+1} ')
eve_mesg , bob_mesg = main(n, sample_size)
print('\n')

print(f'Interference detected {detected} times. It went
undetected {undetected} times.')
The result from the execution is:
Interference detected 6 times. It went undetected 4 times.
While each run will give different results due to the
randomness of sample selection, the result alludes to the
fact that if the sample size is small then there is a high
chance that the sample might match, but there could be
mismatch in rest of the qubits. Therefore, sample size
should be large enough to reduce the probability of error.

If we increase the sample_size to 20 in the code and run it
200 times, this is the result:
Interference detected 200 times. It went undetected 0
times.
Even if we run the code 200 times, we are able to detect
Eve’s interference every single time.

In order to test for the scenario where there was no
interference from Eve, pass a 3rd parameter to main

function:
eve_mesg , bob_mesg = main(n, sample_size, False)
The result will display a message:
There was no eavesdropper

Post-quantum cryptography

Quantum computers hold great promise to solve complex
problems exponentially faster than classical computers.
However, this formidable power also brings potential
threats to current cryptographic systems, which secure the
internet and vital data. PQC, also known as quantum-
resistant cryptography, focuses on developing algorithms
that cannot be broken by quantum computers. This field is
about developing cryptographic systems that are secure
against both quantum and classical computers, ensuring
our digital security future. Although quantum computers
currently do not have enough processing power to break
encryption keys, future versions might.
To understand PQC, one must first comprehend quantum
computing’s impact on conventional cryptographic systems.
Let us look at the two types of cryptography: symmetric
and asymmetric. In symmetric cryptography, both parties
share a key that is private to them, which is used to encrypt
the data. In Asymmetric, the client encrypts the data with a
public key and the server decrypts it with a private key.
The risk of future quantum systems breaking both types of
cryptography is real. For example, Grover’s algorithm can
be used to decipher keys in symmetric cryptography,
whereas Shor’s algorithm can break asymmetric

cryptography. However, the approach to both problems in a
post-quantum world is different.
The most commonly used symmetric algorithm is the
Advanced Encryption Standard (AES). The strength of
the algorithm lies in the number of bits used to define the
key. With 128 bits, there are 2128 possible combinations,
which is 300 undecillion, 3 followed by 38 zeros. To guess
the key, even the most advanced supercomputer would
take trillions of years. While quantum algorithms such as
Grover’s can reduce the order of time by a quadratic factor,
that is, 128 bits will seem like 64 bits. This can be
circumvented by increasing the bits to 256.
Public-key cryptography, however, is vulnerable because of
how the math works. Current cryptographic systems,
including RSA, Diffie-Hellman, and elliptic curves, rely
heavily on the difficulty of factoring in large numbers or
solving discrete logarithm problems. It is possible to find
the private key without trying all combinations if there is a
way to factor a semi-prime number, which is a product of
two prime numbers. Public key encryption provides
security by using very long key pairs, for example, 2048
bits, which is a number with 617 decimal digits. Quantum
computers, using a method called Shor’s algorithm, can
theoretically break even 4096-bit key pairs in just a few
hours. This will render current cryptographic systems
vulnerable and ineffective.
Present quantum computers have a high error rate and do
not have the processing power to crack cryptography
codes. However, Cryptographically Relevant Quantum

Computer (CRQC) can change the picture when it
becomes a reality. A CRQC is a quantum computer

•

•

•

powerful enough, has an advanced error correction circuit,
and is equipped with the software necessary to break the
cipher keys used in encryption. With CRQC, cryptographic
methods, especially the algorithms for asymmetric
cryptography, will become vulnerable to hacking. If these
encryption algorithms are broken, we will not be able to
trust the data that is transmitted or received over the
internet, even if it is encrypted, be it banking transactions,
emails etc. Even if CRQC is not available today, hackers
can intercept and archive encrypted communications,
which can then be decrypted with a quantum computer at a
later time. This poses an additional risk to present-day
communication. This is explained by the Mosca model. It
states that organizations have to worry if the threat of
CRQC arrives sooner than the sum of the years it takes to
implement the quantum-safe solution and the duration for
which information has to be protected.
That is, if X + Y > Z, where:

X: The number of years the information has to be

secured due to data protection laws, compliance

requirements, or company policies.

Y: The number of years it will take to upgrade the

present infrastructure to a quantum-safe setup.

Z: The years it will take for CRQC to become a reality.

If this equation becomes true, then organizations may not
be able to protect its data for the duration Z – (X + Y) from
the harvest and decrypt later attack. Large organizations
will be at risk of litigation and extortion. Nation states and
military, however, would be the primary targets of this kind
of impending attack at a future date.

Consider an example where a financial organization is
required to retain customer data for five years (X = 5) as
part of its compliance requirement. The organization also
estimates that it will take an additional three years (Y = 3)
to upgrade its systems to become quantum-safe and comply
with new security regulations. However, the government
has set a compliance deadline of 7 years (CRQC timeline)
for all financial institutions to meet the new regulations.
So, Z = 7.
In this case, X + Y = 5 + 3 = 8, which exceeds Z by one
year (Z < X + Y). Consequently, one year’s worth of
sensitive customer data would be exposed to the “harvest
now, decrypt later” threat, underscoring the urgency for
the organization to accelerate its transition to quantum-
safe systems to mitigate this risk.

Figure 7.12 gives the timeframe of when CRQC will become
a reality. There are optimistic and pessimistic probabilities.
There is a 4-11% possibility that CRQC will come into
existence within the next 5 years. Note that this report was
generated in December 2023. There is a 17-31% chance
that CRQC will disrupt modern-day communication within
the next 10 years. While these may not sound like high
probabilities, the pace at which technology has been
advancing and the fact that breakthroughs by nature are
unpredictable, this risk can materialize much sooner. Major
breakthroughs in quantum error correction (QEC) and
physical architecture can catapult the realization of CRQC.
Given the catastrophe that this can unleash, there is a
pressing need to expedite the process of designing and
implementing quantum-safe hardware and software
solutions.

Figure 7.12:
1
Timeframe when CRQC will become a reality

There are two kinds of solutions to circumvent the
impending risks that CRQC carries: Quantum-based
solutions, and classical solutions replying on cryptographic
algorithms QKD, from the previous section, is an example
of a quantum-based solution. However, the challenge with
QKD is that it requires special hardware. While this, too,
will form one of the facets of quantum cryptography, for
the foreseeable future, finding algorithms that can
withstand the force of quantum computers becomes
imperative. This is the field of PQC.
PQC involves creating security mechanisms that can
withstand the assault of both classical and quantum
computers, preserving the security and integrity of data.
The implementation of PQC is not about displacing classical
cryptography but enhancing it to stand the power of
quantum computing.

•

Institutes, organizations, and quantum computing experts
around the globe are experimenting to develop and
standardize cryptographic techniques, understanding well
the risk that quantum computing would eventually pose to
the current cryptographic infrastructure. Several
techniques have emerged to build quantum-safe algorithms
and resist attacks from quantum computers. Let us briefly
examine some of the leading contenders:

Lattice-based cryptography: This method relies on

the difficulty of specific mathematical problems in

lattice theory. A lattice is a set of vectors in a multi-

dimensional geometric plane that creates an equally

spaced grid of points. This form of cryptography is

considered as one of the promising alternatives to

traditional factoring and discrete logarithm-based

cryptographic algorithms that will be vulnerable to

attacks by quantum computers. Lattice-based

cryptography has several significant advantages,

including being resistant to quantum computer attacks,

high performance in key generation, encryption, and

decryption, and providing solutions for many advanced

cryptographic tasks. Two common computational

problems used in lattice-based cryptography are the

Shortest Vector Problem (SVP) and the Closest

Vector Problem (CVP). The hard-to-solve nature of

these problems lies at the core of the security of

lattice-based cryptography. Examples of lattice-based

cryptography include CRYSTALS-Kyber, designed for

public key encryption and key establishment, and

CRYSTALS-Dilithium, developed for secure digital

signatures. Both are recognized for their strong

resistance to quantum computer attacks and have

•

•

been selected by NIST as PQC standards. Another

notable example is NTRUEncrypt, which leverages

lattice structures to facilitate encryption, making it a

pioneering approach in lattice-based cryptographic

systems.

Hash-based cryptography: An area of cryptography

that primarily uses cryptographic hash functions. These

hash functions take input message data (which may be

of any size) and output a fixed-size string of bytes,

which is unique to each unique input. Hash-based

cryptographic techniques are widely used in a variety

of applications, such as digital signatures and message

integrity checks. The primary features of hash-based

digital signatures, such as the Merkle and Lamport

signature schemes, are their simplicity and extremely

high-security level. They utilize one-way hash

functions, which are easy to compute in one direction

but very hard to reverse engineer without the original

input, creating a sort of digital fingerprint. One

downside to hash-based cryptography is that it

typically requires larger key sizes and more

computational resources than many other forms of

cryptography.

Code-based cryptography: This is a class of post-

quantum cryptographic algorithms that are based on

the mathematical properties of error-correcting codes.

Error-correcting codes are usually used to detect and

correct errors in data transmission, but in code-based

cryptography, they are used as a computational

problem to secure data. The security of code-based

cryptographic systems resides in the difficulty of

decoding randomly chosen linear codes. This problem

•

is believed to be NP-hard, even for a quantum

computer, making code-based cryptosystems secure

against quantum attacks. One of the early and well-

known examples of a code-based cryptosystem is the

McEliece cryptosystem. These systems offer a number

of advantages, including fast decryption and immunity

to attacks from both classical and quantum computers.

However, they also tend to require much larger keys

than other cryptosystems, which can be a

disadvantage in some applications.

Multivariate polynomial cryptography: A branch of

PQC that focuses on crypto systems whose security is

based on the mathematical difficulty of solving systems

of multivariate polynomials. These cryptographic

schemes provide encryption, digital signatures,

pseudorandom generators, and more. The security of

multivariate cryptosystems is based on the complexity

of solving general systems of multivariate polynomials,

an NP-hard problem. In this technique, the public and

private keys are multivariate polynomials. The public

key is a set of multivariate polynomial equations, which

is easy to compute for encryption or signing. However,

solving the equations which is required for decryption

or verification is broadly believed to be difficult and

computationally intensive, equivalent to NP-hard

problems. A well-known example of this kind of system

is the Unbalanced Oil and Vinegar (UOV) scheme,

which is a digital signature whose security relies on the

hardness of solving a particular type of multivariate

polynomial equation. In UOV, the signatures are very

short as compared to lattice-based or code-based

methods, and the computation is also fast, however,

size of the public key is an issue. Also, a poorly chosen

system of polynomials can lead to a broken

cryptosystem.

Table 7.8 gives the comparison among the aforementioned
cryptographic techniques based on different parameters:

Crypto

graphy

type

Advant

ages

Disadv

antage

s

Key

sizes

Perfor

mance

metrics

Use

cases

Lattice-

based

Strong

resistan

ce to

quantu

m

attacks,

versatile

,

support

s

encrypti

on and

signatur

es, good

perform

ance

Comput

ationally

intensiv

e for

certain

operatio

ns

Moderat

e to

large

(few

kilobyte

s to

several

kilobyte

s)

Fast

encrypti

on/decr

yption,

moderat

e

signatur

e

generati

on time

Secure

key

exchang

e,

digital

signatur

es,

homom

orphic

encrypti

on

Hash-

based

Simple

to

implem

ent,

highly

secure

against

quantu

Large

signatur

e size

Key size

is

typically

larger

than

tradition

al

cryptogr

aphy

Good

signatur

e

generati

on

speed

and

verificat

Digital

signatur

es

Crypto

graphy

type

Advant

ages

Disadv

antage

s

Key

sizes

Perfor

mance

metrics

Use

cases

m

attacks

ion

speed

Code-

base

Good for

encrypti

on and

key

exchang

e,

relativel

y

mature

area

Larger

key

sizes

compar

ed to

other

scheme

s

Very

large

Moderat

e speed

for

encrypti

on and

decrypti

on

Secure

messagi

ng,

encrypti

on,

digital

signatur

es

Multiva

riate

polyno

mial

Relativel

y

compact

key

sizes,

highly

resistan

t to

quantu

m

attacks

Comple

xity of

implem

entation

Moderat

e

Fast

encrypti

on and

decrypti

on

Secure

key

exchang

e and

commu

nication

Table 7.8: Comparison of different PQC cryptography types

Migration to PQC does, however, present significant
challenges. Notably, these include efficiency, most PQC
algorithms require more computational resources and
generate larger keys, interoperability, seamlessly
integrating PQC into existing systems and the assurance of

long-term security against future advances in quantum
computing. These challenges necessitate intensive research
and development efforts. Undeniably, there is an urgent
need to transition to quantum-resistant cryptographic
systems.
There are open-source projects to help build quantum-
resistant cryptography. One such project is Open

Quantum Safe (OQS). This project enables the
development and prototyping of quantum-resistant
cryptography. OQS is part of the Linux Foundation’s Post-

Quantum Cryptography Alliance. It provides an open-
source C library named liboqs for prototyping and
experimenting with quantum-resistant cryptography. This
is available on GitHub.
In summary, PQC represents a critical frontier in the realm
of cybersecurity. It is a complex yet fascinating field that
combines elements of theoretical computer science,
abstract algebra, and quantum mechanics. So, while we
look forward to the quantum leap in computing, there is
also the undeniable urgency to gear up and fortify the
cryptographic defenses to protect the digital world against
potential threats.

Conclusion

Quantum communication, leveraging the principles of
quantum mechanics, is revolutionizing communication
systems by providing unprecedented security and speed
benchmarks. These advances have sparked a global race in
the research and development of quantum technologies. It
presents significant opportunities for secure
communication, scalable quantum computing, and precise
long-range measurement. However, it also introduces

1.

significant practical and theoretical challenges such as
noise handling, error correction, and device connectivity.
Advancements in quantum communication can penetrate
several sectors, including cybersecurity, defense,
telecommunications, finance, and fundamental sciences,
contributing significantly to a nation’s strategic
advancement in the ongoing technology race. This rapidly
evolving field is a harbinger of a future where quantum
computers, quantum networks, and quantum information
shape the basis of our technological world. Even though the
full realization of quantum communication technology
might take a few more years of dedicated research and
problem-solving, the promise held by this technology makes
all the effort worthwhile.
In this ever-evolving field, we are on the cusp of a new era
of communication. Undoubtedly, the exploration and
development of quantum communication technology will
open numerous research avenues, and the discoveries
made will continue to mold the landscape for future
communication capabilities.
In the next chapter, we will explore quantum error
management, including the classification of quantum
errors, techniques for error mitigation and correction, the
design of quantum error correcting circuits, and the
implementation of advanced codes like Shor’s code to
enhance the reliability of quantum computations.

Multiple choice questions

Which quantum communication technique allows

the transmission of two classical bits using only

one qubit, leveraging quantum entanglement?

a.

b.

c.

d.

2.

a.

b.

c.

d.

3.

a.

b.

c.

d.

4.

a.

b.

c.

d.

Quantum key distribution (QKD)

Quantum Teleportation

Quantum superdense coding

Quantum Satellite Communication

Which of the following statements about

quantum teleportation is true?

It involves the instantaneous transfer of physical

objects across space.

It relies solely on classical communication channels

for transmitting quantum states.

It allows for the perfect cloning of quantum states.

It destroys the original quantum state of the particle

being teleported.

Which principle of quantum mechanics is most

directly responsible for QKD’s ability to detect

eavesdropping?

Quantum superposition

Quantum entanglement

Heisenberg uncertainty principle

No-cloning theorem

Which of the following algorithms pose a

significant threat to currently used asymmetric

cryptographic systems?

Shor’s algorithm.

Advanced Encryption Standard (AES).

Grover’s algorithm.

Mosca model.

5.

a.

b.

c.

d.

1.

2.

3.

4.

5.

1.

Which of the following is NOT presented as a

leading contender in post-quantum cryptography

(PQC)?

Lattice-based cryptography

Symmetric-key cryptography

Hash-based cryptography

Code-based cryptography

Answer key

c

d

c

a

b

Questions

What is quantum superdense coding and what key

advantage does it offer?

Answer: Quantum superdense coding is a quantum

communication protocol that allows a sender to

transmit two classical bits of information by sending

only a single qubit, provided the sender and receiver

share a pair of entangled qubits in advance. The key

advantage of this technique is that it enables the

transmission of more classical information per qubit

than is possible using classical communication alone,

effectively doubling the channel’s classical capacity

and optimizing bandwidth.

2.

3.

4.

5.

What is quantum teleportation, and what happens to

the original quantum state during this process?

Answer: Quantum teleportation is a process in

quantum mechanics that transmits the quantum state

of a particle from one location to another, without

physically moving the particle itself. During this

process, the original quantum state at the sender’s

location is destroyed due to the principles of quantum

measurement, in accordance with the no-cloning

theorem. This ensures that the quantum information is

not duplicated during teleportation.

Is quantum teleportation instantaneous?

Answer: No, quantum teleportation is not

instantaneous. While the entangled particles’ states

correlate instantly, the process also requires classical

communication to transmit measurement information,

and this communication is limited by the speed of light.

What type of channel is used to transmit the actual

encrypted message after a secret key is established in

QKD?

Answer: A classical channel.

What is the primary focus of post-quantum

cryptography (PQC)?

Answer: The primary focus of post-quantum

cryptography (PQC) is developing cryptographic

algorithms that remain secure against attacks from

both quantum computers and classical computers.

1 Source: Global Risk Institute

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New

Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Chapter 8

Quantum Error

Correction

Introduction

Quantum error correction (QEC) is a foundational
aspect of quantum computing that addresses one of the
most significant challenges in the field: the susceptibility of
quantum information to errors due to decoherence that
results from a variety of factors such as thermal
fluctuations, electromagnetic interference, defects and
impurities in materials used for qubits, interactions with
the environment, and imperfections in gate operations.
Unlike classical bits, which store information as either a 0
or a 1, quantum bits (qubits) can exist in any superposition
of these states, making the information they carry
incredibly potent for computational processes yet
exceedingly fragile. Qubits are extremely sensitive to their
environments, leading to computational errors that can
easily disrupt their delicate quantum states. This fragility
necessitates the development of sophisticated error

•

•

•

•

•

correction techniques to identify and correct errors without
collapsing the qubits’ delicate quantum states. At its core,
this involves encoding a logical qubit into a system of
several physical qubits. If an error affects one or more of
the physical qubits, the overall state can be analyzed and
corrected without directly measuring the quantum
information. This process relies on intricate algorithms and
quantum principles, such as entanglement and
superposition, to ensure the robustness of quantum
computations against errors. As the field of quantum
computing advances, the refinement of QEC methods
remains a crucial endeavor, leading to the realization of
reliable and scalable quantum computers capable of
tackling problems far beyond the realm of classical
systems.

Structure

The chapter will be structured in the following way:

Overview of quantum error correction

Types of quantum errors

Techniques for quantum error mitigation

Techniques for quantum error correction

Quantum circuit design for QEC

Objectives

This chapter discusses QEC by first exploring the concept
of decoherence and its impact on qubit states, followed by
fault tolerance and the advent of the NISQ era. It
categorizes different types of quantum errors and examines
error mitigation techniques. The chapter also describes

various types of QEC codes and demonstrates the design of
quantum circuits for correcting specific errors. By the end
of this chapter, readers will understand the mechanisms of
various quantum errors, the strategies to mitigate and
correct them, and the practical skills to design quantum
circuits that enhance the reliability and scalability of
quantum computations.

Overview of quantum error correction

QEC remains one of the most vibrant areas of quantum
computing research, driven by the ongoing quest to build a
fault-tolerant quantum computer. The strategies mentioned
previously have been pivotal in demonstrating that
quantum computing can, in principle, be made as reliable
as classical computing despite the fundamental challenges
posed by quantum mechanics. As physical qubit
technologies mature and quantum operations’ fidelity
improves, QEC codes’ development and refinement
continue to adapt to emerging needs and insights. This
ongoing innovation cycle is crucial for the transition from
experimental quantum computing setups to practical,
scalable quantum computers that can solve real-world
problems beyond the reach of classical machines.
Furthermore, advancements in fault-tolerant protocols,
which incorporate QEC techniques to ensure that errors
corrected during quantum computations do not propagate
and multiply, are essential. This involves not only the
choice of the QEC code but also the architecture of the
quantum circuit, including the layout of physical qubits, the
scheduling of quantum gates, and the implementation of
logical qubits and logical operations that are resilient to
errors.

The interplay between theory and experiment in QEC is
particularly pronounced. As theoretical models predict the
feasibility and efficacy of certain QEC approaches under
idealized conditions, experimental implementations provide
feedback that refines these models, leading to new
generations of codes and error correction techniques.
Each type of QEC technique offers unique advantages and
poses specific challenges. The choice of QEC code in a
quantum computing architecture depends on several
factors, including the physical implementation of qubits
(for example, superconducting circuits, trapped-ions,
quantum dots, etc.), the primary types of errors to which
the system is susceptible, and the operational requirements
of the quantum algorithms to be executed. QEC is highly
pivotal in enabling the development of robust and reliable
quantum computers. Its multidisciplinary nature,
intersecting quantum mechanics, information theory, and
computer science, makes it a rich field of study that
continuously evolves in response to theoretical
advancements and experimental discoveries. As we edge
closer to realizing the full potential of quantum computing,
the importance of QEC will only grow, ensuring that future
quantum computers can operate effectively in the face of
inevitable quantum noise and errors. The progress in QEC
techniques not only promises to unlock the practical
applications of quantum computing, ranging from
cryptography and optimization to simulation of quantum
systems and beyond, but also deepens our understanding of
quantum mechanics itself, shedding light on the
fundamental properties of quantum states and their
resilience to interactions with the environment.

•

•

While the availability of large quantum computers for
industrial and commercial use may still be a few years
away, NISQ, or Noisy Intermediate-Scale Quantum
computing, refers to a current era of quantum computing
hardware that is not yet fault-tolerant, meaning errors in
qubits are common and need to be corrected. These
devices are considered intermediate-scale because they
have around 50-100 qubits, which is not yet enough for
solving real-world problems efficiently. Despite their noise
and error-prone nature, NISQ computers hold promise for
early applications like quantum simulation and
optimization. The challenge lies in developing effective
QEC codes to mitigate noise and increase the reliability of
computations on NISQ devices. As quantum technology
advances, researchers are working towards achieving
scalable, fault-tolerant quantum computers that can
outperform classical systems in several use cases. Until
then, commercial NISQ devices will likely rule the roost as
they become more accessible in the near future.

Types of quantum errors

There are three main types of quantum errors:

Bit flip error: When the state of a qubit in

superposition gets flipped due to the environment, it is

called a bit flip error. This leads to the loss of

information or fidelity in a quantum system. Factors in

the environment, such as thermal vibrations, can cause

qubits to flip states, which can lead to inaccuracies in

quantum computations.

Phase flip error: When the phase of a qubit in

superposition gets disturbed due to the environment, it

is called a phase flip error. This can occur due to

•

various factors such as environmental noise,

imperfections in the quantum hardware, or interactions

with surrounding particles. Phase flip errors are also

associated with dephasing, which can result in the

loss of coherence in quantum systems, making it

difficult to perform quantum computations accurately

and leading to errors in the final results. To mitigate

dephasing errors, techniques such as error correction

codes and error mitigation methods are employed in

quantum computing.

Gate operation error: In quantum computing, gate

operation errors refer to the mistakes or inaccuracies

that can occur when applying quantum gates to a

quantum circuit. Quantum gates are fundamental

building blocks for performing operations on qubits.

Various factors can lead to gate operation errors in

quantum computing. One of the main sources of errors

is the noise and imperfections present in the physical

qubits and quantum hardware used to implement the

quantum gates. These imperfections can lead to

deviations from the intended gate operations, resulting

in errors in the final output of the quantum circuit.

Another factor contributing to gate operation errors is

decoherence, which is the loss of coherence of qubits

due to interactions with their surrounding environment.

Decoherence can cause qubits to lose their quantum

properties and result in errors in the gate operations.

Additionally, errors in gate operations can also arise

from issues related to the control and calibration of the

quantum gates, such as inaccurate timing or voltage

levels. These technical challenges can lead to errors in

the application of quantum gates and impact the

overall performance of a quantum algorithm.

Techniques such as QEC codes and fault-tolerant

quantum computing methods are employed to mitigate

gate operation errors in quantum computing. These

approaches aim to reduce the impact of errors and

improve the reliability of quantum computations.

However, there are some trade-offs in implementing

QEC techniques such as resource overhead due to

multiple physical qubits encoding a single logical qubit,

increased latency due to additional instructions for

error correction, and complexity in scaling. Additionally,

advancements in quantum hardware technology and

the development of more precise control techniques

can help minimize gate operation errors in quantum

computing systems.

Techniques for quantum error

mitigation

To reduce the impact of errors, even before implementing
error correction, several vendors are working on error

mitigation techniques. Quantum error mitigation (QEM)
offers lower resource overhead because it does not require
full redundancy of error correction. It also involves less
complexity than error correction. QEM is more practical for
NISQ devices.
Error mitigation techniques often involve identifying and
minimizing the effect of errors on the results of quantum
computations by using statistical methods. For instance,
techniques like error averaging perform quantum
computations multiple times and then average the results.
There are two limitations to this approach. One is that it
increases computational cost due to multiple circuit

•

executions to average out the error in order to obtain
reliable results. The other is sensitivity to systematic
errors, as the premise for error averaging is that errors are
random. Post-processing aims to improve the results of a
quantum computation after it has been performed to
reduce the impact of errors through statistical
bootstrapping and resampling. Noise extrapolation

involves running the same quantum computation multiple
times with varying levels of artificially added noise and
then comparing the results to extrapolate a noise-free

result. However, some issues could hinder the effectiveness
of this approach, such as inaccurate noise modeling,
limited operational ranges, statistical uncertainties, and
error accumulation. Let us look at the techniques:

Post-processing error mitigation: Post-processing

techniques involve analyzing the outcomes of quantum

computations to infer and correct errors that may have

occurred during the computation. For post-processing

error mitigation, methods such as Bayesian inference

or maximum likelihood estimation (MLE) can be

used. For example, in a quantum algorithm, after

taking several measurements, Bayesian inference can

help refine the probabilities of possible outcomes by

considering known errors or biases. For example, if

there is a prior belief that a particular qubit is more

likely to result in 0, Bayesian inference can adjust the

results accordingly, leading to more accurate overall

probabilities. Both Bayesian inference and MLE help

enhance the fidelity of quantum computation. These

methods have been effective in real-world use cases

such as improving accuracy in molecular simulations,

boosting fidelity of NISQ devices, error correction in

•

○

○

quantum communication to enhance reliability of

quantum key distribution protocols, etc.

Error detection and correction: In this technique,

errors are detected and corrected as they occur. This

can be achieved using various error detection and

correction algorithms, such as majority voting or

syndrome extraction techniques:

Majority voting technique: In the majority voting

technique, multiple measurements are taken on

each qubit to detect errors. By performing repeated

measurements on the same qubit and comparing

the results, a voting scheme can be used to

determine the correct state of the qubit. This

technique is based on the principle that errors are

more likely to cause a deviation from the correct

state, and by taking a majority vote of the

measurements, one can correct errors and mitigate

their impact on the quantum computation.

Implementing this method generally involves a

greater number of physical qubits. Majority voting

can require further gates for preparation and

measurement, thus increasing the execution time

and potentially exceeding the coherence time of the

qubits and leading to additional errors. Also, high

noise level makes the results unreliable.

Syndrome extraction technique: The syndrome

extraction technique is an essential part of QEC

codes, such as the popular quantum error correcting

codes like the surface code. In this technique,

ancillary qubits, called syndrome qubits, are used

to extract information about errors that may have

occurred in the quantum computation. By

measuring the syndrome qubits and analyzing the

results, one can deduce the presence and location

•

•

•

of errors in the encoded quantum information. This

information is then used to apply corrective

operations to the qubits and restore the original

state of the quantum system. An example of the

syndrome extraction technique is the 3-qubit circuit

for detecting bit-flip errors, which is discussed in a

later section of this chapter. However, there is

overhead and complexity associated with

implementing this method. Additional ancilla qubits

complicate the architecture. Also, the syndrome

extraction process is iterative and involves multiple

steps, and at the end requires classical logic for

error correction. All of these factors contribute to

increased computational complexity and latency,

which can potentially affect the overall performance

of quantum algorithms.

Error mitigation: Randomized compiling,

measurement-error mitigation, zero-noise

extrapolation, probabilistic error cancellation,

symmetry constraints, purity constraints, subspace

expansions, N-representability, learning-based

Error mitigation algorithms: Various algorithms and

techniques have been developed to mitigate errors in

quantum computations, such as error mitigation via

noise-agnostic quantum error suppression

(EMNQS) and error mitigation via randomized

compiling (EMRC). These algorithms aim to estimate

and correct errors in quantum computations without

requiring detailed knowledge of the noise model.

Error suppression: Quantum error suppression

techniques aim to reduce the occurrence of errors by

implementing error suppression mechanisms in the

•

•

quantum system. This can include techniques such as

dynamical decoupling or error-avoiding codes.

Error-resilient quantum gates: Error-resilient

quantum gates are gates designed to be less sensitive

to errors, making them more robust against noise and

errors in the quantum hardware. Techniques such as

randomized compiling or gate set tomography can be

used to optimize quantum gates for error resilience.

Machine learning-based error mitigation: Machine

learning techniques can be used to learn patterns in

the errors occurring in a quantum system and develop

error mitigation strategies based on this learning.

Machine learning algorithms can help predict and

correct errors in real-time, improving the overall

performance of quantum computations.

Techniques for quantum error

correction

Quantum data is inherently vulnerable to disruption from
noise, decoherence, or errors during quantum gate
operations. These errors can lead to the loss of quantum
information and disrupt quantum computations. QEC
techniques allow for the detection and correction of these
errors, unlike error mitigation, which aims to prevent the
error from occurring, thereby preserving the integrity of
quantum states and ensuring the reliable execution of
quantum algorithms. Without QEC, the practical realization
of fault-tolerant quantum systems would be impossible.
Error correction demands higher resource overhead, as a
single logical qubit may require entangling of several
physical qubits. It is also inherently complex due to its

•

•

reliance on sophisticated mathematical frameworks and
algorithms. However, compared to error mitigation
techniques, QEC is more robust and is crucial for building
scalable, fault-tolerant systems.
One of the key aspects of QEC is the concept of logical
qubits. These are quantum bits of information protected
from errors by encoding them across multiple physical
qubits. For example, in classical computing, a bit of value 0
will be encoded as 000, and one with value 1 will be
encoded as 111. If an error causes the bits to change from
000 to 100, it can still be inferred correctly by looking at
the majority of the bits. However, the main difference in
quantum computing is that the state of a qubit cannot be
cloned due to the no-cloning theorem in quantum
mechanics. Therefore, the encoding scheme for error
correction is more complex than in classical computing.
This section will give an overview of a few of the techniques
for error correction:

Shor’s code: This technique is named after Peter

Shor, who is also the inventor of a quantum factoring

algorithm named Shor’s algorithm. Shor’s code

encodes information in a single logical qubit into nine

physical qubits. It can correct both bit-flip and phase-

flip errors on a single qubit. A detailed circuit diagram

and code will be explained in the next section.

Steane’s code: Steane’s code, named after physicist

Andrew Steane, is a specific quantum error correcting

code that encodes information in a single logical qubit

into seven physical qubits. It can rectify any single-

qubit error, be it a bit-flip or phase-flip error. Steane’s

code can identify single-qubit errors without directly

•

•

○

○

measuring the logical qubit. By gauging specific error

syndromes, the code can pinpoint whether a bit-flip or

phase-flip error has occurred and on which qubit. The

error correction method in Steane’s code entails

utilizing ancillary qubits and a sequence of controlled

operations. It encompasses both bit-flip and phase

error detection, with subsequent corrective actions as

necessary. What sets Steane’s code apart is its ability

to correct errors without directly measuring the logical

qubit, thereby preserving the quantum information.

This code is well-suited for applications in quantum

communication, fault-tolerant computing, and quantum

memory.

Toric code: Toric code belongs to a class of QEC codes

called surface codes. Toric code is a powerful quantum

error correcting code that leverages the topological

properties of the lattice to provide robust protection

against errors. It encodes a logical qubit in a two-

dimensional lattice of physical qubits. It can detect and

correct both bit-flip and phase-flip errors. Errors in the

physical qubits are detected and corrected by

measuring the syndromes of chains of stabilizer

operators corresponding to plaquettes and vertices on

the lattice. The Toric code has a high threshold for error

correction, making it a robust method for fault-tolerant

quantum computing.

Quantum Convolutional code: At the core, QEC

codes are of three broad categories:

Stabilizer codes such as Shor’s code and Steane’s

code

Topological codes such as the Toric code

○

•

•

Convolutional codes

These codes are used primarily in quantum

communication. Their differentiating attribute is their

memory structure. This leads to the reuse of qubits

during the encoding process, which requires fewer

qubits. Therefore, large numbers of qubits can be

transmitted, as fewer qubits are required to correct the

errors.

Cat qubits: Cat qubits are superconducting qubits that

are in a superposition of two quantum states instead of

being in a superposition of 0 and 1 in a single quantum

state. Cat qubits require fewer physical qubits to

encode a logical qubit as compared to other

superconducting qubits. Also, in contrast to other

qubits, Cat qubits significantly decrease bit-flip error at

the cost of slightly higher phase-flip error.

GKP Code: GKP code is an error correction code

named after its inventors, Gottesman, Kitaev, and

Preskill. This is applied to a GKP qubit, which is a

bosonic qubit. A bosonic qubit is a qubit encoded in an

oscillator mode, such as a microwave resonator. The

GKP code is created to be resilient against small shift

errors present in momentum and position quadrature.

This approach gives good fault tolerance with fewer

qubits.

There are many other techniques for QEC, and it is a field
of continuous research. In the next section, we will examine
Shor’s code in more detail.

Quantum circuit design for QEC

1.

2.

This section will cover the design and implementation of
QEC circuits. The first two circuits will correct bit-flip and
phase-flip errors in a 1-qubit system. The third circuit will
correct both bit-flip and phase-flip errors in a 1-qubit
system using Shor’s code. To recap from an earlier chapter,
we can use either IBM Q Lab or Composer to design and
execute the circuit. We can run the code on a simulator as
well as the real quantum device. The Python-Jupyter code
in IBM Q Lab can be run from local machine as well. That
is, we can invoke a simulator or real quantum processor
from IBM Q Lab as well as from a local Jupyter Notebook.
For a demonstration of QEC in this section, Python code
was executed on a Jupyter Notebook running locally, which
uses ibmq_qasm_simulator.

3-qubit circuit for bit flip error

Figure 8.1 depicts a circuit to correct bit flip error on a
single qubit. The main qubit, which is the first qubit, is in a
state of superposition, and two redundant, ancillary qubits
are introduced to correct the error. The rectangular block
named E-bit represents the error and intentionally flips the
state of the first qubit. The CNOT and CCNOT gates
comprise the error correction circuit. Let us look at the
steps:

The qubit is in a state of superposition |ψ> = α|0⟩ +
β|1⟩, where α and β are probabilities of states 0 and 1.

The state of the circuit with the two ancillary qubits is

α|000⟩ + β|100⟩. The most significant qubit is the

topmost qubit in the circuit, and the least significant

qubit is the one at the bottom.

The first CNOT will not change the 2nd qubit’s state

when the first qubit is 0, but it will flip the 2nd qubit to

3.

4.

5.

6.

7.

1.

1 when the first qubit is 1. So, the state of the circuit

becomes:

The second CNOT will impact the 3rd qubit when the

first qubit is 1. Therefore, the new state will be:

The error block will flip the state of the first qubit. So,

the new state of the circuit is:

The first CNOT after the error block will flip the 2nd

qubit when the first qubit is 1. The state of the circuit

becomes:

The second CNOT will flip the 3rd qubit when the first

qubit is 1, and so the new state is:

The CCNOT flips the first qubit when both the 2nd and

3rd qubits are 1. So, the final state of the circuit is:

If you look at the state of just the first qubit, it is α|0⟩ +
β|1⟩, which is the original or the starting state. Even

with a bit flip error on the first qubit introduced by the

error block, the two redundant qubits could correct it.

Take a scenario where there was no error:

Let us take the state of the circuit just before the error

block:

2.

3.

4.

5.

Since there is no error, that is, no error block, the state

remains the same.

The first CNOT after the error block will flip the 2nd

qubit when the first qubit is 1:

The second CNOT will flip the 3rd qubit when the first

qubit is 1:

The CCNOT flips the first qubit when both 2nd and 3rd

qubits are 1. However, the 2
nd

 and 3
rd

 qubits are both

0, so nothing happens. The final state of the circuit is:

The first qubit is α|0⟩ + β|1⟩, which is the starting state.

Therefore, this circuit returns the original state of the

main qubit whether there is an error.

Figure 8.1: QEC for bit flip
1

Let us look at the Python-Jupyter code and the results
generated by the simulator. This code can be run on IBM Q
Lab or a local machine.
First, import the libraries:
from qiskit import QuantumRegister, QuantumCircuit,
assemble, ClassicalRegister
from qiskit import Aer

from qiskit.visualization import plot_histogram,
plot_bloch_multivector, array_to_latex
from qiskit.extensions import Initialize
from qiskit.quantum_info import random_statevector
from qiskit_textbook.tools import vector2latex
The main qubit has to be in a state of superposition. While
Hadamard gate is usually used to launch a qubit into
superposition, but it creates two states of equal probability
of . To view the bit flip error, the probabilities or
amplitudes have to be different so that we can see the flip
in amplitudes. Please note that the amplitude is the square
root of probability. The following function will help create a
superposition of different amplitudes. This function will
generate two random state vectors representing the
amplitudes, given as follows:
This function generates a random quantum state for a
single qubit and creates an # initialization gate that can be
used to prepare that state in a quantum circuit.
def superposition_gate():

Create random 1-qubit state
psi = random_statevector(2)
Create a gate that will assign random amplitudes
init_gate = Initialize(psi)
init_gate.label = "init"
Display the vector
display(array_to_latex(psi, prefix="|\\psi\\rangle ="))
return init_gate

The following function will print the states of the qubits and
display them on the Bloch sphere:
def plot_bloch_sphere(qc):

Get the backend for the quantum simulator
simulator = Aer.get_backend('qasm_simulator')
Save the current statevector of the quantum circuit
qc.save_statevector()
Assemble the quantum circuit into a quantum object

(qobj) for execution
qobj = assemble(qc)
Run the quantum circuit on the simulator and obtain

the results
res = simulator.run(qobj).result()
Extract the statevector from the results of the

simulation
statevec = res.get_statevector()
Display the vector
vector2latex(statevec, pretext="|\\psi\\rangle =")
Display it horizontally
display(array_to_latex(statevec, prefix="|\\psi\\rangle

="))
return statevec

Define the bit-flip function. Apply Pauli X gate to the qubit,
as follows:
Function to introduce bit-flip error

def bit_error(qc):
Apply the Pauli X gate (bit-flip) to the first qubit
qc.x(0)
return qc

The following is the error correction function. It also
introduces a bit-flip error depending on a flag-named error.
Whether there is an error or not, this circuit will retain the
original state of the main qubit, which is qubit [0]. This is
demonstrated by the following code:
This function implements error correction for bit-flip
error in a quantum
circuit. It utilizes CNOT gates to add redundancy to the
qubit q[0] that is
being transmitted. If the 'error' flag is set to True, it
introduces a simulated
bit-flip error to test the correction process. The final
portion of
the function containing CNOT and Toffoli gates after the
error block is
the error correction circuit.

def bit_error_correction(qc, error):
Apply a CNOT gate from qubit 0 to qubit 1
qc.cx(0,1)
Apply a CNOT gate from qubit 0 to qubit 2
qc.cx(0,2) # Introduce error if the 'error' flag is set to

True

if error:
qc.barrier() # Add a barrier for clarity in visualization
Call the bit_error function to introduce a bit-flip

error
qc = bit_error(qc)
qc.barrier() # Add another barrier after introducing

the error
Apply CNOT gate from qubit 0 to qubit 1
qc.cx(0,1)
Apply CNOT gate from qubit 0 to qubit 2
qc.cx(0,2)
Apply a Toffoli gate (CCX) with qubits 1 & 2 as control

and 0 as target
qc.ccx(2,1,0)
return qc

Declare the quantum registers. The classical registers are
for measurement.
qreg = QuantumRegister(3, 'q')
creg = ClassicalRegister(3, 'c')
Define three quantum circuits. The first one will display the
original state of the qubits on the Bloch sphere. The second
circuit qc_error will show the state of the main qubit after
the bit-flip error. As we will see, the Bloch sphere will show
the amplitudes of the two states in a reversed manner. The
third circuit qc_correction will display the state of the
main qubit after error correction. This state will be

identical to the state displayed by the first circuit qc,
whether or not there is an error:
Create a quantum circuit for the main operation
qc = QuantumCircuit(qreg, creg)
Create a separate quantum circuit to model the error
qc_error = QuantumCircuit(qreg, creg)
Create a quantum circuit dedicated to the error
correction process
qc_correction = QuantumCircuit(qreg, creg)
Create the gate:
initialize psi
init_gate = superposition_gate()
Since the function generates the state vectors randomly, so
each execution will give different values. It does not matter
though as the end objective is to see the same values post
error correction. The state vectors created in the
aforementioned step are shown as follows:
|𝜓⟩ = [0.1054504084 + 0.0809746684𝑖 0.6662656455 −
0.7337665869𝑖]
Append the gate to the three quantum circuits:
Append the initialization gate to qubit 0 in the main
circuit
qc.append(init_gate, [0])
Append the same initialization gate to the error circuit
qc_error.append(init_gate, [0])

Append the same initialization gate to the error
correction circuit
qc_correction.append(init_gate, [0])
Display the state vector of the 3-qubit qc circuit:
st1 = plot_bloch_sphere(qc)
The output is as follows:

Figure 8.2: State vector of original circuit qc

Display it on the Bloch sphere:
plot_bloch_multivector(st1)
The output is shown as follows. Qubit 0 is the main qubit,
so observe its output. The probability of |1⟩ is much higher
than |0⟩; hence, the arrow is towards |1⟩ in the Bloch
sphere. The probability can be derived by squaring the
amplitude, that is, summing the squares of real and
imaginary values. The probability of |0⟩ is (0.1054504084)2

+ (0.0809746684)2 = 0.01768 ~ 1.77%. The probability of
|1⟩ is (0.6662656455)2 + (0.7337665869)2 = 0.98232 ~
98.23%. Hence, the vector that represents qubit 0 is closer
to |1⟩. Note that the sum of the two probabilities is 1, as
expected.
The state of qubit 1 and qubit 2 is |0⟩, which is the initial
state. These are ancillary qubits. Refer to the following

figure:

Figure 8.3: Bloch sphere of original circuit qc

Let us apply the error to qc_error and draw the circuit.
The ensuing circuit is shown in Figure 8.4. The code is
given as follows:
Apply bit-flip error to qc_error circuit
qc_error.barrier() # Apply a barrier for clarity in
visualization
Introduce a bit-flip error to the qc_error circuit by calling
the function
qc_error = bit_error(qc_error)
qc_error.barrier() # Add another barrier to separate
operations
Draw and display the qc_error circuit
qc_error.draw(output='mpl')

Figure 8.4: Error circuit design

Let us look at the state vectors of the circuit after the bit-
flip error:
st2 = plot_bloch_sphere(qc_error)
As you can see, the states of |0⟩ and |1⟩ have been flipped in
the following figure:

Figure 8.5: State vector of error circuit

Now, let us look at the Bloch sphere in Figure 8.6. The
vector representing the main qubit q[0] is at a
diametrically opposite end along the Z-axis. This is because
the amplitudes of |0⟩ and |1⟩ have been flipped by the error.
The vector is closer to |0⟩ instead of |1⟩, and the probability
of |0⟩ is higher than |1⟩.

Figure 8.6: Bloch sphere of error circuit

Call the error correction circuit:
error = True
qc_correction = bit_error_correction(qc_correction, error)
Display the state vectors of the circuit after the error
correction. If you look at Figure 8.7, the amplitudes of |0⟩
and |1⟩ have been restored to their original values. The
amplitudes, however, may seem out of place. Here is the
explanation. The non-zero amplitudes are against states
|110⟩ and |111⟩. Just note that the most significant bit
represents q[2], and the least significant bit q[0]. After the
error correction function is run, qubits [1] and [2] become
|1⟩. Hence, the amplitudes that stood originally at |000⟩ and
|001⟩ are now assigned to |110⟩ and |111⟩ because q[1] and
q[2] have become |1⟩. If you ignore the ancillary qubits q[1]
and q[2] and focus just on the main qubit q[0], you will see
that |0⟩ has amplitude 0.10545+0.08097𝑗 and |1⟩ has
amplitude 0.66627−0.73377𝑗, which is the same as the
state vector of the original circuit qc.

Figure 8.7: State vector of error correction circuit

Display the qc_correction qubits on the Bloch sphere, as
shown in Figure 8.8. The representation of the main qubit
q[0] on the Bloch sphere for qc_correction circuit is
identical to that of the main circuit qc. This shows that bit-
flip error introduced in the circuit has been rectified.

Figure 8.8: Bloch sphere of error correction circuit

We will now measure the qubits in all three circuits to
observe their state. As |1⟩ has a higher probability than |0⟩
in the original circuit qc, we will see a greater number of
|1⟩s as compared to |0⟩s across multiple executions. Since
the error circuit qc_error has the amplitudes flipped for the
main qubit, the occurrence of |0⟩ will be more than |1⟩ after
multiple runs. The circuit post-correction, qc_correction,

will have more occurrences of |1⟩ than |0⟩, just like qc, after
multiple executions. Let us look at the results.

Draw the circuit qc and measure the qubits, as given in the
following code. Figure 8.9 shows the results:
qc.measure([0],[0])
qc.draw(output='mpl')

Figure 8.9: Design of original circuit qc

Assemble and run the circuit on the simulator over 1000
iterations:
Get the backend for the quantum simulator
simulator = Aer.get_backend('qasm_simulator')
Assemble the circuit
qobj = assemble(qc)
Run the quantum circuit on the simulator over 1000
iterations
results = simulator.run(qobj, shots=1000).result()
Get count of occurrences of |0⟩ and |1⟩ over 1000
iterations.

answer = results.get_counts()

Plot the result. As can be seen in Figure 8.10, |1⟩ occurs
more frequently than |0⟩ over 1000 iterations, as expected.
We have seen that the theoretical probability of |1⟩ is
98.23%, whereas the bar chart shows the occurrence
percentage as 97.4%, which is close. Each run of the
simulator will give different counts, but they will always be
close to the theoretical probability. The following code
plots the histogram, which is shown in Figure 8.10:
plot_histogram(answer)

Figure 8.10: Result from original circuit qc

We will now look at the error circuit and its results. Run
the code to measure and draw the error circuit - qc_error,
which is shown in Figure 8.11:
qc_error.measure([0],[0])
qc_error.draw(output='mpl')

Figure 8.11: Design of error circuit

Submit the circuit on the simulator and plot the result. As
can be seen in Figure 8.12, the count of |0⟩ is more than |1⟩
because of the bit flip. |0⟩ was flipped to |1⟩, and |1⟩ got
flipped to |0⟩, hence the probability also got flipped. The
code to run the simulator is given as follows:
Get the backend for the quantum simulator
simulator = Aer.get_backend('qasm_simulator')
Assemble the circuit
qobj = assemble(qc_error)
Run the quantum circuit on the simulator over 1000
iterations
results = simulator.run(qobj, shots=1000).result()
Get count of occurrences of |0⟩ and |1⟩ over 1000
iterations.
answer = results.get_counts()
plot_histogram(answer)

Figure 8.12: Result from error circuit

Finally, let us look at the design of the complete circuit,
qc_correction, with the bit-flip error and the error
correction gates, as given in the following code. Figure

8.13 gives the complete circuit.
qc_correction.measure([0,1,2], [0,1,2])
qc_correction.draw(output='mpl')

Figure 8.13: Design of overall circuit, with error and error correction gates

Submit the circuit on the simulator and plot the result. The
bar chart (Figure 8.14) shows that the majority of the time,
|1⟩ is observed just like the original circuit, as the bit flip
error was corrected. In this run, the observed occurrence
percentage is 98.3%, which is close to the theoretical
probability. Also, note that the ancillary qubits q[1] and

q[2] have become |1⟩. This is the same as what is shown on
the Bloch sphere in Figure 8.8. The final state of ancillary
qubits is not important as its purpose is to aid in correcting
error introduced in q[0]. The code to run on the simulator
is given as follows:
Get the backend for the quantum simulator
simulator = Aer.get_backend('qasm_simulator')
Assemble the circuit
qobj = assemble(qc_correction)
Run the quantum circuit on the simulator over 1000
iterations
results = simulator.run(qobj, shots=1000).result()
Get count of occurrences of |0⟩ and |1⟩ over 1000
iterations.
answer = results.get_counts()
plot_histogram(answer)

Figure 8.14: Result from error correction circuit

3-qubit circuit for phase error

Figure 8.15 represents a circuit to correct phase error on a
single qubit. The main qubit, which is the first qubit, is in a
state of superposition, and two redundant, ancillary qubits
are introduced to correct the error. The rectangular block
named E-phase introduces a phase shift on the first qubit.
The Hadamard, CNOT, and CCNOT gates comprise the
error correction circuit.
The qubit is in a state of superposition |ψ> = α|0⟩ + β|1⟩,
where α and β are probabilities of states 0 and 1.
The state of the circuit with the two ancillary qubits is
α|000⟩ + β|100⟩. The most significant qubit is the topmost
qubit in the circuit, and the least significant qubit is the
one at the bottom.
The first CNOT will not change the 2nd qubit’s state when
the first qubit is 0, but it will flip the 2nd qubit to 1 when
the first qubit is 1. So, the state of the circuit becomes:

The second CNOT will impact the 3rd qubit when the first
qubit is 1. Therefore, the new state will be –

Hadamard gates are applied to all three qubits. This will
change the state to:

The error block will flip the phase of the first qubit. This
means state 0 will remain 0, but state 1 will become -1:

Post the error block, Hadamard gates are again applied to
all the three qubits. This will change the state to:

The first CNOT after the error block will flip the 2nd qubit
when the first qubit is 1. The state of the circuit becomes:

The second CNOT will flip the 3rd qubit when the first
qubit is 1, and so the new state is:

The CCNOT flips the first qubit when both 2nd and 3rd
qubits are 1. So, the final state of the circuit is:

If you look at the state of just the first qubit, it is α|0⟩ +
β|1⟩, which is the original or the starting state. Even with a
phase error on the first qubit introduced by the error block,
the two redundant qubits were able to correct it.
Just like the bit flip error correction circuit, the following
circuit will return the original state of the first qubit even
when there is no phase error. You can work these
equations and try it out for yourself.

Figure 8.15: QEC for phase error
2

Let us look at the Python-Jupyter code and the results
generated by the simulator. This code can be run on IBM Q
Lab or a local machine.
Import the libraries:
from qiskit import QuantumRegister, QuantumCircuit,
assemble, ClassicalRegister
from qiskit import Aer
from qiskit.visualization import plot_histogram,
plot_bloch_multivector, array_to_latex
from qiskit.extensions import Initialize
from qiskit.quantum_info import random_statevector
from qiskit_textbook.tools import vector2latex
In the bit flip error circuit, it was important to have
different amplitudes for the two superposition states to
visualize the flipping of the qubit states. In the phase error
circuit we are going to apply a Pauli Z gate to change the
phase of the qubit, which will flip the sign of |1⟩ to -|1⟩ while
having no impact on |0⟩. However, for the sake of
consistency, we will still use the same superposition_gate

function from the previous section to define the amplitudes
of the superposition states:
This function generates a random quantum state for a
single qubit and creates an initialization gate that can be

used to prepare that state in a quantum circuit.
def superposition_gate():

Create random 1-qubit state
psi = random_statevector(2)
Create a gate that will assign random amplitudes
init_gate = Initialize(psi)
init_gate.label = "init"
Display the vector
display(array_to_latex(psi, prefix="|\\psi\\rangle ="))
return init_gate

The following function will print the states of the qubits and
display them on the Bloch sphere:
def plot_bloch_sphere(qc):

Get the backend for the quantum simulator
simulator = Aer.get_backend('qasm_simulator')
Save the current statevector of the quantum circuit
qc.save_statevector()
Assemble the quantum circuit into a quantum object

(qobj) for execution
qobj = assemble(qc)
Run the quantum circuit on the simulator and obtain

the results
res = simulator.run(qobj).result()
Extract the statevector from the results of the

simulation

statevec = res.get_statevector()
Display the vector
vector2latex(statevec, pretext="|\\psi\\rangle =")
Display it horizontally
display(array_to_latex(statevec, prefix="|\\psi\\rangle

="))
return statevec

Define the function that will introduce phase error. Apply
Pauli Z gate to the qubit:
This function applies a phase error to the first qubit of
the given quantum
circuit by utilizing the Pauli Z gate, which flips the phase
of the qubit's
state.
def phase_error(qc):

Apply the Pauli Z gate to flip the phase of the first
qubit

qc.z(0)
return qc

The following is the error correction function. It also
introduces a phase error depending on a flag named error.
Whether there is an error or not, this circuit will retain the
original state of the main qubit, which is qubit [0].
This function implements phase error correction for a
given quantum
circuit. It uses CNOT and Hadamard gates to add
redundancy to the qubit q[0]

that is being transmitted. If the 'error' flag is set to True,
it introduces a
simulated phase error to test the correction process. The
final portion of
the function containing CNOT, Hadamard and Toffoli
gates after the error block
is the error correction circuit.
def phase_error_correction(qc, error):

Apply a CNOT gate from qubit 0 to qubit 1
qc.cx(0,1)
Apply a CNOT gate from qubit 0 to qubit 2
qc.cx(0,2)
Launch qubits 0, 1 & 2 into superposition using

Hadamard gate
qc.h(0)
qc.h(1)
qc.h(2)
Error block - introduce error if the 'error' flag is set to

True
if error:

qc.barrier()
qc = phase_error(qc)
qc.barrier()

Apply Hadamard gate again to the three qubits
qc.h(0)

qc.h(1)
qc.h(2)
Apply CNOT gate from qubit 0 to qubit 1
qc.cx(0,1)
Apply CNOT gate from qubit 0 to qubit 2
qc.cx(0,2)
Apply a Toffoli gate (CCX) with qubits 1 & 2 as control

and 0 as target
qc.ccx(2,1,0)
return qc

Declare the quantum registers. The classical registers are
for measurement:
qreg = QuantumRegister(3, 'q')
creg = ClassicalRegister(3, 'c')
Define three quantum circuits. The first one will display the
original state of the qubits on the Bloch sphere. The second
circuit qc_error will show the state of the main qubit after
the phase error. As we will see, the Bloch sphere will show
the phase of the qubit rotated around the Z-axis by 180
degrees. Just to recap from a previous chapter, the phase
angle ϕ is the angle made by qubit with respect to the X-
axis. So, the phase changes when the qubit is rotated
around the Z-axis. The third circuit, qc_correction, will
display the state of the main qubit after error correction.
This state will be identical to the state displayed by the first
circuit qc, whether or not there is an error.
Create a quantum circuit for the main operation

qc = QuantumCircuit(qreg, creg)
Create a separate quantum circuit to model the error
qc_error = QuantumCircuit(qreg, creg)
Create a quantum circuit dedicated to the error
correction process
qc_correction = QuantumCircuit(qreg, creg)
Create the gate:
initialize psi
init_gate = superposition_gate()
The state vectors created in the step is shown as follows.
Since the function generates the state vectors randomly, so
each execution will give different values. It does not
matter, though, as the end objective is to see the same
values post error correction.

|𝜓⟩ = [0.1539194941 − 0.9789010184𝑖 −0.1211170762 −
0.0582429344𝑖]

Append the init_gate to the three quantum circuits:
Append the initialization gate to qubit 0 in the main
circuit
qc.append(init_gate, [0])
Append the same initialization gate to the error circuit
qc_error.append(init_gate, [0])
Append the same initialization gate to the error
correction circuit
qc_correction.append(init_gate, [0])
Display the state vector of the 3-qubit qc circuit.

st1 = plot_bloch_sphere(qc)
The output is as follows:

Figure 8.16: State vector of original circuit

Display the state vector of the circuit on the Bloch sphere:
plot_bloch_multivector(st1)

The output is Figure 8.17. Qubit 0 is the main qubit, so just
observe its output. Note the direction of the vector, as the
phase error will change the phase or the direction of this
vector. The state of qubit 1 and qubit 2 is |0⟩, which is the
initial state. These are ancillary qubits.

Figure 8.17: Bloch sphere of original circuit qc

Let us apply the error to qc_error and draw the circuit, as
given in the following code. Figure 8.18 gives the circuit:
Apply phase error to qc_error circuit
qc_error.barrier() # Apply a barrier for clarity in
visualization

Introduce a phase-flip error to the qc_error circuit by
calling the function
qc_error = phase_error(qc_error)
qc_error.barrier() # Add another barrier to separate
operations
Draw and display the qc_error
qc_error.draw(output='mpl')

Figure 8.18: Error circuit design

We will look at the state vectors of the circuit after the
phase error. This is shown in Figure 8.19.
st2 = plot_bloch_sphere(qc_error)
Note that the sign of the amplitude for |1⟩ has reversed.
From a negative value, it has become positive. This is
because the Pauli Z gate reversed the sign of the amplitude
of |1⟩.

Figure 8.19: State vector of error circuit

Now, let us look at the Bloch sphere in Figure 8.20. The
vector representing the main qubit q[0] is at a
diametrically opposite end around the Z-axis. This is
because Pauli Z has rotated the qubit around the Z-axis by
180 degrees.

Figure 8.20: Bloch sphere of error circuit

Call the error correction circuit:
error = True
qc_correction = phase_error_correction(qc_correction,
error)
Display the state vectors of the circuit after the error
correction. If you look at Figure 8.21, the sign of the
amplitude of |1⟩ has been restored to its original value. The
amplitudes, however, may seem out of place. Here is the
explanation. The non-zero amplitudes are against states
|110⟩ and |111⟩. Just note that the most significant bit

represents q[2] and least significant bit q[0]. After the
error correction function is run, qubits [1] and [2] become
|1⟩. Hence the amplitudes that stood originally at |000⟩ and
|001⟩ are now assigned to |110⟩ and |111⟩ because q[1] and
q[2] have become |1⟩. If you ignore the ancillary qubits q[1]
and q[2] and focus just on the main qubit q[0], you will see
that |0⟩ has amplitude 0. 0.15392−0.97890𝑗 and |1⟩ has
amplitude −0.12112−0.05824𝑗, as can be seen in Figure

8.21, which is the same as the state vector of the original
circuit qc:
st3 = plot_bloch_sphere(qc_correction)

Figure 8.21: State vector of error correction circuit

Display the qc_correction qubits on the Bloch sphere. The
representation of the main qubit q[0] on the Bloch sphere
for qc_correction circuit is identical to that of the main
circuit qc, as demonstrated in Figure 8.22. This shows that
the phase error introduced in the circuit has been rectified.
plot_bloch_multivector(st3)

Figure 8.22: Bloch sphere of error correction circuit

In case of phase error, the absolute value of the amplitude
remains the same; the sign gets reversed. However, we
cannot measure the sign on a bar plot. That is why we use
the Bloch sphere to observe the phase error because the
bar plot just displays the absolute value of the amplitude.
Hence, we will see that in all three circuits, the bar chart
will show a high probability for |0⟩ as compared to |1⟩. This
is because the probability of |0⟩ is (0.1539194941)2 +
(−0.9789010184)2 = 98.19%, and probability of |1⟩ is
(−0.1211170762)2 + (−0.0582429344)2 = 1.81%. We will
see the actual results. First, let us look at the overall error
correction circuit as given in Figure 8.23:

Figure 8.23: Design of the overall circuit, with error and error correction gates

Figure 8.24 shows the results from the three quantum
circuits. As expected, across 1000 iterations, all the three
circuits have high occurrence of |0⟩ as per their amplitudes.
The reason is that introducing a phase error changes the
relative phases of the states without affecting the
magnitudes of the amplitudes. This means that, although
the signs of the amplitudes can change (indicating a
relative phase shift), the probabilities associated with
measuring once the system collapses to either |0⟩ or |1⟩
remain unchanged. This is because probabilities depend
solely on the squared magnitudes of the complex
amplitudes.

Figure 8.24: Results from error correction circuit, the original circuit, and error

circuit

Shor’s code for QEC

Figure 8.25 represents a circuit that corrects both bit-flip
error and phase error (sign-flip) for a single qubit. This
error correction code is called Shor’s code. It encodes
information contained in a single logical (main) qubit onto
nine physical qubits that are entangled. Qubits 1, 4 and 7
handle sign flip error, while the three groups of qubits:
(1,2,3), (4,5,6) and (7,8,9), are for bit-flip errors. The
Shor’s code can correct a single bit-flip error in each of the

aforementioned groups. If the three groups are considered
as three inputs, then the circuit is reduced to a 3-qubit
circuit and the implementation of the gates between those
three inputs represents the phase error circuit from the
previous section.
The main qubit is in a state of superposition |ψ⟩ = α|0⟩ +
β|1⟩, where α and β are probabilities of states 0 and 1. The
Shor’s code will transform this state into a product of nine
qubits as follows:

|ψ’⟩ = α|0
s
⟩ + β|1

s
⟩, where

The state is generated by the gates just before the error
block, which is illustrated in Figure 8.29(a).

Let us consider that the main qubit (first qubit) got its state
flipped.

The combination of the two CNOTs and the Toffoli after the
error block (Figure 8.25) will lead to this:

Apply the Hadamard on qubits 1, 4, and 7:

Therefore, the state for |ψ’⟩ can be written as:

Apply the last two CNOTs and Toffoli. The state of the
circuit becomes:

The bit flip error has been corrected, and the original
amplitudes α and β are restored for states |0⟩ and |1⟩.
Let us now assume that the main qubit (first qubit) got its
phase/sign flipped in the error block. The state of the
circuit would be:

The combination of the two CNOTs and the Toffoli after the
error block (Figure 8.25) will lead to this:

Apply the Hadamard on qubits 1, 4, and 7:

Therefore, state for |ψ’⟩ can be written as:

Apply the last two CNOTs and Toffoli. The state of the
circuit becomes:

As you can see, the sign flip error has been corrected, and
the original state and sign of the main qubit have been
restored, which is α|0⟩ + β|1⟩.
Now, let us induce both the errors, phase error followed by
the bit-flip error, to the main qubit (first qubit) in the error
block. Figure 8.31 demonstrates this. The state of the
circuit would be:

The following set of gates apply error correction logic,
which is shown in Figure 8.32.
The combination of the two CNOTs and the Toffoli to the
circuit after the error block (Figure 8.25) will lead to this:

Apply the Hadamard on qubits 1, 4, and 7:

Therefore, state for |ψ’⟩ can be written as:

Apply the last two CNOTs and Toffoli. The state of the
circuit becomes:

Thus, the original state and sign of the main qubit has been
restored, which is α|0⟩ + β|1⟩.

Figure 8.25: QEC with Shor’s code
3

Let us look at the Python-Jupyter code and the results
generated by the simulator. This code can be run on IBM Q
Lab or local machine. For brevity, we will exclude all
boilerplate code that includes importing of libraries,
initialization of quantum registers and circuits, defining
functions for superposition, bit and phase errors, plotting
etc., and only look at essential code.
Create the gate:
initialize psi
init_gate = superposition_gate()
|𝜓⟩ = [−0.7895414668 + 0.3259130441𝑖 −0.1722658576 −
0.4906418594𝑖]
The following figures show the state vectors and Bloch
spheres for the original circuit, error circuit, and the error
correction circuit respectively:

Figure 8.26(a): State vectors for the original circuit, error circuit and error

correction circuit

Figure 8.26(b): Bloch sphere for the original circuit, error circuit, and error

correction circuit

As you can see, the error circuit introduced a phase error
and then a bit-flip error, which first flipped the sign of
[−0.17227 −0.49064j] and then swapped position with
[−0.78954 + 0.32591j]. The Bloch sphere of the error
circuit shows the change in direction of the vector
representing the main qubit after it has been subjected to
Pauli Z and Pauli X gates. The error correction circuit
corrects both the errors, as can be seen by its state vector
and Bloch sphere, which are identical to the original
circuit.

Figure 8.27 shows the design of the error correction
circuit:

Figure 8.27: Error correction circuit

We will also measure the three circuits and observe their
results:

Figure 8.28: Results from the original circuit, error circuit, and error correction

circuit

The bit-flip error can be observed in the error circuit where
the occurrence of |1⟩ is higher than |0⟩ across 1000
iterations. As mentioned earlier, the phase error can only
be observed in the Bloch sphere. Refer to the following
figures:

Figure 8.29(a): Section of circuit that adds redundancy

Figure 8.29(b): Section of circuit that induces bit and phase flip errors

•

•

•

Figure 8.29(c): Section of circuit that corrects error

There are few limitations of Shor’s code, given as follows:

Overhead: Shor’s code requires a significant number

of physical qubits (nine) to encode a single logical

qubit, which increases the resource demands.

Complexity: The implementation of Shor’s code

involves multiple rounds of syndrome measurements

and error corrections. This adds to the circuit depth and

complexity, leading to longer execution times.

Error threshold: Shor’s code is effective only when

the physical error rate is below a certain threshold. If

the rate of errors in the individual qubits is too high,

the logical qubit will experience significant errors.

While Shor’s code was foundational in the development of
QEC, there are other codes such as surface codes and
topological codes that provide more efficient error
correction. Surface codes require fewer physical qubits per
logical qubit and has less overhead than Shor’s code. It can
easily scale and have higher threshold for physical error
rates. Similarly, topological codes involve lesser overhead
than Shor’s codes and therefore, scale better. It can

1.

tolerate higher rates of noise and are more robust for large
scale, fault tolerant systems.

Conclusion

In the fast-paced realm of quantum computing, QEC is vital
to effectively combat the inherent fragility and
susceptibility to noise that quantum systems exhibit.
Sophisticated encoding techniques and fault-tolerant
strategies are required to make significant strides toward
building scalable and reliable quantum computers. As
quantum computing progresses, the importance of QEC will
undoubtedly grow, serving as a crucial element in
maintaining the stability and dependability of quantum
circuits. While QEC provides a promising path forward,
implementing practical, efficient error correction in large-
scale quantum systems remains challenging. Continued
research and development in QEC are crucial for advancing
the capabilities and reliability of quantum computers. The
next chapter will focus on few of the most popular quantum
algorithms such as Shor’s algorithm, Grover’s algorithm,
Phase kickback and few others.

Multiple choice questions

A phase flip error in a qubit primarily affects its:

a. Probability of being measured in the ∣0⟩ or ∣1⟩ state.

b. Superposition of ∣0⟩ and ∣1⟩.

c. Physical location within the quantum computer.

d. Relative phase between the ∣0⟩ and ∣1⟩ components

of its superposition.

2.

3.

4.

Which of the following is a characteristic of

quantum error mitigation (QEM)?

a. It is generally more practical for NISQ devices.

b. It requires full redundancy like error correction.

c. It has higher resource overhead compared to error

correction.

d. It always eliminates errors completely.

Which of the following statements is true

regarding the resource overhead of quantum

error correction (QEC)?

a. QEC generally requires fewer physical qubits than

error mitigation.

b. Implementing QEC has minimal impact on the

number of qubits needed.

c. QEC and error mitigation have similar resource

requirements.

d. QEC demands higher resource overhead, often

requiring multiple physical qubits to encode a single

logical qubit.

What is the primary purpose of the two ancillary

qubits in the described 3-qubit circuit?

a. To perform quantum computations.

b. To introduce superposition.

c. To detect and correct bit flip errors on the main

qubit.

d. To entangle with the main qubit for faster

processing.

5.

a.

b.

c.

d.

1.

2.

3.

4.

5.

1.

2.

Which type of error(s) can Shor’s code correct

for a single qubit, according to the provided

text?

Only bit-flip errors.

Only phase-flip errors.

Both bit-flip and phase-flip errors.

Neither bit-flip nor phase-flip errors.

Answer key

d

a

d

c

c

Questions

What are some causes of gate operation errors in

quantum computing?

Answer: Some causes of gate operation errors include

environmental noise, imperfections in quantum

hardware, decoherence, crosstalk between nearby

qubits and issues related to the control and calibration

of quantum gates.

Briefly describe the main idea behind noise

extrapolation.

Answer: Noise extrapolation involves running the

same quantum computation multiple times with

varying levels of artificially added noise and then

3.

4.

5.

comparing the results to extrapolate a noise-free

result.

What is a logical qubit, and why is it important in the

context of QEC?

Answer: A logical qubit is a quantum bit of information

that is protected from errors by encoding it across

multiple physical qubits. This encoding allows for the

detection and correction of errors that might occur in

the individual physical qubits, thus preserving the

integrity of the quantum information.

How many physical qubits are used to encode one

logical qubit in Shor’s code, and what is the purpose of

the three groups of qubits (1,2,3), (4,5,6), and (7,8,9)?

Answer: Shor’s code uses nine physical qubits to

encode one logical qubit. The three groups of qubits,

(1,2,3), (4,5,6), and (7,8,9), are for correcting bit-flip

errors. Each group can correct a single bit-flip error

within that group. Qubits 1, 4, and 7 together handle

the sign (phase) flip error.

What are some of the factors that influence the choice

of a specific QEC code in a quantum computing

architecture?

Answer: The choice of QEC code depends on several

factors, including the physical implementation of qubits

(e.g., superconducting circuits, trapped-ions), the

primary types of errors the system is susceptible to,

and the operational requirements of the quantum

algorithms to be executed.

1 (Source: Wikipedia)

2 (Source: Wikipedia)

3 (Source: Wikipedia)

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New

Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Chapter 9

Quantum Algorithms

Introduction

The realm of classical computing has revolutionized our
world, but for certain problems, its capabilities reach a
limit. Quantum algorithms provide a revolutionary
approach, harnessing the principles of quantum mechanics
to tackle problems intractable for classical computers.
Quantum algorithms take advantage of quantum
superposition and entanglement to outperform classical
algorithms, potentially sparking a revolution in various
fields ranging from cryptography, optimization, machine
learning to simulation of molecules and material science.
This chapter discusses few such algorithms, each offering a
unique solution and showcasing the immense potential of
quantum computation.
We will explore how these algorithms leverage quantum
principles to achieve exponential speedups or tackle
problems deemed impossible classically. These algorithms
demonstrate a paradigm shift in the way problems are
solved. It is not just about superfast calculations or

•

•

•

•

•

unimaginable data storage, it is about re-envisioning the
way we perceive, approach, and solve computational
problems. Algorithms such as Grover’s search would offer
significant speedups for searching through vast datasets as
compared to classical counterparts. Others, such as Shor’s

algorithm would tackle problems previously deemed
mathematically impossible to solve efficiently. Through
these specific examples, we will witness the transformative
potential of quantum computing. They will uncover
numerous research possibilities and areas of further study
in the fields of computer science, physics, mathematics,
and, more importantly, the interdisciplinary field of
quantum computing.
This chapter serves as a roadmap to the exciting world of
quantum algorithms that hold the potential to revolutionize
computing as we know it.

Structure

The chapter will cover the following topics in detail:

Phase kickback

Grover’s algorithm

Shor’s algorithm

Deutsch-Jozsa algorithm

Bernstein–Vazirani algorithm

Objectives

By the end of this chapter, you will be able to understand
the concept of phase kickback and explain how phase
kickback is utilized within quantum algorithms to transfer
phase information between qubits. Additionally, we will

analyze Grover’s algorithm for a quadratic speedup in
unsorted database search problems, and interpret the
results. We will also describe how Shor’s algorithm
efficiently factorizes large numbers and its impact on
cryptography. You will also be able to execute the Deutsch-
Jozsa algorithm on sample functions to determine their
constant or balanced nature. We will also understand the
Bernstein–Vazirani algorithm in finding hidden binary
strings.
By achieving these objectives, you will gain a
comprehensive understanding of key quantum algorithms
and their applications, equipping you with the knowledge
to explore the field of quantum computing and its potential
to revolutionize various industries.

Phase kickback

Quantum phase kickback is a fundamental concept in
quantum computing that refers to the transfer or kickback

of a phase change from one qubit to another. This
phenomenon is an inherent feature in quantum
entanglement and is exploited in various quantum
computing algorithms.
In a typical quantum phase kickback scenario, two qubits
are in an entangled state. The phase change in target qubit
due to a quantum operation causes a mirrored or kicked

back phase change in the control qubit. Importantly, this
phase change occurs even if there is no direct operation
applied to the control qubit. This is because of the way
entanglement and quantum interference work. When two
qubits are in an entangled state, their quantum states are
correlated such that the state of one qubit cannot be
described independently of the state of the other qubit.

When a phase change occurs in the target qubit due to a
quantum operation (like applying a phase gate such as CZ,
Controlled-S, etc.), it alters the overall phase of the
entangled state. Because the states are intertwined, this
change is reflected in the control qubit’s state. The phase
change affects how the amplitudes of the entangled state
combine when measured. Depending on the relative phases
of the states, the resulting probabilities can constructively
or destructively interfere. This means that while measuring
the control qubit, the phase shift from the target qubit can
lead to a redistribution of probabilities among the possible
measurement outcomes for the control qubit, effectively
kicking back the phase information.
Phase kickback is used in numerous quantum computing
applications, including quantum teleportation and quantum
algorithms such as Shor’s algorithm, Deutsch-Josza
algorithm, Grover’s algorithm, etc. Understanding this
property of quantum systems is crucial for designing and
implementing advanced quantum circuits and
computations.
Let us look at an example to understand this concept. At a
high level, when there are two qubits in superposition: one
control and the other target in a CNOT relation, the change
that the control qubit applies on the target is kicked back

to the control qubit as a phase shift.
There are two qubits in superposition: q0 and q1. The state
of q0 is |+⟩, which represents a point on positive X-axis on
the surface of the Bloch sphere, and q1 is |-⟩. Refer to the
following figure:

Figure 9.1: Circuit for qubits in superposition

q0 is in state |+⟩ which is equal to
q1 is in state |-⟩ which is equal to
The state of this quantum system is,

We will measure the same on Bloch sphere, as shown in
Figure 9.2:

Figure 9.2: Bloch sphere of qubits in superposition

Let us apply CNOT such that q0 is control and q1 is target
qubit, as shown in Figure 9.3:

Figure 9.3: Circuit for CNOT between the qubits

Therefore,
What has happened is that CNOT swapped the amplitudes
of 10 and 11. Rearranging the state, we get

It can be observed from the preceding equation that q0 has
undergone a phase shift. It was originally , but now
it is . Even though q0 controls q1 via the CNOT, q0
has undergone a phase shift, as can be viewed in the Bloch
sphere in Figure 9.4. This is the phase kickback. It does not
matter whether it is a CNOT or any other control gates
such as CZ or a controlled-S gate, the effect on q0 is still
the same: it undergoes a phase shift. Note that a rotation
around the Z axis of the Bloch sphere is a phase shift.

Figure 9.4: Bloch sphere of qubits after phase kickback

1.

2.

Let us now look at the code:

Import the libraries.

import numpy as np

from qiskit import QuantumRegister, QuantumCircuit,
assemble, ClassicalRegister

from qiskit.quantum_info import Statevector

from qiskit import IBMQ, Aer

from qiskit.visualization import
plot_bloch_multivector, plot_histogram, array_to_latex

Define function to launch the qubits into superposition.

This function constructs a quantum circuit that
demonstrates

phase kickback. It initializes two qubits in a
quantum register,

applies quantum gates to create superposition, and
then

prepares the circuit for further operations.

def phase_kickback():

Create a quantum register with 2 qubits named
'q'

qreg = QuantumRegister(2, 'q')

Create a classical register with 2 bits named 'c'

creg = ClassicalRegister(2, 'c')

Initialize a quantum circuit using the defined
quantum and classical

3.

4.

5.

registers

qc = QuantumCircuit(qreg, creg)

Apply a Hadamard gate to the first qubit to
create superposition

qc.h(qreg[0])

Apply an X gate (bit-flip) to the second qubit

qc.x(qreg[1])

Apply a Hadamard gate to the second qubit

qc.h(qreg[1])

Return circuit

return qc

Create the circuit. The circuit design of the following

code can be seen in Figure 9.1.

circ = phase_kickback()

circ.draw('mpl')

Plot the Bloch sphere. Output is presented in Figure

9.2. It shows q0 to be in state |+⟩ (positive X-axis) and

q1 to be in |-⟩ (negative X-axis).

statevector = Statevector(circ)

plot_bloch_multivector(statevector)

Display circuit after CNOT. This is shown in Figure 9.3.

Apply CNOT, or controlled X – qubit 0 (q0) is control
and qubit 1 (q1) is target.

circ.cx(0,1)

6.

circ.draw('mpl')

Plot the Bloch sphere to observe the effect of applying

CNOT on q0 and q1. This can be viewed in Figure 9.4.

q0 has undergone a phase shift of π radians and is now

in state |-⟩.

statevector = Statevector(circ)

plot_bloch_multivector(statevector)
Let us see another example where q0 applies a controlled S
gate on q1. To recollect from Chapter 4, Quantum Gates

and Circuits, S gate introduces a phase shift of radians.
Even though q0 applies a controlled phase shift of radians
on q1, due to phase kickback, the expected result is that q0
will undergo that phase shift. The before and after Bloch
sphere can be viewed in Figure 9.6(a), Figure 9.6(b). The
before and after circuits are shown in Figure 9.5.
To demonstrate this clearly, we will launch q0 in
superposition and flip q1 to |1⟩.
def phase_kickback():

qreg = QuantumRegister(2, 'q')
creg = ClassicalRegister(2, 'c')
qc = QuantumCircuit(qreg, creg)
Apply Hadamard gate to create superposition
qc.h(qreg[0])
Apply X gate for bit-flip
qc.x(qreg[1])
Return circuit
return qc

Apply controlled S gate.
circ.cp(np.pi/2, 0, 1) # where circ.cp is controlled phase
shift,

np.pi/2 is the angle in radians, 0 and 1 are q0 and q1

respectively.
circ.draw('mpl')

The circuit is displayed in Figure 9.5:

Figure 9.5: Circuit for Controlled S gate between the qubits

Plot the Bloch sphere before and after applying the
controlled S gate. As expected, due to phase kickback, q0
has undergone a phase shift of radians.
statevector = Statevector(circ)
plot_bloch_multivector(statevector)

The Bloch sphere is shown in Figure 9.6(a) (before) and
Figure 9.6(b) (after):

Figure 9.6(a): Before Controlled S gate is applied

Figure 9.6(b): Phase kickback after Controlled S gate is applied

Grover’s algorithm

Grover’s search algorithm is one of the well-known
algorithms, enabling quantum computers to perform search
of unsorted data array and quadratically outperform their
classical counterparts in terms of time. Unlike classical
algorithms which require linear time to search for an
element, Grover’s algorithm can do it in a square root of
that time, which is a quadratic speedup. That is, if a
classical algorithm needs N steps to do a job, Grover’s
algorithm can do it in about steps.
This algorithm is based on the principles of quantum
mechanics. It uses the property of quantum superposition
(the ability of a quantum system to be in multiple states at
the same time), quantum entanglement (a phenomenon

where quantum particles become interconnected and the
state of one can directly influence the other, no matter the
distance), and quantum interference (where probability
amplitudes interfere with each other like waves) to perform
the search faster. However, Grover’s algorithm is not
suitable for all types of search problems. While it
guarantees to find the correct answer with high probability,
it is just probabilistic: likely but not certain. For smaller
databases or problems, classical algorithms can sometimes
perform more efficiently. Grover’s algorithm shines in
situations where the problem or dataset is large and
unsorted.
Grover’s algorithm has many potential applications. It is
commonly used in searching databases, hash function
inversion, and solving NP-complete problems faster than
any known classical algorithm. The potential of Grover’s
algorithm has proved particularly appealing in the fields of
cryptography. Grover’s algorithm is highly significant as it
was one of the earliest demonstrations of the theoretical
power of quantum computing. It remains a cornerstone of
quantum computing research and provides a fundamental
subroutine for many other quantum algorithms.
There are two parts to the implementation of this
algorithm: Oracle and Diffusion. Oracle is responsible for
flipping the phase of the amplitude of the entity or the state
that is being searched. Figure 9.7(a) gives the initial
amplitudes of all the states. The phase shift in Oracle
inverts the amplitude of the search state over the zero-
plane as shown in Figure 9.7(b). The other states retain
their original amplitude. The Diffusion layer amplifies the
amplitude of the search state. It does so by inverting the
state over the new mean, as shown in Figure 9.7(c). The

effect of this is that the amplitude of the search state
increases significantly, while the amplitudes of other states
fall. Together, in tandem, the Oracle and Diffusion increase
the amplitude of the search state, and thus its probability.
In iterations, where N is the total number of states, the
Grover’s algorithm finds the entity with a probability
greater than . The search problem in this instance
becomes a bounded-error quantum polynomial time

(BQP) problem. A BQP is a type of problem that a quantum
computer can solve with an error probability of at most .

Figure 9.7(a): Initial amplitude of the states in superposition (source: CMU

university)

Figure 9.7(b): Oracle flips the amplitude over zero-line (source: CMU

university)

Figure 9.7(c): Diffusion flips the amplitude over mean (source: CMU university)

Let us look at the steps in detail.

For a n-qubit data structure, there will be entities in
the search space. The probability of each state will be ,
which means the amplitude is
The Oracle will flip the amplitude of the entity to be
searched, making it

The other states are at amplitude , therefore, the mean is:

Where the superscript (0) indicates the first iteration of
Oracle, α is the amplitude of the state to be searched, and
‘a’ is the amplitude of rest of the states.
Here, is
Therefore,

The Diffusion inverts the search state again, but over the
mean. The equation for amplitude after Diffusion layer is as
follows:

, where is amplitude of search state at the
start of second iteration (after first iteration of Diffusion),

 is mean of all amplitudes after Oracle in the first
iteration, and is amplitude of search state after Oracle in
the first iteration.
Therefore,

For n = 3, the search space is 23 = N = 8 states. Substitute
this value in the preceding equation. We get mean 0.265.
The output of Diffusion at the end of first iteration after
substituting values in the preceding equation is 0.884. This
is same as that generated by the code in Figure 9.10, which
shows the state vector that contains the amplitudes of all
the 8 states. The search state 010 has amplitude -0.88388.
Ignore the sign, the main point is that all the states are in
the same phase. Remember that Oracle flips the phase of
search state with respect to other states, whereas Diffusion
keeps the search state in the same phase as other states.
Essentially, the probability of finding 010 after one
iteration of Grover’s is 0.8842 = 78%.
Let us find the probability after second iteration of
Grover’s.
The second Oracle will flip the sign of the search state, so
the amplitude becomes -0.884. To find the mean amplitude,
we need the sum of amplitudes of rest of the states.
First, let us find the sum of probabilities of the remaining
states. Amplitude will be square root of that.
The sum of probabilities of rest of the states

The probability of each such state =

The amplitude of each of the rest of the states is square
root of this value. Therefore, after solving for it we get:

Substituting the values from the example in the preceding
equation, we get amplitude as 0.1768.

The new mean is = 0.0442
As we saw earlier, the output of Diffusion will be

= 2 * 0.0442 – (-0.884) = 0.9724

This value is almost same as the amplitude derived by code
in Figure 9.11.
We will now look at how to implement Oracle. For the
search state, Oracle reverses the sign of the state. So, we
need a function f(x) that gives either +|1⟩ or –|1⟩, as shown
in Figure 9.8, where f(x) will return –|1⟩ for the search
state, and +|1⟩ for the rest. However, this is not a unitary
gate, i.e., the gate is not reversible. We cannot regenerate
the input by passing the output back into the gate, as input
is n-qubit string and output is 1-qubit.

Figure 9.8: Oracle where f(x) is either +|1⟩ or –|1⟩

The input and output should have same number of qubits.
We can have a function f(x) such that it flips the sign of
only the search state while it maintains the sign of rest of
the states. This way the input and output will have same
number of qubits. The following function satisfies this
condition:

When n qubits are passed through the Oracle, the sign of
only the search state will become negative. If we pass the

1.

2.

output back into the gate, the sign of search state will get
flipped back to positive while the rest remains unchanged.
This means that the gate is reversible, which is a
requirement for quantum gates. Figure 9.9 shows the
circuit:

Figure 9.9: Oracle for Grover’s algorithm

Note that in the preceding explanation we are assuming
the search list to be unique and of size 2n, and the values in
the list are represented as n-qubit Boolean strings.
Let us now look at the code to search 010 using Grover’s
algorithm. The results are run on a simulator.

Import the libraries:

#initialization

import matplotlib.pyplot as plt

import numpy as np

importing Qiskit

from qiskit import IBMQ, Aer, assemble, transpile

from qiskit import QuantumCircuit, ClassicalRegister,
QuantumRegister

import basic plot tools

from qiskit.visualization import plot_histogram

Define the Oracle:

3.

def oracle(circuit, state):

for ii, qubit in enumerate(state):

if qubit == 0:

circuit.x(qreg_q[len(state) - 1 - ii])

circuit.h(qreg_q[2])

circuit.ccx(qreg_q[0], qreg_q[1], qreg_q[2])

circuit.h(qreg_q[2])

for ii, qubit in enumerate(state):

if qubit == 0:

circuit.x(qreg_q[len(state) - 1 - ii])

#circuit.x(qreg_q[0])

#circuit.x(qreg_q[1])

circuit.barrier

Define the Diffusion function:

def diffusion(circuit):

qbit_list = [qreg_q[0], qreg_q[1], qreg_q[2]]

Apply Hadamard and X gates to the three qubits

for qbit in qbit_list:

circuit.h(qbit)

circuit.x(qbit)

circuit.barrier(qreg_q[0], qreg_q[1], qreg_q[2])

circuit.h(qreg_q[2])

circuit.ccx(qreg_q[0], qreg_q[1], qreg_q[2])

4.

5.

6.

circuit.h(qreg_q[2])

circuit.barrier(qreg_q[0], qreg_q[1], qreg_q[2])

Apply X and Hadamard gates to the three qubits

for qbit in qbit_list:

circuit.x(qbit)

circuit.h(qbit)

return circuit

Initialize the registers:

qreg_q = QuantumRegister(3, 'q')

creg_c = ClassicalRegister(3, 'c')

grover_circuit = QuantumCircuit(qreg_q, creg_c)

Apply Hadamard to all the three qubits to

create superposition

grover_circuit.h(qreg_q[0])

grover_circuit.h(qreg_q[1])

grover_circuit.h(qreg_q[2])

Select the search string:

SEARCH = [0,1,0]

Build the circuit with one iteration of Oracle +

Diffusion, as shown in Figure 9.10, and display it:

Call the Oracle function with search state in
variable

SEARCH

grover_circuit = oracle(grover_circuit, SEARCH)

7.

8.

Apply diffusion function

grover_circuit = diffusion(grover_circuit)

Add barriers for clarity

grover_circuit.barrier(qreg_q[0], qreg_q[1],
qreg_q[2])

grover_circuit.draw('mpl')

Figure 9.10: Circuit for 010 with one iteration of Oracle + Diffusion

Assemble the circuit using a simulator:

sim = Aer.get_backend('aer_simulator')

Make a copy of the circuit with the
'save_statevector'

instruction to run on the Aer simulator

grover_circuit_sim = grover_circuit.copy()

grover_circuit_sim.save_statevector()

qobj = assemble(grover_circuit_sim)

View the state vector, as shown in Figure 9.11, which

gives the amplitudes of the states:

result = sim.run(qobj).result()

statevec = result.get_statevector()

from qiskit_textbook.tools import vector2latex

Display the state vector

vector2latex(statevec, pretext="|\\psi\\rangle =")

Figure 9.11: State vector for 010 with one Oracle + Diffusion

Let us look at the state vector after second iteration of
Oracle and Diffusion. Figure 9.12 shows the amplitudes:

Figure 9.12: State vector for 010 with two iterations of Oracle + Diffusion

9.

10.

Run the circuit:

Measure the states of qubits 0, 1, and 2 in

the Grover circuit and store the results in

classical bits 0, 1, and 2

grover_circuit.measure([0,1,2],[0,1,2])

aer_sim = Aer.get_backend('aer_simulator')

qobj = assemble(grover_circuit)

result = aer_sim.run(qobj, shots=1000).result()

Display the results. As can be seen in Figure 9.13, out

of 1000 shots, 010, which is the search entity, has

been generated 953 times:

counts = result.get_counts()

plot_histogram(counts)

Figure 9.13: Result of search (010) with two iterations of Oracle + Diffusion

Let us run the Grover’s method for another search state:
100. Figure 9.14(a), Figure 9.14(b) show the circuit and the
result. Notice that the Oracle is different, but Diffusion

remains the same. The Python function named oracle gives
different configurations for various search states. This is
shown in the following figures:

Figure 9.14(a): Circuit for 100 with two iterations of Oracle + Diffusion

Figure 9.14(b): Result of search (100) with two iterations of Oracle + Diffusion

We will now look at the Oracle and Diffusion for N=4 (2
qubits). Define the Oracle and Diffusion for N=4.
This function applies the S gate (phase shift gate) to qubits
in a quantum circuit depending on the provided binary
state string. It modifies the first or second qubit based on
the specific input state:
def s_gate(qc, state):

For '01', it applies the S gate to the first qubit
and the identity gate to the second.
if state == '01':

qc.s(qreg_q[0])
qc.i(qreg_q[1])

For '10', it applies the S gate to the second qubit
and the identity gate to the first.
elif state == '10':

qc.s(qreg_q[1])
qc.i(qreg_q[0])

For '00', it applies the S gate to both qubits
simultaneously.
elif state == '00':

qc.s([qreg_q[0], qreg_q[1]])
If the state is not recognized, no operations are
performed, and the circuit is returned unchanged.
else:

#qc.cz(0,1)
pass

return qc

Define the Oracle function
def oracle(qc, state):

Call s_gate function with the state passed to this
function

1.

qc = s_gate(qc, state)
Apply controlled Z from qubit 0 to qubit 1
qc.cz(0,1)
qc = s_gate(qc, state)
return qc

Define the diffusion function
def diffusion(qc):

Apply Hadamard gate to create superposition on both
qubits

qc.h([0,1])
Apply Z gate to both qubits
qc.z([0,1])
Apply controlled Z from qubit 0 to qubit 1
qc.cz(0,1)
Apply Hadamard on both qubits
qc.h([0,1])
return qc

Build the circuit with one iteration.

Apply Oracle with the state to be searched - '10'.

Change the state value for different search states.

grover_circuit = oracle(grover_circuit, state='10')

Apply diffusion logic

grover_circuit = diffusion(grover_circuit)

Draw the circuit

grover_circuit.draw(output='mpl')

Figure 9.15(a) illustrates the Grover’s circuit (one
iteration) for all the four search states: 00, 01, 10 and 11.
Figure 9.15(b) gives the corresponding results. As can be
seen, the search states are identified with 100% probability
after just one iteration. This is shown in the following
figures:

Figure 9.15(a): Circuit for 00, 01, 10 and 11 with one iteration of Oracle +

Diffusion

Figure 9.15(b): Result for 00, 01, 10 and 11 with one iteration of Oracle +

Diffusion

Shor’s algorithm

Shor’s algorithm is a quantum algorithm developed by
mathematician Peter Shor in 1994. It is designed to solve
the problem of integer factorization exponentially faster
than classical algorithms, which has implications for
cryptography, particularly the widely used RSA encryption
system. RSA involves encryption using a large integer,
which is a product of two large prime numbers. The RSA
system is considered secure because no efficient classical
algorithm can factor large integers. However, running on a
sufficiently powerful quantum computer, Shor’s algorithm
could factor large numbers efficiently, breaking the RSA
encryption. Currently, Shor’s algorithm cannot be

•

•

practically implemented due to the lack of sufficiently
powerful quantum computers.
Shor’s algorithm can find prime factors of a large number
N in the order of O((logN)

3
) time. Classical algorithms and

classical computers will take exponential time to solve the
same problem. This algorithm is a significant milestone in
the realm of quantum computing, demonstrating the
immense capabilities of quantum algorithms to tackle
issues previously regarded as insurmountable. Its discovery
was a landmark on both theoretical and practical aspects of
quantum computing and its application in cryptography.
Shor’s algorithm is a combination of classical and quantum
computing. Let N be an odd semiprime integer. A
semiprime number is a product of two prime numbers. The
algorithm has three parts:

Classical computing: Reduce factorization problem

to a problem of finding period of the function f(k) = x
k

mod N, where N is the integer to be factored, and x is a

random number such that x < N.

Quantum computing: To find period using quantum

Fourier transform (QFT). QFT is a quantum analogue

of the classical discrete Fourier transform (DFT),

which transforms a sequence of complex numbers into

another sequence of complex numbers, highlighting

their frequency components. QFT utilizes the principles

of quantum superposition and interference to perform

the transformation of a quantum state efficiently. It is

utilized primarily in quantum computing due to its

ability to operate exponentially faster than its classical

counterpart.

•

1.

2.

3.

a.

b.

c.

i.

ii.

Classical: Using the period, calculate the factors

Let us look at the solution of factoring a large number N
without quantum computing.

Randomly choose a number x such that x < N.

Check whether x and N have a common divisor by

finding the greatest common divisor (GCD) using

Euclid’s algorithm. If gcd != 1, then that is it, we

have found the factor. Basically, x and N should be

coprime.

Or else, carry out the following steps:

Consider this equation: x
p
 = m.N + 1. This means

that there is some number ‘p’ such that x
p
 when

divided by a multiple ‘m’ of N gives a remainder 1.

x
p
 – 1 = m.N

(x
p/2

 + 1) * (x
p/2

 – 1) = m.N  So, this is basically like

factor1 * factor2 = m.N, and if we solve for p, we

will get the factors for N. There are two caveats to

this, however, and they are as follows:

If one of the factors in the previous step is a

factor of m, and the other factor is a multiple of

N, then this fails, and we have to repeat the

steps by choosing a new random x.

p cannot be odd, or else p/2 will give an irrational

number. Again, we need to repeat from start with

a new random x.

How to find p in the classical way? Using trial and error.
For large numbers, this iteration will take ages even with
supercomputers.

•

•

•

Let us take an example, say N = 15 and x is randomly
chosen to be 11. GCD is 1, so, execute step 3:

11
p
 = m.15 + 1

11
p
 -1 = m.15

(11
p/2

+ 1) * (11
p/2

 – 1) = m.15

Start with p = 1. However, it is an odd number, and we
cannot proceed as per caveat step 3.c.ii mentioned
previously. So, let us move on to p = 2:

(11
2/2

 + 1) * (11
2/2

 – 1) = m.15

12 * 10 = m .15  (2*2*3) * (2*5) = m.15  (2*2*2) * (3*5) =

m.15.

Note the following:

The first part of left-hand side (LHS) is m, which is

2*2*2, and the second part of LHS – 3 and 5, are the

factors of 15.

Alternatively, check whether step 3a. is true:

x
p
 is 11

2
 = 121. Calculate 121 mod 15, which is 1, so

step 3a. is true. Therefore, the period is 2.

Find the GCD of (x
p/2

 ± 1) and N using Euclid’s

algorithm. GCD of (11
2/2

 + 1) and 15 yields 3. GCD of

(11
2/2

 - 1) and 15 is 5. Therefore, both the factors are

derived.

If let us say x was chosen to be 7. By iteration, we will find
that for p = 4, the equation gets satisfied.

74/2 + 1 = 50, and 74/2 - 1 = 48. GCD of 50 and 15 is 5, and
GCD of 48 and 15 is 3. Therefore, the factors are 5 and 3.

1.

2.

3.

In Shor’s approach, QFT is used to harness the power of
superposition to find the period p in the preceding equation
in just one step. This is where an exponential leap is
achieved in quantum computing vis-à-vis classical
computing.
Let us go through an example to find a period using
quantum algorithm. The inputs are two coprime numbers:
N and x, where N is the number to be factored, and x is a
random number such that 1 < x < N, and the output r is the
period of the function f(a)= x

a
 mod N. We will consider

N=15, and x=7. Let us look at the steps:

Choose a number T such that . The number of

qubits to denote T would be t, where T = 2
t
. For N=15,

the smallest value of t for T to be ≥ N
2
 is 8, and T is 2

t

= 256. Initialize two quantum registers, the first will

have t = 8 qubits, and the second will have n = log
2
 N

= 4 qubits.

Apply Hadamard gate on the first register to launch

these qubits into superposition of integers from 0 to T.

Apply modular exponential function on second

register.

Let us substitute x = 7, N = 15 and T = 256.

4.

5.

6.

Measure the second register. This will yield one of the

four states: 1, 7, 4, or 13. It does not matter what the

result is, the focus is on the period of repetition in the

first register, which is 4 for all the results. Let us say

the measurement collapsed the superposition to state

|7⟩.

Perform QFT on the first register.

With a combination of destructive interference and

constructive interference, only states with z = qT/r will

have a significant amplitude. Here, q ranges from 0 to

r-1. The states 0, 64, 128 and 192 will have a

significant amplitude.

Measure the first register. The superposition will

collapse to one of the four states mentioned in the

previous step. Using Euclidean algorithm, find the GCD

between the measured value and T. Assuming 192 was

measured in the previous step, the GCD of 192 and 256

1.

2.

will be 64. With continued fraction of , which is , we

will get the value 4, which is the period.

Now, find the GCD of (x
p/2

 ± 1) and N using Euclid’s

algorithm. Given that N = 15, x = 7, and p is derived as

4, GCD of (x
p/2

 ± 1) and N is GCD of (49 ± 1) and 15,

which is 5 and 3 respectively: these are the desired

factors.

Let us look at the code. The following is a python code
running on a Jupyter Notebook locally. It executes Shor’s
algorithm on an IBM Quantum device: ibm_osaka:

Import the libraries. 5

from qiskit import IBMQ, Aer, assemble, execute

from qiskit.utils import QuantumInstance

from qiskit.algorithms import Shor

from time import time

Assign the backend to ibm_osaka device:

Note: Enable your IBM Quantum account using

your unique API key. This can be obtained by

signing up in IBM Q cloud. IBM key is sensitive

information and should not be shared.

IBMQ.enable_account('# Enter your IBM API key
here')

Retrieve the IBM Quantum provider associated with
the specified hub

provider = IBMQ.get_provider(hub='ibm-q')

3.

4.

5.

6.

Specify the quantum backend (device) to be used
from the provider

backend = provider.get_backend('ibm_osaka')

Create an instance of the Shor’s algorithm with the

backend:

Note that qiskit has a readymade library for Shor
factorization

that creates a Shor's algorithm instance using the
specified

quantum backend. The algorithm will execute 10
times.

factors = Shor(QuantumInstance(backend, shots=10,
skip_qobj_validation=False))

The number to be factorized:

number = 15

Run the algorithm. N is the integer to be factored,

random number chosen is 11:

Factor the number using Shor's algorithm with a

specified value of 'a'

result_dict = factors.factor(N=number, a=11)

Extract the factors from the result dictionary

result = result_dict.factors

Print the result:

print(result)

The result is [[3, 5]].

Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm is a deterministic quantum
algorithm, proposed by David Deutsch and Richard Jozsa in
1992. It was one of the earliest examples of a quantum
algorithm that performs better than the best classical
algorithm.
This algorithm makes it possible to determine with 100%
confidence whether an unknown Boolean function f(x) is
either balanced or constant, with only a single call to the
function.
There is a black box Boolean function f(x) that takes a
string of n bits as input and produces either a 0 or a 1 as
output. With all combinations of the input bits, if the
function returns 1 and 0 equal number of times, then the
function is balanced. However, if the output is either 1 or 0
for all combinations of inputs, then the function is constant.
Classically, the best-case scenario of determining the type
of function is by executing the function just two times. If
the first output is 1, and the second output is 0, then we
know the function is balanced. In the worst case, 2n-1 + 1
iterations are required. That is, we have to check more
than half of the inputs to be absolutely sure whether the
function is balanced or constant. For n bits, there are 2n

combination of inputs. It may so happen that the output is
constant, say 0, for half of the input scenarios (2n-1), and
yet we will not know whether the function is constant or
balanced. However, the subsequent output will tell us the
type of function. If the output is still 0, then it means the
function is constant. If not, it is balanced. Therefore, 2n-1 +
1 iterations are required in a worst-case scenario.

Deutsch-Jozsa algorithm will solve the same problem in
exactly one iteration on a quantum computer. The key to
this is the ability of a quantum computer to hold a
superposition of states and to manipulate those states in
parallel. The algorithm uses a quantum system to calculate
the function f(x) simultaneously for a superposition of all
possible inputs, and the result obtained through
interference of the quantum states gives the answer. At the
center of Deutsch-Jozsa algorithm is the quantum Oracle.
The Oracle is a black box function that performs a specific
operation that modifies the phase of the qubits based on
the function’s value for each state. This phase change is
crucial as it encodes the information about the function’s
behaviour without directly revealing it. If the function is
balanced, the Oracle introduces a phase shift that flips the
ancilla qubit. If the function is constant, the Oracles does
not change any phase. After the Oracle call, Hadamard
gate is applied to the qubits. The phase changes introduced
by the Oracle create constructive and destructive
interference patterns among all the states. Through this
interference of the qubits’ amplitudes, the system evolves
to a state which encodes the answer to the problem. When
measured, if all qubits are observed to be in state 0, the
function f(x) is constant. If not, the function is balanced.
Implement a quantum oracle that maps the state to

 is addition modulo 2, and f(x) is the Boolean
function. |x⟩ is the state of the n qubits, and |y⟩ is the ancilla
qubit. Figure 9.16 shows the circuit diagram to implement
the Deutsch-Jozsa algorithm:

1.

Figure 9.16: Circuit for Deutsch-Jozsa algorithm (Source: QISKIT Textbook)

The initial state of n qubits is all zeros. The ancilla qubit is
initialized to |1⟩.

Let us look at the steps:

Apply Hadamard on all the inputs: n qubits which is the

main input, and one ancilla qubit. The new state will

be:

Let us look at two input qubits, then extrapolate for n

qubits.

Therefore, to get , just replace the power of 2 in

previous equation with the power of n. The resultant

equation will be:

2.

3.

Hadamard is also applied to the ancilla qubit.

Combining the two registers,

Apply the quantum oracle , which only acts on the

second register (ancilla qubit), as stated previously.

Therefore, the new state is:

If we look just at the second register,

f(x) is a Boolean function, so it can be either 0 or 1.

Hence, will be the same as f(x).

So, the second register is

If f(x) is 0, then

If f(x) is 1, then

Therefore can be denoted as

So, would be:

Apply Hadamard to just the first register. So, let us only

look at the first register.

Following is the equation for the output when

Hadamard gates are applied to state |x⟩:

,

where x.y = modulo 2.

4.

1.

Replace |x⟩ on the LHS of the previous equation with

the first register’s equation from step 2.

Therefore, will become

Combining the two registers,

Rearranging:

Measure the first register. Probability is the square of

amplitude, which is within square brackets. Therefore,

the probability of getting |y⟩ = 0 is:

If f(x) is constant, the probability is:

If f(x) is balanced, it will yield equal number of 0s and

1s. So, will result in equal number of +1 and -1,

which will cancel out each other. So, the probability is:

Therefore, if we measure |y⟩ as 0, then f(x) is constant.

For any other value of |y⟩, f(x) is balanced. Hence, with

one call to the Oracle we can determine whether the

function is constant or balanced. Figure 9.17 gives the

circuit when the Boolean function is balanced.

Let us look at code that is run on a real quantum device:
ibm_osaka.

Import the libraries:

2.

initialization

import numpy as np

importing Qiskit

from qiskit import IBMQ, Aer

from qiskit.providers.ibmq import least_busy

from qiskit import QuantumCircuit, transpile

import basic plot tools

from qiskit.visualization import plot_histogram

Define a Boolean function that can be either constant

or balanced depending on the argument passed to it:

from enum import Enum

Define an enumeration for the function types

class FunctionType(Enum):

CONSTANT = "constant"

BALANCED = "balanced"

def boolean_function(qc, n, type):

for qubit in range(n):

'type' indicates whether the function is
'constant' or

'balanced'

if type == FunctionType.CONSTANT :

Apply the identity operation to the qubit
(no change)

for constant functions

3.

4.

qc.id(qubit)

elif func_type == FunctionType.BALANCED:

Apply a Controlled-NOT (CNOT) gate for
balanced

functions

qc.cx(qubit, n)

else: raise ValueError("Invalid function type.
Choose

'CONSTANT' or 'BALANCED'.")

return qc

Initialize number of qubits in the input and the Boolean

function:

n = 2

f_x = "balanced" # or "constant"

Define the quantum Oracle:

Create an oracle quantum circuit with n+1 qubits

oracle = QuantumCircuit(n+1)\

Define the binary string that represents the function
values

b_str = "000"

Place X-gates on qubits corresponding to '1' in b_str

for qubit in range(len(b_str)):

if b_str[qubit] == '1':

5.

Apply an X gate (bit-flip) to the qubit if the

corresponding bit is '1'

oracle.x(qubit)

Use a barrier to visually separate sections of the
circuitoracle.barrier()

Apply the boolean function f_x to the oracle circuit

oracle = boolean_function(oracle, n, f_x)

Use another barrier for clarity before the next
section

oracle.barrier()

Place X-gates on qubits corresponding to '1' in b_str
after applying

the boolean function

for qubit in range(len(b_str)):

if b_str[qubit] == '1':

Apply an X gate (bit-flip) to the qubit again if
the

corresponding bit is '1'

oracle.x(qubit)

Design the overall circuit, by applying Hadamard on

the qubits and calling oracle function, as given in the

preceding theory section:

Create a quantum circuit with n+1 qubits and n
classical bits

dj_circuit = QuantumCircuit(n+1, n)

Apply Hadamard gates to the first n qubits to create
superposition

for qubit in range(n):

dj_circuit.h(qubit)

Prepare the last qubit in the |-⟩ state

dj_circuit.x(n) # Apply an X gate to flip the state to |1⟩

dj_circuit.h(n) # Apply a Hadamard gate to transform
|1⟩ to |-⟩

Add the oracle to the quantum circuit

dj_circuit = dj_circuit.compose(oracle)

Repeat Hadamard gates on the first n qubits after
the oracle

for qubit in range(n):

dj_circuit.h(qubit)

Add a barrier for better visualization of the circuit
structure

dj_circuit.barrier()

Measure the first n qubits and store the results in
corresponding

classical bits

for i in range(n):

dj_circuit.measure(i, i)

Display the quantum circuit

dj_circuit.draw('mpl')

6.

Figure 9.17: Circuit when Boolean function is balanced

Identify the least busy IBM Quantum device and

execute the circuit:

Load the IBM Quantum account for access to the
available resources

IBMQ.load_account()

Retrieve the IBM Quantum provider for the
specified hub

provider = IBMQ.get_provider(hub='ibm-q')

Find the least busy backend that can accommodate
the required

number of qubits (n+1)

backend =
least_busy(provider.backends(filters=lambda x:

x.configuration().n_qubits >= (n+1) and

not x.configuration().simulator and
x.status().operational==True))

print("least busy backend: ", backend)

Run our circuit on the least busy backend. Monitor
the execution of the job in the queue

7.

from qiskit.tools.monitor import job_monitor

Transpile the circuit for the specified backend with
the highest

optimization level

transpiled_dj_circuit = transpile(dj_circuit, backend,
optimization_level=3)

Execute the transpiled circuit on the backend

job = backend.run(transpiled_dj_circuit)

Monitor the job status at 2-second intervals

job_monitor(job, interval=2)

Get the result. Figure 9.18 displays the result.

Get the results of the computation

results = job.result()

Retrieve the counts of measurement outcomes

answer = results.get_counts()

Plot a histogram of the measurement results

plot_histogram(answer)

Figure 9.18: Result of algorithm when Boolean function is balanced

As can be seen in the preceding figure, probability of 11 is
highest. Since this is run on a real quantum device, few
other occurrences are also seen due to noise. On a
simulator, 11 will be observed 100% of the time. If the
output is not 00, then the Boolean function is balanced,
which is the case here.
Let us run the same circuit for a constant Boolean function.
Just change f_x = constant in the preceding code and run.
The following figures show the circuit diagram and
corresponding results. An output of 00 means the Boolean
function is constant, which is the correct result. Figure

9.19(a) gives the circuit when the Boolean function is
constant. Figure 9.19(b) displays the corresponding result:

Figure 9.19(a): Circuit when Boolean function is constant

Figure 9.19(b): Result of algorithm when Boolean function is constant

Bernstein–Vazirani algorithm

The Bernstein-Vazirani algorithm is a quantum algorithm
that was designed to solve a specific type of problem much
more efficiently than classical computing algorithms. This
algorithm was proposed by Ethan Bernstein and Umesh

Vazirani to show the computational advantages of quantum
algorithms over classical algorithms.

The problem involves a hidden binary string stored inside a
box and the task is to identify the string using a quantum
oracle function. In classical computing, the algorithm
would need to query the Oracle for each bit in the string.
Therefore, for a string of length n, it would take n queries
to find the hidden string.
The Bernstein–Vazirani algorithm instead makes use of
quantum parallelism, a property of quantum computing,
and solves the problem with only one query to the Oracle,
regardless of the size of the string. This is because the
Hadamard transform creates quantum superposition by
transforming a qubit’s state into an equal probability
distribution across all possible states. This superposition
allows quantum computers to evaluate multiple possibilities
simultaneously, enabling quantum parallelism. As a result,
they can process a vast number of computations at once,
significantly speeding up tasks compared to classical
systems, which must evaluate each possibility sequentially.
Let us say there is a hidden string with n bits. There is an
Oracle that implements a function f(x) which returns just
one bit  {0,1}, such that f(x) = s.x mod 2, where s ∈{0,1}n

is the hidden string, x is the input query, and s.x is the dot
product of s and x. The task is to find the value of that
string s.

In classical computing (Figure 9.20), we can identify the
information one bit at a time using the preceding oracle
function. This can be done by assigning 1 to the first bit
and 0s to rest of the bits in the input and query the Oracle.
For example, assume that the hidden string is 011. The first
query will be 100. The output of Oracle would be s.x mod 2
= (0.1 + 1.0 + 1.0) mod 2 = 0. In the next iteration, assign

1 to the second bit keeping rest of the bits as 0 in the
query. Keep repeating this for all the n bits. Table 9.1

shows the output for n=3. After all the iterations, the
sequence of output is nothing but the hidden string, which
is 011.
The problem with this approach is that the magnitude of
time is O(n), and it will take a lot of time for a large n.

Figure 9.20: Circuit for classical approach (Source: QISKIT Textbook)

Query
S (hidden) =

011
MOD 2

100 100.011 =

1.0+0.1+0.1 = 0

0

010 010.011 = 1 1

001 001.011 = 1 1

Table 9.1: Output of classical approach

The Bernstein–Vazirani algorithm will solve the same
problem with just one query to the Oracle, as shown in the
following figure. Just like the Deutsch-Jozsa algorithm, we
will use an ancilla qubit along with the n-qubit input.
Define a quantum oracle that implements the
aforementioned function f(x) such that it maps the input
state to , where f(x) = s.x mod 2, |x⟩ is the state
of the n input qubits, |y⟩ is the ancilla qubit, and ⊕ is
addition modulo 2. Figure 9.21 represents the
corresponding approach:

Figure 9.21: Bernstein–Vazirani approach (Source: QISKIT Textbook)

We will follow the flow of equations from Deutsch-Jozsa
algorithm (previous section). The following is the equation
from a previous section, when the Hadamard gates are
applied on the n qubits from the output of Oracle:

Combining the two registers (query and ancilla),

Rearranging:

f(x) = s.x modulo 2.

Therefore,

Measure the first register. The amplitude of first register
for a given |y⟩ is

Probability is

1.

When s⊕y = 0, probability will be 1, and 0 otherwise.
s⊕y = 0 is true when s = y. Therefore, the output of the
circuit yields the secret string s.
The final measurement reveals the hidden string s directly
because the quantum state is prepared in such a way that
the Oracle marks the correct outcome. After applying the
Hadamard gate, the algorithm creates a superposition of all
possible states. The Oracle then flips the phase of the
states corresponding to the hidden string s. These flipped
states interfere constructively when the quantum state is
measured, enhancing their probability of being observed.
The states that do not correspond to s remain unchanged.
These unmarked states interfere destructively, reducing
their probability of being measured. Therefore, when the
qubits are measured, the constructive interference of these
marked states collapses the superposition to the specific
state that corresponds to s, allowing it to be extracted
directly with a single measurement.
Let us now look at the Python code that is run on
ibm_osaka quantum computer:

Import the libraries:

initialization

from random import randint

importing Qiskit

from qiskit import IBMQ, Aer

from qiskit.providers.ibmq import least_busy

from qiskit import QuantumCircuit, transpile,
assemble

2.

3.

import basic plot tools

from qiskit.visualization import plot_histogram

Generate a random hidden integer s:

Number of qubits used to represent the binary
string s

n = 4 # number of qubits used to represent s

Generate a random integer between 0 and 2^n - 1
(inclusive) to

represent the hidden binary string

s = randint(0, 2**n - 1)

Format the integer s as a binary string with n bits,
padding with

leading zeros if necessary

s = format(s, '0'+str(n)+'b')

print(s)

Result is 1011.

Build the circuit, call the Oracle, and measure the

qubits:

We need a circuit with n qubits, plus one auxiliary
qubit

Also need n classical bits to write the output to.

bv_circuit = QuantumCircuit(n+1, n)

Put ancilla qubit in a superposition state |->

bv_circuit.h(n)

bv_circuit.z(n)

Apply Hadamard gates before querying the oracle

for i in range(n):

bv_circuit.h(i)

Apply barrier to visually separate sections of the
circuit

bv_circuit.barrier()

Apply the oracle

Below line of code performs bit reversal to adjust for
Qiskit's

qubit ordering, which is in reverse order from the
classical left-

to-right representation. This ensures that the qubit
states are

correctly aligned with Qiskit's indexing.

s = s[::-1]

for q in range(n):

if s[q] == '0':

bv_circuit.i(q)

else:

bv_circuit.cx(q, n)

Apply barrier to visually separate sections of the
circuit

bv_circuit.barrier()

Apply Hadamard gates after querying the oracle

4.

for i in range(n):

bv_circuit.h(i)

Measurement

for i in range(n):

bv_circuit.measure(i, i)

The following figure gives the overall circuit along with

the Oracle interspersed between the two barriers:

Figure 9.22: Circuit for Bernstein–Vazirani algorithm

Identify the least busy IBM Quantum computer and

execute the circuit:

Load the IBM Quantum account for access to the
available resources

IBMQ.load_account()

Retrieve the IBM Quantum provider for the
specified hub

provider = IBMQ.get_provider(hub='ibm-q')

5.

Find the least busy backend that can accommodate
the required

number of qubits (n+1)

backend =
least_busy(provider.backends(filters=lambda x:

x.configuration().n_qubits >= (n+1) and

not x.configuration().simulator and

x.status().operational==True))

print("least busy backend: ", backend)

Run our circuit on the least busy backend. Monitor
the execution of

the job in the queue

from qiskit.tools.monitor import job_monitor

Define the number of times circuit will be run

shots = 1024

Transpile the circuit for the specified backend with
the highest

optimization level

transpiled_bv_circuit = transpile(bv_circuit, backend)

Execute the transpiled circuit on the backend

job = backend.run(transpiled_bv_circuit, shots=shots)

Monitor the job status at 2-second intervals

job_monitor(job, interval=2)

Get the result, which is shown in Figure 9.23

Get the results of the computation

results = job.result()

Retrieve the counts of measurement outcomes

answer = results.get_counts()

Plot a histogram of the measurement results

plot_histogram(answer)

Figure 9.23: Result from Bernstein–Vazirani algorithm

As can be seen in Figure 9.23, probability of 1011 is the
highest. It is nothing but the hidden strings that we
originally started with. Since this is run on a real quantum
device, few other occurrences are also seen due to noise.
On a simulator, probability of measuring 1011 is 100%.
Thus, this run aligns with the theoretical part of this
section which determined that the probability will be 100%
for a result y when it is equal to the hidden strings.

1.

a.

b.

c.

Conclusion

This chapter explored a few quantum algorithms where
each algorithm demonstrated the potential of quantum
computation to tackle problems much faster than classical
computers. These algorithms demonstrated unique
characteristics and potentials, further highlighting the
diverse nature of quantum computing. Quantum algorithms
have initiated a paradigm shift in computational power,
unravelling potentialities for solving complex problems.
Understanding and harnessing their full potential remains
crucial for driving the next wave of technological
breakthroughs. While the specific applications of these
algorithms vary, they all leverage the unique properties of
quantum mechanics to achieve significant speedups.
Further research and development is crucial to refine these
algorithms and discover new algorithms to pave the way for
practical implementation on future quantum computing
platforms. Quantum algorithms undoubtedly represent a
new era, opening tremendous opportunities in the rapidly
evolving field of quantum computing. The next chapter
enumerates various use cases of quantum computing.

Multiple choice questions

Which of the following best describes quantum

phase kickback in quantum computing?

The transfer of energy from one qubit to another

during measurement.

The transfer of a phase change from a target qubit

to a control qubit in an entangled state.

The loss of quantum information due to

decoherence.

d.

2.

a.

b.

c.

d.

3.

a.

b.

c.

d.

The creation of entanglement between two

uncorrelated qubits.

Which of the following statements best describes

the advantage of Grover’s search algorithm over

classical search algorithms?

Grover’s algorithm sorts data before searching,

making it exponentially faster than classical

algorithms.

Grover’s algorithm can search an unsorted database

in linear time, just like classical algorithms.

Grover’s algorithm can search an unsorted database

in approximately the square root of the number of

steps required by classical algorithms, providing a

quadratic speedup.

Grover’s algorithm only works on sorted data and is

slower than classical algorithms.

Which of the following statements best describes

the significance of Shor’s algorithm in the

context of cryptography?

It provides a classical method for encrypting data

using large prime numbers.

It enables quantum computers to factor large

integers exponentially faster than classical

algorithms, threatening the security of RSA

encryption.

It guarantees the security of RSA encryption by

making factorization impossible.

It is only useful for small numbers and has no

practical implications for real-world cryptography.

4.

a.

b.

c.

d.

5.

a.

b.

c.

d.

1.

2.

Which statement best describes the advantage

of the Deutsch-Jozsa algorithm over classical

algorithms for determining whether a Boolean

function is constant or balanced?

It can determine if the function is constant or

balanced with fewer classical queries by random

sampling.

It always requires checking every possible input to

guarantee the answer.

It provides a probabilistic answer that may be

incorrect.

It determines with certainty whether the function is

constant or balanced using only a single query to

the function on a quantum computer.

Which of the following statements best describes

the main advantage of the Bernstein-Vazirani

algorithm over its classical counterpart?

It finds a hidden binary string using only one query

to the oracle, regardless of the string’s length, by

exploiting quantum parallelism

It can solve any computational problem faster than

classical algorithms.

It requires more queries as the string length

increases, like classical algorithms.

It does not use quantum superposition or Hadamard

gates.

Answer key

b

c

3.

4.

5.

1.

2.

b

d

a

Questions

How does Grover’s algorithm use quantum principles to

achieve faster search, and what are its main

components?

Answer: Grover’s algorithm leverages quantum

superposition, entanglement, and interference to

search unsorted data more efficiently than classical

algorithms. It consists of two main components: the

Oracle, which flips the phase of the amplitude of the

target state, and the Diffusion operator, which

amplifies the amplitude of the target state. By

repeating these steps about times (where N is the

number of possible states), the probability of finding

the correct answer becomes significantly higher than

with classical search, making it especially effective for

large, unstructured datasets.

Why is Shor’s algorithm considered a milestone in

quantum computing, and what impact does it have on

RSA encryption?

Answer: Shor’s algorithm is a milestone in quantum

computing because it demonstrates that quantum

computers can solve the integer factorization problem

exponentially faster than classical computers,

specifically in polynomial time689. This has a profound

impact on RSA encryption, which relies on the difficulty

of factoring large integers for its security. If a

sufficiently powerful quantum computer were built,

3.

4.

Shor’s algorithm could efficiently break RSA encryption

by quickly finding the prime factors of the large

numbers used as encryption keys, rendering current

RSA-based cryptographic systems insecure689.

However, practical implementation is currently limited

by the lack of large-scale, fault-tolerant quantum

computers.

What is quantum phase kickback, and why is it

important in quantum computing??

Answer: Quantum phase kickback is a phenomenon

where a phase change applied to a target qubit in an

entangled pair is reflected back onto the control qubit,

even if no direct operation is performed on the control

qubit. This effect arises due to quantum entanglement

and interference, and it plays a crucial role in many

quantum algorithms (such as Shor’s and Grover’s

algorithms) and quantum protocols, enabling complex

quantum computations and operations.

How does the Deutsch-Jozsa algorithm use quantum

principles to determine whether a Boolean function is

constant or balanced, and how does this compare to

the classical approach?

Answer: The Deutsch-Jozsa algorithm leverages

quantum superposition and interference to evaluate a

black-box Boolean function for all possible inputs

simultaneously. By preparing the qubits in a

superposition, applying the oracle (which encodes the

function), and then using Hadamard gates, the

algorithm creates interference patterns that reveal

whether the function is constant or balanced upon

measurement. If all qubits are measured as 0, the

5.

function is constant; otherwise, it is balanced. This

process requires only a single query to the function,

whereas a classical deterministic algorithm would

require up to 2
n−1

+ 1 queries in the worst case to

guarantee the answer.

How does the Bernstein-Vazirani algorithm achieve a

speedup over classical algorithms in finding a hidden

binary string?

Answer: The Bernstein-Vazirani algorithm achieves its

speedup by utilizing quantum parallelism, which allows

it to evaluate all possible input queries simultaneously

through superposition. By applying the Hadamard

transform to the input qubits and using a quantum

oracle, the algorithm encodes information about the

hidden string into the quantum state. After just one

query to the oracle, measuring the quantum state

reveals the entire hidden binary string, whereas a

classical algorithm would require n separate queries for

a string of length n.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New

Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

•

Chapter 10

Applications of

Quantum Computers

Across Industries

Introduction

Quantum computing is at the forefront of technological
innovation, harnessing the mysterious and powerful
principles of quantum mechanics to unlock a realm of
possibilities previously out of reach. This cutting-edge
technology promises to transform industries, offering the
potential to revolutionize everything from cybersecurity to
healthcare. In this chapter, we journey through the diverse
and fascinating applications of quantum computing across
multiple sectors, exploring how it is reshaping the world as
we know it.

Structure

The chapter covers the following topics:

Sector-wise applications of quantum computing

•

•

•

•

•

•

•

•

•

•

Cryptography and cybersecurity

Finance and risk analysis

Pharmaceuticals and drug discovery

Materials science

Artificial intelligence and machine learning

Logistics and supply chain

Climate modeling and weather forecasting

Healthcare

Telecommunications

Energy

Objectives

This chapter aims to provide a comprehensive overview of
the revolutionary potential of quantum computing across
diverse fields. Readers will explore its transformative
applications, from enhancing cryptographic security and
optimizing financial risk analysis to accelerating drug
discovery and advancing artificial intelligence. The chapter
will also discuss the role of quantum computing in solving
global challenges such as climate change, sustainable
energy, and efficient supply chain management. By the end
of this chapter, readers will gain a clear understanding of
the current landscape, future possibilities, and practical
insights into the integration and implications of quantum
computing in various sectors.

Sector-wise applications of quantum

computing

•

•

•

•

•

•

The following are some of the sector-wise applications of
quantum computing:

Cryptography and cybersecurity: Quantum

computing’s ability to break traditional encryption

methods poses both a challenge and an opportunity,

prompting advancements in quantum-safe

cryptographic techniques such as quantum key

distribution (QKD).

Finance and risk analysis: Quantum computing

enhances complex modeling and risk analysis, offering

the potential to optimize investment strategies and

market predictions with greater accuracy.

Pharmaceuticals and drug discovery: Quantum

computing accelerates drug discovery by simulating

molecular interactions at a highly detailed level, aiding

pharmaceutical companies in developing new

treatments more efficiently.

Materials science: Quantum computing supports the

discovery and design of new materials with unique

properties, advancing industries such as electronics,

manufacturing, and sustainability.

Artificial intelligence and machine learning: By

processing vast amounts of data efficiently, quantum

computing contributes to more powerful AI models and

enhances machine learning capabilities.

Logistics and supply chain: Quantum optimization

algorithms improve complex logistics problems,

reducing inefficiencies and streamlining supply chain

management.

•

•

•

•

•

•

•

Climate modeling and weather forecasting:

Quantum computing enhances the processing of

climate and weather data, leading to more precise

forecasts and deeper insights into climate change

mitigation.

Healthcare: Quantum algorithms have the potential

to revolutionize medical diagnostics and personalized

treatment planning, contributing to more effective

healthcare solutions.

Telecommunications: Innovations in quantum

computing improve network security and management,

ensuring more reliable and secure communication

systems.

Energy: Quantum computing aids in optimizing energy

grids, advancing sustainable energy solutions, and

improving the efficiency of renewable energy sources.

Examples of real-world impact

Let us look at some examples of real-world impact:

Cryptography and cybersecurity: Quantum

computers can break traditional encryption methods,

but they also enable quantum cryptography techniques

like QKD, used by companies such as ID Quantique for

ultra-secure communication.

Finance and risk analysis: Banks like JPMorgan

Chase are exploring quantum algorithms to optimize

portfolio management and fraud detection, providing

faster and more precise risk assessments.

Pharmaceuticals and drug discovery: Quantum

computing is accelerating drug development at

•

•

companies like Roche and Google DeepMind, helping

simulate molecular interactions at an unprecedented

level.

Climate modeling and weather forecasting:

Researchers at NASA are leveraging quantum

simulations to improve climate prediction models and

understand the impact of climate change more

accurately.

Artificial intelligence and machine learning: IBM

and Google are developing quantum-enhanced AI

models that can solve complex problems faster than

classical counterparts, revolutionizing fields such as

natural language processing and robotics.

These examples illustrate the tangible progress quantum
computing is making, and highlighting its potential to drive
innovation and address some of the world’s most pressing
challenges.

Challenges and ongoing research

Despite its potential, quantum computing faces significant
hurdles. High error rates due to quantum decoherence and
noise remain a major challenge, necessitating
advancements in quantum error correction techniques.
Scalability is another critical issue, as current quantum
processors have limited qubits and require substantial
improvements in hardware design. Additionally, the need
for robust quantum algorithms that outperform classical
solutions in practical applications is an area of active
research. Companies such as IBM, Google, and startups
like Rigetti Computing are working on increasing qubit
coherence times, developing more stable quantum

•

•

architectures, and exploring hybrid quantum-classical
approaches to bridge the gap between theory and real-
world applications. Governments and academic institutions
worldwide are also investing heavily in research to push
the boundaries of quantum computing capabilities.
While quantum computing holds immense promise across
these sectors, these challenges must be addressed before
widespread adoption. The following sections will explore
each sector in depth, addressing current developments,
limitations, and future directions in quantum computing.

Cryptography and cybersecurity

Quantum computing research and its evolution in
cryptography and cybersecurity are focused on both the
challenges posed by quantum computers and the
development of new, secure solutions to counteract these
challenges.
Quantum computers have the potential to break widely
used encryption algorithms, posing significant risks to data
security. Key threats include:

Breaking traditional encryption: Quantum

computers have the potential to break widely used

encryption algorithms such as Rivest Shamir

Adleman (RSA) and Elliptic Curve Cryptography

(ECC), which are based on the difficulty of factoring

large numbers and solving discrete logarithm

problems. Quantum algorithms like Shor’s algorithm

can solve these problems efficiently, compromising the

security of data protected by these methods.

Need for quantum-resistant cryptography: The

emergence of quantum computing has spurred

•

•

○

○

○

○

research into post-quantum cryptography (PQC),

which focuses on creating cryptographic algorithms

that are resistant to quantum attacks.

Let us look at research and evolution in quantum
cryptography:

Quantum key distribution (QKD): Leveraging

quantum mechanics, QKD provides secure

communication channels for encryption key exchange.

Various companies and research institutions are

working on QKD implementations. However, real-world

adoption is challenged by factors such as hardware

requirements, distance limitations, and integration with

existing cryptographic systems. Additionally, QKD

requires specialized optical infrastructure, making its

deployment costly and impractical for widespread use.

Furthermore, QKD does not solve all cryptographic

challenges, as it primarily secures key exchange rather

than encrypting bulk data.

Development of new algorithms: Researchers are

focused on designing quantum-resistant cryptographic

algorithms that can withstand quantum attacks. These

include:

Lattice-based cryptography

Code-based cryptography

Hash-based cryptography

Multivariate cryptographic schemes

Challenges in implementing post-

quantum cryptography

•

•

•

•

•

Despite significant advancements, the implementation of
PQC faces several technical hurdles:

Computational overhead: Many PQC algorithms,

especially lattice-based schemes, require significantly

more computational resources than classical

algorithms, impacting performance and efficiency.

Key size and bandwidth requirements: Some

quantum-resistant cryptographic algorithms require

larger key sizes and increased bandwidth, posing

scalability challenges for existing systems.

Compatibility with existing infrastructure:

Transitioning from classical cryptographic methods to

PQC requires extensive updates to hardware and

software systems, which may not be feasible for all

organizations.

Security validation: Ongoing research is needed to

rigorously evaluate the long-term security of PQC

algorithms, ensuring they are resistant to both classical

and quantum attacks.

Standardization efforts in post-

quantum cryptography

Given the urgency of quantum threats, global
standardization efforts are underway to ensure a seamless
transition to quantum-resistant cryptographic systems:

The National Institute of Standards and

Technology (NIST) is actively evaluating and

standardizing PQC algorithms through its PQC

Standardization Project. This initiative aims to develop

•

•

•

•

•

•

robust cryptographic techniques suitable for

widespread adoption.

Various industry and academic collaborations are

contributing to the development and assessment of

these algorithms, focusing on performance, security,

and practical deployment.

International standardization bodies, including ISO and

ETSI, are also working on guidelines to facilitate the

adoption of PQC globally.

Industry contributions

Several technology leaders are driving research and
development in quantum computing and its implications for
cybersecurity. The companies leading the way in this sector
are:

IBM: IBM is actively engaged in quantum computing

research and its impact on cryptography. Through

platforms like the IBM Quantum Experience,

researchers can experiment with quantum systems,

including their cryptographic applications.

Google: Google is exploring the cybersecurity

implications of quantum computing and contributing to

the development of quantum-resistant cryptographic

algorithms.

Microsoft: Microsoft’s Quantum Development Kit

allows researchers and developers to experiment with

quantum computing, including its applications in

cryptography and cybersecurity.

ID Quantique: Specializing in quantum-safe security,

ID Quantique is a leading provider of QKD technology

•

•

•

and secure encryption solutions tailored for quantum

threats.

Quantum computing is driving a paradigm shift in
cryptography and cybersecurity. While it presents
significant risks to traditional encryption methods, it also
fosters innovation in secure communication and encryption
techniques. However, challenges such as computational
overhead, infrastructure transition, and security validation
must be addressed to ensure the practical implementation
of PQC. As research advances and industry leaders push for
standardization, the future will witness the widespread
adoption of quantum-resistant cryptographic solutions
capable of withstanding emerging quantum threats.

Finance and risk analysis

Quantum computing holds the potential to transform
complex financial modeling and risk management by
providing significant computational advantages. Here is a
brief overview of how quantum computing is impacting this
sector:

Portfolio optimization: Quantum computing

enhances the efficiency of complex optimization

problems, enabling the management of large, diverse

portfolios while incorporating multiple constraints and

objectives.

Derivative pricing: By processing vast datasets and

simulating financial models at unprecedented speeds,

quantum computing allows for more accurate pricing of

derivatives and other financial instruments.

Risk management: Quantum algorithms can analyze

large datasets and complex financial models, providing

•

•

•

•

deeper insights into risk exposure and potential market

fluctuations.

Fraud detection: Quantum machine learning

algorithms can detect anomalies in financial data more

efficiently than classical methods, improving the

accuracy and speed of fraud identification. For

instance, quantum algorithms leverage pattern

recognition and anomaly detection techniques that

scale better with large, complex financial datasets

compared to traditional statistical methods.

Let us look at research and evolution in quantum finance:

Monte Carlo simulations: Quantum computers offer

a significant speedup for Monte Carlo simulations,

which are crucial in financial applications such as

option pricing and risk assessment. Specifically,

quantum amplitude estimation reduces the number of

required simulations, accelerating convergence and

enhancing accuracy.

Machine learning for financial predictions:

Quantum-enhanced machine learning improves market

trend predictions and financial forecasting, enabling

more informed investment decisions.

Industry contributions

The companies leading the way in this sector are:

Goldman Sachs: Collaborating with quantum

computing firms like D-Wave and IBM, Goldman Sachs

explores quantum applications in portfolio optimization

and risk management.

•

•

•

•

•

•

•

JPMorgan Chase: Working closely with IBM, JPMorgan

Chase is leveraging quantum computing for risk

assessment, financial modeling, and portfolio

optimization.

Ally Financial: Partnering with quantum startups, Ally

Financial investigates the use of quantum algorithms

for financial services, particularly in portfolio and risk

management.

BBVA: The Spanish banking group BBVA is researching

quantum computing applications in risk assessment

and fraud detection, aiming to improve operational

efficiency and decision-making.

Cambridge quantum computing (CQC): A leading

quantum technology company developing quantum

algorithms tailored for financial modeling, optimization,

and secure transactions.

Challenges and outlook

While quantum computing presents exciting opportunities
for finance, several challenges must be addressed before
widespread adoption:

Hardware limitations: Current quantum computers

lack the scalability and error correction needed for

practical, large-scale financial applications.

Algorithmic maturity: Many quantum algorithms are

still in the research phase and require further

refinement for real-world financial use cases.

Integration with classical systems: Financial

institutions must navigate the complexities of

•

•

•

integrating quantum solutions with existing classical

infrastructure.

Quantum computing is revolutionizing the finance sector by
enabling faster and more sophisticated financial modeling
and risk analysis. As research progresses, we can
anticipate broader adoption of quantum technologies,
leading to more accurate predictions, optimized portfolios,
and enhanced risk management strategies. However,
overcoming hardware and algorithmic challenges remains
essential for achieving practical implementation at scale.

Pharmaceuticals and drug discovery

Quantum computing is poised to revolutionize
pharmaceuticals and drug discovery by accelerating the
development of new drugs and enhancing precision
medicine.
Quantum applications in pharmaceuticals and drug
discovery are as follows:

Molecular simulation: Quantum computers can

simulate molecular behavior and interactions with

unprecedented detail by handling exponentially larger

state spaces. This enables researchers to model drug-

target interactions more effectively, improving drug

design and development.

Drug design and optimization: Quantum computing

accelerates the identification of promising drug

candidates by rapidly analyzing large datasets of

molecular structures and properties.

Protein folding: Predicting protein folding is crucial

for understanding diseases and designing treatments.

Quantum algorithms, such as the Variational

•

•

•

•

•

Quantum Eigensolver (VQE), assist in accurately

modeling protein structures, potentially leading to

breakthroughs in treating conditions linked to

misfolded proteins.

Precision medicine: Quantum computing enhances

precision medicine by analyzing a patient’s genetic

data alongside environmental and lifestyle factors. This

enables more accurate predictions of drug responses

and the identification of personalized treatment plans.

Let us look at research and evolution in quantum
pharmaceuticals:

Faster drug discovery: Quantum computing has the

potential to reduce drug development timelines, which

currently span decades, by enabling more efficient

molecular screening and simulations. This also leads to

significant cost savings for pharmaceutical companies.

Simulation of biological processes: Quantum

computers can model complex biological systems with

greater accuracy, providing deeper insights into

disease mechanisms and potential treatments.

Industry leaders and collaborations

Several major pharmaceutical companies are actively
investing in quantum computing research. The companies
leading the way in this sector are:

Pfizer: Pfizer collaborates with IBM to explore quantum

applications in drug discovery, focusing on molecular

modeling and optimization.

GlaxoSmithKline (GSK): GSK has partnered with

Cambridge Quantum Computing to leverage quantum

•

•

•

•

algorithms for molecular simulations and drug

discovery.

Bayer: Bayer is working with quantum computing firms

to investigate quantum-enhanced simulations of

molecular interactions, improving drug formulation and

testing.

Roche: Roche is researching quantum-driven

advancements in personalized medicine, focusing on

genetic data analysis for targeted therapies.

Quantum computing is transforming pharmaceuticals by
enhancing molecular simulations, accelerating drug
discovery, and enabling precision medicine. As
pharmaceutical companies continue collaborating with
quantum computing firms, drug development is becoming
more efficient and precise, paving the way for faster
medical breakthroughs.

Challenges and outlook

While quantum computing presents immense opportunities
for pharmaceutical innovation, several challenges must be
overcome before it can be fully integrated into drug
discovery pipelines:

Hardware limitations: Current quantum devices lack

the necessary qubit stability, coherence time, and error

correction required to simulate complex molecular

systems at a practical scale. Near-term quantum

hardware (NISQ devices) can only tackle small

molecules or simplified models.

Algorithmic development: Quantum algorithms for

drug discovery, such as the Variational Quantum

Eigensolver (VQE) or Quantum Approximate

•

•

•

Optimization Algorithm (QAOA), are still evolving.

Many remain in experimental stages and require

refinement to match the complexity of real biological

systems.

Integration with classical systems: Combining

quantum simulations with existing classical

bioinformatics, cheminformatics, and pharmaceutical

workflows poses significant integration challenges.

Hybrid quantum-classical systems must be carefully

designed for seamless operation.

Talent and training gap: The pharmaceutical

industry faces a shortage of interdisciplinary

professionals skilled in both quantum computing and

biomedical research, hindering the pace of innovation

and adoption.

Validation and regulatory approval: Drug discovery

and development are tightly regulated. Quantum-

enabled discoveries must undergo rigorous validation

and meet strict regulatory standards, which may slow

adoption despite technological advances.

Quantum computing has the potential to dramatically
accelerate and refine the pharmaceutical R&D process—
from molecular simulations and drug candidate screening
to personalized medicine and biological modeling. As
partnerships between quantum technology firms and
pharmaceutical companies grow, the industry is gradually
moving toward a more data-driven, efficient, and targeted
approach to drug development. However, overcoming
current hardware, algorithmic, and integration challenges
will be crucial to unlocking quantum computing’s full value
in transforming healthcare and therapeutic innovation.

•

•

•

Materials science

Quantum computing is revolutionizing materials science by
accelerating material discovery and design. This technology
enables researchers to explore new materials at an atomic
level, offering unprecedented precision and efficiency. Key
applications in materials science include:

Molecular and atomic simulations: Quantum

computers, leveraging principles like superposition and

entanglement, can simulate the behavior of atoms and

molecules with significantly higher precision than

classical computers, which struggle with the

exponential complexity of these systems. This

capability allows researchers to develop new materials

with enhanced properties, such as high-temperature

superconductors and next-generation battery

materials.

Designing novel materials: Quantum simulations

help scientists understand and predict the interactions

of materials, aiding in the creation of substances with

tailored properties such as superior strength, improved

conductivity, or enhanced flexibility.

Predicting material properties: By accurately

modeling how materials respond under different

conditions, quantum computing supports the

development of efficient and sustainable materials,

impacting industries such as aerospace, energy, and

semiconductors.

Let us look at research and evolution in quantum materials
science:

•

•

•

•

•

•

Accelerated research and development: Quantum

computing drastically speeds up material testing and

prototyping by allowing accurate simulations before

costly and time-consuming physical experiments. This

innovation reduces Research and Development costs

and expands the scope of material exploration.

Materials for quantum technologies: Researchers

are developing advanced materials tailored for

quantum devices, including superconducting materials

for qubits and novel compounds for quantum sensors.

The companies leading the way in this sector are:

IBM: IBM Research is actively using quantum

computing to simulate molecular structures and design

new materials. One of their notable projects focuses on

simulating lithium-ion battery chemistry to improve

energy storage.

Google: Google’s quantum division has leveraged its

Sycamore processor to study quantum phase

transitions, a breakthrough that could pave the way for

novel electronic and magnetic materials.

Microsoft: Microsoft is researching topological qubits,

which require specialized materials to improve

quantum stability and error correction, potentially

enhancing the scalability of quantum computing.

Real-world implications

The advancements in quantum materials research hold
significant promise for various industries:

Aerospace: Lighter and stronger materials could

improve fuel efficiency and durability in aircraft and

•

•

•

•

spacecraft.

Energy: Enhanced battery technology and

superconductors could lead to more efficient energy

storage and transmission.

Semiconductors: Quantum-designed materials could

revolutionize chip manufacturing, leading to faster and

more energy-efficient electronics.

Quantum computing is transforming materials science by
enabling the precise simulation of materials at an atomic
level. As research progresses, this technology promises
groundbreaking advancements in energy, electronics,
aerospace, and beyond. By overcoming challenges such as
error correction and scalability, quantum computing will
unlock new frontiers in material innovation, accelerating
the development of next-generation technologies.

Artificial intelligence and machine

learning

In the field of artificial intelligence (AI) and machine

learning (ML), quantum computing has the potential to
revolutionize data analysis, model training, and algorithmic
efficiency. Here is a brief overview of how quantum
computing is impacting this sector.
The following are quantum applications in AI and ML:

Enhanced data processing: Quantum computing can

process large and complex datasets more efficiently,

potentially accelerating AI and ML applications.

Quantum machine learning (QML): Quantum

algorithms can improve machine learning models by

•

•

•

•

introducing novel methods for optimization,

classification, and clustering.

Model training and optimization: Quantum

computers can explore parameter spaces more

effectively, enabling faster and more efficient model

training and optimization.

Quantum neural networks: Quantum computers can

enhance neural networks by leveraging quantum

properties such as superposition and entanglement,

potentially leading to more powerful AI models.

Let us look at research and evolution in quantum AI and
ML:

Hybrid quantum-classical models: Researchers are

developing hybrid models that combine classical and

quantum computing, leveraging the strengths of both

to improve AI and ML applications.

Quantum-assisted learning: Quantum computing

can assist in learning tasks such as feature selection,

data classification, and anomaly detection, providing

new insights and capabilities.

Quantifiable benefits

While quantum computing is still in its early stages, some
research suggests that certain quantum algorithms can
achieve speed-ups over classical methods. For example,
quantum algorithms have the potential to process
optimization problems exponentially faster in specific
cases, leading to improved efficiency in ML model training
and data analysis.

Industry leaders

•

•

•

The companies leading the way in this sector are:

Google: Google is known for its work in quantum AI,

exploring how quantum computing can improve ML

models and processes. Their AI blog includes updates

on their work in this field.

IBM: IBM’s quantum computing division collaborates

with researchers to develop quantum-enhanced AI and

ML models. They offer tools such as Qiskit for

experimenting with quantum computing in AI

applications.

Microsoft: Microsoft is actively researching quantum

computing for AI and ML, including the development of

tools and frameworks such as Q# for building quantum

algorithms.

Quantum computing is poised to transform AI and machine
learning by offering new methods for data processing,
model training, and algorithm optimization. However,
challenges such as hardware constraints, algorithmic
development, and cost must be addressed for its full
potential to be realized. As research progresses, we can
expect more practical applications of quantum-enhanced AI
and ML, leading to more efficient, powerful, and innovative
models across various industries.

Logistics and supply chain

In the field of logistics and supply chain, quantum
computing offers promising potential to optimize complex
operational challenges and improve efficiency across the
industry. Here is a brief overview of how quantum
computing is impacting this sector:

•

•

•

•

•

•

•

Route optimization: Quantum computing can solve

complex optimization problems, such as the traveling

salesman problem, more efficiently, leading to better

routing for delivery and transportation services.

Inventory management: Quantum algorithms can

help manage inventory levels by predicting demand

and optimizing stock levels across warehouses and

distribution centers.

Supply chain network design: Quantum computing

can assist in designing more efficient and resilient

supply chain networks by considering multiple

variables and constraints simultaneously.

Dynamic scheduling: Quantum computing can

optimize scheduling for production, transportation, and

workforce allocation, leading to more efficient and

flexible operations.

Let us look at research and evolution in quantum logistics:

Real-time decision-making: Quantum computing

can enable real-time analysis and decision-making in

supply chain management, allowing companies to

quickly adapt to changes and disruptions.

Risk mitigation: Quantum algorithms can identify

potential risks in the supply chain and provide

strategies for mitigation, ensuring more reliable

operations.

The companies leading the way in this sector are:

D-Wave Systems: D-Wave has been developing

quantum algorithms for logistics optimization, including

route planning and scheduling. A specific example is

•

•

•

their work on improving delivery efficiency by

optimizing traffic flow in urban settings.

IBM: IBM offers quantum computing services and

solutions for supply chain optimization, including risk

management and inventory planning. Their quantum-

powered simulations help businesses predict supply

chain disruptions.

Volkswagen: Volkswagen has explored quantum

computing for optimizing traffic flow and routing

problems in urban logistics and vehicle distribution,

demonstrating practical applications in reducing

congestion.

Quantum computing is set to revolutionize logistics and
supply chain management by addressing intricate
optimization challenges more effectively. As research
advances and partnerships between technology firms and
logistics companies strengthen, we can anticipate
significant improvements in supply chain efficiency,
flexibility, and reliability.

Challenges and outlook

Although quantum computing offers transformative
potential for logistics and supply chain optimization,
several practical and technical challenges must be
addressed before widespread implementation can occur:

Hardware constraints: Current quantum processors

are still limited in qubit count, coherence, and

reliability, restricting their ability to handle large-scale,

real-world logistics problems with the required

precision and speed.

•

•

•

•

Scalability of algorithms: Many quantum

optimization algorithms, such as the QAOA, are still in

early stages of development and may not scale

effectively for complex, global supply chain networks

involving thousands of variables.

Integration with classical infrastructure: Supply

chain systems are heavily reliant on mature classical

software platforms (e.g., ERP, WMS, TMS). Seamlessly

integrating quantum solutions into these existing

systems requires robust hybrid architectures and

interoperability frameworks.

Data quality and availability: The effectiveness of

quantum optimization heavily depends on the quality,

granularity, and timeliness of input data. Many logistics

networks still lack the data infrastructure necessary to

support such advanced analytics.

Domain expertise and skill gaps: There is a

shortage of professionals skilled in both quantum

computing and supply chain management, slowing

down the translation of research breakthroughs into

practical logistics solutions.

Quantum computing has the potential to significantly
enhance logistics and supply chain operations by solving
complex optimization problems faster and more effectively
than classical systems. From route planning to inventory
management and risk mitigation, quantum solutions
promise greater responsiveness, resilience, and efficiency.
However, widespread adoption will depend on overcoming
current hardware limitations, evolving algorithmic
robustness, and building hybrid systems that align with
industry-specific operational needs. As the field matures

•

•

•

and collaboration between quantum tech providers and
logistics companies deepens, we can expect more adaptive
and intelligent supply chain ecosystems powered by
quantum intelligence.

Climate modeling and weather

forecasting

In the field of climate modeling and weather forecasting,
quantum computing presents opportunities to revolutionize
how we predict and understand complex weather and
climate systems. Here is a brief overview of how quantum
computing is impacting this sector:

Data processing and simulation: Quantum

computing can handle vast amounts of climate and

weather data quickly, enabling more accurate and

detailed simulations of atmospheric conditions and

climate patterns. Quantum algorithms have the

potential to analyze intricate variables simultaneously,

improving overall modeling efficiency.

Model optimization: Quantum algorithms can

optimize climate models by identifying the most

efficient computational pathways, enhancing accuracy,

and enabling more precise forecasts of extreme

weather events and long-term climate trends. For

instance, quantum-assisted machine learning

techniques can refine parameter estimation in

predictive models.

Long-term climate predictions: Quantum

computing can simulate complex interactions between

atmospheric, oceanic, and terrestrial factors, leading to

improved long-term climate projections. These

•

•

•

•

simulations can provide insights into feedback loops,

such as the influence of ocean currents on global

temperature changes.

Let us look at research and evolution in quantum climate
science:

Improved forecasting accuracy: By enabling more

efficient processing of large datasets, quantum

computing can lead to significant advancements in

weather forecasting accuracy. This can benefit critical

sectors such as agriculture, transportation, and

emergency management, where timely and precise

predictions are crucial.

Climate change mitigation: Quantum computing

can support research into climate change by modeling

the impact of various mitigation strategies. It can

simulate the effects of carbon reduction initiatives,

assess global temperature projections, and help

optimize renewable energy deployment strategies.

Current research and challenges: While quantum

computing holds promise, there are challenges,

including hardware constraints, the need for more

robust quantum algorithms, and error correction in

quantum systems. Research efforts are ongoing to

refine these technologies and expand their applicability

to climate science.

The companies leading the way in this sector are:

IBM: IBM’s quantum computing division is actively

developing quantum algorithms for climate and

weather applications, utilizing its quantum hardware

and software to refine simulation models.

•

•

•

Google: Google is leveraging its quantum expertise to

explore applications in climate modeling, focusing on

improving computational efficiency in atmospheric and

weather research.

Microsoft: Microsoft collaborates with researchers and

institutions to apply quantum computing to

environmental science, including climate modeling and

sustainability initiatives.

Collaborations and Funding Initiatives: Numerous

collaborations between research institutions,

government agencies, and private sector companies

are driving advancements in quantum climate

applications. Increased funding from governments and

organizations is accelerating progress in this field.

Quantum computing is poised to significantly enhance
climate modeling and weather forecasting by enabling
faster and more accurate simulations of complex climate
systems. While the field is still evolving, ongoing research
and technological advancements suggest that within the
next decade, quantum-enhanced models could lead to
groundbreaking improvements in forecasting precision. As
computational capabilities expand, we can anticipate better
preparedness for extreme weather events and more
effective climate change mitigation strategies.

Healthcare

In the field of healthcare, quantum computing is beginning
to make a significant impact by offering innovative
solutions for medical research, diagnostics, and
personalized treatment plans. Here is a brief overview of
how quantum computing is affecting this sector:

•

•

•

•

•

Genomic analysis: Quantum computing can process

vast amounts of genetic data to identify disease-

causing mutations and optimize personalized

treatments. For example, quantum algorithms can

analyze genomic data significantly faster than classical

methods, reducing analysis time from weeks to hours.

Medical imaging: Quantum algorithms can enhance

the quality and speed of medical imaging techniques,

aiding in faster and more accurate diagnostics. For

instance, research suggests that quantum computing

could potentially reduce MRI scan times by 50% while

improving image resolution.

Drug discovery and development: Quantum

computing accelerates the discovery and development

of new drugs by simulating molecular interactions

more efficiently. Quantum simulations can model

protein folding and chemical interactions in ways

classical computers struggle with, potentially reducing

drug development timelines by years.

Optimization of treatment plans: Quantum

computers can help optimize treatment plans by

modeling various scenarios and predicting outcomes

based on patient data. This enables more personalized

and effective treatment approaches.

Let us look at research and evolution in quantum
healthcare:

Improved diagnostic accuracy: Quantum-enhanced

AI and machine learning can analyze medical data and

images more precisely, leading to more accurate

diagnoses. Studies indicate that quantum-enhanced

•

•

•

•

models can improve diagnostic accuracy by up to 10%

compared to conventional methods.

Personalized medicine: Quantum computing enables

the processing of individual genetic and medical data

to tailor treatments to each patient’s specific needs,

making precision medicine more effective and

accessible.

The companies leading the way in this sector are:

IBM: IBM’s quantum computing research includes

applications in healthcare such as analyzing medical

data, optimizing treatment plans, and simulating

biological processes. IBM has partnered with

pharmaceutical companies to accelerate drug

discovery.

Google: Google is known for its work on quantum

computing and has explored potential applications in

healthcare, including the use of quantum algorithms to

analyze medical imaging data with enhanced precision.

D-Wave: D-Wave collaborates with healthcare

institutions to apply quantum computing to complex

optimization problems, such as improving hospital

logistics, resource allocation, and patient flow

management in medical facilities.

Quantum computing offers groundbreaking opportunities in
healthcare by providing the ability to process large
datasets, simulate complex biological systems, and optimize
treatment plans. By addressing current challenges and
furthering collaborations between healthcare providers and
technology companies, the future holds significant

•

•

•

•

advancements in medical diagnostics, treatment options,
and personalized care.

Telecommunications

In the field of telecommunications, quantum computing is
emerging as a game-changing technology with the potential
to revolutionize network security, data transmission, and
communication protocols. Here is a brief overview of how
quantum computing is impacting this sector:

Quantum key distribution (QKD): QKD enables

secure transmission of encryption keys over a

communication channel, using quantum mechanics

principles. This ensures that any attempt to intercept

the keys can be detected, providing a higher level of

security. However, QKD requires specialized hardware

and is subject to distance limitations, which are

ongoing challenges.

Secure communication protocols: Quantum

computing can enhance existing communication

protocols and create new ones that are more secure

against potential quantum attacks. These protocols

leverage quantum entanglement and superposition for

increased security.

Network optimization: Quantum computing can

optimize network management and routing by

processing vast amounts of data more efficiently than

classical systems. Examples include traffic congestion

reduction and dynamic resource allocation in large-

scale telecommunications networks.

Error correction: Quantum error correction is critical

for overcoming noise and decoherence in quantum

•

•

•

•

communication. Research into quantum error

correction codes, such as surface codes and bosonic

codes, is essential for developing reliable quantum

networks.

Let us look at research and evolution in quantum
telecommunications:

Improving data transmission: Quantum computing

can enhance data transmission methods, making them

faster and more secure. Recent research has

demonstrated quantum-enhanced signal processing,

which could lead to more resilient communication

infrastructures.

Quantum networks: The development of quantum

networks is an area of active research, involving the

construction of secure, quantum-based communication

infrastructure. Entanglement-based networks, such as

China’s quantum satellite experiments (e.g., Micius

satellite), have demonstrated the feasibility of long-

distance quantum communication.

Industry leaders

The companies leading the way in this sector are:

British Telecom (BT): BT has been working on

integrating QKD in its network to enhance data

security, particularly in secure government and

financial sector communications.

Toshiba: Toshiba is a leader in quantum computing

research and is known for its advancements in QKD

technology, including commercial QKD solutions.

•

•

•

Huawei: Huawei is involved in research and

development of quantum computing applications in

telecommunications, including exploring quantum

networks and secure communication protocols.

IBM and Google: Both companies are pioneering

quantum computing research, with efforts in quantum-

safe cryptography and quantum networking

technologies. IBM has developed quantum-safe

encryption protocols, while Google’s research focuses

on error correction and large-scale quantum systems.

Startups in Quantum Networking: Various startups,

such as QinetiQ, ID Quantique, and Quantum Xchange,

are actively developing quantum-secure

communication solutions.

Recent developments

Recent breakthroughs in quantum communication include
advancements in entanglement-based quantum repeaters,
which extend the range of quantum networks. Research
papers from institutions like MIT, Caltech, and the Chinese
Academy of Sciences have explored scalable quantum
network architectures and real-world QKD
implementations.
Quantum computing is set to transform the
telecommunications industry by providing more secure and
efficient communication methods. As research progresses,
innovations in secure communication, network
optimization, and quantum networks will continue to
emerge. The growing involvement of leading technology
companies and research institutions underscores the

•

•

•

•

accelerating momentum in this field, paving the way for a
more connected and secure world.

Energy

In the field of energy, quantum computing has the potential
to revolutionize how energy is produced, stored, and
distributed by addressing critical challenges such as
inefficiencies in energy grids, limitations in material
performance, and the need for sustainable energy
solutions. Traditional methods often struggle with
computational complexity, whereas quantum computing
offers unique advantages in tackling these large-scale
optimization and simulation problems. The quantum
applications in energy are as follows:

Materials for energy: Quantum computing can help

design and simulate new materials for energy

production and storage, such as high-efficiency solar

cells or advanced batteries, by accurately modeling

quantum-level interactions.

Optimization of energy grids: Quantum algorithms

can optimize energy distribution networks by analyzing

large datasets to improve grid reliability reduce losses,

and improve overall efficiency in energy distribution

networks.

Nuclear fusion: Quantum computing can simulate

complex nuclear reactions with higher precision,

potentially accelerating the development of viable and

sustainable nuclear fusion as a clean energy source.

Carbon capture and storage: By simulating

molecular interactions, quantum computing can aid in

designing more efficient materials and processes for

•

•

•

capturing and storing carbon emissions, which is

crucial for mitigating climate change.

Let us look at research and evolution in quantum energy:

Simulation of energy systems: Quantum computing

allows for precise simulations of energy systems at a

molecular level, offering insights into improving their

efficiency and stability.

Optimization of renewables: Quantum algorithms

can enhance the integration and operation of

renewable energy sources like wind and solar power

into the grid, ensuring better load balancing and

energy distribution.

Potential challenges

Despite its promise, quantum computing in energy faces
limitations such as hardware constraints, error rates, and
scalability issues. Current quantum processors are still in
the early stages, and achieving fault-tolerant quantum
computing remains a significant hurdle. Additionally,
classical computing techniques are highly optimized,
making it essential to identify specific energy-related
problems where quantum solutions provide a clear
advantage.

Industry leaders

The companies leading the way in this sector are:

IBM: Engaged in applying quantum computing to

energy challenges, including material discovery and

grid optimization.

•

•

•

Google: Researching quantum applications for energy

optimization and advanced material simulations.

D-Wave: Partnering with energy companies to

leverage quantum annealing for optimizing energy

distribution and supply chain logistics.

Siemens: Utilizing quantum computing to model

energy storage systems and enhance the integration of

renewable energy sources.

Quantum computing is transforming the energy sector by
enabling breakthroughs in materials discovery, energy grid
optimization, and sustainable energy solutions. While
challenges remain, continued research and development
will determine how effectively quantum computing can
address the pressing energy problems of the future.

Conclusion

The applications of quantum computing across various
fields presents an exciting frontier of possibilities and
potential breakthroughs. From cryptography and
cybersecurity to finance, pharmaceuticals, and energy,
quantum computing is transforming how we approach
complex challenges and opportunities in each sector. This
transformative technology is reshaping traditional
industries, enabling us to model and simulate intricate
systems with unprecedented precision. It turbocharges
artificial intelligence and machine learning, leading to
leaps in data analysis and algorithmic efficiency. It also
revolutionizes logistics and supply chain management,
optimizing global operations for a seamless future.
Moreover, it aids in climate modeling, providing sharper
insights for accurate forecasting and mitigation of climate

1.

a.

b.

c.

d.

2.

a.

b.

c.

change. In healthcare, quantum computing promises to
reshape medical diagnostics and personalized treatments,
revolutionizing patient care. Lastly, it brings innovations to
telecommunications, transforming network management
and enhancing communication reliability. As quantum
computing continues to evolve, we stand on the cusp of a
new era of technological advancements that hold the
promise of profound impact on our world. However,
realizing this potential requires ongoing research and
development to overcome key challenges such as hardware
limitations and scalability. Addressing these obstacles will
be crucial in ensuring that quantum computing achieves its
full transformative power across industries. The journey
ahead is filled with excitement as we explore how quantum
computing can push the boundaries of what is possible and
revolutionize the way we live and work.

Multiple choice questions

What algorithm is used by quantum computers

to break traditional encryption methods such as

RSA?

Grover’s algorithm

Shor’s algorithm

Dijkstra’s algorithm

Kruskal’s algorithm

In finance, what is one major benefit of using

quantum computing?

Slower data processing

Inability to model complex portfolios

Improved risk assessment

d.

3.

a.

b.

c.

d.

4.

a.

b.

c.

d.

5.

a.

b.

c.

d.

1.

2.

3.

4.

Limited scope in algorithm application

How does quantum computing accelerate drug

discovery?

By delaying molecular simulations

By randomly selecting drug candidates

By simulating molecular interactions rapidly

By ignoring complex biological processes

What type of problems can quantum computing

optimize in logistics and supply chain

management?

Simple inventory problems

Low-level operations

Routine tasks only

Complex routing and scheduling problems

In which field can quantum computing

significantly improve network management and

security?

Manufacturing

Telecommunications

Agriculture

Tourism

Answer key

b

c

c

d

5.

1.

2.

3.

b

Questions

Explain how quantum computing can enhance machine

learning and artificial intelligence algorithms.

Answer: Quantum computing can enhance machine

learning and AI algorithms by processing vast datasets

quickly and efficiently, allowing for more complex

models and better optimization. Quantum algorithms,

such as Quantum Support Vector Machines and

Quantum Neural Networks, can also improve the

accuracy and performance of AI tasks such as

classification, clustering, and neural network training.

Describe the potential impact of quantum computing

on energy grid management.

Answer: Quantum computing can optimize energy

grid management by analyzing large datasets to

improve the reliability and efficiency of energy

distribution networks. It can also help integrate

renewable energy sources into the grid, leading to a

more sustainable and balanced energy system.

How can quantum computing contribute to climate

modeling and weather forecasting?

Answer: Quantum computing can process vast climate

and weather datasets rapidly, enabling more precise

climate modeling and weather forecasting. This can

lead to better planning and responses to climate-

related challenges, such as extreme weather events

and long-term climate change.

4.

5.

6.

7.

Discuss the role of quantum computing in designing

new materials for various industries.

Answer: Quantum computing allows researchers to

simulate and predict the properties of new materials at

a quantum level, enabling the design of substances

with unique characteristics. This can lead to

innovations in industries such as energy, electronics,

and construction, as new materials offer improved

efficiency and sustainability.

What challenges might arise from the use of quantum

computing in healthcare, and how can they be

addressed?

Answer: Challenges in healthcare include data privacy

concerns, ethical issues related to personalized

treatments, and the need for regulatory frameworks.

Quantum computing has the potential to accelerate

personalized medicine by enabling more precise and

efficient analysis of patient data. However, the

development and deployment of quantum algorithms

in healthcare may require new regulatory frameworks

to ensure ethical use and data security. Addressing

these challenges will require careful data management,

ethical guidelines, and collaboration between

researchers, healthcare providers, and policymakers.

Name one quantum algorithm used for searching

unsorted databases more efficiently.

Answer: Grover’s algorithm

What is one application of quantum computing in

pharmaceuticals?

8.

9.

10.

Answer: Simulating molecular interactions for drug

discovery.

How can quantum computing improve AI algorithms?

Answer: By processing vast datasets quickly and

efficiently.

In which sector does quantum computing aid in

optimizing complex logistics problems?

Answer: Logistics and supply chain management.

What is one benefit of quantum computing in finance?

Answer: Improved risk assessment and portfolio

optimization.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New

Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Index

A

AI/ML 317

AI/ML, applications 317

AI/ML, sector

Google 318

IBM 318

Microsoft 318

AI/ML, terms

Hybrid Quantum-Classical 318

Quantum-Assisted Learning 318

AND Gate 173

AND Gate, results

Quantum Hardware 175

Quantum Simulator 174

B

Bell Pairs 71

Bernstein–Vazirani Algorithm 296

Bernstein–Vazirani Algorithm,

implementing 296-298

Bernstein–Vazirani Algorithm,

preventing 299-301

Bit Flip Error 233

Bit Flip Error, preventing 234-242

Bit Flip Error, scenario 233

Bit Flip Error, steps 233

Bloch Sphere 85

Bloch Sphere, configuring 85-87

C

Classical Feedforward 116

Classical Feedforward, methods

For Loop 116

If Statement 116

Switch Statement 116

While Loop 116

Classical Gates 138

Classical Gates, categories

AND 151, 152

NAND 152, 153

NOR 154, 155

NOT 151

OR 153

XNOR 157

XOR 156

Classical Gates, types

CNOT 138

Identity 140

NOT 138

SWAP 139

Toffoli 139

Classical/Quantum States,

comparing 60, 61

Climate Modeling 320

Climate Modeling, evolution 321

Climate Modeling, sector 320

Climate Modeling, ways 321

Copenhagen Interpretation 15, 22

Copenhagen Interpretation,

configuring 22

D

Deutsch-Jozsa Algorithm 288

Deutsch-Jozsa Algorithm,

configuring 288, 289

Deutsch-Jozsa Algorithm,

implementing 291-295

Deutsch-Jozsa Algorithm,

steps 289-291

Double-Slit Experiment 23

Double-Slit Experiment,

configuring 23

E

Electrons 5

Electrons, ensuring 6, 7

Electrons, orbitals 5, 6

Entanglement 5, 65

Entanglement, technologies

Mathematical

Representation 65

Quantum

Communication 66, 67

Quantum Systems 66

Error Mitigation 228

Error Mitigation,

techniques

EMRC 230

Error Detection 229

Error-Resilient Quantum 230

Error Suppression 230

Machine Learning-Based 230

Post-Processing 229

Randomized Compiling 230

Experimental Quantum 67

Experimental Quantum,

configuring 68

Experimental Quantum,

demonstrating 67, 68

F

Full Grover Circuit 132

Full Grover Circuit,

configuring 133, 134

G

Grover Algorithm 272

Grover Algorithm,

implementing 272-275

Grover Algorithm,

preventing 276-282

Grover Operator 131

Grover Operator,

configuring 132

Grover Search 127

Grover Search, applications

Cryptography 128

Database Search 128

Pattern Matching 128

Grover Search, configuring 128-131

H

Harnessing Superposition 69

Harnessing Superposition,

technologies

Potential Speedups 73, 74

Quantum Algorithms 69

Quantum Gates 69

Quantum Networks 70

Healthcare 322

Healthcare, evolution 322

Healthcare, sector 322

Healthcare, ways

D-Wave 323

Google 323

IBM 323

Heisenberg Uncertainty

Principle 21

Heisenberg Uncertainty Principle,

configuring 21

I

IBM Q 103

IBM Q, tools

Quantum Composer 103

Quantum Lab 103

If Statement 116

If Statement, configuring 116-120

J

Jupyter Notebook 102

K

Kronecker Product 95

Kronecker Product,

demonstrating 95-97

L

Logistics/Supply Chain 319

Logistics/Supply Chain,

challenges 320

Logistics/Supply Chain,

companies 319

Logistics/Supply Chain, sector

Dynamic Scheduling 319

Inventory Management 319

Route Optimization 319

Supply Chain Network 319

M

Many-Worlds Interpretation 16

Materials Science 316

Materials Science,

applications 316

Materials Science, evolution 316

Materials Science, sector

Google 317

IBM 317

Microsoft 317

Matrix Mechanics 15

Matrix Mechanics, vectors

Dirac Notation 15

Formulation 15

Hilbert Space 15

Superposition 15

N

NAND Gate 175

NAND Gate, terms

Quantum Hardware 176

Quantum Simulator 176

Neutral Atoms 42

Neutral Atoms, aspects 42-44

NISQ, characteristics

Error Correction 51

Error Rates 51

Intermediate-Scale 51

Quantum Advantage 52

Quantum Research 52

Research Initiatives 52

No-Cloning Theorem 20

Noisy Intermediate-Scale

Quantum (NISQ) 51

Non-Unitary, operations

Measurement 142

Reset 142

NOR Gate 179

NOR Gate, terms

Quantum Hardware 180

Quantum Simulator 180

NOT Gate 172

NOT Gate, results

Quantum Hardware 173

Quantum Simulator 172

O

OR Gate 177

OR Gate, terms

Quantum Hardware 178

Quantum Simulator 178

P

Pharmaceuticals 314

Pharmaceuticals,

applications 314

Pharmaceuticals, challenges 315

Pharmaceuticals, evolution 314

Pharmaceuticals, sector 315

Phase Error 245

Phase Error,

implementing 245-248

Phase Kickback 266

Phase Kickback, configuring 266-271

Phases Gates 140

Phases Gates, types

RZ 141

S 140

T 140

Z 141

Post-Quantum

Cryptography (PQC) 216

PQC, challenges 311

PQC, configuring 216-218

PQC, efforts 311

PQC, parameters 220

PQC, sector

Google 312

IBM 312

ID Quantique 312

Microsoft 312

PQC, techniques

Code-Based 219

Hash-Based 219

Lattice-Based 219

Multivariate Polynomial 220

PQC, threats 310

Python 102

Q

QEC, configuring 226, 227

QEC, sections

Bit Flip Error 233

Phase Error 245

Shor Code 254

QEC, techniques

Cat Qubits 232

Convolutional Code 232

GKP Code 232

Shor Code 231

Steane Code 231

Toric Code 231

Qiskit 103, 104

Qiskit, components 103

Qiskit Aer 106

Qiskit Ignis 106

Qiskit Terra 106

Quikit Aqua 106

Qiskit, features 168

Qiskit, guide 104, 105

Qiskit, implementing 168-171

Qiskit, limitations 127

Qiskit, preventing 110-113

Qiskit, setup 107-110

QKD, configuring 206, 207

QKD, preventing 208-210

QKD, steps 207

Quantum Annealing 30

Quantum Annealing,

advantages

Potential Speedup 34

Quantum Supremacy 34

Quantum Annealing, aspects

Annealing Process 30

Quantum Annealing 31

Quantum Annealing,

limitations 34

Quantum Annealing,

visualizing 31-33

Quantum Behavior 2

Quantum Behavior, concepts

Entanglement 5

Subatomic Particles 4

Virtual Photon 3

Quantum Circuits 113

Quantum Circuits, approach

AND Gate 161, 162

IBM Q Composer 160

NAND Gate 162, 163

NOR Gate 165

NOT Gate 160, 161

OR Gate 163, 164

Qiskit 168

XNOR Gate 167

XOR Gate 166

Quantum Circuits,

configuring 113

Quantum Circuits, gates 114

Quantum Circuits,

manipulating 137, 138

Quantum Circuits,

techniques

Architecture 159

Coherence Time 159

Fidelity 159

Processor 159

Quantum Volume 159

Qubit Count 159

Quantum Circuits, tools

Classical Gates 138

Hadamard Gate 142

Modifiers 142

Non-Unitary 142

Phases Gates 140

Quantum Gates 143

Quantum Communication 192

Quantum Communication,

forms

Post-Quantum

Cryptography 193

Quantum Key Distribution

(QKD) 193

Quantum Teleportation 193

Satellite Communication 193

Superdense Coding 192

Quantum Composer 135

Quantum Composer,

features 135-137

Quantum Computers 52

Quantum Computers,

concepts 52-54

Quantum Computing 7

Quantum Computing,

applications 308, 309

Quantum Computing,

challenges 309

Quantum Computing,

companies

Ally Financial 313

BBVA 313

Cambridge Quantum

Computing (CQC) 313

Goldman Sachs 313

JPMorgan Chase 313

Quantum Computing, events

Algorithms 9

Contemporary Research 9

Cryptography 8

Electrodynamics 8

Entanglement 8

QKD Experiments 9

Teleportation 9

Wave-Particle Duality 7

Quantum Computing, impacts

AI/ML 309

Climate Modeling 309

Cryptography/

Cybersecurity 309

Drug Discovery 309

Finance/Risk Analysis 309

Quantum Computing,

limitations

Docoherence 74

Error Correction 74, 75

Scalability 75

Quantum Computing, sections

Potential Applications 76

Research Areas 76

WideSpread Adoption 77

Quantum Computing, sector

Derivative Pricing 312

Fraud Detection 313

Portfolio Optimization 312

Risk Management 312

Quantum Computing, tools

IBM Q 103

Jupyter Notebook 102

Python 102

Qiskit 103

Quantum Energy 325

Quantum Energy,

evolution 325

Quantum Energy, terms 325

Quantum Energy, ways

D-Wave 326

Google 326

IBM 326

Siemens 326

Quantum Entanglement 17

Quantum Entanglement,

benefits 17, 18

Quantum Error Correction

(QEC) 226

Quantum Errors, types

Bit Flip 227

Gate Operation 228

Phase Flip 227

Quantum Field Theory

(QFT) 16

Quantum Gates 82

Quantum Gates, advantages

Cryptography 186

Data Analysis 186

Entanglement 185

Parallelism 185

Problem, optimizing 186

Searches 186

Superior Problem-Solving 186

Quantum Gates, disadvantages

Algorithms 187

Compatibility 187

Complex Control 187

Decoherence 186

Expensive 187

High Error Rates 186

Scaling 187

Quantum Gates, types

Entangling 87

Measurement 87

Multi-Qubit 87

Phase 87

Single-Qubit 87

Universal 87

Quantum Key Distribution

(QKD) 206

Quantum Logical Gates,

types 88-91

Quantum Mechanics 9

Quantum Mechanics,

architecture 10

Quantum Mechanics,

evolutions

Electrodynamics 11

Information Computing 12

Quantum States 10

Quantum Supremacy 13

Quantun Entanglement 11

Teleportation/Entanglement

Experiments 12

Wave-Particle 10

Quantum Networks, protocols

Bell Pairs 71

EPR Paradox 70

Greenberger-Horne-

Zeilinger (GHZ) 72

Quantum Bits 71

Quantum Teleportation 72

Quantum Photonics 40

Quantum Photonics, aspects

Algorithms/Machine

Learning 41

Continuous-Variable 41

Integrated Photonics 41

PennyLane Software 42

Photonic Qubits 40

Quantum Communication 42

Research Partnerships 42

Quantum States 60

Quantum States, architecture 61

Quantum States, concepts

Measurement 62

Normalization 62

Orthogonality 62

Quantum States, importance 61

Quantum Teleportation 200

Quantum Teleportation,

configuring 200-206

Quantum Topological

Computers 37

Quantum Topological Computers,

aspects

Majorana Fermions 38

Quantum Computation 38

Quantum Development Kit 39

StationQ Project 39

Topological Qubits 38

Quantum Wave Theory 18, 19

Quantum Wave Theory, way

Quantum Leap 19

Quantum Tunneling 19, 20

Qubits 137

Qubits, optimizing 137

S

Schrodinger Wave 13

Shor Algorithm 283

Shor Algorithm,

implementing 283

Shor Algorithm,

preventing 284-287

Shor Code 254

Shor Code,

implementing 255-259

Shor Code, limitations

Complexity 260

Error Threshold 260

Overhead 260

Subatomic Particles 4

Superconducting Chips 44

Superconducting Chips, terms

Google 45, 46

IBM 44, 45

Qubit 48

Rigetti 46

Superconducting Qubits 48

Superconducting Qubits,

advantages 48, 49

Superdense Coding 194

Superdense Coding,

configuring 194-196

Superdense Coding, results

Message 00 197

Message 01 198

Message 10 199

Message 11 199

Superposition 13

Superposition,

architecture 62, 63

Superposition, concepts

Copenhagen Interpretation 15

Many-Worlds Interpretation 16

Matrix Mechanics 15

Quantum Field Theory

(QFT) 16

Schrodinger Wave 13

Superposition, technologies

Mathematical

Representation 63

Quantum Algorithms 64

Quantum Systems 63, 64

Switch Statement 122

Switch Statement,

configuring 122-125

T

Telecommunications 323

Telecommunications,

evolutions 324

Telecommunications,

sector 323

Telecommunications, ways

British Telecom (BT) 324

Huawei 324

IBM/Google 324

Quantum Networking 324

Toshiba 324

Trapped-ion 34

Trapped-ion, aspects

Decoherence/Error

Correction 36

IonQ 35

Quantinuum 36

Quantum Gates 35

Quantum Parallelism 37

Qubits 35

Research/Development 37

Scalability 37

U

Unitary Matrices 91

Unitary Matrices, gates 91

Unitary Matrix 83

Unitary Matrix,

configuring 83-85

Universal Quantum

Computers 49

Universal Quantum Computers,

aspects

Algorithms 50

Entanglement 50

Error Correction 50

Gate Model 49

Physical,

implementing 50

Qubits/Quantum Gates 49

Superposition/

Parallelism 50

V

Virtual Photon 3, 4

W

While Loop 126

While Loop, configuring 126

X

XNOR Gate 183

XNOR Gate, terms

Quantum Hardware 184

Quantum Simulator 184

XOR Gate 181

XOR Gate, terms

Quantum Hardware 182

Quantum Simulator 182

	Cover Page
	Title Page
	Copyright Page
	Dedication
	About the Authors
	About the Reviewers
	Acknowledgements
	Preface
	Table of Contents
	1. Principles of Quantum Computing
	Introduction
	Structure
	Objectives
	Fundamental principles of quantum behavior
	Quantum stage
	Quantum ensemble and the role of subatomic particles
	Entanglement and quantum synchronization

	Electrons
	Discoveries about photons in the field of quantum mechanics
	Evolution of quantum mechanics
	Birth of quantum mechanics
	Wave-particle duality
	Uncertainty principle and matrix mechanics
	Quantum entanglement
	Birth of quantum electrodynamics
	Quantum information and computing
	Quantum teleportation and quantum entanglement experiments
	Quantum technologies and quantum supremacy

	Superposition
	Schrödinger’s wave mechanics
	Matrix mechanics
	Copenhagen interpretation
	Many-worlds interpretation
	Quantum field theory

	Quantum entanglement for computational advantage
	Key features of quantum entanglement

	Quantum wave theory
	Quantum leap
	Quantum tunneling

	No-cloning theorem
	Heisenberg’s uncertainty principle
	Copenhagen interpretation
	Double-slit experiment
	Conclusion
	Multiple choice questions
	Answer key

	Questions

	2. Types of Quantum Computers
	Introduction
	Structure
	Objectives
	Quantum annealing and D-Wave
	Trapped-ion and IonQ, Honeywell
	Quantum topological computers and Microsoft
	Quantum photonics-based computers and Xanadu
	Neutral atoms and Atom Computing
	Superconducting chips and IBM, Google, Rigetti
	Cryogenic cooling in superconducting qubits

	Universal quantum computers
	Noisy Intermediate-Scale Quantum computers
	Performance comparison of quantum computers
	Conclusion
	Multiple choice questions
	Answer key

	Questions

	3. Superposition and Entanglement
	Introduction
	Structure
	Objectives
	Introduction to quantum states
	Classical vs. quantum states
	Representation of quantum states
	Importance of superposition and entanglement
	Mathematical formalism
	Key concepts
	Quantum states in quantum computing

	Superposition as the basis of quantum computing
	Mathematical representation of superposition
	Examples of superposition in quantum systems
	Importance of superposition in quantum algorithms

	Entanglement and quantum correlations beyond classical intuition
	Mathematical representation of entangled states
	Examples of entanglement in quantum systems
	Entanglement in quantum communication and processing

	Experimental realization of superposition and entanglement
	Key experiments demonstrating superposition and entanglement
	Challenges and advances in experimental quantum computing

	Harnessing superposition and entanglement in quantum computing
	Quantum gates and circuits using superposition
	Quantum algorithms leveraging superposition and entanglement
	Superposition and entanglement in quantum networks
	EPR paradox and origins of Bell pairs
	Quantum bits, superposition, and entanglement
	Bell pairs
	Bell pairs in quantum networks
	Going beyond Bell pairs
	Analogies to explain

	Potential speedups and advantages of quantum computing

	Limitations and challenges
	Decoherence is the enemy of superposition and entanglement
	Error correction and fault tolerance in quantum computing
	Scalability issues and practical constraints

	Future directions and applications
	Emerging technologies and research areas
	Potential applications beyond computing
	Implications for science, industry, and society

	Conclusion
	Multiple choice questions
	Answer key

	Questions

	4. Quantum Gates and Circuits
	Introduction
	Structure
	Objectives
	Quantum gates
	Unitary matrix
	Bloch sphere
	Types of quantum gates
	Representation of gates as matrices
	Kronecker product
	Conclusion
	Multiple choice questions
	Answer key

	Questions

	5. Introduction to Qiskit and IBM Q
	Introduction
	Structure
	Objectives
	Tools in quantum computing
	Python in quantum computing
	Jupyter Notebook in quantum computing
	IBM Qiskit open-source quantum framework
	IBM Q cloud-based quantum computing access
	Getting started with Qiskit and IBM Quantum

	Introduction to programming with Qiskit
	Python setup for Qiskit and Quantum Lab
	Components of Qiskit
	Running Hello World in Qiskit
	Optimization levels and their impact

	Building quantum circuits
	Circuit design basics
	Classical feedforward and control flow
	Qiskit’s limitations on real quantum hardware

	Grover’s search using Qiskit
	Practical applications of Grover’s search
	Understanding the Oracle with a real-world analogy

	Grover operator
	Full Grover circuit

	Overview of Quantum Composer
	Quantum Composer
	Key features

	Potential of quantum computing
	Fundamentals of qubits and gates
	Overview of quantum circuits
	Tools in our quantum toolbox
	Classical gates
	Phase gates
	Non-unitary operators
	Modifiers
	Hadamard gate
	Quantum gates

	Conclusion
	Multiple choice questions
	Answer key

	Questions

	6. Design of Classical Logic Gates Using Quantum Gates
	Introduction
	Structure
	Objectives
	Classical gates using quantum gates
	NOT gate
	AND gate
	NAND gate
	OR gate
	NOR gate
	XOR gate
	XNOR gate

	Quantum circuit design
	IBM Q composer
	NOT gate
	AND gate
	NAND gate
	OR gate
	NOR gate
	XOR gate
	XNOR gate
	IBM Qiskit SDK
	NOT gate
	Quantum simulator
	Quantum hardware

	AND gate
	Quantum simulator
	Quantum hardware

	NAND gate
	Quantum simulator
	Quantum hardware

	OR gate
	Quantum simulator
	Quantum hardware

	NOR gate
	Quantum simulator
	Quantum hardware

	XOR gate
	Quantum simulator
	Quantum hardware

	XNOR gate
	Quantum simulator
	Quantum hardware

	Advantages of using quantum gates
	Disadvantages of using quantum gates
	Conclusion
	Multiple choice questions
	Answer key

	Questions

	7. Quantum Communication
	Introduction
	Structure
	Objectives
	Introduction to quantum communication
	Quantum superdense coding
	Message 00
	Message 01
	Message 10
	Message 11

	Quantum teleportation
	Quantum key distribution
	Post-quantum cryptography
	Conclusion
	Multiple choice questions
	Answer key

	Questions

	8. Quantum Error Correction
	Introduction
	Structure
	Objectives
	Overview of quantum error correction
	Types of quantum errors
	Techniques for quantum error mitigation
	Techniques for quantum error correction
	Quantum circuit design for QEC
	3-qubit circuit for bit flip error
	3-qubit circuit for phase error
	Shor’s code for QEC

	Conclusion
	Multiple choice questions
	Answer key

	Questions

	9. Quantum Algorithms
	Introduction
	Structure
	Objectives
	Phase kickback
	Grover’s algorithm
	Shor’s algorithm
	Deutsch-Jozsa algorithm
	Bernstein–Vazirani algorithm
	Conclusion
	Multiple choice questions
	Answer key

	Questions

	10. Applications of Quantum Computers Across Industries
	Introduction
	Structure
	Objectives
	Sector-wise applications of quantum computing
	Examples of real-world impact
	Challenges and ongoing research

	Cryptography and cybersecurity
	Challenges in implementing post-quantum cryptography
	Standardization efforts in post-quantum cryptography
	Industry contributions

	Finance and risk analysis
	Industry contributions
	Challenges and outlook

	Pharmaceuticals and drug discovery
	Industry leaders and collaborations
	Challenges and outlook

	Materials science
	Real-world implications

	Artificial intelligence and machine learning
	Quantifiable benefits
	Industry leaders

	Logistics and supply chain
	Challenges and outlook

	Climate modeling and weather forecasting
	Healthcare
	Telecommunications
	Industry leaders
	Recent developments

	Energy
	Potential challenges
	Industry leaders

	Conclusion
	Multiple choice questions
	Answer key

	Questions

	Index

