

A Practical Guide to

Quantum Computing

Hands-on approach to quantum computing with

Qiskit

Elías F. Combarro

Samuel González-Castillo

A Practical Guide to Quantum Computing

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Portfolio Director: Kunal Chaudhari
Relationship Lead: Rithika Shetty
Project Manager: Ashwin Dinesh Kharwa
Content Engineer: Divya Anne Selvaraj
Technical Editor: Kushal Sharma
Copy Editor: Safis Editing
Indexer: Manju Arasan
Proofreader: Divya Anne Selvaraj
Production Designer: Ponraj Dhandapani
Growth Lead: Mansi Shah

First published: July 2025

Production reference: 1250725

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83588-594-9

www.packtpub.com

www.packtpub.com

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book

title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you have found a mistake in this book, we would be grateful if you would

report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the Internet,

we would be grateful if you would provide us with the location address or website name.

Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise

in and you are interested in either writing or contributing to a book, please visit authors.

packtpub.com.

mailto:customercare@packtpub.com
www.packtpub.com/support/errata
mailto:copyright@packtpub.com
authors.packtpub.com
authors.packtpub.com

Share your thoughts
Once you’ve read A Practical Guide to Quantum Computing, we’d love to hear your thoughts!

Please click here to go straight to the Amazon review page for this book and share your

feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

https://packt.link/r/1835885950

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781835885949

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781835885949

Subscribe to Deep Engineering
Join thousands of developers and architects who want to understand how software is

changing, deepen their expertise, and build systems that last.

Deep Engineering is a weekly expert-led newsletter for experienced practitioners, featuring

original analysis, technical interviews, and curated insights on architecture, system design,

and modern programming practice.

Scan the QR or visit the link to subscribe for free.

https://packt.link/deep-engineering-newsletter

https://packt.link/deep-engineering-newsletter

Join us on Discord!
Read this book alongside other users, developers, experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the authors via Ask Me

Anything sessions, and much more. Scan the QR or visit the link to join the community.

https://packt.link/deep-engineering-quantum

https://packt.link/deep-engineering-quantum

Contributors

About the authors
Elías F. Combarro holds degrees in mathematics (1997) and computer science (2002)

from the University of Oviedo (Spain). For each of these, he received national awards

in recognition of his academic performance—second-highest grades in the country for

mathematics, and highest in the country for computer science. He completed several

research stays at Novosibirsk State University (Russia) before earning a PhD in mathematics

from the University of Oviedo in 2001. His dissertation, supervised by Prof. Andrey Morozov

and Prof. Consuelo Martínez, explored properties of computable predicates.

Since 2023, Elías has been a full professor in the Department of Computer Science at the

University of Oviedo. He has authored more than 50 research papers in international

journals, covering topics such as quantum computing, computability theory, machine

learning, fuzzy measures, and computational algebra. His current research focuses on

applying quantum computing to problems in algebra, optimization, and machine learning.

He served as a cooperation associate at CERN openlab in 2020 and 2022, and was a visiting

scholar at Harvard University in 2024. He represented Spain on the advisory board of

the CERN Quantum Technology Initiative from 2021 to 2024. He is also a co-author of A

Practical Guide to Quantum Machine Learning and Quantum Optimization (Packt, 2023).

To Adela, Paula and Sergio. Always my reason to live.

Samuel González-Castillo holds degrees from the University of Oviedo (Spain) in both

mathematics and physics (2021) and a research master’s degree in mathematics from the

National University of Ireland, Maynooth (2023). He is a mathematics research student at the

University of Oviedo, where he works as a graduate teaching assistant. His current research

focuses on the application of algebraic techniques to problems in quantum computing.

He completed his physics bachelor thesis under the supervision of Prof. Elías F. Combarro

and Prof. Ignacio F. Rúa (University of Oviedo), and Dr. Sofia Vallecorsa (CERN). In it,

he worked alongside other researchers from ETH Zürich on the application of quantum

machine learning to classification problems in high-energy physics. In 2021, he was a

summer student at CERN developing a benchmarking framework for quantum simulators.

He has contributed to several conferences on quantum computing, including the Quantum

Technology International Conference and the Conference on Computing in High Energy

and Nuclear Physics. He is one of the authors of A Practical Guide to Quantum Machine

Learning and Quantum Optimization (Packt, 2023).

About the reviewers
Francisco Orts is a researcher at the University of Almería (Spain). He holds a PhD in

computer science focused on the combined use of quantum computing with classical high-

performance computing techniques, winning an extraordinary PhD award. His research

interests are multidimensional scaling, quantum computing, and high-performance comput-

ing, with currently 23 papers published in high-impact journals and having participated in

more than 40 research conferences. Beyond research, he has worked as a computer scientist

at construction, stock exchange, and IT services companies, with more than 15 years of

experience in the sector. He also teaches quantum computing in master’s programs.

Guillermo Botella Juan (Senior Member, IEEE) is full professor at the Department

of Computer Architecture and Automation, Complutense University of Madrid (UCM),

Spain. He received MSc degrees in physics and electronic engineering, and a PhD from

the University of Granada. His research focuses on hardware acceleration, computer

arithmetic, and emerging paradigms such as analog and quantum computing. He introduced

UCM’s first undergraduate course in quantum computing. He has conducted research at

UCL, led projects with Banco Santander and IBM, and serves as deputy editor-in-chief of

Digital Signal Processing. He actively contributes to sessions on applications of emerging

technologies at the DATE conference and has supervised 10 PhD theses.

I would like to thank Conchi and my family for their support and patience during

the time I spent reviewing this book. I am also grateful to my APCC students

at UCM, as well as those working on their final degree and master’s projects in

comp. science, physics, and math, and to my PhD students, for their constant

inspiration. It has been a privilege to help review a book that brings quantum

computing closer to future scientists and engineers.

Table of Contents

Foreword xxi

Acknowledgements xxiii

Preface xxv

Part 1: One Qubit to Rule Them All: Working with One Qubit 1

Chapter 1: What Is (andWhat Is Not) a Quantum Computer 3

1.1 Quantum computing: myths and realities . 4

1.2 Some mysterious quantum phenomena . 9

1.2.1 Superposition . 11

1.2.2 Entanglement . 13

1.2.3 Interference . 14

1.2.4 The uncertainty principle and the no-cloning theorem 15

1.2.5 Simulating quantum computers with classical computers 16

1.3 The shape of things to come . 18

Chapter 2: Qubits, Gates, and Measurements 21

2.1 What is a qubit? . 22

2.1.1 Qubits and their states . 23

2.1.2 The bra-ket notation . 26

xiv Table of Contents

2.2 Extracting information from qubits . 28

2.3 How to transform a qubit state . 34

2.3.1 Quantum gates . 34

2.3.2 Quantum circuits . 40

2.3.3 Global and relative phases . 41

Chapter 3: Applications and Protocols with One Qubit 45

3.1 Quantum money . 46

3.1.1 Creating the banknote . 47

3.1.2 Checking the banknote . 48

3.1.3 Detecting illegitimate quantum money . 50

3.2 Quantum key distribution with the BB84 protocol . 55

3.2.1 Alice, Bob, Eve, and the one-time pad . 55

3.2.2 BB84: the protocol . 58

3.2.3 Security of BB84 . 61

3.3 Other protocols with individual qubits . 64

3.3.1 Alternative QKD protocols . 64

3.3.2 The Elitzur–Vaidman bomb tester . 65

Chapter 4: Coding One-Qubit Protocols in Qiskit 69

4.1 Quantum software and the case for Qiskit . 70

4.2 How to work with one qubit in Qiskit . 75

4.2.1 Simulating the evolution of a state . 80

4.2.2 Getting samples from a simulator . 81

4.2.3 Getting results from real quantum hardware . 85

4.3 Implementing the BB84 protocol . 89

Part 2: Qubit Meets Qubit: Two Qubits and Entanglement 93

Chapter 5: How toWork with Two Qubits 95

Table of Contents xv

5.1 One plus one is more than two: two-qubit states . 96

5.2 Measuring two-qubit systems . 102

5.3 Two-qubit gates . 107

5.3.1 Tensor products of gates . 107

5.3.2 The CNOT gate . 110

5.3.3 Entanglement . 112

5.3.4 The no-cloning theorem . 115

Chapter 6: Applications and Protocols with Two Qubits 119

6.1 Superdense coding . 120

6.2 The CHSH game . 127

6.3 Deutsch’s algorithm . 135

6.3.1 Deutsch’s oracle . 136

6.3.2 The inner workings of Deutsch’s algorithm . 138

Chapter 7: Coding Two-Qubit Algorithms in Qiskit 143

7.1 Working with two qubits in Qiskit . 144

7.2 Superdense coding . 149

7.3 The CHSH game . 152

7.4 Deutsch’s algorithm . 156

Part 3: Working with Many Qubits 161

Chapter 8: How toWork with Many Qubits 163

8.1 Multi-qubit states . 164

8.2 Measuring many qubits . 172

8.3 Multi-qubit gates and universality . 175

8.3.1 Tensor product gates . 175

8.3.2 The Toffoli gate . 177

8.3.3 Gate universality . 178

xvi Table of Contents

Chapter 9: The Full Power of Quantum Algorithms 183

9.1 Quantum teleportation . 184

9.1.1 The details of quantum teleportation . 186

9.1.2 An overview of quantum teleportation . 191

9.2 The Deutsch–Jozsa algorithm . 192

9.2.1 Oracles, in all their glory . 194

9.2.2 The magic behind Deutsch–Jozsa . 196

9.2.3 The truth about quantum parallelism . 201

9.3 The Bernstein–Vazirani algorithm . 203

Chapter 10: Coding with Many Qubits in Qiskit 207

10.1 Working with many qubits in Qiskit . 208

10.1.1 Using registers . 211

10.1.2 How to verify the equivalence of circuits . 213

10.2 Quantum teleportation . 216

10.3 The Deutsch–Jozsa algorithm . 221

10.3.1 Let’s build some oracles . 222

10.3.2 Implementing the Deutsch–Jozsa algorithm . 227

10.4 The Bernstein–Vazirani algorithm . 230

Part 4: The Stars of the Show: Main Quantum Algorithms 233

Chapter 11: Finding the Period and Factoring Numbers 235

11.1 The prime importance of prime factors . 236

11.2 Shor’s algorithm . 240

11.2.1 Analysis of the method . 242

11.2.2 A simple example . 245

11.3 Preparing a periodic sequence . 247

11.3.1 Introducing a very periodic state . 247

Table of Contents xvii

11.3.2 Quantum circuit to obtain the periodic sequence . 249

11.4 Finding the period with the quantum Fourier transform . 252

11.4.1 QFT FTW! . 253

11.4.2 The QFT applied to periodic sequences . 259

11.4.3 Implementing the quantum Fourier transform . 263

11.5 Quantum phase estimation . 267

Chapter 12: Searching and Counting with a Quantum Computer 273

12.1 Searching in an unsorted list . 274

12.2 Grover’s algorithm . 278

12.2.1 Oracles, with a twist . 279

12.2.2 The initial setup . 282

12.2.3 Amplitude amplification . 285

12.2.4 Let’s play with the odds . 292

12.2.5 Not one, but many . 297

12.3 Counting with the quantum Fourier transform . 301

Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit 307

13.1 The QFT in Qiskit . 308

13.2 Shor’s algorithm . 312

13.3 Grover’s algorithm . 323

Part 5: Ad Astra: The Road to Quantum Utility and Advantage 331

Chapter 14: Quantum Error Correction and Fault Tolerance 333

14.1 The need for error correction . 335

14.1.1 Our first error correction code . 337

14.2 Quantum error correction . 340

14.2.1 Bit flips . 341

14.2.2 Phase flips . 348

xviii Table of Contents

14.2.3 The Shor code . 350

14.3 Implementing the Shor code in Qiskit . 354

14.4 Fault-tolerant quantum computing . 360

Chapter 15: Experiments for Quantum Advantage 363

15.1 The race for quantum advantage . 364

15.2 Random circuit sampling . 367

15.2.1 Defining random circuit sampling . 367

15.2.2 Probability distributions with random unitaries . 368

15.2.3 The cross-entropy benchmark fidelity . 372

15.2.4 XEB and random circuit sampling . 374

15.3 The best is yet to come . 378

Appendices 381

Appendix A: Mathematical Tools 383

Complex numbers . 383

Linear algebra . 385

Vector spaces . 386

Bases and coordinates . 388

Linear maps and eigenstuff . 389

Inner products and adjoint operators . 393

A crash course in modular arithmetic . 395

Appendix B: The Bra-Ket Notation and Other Foundational Notions 397

Ket’s evil sibling: bras . 398

The Bloch sphere . 400

Appendix C: Measuring the Complexity of Algorithms 405

Table of Contents xix

Appendix D: Installing the Tools 409

Getting Python . 409

Installing the libraries . 412

Accessing IBM’s quantum computers . 414

Appendix E: Production Notes 417

Bibliography 419

Solutions 429

Index 465

Other Books You Might Enjoy 472

Foreword

Quantum computing is no longer a distant dream or the subject of speculative fiction. It’s

here—not yet fully realized, but unmistakably real—and equipped with all the ingredients

to reshape the foundations of modern technology. From chemical simulation and drug

discovery to optimization challenges, cybersecurity, and artificial intelligence, the potential

of quantum computing is as vast as it is profound. Yet, for many curious minds eager to

explore this new computational paradigm, the quantum world often feels opaque—hidden

behind walls of complex mathematics and abstract physics.

This is precisely where A Practical Guide to Quantum Computing by Elías F. Combarro

and Samuel González-Castillo finds its purpose. In a field often dominated by theory and

intimidating formalisms, this book offers a clear and accessible path forward. It arrives at a

moment when quantum innovation is accelerating at an extraordinary pace—breakthroughs

in hardware, error correction, and algorithmic and software development are happening

faster than ever before.

Its timing couldn’t be more fitting: 2025 has been designated the International Year of

Quantum Science and Technology by the United Nations, marking 100 years since the birth

of quantum mechanics. This recognition underscores the global importance of quantum

technologies and their transition from theoretical concepts to real-world impact.

Combarro and González-Castillo respond to this moment by putting practical tools into the

hands of those who will shape the quantum future—whether they’re computer scientists,

engineers, or passionate tech enthusiasts. With clarity and care, they bridge the often-

xxii Foreword

complicated gap between quantum principles and real-world application. This book does

more than explain what a quantum computer is—it invites you to play and learn with it.

The journey unfolds gradually and intentionally. Beginning with the basics—the single qubit

and foundational concepts for manipulating it—the authors guide you through increasingly

complex systems and algorithms. They culminate the book by exploring the medium- to

long-term challenges facing the field. Each step is hands-on, grounded in code and practical

exercises, delivering not just knowledge but experience.

On a personal note, I am deeply proud to see how Elías and Samuel have embraced Qiskit—

the quantum software development kit I helped create in 2017 alongside Jay Gambetta and

Andrew Cross—as a core tool for this guide. It is incredibly rewarding to see Qiskit support

such a timely, important, and deeply practical book. With this guide in hand, you’re not

just learning about quantum computing—you’re taking your place in its unfolding story.

Ismael Faro Sertage

VP Quantum + AI, IBM Quantum

Acknowledgements

Feeling gratitude and not expressing it is like wrapping a present and
not giving it.

— William Arthur Ward

We would like to thank all the people that helped us, in one way or another, with this book.

First and foremost, we need to mention our high school math teacher Tomás Fernández

Marcos. Without him, we would have never met, and this book would simply not exist.

Every time we write that little 𝑖 representing the imaginary unit, we’re reminded that

Tomás was the first to introduce us to so many wonderful mathematical concepts.

We would also like to thank Ismael Faro for his generosity in writing the foreword to this

book, and for all his efforts in making quantum computers accessible online to students

and researchers around the world. Having the opportunity to use real quantum computers

for free has truly changed our lives for the better. Thank you so much for your vision!

Many parts of this book originate from courses on quantum computing taught over the

years. Those courses would not have been possible without the help and trust of Enrique

Arias, Alberto Di Meglio, Melissa Gaillard, Ester Martín Garzón and José Ranilla, among

many others.

Many of the insights that we have tried to convey in these pages came from discussions

with friends and colleagues all over the world, from whom we have learned lots and lots.

There are too many of you to name here, but you know who you are!

xxiv Acknowledgements

We are also thankful for the generous support of the Real Colegio Complutense at Harvard

University and the Physics Department at Harvard University, which made it possible for

one of us to spend some wonderful time working there. And, of course, a special thanks

to Professor Susanne Yelin for her hospitality and kindness, as well as to Cristina Valdés

Rodríguez and Daniel Sánchez Mata for all their help.

Ferdous Khan has been a constant source of support over the years. Although we haven’t

met in person (yet!), he has always offered wise words and encouraged us to do our best.

Words can’t fully express how much his friendship means.

Of course, we’d also like to thank our team at Packt. It seems they liked what we did

with our first book, because they invited us to write another one! Once again, they were

incredibly supportive throughout the process—always quick to respond and ready to help

with anything we needed.

And what can we say about our technical reviewers? Guillermo Botella and Francisco

Orts once again volunteered to read through the entire manuscript, carefully checking

for inconsistencies and errors. And what a fantastic job they did! They caught some very

subtle “bugs” and were a huge help in improving the book overall. Of course, any remaining

mistakes are entirely our own.

We’re also deeply grateful to the readers of our first book. We’ve been truly overwhelmed

by the wonderful feedback we’ve received over the past two years. We never imagined that

our unique way of explaining things would resonate so deeply with so many people. That

encouragement is what inspired us to do it all over again. We hope you enjoy this one too!

And last but by no means least, we are forever grateful to our friends and families. Their

unconditional love and support carried us through the tough moments of the writing

process. No combination of words, even in the infinitely vast Hilbert spaces of quantum

states, could ever capture how much you mean to us!

Elías F. Combarro, Samuel González-Castillo

Oviedo, April 2025

Preface

Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a

wonderful problem, because it doesn’t look so easy.

— Richard Feynman

Almost three years ago, we sat down to write a little book (well, at that time, we thought

it would be little) titled A Practical Guide to Quantum Machine Learning and Quantum

Optimization. It was a new, exciting and unforgettable adventure, and we had tons and

tons of fun because we made it. . . for us.

It is a cliché to say that you should write the book that you would like to read, but, what

can we say? We are all for clichés and that’s what we did. We wrote the book that we

would’ve liked to read when we started studying quantum machine learning and quantum

optimization. A book with mathematical rigor, because you cannot understand quantum

computing without all the formulas, but also with code that you can run to obtain results,

because quantum computing should be, first and foremost, about computing.

So we wrote the book mainly for us. . . and we still can’t believe how many people found

our way of explaining quantum computing useful and even entertaining. Since the book

was published, we’ve received feedback from many readers that liked the book and, to our

surprise, wanted more.

At the same time, quantum computing has surged in popularity. In the last few years, more

and more people have became interested in learning how to program quantum computers

xxvi Preface

and the number of courses on the topic offered by universities all over the world has grown

exponentially. Moreover, with 2025 proclaimed by the United Nations as the International

Year of Quantum Science and Technology, this trend will very likely continue and multiply.

For all these reasons, even if we believed that writing A Practical Guide to Quantum Machine

Learning and Quantum Optimization had been a once-in-a-lifetime adventure, when the

wonderful people at Packt reached to us again wondering whether we’d be interested in

writing a new book, we thought that it was a brilliant idea. In fact, we still had a thing or

two to write about quantum computing, so why not?

In our previous book, we decided to focus on what we call “modern” quantum algorithms:

variational algorithms, quantum annealing, and other techniques that try to put the kind of

quantum computers that are available today to good use in tasks such as data classification

and combinatorial optimization. But, in fact, the development of quantum computing as a

field did not start with these kinds of applications in mind. Algorithms such as the ones

proposed by Grover, Shor, and other visionaries, are quite different from the ones that we

presented in our previous book. . . but equally important and fascinating.

In A Practical Guide to Quantum Machine Learning and Quantum Optimization we decided

to skip many wonderful applications of quantum computing to focus on these modern

quantum algorithms. And, though we of course love all the new developments that the

quantum computing community has come up with in recent years, we’ve always had a bit

of a regret for not having been able to include other, more foundational algorithms and

protocols.

Understanding how the quantum Fourier transform works or how quantum teleportation

is achieved is not only fascinating in itself, but crucial to comprehend what quantum

computers can do and how they do it. It is obviously great to be able to apply variational

circuits to learn patters in datasets or to find ground states of Hamiltonians, but if you’ve

never heard of Deutsch’s algorithm or you do not know how to implement Grover’s search,

your grasp of quantum computing will be inevitably incomplete.

Preface xxvii

With the book that you now hold in your hands, we try to put a remedy to that. Our focus

is, now, on the foundations of quantum computing. In some sense, you could think of this

new book as a prequel to our previous one. If you’ve already read A Practical Guide to

Quantum Machine Learning and Quantum Optimization, you will find here some concepts

that you already know about. And you will learn much more about them, in the same

way that you learned much more about Obi-Wan Kenobi and Anakin Skywalker when you

watched The Phantom Menace after being acquainted with them from the original Star

Wars trilogy1. And the great thing is that, if you’ve never read our previous book, you will

not miss anything!2

Our approach to explaining the topics covered in this book is, essentially, the same that we

followed in A Practical Guide to Quantum Machine Learning and Quantum Optimization. We

start completely from scratch and we do not assume any knowledge of quantum physics. In

fact, we can assure you that quantum physics is even less necessary to understand this book

than it was for our previous one. And you don’t need to know a lot of math either—just

some basic algebraic concepts, such as what a matrix and a vector are, and how to multiply

them. By the way, if you need a refresher on these or other mathematical concepts, you

can always refer to the Appendices at the end of the book.

Another key characteristic of our approach to introducing concepts is that we firmly

believe in the importance of a gradual progression—from simple ideas to more complex

ones—allowing you to build confidence and understanding step by step. We start very

humbly, focusing on a simple qubit. And we spend a lot of time studying one-qubit systems

before moving further. But we think you’ll find this approach helpful in developing a

deep understanding that serves as a solid foundation for more complex algorithms and

techniques.

In A Practical Guide to Quantum Machine Learning and Quantum Optimization, most

chapters included a mix of mathematical concepts and code. However, in this new book,

we have decided to split into different chapters the abstract discussion of the algorithms

1We only hope that you enjoy this book better than The Phantom Menace!
2But if you like this one, please give the other a try!

xxviii Preface

and protocols that we introduce, and their practical implementation through code. We feel

that this works better in this case, because most algorithms are self-contained and it is

better to explore them as a whole before attempting to fully implement them.

The quantum programming framework that we have selected for our implementations

is Qiskit, concretely version 2.1. Qiskit is, by far, the most popular quantum computing

platform out there and it is especially suitable for the kind of algorithms and protocols that

we study in this book. Additionally, over the last few years, Qiskit has reached a much

bigger stability and maturity, making it even more appealing to implement foundational

quantum algorithms.

The style of our exposition is mainly informal, without following the usual structure of

definition-theorem-proof-corollary of many mathematical texts, but without sacrificing

rigor at any point in the book. Whenever possible, we give detailed derivations that justify

the mathematical properties that we use in our developments and analyses (or, at least,

we provide an argument that may be extended to a full proof by just adding some small

technical details). In the cases that proving a particular fact is beyond the scope of the

book, we provide references in which a full treatment can be found.

Throughout all the text, we propose exercises that will help you understand important

concepts and develop practical skills for manipulating formulas and writing your own

quantum code. They are intended to be readily solved (we try to give useful hints for those

exercises that are a little bit more challenging), but, at the end of the book, we provide full,

detailed solutions so that you can check your understanding of the subject.

Quantum computing is a field in constant evolution, so we feel that it is especially important

to give pointers to new developments, to variants of the algorithms that we present in the

book, and to alternative approaches to solve the kind of problems that we study. We do

this by including numerous boxes with the label “To learn more. . . ”. You can skip these

boxes if you wish, as they are not necessary to follow the main text. However, we strongly

recommend reading them, since they help to situate in a wider context the topics under

study. Other boxes that we use throughout the book serve to highlight important facts, to

Preface xxix

give warnings about subtle points, or to remind you of central definitions and formulas.

These should not be skipped. They are labeled “Important note” for a reason!

Writing this book was a lot of fun. Again, this is the kind of book that we would have

liked to have read when we first delved into the field of quantum computing. We wrote it,

mainly, for ourselves. But we hope that you find it useful too. Enjoy the ride!

Who this book is for
This book would be ideal for university-level students in computer science, mathematics,

physics, or other STEM fields taking introductory-level courses on quantum computing.

It would also suit professionals, researchers, and self-learners with a STEM background.

Potential readers of our previous book, A Practical Guide to Quantum Machine Learning and

Quantum Optimization, will benefit from first building foundational quantum computing

skills with this book.

More broadly, this book would also be a good fit for people who are curious about quantum

computing and want to understand it from a rigorous and hands-on perspective, exploring

the details of the most well-known quantum algorithms.

What this book covers
This book is organized into five parts, an afterword, and some appendices, as follows:

Part 1, One Qubit to Rule Them All: Working with One Qubit

Chapter 1, What Is (and What Is Not) a Quantum Computer, serves as an introduction to the

rest of the book, clarifying what a quantum computer is, how it is different from a classical

computer, and why quantum algorithms can outperform classical ones on some tasks.

Chapter 2, Qubits, Gates, and Measurements, discusses what single-qubit systems are and

how they can be represented, measured, and transformed. This chapter lays down the

most basic theoretical foundation for working with quantum algorithms, as qubits are the

fundamental unit of quantum information (analogous to bits in classical computing). The

remaining chapters in the book build upon this one.

xxx Preface

Chapter 3, Applications and Protocols with One Qubit, explores how, while a humble qubit

may not seem like much, it already enables a few practical applications. In this chapter,

we show how one-qubit systems can be used to implement key distribution schemes and

quantum money that is impossible to forge.

Chapter 4, Coding One-Qubit Protocols in Qiskit, introduces the Qiskit framework and we

briefly mention and discuss other platforms for quantum computing. We also show how

one-qubit protocols can actually be implemented and run using Qiskit.

Part 2, Qubit Meets Qubit: Two Qubits and Entanglement

Chapter 5, How to Work with Two Qubits, takes one step further in generality and introduces

two-qubit systems. In a structure analogous to that of Chapter 2, we discuss how the state

of a two-qubit system can be represented and how these systems can be measured and

transformed.

Chapter 6, Applications and Protocols with Two Qubits, looks at how, following the introduc-

tion of two-qubit systems, we can exploit new quantum phenomena such as entanglement,

and we are in a position to unlock new and very interesting applications; this is what

this chapter is devoted to. The applications that we discuss in this chapter are not just

appealing in and of themselves, but they also give us an opportunity to discuss how quan-

tum algorithms take advantage of quantum phenomena in the construction of quantum

algorithms.

Chapter 7, Coding Two-Qubit Algorithms in Qiskit, succinctly reviews the core principles of

the Qiskit framework and introduces how two-qubit systems can be handled in Qiskit. Then

we show how the protocols and algorithms discussed in Chapter 6 can be implemented and

run using Qiskit.

Part 3, Working with Many Qubits

Chapter 8, How to Work with Many Qubits, allows us to capitalize on having mastered

two-qubit systems, and with a full understanding of how to work with them, we are in

a position to take the final step in our inductive journey and unleash the full power of

Preface xxxi

quantum computing, introducing systems with an arbitrarily large number of qubits. This

chapter introduces multi-qubit systems as a generalization of two-qubit systems, showing

how they can be represented, measured, and transformed.

Chapter 9, The Full Power of Quantum Algorithms, introduces some simple quantum algo-

rithms that fully demonstrate how quantum superposition, entanglement, and interference

can be used in practice. These algorithms perfectly illustrate the capabilities and limi-

tations of quantum computing, and they serve as a foundational step towards the more

sophisticated algorithms that are introduced in the following chapters.

Chapter 10, Coding with Many Qubits in Qiskit, culminates our inductive introduction to

Qiskit by showing how to work with an arbitrary number of qubits in it. As a means of

illustrating this and reviewing the content covered in the previous chapter, we show how

the Deutsch-Jozsa and Bernstein-Vazirani algorithms can be implemented in Qiskit.

Part 4, The Stars of the Show: Main Quantum Algorithms

Chapter 11, Finding the Period and Factoring Numbers, looks at Shor’s factoring algorithm—

probably the best-known quantum algorithm. It has been a crucial reason why social

interest in quantum computing has risen quickly over the last few decades. In this chapter,

we introduce Shor’s algorithm, first explaining why it is significant, with a special emphasis

on its implications in cybersecurity. We then discuss all the details of the algorithm, taking

a rigorous approach, but with plenty of informal and intuitive explanations.

Chapter 12, Searching and Counting with a Quantum Computer, discusses Grover’s algorithm,

which is a quantum search algorithm. We begin by introducing the problem of searching

for elements through an unsorted list, commenting on the computational complexity of

this problem for classical computers. This sets the scene for the introduction of Grover’s

algorithm, which can provide a quadratic speedup over classical methods. We also discuss

how the quantum Fourier transform that we covered in the previous chapter can fit with

Grover’s algorithm in order to allow search results to be counted.

Chapter 13, Coding Shor and Grover’s Algorithms in Qiskit, explores how Grover and Shor’s

algorithm will have far-reaching applications in real-world scenarios once quantum hard-

xxxii Preface

ware becomes powerful enough to support them. In this chapter, we show how these

algorithms can be programmed with Qiskit. We also include a section devoted to the

implementation of the quantum Fourier transform in Qiskit.

Part 5, Ad Astra: The Road to Quantum Utility and Advantage

Chapter 14, Quantum Error Correction and Fault Tolerance, introduces quantum error cor-

rection, which could pave the road towards fault-tolerant computation and thus may be

a cornerstone in the development of useful quantum computers. This chapter begins

with a discussion on the necessity for quantum error correction, which is followed by the

introduction and implementation of a simple quantum error-correcting code. The chapter

finishes with some remarks on fault-tolerant computing and how quantum error correction

can help enable it.

Chapter 15, Experiments for Quantum Advantage, is devoted to understanding quantum

advantage, specifically recent experiments with random circuit sampling. We unpack the

main concepts involved in these experiments and we give some clarifying examples using

Qiskit. In addition to this, and as a way of wrapping up the book, we take the chance to

sketch some ideas about what lies ahead in the road of quantum computing.

Appendices

Appendix A, Mathematical Tools, provides a refresher on the fundamentals of linear algebra,

including vectors and matrices, and important notions such as bases and eigenvalues. In

addition, it gives a quick recap of the most relevant properties of complex numbers and

how to operate with them, and it even covers some concepts from modular arithmetic.

Appendix B, The Bra-Ket Notation and Other Foundational Notions, explores in depth the

details behind the “bra-ket” notation that we use throughout the book and that is ubiquitous

in the quantum computing literature. We will also briefly touch upon a very widely used

tool to represent one-qubit states: the Bloch sphere.

Preface xxxiii

Appendix C, Measuring the Complexity of Algorithms, serves as a quick introduction to mea-

suring the resources needed to solve problems with algorithms. It defines some important

concepts that are used throughout the book, such as the big O notation.

Appendix D, Installing the Tools, guides you through the process of installing the libraries

needed in order to run the code included in this book.

Appendix E, Production Notes, gives a glimpse of the process of writing a technical book

like this one, including the software used to typeset and prepare the content.

Solutions contains the solutions to all the exercises proposed in the main text.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, filenames, file extensions, URLs, and user input.

Here is an example: “We could create a QuantumCircuit object and directly use its draw

method”.

A block of code is set as follows:

from qiskit import QuantumCircuit

circuit = QuantumCircuit(1)

Important ideas are highlighted in boxes like the following:

Important note

I am a box. I feel important. That’s because I am important.

We sometimes include material for those of you who want to learn more. We format it as

follows:

To learn more. . .

You don’t have to read me if you don’t want to.

xxxiv Preface

There are a few exercises in the text, which are displayed as follows:

Exercise 0.1

Prove that every even number greater than two can be written as the sum of two

prime numbers.

To get the most out of this book
The concepts explained in this book are better understood by implementing algorithms

that solve practical problems and by running them on simulators (or actual quantum

computers!). You will learn how to do all that starting from the very beginning of the book,

but in order to run the code you will need to install some tools.

We recommend that you download the Jupyter notebooks from the link provided in the

following section and that you follow the instructions given in Appendix D to get your

environment ready to rock!

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.com/PacktPu

blishing/A-Practical-Guide-to-Quantum-Computing. In case there’s an update to the

code, it will be uploaded to the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at

https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Computing
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Computing
https://github.com/PacktPublishing/

Part 1

One Qubit to Rule Them All:
Working with One Qubit

In this part, we begin our journey into the depths of quantum computing. We will start

gently, by discussing some generalities about quantum computing and introducing a few

general ideas from an intuitive and informal point of view. We shall then explore in detail

the most simple of all quantum systems: one-qubit systems. As humble as they may appear

to be, you will find out that they have a lot of potential.

This part includes the following chapters:

• Chapter 1, What Is (and What Is Not) a Quantum Computer

• Chapter 2, Gates, Qubits, and Measurements

• Chapter 3, Applications and Protocols with One Qubit

• Chapter 4, Coding One-Qubit Algorithms in Qiskit

1
What Is (and What Is Not) a
Quantum Computer

It is indifferent to me where I am to begin, for there shall I return again.

— Parmenides

Welcome to the wonderful world of quantum computing! This is the start of a long and

exciting journey. A journey that will lead you to learn about mind-blowing algorithms

that can efficiently solve problems that are infeasible for mere, classical computers. As we

walk together, you will discover the beautiful (but surprisingly simple) mathematics that

underlie some of the mysterious physical phenomena that power these quantum systems.

And not only that, but you will also learn how to write your own quantum code, and how

to run it on actual quantum computers that you can access on the Internet for free. There

are many reasons to be excited for the pages ahead.

Soon, you will understand how processing information with quantum technologies could

allow you to teleport data, to securely exchange information over communication networks,

4 Chapter 1: What Is (and What Is Not) a Quantum Computer

or even to create money that is impossible to counterfeit (although you might not be able

to carry it in your pocket just yet!).

You will also learn how to factor large integers (and, thus, break the security of many of

the cryptographic protocols on which the security of the Internet relies) and how to search

more efficiently for data on unsorted lists of elements.

As exciting as this all may sound, it is also important to be aware that quantum computers

have their own limitations too. Despite the hype that the media may have created, there

are problems that quantum computers can’t solve faster than their classical counterparts.

And there are even problems that they cannot solve at all!

For this reason, we will start by examining the question of what a quantum computer is

(and what it is not!), what problems it can solve, and what are the most significant physical

principles that it relies on. More concretely, in this chapter, we will cover the following

topics:

• Quantum computing: myths and realities

• Superposition, entanglement, interference and other mysterious quantum phenomena

• The shape of things to come

After reading this chapter, you will have a clear image of what a quantum computer is

and how it compares to a regular, traditional computer, and you will be familiar with the

physical principles that are exploited by quantum algorithms in order to obtain impressive

speed-ups over classical methods. You will also know in what kinds of applications quantum

computers excel, and what the challenges and limitations of simulating quantum computers

with classical ones are.

1.1 Quantum computing: myths and realities
If you are reading this book, chances are that you have already heard quite a lot about the

wonderful feats that quantum computers can achieve: greatly speeding up computations

that would take longer than the age of the universe to be completed with our regular,

classical machines. However, if you really want to understand what quantum computers are

Quantum computing: myths and realities 5

capable of, we first need to dispel some very widespread myths about quantum computing

and clarify where the power of quantum information processing really comes from.

The first important thing to make clear is that a quantum computer is not a magical device.

There will always be computational problems that, even if we had an extremely advanced,

fault-tolerant quantum computer (more on this in Chapter 14), will be impossible to solve.

This is a mathematical fact that not even quantum physics can escape from!

Figure 1.1: The IBM Quantum System One, the first circuit-based commercial quantum
computer, introduced by IBM in 2019. It was later succeeded by the IBM Quantum System Two
(image courtesy of IBM Research, under a Creative Commons Attribution 2.0 Generic license)

To learn more. . .

Proving that some problems are impossible to solve—not only with quantum com-

puters, but with any imaginable computing machine—is one of the main topics of a

field of mathematics known as computability theory. The origins of this theory

can be traced back to the first half of the 20th century, when Alan Turing showed

that it is impossible to design an algorithm that, in a finite amount of time, can

correctly answer the question of whether a machine will eventually stop for a given

input [1]. This is known as the halting problem and proving that it is unsolvable

6 Chapter 1: What Is (and What Is Not) a Quantum Computer

relies on a simple but beautiful idea. Sadly, discussing this in detail would lead us

astray from our path.

Nevertheless, if you want to know more about this fascinating topic, we can recom-

mend a wonderful, non-technical book by David Harel called Computers Ltd: What

They Really Can’t Do [2]. And if you want all the nitty-gritty, technical details, you

can check out the books by Sipser [3] and Rich [4].

So quantum computers are not almighty computing devices and they do have their own

limitations. Fair enough. But they are always faster than classical computers, right? Well,

not quite. In fact, nobody knows for certain when it is better to use a quantum computer

to solve a problem (this book will teach you a good chunk of what we do know about this

question!) but we know that, for some problems, you can save your money and just use

your good old classical machines. This includes, for example, the problem of sorting a list

of elements, where classical algorithms are as good as quantum ones, as proved by Høyer

et al. [5].

The good news is that when quantum computers are faster than classical computers. . .

they are much faster! In fact, the difference in those cases cannot be quantified with just

one number. You’d probably read in the newspaper headlines such as “Quantum computer

solves problem one million times faster than a supercomputer”. But that is just a very partial

and limited view of the actual gap between quantum and classical computing.

To accurately describe the speed-ups that are achievable through quantum algorithms, we

need to take into account that for those problems in which quantum computers have an

advantage, the difference between quantum and classical processing times grows larger

and larger with the size of the problem. Therefore, for a particular instance of a certain

task, the quantum computer can be, say, ten times faster—yet, for a bigger instance of that

same task, it could be one thousand times faster!

Quantum computing: myths and realities 7

The right way of measuring the differences in performance of algorithms is by taking

into account how the time they take to solve a task grows with the size of the problem

(for instance, if searching for a specific record in a database, the size could be the total

number of records in the database). This would give us a function that relates the size of

the problem with the time a certain algorithm needs to solve it. For example, imagine that

you want to find the minimum value in a list that contains 𝑛 integer numbers. For this,

you could write an algorithm that, when run on a certain computer, takes, say, 3𝑛 + 17

microseconds to solve the task. This leads to an analysis of the performance of algorithms

that is usually called asymptotic computational complexity, and that we cover in more

detail in Appendix C.

For our discussion here, it suffices to assume that we have a function 𝑓𝑞(𝑛) and a function

𝑓𝑐(𝑛) that give us the time that a quantum algorithm and a classical algorithm, respectively,

take to solve an instance of size 𝑛 of a certain problem that we are interested in. In fact,

since the running time will depend on the actual hardware that we are using and may

easily decrease if we upgrade the specs of computer, rather than the concrete computation

time, we are usually interested in more abstract measures of computational cost (such as

the number of steps or instructions that the algorithm needs to run). This is because we

want to assess how good an algorithm is, independently of the fact that our computer could

use a CPU replacement.

To learn more. . .

For simplicity, we are assuming that the time that an algorithm takes to solve a

problem only depends on its size, but that might not be the case in many situations.

For instance, if you are checking whether a list of 100 integers contains any negative

number and the first element in the list is −2, you can stop immediately, whereas, if

all the 100 numbers were positive, you would need to read the whole list to find out.

Hence, size may not be all that matters when analyzing time complexity!

In the case where an algorithm has different running times for instances of a problem

with the same size, it is common and sensible to consider a worst case analysis

8 Chapter 1: What Is (and What Is Not) a Quantum Computer

and define 𝑓 (𝑛), the time taken on instances of size 𝑛, to be that of the instance of

size 𝑛 that takes the longest. This is the approach that we will adopt in this book, as

detailed in Appendix C, but other options are possible. For example, one could take

𝑓 (𝑛) to be the average computational cost over all instances of size 𝑛.

In any case, if we compare 𝑓𝑞(𝑛) and 𝑓𝑐(𝑛), we can determine in which situations we may

prefer to use the quantum algorithm over the classical one. For example, if 𝑓𝑞(𝑛) = 10𝑛+30

and 𝑓𝑐(𝑛) = 𝑛2 +1, although for small values of 𝑛 the classical algorithm may be preferable,

there will be a size of the problem from which the quantum algorithm will always be

faster. In fact, it is a very illuminating exercise to compute those critical sizes for different

situations, something that we invite you to do in the following exercises (you can find the

solutions to all the exercises at the end of the book, but we sincerely encourage you to try

them out first on your own and only refer to the solutions if you are truly stuck).

Exercise 1.1

Suppose that you have both a quantum and a classical algorithm for the same

problem. The quantum algorithm needs 𝑓𝑞(𝑛) = 10𝑛 + 30 instructions to solve

instances of size 𝑛 while the classical algorithm needs 𝑓𝑐(𝑛) = 𝑛2 + 1. Determine, in

each of the following cases, for which sizes 𝑛 the quantum algorithm is preferable

over the classical one:

(a) You have a quantum computer that takes 2 milliseconds per instruction and a

classical machine that takes 3 microseconds per instruction.

(b) You have a quantum computer that takes 100 milliseconds per instruction and

a classical machine that takes 0.5 microseconds per instruction.

(c) You have a quantum computer that takes 3 seconds per instruction and a

classical machine that takes 0.001 microseconds per instruction.

Is there any situation where a classical computer would always be preferable to the

quantum one when using these algorithms?

Some mysterious quantum phenomena 9

As you will soon find out, there are some important problems for which there exist quantum

algorithms whose asymptotic growth is much better than those of any known (or even

possible) classical algorithm (for the same task). For instance, in Chapter 12, we will learn

about Grover’s algorithm, which solves search problems quadratically faster than any

classical algorithm can; more concretely, searching with Grover’s algorithm in a list of 𝑛

elements takes about
√
𝑛 queries to the elements in the list, while a classical algorithm

will need roughly 𝑛 such queries. Another famous quantum algorithm is Shor’s algorithm,

which is able to find the factors of any large integer 𝐿 in a time that grows polynomially

(slower than 𝑛3, in fact) with 𝑛, the number of bits required to write 𝐿. By contrast, the

time taken by the fastest classical algorithm currently known grows almost exponentially

with 𝑛 (we will learn about all this in Chapter 11).

Exercise 1.2

Prove that, for any 𝑘 > 0 and any 𝑐 > 1, the polynomial 𝑛𝑘 eventually grows more

slowly than the exponential 𝑐𝑛.

But. . . how is this possible? The reason behind these asymptotical speed-ups comes from

the fact that quantum computers are not just faster classical machines. Quantum machines

do things very differently from classical computers, allowing them to solve some problems

(but not all of them) in new and more efficient ways. In fact, as we are about to explore

in more detail in the following section, quantum algorithms explicitly use properties of

quantum systems such as superposition, entanglement, and interference, to open new

paths in information processing.

1.2 Superposition, entanglement, interference,
and other mysterious quantum phenomena

Nobody understands quantum mechanics. Or, at least, that is what Richard Feynman

famously said. And Feynman was a certified genius (and a Physics Nobel Award winner, to

top it up!) so who are we to disagree? But don’t worry, you do not need to know quantum

10 Chapter 1: What Is (and What Is Not) a Quantum Computer

physics to learn how to program a quantum computer. However, it will be very illuminating

to explore in some detail the basic quantum phenomena that quantum computers exploit

in order to outperform their classical cousins in some important tasks.

Figure 1.2: A picture taken at the Solvay Conference held in 1927. This conference gathered
some of the greatest minds of the early 20th century to discuss quantum theory

Among all quantum phenomena, we must highlight superposition, entanglement, and

interference, for we will encounter them time and again throughout this book. We will

also have special mentions for the uncertainty principle, which is exploited by some

protocols, or the impossibility of perfectly copying quantum information (formally known

as the no-cloning theorem). Soon, we will develop the mathematical tools that we will

need in order to formalize all of them (they will be very easy to learn, we promise!), but, in

this first chapter, we want to give you some intuition on what they are and how they are

used in quantum algorithms.

To learn more. . .

You don’t need to understand all the physics behind quantum mechanics in order to

understand quantum computing, so we are not going to get very physic-sy here.

Some mysterious quantum phenomena 11

However, if you are curious and want to know more, we can recommend some very

good books for you to read.

How to Teach Quantum Physics to your Dog, by Chad Orzel [6], not only has a striking

title, but is a very readable popular account of quantum mechanics that goes deeper

than other books with a similar scope. If you like heavy metal music (wea love

it!) and even if you don’t (nobody is perfect), you should take a look at When the

Uncertainty Principle Goes to 11: Or How to Explain Quantum Physics with Heavy

Metal, by Philip Moriarty [7]. It really rocks!

If you want to get more technical but you do not feel like reading a regular quantum

physics treatise, Quantum Mechanics: the Theoretical Minimum, by Susskind and

Friedman [8], is certainly the best option. And if you want a bonafide textbook,

A First Introduction to Quantum Physics, by Pieter Kok [9], is a good place to start

before you jump into classical books, such as the one by Griffiths and Schroeter [10].

aWell, at least one of us!

Let’s start by talking about superposition and some really strange cats!

1.2.1 Superposition
Superposition is one of the most famous quantum phenomena. If by any chance you’ve

heard of Schrödinger’s cat, you already are somewhat familiar with superposition. This

thought experiment, proposed by Erwin Schrödinger, one of the fathers of quantum physics,

invites us to imagine a poor little feline trapped inside a box with a deadly poison that

is to be activated by the decay of a certain subatomic particle. The way of describing

this situation in the language of quantum theory implies that, until we open the box and

observe the cat, it is not dead or alive but both dead and alive at the same time. We usually

say that the cat is in a state of superposition.

We can all agree that this is a very weird situation. We don’t ever see cats (or any other

animals) that are both dead and alive at the same time. Like, come on, what does it even

12 Chapter 1: What Is (and What Is Not) a Quantum Computer

mean for a cat to be both alive and dead? Well, as detached as these ideas may be from

the physical reality at our scale, at the subatomic level, superposition completely explains

the results of many experiments and has been validated in innumerable occasions. And,

strange as it may sound, in quantum mechanics, it makes sense to talk about particles that

have spin up and spin down at the same time or about electrons that have two different

energies at once. At least, until you measure them. Then, they collapse and have a very

definite spin, energy, or position.

Because, yes, that is another strange thing about superposition. When you try to observe the

state of a system in superposition. . . it will stop being in superposition and it will randomly

decide to adopt one definite state. This is usually called the wavefunction collapse and,

according to the standard interpretation of quantum physics, occurs whenever we measure

a quantum system. This will make quantum computing an inherently and intrinsically

probabilistic procedure, in which running the same instructions with the same inputs can

lead to different outcomes! In fact, when designing quantum algorithms, it will be of utter

importance to be able to manipulate (in our favor, of course) the probabilities of obtaining

different results so that we can efficiently solve our problems. And a huge part of this book

is devoted to explaining how to achieve that for some important tasks.

We won’t blame you if you find this a little bit (or an awful lot) confusing. But before you

throw this book out of the window and look for something that makes more sense, let us

assure you that, in order to program quantum computers, you won’t have to think about

particles that are in two different locations at the same time or any other strange such

behavior.

In fact, in the next chapter, we will give a very direct mathematical formulation of what

superposition is, and it will only involve linear combinations of vectors (if you need a

refresher on vectors and linear algebra in general, we have you covered: take a look at

Appendix A). And for the remainder of this book, we promise, you will only have to think

about superposition in those simple mathematical terms. That formulation will also give

us a very easy way of determining the probability of each outcome when we perform a

Some mysterious quantum phenomena 13

measurement, so we will kill two birds with one stone (metaphorically, of course; we love

birds, cats, and all animals, despite the colorful examples in this section!).

Alright, but why is superposition relevant for quantum computing? As you will soon learn,

most quantum algorithms start with an initial step that puts the system in superposition—a

combination of all possible solutions, so to say. This will be helpful to design procedures

that work on all those possible solutions at the same time and it is one of the sources of

the kind of advantage that we can obtain when processing data with quantum devices.

In fact, quantum computers store information on something called qubits (you will learn all

about them in Chapter 2) and, if your quantum machine has 𝑛 qubits, it can implicitly store

2𝑛 quantities, exponentially more than a classical computer! We will use superposition in

most of the algorithms that we will study in this book, especially from Chapter 6 on, in

order to exploit this massive potential of information storage and processing.

However, this ability of working with many solutions at once is, most of the times, not

enough to obtain a speed-up over classical algorithms. For that, we will need other ingredi-

ents, such as the spooky entanglement that we introduce in the next section.

1.2.2 Entanglement
Entanglement is no less famous than superposition. . . and it’s probably just as mysterious!

The great Albert Einstein had a really hard time accepting it (he called entanglement the

“spooky action at a distance”) because it seemed to be contrary to every physical intuition

we may have. But it has been demonstrated in labs time and again and, in fact, in 2022,

Alain Aspect, John F. Clauser, and Anton Zeilinger were awarded the Physics Nobel Prize

“for experiments with entangled photons, establishing the violation of Bell inequalities and

pioneering quantum information science”.

Entangled particles show correlations that cannot be explained with classical physics alone,

as changes in one of them cause instantaneous changes in the others, regardless of how far

apart they may be. This was one of the reasons that led Einstein to claim that entanglement

14 Chapter 1: What Is (and What Is Not) a Quantum Computer

was “spooky”, since it seems to act instantaneously at a distance, and break the principle of

locality.

Entanglement is central in quantum information processing and quantum computing. Were

it not for entanglement, quantum computers could be easily simulated with traditional

computers and quantum computing would thus not provide any algorithmic speed-ups.

Also, protocols such as quantum teleportation or superdense coding, which we will

study in detail in Chapter 6, rely on the use of entangled qubits to carry out tasks that

are impossible with classical devices. In more elaborate quantum procedures, we will use

entanglement in combination with superposition in order to simultaneously associate to

each possible input of a problem its correct output, effectively computing an exponential

number of operations in just one go.

Again, the mathematical description of entanglement, which we will introduce in Chapter 5,

is surprisingly simple, and has to do with the fact that some vectors that describe quantum

systems cannot be expressed as the product of two smaller vectors. But in spite of its

humble mathematical formulation, entanglement will become one of our most powerful

tools in quantum algorithms, especially when combined with interference, which is our

next stop in this magical mystery tour of quantum properties.

1.2.3 Interference
Interference is the unsung hero of quantum algorithms. Most popular accounts of quantum

computing put superposition and entanglement front and center, and almost completely

forget about interference. But truth is that it is the most important part of most quantum

algorithms and protocols. In fact, in most cases, getting a system into superposition and

entanglement is just the first step in quantum algorithms. . . and is relatively simple to

achieve, at least from a computational point of view. The tricky bit comes when we have

to take advantage of interference.

As mentioned in the previous section, superposition and entanglement will allow us to

simultaneously pair each possible input together with its correct output. But then the

difficult part will be to select, from all of them, the ones that we actually need in order

Some mysterious quantum phenomena 15

to solve our problem. This is where interference comes to the rescue. As we will very

soon learn (in fact, in Chapter 2), the coordinates in the vectors that describe qubit states

can be negative numbers (and even complex ones; see Appendix A for a reminder of these

fascinating quantities). In our quantum algorithms, we will use this to our advantage. By

performing certain operations, we will be able to use negative interference to cancel the

solutions that we are not interested in, while reinforcing the results that we would like

to obtain. This will increase the probability of measuring exactly the solution that we

need—happy days!

The problem is that using interference effectively is the most intricate element in the design

of quantum algorithms, and we only (yet) know how to do it for tasks such as the ones

you will learn about in future chapters. Getting unwanted solutions to interfere with each

other is the crucial ingredient of successful quantum procedures and we will pay a lot of

attention to explaining how this can be conducted, starting with the simplest algorithms

(such as Deutsch’s method in Chapter 6) and building our way up to the most sophisticated

ones (Shor’s algorithm in Chapter 11 and Grover’s algorithm in Chapter 12). We know that

this sounds abstract and weird at this moment, but don’t worry; throughout the book, we

will have ample opportunities to see interference in action with very clarifying examples.

Superposition, entanglement, and interference are some of the main ingredients used in

quantum information processing, but by no means are they the only ones. We are certain

of it, as you will see in the next section!

1.2.4 The uncertainty principle and the no-cloning
theorem

As we will learn in Chapter 3, quantum information processing can find some very in-

teresting applications in the area of secure data transmission. In that context, it will be

very important to have some assurance that unwanted parties don’t have access to more

information than we want them to have. For this goal, the uncertainty principle and the

no-cloning theorem will prove to be invaluable tools.

16 Chapter 1: What Is (and What Is Not) a Quantum Computer

Very roughly speaking, the uncertainty principle states that, with just one measurement,

it is impossible to get all information of a quantum system, including whether it is in

superposition or not. We will use this in our favor when designing some protocols for

quantum cryptography. In particular, it will be very useful in order to securely distribute

secret keys between users of a telecommunication channel, something that is known as

Quantum Key Distribution (QKD).

The uncertainty principle has our backs covered if someone tries to measure a single

quantum state to extract information about it. But what if that person makes some copies

and tries to perform more measurements on those copies? Well, that is indeed a sneaky

attempt, but one that is doomed to fail. As it turns out, without some additional knowledge

about what state we are trying to copy, the laws of quantum physics completely forbid

making a perfect, independent copy of that state. This is known as the no-cloning theorem,

and as strange as it may sound, it is a very simple consequence of the postulates of quantum

mechanics, as we will prove in Chapter 5.

These are not, by any means, all the strange properties of quantum systems, but they are

certainly (no pun intended) the ones that we will most frequently encounter in our study

of quantum protocols and algorithms. Let us insist one more time: don’t be afraid; we

promise that the mathematical formulation of these properties will be surprisingly simple

and you won’t have to dwell on the their physical implications—unless you want to, of

course. If you’re up for the adventure, the meaning of quantum theory is indeed a profound

and entertaining philosophical question.

Okay, so quantum physics has some weird properties. But how does that affect our ability

to simulate quantum systems using classical computers? That is a very good question. So

good indeed that it will be the focus of our next section!

1.2.5 Simulating quantum computers with classical
computers

Despite what you may have heard in the media, classical computers can solve exactly the

same problems that quantum computers can. As you will learn, starting from the next

Some mysterious quantum phenomena 17

chapter, what quantum computers do (at least, those based on the quantum circuit model,

which are the ones that we will study throughout this book) is to multiply (big) matrices

with (big) vectors (refer to Appendix A for all the relevant linear algebra concepts). And

that is something that, given enough time and memory, a classical computer can always do.

The catch is that “enough time and memory” can be, in some cases, a humongous lot of time

and memory. So much that, in practice, replicating the operations of quantum computers

with a traditional one is just unfeasible.

As we have already mentioned, the amount of classical memory needed to store the state

of a quantum computer grows exponentially with the number of qubits it has. This means

that, even if we used each atom of the universe to store one number, we would be unable to

represent even a minuscule fraction of the state of a quantum computer with 1000 qubits.

That idea of working with that (huge) vector doesn’t sound so appealing now, does it?

But. . . what if there were some shortcuts? Actually, it is not known whether storing the

state vector of a quantum computer and operating on it is the best way of simulating a

quantum computer with a classical one (you can check the papers by Young et al. [11] and

Xu et al. [12] for some good surveys on different simulations methods). And, for some

particular cases of quantum operations, there are much better ways of replicating them

with classical algorithms that do not scale exponentially. But all the mathematical evidence

that we currently have points in the same direction: simulating a quantum computer seems

to be, in general, an extremely demanding task.

To learn more. . .

Not every quantum algorithm is hard to simulate with a classical computer. For

example, if there is not a lot of entanglement in a quantum system, then we can

represent its state vector much more succinctly, and thus operate on it much more

efficiently. Moreover, there are some algorithms that produce highly entangled

states but only use a certain subset of all possible quantum operations, which can be

simulated quite easily with something that is known as the stabilizer method (if

you are curious, take a look at Section 10.5 in the book by Nielsen and Chuang [13]).

18 Chapter 1: What Is (and What Is Not) a Quantum Computer

The moral of it all is that some quantum procedures are easy to simulate while

others are hard. . . but nobody knows for sure where the boundary between them

lies. In fact, it is a very open, very important, and very difficult question in quantum

complexity theory! And the answer, oddly enough, may have to do with something

called magic quantum states [14].

In any case, simulating quantum computers with classical ones can be very useful in

some situations; for example, when you are debugging your code before running it on

quantum hardware. You will be limited to working with a reduced number of qubits (it

is, in general, highly resource-consuming to go beyond 40-qubit simulations), but it will

help you understand how the algorithms work, and it is a tool that we will use extensively

starting from Chapter 4.

But before that, let us close this chapter by taking a look at the kind of applications that

quantum computers excel at and the algorithms that we will study in the remainder of this

book.

1.3 The shape of things to come
In this first chapter, we have focused on the properties that are used in quantum algorithms,

mostly at a descriptive level. But starting in the next chapter, we will introduce the

mathematical concepts that you will need in order to understand quantum algorithms and

program quantum computers.

Don’t be afraid. The mathematics that you will need (covered in Appendix A) are quite

simple. And we will start from the very basics, first considering only one qubit (Part 1),

introducing systems with two qubits after that (in Part 2), and working all the way up

to algorithms that use many qubits (Part 3 and Part 4). We will then conclude with some

concepts from quantum error correction and fault-tolerant quantum computing and some

thoughts on the notion of quantum advantage (Part 5).

The shape of things to come 19

Every part of the book will follow the same structure. We will begin by introducing the

mathematical concepts needed to describe quantum systems of increasing complexity.

Then, we will put those concepts to good use by applying them in different protocols and

algorithms. Finally, we will show how to write code that implement all those methods

using Qiskit, one of the most popular and advanced quantum packages out there, so that

you can run them on both simulators and actual quantum computers.

Throughout the rest of the book, we will focus mainly on applications of quantum com-

puting and quantum information processing that require some level of error correction

(more on this on Chapter 14) and that have been mathematically proven to obtain some

advantage over classical computing. They range from proposals for quantum money that

cannot be forged and completely secure ways of sharing secrets over telecommunication

networks (which we will study in Chapter 3) to algorithms to efficiently factor large integers

(Chapter 11) and to search extremely fast (Chapter 12).

These examples will not only showcase the kind of problems in which quantum computers

will be useful in the future, but they will also help us highlight the role that quantum

phenomena such as superposition, entanglement, and interference play in successfully

designing practical quantum algorithms. Understanding the use of these phenomena in

concrete applications will clarify how they are combined together to obtain speed-ups

over classical algorithms and will illuminate their central role in quantum information

processing.

To learn more. . .

Our focus in this book is on quantum algorithms that, when run on fault-tolerant

quantum computers, are asymptotically faster than their classical counterparts.

However, in recent years, a lot of attention has also been paid to other quantum

algorithms whose advantage has not been mathematically proven but that can be

run on the kind of quantum computers that are available today. These devices are

usually called noisy-intermediate scale quantum (or NISQ) machines (see the

wonderful survey by John Preskill [15] for more on them) and have a limited number

20 Chapter 1: What Is (and What Is Not) a Quantum Computer

of qubits that are not fully connected and that are not protected against errors and

external noise.

Despite these limitations, there have been many proposals of quantum algorithms

that seek to use these early quantum devices for practical applications, including

problems in machine learning, optimization, and physics and chemistry simulations.

If you want to learn more about them, please take a look at our book A Practical

Guide to Quantum Machine Learning and Quantum Optimization: Hands-on Approach

to Modern Quantum Algorithms, also published by Packt [16].

Can you feel it coming in the air? Yes, our quantum journey is about to begin in earnest.

Buckle up: the best is yet to come!

Summary
In this chapter, we have studied what makes quantum computers special and how they

are different from classical machines, opening up the possibility to develop new, faster

algorithms for some important tasks. We have also demystified some of the usual mis-

conceptions about quantum computers and clarified that their advantage over classical

computing devices is best explained with asymptotical analysis, since the difference in

execution time grows bigger with the size of the problems under consideration.

We have also taken a first qualitative look at some important quantum properties, including

superposition, entanglement, and interference, that will be central in the design of useful

quantum algorithms. We have also learned that it is possible to simulate quantum operations

with classical computers (and that it is useful, for instance, when debugging quantum

software) but that all those quantum properties combined make it impossible (or, at least,

very, very unlikely) that those simulations will ever be efficient.

Finally, we have had a sneak peek into what is to come in the remainder of this book,

and into the kind of protocols, algorithms, and methods that we will be studying in detail

throughout the following chapters.

2
Qubits, Gates, and
Measurements

If you are receptive and humble,
mathematics will lead you by the hand.

— Paul Dirac

In the previous chapter, we had the chance to informally introduce quantum computing, its

advantages and challenges, and some of the intriguing quantum phenomena that quantum

algorithms leverage on. Now that we all have a bird’s-eye view of where we are heading,

it’s time to set out to work, and dive into the details. We should warn you that things are

soon going to get a little bit mathematical from now on. Thus, if you feel that your linear

algebra may be a little bit rusty, this is the perfect moment for you to go over Appendix A.

The same applies if you need a refresher on complex numbers!

In any computational paradigm, we need three basic ingredients: a way of storing informa-

tion, a way of retrieving the information that we are storing, and a way of transforming

22 Chapter 2: Qubits, Gates, and Measurements

that information. In quantum computing, this is what these ingredients look like: we use

qubits to store information, we perform quantum measurements to extract information

from them, and we use quantum gates to transform them. The three sections in this

chapter discuss these three elements in detail:

• What is a qubit?

• Extracting information from qubits

• How to transform a qubit state

Over the following chapters, we will have plenty of time to build all our way up to the

full glory of quantum computing, but Rome wasn’t built in a day and we want to take

things easy and slow. For this reason, in this chapter, we are going to focus on the simplest

systems that can be used for quantum computing: one-qubit systems.

After reading this chapter, you will have a general picture of the role that qubits, measure-

ments, and gates play in quantum computing. You will also understand how one-qubit

systems are represented and manipulated from a theoretical point of view. This will give

you all the necessary background to understand some exciting applications of one-qubit

systems in Chapter 3 and get your hands dirty programming your first quantum algorithms

and protocols in Chapter 4.

2.1 What is a qubit?
Qubits are the most fundamental unit of quantum information. That’s the headline, and

that’s what will keep us busy throughout this whole section. But before we get down to

that, a small “methodological suggestion” may come in handy. We humans live in a world

that, at our scale, is very different from the quantum-mechanical realm. In our daily lives,

we don’t experience superposition, entanglement, or any of the snazzy phenomena that we

discussed in the previous chapter. On the other hand, on a daily basis, we do experience

forces, we see the effect of energy and we can somewhat easily corroborate any of the

postulates of classical physics. Thus, while it can be healthy and useful to hold on to our

intuitive understanding of reality when approaching classical physics or even classical

What is a qubit? 23

computing, please, we beg you to lose all hope of doing the same here. Things are going to

be different. And that’s fine.

Thus, before we get started, let’s make sure that we’ve all left our human-sized physical

intuition at the door, and let us be ready to trust in the formalism that we are about to

introduce. Just follow the mathematics; they will never lead you astray!

2.1.1 Qubits and their states
In classical computing, the most fundamental unit of information is the bit, and at any

moment it can be in one of two possible states: 0 or 1. In quantum computing, the most

fundamental unit of information is the qubit (short for “quantum bit”) and it can be in two

states denoted as |0⟩ and |1⟩ (more on those weird bars and angles later). However, a qubit

may also be in any superposition of those two states, that is, in any state of the form

𝛼0 |0⟩ + 𝛼1 |1⟩

where 𝛼0 and 𝛼1 are complex numbers—called amplitudes—such that |𝛼0|
2
+ |𝛼1|

2
= 1. We

refer to this constraint on the amplitudes as the normalization condition, and we say

that the state is normalized.

A few examples may help us illustrate this. If we take, for example, 𝛼0 = 𝛼1 = 1/
√
2, which

clearly satisfy the normalization condition, we can produce the state

1
√
2
|0⟩ +

1
√
2
|1⟩ ,

which is a perfectly balanced superposition of |0⟩ and |1⟩. In an informal way, we could say

that a qubit in this state is both in state |0⟩ and state |1⟩ at the same time, but this vague

idea will become more concrete when we introduce measurements in the next section. For

now, let us get accustomed to dealing with states.

24 Chapter 2: Qubits, Gates, and Measurements

To learn more. . .

From a physical point of view, there are many ways in which we could implement

a qubit. One of the the conceptually simplest ways would be to encode a qubit

state as the spin of a spin-1/2 particle. In essence, these “spin-1/2” particles

have some “spin” (a quantum-mechanical magnitude, the details of which we will

not discuss), which can be in a spin-up state, in a spin-down state, or in any

superposition of these two states. This makes the spin of these particles a good

choice for implementing qubit states, perhaps interpreting spin-down as the qubit

state |0⟩ and spin-up as the qubit state |1⟩. There are plenty of examples of spin-1/2

particles, but the most famous one can be found in the humble electrons that we

all know and love. If you would like to learn more about spin (and about quantum

mechanics, with a more physical approach), you should read Quantum Physics of

Atoms, Molecules, Solids, Nuclei, and Particles [17].

Beyond spin-1/2 particles, there are other and very promising ways of physically

realizing qubits, such as through superconducting circuits [18], ion traps, or

quantum dots. If you have a solid background in physics and want to have an

in-depth look into these, you might want to read Chapter 6 of Classical and Quantum

Information [19].

As we mentioned before, the amplitudes 𝛼0 and 𝛼1 can be complex numbers. This means,

for example, that this would also be a valid state, as you can easily check:

−
𝑖

√
3
|0⟩ +

√
2

3
|1⟩ .

We acknowledge that, at a first glance, this state can be strange-looking. However, there is

nothing to be feared about complex numbers! We will slowly grow accustomed to them

until their presence becomes second nature.

As we discussed before, when approaching this, you need to invest some trust in the

formalism and set your intuition aside. However, there are a couple conditions here that

What is a qubit? 25

may seem rather arbitrary. Firstly, we have the question of why we are imposing this

“normalization condition” on 𝛼0 and 𝛼1; this will become apparent in just a few pages, so

bear with us. Lastly, you may be confused as to why exactly these coefficients can be

complex: why not just take them to be real numbers? For this question, we cannot provide

a straightforward answer, but you can accept the use of complex numbers as an axiomatic

foundation.

Now that you know how qubit states can be constructed, at least from a theoretical point

of view, it might be a good idea for you to practice with an exercise.

Exercise 2.1

Which of the following are (valid) qubit states? Why?

(a) |0⟩ + |1⟩,

(b)

√
4

7
|0⟩ +

√
3

7
|1⟩,

(c) 2 |0⟩,

(d) 𝑒−𝑖 |1⟩.

Find a suitable value of 𝑥 that will make this a valid qubit state:

(e)
1

3
|0⟩ + 𝑥 |1⟩.

Find all the possible values of 𝑥 that will make the following construction a valid

qubit state (keep in mind that there is an infinite amount of them):

(f)
1
√
2
|0⟩ + 𝑥 |1⟩.

If you find yourself stuck with any of these exercises, you might want to take a look

at Appendix A. Also, remember that you can find the solutions at the end of book.

By now you should be comfortable enough constructing qubit states. Later in this chapter

we will further explore the physical meaning of these states and better understand what

role they play in quantum computing. Nevertheless, before heading down that road, we

need to take a brief mathematical detour in order to make sense of some of the fancy

symbols that we have been using.

26 Chapter 2: Qubits, Gates, and Measurements

2.1.2 The bra-ket notation
There is a crucial fact about qubit states that we have been hiding under the carpet. As it

turns out, these mysterious qubit states that we have been discussing are nothing more

than good old vectors; vectors in ℂ2, to be precise. Actually, the states |0⟩ and |1⟩ are the

canonical basis vectors

|0⟩ ≔
(

1

0)
, |1⟩ ≔

(

0

1)
.

In quantum computing, we don’t call this basis the “canonical basis” but the computational

basis. Much more flashy, isn’t it?

Having revealed the true nature of the computational basis vectors, for any complex

numbers 𝛼0 and 𝛼1 satisfying the normalization condition, we now have

𝛼0 |0⟩ + 𝛼1 |1⟩ =
(

𝛼0

𝛼1)
.

This is how any qubit state is, in disguise, a vector of ℂ2. Since 𝛼0 and 𝛼1 satisfy the

normalization condition, we also say that this vector is normalized. In the language of

linear algebra (which we reviewed in Appendix A), we would say that the vector is a unit

vector.

If you ever studied physics, you are probably used to denoting vectors with a small arrow

on top. For instance, some physicists or engineers like to write 𝑣 to denote that a certain

quantity 𝑣 is a vector. In quantum mechanics (and, by extension, in quantum computing),

instead of using these little arrows, we use some funky bars and angles and write |𝑣⟩. Does

this sound familiar? This is why we have been writing |0⟩ and |1⟩ all this time. We call these

notational artifacts kets, and we owe this symbolism, usually called bra-ket notation, to

the English physicist Paul Dirac [20].

What is a qubit? 27

Important note

The state of a qubit is specified through a two-dimensional vector of complex

numbers of the form

𝛼0 |0⟩ + 𝛼1 |1⟩ =
(

𝛼0

𝛼1)
,

in which the amplitudes 𝛼0 and 𝛼1 satisfy the normalization condition |𝛼0|
2
+

|𝛼1|
2
= 1. A vector verifying this condition is said to be normalized.

You may now be wondering why we bother to use these “kets”. For starters, kets can be

very practical. Inside a ket, you can write anything you want without any fear of confusion,

which is, for example, convenient in order to avoid mistaking the qubit states |0⟩ and |1⟩

with the actual numbers zero and one! Also, you could write any string of symbols inside

a ket, so you could consider a vector

|cool⟩ ≔

√
2

5
|0⟩ +

√
3

5
|1⟩ ,

and use this ket as |cool⟩ all along. Cool, isn’t it? This can be convenient should you want

to give memorable names to your kets1.

OK, so that clarifies the mysteries about kets. But what about the “bra” in “bra-ket” notation?

It turns out that, to each column-vector ket you can associate a certain row vector that

we call a bra. And with a bra and a ket you can (sometimes) form a bra-ket or bracket,

which is nothing more than a dot, scalar or inner product. We love bras and bra-kets, but

unfortunately they are not very relevant in the way we have chosen to present quantum

computing in this book, so we won’t be covering them in the main text. However, in case

you are curious, we have written a whole appendix on the topic, so check out Appendix B

for everything you always wanted to know about bras (but were afraid to ask).

1In fact, it is customary to use Greek letters to name kets, such as in |𝜓⟩ (pronounced “ket psi”). In this
way, you can boast that you are not only learning quantum computing but a foreign language too!

28 Chapter 2: Qubits, Gates, and Measurements

At this point we are more than capable of manipulating one-qubit systems, so it’s time

for us to give some physical meaning to all this formalism. Let’s shift our attention to the

surprising ways in which qubits can be measured!

2.2 Extracting information from qubits
If you have a classical bit, its state can be 0 or 1 and, if you want to access that state. . . the

process is rather trivial. In a normal digital circuit, a bit is often physically implemented as a

voltage: oversimplifying a bit (no pun intended), if the voltage is above a certain threshold,

the bit is in state 1 and, otherwise, it is in state 0. Simple enough! If you are given a bit,

you can always find its state.

If you have a qubit, its state is slightly more messy than that of a classical bit and, reasonably,

you may now be wondering if we can just determine it. Shockingly, we cannot. When you

are given a qubit (with no further information provided, just a qubit), there is no way of

knowing its state. All that you can do is perform a (quantum) measurement on the qubit,

the outcome of which will depend on the original state of the qubit but will not fully reveal

it. What is more, performing such a measurement will potentially permanently “corrupt”

the state of the qubit. Sounds weird? Let’s see how these measurements work in detail.

There are many kinds of measurements that you can perform in a quantum system, but we

will only consider the most natural kind of measurement that you can perform in a qubit

system, and that’s what is known as a measurement in the computational basis. If you

are given a qubit in a state of the form 𝛼0 |0⟩ + 𝛼1 |1⟩ and you perform a measurement in

the computational basis, this is exactly what will happen:

1. The outcome of the measurement will be either 0 or 1, and this outcome will be

probabilistic. You will get the outcome 0 with a probability |𝛼0|
2 and you will get 1

with a probability |𝛼1|
2.

2. If the outcome of the measurement is 0, the state of the qubit right after the mea-

surement will collapse to |0⟩. If the outcome is 1, the state will collapse to |1⟩.

Extracting information from qubits 29

This is all depicted in Figure 2.1. Now, there is quite a lot to unpack here, so let’s go step by

step.

𝛼0 |0⟩ + 𝛼1 |1⟩

Outcome 0 Outcome 1

Probability |𝛼0|
2 Probability |𝛼1|

2

|0⟩ |1⟩

Figure 2.1: Schematic representation of a measurement in the computational basis of a one-
qubit system in a general state

The first thing that we need to highlight is that quantum measurements are intrinsically

probabilistic. When you have a qubit, even if you fully know its state, there may not

always be a way for you to predict what the outcome of a measurement will be. As we

have mentioned, the probabilities of getting each of the two possible outcomes 0 and 1 are,

respectively, |𝛼0|
2 and |𝛼1|

2. Since qubit states are normalized, these probabilities add up

to 1 and everything makes sense—and this is the long-awaited reason for that seemingly

arbitrary normalization condition that we imposed back in Section 2.1.

Of course, if the state of your qubit is |0⟩ (and therefore |𝛼0|
2
= 1 and |𝛼1|

2
= 0), whenever

you perform a measurement in the computational basis, you are always guaranteed to get

a 0. Analogously, a measurement will always return 1 in the state |1⟩. Since, for any real

number 𝜃, we have |
|𝑒
𝑖𝜃|
| = 1, if we are given qubits in the states 𝑒𝑖𝜃 |0⟩ or 𝑒𝑖𝜃 |1⟩, we will

always get, respectively, a 0 or a 1 after a measurement. These are the only situations in

which either 𝛼1 = 0 or 𝛼0 = 0, and they are the only ones in which we can be certain about

the outcome of a measurement in the computational basis.

Whenever both 𝛼0 and 𝛼1 are non-zero, there is no way for us to fully predict the outcome

of a measurement in the computational basis, and this is connected to the uncertainty

30 Chapter 2: Qubits, Gates, and Measurements

principle that we informally described in the previous chapter. In this scenario, we say

that the qubit is in a superposition of the states |0⟩ and |1⟩, because it behaves as if it

were in |0⟩ and |1⟩ at the same time and, upon measurement, it picked one of the two states

with a certain probability. Since the amplitudes 𝛼0 and 𝛼1 determine these probabilities for

each of these outcomes—and, the bigger their absolute value, the higher the chance of its

corresponding outcome—they are also called the probability amplitudes of the state of

the qubit.

Let us consider a few examples. If we perform a measurement (in the computational basis)

of a qubit in state 𝑖 |1⟩, we will always get 1 as outcome, because |𝑖| = 1. On the other hand,

if the qubit is in state
1
√
2
|0⟩ +

1
√
2
|1⟩ ,

there will be an equal probability of getting 0 and 1 as outcomes, for ||1/
√
2||
2
= 1/2. In this

case, the qubit is in a state of perfectly balanced superposition between |0⟩ and |1⟩.

Exercise 2.2

What is the probability of getting the outcomes 0 and 1 when measuring (with

respect to the computational basis) a qubit in each of the following states?

(a)
1
√
2
(|0⟩ − |1⟩),

(b) 𝑒𝑖 |0⟩,

(c)

√
1

3
|0⟩ + 𝑒

−𝑖

√
2

3
|1⟩,

(d) 𝑖
√
𝑝 |0⟩ −

√
1 − 𝑝 |1⟩ for 0 ≤ 𝑝 ≤ 1.

So far, we have paid attention to what happens at a measurement and how the outcomes are

determined. Let’s now focus on what happens immediately afterwards. As we mentioned

before, if the outcome of the measurement is 0, the state right after the measurement

becomes |0⟩ (in quantum-mechanical jargon, we say that the state “collapses” to |0⟩). Anal-

ogously, if the outcome is 1, the state collapses to |1⟩. This means that, right after the

measurement, all information contained in any original superposition is lost for good: all

that you get out of the measurement is a binary output, and you are stuck with it. This

Extracting information from qubits 31

means, in particular, that if you measure a qubit and get a 0, there is absolutely no way

for you to determine whether the original state was |0⟩ or a superposition between |0⟩ and

|1⟩—all that you know is that the original amplitude for |0⟩ was non-zero, and that the state

after the measurement is indeed |0⟩.

To learn more. . .

Being fully rigorous, when measuring a qubit 𝛼0 |0⟩ + 𝛼1 |1⟩ in the computational

basis, if the outcome of the measurement is |0⟩, the state of the qubit after the

measurement should be (𝛼0/|𝛼0|) |0⟩. Mathematically, this is called the normalized

projection of the original state onto |0⟩. As you can see, this is very similar to |0⟩. In

fact, the only difference is the 𝛼0/|𝛼0| factor. But this what we call a phase, because

its absolute value is 1. As we will see later, phase factors that multiply a whole state

(called global phases) can always be ignored, hence why we have simplified this a

little bit when talking about measurements and state collapse.

So, isn’t there any way in which we could at least approximate the state of a qubit? Well,

there kind of is. If you are given a huge amount of qubits, all in the same state, and you

measure them all, you can then run some statistics in order to approximate the absolute

value of the amplitudes of their state. For example, if you have a sufficient number of

copies and, upon measuring them, a third yield 0 while two thirds return 1, you can be

reasonably sure that the state of the qubit must be 𝛼0 |0⟩ + 𝛼1 |1⟩ with |𝛼0| ≈
√
1/3 and

|𝛼1| ≈
√
2/3. That is something! But still, keep in mind that these results would reveal no

information about the actual complex values of the amplitudes. For example, measurements

in the computational basis would never allow us to distinguish the state 1√
2
(|0⟩ + |1⟩) from

the state 1√
2
(|0⟩ − |1⟩). Nor would they allow us to distinguish any of those states from

1√
2
(|0⟩ + 𝑖 |1⟩), although—as we will discuss towards the end of the chapter—they are all

very different, both physically and computationally.

32 Chapter 2: Qubits, Gates, and Measurements

Exercise 2.3

Compute the probabilities of obtaining 0 and 1 when measuring the following states

in the computational basis:

(a)
1
√
2
(|0⟩ + |1⟩),

(b)
1
√
2
(|0⟩ − |1⟩),

(c)
1
√
2
(|0⟩ + 𝑖 |1⟩)

(d)
1
√
2
(|0⟩ + 𝑒

𝑖𝜃 |1⟩), with 𝜃 any real number.

In the previous exercise, the +1, −1, 𝑖, and 𝑒𝑖𝜃 factors before |1⟩ are phases (complex values

whose absolute value is 1), and they are relative phases instead of global ones, because

they are only multiplying part of the state, not the whole state. As we will see later in the

book, relative phases will play a rather significant role in quantum algorithms! They are so

important that we will devote a whole section at the end of this chapter to them.

Returning to our discussion of measuring a qubit repeatedly, the whole idea of getting

many copies of qubits with the same state is problematic. As we mentioned in Chapter 1, if

someone gives you a qubit (just a physical qubit, providing no information about its state),

it is physically impossible to clone it. We will discuss this later in the book, including a

simple mathematical proof of this principle.

To learn more. . .

With what we know so far, we cannot extract all the information from the state of

a qubit, even if we have as many copies of the qubit as we may want. However,

once we learn how to transform qubit states, we will be able to estimate much

more precisely the amplitudes, including their phases. The techniques used for

that kind of estimation are known as quantum tomography or quantum state

tomography [21].

Extracting information from qubits 33

In any case, in the context of quantum information theory, Holevo’s theorem

gives an upper bound for the amount of information that can be extracted out of

a quantum system using measurements [13]. In particular, when you are given a

single copy of a one-qubit state, that bound is exactly one bit.

Thus, if someone gives you a qubit from a suspicious origin and with no further information,

there is no way for you to fully determine its state. Nevertheless, if you have produced a

certain qubit state through a fixed procedure (such as running a quantum circuit, as we will

discuss in the following section), nothing prevents you from running the same procedure

as many times as you want and producing as many copies of that state as you want. So not

all is lost!

Measurements in the quantum world are very different from measurements in our ordinary

world because of two main reasons: they are non-deterministic and they lead to a loss of

information. This idea can be uncomfortable and it has led to many theories and conjectures

as to what may be hiding behind this apparent counter-intuitive nature of quantum mea-

surements. For practical reasons, in this book, we will strictly adhere to the Copenhagen

interpretation of quantum mechanics, which is also known as the “shut up and calculate!”

interpretation. Let us succinctly summarize it. For all we know, considering quantum

measurements as purely and intrinsically non-deterministic is in perfect accordance with

empirical results. Consequently, if it ain’t broke, don’t fix it. Let’s just accept this as true,

and let’s get things done.

That pretty much sums it up in terms of measurements. Having mastered the art of how

to measure qubits, we shall now turn our attention to how to transform them in order to

construct quantum algorithms.

To learn more. . .

What’s behind the non-deterministic nature of quantum mechanics? Do we live in a

multiverse or is God playing dice with the world? As we’ve mentioned, in this book,

34 Chapter 2: Qubits, Gates, and Measurements

we will not bother pondering these questions. Nevertheless, all these matters—as

unfitting as they may be for an introductory quantum computing textbook—are

very philosophically relevant and worthy of your interest. We ourselves would be

quite happy to talk about them over a cup of tea.

If you want to have some fun philosophizing about the implications of the Copen-

hagen interpretation and its variants, we invite you to read the science fiction novel

Quarantine, by Greg Egan [22]. If you would like to dive into a deterministic the-

ory able to explain quantum phenomena, you may wish to learn about Bohmian

mechanics [23], [24].

2.3 How to transform a qubit state
In a classical computer, the state of bits is transformed using logic gates. For example, the

negation or NOT gate is a one-bit gate that transforms a bit in state 0 to a bit in state 1,

and vice-versa. These logic gates are the basic ingredients that are then used to construct

classical algorithms. In fact, as you probably know, the chip in your computer is nothing

more than a vast mesh of interconnected logic gates!

In quantum computing, we don’t use logic gates, but quantum gates. These—together

with measurement operations—are the building blocks that enable us to construct any

quantum algorithm. What are these quantum gates and how can we use them? Let’s find

out.

2.3.1 Quantum gates
From a mathematical point of view, a quantum gate is any unitary operator acting on the

vector space of states (in the case of a one-qubit system, ℂ2). In case you don’t remember

(we also discuss this in Appendix A), a unitary operator is an ordinary linear operator (i.e.,

“a matrix”) whose inverse is its conjugate transpose. Given a matrix 𝑈 , we can obtain its

conjugate transpose 𝑈† by taking its transpose and then transforming every entry into

How to transform a qubit state 35

its conjugate. Thus, an operator 𝑈 is unitary if and only if 𝑈−1 = 𝑈†, which is to say that

𝑈†𝑈 = 𝑈𝑈† = 𝐼 , where 𝐼 is the identity matrix. Thus, for all practical purposes, we can

think of one-qubit gates as just 2 × 2 unitary matrices.

Exercise 2.4

Find the conjugate transpose of the following matrix:

𝑈1 ≔
(

0 1

1 0)
.

Is 𝑈1 unitary? What about the following matrices?

𝑈2 ≔
(

1 0

0 −𝑖)
,

𝑈3 ≔
(

0 −𝑖

𝑖 0)
,

𝑈4 ≔
(

1 + 2𝑖 3

𝑖 4)
.

Given any gate 𝑈 and any qubit in a state |𝜓⟩, applying 𝑈 on the qubit transforms its

state to 𝑈 |𝜓⟩, that is, the result of multiplying the matrix 𝑈 times the vector |𝜓⟩. Pretty

straightforward, isn’t it?

From a physical point of view, unitary operators describe the possible time evolution of a

quantum-mechanical system; this is, they capture how a system could change in time. That

is the reason why these are the only operations that we are allowed to perform on qubits.

There are some interesting properties of unitary operators that serve as justification for

why they represent allowed time-evolutions of systems:

• Any unitary operator is invertible (if its conjugate transpose is required to be its

inverse, then, by definition, it has an inverse). This means that its action can always

36 Chapter 2: Qubits, Gates, and Measurements

be reversed. In particular, this applies to quantum gates and it means that the action

of a quantum gate can never lead to a loss of information: quantum computing is

reversible! This will be very relevant when we discuss multi-qubit systems and

something called oracles.

• Unitary matrices take vectors that satisfy the normalization condition to vectors that

also satisfy the normalization condition, which means that the result of applying a

quantum gate on a valid qubit state will always return a valid qubit state. This will

also be true for multi-qubit systems.

Important note

Given a matrix 𝑈 , its conjugate transpose (denoted as 𝑈†) is the matrix that is

obtained after taking the transpose of 𝑈 and then taking the complex conjugate

of all the entries in the matrix. We say that 𝑈 is unitary if its inverse is 𝑈† or,

equivalently, if both 𝑈 ⋅ 𝑈† and 𝑈† ⋅ 𝑈 are equal to the identity matrix.

Quantum gates (the operators that can describe transformations on qubit systems)

are represented by unitary operators.

Let us now introduce a few examples of quantum gates. By far, the most simple quantum

gate that you can find is the gate that does nothing: the identity gate 𝐼 . This gate takes

a qubit in a certain state and returns it untouched. The matrix of this gate is the identity

matrix,

(

1 0

0 1)
.

It is trivially unitary and, obviously, for any state |𝜓⟩, 𝐼 |𝜓⟩ = |𝜓⟩.

We can now discuss some non-trivial examples and, for that, let’s begin with a classic. The

𝑋 , Pauli-𝑋 , NOT or negation gate takes a qubit in state |0⟩ to |1⟩, and vice-versa, and its

action is extended by linearity to all of ℂ2. This means that its action on an arbitrary qubit

state is the following:

𝑋(𝛼0 |0⟩ + 𝛼1 |1⟩) ≔ 𝛼0 |1⟩ + 𝛼1 |0⟩ .

How to transform a qubit state 37

As you can easily verify, the coordinate matrix of this matrix with respect to the computa-

tional basis is

𝑋 =
(

0 1

1 0)
.

Exercise 2.5

In the previous exercise, we already showed 𝑋 to be unitary. Using the coordinate

matrix of 𝑋 , verify that 𝑋 , as claimed, 𝑋 |0⟩ = |1⟩ and 𝑋 |1⟩ = |0⟩.

The 𝑋 gate is a good example of a quantum gate with a clear classical analog. Nevertheless,

there are plenty of quantum gates with no classical counterparts! Actually, the set of logic

gates on a fixed number of bits is finite, whereas the mere set of one-qubit gates is infinite2.

In addition to the 𝑋 gate, we also have some 𝑌 (or Pauli-𝑌) and 𝑍 (or Pauli-𝑍) gates,

whose coordinate matrices are the following:

𝑌 ≔
(

0 −𝑖

𝑖 0)
, 𝑍 ≔

(

1 0

0 −1)
.

We will use some of these gates throughout the book.

Exercise 2.6

Check that 𝑌 and 𝑍 are unitary and compute how they transform the states in the

computational basis, this is, compute 𝑌 |0⟩, 𝑌 |1⟩, 𝑍 |0⟩ and 𝑍 |1⟩.

Before introducing new gates, just to make sure that you’ve fully understood what a unitary

operator is, let’s do a quick exercise.

2In case you know about infinite cardinals, let us note that, in fact, the number of unitary gates is uncountably
infinite.

38 Chapter 2: Qubits, Gates, and Measurements

Exercise 2.7

Find all the complex numbers 𝑥 for which the matrix

𝑀𝑥 =
(

1√
2

1√
2

1√
2

𝑥)

defines a unitary operator.

Another very important one-qubit gate is the Hadamard gate (denoted as 𝐻). This gate

has the following coordinate matrix:

𝐻 ≔
1
√
2 (

1 1

1 −1)
.

You should easily be able to verify that 𝐻 is indeed unitary3. One of the main reasons for

its importance is that this gate takes a qubit in state |0⟩ to the superposition

𝐻 |0⟩ =
1
√
2
(|0⟩ + |1⟩),

hence why it is always (or, at least, almost always!) used at the beginning of quantum

algorithms in order to get the qubits to a state of superposition.

The state 𝐻 |0⟩ is so widely used that it has its own name: it is often written as |+⟩.

Analogously, 𝐻 |1⟩ is usually denoted as |−⟩. They are called, respectively, the plus and

minus states, for obvious reasons. As you can easily check for yourself,

|+⟩ ≔ 𝐻 |0⟩ =
1
√
2
(|0⟩ + |1⟩),

|−⟩ ≔ 𝐻 |1⟩ =
1
√
2
(|0⟩ − |1⟩).

3In fact, have you realized that we did exactly that in the previous exercise?

How to transform a qubit state 39

Let us now go through a couple of exercises in order to better understand how quantum

gates can be composed.

Exercise 2.8

Prove that, if 𝑈 and 𝑉 are unitary matrices, so is 𝑈𝑉 .

Given two gates 𝑈 and 𝑉 , their composition is the product 𝑈𝑉 . This gate acts on any

state |𝜓⟩ as 𝑈𝑉 |𝜓⟩ = 𝑈 ⋅ 𝑉 ⋅ |𝜓⟩ = 𝑈(𝑉 |𝜓⟩). This means that we can make several gates

act on a qubit, one after the other, and that is what we will do in quantum circuits, as you

will learn in the next section.

Exercise 2.9

Find the coordinate matrix of the gate 𝐻𝑋 (the product of a Hadamard gate with an

𝑋 gate). If a qubit is in state |−⟩, what will its state be after applying the gate 𝐻𝑋

on it?

Two other one-qubit gates that deserve to be mentioned are the 𝑆 and 𝑇 gates. These are

their coordinate matrices with respect to the computational basis:

𝑆 ≔
(

1 0

0 𝑖)
, 𝑇 ≔

(

1 0

0 𝑒𝑖𝜋/4)
.

The 𝑍 , 𝑆, and 𝑇 quantum gates are just particular cases of phase gates. For any angle 𝜃,

the phase gate 𝑃(𝜃) parametrized by 𝜃 is

𝑃(𝜃) =
(

1 0

0 𝑒𝑖𝜃)
.

Clearly, 𝑍 = 𝑃(𝜋), 𝑆 = 𝑃(𝜋/2) and 𝑇 = 𝑃(𝜋/4)

40 Chapter 2: Qubits, Gates, and Measurements

To learn more. . .

So there are a lot of quantum gates and some of them even have complex coefficients.

But can we get rid of them and use only real numbers? Well, the answer is a

superposition of |yes⟩ and |no⟩!

In the scientific literature, you can find some reasons why quantum mechanics needs

to rely on complex numbers [25], [26]. Nevertheless, it could be possible to only

use real numbers within quantum computing [27].

These are some of the most widely-used one-qubit gates. Let us now discuss how they can

be arranged in order to construct quantum algorithms.

2.3.2 Quantum circuits
In a quantum algorithm, one executes a sequence of gates and measurements on a collection

of qubits. Such an arrangements of operations is known as a quantum circuit, and it is

often described through a diagram. The way these are constructed is best illustrated by

example. Consider the following circuit, which is read from left to right:

|0⟩ 𝐻 𝑋

In this circuit, we have a qubit that is initialized to the state |0⟩. Then, the qubit first goes

through the gate 𝐻 and then through the gate 𝑋 . Finally, the gauge symbol is denoting a

measurement in the computational basis. The outcome of such a measurement will be a bit:

it will be classical information, not a qubit state, and that’s what the double wire after the

measurement represents. Single wires are used for quantum information (qubits), whereas

double wires are used for classical information (bits).

Usually, given the nature of quantum measurements, quantum circuits are meant to be

executed not once, but many times—in order to run some statistics and be able to estimate

the state of the qubits, as we discussed earlier. Most software frameworks are actually

configured, by default, to run circuits 1024 times. Each of these circuit runs is called a shot.

How to transform a qubit state 41

The more shots you have, the better you will be able to approximate what the state of the

qubit was when measured.

As an example, consider the following circuit:

|0⟩ 𝐻

Before the measurement operation in this circuit, the state of the qubit will be |+⟩ = 𝐻 |0⟩ =

1√
2)
(|0⟩ + |1⟩), so the measurement operation will return 0 and 1 with probability 1/2 each.

Thus, as seen from the outside in the physical world, the circuit would be nothing more

than a black box producing uniform random bits!

To learn more. . .

There are many theoretical models for quantum computing, but, by far, the most

popular of all is the quantum circuit model, which is the only one that we are

considering in this book since it is the de facto standard and is used by most quantum

software packages.

When tackling optimization problems with quantum computing, in addition to

the quantum circuit model, a model known as adiabatic quantum computation,

which is computationally equivalent to the quantum circuit model, is often used. If

you are curious about it, we discuss it in Chapter 4 of our book A Practical Guide

to Quantum Machine Learning and Quantum Optimization: Hands-on Approach to

Modern Quantum Algorithms [16].

To conclude this chapter, let us have a chat about phases.

2.3.3 Global and relative phases
We have seen how to represent qubit states and how to measure them. With that knowledge,

we ask you a question. By any odd chance, could it be possible for two mathematically

different states to be indistinguishable? Let’s find out.

42 Chapter 2: Qubits, Gates, and Measurements

Consider the state |1⟩ and the state 𝑍 |1⟩ = (−1) ⋅ |1⟩ = − |1⟩. Of course, from a formal point

of view, the kets |1⟩ and − |1⟩ are different, but, from a physical point of view—or, maybe,

from a computational point of view—are they really distinguishable?

If we apply a quantum gate 𝑈 on |1⟩, we get 𝑈 |1⟩. If we apply it on − |1⟩, we just get

−(𝑈 |𝜓⟩). It appears that this global phase −1 is just sticking around and not having much

of an effect. Now consider a general state |𝜓⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ for some suitable amplitudes.

If we measure |𝜓⟩, are the probabilities of getting 0 and 1 as outcomes different from the

ones we would have if measuring − |𝜓⟩? Not at all! Indeed,

|−𝛼0|
2
= |−1|

2
|𝛼0|

2
= 1|𝛼0|

2
= |𝛼0|

2
, |−𝛼1|

2
= |𝛼1|

2
.

Therefore, a global phase of −1 has no effect on measurements, and it just gets carried

along when applying quantum gates. And not just that, but this would be also true for any

global phase.

Consider any complex phase 𝜔 (a complex number with absolute value one); and keep in

mind that, as we mention in Appendix A, these phases are always of the form 𝑒𝑖𝜃 for some

real 𝜃. Given any state |𝜓⟩, if we apply a gate 𝑈 to |𝜓⟩, we get 𝑈 |𝜓⟩, and if we apply 𝑈 to

𝜔 |𝜓⟩, we get 𝜔𝑈 |𝜓⟩ (the phase just gets carried). And in terms of measurements, both |𝜓⟩

and 𝜔 |𝜓⟩ will return 0 or 1 with the same probabilities since

|𝜔𝛼0|
2
= |𝜔|

2
|𝛼0|

2
= 1|𝛼0|

2
= |𝛼0|

2
, |𝜔𝛼1|

2
= |𝛼1|

2
.

This means that, for any practical purpose, global phases can be (and actually are) ignored.

Any state |𝜓⟩ is computationally equivalent to the state 𝜔 |𝜓⟩ for any phase 𝜔. Similarly,

any gate 𝑈 is equivalent to the gate 𝜔𝑈 . Global phases, for both states and gates, are

irrelevant.

Nevertheless, before you get too excited, we need to highlight one thing: while global

phases can be ignored, relative phases (that is, phases acting on the individual amplitudes

How to transform a qubit state 43

of a state) most certainly cannot. To see why, just consider the states

|+⟩ =
1
√
2
(|0⟩ + |1⟩), |−⟩ =

1
√
2
(|0⟩ − |1⟩).

While they only differ by a relative phase of −1 on |1⟩, on the one hand, we have 𝐻 |+⟩ = |0⟩,

and, on the other, we have 𝐻 |−⟩ = |1⟩. Relative phases do make a difference, so better be

careful with them!

Important note

Global phases can be always be ignored, whereas relative phases are very significant.

That’s it for one-qubit gates, circuits, and phases. With this, we can finish our discussion

about one-qubit systems, so let’s wrap things up before moving on.

Summary
In this chapter, we have taken our first steps in the theoretical formalism behind quantum

computing. We have explored what a qubit is and what its similarities and differences are

with respect to (classical) bits.

We first focused on how the state of a qubit can be represented as a normalized linear

combination of the two computational basis states |0⟩ and |1⟩, and we took that opportunity

to discuss how, in fact, qubit states are vectors of complex numbers.

Building on this foundation, we gave some physical meaning to the states of qubits by

introducing quantum measurements and discussing some of their odd properties. We saw

how, unlike measurements in the classical world, quantum measurements are probabilistic,

may lead to a loss of information, and cannot allow us—at least when measuring in the

computational basis—to fully determine the state of a system.

Finally, we explored how quantum circuits can be constructed using quantum gates in com-

bination with measurement operations. We discussed how quantum gates are represented

44 Chapter 2: Qubits, Gates, and Measurements

by unitary operators and how, while some have classical analogues, most quantum gates

don’t really replicate the behaviour of any classical logic gate.

This has been an intense chapter, loaded with mathematical content. Congratulations on

making it up until this point! We now have some exciting content ahead. In the next few

pages, we will put all our knowledge into practice by discussing a few exciting applications

of one-qubit systems. We can’t wait to get started!

3
Applications and Protocols
with One Qubit

Those who think that the small doesn’t exist
can’t see the greatness of that which is good.

— José Ortega y Gasset

In the last chapter, we learned how to work with single qubits: we discussed how to

represent the state of a qubit, how to extract information from a qubit using quantum

measurements, and how to manipulate the state of a qubit through quantum gates. With

that knowledge, we are ready to introduce our first quantum protocols. They will be simple,

because they will be built on one-qubit systems, but it would be very unwise to look down

on them, for, as you will soon see, they hold some unexpected surprises!

We will begin with an interesting application of quantum phenomena that will enable us to

design currency that cannot be forged. Actually, this idea of quantum money is considered

by many as the true beginning of quantum information theory. Without going any further,

46 Chapter 3: Applications and Protocols with One Qubit

we will notice its influence in the second protocol that we will discuss: a method for

exchanging information with perfect security. Finally, we will briefly study other protocols

for secure communication, and we will even find ways to determine whether a bomb (well,

an imaginary, quantum bomb) is active without risking an explosion.

The topics that we will cover in this chapter are the following:

• Quantum money

• Quantum key distribution with the BB84 protocol

• Other protocols with individual qubits

Once you’ve finished reading this chapter, you will have mastered several quantum proto-

cols that rely on individual qubits in order to accomplish important information-processing

tasks, including transmitting data securely. You will also have a profound understanding

of how quantum phenomena such as superposition, interference, the no-cloning theorem,

and the uncertainty principle can be used in practice.

All that learning about amplitudes and unitary matrices is about to pay off. Let the show

begin!

3.1 Quantummoney
Our first application of quantum information processing has to do with money—quantum

money, to be more precise,—and how it has some amazing properties, such as being

impossible to counterfeit.

The idea of quantum money goes back to the 1970’s, when Stephen Wiesner first proposed

using quantum phenomena to design procedures that make currency secure against forgery

attempts. However, this initial proposal was probably too ahead of its time and it took

many years for it to be completely understood and appreciated. In fact, it was only in 1983

when Wiesner’s protocol was finally published [28].

The security of Wiesner’s quantum money relies on several quantum phenomena that we

have already described mathematically, including superposition and the impossibility of

Quantum money 47

determining the state of a qubit if we don’t have any information about it. To be more

specific, in this protocol, some secret information is stored using the the states |0⟩, |1⟩, |+⟩,

and |−⟩ that we introduced in the last chapter, in such a way that this information cannot

be copied by anyone who does not know it already, but can easily be checked by the bank

that issued the money. Sounds neat, doesn’t it? In the following section, we will describe

in detail the different quantum ingredients that make this possible.

3.1.1 Creating the banknote
Imagine that we have launched our new quantum software company and we’ve had great

commercial success. So much so that we’ve just made our first million dollars with our

amazing quantum algorithms, and, of course, we wouldn’t want anyone to steal our hard-

earned money. For the examples in this section, we will use an imaginary company that

works with quantum money and that we will call Qiggy Bank. We will assume that Qiggy

Bank has recently opened an office in our city and, after some waiting in the queue (no pun

intended), we get a shiny, secure quantum banknote for our money. It is a small, smart-

looking device with 20 qubits on the inside and a mysterious engraving on its metallic

outside that reads EF217CA75. What does all this mean?

It turns out that, whenever the people at Qiggy Bank create a new banknote, they do a

number of things:

1. They select a unique identifier for the banknote. This identifier will be public and can

be, for instance, a hexadecimal string like the one we have created in our example

above (EF217CA75).

2. For each of the 20 qubits in the banknote, they select at random one of the states

|0⟩, |1⟩, |+⟩ or |−⟩. As we learned in the previous chapter, starting from |0⟩ (which is

always the initial state of any qubit), we can obtain |1⟩ by applying the 𝑋 gate. We

can also obtain |+⟩ by applying 𝐻 to |0⟩, and we can obtain |−⟩ by first applying 𝑋

to |0⟩ and then 𝐻 to the resulting state. For instance, for our example, the first five

qubit states could be |0⟩, |+⟩, |+⟩, |−⟩, and |1⟩. This information is private. Notice

that there are 420 possible options for selecting these 20 states, because there are 4

48 Chapter 3: Applications and Protocols with One Qubit

different, independent choices for each of them. This is a big number: more than

1012 possibilities! It would be very, very difficult to guess it at random.

3. In a secure and private database, they store the banknote identifier together with an

annotation of the qubit states that were selected for it.

4. Then, they hand the banknote to the client. The banknote will have its identifier

publicly displayed and the qubits set to the states that were selected at random.

Exercise 3.1

Check that, if you have a qubit in state |0⟩, you can change it to |−⟩ by first applying

𝑋 and then applying 𝐻 . Can you think of another sequence of two quantum gates

that transforms |0⟩ into |−⟩?

And that’s it! You now have in your hands a quantum banknote that is practically impossible

to counterfeit.

But, what are the identifier and the qubit states used for? Let’s find out.

3.1.2 Checking the banknote
Imagine now that you want to cash out your quantum banknote for dollars in order to

buy a new and more powerful quantum computer. You only need to go to Qiggy Bank and

hand out your banknote. But before they give you dollars in exchange for your quantum

banknote, they will perform the following checks:

1. They will see if the public identifier is stored in their private database. If it is not,

they will know that the banknote is false. . . and they will probably call the police on

you!

2. If the public identifier is indeed in their database, they will retrieve the sequence of

qubit states associated with it. Then, they will check, one by one, if the states of the

qubits in your banknote are the ones that appear in their database. If they all are,

they will declare the banknote legit, remove it from the database, and give you your

Quantum money 49

money. Yay! But, again, if any of the qubits fails the test, you will be in big trouble.

Crime does not pay!

This all sounds reasonable enough, but there is a small detail we are glossing over. How do

they check if a qubit is in a certain state? You surely remember that, in the previous chapter,

we insisted that you cannot determine the state of a qubit that you are given, right? And

that is correct, but it’s only applicable to cases in which you do not know what the state of

the qubit should be. If you do know, you can indeed check it. Let’s see how to do it in this

case. There are two possible situations:

• If the qubit should be in state |0⟩ or |1⟩, you can just measure it in the computational

basis and check the result. Easy peasy!

• If, on the contrary, the qubit is expected to be in either |+⟩ or |−⟩, then a simple

computational basis measurement will not do. In fact, as you showed in Exercise 2.2,

in both cases you would get 0 half of the time, and 1 the other half. . . and you would

be unable to distinguish between the two situations. However, if you first apply an

𝐻 gate, then you will get either 𝐻 |+⟩ = |0⟩ or 𝐻 |−⟩ = |1⟩, and now you can perform

a measurement (in the computational basis) and get 0 (if the initial state was |+⟩) or

1 (if it was |−⟩) to solve your problem with total certainty.

Behind this process, there is something very significant going on, so let’s stop for a minute

to contemplate it. In fact, let’s unpack what happens when you apply the 𝐻 gate to a qubit

in the |+⟩ state. By linearity, we have that

𝐻 |+⟩ = 𝐻
(

1
√
2
(|0⟩ + |1⟩)

)
=

1
√
2
(𝐻 |0⟩ + 𝐻 |1⟩)

=
1
√
2 (

1
√
2
(|0⟩ + |1⟩) +

1
√
2
(|0⟩ − |1⟩)

)

=
1

2
(|0⟩ + |1⟩ + |0⟩ − |1⟩) =

1

2
(2 |0⟩) = |0⟩ .

Did you notice how that |1⟩ canceled with that − |1⟩? That is negative interference in action!

In the same way, those two |0⟩ states that got added together just positively reinforced

50 Chapter 3: Applications and Protocols with One Qubit

each other. And, as you can easily check, something similar happens when you apply an 𝐻

gate to |−⟩ to obtain 1.

To learn more. . .

The process of applying an 𝐻 gate and then measuring in the computational basis

can be seen as a different type of measurement in itself. In fact, it is usually referred

to as a measurement in the {|+⟩ , |−⟩} basis.

So legitimate banknotes can always be checked to see if they are valid. But what about

detecting fraudulent ones? That is the topic of our next section.

3.1.3 Detecting illegitimate quantummoney
The most important (and interesting) property of quantum money is that we can make it

practically impossible to counterfeit. Proving it is not completely trivial (you can check

the paper by Molina, Vidick and Watrous [29] for all the mathematical details), but in this

section we want to discuss why some natural approaches to trying to create fake banknotes

are doomed to fail.

The first thing that a crook could try to do is to just create a banknote with random states

for the qubits. Okay, this is plain naive, we agree, but explaining why it utterly fails will be

very instructive before we can analyse more sophisticated approaches. To get started and

create a banknote with random states, the bad guy first needs to use an existing identifier

of a valid banknote, because, otherwise, it cannot even pass the first step in the bank

verification; this is not hard to do, as this information is public and can be copied from

another banknote. Then, the criminal has to select one of the four possible states (|0⟩, |+⟩,

|−⟩, and |1⟩) for each of the 20 qubits. Easy. But can it pass for a legit banknote? Well, not

likely. Let’s see why.

When the fake banknote is taken for verification, the bank employees will find an entry in

their database that corresponds to an existing banknote. Then, they will measure the qubit

states one by one and check their results against those recorded in their books. And this

Quantum money 51

is very, very likely to fail because the probability of passing all the tests with qubit states

selected blindly is fairly low, as we can see by analyzing one of the possible situations.

Imagine that the state selected by the counterfeiter is |+⟩. There are four different cases:

1. If the state expected by the bank is |+⟩, the test will always pass. In this case, the

bank employees will apply an 𝐻 gate to the qubit, transforming its state to |0⟩. They

will measure it and obtain 0, as required. Thus, everything will check out and the

fake banknote will pass the test for this qubit.

2. If the state expected by the bank is |−⟩, the test will always fail. Indeed, as in the

previous case, an 𝐻 gate will be applied to the fake qubit, which is in state |+⟩,

transforming its state to |0⟩ and, when measured, it will give 0 as a result. But 1 was

the only acceptable result.

3. If the state expected by the bank is either |0⟩ or |1⟩, they will measure the submitted

qubit directly. Since it is in the |+⟩ state, the result will be 0 with probability 1/2, and

1 also with probability 1/2. Thus, the probability of passing the test is 1/2 in both

cases.

Since the bank chose the qubit state completely at random, each of the states has probability

1/4. Thus, we need to multiply the probability of passing the test by 1/4 for each of the

possible values of the real state, and add everything together. This gets us

1

4
⋅ 1 +

1

4
⋅ 0 +

1

4
⋅
1

2
+
1

4
⋅
1

2
=

1

2
.

If the crook selects |−⟩, |0⟩, or |1⟩ as the qubit state, the situation is completely analogous

and the probability of passing the test is, again, 1/2.

Exercise 3.2

Prove that the probability of passing the test is 1/2 when the counterfeiter selects

|−⟩, |0⟩ or |1⟩ as the qubit state.

52 Chapter 3: Applications and Protocols with One Qubit

Okay, so the fake banknote will pass an individual qubit test half of the time. But, to be

accepted, it has to pass all the tests. Since there are 20 qubits in total, the probability is

then (1/20)20, which is less than one in a million. Not a very good strategy, right? Anyway,

Qiggy Bank may still consider this too risky and want to increase the security of their

quantum money scheme. It couldn’t be easier! If they increase the number of qubits in

each note to 30, then the chances of passing all tests go down to less than one in a billion.

And if, for example, they use 200 qubits, then the probabilities get so small that it is just

practically impossible to forge quantum money with this technique.

Exercise 3.3

Consider a lottery in which there are 100 000 tickets. The winner is selected at

random and gets one million dollars. You are given ten tickets, one for each of ten

consecutive lottery draws. What is more probable, to win the lottery with each of

your tickets or to pass the quantum banknote test with states selected at random

and 200 qubits?

Choosing qubit states at random does not seem to be a very intelligent way to forge

quantum money. Fair enough, nobody expected it to be. But what about more elaborate

strategies? In particular, what if the counterfeiter gains access to a valid quantum note for

some time? Maybe they can then extract some information from it to create a fake note,

with the legitimate owner none the wiser.

One possible approach for doing this would be to try to copy the qubit states somehow.

But, as we mentioned in Chapter 1, copying quantum states without having information

about their states is impossible because of the no-cloning theorem. We will prove this in

detail in Chapter 5, but, for now, let’s just note that it rules this possibility out.

Finally, the criminal could attempt to measure the qubits of a valid banknote in order to

obtain some information and thus try to create a copy. The idea would be the following:

• If the state is |0⟩ (respectively, |1⟩), a measurement in the computational basis will

return 0 (respectively, 1) and the forger will have complete knowledge of the state.

Quantum money 53

What is more, the state after measurement will still be |0⟩ (respectively, |1⟩), not

altering the original note. This is important: the counterfeiter wants to create a new

valid note without modifying the first one; otherwise it would be much easier to just

replace the legit note with a fake one.

• If the state is |+⟩ or |−⟩, the forger will apply 𝐻 to the qubit to transform it to either

|0⟩ or |1⟩. Then, as in the previous case, a computational basis measurement will

completely reveal the state without altering it. Finally, the original state can be easily

restored by applying, again, an 𝐻 gate.

This seems promising for the forger, doesn’t it? But there’s a catch, because they don’t

know if the actual state is one of |0⟩ , |1⟩ or, rather, one of |+⟩ , |−⟩. Then, when deciding if

the 𝐻 gate should be applied or not, a mistake can be made. Let’s illustrate this with an

example.

Imagine that, unbeknownst to the crook, the qubit is in state |+⟩. If the forger applies

the 𝐻 gate before the measurement, the correct state will be recovered and returned to

its original situation. However, if the qubit is measured directly, then it will collapse to

|0⟩ or |1⟩ with a probability of 1/2 each. In both cases, the qubit state recovered by the

criminal will be incorrect. Moreover, the qubit will have also collapsed to an incorrect

state in the original banknote, corrupting it, and it will now fail the test for this qubit

with a probability of 1/2. The situation if the original state is |−⟩, |0⟩ or |1⟩ is the same.

If the forger wrongly decides what measurement to make, the state will be incorrectly

determined and the original banknote will be altered—and there’s always a 50% chance of

getting the measurement wrong and corrupting the banknote.

Thus, if the counterfeiter decides at random to apply or not apply the 𝐻 gate on each qubit,

the probability of altering the qubit state will be 1/2, and this will be detected by the bank

with a probability of 1/2. Thus, the total probability of the qubit tampering being detected

is 1/4, and it will go unnoticed with a probability of 3/4. This is better than selecting the

states at random, of course, but still not good at all. With this approach, if there are 𝑛

54 Chapter 3: Applications and Protocols with One Qubit

qubits in the banknote, the probability of passing the bank test is (3/4)𝑛, which will be

very small if 𝑛 is moderately big. For instance, it will be less than one in a million if 𝑛 is 50.

Important note

Here, we can see both superposition and the uncertainty principle in action. Su-

perposition allows us to consider the states |+⟩ and |−⟩ in addition to |0⟩ and |1⟩ as

possible values for the secret information in our quantum money. The uncertainty

principle makes it impossible for the counterfeiter to determine without error which

of the four states the qubit is in.

We want to stress the fact that our discussion here is not, by any means, a complete proof

of the security of Wiesner’s scheme (for that, please refer to the paper by Molina, Vidick,

and Watrous [29]). We only want to give evidence that some of the most straightforward

attacks will not work, and to highlight how some of the phenomena that we introduced in

Chapter 1 (including superposition, interference, the no-cloning theorem, and the uncer-

tainty principle) underlie the design of this type of quantum money. It is also good practice

to use all those measurements and transformations with the Hadamard gate on the |0⟩, |1⟩,

|+⟩ and |−⟩ states before we move to more challenging (and useful!) protocols.

We also want to remark that quantum money, at least as presented here, is not really very

practical. First of all, we do not currently possess the technology to create qubits stable

enough to keep their states for prolonged periods of time, let alone in a portable format!

Moreover, the scheme that we have considered involves interacting with the bank every

time we need to check the validity of each note, probably making it not very usable in

real-life situations. However, more advanced and useful quantum money proposals have

been considered and analysed in the literature (you can read about some of them in the

paper by Molina, Vidick, and Watrous [29]). In any case, the ideas behind quantum money

can be applied in other domains, such as confidential transmission of information, which

is the topic of our next section.

Quantum key distribution with the BB84 protocol 55

3.2 Quantum key distribution with the BB84
protocol

As we mentioned in the previous section, the ideas proposed by Wiesner to implement

quantum money had a great influence on the development of a very important application

of quantum information processing: quantum key distribution, abbreviated as QKD.

QKD is used to create and share secret keys that can be later used to securely transmit

information.

In this section, we will discuss the need for key distribution schemes, and we will study

the first ever QKD protocol: BB84. It is time for us to meet Alice, Bob, and Eve!

3.2.1 Alice, Bob, Eve, and the one-time pad
Cryptography studies protocols meant to enable the secure communication between dif-

ferent parties, usually two, which are customarily called Alice and Bob. One of the main

objectives is to prevent a third person, Eve (for “eavesdropper”) from getting any informa-

tion from the communication between Alice and Bob. Cryptography is a vast and extremely

interesting subject (for a thorough but accessible introduction, we recommend the book

by Katz and Lindell [30]), but we will focus on just one protocol: the one-time pad or

Vernam’s cipher. This cipher does not use quantum information at all—it actually runs

just on classical communication channels and computers,—but bear with us, because it will

help us discuss the need for quantum key distribution.

Suppose that Alice wants to send a secret message to Bob using the one-time pad cipher.

How does it work? First, Alice will represent the message using a binary string (this is

not at all problematic because, as you know, in a computer, everything is encoded in bits).

Let’s call 𝑚 the message binary string and let 𝑛 be its length in bits. In order to use the

one-time pad, Alice and Bob must use a previously agreed secret key 𝑘 consisting of 𝑛

bits chosen at random. Then, Alice computes the encrypted message 𝑐 by adding, modulo

2, each bit of 𝑘 to each bit of 𝑚. Remember that addition modulo 2 (also called the XOR

logical operation) is usually represented by the ⊕ symbol and that 0 ⊕ 0 = 0, 0 ⊕ 1 = 1,

56 Chapter 3: Applications and Protocols with One Qubit

1 ⊕ 0 = 1, and 1 ⊕ 1 = 0. Thus, if 𝑚 = 11010 and 𝑘 = 01011, then the encrypted message is

𝑐 = 𝑚 ⊕ 𝑘 = 11010 ⊕ 01011 = 10001.

Now, Alice sends 𝑐 to Bob, who, in order to recover the original message, only needs to,

again, apply the XOR operation to each bit of 𝑘 and 𝑐. In our example, Bob will obtain

𝑐 ⊕ 𝑘 = 10001 ⊕ 01011 = 11010,

which is, indeed, 𝑚. This is not a happy coincidence. Notice that

𝑐 ⊕ 𝑘 = 𝑚 ⊕ 𝑘 ⊕ 𝑘 = 𝑚,

because 𝑘 ⊕ 𝑘 = 0 for any 𝑘. Thus, Bob will always recover the original message 𝑚, as

intended.

Exercise 3.4

Compute the encrypted message 𝑐 when 𝑚 is 100110 and the key is 001101. What

is the original message if the encrypted message is 1110011 and the key is 0101101?

The beauty of this method lies in the fact that Alice can send 𝑐 over a not necessarily secure

channel. This means that Eve may have access to it and capture all its traffic, including all

the bits of 𝑐. But if every bit of 𝑘 was selected independently and uniformly at random,

was kept secret by Alice and Bob, and is never used again for any encryption (hence the

name “one-time” pad), it can be proved that Eve can’t learn any information about 𝑚 from

observing 𝑐. In cryptographic jargon, this is called perfect secrecy. . . and it certainly lives

up to its name!

Quantum key distribution with the BB84 protocol 57

To learn more. . .

The one-time pad encryption was patented by Gilbert Vernam in 1919 and, for this

reason, it is sometimes called Vernam’s cipher. However, it was later discovered

that Frank Miller had invented basically the same method back in 1882 (see the

paper by Bellovin [31] for a detailed account). The fact that this encryption achieves

perfect secrecy was mathematically proved by Claude Shannon in 1945 in a classified

report, made public four years later [32]. Independently, Kotelnikov had also proved

the same result in 1941 in the Soviet Union, but it was kept secret for security

reasons [33].

So we have a simple method that achieves perfect communication secrecy. That’s wonderful,

isn’t it? Well, as you may have noticed, there is a big drawback in the practical application

of the one-time pad. In order for it to be secure, the key must be as long as the message, it

must be known by both Alice and Bob and nobody else, it must be perfectly random, and it

can never be reused. That seems like a lot to ask for, but, at least in principle, there is a

way in which we can achieve this.

If Alice and Bob physically meet at some point, they may spend some time flipping a lot

of coins (or using another good source of randomness) and writing down the results in

their notepads (hence the name one-time “pad”) the results for later use as binary keys. In

fact, this method was used during the 20th century by governments of different countries,

including the USA and the USSR during the Cold War.

Nevertheless, as safe as the one-time pad may be, if you are making an online purchase

and you want to securely send your credit card details, using the Vernam’s cipher might

not be the most practical of ideas. It would be unfeasible for every possible customer and

every possible Internet shop to meet beforehand in order to create one-time pads, should

they wish to make transactions in the future. As fun as those coin-flipping sessions at the

shop could be, that wouldn’t keep the world running.

58 Chapter 3: Applications and Protocols with One Qubit

The question is. . . can Alice and Bob systematically and repeatedly create, at a distance, long,

random keys known only to them? One option would be to use a secure communication

channel. But since the key needs to be the same size as the message, if Alice and Bob had

a secure channel in the first place, they could use it to directly send the message. This

seems like an unsolvable problem, but you should take nothing for granted when quantum

physics is involved! In the next section, we will study a way of securely sharing secret

keys with the help of our beloved qubits.

3.2.2 BB84: the protocol
Influenced by the ideas introduced by Wiesner in his quantum money scheme, Charles

Bennett and Gilles Brassard proposed the first protocol for quantum key distribution [34].

It later became known as the BB84 protocol because, well, “Bennet” and “Brassard” both

start with “B”, and it was proposed in 1984. Not especially original, but the name stuck.

The goal of any QKD scheme is to create, with the help of quantum information, a secret

key shared by two parties (Alice and Bob are the usual suspects here). This key can later

be used in the one-time pad cipher, for instance, or for other purposes. The main objective

is to be able to do this securely, even if Alice and Bob cannot meet physically and even if

they do not have a secure communication channel.

It turns out that, even if this may seem impossible, it can be achieved if we assume

that we have at our disposal both a quantum channel (i.e., some way of sending qubit

states between Alice and Bob) and a classical communication channel. Neither of the two

channels is required to be secure, but the classical communication channel is assumed to

be authenticated, meaning that Bob can be sure that the information he receives from Alice

really comes from Alice and nobody else, and vice versa.

We will assume that Alice initiates the protocol. This is what happens:

1. She creates, at random, a long sequence of uniform, independent bits 𝑠1, 𝑠2, … , 𝑠𝑚

from which the key will be extracted. As we will see later, about half of the bits will

be selected for the final key 𝑘, so if the desired key length is 𝑛, then 𝑚 should be at

Quantum key distribution with the BB84 protocol 59

least 2𝑛. However, some of the bits may be used for verification and other purposes,

so, the longer 𝑚, the better.

2. For each of the random bits 𝑠𝑖, Alice creates a qubit 𝑞𝑖. If 𝑠𝑖 is 0, she sets 𝑞𝑖 = |0⟩; if 𝑠𝑖

is 1, she sets 𝑞𝑖 = |1⟩. After that, with probability 1/2, she applies a Hadamard gate

to 𝑞𝑖, or else she does nothing. In the end, if 𝑠𝑖 = 0, she will have 𝑞𝑖 = |0⟩ or 𝑞𝑖 = |+⟩,

both with a probability of 1/2. And if 𝑠𝑖 = 1, she will have 𝑞𝑖 = |1⟩ or 𝑞𝑖 = |−⟩, both

with a probability of 1/2. She writes down whether she applied 𝐻 to 𝑞𝑖 or not.

3. Alice sends, in order, all the 𝑞𝑖 qubits to Bob over the quantum channel.

Now, it’s Bob’s turn in the protocol. He needs to do the following:

1. After he receives a qubit 𝑞𝑖 from Alice, he decides uniformly at random whether he

applies an 𝐻 transformation to it or not. He writes down his decision.

2. He then measures the qubit in the computational basis. He makes a note of the result.

The final phase of the protocol requires that Alice and Bob communicate over the classical

channel. They do the following:

1. For each qubit 𝑞𝑖, Bob tells Alice whether he applied the Hadamard transformation

or not. Alice confirms if she took the same decision as Bob. They do not talk about

the value of 𝑠𝑖 or the result of Bob’s measurement.

2. If both Alice and Bob’s decisions were equal for qubit 𝑞𝑖, Alice keeps the bit 𝑠𝑖 for the

final key and Bob keeps his measurement result of 𝑞𝑖 for the key. If their decisions

were different, they discard 𝑠𝑖 and Bob’s result.

The possible outcomes of this protocol are summarized in Figure 3.1.

60 Chapter 3: Applications and Protocols with One Qubit

Alice picks the bit 0 1

Alice sends the qubit |0⟩ |+⟩ |1⟩ |−⟩

Bob applies the gate 𝐻 𝐻 𝐻 𝐻

Alice and Bob both have the bit 0 ∅ ∅ 0 1 ∅ ∅ 1

Figure 3.1: Possible outcomes in the BB84 protocol, depending on the sequential (random)
choices made by Alice and Bob. Here, ∅ denotes that they do not share a bit (they discarded
whatever they had)

Notice that, if Alice did not apply the 𝐻 gate, then she sent either |0⟩ (if 𝑠𝑖 = 0) or |1⟩ (if

𝑠𝑖 = 1). If Bob measured 𝑞𝑖 directly, then he surely obtained the correct value of 𝑠𝑖. If Alice

used the Hadarmard gate on 𝑞𝑖, then she sent either |+⟩ or |−⟩. In that case, if Bob also used

the 𝐻 gate before measuring, he reversed the state back to either |0⟩ (if 𝑠𝑖 = 0) or |1⟩ (if

𝑠𝑖 = 1), and he recovered the correct value of 𝑠𝑖. This proves that, after the protocol, both

Alice and Bob have the same key. The probability that they both make the same decision

for a qubit is 1/2, so they will keep half of the 𝑠𝑖 bits on average, hence the reason for

choosing 𝑚 to be at least 2𝑛, where 𝑛 is the desired number of qubits in the key.

To learn more. . .

In our description of the BB84 protocol, we are assuming that the creation, transmis-

sion, transformation, and measurement of qubits are perfect at every step. However,

in practice, there will be noise and errors. This may cause Bob’s results not to

coincide with Alice’s bits. Also, Eve may capture some information (we will talk

more about this in the next section). If the rate of these errors and information

leakages are below a certain threshold, they can be overcome with post-processing

techniques called information reconciliation and privacy amplification. If

you want to know more about them, you can read the 1988 paper by Bennett and

Brassard [35].

Let’s consider an example to illustrate how the protocol works. Imagine that Alice generates

five random bits and obtains the sequence 11010. She decides to apply 𝐻 to the second and

Quantum key distribution with the BB84 protocol 61

fifth positions. Thus, she will send |1⟩, |−⟩, |0⟩, |1⟩, and |+⟩ to Bob, in that order. Suppose

that, upon receiving the qubits, Bob decides to apply the Hadamard transformation to the

qubits in positions 1, 2, and 4. Thus, he will have the following sequence of qubits: |−⟩, |1⟩,

|0⟩, |+⟩, |+⟩. When he measures them in the computational basis, the results for the second

and third qubits will be 1 and 0, with certainty. For the other positions, the result can be

either 0 or 1, because the qubits are in superposition states. Let’s then imagine that his

measurements are 11001.

Then, Alice and Bob talk over the classical communication channel (a simple phone would

do in this case), and they realize that they only made the same decisions for qubits 2 and 3.

Thus, they keep those values for the key, which in this case would be 10. Notice that they

did not communicate the actual value of those positions, but (assuming the implementation

is perfect) they can be sure that they both have the same bits. Notice also that they cannot

be sure if they agree on the rest of the qubits, so they discard them all, even if, in this case,

Bob’s first bit does coincide with Alice’s. Finally, note that they have obtained a key of size

2 from an initial sequence of 5 bits. Starting with a longer bit sequence would probably

have gotten them a longer final key.

Exercise 3.5

Alice starts with the binary sequence 1100110. She uses the Hadamard transforma-

tion on qubits 2, 3 and 6. Bob uses the 𝐻 gate on qubits 1, 3, 4, and 6. What positions

should they keep for the key? What will the final key be?

We have, thus, a communication protocol that allows Alice and Bob to agree on a binary key.

But is it secure? Can Eve get information about the key if she has access to the quantum

and classical channels used by Alice and Bob? This is exactly what we will discuss in the

following section.

3.2.3 Security of BB84
One of the most appealing properties of the BB84 is that it can be proved that it is secure

with just a few weak and reasonable assumptions, namely that Eve has no access to

62 Chapter 3: Applications and Protocols with One Qubit

Alice and Bob’s encoding and decoding devices, that the sources of randomness are truly

random, and that the classical channel is authenticated (otherwise, Eve could perform a

person-in-the-middle attack, impersonating Alice in front of Bob, and Alice in front of

Bob). Giving a complete mathematical proof is out of the scope of this book (you can check

the paper by Shor and Preskill [36] for more details), but as we did in the case of Wiesner’s

quantum money scheme, we want to at least give some intuition for the reasons why some

straightforward attacks cannot succeed.

To learn more. . .

In addition to QKD schemes, there exist classical methods for secure key exchange

or establishment such as the famous Diffie-Hellman protocol (initially proposed

in the works of Ralph Merkle [37], and Whitfield Diffie and Martin Hellman [38]).

However, these methods usually rely on assumptions about Eve’s computational

power. In the case of the Diffie-Hellman protocol, the security of the method is

based on the difficulty of solving something called the discrete logarithm problem.

This problem is hypothesized to be unfeasible to solve for adversaries with just

classical computers. But, incidentally, it can be solved efficiently with quantum

computers, as we will discuss in Chapter 11.

BB84, on the other hand, is unconditionally secure in the sense that it does not

assume any limitation on the computational power available to Eve, and it remains

secure even if she has access to a fault-tolerant quantum computer (and, in fact, any

kind of computer allowed by the laws of quantum physics).

Since, in the last phase of the BB84 protocol, Alice and Bob will make public their decisions

about their use or not of the 𝐻 gate, Eve could try to capture the qubits sent by Alice, wait

until Alice and Bob’s decisions are disclosed, and repeat the measurements conducted by

Bob to obtain the bits of the key. The problem with this strategy is that, as in the case

of quantum money, the no-cloning theorem prevents Eve from copying the qubit states

without further information. Close, but no cigar!

Quantum key distribution with the BB84 protocol 63

Another option could be to capture the qubits sent by Alice, measure them, determine their

states, and send new qubits with the same states to Bob. This, however, leaves us in the

very same situation that we analyzed when we considered the possibility of a counterfeiter

trying to measure the qubits of a quantum banknote. As in that case, Eve will determine

the incorrect state half of the time without her realizing it. Moreover, in that case, she will

send an incorrect state to Bob. And this can be used to Alice and Bob’s advantage. Indeed,

our previous analysis for quantum money exactly applies here, and, for each qubit that Eve

measures, there is a 1/4 probability that Bob gets an incorrect result when he measures it

in the same basis that Alice prepared it (that is, if Bob gets the decision of applying 𝐻 or

not right). Thus, for each bit that Alice and Bob keep, if Eve tampered with it, there is a

probability of 1/4 that there will be a discrepancy in Alice and Bob’s results. Then, they

can select at random a certain number 𝑟 of bits from the ones that they have kept, publicly

announce their results on them (and discard them later, of course) and see if they match.

Assuming that Eve measured all the qubits, the probability that Eve’s manipulation goes

unnoticed is (3/4)𝑟 , which can be made arbitrarily small by choosing 𝑟 to be sufficiently

large.

To learn more. . .

This kind of check can also be used to test the procedure for noise and measurement

errors. In fact, Eve’s tampering is indistinguishable from hardware errors and

unwanted interactions with the environment. In any case, Alice and Bob should

always set aside some qubits to estimate the amount of deviation of the results from

the expected values, and to inform their application of information reconciliation

and privacy amplification methods.

Let us insist once again that our discussion in this section is not a full proof of security

of BB84. For that, please refer to the paper by Shor and Preskill [36]. Also, we would like

to mention that, unlike quantum money, QKD is very much of practical interest. In fact,

experimental (and even commercial) implementations of QKD have existed for the last two

decades, using BB84 and other protocols.

64 Chapter 3: Applications and Protocols with One Qubit

This wraps up our study of BB84. In the next and last section of this chapter, we will discuss

some alternative QKD methods as well as other quantum protocols built on individual

qubits.

3.3 Other protocols with individual qubits
In the final section of this chapter, we will briefly discuss some additional protocols that

involve individual qubits. We will start by talking a little bit about alternatives to BB84

when trying to agree on a secret key with quantum methods, and then we will cover a

colorful protocol that has to do with quantum bombs.

3.3.1 Alternative QKD protocols
In addition to BB84, there exist a number of quantum key distribution protocols that rely on

the use of individual qubits, such as the six-state protocol and SARG04. In general, they

try to improve some figure of merit, like the eavesdropping detection rate or the fraction

of qubits that are retained for the final key. To that end, they modify some parts of the

protocol, including the number or type of states that are used in the transmission.

For instance, the six-state protocol uses the states |𝑖⟩ ∶= 1√
2
(|0⟩ + 𝑖 |1⟩) and |−𝑖⟩ ∶=

1√
2
(|0⟩ − 𝑖 |1⟩) in addition to |0⟩ , |1⟩ , |+⟩, and |−⟩. This makes it more difficult for Eve

to go unnoticed and, thus, provides increased security. For details, please check the papers

by Bruß [39], and Bechmann-Pasquinucci and Gisin [40].

The SARG04 scheme (proposed by Scarani, Acín, Ribordy, and Gisin in 2004, hence the

protocol’s name), uses the same states as BB84, but encodes information in a different way.

This leads to a more robust protocol that also shows improved resistance to certain types

of attacks. For more information, refer to the original paper by Scarani et al. [41] and to

the detailed analysis provided by Branciard et al. [42].

To learn more. . .

There exist QKD protocols that exploit entanglement, a quantum phenomenon

produced by certain interactions of quantum systems. For instance, in 1991, Ekert

Other protocols with individual qubits 65

proposed a method that uses entangled pairs of photons and is known as the E91

protocol [43]. We will study entanglement in detail when we introduce two-qubit

systems in Chapter 5.

And now, to close this chapter, it would be nice to briefly cover a method that is especially

peculiar. And that is a lot to say when talking about quantum physics!

3.3.2 The Elitzur–Vaidman bomb tester
In 1993, Avshalom Elitzur and Lev Vaidman proposed a way of testing whether a bomb is

active or not without any risk of exploding it [44]. Specifically, the setting of this weird

thought-experiment is the following: you are given a bomb and you do not know if it

works or not, but this is a special “quantum bomb”, that you can interact with by sending

qubits to it. If the bomb is a dud, nothing will happen, and the qubit will be returned with

no changes to its state. But if the bomb is active, the qubit will be measured. If the result is

1, the bomb will explode. If the result is 0, the bomb will remain active and unexploded.

The question is: how can you determine if the bomb works. . . without making it go off?

The first, naive attempt, could be to send a qubit in either state |0⟩ or |1⟩. But this will get

us nowhere. If we send |0⟩, the bomb will not explode, but we won’t know if it is working

or a dud. If we send |1⟩, we will certainly learn if the bomb works or not. . . but we will

make it explode if it is active!

The solution proposed in the Elitzur-Vaidman bomb tester is to start with a qubit in

state |0⟩, but then apply to it a quantum gate that is known as a 𝑌 -rotation (to learn more

about this gate and why it is called a “rotation”, please take a look at Appendix B). This gate

depends on a parameter 𝜃, it is represented as 𝑅𝑌 (𝜃), and its action is given by

𝑅𝑌 (𝜃) ≔
(

cos 𝜃
2

− sin 𝜃
2

sin 𝜃
2

cos 𝜃
2
)
,

where 𝜃 is a real number.

66 Chapter 3: Applications and Protocols with One Qubit

Exercise 3.6

Check that 𝑅𝑌 (𝜃) is unitary for every 𝜃. Prove also that 𝑅𝑌 (𝜃)𝑛 = 𝑅𝑌 (𝑛𝜃) for any

natural number 𝑛.

And here comes the trick behind this protocol. Before sending it to test the bomb, you are

supposed to apply 𝑅𝑌 (2𝜖) to |0⟩, thus obtaining a qubit in the state |𝜖⟩ ≔ cos 𝜖 |0⟩+ sin 𝜖 |1⟩.

In a moment, we will discuss which value of 𝜖 will be most convenient for our purposes,

but, for now, assume it to be some arbitrary real number.

If we send a qubit in the state |𝜖⟩ through the bomb, what will happen? If the bomb is

a dud, the qubit will be returned to us in the exact same state |𝜖⟩. On the other hand, if

the bomb is active, it will be measured: with probability |cos 𝜖|
2, the result will be 0 and

the bomb will not explode, and with probability |sin 𝜖|
2, the bomb will explode. Of course,

we do not want this to happen, so we will pick an 𝜖 such that |sin 𝜖|2 is very small. We

know that if 𝜖 is close to 0, then sin 𝜖 ≈ 𝜖. Then, if we set 𝜖 to be, for instance, 10−10, the

probability of making the bomb go off will be 10−20, which is very small.

Assuming the bomb did not explode, we can repeat the process. We again apply the 𝑅𝑌 (2𝜖)

to the qubit and send it back to the bomb. If the bomb is a dud, the state will now be

𝑅𝑌 (2𝜖) |𝜖⟩ = 𝑅𝑌 (2𝜖)
2 |0⟩ = |2𝜖⟩ ,

because 𝑅𝑌 (2𝜖)2 = 𝑅𝑌 (4𝜖), as you proved in Exercise 3.6. In this case, since the bomb is not

active, the state will be returned to you unchanged.

However, if the bomb is active, and provided it hasn’t exploded yet, in the previous

interaction the qubit got measured and collapsed to |0⟩. Thus, you are sending the |𝜖⟩ state

again. With probability |cos 𝜖|
2, the bomb will not explode and you will get |0⟩ back. Only

with probability |sin 𝜖|
2 will the bomb explode.

You should repeat this process 𝑛 times (we will determine the value of 𝑛 in a minute, don’t

worry). Then, you have two possibilities:

Other protocols with individual qubits 67

1. If the bomb is a dud, you will have the state |𝑛𝜖⟩.

2. If the bomb is active, it will have exploded with probability at most 𝑛|sin 𝜖|2 (you

tried 𝑛 times, each with probability |sin 𝜖|
2 of exploding). If it hasn’t exploded, your

qubit is in the |0⟩ state.

Once you have completed this process, you need to measure the qubit. If the bomb is active

(and it hasn’t exploded), you will always obtain 0 as a result. If it is a dud, you will obtain 1

with a probability of |sin 𝑛𝜖|2. Now, we have all the information that we need in order to

find an appropriate value for 𝑛. We want 𝑛|sin 𝜖|2 to be small (in order to make sure that

the bomb doesn’t go off) and |sin 𝑛𝜖|
2 to be close to 1 (to be able to distinguish between

the dud and the working bomb). If we take 𝑛 to be the closest integer to 𝜋
2𝜖

, then

|sin 𝑛𝜖|
2
≈

|
|
|
sin

𝜋

2𝜖
𝜖
|
|
|

2

=
|
|
|
sin

𝜋

2

|
|
|

2

= 1,

and

𝑛|sin 𝜖|
2
≈
𝜋

2𝜖
|sin 𝜖|

2
≈
𝜋

2𝜖
𝜖
2
=
𝜋

2
𝜖,

which is very small because we had set 𝜖 = 10−10. Thus, we carry out this protocol and, at

the end, measuring 1 will indicate that the bomb is a dud, while measuring 0 will show that

it is working. Moreover, both the probability of making a mistake in the determination and

the probability of making the bomb go off are very small. It’s da bomb, isn’t it?

To learn more. . .

The 𝑅𝑦(𝜃) gate has a nice geometrical interpretation. One-qubit states can be

represented as points on the surface of a sphere known as the Bloch sphere. Then,

𝑅𝑌 (𝜃) transforms quantum states by rotating them 𝜃 radians around the 𝑌 axis of

this sphere. For more details, check out Appendix B.

Needless to say, this is just a thought experiment, only proposed to illustrate certain

quantum phenomena, and not applicable to real bombs! In any case, we thought that this

would be a neat and striking example that would nicely complement our discussion on the

possible applications of individual qubits for certain information-processing tasks.

68 Chapter 3: Applications and Protocols with One Qubit

With this, we can wrap things up. We are now ready to use all this knowledge to begin

writing some quantum code and run it on simulators and actual quantum computers. That

will be the focus of our next chapter.

Summary
In this chapter, we have studied several different applications of individual qubits, including

schemes for quantum money that cannot be forged, protocols for distributing secret keys

that are practically impossible to break, and methods to distinguish working bombs from

duds without making them explode.

With these examples, you now have a deep understanding of how qubit states, gates,

and measurements work in practice, and how to exploit certain quantum phenomena,

including superposition, interference, the no-cloning theorem, and the uncertainty principle.

You are also familiar with some of the applications of quantum systems based on single

qubits, including their use in securing communications through the use of Quantum Key

Distribution protocols.

In the next chapter, we are going to put all this into practice. We will take our first steps in

quantum computer programming using Qiskit, a very comprehensive Python library that

will help us manipulate qubits with both quantum gates and measurements. We will also

learn how to run simple quantum circuits on simulators and actual quantum computers.

Finally, we will show how to implement some of the protocols that we have introduced in

this chapter, including the BB84 method.

4
Coding One-Qubit Protocols
in Qiskit

Give a man a program, frustrate him for a day.
Teach a man to program, frustrate him for a lifetime.

— Muhammad Waseem

So far, we’ve managed to get a lot done. After seeing the general landscape of quantum

computing from a bird’s-eye view, we set out to discuss one-qubit systems at length,

seeing how their states can be represented and transformed, and analyzing the crucial

yet counter-intuitive role that measurements play in quantum mechanics at large, and in

quantum computing in particular. From this point, we were able to explore some interesting

applications in one-qubit systems.

All of that theory is about to become practice in this chapter, as we take our first steps in

programming quantum computers and getting circuits to run on both simulators and real

quantum hardware.

70 Chapter 4: Coding One-Qubit Protocols in Qiskit

The topics covered in this chapter are the following:

• Quantum software and the case for Qiskit

• How to work with one qubit in Qiskit

• Implementing the BB84 protocol

By the end of this chapter, you will have a general perspective on the software frameworks

that are currently available to program and run quantum algorithms. You will also know

how to implement one-qubit algorithms using Qiskit and you will be able to simulate them

locally or send them to real quantum hardware through the Internet. In addition to this,

you will have a better understanding of the BB84 protocol and you will be able to simulate

it yourself.

That’s a packed agenda, so we better get started. Let’s begin by exploring the quantum

software landscape and introducing Qiskit.

4.1 Quantum software and the case for Qiskit
In recent years, interest in quantum computing has been growing rapidly, and, as a conse-

quence, so has the number of software frameworks oriented toward programming quantum

algorithms. While many share common features, each of these frameworks is, obviously,

different: some are better suited than others for different tasks, and all of them have their

pros and cons.

From a general perspective, any quantum software framework needs—at the very least—to

provide a way for users to represent their quantum algorithms. And, of course, it also must

provide a way for those quantum algorithms to be run in some way.

In an ideal world, we would all have access to a quantum processing unit at home, but

sadly, we’re not there just yet, so the whole business of executing quantum algorithms gets

a bit tricky. In this regard, there are two things that one can do:

• While quantum hardware is still not as good as we would like it to be, some quantum

computers exist and—despite their limitations—can execute some quantum algo-

Quantum software and the case for Qiskit 71

rithms. These quantum computers are hosted and made available over the Internet

by companies such as IBM, Amazon, or IQM. While most of them charge a fee for

the use of their quantum hardware, some companies, such as IBM, provide limited

access for free, as we will discover in this chapter.

• Running algorithms on real quantum hardware is, right now, anything but a smooth

experience. In addition to the economic cost that it may entail, you may have to not

only wait for long periods of time to execute the algorithms but also accept the fact

that, nowadays, real quantum computers still make quite a number of errors; this will

improve in the future—and in Chapter 14, we will discuss how those improvements

will come about—but the future isn’t now. For this reason, the best way in which the

average Jane or Joe can run and test their quantum programs is by running them on

simulators. Quantum simulators enable the execution of quantum algorithms with

a limited number of qubits on any ordinary modern computer, and we will use them

extensively throughout this book. While an ordinary classical computer can’t handle

too many qubits, simulators are powerful enough to illustrate the behavior of most

quantum protocols, albeit at a small scale. Moreover, their use has some advantages.

Namely, they are free of the errors that may affect real hardware, and they can also

easily provide information about the evolution of the state of a system through the

execution of an algorithm.

Pretty much all general-purpose quantum software frameworks provide both quantum

simulators and interfaces to real quantum hardware. Needless to say, not all simulators are

equal: some offer better performance than others, and their features may vary. Likewise,

the interfaces for quantum hardware may work better with some devices than with others

depending on which framework is used.

To learn more. . .

Most of the time, software frameworks represent quantum algorithms through the

construction of quantum circuits, but some frameworks use different models. Feel

free to read our book A Practical Guide to Quantum Machine Learning and Quantum

72 Chapter 4: Coding One-Qubit Protocols in Qiskit

Optimization: Hands-on Approach to Modern Quantum Algorithms [16] to learn more

about some of these alternative models.

In this book, we will be using Qiskit, which is one of the most popular general-purpose

quantum software frameworks out there. Nevertheless, before we start to discuss it in

depth, we thought it would be a good idea to give you a brief overview of some of the most

commonly used quantum software frameworks.

Let us please emphasize that our discussion will be far from exhaustive—we are only

covering a handful of the tools that currently exist. With that being said, let’s see what the

world has to offer for quantum programmers!

PennyLane

We begin our discussion with PennyLane [45], a general-purpose quantum software frame-

work developed by Canadian company Xanadu. Like most other frameworks that we will

discuss, PennyLane runs on Python and it can be easily installed with pip, Python’s package

manager. Within it, quantum circuits can be implemented with a very simple and intuitive

API, and they can be run locally with its own simulators. In addition, PennyLane also

provides interfaces for circuits to be executed on real hardware.

In terms of simulators, it includes a basic simulator implemented in Python as well as a

high-performing “Lightning” simulator that runs on a C++ backend. For real hardware,

it provides interfaces to Amazon Braket, Rigetti, AQT, Honeywell, Quantum Inspire, and

IonQ, among other quantum hardware platforms.

One of the many virtues of PennyLane is its interoperability with other quantum software

frameworks. The team behind PennyLane supports interfaces to Qiskit and Cirq among

many others. Another great feature of PennyLane is the stability of its API.

While PennyLane could be used to implement any kind of quantum algorithm or protocol,

it is most commonly used within the domain of quantum machine learning, and we actually

use it extensively in our book A Practical Guide to Quantum Machine Learning and Quantum

Quantum software and the case for Qiskit 73

Figure 4.1: A simple circuit constructed with Quirk, a web-based simulator with a graphical
user interface that allows operations to be dragged and dropped into a quantum circuit

Optimization: Hands-on Approach to Modern Quantum Algorithms [16]. In quantum machine

learning, the interoperability of PennyLane truly shines, as it provides interfaces to some

of the most commonly used machine learning frameworks—thus making the training of

quantum machine learning models a very smooth experience.

Quirk

While not a full-fledged quantum software framework, Quirk [46] is as simple as it is

useful—which is why we have chosen to include it here. Quirk is a web-based platform on

which you can construct and simulate quantum circuits using a drag-and-drop interface. It

can be accessed freely on https://algassert.com/quirk, and it was developed by Craig

Gidney. In spite of its modesty, it is a very valuable tool for quick prototyping; in Figure 4.1,

you can see a screenshot of its interface, in which we have constructed a simple circuit

with a NOT and a Hadamard gate.

Quirk can graphically display the amplitudes of the state at any point through the execution

of the circuit, as well as showing the probabilities of a measurement at different points.

https://algassert.com/quirk

74 Chapter 4: Coding One-Qubit Protocols in Qiskit

Cirq

Moving on to a more conventional framework, Cirq [47] is Google’s general-purpose

quantum software toolkit and it shares some similarities with PennyLane. Like most other

frameworks, it runs on Python and can be installed through pip.

It can implement any quantum algorithm through the construction of quantum circuits.

It includes its own simulator and it has interfaces to run circuits on the real quantum

hardware provided by vendors such as AQT, Azure, IonQ, Pasqal, and Rigetti.

A feature that makes Cirq special among other frameworks is its support for qudits:

quantum systems that can be in a number of states other than two.

QuEST

The Quantum Exact Simulation Toolkit [48] (abbreviated as QuEST) is a high-performance C

library for simulating quantum circuits. It is designed to take full advantage of computers’

hardware—including support for GPUs through CUDA—in order to simulate quantum

circuits efficiently and smoothly. It is developed and maintained by a team at the University

of Oxford.

Qiskit

Last—but certainly not least—we have Qiskit [49], one of the best-known quantum software

frameworks out there, which is actively developed and maintained by IBM and by a strong

community of volunteers. In some ways, Qiskit works in a similar way to PennyLane.

It runs on Python and provides an API for constructing quantum circuits, and it comes

bundled with some high-performance simulators that are written in C++ and (increasingly)

Rust.

Qiskit has a very strong community all over the world and, most importantly, it is the best

way to prepare circuits in order to send them to IBM’s own quantum hardware, for which

there is limited access free of charge.

How to work with one qubit in Qiskit 75

It also comes loaded with features and makes it easy to implement even the most complex

quantum algorithms and protocols. For anything related to quantum computing, there

most likely already is some Qiskit module implementing it.

In this book, we will exclusively use Qiskit, and we will be working with version 2.1. If

you haven’t already, please have a look at Appendix D and make sure that you have all the

required packages—with the appropriate versions—installed on your machine.

Now that is enough of an introduction. Without further ado, let’s get coding! Our qubits

are about to have their “hello world!” moment.

4.2 How to work with one qubit in Qiskit
We are ready to begin working with Qiskit. For that, please launch your Python interpreter

or, preferably, create a Jupyter notebook. Alternatively, you can run this code on the cloud

with a service such as Google Colab.

Important note

We will be using Qiskit 2.1. Please refer to Appendix D for instructions on how to

install the tools and frameworks that we use in this book.

Remember, by the way, that the code that we will be using can be downloaded as a

Jupyter notebook from the book’s GitHub repository:

https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Computing

To get started, we will first import the QuantumCircuit class from the Qiskit package as

follows:

from qiskit import QuantumCircuit

All quantum circuits will be represented as objects of the QuantumCircuit class.

https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Computing

76 Chapter 4: Coding One-Qubit Protocols in Qiskit

To learn more. . .

If you are not familiar with object-oriented programming and the words “class”,

“object”, and “method” don’t sound too familiar, that’s alright. For the most part,

you can follow along and try to infer the meaning from how we use our code. If,

however, you would like to learn a little bit more about this, feel free to check out

the free online course CS50’s Introduction to Programming with Python, by Harvard

University.

Thus, to create a new quantum circuit, we just have to create a new QuantumCircuit object,

and its initializer will take the number of qubits that we want to use as an argument. Since

we only know how to work with one-qubit circuits, we will create a circuit as follows:

circuit = QuantumCircuit(1) # We specify "1" for one qubit.

And voilà! Now the circuit object represents an empty one-qubit circuit in Qiskit, whose

state will be initialized to |0⟩ as that is the default.

Having an empty circuit is exciting. . . but not too exciting, so let’s add a few gates and see

what we get. In order to add gates to a quantum circuit in Qiskit, you have to call some

specific methods. For instance, in order to add a NOT gate, you must call the x method,

providing as an argument the qubit on which the gate must be applied. In our case, we

are only working with a single qubit, so this argument will always be 0; keep in mind that

qubits are 0-indexed, so the first qubit is referred to as 0, and the second one (when we

get to that in Chapter 7) would be identified by 1. Similarly, in order to include a Hadmard

gate, you can use the h method.

With this knowledge, let us try to turn our Qiskit circuit into the following circuit:

|0⟩ 𝑋 𝐻

For that, we only have to execute the following lines of code:

circuit.x(0) # Apply an X gate on the fist qubit (0).

circuit.h(0) # Apply an H gate.

How to work with one qubit in Qiskit 77

That’s all that it would take! After doing this, in order to check whether our construction

is correct, we can print our circuit using the print(circuit) command, which will show

us a text-based representation of our circuit. That would be okay for most purposes (and

maybe our only way of printing the circuit in some scenarios), but Qiskit also offers an

alternative way of representing circuits that produces better-looking results.

To represent our circuit in all its glory, we can use the draw method with the optional "mpl"

argument (short for matplotlib):

circuit.draw("mpl")

Upon running this, we will get a beautiful representation of our circuit, which confirms

that it has been implemented correctly, with a NOT gate followed by a Hadamard gate.

You can find this representation below:

q X H

Using the draw method, we can get a visual representation of our circuit, but maybe you’d

like to save that representation in order to use it in a document or presentation. To do that,

you can run the following instructions:

drawing = circuit.draw("mpl")

drawing.savefig("circuit.pdf")

This will save the circuit representation in PDF format in the circuit.pdf file, and it will

be stored as a vector image. If you would instead like to have a rasterized image, you can

save the representation in PNG format—all it would take would be changing the extension

in the filename, and the method will take care of everything else for you.

We have just seen how to apply the 𝑋 and 𝐻 gates using the x and h methods, respectively,

but there are plenty of other one-qubit gates that we don’t yet know how to use in Qiskit.

78 Chapter 4: Coding One-Qubit Protocols in Qiskit

Well, these don’t hold too much of a mystery. In order to use the gates 𝑍 , 𝑌 , and 𝑆 and 𝑇 ,

we can use, respectively, the z, y, s, and t methods, which work in full analogy to x and h.

Recall that we introduced all of these gates back in Chapter 2.

Exercise 4.1

Create a Qiskit circuit named circuit_yt implementing the following quantum

circuit:

|0⟩ 𝑌 𝑇

Represent the circuit using the draw method in order to verify that you have con-

structed it correctly.

There is another one-qubit gate that we introduced in Chapter 2 and that works in a slightly

different way to the ones we’ve discussed so far, and that is the phase gate. Remember that,

for any real number 𝜃, we defined the phase gate parametrized by 𝜃 as

𝑃(𝜃) =
(

1 0

0 𝑒𝑖𝜃)
.

Since this gate actually depends on a parameter, we will have to specify said parameter

when using the gate. In this way, if we want to apply the phase gate parametrized by theta

on the first qubit of circuit, we will have to run circuit.p(theta, 0). In the following

example, we apply 𝑃(2) on a one-qubit circuit, and we print the result:

Apply the gate P(2) on a one-qubit circuit.

circuit = QuantumCircuit(1)

circuit.p(2,0)

circuit.draw("mpl")

Upon running this, we get the following output:

How to work with one qubit in Qiskit 79

q
2
P

This shows that, indeed, we have constructed our circuit as we intended. Notice, by the

way, that we have reinitialized the circuit object, deleting the one we had before, and

thus starting on a blank canvas.

Important note

Quantum circuits in Qiskit are represented as objects of the QuantumCircuit class,

which can be initialized by specifying the number of qubits of the circuit. Quantum

gates can then be sequentially applied by using different methods, on which it must

be specified the qubit on which the gate is going to be applied, and the parameters

of the gate, should it accept any.

It is worth pointing out that quantum circuits can be manipulated like any other object

in Python. They can be used within functions and their construction can rely on loops,

conditionals, or any other flow control methods provided by the language. To illustrate

this, we will create a simple function with a single argument. If the argument is smaller

than 1, the function will apply a one-qubit circuit with a phase gate parametrized by it;

otherwise, it will return a one-qubit circuit with a Hadamard gate:

def phased_circuit(phase):

circuit = QuantumCircuit(1)

if phase < 1:

circuit.p(phase, 0)

else:

circuit.h(0)

return circuit

We can draw the output of this function when theta = 0.4, as follows:

80 Chapter 4: Coding One-Qubit Protocols in Qiskit

phased_circuit(0.4).draw("mpl")

This shows a circuit with a 𝑃(0.4) gate. On the other hand, if phase >= 1, the output will

be a circuit with an 𝐻 gate, as you can easily check by executing this instruction:

phased_circuit(1.1).draw("mpl")

Exercise 4.2

Implement a function apply_gate that will take two arguments: a circuit circ and

a string gate. If the string is "X", "Y", or "Z", the function must apply, respectively,

the 𝑋 , 𝑌 , or 𝑍 gate on the first qubit of the circuit circ. If the gate string takes any

other values, the function must do nothing.

That is how one-qubit circuits can be constructed in Qiskit, so let’s now analyze how they

can be run. We will begin by discussing how to run circuits on simulators, and we will

then take care of real quantum hardware.

4.2.1 Simulating the evolution of a state
One of the main advantages of simulating the execution of quantum circuits is that—as

opposed to running them on real hardware—it can give us full access to the state of the

qubits, which is exceptionally useful for debugging and for understanding the behavior of

circuits. We will now see how Qiskit allows us to compute the final state of a quantum

circuit.

To get started, let us create a circuit with a NOT gate followed by a Hadamard gate, as we

did at the beginning of this section:

circuit = QuantumCircuit(1)

circuit.x(0)

circuit.h(0)

How to work with one qubit in Qiskit 81

Once we have any circuit, such as the one we have just defined, using Qiskit to find the

state of the system at the end of the execution of the circuit couldn’t be easier. All we have

to do is import the Statevector class and initialize it by passing the circuit as an argument:

from qiskit.quantum_info import Statevector

state = Statevector(circuit)

print(state)

Upon running the preceding code, we get the amplitudes of the prepared state, which is

|−⟩, as we expected:

Statevector([0.70710678+0.j, -0.70710678+0.j],

dims=(2,))

In the preceding representation, the first entry on the list is the amplitude of |0⟩, while the

second one is that of |1⟩. Keep in mind that 1/
√
2 is approximately equal to 0.70710678,

and remember that |−⟩ = (1/
√
2)(|0⟩ − |1⟩). Notice, by the way, that the returned object

has an attribute dims specifying the dimensions of the state vector. In this case, as we are

dealing with a one-qubit system, the dimension of this vector is 2, as shown in the output.

Exercise 4.3

Use Qiskit to obtain the state of a one-qubit system at the end of the circuit that

you constructed in Exercise 4.1.

Getting the final state of a circuit is useful and convenient, but not very well aligned with

what we can expect from quantum hardware. On a real quantum computer, all we can

hope to get are results from measurements, and Qiskit also allows us to simulate that, as

we will discuss next.

4.2.2 Getting samples from a simulator
If we want to get samples from a measurement, the first thing that we must do is include

a measurement operation in our circuit. In order to do that, we can use the measure_all

82 Chapter 4: Coding One-Qubit Protocols in Qiskit

method, which—as the name suggests—measures all the qubits in our circuit and stores the

result on some classical bits. Thus, we can run this piece of code:

circuit.measure_all()

circuit.draw("mpl")

With this, we’ve added a measurement operation and represented our updated circuit. The

result that we get is the following:

q

1meas

X H

0

Here, we have the same circuit that we used before, but with a new measurement operation

that feeds its output to a classical bit that has been added below; this bit has the default

name meas. Notice, by the way, that there is a gray rectangle with a dashed line separating

the measurement operation from the rest of the circuit; this is called a barrier. This has

been added automatically to our circuit by Qiskit upon calling the measure_all method.

Barriers are used not only to visually separate the different components of a circuit, but also

to prevent them from being merged in a process known as transpilation, which consists

in decomposing the circuit into gates that real quantum computers can execute. We will

come back to this later.

In order to be able to sample our circuit, we first need to instantiate an AerSimulator

object, which will be the backend on which the circuit will run; we will create this object

specifying a seed in order for our results to be reproducible as follows:

from qiskit_aer import AerSimulator

backend = AerSimulator(seed_simulator = 18620123)

How to work with one qubit in Qiskit 83

Once we have our simulator ready, we need to create a Sampler object, having it as a

backend:

from qiskit_ibm_runtime import SamplerV2 as Sampler

sampler = Sampler(backend)

When using real hardware, we will see that the workflow is analogous but for the use of a

different backend object, representing a real quantum computer.
To learn more. . .

The Sampler class is an instance of a Qiskit primitive. Informally speaking, these

primitives are the mechanisms that enable Qiskit to return outputs from a circuit,

and they are used to interact with quantum hardware as well as with simulators. In

addition to sampler primitives, which return samples from measurements, there are

others such as estimator primitives, which return expectation values. To learn more

about these, you can take a look at the Qiskit documentation.

With our sampler ready, we can run it on our circuit, asking it to get 8 shots for us. If we

don’t provide a value for the shots, it will default to 1024.

job = sampler.run([circuit], shots = 8)

result = job.result()[0].data.meas # Get the results!

Notice that we have passed circuit within a list: that’s because we could’ve passed a list

of several circuits and run them all at once in a single job. In the preceding code, you can

see how, after executing the circuit with run, we have called the result method to retrieve

the results; this returns a list with the results for every circuit that is passed when running

the job. Since we only sent one circuit, we only have to get the first element, hence why

we have the [0] after the call to the result method. From there, we simply extracted the

data corresponding to the classical bit, which, as we mentioned before, goes by the name

of meas.

84 Chapter 4: Coding One-Qubit Protocols in Qiskit

Once our results are ready, we can extract them in several ways. The first and most

convenient one is getting a dictionary with the counts of all the measurement outcomes,

as follows:

print(result.get_counts())

The preceding instruction returns a dictionary telling us how many times each outcome

was observed:

{’0’: 5, ’1’: 3}

In this case, the measurement in our circuit turned out to be 0 a total of five times, and it

was 1 a total of three times.

Alternatively, we may wish to obtain the raw list of measurements outcomes. This can be

achieved with this piece of code:

print(result.get_bitstrings())

The output is the following list of outcomes:

[’0’, ’1’, ’0’, ’1’, ’0’, ’1’, ’0’, ’0’]

Keep in mind that this list preserves the order in which the results were measured.

Exercise 4.4

Use Qiskit to obtain 4 measurement samples from the final state of the circuit that

you constructed in Exercise 4.1.

There are still other ways in which the results can be retrieved. For example, the array

parameter contains an array with the results stored as integers. We can run this piece of

code:

print(result.array)

This gives the following output:

How to work with one qubit in Qiskit 85

[[0]

[1]

[0]

[1]

[0]

[1]

[0]

[0]]

Lastly, it is worth mentioning that it’s possible to get the number of shots that were used

by accessing results.num_shots.

That’s how Qiskit can simulate getting samples from a measurement operation. Now, let’s

go wild. Let’s see how we can actually use real hardware.

4.2.3 Getting results from real quantum hardware
IBM provides free and open access to some of their quantum computers through the IBM

Quantum Platform. In order to use it, you first need to create an IBM account, access the

IBM Quantum Platform, create an instance, and retrieve your unique API key (we describe

this process in Appendix D). This token is the equivalent of a password and allows anyone

to connect to IBM’s quantum computers on your behalf, so it’s very important to keep it

safe and not share it with anyone.

To get started, we need to authenticate ourselves and launch an instance of the Qiskit

Runtime service. This can be done as follows (setting token to a string with your own API

key):

from qiskit_ibm_runtime import QiskitRuntimeService

token = "YOUR API KEY GOES HERE"

service = QiskitRuntimeService(token=token, channel="ibm_quantum_platform")

In the call to the QiskitRuntimeService constructor, you can also specify an instance

as an optional argument (for example, passing instance = "PGQC_instance", if you’ve

86 Chapter 4: Coding One-Qubit Protocols in Qiskit

followed the instructions in Appendix D). Nevertheless, if you don’t specify one, Qiskit will

eventually pick one for you automatically, provided that you have created at least one.

If you are running this on your own personal computer and want to have your token saved

on your machine (to avoid having to paste it in every time), you can run this command:

QiskitRuntimeService.save_account(token = token,

channel = "ibm_quantum_platform")

With it, you can from then on launch QiskitRuntimeService without the need to specify

a token and a channel.

Now that we have our Qiskit Runtime service up and running, we can use it to get a backend

object pointing to one of IBM’s real quantum computers. We will use the least_busy

method to get the least busy quantum computer, and we will ask for it to be operational

and an actual quantum computer (not a simulator).

backend = service.least_busy(simulator = False, operational = True)

print(backend)

In our case, we got access to IBM’s quantum computer named Kyiv, but you may have

gotten a different one.

Now, we’re almost set to send our circuit to the backend, but before we do that, we need to

transpile the circuit. Real quantum computers can only run a limited set of instructions,

and transpiling a circuit simply means decomposing it into instructions from that limited

set. With Qiskit, we can use generate_preset_pass_manager to transpile a circuit for its

execution in a specific backend. We can do it as follows:

from qiskit.transpiler.preset_passmanagers import (

generate_preset_pass_manager)

pm = generate_preset_pass_manager(backend=backend, optimization_level=1)

transpiled = pm.run(circuit)

transpiled.draw("mpl", idle_wires = False)

How to work with one qubit in Qiskit 87

Notice that generate_preset_pass_manager requires an optimization_level argument.

This is an integer from 0 to 3, and, the greater it is, the more optimized the circuit will be.

Upon executing the preceding code, we can see a representation of our transpiled circuit:

Global Phase: 7 /4

q0 0

1meas

/2
RZ X

/2
RZ

0

Don’t worry if you get a different circuit. If you are using a different backend, your circuit

may be decomposed using a different set of instructions.

To learn more. . .

In order to illustrate how barriers affect transpilation, let us recreate our circuit,

adding a barrier between the 𝐻 and 𝑋 gates:

circuit_barrier = QuantumCircuit(1)

circuit_barrier.x(0)

circuit_barrier.barrier()

circuit_barrier.h(0)

circuit_barrier.measure_all()

circuit_barrier.draw("mpl")

After running this, we get the following representation:

q

1meas

X H

0

We can now transpile the circuit as follows:

88 Chapter 4: Coding One-Qubit Protocols in Qiskit

transpiled_barrier = pm.run(circuit_barrier)

transpiled_barrier.draw("mpl", idle_wires = False)

After running this, we can see in the following output how, instead of three gates,

we now get four, and they are separated by a barrier. This is, of course, less optimal

than the transpilation that we got without the barriers, but it ensures that the 𝑋

and 𝐻 gates are not merged together in the transpilation process.

Global Phase: /4

q0 0

1meas

X
/2

RZ X
/2

RZ

0

Now we have all the pieces gathered to run our circuit on our quantum hardware backend

with IBM Runtime. All we need to do is initialize the Sampler class with our backend and

run our job just as we did with our simulator before:

from qiskit_ibm_runtime import SamplerV2 as Sampler

sampler = Sampler(mode=backend)

job = sampler.run([transpiled], shots = 1024)

result = job.result()[0].data.meas

print(result.get_counts())

After a few moments, we get the following counts:

{’0’: 505, ’1’: 519}

These align very well with the results that we obtained in the simulation, and with the

even distribution we would expect from a theoretical point of view. Notice, by the way,

how we have asked for 1024 shots in this case. If the number of shots is left unspecified, in

this case, it will default to 4096.

Implementing the BB84 protocol 89

Of course, if you got a different result from ours, there’s nothing for you to worry about!

Since we are running on real hardware and measurements are probabilistic, it is more than

expected to get slightly different results on each execution.

There you have it! That is how you can run a circuit on a real quantum computer using

Qiskit. It wasn’t that difficult, was it? With your free IBM account, you get a total of 10

minutes of computing time every month—now it’s up to you if and how you want to use

them!

Having discussed how to construct and run circuits in Qiskit, we will now implement one

of the applications that we considered in Chapter 3: the BB84 protocol. Let’s get to it!

4.3 Implementing the BB84 protocol
We are about to prepare a simple implementation of the BB84 protocol using Qiskit,

following our discussion from Chapter 3. Since the protocol involves Alice and Bob choosing

to apply a Hadamard gate at random, we will import the random module to take care of

that, and we will give it a seed for our results to be reproducible. In addition, we will also

initialize a simulator backend with a fixed seed and a sampler, as follows:

import random

random.seed(18620123)

backend = AerSimulator(seed_simulator = 18620123)

sampler = Sampler(backend)

For the protocol implementation, we will prepare a short list of bits meant to represent

Alice’s key. We will then send them one by one applying the protocol, and we will store the

results that Bob receives in another list. In addition, we will create two lists to store whether,

for the transmission of each bit, Alice and Bob applied or did not apply a Hadamard gate:

The key we want to send:

alice_bits = [0,1,0,1,1,1,0,0,1,1,0]

A list for the bits that bob will receive:

bob_bits = []

90 Chapter 4: Coding One-Qubit Protocols in Qiskit

We will create lists to store wheteher Alice/Bob used H.

If they do, we add "True", otherwise we add "False".

alice_used_h = []

bob_used_h = []

Now that we are all set, let’s simulate the transmission of each of the bits using the BB84

protocol! For each of them, we will create a one-qubit circuit. Since these are initialized to

|0⟩, we will apply an 𝑋 gate if the bit that Alice wants to send is 1 (and otherwise we will

do nothing). Then, we will let Alice and Bob decide whether or not to apply a Hadamard

gate, and we will have Bob measure the qubit and retrieve his result. We will then store all

the relevant information in the lists that we have just created, as follows:

for bit in alice_bits:

circuit = QuantumCircuit(1)

If we are going to send 1, we apply an X gate.

Remember that the state is initialized to |0>.

if bit:

circuit.x(0)

Choose at random if Alice applies H, and do it.

alice_h = random.choice([True, False])

if alice_h:

circuit.h(0)

Apply a barrier and choose whether Bob does H, and do it.

circuit.barrier()

bob_h = random.choice([True, False])

if bob_h:

circuit.h(0)

Implementing the BB84 protocol 91

Measure the qubit (on Bob’s end).

circuit.measure_all()

job = sampler.run([circuit], shots = 1)

bob_bit = int(job.result()[0].data.meas.get_bitstrings()[0])

Add the measured bit to bob_bits and record who used H.

bob_bits.append(bob_bit)

alice_used_h.append(alice_h)

bob_used_h.append(bob_h)

Once the transmission of the bits is completed, we find the occasions on which Alice and

Bob both applied (or did not apply) a Hadamard gate:

List of indices where Alice and Bob agree on whether to apply H.

agree = [i for i in range(len(alice_bits)) if alice_bits[i] == bob_bits[i]]

Lastly, we keep the bits corresponding to the occasions in which their choices agreed, as

follows:

Get the sent/received bits when they agree on applying H.

alice = [alice_bits[i] for i in agree]

bob = [bob_bits[i] for i in agree]

print(alice)

print(bob)

With this, we can see how Alice and Bob now have an identical sequence of bits that they

can use to communicate securely! Upon running the preceding code, this is the resulting

output:

[0, 0, 1, 1, 0, 0, 1, 0]

[0, 0, 1, 1, 0, 0, 1, 0]

92 Chapter 4: Coding One-Qubit Protocols in Qiskit

That shows how the BB84 protocol can be simulated using Qiskit. There you have it, our

first implementation of a quantum protocol! With this, we can now wrap up and bring this

chapter to an end.

Summary
In this chapter, we have had our first contact with quantum software frameworks. We

began by introducing what these frameworks are, and what they are meant to offer, and we

also got an overview of some of the most commonly used quantum software toolkits out

there. In this context, we had a chance to introduce Qiskit and discuss what advantages

can be found in using it.

Leaving that general introduction behind, we set out to write our first lines of code. First

we discussed how to construct one-qubit circuits in Qiskit and we saw how Qiskit circuits

can be treated and manipulated like any other Python object. Once familiar with this, we

explored how these circuits could be run on both simulators and quantum hardware.

Finally, we implemented a simulation of the BB84 protocol on Qiskit, leveraging on all the

skills that we acquired throughout the chapter.

That was Qiskit and that’s all we have to say about one-qubit systems. Now it’s time to

go bigger and explore what two qubits enable us to do. One-qubit systems are indeed

interesting, but let us tell you: you have seen nothing yet!

Part 2

Qubit Meets Qubit: Two
Qubits and Entanglement

In this part, we introduce two-qubit systems. We begin by laying down the mathematical

foundations of working with two qubits, including how to describe the system state, how

to measure it, and how to transform it with quantum gates. We also show how to use

new quantum phenomena, such as entanglement, to design surprising protocols, including

quantum teleportation. We finally put all this in practice by learning how to work with

two-qubit systems in Qiskit.

This part includes the following chapters:

• Chapter 5, How to Work with Two Qubits

• Chapter 6, Applications and Protocols with Two Qubits

• Chapter 7, Coding Two-Qubit Algorithms in Qiskit

5
How to Work with Two
Qubits

Great things are done by a series of small things brought together.

— Vincent van Gogh

In this chapter, we are going to introduce two-qubit systems. At first, this may seem like a

modest incremental improvement after having learned how to process information with

one qubit, but beware! Adding a second qubit into our systems will open up a world of

possibilities and, in particular, will allow us to exploit one of the strangest and most useful

phenomena in all of quantum physics: entanglement. As you will see, from a mathematical

point of view, entanglement is a rather simple concept, but it has profound physical

implications and it will become one of our key tools for designing quantum algorithms.

To be able to understand two-qubit systems, we will first discuss how to describe their

states. Then, we will learn what happens when we measure the qubits of a two-qubit

system and we will introduce new quantum gates that are able to operate on two qubits at

96 Chapter 5: How to Work with Two Qubits

once. This will also lead us to describe entanglement and to (finally!) prove the famous

no-cloning theorem that we have invoked so many times in previous pages. Believe us,

this is going to be exciting!

In this chapter, we cover the following topics:

• One plus one is more than two: two-qubit states

• Measuring two-qubit systems

• Two-qubit gates

After reading this chapter, you will master the theoretical concepts needed to work with

two-qubit systems: you will understand how to describe their states, how to transform them

with quantum gates and how to extract information from them through measurements.

You will also be familiar with entangled and product states, and you will be able to explain

why it is impossible to create independent copies of qubits with unknown states.

Are you ready to get entangled in the magic of two-qubit systems? Let’s go!

5.1 One plus one is more than two: two-qubit
states

Thanks to all that you learned about one-qubit systems in Chapter 2, you already have

most of the mathematical tools needed to understand two-qubit systems. As you surely

remember, a one-qubit system can be in one of the two states from the computational basis

{|0⟩ , |1⟩} (or in a superposition of them, we will come back to that soon). Unsurprisingly,

when we have two qubits, each of them can also be in one of those two states, so we have

four different possibilities in total: both qubits are |0⟩, the first one is |0⟩ and the second is

|1⟩, the first is |1⟩ and the second is |0⟩, or both are |1⟩.

Mathematically, these four options are described by something called tensor products

(more on this later in this same section), which we represent as follows:

|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩ .

One plus one is more than two: two-qubit states 97

Most of the time, we will omit the tensor product symbol ⊗ and simply write

|0⟩ |0⟩ , |0⟩ |1⟩ , |1⟩ |0⟩ , |1⟩ |1⟩ ,

or even just

|00⟩ , |01⟩ , |10⟩ , |11⟩ .

These tensor products are just fancy ways of writing the four-dimensional column vectors

that form the computational basis of two-qubit systems. In fact, it holds that

|00⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |01⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |10⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |11⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Important note

As a quick reference, the following table shows the different ways in which the

computational basis states of two-qubit systems can be represented. In every cell,

you will find several expressions for the four computational basis states:

|0⟩ ⊗ |0⟩ = |0⟩ |0⟩ = |00⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

|0⟩ ⊗ |1⟩ = |0⟩ |1⟩ = |01⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

|1⟩ ⊗ |0⟩ = |1⟩ |0⟩ = |10⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

|1⟩ ⊗ |1⟩ = |1⟩ |1⟩ = |11⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

98 Chapter 5: How to Work with Two Qubits

But if these were the only possible states of two-qubit systems, they would be rather dull,

wouldn’t they? We would be confined to a fixed set of states, missing out on many rich

and complex behaviors enabled by quantum systems. Fortunately, superposition comes to

the rescue. As you may be suspecting, a two-qubit system can also be in a superposition

state, which is nothing more than a linear combination of the form

𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼10 |10⟩ + 𝛼11 |11⟩ ,

where 𝛼00, 𝛼01, 𝛼10 and 𝛼11 are complex numbers (called amplitudes, as in the one-qubit

case) satisfying the normalization condition

|𝛼00|
2
+ |𝛼01|

2
+ |𝛼10|

2
+ |𝛼11|

2
= 1.

Of course, this constraint has to do with the probabilities of obtaining different results

when measuring the system, but we will discuss that in more detail in the next section.

Valid two-qubit states include

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) ,

because |1/2|
2
+ |1/2|

2
+ |1/2|

2
+ |1/2|

2
= 1/4 + 1/4 + 1/4 + 1/4 = 1, and

1
√
2
(|00⟩ + |11⟩) ,

because |
|1/

√
2||
2
+ |
|1/

√
2||
2
= 1/2 + 1/2 = 1.

Exercise 5.1

Which of the following are valid two-qubit states?

(a) 1√
3
(|00⟩ + |10⟩ + |11⟩)

(b) 1
2
(|00⟩ + |01⟩ + |10⟩ − |11⟩)

(c) 1√
2
(|00⟩ − |11⟩)

One plus one is more than two: two-qubit states 99

(d) 1√
2
(|00⟩ + 𝑖 |11⟩)

(e) 2√
3
|00⟩ + 2√

3
|10⟩ − 1√

3
|11⟩

(f) 𝑖 |10⟩

(g) 2 |00⟩ − 𝑖 |11⟩

(h)
√

2
3
|00⟩ −

√
1
3
|10⟩

Find all the values of 𝑥 that make 1
2
|01⟩ + 𝑥 |10⟩ a valid two-qubit state.

Okay, so this wasn’t that different from one-qubit states, was it? The only thing that may

be unsettling you at this point is that mysterious tensor product that we have introduced,

so let’s clarify what it actually is. In general, the tensor product of two column vectors

𝑎 =
(

𝑎1

𝑎2)
, 𝑏 =

(

𝑏1

𝑏2)
,

is another column vector defined by

𝑎 ⊗ 𝑏 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1𝑏1

𝑎1𝑏2

𝑎2𝑏1

𝑎2𝑏2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This may seem somewhat arbitrary, but the logic here is that we are taking two copies of

𝑏 , putting one on top of the other, and multiplying the first copy by 𝑎1 and the second one

by 𝑎2. More graphically, this can be seen as follows:

𝑎 ⊗ 𝑏 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1
(

𝑏1

𝑏2)

𝑎2
(

𝑏1

𝑏2)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1𝑏1

𝑎1𝑏2

𝑎2𝑏1

𝑎2𝑏2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

100 Chapter 5: How to Work with Two Qubits

To learn more. . .

The tensor product can be defined not only for column vectors of size 2 but for any

two vectors. In fact, it can even be defined for matrices. More on this later in this

chapter and in Chapter 8.

With this definition, our choice for the column-vector representation of |00⟩ , |01⟩ , |10⟩, and

|11⟩ makes perfect sense. For instance, we have that

|00⟩ = |0⟩ ⊗ |0⟩ =
(

1

0)
⊗

(

1

0)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
(

1

0)

0
(

1

0)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 5.2

Prove that

|01⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |10⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |11⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Of course, the tensor product can be computed for any vector, not just for those of the

computational basis. For example, it holds that

|0⟩ ⊗ |+⟩ =
(

1

0)
⊗

(

1√
2

1√
2
)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
(

1√
2

1√
2
)

0
(

1√
2

1√
2
)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
2

1√
2

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Working with column vectors to compute tensor products is, in general, a tiny bit awkward,

but there’s an easier way, a better way! As it turns out, the tensor product is linear in both

One plus one is more than two: two-qubit states 101

of its components. That is, it holds that

(𝛼1 |𝜓1⟩ + 𝛼2 |𝜓2⟩) ⊗ |𝜑⟩ = 𝛼1 |𝜓1⟩ ⊗ |𝜑⟩ + 𝛼2 |𝜓2⟩ ⊗ |𝜑⟩ ,

and that

|𝜑⟩ ⊗ (𝛼1 |𝜓1⟩ + 𝛼2 |𝜓2⟩) = 𝛼1 |𝜑⟩ ⊗ |𝜓1⟩ + 𝛼2 |𝜑⟩ ⊗ |𝜓2⟩ .

Exercise 5.3

Prove the two previous identities in the case where 𝛼1 and 𝛼2 are complex numbers,

and |𝜓1⟩ , |𝜓2⟩, and |𝜑⟩ are column vectors of size 2.

With this useful property, we can leave column vectors behind and easily compute tensor

products through the convenience of Dirac’s notation. Let’s repeat our previous computa-

tion of |0⟩ ⊗ |+⟩ to illustrate this. It holds that

|0⟩ ⊗ |+⟩ = |0⟩ ⊗
(

1
√
2
|0⟩ +

1
√
2
|1⟩

)
=

1
√
2
|0⟩ |0⟩ +

1
√
2
|0⟩ |1⟩ =

1
√
2
(|00⟩ + |01⟩) ,

which is the same result that we previously obtained when working with column vectors.

Neat, isn’t it? Incidentally, notice that, as it is customary, we have omitted the ⊗ symbol

and written, for example, |0⟩ |0⟩ instead of |0⟩ ⊗ |0⟩.

Exercise 5.4

Compute, using Dirac’s notation, the following tensor products:

(a) |−⟩ |1⟩

(b) |+⟩ |+⟩

(c) |+⟩ |−⟩

This kind of computation will become very handy when we talk about entanglement later

in this chapter. But, before that, let’s focus on what happens when we measure two-qubit

systems.

102 Chapter 5: How to Work with Two Qubits

5.2 Measuring two-qubit systems
As in the case of one-qubit systems, when we are working with two qubits and we want to

extract information from them, we need to perform a (quantum) measurement. In this case,

though, we have a decision to make: shall we measure both qubits or just one of them?

Let’s study both scenarios, starting with the one in which the two qubits are measured,

since it puts us in a situation analogous to that of Chapter 2.

If we have a two-qubit system in a general state

𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼10 |10⟩ + 𝛼11 |11⟩

and we measure both qubits at the same time, then

• we will obtain 00 with probability |𝛼00|
2, and then the state will collapse to |00⟩;

• we will obtain 01 with probability |𝛼01|
2, and then the state will collapse to |01⟩;

• we will obtain 10 with probability |𝛼10|
2, and then the state will collapse to |10⟩;

• or we will obtain 11 with probability |𝛼11|
2, and then the state will collapse to |11⟩.

Of course, the normalization condition |𝛼00|
2
+ |𝛼01|

2
+ |𝛼10|

2
+ |𝛼11|

2
= 1 accounts for the

fact that the total probability must add up to 1.

Let’s see some examples of two-qubit measurements in action. If we consider the state

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) ,

then all possible results (00, 01, 10 and 11) have exactly the same probability: 1/4. If we

instead consider the state
1
√
2
(|00⟩ + |11⟩) ,

then only two results are possible: 00 and 11, each with probability 1/2. Lastly, in the state

3𝑖

5
|00⟩ −

4

5
|01⟩ ,

Measuring two-qubit systems 103

we will obtain 00 with probability 9/25 and 01 with probability 16/25.

Just as in a one-qubit system, after the measurement, the states collapse to the computational

basis state that corresponds to the result that we have obtained. Hence, if we measure
3𝑖
5
|00⟩− 4

5
|01⟩ and obtain 00, the state right after the measurement will be |00⟩. Consequently,

if we measured the state again, we would obtain 00 with probability 1.

Exercise 5.5

Compute the probability of obtaining 00, 01, 10, or 11 as a result when measuring

both qubits of a system in the following states:

(a) 1
2
(|00⟩ + |01⟩ + |10⟩ − |11⟩)

(b) 1√
3
(|00⟩ − |01⟩ + |10⟩)

(c) 1+𝑖√
2
|11⟩

(d) 1
2
|01⟩ − 1√

2
|10⟩ + 𝑖

2
|11⟩

(e) |0⟩ |+⟩

Okay, this was very similar to the one-qubit case. But, what if we decide to measure just

one of the qubits? In this case, we will only obtain a value for the qubit that we measure,

and the system will collapse partially. Let’s see exactly how.

If we have a two-qubit system in the state

𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼10 |10⟩ + 𝛼11 |11⟩

and we measure its first qubit, then

• we will obtain 0 as a result with probability |𝛼00|
2
+ |𝛼01|

2 and the state will collapse

to
𝛼00

√
|𝛼00|

2
+ |𝛼01|

2
|00⟩ +

𝛼01
√
|𝛼00|

2
+ |𝛼01|

2
|01⟩ ;

104 Chapter 5: How to Work with Two Qubits

• or we will obtain 1 as a result with probability |𝛼10|
2
+|𝛼11|

2 and the state will collapse

to
𝛼10

√
|𝛼10|

2
+ |𝛼11|

2
|10⟩ +

𝛼11
√
|𝛼10|

2
+ |𝛼11|

2
|11⟩ .

This may seem complicated, but it is actually quite reasonable. In order for a measurement

on the first qubit to give 0 on the first qubit, a measurement of the whole system must

yield |00⟩ or |01⟩. We know that the first outcome has probability |𝛼00|
2, and the second,

|𝛼01|
2. If we add both probabilities, we obtain the total probability of |𝛼00|

2
+ |𝛼01|

2 for a 0

in the first qubit. If this is indeed the outcome of the measurement, the first qubit then

collapses to |0⟩, but the second one can still be in a superposition of the |0⟩ and |1⟩ states,

with amplitudes 𝛼00 and 𝛼01, respectively. The
√
|𝛼00|

2
+ |𝛼01|

2 value in the denominator

guarantees that the normalization condition is still satisfied. The case when the result is 1

is completely analogous.

Of course, if we instead measure the second qubit, the situation is symmetrical. In fact, If

we have a two-qubit system in the state

𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼10 |10⟩ + 𝛼11 |11⟩

and we measure its second qubit, then

• we will obtain 0 as a result with probability |𝛼00|
2
+ |𝛼10|

2 and the state will collapse

to
𝛼00

√
|𝛼00|

2
+ |𝛼10|

2
|00⟩ +

𝛼10
√
|𝛼00|

2
+ |𝛼10|

2
|10⟩ ;

• or we will obtain 1 as a result with probability |𝛼01|
2
+|𝛼11|

2 and the state will collapse

to
𝛼01

√
|𝛼01|

2
+ |𝛼11|

2
|01⟩ +

𝛼11
√
|𝛼01|

2
+ |𝛼11|

2
|11⟩ .

Let’s see some examples of how to use this in order to determine the probability of different

results when we measure a qubit in a two-qubit system.

Measuring two-qubit systems 105

Imagine that we are given the state

1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩) ,

and we measure its first qubit. We will obtain 0 with probability 1/4 + 1/4 = 1/2 and, in

that case, the state will become
1
√
2
(|00⟩ + |01⟩) .

Likewise, we will obtain 1 with probability 1/4 + 1/4 = 1/2 and the state will collapse to

1
√
2
(|10⟩ + |11⟩) .

If we instead have the state
1
√
2
(|00⟩ + |11⟩) ,

and we we measure its second qubit, we will obtain 0 with probability 1/2 and the state will

collapse to |00⟩; and we will obtain 1 with probability 1/2 and the state will then become

|11⟩.

Exercise 5.6

Compute the probability of obtaining 0 or 1 as a result, and the collapsed states after

each outcome, when measuring the following:

(a) The first qubit of 1
2
(|00⟩ + |01⟩ + |10⟩ − |11⟩)

(b) The second qubit of 1√
3
(|00⟩ − |01⟩ + |10⟩)

(c) The first qubit of 1+𝑖√
2
|11⟩

(d) The second qubit of 1
2
|01⟩ − 1√

2
|10⟩ + 𝑖

2
|11⟩

(e) The first and second qubit of |0⟩ |+⟩

You may now be wondering what would happen if you had a two-qubit system and you

measured one of the qubits and then the other. Would that be any different from measuring

106 Chapter 5: How to Work with Two Qubits

both qubits at the same time? That would be quite problematic, wouldn’t it? Fortunately,

the final results are exactly the same in either situation. Let’s prove it.

Imagine, again, that we have a two-qubit system in the general state

𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼10 |10⟩ + 𝛼11 |11⟩ .

Suppose that we measure its first qubit and that we obtain 1 as a result. We know that this

happens with probability |𝛼10|
2
+ |𝛼11|

2 and that the new state will be

𝛼10
√
|𝛼10|

2
+ |𝛼11|

2
|10⟩ +

𝛼11
√
|𝛼10|

2
+ |𝛼11|

2
|11⟩ .

Assume that we now measure the second qubit and obtain 0 as a result. This will happen

with probability |𝛼10 |
2

|𝛼10 |
2
+|𝛼11 |

2 . Taking into account that the probability of measuring 1 in the

first qubit was |𝛼10|
2
+ |𝛼11|

2, this means that the probability of obtaining 1 in the first qubit

and 0 in the second, when measuring them in that order, is

(|𝛼10|
2
+ |𝛼11|

2
) ⋅

|𝛼10|
2

|𝛼10|
2
+ |𝛼11|

2
= |𝛼10|

2
,

which is exactly the probability of obtaining 10 as a result when we measure both qubits at

the same time. Moreover, the collapsed state will be 𝛼10
|𝛼10 |

|10⟩, which is equivalent to |10⟩

up to an unimportant global phase (go back to Section 2.3.3 if this global phase makes you

uncomfortable!).

As you can easily check yourself, in all other cases, there is no difference between measuring

both qubits sequentially or simultaneously, so the order in which the measurements are

performed—and whether they are performed at the same time or one right after the other—is

completely irrelevant.

Okay, that was more than enough about measuring two-qubit systems. Let’s now move on

to studying two-qubit gates.

Two-qubit gates 107

5.3 Two-qubit gates
As in the case on one-qubit systems, the allowed transformations on two-qubit states are

given by unitary matrices. In this case, however, the matrices will be of size 4, because we

will be multiplying them by column vectors of dimension 4. We will begin by studying

the simplest such transformations, which will be given by two one-qubit gates acting

independently on each of the qubits of the system. Then, we will learn about the all-

important CNOT gate. This will lead us to discuss entanglement and, finally, to prove the

no-cloning theorem. Ready to start?

5.3.1 Tensor products of gates
As we have just mentioned, to act on a two-qubit state, we need a unitary matrix of size 4.

The easiest way of constructing such a matrix is by combining the action of two one-qubit

gates, each acting on one of the qubits of the system. For instance, Figure 5.1 shows an 𝐻

gate applied to the top qubit and an 𝑋 gate acting on the bottom one.

|0⟩ 𝐻

|0⟩ 𝑋

Figure 5.1: A two-qubit circuit

Incidentally, this is our first example of a two-qubit circuit. Notice how we now have two

lines representing each of the two qubits, each of them starting on state |0⟩.

The state of the qubits after applying the two individual one-qubit gates will be

𝐻 |0⟩ ⊗ 𝑋 |0⟩ = |+⟩ ⊗ |1⟩ = |+⟩ |1⟩ .

108 Chapter 5: How to Work with Two Qubits

Important note

When representing the states given by a circuit with two or more qubits, we have

adopted the convention of identifying the topmost qubit of the circuit with the

leftmost qubit of the expression. However, some other authors (and even some

software packages!) take the opposite convention and read the qubits from bottom

to top. Always be sure to know what convention you are working with!

We can consider the combined action of the two one-qubit gates in the circuit of Figure 5.1

as a single two-qubit gate acting on two-qubit states. We denote it by 𝐻 ⊗𝑋 and call it the

tensor product of the one-qubit gates 𝐻 and 𝑋 . In order to obtain its explicit matrix, we

need to use an extension of the tensor product of column vectors that we introduced in

Section 5.1. Namely, if we have two square matrices

𝐴 =
(

𝑎11 𝑎12

𝑎21 𝑎22)
, 𝐵 =

(

𝑏11 𝑏12

𝑏21 𝑏22)

of size 2, their tensor product is given by

𝐴 ⊗ 𝐵 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11
(

𝑏11 𝑏12

𝑏21 𝑏22)
𝑎12

(

𝑏11 𝑏12

𝑏21 𝑏22)

𝑎21
(

𝑏11 𝑏12

𝑏21 𝑏22)
𝑎22

(

𝑏11 𝑏12

𝑏21 𝑏22)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11𝑏11 𝑎11𝑏12 𝑎12𝑏11 𝑎12𝑏12

𝑎11𝑏21 𝑎11𝑏22 𝑎12𝑏21 𝑎12𝑏22

𝑎21𝑏11 𝑎21𝑏12 𝑎22𝑏11 𝑎22𝑏12

𝑎21𝑏21 𝑎21𝑏22 𝑎22𝑏21 𝑎22𝑏22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It turns out that if 𝑈1 and 𝑈2 are unitary gates, then 𝑈1 ⊗ 𝑈2 is also unitary and its action

on tensor product states is given by (𝑈1 ⊗ 𝑈2)(|𝜓1⟩ ⊗ |𝜓2⟩) = (𝑈1 |𝜓1⟩) ⊗ (𝑈2 |𝜓2⟩), just as

we needed.

Two-qubit gates 109

Exercise 5.7

Let 𝑈1, 𝑈2, 𝑈3 and 𝑈4 be square matrices of size 2, and |𝜓1⟩ and |𝜓2⟩ be two one-qubit

states. Prove that

(𝑈1 ⊗ 𝑈2)(|𝜓1⟩ ⊗ |𝜓2⟩) = (𝑈1 |𝜓1⟩) ⊗ (𝑈2 |𝜓2⟩).

Use that to prove that the matrix product (𝑈1 ⊗ 𝑈2)(𝑈3 ⊗ 𝑈4) is equal to (𝑈1𝑈3) ⊗

(𝑈2𝑈4). Deduce that, if 𝑈1 and 𝑈2 are unitary, then so is 𝑈1 ⊗ 𝑈2 and, in fact,

(𝑈1 ⊗ 𝑈2)
† = 𝑈

†

1 ⊗ 𝑈
†

2 .

For instance, the matrix for |𝐻⟩ ⊗ |𝑋⟩ is

(

1√
2

1√
2

1√
2

− 1√
2
)
⊗

(

0 1

1 0)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1√
2

0 1√
2

1√
2

0 1√
2

0

0 1√
2

0 − 1√
2

1√
2

0 − 1√
2

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Notice that, if we have a two-qubit system and we apply a gate to only one of its qubits,

we can still consider this gate to be a two-qubit gate: the tensor product of the identity 𝐼

(the gate that does not change the state of a qubit) with the actual one-qubit gate we have

applied. For instance, if we apply 𝑍 to the second qubit of a two-qubit system, we are, in

fact, applying 𝐼 ⊗ 𝑍 to the whole system.

Exercise 5.8

Explicitly compute the matrix expressions of the following tensor products of gates:

(a) 𝑋 ⊗ 𝐻

(b) 𝑋 ⊗ 𝑋

(c) 𝐼 ⊗ 𝑍

110 Chapter 5: How to Work with Two Qubits

Not all two-qubit gates, though, can be obtained as the tensor product of one-qubit gates;

that would have been too boring, wouldn’t it? In the next section, we focus on one of the

most important and interesting two-qubit gates that cannot be represented as the combined

action of one-qubit gates: the CNOT gate.

5.3.2 The CNOT gate
The CNOT, controlled-NOT, or controlled-X gate is a two-qubit gate that cannot be

obtained as the tensor product of two one-qubit gates. Its name is derived from the way it

acts on the computational basis, which is the following:

CNOT |00⟩ = |00⟩ , CNOT |01⟩ = |01⟩ ,

CNOT |10⟩ = |11⟩ , CNOT |11⟩ = |10⟩ .

As you can observe, the value of the second qubit is reversed (or negated) if and only if the

value of the first qubit is 1. In this way, we can say that the first qubit controls whether

an 𝑋 (also called NOT) gate is applied to the second qubit or not, hence the name of the

operation. Usually, the first qubit is called the control qubit and the second one is called

the target qubit. The action on non-basis states is obtained by linearity. Indeed, we have

that

CNOT(𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼10 |10⟩ + 𝛼11 |11⟩)

= 𝛼00CNOT |00⟩ + 𝛼01CNOT |01⟩ + 𝛼10CNOT |10⟩ + 𝛼11CNOT |11⟩

= 𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼11 |10⟩ + 𝛼10 |11⟩ .

The CNOT gate is usually represented in a circuit as in the following figure, where the

control qubit is the top one and the target qubit is the bottom one:

Two-qubit gates 111

The solid black dot in the figure represents a control, and we will see in later chapters that

it can be used to indicate that a certain qubit controls a specific operation, not necessarily

always a NOT gate. Since the NOT gate is also called the 𝑋 gate, an alternative way of

representing the CNOT gate is as follows:

𝑋

The matrix for the CNOT gate with the control on the first (top) qubit and the target on

the second (bottom) is
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 5.9

Check that the matrix for the the CNOT gate with control on the first (top) qubit

and target on the second (bottom) is indeed

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 5.10

Prove that the CNOT gate cannot be constructed as the tensor product of two

one-qubit quantum gates.

112 Chapter 5: How to Work with Two Qubits

Of course, you can also consider a CNOT gate in which the control qubit is the second

(bottom) one and the target qubit is the first (top) one. In a quantum circuit, it would be

represented as follows:

The matrix of the CNOT whose control is the second (bottom) qubit is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 5.11

Check that the matrix for the the CNOT gate with control on the second qubit and

target on the first is indeed
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now that we have defined the CNOT gate, we can begin to unravel its mysteries. One of

its most important properties is that it allows us to create entanglement, a phenomenon so

relevant that it merits its own discussion. Let’s get to it!

5.3.3 Entanglement
As we have seen earlier in this chapter, the tensor product of two one-qubit states always

yields a two-qubit state. Such states, which can be decomposed as the tensor product of

other states, are said to be product states. For example, |00⟩ is a product state because its

just a shortened way of writing |0⟩ ⊗ |0⟩. Likewise, and even if it is not so apparent, the

Two-qubit gates 113

state
1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩)

is also a product state, because it is equal to |+⟩ |+⟩. Something similar happens with

1
√
2
(|00⟩ + |01⟩),

which is the same state as |0⟩ |+⟩.

Nevertheless, not all two-qubit states are product states. For instance, the seemingly

innocent state
1
√
2
(|00⟩ + |11⟩)

cannot actually be written as the product of two one-qubit states, even if it looks quite

similar to 1√
2
(|00⟩ + |01⟩) = |0⟩ |+⟩. Let’s see why.

Assume that there exist two states |𝜓1⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ and |𝜓2⟩ = 𝑐 |0⟩ + 𝑑 |1⟩ such that

|𝜓1⟩ ⊗ |𝜓2⟩ =
1√
2
(|00⟩ + |11⟩). Then, we would have

1
√
2
(|00⟩ + |11⟩) = (𝑎 |0⟩ + 𝑏 |1⟩) ⊗ (𝑐 |0⟩ + 𝑑 |1⟩) = 𝑎𝑐 |00⟩ + 𝑎𝑑 |01⟩ + 𝑏𝑐 |10⟩ + 𝑏𝑑 |11⟩ .

Since 1√
2
(|00⟩ + |11⟩) has no |01⟩ component, this implies that 𝑎𝑑 = 0. But we know that

𝑎𝑐 = 𝑏𝑑 = 1√
2
, so neither 𝑎 nor 𝑑 can be 0, reaching a contradiction.

Any state that can’t be written as the tensor product of two smaller states is said to be

entangled. Hence, we have just proved that 1√
2
(|00⟩ + |11⟩) is an entangled state.

When measured, entangled states can show correlations that go beyond what is explainable

with just classical physics. This can be extraordinarily valuable for information processing,

as we will see throughout the rest of the this book. As an example, if we measure the first

qubit of a system in the state 1√
2
(|00⟩ + |11⟩), we will obtain 0 with probability 1/2 and 1

also with probability 1/2. If we obtain 0, the state will collapse to |00⟩; thus, if we then

measure the second qubit, we will unequivocally obtain 0. On the contrary, if the first qubit

is measured to be 1, any measurement of the second qubit thereafter will always yield a

114 Chapter 5: How to Work with Two Qubits

1 (unless, of course, we manipulate the state!). And the same happens if we measure the

second qubit first: the result will be 0 or 1 with equal probability, and the outcome will

fully determine the state of the first qubit right after the measurement.

According to the postulates of quantum mechanics, this collapse will occur instantaneously

even if the entangled qubits are very far apart. This sounded fishy to Albert Einstein,

who called it “spooky action at a distance”. However, the effects of entanglement have

been verified in the lab on countless occasions, and entanglement will be one of the key

ingredients in many of our quantum protocols and algorithms. For example, in Chapter 6,

we will study something called quantum teleportation, which relies on the creation of

entangled states such as 1√
2
(|00⟩ + |11⟩).

Exercise 5.12

For each of the following states, determine whether they are entangled or not:

(a) |10⟩

(b) 1√
2
(|00⟩ − |11⟩)

(c) 1
2
(|00⟩ − |01⟩ + |10⟩ − |11⟩)

(d) 1
2
(|00⟩ + |01⟩ + |10⟩ − |11⟩)

As we mentioned previously, we can use the CNOT gate to prepare entangled states. For

instance, the circuit in Figure 5.2 prepares the state 1√
2
(|00⟩ + |11⟩). Indeed, we start with

|00⟩. Then, we apply 𝐻 to the top qubit to obtain |+⟩ |0⟩ = 1√
2
(|00⟩ + |10⟩). If we now apply

the CNOT gate to this state, by linearity, we get

CNOT
(

1
√
2
(|00⟩ + |10⟩

)
=

1
√
2
(CNOT |00⟩ + CNOT |10⟩)

=
1
√
2
(|00⟩ + |11⟩),

as desired.

Two-qubit gates 115

|0⟩ 𝐻

|0⟩

Figure 5.2: Preparing an entangled state

The 1√
2
(|00⟩ + |11⟩) state is so important that it has its own a name and notation. It is

represented by |Φ+⟩ and it is one of the Bell states, the other ones being

|Φ
−⟩ ∶=

1
√
2
(|00⟩ − |11⟩), |

|Ψ
+
⟩ ∶=

1
√
2
(|10⟩ + |01⟩), |Ψ

−⟩ ∶=
1
√
2
(|10⟩ − |01⟩).

We can easily create the rest of the Bell states from 1√
2
(|00⟩+ |11⟩). In fact, as you can easily

check, it holds that:

• (𝑍 ⊗ 𝐼)(1√
2
(|00⟩ + |11⟩)) = (𝐼 ⊗ 𝑍)(1√

2
(|00⟩ + |11⟩)) = 1√

2
(|00⟩ − |11⟩)

• (𝑋 ⊗ 𝐼)(1√
2
(|00⟩ + |11⟩)) = (𝐼 ⊗ 𝑋)(1√

2
(|00⟩ + |11⟩)) = 1√

2
(|10⟩ + |01⟩)

• (𝑋 ⊗ 𝑍)(1√
2
(|00⟩ + |11⟩) = (𝑍 ⊗ 𝑋)(1√

2
(|00⟩ + |11⟩) = 1√

2
(|10⟩ − |01⟩))

Exercise 5.13

Show that the Bell states are entangled.

Now that we are familiar with entanglement, this is a great moment to prove a result that

we have mentioned quite a number of times already: the no-cloning theorem.

5.3.4 The no-cloning theorem
Surprising as it may sound, it is not possible in general to create an independent copy of

an unknown quantum state, even if we are allowed to manipulate the state however we

please. But, what do we really mean by “creating an independent copy of” or “cloning” a

quantum state? Ideally, given a qubit in a unknown state |𝜓⟩ and another, auxiliary qubit

116 Chapter 5: How to Work with Two Qubits

in state |0⟩, we would like to end having the initial qubit still in state |𝜓⟩ and the auxiliary

one also in state |𝜓⟩. That is, we would like to go from |𝜓⟩ ⊗ |0⟩ to |𝜓⟩ ⊗ |𝜓⟩.

We could accomplish this if we had a two-qubit quantum gate 𝑈 such that, for any quantum

state |𝜓⟩, 𝑈(|𝜓⟩ ⊗ |0⟩) = |𝜓⟩ ⊗ |𝜓⟩. But this is, in fact, impossible! Let’s see why.

Imagine that we have such a cloning quantum gate 𝑈 . Then, in particular, it should work

for states |0⟩, |1⟩, and |+⟩. That is, we should have

• 𝑈(|00⟩) = |00⟩,

• 𝑈(|10⟩) = |11⟩,

• 𝑈(|+⟩ |0⟩) = |+⟩ |+⟩.

But notice that |+⟩ |0⟩ = 1√
2
(|00⟩ + |10⟩). Then, by the linearity of 𝑈 , it should hold that

𝑈(|+⟩ |0⟩) = 𝑈(
1
√
2
(|00⟩ + |10⟩)) =

1
√
2
(𝑈 |00⟩ + 𝑈 |10⟩) =

1
√
2
(|00⟩ + |11⟩),

which is not equal to |+⟩ |+⟩, as we needed, because 1√
2
(|00⟩ + |11⟩) is entangled and |+⟩ |+⟩

is a product state. Hence, we have a contradiction that comes solely from assuming the

existence of the gate 𝑈 .

This means that we cannot clone general unknown states. But this does not imply that

we cannot clone particular states. In some cases, when given a qubit, we can operate on a

another qubit so that it ends in the same state as the first one. For instance, we know that

CNOT |00⟩ = |00⟩ and CNOT |10⟩ = |11⟩, so the CNOT gate does copy the states |0⟩ and |1⟩

or, as it’s usually said, it copies classical information. Let’s see another example.

The circuit in Figure 5.3 implements a gate that copies the states |+⟩ and |−⟩. Indeed, if we

start from |+⟩ |0⟩ and we apply the 𝐻 gate to the first qubit, we obtain |0⟩ |0⟩ = |00⟩. Then,

with the CNOT gate, we obtain |00⟩. Now, when we apply an 𝐻 gate to each of the qubits,

we obtain |+⟩ |+⟩. If we start with |−⟩ |0⟩, we obtain the sequence of states |10⟩, |11⟩ and,

finally, after the 𝐻 gates, |−⟩ |−⟩ as required.

Two-qubit gates 117

𝐻 𝐻

𝐻

Figure 5.3: Copying the |+⟩ and |−⟩ states

To learn more. . .

Copying gates can be implemented not only for {|0⟩ , |1⟩} and {|+⟩ , |−⟩}, but for any

pair of one-qubit orthogonal states. If you want to learn what orthogonal states are,

please refer to Appendix A and Appendix B.

This wraps up this chapter on two-qubit systems. In the next one, we will apply all we have

learned here to implement surprising, fun and useful quantum protocols and algorithms.

We are going to get really entangled!

Summary
In this chapter, we have studied two-qubit systems. You now know how to describe the

state of a pair of qubits, how to extract information from them with simultaneous and

sequential measurements, and how to transform their states with two-qubit quantum gates.

In particular, you now have a deep understanding of the CNOT gate, one of the most impor-

tant operations in all of quantum computing. You know that its action cannot be obtained

as the combination of one-qubit gates and that it can be used to create entanglement. In

that regard, you also know how to distinguish entangled from product states. Finally, you

understand the reasons why it is impossible to clone general unknown quantum states, but

you know that certain pairs of the states can always be copied with appropriate quantum

gates.

All this will be extremely helpful to us in the rest of the book, starting with next chapter, in

which we will put our new knowledge into practice by implementing some key quantum

protocols and algorithms.

6
Applications and Protocols
with Two Qubits

Everything we call real is made of things
that cannot be regarded as real.

— Niels Bohr

In Chapter 3, we covered some interesting applications of one-qubit systems, which gave

us a first glimpse into the kind of things that quantum computers can do. And, certainly,

those applications proved one-qubit systems to be interesting and useful. Nevertheless, if

you believe that what we could do with them was impressive. . . you haven’t seen anything

yet. This ride is about to get wild.

Having a qubit in a state of superposition is exciting and mysterious enough, but adding

more qubits to the recipe and mixing it all with entanglement is a game changer. In

this chapter, you will see how quantum algorithms with multiple qubits can be used to

efficiently condense classical information into qubits, and you will also get to explore a

120 Chapter 6: Applications and Protocols with Two Qubits

simple game that shows the power of entanglement. Were this not enough, we will also

introduce a landmark quantum algorithm: Deutsch’s algorithm. If you have ever heard

the infamous saying that “quantum computers are more efficient because they evaluate all

possible solutions at once”, well, with Deutsch’s algorithm, you will begin to understand

where that is coming from.

The contents of this chapter are the following:

• Superdense coding

• The CHSH game

• Deutsch’s algorithm

Before we begin, please make sure that you have a solid understanding of all the material

covered in Chapter 5. Trust us, there’s no way of getting around Bell states and CNOT

gates! With that being said, let’s get started in here.

6.1 Superdense coding
Let’s put ourselves in the following scenario: two people—who, in accordance with our

old customs, we shall name Alice and Bob—want to communicate, and it would suffice for

them to do so by sending two bits of information. We know that this is not particularly

realistic, as acts of communication often require more information, but we’re doing a

thought experiment here. To make things more specific, assume it’s Alice that wants to

send two bits of information to Bob, so she might want to send him the message 00 (two

bits set to zero), the message 01, 10 or 11—one of those four.

If Alice and Bob chose to keep things classical, how many bits would Alice have to send to

Bob? Well, obviously and unsurprisingly, two. But now imagine that they instead choose to

go quantum. If Alice wanted to communicate two bits of information to Bob. . . how many

qubits would she have to send him? This is the question that will keep us busy throughout

this whole section.

Superdense coding 121

Obviously, Alice could send two bits of information using two qubits. If she wanted to send

00, 01, 10 or 11, she could just send two qubits in the states |00⟩, |01⟩, |10⟩ or |11⟩ respectively.

All that Bob would then have to do is performing a measurement in the computational basis

et voilà. Problem solved! But why on Earth would we want to use qubits to do something

for which bits already work beautifully? That wouldn’t make a lot of sense, but, at least,

with this we know that at most we need two qubits to get the job done, and obviously we

need more than zero. Therefore, if we want to do something interesting, this narrows our

options down to sending just one qubit in order to communicate those two bits that Alice

so eagerly wants Bob to receive. Luckily for us, there is a way to achieve this, and it is

through superdense coding. All that it will require is for Alice and Bob to initially share

a pair of qubits in a Bell state.

Important note

Superdense coding enables a party (Alice) to send two bits of information to another

party (Bob) by just sending them one qubit. The protocol assumes that they initially

have one qubit each, and that the pair of qubits is in a Bell state.

So that’s what superdense coding is. Let’s now see how this protocol actually works.

For superdense coding to enable Alice to send two bits to Bob, we first need Alice and Bob

to share a pair of qubits (each with a qubit from the pair) in a Bell state. Thus, we would

need an initial two-qubit system in the state

1
√
2
(|00⟩ + |11⟩),

although any of the other Bell states would work equally well (more on that later in this

section). Here and in what follows, when writing down quantum states and circuits, we

will always assume that the first qubit is Alice’s and the second is Bob’s. Thus, in this initial

setup, we are assuming that Alice has one qubit, that Bob has another qubit, and that the

state of these two qubits (considered as a single two-qubit system) is the one above. To

further clarify this, if Alice’s qubit were in state |1⟩ and Bob’s qubit were in state |0⟩, we

122 Chapter 6: Applications and Protocols with Two Qubits

would say that the total state of the system is |10⟩. Naturally, the state of our system can’t

be written that simply as it is not a product state, but an entangled state.

Exercise 6.1

You want to get the superdense coding protocol started, but you only have two

qubits which are both in state |0⟩ (so the total state is |00⟩). How could you generate

the pair of qubits that Alice and Bob need? Which quantum gates could you apply

and how? Try to come up with two different quantum circuits that would get the

job done.

This pair of entangled qubits in a Bell state that Alice and Bob are assumed to share could

have been created by a third-party who then handed them over to them. Or maybe Alice

and Bob met in advance and prepared and shared the Bell state. In any case, this is our

initial setup and this is all we need to get started. Now how could Alice manage to send to

two bits of information to Bob by sending just one qubit? Well, it depends on the message

she wants to send. Each particular situation will require a slightly different manipulation

of her part of the Bell state and, afterwards, she will be ready to send it to Bob. This is

what she would need to do, case by case:

• If Alice wants to send the bits 00, she does not have to do anything at all. She just

leaves her qubit as it is.

• If Alice wants to send the bits 01, she has to apply the gate 𝑍 to her qubit. The state

of the whole system will then be

1
√
2
(|00⟩ − |11⟩).

• If Alice wants to send the bits 10, she has to apply the gate 𝑋 to her qubit. The state

of the whole system will then be

1
√
2
(|10⟩ + |01⟩).

Superdense coding 123

• If Alice wants to send the bits 11, she has to apply the gate 𝑍 and then the gate 𝑋 (or,

equivalently the gate1 𝑋𝑍) to her qubit. The state of the whole system will then be

1
√
2
(|10⟩ − |01⟩).

Once these transformations are performed, Alice must send her qubit to Bob, so that now

Bob has the whole system in his hands.

Exercise 6.2

Verify that the states of the system after Alice applies the gates on her qubit are the

ones we have claimed.

At this stage, Bob can easily retrieve the two bits that Alice meant to send him. All he has

to do is apply a CNOT gate controlled by his original qubit and with a target on Alice’s

original qubit, and then apply a Hadamard gate on his original qubit; this is all depicted in

Figure 6.1.

Alice’s sent qubit

Bob’s original qubit 𝐻

Figure 6.1: This is the circuit that Bob must run upon receiving Alice’s qubit and being in
possession of the whole system

Actually, you may have noticed that these gates are, in a way, “undoing” the generation of

the original Bell state. At this point, all that is left to do is measure the two qubits that Bob

has: the results will be the qubits that Alice sent him. The measurement on the first qubit

will yield the first bit, and the measurement on the second qubit will return the second bit.

To see why this indeed works, we can analyse each scenario individually.

1Notice that when the gate 𝑋𝑍 acts on a state, the gate 𝑍 acts first and then acts the gate 𝑋 : 𝑋𝑍 |𝜓⟩ =

𝑋(𝑍 |𝜓⟩).

124 Chapter 6: Applications and Protocols with Two Qubits

• If Alice sent the bits 00, the state right before the measurement will be |00⟩, because

we are just undoing the creation of the Bell state.

• If Alice sent the bits 01, the action of the CNOT gate transforms the state as

1
√
2
(|00⟩ − |11⟩) ⟶

1
√
2
(|00⟩ − |01⟩) = |0⟩ ⊗ |−⟩ ,

so the application of the 𝐻 gate will leave the state as |01⟩ and the measurement will

return 01.

• If Alice sent the bits 10, the action of the CNOT gate transforms the state as

1
√
2
(|10⟩ + |01⟩) ⟶

1
√
2
(|10⟩ + |11⟩) = |1⟩ ⊗ |+⟩ ,

so the application of the 𝐻 gate will leave the state as |10⟩ and any measurement will

return 10.

• Lastly and analogously, if Alice sent the bits 11, the action of the CNOT and Hadamard

gates bring the state of the system to |11⟩, and any measurement will return 11, as

desired.

Exercise 6.3

Verify that, indeed, if Alice sent the bits 00 or 11, the action of the CNOT and

Hadamard gates, as shown in Figure 6.1, leaves the state of the system as |00⟩ or |11⟩,

respectively.

And that’s pretty much it for the superdense coding protocol. Now when you look at this

for the first time it may seem slightly overwhelming, with lots of steps and seemingly

arbitrary choices involved. Thus, we shall now invest some time in trying to digest this.

Firstly, let us condense the behaviour of the protocol in a compact statement.

Superdense coding 125

Important note

If Alice wants to send Bob two bits 𝑎, 𝑏 through the superdense protocol, she must

apply the gate 𝑋𝑎𝑍𝑏 to her qubit and then send it to Bob. If Bob then executes the

circuit depicted in Figure 6.1, he will retrieve the two bits (𝑎, 𝑏) in the measurement

operations. The measurement of the first qubit will yield 𝑎 while that of the second

qubit will yield 𝑏 .

In summary and looking at the big picture, superdense coding replaces the need for sending

two bits with the requirement of getting the two communicating parties to have each a

qubit from an entangled pair. From this point, the protocol exploits the fact that, in an

entangled pair of qubits, it is enough to act on one of the qubits in order to modify the

whole state; and, thus, the sender is able to encode their two-bit message into the whole

system by just manipulating their own qubit and then sending it to the receiver.

From a practical point of view, we should highlight that the protocol works regardless

of the distance at which the two communicating parties are. In our example, it wouldn’t

matter if Alice were on the Moon and Bob were on Mars: entanglement works at any

distance! This might not be particularly surprising at this point, but this idea will gain

relevance in the following section.

Now for those of you who are more comfortable with abstract linear algebra, we would

like to share with you a small remark that might prove to be insightful.

To learn more. . .

Let 𝑃 be the two-qubit quantum gate that results from combining the CNOT and

Hadamard operations in Figure 6.1. If 𝐼 is the identity gate in one qubit, then, clearly,

126 Chapter 6: Applications and Protocols with Two Qubits

𝑃(𝐼 ⊗ 𝐼)𝑃† = 𝐼 ⊗ 𝐼 . Moreover, you can easily check for yourself how

𝑃(𝑋 ⊗ 𝐼)𝑃
†
= 𝑋 ⊗ 𝐼 , 𝑃(𝑍 ⊗ 𝐼)𝑃

†
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the last operator only differs from 𝐼 ⊗ 𝑋 by a −1 factor in the image of |11⟩.

These are all the ingredients that you would need to trivially deduce why superdense

coding works. We leave the rest of the thinking to you!

Earlier in this section, we mentioned that, while we were going to use 1√
2
(|00⟩ + |11⟩) as

the initial state for our pair of entangled qubits, any other Bell state would do the trick. As

a nice way of bringing our discussion of superdense coding to an end, this matter can be

worth exploring. But it would be unjust for us to deprive you of the joy of doing it yourself,

so we are leaving it as an exercise.

Exercise 6.4

In the superdense coding protocol, assume that—perhaps because of reasons of

technical convenience—the initial state of the pair of entangled qubits is

1
√
2
(|10⟩ + |01⟩ .

If Alice wants to send two bits (𝑎, 𝑏), what gates would she have to apply to her

qubit (in terms of 𝑎 and 𝑏) for the rest of the protocol to work as intended from

Bob’s point of view?

And that’s it for superdense coding. You may wish to know that this protocol was introduced

by Charles H. Bennett and Stephen Wiesner, whom we already met in Chapter 3 and you

The CHSH game 127

can read more about it in their work “Communication via one-and two-particle operators

on Einstein-Podolsky-Rosen states” [50].

Now it’s time to further dive into the wonders of quantum entanglement. Let’s discuss an

interesting game!

6.2 The CHSH game
In the previous section, we discussed a simple two-qubit protocol that, leveraging on

entanglement, enabled the communication of two classical bits of information through

the transmission of a single qubit. When you think about it, entanglement is a rather

interesting construction: it implies that two systems, regardless of the physical separation

between them, can be perfectly and instantaneously interconnected. In this section, we

will dive even deeper into these implications with a simple game.

Imagine that our two favourite characters, Alice and Bob, are very far away from each other.

To make things more specific, we will assume that Alice is having lunch in Villalpando

while Bob is visiting a park in Poolbeg, and hence they are 1276.8 km away from each other.

For some odd reason, they have gotten themselves into an equally odd game. Two referees,

Antonio (who is right next to Alice) and Brigid (who is with Bob) will, at the same instant,

pick a random bit uniformly: Antonio will pick a bit 𝑥 and Brigid will pick a bit 𝑦. Right

after that, Alice and Bob have to pick one bit each: Alice must pick a bit 𝑎 and Bob must

pick a bit 𝑏 , and they must do so in such a way that

𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦,

where ⊕ denotes the XOR operation (addition modulo 2). This means that, if 𝑥 = 1 and

𝑦 = 1, then either Alice or Bob must pick their bit to be 1, while the other must set their

bit to 0. On the contrary, if 𝑥 = 0 or 𝑦 = 0, either both Alice and Bob must pick 0 or both

must pick 1. If they manage to pick a pair of bits that satisfies these constraints, they win!

And the good news is that, before the game starts, they can talk over the phone to agree

128 Chapter 6: Applications and Protocols with Two Qubits

on a strategy to follow and, what is more, they have unlimited access to all technology,

quantum and classical. Seems easy, doesn’t it? Sadly, there are some bad news as well.

To spice things up, the organizers of the game have decided that, counting from the moment

at which the referees choose their bits, Alice and Bob only have 1 microsecond (1 × 10−6 s)

to make their choices. Of course they can use a computer to apply whichever strategy they

have agreed on in less than a microsecond but there’s a catch, which is that this constraint

prevents Alice and Bob from communicating at all before making a choice (and after the

referees have made theirs). The reason for this is that, travelling at the speed of light, it

would take approximately 4.256 microseconds (4.256 × 10−6 s) to go from Villalpando to

Poolbeg, and classical information can never travel faster than the speed of light! So this

complicates things a little bit.

This is what the CHSH game is, and now we need to figure out a way for Alice and Bob

to maximise their odds of winning this game. As you may have guessed, entanglement is

going to play a role sooner or later, but, for now, let’s think classically. Giving up all access

to qubits and quantum gates, how could we play this game, and play it right?

To learn more. . .

In case you were curious, the CHSH game is named after the CHSH inequality, which

is itself named after the four people who developed it: Clauser, Horne, Shimony and

Holt. This inequality was introduced in the 1969 article “Proposed experiment to

test local hidden-variable theories” [51].

We were promised that Antonio and Brigid, our dear referees, would be picking their bits

perfectly at random. This means that there is a 25% chance that they will both pick a 1

(result 𝑥 = 𝑦 = 1) and a 75% chance that at least one of them will pick a bit to be 0 (results

(𝑥, 𝑦) = (0, 0), (0, 1), (1, 0)). Consequently, if Alice and Bob agree to both pick 0 regardless

of everything, they are guaranteed to win with 75% probability. And this may seem like an

innocent strategy, but it can actually be proved that no classical strategy can yield better

odds of winning! As always, if you don’t believe us, you are more than welcome to try to

The CHSH game 129

come up with a better strategy yourself (or perhaps more reasonably, with a proof of our

claim).

Exercise 6.5

Prepare a different classical strategy that would also yield a 75% success rate.

And that’s all that we can do with access to classical technology, when we are bounded by

the speed of light not to communicate with each other. But what if we brought quantum

computing into the mix? As it turns out, there is a way in which, using entanglement, we

can boost the odds of our strategies within the CHSH game. And that’s where our focus is

going to be for the remainder of this section.

You may remember that, in Chapter 3, we introduced 𝑌 -rotation gates. These were

parametrised by an angle 𝜃 and their coordinate matrices were defined as

𝑅𝑌 (𝜃) ≔
(

cos 𝜃
2

− sin 𝜃
2

sin 𝜃
2

cos 𝜃
2
)
.

These gates will give us some of the key ingredients that we will need to quantumize and

improve our strategy for the CHSH game. But, before we can take full advantage of them,

we need to discuss some of their properties.

First, we should notice that the Bell state 1√
2
(|00⟩ + |11⟩) is invariant under 𝑌 -rotations,

which is to say that, for any angle 𝜃,

1
√
2
(𝑅𝑌 (𝜃) ⊗ 𝑅𝑌 (𝜃))(|00⟩ + |11⟩) =

1
√
2
(|00⟩ + |11⟩).

Indeed, a direct computation reveals that

1
√
2
(𝑅𝑌 (𝜃) ⊗ 𝑅𝑌 (𝜃))(|00⟩ + |11⟩) =

1
√
2
(𝑅𝑌 (𝜃) |0⟩ 𝑅𝑌 (𝜃) |0⟩ + 𝑅𝑌 (𝜃) |1⟩ 𝑅𝑌 (𝜃) |1⟩)

130 Chapter 6: Applications and Protocols with Two Qubits

=
1
√
2
(((cos 𝜃/2)

2
+ (sin 𝜃/2)

2
) |00⟩ + ((sin 𝜃/2)

2
+ (cos 𝜃/2)

2
) |11⟩ + 0 |01⟩ + 0 |10⟩)

=
1
√
2
(|00⟩ + |11⟩).

And lastly, we also need to be aware of the following fact that we leave as an exercise.

Exercise 6.6

Show that, for any angles 𝛼 and 𝛽, we have 𝑅𝑌 (𝛼 + 𝛽) = 𝑅𝑌 (𝛼)𝑅𝑌 (𝛽). In a way, this

generalizes the result that you proved in Exercise 3.6.

And that’s pretty much all we need to know about 𝑌 -rotation gates. Now, how can these

gates lead to a better CHSH strategy? This is the plan: we will now introduce a quantum

strategy for the CHSH game, and then we will explore its details and verify whether it

provides any advantages over classical approaches (spoiler: it does).

For our quantum CHSH strategy, we first need Alice and Bob to have each (you guessed it)

a qubit from a pair in a Bell state, which we will assume to be 1√
2
(|00⟩ + |11⟩. Those are all

the pre-requisites. Now, this is the strategy that Alice and Bob need to follow.

From Alice’s side:

• If her referee Antonio picks the bit 0, she does nothing.

• If Antonio picks the bit 1, she applies the gate 𝑅𝑌 (𝜋/2) on her qubit.

From Bob’s side:

• If his referee Brigid picks the bit 0, he applies the 𝑅𝑌 (𝜋/4) gate on his qubit.

• If Brigid picks the bit 1, he applies the 𝑅𝑌 (−𝜋/4) gate on his qubit.

For each of them, once they have concluded these operations, they measure their respective

qubits and they pick as their bit whichever outcome they get from the measurement. That’s

it. Plain and simple. At no point is there a need for Alice and Bob to send information to

each other about which bits they are picking or what bits their referees have chosen.

For ease of reference, the key figures used in this protocol are summarised in Table 6.1.

The CHSH game 131

Referee picks 0 Referee picks 1

Alice rotates by. . . 0 𝜋/2

Bob rotates by. . . 𝜋/4 −𝜋/4

(a) Angles used in the 𝑌 -rotations performed by Alice and Bob in terms of the bits picked by their
respective referees

Angle differences Antonio picks 0 Antonio picks 1

Brigid picks 0 𝜋/4 𝜋/4

Brigid picks 1 𝜋/4 3𝜋/4

(b) Absolute value of the differences between the angles used by Alice and Bob in their 𝑌 -rotations,
depending on the choices of the referees

Table 6.1: Key figures in the quantum protocol for the CHSH game

So, does this complex set up lead to any gains? There are four possible scenarios: both

referees pick 0, both pick 1, Antonio picks 0 and Brigid picks 1, and Antonio picks 1 and

Brigid picks 0. According to our assumptions, all of these scenarios are equally likely, so

we will compute the probability of success in each of them and then take the average. If

the average is bigger than 75%, we can call it a day!

Let’s first assume that both Antonio and Brigid choose the bit 0, which means that Alice

and Bob will win if they choose the same bits. In this case, the state of the whole system

would be
1
√
2
(|0⟩ ⊗ 𝑅𝑌 (𝜋/4) |0⟩ + |1⟩ ⊗ 𝑅𝑌 (𝜋/4) |1⟩),

where, as usual, the first qubit is Alice’s and the second is Bob’s. If we expand this expression

as per the definition of the 𝑅𝑌 gates, this yields the state

cos(𝜋/8)
(

1
√
2
(|00⟩ + |11⟩)

)
+ sin(𝜋/8)

(

1
√
2
(|01⟩ − |10⟩)

)
,

which means that the probability that Alice’s and Bob’s measurements will coincide is

(cos 𝜋/8)2, whereas the probability that they will get different results is (sin 𝜋/8)2. If this

132 Chapter 6: Applications and Protocols with Two Qubits

isn’t obvious, you can further expand this expression and then add up the probabilities of

the outcomes 00 and 11, this will yield the probability that the two outcomes coincide.

Let’s now assume that Antonio picked a 0 and Brigid picked a 1. In this case, Alice and

Bob would win if they pick the same bits, and the state of the system is

1
√
2
(|0⟩ ⊗ 𝑅𝑌 (−𝜋/4) |0⟩ + |1⟩ ⊗ 𝑅𝑌 (−𝜋/4) |1⟩),

which is perfectly analogous to the situation that we had before. You can easily check for

yourself that, in this case, the probability of success is, once again (cos 𝜋/8)2.

Exercise 6.7

Expand the expression above and prove that, indeed, when Antonio picks 0 and

Brigid picks 1, the strategy succeeds with probability (cos 𝜋/8)2.

Now let’s consider the scenario in which Antonio picks 1 and Brigid picks 0. As before,

Alice and Bob would win if they choose the same bits. And in this situation, the state of

the system is

1
√
2
(𝑅𝑌 (𝜋/2) |0⟩ ⊗ 𝑅𝑌 (𝜋/4) |0⟩ + 𝑅𝑌 (𝜋/2) |1⟩ ⊗ 𝑅𝑌 (𝜋/4) |1⟩),

which can be rewritten as

1
√
2
(𝑅𝑌 (𝜋/4) ⊗ 𝐼) ⋅ (𝑅𝑌 (𝜋/4) ⊗ 𝑅𝑌 (𝜋/4)) ⋅ (|00⟩ + |11⟩),

where 𝐼 is the identity gate. Moreover, because of the invariance of Bell states under

rotations, the state is equal to

1
√
2
(𝑅𝑌 (𝜋/4 |0⟩) ⊗ |0⟩ + 𝑅𝑌 (𝜋/4) |1⟩ ⊗ |1⟩),

The CHSH game 133

and by expanding the action of the rotation gates, it can be easily found to be equal to

cos(𝜋/8)
(

1
√
2
(|00⟩ + |11⟩)

)
+ sin(𝜋/8)

(

1
√
2
(|10⟩ − |01⟩)

)
,

hence the probability of success in this scenario is, again, (cos 𝜋/8)2

Lastly, when both Antonio and Brigid pick 1, Alice and Bob will win if they pick different

bits. In this case, the state of the system is

1
√
2
(𝑅𝑌 (𝜋/2) |0⟩ ⊗ 𝑅𝑌 (−𝜋/4) |0⟩ + 𝑅𝑌 (𝜋/2) |1⟩ ⊗ 𝑅𝑌 (−𝜋/4) |1⟩),

which, through the invariance of Bell states under rotation gates, can be rewritten as

1
√
2
(𝑅𝑌 (3𝜋/4) |0⟩ ⊗ |0⟩ + 𝑅𝑌 (3𝜋/4) |1⟩ ⊗ |1⟩),

and the expansion of the rotation gates yields

cos(3𝜋/8)
(

1
√
2
(|00⟩ + |11⟩)

)
+ sin(3𝜋/8)

(

1
√
2
(|10⟩ − |01⟩)

)
,

hence, in this case, the probability of success will be (sin 3𝜋/8)2, since Alice and Bob will

win if they get different measurement outcomes. However,

sin(3𝜋/8) = cos(3𝜋/8 − 𝜋/2) = cos(−𝜋/8) = cos(𝜋/8),

so, in this case, the probability of success will be, once again, (cos 𝜋/8)2.

Exercise 6.8

Using the invariance of Bell states under 𝑌 -rotations, show that, indeed, the state

1
√
2
(𝑅𝑌 (𝜋/2) |0⟩ ⊗ 𝑅𝑌 (−𝜋/4) |0⟩ + 𝑅𝑌 (𝜋/2) |1⟩ ⊗ 𝑅𝑌 (−𝜋/4) |1⟩)

134 Chapter 6: Applications and Protocols with Two Qubits

is equal to
1
√
2
(𝑅𝑌 (3𝜋/4) |0⟩ ⊗ |0⟩ + 𝑅𝑌 (3𝜋/4) |1⟩ ⊗ |1⟩).

In all the scenarios that we have considered, the probability of winning was (cos 𝜋/8)2, so

that must be the global success probability of our strategy. And, at the moment of truth, a

simple verification reveals that (cos 𝜋/8)2 ≈ 85%, which is significantly greater than the

75% success rate that any other classical approach would have been able to provide.

To learn more. . .

It can be proved that no quantum protocol can yield a success rate bigger than

(cos 𝜋/8)2; this result is known as Tsirelson’s bound [52].

The CHSH game has shown us how quantum entanglement can help us achieve things that

are unimaginable from a classical point of view, and it is a nice application of two-qubit

systems. However, there’s much more to this protocol and behind this protocol, for its

physical implications are much deeper than what we can hope to discuss in this book. For

our purposes, we will just state that quantum strategies for the CHSH game have been

demonstrated experimentally [53], and, vaguely speaking, this shows that entanglement is

a very real phenomenon. On the more practical side of things, the CHSH game has been

used in cryptographic protocols for generation of certified random bits that can be used,

for instance, in cryptographic settings.

To learn more. . .

The theoretical foundation for the CHSH game was introduced in the paper “Pro-

posed experiment to test local hidden-variable theories” [51], by Clauser, Horne,

Shimony and Holt. Most significantly, the empirical verification of the quantum

protocol for this game leads to the impossibility of “local realism”. If you would

like to learn a little bit more about this, Chapter 2 in Quantum Computation and

Quantum Information: 10th Anniversary Edition [13] can be a good place to get

started.

Deutsch’s algorithm 135

We should highlight that John Clauser was awarded the 2020 Nobel Prize in Physics,

together with Alain Aspect and Anton Zeilinger, for conducting some experi-

ments [51], [54]–[56] with entangled photons that build on the principles that

we have explored with the CHSH game.

And that’s it about the CHSH game. In the following section we will have a chance to

explore Deutsch’s algorithm: the most simple quantum algorithm that best encapsulates

some of the key principles and ideas that make quantum computing the mighty and

interesting paradigm that it is. We have some exciting pages ahead!

6.3 Deutsch’s algorithm
In this section, we are going to introduce Deutsch’s algorithm, which—in spite of its

modest applications—will show you new ways in which superposition, entanglement and

interference can play together, and it will introduce you to some of the conceptual ideas

that we will better develop and exploit in other algorithms throughout the book.

So what does Deutsch’s algorithm actually do? It all has to do with a special kind of

functions known as one-bit Boolean functions. A one-bit Boolean function is, simply,

a function that takes as input a bit and returns another bit as output. For example, the

function 𝑓 defined through

𝑓 (0) ≔ 0, 𝑓 (1) ≔ 1

is a good example of a one-bit Boolean function. In fact, as you may have guessed already,

one-bit functions aren’t that complicated and we can even list them all right now (there

are only four of them!). These are all the possible one-bit Boolean functions that you can

find out there in the wild:

𝑓0(0) ≔ 0, 𝑓0(1) ≔ 0,

136 Chapter 6: Applications and Protocols with Two Qubits

𝑓1(0) ≔ 0, 𝑓1(1) ≔ 1,

𝑓2(0) ≔ 1, 𝑓2(1) ≔ 0,

𝑓3(0) ≔ 1, 𝑓3(1) ≔ 1,

Two of these functions are constant, namely 𝑓0 and 𝑓3, because they maps all their inputs

to the same output. On the other hand, the remaining two functions, 𝑓2 and 𝑓3, are said to

be balanced. This name stems from the fact that those functions map half of their inputs

to 0 and half of their inputs to 1.

Deutsch’s algorithm enables us to determine, in a single shot, whether a function is constant

or balanced. And let’s think about what this means for a second. If you approached this

problem with a good old classical computer, you would necessarily need to evaluate the

function twice: once to obtain 𝑓 (0) and once to evaluate 𝑓 (1). What Deutsch’s algorithm

promises to deliver instead is to solve the problem with a single evaluation of the function.

These promises may sound impressive, but all of this begs the question: how on earth is a

quantum algorithm going to evaluate a one-bit Boolean function? To understand that, we

must resort to an oracle.

6.3.1 Deutsch’s oracle
A way in which a quantum computer can evaluate a Boolean function 𝑓 is through an

oracle. An oracle for a one-bit Boolean function 𝑓 is a two-qubit quantum gate 𝑂𝑓 that is

given to us as a black box: this means that we cannot see how it is implemented, we cannot

see what 𝑓 actually is, but we can use the gate in our circuits. Moreover, 𝑂𝑓 promises to

transform any state |𝑥⟩ ⊗ |𝑦⟩ from the canonical basis (where 𝑥, 𝑦 may take the values 0, 1)

into the state |𝑥⟩ ⊗ |𝑦 ⊕ 𝑓 (𝑦)⟩, where ⊕ denotes the XOR (or addition modulo 2) operation.

In a circuit, this is represented as follows:

𝑥

𝑂𝑓

𝑥

𝑦 |𝑦 ⊕ 𝑓 (𝑥)⟩

Deutsch’s algorithm 137

Thus, for example, an oracle for the function 𝑓2 that we introduced before would be a

two-qubit gate 𝑂𝑓2 that would transform the computational basis states as

𝑂𝑓2(|00⟩) = |0⟩ ⊗ |0 ⊕ 𝑓2(0)⟩ = |0⟩ ⊗ |0 ⊕ 1⟩ = |01⟩ ,

𝑂𝑓2(|01⟩) = |0⟩ ⊗ |1 ⊕ 𝑓2(0)⟩ = |0⟩ ⊗ |1 ⊕ 1⟩ = |00⟩ ,

𝑂𝑓2(|10⟩) = |1⟩ ⊗ |0 ⊕ 𝑓2(1)⟩ = |1⟩ ⊗ |0 ⊕ 0⟩ = |10⟩ ,

𝑂𝑓2(|11⟩) = |1⟩ ⊗ |1 ⊕ 𝑓2(1)⟩ = |1⟩ ⊗ |1 ⊕ 0⟩ = |11⟩ ,

and, of course, its action would be extended by linearity to all possible quantum states.

Now, when we approach our problem we would be given the oracle 𝑂𝑓2 as an obscure

quantum gate, and we would not know how it is actually implemented: all that we would

be able to do is run circuits using this gate, and Deutsch’s algorithm promises us that we

will only need to do it once in order to determine whether the function hidden behind the

oracle is balanced or constant. However, underneath the hood, if we were tasked with

preparing an oracle for 𝑓2, we could easily build it as, for instance, shown in Figure 6.2.

… 𝑋 𝑋 …

… …

Figure 6.2: This is how an oracle for 𝑓2 could be implemented underneath the hood. In the
problem that we are considering, this gate is a device that we are given as a black box, and we
are clueless about how it works on the inside

Exercise 6.9

Verify that the circuit shown in Figure 6.2 actually implements an oracle for 𝑓2.

Exercise 6.10

You have seen how an oracle for 𝑓2 can be implemented. Now it’s time for you to

get your hands dirty. In this exercise, we invite you to implement an oracle for the

one-bit Boolean functions 𝑓0, 𝑓1 and 𝑓3 that we defined previously.

138 Chapter 6: Applications and Protocols with Two Qubits

Now that we know what oracles are, we can clearly state what Deutsch’s algorithm will be

able to do.

Important note

Deutsch’s algorithm can determine, in a single evaluation and with full certainty,

whether a one-bit function 𝑓 , provided as an oracle, is balanced or constant.

At this stage, oracles may seem like a mere funny device, but in Chapter 9 you will see and

understand why they are a fundamental abstraction in the design and analysis of quantum

algorithms—far beyond what they can achieve in Deutsch’s algorithm. In any case, for

now, we are more than covered in terms of oracle knowledge, so let’s discuss what the deal

is with this fancy algorithm we’ve been talking so much about.

6.3.2 The inner workings of Deutsch’s algorithm
In order to run Deutsch’s algorithm, we need a pair of qubits initialized to the state |01⟩ (if

we are given a system initialized to |00⟩, we would only need to apply an 𝑋 gate on the

second qubit in order to reach the state |01⟩). Our first operation on them will be to apply a

Hadamard gate to each qubit, as shown in the following figure:

|0⟩ 𝐻

|1⟩ 𝐻

After this step, the state of our system will be

1
√
2
(|0⟩ + |1⟩) ⊗

1
√
2
(|0⟩ − |1⟩) =

|0⟩ ⊗ (|0⟩ − |1⟩)

2
+

|1⟩ (|0⟩ − |1⟩)

2
.

Following this, we need to apply the oracle of 𝑓 on our two qubits, so our circuit so far will

be as follows:

|0⟩ 𝐻

𝑂𝑓

|1⟩ 𝐻

Deutsch’s algorithm 139

This will transform the state of our system into

|0⟩ ⊗ (|0 ⊕ 𝑓 (0)⟩ − |1 ⊕ 𝑓 (0)⟩)

2
+

|1⟩ ⊗ (|0 ⊕ 𝑓 (1)⟩ − |1 ⊕ 𝑓 (1)⟩)

2
,

which is. . . a somewhat complicated expression to deal with, isn’t it? Luckily, it can be

greatly simplified if we examine it closely. To this end, consider any bit 𝑏 . If 𝑏 = 0, then

|0 ⊕ 𝑏⟩ − |1 ⊕ 𝑏⟩ = (|0⟩ − |1⟩),

whereas, if 𝑏 = 1, we have

|0 ⊕ 𝑏⟩ − |1 ⊕ 𝑏⟩ = |1⟩ − |0⟩ = −(|0⟩ − |1⟩).

Since (−1)0 = 1 and (−1)1 = −1, we can write, for any bit 𝑏 ,

|0 ⊕ 𝑏⟩ − |1 ⊕ 𝑏⟩ = (−1)
𝑏
(|0⟩ − |1⟩).

In particular, this must be true when 𝑏 is 𝑓 (0) or 𝑓 (1), so we can simplify our state above

as
|0⟩ ⊗ (−1)𝑓 (0)(|0⟩ − |1⟩)

2
+

|1⟩ ⊗ (−1)𝑓 (1)(|0⟩ − |1⟩)

2
.

We have mentioned in the past that states that differ by a global phase factor are perfectly

equivalent from a computational point of view (head back to the end of Chapter 2 if you

need to meditate on this matter). Thus, it would be completely harmless to multiply the

whole state of our system by a factor (−1)𝑓 (0); we can think of it as a mere change of

notation. If we do it, we have the following representation of the state of our system

|0⟩ ⊗�����
(−1)2𝑓 (0)(|0⟩ − |1⟩)

2
+

|1⟩ ⊗ (−1)𝑓 (0)+𝑓 (1)(|0⟩ − |1⟩)

2
.

where we have cancelled the (−1)2𝑓 (0) factor since it is equal to ((−1)2)𝑓 (0) = 1𝑓 (0) = 1.

140 Chapter 6: Applications and Protocols with Two Qubits

With this, we already have all the ingredients to neatly finish the algorithm and solve

our problem. If 𝑓 is constant, 𝑓 (0) = 𝑓 (1) and hence (−1)𝑓 (0)+𝑓 (1) = 1, so the state of our

system would be

|0⟩ ⊗ (|0⟩ − |1⟩)

2
+

|1⟩ ⊗ (|0⟩ − |1⟩)

2
=

1
√
2
(|0⟩ + |1⟩) ⊗

1
√
2
(|0⟩ − |1⟩) = |+⟩ ⊗ |−⟩ .

On the other hand, if 𝑓 is balanced, 𝑓 (0) ≠ 𝑓 (1), which means that one of them must be 0

while the other must be 1, so (−1)𝑓 (0)+𝑓 (1) = −1. Thus, our system would be in the state

|0⟩ ⊗ (|0⟩ − |1⟩)

2
−

|1⟩ ⊗ (|0⟩ − |1⟩)

2
=

1
√
2
(|0⟩ − |1⟩) ⊗

1
√
2
(|0⟩ − |1⟩) = |−⟩ ⊗ |−⟩ .

Incidentally, here we are seeing a manifestation of a phenomenon known as phase kick-

back: the (−1)𝑓 (0)+𝑓 (1) phase that seemed to only affect the second qubit, “kickbacks” and

ends up affecting the whole system.

Taking all that we’ve done into account, if we apply a Hadamard gate on the first qubit,

the first qubit will be in state |0⟩ if the function is constant and it will be in state |1⟩ if the

function is balanced. Voilà! At this stage, we are just a measurement away from having

solved our problem.

Important note

Given an oracle 𝑂𝑓 for a one-bit Boolean function 𝑓 , if we run a single shot of the

circuit

|0⟩ 𝐻

𝑂𝑓

𝐻

|1⟩ 𝐻

,

the measurement on the first qubit will return 0 if the function is constant and it

will return 1 if the function is balanced. This is Deutsch’s algorithm.

There are some crucial facts that are worth highlighting about this algorithm that we

have just introduced. The first of them is that this algorithm, unlike many other quantum

Deutsch’s algorithm 141

algorithms, is not probabilistic. With a single shot, we are guaranteed to get the result

that we are expecting. It only takes one execution of the algorithm in order to find out

whether the function that we are considering is balanced or constant.

Another detail that is worth mentioning is that this algorithm is the first we have discussed

that kind of realises this promise that “quantum computers can evaluate all possible so-

lutions at the same time”. We have all heard that statement at some point, and most of

the time it is presented as something that is simple to achieve theoretically, and all the

credit goes to superposition. However, even with this simple algorithm, you have hopefully

seen how, behind this idea, there is much more than superposition at play. In particular, in

Deutsch’s algorithm, we have used several of the key ingredients of all quantum algorithms:

• The first Hadamard gates created superposition.

• The oracle transformed the resulting state.

• The final Hadamard gates used interference to lead us to the results that we wanted.

Let this be an appetizer. We will discuss this further in Chapter 9.

And that’s it about Deutsch’s algorithm! Maybe being able to determine whether a one-

qubit function is balanced or constant doesn’t seem like a game changer, but it is one more

step in our journey towards more complex quantum algorithms. We should also mention

that this algorithm, which was introduced by David Deutsch in the article “Quantum theory,

the Church–Turing principle and the universal quantum computer” [57], is just a particular

case of a more general algorithm introduced by Deutsch and Richard Jozsa [58]; we will

have a chance to explore it in Chapter 9. Anyway, for now, let’s wrap up this chapter.

Summary
In this chapter, we have discussed some interesting applications of two-qubit systems,

which have allowed us to deepen our understanding of these systems and have helped

us illustrate how entanglement (in addition to superposition and interference) is used in

quantum algorithms.

142 Chapter 6: Applications and Protocols with Two Qubits

We began this chapter with superdense coding, a compact way of transmitting classical

information via quantum means; we saw how this protocol enables two parties to send two

bits of classical data encoded in a single qubit. Then we introduced the CHSH game, which

unraveled some of the hidden power of quantum entanglement. Both of these protocols

assumed that the two communicating parties had each a qubit from a pair in a Bell state.

Lastly, we introduced Deutsch’s algorithm that allowed us to determine whether a one-bit

Boolean function was constant or balanced using a single call to an oracle. This algorithm

gave us a first glimpse into some ideas that we will reuse and further develop later in the

book, when we get to discuss more sophisticated quantum algorithms.

In the following chapter, we will see all of this in action with Qiskit: everything we’ve

learnt about two-qubit systems and their applications is going to come to life through code.

This will be our last stop before taking the big jump into systems with arbitrarily many

qubits. Things are moving fast!

7
Coding Two-Qubit
Algorithms in Qiskit

Two heads are better than one, not because either is infallible, but
because they are unlikely to go wrong in the same direction.

— C.S. Lewis

In the last couple of chapters, we have studied quite a number of algorithms and protocols

that work on two-qubit systems. It is thus time for us to learn how to use Qiskit to construct

and run circuits that act on two qubits.

We will start with some simple examples that will illustrate how to work with two qubits

in Qiskit. As you will soon see, adding a new qubit to the mix won’t change things that

much. The only difference will be our having to keep track of which qubit we are applying

gates to, and the introduction of two-qubit gates such as the CNOT gate.

144 Chapter 7: Coding Two-Qubit Algorithms in Qiskit

Then, we will move on to implement some of the protocols that we have already discussed

from a theoretical point of view, including superdense coding, the CHSH game, and

Deutsch’s algorithm.

The topics that we will cover in this chapter are the following:

• Working with two qubits in Qiskit

• Superdense coding

• The CHSH game

• Deutsch’s algorithm

Get ready! With Qiskit, entanglement is just a few keystrokes away.

7.1 Working with two qubits in Qiskit
In order to work with two-qubit systems in Qiskit, we need to start by defining a quantum

circuit that has a pair of qubits. In quantum computing jargon, these two qubits form what

is called a quantum register. In fact, a register is nothing more than a bunch of qubits (or

bits, if it is a classical register) that are grouped together and that we can use for some

purpose. In this chapter, we are going to work only with quantum registers of two qubits,

but in Chapter 10 we will extend this to registers with an arbitrary number of qubits.

So, how can we define a quantum circuit with a two-qubit register in Qiskit? It couldn’t be

easier. We just need to use the following piece of code:

from qiskit import QuantumCircuit

circuit = QuantumCircuit(2)

As you surely have noticed, this the exact same invocation that we used, back in Chapter 4,

to define one-qubit circuits, but setting the argument in the call to the QuantumCircuit

constructor to 2 instead of 1. Makes sense, doesn’t it?

Working with two qubits in Qiskit 145

We now have a quantum circuit with two qubits, so we can begin applying gates to them.

This is done exactly as in the one-qubit case, but we need to be careful with the index of the

qubits that we apply the gates to. Let’s consider, for instance, the following instructions:

circuit.h(0)

circuit.x(1)

As you have surely guessed, with this code we have applied a Hadamard gate to the qubit

of index 0 (the first or top qubit) and an 𝑋 gate to the qubit of index 1 (the second or bottom

qubit). We can check this by running the circuit.draw("mpl") instruction, which will

give us the following:

q0

q1

H

X

As you can easily check, this circuit prepares the state 1√
2
(|01⟩ + |11⟩). To verify that

everything is working correctly, we can add measurements to the circuit and run it on a

simulator. This is completely analogous to the one-qubit case, so we can use the following

instructions, exactly as we did in Chapter 4:

circuit.measure_all()

from qiskit_aer import AerSimulator

backend = AerSimulator(seed_simulator = 18620123)

from qiskit_ibm_runtime import SamplerV2 as Sampler

sampler = Sampler(backend)

146 Chapter 7: Coding Two-Qubit Algorithms in Qiskit

job = sampler.run([circuit], shots = 8)

result = job.result()[0].data.meas

print(result.get_counts())

If you run this code, you will obtain the following output:

{’11’: 5, ’10’: 3}

This means that we have obtained 11 five times and 10 three times. But. . . wait a minute!

Shouldn’t the outcomes be 01 and 11 instead? What is going on here? Well, it turns out

that Qiskit uses a very particular convention and reverses the bit strings of measurement

outcomes. This is why we obtained 10 instead of 01. Not a big deal, but it’s something to

always keep in mind.

To learn more. . .

The rationale behind this idea of reversing measurement outcomes is that, in the

minds of the Qiskit development team, a bit string 𝑏0, 𝑏1, … , 𝑏𝑛 should represent

the number 20𝑏0 + ⋯ + 2𝑛𝑏𝑛, which would be written, in binary, as 𝑏𝑛⋯𝑏0.

This convention is not universally accepted and, for instance, we do not follow it in

this book.

You may remember from Chapter 4 that there are other ways in which we can access the

results of a circuit execution. It turns out that they can also be used with two-qubit circuits

and, as we will see in Chapter 10, with any circuit in Qiskit. In our particular case, if we

execute the print(result.get_bitstrings()) instruction, we will obtain the following

output:

[’11’, ’10’, ’11’, ’10’, ’11’, ’11’, ’11’, ’10’]

Notice that the first character in these strings corresponds, again, to the bottom qubit. We

can obtain the same information in numerical form by executing print(result.array).

This will display the following data:

Working with two qubits in Qiskit 147

[[3]

[2]

[3]

[2]

[3]

[3]

[3]

[2]]

Here, 3 is just the integer representation of ’11’ and, similarly, 2 is the integer correspond-

ing to ’10’. With other circuits, of course, you could also obtain 0 for ’00’ and 1 for

’01’.

The convention to reverse measurement outcomes also affects the way in which the ampli-

tudes for the system statevector are computed and displayed. To explore this, let’s start by re-

moving the measurements from our circuit with the circuit.remove_final_measurements()

instruction. Then, we can use Statevector, as we did back in Chapter 4, to compute the

amplitudes of our qubits. Altogether, we need to execute the following instructions:

from qiskit.quantum_info import Statevector

circuit.remove_final_measurements()

state = Statevector(circuit)

print(state)

After running this code, you will obtain the following output:

Statevector([0. +0.j, 0. +0.j, 0.70710678+0.j,

0.70710678+0.j],

dims=(2, 2))

148 Chapter 7: Coding Two-Qubit Algorithms in Qiskit

Notice how we have an amplitude of 1√
2

for positions 2 (corresponding to 10) and 3

(corresponding to 11) of the statevector. Also note that the dimensions of the vector are

now (2, 2) because we have two qubits.

Important note

Qiskit follows the convention of reversing the bit strings that identify measurement

outcomes and computational basis states when giving measurement results and

statevector amplitudes. Keep this in mind, or you’ll be utterly baffled when the

output flips your expectations upside-down!

Now that we know how to define quantum circuits with two qubits and how to use quantum

gates on individual qubits, it’s time to learn how to apply gates that act on two qubits at

once. To illustrate this, we will create a circuit that prepares a pair of qubits in a Bell state.

We can achieve this with the following piece of code:

circuit = QuantumCircuit(2)

circuit.h(0)

circuit.cx(0,1)

Here, we are recycling the name circuit to create a new quantum circuit, this time with a

Hadamard gate on the top qubit and a CNOT gate controlled by the top qubit and targeting

the bottom one. For this, we used the cx method, which receives two parameters: the index

of the control qubit, and that of the target qubit—in that order. If you draw this circuit with

circuit.draw("mpl"), you will get the following masterpiece:

q0

q1

H

Superdense coding 149

Of course, it is perfectly possible to add measurements to this circuit and to run it on

simulators or on real quantum hardware. Also, just as before, we could compute the

amplitudes of the state at the end of the circuit. This is done exactly as we did in Chapter 4

and in this very section, so we invite you to try it on your own in the next easy, yet

important exercise.

Exercise 7.1

Write Qiskit code to:

(a) Obtain the amplitudes of the Bell state created by the circuit we have just

created.

(b) Run the circuit on a simulator.

(c) Run the circuit on an actual quantum computer.

What results do you obtain? Why?

This covers the fundamentals of working with two-qubit circuits in Qiskit. Let’s now put

our knowledge to good use by implementing some of our favorite quantum protocols and

algorithms!

7.2 Superdense coding
In this section, we are going to use our newly-acquired skills to simulate the superdense

coding protocol. This may be a very good moment to go back to Section 6.1 if you need a

refresher on how the protocol works.

To start with, we need Alice and Bob to create and share a Bell pair. This can be accomplished

with the following instructions:

circuit = QuantumCircuit(2)

Bell state preparation

circuit.h(0)

circuit.cx(0,1)

150 Chapter 7: Coding Two-Qubit Algorithms in Qiskit

circuit.barrier()

Here, the qubit with index 0 will be kept by Alice and the qubit with index 1 will be kept by

Bob. We have included a barrier after the creation of the entangled pair to make it clear that

this is the first step in the protocol and that it happens before the actual communication

takes place.

Later on, Alice wants to send two bits of information, which we will denote by 𝑏1 and 𝑏2, to

Bob. Imagine that 𝑏1 = 1 and 𝑏2 = 0. Then, she needs to perform the following operations:

b1 = 1

b2 = 0

Alice’s ops (in reverse because of Qiskit coding)

if b1:

circuit.x(0)

if b2:

circuit.z(0)

circuit.barrier() # Qubit sent to Bob

In this piece of code, we have included conditional sentences to apply 𝑋 and 𝑍 gates

depending on the values of the bits that Alice wants to send. In this way, we only need to

change the values of b1 and b2 to create the particular circuit that we need for each case.

Notice, also, that we have swapped the role of 𝑏1 and 𝑏2 with respect to our explanation of

the protocol in Section 6.1. This is just to compensate for Qiskit’s convention for readout

measurements. If we apply the gates exactly as in the theoretical description of the protocol,

then we would need to read the measurement result in reserve for it to make sense. Finally,

notice that we have added another barrier to mark the point at which Alice sends her qubit

(the one with index 0) to Bob.

Superdense coding 151

Now that Alice has performed her operations depending on the bits she wants to send, and

that she has sent her qubit to Bob, it is time for Bob to operate on both qubits at once. He

will do it with the following instructions:

circuit.cx(0,1)

circuit.h(0)

circuit.measure_all()

If you draw the circuit with circuit.draw("mpl"), you will obtain the following figure:

q0

q1

2meas

H X H

0 1

Notice how the three different sections of the protocol are cleanly separated by barriers.

In the first section, we have the preparation of the Bell pair, in which both Alice and Bob

participate. After this, Alice keeps the top qubit and Bob keeps the bottom one. In the

second section, depicted between the two barriers, Alice operates on her qubit depending

on the information she wants to send. Lastly, Bob receives Alice’s qubit, operates on both

qubits and measures them to obtain the result.

Thus, this is exactly the circuit that we need in order to simulate the protocol. If we run

it and measure it several times, we will always obtain 10 as the result, as you can easily

check. Moreover, if you remove the measurements and compute the amplitudes of the

state prepared by the circuit, you will see that they are all zero except for the amplitude

corresponding to the state that Qiskit labels as 10.

The cases in which Alice wants to send a different pair of values are left for you to try in

the following exercise.

152 Chapter 7: Coding Two-Qubit Algorithms in Qiskit

Exercise 7.2

Modify the preceding code to adapt it to the cases in which Alice wants to send 00,

01, and 11.

So, that was our first implementation of a two-qubit protocol in Qiskit. Neat, right? Next,

we will use our Qiskit programming skills to play our favourite quantum game.

7.3 The CHSH game
In this section, we are going to simulate the CHSH game that we described and analyzed

in Section 6.2. As you may remember, it all begins with a referee sending a challenge to

Alice and Bob, who are far away from each other so they cannot communicate during the

game. The challenge consists of two bits, one for Alice and another one for Bob, and they

win the game if they reply with bits of their own that meet the following criteria:

• If Alice and Bob both receive 1, then they need to send back bits that are different

from each other

• Otherwise, they need to send back the same bit

To set up the game, we will generate all the challenges in advance. Of course, this is not

how the game really works, but it will simplify our computations and will also help us

illustrate how to get a bunch of circuits to run at the same time in Qiskit. We can create

the bits that the referee will send to Alice and Bob with the following instructions:

import numpy as np

seed = 1234

np.random.seed(seed)

reps = 1000

x = np.random.randint(2, size = reps)

y = np.random.randint(2, size = reps)

The CHSH game 153

Here, we have just created two arrays, x and y, each with 1000 random bits that will be

sent to Alice and Bob respectively. Now, we re going to create all the circuits that Alice

and Bob need to use to respond to the challenges. We will need the following code:

circuit_list = []

for i in range(reps):

circuit = QuantumCircuit(2)

Bell state preparation

circuit.h(0)

circuit.cx(0,1)

circuit.barrier()

Alice and Bob’s ops

if x[i] == 1:

circuit.ry(np.pi/2,0)

if y[i] == 0:

circuit.ry(np.pi/4,1)

else:

circuit.ry(-np.pi/4,1)

circuit.measure_all()

circuit_list.append(circuit)

Notice that we are storing all the circuits in circuit_list so we can send them all at once

to the simulator or quantum computer. Again, this is not representative of how the game

would actually work because Alice and Bob are supposed to respond to each challenge

154 Chapter 7: Coding Two-Qubit Algorithms in Qiskit

immediately. Nevertheless, we will take this route as the final results will be the same and

it will help us to learn a new way of running circuits with Qiskit.

Regarding the circuits themselves, we start by creating a Bell pair that is shared by Alice

and Bob. As usual, Alice will keep qubit 0 and Bob will keep qubit 1, and we have separated

this part (which is supposed to happen before the game commences) from the rest of the

operations with a barrier. Note also that we create the circuits depending on the bits

received by Alice and Bob, each of them operating on their own qubit and using 𝑌 -rotation

gates, which in Qiskit are implemented with the ry method: the first parameter to this

method is the rotation angle, and the second is the qubit we want to apply the rotation

to. Finally, we measure all the qubits to represent the measurements that Alice and Bob

perform independently.

We can now run all the circuits and compute how many times Alice and Bob win the game

to estimate the probability of success of their quantum strategy. We can achieve this with

the following piece of code:

sampler = Sampler(AerSimulator(seed_simulator = seed))

job = sampler.run(circuit_list, shots = 1)

results = job.result()

wins = 0

for i in range(reps):

bits = results[i].data.meas.get_bitstrings()

a = int(bits[0][1])

b = int(bits[0][0])

if x[i]*y[i] == 0:

if a == b:

wins+=1

The CHSH game 155

else:

if a != b:

wins += 1

print("Win percentage:", 100*wins/reps)

Notice how, in a single job, we can run a list of circuits (each of them being executed exactly

once) with the job = sampler.run(circuit_list, shots = 1) instruction. This will

impact how we retrieve the results, because results will now contain multiple elements.

We process them in the for loop, first accessing the bits sent by Alice and Bob to the referee

(variables a and b, respectively) and then checking if they satisfy the conditions to win the

round of the game. Note that bits is a list that contains exactly one string (its values can

be, for instance, [’10’] or [’00]). Thus, we need first to access the string (bits[0]) and

then the individual bits in that string, which we need to convert to integer values with the

a=int(bits[0][1]) and b=int(bits[0][0]) instructions.

You may be baffled by our decision to assign bits[0][1] to Alice’s bits instead of bits[0][0].

Wasn’t Alice operating on qubit 0 all the time? Yes, that’s completely right. But remember

that Qiskit reverses the bits when giving measurement results, so in bits[0] they appear

in the opposite order. In this scenario, the situation is completely symmetrical and it really

doesn’t matter, but in other cases it can make a huge difference, so you need to be careful.

Upon running this code, you will obtain the following output:

Win percentage: 85.9

This agrees nicely with the game analysis that we performed in Section 6.2.

Exercise 7.3

Modify the preceding code to make it run on an actual quantum computer. If you

do it, you will be probing the nature of physical reality with just a mouse click, with

156 Chapter 7: Coding Two-Qubit Algorithms in Qiskit

experiments along the lines of those that got Aspect, Clauser, and Zeilinger the

Nobel Prize in Physics in 2022. How cool is that?

So that’s how you can simulate the CHSH game with Qiskit. Next, we move our attention

to Deutsch’s algoritm. Let’s get to it!

7.4 Deutsch’s algorithm
For our implementation of Deutsch’s algorithm in Qiskit, we will start by creating a sort of

“circuit template”. If you remember our discussion of this algorithm in Section 6.3, every

application of Deutsch’s algorithm follows the same structure: it starts with two qubits

in states |0⟩ and |1⟩; Hadamard gates are applied to both; then, the oracle for the Boolean

function that we want to test is applied; finally, a Hadamard gate is applied to the top qubit,

which is subsequently measured.

We can implement that shared structure with the following instructions:

circuit = QuantumCircuit(2,1)

circuit.h(0)

circuit.x(1)

circuit.h(1)

circuit.barrier()

PLACE YOUR ORACLE HERE

circuit.barrier()

circuit.h(0)

circuit.measure([0],[0])

You may have noticed something different in the way we have defined our quantum

circuit here. In addition to the the number of qubits (2) in the call to the QuantumCircuit

constructor, we have passed a second parameter (1) that indicates the number of classical bits

that we will need to receive measurement results. Usually, we rely on the measure_all()

method and we let Qiskit create the classical bit register used to store the results. However,

Deutsch’s algorithm 157

in this case, we only want to measure one of the qubits, so we only need one classical bit

for the measurement.

The rest of the code is straightforward. We start by applying a Hadamard gate to the top

qubit, and an 𝑋 gate (to set its state to |1⟩ from the initial |0⟩) and an 𝐻 gate to the bottom

one. We have then added barriers to leave some empty space as a placeholder where the

implementation of your oracle should go. Finally, we apply a Hadamard gate to the top

qubit and we measure it.

In this case, since we only want to measure the top qubit, we use circuit.measure instead

of circuit.measure_all. This method takes two parameters: the list of indices of the

qubits that we want to measure and the list of indices of the classical bits where we are

going to store the measurement results. This gives us a little bit more flexibility than our

old measure_all method. But be careful! While measure_all creates a register of classical

bits large enough to store the results, measure expects the classical bits to exist beforehand.

That’s why we included the creation of one classical bit when we declared the quantum

circuit. If you draw this circuit template with circuit.draw("mpl"), you will obtain the

following figure:

q0

q1

1c

H

X H

H

0

Now, we need to fill in the space for the oracle. We will start by implementing it for the

Boolean function that we denoted by 𝑓2 in Section 6.3.1. This function is defined by the

following action:

𝑓2(0) ≔ 1, 𝑓2(1) ≔ 0.

158 Chapter 7: Coding Two-Qubit Algorithms in Qiskit

Obviously, 𝑓2 is balanced, because it returns 0 for one input and 1 for the other. As you

checked in Exercise 6.9, this function can be implemented with the circuit obtained with

the following code:

circuit.x(0)

circuit.cx(0,1)

circuit.x(0)

Then, our full circuit will look like this:

q0

q1

1c

H

X H

X X H

0

Now, we run the circuit with the following code:

backend = AerSimulator(seed_simulator = 18620123)

sampler = Sampler(backend)

job = sampler.run([circuit], shots = 8)

result = job.result()[0].data.c

print(result.get_counts())

There is a subtle but extremely important detail here. Notice that we have used the

job.result()[0].data.c instruction instead of job.result()[0].data.meas as we had

done up to this point. This is because, when creating a quantum circuit object with some

classical bits (as we did with QuantumCircuit(2,1)), the name for the classical register is c.

Deutsch’s algorithm 159

But if you use measure_all to add the bits in your stead, the name of the classical register

is meas. What can we say? Appreciating Qiskit’s small idiosyncrasies is an acquired taste.

Anyway, the result after running the full circuit is {’1’: 8}.

This confirms that, indeed, the function is balanced. Yay! Keep in mind that, even though

we have used eight shots, one would have sufficed!

The cases of the three other one-bit functions are nice exercises that we leave for you to

solve.

Exercise 7.4

Use Qiskit to implement oracles for the following Boolean functions:

𝑓0(0) ≔ 0, 𝑓0(1) ≔ 0,

𝑓1(0) ≔ 0, 𝑓1(1) ≔ 1,

𝑓3(0) ≔ 1, 𝑓3(1) ≔ 1.

Use them with Deutsch’s algorithm and check that the measurement results are the

expected ones. Check the solution to Exercise 6.10 if you need a hint.

This concludes our implementation of Deutsch’s algorithm in Qiskit and this chapter. Let’s

wrap it up before climbing to new heights!

Summary
In this chapter, we have studied how to work with two-qubit circuits in Qiskit. We described

how to define this type of circuit and how to apply gates to individual qubits. We also

discussed how to apply two-qubit operations such as the CNOT gate, and we learned how

to retrieve results from our circuits by performing measurements in a number of ways.

We illustrated all of these concepts with three important examples: superdense coding, the

CHSH game, and Deutsch’s algorithm. We had the opportunity to check the inner workings

160 Chapter 7: Coding Two-Qubit Algorithms in Qiskit

of these algorithms and protocols on both simulators and actual quantum computers, and

we also explored some handy tricks such as sending a bunch of different circuits in the

same job.

In the following chapter, we will begin to unlock the full potential of quantum computing

by introducing systems with an arbitrary number of qubits. This will allow us to later

discuss even more impressive quantum algorithms (such as a generalization of Deutsch’s

algorithm that works for Boolean functions with any number of qubits). Exciting times

ahead!

Part 3

Working with Many Qubits

We have arrived to the part of the book where things are getting seriously big. You will

soon learn about multi-qubit systems, that can store an exponential amount of information.

You will learn how to work with them, correctly describing their states, transforming them

with gates that can be applied to many qubits, and, finally, extracting information from

them with different types of measurements.

You will also learn about some quantum algorithm that, albeit not being of much practical

interest, will exemplify how superposition, entanglement and interference can be used to

solve certain problems with a huge advantage over what is possible with classical computers.

And, of course, you will learn all about implementing in Qiskit protocols and algorithms

that work with multi-qubit circuits.

This part includes the following chapters:

• Chapter 8, How to Work with Many Qubits

• Chapter 9, The Full Power of Quantum Algorithms

• Chapter 10, Coding with Many Qubits in Qiskit

8
How to Work with Many
Qubits

United we stand, divided we fall.

— Aesop

In this chapter, we will study systems with many qubits. This will allow us to fully

exploit the potential of superposition, entanglement, and interference in practical quantum

algorithms.

In order to learn how to work with multi-qubit systems, we will introduce the mathematical

tools needed to describe their states, transform them and measure them. This will all be

analogous to what we already know about two-qubit systems, but we will now work in

full generality.

Along the way, we will also learn about universal sets of gates, which will help us to

implement big quantum circuits with smaller building blocks.

164 Chapter 8: How to Work with Many Qubits

The topics covered in this chapter are the following:

• Multi-qubit states

• Measuring many qubits

• Multi-qubit gates and universality

After reading this chapter, you will be able to describe the states of multi-qubit systems and

you will understand how they can implicitly store an exponential amount of information.

You will know how to work with quantum gates that can be applied on many qubits at once,

and how to extract information from several qubits by either measuring them partially or

totally. You will also understand how multi-qubit gates can be assembled from just one-

and two-qubit gates. Are you ready to embiggen your quantum systems?

8.1 Multi-qubit states
In previous chapters, we discussed in detail how to work with small quantum systems

with up to two qubits, and we saw how they could be used to implement some useful and

surprising protocols. But it is time we graduate to the big leagues. We can’t unleash the

full power of quantum computing unless we start using many qubits at once.

This is the day. Today, we grow big.

But don’t worry. You already know most of what you will need in order to understand many-

qubit systems. In fact, the maths that we will study in this chapter are just a generalization

of what we covered in Chapter 5.

For instance, the states in the computational basis of an 𝑛-qubit system are simply going to

be tensor products of 𝑛 one-qubit states. This means that if we have 𝑛 qubits and each of

them is in state |0⟩ or |1⟩, then the whole system must be in one of the following states:

|0⟩ ⊗ |0⟩ ⊗ ⋯ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ,

|0⟩ ⊗ |0⟩ ⊗ ⋯ ⊗ |0⟩ ⊗ |0⟩ ⊗ |1⟩ ,

Multi-qubit states 165

|0⟩ ⊗ |0⟩ ⊗ ⋯ ⊗ |0⟩ ⊗ |1⟩ ⊗ |0⟩ ,

|0⟩ ⊗ |0⟩ ⊗ ⋯ ⊗ |1⟩ ⊗ |0⟩ ⊗ |0⟩ ,

⋮

|1⟩ ⊗ |1⟩ ⊗ ⋯ ⊗ |1⟩ ⊗ |1⟩ ⊗ |1⟩ .

As you probably guessed, we usually omit the ⊗ symbol to write

|0⟩ |0⟩⋯ |0⟩ |0⟩ |0⟩ ,

|0⟩ |0⟩⋯ |0⟩ |0⟩ |1⟩ ,

|0⟩ |0⟩⋯ |0⟩ |1⟩ |0⟩ ,

|0⟩ |0⟩⋯ |1⟩ |0⟩ |0⟩ ,

⋮

|1⟩ |1⟩⋯ |1⟩ |1⟩ |1⟩ ,

or, even simpler, just

|00⋯ 000⟩ ,

|00⋯ 001⟩ ,

|00⋯ 010⟩ ,

|00⋯ 100⟩ ,

⋮

|11⋯ 111⟩ .

To make full mathematical sense out of this, we need to extend the tensor product of

column vectors to situations in which the vector sizes are bigger than 2, which is the only

case that we have considered up until this point. It turns out that when you have two

166 Chapter 8: How to Work with Many Qubits

column vectors

𝑎 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1

𝑎2

⋮

𝑎𝑗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑏 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1

𝑏2

⋮

𝑏𝑘

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

their tensor product is

𝑎 ⊗ 𝑏 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1

𝑏2

⋮

𝑏𝑘

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝑎2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1

𝑏2

⋮

𝑏𝑘

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋮

𝑎𝑗

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1

𝑏2

⋮

𝑏𝑘

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1𝑏1

𝑎1𝑏2

⋮

𝑎1𝑏𝑘

𝑎2𝑏1

𝑎2𝑏2

⋮

𝑎2𝑏𝑘

⋮

𝑎𝑗𝑏1

𝑎𝑗𝑏2

⋮

𝑎𝑗𝑏𝑘

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For example, it holds that

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⊗
(

1

0)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
(

1

0)

1
(

1

0)

0
(

1

0)

0
(

1

0)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Multi-qubit states 167

Moreover, the tensor product is associative, so we have, for instance, that

|010⟩ = |0⟩ |0⟩ |0⟩ = (|0⟩ ⊗ |1⟩) ⊗ |0⟩ =
((

1

0)
⊗

(

0

1))
⊗

(

1

0)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⊗
(

1

0)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which is the same as

|010⟩ = |0⟩ |0⟩ |0⟩ = |0⟩ ⊗ (|1⟩ ⊗ |0⟩) =
(

1

0)
⊗

((

0

1)
⊗

(

1

0))
=

(

1

0)
⊗

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since writing a basis state such as |011010⟩, with all those zeros and ones flying around,

is tedious and prone to error, it is a common practice to consider the decimal number

represented by the binary string in the ket and work with that instead. For instance, we

usually write |13⟩ rather than |011010⟩, because the decimal number 13 is 011010 when

represented in binary with six bits. Thus, the computational basis states for a system with

𝑛 qubits can be also written much shorter and neater as

|0⟩ , |1⟩ , … , |2
𝑛
− 1⟩ .

For example, the computational basis states of a two-qubit system would be |0⟩ , |1⟩ , |2⟩,

and |3⟩, and when working with 3 qubits, they would be |0⟩ , |1⟩ , |2⟩ , |3⟩ , |4⟩ , |5⟩ , |6⟩, and |7⟩.

168 Chapter 8: How to Work with Many Qubits

It is very important to notice that something such as, for instance, |3⟩, only has a concrete

meaning when we know how many qubits there are in the system we are working with.

If we have 2 qubits, then |3⟩ = |11⟩; if we have 3 qubits, then |3⟩ = |011⟩; and if we have,

say, 7 qubits, then |3⟩ = |0000011⟩. For this reason, we will only use this notation when the

system size is clear from context.

This way of representing computational basis states is very convenient, not only because

it is much more succinct than using the binary expansion but also because in a system

with 𝑛 qubits, the state |𝑗⟩ corresponds to a column vector of size 2𝑛 whose components

are all zeros but a single 1 in the (𝑗 + 1)-th position (or in the 𝑗-th position if you, like any

self-respected computer scientist, start counting from 0). That’s too big a vector for such a

small amount of information.

As an example, using column vectors, when we have three qubits,

|0⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |1⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |2⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |3⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

1

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

|4⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

1

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |5⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |6⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |7⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Multi-qubit states 169

Of course, this is all consistent with what we know about systems with one or two qubits.

In fact, as you surely remember, if we have one qubit,

|0⟩ =
(

1

0)
, |1⟩ =

(

0

1)
.

Likewise, if we have two qubits, then

|0⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |1⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |2⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |3⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 8.1

Prove that the tensor product of column vectors is associative. Use that to prove

that, in a system with 𝑛 qubits, |𝑗⟩ is a column vector of size 2𝑛 in which all the

elements are 0 except the one in position 𝑗 + 1, which is 1.

So we now know how to construct computational basis states for 𝑛-qubit systems. But, to

nobody’s surprise, basis states are not the end of the story. As you were surely expecting,

general states of a system with 𝑛 qubits are linear combinations of the basis states where

the coefficients (again called amplitudes) satisfy a normalization condition. More explicitly,

a general state of an 𝑛-qubit system is of the form

𝛼0 |0⟩ + 𝛼1 |1⟩ + ⋯ + 𝛼2𝑛−1 |2
𝑛
− 1⟩ ,

where each 𝛼𝑖 is a complex number and

|𝛼0|
2
+ |𝛼1|

2
+ ⋯ + |𝛼2𝑛−1|

2
= 1.

170 Chapter 8: How to Work with Many Qubits

Obviously, the situations with one and two qubits are just particular cases of this general

formulation. Also, let us note that, to save our tired fingers some keystrokes, we will

usually use summation symbols so that a general state with 𝑛 qubits will be

2𝑛−1

∑

𝑗=0

𝛼𝑗 |𝑗⟩ ,

under the normalization condition ∑
2𝑛−1
𝑗=0

|
|𝛼𝑗

|
|
2
= 1.

Important note

Let’s stop here for just a minute and contemplate what all of this implies. When we

are working with 𝑛 qubits, the amount of implicit information that we have is 2𝑛

numbers, because there is one amplitude for each basis state.

That is an incredibly, spectacularly, amazingly, breathtakingly, astonishingly awful

lot. And we are being conservative with our adjectives, believe us. For instance, to

represent the state of a quantum computer with 1000 qubits (some of which have

already been constructed), we would need so many amplitudes that, if we could

store a complex number in every atom, we wouldn’t have enough storage space

even if we could use all the atoms in a trillion universes like ours.

That is BIG. And that is, of course, one of the reasons why quantum computing can

be so powerful.

Examples of valid quantum states include

1
√
2
(|000⟩ + |111⟩) =

1
√
2
(|0⟩ + |7⟩)

when we have 3 qubits,

1
√
2
(|0000⟩ + |1111⟩) =

1
√
2
(|0⟩ + |15⟩)

Multi-qubit states 171

when we have 4, and
1
√
2
(|0⟩ + |2

𝑛
− 1⟩)

when we have 𝑛 qubits.

An 𝑛-qubit state that we will profusely use is

1
√
2𝑛

2𝑛−1

∑

𝑗=0

|𝑗⟩ ,

which is a balanced superposition of all computational basis states of 𝑛 qubits, each with

the same amplitude.

Exercise 8.2

Prove that 1√
2𝑛

∑
2𝑛−1
𝑗=0 |𝑗⟩ is the tensor product of 𝑛 qubits, each of them in the |+⟩

state.

Exercise 8.3

Determine which of the following are valid quantum states:

(a) 1√
2
(|000⟩ − |111⟩)

(b) 1√
2
(|000⟩ + |11⟩)

(c) 1√
3
(|001⟩ + |010⟩ + |100⟩)

(d) 1√
2
|00101⟩ + 𝑖

2
|01101⟩ − 1

2
|10101⟩

(e) 1
2
(|00000⟩ + |00001⟩ + |00010⟩)

States of 𝑛 qubits can also be entangled or product states. The definition is exactly the

same as in the case of two-qubit states (check out Section 5.3.3 if you need to revise this).

Namely, an 𝑛-qubit state |𝜓⟩ is a product state if there exist two states |𝜓1⟩ and |𝜓2⟩ of 𝑛1

and 𝑛2 qubits, respectively, such that 𝑛1 + 𝑛2 = 𝑛 and |𝜓⟩ = |𝜓1⟩ ⊗ |𝜓2⟩.

For example, 1√
2
(|000⟩+|010⟩) =

(
1√
2
(|00⟩ + |01⟩)

)
|0⟩ is a product state, and so is 1√

2𝑛
∑

2𝑛−1
𝑗=0 |𝑗⟩

when 𝑛 ≥ 2, because it is the product of 𝑛 copies of |+⟩, as you proved in Exercise 8.2. How-

172 Chapter 8: How to Work with Many Qubits

ever, if 𝑛 ≥ 2, the state of 𝑛 qubits 1√
2
(|0⟩ + |2𝑛 − 1⟩) is always entangled. The proof is very

similar to that for the Bell state that we discussed in Section 5.3.3, so we won’t be repeating

it here.

Exercise 8.4

Prove that the GHZ state (named after Greenberger, Horne, and Zeilinger) 1√
3
(|001⟩+

|010⟩ + |100⟩) is entangled.

That is enough for now about multi-qubit states. Next, we are going to learn how to

perform quantum measurements when we have 𝑛 qubits at our disposal.

8.2 Measuring many qubits
Just as when we considered two-qubit systems, in an arbitrary multi-qubit system, we can

choose to measure all qubits at once or to measure just one of them. We will start our study

with the simplest case, which is when we choose to measure all the qubits in the system.

Assume that we have 𝑛 qubits in some state ∑
2𝑛−1
𝑗=0 𝛼𝑗 |𝑗⟩ and we measure all of them. Then,

we will obtain a result 𝑘 with probability |𝛼𝑘 |
2 and, should that be the outcome of the

measurement, the state would collapse to |𝑘⟩. For example, if we have 4 qubits in state
1√
2
(|0⟩+ |15⟩), we will obtain 0 (or 0000) with probability 1/2 (in which case, the state would

collapse to |0⟩ = |0000⟩), and 15 (or 1111) with probability 1/2, which would lead the state

to collapse to |15⟩ = |1111⟩.

To consider yet another example, if we have the state 1√
3
(|001⟩ + |010⟩ + |100⟩) and we

measure all of its qubits, we will obtain 001, 010, or 100 with probability 1/3 each. The

state will collapse to the ket that corresponds to the obtained result.

Exercise 8.5

Compute the possible results and their probabilities when measuring the following

states:

(a) 1√
2
(|000⟩ − |111⟩)

Measuring many qubits 173

(b) 1√
2
|00101⟩ + 𝑖

2
|01101⟩ − 1

2
|10101⟩

(c) 3
5
|111000⟩ − 4𝑖

5
|000111⟩

(d) 1
2
(|0001⟩ − |0010⟩ + |0100⟩ − |1000⟩)

Describing what happens when a single qubit is measured in a multi-qubit system is rather

laborious, but it follows the same logic that we applied for two-qubit systems. Imagine,

then, that you have 𝑛 qubits in some state ∑
2𝑛−1
𝑗=0 𝛼𝑗 |𝑗⟩. If we measure the qubit in position

𝑙, we can only obtain 0 or 1 as a result. The probability of obtaining 0 should be the sum of

all the probabilities of computational basis states that have 0 in their 𝑙-th position. And

if the outcome of the measurement were 0, the state would collapse to a superposition in

which only the basis states with 0 in position 𝑙 remain, while keeping the amplitudes they

had in the original state, but with a global normalization factor so that the resulting state

is still normalized and valid.

More explicitly, let 𝐿0 be the set of all computational basis states whose 𝑙-th bit is 0. Then,

when measuring the 𝑙-th qubit of ∑2𝑛−1
𝑗=0 𝛼𝑗 |𝑗⟩, we will obtain 0 with probability

∑

𝑗∈𝐿0

|
|𝛼𝑗

|
|
2

and the state will collapse to

∑

𝑗∈𝐿0

𝛼𝑗
√

∑𝑗∈𝐿0
|
|𝛼𝑗

|
|
2
|𝑗⟩ .

Similarly, if we denote by 𝐿1 the set of all computational basis states whose 𝑙-th bit is 1, we

will obtain 1 with probability

∑

𝑗∈𝐿1

|
|𝛼𝑗

|
|
2

and the state will collapse to

∑

𝑗∈𝐿1

𝛼𝑗
√

∑𝑗∈𝐿1
|
|𝛼𝑗

|
|
2
|𝑗⟩ .

174 Chapter 8: How to Work with Many Qubits

Some examples will help us drive all of this home. If we consider the state 1√
3
(|001⟩ +

|010⟩ + |100⟩) and we measure its first qubit, we will obtain 0 with probability 2/3: 1/3 is

contributed by |001⟩, and 1/3 by |010⟩. If the outcome of the measurement is indeed 0, the

state of the system will then collapse to

√
3

√
2 (

1
√
3
|001⟩ +

1
√
3
|010⟩

)
=

1
√
2
(|001⟩ + |010⟩).

Also, we will obtain 1 with probability 1/3, and, if that is the outcome, the state will collapse

to |100⟩.

If we have the state

1

4
|0001⟩ +

1

2
|0010⟩ +

3

4
|0100⟩ +

√
2

4
|1000⟩

and we measure its third qubit, we will obtain 0 with probability 1/16 + 9/16 + 2/16 =

12/16 = 3/4. The state will, in that case, collapse to

2
√
3 (

1

4
|0001⟩ +

3

4
|0100⟩ +

√
2

4
|1000⟩

)
=

1

2
√
3
|0001⟩ +

3

2
√
3
|0100⟩ +

√
2

2
√
3
|1000⟩ .

Additionally, we will obtain 1 with probability 1/4, in which case the state will collapse to

simply |0010⟩.

Exercise 8.6

Determine the collapsed states and the probabilities of the results when:

(a) measuring the second qubit of 1√
3
(|001⟩ + |010⟩ + |100⟩)

(b) measuring the fist qubit of 1
4
|0001⟩ + 1

2
|0010⟩ + 3

4
|0100⟩ +

√
2

4
|1000⟩

(c) measuring the third qubit of 1
2
(|000⟩ + 𝑖 |011⟩ − |101⟩ − 𝑖 |110⟩)

Obviously, the measurement rules for systems with one and two qubits that we introduced

in Chapter 2 and Chapter 5 are just particular cases of the measurement rules for 𝑛-qubit

systems. Moreover, if you measure all the qubits of a multi-qubit system in sequence, one

Multi-qubit gates and universality 175

after the other, you will recover the probabilities that we described at the beginning of this

section for the case in which all the qubits are measured at once. The computation is a

little bit cumbersome, but not conceptually difficult. A good way to convince yourself of

the result is to work out the case with 3 qubits, for instance.

And that is all we had to say about measuring systems with several qubits. By now, you

know the drill: once we have learned how to measure multi-qubit systems, it is time to

learn about multi-qubit gates. That will be the topic of the next section.

8.3 Multi-qubit gates and universality
As you’ve surely deduced, in order to transform 𝑛-qubit states, we need to apply quantum

gates that are nothing more than unitary matrices. Since the vector that represents an

𝑛-qubit state has 2𝑛 elements, our matrices in this case must be of size 2𝑛 × 2𝑛. This may

look daunting, but there are ways of obtaining these transformations from smaller ones,

as we will study in this section. In fact, we will start by considering the simplest case of

multi-qubit gates: those that can be constructed as tensor products.

8.3.1 Tensor product gates
In Section 5.3.1, we showed how to obtain two-qubit gates from a couple of one-qubit gates

acting independently on each of the system qubits. Likewise, when we have 𝑛 qubits, we

can consider gates that are obtained by combining the individual action of smaller gates

on different parts of the system. For instance, in a system with 4 qubits, we could have a

one-qubit gate acting on the first qubit, a two-qubit gate acting on the second and third,

and no action (or, what is the same, the identity gate) on the fourth.

In order to obtain the explicit mathematical expression of the matrix of such gates, we

need to generalize the tensor product to matrices of any size. If we have a pair of matrices

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎝

𝑎11 ⋯ 𝑎1𝑘

⋮ ⋱ ⋮

𝑎𝑗1 ⋯ 𝑎𝑗𝑘

⎞
⎟
⎟
⎟
⎟
⎠

, 𝐵 =

⎛
⎜
⎜
⎜
⎜
⎝

𝑏11 ⋯ 𝑏1𝑚

⋮ ⋱ ⋮

𝑏𝑙1 ⋯ 𝑏𝑙𝑚

⎞
⎟
⎟
⎟
⎟
⎠

,

176 Chapter 8: How to Work with Many Qubits

of sizes 𝑗 × 𝑘 and 𝑙 × 𝑚, then their tensor product is the matrix of size (𝑗𝑘) × (𝑙𝑚) given by

𝐴 ⊗ 𝐵 ∶=

⎛
⎜
⎜
⎜
⎜
⎝

𝑎11𝐵 ⋯ 𝑎1𝑘𝐵

⋮ ⋱ ⋮

𝑎𝑗1𝐵 ⋯ 𝑎𝑗𝑘𝐵

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11𝑏11 ⋯ 𝑎11𝑏1𝑚 ⋯ 𝑎1𝑘𝑏11 ⋯ 𝑎1𝑘𝑏1𝑚

⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

𝑎11𝑏𝑙1 ⋯ 𝑎11𝑏𝑙𝑚 ⋯ 𝑎1𝑘𝑏𝑙1 ⋯ 𝑎1𝑘𝑏𝑙𝑚

⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

𝑎𝑗1𝑏11 ⋯ 𝑎𝑗1𝑏1𝑚 ⋯ 𝑎𝑗𝑘𝑏11 ⋯ 𝑎𝑗𝑘𝑏1𝑚

⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

𝑎𝑗1𝑏𝑙1 ⋯ 𝑎𝑗1𝑏𝑙𝑚 ⋯ 𝑎𝑗𝑘𝑏𝑙1 ⋯ 𝑎𝑗𝑘𝑏𝑙𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For instance, the tensor product of an 𝑋 gate with a 𝐶𝑁𝑂𝑇 gate would be

(

0 1

1 0)
⊗

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

A straightforward computation shows that if 𝑈1 is an 𝑛1-qubit gate, 𝑈2 is an 𝑛2-qubit gate,

|𝜓1⟩ is an 𝑛1-qubit state, and |𝜓2⟩ is an 𝑛2-qubit state, then it holds that

(𝑈1 ⊗ 𝑈2)(|𝜓1⟩ ⊗ |𝜓2⟩) = (𝑈1 |𝜓1⟩) ⊗ (𝑈2 |𝜓2⟩).

Moreover, 𝑈1⊗𝑈2 is unitary and (𝑈1⊗𝑈2)
† = 𝑈

†

1 ⊗𝑈
†

2 . Hence, 𝑈1⊗𝑈2 is an (𝑛1+𝑛2)-qubit

gate that acts as 𝑈1 on the first 𝑛1 qubits and as 𝑈2 on the other 𝑛2 qubits.

Multi-qubit gates and universality 177

This allows us to create a good number of gates that act on 𝑛 qubits by taking the tensor

product of smaller gates, and it is quite useful in practice. However, not every multi-qubit

gate can be obtained in this form. We give an example in the following section.

8.3.2 The Toffoli gate
The Toffoli gate, also called CCNOT for reasons that will become apparent in a moment,

is a three-qubit gate whose action is defined by the way it transforms the computational

basis states. It holds that

CCNOT |000⟩ = |000⟩ , CCNOT |001⟩ = |001⟩ , CCNOT |010⟩ = |010⟩ ,

CCNOT |011⟩ = |011⟩ , CCNOT |100⟩ = |100⟩ , CCNOT |101⟩ = |101⟩ ,

CCNOT |110⟩ = |111⟩ , CCNOT |111⟩ = |110⟩ .

As you can see, the input state only changes under one condition: when both the first and

second qubits are 1. In that case, a NOT gate is applied on the third qubit. We say that the

two first qubits control the application of the NOT gate and that is why the Toffoli gate is

called the controlled-controlled-NOT, CCNOT or CCX gate. The first two qubits are

called control qubits and the third one is the target. The representation of the CCNOT

gate in a circuit is as follows:

and its matrix is
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

178 Chapter 8: How to Work with Many Qubits

To learn more. . .

The Toffoli gate was introduced by Tommaso Toffoli in 1980. Its relevance comes

from the fact that any classical Boolean gate (i.e., one that only takes bits as inputs

and also returns bits as outputs) can be implemented by using the Toffoli gate

and some auxiliary inputs. Since the Toffoli gate is reversible (in fact, it is unitary

and is its own inverse), it follows that any Boolean function admits a reversible

implementation.

Of course, you can also consider CCNOT gates in which the target qubit is the first one (or

the second one) and the other qubits act as controls. The circuit representation and matrix

will change accordingly.

An interesting property of the Toffoli gate is that it can’t be obtained as the tensor product

of gates that act on 1 and 2 qubits. In fact, you should try to prove it yourself, as we invite

you to do in the following exercise.

Exercise 8.7

Prove that the CCNOT gate can’t be obtained as the tensor product of two smaller

gates.

All this may have led you to believe that, in addition to the one-qubit and two-qubit gates

that we have studied so far, when designing quantum circuits, you would also need to

consider some specific gates that act on 3 qubits, some that act on 4 qubits, and so on, as

if every bump in the number of qubits could introduce some flashy new gates that had

nothing to do with the ones used in smaller systems. Fortunately, this is not the case. In

fact, the number of different gates that you need to have at your disposal in order to create

arbitrary multi-qubit gates is surprisingly low, as we will show in the next section.

8.3.3 Gate universality
Although we know that the Toffoli gate can’t be obtained as the tensor product of gates

acting on fewer qubits, this does not mean that it can’t be decomposed and constructed

Multi-qubit gates and universality 179

from just one-qubit and two-qubit gates. In fact, the circuit in Figure 8.1 shows a way

of building up the CCNOT gate from smaller ones. This can be useful, for instance, to

implement the gate in actual quantum hardware in which only one- and two-qubit gates

are available.

𝑇

𝑇 𝑇 †

𝐻 𝑇 † 𝑇 𝑇 † 𝑇 𝐻

Figure 8.1: Implementing the Toffoli gate with one-qubit and two-qubit gates

To learn more. . .

You can prove that the circuit of Figure 8.1 indeed implements the Toffoli gate by

showing that it transforms all the computational basis states in the way that it

should. It is not complicated, but it is tedious and boring. Rather than asking you

to do it at this point, we will wait until Chapter 10, in which we will learn how to

implement circuits with many qubits in Qiskit and we will rely on the computer to

do the hard work for us.

In the circuit of Figure 8.1, we are using a fairly small number of different gates. We have the

𝐻 , 𝑇 , and 𝑇 † gates, which are all one-qubit gates, and the CNOT gate, which is a two-qubit

gate. In fact, it is easy to see that 𝑇 † = 𝑇 7, so we could also replace each occurrence of 𝑇 †

with seven consecutive instances of 𝑇 . Thus, only three different quantum gates, namely,

𝑇 , 𝐻 , and 𝐶𝑁𝑂𝑇 , are needed to implement the Toffoli gate.

This is far more than a happy coincidence. In fact, it can be proved that with just those

three gates, you can “implement” any quantum gate on any number of qubits. Or, to be

more precise, given any quantum gate 𝑈 on 𝑛-qubits and any desired error bound 𝜖, it is

possible to create a circuit that only uses the 𝑇 , 𝐻 , and CNOT gates and implements a gate

180 Chapter 8: How to Work with Many Qubits

𝑈̃ (also on 𝑛-qubits) such that, for any 𝑛-qubit state |𝜓⟩, the distance between the states

𝑈 |𝜓⟩ and 𝑈̃ |𝜓⟩ is at most 𝜖.

This means that if you use 𝑈̃ instead of 𝑈 , you will not notice almost any difference,

provided that 𝜖 is small enough. Of course, the smaller the 𝜖, the bigger the circuit that

you will need in order to implement 𝑈̃ , but (at least in principle) it is always possible to

achieve a precision as high as needed.

To learn more. . .

The distance between 𝑈 |𝜓⟩ and 𝑈̃ |𝜓⟩ is measured here as is usually done with

regular vectors. That means that if 𝑈 |𝜓⟩ = ∑
2𝑛−1
𝑗=0 𝛼𝑗 |𝑗⟩ and 𝑈̃ |𝜓⟩ = ∑

2𝑛−1
𝑗=0 𝛽𝑗 |𝑗⟩,

then their distance is
√

∑
2𝑛−1
𝑗=0

|
|𝛼𝑗 − 𝛽𝑗

|
|
2.

Since with {𝑇 , 𝐻,CNOT} we can approximate any given gate with as much precision as

we want, we say that this set of gates is universal. There are other sets of gates that

are also universal in a more strict sense. For example, if you take the set of all one-qubit

gates plus the CNOT gate, you can implement any gate exactly, with no need for imperfect

approximations (for mathematical proofs of all these facts, you can check [13]). The price

to pay, though, is that you are no longer working with a finite set of gates.

In any case, not every decomposition of gates with the set {𝑇 , 𝐻,CNOT} needs to be an

approximation. For instance, the Toffoli implementation in Figure 8.1 is exact. And so are

the ones that we invite you to work with in the following exercise.

Exercise 8.8

Prove the following gate equivalences:

(a) 𝑆 = 𝑇 2.

(b) 𝑍 = 𝑆2.

(c) 𝑆† = 𝑆3.

(d) 𝑇 † = 𝑇 7.

(e) 𝑋 = 𝐻𝑍𝐻 .

Multi-qubit gates and universality 181

Other useful decompositions can be obtained when working with controlled gates. So

far, we have only considered controlled versions of the NOT gate, namely, our beloved

CNOT and the recently introduced CCNOT. But any quantum gate has its controlled (and

multiply-controlled) version. In fact, if 𝑈 is a quantum gate that acts on 𝑛-qubits, its

controlled version C𝑈 is defined by

C𝑈 |0⟩ |𝜓⟩ = |0⟩ |𝜓⟩ , C𝑈 |1⟩ |𝜓⟩ = |1⟩ (𝑈 |𝜓⟩),

where |𝜓⟩ is any computational basis state of 𝑛-qubits. The action on the rest of states is

defined by linearity.

For instance, C𝑍 acts on the basis states as follows:

C𝑍 |00⟩ = |00⟩ , C𝑍 |01⟩ = |01⟩ ,

C𝑍 |10⟩ = |1⟩ ⊗ 𝑍 |0⟩ = |10⟩ , C𝑍 |11⟩ = |1⟩ ⊗ 𝑍 |1⟩ = − |11⟩ .

Exercise 8.9

Prove that if 𝑈 is a unitary gate that acts on 𝑛-qubits, then C𝑈 is a unitary gate that

acts on (𝑛 + 1)-qubits and, in fact, (C𝑈)† = C(𝑈†).

The definition of multiply-controlled gates is similar. For instance, if 𝑈 is any quantum

gate acting on 𝑛 qubits, then its controlled-controlled version CC(𝑈) is defined by

CC𝑈 |00⟩ |𝜓⟩ = |00⟩ |𝜓⟩, CC𝑈 |01⟩ |𝜓⟩ = |01⟩ |𝜓⟩,

CC𝑈 |10⟩ |𝜓⟩ = |10⟩ |𝜓⟩, CC𝑈 |11⟩ |𝜓⟩ = |11⟩ 𝑈 |𝜓⟩ ,

where |𝜓⟩ is any computational basis state of 𝑛 qubits. When 𝑈 = NOT, this coincides, of

course, with the definition of the Toffoli gate.

182 Chapter 8: How to Work with Many Qubits

Although seemingly very complicated, all these gates admit decompositions with just

one-qubit and two-qubit gates. For all the mathematical details, we refer you to the book

by Nielsen and Chuang [13].

That is all for this section. You now know all that you will need in order to understand

the full power of quantum algorithms. We’ll begin exploring them in earnest in the next

chapter.

Summary
In this chapter, we have studied general systems with multiple qubits. We have learned

how to describe their states, how to measure them one qubit at a time (or all at once!), and

how to transform them with gates that act on several qubits at the same time. We have

also discussed universality, a property of some sets of gates that allow us to decompose big

quantum gates into simpler ones.

You are now fully equipped. You have all the mathematical knowledge required to under-

stand complex quantum algorithms. Are you excited? Well, you should be, because starting

in the next chapter, we are going to study problems that quantum computers can solve

much, much faster than their classical counterparts. Buckle up, we are going to light speed!

9
The Full Power of Quantum
Algorithms

Life is beautiful.
The only problem is that many people mistake beautiful for easy.

— Mafalda M.

So far, we have discussed several applications of quantum computing. These have shown

us how superposition and entanglement can work together in quantum protocols, and,

when discussing Deutsch’s algorithm in Section 6.3, we also mentioned how the notion of

interference can play a very significant role in them.

Nevertheless, all the protocols and algorithms that we have considered so far have only

used, at most, two qubits, which is a very significant limitation. In this chapter, we are

moving one step forward. We will be exploiting all that we have learned in Chapter 8 to

introduce more powerful algorithms that will use arbitrarily many qubits. This will prepare

184 Chapter 9: The Full Power of Quantum Algorithms

us to better understand the more sophisticated quantum algorithms that we will discuss

later in the book.

The plan for the next few pages is the following. We will start easily yet boldly with a

protocol that runs on three-qubit systems: quantum teleportation, which is, in a way, the

dual of superdense coding. We will then introduce two quantum algorithms that may use

an arbitrarily large amount of qubits; one of which (if not both!) is the younger sibling of

our good old Deutsch’s algorithm.

These are the topics that will be covered in this chapter:

• Quantum teleportation

• The Deutsch–Jozsa algorithm

• The Bernstein–Vazirani algorithm

After reading this chapter, you will have a solid understanding of the quantum teleportation

protocol and the Deutsch–Jozsa and Bernstein–Vazirani algorithms. This will allow you to

see how the building blocks of quantum algorithms work and can be used in practice.

Without further ado, let’s get started. It’s time to bring the fantasies of some science fiction

aficionados to life. Let’s talk about quantum teleportation!

9.1 Quantum teleportation
In Section 6.1, we introduced superdense coding: a protocol that enables us to send classical

data (two bits) through quantum data (one qubit). In this section, we will take the opposite

route, and we will discuss quantum teleportation: a protocol that will enable us to send

quantum data (a qubit state) relying on the transmission of classical data (two classical

bits). As you will soon see for yourself, the similarities between superdense coding and

quantum teleportation go beyond the symmetry of their goals. Indeed, just like superdense

coding, quantum teleportation will initially assume that both communicating parties each

has a qubit of an entangled pair (in a Bell state). So, yes, entanglement is going to once

again play a crucial role in this protocol.

Quantum teleportation 185

Before we get to discussing the details of quantum teleportation, maybe it is good to sit

down for a moment and reflect on the significance of what it promises to achieve. Imagine

for a second that you have a qubit in some arbitrary state: this can be any state—one that

is arbitrarily difficult to write down, or one in which the amplitudes may be the weirdest

irrational numbers mankind has ever seen. By classical means, would there be a way

for you to always be able to send to us its state with a fixed number of classical bits?

Even if you always were able to fully describe the state of the qubit, the answer is in the

negative, because it is impossible to send a pair of arbitrary complex amplitudes—with full

accuracy—through a fixed or bounded number of bits. After all, a finite number of bits can

only represent a finite amount of states, and the set of one-qubit states is uncountably1

infinite.

What quantum teleportation promises to do is the following. Imagine that you have a

qubit in your lab in an arbitrary state |𝜓⟩, and you may not even know what the state

is. Assume further that you and us each have a qubit from a pair in a Bell state. With

quantum teleportation, just by doing some quantum operations and measurements, and by

sending us two bits, you will make our qubit from our pair get into state |𝜓⟩—no matter

how far apart we are. Naturally, because of the no-cloning theorem, you will lose the state

of the original qubit, because otherwise we would end up with two copies of the same state.

After all, this is quantum teleportation, not quantum cloning! Now, this sounds impressive,

doesn’t it?

Important note

Quantum teleportation enables a party to send a qubit state to another party by just

sending them two classical bits. The protocol assumes that they initially have one

qubit each, and that the pair of qubits is in a Bell state.

Quantum teleportation is a powerful protocol and, for it, two qubits don’t quite do the

job; we need an extra one, so this is going to be our first three-qubit protocol. Later in the

1The word “uncountably” is not added for literary emphasis; it is an actual mathematical term. If you are
intrigued, we strongly invite you to satisfy your curiosity by studying a tiny bit of logic and set theory!

186 Chapter 9: The Full Power of Quantum Algorithms

chapter, we will explore other algorithms that can use an arbitrarily large number of qubits,

but we wanted to start slow.

9.1.1 The details of quantum teleportation
Let us now get into the intricacies and details of quantum teleportation. First things first,

we should fix what our initial situation is and what prerequisites we need.

In what follows, we will assume that Alice has a qubit in a certain (perhaps even unknown)

state |𝜓⟩, and she wants to teleport this qubit state to Bob’s lab. In addition to this, as

mentioned earlier, we will also require Alice and Bob to each have a qubit from a pair that

is in a Bell state; in particular, we will assume that this particular pair is in the Bell state

1
√
2
(|00⟩ + |11⟩).

Nevertheless, and as in superdense coding, any Bell state would do, although the choice of

a different Bell state would require some minor adaptations, as we will later discuss.

In accordance with the conventions that we have been adopting through this book, in this

pair of qubits, we will assume that the first qubit is Alice’s and the second one is Bob’s.

We will now bring Alice’s qubit in state |𝜓⟩ and the entangled pair of qubits together into

a unified three-qubit system, in which the first qubit will be Alice’s |𝜓⟩ qubit, and the two

other qubits will be those of the entangled pair. Thus, the initial state of this three-qubit

system would be

|𝜓⟩ ⊗
1
√
2
(|00⟩ + |11⟩).

Exercise 9.1

In the initial state that we have considered for our three-qubit system:

(a) If a measurement of the first qubit yielded a 0, what would the state of the

system collapse to?

Quantum teleportation 187

(b) If a measurement of the second qubit yielded a 0, what would the state of the

system collapse to?

(c) Clearly, the state can be written as the product of the state of the first qubit

and the state of the last two qubits. What implications does this have for

measurements?

This is our initial setup. Let’s now carry out the steps that will lead the state |𝜓⟩ to be

teleported to Bob’s lab.

The first step in the protocol is for Alice to apply a CNOT gate controlled by its original

|𝜓⟩ qubit and targeted to her qubit from the entangled pair, and then to follow that by an

application of the Hadamard gate on her original qubit. This wording may be confusing,

so—since a picture is worth a thousand words—let us better visualize this with a quantum

circuit. These are the gates that Alice should be applying on her qubits:

Alice
|𝜓⟩ 𝐻

1√
2
(|00⟩ + |11⟩)

Bob

The obvious question now is: how do these gates modify the state of the system? Let’s find

out.

In what follows, we will assume that |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩. With this in mind, it can be readily

checked that the action of the CNOT gate leaves the state of the system as

𝛼 |0⟩ ⊗
1
√
2
(|00⟩ + |11⟩) + 𝛽 |1⟩ ⊗

1
√
2
(|10⟩ + |01⟩),

which can be further simplified as

1
√
2
(𝛼(|000⟩ + |011⟩) + 𝛽(|110⟩ + |101⟩)) .

188 Chapter 9: The Full Power of Quantum Algorithms

Thus, the subsequent application of a Hadamard gate on the first qubit will transform the

state of the system into

1

2
(𝛼(|000⟩ + |100⟩ + |011⟩ + |111⟩) + 𝛽(|010⟩ − |110⟩ + |001⟩ − |101⟩)) .

Exercise 9.2

Using the linearity of quantum gates and the properties of the bra-ket notation,

show—if you haven’t already!—that the result of applying the CNOT operation in

the scenario that we have just considered is indeed

𝛼 |0⟩ ⊗
1
√
2
(|00⟩ + |11⟩) + 𝛽 |1⟩ ⊗

1
√
2
(|10⟩ + |01⟩).

Is it easier to compute these results using the bra-ket notation or the 8 × 8 matrices

that represent three-qubit quantum gates?

Alright, so far, so good. Now our next step will be for Alice to measure the two qubits she

has in her possession, that is, the first two qubits of our system. As we learned in Chapter 8,

if the outcome of the measurement is 00, the state of the whole system will collapse to

|𝐶00⟩ ≔ 𝛼 |000⟩ + 𝛽 |001⟩ = |00⟩ ⊗ (𝛼 |0⟩ + 𝛽 |1⟩) = |00⟩ ⊗ |𝜓⟩ ,

which means that Alice’s qubits will be in the state |00⟩ and Bob’s qubit will be in the state

|𝜓⟩—just as we wanted! In this case, we have successfully teleported the state |𝜓⟩ to Bob

and there’s nothing else we have to do.

Now what happens if get a different measurement outcome? For 01, the state of the system

will collapse to

|𝐶01⟩ ≔ 𝛼 |011⟩ + 𝛽 |010⟩ = |01⟩ ⊗ (𝛼 |1⟩ + 𝛽 |0⟩),

which is. . . oddly close to what we want, but we’re not quite yet there! In this situation,

Alice’s qubits are in the state |01⟩ (which is fair enough, nothing particularly interesting

Quantum teleportation 189

here), but Bob’s qubit is in the state 𝛼 |1⟩ + 𝛽 |0⟩, which is like |𝜓⟩ except for the fact that

the amplitudes are flipped. Nevertheless, this can be very easily fixed: all we would have

to do is apply an 𝑋 gate on Bob’s qubit, and thus its state would turn out to be

𝑋(𝛼 |1⟩ + 𝛽 |0⟩) = 𝛼 |0⟩ + 𝛽 |1⟩ = |𝜓⟩ .

So, if Alice’s measurement is 01, she just has to relay this information to Bob and he will

know he has to apply an 𝑋 gate to his qubit and, in that way, he will own his very own

copy of the precious state |𝜓⟩.

The two remaining outcomes of Alice’s measurement leave us in a similar situation. If the

outcome of her measurement is 10, the state collapses to

|𝐶10⟩ ≔ 𝛼 |100⟩ − 𝛽 |101⟩ = |10⟩ ⊗ (𝛼 |0⟩ − 𝛽 |1⟩).

So, in this case, in order to retrieve |𝜓⟩, Bob would need to apply a 𝑍 gate to his qubit as

𝑍(𝛼 |0⟩ − 𝛽 |1⟩) = 𝛼 |0⟩ + 𝛽 |1⟩ .

Lastly, if Alice’s measurement yields 11 as a result, the state of the system will be

|𝐶11⟩ ≔ 𝛼 |111⟩ − 𝛽 |110⟩ = |11⟩ ⊗ (𝛼 |1⟩ − 𝛽 |0⟩),

and, in this case, Bob will have to apply the gates 𝑋 and 𝑍 (in that order) to retrieve |𝜓⟩.

This is pretty much the story. In this final step, we need Alice to measure her qubits and

send these results to Bob. After receiving those results—if we collect and simplify the

conclusions we have obtained—Bob must perform the following operations sequentially in

order to complete the teleportation process:

• If the last bit of Alice’s measurement is 1, he must apply an 𝑋 gate to his qubit

• If the last bit of Alice’s measurement is 1, he must apply a 𝑍 gate to his qubit

190 Chapter 9: The Full Power of Quantum Algorithms

This procedure is represented in quantum circuits as follows:

…

…

… 𝑋 𝑍 |𝜓⟩

This way of writing down the circuit can seem cryptic, but it’s actually kind of natural. In

a way, it is as if the bit from the measurement operation were controlling the application

of the 𝑋 and 𝑍 gates, in the same way that a control qubit operates in a controlled gate.

That’s why we have connected the measurement operation to the quantum gate, just as we

do with controlled quantum gates. Nevertheless, unlike in controlled gates, this operation

is controlled by classical information (bits), and we represent this using a double wire. In

general, in a quantum circuit, double wires are used to represent classical information,

whereas normal wires always represent quantum information.

Important note

The quantum circuit that summarizes the operations needed to make quantum

teleportation work is the following:

Alice

|𝜓⟩ 𝐻

1√
2
(|00⟩ + |11⟩)

Bob 𝑋 𝑍 |𝜓⟩

Earlier in this section, we mentioned that while we were going to use the Bell state
1√
2
(|00⟩ + |11⟩) for the entangled pair, any other Bell state would do the trick. In fact, a

different choice of Bell state would only mean that Bob would have to apply different

combinations of gates upon receiving the results from Alice’s measurement. The following

exercise will give you the chance to work through this.

Quantum teleportation 191

Exercise 9.3

Consider a quantum teleportation setup analogous to the one we have discussed,

but having the state of the entangled paired shared by Alice and Bob initialized to
1√
2
(|01⟩ + |10⟩). If Alice’s measurement yields 00, what gates should Bob apply to

his qubit in order to retrieve |𝜓⟩?

And that’s quantum teleportation. As an additional remark, if you want to trace back the

origin of this protocol, you may wish to know that it was first introduced in the article

“Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen

channels” [59].

Now, that was a lot of information to absorb, so let’s zoom out and look at the big picture.

9.1.2 An overview of quantum teleportation
Throughout this section, we have discussed quantum teleportation and seen how it enables

the transfer of a quantum state from one qubit to another. In the setup that we discussed,

we have considered two characters: Alice and Bob. Alice was in possession of one qubit in

the state |𝜓⟩ that we wanted to teleport, and, in addition, Alice and Bob each had a qubit

from an entangled pair in a Bell state. From this point, Alice only had to perform a CNOT

and Hadamard operations on the two qubits under her control and then measure them.

Then she needed to send the two-bit measurement result to Bob and, with that information,

Bob could apply some simple transformations on his qubit in order to set its state to |𝜓⟩.

Before moving on to other things, a few important remarks are in order about this protocol:

• Quantum teleportation does not violate the no-cloning theorem. Notice that the

only way for Alice to be able to send the state |𝜓⟩ to Bob is by losing access to that

state herself. At the end of the execution of the protocol, Bob’s qubit is in state |𝜓⟩,

but both of Alice’s qubits are in a state from the computational basis determined by

the outcome of her measurement.

192 Chapter 9: The Full Power of Quantum Algorithms

• Quantum teleportation works at any distance. No matter how far apart Alice and

Bob may be, entanglement still works—and the protocol still works. This has been

demonstrated experimentally, teleporting a state through a distance of 1400 km [60].

• Quantum teleportation does not allow information to be sent faster than the

speed of light. Keep in mind that, in order for Bob to have access to |𝜓⟩, he needs

to first wait to receive Alice’s two bits telling him which gate operations he needs to

perform. Those two bits, being the classical information that they are, cannot travel

faster than the speed of light. The general statement of this fact is known as the

no-communication theorem or the no-signaling principle.

To learn more. . .

The ideas behind quantum teleportation can go far beyond the mere teleportation

of states. As we will mention in Chapter 14, a protocol known as quantum gate

teleportation draws on some ideas from the quantum teleportation protocol in

order to enable the fault-tolerant implementation of quantum gates.

That’s all there is to the quantum teleportation of a qubit. We can now move on to discuss

our first quantum algorithm that will use an arbitrarily large number of qubits, and it’s

an algorithm that will certainly sound familiar. Remember Deutsch’s algorithm from

Chapter 6? Well, he has grown up and he wants to pay a visit!

9.2 The Deutsch–Jozsa algorithm
Back in Chapter 6, we introduced Deutsch’s algorithm, which enabled us to detect whether

a one-bit Boolean function was constant or balanced using a single call to its oracle. In this

section, leveraging the power of multi-qubit systems, we are going further: we are about

to introduce an algorithm that will enable us to complete an analogous task for Boolean

functions on any number of bits.

This algorithm is, as you may have guessed, the Deutsch–Jozsa algorithm, which was

introduced by David Deutsch and Richard Jozsa in their paper “Rapid solution of problems by

quantum computation” [58]. Actually, as we have already mentioned, Deutsch’s algorithm

The Deutsch–Jozsa algorithm 193

is just a particular case of the Deutsch–Jozsa algorithm for two-qubit systems (and hence

for one-bit Boolean functions).

Before we can discuss this shiny new algorithm, we first need to understand what it is

capable of accomplishing and, thus, we need to go beyond the definition of one-bit Boolean

functions that we introduced in Chapter 6. So, let’s go big. In general, an 𝑛-bit Boolean

function is a function that takes as an argument 𝑛 bits and returns a single bit as output.

For example, the function 𝑓 , defined as

𝑓 (0, 0) = 0, 𝑓 (0, 1) = 1, 𝑓 (1, 0) = 1, 𝑓 (1, 1) = 0

would be a two-bit Boolean function. Now, Boolean functions are said to be constant if

they are, well, constant: if they map all possible inputs to the same bit. The function 𝑓

above is not constant because 𝑓 (0, 0) = 0 but 𝑓 (0, 1) = 1. In addition, a Boolean function is

said to be balanced if exactly half of its inputs are mapped to 0 and the other half gets

mapped to 1. The function 𝑓 above is, for example, balanced.

It is important to highlight that some Boolean functions may be neither constant nor

balanced. For example, the two-bit Boolean function

𝑓 (0, 0) = 0, 𝑓 (0, 1) = 1, 𝑓 (1, 0) = 1, 𝑓 (1, 1) = 1

is not constant (because, for example, 𝑓 (0, 0) ≠ 𝑓 (0, 1)), but it isn’t balanced either, because

one of its inputs gets mapped to 0, whereas three get mapped to 1—neither of those are

half of the inputs!

Exercise 9.4

Write down all the two-bit balanced and constant functions.

With this, we know exactly the kind of functions we are going to be working with and how

they can be classified. Now, when we studied Deutsch’s algorithm, we saw how quantum

194 Chapter 9: The Full Power of Quantum Algorithms

computers used oracles in order to evaluate those functions. Let’s discuss those oracles in

a little more detail and see how they can be used for general Boolean functions.

9.2.1 Oracles, in all their glory
As we have mentioned on countless occasions, one of the defining features of quantum

gates is that they are reversible (or invertible): when you apply a quantum gate, you should

always be able to apply another one that undoes its action. This seemingly innocent

condition can prove to be hard to swallow if we are accustomed to classical computing. For

instance, this requirement forbids the existence of a quantum AND gate, since the AND

operation is not reversible; if an AND gate returns a 0, it’s impossible to tell whether it

came from the input 00, 01, or 10.

This need for reversibility would make it impossible to construct a quantum gate that

would directly implement an 𝑛-bit Boolean function 𝑓 , for 𝑛 > 1. By that, we mean a gate

that would simply take 𝑛 qubits in computational basis states (for 𝑛 > 1) as input and

return the (computational basis) output of 𝑓 on those inputs, while discarding the inputs

altogether.

Exercise 9.5

In the previous statement, we assumed that 𝑛 > 1. For which one-bit Boolean

functions 𝑓 does there exist a one-qubit gate 𝐺𝑓 that directly implements 𝑓 ? This

would mean that 𝐺𝑓 (|0⟩) = |𝑓 (0)⟩ and 𝐺𝑓 (|1⟩) = |𝑓 (1)⟩.

Given these constraints, oracles are a very convenient abstraction. Generalizing what we

had for one-bit Boolean functions, given any 𝑛-bit Boolean function 𝑓 , an oracle for 𝑓 is an

(𝑛 + 1)-qubit gate 𝑂𝑓 , which acts on the computational basis states as follows. If 𝑥 is any

sequence of 𝑛 bits and 𝑏 is a single bit, consider the (𝑛 + 1)-dimensional computational

basis state |𝑥, 𝑏⟩. The oracle 𝑂𝑓 transforms this state as 𝑂𝑓 |𝑥, 𝑏⟩ = |𝑥, 𝑏 ⊕ 𝑓 (𝑥)⟩, where ⊕

denotes the XOR operation (or addition modulo 2). Graphically,

The Deutsch–Jozsa algorithm 195

𝑛
|𝑥⟩

𝑂𝑓

|𝑥⟩

|𝑏⟩ |𝑏 ⊕ 𝑓 (𝑥)⟩

where we are using the tiny stick with the 𝑛 above it to denote that the first wire actually

represents a bundle of 𝑛 qubits.

Naturally, from their definition on the computational basis, the action of oracles is extended

by linearity to all possible states.

There are a couple of neat things about oracles, the first of which being that, for any Boolean

function 𝑓 , its corresponding oracle is always a valid quantum gate: the transformation it

induces is always unitary. In addition to this, oracles provide us with a very convenient

way of measuring how many times a certain quantum algorithm calls a given function.

To learn more. . .

In order to prove that the oracle of a Boolean function is, indeed, a unitary operation

and hence a valid quantum gate, it suffices to notice that it maps an orthonormal

basis (the computational basis) into another orthonormal basis (which is, again, the

computational basis, even if with a different ordering of its elements). Should you

want to better understand this, these notions are covered in Appendix A.

So, now that we have introduced all the definitions that we need, we can finally state what

the Deutsch–Jozsa algorithm promises to deliver: it will discern whether a function is

constant or balanced with a single call to its oracle.

Important note

For any natural number 𝑛, consider an 𝑛-bit Boolean function 𝑓 that is constant or

balanced. Using a single evaluation of the oracle of 𝑓 , the Deutsch–Jozsa algorithm

can determine, in a single execution, whether 𝑓 is constant or balanced.

Notice that there is a significant difference in the prerequisites of Deutsch’s algorithm and

Deutsch–Jozsa. When we considered one-bit Boolean functions, we always knew that they

196 Chapter 9: The Full Power of Quantum Algorithms

would be either constant or balanced, so we could formulate our problem for any arbitrary

function. Here, we are requiring that the oracle that we are provided be specifically that of

a constant or balanced function. That is, if we are given some function that doesn’t fit into

these two categories, we are not claiming to be able to detect it; actually, if an oracle for

such a function is used, the algorithm will just return a random output. For this reason,

this kind of problem is called a promise problem: we need to be “promised” that the input

will satisfy the required constraints.

With that, we are ready to introduce the Deutsch–Jozsa algorithm.

9.2.2 The magic behind Deutsch–Jozsa
How does the Deutsch–Jozsa algorithm work? You won’t be surprised to learn that it

works just like Deutsch’s algorithm, but with more qubits, to the extent that—as we have

hinted already—Deutsch’s algorithm is just the Deutsch–Jozsa algorithm for 𝑛 = 1. Thus,

and in spite of any déjà vu that we may encounter, let us describe, step by step, what

Deutsch–Jozsa is all about.

In what follows, we will consider an 𝑛-bit Boolean function 𝑓 . To use this algorithm on 𝑓 ,

we need a system with 𝑛 + 1 qubits. The first 𝑛 of these must be initialized to |0⟩, while the

last one must be initialized to |1⟩; of course, if all qubits are initialized to |0⟩, we could just

apply an 𝑋 gate on the last qubit and move on with our lives. With this setup, our first

step will be (surprise, surprise) to apply a Hadamard gate on each of the qubits, as follows:

|0⟩ 𝐻

⋮ ⋮

|0⟩ 𝐻

|1⟩ 𝐻

The state of the system right after this operation will be

(

1
√
2
(|0⟩ + |1⟩)

)
⊗ ⋯ ⊗

(

1
√
2
(|0⟩ + |1⟩)

)
⊗

(

1
√
2
(|0⟩ − |1⟩

)
,

The Deutsch–Jozsa algorithm 197

which, by expanding the first 𝑛 tensor products and collecting all the 1√
2

factors, can be

rearranged as

1
√
2𝑛+1

(|0⟩ + |1⟩ + ⋯ + |2
𝑛
− 1⟩) ⊗ (|0⟩ − |1⟩) =

1
√
2𝑛+1 (

2𝑛−1

∑

𝑥=0

|𝑥⟩
)
⊗ (|0⟩ − |1⟩).

Notice that this means that the first 𝑛 qubits are in a balanced superposition of all the

computational basis states; that is, all the kets formed with binary strings of length 𝑛

(which we have decided to write as decimal numbers, for brevity). To convince yourself

that this equality is indeed true, you can test it for small 𝑛; and, if you want to verify it

rigorously (which we strongly recommend!), you can go back to Exercise 8.2.

Now that we’re in full superposition, our next step will be to apply the oracle of 𝑓 , so our

circuit thus far would look like this:

|0⟩ 𝐻

𝑂𝑓

⋮ ⋮

|0⟩ 𝐻

|1⟩ 𝐻

The application of the oracle will leave the state of our system as

(

1
√
2)

𝑛+1

(

2𝑛

∑

𝑥=0

|𝑥⟩
)
⊗ (|0 ⊕ 𝑓 (𝑥)⟩ − |1 ⊕ 𝑓 (𝑥)⟩) =

2𝑛

∑

𝑥=0

(−1)𝑓 (𝑥)
√
2𝑛+1

|𝑥⟩ (|0⟩ − |1⟩),

where we have used the fact that, for any bit 𝑏 , we have

|0 ⊕ 𝑏⟩ − |1 ⊕ 𝑏⟩ = (−1)
𝑏
(|0⟩ − |1⟩).

Remember that we proved this in Section 6.3, just in case you needed a reminder!

We are almost done! All that is left to do is apply a Hadamard gate on each of the first 𝑛

qubits, as follows:

198 Chapter 9: The Full Power of Quantum Algorithms

|0⟩ 𝐻

𝑂𝑓

𝐻

⋮ ⋮ ⋮

|0⟩ 𝐻 𝐻

|1⟩ 𝐻

Figuring out what the state will be after this operation is slightly trickier than in the

cases that we considered previously. To get started, consider an 𝑛-qubit state from the

computational basis, |𝑥1⋯𝑥𝑛⟩; here, we are assuming that 𝑥𝑖 are bits (so, if 𝑥1 = 0, that

means that the first qubit is in state |0⟩). The action of 𝑛 Hadamard gates (each acting on

one of the 𝑛 qubits) will be

(𝐻 ⊗ ⋯ ⊗ 𝐻) |𝑥1⋯𝑥𝑛⟩ = 𝐻 |𝑥1⟩ ⊗ ⋯ ⊗ 𝐻 |𝑥𝑛⟩

=
(

1
√
2
(|0⟩ + (−1)

𝑥1 |1⟩)
)
⊗ ⋯ ⊗

(

1
√
2
(|0⟩ + (−1)

𝑥𝑛 |1⟩)
)

=
(

1
√
2
((−1)

𝑥1 ⋅0 |0⟩ + (−1)
𝑥1 ⋅1 |1⟩)

)
⊗ ⋯ ⊗

(

1
√
2
((−1)

𝑥𝑛 ⋅0 |0⟩ + (−1)
𝑥𝑛 ⋅1 |1⟩)

)

=
1

√
2𝑛

1

∑

𝑦1,…,𝑦𝑛=0

(−1)
𝑥1𝑦1+⋯+𝑥𝑛𝑦𝑛 |𝑦1⋯𝑦𝑛⟩ .

=
1

√
2𝑛

1

∑

𝑦1,…,𝑦𝑛=0

(−1)
𝑥1𝑦1⊕⋯⊕𝑥𝑛𝑦𝑛 |𝑦1⋯𝑦𝑛⟩ .

Incidentally, regarding the last equality, notice that, in general, given any two bits 𝑥 and

𝑦, we have (−1)𝑥+𝑦 = (−1)𝑥⊕𝑦 . Feel free to run a proof by induction on 𝑛 if you want to

(rigorously) verify the remaining equalities (we love induction, and we hope that you do as

well). Again, it is at least a good idea to work out the computation for small 𝑛 to get an

intuition of what is going on with those tensor products!

In the sequel, for any pair of natural numbers 𝑥 and 𝑦 (between 0 and 2𝑛 − 1) with binary

representations 𝑥1⋯𝑥𝑛 and 𝑦1⋯𝑦𝑛, respectively, we will use 𝑥⊙𝑦 to denote 𝑥1𝑦1⊕⋯⊕𝑥𝑛𝑦𝑛.

Having introduced this notation, we can apply the result above to deduce that the state of

The Deutsch–Jozsa algorithm 199

our system after the application of the Hadamard gates will be

2𝑛−1

∑

𝑥=0

(−1)𝑓 (𝑥)
√
2𝑛+1

((𝐻 ⊗ ⋯ ⊗ 𝐻) |𝑥⟩) (|0⟩ − |1⟩) =

2𝑛−1

∑

𝑥=0

(−1)𝑓 (𝑥)
√
2𝑛+1 (

2𝑛−1

∑

𝑦=0

(−1)𝑥⊙𝑦
√
2𝑛

|𝑦⟩
)
(|0⟩ − |1⟩),

which can be rearranged and simplified as

2𝑛−1

∑

𝑥=0

2𝑛−1

∑

𝑦=0

(−1)𝑓 (𝑥)+𝑥⊙𝑦
√
22𝑛+1

|𝑦⟩ (|0⟩ − |1⟩) =

2𝑛−1

∑

𝑦=0

2𝑛−1

∑

𝑥=0

(−1)𝑓 (𝑥)+𝑥⊙𝑦

2𝑛
|𝑦⟩ ⊗

1
√
2
(|0⟩ − |1⟩).

And that’s all we need, for here comes the moment of truth. The last and final step of the

Deutsch–Jozsa algorithm is to perform a measurement of the first 𝑛 qubits. If we do so, the

probability of obtaining the outcome 0 in all 𝑛 qubits will be

|
|
|
|
|

2𝑛−1

∑

𝑥=0

(−1)𝑓 (𝑥)+𝑥⊙0

2𝑛

|
|
|
|
|

2

=

|
|
|
|
|

2𝑛−1

∑

𝑥=0

(−1)𝑓 (𝑥)

2𝑛

|
|
|
|
|

2

.

Clearly, if 𝑓 is constant (and (−1)𝑓 (𝑥) takes the same value for all 𝑥), this will add up to 1;

that would be an example of constructive interference. On the contrary, if 𝑓 is balanced

(and (−1)𝑓 (𝑥) = 1 for half of the values of 𝑥 , and (−1)𝑓 (𝑥) = −1 for the other half), the sum

will add up to 0; in this case, we would find a destructive interference.

Exercise 9.6

Show that, indeed, the probability of obtaining 0⋯ 0 in the final measurement of

the Deutsch–Jozsa algorithm is the one we have claimed.

In summary, we have shown that, if the function 𝑓 is constant, the final measurement of

the algorithm will always return the outcome 0⋯ 0, whereas if 𝑓 is balanced, at least one

of the bits in this measurement is guaranteed to be 1.

200 Chapter 9: The Full Power of Quantum Algorithms

Important note

Given oracle 𝑂𝑓 for an 𝑛-bit Boolean function 𝑓 , if we run a single shot of the circuit

|0⟩ 𝐻

𝑂𝑓

𝐻

⋮ ⋮ ⋮

|0⟩ 𝐻 𝐻

|1⟩ 𝐻

,

the measurement on the first 𝑛 qubits will return the outcome 0 on each and every

qubit if the function is constant, and it will return 1 on at least one qubit if the

function is balanced. This is the Deutsch–Jozsa algorithm.

As we mentioned in Section 6.3, this algorithm was introduced by David Deutsch and

Richard Jozsa in their paper “Rapid solution of problems by quantum computation” [58].

And, as promised in Section 6.3, we have seen how this algorithm generalizes Deutsch’s

algorithm to Boolean functions with an arbitrarily large number of inputs.

If we were to use a classical computer to solve the problem that the Deutsch–Jozsa algorithm

tackles for an 𝑛-bit Boolean function 𝑓 , we would need 2𝑛/2 + 1 evaluations of 𝑓 in the

worst case. Think about it as follows: if you have evaluated 𝑓 on half of the inputs and

have always gotten the same output, can you truly tell that 𝑓 is constant or balanced? For

all you know, it could be constant, but it could also be balanced! It might just be that 𝑓

takes a different value in the other half of inputs you haven’t yet evaluated.

Thus, the Deutsch–Jozsa algorithm is one of those algorithms that perfectly illustrates the

power and might of quantum algorithms. It solves a problem (deterministically!) with a

single evaluation of the oracle of a function, while any deterministic classical algorithm

might require 2𝑛−1 + 1 evaluations of the function. Notice the difference: we are comparing

one evaluation to an exponentially growing number of evaluations. This is huge.

The Deutsch–Jozsa algorithm 201

Nevertheless, it might be best not to get too excited just yet, for Deutsch–Jozsa is a brilliant

algorithm for a problem that no one asked to solve. However, the ideas behind it will power

some of the very useful algorithms that we will introduce later in the book!

Before moving on to other matters, it could be a good idea to reflect on some of the

abstract ingredients that make the Deutsch–Jozsa algorithm clearly outperform any classical

counterpart. And, along the way, we may find some opportunities to further clarify some

common myths about quantum computers.

9.2.3 The truth about quantum parallelism
“Quantum computers are faster because they can use superposition to evaluate all possible

solutions at once”. Such a catchy and inspiring statement. We have heard it. You have

heard it. We’ve all heard it, and that doesn’t make it any less misleading. As you can

probably tell by now, designing a quantum algorithm doesn’t appear to be as simple as just

putting some qubits in a state in superposition and just moving with the flow. Indeed, as

we have mentioned on countless occasions already, quantum algorithms are powered by

an intricate balance with many elements at play, and superposition is just one of them. By

now, you have had plenty of opportunities to see how entanglement also plays a major role

in the design of quantum protocols, and we will now also discuss how interference—as

neglected as it may be in those cool, popular science videos—plays a crucial role in the

design of quantum algorithms.

Generalizing a tiny bit, most quantum algorithms follow the same structure:

1. Get all the qubits in a state of superposition (with Hadamard gates all over the

place).

2. Get some transformations done, potentially relying on entanglement.

3. Rely on interference to extract the information that we want from the resulting

state.

The Deutsch–Jozsa algorithm (and Deutsch’s algorithm) follows exactly this structure.

Once all the qubits are in a state of superposition, the oracle of the Boolean function

202 Chapter 9: The Full Power of Quantum Algorithms

transforms the state, and then some Hadamard gates generate the necessary interference,

bringing us to the final state that we want to measure.

To learn more. . .

Interference is a physical phenomenon that occurs when two waves are combined,

resulting in a new wave. The short reason as to why this is relevant in quantum

mechanics is the wave-particle duality, which is one the core concepts in quantum

mechanics and—very vaguely speaking—states that quantum-mechanical objects

are both particles and waves at the same time. This idea is behind some of the weird

things that qubits can do. Or is it a consequence of it? Maybe it’s best not to go

down philosophical rabbit holes just now.

For our purposes, it may suffice to know that interference manifests itself every time

a quantum gate leads to the addition or subtraction of some of the amplitudes of a

state. If you are interested in learning more about the physics behind interference,

the book Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles [17] by

Eisberg and Renick might be a good place to get started.

In any case, you may be pleased to know that Deutsch’s algorithm has a very in-

teresting physical analogue, which is the Mach-Zehnder interferometer. This

device is used to detect whether an object induces a phase difference in photons

(in quantum computing terms, whether it applies a certain “gate” on them!). In

particular, in the interferometer, photons go in and they go through beam splitters

(which are kind of Hadamard gates). Then, each of the beams goes through different

routes, and one of them goes through the object that may induce the phase shift

(this is the oracle). Finally, the beams meet again at a beam splitter (again, similar

to a Hadamard gate) and the interference that they produce there gives the relevant

information about the phase difference that they had. Of course, this is a vague anal-

ogy: we are not claiming that a Mach-Zehnder interferometer actually implements

Deutsch’s algorithm!

The Bernstein–Vazirani algorithm 203

As you have seen, getting the qubits in a state of superposition was the easy part of the

algorithm. Most of the magic is in the two other ingredients!

Keep this general structure in mind, because you will see it is used time and again in most

quantum algorithms.

After this clarification, we can move on and turn our attention to another algorithm that is

very similar in nature to the Deutsch–Jozsa algorithm. Actually, it is so similar that you

almost won’t be able to tell them apart from each other!

9.3 The Bernstein–Vazirani algorithm
You may have heard the expression “killing two birds with one stone”. In this chapter, we

are doing exactly that—at least metaphorically (we love birds). Remember the Deutsch–

Jozsa algorithm? Now we are going to use it to kill two problems with one (quantum) shot.

Get ready to see the Bernstein–Vazirani algorithm: Deutsch–Jozsa with a new outfit!

Assume that you are given an 𝑛-bit Boolean function 𝑓 , and you are promised that, for

some number 𝑏 with binary representation 𝑏1⋯𝑏𝑛, the output of the function is computed

as

𝑓 (𝑥1, … , 𝑥𝑛) ≔ 𝑥1𝑏1 ⊕⋯ ⊕ 𝑥𝑛𝑏𝑛.

Under these hypotheses, classically, how many evaluations of 𝑓 would you need to perform

in order to find 𝑏? You would need at least 𝑛: one for each bit of the binary representation

of 𝑏 . You could find 𝑏1 as 𝑓 (1, 0, … , 0), 𝑏2 as 𝑓 (0, 1, 0, … , 0), and so on and so forth. Now, if

you had access to a quantum computer. . . how many evaluations of 𝑓 would you need to

perform? As it turns out, if you have an oracle for 𝑓 , the Bernstein–Vazirani algorithm can

get the job done with a single evaluation. Just a single shot! How would this algorithm

work? Well, get ready for a surprise.

The Bernstein–Vazirani algorithm works exactly as the Deutsch–Jozsa algorithm. It only

differs in the assumptions on the Boolean function that it considers, but the circuit it uses

is a carbon copy. Indeed, assume that we run the circuit from the Deutsch–Jozsa algorithm

204 Chapter 9: The Full Power of Quantum Algorithms

for a function 𝑓 that satisfies the hypothesis of the Bernstein–Vazirani algorithm. Recall

that the circuit is the following:

|0⟩ 𝐻

𝑂𝑓

𝐻

⋮ ⋮ ⋮

|0⟩ 𝐻 𝐻

|1⟩ 𝐻

,

Right before performing the measurement operations, according to our study of the

Deutsch–Jozsa algorithm, the state of the system will be the following:

2𝑛−1

∑

𝑦=0

2𝑛−1

∑

𝑥=0

(−1)𝑓 (𝑥)+𝑥⊙𝑦

2𝑛
|𝑦⟩ ⊗

1
√
2
(|0⟩ − |1⟩).

This means that the probability of measuring any 𝑦 (any sequence of bits that would

represent a number 𝑦 between 0 and 2𝑛 − 1) will be

|
|
|
|
|

2𝑛−1

∑

𝑥=0

(−1)(𝑥⊙𝑏)+(𝑥⊙𝑦)

2𝑛

|
|
|
|
|

2

,

where we have used the fact that 𝑓 (𝑥) = 𝑥 ⊙ 𝑏 . Setting 𝑦 = 𝑏 makes this expression equal

to 1, which means that the measurement of the 𝑛 qubits is guaranteed to return 𝑏1, … , 𝑏𝑛,

hence revealing the bit string that we were looking for!

Important note

If we run the Deutsch–Jozsa algorithm on an 𝑛-bit Boolean function 𝑓 such that,

for a fixed sequence of bits 𝑏1, … , 𝑏𝑛, we always have

𝑓 (𝑥1, … , 𝑥𝑛) = 𝑥1𝑏1 ⊕⋯ ⊕ 𝑥𝑛𝑏𝑛,

The Bernstein–Vazirani algorithm 205

then the final measurement of the 𝑛 first qubits of the circuit is guaranteed to return

the bits 𝑏1, … , 𝑏𝑛. This is the Bernstein–Vazirani algorithm.

To learn more. . .

On its own, the Bernstein–Vazirani algorithm offers a speed-up over its classical

counterparts (one evaluation instead of 𝑛), but it’s not as impressive as the one that

the Deutsch–Jozsa algorithm offered for its own problem (one evaluation instead of

2𝑛/2 + 1).

Nevertheless, it is possible to create a recursive version of the Bernstein-Vazirani

problem that yields a quantum algorithm with a superpolynomial advantage over

any classical counterpart [61].

The Bernstein–Vazirani algorithm was introduced by Ethan Bernstein and Umesh Vazirani

in their paper “Quantum Complexity Theory” [61]. That’s all we have to say about this

algorithm. Now, let’s wrap things up!

Summary
In this chapter, we have introduced our first protocols that were built on systems with

more than two qubits.

We first discussed quantum teleportation, a protocol that, analogous to superdense coding,

enabled two communicating parties to send quantum information (in the form of a qubit

state) through the communication of classical data (two bits) thanks to the power of

quantum entanglement. All of this, of course, was built on the prerequisite that the two

communicating parties shared some qubits from an entangled pair.

We then introduced the Deutsch–Jozsa algorithm, which generalizes Deutsch’s algorithm

and works for Boolean functions with inputs of arbitrary dimension. Along the way, we

made some remarks about the true nature of quantum parallelism, highlighting the role

that entanglement and interference play in most quantum algorithms.

206 Chapter 9: The Full Power of Quantum Algorithms

We concluded by exploring, through the Bernstein-Vazirani algorithm, how the very same

circuit used in the Deutsch–Jozsa algorithm could be applied to solve different problems.

In the following chapter, we will see how all of these protocols and algorithms can be coded

into Qiskit, and we will learn how to master all the possibilities it offers to handle systems

with arbitrarily many qubits.

10
Coding with Many Qubits in
Qiskit

Software and cathedrals are much the same—
first we build them, then we pray.

— Samuel T. Redwine

In the last couple of chapters, we have introduced systems with arbitrarily many qubits

and we have seen some of the eye-opening things that can be done with them. In this

chapter, we are putting all of that knowledge into practice. We already know how to use

Qiskit to work with one or two qubits, and it is time for us to break free of every limit and

construct circuits with any number of qubits.

The contents of this chapter are the following:

• Working with many qubits in Qiskit

• Quantum teleportation

208 Chapter 10: Coding with Many Qubits in Qiskit

• The Deutsch–Jozsa algorithm

• The Berstein–Vazirani algorithm

By the end of this chapter, you will know how to construct any quantum circuit in Qiskit—

regardless of its size. You will also be able to implement all the protocols and algorithms that

we discussed in Chapter 9; namely, the quantum teleportation protocol and the Deutsch–

Jozsa and Bernstein-Vazirani algorithms. In this regard, we will also go through how to

implement a quantum oracle for any Boolean function.

This will be our last foundational chapter on Qiskit. Are you ready for a ride?

10.1 Working with many qubits in Qiskit
To get started, we will import the QuantumCircuit class from the Qiskit package—nothing

particularly exciting just yet:

from qiskit import QuantumCircuit

As you are about to find out, working with several qubits is not at all different from working

with a couple of them. All it takes is instantiating circuits with a larger number of qubits

and. . . well, everything else just grows in size accordingly. That’s pretty much it! There’s

no secret beyond that.

While having more qubits does not change much of how Qiskit works, going beyond two

qubits enables us to use some new features from the framework, the most obvious of which

is being able to access new quantum gates.

In Chapter 8, we introduced the Toffoli gate. This is a three-qubit gate in which two qubits

act as controls and one acts as a target, in such a way that—informally speaking—an 𝑋

gate is applied on the target when the controls are in state |1⟩. To use this gate in Qiskit,

we only have to call the ccx method, whose name comes from the fact that the Toffoli gate

is a doubly controlled 𝑋 gate. We create and draw a five-qubit circuit using this gate in the

following piece of code:

Working with many qubits in Qiskit 209

Create a qubit with 5 qubits:

qc = QuantumCircuit(5)

Apply the Toffoli gate:

qc.ccx(0,2,3)

qc.draw("mpl")

In the call to ccx, the first two arguments (0,2) identify the control qubits, and the third one

(3) specifies the target qubit. Upon running the preceding code, you will get the following

representation:

q0

q1

q2

q3

q4

In addition to the Toffoli gate, there are plenty of other useful multi-qubit quantum gates,

and we will now introduce one of them. Given a system with 𝑛 + 1 qubits, the multi-

controlled NOT gate controlled by the first 𝑛 qubits and targeting the last qubit is an

(𝑛 + 1)-qubit gate, which takes any computational basis state |𝑥1⟩⋯ |𝑥𝑛⟩ |𝑏⟩ and transforms

it into

|𝑥1⟩⋯ |𝑥𝑛⟩ |𝑏 ⊕ ((𝑥1) ⋅ (𝑥2)⋯ (𝑥𝑛))⟩ ,

where (𝑥1) ⋅ (𝑥2)⋯ (𝑥𝑛) denotes the multiplication of the bits 𝑥1, … , 𝑥𝑛. For example, for

𝑛 = 3, this gate would take |1⟩ |1⟩ |1⟩ |0⟩ to |1⟩ |1⟩ |1⟩ |1⟩, but it would keep |1⟩ |0⟩ |1⟩ |0⟩

unchanged (since the second control qubit is in state |0⟩). Informally speaking, this multi-

210 Chapter 10: Coding with Many Qubits in Qiskit

controlled NOT gate works—on computational basis states—by applying an 𝑋 on the target

qubit if and only if the control qubits are all in state |1⟩.

It is worth pointing out that the CNOT and Toffoli gates can be viewed as particular cases

of the multi-controlled NOT gate. They would correspond, respectively, to multi-controlled

NOT gates with one and two control qubits.

The multi-controlled NOT gate can be used in Qiskit with the method mcx, which takes

two arguments: the first must be a list specifying the indices of the control qubits, and

the second must be the index of the target qubit. In the following example, we add to qc a

multi-controlled NOT gate targeting the third qubit, and controlled by the first, fourth, and

fifth qubits:

qc.mcx([0,3,4],2)

qc.draw("mpl")

The representation that we get after performing this operation is the following:

q0

q1

q2

q3

q4

Notice how the control qubits are represented by thick dots, the target qubit is denoted by

the ⊕ symbol, and all of the qubits are joined by a vertical bar. Also, keep in mind that the

preceding representation also includes the Toffoli gate that we applied previously, as we

have used the same circuit object.

Working with many qubits in Qiskit 211

Exercise 10.1

Create a quantum circuit with six qubits and apply a multi-controlled NOT gate

that does the following:

• Targets the fourth qubit

• Is controlled by the first, third, fifth, and sixth qubits

These are all the quantum gates that we will need for now. Let’s dive a little bit deeper into

how quantum circuits are internally represented within Qiskit.

10.1.1 Using registers
Back in Chapter 7, we introduced registers, and we will now devote a few paragraphs to

reviewing what they are and seeing how they behave on systems with many qubits.

Registers are groups of qubits or (classical) bits, and quantum circuits operate on a collection

of quantum registers (storing qubits) and classical registers (storing bits). Indeed, when we

call QuantumCircuit(num_q, num_c), we are simply instantiating a quantum circuit with

a quantum register named q storing num_q qubits, and with a classical register named c

having num_c bits. And, while that is the default, it is always possible to add new registers

to a quantum circuit—without going any further, the measure_all method adds a classical

register by the name of meas.

For example, if we call measure_all on our previous circuit, we can see how a new classical

register has been added to our circuit.

Consider the following piece of code:

qc.measure_all()

print("Quantum registers:", qc.qregs)

print("Classical registers:", qc.cregs)

212 Chapter 10: Coding with Many Qubits in Qiskit

Remember that, in every quantum circuit object, the lists of quantum and classical circuits

are stored in the attributes qregs and cregs respectively. Upon running the preceding

code, this is the output that we get:

Quantum registers: [QuantumRegister(5, ’q’)]

Classical registers: [ClassicalRegister(5, ’meas’)]

If we want to add our own quantum and classical registers to a circuit, all we need to do is

create some QuantumRegister or ClassicalRegister objects, add them as attributes to our

quantum circuit for easier access, and include them in the circuit through the add_register

method, as we illustrate in the following example:

from qiskit import QuantumRegister, ClassicalRegister

qc.new_qreg = QuantumRegister(1, name = "new")

qc.new_creg = ClassicalRegister(10, name = "new_c")

qc.add_register(qc.new_qreg, qc.new_creg)

Notice how, when creating the registers, we are specifying how many bits or qubits they

hold, and we are also giving the register a name. After running this, we can print the lists

of registers and draw our circuit:

print("Quantum registers:", qc.qregs)

print("Classical registers:", qc.cregs)

qc.draw("mpl")

The console output of this instruction will be the following:

Quantum registers: [QuantumRegister(5, ’q’), QuantumRegister(1, ’new’)]

Classical registers: [ClassicalRegister(5, ’meas’),

ClassicalRegister(10, ’new_c’)]

And this will be the representation of our new circuit:

Working with many qubits in Qiskit 213

q0

q1

q2

q3

q4

new

5meas

10new_c

0 1 2 3 4

Having clarified how to use registers in our new general setting, we can now pay off a debt

that we created for ourselves a couple of chapters ago.

10.1.2 How to verify the equivalence of circuits
Back in Subsection 8.3.2, when we first came to know the Toffoli gate, we presented a

possible implementation of it in terms of more elementary gates. However, we didn’t prove

that the circuit we provided actually implemented the Toffoli gate. It is time for us to fix

that, and we will do it with the help of Qiskit. To begin, we will prepare a Qiskit circuit

with our implementation of the Toffoli gate. This can be done as follows:

tof = QuantumCircuit(3)

tof.h(2)

214 Chapter 10: Coding with Many Qubits in Qiskit

tof.cx(1,2)

tof.tdg(2)

tof.cx(0,2)

tof.t(2)

tof.cx(1,2)

tof.tdg(2)

tof.cx(0,2)

tof.t(1)

tof.t(2)

tof.cx(0,1)

tof.h(2)

tof.t(0)

tof.tdg(1)

tof.cx(0,1)

tof.draw("mpl") # Draw it to check it!

Notice that we are using the t method to apply a 𝑇 gate (as we discussed in Chapter 4),

and we are using the tdg (short for “𝑇 dagger”) method to apply the inverse of the 𝑇 gate.

The representation that we get after defining this circuit is the following:

q0

q1

q2 H T T T

T

T H

T

T

This matches the construction that we provided in Subsection 8.3.2.

With this, we have a Qiskit circuit that contains what we presume to be an implementation

of the Toffoli gate, and now is when Qiskit comes to the rescue. Qiskit provides a way

of computing which unitary operation a given quantum circuit implements. This can be

Working with many qubits in Qiskit 215

accessed via the Operator class, which takes a quantum circuit as an initialization argument

and processes it in order to extract the operator that it implements.

Therefore, in order to verify whether the action of our circuit is equivalent to that of the

Toffoli gate, we just have to get an Operator object from our circuit and from the Toffoli

gate, and compare them! We can do this with the following piece of code:

from qiskit.quantum_info import Operator

real_tof = QuantumCircuit(3)

real_tof.ccx(0,1,2) # This circuit has the actual Toffoli gate.

Check if the operators are equal:

print(Operator(tof) == Operator(real_tof))

Upon running this, we get that, indeed, both operators are equal. And that’s one of the

many ways in which Qiskit can make our lives easier!

If you actually look into the Operator objects that Qiskit constructs, you will find some

8× 8 matrices with the entries that would correspond to the coordinate matrix of the Toffoli

gate. Keep in mind, however, that, instead of displaying a zero, some entries may display

values such as 1.11022302e-16+0.j; the reason for these “zero-like yet not zero” values

lies in the fact that Qiskit performs its computations using floating-point arithmetic, so the

results it gives may not always be exact.

To learn more. . .

Comparing two results after performing computations with floating-point numbers

is a risky business, because operations on floating-point numbers are not exact.

Qiskit takes this into account and only compares operator objects for approximate

equality.

That pretty much covers it in terms of how to use Qiskit with many qubits. Let’s now try

to program the protocols that we introduced in Chapter 9. We will begin with quantum

teleportation!

216 Chapter 10: Coding with Many Qubits in Qiskit

10.2 Quantum teleportation
The quantum teleportation protocol aims to “teleport” a state from one qubit |𝜓⟩ to another

and, in order to do that, it relies on the following circuit:

|𝜓⟩ 𝐻

1√
2
(|00⟩ + |11⟩)

𝑋 𝑍 |𝜓⟩

The state |𝜓⟩ meant to be teleported should be the initial state of the first qubit and, as we

showed in Chapter 9, at the end of the execution, the third qubit will be in state |𝜓⟩.

To implement this protocol in Qiskit, we will first implement its circuit, ignoring the state

|𝜓⟩, that is, assuming it to be |0⟩; we will store this circuit in a global variable, qt.

To get started, we will initialize the circuit and get the two bottom qubits in a Bell state

using a Hadamard gate followed by a CNOT gate, as usual:

qt = QuantumCircuit(3)

qt.h(1)

qt.cx(1,2)

Then we can apply a CNOT gate on the first two qubits and a Hadamard gate on the first

one, following the specification:

qt.cx(0,1)

qt.h(0)

With that, we have reached the point at which we need to perform some measurements. To

store the results from the measurements, we will include a classical register named "aux"

with two bits. Then we will measure each of the first two qubits and store the results on

their corresponding bits:

qt.aux = ClassicalRegister(2, name = "aux")

Quantum teleportation 217

qt.add_register(qt.aux)

qt.measure(0, qt.aux[0])

qt.measure(1, qt.aux[1])

Notice that we could’ve also performed the measurements with the instruction

qt.measure([0,1], [qt.aux[0], qt.aux[1]])

When we specify the qubits and bits on which the measurement is meant to operate, we

can send them as lists, or—if we only wish to measure one qubit (at a time)—provide their

direct values without the need to create a list.

At this point, we have to perform some operations conditioned by the results of the

measurements. If the result of the measurement on the second qubit was 1 (and, therefore,

if the second bit in aux is 1), we must apply an 𝑋 gate on the third qubit. Similarly, if the

measurement on the first qubit was 1, we have to apply a 𝑍 gate on the third qubit. To do

this, we can use the if_test method as follows:

Apply X on qubit 2 if aux[1] == 1

with qt.if_test((qt.cregs[0][1], 1)):

qt.x(2)

Apply Z on qubit 2 if aux[0] == 1

with qt.if_test((qt.cregs[0][0], 1)):

qt.z(2)

Observe how, to perform operations conditional on a certain bit object, bit being 1, we

only have to put those operations inside a with qc.if_test((bit, 1)) block. In general,

given any classical bit object bit (like qt.cregs[0][1] above) from a circuit circuit, any

circuit instructions in a block with circuit.if_test((bit,1)) will only be executed if

bit stores the value 1—and this will, of course, be evaluated at runtime, immediately before

218 Chapter 10: Coding with Many Qubits in Qiskit

the first instruction inside the block. If instead we used with qc.if_test((b,0)), the

circuit instructions within the block would only be executed if b stores 0 at runtime.

The use of if_test enables us to embed classical control operations directly into quantum

circuit objects, fitting all the operations in a single job that can then be submitted and

executed; this allows us to evaluate classical conditions while the circuit is being executed

on real hardware. Notice how, if we had to evaluate this locally (and thus use several

jobs), we wouldn’t be able to implement the quantum teleportation protocol, as, in IBM’s

interface, it is not possible to share the state of a quantum circuit between different jobs.

To learn more. . .

We will not be using the if_test method further, but we should mention that one

could implement more complex constructions such as if-else conditionals. It is

also possible to implement other flow control structures like “for” loops, “while”

loops, or “switch” statements using the for_loop, while_loop, and switch methods,

respectively. All of these tools are fully explained in the Qiskit documentation,

should you ever need to use them.

Thus far, we have completed our implementation of the quantum teleportation circuit.

However, in order to be able to test the protocol, we will also add a measurement operation

on the last qubit, which will send its results to a new classical register that we will label as

final:

qt.final = ClassicalRegister(1, name = "final")

qt.add_register(qt.final)

qt.measure(2,qt.final)

Of course, this measurement will not reveal everything about the state (as we have discussed

on numerous occasions), but at least it will give us some information about it—namely,

it will reveal the module of its amplitudes. As we mentioned in Chapter 2, if we wanted

to fully determine the state using measurements, we would have to resort to quantum

tomography techniques [21].

Quantum teleportation 219

If we draw the circuit that we have built using qt.draw("mpl"), we will get the following

output:

 If

 If

 If

 If

q0

q1

q2

2aux

1final

H

H

1 0
aux_1=0x1 aux_0=0x1

0

X Z

Now that we have our circuit ready, we should go ahead and test it. For this, we will first

initialize a simulator backend and a sampler object:

from qiskit_aer import AerSimulator

from qiskit_ibm_runtime import SamplerV2 as Sampler

backend = AerSimulator(seed_simulator = 18620123)

sampler = Sampler(backend)

With these objects, we can implement a wrapper function that will take as input any

one-qubit circuit preparing a state |𝛼⟩ and will apply the quantum teleportation protocol

on that state (composing |𝛼⟩ before our qt circuit on our first qubit):

def quantum_teleportation(state_preparation):

Compose the state_preparation circuit with qt.

We use front = True for state_preparation to go before qt.

circuit = qt.compose(state_preparation, front = True)

Get the results.

job = sampler.run([circuit])

220 Chapter 10: Coding with Many Qubits in Qiskit

return job.result()[0].data.final

The preceding function composes the circuits, runs the sampler, and returns a dictionary

with the measurement counts—that should be more than enough for us to test our im-

plementation of the quantum teleportation protocol. Notice how, in the definition of the

function, we have used the compose method. This takes as an argument another circuit

and returns a brand new circuit in which the instructions of the argument circuit are

added, by default, at the end of the original circuit. If we instead want the instructions of

the argument circuit to be added at the beginning of the original circuit, we can use the

optional front = True parameter, as we did above. It is important to note that, when using

the compose method on two circuits as original.compose(other), Qiskit assumes that

other does not have more qubits or bits than original, and creates a new circuit object

appending the 𝑚 qubits and 𝑛 bits of other to the first 𝑚 qubits and 𝑛 bits of original.

To begin with a very simple test, we will teleport the state |0⟩. For this, we only need to

pass an empty state preparation circuit (remember that all circuits are initialized to |0⟩ by

default, so an empty circuit will suffice to prepare that state):

result_0 = quantum_teleportation(QuantumCircuit(1))

print(result_0.get_counts())

After running the preceding code, we get the expected result:

{’0’: 1024}

Let’s now consider a slightly more sophisticated example and teleport the |+⟩ state. Its state

preparation circuit only needs to include a Hadamard gate, so we can run the following

lines of code:

state_plus = QuantumCircuit(1)

state_plus.h(0)

result_plus = quantum_teleportation(state_plus)

print(result_plus.get_counts())

The Deutsch–Jozsa algorithm 221

This gives us an even distribution of measurement outcomes, which is perfectly consistent

with the state |+⟩:

{’1’: 513, ’0’: 511}

Exercise 10.2

In the case that we are considering, we expect the final state to be |+⟩, but the

final measurement that we perform cannot guarantee us whether the final state is

indeed |+⟩. All we know for certain is that the real amplitudes of the final state have

modulus 1/
√
2—but the state could still be |−⟩, for example!

Tweak the preceding circuit so that the measurement operation that we perform

can enable us to determine that the final state is |+⟩, and no other.

Hint: Consider using a Hadamard gate.

Now it’s time for you to try to teleport a different quantum state!

Exercise 10.3

Use our implementation of the quantum teleportation protocol to teleport the state

|1⟩.

And that’s all there is to implementing the quantum teleportation protocol! In the next

section, we will see how the Deutsch–Jozsa algorithm can be run on Qiskit.

10.3 The Deutsch–Jozsa algorithm
Now that we’ve put our Qiskit skills into practice with quantum teleportation, it’s time to

reach for new heights. In this section, we will implement the Deutsch–Jozsa algorithm.

As we saw in Chapter 9, the Deutsch–Jozsa algorithm only involves the execution of a

rather simple circuit. Indeed, the trickiest bit for us to be able to recreate may not lie in the

implementation of the algorithm itself. . . but in the construction of oracles!

222 Chapter 10: Coding with Many Qubits in Qiskit

When we studied the Deutsch–Jozsa algorithm, we took the oracle as a given. However, if

we want to be able to simulate and test the algorithm fully by ourselves, we will have to

figure out this whole business of building quantum oracles. That will be the whole purpose

of the following subsection.

10.3.1 Let’s build some oracles
In this subsection, we will present a small procedure that will enable us to construct

a quantum oracle for any Boolean function. The implementations that this procedure

will yield will, by no means, be optimal—but they will be good enough for our purposes.

Sometimes perfection can be sacrificed for convenience.

To get started nice and easily, let’s consider a very simple three-bit Boolean function 𝑓 ,

which we will define to take 𝑓 (111) = 1, and to take the value 0 for any inputs different

from 111 (that is, 𝑓 (000) = ⋯ = 𝑓 (110) = 0). Clearly, the following four-qubit circuit will

implement an oracle for this function:

Certainly, for any computational basis state |𝑥⟩ |𝑦⟩ |𝑧⟩⊗ |𝑏⟩, the state will not change unless

𝑥 = 𝑦 = 𝑧 = 1, in which case it will be |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑏 ⊕ 1⟩. Therefore, for any input

computational basis state of the aforementioned form, the output state will be

|𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑏 ⊕ 𝑓 (𝑥, 𝑦, 𝑧)⟩ ,

exactly as required for an oracle computing 𝑓 !

Let’s now try to tackle a slightly more sophisticated example. Consider the function 𝑔 ,

which takes the value 0 except for the input 110, for which 𝑔(110) = 1. Implementing an

oracle for this function is a little bit more complicated—but not too much! We can simply

take this circuit:

The Deutsch–Jozsa algorithm 223

𝑋 𝑋

It is very easy to verify that, for any state of the form |𝑥⟩ |𝑦⟩ |𝑧⟩⊗ |𝑏⟩, the control bits will all

be equal to one if and only if 𝑥 = 1, 𝑦 = 1, and 𝑧 = 0. Therefore, the state of the last qubit

will flip if and only if (𝑥, 𝑦, 𝑧) = (1, 1, 0), and the first three qubits will suffer no change

whatsoever (notice that the 𝑋 gate in the third gate is inverted by the 𝑋 gate at the end).

In summary, this circuit will transform the aforementioned state into

|𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑏 ⊕ 𝑔(𝑥, 𝑦, 𝑧)⟩ ,

thus implementing an oracle for 𝑔 .

In the two examples that we have considered, you may have been able to identify a pattern.

Given any 𝑛-bit string 𝑠 = 𝑠1⋯𝑠𝑛, it is very straightforward to construct an oracle for

the 𝑛-bit function 𝜎𝑠 that takes the value 1 on 𝑠 and 0 on any other value. As you may

have already deduced on your own, the (𝑛 + 1)-qubit circuit that would implement such an

oracle would only need to perform these operations:

1. For every bit 𝑘 = 1,… , 𝑛, apply an 𝑋 gate on qubit 𝑘 if 𝑠𝑘 = 0.

2. Apply a multi-controlled 𝑋 gate targeting the last qubit with controls on the first 𝑛

qubits.

3. Repeat step 1.

In case it isn’t obvious why this would actually implement an oracle for 𝜎𝑠 , we can sketch

a short proof. Assume that the input state to the circuit described is a computational basis

state of the form |𝑥1⟩⋯ |𝑥𝑛⟩ ⊗ |𝑏⟩. After all the 𝑋 gates from step 1 have been applied, this

state will be as follows:

|𝑥1 ⊕ (𝑠1 ⊕ 1)⟩⋯ |𝑥𝑛 ⊕ (𝑠𝑛 ⊕ 1)⟩ ⊗ |𝑏⟩ .

224 Chapter 10: Coding with Many Qubits in Qiskit

Notice how we have used the fact that applying an 𝑋 gate in the computational basis state

|𝑥⟩ transforms it into |𝑥 ⊕ 1⟩; also keep in mind that 𝑎 ⊕ 1 is 1 if 𝑎 = 0, and is 0 when

𝑎 = 1. At this point, the first 𝑛 qubits will be equal to 1 if and only if 𝑠𝑘 = 𝑥𝑘 for every

1 ≤ 𝑘 ≤ 𝑛—that’s because 𝑥𝑘 ⊕ 𝑠𝑘 = 0 if and only if 𝑥𝑘 = 𝑠𝑘 . Consequently, the application

of the multi-controlled 𝑋 gate in step 2 will bring the state to

|𝑥1 ⊕ (𝑠1 ⊕ 1)⟩⋯ |𝑥𝑛 ⊕ (𝑠𝑛 ⊕ 1)⟩ ⊗ |𝑏 ⊕ 𝜎𝑠(𝑥1, … , 𝑥𝑛)⟩ .

Finally, the action of the 𝑋 gates in step 3 will transform the state into

|𝑥1⟩⋯ |𝑥𝑛⟩ |𝑏 ⊕ 𝜎𝑠(𝑥1, … , 𝑥𝑛)⟩ ,

showing that our circuit, as claimed, implements an oracle for 𝜎𝑠 .

We’ve just seen how oracles for functions of the form 𝜎𝑠—taking null values for all inputs

except 𝑠—are very easy to construct, but how could this help us build an oracle for any

general function? Well, consider an arbitrary 𝑛-bit function 𝑓 and let {𝑠1, … , 𝑠𝑛} be the set

of 𝑛-bit strings 𝑠 for which 𝑓 (𝑠) = 1. It is trivial that

𝑓 (𝑦) = 𝜎𝑠1(𝑦) ⊕ ⋯ ⊕ 𝜎𝑠𝑛(𝑦),

because only one of the terms on the right-hand side can be different from zero for a given

𝑦.

And here comes the cool bit: an oracle for this function can be implemented as the mere

concatenations of the oracles for 𝑠1, … , 𝑠𝑛. To see why, consider an 𝑛-bit string 𝑥 = 𝑥1⋯𝑥𝑛

and a bit 𝑏 . If we apply those oracles in sequence on the input state |𝑥1⟩⋯ |𝑥𝑛⟩ ⊗ |𝑏⟩, the

output state will simply be as follows:

|𝑥1⟩⋯ |𝑥𝑛⟩ ⊗
|
|𝑏 ⊕ 𝜎𝑠1(𝑥) ⊕ ⋯ ⊕ 𝜎𝑠𝑛(𝑥)⟩ = |𝑥1⟩⋯ |𝑥𝑛⟩ ⊗ |𝑏 ⊕ 𝑓 (𝑥)⟩ .

The Deutsch–Jozsa algorithm 225

To illustrate this way of constructing oracles, consider the three-bit Boolean function 𝑓

defined as 𝑓 (𝑥) = 0 for all 𝑥 except 𝑓 (000) = 1, 𝑓 (100) = 1, and 𝑓 (111) = 0. An oracle for

this function could be constructed as follows:

𝑋 𝑋

𝑋 𝑋 𝑋 𝑋

𝑋 𝑋 𝑋 𝑋

Oracle 𝜎000 Oracle 𝜎100 Oracle 𝜎111

We can now implement this procedure for constructing oracles in a build_oracle function.

This function will take as input a list of binary strings for which a function takes the

value 1, and it will return a quantum circuit implementing an oracle for it. For example,

if we wanted to build an oracle for a four-bit Boolean function that only takes the value

1 on the inputs 0000 and 0001, we would pass the argument ["0000", "0001"] to the

build_oracle function.

To construct such a function and implement our procedure, we can use the following:

def build_oracle(strings_one):

If the function is never 1, the oracle is the identity.

Hence, we return an empty circuit.

if len(strings_one) == 0:

return QuantumCircuit()

Number of bits that the function takes as input:

n = len(strings_one[0])

qc = QuantumCircuit(n+1)

for x in strings_one:

Find the positions in the string x where the bit is 0.

226 Chapter 10: Coding with Many Qubits in Qiskit

For this, we find the list of indices i such that x[i]==’0’.

bits_zero = []

for i in range(len(x)):

val = x[i]

if val == ’0’:

bits_zero.append(i)

Step 1 in our construction.

for bit in bits_zero:

qc.x(bit)

Step 2.

qc.mcx(list(range(n)), n)

Step 3.

for bit in bits_zero:

qc.x(bit)

return qc

The preceding code is just a fairly direct translation of our algorithm into Python. First, we

perform a basic input check: if the list we have been given is empty, that means that no

string takes the value 1, and hence the oracle will just be an empty circuit. Then, we extract

the length of the strings (assuming, of course, that all of them have the same length), and

we iterate over them. For every string, we apply a CNOT gate on the qubits corresponding

to the bits with value 0 (as in Step 1). Then, we apply a multi-controlled NOT gate (as in

step 2), and, lastly, we apply the NOT operations from step 3.

For example, in order to test this function on the three-bit 𝑓 function that we considered

before, we can run the following instruction:

The Deutsch–Jozsa algorithm 227

build_oracle(["000", "100", "111"]).draw("mpl")

This displays the following output, which perfectly matches our previous circuit:

q0

q1

q2

q3

X

X

X

X

X

X

X

X

X

X

With build_oracle, we can effortlessly construct oracles for any Boolean function—

although, as we’ve mentioned, these may be far from optimal. Let’s now see how we

can use it within the Deutsch–Jozsa algorithm.

10.3.2 Implementing the Deutsch–Jozsa algorithm
The circuit behind the Deutsch–Jozsa algorithm couldn’t be more straightforward. Given

an oracle for an 𝑛-bit Boolean function, it is an (𝑛 + 1)-qubit circuit with the bottom qubit

initialized to |1⟩ consisting of the following:

• The application of a Hadamard gate on each qubit

• The action of the oracle

• The application of a Hadamard gate on the first 𝑛 qubits

• The measurement of the first 𝑛 qubits

Taking as an argument an oracle circuit, oracle, we can implement the circuit for the

Deutsch–Jozsa algorithm as follows:

228 Chapter 10: Coding with Many Qubits in Qiskit

def DJ(oracle):

Number of qubits in the circuit (same as the oracle).

If we are working with an n-bit function, nqubits = n + 1.

nqubits = oracle.num_qubits

Create a circuit with (nqubits) qubits and (nqubits-1) bits.

Remember we are only going to measure the first (nqubits-1) qubits!

qc = QuantumCircuit(nqubits, nqubits - 1)

Initialize the bottom qubit to |1>.

qc.x(nqubits - 1)

for i in range(nqubits):

qc.h(i)

qc.barrier()

qc = qc.compose(oracle)

qc.barrier()

for i in range(nqubits - 1):

qc.h(i)

qc.measure(i,i)

return qc

And that’s it! To test our implementation, let us first consider the simplest of examples:

a constant three-bit Boolean function that always returns zero (clearly, the circuit for

its oracle will be empty). To prepare the Deutsh–Jozsa circuit, we only have to run the

following:

oracle = QuantumCircuit(4)

dj = DJ(oracle)

dj.draw("mpl")

The Deutsch–Jozsa algorithm 229

With this, we get the following visualization of the circuit, which matches the specification:

q0

q1

q2

q3

3c

X

H

H

H

H

H

H

H

0 1 2

Now we can run this circuit with our sampler, keeping in mind that a single shot suffices

for the Deutsch–Jozsa algorithm:

job = sampler.run([dj], shots = 1)

result = job.result()[0].data.c

print(result.get_bitstrings())

Since the function that we used was constant, we get, as expected, the measurement

outcome [’000’].

We can now try out a more elaborate example, with a balanced three-bit Boolean function.

In order to construct the oracle of a Boolean function, we only have to specify a function

that takes the value 1 at four distinct inputs (since there are a total of eight possible three-bit

strings). Thus, let’s run the following piece of code:

Oracle of a balanced function (takes the value 1 with four inputs):

oracle = build_oracle(["000", "101", "100", "110"])

Prepare the D-J circuit:

230 Chapter 10: Coding with Many Qubits in Qiskit

dj = DJ(oracle)

Run it!

job = sampler.run([dj], shots = 1)

result = job.result()[0].data.c

print(result.get_bitstrings())

After running this code, we get the outcome [’010’]. As expected, since our function was

balanced, the measurement does not yield 000.

Exercise 10.4

Construct the oracle for another balanced function and verify that, indeed, our

implementation of the Deutsch–Jozsa algorithm works on it.

That is one way in which the Deutsch–Jozsa algorithm can be implemented using Qiskit.

To conclude this chapter, we will explore how the Bernstein–Vazirani algorithm can be run.

10.4 The Bernstein–Vazirani algorithm
The circuit used in the Bernstein–Vazirani algorithm is exactly identical to the one used

in Deutsch–Jozsa, so we don’t have to write any new lines of code. All we need to do is

consider a Boolean function defined as

𝑓𝑏(𝑥1, … , 𝑥𝑛) ≔ 𝑥1𝑏1 ⊕⋯ ⊕ 𝑥𝑛𝑏𝑛

for an 𝑛-bit binary string 𝑏 . According to our discussion in Chapter 9, if we run the

Deutsch–Jozsa algorithm with the oracle for 𝑓𝑏 , the final measurement will return exactly

𝑏 .

Let us then consider the function 𝑓𝑏 , defined as above, for 𝑏 = 101. A quick computation

reveals that the only values for which 𝑓𝑏 takes the value 1 are 001, 011, 100, and 110. Thus,

in order to retrieve 𝑏 , we would only need to run the Deutsch–Jozsa algorithm with the

following oracle:

The Bernstein–Vazirani algorithm 231

oracle = build_oracle(["001", "011", "100", "110"])

Thus, we can proceed as follows:

dj = DJ(oracle)

job = sampler.run([dj], shots = 1)

result = job.result()[0].data.c

print(result.get_bitstrings())

And, as expected, the outcome from the measurement is, precisely, [’101’].

Exercise 10.5

Try the Bernstein–Vazirani algorithm on a different 𝑓𝑏 function for a different binary

string 𝑏 .

That was our last algorithm for this chapter, so let us wrap things up!

Summary
In this chapter, we have discussed how to work with arbitrarily many qubits in Qiskit, and

we have learned how to implement all the multi-qubit quantum algorithms that we have

considered so far.

We began the chapter with a brief discussion of some of the Qiskit features that we had

yet to cover. We mentioned how the Toffoli gate can be used in Qiskit circuits, and we

also took the chance to introduce multi-controlled NOT gates. From that point, we briefly

covered the use of quantum and classical registers within Qiskit, and we saw how Qiskit

enables us to compute the operator that a quantum circuit implements. In connection with

that last point, we were able to verify the correctness of an implementation of the Toffoli

gate that we had introduced earlier in the book.

We then implemented the quantum teleportation protocol and, in the process, we learned

how (classical) conditionals can be embedded right into Qiskit circuits. We also tested our

implementation on a couple of simple cases.

232 Chapter 10: Coding with Many Qubits in Qiskit

After that, we dived into the Deutsch–Jozsa algorithm, first discussing how to implement

any quantum oracle (albeit with a not necessarily efficient method) in a quantum computer,

and how to then do it on Qiskit. With that foundation, we were able to implement the

Deutsch–Jozsa algorithm and test it on a few functions. From that point, it was trivial to

also implement the Bernstein–Vazirani algorithm.

That’s all we have to say about Qiskit. . . for now. We still have a bit of coding to do, and

it’s going to be lots of fun. But before we do that, we must introduce the stars of the show.

In the following chapters, we will explore some of the quantum algorithms to which we

can attribute a lot of the attention that quantum computing gets nowadays. Are you ready

to learn about them? We are!

Part 4

The Stars of the Show: Main
Quantum Algorithms

This is the part of the book where all the concepts that we have introduced and studied in

detail in the previous chapters are going to fall into place to form beautiful, intricate, and

useful methods, including the famous Shor’s and Grover’s algorithms.

In the following chapters, you will learn how to use quantum computers to factor big

integers efficiently (something that constitutes a serious threat to current cryptographic

protocols) and to accelerate searching over unsorted collections of data. Moreover, you will

understand the principles behind these algorithms, namely the quantum Fourier transform

and amplitude amplification. And, of course, you will learn how to program these methods

using Qiskit.

This part includes the following chapters:

• Chapter 11, Finding the Period and Factoring Numbers

• Chapter 12, Searching and Counting with a Quantum Computer

• Chapter 13, Coding Shor and Grover’s Algorithms in Qiskit

11
Finding the Period and
Factoring Numbers

The sun rises and the sun sets, and hurries back to where it rises.

— Ecclesiastes 1:5

This is one of the most important chapters of this book, for it introduces what many

consider to be the most relevant quantum algorithm ever conceived: Shor’s algorithm for

integer factorization. This was one of the first quantum algorithms to not only show an

advantage over any known classical algorithms, but to do it for a problem with enormous

practical significance. Indeed, Shor’s algorithm has strong implications regarding the

security of certain encryption protocols that are used on a daily basis on the Internet. For

all this, it’s difficult to overstate the importance of Shor’s algorithm—and we shall study it

in all the detail that it deserves.

To this extent, we will introduce a new tool (the quantum Fourier transform) and we will

explain how many of the quantum phenomena we have been discussing up until this

236 Chapter 11: Finding the Period and Factoring Numbers

point—including superposition, entanglement and interference—play a central role in the

inner workings of the method. In addition, we will turn our attention to phase estimation,

a problem with many applications in science and engineering, and we will show how it

can be easily addressed with the tools introduced for Shor’s factoring algorithm.

The topics covered in this chapter are the following:

• The prime importance of prime factors

• Shor’s algorithm

• Preparing a periodic sequence

• Finding the period with the quantum Fourier transform

• Quantum phase estimation

After reading this chapter, you will know why factoring big integers is an important

mathematical problem that lies at the heart of some widely-used cryptographic methods.

You will also have an idea as to why this problem is hard to solve with classical computers,

and understand why it becomes easy once you have access to a powerful-enough quantum

computer. You will also see why the study of certain periodic sequences is a viable approach

to integer factorization, and how the quantum Fourier transform can help with it. Staying

faithful to our practical approach, you will also be able to implement the quantum Fourier

transform in a quantum circuit that only uses a polynomial number of gates, all of them

acting on one or two qubits at a time. Finally, you will also know how all these tools relate

to the problem of phase estimation, and how to solve it using quantum algorithms.

11.1 The prime importance of prime factors
Most students in primary and secondary school are familiar with integer factorization. Part

of their math classes is devoted to solving problems like “find the prime factors of 42” or

“express 500 as the product of powers of prime numbers”1.

1The answers to these questions, by the way, are that the prime factors of 42 are 2, 3 and 7, and that 500
can be written as 22 ⋅ 53). Just in case your arithmetic was a little bit rusty!

The prime importance of prime factors 237

In fact, you may remember solving that kind of problem yourself, and it is very likely that

you were taught to use a rather crude but effective method called trial division. It consists

in trying to divide the number to be factored by each prime number in ascending order.

For instance, for 42, you would first try with the smallest prime number, which is 2. Since

2 divides 42, you would write 2 down as one of the factors, and then repeat the process

with 42/2 = 21. In this case, 2 does not divide 21, but the next prime number, 3, does. At

this point, you would write down 3 as another factor of 42 and proceed with 21/3 = 7. You

would then start over and try all the primes in order: 2, 3, 5…, with no success until finding

that 7 indeed divides 7 (not very surprising) and concluding the procedure because you

have already reached a prime number. In the end, you would have that 42 = 2 ⋅ 3 ⋅ 7. Has

this brought back any nice memories from your eleven-year-old self?

There are several things to note about this problem and this particular way of solving it.

First of all, trial division seems to be a straightforward and natural approach to factorization.

But is it efficient, or is there a better way? We will have a lot to say about this topic in

this chapter but, spoiler alert, trial division is not a particularly good approach. If you

learned about integer factorization in school, you probably used it to find the least common

multiple of several numbers in order to express fractions with a common denominator and

operate on them. Well, let us tell you a secret: you do not need to find the factors of two

numbers to compute their least common multiple. In fact, this may work reasonably well

for numbers with small factors, but once they get big, it becomes highly impractical. You

can perform the operation much faster with something called Euclid’s algorithm2.

Important note

When working with integers, the size of the problem is the number of digits of the

numbers we are considering. For instance, if the input to an algorithm is 12345,

then the size of the input is 5, not 12345. Alternatively, we can consider that the

input size is the number of bits required to describe the number. For instance, if

2Technically, Euclid’s algorithm is used to compute the greatest common divisor 𝑑 of two numbers 𝑎 and 𝑏 .
But once that you find it, you can obtain their least common multiple by simply computing 𝑎 ⋅ 𝑏 and dividing
it by 𝑑.

238 Chapter 11: Finding the Period and Factoring Numbers

the input is 129, then the number in binary is 1000001 and the input size is 7. The

number of bits needed to write down a number is log2 10 (or about 3.32) times its

number of digits, hence—from the point of view of computational complexity—both

ways of describing the input size are equivalent as they are related by a constant

factor (for more on this, please consult Appendix C).

This is a reasonable choice because when we are working with integers (for instance,

to perform arithmetical operations such as addition, multiplication, or powers)

we operate individually on the digits (or the bits, if we are using binary code as

computers do). Thus, we want to assess how the running time of the algorithm

grows when we have more digits. And, of course, we want this growth to be

moderate.

But numbers grow much more rapidly than their number of digits. For instance,

when we move from 103 to 106, the number has grown 1000 times, but its size in

digits has only been increased by 3. In fact, when we increase the number of digits

by one, the actual numbers grow by a factor of 10. An integer value is exponential

in its number of digits!

It turns out that trial division requires iterating over many of the numbers smaller

than a given integer 𝑁 . This method is, thus, exponential in the number of digits

of 𝑁 , and cannot be used with big integers. However, Euclid’s algorithm runs in

polynomial time relative to the number of digits, making it practical (see Introduction

to algorithms [62] for all the details).

All this now begs the question of why on Earth would anyone want to study the prime

factors of an integer. Well, it turns out that prime numbers have an enormous significance

for mathematicians that study number theory, because prime numbers are kind of the

“atoms” of numbers and can tell us a lot about their properties. But even for people who

are not into number theory, prime factors are of uttermost importance, even if they’re

The prime importance of prime factors 239

unaware of their very existence. The RSA protocol, introduced in the late 1970s by Rivest,

Shamir, and Adleman [63], is one of the most widely used procedures for securing digital

communications and encrypting data, and it uses keys that are obtained from the product

of two big prime numbers. Here’s the deal: if you were able to easily factor any integer,

you could break this protocol and compromise the security of the Internet! So, yeah, you

have to thank prime factors for that pizza you ordered online.

Now that we know how high the stakes are, let’s go back to our previous question: what

is the fastest way of finding the prime factors of an integer with a classical algorithm?

Well, nobody knows for sure, but we certainly know that trial division is too slow. There

exist other, more advanced methods such as the general number field sieve [64], which

is currently the most efficient algorithm for big numbers, but their running time is still

almost exponential. In fact, as proved in [65], [66], the running time of the general number

field sieve for integers of 𝑛 bits is

𝑂(𝑒
𝑐𝑛1/3 log 𝑛2/3

)

for some positive constant 𝑐. This means that the time is bounded from above by a constant

times 𝑒𝑐𝑛
1/3 log 𝑛1/3 (see Appendix C for all the details on the 𝑂 notation), which grows very

rapidly with 𝑛. This is not an isolated case, for the vast majority of experts firmly believe

that there cannot exist an algorithm that factors integers efficiently on a classical computer.

And here is where things become interesting. In the mid 1990s, Peter Shor shook the

scientific world by proposing a quantum algorithm able to factor integers efficiently. This

method [67], makes it possible to find factors of a big integer in time that is

𝑂(𝑛
2
log 𝑛 log log 𝑛),

which is much, much, much faster than 𝑂(𝑒𝑐𝑛
1/3 log 𝑛2/3), and makes it practical to solve the

factorization problem if one has access to a sufficiently powerful quantum computer. It

goes without saying that this development made the interest in quantum computing grow

tremendously and its impact can still be felt today, with a lot of effort invested in creating

240 Chapter 11: Finding the Period and Factoring Numbers

post-quantum cryptographic protocols (also called quantum-safe protocols), such

as those recently standardized by NIST [68], [69]. These new methods will allow us to

migrate from cryptographic protocols that can be broken with quantum computers, such

as RSA, and keep our information secure.

To learn more. . .

RSA is an asymmetric or public-key cryptographic protocol. One of the ad-

vantages of this kind of procedure is that they simplify key distribution and that

they enable other applications such as the digital signing of messages in addition

to encryption. For this reason, although they are usually slower than symmetric-

key protocols (such as the one-time pad that we studied in Chapter 3), they are a

fundamental part of today’s Internet security.

There exist other asymmetric cryptographic protocols, such as those based on elliptic

curves, that are widely used today, but they are also vulnerable to attacks using

quantum computers. In fact, Peter Shor gave an algorithm to break those methods

in the same paper in which he introduced his quantum factoring algorithm! To learn

more about public key cryptography and how it is affected by quantum computers,

we recommend checking out the book by Katz and Lindell [30].

Now that we know that factorization is a very important problem (and that trial division is

not the smartest way to solve it!), we will devote the rest of the chapter to explaining how

Shor’s algorithm can be used to find primes that divide integers, starting with an overview

of how the method works.

11.2 Shor’s algorithm
By now, you are probably intrigued about how Shor’s algorithm can be so much faster

than classical algorithms at factoring numbers. Does it use some incredibly complicated

quantum circuit or what? Well, in fact, you may be surprised to learn that most of the

operations required to factor integers with Shor’s algorithm are run on classical computers!

This is what we call a hybrid method, because part of the process is carried out on a

Shor’s algorithm 241

classical machine, and the rest on a quantum computer. The reason for this decision is that

a good part of the computations involved in Shor’s algorithm can be run efficiently on

classical computers, so we don’t really need to resort to quantum processors to carry them

out. We will only need quantum computers for a specific part of the process that would be

extremely costly on a classical device.

That’s enough of a preamble. Let’s see for ourselves what the different parts of the procedure

are. Imagine that you want to factor a big integer 𝑁 . Shor’s algorithm instructs you to

perform the following steps:

1. Check whether 𝑁 is a power of a prime number. That is, check whether there exist

a prime number 𝑝 and an exponent 𝑏 such that 𝑁 = 𝑝𝑏 . If this is the case, you are

done: 𝑝 is a factor of 𝑁 .

2. Otherwise, choose an integer 𝑎 between 2 and 𝑁 − 1 uniformly at random. Check if

𝑎 and 𝑁 have a common factor 𝑚 > 1. In that case, you are done: 𝑚 is the factor you

were looking for.

3. Find the period of 𝑎 modulo 𝑁 . That is, find 𝑟 such that 𝑎𝑟 leaves 1 as a remainder

when divided by 𝑁 . In symbols, we write

𝑎
𝑟
≡ 1 mod 𝑁

and we say that 𝑎𝑟 is congruent to 1 modulo 𝑁 or, simply, that 𝑎𝑟 is 1 modulo 𝑁 . For

more about modular arithmetic, please refer to Appendix A.

4. If 𝑟 is odd, go back to step 2 and choose a different 𝑎.

5. Compute

𝑥 = 𝑎
𝑟
2 + 1 mod 𝑁

and

𝑦 = 𝑎
𝑟
2 − 1 mod 𝑁

242 Chapter 11: Finding the Period and Factoring Numbers

6. If 𝑥 = 0 or 𝑦 = 0, go back to step 2 and choose a different 𝑎. Otherwise, compute

𝑝 = gcd(𝑥, 𝑁)

and

𝑞 = gcd(𝑦, 𝑁),

where gcd stands for the greatest common divisor. Then, 𝑝 and 𝑞 will be non-trivial

factors (that is, factors other than 1 and 𝑁) of 𝑁 .

There are many things to unpack here, so let’s go bit by bit. We’ll begin by analyzing why

the algorithm works and how we can perform each of its steps efficiently.

11.2.1 Analysis of the method
You surely have noticed that the algorithm that we have just introduced can end at steps 1

or 2 if 𝑁 = 𝑝𝑏 or if you find a factor 𝑚 of 𝑁 . This is pretty unlikely, but, hey, if you do get

lucky, you can call it a day and go celebrate.

A little more problematic is the fact that steps 4 and 5 can bring you back to step 2 to

choose a different integer 𝑎. This sounds like trouble. Could it be the case that you would

have to choose many different 𝑎’s before you find one that works? Fortunately, that is

not so. As Shor proved in his seminal paper [67], the probability of 𝑎 not working when

chosen uniformly at random is at most 1/2𝑘−1, where 𝑘 is the number of different odd

prime factors of 𝑁 . But 𝑁 is not a power of a prime (we would have detected that in step

1) and we can safely assume that it is not even (otherwise, we don’t need any computation

whatsoever, let alone a quantum one, to know that 2 is a factor of 𝑁). Thus, 𝑁 will have at

least two different odd prime factors (that is, 𝑘 ≥ 2) and the probability of failure is at most

1/2. If you repeat the process a fixed number of times, say 100 times, the probability of not

finding a suitable value of 𝑎 will be at most 1/2100, which is negligibly small.

Shor’s algorithm 243

So, with just a little patience, we will find a value of 𝑎 that can work for our purposes. But,

why is that enough to find a non-trivial factor of 𝑁 ? Well, notice that

𝑥 ⋅ 𝑦 = (𝑎
𝑟
2 + 1)(𝑎

𝑟
2 − 1) = 𝑎

𝑟
− 1 ≡ 1 − 1 = 0 mod 𝑁 ,

since 𝑎𝑟 ≡ 1 mod 𝑁 . This means that 𝑁 divides 𝑥 ⋅ 𝑦, so any prime factor of 𝑁 divides

either 𝑥 or 𝑦. Now, if all the factors of 𝑁 divided 𝑥 , then 𝑥 would be a multiple of 𝑁

and gcd(𝑥, 𝑁) would be just 𝑁 , but that situation (and the similar case gcd(𝑦, 𝑁) = 𝑁) is

excluded at the beginning of step 6. Thus, 𝑝 and 𝑞 are both different from 𝑁 and they are

both different from 1. Why? Simple. If, for instance, 𝑝 = gcd(𝑥, 𝑁) = 1, then no prime

factor of 𝑁 could divide 𝑥 , but 𝑁 divides 𝑥𝑦, so 𝑞 = gcd(𝑦, 𝑁) = 𝑁 , which we just ruled

out. Moreover, both 𝑝 and 𝑞 divide 𝑁 , so we have succeeded in finding us some non-trivial

factors of 𝑁 . Hurray!

We now need to explain in a little bit more detail how we perform each of the steps and

we also need to show that they can be carried out (either with a classical or a quantum

computer) in polynomial time in the number of bits of 𝑁 . Let’s explore each of them

separately.

The computations of step 1 rely on the fact that there exist classical algorithms that can

efficiently check whether a given integer 𝑁 is a prime number or not. This efficient

primality testing can be carried out deterministically with something such as the AKS

algorithm [70] or, with a probability of error as small as needed, with the much more

efficient, but probabilistic, Rabin-Miller test [71] (see Introduction to algorithms [62] for a

thorough treatment of this latter method). Now, assume that there exists a prime 𝑝 such

that 𝑁 = 𝑝𝑠 for some integer 𝑠 ≥ 1. In this case, 𝑠 = log𝑝 𝑁 . Thus, the biggest 𝑠 can be is

log2 𝑁 . In this way, you can just compute the 𝑗-th root of 𝑁 (which can be done efficiently)

for every integer 1 ≤ 𝑗 ≤ log2 𝑁 and, if it is an integer, check whether it is a prime number

with either the AKS algorithm or the Rabin-Miller test. You will have to do this at most

log2 𝑁 times, which is the number of bits of 𝑁—so this is certainly efficient.

244 Chapter 11: Finding the Period and Factoring Numbers

In step 2, after selecting 𝑎, you need to check if it has a common factor with 𝑁 , and that’s

easy. You can just compute the greatest common divisor of 𝑎 and 𝑁 by using Euclid’s

algorithm, which, as we have already mentioned, is efficient. Of course, you will also use it

for the gcd computations in step 6.

Step 5 can also be performed efficiently on a classical computer, but with a small catch.

When raising 𝑎 to 𝑟/2, you should not compute 𝑎2 = 𝑎 ⋅ 𝑎, 𝑎3 = 𝑎 ⋅ 𝑎2, 𝑎4 = 𝑎 ⋅ 𝑎3… and so

on until you reach 𝑎
𝑟
2 —that would take an exponential amount of time on the number of

bits of 𝑟 . Instead, you compute 𝑎2 = 𝑎 ⋅ 𝑎, 𝑎4 = 𝑎2 ⋅ 𝑎2, 𝑎8 = 𝑎4 ⋅ 𝑎4… and then you multiply

together the powers that you need to obtain 𝑎
𝑟
2 . Let’s show how to do this with an example.

Imagine that 𝑟 is 54 and, hence, 𝑟/2 = 27. To raise some integer 𝑎 to 27, compute 𝑎2, 𝑎4, 𝑎8

and 𝑎16. You stop there because the next power would be 𝑎32, which is already bigger than

𝑎27. Then, notice that 27 = 16 + 8 + 2 + 1 and compute 𝑎16 ⋅ 𝑎8 ⋅ 𝑎2 ⋅ 𝑎 = 𝑎16+8+2+1 = 𝑎27.

Something similar can be done for any 𝑟 with just 𝑂(log 𝑟) multiplications or, to put it

in another way, a number of multiplications that is proportional to the size in bits of 𝑟 ,

which is exactly what we wanted! There is an additional small detail, though. After each

multiplication, you should compute the remainder of the result when divided by 𝑁 . That

is, you should work modulo 𝑁 all the time. Otherwise, the numbers could grow very big

and the operations would no longer be efficient.

So, we have seen that steps 1, 2, 5, and 6 can be carried out efficiently with classical

algorithms. And, obviously, step 4 just requires a simple division (or, even easier, checking

if the last bit of 𝑟 is 1). But what about step 3? It turns out that, for a classical computer,

this would be the real bottleneck of the algorithm. Indeed, there is no known classical

algorithm that can perform this computation efficiently and it is widely believed that

such an algorithm simply does not exist. This is where quantum computers can kick in!

Throughout the rest of the chapter, we will explain how a clever quantum circuit can allow

us to obtain the period of 𝑎, thus completing all the steps that we need in order to find a

non-trivial factor of 𝑁 . It will be quite a ride, we assure you.

Shor’s algorithm 245

But before we get to that, let’s see some examples of how to perform all the steps in Shor’s

algorithm with some small numbers for which we can carry out the computations with

just pen and paper.

11.2.2 A simple example
Imagine that you want to factor the integer 21. Not a very challenging task, sure, but it will

help us understand how Shor’s algorithm works while keeping the computations simple.

So please bear with us while we go through each of the steps of the procedure.

First, we need to check if 21 is the power of a prime number, and it obviously is not, because

we know it is the product of two different primes (namely 3 and 7). But if you wanted to

do everything by the book, you would need to compute the roots of 21 up to order log2 21

and check if any of them is a prime. In our case, log2 21 is less than 5, so we would need to

compute
√
21, 3

√
21, and 4

√
21. With the help of a calculator, you can easily see that none of

them is even an integer.

Now, we need to select some integer 𝑎 between 2 and 20 at random. Let’s say that we get

𝑎 = 4 in our first try3. The greatest common divisor of 4 and 21 is 1, so we were not lucky

in this step (in general, we very rarely will), and we need to go to step 3 and find the period

of 4 modulo 21. That is, we need to find 𝑟 such that 𝑎𝑟 = 1 mod 21. There is no shortcut

for this computation (unless you have a quantum computer!). But in this case, since 21 is

small, we can just try all the values for 𝑟 , starting with 𝑟 = 2, and quickly find out that,

indeed, 43 = 64, which is congruent to 1 modulo 21. Alas, 𝑟 is odd, so it does not work for

us and we need to select4 a different value for 𝑎.

Let’s say that we now select 𝑎 = 3. Well, in this case, gcd(3, 21) = 3 and we have already

found a factor of 21. That was cool, right? But when 𝑁 is big (say, thousands of bits long)

and it only has a handful of factors, this kind of situation will be very unlikely. We just

wanted to show that this might happen from time to time.

3Well, we confess that the choice was not completely random. We selected this value for didactic purposes,
and we will keep selecting different values for 𝑎 again at, ehem, “random” to illustrate all the aspects of the
algorithm.

4At “random”, of course.

246 Chapter 11: Finding the Period and Factoring Numbers

Let’s then select5 a more interesting value for 𝑎. Let’s try with 𝑎 = 5. If we compute the gcd

of 21 and 5, we readily find that they have no common factors, so we can proceed to find

the period of 5. In this case, 𝑟 = 6 is the smallest positive integer such that 56 ≡ 1 mod 21,

as you can easily check for yourself. Since 6 is even, we can go to step 5 and compute

𝑥 = 53 + 1 mod 21 and 𝑦 = 53 − 1 mod 21. These values happen to be 𝑥 = 0 and 𝑦 = 19, so

unfortunately we need to try our luck again with a different 𝑎. The problem here is that

53 + 1 = 126, which is a multiple of 21, so the gcd of 126 and 21 is 21, which is a trivial

factor of 21. We do not need any computation to know that 21 divides 21, do we? Similarly,

53 − 1 = 124 and gcd(124, 21) = 1, which is again a trivial factor of 21.

Finally, let’s show what happens if we obtain 𝑎 = 2 when selecting values at random.

Obviously, gcd(2, 21) = 1 so we need to compute the period of 2 modulo 21. It is easy to

check that 26 = 64 ≡ 1 mod 21. Then, we compute 𝑥 = 23 + 1 = 9 and 𝑦 = 23 − 1 = 7.

The gcd of 9 and 21 is 3, which is a factor of 3, the other being 7 = gcd(7, 21).

These are all the different situations that you can find when applying this factorization

algorithm. We were so “lucky” that we obtained values for 𝑎 that perfectly illustrated each

of them! What were the odds, huh?

Exercise 11.1

Check what happens if you select values for 𝑎 that range from 6 to 20 when trying

to factor 21.

Exercise 11.2

Apply the factorization algorithm to 𝑁 = 15 with every possible value of 𝑎 from 2

to 14.

With this example, we have a clearer intuition as to how Shor’s algorithm works. And thus,

we are now ready to tackle the most difficult part of the method: figuring out how to use a

quantum computer to find periods of numbers. As you will soon learn, it all starts with the

5We mean “choose at random”, obviously.

Preparing a periodic sequence 247

creation of some peculiar periodic sequences, such as the ones that we will study in the

next section.

11.3 Preparing a periodic sequence
As we have seen in the previous section, we can find a factor of an integer 𝑁 if, given an

arbitrary integer 𝑎 between 2 and 𝑁 − 1, we are able to find its period: that is, an integer

𝑟 such that 𝑎𝑟 ≡ 1 mod 𝑁 . No efficient classical algorithm has been found for this task

and it is a widespread belief that it is impossible to do it with classical computers. In this

section and the next one, however, we will show how quantum computers can enable us to

solve this problem in polynomial time on the size of 𝑁 and 𝑎. Let’s get to it!

11.3.1 Introducing a very periodic state
The first thing that we will need to do is prepare a periodic sequence that will include all

the values 𝑎𝑟 for 𝑟 from 0 to 2𝑚 − 1, for a certain value of 𝑚 that we will discuss later. In

fact, we will use a quantum computer to prepare the state

1
√
2𝑚

2𝑚−1

∑

𝑗=0

|𝑗⟩|𝑎
𝑗
mod 𝑁⟩,

where the first register6 has 𝑚 qubits and the second has as many qubits as the length of 𝑁

in bits.

This may seem a little bit mysterious, so let’s give an example to clarify what type of state

we will be working with and why we are interested in it. Imagine that 𝑁 = 15, 𝑎 = 2, and

𝑚 = 3. Then the state that we have just mentioned becomes

1
√
8
(|0⟩|1⟩ + |1⟩|2⟩ + |2⟩|4⟩ + |3⟩|8⟩ + |4⟩|1⟩ + |5⟩|2⟩ + |6⟩|4⟩ + |7⟩|8⟩) ,

because 24 = 16 ≡ 1 mod 15, 25 = 32 ≡ 2 mod 15, 26 = 64 ≡ 4 mod 15, and 27 = 128 ≡

8 mod 15.

6A quantum register is just a group of qubits that represents a certain value or shares a common function.

248 Chapter 11: Finding the Period and Factoring Numbers

Notice how the sequence of values in the second register is periodic: they go 1, 2, 4, 8 and

then they repeat again in the same order. This property is key in making apparent the

reason why we have chosen this state. Imagine that we measure the second register: what

results can we obtain? Well, there are four different possibilities, each with probability 1/4:

1
√
2
(|0⟩|1⟩ + |4⟩|1⟩) ,

1
√
2
(|1⟩|2⟩ + |5⟩|2⟩) ,

1
√
2
(|2⟩|4⟩ + |6⟩|4⟩) ,

1
√
2
(|3⟩|8⟩ + |7⟩|8⟩) .

Do you notice anything special about these states? The difference between the values

on the first register of each of them is 4, which is exactly the period of 2 modulo 15 (and

the period of the initial sequence in the second register). This is the value that we want

to compute! And this is no coincidence. In fact, if you measure the second register of
1√
2𝑚

∑
2𝑚−1
𝑗=0 |𝑗⟩|𝑎𝑗 mod 𝑁⟩, it will collapse to a certain value |𝑘⟩ and every value |𝑗⟩ in the

first register will satisfy 𝑎𝑗 ≡ 𝑘 mod 𝑁 . Thus, if you take any |𝑗1⟩ and |𝑗2⟩ values on the

first register such that 𝑗1 > 𝑗2, it will hold that

𝑎
𝑗1−𝑗2 =

𝑎𝑗1

𝑎𝑗2
≡ 1 mod 𝑁 ,

because both 𝑎𝑗1 and 𝑎𝑗2 are equal to 𝑘 modulo 𝑁 . Notice that this means that 𝑗 = 𝑗1 − 𝑗2 is

a positive integer such that 𝑎𝑗 ≡ 1 mod 𝑁 .

Exercise 11.3

Take 𝑁 = 21, 𝑎 = 8, and 𝑚 = 3. If you measure the second register of
1√
2𝑚

∑
2𝑚−1
𝑗=0 |𝑗⟩|𝑎𝑗 mod 𝑁⟩ and obtain 1 as a result, what are the possible values for

the first register?

What is 8𝑗 mod 21 when 𝑗 is the difference of two such values? What if the result

of the measurement is 8?

The jackpot appears to be at our fingertips, because a number 𝑗 such that 𝑎𝑗 ≡ 1 mod 𝑁 is

exactly what we need for our factorization algorithm. . . But we should not get too excited

Preparing a periodic sequence 249

yet. We’re still facing a small problem: how can we get 𝑗1 and 𝑗2? If, after measuring the

second register we measure the first one, we will certainly obtain some value 𝑗 such that

𝑎𝑗 ≡ 𝑘 mod 𝑁 . But then the state will collapse to |𝑗⟩|𝑘⟩, losing all the information about the

other values in the first register. And if we start all over again with 1√
2𝑚

∑
2𝑚−1
𝑗=0 |𝑗⟩|𝑎𝑗 mod 𝑁⟩

and we measure the second register, there is no guarantee at all that we will obtain 𝑘 again.

So close, yet so far!

Don’t worry. It will require some extra work, but we will be able to obtain the information

that we need from the state. That, however, will have to wait until the next section. Now

that we know why the state 1√
2𝑚

∑
2𝑚−1
𝑗=0 |𝑗⟩|𝑎𝑗 mod 𝑁⟩ is important, we should concentrate

on studying how to prepare it with a quantum circuit.

11.3.2 Quantum circuit to obtain the periodic sequence
Preparing the state 1√

2𝑚
∑

2𝑚−1
𝑗=0 |𝑗⟩|𝑎𝑗 mod 𝑁⟩ will be much easier than it seems a first glance.

In fact, it all relies on one little trick that we have applied again and again, and on an

arithmetical operation that we will use as a controlled quantum gate. Wait and see!

Since we want to prepare a state whose first register has all the values from 0 to 2𝑚 − 1, it

should come as no surprise that we will begin by applying a column of Hadamard gates on

our first quantum register, which will have 𝑚 qubits. The second quantum register will

have 𝑛 qubits, where 𝑛 is the number of bits required to write 𝑁 , and it will be initialized

to state |1⟩. Notice that this is the decimal value 1, so if you expand it in binary, it will have

𝑛 − 1 leading zeroes and then a solitary one at the end. It is easy to obtain this value in the

second register: we initialize all qubits to |0⟩, as usual, and then we apply an 𝑋 gate on the

least significant qubit of the register. With this, plus the application of the 𝐻 gates on the

first register, we now have the state

1
√
2𝑚

2𝑚−1

∑

𝑗=0

|𝑗⟩|1⟩.

As you can see, this gives the first part of the state that we need. We are almost there!

To get the correct states on the second register, notice that we just need a quantum gate

250 Chapter 11: Finding the Period and Factoring Numbers

that takes |𝑗⟩|1⟩ to |𝑗⟩|𝑎𝑗 mod 𝑁⟩. Does this look familiar? It should! It’s almost like the

oracles that we all know and love, but, instead of adding the result, now we are multiplying

it (modulo 𝑁); that is, we are multiplying the result of 𝑎𝑗 mod 𝑁 times the content of the

second register (which is 1). In fact, this idea of accumulating multiplications on the second

register allows us to decompose the operation a little bit further. Let’s see how.

Imagine that, for each 𝑙, you can implement a quantum gate 𝑈
𝑎2
𝑙 that acts as follows on

computational basis states:

𝑈
𝑎2
𝑙 |𝑏⟩ = |𝑏 ⋅ 𝑎

2𝑙
mod 𝑁⟩.

With that kind of gate, we can easily implement the transformation from |𝑗⟩|1⟩ to |𝑗⟩|𝑎𝑗 mod

𝑁⟩. In fact, we can do it with the circuit represented in Figure 11.1. Notice that we control

the application of a 𝑈
𝑎2
𝑙 with the (𝑙 + 1)-th most significant bit of the first register. Suppose

that the first register contains |𝑗⟩ and the expansion of 𝑗 in binary is 𝑗𝑚−1𝑗𝑚−2… 𝑗0. If 𝑗𝑙

is 0, then we are not applying any gate from the (𝑙 + 1)-th qubit, which is the same as

multiplying by 1 = 𝑎𝑗𝑙2
𝑙

. If 𝑗𝑙 is 1, then we are multiplying the second register by 𝑎2
𝑙

= 𝑎𝑗𝑙2
𝑙

.

All things considered, we are multiplying (modulo 𝑁) the content of the second register by

𝑎
𝑗𝑚−12

𝑚−1

𝑎
𝑗𝑚−22

𝑚−2

⋯𝑎
𝑗02

0

,

which is exactly equal to 𝑎𝑗 because

𝑗 = 𝑗𝑚−12
𝑚−1

+ 𝑗𝑚−22
𝑚−2

+ ⋯ + 𝑗02
0
.

This might be a little difficult to see from an abstract point of view, so lets go through an

example to make things more concrete. Imagine that 𝑚 = 4 and we consider 𝑗 = 5. Then,

the binary expansion of 𝑗 is 0101. When we apply the control gates as in Figure 11.1 with

0101 on the upper (first) register, then we are applying only the gates 𝑈
𝑎2

2 and 𝑈
𝑎2

0 . In

total, we are multiplying the second register by 𝑎2
2+20 = 𝑎5 modulo 𝑁 , as expected. If, for

instance, 𝑗 is 9, its binary expansion is 1001 and we apply the gates 𝑈
𝑎2

3 and 𝑈
𝑎2

0 , which is

the same as multiplying by 𝑎2
3+20 = 𝑎9 modulo 𝑁 .

Preparing a periodic sequence 251

𝑛

|𝑗⟩

⋯

⋮

⋯

⋯

|𝑏⟩ 𝑈
𝑎2

0 𝑈
𝑎2

1 ⋯ 𝑈
𝑎2
𝑚−1

Figure 11.1: Circuit to compute modular exponentiation. It maps |𝑗⟩|𝑏⟩ to |𝑗⟩|𝑏 ⋅ 𝑎𝑗 mod 𝑁⟩

Thus, the circuit in Figure 11.1 takes |𝑗⟩|𝑏⟩ to |𝑗⟩|𝑏 ⋅ 𝑎𝑗 mod 𝑁⟩ and, by linearity, takes the

state
1

√
2𝑚

2𝑚−1

∑

𝑗=0

|𝑗⟩|1⟩

to the state
1

√
2𝑚

2𝑚−1

∑

𝑗=0

|𝑗⟩|𝑎
𝑗
mod 𝑁⟩,

exactly as we need.

All this depends, though, on the very existence of the quantum gate 𝑈
𝑎2
𝑙 for every 𝑙 ≥ 0.

And there is a very subtle detail here: is this even a reversible operation? It should take |𝑏⟩

to |𝑏 ⋅ 𝑎𝑗 mod 𝑁⟩ but, for instance, if 𝑁 = 9, 𝑎 = 3 and 𝑗 = 2, then 𝑎𝑗 mod 𝑁 = 0 and the

operation cannot be reversed. Are we in trouble, then? Well, not quite. If we have reached

this point in the application of the method, it’s because 𝑎 has no factors in common with

𝑁 ; otherwise, we would have successfully terminated the application of the algorithm in

step 2. Under this condition, it can be proved that multiplication by 𝑎𝑗 is always reversible

modulo 𝑁 (for more on this, please refer to Appendix A), so we are safe.

In fact, 𝑈
𝑎2
𝑙 is an arithmetical operation that can be implemented with a polynomial number

of classical gates and, consequently, also with a polynomial number of quantum gates.

For some of the quantum circuits and techniques proposed for implementing modular

exponentiation, please check [72]–[76].

252 Chapter 11: Finding the Period and Factoring Numbers

Important note

With the following circuit,

𝑛

|0⟩ 𝐻 ⋯

⋮

|0⟩ 𝐻 ⋯

|0⟩ 𝐻 ⋯

|1⟩ 𝑈
𝑎2

0 𝑈
𝑎2

1 ⋯ 𝑈
𝑎2
𝑚−1

we can prepare the state 1√
2𝑚

∑
2𝑚−1
𝑗=0 |𝑗⟩|𝑎𝑗 mod 𝑁⟩, provided that 𝑎 and 𝑁 have no

common factors. This state includes a periodic sequence that will help us find a

number 𝑘 > 0 such that 𝑎𝑘 ≡ 1 mod 𝑁 . Notice how we have used two of the key

quantum phenomena to our advantage: superposition with the 𝐻 gates and then

entanglement between |𝑗⟩ and |𝑎𝑗 mod 𝑁⟩.

With all this, we now know how to prepare the state that we wanted. Next, we will

learn how to extract the period information from it. Get ready, because we are going to

introduce one of the most important operations in quantum computing: the quantum

Fourier transform.

11.4 Finding the period with the quantum
Fourier transform

We have reached the final and crucial part of method: how to obtain information about

the periodicity of the sequence that we have prepared. For this kind of task, there is a

well-known tool in the classical domain: the discrete Fourier transform or DFT (see

Introduction to algorithms [62] for a complete explanation of this operation). However, given

the size of the state we are working with (which has a number of terms that is exponential

in 𝑚), it is impossible in practice to apply classical methods to the corresponding sequence.

Finding the period with the quantum Fourier transform 253

Here is where quantum computing comes to the rescue, with a much faster version of the

DFT. Let’s introduce the quantum Fourier transform!

11.4.1 QFT FTW!
The quantum Fourier transform or QFT is the quantum version of the DFT and has

very similar applications and properties. The QFT on 𝑚 qubits is defined as the linear

transformation that takes the computational basis state |𝑗⟩ to

1
√
2𝑚

2𝑚−1

∑

𝑘=0

𝑒
2𝜋𝑖𝑗𝑘

2𝑚 |𝑘⟩,

where 𝑖 is the imaginary unit (that is, 𝑖2 = 1). This certainly can be a lot to process in one

go, so let’s try and examine it more carefully.

One of the most striking elements in the definition of the QFT is the appearance of those

𝑒
2𝜋𝑖𝑗𝑘

2𝑚 values (for a refresher on complex exponentials and Euler’s formula, please check

Appendix A). Numbers of the form 𝑒
2𝜋𝑖𝑠
𝑛 , with 𝑠 and 𝑛 integers, are extremely important

in many areas of mathematics (number theory and group theory, for example) and they

receive a special name: they are called roots of unity. The reason for this particular

denomination is that it clearly holds that

(
𝑒

2𝜋𝑖𝑠
𝑛

)

𝑛

= 𝑒
2𝜋𝑖𝑠
𝑛

⋅𝑛
= 𝑒

2𝜋𝑖𝑠
= (𝑒

2𝜋𝑖
)
𝑠
= 1

𝑠
= 1,

because 𝑒2𝜋𝑖 = 1. Thus, these numbers are certainly roots of 1, because when you raise

them to 𝑛 you get exactly 1. In this particular case, we say that they are 𝑛th roots of unity,

for obvious reasons.

Roots of unity also have some beautiful geometric properties. For instance, when repre-

sented in the complex plane, they all lie in the circle of radius 1, starting with 1 (which is,

of course, always a root of 1) and then the remaining roots can be found by rotating an

angle 2𝜋/𝑛 counterclockwise until returning again to 1. There are exactly 𝑛 different 𝑛th

254 Chapter 11: Finding the Period and Factoring Numbers

2𝜋

3 𝑒0⋅
2𝜋𝑖
3 = 1

𝑒1⋅
2𝜋𝑖
3 = −1+

√
3𝑖

2

𝑒2
2𝜋𝑖
3 = −1−

√
3𝑖

2

(a) The third roots of unity.

𝜋

2 𝑒0⋅
2𝜋𝑖
4 = 1

𝑒1⋅
2𝜋𝑖
4 = 𝑖

𝑒2⋅
2𝜋𝑖
4 = −1

𝑒3
2𝜋𝑖
4 = −𝑖

(b) The fourth roots of unity.

2𝜋

5

𝑒0⋅
2𝜋𝑖
4 = 1

𝑒1⋅
2𝜋𝑖
5

𝑒2⋅
2𝜋𝑖
5

𝑒3⋅
2𝜋𝑖
5

𝑒4
2𝜋𝑖
5

(c) The fifth roots of unity.

2𝜋

8

𝑒0⋅
2𝜋𝑖
4 = 1

𝑒1⋅
2𝜋𝑖
8 = 1+𝑖√

2

𝑒2⋅
2𝜋𝑖
8 = 𝑖

𝑒3⋅
2𝜋𝑖
8 = −1+𝑖√

2

𝑒4
2𝜋𝑖
8 = −1

𝑒5
2𝜋𝑖
8 = −1−𝑖√

2

𝑒6
2𝜋𝑖
8 = −𝑖

𝑒7
2𝜋𝑖
8 = 1−𝑖√

2

(d) The eighth roots of unity.

Figure 11.2: The 𝑛th roots of unity for 𝑛 = 3, 4, 5, 8

Finding the period with the quantum Fourier transform 255

roots of unity, which are explicitly

1 = 𝑒
0⋅ 2𝜋𝑖

𝑛 , 𝑒
2𝜋𝑖
𝑛 , 𝑒

4𝜋𝑖
𝑛 , 𝑒

6𝜋𝑖
𝑛 , … , 𝑒

2(𝑛−1)𝜋𝑖

𝑛 ,

because 𝑒
2𝑛𝜋𝑖
𝑛 = 𝑒2𝜋𝑖 which is, again, 1 and thus the values start repeating for 𝑠 ≥ 𝑛. These

points form a regular polygon of 𝑛 sides. See Figure 11.2 for some examples of this.

For convenience, it is common to represent

𝜔𝑛 = 𝑒
2𝜋𝑖
𝑛 ,

and then the 𝑛 different 𝑛th roots of unity are simply

1 = 𝜔
0
𝑛, 𝜔𝑛, 𝜔

2
𝑛, … , 𝜔

𝑛−1
𝑛 .

Another important (and useful) property of roots of unity can be found when computing

sums of their powers. Take any integer 𝑠 that is not a multiple of 𝑛 and consider the sum

of the values 1, 𝜔𝑠𝑛, 𝜔
2𝑠
𝑛 , … , 𝜔

(𝑛−1)𝑠
𝑛 . The result will always be 0 because this is a geometric

progression of ratio 𝜔𝑠𝑛 ≠ 1 and the sum is then given by

1 − 𝜔𝑠𝑛 ⋅ 𝜔
(𝑛−1)𝑠
𝑛

1 − 𝜔𝑠𝑛
=

1 − 𝜔𝑛𝑠𝑛

1 − 𝜔𝑠𝑛
=

1 − (𝜔𝑛𝑛)
𝑠

1 − 𝜔𝑠𝑛

=
1 − 1𝑠

1 − 𝜔𝑠𝑛
=

1 − 1

1 − 𝜔𝑠𝑛
= 0,

where we have used that 𝜔𝑛𝑛 = 1. This is a simple but very important property that we will

use several times through the remainder of this chapter.

Important note

If we define 𝜔𝑛 to be 𝑒
2𝜋𝑖
𝑛 , where 𝑛 ≥ 2 is an integer, then the following 𝑛 values are

all the different 𝑛th roots of unity:

1, 𝜔𝑛, 𝜔
2
𝑛, … , 𝜔

𝑛−1
𝑛 .

256 Chapter 11: Finding the Period and Factoring Numbers

Moreover, for any integer 𝑠 that is not a multiple of 𝑛, it holds that

1
𝑠
+ 𝜔

𝑠
𝑛 + 𝜔

2𝑠
𝑛 + ⋯ + 𝜔

(𝑛−1)𝑠
𝑛 = 0.

However, if we take 𝑠 to be 𝑘𝑛 for some integer 𝑘, then 𝜔𝑠𝑛 = 𝜔
𝑘𝑛
𝑛 = (𝜔𝑛𝑛)

𝑘 = 1𝑘 = 1,

and then

1
𝑠
+ 𝜔

𝑠
𝑛 + 𝜔

2⋅𝑠
𝑛 + ⋯ + 𝜔

(𝑛−1)𝑠
𝑛 = 1 + 1 + 1 + ⋯ + 1 = 𝑛.

Now, let’s try to look more closely at what the QFT does as a linear transformation. For

that, let’s explicitly write the QFT matrix for some simple cases. Remember that the QFT

on 𝑚 qubits takes |𝑗⟩ to
1

√
2𝑚

2𝑚−1

∑

𝑘=0

𝜔
𝑗𝑘

2𝑚 |𝑘⟩.

Consequently, when 𝑚 = 1, the QFT takes |0⟩ to

1
√
2
(|0⟩ + |1⟩)

and |1⟩ to
1
√
2
(|0⟩ − |1⟩) ,

because 𝜔0
2 = 1 and 𝜔1

2 = 𝑒
𝜋𝑖 = −1. This means the matrix associated to the QFT in this

case is

(

1√
2

1√
2

1√
2

− 1√
2
)

=
1
√
2 (

1 1

1 −1)
.

Wait! We know this matrix! This is just an old friend of ours: the Hadamard gate. It is

always reassuring to meet an old acquaintance, isn’t it? Maybe that QFT is not as scary as

it seemed.

Finding the period with the quantum Fourier transform 257

What about the case when 𝑚 = 2? Notice that, in general, the amplitude of |𝑘⟩ on QFT|𝑗⟩ is

exactly 𝜔𝑗𝑘2𝑚/
√
2𝑚, so the matrix is then

1

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1

1 𝑖 −1 −𝑖

1 −1 1 −1

1 −𝑖 −1 𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 11.4

Check that the expression that we have given for the QFT matrix on 2 qubits is

correct.

In general, the elements of QFT matrices will all be roots of unity (which is obvious, since,

by construction, all of them are integer powers of roots of unity). More interestingly, QFT

matrices are always symmetric and each row (and column) is a sequence of 𝑛th roots of

unity for a fixed 𝑛. In fact, it is easy to see that a row of the QFT matrix for 𝑚 qubits has as

its elements

1, 𝜔
𝑘
2𝑚 , 𝜔

2𝑘
2𝑚 , … , 𝜔

(2𝑚−1)𝑘
2𝑚 ,

for a certain non-negative integer 𝑘. If 𝑘 and 2𝑚 have no common factors, these elements

will be exactly the 2𝑚th roots of unity in a certain order. This is what happens with the

second and fourth column of the matrix for the two-qubit QFT that we have shown above.

On the other hand, if gcd(𝑘, 2𝑚) = 𝑙 > 1, then the sequence 1, 𝜔𝑘2𝑚 , 𝜔
2𝑘
2𝑚 , … , 𝜔

(2𝑚−1)𝑘
2𝑚 will

consist of 𝑙 repetitions of the (2𝑚/𝑙)th roots of unity. In the case of the two-qubit QFT, the

third row of the matrix shows exactly this behavior, but you can easily check that this is

the case too for any other number of qubits.

Exercise 11.5

What are the different sequences of roots of unity that appear as the rows of the

matrix for the QFT on 3 qubits?

258 Chapter 11: Finding the Period and Factoring Numbers

The final property of the QFT that we want to highlight in this section has to do with its

inverse, which is usually called (not at all surprisingly) the inverse quantum Fourier

transform. We will explicitly show later in this chapter that the QFT can be implemented

with a quantum circuit and, thus, it is unitary and hence invertible. However, we can

show it now by just analyzing its matrix. The (𝑗 , 𝑘) entry of the 𝑚-qubit QFT matrix is, as

we already know, 1√
2𝑚
𝑒

2𝜋𝑖𝑗𝑘

2𝑚 . Then, its conjugate transpose will have 1√
2𝑚
𝑒

−2𝜋𝑖𝑘𝑗

2𝑚 as its (𝑗 , 𝑘)

entry, because the conjugate of 𝑒𝑖𝑥 is 𝑒−𝑖𝑥 when 𝑥 is real (see Appendix A for a proof of this

property). Then, to show that the QFT is unitary, we only need to show that the linear

transformation 𝐿 that takes |𝑘⟩ to

1
√
2𝑚

2𝑚−1

∑

𝑙=0

𝑒
−2𝜋𝑖𝑘𝑙
2𝑚 |𝑙⟩

is its inverse.

With all that we know, this is quite easy to prove. In fact, if we first apply the QFT to |𝑗⟩,

we know that we obtain
1

√
2𝑚

2𝑚−1

∑

𝑘=0

𝑒
2𝜋𝑖𝑗𝑘

2𝑚 |𝑘⟩.

If we now apply 𝐿 to this state, by linearity we get

1
√
2𝑚

2𝑚−1

∑

𝑘=0
(
𝑒

2𝜋𝑖𝑗𝑘

2𝑚
1

√
2𝑚

2𝑚−1

∑

𝑙=0

𝑒
−2𝜋𝑖𝑘𝑙
2𝑚 |𝑙⟩

)
=

1

2𝑚

2𝑚−1

∑

𝑙=0
(

2𝑚−1

∑

𝑘=0

(𝑒
2𝜋𝑖
2𝑚)

𝑘(𝑗−𝑙)

)
|𝑙⟩.

But, from our discussion of the sum of powers of the roots of unity, we already know that

∑
2𝑚−1
𝑘=0 (𝑒

2𝜋𝑖
2𝑚)𝑘(𝑗−𝑙) is equal to 2𝑚 if 𝑗 = 𝑙, and it is 0 if 𝑗 ≠ 𝑙 (because both 𝑗 and 𝑙 are less than

2𝑚, so 𝑗 − 𝑙 can never be a multiple of 2𝑚). Hence, this latter state simplifies to just |𝑗⟩! This

shows that 𝐿 is the inverse quantum Fourier transform, and hence the QFT is unitary.

All this is so important that we want to state it succinctly and explicitly, while, at the

same time, renaming some of the indices to have more symmetric, pleasant and aesthetic

expressions. This gives rise to the remarkable fact that we highlight in the following note.

Finding the period with the quantum Fourier transform 259

Important note

The quantum Fourier transform is a unitary operation that takes |𝑗⟩ to

1
√
2𝑚

2𝑚−1

∑

𝑘=0

𝑒
2𝜋𝑖𝑗𝑘

2𝑚 |𝑘⟩.

Its inverse, called the inverse quantum Fourier transform, is the unitary operation

that takes |𝑗⟩ to
1

√
2𝑚

2𝑚−1

∑

𝑘=0

𝑒
−

2𝜋𝑖𝑗𝑘

2𝑚 |𝑘⟩.

Wow, this was quite a wild ride, wasn’t it? So many beautiful mathematical facts from just

one linear transformation! But you ain’t seen nothing yet, as Bachman-Turner Overdrive

like to sing. Next, we will show how we can use the QFT to find information about periods

in number sequences. Let’s roll!

11.4.2 The QFT applied to periodic sequences
We now have all the ingredients to complete the quantum part in Shor’s algorithm. We

know how to create a periodic sequence with information about the modular powers of 𝑎

and we know it all about the quantum Fourier transform. Let’s see how to combine the

two of them to obtain the period that we need to factor that big integer 𝑁 .

Let’s start with something simple. Imagine that we have a state on two qubits like

1
√
2
(|0⟩ + |2⟩) ,

which has period 2. We are going to apply to it the inverse quantum Fourier transform (or

IQFT), so let’s explicitly write its matrix for the case of 2 qubits. Remember that the IQFT

takes a computational basis state |𝑗⟩ on two qubits to

1

2

3

∑

𝑘=0

𝑒
−
𝜋𝑖𝑗𝑘

2 |𝑘⟩ =
1

2

3

∑

𝑘=0

(−𝑖)
𝑗𝑘
|𝑘⟩.

260 Chapter 11: Finding the Period and Factoring Numbers

Consequently, its matrix is

1

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1

1 −𝑖 −1 𝑖

1 −1 1 −1

1 𝑖 −1 −𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, the result of applying it to 1√
2
(|0⟩ + |2⟩) is

1

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1

1 −𝑖 −1 𝑖

1 −1 1 −1

1 𝑖 −1 −𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
2

0

1√
2

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
2

0

1√
2

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Notice how the first and third coefficients in the resulting vector are obtained, respectively,

by multiplying the rows
(1 1 1 1)

and
(1 −1 1 −1)

times the original vector.

Since the vector of the state 1√
2
(|0⟩ + |2⟩) only has non-zero elements at the first and third

positions, and in the selected matrix rows, those positions are equal, we obtain positive

interference and the resulting value is non-zero. However, in the second and fourth rows

of the IQFT matrix, the elements at positions first and third are opposite of each other.

Consequently, they interfere negatively and the net result is 0.

Similarly, if we consider the state 1√
2
(|1⟩ + |3⟩), which also has period 2, the new state after

applying the IQFT to it will be

1

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1

1 −𝑖 −1 𝑖

1 −1 1 −1

1 𝑖 −1 −𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1√
2

0

1√
2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
2

0

− 1√
2

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Again, we have positive interference when multiplying by rows that repeat after 2 elements

and negative interference in the other cases, where the rows don’t have period 2.

Finding the period with the quantum Fourier transform 261

All this is a manifestation of a more general fact. Indeed, any 𝑚-qubit state of the form

1
√
2(𝑚−𝑙)

2(𝑚−𝑙)−1

∑

𝑡=0

|𝑐 + 𝑡 ⋅ 2
𝑙
⟩,

for some integers 𝑙 between 1 and𝑚−1, and 𝑐 between 0 and 2𝑙−1, has period 2𝑙 . Particular

cases include the states 1√
2
(|0⟩ + |2⟩) and 1√

2
(|1⟩ + |3⟩) that we have just considered (with

𝑚 = 2, 𝑙 = 1, and 𝑐 = 0, 1). Other examples include the three-qubit states

1
√
2
(|1⟩ + |5⟩) ,

where 𝑙 = 2 and 𝑐 = 1, and
1

2
(|0⟩ + |2⟩ + |4⟩ + |6⟩) ,

where 𝑙 = 1 and 𝑐 = 0.

These are (some of) of the states that we learned to prepare in Section 11.3 and they all

have period 2𝑙. In fact, their only non-zero amplitudes appear every 2𝑙 elements. If we

apply to them the IQFT, the 𝑗-th amplitude of the resulting vector will be given by the

multiplication of the 𝑗-th row of the IQFT matrix times the vector of the periodic quantum

state. Since the (𝑗 , 𝑘) entry of the IQFT matrix is

1
√
2𝑚
𝑒
−

2𝜋𝑖𝑗𝑘

2𝑚 ,

the resulting amplitude is

1
√
2𝑚

1
√
2𝑚−𝑙

2(𝑚−𝑙)−1

∑

𝑡=0

𝑒
−

2𝜋𝑖𝑗(𝑐+𝑡2𝑙)

2𝑚 ,

because the only non-zero amplitudes of the state we are transforming can be found at the

positions indexed by 𝑐 + 𝑡2𝑙 .

262 Chapter 11: Finding the Period and Factoring Numbers

We can rewrite the expression as

1
√
22𝑚−𝑙

2(𝑚−𝑙)−1

∑

𝑡=0

𝑒
−

2𝜋𝑖𝑗(𝑐+𝑡2𝑙)

2𝑚 =
𝑒−

2𝜋𝑖𝑗𝑐

2𝑚

√
22𝑚−𝑙

2(𝑚−𝑙)−1

∑

𝑡=0

𝑒
−

2𝜋𝑖𝑗𝑡

2𝑚−𝑙 .

Since the exponential inside the sum is 𝜔−𝑡𝑗

2𝑚−𝑙
, we know that the whole sum will be 0 in

most cases. In fact, it will only be non-zero when 𝑗 is a multiple of 2𝑚−𝑙 . This means that,

if we apply the IQFT to one of those states and then we measure, we will obtain as a result

an integer of the form
𝑘2𝑚

2𝑙
.

With a similar, but slightly more complicated derivation, it can be shown that, if you apply

the IQFT to one of the periodic states that we discussed in Section 11.3, it is highly probable

that a measurement will yield an integer that is close to

𝑘2𝑚

𝑟
,

where 𝑟 is the period of the state and 𝑘 is an integer. Remember that our goal is to determine

𝑟 , because that is the value that we need in Shor’s algorithm. To that extent, we can repeat

the process of preparing the periodic state several times, applying the IQFT, and measuring.

In this way, we will obtain several values that, with high probability, will be close to

𝑘12
𝑚

𝑟
,
𝑘22

𝑚

𝑟
, … ,

𝑘𝑡2
𝑚

𝑟
,

for some integers 𝑘1, 𝑘2, … , 𝑘𝑡 . From them, you can use some classical post-processing (for

instance, with the help of continued fractions—see the book by Nielsen and Chuang [13]

for a detailed treatment) and (finally!) recover 𝑟 . Throughout the whole process, 𝑚 can

be set to be about 2𝑛, where 𝑛 is the size of 𝑁 in bits, the number of circuit executions

and measurements needed is polynomial in 𝑛, and the whole post-processing part can be

carried out in polynomial time in 𝑛. For all the details, feel free to check the original paper

by Shor [67].

Finding the period with the quantum Fourier transform 263

Important note

The quantum part of Shor’s algorithm involves running the following circuit:

𝑛

|0⟩ 𝐻 ⋯

QFT†
𝑚

⋮ ⋮ ⋮

|0⟩ 𝐻 ⋯

|0⟩ 𝐻 ⋯

|1⟩ 𝑈
𝑎2

0 𝑈
𝑎2

1 ⋯ 𝑈
𝑎2
𝑚−1

Here, 𝑄𝐹𝑇 †
𝑚 is the inverse Quantum Fourier transform on 𝑚 qubits. The bottom

register has 𝑛 qubits, where 𝑛 is the size in bits of the integer 𝑁 that we want to

factor.

From the measurement results of this circuit, by using a polynomial (in 𝑛) number

of classical post-processing steps, with high probability we can recover 𝑟 such that

𝑎𝑟 ≡ 1 mod 𝑁 .

We are almost done with our study of Shor’s algorithm. The only thing that remains is

showing how to implement the (inverse) quantum Fourier transform as a circuit. We will

take care of that right now.

11.4.3 Implementing the quantum Fourier transform
We are now going to learn how to construct a quantum circuit that implements the powerful

quantum Fourier transform. You may be thinking that, given that the expression for the

QFT is kind of complicated, its circuit will be big and cumbersome. However, as you will

soon see, we can follow a recursive structure that will make it easy to obtain the circuit

for the QFT on 𝑚 + 1 qubits from the circuit for the 𝑚-qubit QFT. Let’s then start from the

simplest case and build our way up!

264 Chapter 11: Finding the Period and Factoring Numbers

As we mentioned in Section 11.4.1, the matrix for the QFT on 1 qubit is exactly the same as

the one for the Hadamard gate. Thus, the one-qubit QFT can be simply implemented with

the following circuit:

𝐻

For the two-qubit case, we need to introduce a new quantum operation: the SWAP gate.

As its name suggests, the SWAP gate exchanges the states of two qubits in a product state.

That is, it takes |𝜓1⟩|𝜓2⟩ to |𝜓2⟩|𝜓1⟩. In particular, it acts on the computational basis states

leaving |00⟩ and |11⟩ unchanged, and swapping |01⟩ and |10⟩. Hence, its matrix is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Obviously, this matrix is unitary. In fact, it is equal to its conjugate transpose and it is its

own inverse, because if you swap the same things twice in a row, you return to the initial

situation. Implementing it in terms of other gates that we already know is quite easy. We

let you check it with the following exercise.

Exercise 11.6

Check that the SWAP gate can be implemented with the following circuit:

Check also that you can, alternatively, use the following circuit:

With this, we can now give the circuit for the two-qubit QFT, which is the following:

Finding the period with the quantum Fourier transform 265

𝐻 𝑆

𝐻

To check that this circuit works as expected, let’s see how it acts in the computational basis

state |𝑗⟩ = |𝑥⟩|𝑦⟩, where 𝑥, 𝑦 = 0, 1 and 𝑗 = 2𝑥 +𝑦. After the first 𝐻 gate, the state becomes

1
√
2
(|0⟩ + (−1)

𝑥
|1⟩) |𝑦⟩.

Then, when we apply the controlled-𝑆 gate, we obtain

1
√
2
(|0⟩ + (−1)

𝑥
𝑖
𝑦
|1⟩) |𝑦⟩.

Now, with the 𝐻 gate on the bottom qubit, we get

1

2
(|0⟩ + (−1)

𝑥
𝑖
𝑦
|1⟩) (|0⟩ + (−1)

𝑦
|1⟩) =

=
1

2
(|00⟩ + (−1)

𝑦
|01⟩ + (−1)

𝑥
𝑖
𝑦
|10⟩ + (−1)

𝑥+𝑦
𝑖
𝑦
|11⟩) .

With the final SWAP gate, the result is

1

2
(|00⟩ + (−1)

𝑥
𝑖
𝑦
|01⟩ + (−1)

𝑦
|10⟩ + (−1)

𝑥+𝑦
𝑖
𝑦
|11⟩)

=
1

2
(|00⟩ + 𝑖

2𝑥+𝑦
|01⟩ + 𝑖

2𝑦
|10⟩ + 𝑖

2𝑥+3𝑦
|11⟩) .

Now, notice that 𝑗 = 2𝑥 + 𝑦 and 𝑖4 = 1. Then, we have

𝑖
𝑗
= 𝑖

2𝑥+𝑦
,

𝑖
2𝑗
= 𝑖

4𝑥+2𝑦
= 𝑖

4𝑥
𝑖
2𝑦

= (𝑖
4
)
𝑥
𝑖
2𝑦

= 𝑖
2𝑦
,

𝑖
3𝑗
= 𝑖

6𝑥+3𝑦
= 𝑖

4𝑥
𝑖
2𝑥+3𝑦

= 𝑖
2𝑥+3𝑦

.

266 Chapter 11: Finding the Period and Factoring Numbers

Hence, we can rewrite the final state as

1

2
(𝑖

0⋅𝑗
|00⟩ + 𝑖

𝑗
|01⟩ + 𝑖

2𝑗
|10⟩ + 𝑖

3𝑗
|11⟩) =

1

2
(𝑖

0⋅𝑗
|0⟩ + 𝑖

𝑗
|1⟩ + 𝑖

2𝑗
|2⟩ + 𝑖

3𝑗
|3⟩) ,

which is exactly the action of the two-qubit QFT on the |𝑗⟩ state.

With a similar but longer computation, it can be checked that the three-qubit QFT can be

implemented by the following circuit:

𝐻 𝑆 𝑇

𝐻 𝑆

𝐻

Notice how this builds upon the two-qubit QFT circuit. In fact, if we remove the bottom

qubit and all the gates that interact with it, what we obtain is exactly the two-qubit circuit

just before the SWAP gate. In a similar way, we can add an additional qubit with controlled

gates targeting the other qubits to obtain the circuit for the four-qubit QFT. From that,

adding a new qubit, we get the five-qubit QFT, and so on.

To give the general construction for the 𝑚-qubit QFT circuit, it is useful to remember a

family of quantum gates that we introduced back in Section 2.3.1: phase gates. The phase

gate 𝑃(𝜃) has matrix

𝑃(𝜃) =
(

1 0

0 𝑒𝑖𝜃)
,

where 𝜃 is a real value. Particular cases include 𝑍 = 𝑃(𝜋), 𝑆 = 𝑃(𝜋/2), and 𝑇 = 𝑃(𝜋/4).

To lighten up the notation a little bit, we will denote 𝑃𝑘 = 𝑃(𝜋/2𝑘). With this, we are ready

to give the circuit for the 𝑚-qubit QFT, which we highlight in the following important note.

Quantum phase estimation 267

Important note

The circuit for the 𝑚-qubit QFT is as follows:

𝐻 𝑃2 ⋯ 𝑃𝑚−1 𝑃𝑚

⋯ 𝐻 ⋯ 𝑃𝑚−2 𝑃𝑚−1 ⋯

⋮ ⋮ ⋱

⋯ 𝐻 𝑃2

⋯ 𝐻

Here, we have denoted 𝑃𝑘 = 𝑃(𝜋/2𝑘). Notice how the number of gates is 𝑂(𝑚2).

The circuit for the inverse quantum Fourier transform can be readily obtained from

this one. We just need to read the circuit from right to left, substituting each gate

with its inverse (the SWAP and Hadarmard gates are their own inverses, while the

inverse of 𝑃(𝜋/2𝑘) is 𝑃(−𝜋/2𝑘)).

That’s it! You now know all that you need in order to understand, implement, and apply

Shor’s factoring algorithm. We will close this chapter by making an observation about the

techniques that we have used in the construction of the quantum circuit for the period

estimation, and how they can be applied in problems of a more general nature.

11.5 Quantum phase estimation
An important problem in many areas of mathematics, science, and engineering is the deter-

mination of the eigenvalue associated to a certain eigenvector of a linear transformation.

To fully understand what we are talking about, let’s take some time to introduce some

definitions (for a more thorough treatment, please refer to Appendix A).

Imagine that you have a linear transformation 𝐿 from a vector space (over the complex

numbers) into itself. We say that a vector 𝑣 ≠ 0 is an eigenvector of 𝐿 if there exists

268 Chapter 11: Finding the Period and Factoring Numbers

a complex number 𝜆 such that 𝐿𝑣 = 𝜆𝑣. In this case, we say that 𝜆 is the eigenvalue

associated to the eigenvector 𝑣.

When 𝐿 is a unitary operation, it can be proved (see Appendix A) that each of its eigenvalues

is of the form 𝑒2𝜋𝑖𝜃 for some real number 𝜃 between 0 and 1. The problem of phase

estimation is: given 𝑈 , a unitary matrix, and |𝜓⟩, one of its eigenvectors, obtain an

approximation of the eigenvalue 𝜆 such that 𝑈|𝜓⟩ = 𝜆|𝜓⟩. Since we know that 𝜆 = 𝑒2𝜋𝑖𝜃

for some real 𝜃, this is equivalent to estimating 𝜃, which is sometimes referred to as the

phase of 𝜆. This is the reason why this problem is called phase estimation.

To learn more. . .

Phase estimation is important, for instance, in physics and chemistry for its connec-

tions to problems in the study of materials and chemical compounds. For more on

this, you can check out our book A Practical Guide to Quantum Machine Learning and

Quantum Optimization: Hands-on Approach to Modern Quantum Algorithms [16].

Phase estimation is also central in other quantum algorithms, such as the HHL

method for solving linear systems of equations [2] and the algorithm for quantum

counting that we will study in Chapter 12.

With the techniques that we have studied in this chapter, we have all the elements to easily

introduce quantum phase estimation (usually abbreviated as QPE), one of the most

popular methods to solve the phase estimation problem. In fact, the circuit for QPE is as

follows:

𝑛

|0⟩ 𝐻 ⋯

QFT†
𝑚

⋮ ⋮ ⋮

|0⟩ 𝐻 ⋯

|0⟩ 𝐻 ⋯

|𝜓⟩ 𝑈 20 𝑈 21 ⋯ 𝑈 2𝑚−1

Quantum phase estimation 269

Sound familiar? This is so similar to the circuit used in Shor’s algorithm that we could use

it for playing “spot the difference”! Albeit similar, the two circuits are not identical. Notice

that, in this case, the bottom register is initialized to the eigenvector |𝜓⟩ instead of |1⟩, that

the bottom register is not measured, and that the controlled operations are powers of the

unitary 𝑈 for which we want to estimate the phase of one of its eigenvalues.

With an analysis like the one that we performed in Section 11.3.2, we can easily see that

we start with |0⟩|𝜓⟩ and that the state just before the application of the inverse quantum

Fourier transform is
1

√
2𝑚

2𝑚−1

∑

𝑗=0

𝑒
2𝜋𝑖𝑗𝜃

|𝑗⟩|𝜓⟩.

The state in the second register never changes, so we can safely ignore it. Let’s then focus

on the first register only. If 𝜃 is of the form 𝑙/2𝑚 for some integer 𝑙, then this state is exactly

the result of applying the 𝑚-qubit QFT to |𝑙⟩. Hence, when we apply the inverse quantum

Fourier transform, we will obtain exactly 𝑙 as the measurement result and, from that, we

can easily recover 𝜃 as 𝑙/2𝑚. In a more general situation, with high probability, we will

obtain 𝑙 such that 𝑙/2𝑚 ≈ 𝜃. Increasing 𝑚, we can make this approximation as precise

as desired. In fact, if the controlled powers of 𝑈 can be implemented with a polynomial

number of gates in the size of |𝜓⟩, it can be shown that this is an efficient method for phase

estimation. So neat and convenient!

Exercise 11.7

How many qubits would you need to determine exactly the phase of the eigen-

vector |1⟩ of the one-qubit gate 𝑆 with QPE? What about |1⟩ and 𝑇 ? Obtain the

corresponding quantum circuits.

You may now be wondering what is the connection between QPE and Shor’s algorithm.

It’s a legitimate question, so let’s address it before ending this section. It can be proved

that the eigenvalues of the modular multiplication unitary 𝑈𝑎 are of the form 𝑒
2𝜋𝑖𝑘
𝑟 , where

𝑘 is an integer and 𝑟 is the period of 𝑎 modulo 𝑁 . This can be easily seen because we know

270 Chapter 11: Finding the Period and Factoring Numbers

that 𝑈 𝑟𝑎 is the identity, since we are multiplying times 𝑎𝑟 , which is 1 modulo 𝑁 . Then, if 𝜆

is an eigenvalue of 𝑈𝑎 and |𝜓⟩ is an associated eigenvector, it follows that

|𝜓⟩ = 𝑈
𝑟
𝑎 |𝜓⟩ = 𝑈

𝑟−1
𝑎 𝑈𝑎|𝜓⟩ = 𝜆𝑈

𝑟−1
𝑎 |𝜓⟩ = ⋯ = 𝜆

𝑟−1
𝑈𝑎|𝜓⟩ = 𝜆

𝑟
|𝜓⟩,

from where we deduce that 𝜆𝑟 = 1 and, hence, 𝜆 is an 𝑟th root of unity. That is, 𝜆 = 𝑒
2𝜋𝑖𝑘
𝑟

for some integer 𝑘. Notice that, in this case, 𝜃 would be 𝑘/𝑟 .

Moreover, the state |1⟩, which is the initial state of the second register in the quantum

circuit of Shor’s algorithm, can be written as a uniform superposition of all the eigenvalues

of 𝑈𝑎. By linearity, if we interpret Shor’s algorithm circuit as an instance of QPE, we will

obtain, with high probability, an integer 𝑙 such that 𝑙/2𝑚 = 𝜃 = 𝑘/𝑟 . That is, an integer of

the form 𝑘2𝑚/𝑟 . This coincides with our earlier analysis of the method.

We find it extremely pleasant that, in a chapter devoted to periodicity, we have found

ourselves returning to a previous step in our (long) journey, so let’s end it on this happy

note.

Summary
In this chapter, we have studied in detail one of the most important quantum algorithms:

Shor’s method for integer factorization.

We started by remarking on the importance of prime numbers and their central role in

some cryptographic protocols in wide use today. Then, we took a first view at Shor’s

algorithm, describing the different steps in the method and giving some simple examples

of how it is applied. As we showed, most of these steps can be carried out efficiently with

classical algorithms, but finding the period of an integer would require the use of a quantum

computer when the integer to factor is big.

For this reason, we then turned our attention to the creation of a certain type of periodic

states with the help of quantum circuits that rely on the use of superposition and entangle-

ment. To extract information about the period from these states, we introduced the mighty

quantum Fourier transform. The study of this operation took us to wild and gorgeous

Quantum phase estimation 271

places. We considered some beautiful complex numbers called roots of unity, we marveled

once again with the power of interference, and we designed clever circuits to implement

the QFT and its inverse.

Finally, we strayed a bit from the path to have a bird’s-eye view of our discoveries, and

noticed that the techniques that we have mastered can also be used to solve the problem of

phase estimation. We then traced our steps back and connected this new problem to the

task of finding factors of big integers.

This has been an arduous but joyful exploration. You may rest for a bit—you have earned

it. But don’t relax just yet. The journey is far from over! The next chapter will take us

to another peak in our expedition. Get ready, for we are about to introduce the famous

Grover’s algorithm.

12
Searching and Counting
with a Quantum Computer

When you go in search of honey, you must expect to be stung by bees.

— Joseph Joubert

In the previous chapter, we went through the wonders and mysteries that lie behind Shor’s

algorithm, perhaps the most famous quantum algorithm to have ever existed. Leveraging

on the power of the quantum Fourier transform, we uncovered how quantum computers

can efficiently factorize integer numbers and effectively threaten some of our current

(public-key) cryptographic protocols. That’s. . . quite a lot, and we are aware that we have

left the bar too high. But rest assured: we are still hiding a few interesting things up our

sleeve.

In this chapter, we are going to discuss another quintessential quantum algorithm: Grover’s

algorithm. Sadly (or perhaps fortunately!), this one will not allow us to blackmail our way

to world dominance by breaking public-key cryptographic protocols. Nevertheless, it is

274 Chapter 12: Searching and Counting with a Quantum Computer

still a powerful and exciting tool that might have lots of beneficial real-world applications.

The problem that Grover’s algorithm will address is that of searching through an unsorted

list.

This search task might seem trivial to the unfamiliar eye, but that could not be further from

the truth! It is a problem in which quantum computers can break boundaries that would be

unthinkable for classical computers. Thus, to better contextualize what Grover’s algorithm

aims to achieve—and why that is worth our awe—we will devote the first section of this

chapter to analyzing the problem of searching through an unsorted list. Once we are done

with that introduction, we will discuss Grover’s algorithm in all its might. And, lastly, to

conclude the chapter, the quantum Fourier transform will make one last epic reappearance.

To put it succinctly, these are the contents of this chapter:

• Searching in an unsorted list

• Grover’s algorithm

• Counting with the quantum Fourier transform

That might be enough of an introduction. For now, let us humble ourselves and quantumly

look for needles in haystacks!

12.1 Searching in an unsorted list
In the Digital Age™, few people would consider searching to be a complicated computational

task: we just take it for granted. We can almost instantly find files in our computers and we

can even search through the whole 64 zetabytes of the Internet with just a few keystrokes

using any search engine. Moreover, thanks to new advancements in artificial intelligence,

searching has taken off to new heights. Just to give an example, some photo management

applications now enable you to look for pictures in your digital photo albums by providing

mere textual descriptions of their content.

It is fair to say that we live in the golden age of searching. Yet, as ubiquitous and widely used

as search algorithms may be, few people (excluding computer scientists, of course) actually

Searching in an unsorted list 275

know how those algorithms work. Most would actually believe that, when looking for

some files on their computer, their system just inspects each file one by one, in whichever

order they may be arranged, as if all the files were piled together in a messy bucket. If that

were the case, regardless of how powerful your computer would be, you could have the

assurance that searching would be anything but a seemingly instantaneous experience.

The core reason why search queries can work so well is not (just) the mind-blowing speeds

of our current processors, but the way in which these algorithms preprocess, arrange, and

sort the data that they are going to be searching on. And the best way of illustrating this

might be through a simple real-world example.

Imagine that you wake up in the middle of the night to a text from your friend that reads

“the craic was mighty!!”. Confused and concerned as you may be, you choose to look up

that strange “craic” term in a dictionary, but—in an attempt to be old-school cool—you

give up the chance of taking out your phone and you decide to dust off that hardbound

dictionary that is lying on your shelf. The question is the following: how would you search

for the word “craic” in that big tome? Would you begin at the word “a” and evaluate, one

by one, all the words in sequential order until you reached “craic”? In principle, you would

be guaranteed to find that word eventually (provided that it is included in the dictionary!),

but we can all probably agree that it would take you quite a lot of time to complete this

task. And this is the deal: no matter how fast you read, this would inevitably take a huge

amount of time—it would likely take more than an hour even for the fastest human reader

ever to have lived on the face of the Earth!

And where does the issue lie? In the fact that this search procedure could take as many

queries as words there are in the dictionary: as many queries as items there are in the search

space. Using the tools of computational complexity, if 𝑁 is the size of the search space, this

linear search takes 𝑂(𝑁) queries to complete, which is not ideal as 𝑁 grows large. Recall,

incidentally, that a function 𝑓 (𝑁) (in this case, the number of queries) is 𝑂(𝑔(𝑁)) if there

exists a constant 𝑀 and an 𝑁0 such that, for all 𝑁 ≥ 𝑁0, 𝑓 (𝑁) ≤ 𝑀 ⋅ 𝑔(𝑁); essentially, this

is telling us that, when 𝑁 grows large, 𝑓 (𝑁) does not grow worse than 𝑔(𝑁).

276 Chapter 12: Searching and Counting with a Quantum Computer

To learn more. . .

For a full introduction to computational complexity and the big O notation, you can

head to Appendix C.

Nevertheless, as we all probably know, there is a better way of searching in a dictionary,

as the words are sorted. Thus, we can open the dictionary in half and, if the words on the

page go after “craic” alphabetically, we can flip a few pages back at around a quarter of the

dictionary; conversely, if they go before it, we can flip a few pages forward toward three

quarters of the dictionary. Repeating this process iteratively, we will reduce the search

space by half in each step, and we will eventually reach the page where “craic” is. If we

do everything correctly, the number of iterations needed will be only 𝑂(log(𝑁)), which

is a dramatic improvement! Assuming an English dictionary has two hundred thousand

entries, we would only need log2 2 ⋅ 10
5 ≈ 18 queries at most. Now think about that: with a

simple linear search—that made no assumptions about the way in which the words were

sorted—we could have needed 200.000 iterations. That is quite a huge difference!

To learn more. . .

In a computer system, when we are given an array of (sorted) data, we can perform

a search procedure analogous to the one that we have discussed: this is known as a

binary search [62].

The situation with a dictionary search is perfectly analogous to the one that we find in

any other computational search task. It doesn’t matter how powerful and fast a processor

may be: the key behind a fast search rests on the efficiency of the search algorithm being

used, and in how the search data is structured, sorted, and organized. Maybe at some stage,

perhaps after a software update, you have tried to perform a search but were met with a

message claiming that your data was being “indexed”. That is a fancy way of saying that it

was being organized so that your future searches could be as fast as you expect them to be!

Thus, we have seen how the backbone of fast searches is data sorting. There is nevertheless

one problem, which is that, in many real-world problems, we may have to perform searches

Searching in an unsorted list 277

over immense unsorted datasets. And that’s where classical algorithms face a challenge. If

you are given a dataset with𝑁 elements that are not sorted, and you are tasked with finding

a specific entry within it, no search algorithm can yield a better efficiency than 𝑂(𝑁). To

see why, notice that, in a classical algorithm, you are bound to querying the elements in

the search space one by one, and, if the elements are unsorted, nothing forbids the element

you are looking for from being the last one you would query. So, in the worst-case scenario,

you will have to query all the elements in the search space!

This naturally begs the question: why not just sort the elements in a dataset and leave it

there? Why would we be interested in an algorithm that would allow us to search over an

unsorted search space? There are quite a few scenarios in which such an algorithm would

come in handy:

• Sorting a list of elements is computationally more costly than looking for one of

them. For example, sorting an array of elements in which you are able to compare

pairs of elements (deciding which element should go first in the array), would take a

number of comparisons of order at least 𝑁 log𝑁 (for a proof, we refer you to the

book Introduction to algorithms [62]). Thus, if you are going to perform a single

search, it might just not be worthwhile sorting the elements.

For example, if you were asked on a single occasion to look for a word in the dictionary

that ends in “xz”, you would be better off doing a linear search than resorting the

whole dictionary.

• In some problems, there may not be a way to sort data at all! Imagine that you are

given an abstract mathematical problem in the form of a function 𝑓 (which you know

how to compute), for which you are asked to find an entry 𝑥 such that 𝑓 (𝑥) = 1. In

this case, there is no way of sorting the elements that would enable you to perform a

binary search.

The last scenario is the one that Grover will be best at tackling. You see, right now, quantum

computers may have a problem or two accessing and storing databases with classical data,

but for mathematical problems. . . they can achieve very surprising things!

278 Chapter 12: Searching and Counting with a Quantum Computer

Thus, for this kind of search problem, quantum computing will now come to the rescue

with Grover’s algorithm. As we are about to find out, Grover’s algorithm will enable us

to solve a search problem with just 𝑂(
√
𝑁) queries to. . . you guessed it! An oracle! Thus,

Grover’s algorithm will provide a quadratic speed-up over any other possible classical

alternative. For instance, if you are searching through one million elements for a particular

one, a classical algorithm might require up to one million steps. But Grover’s search will

only need about one thousand queries. Impressive, right? There will be a few caveats in

the application of the method (as with anything quantum), but we will take care of them at

their own time.

Important note

In a search problem, Grover’s algorithm will provide a quadratic speed-up when

compared to any classical algorithm. In particular, if the size of the search space is

𝑁 and the data in it is not sorted or organized in any way, any classical algorithm

would require 𝑂(𝑁) queries to the search space, while Grover’s algorithm would

only require 𝑂(
√
𝑁) calls to an oracle.

We should remark that 𝑂(
√
𝑁) is still less efficient than 𝑂(log𝑁), but, unlike binary

search, Grover’s algorithm does not need the data to be sorted.

And now that we know what Grover’s algorithm promises to deliver, let’s dive into its

details.

12.2 Grover’s algorithm
We now have a general picture of what Grover’s algorithm is capable of doing, but, before

we can discuss all of its details, we should fix some notation and make our hypotheses and

conditions clear.

In the search problem that we will be working with through this section, we will consider

an 𝑛-bit Boolean function 𝑓 (𝑥) = 𝑓 (𝑥1, … , 𝑥𝑛), and we will assume that 𝑓 (𝑥) = 0 for all

possible inputs 𝑥 except for a single 𝑛-bit marked string, 𝑠, for which 𝑓 (𝑠) = 1. Our goal is

to find that 𝑛-bit string 𝑠. Later in this section, we will see what can be done if the number

Grover’s algorithm 279

of marked strings (strings that make 𝑓 return 1) is any fixed number 𝑘, but, for now, we

will keep things simple and assume that only one input verifies this condition.

This framework might not seem too powerful at first, but it can actually encode any search

problem. Assume, for example, that you have an unsorted database with a billion entries

laid out in an array-like form, where each entry has its own index number. And let’s say

that you are looking for one entry in particular. Of course, you can refer to each of the

entries by its index in the database, so you can define 𝑓 to be the function that takes the

binary representation of the index of an item and returns 1 if it is the item you are looking

for, and 0 otherwise.

The aim of abstracting and encoding the search problem into a binary function is two-fold.

First, it will allow us to unambiguously quantify the number of times the search space is

accessed, and, second, using a binary input will make it easier to work with qubits, as we

are so well accustomed to.

So, we have an 𝑛-bit Boolean function that returns zero for all inputs except for a special

“marked” entry 𝑠. This works beautifully in the World of Thought, but how are we to

access such a function in an algorithm? Well, in a classical algorithm, we would just have a

subroutine that would compute 𝑓 : in the database example that we discussed previously,

we would have some SQL queries or something like that. In the quantum world, however,

things won’t be quite as direct. As we anticipated before, we will have to resort to our old

good friends, the oracles.

12.2.1 Oracles, with a twist
We have already worked with oracles on plenty of other quantum algorithms, so you may

be puzzled as to why we are devoting a whole subsection to them. As it turns out, we will

use oracles in a slightly different way when analyzing the behavior of Grover’s algorithm.

In Chapter 6 and Chapter 9, we introduced the following general definition. For any 𝑛-bit

Boolean function 𝑓 , an oracle 𝑂𝑓 for 𝑓 is the (𝑛 + 1)-qubit gate that takes any state |𝑥⟩ |𝑏⟩

280 Chapter 12: Searching and Counting with a Quantum Computer

in the computational basis (where |𝑥⟩ is an 𝑛-qubit state and |𝑏⟩ is a one-qubit state) to the

state |𝑥⟩ |𝑏 ⊕ 𝑓 (𝑥)⟩. In a circuit, we can depict this as follows:

𝑛
|𝑥⟩

𝑂𝑓

|𝑥⟩

|𝑏⟩ |𝑏 ⊕ 𝑓 (𝑥)⟩

These are also the types of oracles that are used in Grover’s algorithm and, when we

implement it in Chapter 13, that is the way we will go. But for the mathematical analysis of

the algorithm, it will be convenient for us to (momentarily) replace them with an equivalent

version. Let’s see how.

Assume that we are given an oracle 𝑂𝑓 (for a function 𝑓) like the one we’ve considered

previously. When using 𝑂𝑓 in Grover’s algorithm, we will set the last qubit to the state

|−⟩ = 𝐻 |1⟩. Then,

𝑂𝑓 |𝑥⟩ |−⟩ = 𝑂𝑓
(
|𝑥⟩ ⊗

1
√
2
(|0⟩ − |1⟩)

)
=

1
√
2
(𝑂𝑓 |𝑥⟩ |0⟩ − 𝑂𝑓 |𝑥⟩ |1⟩)

=
1
√
2
(|𝑥⟩ |0 ⊕ 𝑓 (𝑥)⟩ − |𝑥⟩ |1 ⊕ 𝑓 (𝑥)⟩) =

1
√
2
|𝑥⟩ (|0 ⊕ 𝑓 (𝑥)⟩ − |1 ⊕ 𝑓 (𝑥)⟩)

=
1
√
2
|𝑥⟩ (−1)

𝑓 (𝑥)
(|0⟩ − |1⟩) = (−1)

𝑓 (𝑥)
⋅
1
√
2
|𝑥⟩ (|0⟩ − |1⟩)

= (−1)
𝑓 (𝑥) |𝑥⟩ |−⟩ ,

where we have used the fact that, as we proved in Section 6.3, for any bit 𝑏 ,

|0 ⊕ 𝑏⟩ − |1 ⊕ 𝑏⟩ = (−1)
𝑏
(|0⟩ − |1⟩ .

Thus, by setting the last qubit to |−⟩ and disregarding it as an ancillary qubit, we can

effectively assume that we are applying a gate 𝑂̂𝑓 on the first 𝑛 qubits that will take any

state |𝑥⟩ from the computational basis to the state (−1)𝑓 (𝑥) |𝑥⟩:

𝑛
|𝑥⟩ 𝑂̂𝑓 (−1)𝑓 (𝑥) |𝑥⟩

Grover’s algorithm 281

These gates 𝑂̂𝑓 are known as phase oracles, and in its construction, we have seen a new

instance of a phase kickback, as the (−1)𝑏 phase that appears to affect only the |−⟩ state

ends up affecting the whole state.

Important note

For convenience reasons, in our analysis of Grover’s algorithm, we will assume that

we have access to 𝑛-bit Boolean functions 𝑓 through phase oracles. These oracles

are the 𝑛-qubit gates that take any computational basis state |𝑥⟩ to (−1)𝑓 (𝑥) |𝑥⟩. They

can be constructed from the ones that we employed in Chapter 6 and Chapter 9 by

setting the last qubit to |−⟩ and disregarding it as an ancillary qubit.

However, in the actual implementation of Grover’s algorithm, regular oracles for

Boolean functions are usually applied. The distinction is mostly unimportant,

because their effect is exactly the same and, if we ignore the ancillary qubit (that

remains unchanged throughout the whole process), their behavior is completely

identical.

This fully explains how we will be using oracles in our mathematical analysis of Grover’s

algorithm, but you might be having some reservations about the idea of using oracles

altogether. Back in Section 9.2, we explored in detail how oracles could be constructed and,

as we have just seen, phase oracles can be directly constructed from them. Nevertheless,

this might make you wonder: by using oracles, wouldn’t we be cheating? If we have access

to an oracle in the first place, wouldn’t that mean that the search problem should be trivial?

As it turns out, that is not the case. An oracle is given to us as a black box. We cannot

know what’s inside, we can only evaluate it on inputs to obtain outputs. All oracles look

exactly the same until you evaluate them, so you gain nothing from receiving them if you

don’t use them!

To learn more. . .

Even if you had access to the inner workings of an oracle for a Boolean function

𝑓 , that might not help you much in finding an element 𝑠 such that 𝑓 (𝑠) = 1. To

282 Chapter 12: Searching and Counting with a Quantum Computer

justify why, we can refer ourselves to a related problem in computational complexity

theory. This problem assumes that you are given a classical circuit (that you can

inspect to your heart’s desire, unlike an oracle) for a Boolean function, and asks you

whether any input makes the function output 1. This is known as the CIRCUIT-SAT

problem and it is widely believed that it cannot be solved efficiently.

To learn more about computational complexity and the reasons why CIRCUIT-SAT

(and other related problems) are believed to be intractable in practice, we recommend

that you check Chapter 5 in the wonderful book The nature of computation [77].

Also, if you would like to explore the nature of oracles in more detail, we invite you

to read Section 6.1.1 from the book Quantum Computation and Quantum Information:

10th Anniversary Edition by Nielsen and Chuang [13].

Having discussed oracles in full depth, now it’s time for us to dive into the mechanics of

Grover’s algorithm and see for ourselves how they can be used to deliver the amazing

speed-ups that we have been talking about for so long.

12.2.2 The initial setup
Grover’s algorithm for an 𝑛-bit Boolean function needs 𝑛 qubits and it starts as most

quantum algorithms do: with all qubits initialized to |0⟩ and the subsequent application of

a Hadamard gate on each qubit:

𝑛 qubits

|0⟩ 𝐻

⋮ ⋮

|0⟩ 𝐻

Grover’s algorithm 283

As you proved in Exercise 8.2, the resulting state |𝛼⟩ will be a balanced superposition of all

the computational basis states, which we can write as

|𝛼⟩ ≔
1

√
2𝑛

2𝑛−1

∑

𝑘=0

|𝑘⟩ =
1

√
2𝑛 (

|𝑠⟩ +

2𝑛−1

∑

𝑘=0,𝑘≠𝑠

|𝑘⟩
)

=
1

√
2𝑛

|𝑠⟩ +

√
2𝑛 − 1
√
2𝑛 (

1
√
2𝑛 − 1

2𝑛−1

∑

𝑘=0,𝑘≠𝑠

|𝑘⟩
)

=
1

√
2𝑛

|𝑠⟩ +

√
2𝑛 − 1

2𝑛
|other⟩ ,

where we recall that 𝑠 is the marked element we are searching for (and |𝑠⟩ is its corre-

sponding computational basis state). Also, in the preceding expression, we have implicitly

defined |other⟩ to be the uniform superposition of all the 2𝑛 − 1 computational basis states

that are not |𝑠⟩.

Notice that if, at this point, we decided to measure the state, the probability of obtaining 𝑠

(the element that we want to find) is a tiny 1/2𝑛 (because the amplitude of |𝑠⟩ is 1/
√
2𝑛).

The goal of Grover’s algorithm is to iteratively increase the amplitude of |𝑠⟩ so that the

probability of finding the marked element when measuring will be close to 1.

From this point, there is an intuitive and geometrical way of understanding Grover’s

algorithm. As we are about to find out, the state of the system throughout the algorithm

can be represented as a unit vector in the two-dimensional Euclidean plane, in such a way

that the unit vector 𝑢𝑋 = (1, 0) represents |other⟩, which is a state with probability 1 of

measuring a non-marked element, and the unit vector 𝑢𝑌 = (0, 1) represents |𝑠⟩, a state

with probability 1 of measuring the marked element 𝑠 (see Figure 12.1). The initial state of

the algorithm |𝛼⟩ will, under this representation, be very close to 𝑢𝑋 , but we will iteratively

perform a sequence of counter-clockwise rotations until we bring it just close enough to

𝑢𝑌 .

Let us now make things precise and discuss how this representation can be set up. If we

consider a state in a superposition of |other⟩ and |𝑠⟩ with real amplitudes (as will always be

the case in the application of Grover’s algorithm), we can write it as cos 𝜃 |other⟩ + sin 𝜃 |𝑠⟩

284 Chapter 12: Searching and Counting with a Quantum Computer

(for some angle 𝜃) because of the normalization condition of quantum states. Indeed, if 𝑎

and 𝑏 are two real numbers such that 𝑎2 + 𝑏2 = 1, there must exist some angle 𝜃 such that

𝑎 = cos 𝜃 and 𝑏 = sin 𝜃. Thus, we will represent any superposition

|𝜓⟩ = cos 𝜃 |other⟩ + sin 𝜃 |𝑠⟩ ,

with the unit vector (cos 𝜃, sin 𝜃), which makes a counter-clockwise angle 𝜃 with 𝑢𝑋

(and with the positive horizontal axis). It can be readily checked how, indeed, |other⟩ is

represented as 𝑢𝑋 and |𝑠⟩ as 𝑢𝑌 , as intended (just think what are the sine and cosine of 0

and 𝜋/2, respectively).

In the case of |𝛼⟩, which is depicted (not to scale!) in Figure 12.1, we let 𝜔 be this angle 𝜃,

and we have

sin𝜔 =
1

√
2𝑛
,

which is extremely small for large 𝑛, as is 𝜔 itself.

To learn more. . .

The reason why this representation is natural and well-defined is that |𝑠⟩ and |other⟩

are orthogonal and they span a two-dimensional vector space. If you are not familiar

with these terms, you may wish to review Appendix A.

|𝑠⟩

|other⟩

|𝛼⟩
𝜔

Figure 12.1: Representation (not to scale) on the two-dimensional plane of the states |𝑠⟩ and
|other⟩, and of the state |𝛼⟩, which is a balanced superposition of all the computational basis
states. If this were to scale, 𝜔 should be much smaller

Grover’s algorithm 285

The probability of measuring 𝑠 in a state of the form cos 𝜃 |other⟩ + sin 𝜃 |𝑠⟩ is |sin 𝜃|
2, as

|other⟩ is a superposition of all the computational basis states different from |𝑠⟩. As we

mentioned previously, in the case of |𝛼⟩, this probability is extremely small, 1/2𝑛, and of

course, we would like to change this. We will do so by transforming the state of the system

through rotations in a way that will progressively increase the angle that its state makes

with respect to |other⟩ in our representation, bringing it closer to 𝜋/2 (thus bringing |sin 𝜃|
2

closer to 1) and increasing our odds of retrieving 𝑠 as a measurement outcome. We shall

now study how these rotations can be implemented and understood.

12.2.3 Amplitude amplification
The circuit that implements the rotation that we have been talking about for so long

is depicted in Figure 12.2, and it composes two different operations. The first hides no

mysteries for us: it’s applying the phase oracle 𝑂̂𝑓 for the function 𝑓 that we are considering.

The second is slightly more intricate, and it involves a combination of gates known as

Grover’s diffusion operator.

𝑂̂𝑓

𝐻 𝑋 𝑋 𝐻

𝐻 𝑋 𝑋 𝐻

⋮ ⋮ ⋮ ⋮

𝐻 𝑋 𝑍 𝑋 𝐻

Grover’s diffusion operator

Figure 12.2: The phase oracle and Grover’s diffusion operator, used in the amplitude amplifica-
tion process in Grover’s algorithm

As shown in Figure 12.2, applying Grover’s diffusion operator is equivalent to performing

the following sequence of steps:

1. Apply a Hadamard gate on every qubit.

286 Chapter 12: Searching and Counting with a Quantum Computer

2. Apply a NOT gate on every qubit.

3. Apply a multi-controlled 𝑍 gate with the last qubit as a target and all other qubits as

controls.

4. Apply a NOT gate on every qubit.

5. Apply a Hadamard gate on every qubit.

Incidentally, this “multi controlled 𝑍” gate works as follows: given any (𝑛 − 1)-qubit state

|𝑥1⋯𝑥𝑛−1⟩ from the computational basis and a one-qubit state |𝑏⟩, the gate will leave

|𝑥1⋯𝑥𝑛−1⟩ |𝑏⟩ untouched unless |𝑥1⋯𝑥𝑛−1⟩ = |1⋯ 1⟩, in which case it will apply a 𝑍 gate

on the last qubit, effectively transforming the state of the whole system into − |𝑥⟩ |𝑏⟩. This

pretty much works like a CCNOT gate, but using a 𝑍 gate instead of an 𝑋 , and with a few

more control qubits.

Exercise 12.1

Prove that, in the multi-controlled 𝑍 gate used in Grover’s diffusion operator, we

could have picked any qubit as a target, having the remaining qubits as controls.

Let us now try to analyze what the combination of the phase oracle and the diffusion

operator is doing and, to that end, consider any state |𝛽⟩ = cos 𝜃 |other⟩ + sin 𝜃 |𝑠⟩ with

real amplitudes making an angle 𝜃 with the |other⟩ state in the plane representation that

we have been considering.

We recall that, by definition, for any computational basis |𝑥⟩, 𝑂̂𝑓 |𝑥⟩ = (−1)𝑓 (𝑥) |𝑥⟩. There-

fore, since 𝑓 (𝑠) = 1 and 𝑓 evaluates to 0 for any other entry, 𝑂̂𝑓 will take |𝑠⟩ to − |𝑠⟩ and it

will leave all the other computational basis states untouched. We may then deduce that the

action of 𝑂̂𝑓 on |𝛽⟩ will transform the state into

|𝛽1⟩ ≔ 𝑂̂𝑓 |𝛽⟩ = cos 𝜃 ⋅ 𝑂̂𝑓 |other⟩ + sin 𝜃 ⋅ 𝑂̂𝑓 |𝑠⟩

= cos 𝜃
(

1
√
2𝑛 − 1

2𝑛−1

∑

𝑘=0,𝑘≠𝑠

𝑂̂𝑓 |𝑘⟩
)

+ 𝑂̂𝑓 sin 𝜃 |𝑠⟩

Grover’s algorithm 287

= cos 𝜃
(

1
√
2𝑛 − 1

2𝑛−1

∑

𝑘=0,𝑘≠𝑠

|𝑘⟩
)

− sin 𝜃 |𝑠⟩ = cos 𝜃 |other⟩ − sin 𝜃 |𝑠⟩

= cos(−𝜃) |other⟩ + sin(−𝜃) |𝑠⟩ ,

where we have used the fact that, for any real number 𝑥 , we have − sin(𝑥) = sin(−𝑥) and

cos(𝑥) = cos(−𝑥). This means that, in our plane representation, the state |𝛽1⟩ will be a

reflection of |𝛽⟩ over the |other⟩ axis, and hence it will make an angle −𝜃 with respect to

this axis. This is depicted in Figure 12.3.

|𝑠⟩

|other⟩

|𝛽⟩

𝜃

|𝛽1⟩

𝜃

Figure 12.3: The action of the oracle 𝑂̂𝑓 on a state |𝛽⟩, transforming it into |𝛽1⟩

That was fairly straightforward. Now, studying the behavior of Grover’s diffusion operator

is a much more difficult task, but, for our purposes, it suffices to know that, from a geometric

point of view, Grover’s diffusion operator is just changing the sign of the component of

|𝛽1⟩ that is perpendicular to |𝛼⟩. In terms of our plane representation, this will lead to

|𝛽1⟩ being reflected about |𝛼⟩ into a state |𝛽2⟩, as depicted in Figure 12.4. Notice how the

counter-clockwise angle that |𝛽1⟩ made from |𝛼⟩ was −(𝜃 + 𝜔). Therefore, since |𝛽2⟩ is a

reflection of |𝛽1⟩ about |𝛼⟩, the counter-clockwise angle that |𝛽2⟩ will make from |𝛼⟩ must

288 Chapter 12: Searching and Counting with a Quantum Computer

be (𝜃 + 𝜔) (see Figure 12.4 for visual reference). Moreover, the counter-clockwise angle

that 𝛽2 will make from |other⟩ will be 𝜔 + (𝜔 + 𝜃) = 𝜃 + 2𝜔.

|𝑠⟩

|other⟩

|𝛽1⟩

𝜃

|𝛼⟩

𝜔

|𝛽2⟩

𝜔 + 𝜃

Figure 12.4: The action of Grover’s diffusion operator on the state |𝛽1⟩, reflecting it about |𝛼⟩
and transforming it into |𝛽2⟩. The direction perpendicular to |𝛼⟩ is represented with a dotted
line; the state |𝛽2⟩ can be obtained from |𝛽1⟩ by changing the sign of its component on this line

We can now try to justify why the circuit that we provided in Figure 12.2 for Grover’s

diffusion operator does indeed behave like the geometric operation that we’ve described:

changing the sign of the component of a state that is perpendicular to |𝛼⟩. To that end,

we will briefly discuss the effects of the steps it performs. Before we do that, though,

there is one simple fact that we should highlight, which is that quantum gates preserve

orthogonality. This means that, given any quantum gate 𝑈 , if two states |𝑥⟩ and |𝑦⟩ are

orthogonal, then so will be 𝑈 |𝑥⟩ and 𝑈 |𝑦⟩. We cover this in Appendix A, but, if you wish,

you can just take our word for it (or even try to prove it yourself; you just need to to take

into account that 𝑈𝑈† is the identity matrix). With that being said, let’s get to analyze

what our circuit is doing:

Grover’s algorithm 289

1. The first set of Hadamard gates brings

• the state |𝛼⟩ to the state |0 ⋯ 0⟩

• any state |𝜓⟩ perpendicular to |𝛼⟩ to a state orthogonal to |0 ⋯ 0⟩

2. The NOT gates then take

• |0 ⋯ 0⟩ to |1 ⋯ 1⟩

• any state orthogonal to |0 ⋯ 0⟩ to a state orthogonal to |1 ⋯ 1⟩

3. At this point, the multi-controlled 𝑍 gate

• multiplies the state |1 ⋯ 1⟩ by a phase −1

• leaves any state orthogonal to |1 ⋯ 1⟩ untouched

4. Then, the NOT gates take

• − |1⋯ 1⟩ to − |0⋯ 0⟩

• any state orthogonal to |1 ⋯ 1⟩ to a state orthogonal to |0 ⋯ 0⟩

5. Lastly, the final set of Hadamard gates brings

• the state − |0⋯ 0⟩ to − |𝛼⟩

• any state orthogonal to |0 ⋯ 0⟩ to a state orthogonal to |𝛼⟩, which will be the

original state |𝜓⟩ as the gates 𝑋 and 𝐻 are their own inverses, and the multi-

controlled 𝑍 did nothing in this case

We can then see how this circuit multiplies |𝛼⟩ by −1 and does nothing to any state that is

perpendicular to it (exactly the opposite of what our geometrical interpretation of Grover’s

diffusion operator does!). Thus, up to a global phase of −1, which we can safely ignore, the

circuit implements Grover’s diffusion operator as we have described it.

290 Chapter 12: Searching and Counting with a Quantum Computer

To learn more. . .

In order to better and more compactly describe Grover’s diffusion operator, we need

to use projection operators. Given any state |𝜓⟩, its projection operator 𝑃|𝜓⟩ takes

any vector |𝛽⟩ to

𝑃|𝜓⟩ |𝛽⟩ = ⟨𝜓|𝛽⟩ |𝜓⟩ .

Here, ⟨𝜓|𝛽⟩ denotes the scalar product of |𝜓⟩ and |𝛽⟩. This is discussed more

extensively in Appendix A and Appendix B.

It can then be verified that Grover’s diffusion operator can be equivalently repre-

sented as 2𝑃|𝛼⟩−𝐼 , where 𝐼 is the identity matrix. From this definition, one can deduce

that the action of this operator transforms a state of the form |𝛽1⟩ = 𝑎 |𝛼⟩ + 𝑏 |𝜓⟩

(where |𝜓⟩ is assumed to be orthogonal to |𝛼⟩) into

|𝛽2⟩ ≔ (2𝑃|𝛼⟩ − 𝐼) |𝛽1⟩ = (2𝑃|𝛼⟩ − 𝐼)(𝑎 |𝛼⟩ + 𝑏 |𝜓⟩)

= 2𝑎𝑃|𝛼⟩ |𝛼⟩ − 𝑎 |𝛼⟩ + 2𝑏����𝑃|𝛼⟩ |𝜓⟩ − 𝑏 |𝜓⟩

= 2𝑎 |𝛼⟩ − 𝑎 |𝛼⟩ − 𝑏 |𝜓⟩

= 𝑎 |𝛼⟩ − 𝑏 |𝜓⟩ ,

where 𝑃|𝛼⟩ |𝜓⟩ = 0 as |𝛼⟩ and |𝜓⟩ are orthogonal and, therefore, ⟨𝛼|𝜓⟩ = 0; and

𝑃|𝛼⟩ |𝛼⟩ = |𝛼⟩ because ⟨𝛼|𝛼⟩ = 1.

This shows how, as we claimed, this operation changes the sign of the component

of |𝛽1⟩ that is perpendicular to |𝛼⟩.

The action of Grover’s diffusion operator is known as an inversion about the mean,

since it effectively reflects or “inverts” the amplitudes of a state about the mean of

all the amplitudes. This effect can be readily verified using the representation of the

operator that we have just introduced.

Grover’s algorithm 291

Thus, the net effect of the composition of the phase oracle and Grover’s diffusion operator

is to increase by 2𝜔 the counter-clockwise angle that any input state makes with respect

to |other⟩ (in the plane representation).

Important note

Given an 𝑛-bit Boolean function 𝑓 with a unique entry 𝑠 such that 𝑓 (𝑠) = 1, the

composition of its phase oracle 𝑂̂𝑓 with Grover’s diffusion operator is an 𝑛-qubit

gate that can be realized by the following circuit:

𝐺𝑓 = 𝑂̂𝑓

𝐻 𝑋 𝑋 𝐻

⋮ ⋮ ⋮ ⋮

𝐻 𝑋 𝑍 𝑋 𝐻

Defining |other⟩ ≔ 1√
2𝑛−1

∑
2𝑛−1
𝑘=0,𝑘≠𝑠 |𝑘⟩, this operator transforms any state of the

form cos 𝜃 |other⟩ + sin 𝜃 |𝑠⟩ (for a real angle 𝜃) into the state

cos(𝜃 + 2𝜔) |other⟩ + sin(𝜃 + 2𝜔) |𝑠⟩ ,

where 0 < 𝜔 < 𝜋/2 is the only angle such that sin𝜔 = 1/
√
2𝑛.

Let’s zoom out and recap for a moment. We mentioned earlier that the initial step of

Grover’s algorithm was the application of a Hadamard gate on each of the 𝑛 qubits it used,

thus setting the state of the system to

|𝛼⟩ = cos𝜔 |other⟩ + sin𝜔 |𝑠⟩ ,

where sin𝜔 = 1/
√
2𝑛 is, for large 𝑛, extremely small. However, we would naturally like

the amplitude of |𝑠⟩ to be as close to 1 as possible in order to maximize the probability of

getting 𝑠 upon measuring all the qubits. And this would be equivalent to modifying the

state in such a way that the amplitude sin 𝜃 of |𝑠⟩ were as close to sin(𝜋/2) = 1 as possible.

In this regard, we have just introduced a composition of gates that transforms an input

292 Chapter 12: Searching and Counting with a Quantum Computer

state cos 𝜃 |other⟩ + sin 𝜃 |𝑠⟩ into cos(𝜃 + 2𝜔) |other⟩ + sin(𝜃 + 2𝜔) |other⟩. Thus, we have

all the ingredients needed to realize our goals: all we have to do is iteratively apply the

composition of the phase oracle of 𝑓 with Grover’s diffusion operator until we make that

angle 𝜃 close to 𝜋/2. This technique is an instance of amplitude amplification, since,

as the name suggest, we are amplifying one of the amplitudes in a state, namely that of

|𝑠⟩. It is worth highlighting that amplitude amplification can be applied to a variety of

computational tasks [78].

The question that we now must address is the following: how many iterations will we need

in order to achieve our goals?

12.2.4 Let’s play with the odds
From our previous discussion, after 𝑘 iterations in the algorithm, we will have a state of

the form cos(𝜃𝑘) |other⟩ + sin(𝜃𝑘) |𝑠⟩, where

𝜃𝑘 = 𝜔 + 2𝑘𝜔 = (2𝑘 + 1)𝜔.

This means that, after 𝑘 iterations, the probability of finding our marked element will be

|sin(𝜃𝑘)|
2
= (sin ((2𝑘 + 1)𝜔))

2
;

in Figure 12.5, you can find a sample depiction of how this probability would evolve over

time.

Our task is thus to determine at which index 𝑘0 we will have 𝜃𝑘0 ≈ 𝜋/2, since that is the

smallest 𝑘 for which the preceding probability will be close to 1. Keep in mind that, in

principle, we could also aim to find a 𝑘1 such that 𝜃𝑘1 ≈ 3𝜋/2, but this would go against

our interests, as 𝑘0 < 𝑘1, 𝜔 < 𝜋/2, and we seek to minimize the number of iterations of the

algorithm. Of course, we do this with the goal of making the search procedure as short as

possible; in terms of complexity metrics, we do it in order to minimize the number of calls

to the oracle of 𝑓 (remember that each iteration makes an individual call to the oracle).

Grover’s algorithm 293

0 20 40 60 80 100
Number of applications of the Grover operator

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ili
ty

Grover's algorithm on a search space with 1024 points
Probability of getting something else
Probability of finding the target element

Figure 12.5: Evolution of the probability of finding a marked element among 1024 elements
using Grover’s algorithm

The iteration 𝑘0 at which 𝜃𝑘0 = 𝜋/2 will be the one at which

(2𝑘0 + 1)𝜔 = (2𝑘0 + 1) arcsin
(

1
√
2𝑛)

=
𝜋

2
,

where we have used the fact that sin𝜔 = 1/
√
2𝑛 and, therefore, 𝜔 = arcsin(1/

√
2𝑛). Of

course, there may not exist an integer 𝑘0 for which this equation will be satisfied, but we

can round the solution to the nearest integer with the assurance that 𝜃𝑘0 ≈ 𝜋/2. Now, when

we look at the preceding expression. . . we might be mildly overwhelmed by having to deal

with a trigonometric function, which is sure to complicate our computations. Nevertheless,

since we are assuming 2𝑛 to be huge, and, thus, 1/
√
2𝑛 to be extremely small, we can

approximate arcsin(1/
√
2𝑛) = 1/

√
2𝑛. That’s because sin 𝑥 ≈ 𝑥 for small 𝑥 , as you can

see in Figure 12.6. If you’d like a more formal justification, we invite you to complete the

following exercise:

294 Chapter 12: Searching and Counting with a Quantum Computer

Exercise 12.2

In order to prove that, for values of ℎ > 0 that are close to zero, sin ℎ ≈ ℎ, show that

lim
𝑥→0

sin 𝑥

𝑥
= 1.

You may use L’Hôpital’s rule.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Y

y = x
y = sin x

Figure 12.6: It can be seen in the graph how sin 𝑥 ≈ 𝑥 when 𝑥 > 0 is small

This approximation can greatly simplify our equation for finding 𝑘0, leading us to

(2𝑘0 + 1)
1

√
2𝑛

=
𝜋

2
⟹ 2𝑘0 + 1 =

𝜋
√
2𝑛

2
⟹ 𝑘0 =

1

2 (

𝜋
√
2𝑛

2
− 1

)
.

Assuming 2𝑛 to be sufficiently large, and letting 𝑁 denote the size of our search space (that

is, 𝑁 ≔ 2𝑛), we can further approximate this as

𝑘0 ≈ ⌊

𝜋

4

√
𝑁
⌋
.

Here, we are using ⌊ ⌋ to denote the floor of a real number: the greatest integer less than

or equal to that number.

Grover’s algorithm 295

Let us now discuss a simple example. If we consider a search problem with 𝑁 = 210 = 1024

elements in an unsorted search space and a single marked element, we would only need to

perform ⌊(𝜋/4)
√
1024⌋ = 25 iterations of Grover’s algorithm, and hence we would only

need 25 queries to the oracle of the problem. Indeed, with 25 queries, the probability of

finding 𝑠 would be

|sin 𝜃25|
2
= |sin((2 ⋅ 25 + 1)𝜔)| =

|
|
|
|
sin

(
51 arcsin

1
√
210)

|
|
|
|

2

≈ 99.94%.

This contrasts with the potential 1024 queries that a classical algorithm would need!

Moreover, if we only performed 20 calls to the oracle, we would still find 𝑠 with probability

|sin 𝜃20|
2
= |sin((2 ⋅ 20 + 1)𝜔)| =

|
|
|
|
sin

(
41 arcsin

1
√
210)

|
|
|
|

2

≈ 92%.

Exercise 12.3

Consider a search problem with 𝑁 = 213 = 8192 unsorted elements and a single

marked element.

(a) How many iterations would be necessary in order for the probability of finding

the marked element with Grover’s algorithm to be close to 1?

(b) If only 50 iterations were performed, what would be the probability of finding

the marked element?

Exercise 12.4

Our estimation for 𝑘0 returns a very close approximation of the number of appli-

cations of the Grover operation that will bring the probability of measuring the

marked element very close to 1. Nevertheless, if we are willing to be flexible and

relax our need for determinism, we can accept as well other values for 𝑘. Show that,

if
𝜋

8

√
𝑁 < 𝑘 <

3𝜋

8

√
𝑁 ,

296 Chapter 12: Searching and Counting with a Quantum Computer

the probability of measuring our marked element is still bigger than or equal to 1/2.

Of course, along the way, you should feel free to use the same kind of approximations

that we have employed in our computation of 𝑘0.

Before moving on, there is a very significant remark that we should make. The value of

𝑘0 is the optimal value of 𝑘 that will bring the probability of getting 𝑠 in a measurement

as close to 1 as possible (and, actually, extremely close to 1!). If we exceed that number

of iterations, the probability of getting 𝑠 in a measurement will actually decrease! This

behavior becomes evident in Figure 12.5, and it can be explained by the fact that, as 𝑘

increases, the state will keep rotating (in our plane representation) and 𝜃𝑘 will get further

and further away from 𝜋/2. In this process, we won’t be close to measuring 𝑠 with high

probability until we approach 𝑘1 ≈ 3𝑘0 (at which point, 𝜃𝑘1 ≈ 3𝜋/2, as you can easily verify

by yourself). This contrasts with most other iterative algorithms, in which the accuracy is

guaranteed to grow with the number of iterations.

Important note

For a large 𝑛, let 𝑓 be an 𝑛-bit Boolean function with a unique marked element 𝑠

such that 𝑓 (𝑠) = 1. Given an oracle for 𝑓 , Grover’s algorithm is an 𝑛-qubit search

algorithm for the search of 𝑠 among the 𝑁 = 2𝑛 possible inputs of 𝑓 . In its execution,

as an initial step, all qubits must be initialized to |0⟩ and then a Hadamard gate must

be applied on each of them. Subsequently, ⌊(𝜋/4)
√
𝑁⌋ iterative applications of the

phase oracle of 𝑓 composed with Grover’s diffusion operator must be applied. At

this stage, a measurement of the 𝑛 qubits will return 𝑠 with a probability practically

equal to 1.

We recall that the phase oracle of 𝑓 could be implemented by applying the ordinary

oracle with an ancillary qubit set to |−⟩. The state of this ancillary qubit will not

change by the action of the oracle and can thus be reused.

The procedure is summarized in the following circuit, where  denotes Grover’s

diffusion operator:

Grover’s algorithm 297

|0⟩ 𝐻

𝑂̂𝑓 

⋯

𝑂̂𝑓 ⋮ ⋮ ⋯

|0⟩ 𝐻 ⋯

Since every iteration makes a single call to 𝑂̂𝑓 , the oracle for 𝑓 is only evaluated

⌊(𝜋/4)
√
𝑁⌋ times.

This is all good and nice, but so far, this version of Grover’s algorithm only works when

we are looking for a single marked element in a search space, that is, when 𝑓 (𝑠) = 1 for a

unique entry 𝑠. But what if there were more marked elements? What if 𝑓 were equal to 1

for more than one value? That’s what we will be taking care of next.

12.2.5 Not one, but many
Assume now that we have an 𝑛-bit Boolean function 𝑓 such that, for a collection 𝑀 =

{𝑠1, … , 𝑠𝑚} of 𝑛-bit string, 𝑓 (𝑠𝑗) = 1 and 𝑓 (𝑥) = 0 for any 𝑥 not in that collection. In this

case, we have 𝑚 possible inputs for which 𝑓 takes the value 1. So, now, how do we go

about applying Grover’s algorithm?

As it turns out, in this scenario, the procedure is identical: the only difference is in the

number of iterations that are needed. Let’s see why and how many iterations will be needed

in this case.

After applying a Hadamard gate on each qubit, we reach the state |𝛼⟩, which we can

decompose as

|𝛼⟩ =
1

√
2𝑛

2𝑛−1

∑

𝑘=0

|𝑘⟩ =
1

√
2𝑛 (

𝑚

∑

𝑘=1

|𝑠𝑘⟩ +

2𝑛−1

∑

𝑘=0,𝑘∉𝑀

|𝑘⟩
)

=

√
𝑚

2𝑛 (

1
√
𝑚

𝑚

∑

𝑘=1

|𝑠𝑘⟩
)

+

√
2𝑛 − 𝑚

2𝑛 (

1
√
2𝑛 − 𝑚

2𝑛−1

∑

𝑘=0,𝑘∉𝑀

|𝑘⟩
)

298 Chapter 12: Searching and Counting with a Quantum Computer

=

√
𝑚

2𝑛
|𝑆⟩ +

√
2𝑛 − 𝑚

2𝑛
|other⟩ = sin𝜔 |𝑆⟩ + cos𝜔 |other⟩ ,

where we have implicitly defined the angle 𝜔 and the states |𝑆⟩ and |other⟩.

Following a reasoning analogous to the one we considered before, it can be readily checked

that the composition of the phase oracle with Grover’s diffusion operator will transform any

state of the form cos 𝜃 |𝑆⟩ + sin 𝜃 |other⟩ into the state cos(𝜃 + 2𝜔) |𝑆⟩ + sin(𝜃 + 2𝜔) |other⟩,

thus implementing the same kind of rotation that we had in the plane representation that

we used when 𝑚 = 1. The only difference is that, in this case, such a representation would

have |𝑆⟩ in the 𝑌 axis and our new |other⟩ in the 𝑋 axis.

As before, our goal would be to bring the amplitude of |𝑆⟩ as close to 1 as possible, in such a

way that the state of the system would be close to being a superposition of computational

basis states |𝑠𝑡⟩ for which 𝑓 (𝑠𝑡) = 1. In full analogy with the𝑚 = 1 case, and resorting to the

approximation that sin𝜔 = sin(

√
𝑚/2𝑛) ≈

√
𝑚/2𝑛, the smallest number 𝑘0 of iterations

that will make this possible is the one that will satisfy

(2𝑘0 + 1)

√
𝑚

2𝑛
=
𝜋

2
⟹ 2𝑘0 + 1 =

𝜋
√
2𝑛

2
√
𝑚

⟹ 𝑘 =
1

2 (

𝜋
√
2𝑛

2
√
𝑚

− 1
)
.

Approximating and simplifying, this yields the value

𝑘0 ≈
⌊

𝜋

4

√
𝑁

𝑚⌋
.

After 𝑘0 iterations, we are pretty much guaranteed to get a value 𝑠 such that 𝑓 (𝑠) = 1 when

measuring the 𝑛 qubits of the algorithm. The particular marked string that we get will be

random, and all values 𝑠𝑡 have equal probability of being returned as an outcome because

of the way in which |𝑆⟩ is constructed.

Grover’s algorithm 299

To illustrate this, let us discuss an example. If we consider a search problem with 𝑁 =

211 = 2048 unsorted elements and 7 marked elements, we would only need to perform

⌊(𝜋/4)
√
2048/7⌋ = 13 iterations of Grover’s algorithm, with their 13 queries to the oracle

of the problem. Moreover, if we only performed 8 calls to the oracle, we would still find a

marked element with probability

|sin 𝜃8|
2
= |sin((2 ⋅ 8 + 1)𝜔)| =

|
|
|
|
|

sin
(
17 arcsin

1
√
211/7)

|
|
|
|
|

2

≈ 70%.

Important note

For a large 𝑁 = 2𝑛, let 𝑓 be an 𝑛-bit Boolean function for which there only exist 𝑚

inputs 𝑠 such that 𝑓 (𝑠) = 1. If 𝑚/𝑁 is close to zero, Grover’s algorithm will work as

intended, provided that we run (𝜋/4)
√
𝑁/𝑚 iterations instead of the (𝜋/4)

√
𝑁 that

we used when 𝑚 = 1.

Notice, by the way, how we have not only assumed that 2𝑛 is large but also that 𝑚/2𝑛 is

very small. This shouldn’t be a problem, because if the proportion of elements for which 𝑓

is 1 turns out to be large. . . we probably don’t need to apply quantum computing in the

first place: picking values at random might just get the job done after a few iterations!

Indeed, if elements are picked at random, the probability of finding a marked element after

𝑘 iterations will be

1 −
(
1 −

𝑚

2𝑛)

𝑘

.

This can be deduced rather easily. At each iteration, the probability of finding a marked

element is 𝑚/2𝑛, hence that of not finding it is 1 − 𝑚/2𝑛; therefore, the probability of

not finding a marked element in 𝑘 iterations must be (1 − 𝑚/2𝑛)𝑘 , so the probability of

having found at least one element must be 1 minus that. For example, if 𝑚/2𝑛 = 1/2, this

means that after 𝑘 = 3 iterations, the probability of having found a marked element will be

7/8 = 87.5%.

300 Chapter 12: Searching and Counting with a Quantum Computer

Exercise 12.5

Assume you are given an oracle for a function 𝑓 on 1024 elements (and, therefore,

the phase oracle works on 10 qubits).

(a) If we wanted to perform a search with 512 marked elements (i.e., 𝑓 (𝑥) = 1

for 512 entries 𝑥), would it make sense to use Grover’s algorithm? Why? If

we were to pick elements at random, how many elements would we have to

pick in order to find a marked element with a probability bigger than 90%?

(b) If there were only 5 marked elements, how many iterations would we need

to perform in Grover’s algorithm? What will be the probability of finding a

marked element by (classically) picking that number of elements at random?

What is Grover’s probability? Is it worth using Grover’s algorithm in this

case?

As a final example to illustrate the power of Grover’s algorithm, if a quarter of all the

elements in a search space are marked (that is, if 𝑚 = 𝑁/4), then, using Grover’s algorithm,

just a single iteration (and, thus, a single call in the oracle) will be sufficient in order to

retrieve a marked element with certainty. Indeed, in this case, the probability of finding a

marked element after a single iteration is

|sin 𝜃1|
2
= |sin((2 ⋅ 1 + 1)𝜔)| =

|
|
|
|
|

sin
(
3 arcsin

√
1

4)

|
|
|
|
|

2

=
|
|
|
sin

(
3 ⋅
𝜋

6)
|
|
|

2

=
|
|
|
sin

(

𝜋

2)
|
|
|

2

= 1.

To learn more. . .

Grover’s algorithm is fairly impressive on its own, but maybe you are ambitious

and you have hopes of beating it with a better algorithm that may use less calls to

an oracle asymptotically. Sadly, that can’t be possible. The BBBV theorem (named

after Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani)

shows that Grover’s algorithm is (asymptotically) an optimal oracle-based quantum

algorithm for search [79].

Counting with the quantum Fourier transform 301

And this pretty much sums it up for our discussion of Grover’s algorithm.

To learn more. . .

All of our work so far has been resting on the assumption that we know, in advance,

the number of marked elements 𝑚 that we expect in our search problem. In the

following section, we will introduce a procedure that will enable us to compute

that number 𝑚. Nevertheless, there is a way for quantum computers to still yield a

quadratic speedup in search algorithms without having to know 𝑚 beforehand—and

it is based on a clever application of Grover’s algorithm! If you would like to learn

more about it, we suggest reading “Tight Bounds on Quantum Searching” [80] by

Boyer et al.

To conclude this chapter, we will introduce a procedure that will make use of some of the

key ingredients that we have employed over the last couple of chapters: the operators used

in Grover’s algorithm and the quantum Fourier transform.

12.3 Counting with the quantum Fourier
transform

If we are given an oracle for an 𝑛-bit Boolean function 𝑓 , is there any way for us to

(quantumly) approximate the number 𝑚 of inputs 𝑠 for which we have 𝑓 (𝑠) = 1? Yes, there

is, and in fact, it has advantages over classical algorithms! In order to unveil it, we will first

need to analyze the composition of the phase oracle 𝑂̂𝑓 with Grover’s diffusion operator,

which we will denote as 𝐺𝑓 .

As we have mentioned on countless occasions already, 𝐺𝑓 maps states cos(𝜃) |other⟩ +

sin(𝜃) |𝑆⟩ to states cos(𝜃 + 2𝜔) |other⟩ + sin(𝜃 + 2𝜔) |𝑆⟩. This means that we can pretend

that 𝐺𝑓 only acts on the space of states of the form 𝑥 |other⟩ + 𝑦 |𝑆⟩, and, on this restricted

space,𝐺𝑓 simply behaves like a counter-clockwise rotation by 2𝜔. Therefore, the coordinate

302 Chapter 12: Searching and Counting with a Quantum Computer

matrix of 𝐺𝑓 on this space will be the following one:

𝑅(2𝜔) =
(

cos 2𝜔 − sin 2𝜔

sin 2𝜔 cos 2𝜔)
,

Remember that, as we discuss in Appendix A, this coordinate matrix is constructed by

putting, in its first column, the coordinates of 𝐺𝑓 |other⟩ (as |other⟩ is the unit vector of the

positive horizontal axis) and, in its second column, those of 𝐺𝑓 |𝑆⟩ (as |𝑆⟩ is the unit vector

of the positive vertical axis).

You may recall that the eigenvalues of a matrix are the numbers 𝜆 for which there exists a

vector 𝑣 such that 𝐴𝑣 = 𝜆𝑣. Finding the eigenvalues of 𝑅(2𝜔) is as easy as it is crucial for

our next steps, so we entrust this process to you. Incidentally, for a quick review of what

eigenvalues are and how they are computed, you may take a look at Appendix A.

Exercise 12.6

Prove that 𝑅(2𝜔) is diagonalizable and its eigenvalues are 𝑒±𝑖(2𝜔).

Since 𝑅(2𝜔) is diagonalizable, every vector in the space on which it is defined must be a

linear combination of its eigenvectors (we discuss this in Appendix A). In particular, this

means that any state of the form cos(𝜃) |other⟩ + sin(𝜃) |𝑆⟩ must be a superposition (i.e., a

linear combination) of the eigenvectors of 𝐺𝑓 corresponding to the eigenvalues 𝑒±𝑖2𝜔.

Now, what do these eigenvalues have to do with the estimation of 𝑚? Simple. As we saw

in the previous section,

sin𝜔 =

√
𝑚

2𝑛
.

Thus, since the value of 𝑛 is given, if we have access to an estimation of 𝜔, we can also

get an estimation of 𝑚. This means that, in order to estimate 𝑚, we just need to find an

estimate of 𝜔.

Luckily for us, back in Chapter 11, we introduced an algorithm that enabled us to do just

that: finding estimations of the eigenvalue associated to a state. This algorithm was the

Counting with the quantum Fourier transform 303

quantum phase estimation algorithm, which made use of the quantum Fourier transform,

one of the most important quantum operations out there.

You may recall that, given a quantum gate with an eigenvector |𝜓⟩, running the quantum

phase estimation algorithm enabled us to estimate the phase of the eigenvalue associated to

|𝜓⟩; remember how this means that, if the eigenvalue is 𝑒𝑖2𝜋𝑥 , with 0 ≤ 𝑥 ≤ 1, the quantum

phase estimation algorithm will yield an estimate of 𝑥 .

In our case, in order to estimate 𝜔, we can simply provide the state |𝛼⟩ to the quantum

phase estimation algorithm for 𝐺𝑓 . Since |𝛼⟩ is, as we discussed before, a superposition

of eigenvectors associated to 𝑒𝑖2𝜔 or 𝑒−𝑖2𝜔 = 𝑒𝑖2𝜋(1−𝜔), the quantum phase estimation

algorithm will return 𝜔/𝜋 or 1 − 𝜔/𝜋 (with a probability determined by the amplitudes of

the corresponding eigenvectors in |𝛼⟩). This follows trivially from the linearity of quantum

phase estimation, as we will now discuss in detail.

Assume that |𝜔+⟩ and |𝜔−⟩ are the normalized eigenvectors associated to the eigenvalues

𝑒𝑖2𝜔 and 𝑒−𝑖2𝜔 respectively. Also, let |𝛼⟩ = 𝑎 |𝜔+⟩ + 𝑏 |𝜔−⟩ (for some complex numbers 𝑎

and 𝑏). If 𝐸𝑓 is the gate that encapsulates the phase estimation algorithm for 𝑓 , then, using

linearity,

𝐸𝑓 (|𝛼⟩) = 𝐸𝑓 (𝑎 |𝜔+⟩ + 𝑏 |𝜔−⟩) = 𝑎𝐸𝑓 (|𝜔−⟩) + 𝑏𝐸𝑓 (|𝜔+⟩).

Hence, at the time of measurement, quantum phase estimation will work as if estimating

𝜔/𝜋 with probability |𝑎|
2, and as if estimating 1 − 𝜔/𝜋 with probability |𝑏|

2. Nevertheless,

this is not such as big issue. Indeed, as𝜔 < 𝜋/2 by construction (and, therefore,𝜔/𝜋 < 1/2),

if an estimate 𝜉 is bigger than 1/2, we can just replace it by 1 − 𝜉 and thus pretend we are

always estimating 𝜔/𝜋.

And that’s how the quantum Fourier transform can save the day and—through the use of

quantum phase estimation—yield an estimation of 𝑚.

Now, we mentioned at the beginning of this section that this method yields an advantage

over classical methods, so let’s quantify this advantage. When trying to approximate the

number of marked elements 𝑚 in an unsorted space with 𝑁 elements, it can be shown that,

304 Chapter 12: Searching and Counting with a Quantum Computer

assuming 𝑚 < 𝑁/2 and with the tools that we have discussed, it is possible to estimate 𝑚

with 𝑂(
√
𝑚) accuracy just using 𝑂(

√
𝑁) queries to the oracle. On the other hand, pretty

much as in the case of search algorithms, any classical algorithm aiming would need

to perform 𝑂(𝑁) queries. Thus, quantum computing can provide again in this case a

quadratic speed-up! And, if you want to use this counting method to estimate 𝑚 and then

run Grover’s algorithm, your total number of oracle calls will still be 𝑂(
√
𝑁). Neat, huh?

To learn more. . .

For a complete discussion on the complexity of approximating 𝑚 using quantum

phase estimation, you can read Section 6.3 of Quantum Computation and Quantum

Information: 10th Anniversary Edition [13].

This concludes the content of our chapter. We’ve done quite a lot over the last few pages,

so let’s wrap up!

Summary
In this chapter, we have introduced Grover’s algorithm, which tackles the problem of

searching through an unsorted list and provides a quadratic speed-up when compared to

any classical analogue.

We began by exploring what searching looks like in classical computers, and we saw how

the reason behind the speed of classical search procedures lies not just in the speed of

classical computers but in the sorting and structuring of data. We thus understood how,

when data is not sorted or structured, classical computing is bounded to algorithms with

𝑂(𝑁) complexity on the number of queries. On the other hand, quantum computing

can use Grover’s algorithm to solve these search problems with 𝑂(
√
𝑁) complexity, thus

obtaining a quadratic speed-up.

Once the scene was set, we began to explore Grover’s algorithm and we discussed how—after

creating a perfectly balanced superposition between all the computational basis states—it

consisted in the iterative application of the composition of an oracle for a Boolean function

with Grover’s diffusion operator. We explored the action of this composition in detail and

Counting with the quantum Fourier transform 305

saw how it just behaves like a rotation in a two-dimensional space. Taking advantage of

this geometrical understanding, we were able to look for the number of iterations that

would bring the probability of retrieving our marked element at measurement close to 1.

We finished by exploring how the quantum Fourier transform can help us approximate the

number of marked elements through quantum phase estimation, again quadratically faster

than with classical algorithms.

In the following chapter, we will discuss how to implement all the methods that we have

introduced so far using Qiskit. Get ready to have the quantum Fourier transform and

Grover’s diffusion operator running in front of your eyes!

13
Coding Shor and Grover’s
Algorithms in Qiskit

Knowing is not enough; we must apply.
Willing is not enough; we must do.

— Johann Wolfgang von Goethe

Now that we have ample experience working with Qiskit, it’s time for us to implement

two very important algorithms: Shor’s and Grover’s. We covered all the theoretical details

of both methods in the two previous chapters, so now we can just dive into the code and

see these algorithms shine through some practical examples.

We will start by implementing the quantum Fourier transform (QFT), which is central

to Shor’s algorithm. Then, we will implement Shor’s factoring method. Lastly, we will

implement Grover’s search in all its glory.

We have a busy agenda ahead of us!

308 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

The topics that we will cover in this chapter are the following:

• The QFT in Qiskit

• Shor’s algorithm

• Grover’s algorithm

After reading this chapter, you will know how to implement the quantum Fourier transform

on any number of qubits using Qiskit. You will also know how to apply it to factor numbers

with Shor’s algorithm. Last, but certainly not least, you will be able to implement Grover’s

algorithm to search for the elements marked by any Boolean oracle.

Throughout the book, we’ve been building up to this moment. Let’s get started!

13.1 The QFT in Qiskit
As you surely remember from Section 11.4.1, the quantum Fourier transform on 𝑚 qubits is

the linear transformation that acts on computational basis states by taking |𝑗⟩ to

1
√
2𝑚

2𝑚−1

∑

𝑘=0

𝑒
2𝜋𝑖𝑗𝑘

2𝑚 |𝑘⟩ .

The quantum circuits for the QFT on one and two qubits are, as we discussed in Section 11.4.3,

pretty straightforward. In fact, for a single qubit, it consists of just a Hadamard gate. For

two qubits, it is as follows:

𝐻 𝑆

𝐻

We can implement this circuit in Qiskit with the following piece of code:

from qiskit import QuantumCircuit

qft2 = QuantumCircuit(2)

The QFT in Qiskit 309

qft2.h(0)

qft2.cs(1,0)

qft2.h(1)

qft2.swap(0,1)

qft2.draw("mpl")

There are a couple of new things here, so let’s stop for a moment to clarify them. The first

one is that we’ve used the cs method to implement the controlled-𝑆 gate. In its call, the first

parameter (1) is the control qubit and the second one (0) is the target one. In addition, we

have used the swap method to apply the SWAP gate. This method receives two parameters,

which are exactly the qubits we want to swap.

Upon running this code, you will see a figure like the following one, which shows that our

code in fact implements the QFT on two qubits:

q0

q1

H S

H

Perfect! Let’s then move on to the QFT on three qubits. Its circuit, as you may remember,

is as follows:

𝐻 𝑆 𝑇

𝐻 𝑆

𝐻

The only new thing here is that we need a controlled-𝑇 gate. Unfortunately, there is no spe-

cific method that implements this gate in Qiskit, but we can resort to the cp method, which

310 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

implements a controlled version of the phase gate, which we introduced in Section 2.3.1.

Recall that the coordinate matrix of the phase gate 𝑃(𝜃) is

𝑃(𝜃) =
(

1 0

0 𝑒𝑖𝜃)
,

where 𝜃 is a real value. Thus, we can recover the 𝑇 gate by setting 𝜃 = 𝜋/4. The cp

method receives three parameters: the first one is the rotation angle 𝜃, the next one is the

qubit that acts as a control, and the third one is the target qubit. Then, to implement a

controlled-𝑇 gate from qubit 2 to qubit 0, we can use cp(np.pi/4,2,0), provided that we

have previously imported the NumPy package to have access to 𝜋 via np.pi. The rest of

the circuit is quite straightforward, so we will leave it to you to write the code and check it.

Exercise 13.1

Write Qiskit code to implement the QFT on three qubits. Check that your code is

correct by drawing the circuit and comparing it to the one above.

Obviously, we can go on and implement a circuit for the QFT on four qubits, another one

for the QFT on five, and so on and so forth. But we can do much better than that: we can

define a function that, when given an integer 𝑚, creates a circuit for the QFT on 𝑚 qubits.

To that end, let’s take a closer look at the general quantum circuit for the QFT:

𝐻 𝑃2 ⋯ 𝑃𝑚−1 𝑃𝑚

⋯ 𝐻 ⋯ 𝑃𝑚−2 𝑃𝑚−1 ⋯

⋮ ⋮ ⋱

⋯ 𝐻 𝑃2

⋯ 𝐻

Remember that we have adopted the convention that 𝑃𝑘 = 𝑃(𝜋/2𝑘). Then, the following

piece of code implements the QFT on a given number of qubits:

The QFT in Qiskit 311

import numpy as np

def qft(m):

circ_qft = QuantumCircuit(m)

for i in range(m):

circ_qft.h(i) # Hadamard gate

for j in range(i+1,m):

circ_qft.cp(np.pi/2**(j-i),j,i) # Controlled-P gates

circ_qft.barrier()

Final swaps

for i in range(m//2):

circ_qft.swap(i,m-i-1)

return circ_qft

Here, we have added barriers just for sake of clarity, but you can remove them if you’d like.

We can now use this function, for instance, to create a circuit for the QFT on four qubits,

as follows:

qft4 = qft(4)

qft4.draw("mpl")

This will produce the following beautiful figure:

q0

q1

q2

q3

H
P (/2)

P (/4)

P (/8)

H
P (/2)

P (/4)

H
P (/2)

H

We only have one last thing to do. For our implementation of Shor’s algorithm, we need

the inverse QFT. But with what we already have, that is pretty straightforward. Remember

that, in order to invert a circuit, we only need to read it from right to left and invert each

gate. The SWAP and Hadamard gates are their own inverses, and the controlled-phase

312 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

gates can be inverted just by taking the angle in the opposite direction. Thus, the function

that we need is the following:

def iqft(m):

circ_iqft = QuantumCircuit(m)

Initial swaps

for i in range(m//2-1,-1,-1):

circ_iqft.swap(i,m-i-1)

for i in range(m-1,-1,-1):

for j in range(m-1,i,-1):

circ_iqft.cp(-np.pi/2**(j-i),j,i) # Controlled-P gates

circ_iqft.h(i) # Hadamard gate

circ_iqft.barrier()

return circ_iqft

And that’s it! We now have the main ingredient that we need to implement Shor’s algorithm,

so let’s get to it.

13.2 Shor’s algorithm
In the previous section, we implemented the inverse quantum Fourier transform, which is

central to Shor’s algorithm. However, we still need an additional element if we want to

be able to build and run quantum circuits to factor integers: quantum gates for modular

multiplication.

Remember that, in order to factor an integer 𝑁 using Shor’s algorithm, we first choose at

random another integer 𝑎 with no common factors with 𝑁 . Then, we need to create the

following circuit:

Shor’s algorithm 313

𝑛

|0⟩ 𝐻 ⋯

QFT†
𝑚

⋮ ⋮ ⋮

|0⟩ 𝐻 ⋯

|0⟩ 𝐻 ⋯

|1⟩ 𝑈
𝑎2

0 𝑈
𝑎2

1 ⋯ 𝑈
𝑎2
𝑚−1

Here, the 𝑈
𝑎2
𝑗 gates implement the operation of multiplying an integer times 𝑎2

𝑗

and taking

the remainder of the division by 𝑁 . These are the gates that we need to implement now

before we can run Shor’s algorithm.

How to implement these quantum gates is a problem that has been extensively studied

in the literature, and several very efficient options exist (see, for instance, [72]–[76]).

However, describing them in detail is beyond the scope of this book, so we will adopt a

more straightforward approach.

In order to implement the modular multiplication gates, we will use a Qiskit feature that we

have not highlighted yet. With the UnitaryGate class, you can create a custom quantum

gate from any (unitary) matrix. Thus, if you have a matrix object, M, that represents a

unitary operator, you can obtain a quantum gate, U, that you can later use in your circuits

by simply executing U = UnitaryGate(M).

Imagine, for instance, that we are working with𝑁 = 4 and 𝑎 = 3, and we want to implement

a gate 𝑈 for multiplication by 3 mod 4. Numbers mod 4 can be represented with just two

bits because we only need to consider 0, 1, 2, and 3, whose binary expansions are 00, 01, 10,

and 11, respectively. Thus, we will need a 4 × 4 matrix, because we will be working with 2

qubits. Moreover, we know that it should hold that

𝑈 |00⟩ = |00⟩ , 𝑈 |01⟩ = |11⟩ , 𝑈 |10⟩ = |10⟩ , 𝑈 |11⟩ = |10⟩ ,

314 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

because

3 ⋅ 0 = 0 mod 4, 3 ⋅ 1 = 3 mod 4, 3 ⋅ 2 = 2 mod 4, 3 ⋅ 3 = 1 mod 4.

Thus, the matrix for 𝑈 must be
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This expression follows from the fact that, for a non-negative integer 𝑗 , the ket |𝑗⟩ is a

column vector whose components are all zeroes with the exception of the (𝑗 +1)-th position,

which is 1. Thus, the vector 𝑈 |0⟩ = 𝑈 |00⟩ is the first column of 𝑈 , the vector 𝑈 |1⟩ = 𝑈 |01⟩

is its second column, and so on.

However, when using UnitaryGate, we need to take into account an additional detail:

Qiskit expects binary strings representing integers to be sorted out in reverse. Thus, the

actual matrix that we would need to use is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where we have interchanged the roles of |01⟩ and |10⟩ to account for Qiskit’s convention.

You can check this by simply swapping the second and third columns, and then the second

and third rows of the original matrix.

For this reason, in order to implement the modular multiplication gates in Qiskit, we will

need the following function:

def invert(j,n): # Inverts integer j when represented with n bits

str_j = bin(j)[2:] # Binary string for j without the leading "0b"

Shor’s algorithm 315

str_j = (n-len(str_j))*’0’ + str_j # Pad with initial zeroes up to n bits

str_j = str_j[::-1] # Reverse the string

return int(str_j,2) # Convert the string to a decimal integer

Here, we have used the bin function to obtain a string with the binary representation of j.

This function always adds 0b at the beginning of the binary strings, so we have removed it

with the slice [2:]. Then, we have added initial zeroes as needed to get the string to length

n and reversed the string. Finally, with int(str_j,2), we have converted the binary string

stored in str_j to a decimal value.

With this auxiliary function in our toolkit, we can now implement another function that

will take 𝑎 and 𝑁 as parameters and return a quantum gate that performs multiplication

by 𝑎 mod 𝑁 . For that, we can use the following piece of code:

from qiskit.circuit.library import UnitaryGate

def gate_mult(a,N):

m = len(bin(N-1))-2 # Number of qubits needed to store numbers mod N

M = 2**m

matrix = []

for i in range(M):

matrix.append(M*[0]) # Initialize matrix to all zeroes

for j in range(N):

i = (a*j)%N # Position that we need to set to 1

ii = invert(i,m) # Index of row for i according to Qiskit

ij = invert(j,m) # Index of column for j according to Qiskit

matrix[ii][ij] = 1

for j in range(N,M):

316 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

Numbers bigger than N-1 are not considered, so leave them fixed

ij = invert(j,m)

matrix[ij][ij] = 1

return UnitaryGate(matrix)

In this function, we first iterate over the numbers 𝑗 from 0 to 𝑁 −1, computing 𝑗 ×𝑎 mod 𝑁 ,

and we set the corresponding matrix entry to 1, as we did with our example matrix.

Numbers greater than or equal to 𝑁 are not part of the operation, so we just leave them

fixed.

We are now ready to give our implementation of the quantum circuit for Shor’s algorithm.

We just need to use the function that we have just defined and the implementation of

the inverse quantum Fourier transform from the previous section. The final result is the

following:

def circuit_shor(a,N,m):

a is the number we want to obtain the period of

N is the number to factor

m is the number of qubits for the upper register

n = len(bin(N-1))-2 # Number of qubits needed to store numbers mod N

shor = QuantumCircuit(m+n,m)

Upper register is of size m

Lower register is of size n

We only measure the upper register, hence m classical bits

shor.x(m+n-1) # Set the bottom register to |1>

for i in range(m):

Shor’s algorithm 317

shor.h(i) # Column of Hadamard’s in the upper register

for i in range(m):

gate = gate_mult(a**(2**i),N).control(1) # Mult by a^(2^j) mod N

shor.append(gate,[m-i-1]+list(range(m,m+n))) # Add controlled mult

shor.barrier()

shor.append(iqft(m),range(m)) # Inverse QFT

shor.barrier()

for i in range(m):

shor.measure(i,i) # Measure the upper register

return shor

Notice that, in addition to 𝑎 and 𝑁 , we need to provide 𝑚, the number of qubits for the

register that will contain the information about the order of 𝑎. The bigger this number, the

higher the precision; nevertheless, as we mentioned in Chapter 11, 𝑚 = 2𝑛, where 𝑛 is the

size of 𝑁 in bits, is usually a good choice. In the function, we create a quantum circuit of

size𝑚+𝑛, and only the upper𝑚 qubits will be measured. The bottom 𝑛 qubits will store the

numbers mod 𝑁 . After setting the lower register to |1⟩ and adding Hadamard gates to the

qubits in the upper register, we add gates for modular multiplication for 𝑎2
0

, 𝑎2
1

, … , 𝑎2
𝑚−1

controlled by the corresponding qubits. Notice how we use the control method to easily

create a controlled version of a quantum gate. Also notice that we have used the append

method, since our gate is custom-made and there is no specific instruction for it in Qiskit.

Then, we append the inverse quantum Fourier transform circuit and measure the upper 𝑚

qubits. Et voilà, it’s done!

318 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

Let’s try our new, shiny toy by creating and drawing a circuit for a simple case. Let’s

choose 𝑎 = 3, 𝑁 = 4 and 𝑚 = 4, just for illustration purposes. We can do this with the

following instructions:

shor = circuit_shor(3,4,4)

shor.draw("mpl")

This will give you something like the following:

q0

q1

q2

q3

q4

q5

4c

X

H

H

H

H

0

1
Unitary

0

1
Unitary

0

1
Unitary

0

1
Unitary

0

1

2

3

circuit-12742

0 1 2 3

This looks exactly like what we wanted! But wait a minute. . . What are those mysterious

boxes where the modular multiplication gates and the IQFT should be? Well, it turns out that

Qiskit uses these blocks with generic names such as “unitary” and “circuit” to encapsulate op-

erations that may involve a number of simpler gates. You can try to see what’s inside them by

running shor.decompose().draw("mpl"), shor.decompose().decompose().draw("mpl"),

and so on, but let us warn you that what you will see will not be pretty. . . or easy to under-

stand. It turns out that using classes such as UnitaryGate does not usually result in efficient

implementations. But, as we mentioned before, we are not aiming for efficiency with this

demonstration. Our goal is to simply illustrate how to use the quantum circuits that make

up Shor’s algorithm. Another small detail is that you may have noticed that we have not

measured the bottom qubits, whereas we did in Chapter 11. In fact, that measurement is

not strictly needed and was only used back there to simplify our discussion, so we have

decided to omit it here.

Shor’s algorithm 319

OK, so now it’s time to run our circuit and see what we get. We will start with a simple

example, trying to factor 15 (spoiler: its factors are 3 and 5) and choosing 𝑎 = 2. Since

the numbers from 0 to 15 can be written with 𝑛 = 4 bits, we will select 𝑚 = 2 ⋅ 𝑛 = 8, as

we discussed previously. We can build the quantum circuit and run it with the following

instructions:

shor = circuit_shor(2,15,8)

from qiskit_aer.primitives import SamplerV2 as Sampler

from qiskit_aer import AerSimulator

from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager

backend = AerSimulator()

sampler = Sampler(seed = 1234)

pm = generate_preset_pass_manager(backend=backend, optimization_level=1)

t_shor = pm.run(shor)

job = sampler.run([t_shor], shots = 100)

Since we are using custom gate operations through the UnitaryGate class, we need to

transpile these gates in order to be able to run them on the simulator. That is what the call

to generate_preset_pass_manager is for.

Now, we need to process the results. In this case, 𝑎4 = 1 mod 15; so, as we discussed in

Section 11.4.2, we should obtain values of the form 𝑘2𝑚/4 = 64𝑘, with 𝑘 an integer. But

remember that Qiskit reverses the binary strings when giving the results, so we need to

massage the output a little bit. We will use the following piece of code for that:

results = job.result() # Access the results

d = results[0].data.c

res = d.get_counts()

for k in res:

c = int(k[::-1],2) # Reverse the string and convert it to an integer

320 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

print("Value:",c,"Frequency:",res[k])

Here, we are just accessing all the strings measured in the execution of the circuit, reversing

them to convert them to the integer value that we need, and showing the number of times

they were measured. The output is as follows:

Value: 64 Frequency: 28

Value: 128 Frequency: 34

Value: 192 Frequency: 23

Value: 0 Frequency: 15

As you can see, they are all multiples of 64, as expected. Now, if we divide the non-

zero values by 28 = 256, we will obtain the fractions 1
4
, 1
2
= 2

4
, and 3

4
, and, from their

denominators, we can recover the order of 𝑎, which is 𝑟 = 4. Following the process

described in Section 11.2, we compute 𝑥 = 𝑎
𝑟
2 + 1 mod 𝑁 , 𝑦 = 𝑎

𝑟
2 − 1 mod 𝑁 , 𝑔𝑐𝑑(𝑥, 𝑁),

and 𝑔𝑐𝑑(𝑦, 𝑁) to discover that the factors of 15 are 3 and 5. Bingo!

Let’s now try to factor 21. For that, we will first choose 𝑎 = 16. Notice that 21 can be

written using 5 binary digits, but we will choose 𝑚 = 8, as previously, to make the circuits

run a little bit faster (as you will see, this will not affect our ability to factor 21). Then, we

just need to run the following piece of code:

shor = circuit_shor(16,21,8)

pm = generate_preset_pass_manager(backend=backend, optimization_level=1)

t_shor = pm.run(shor)

job = sampler.run([t_shor], shots = 100)

results = job.result() # Access the results

d = results[0].data.c

res = d.get_counts()

for k in res:

Shor’s algorithm 321

c = int(k[::-1],2) # Reverse the string a convert it to integer

print("Value:",c,"Frequency:",res[k])

With this, we will obtain the following output:

Value: 87 Frequency: 3

Value: 0 Frequency: 36

Value: 85 Frequency: 21

Value: 170 Frequency: 6

Value: 171 Frequency: 18

Value: 55 Frequency: 1

Value: 84 Frequency: 5

Value: 51 Frequency: 1

Value: 86 Frequency: 7

Value: 169 Frequency: 1

Value: 172 Frequency: 1

Hmmm, what are these values telling us? Remember that we should be getting integers

that are close to 𝑘2𝑚/𝑟 , where 𝑘 is an integer and 𝑟 is the order of 𝑎. So, let’s take 85, which

is the most frequent non-zero value, and divide it by 2𝑚 to see whether we can get 𝑘/𝑟 for

some integer and recover 𝑟 . In this case, 85/256 = 0.33203125, which is quite close to 1/3,

so it seems that 𝑟 = 3. Indeed, 163 ≡ 1 mod 21, so we got our order!

To learn more. . .

Notice how, when running our circuit, we have obtained results around 171 and 85.

This is because these are the integers that, when divided by 256, are closest to 1/3

and 2/3, respectively.

The problem here is that you will never obtain an integer that, when divided by

2𝑚, will give you exactly 1/3 or 2/3, because these fractions cannot be represented

with a finite binary expansion. However, if you increase 𝑚, you will obtain better

and better approximations. For instance, if you use 𝑚 = 10 with 𝑎 = 16 and 𝑁 = 21,

322 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

you will likely obtain values around 341 and 683 when running your circuit. These

will give you 341/1024 and 683/1024, which are better approximations to 1/3 and

2/3 than 85/256 and 171/256.

In any case, once you have run your circuit and obtained the measurements, the

standard way of recovering 𝑟 is by using a method based on continued fractions

(you can check out the book by Nielsen and Chuang [13] for all the details). If you

want to use this method in Python, it is very easy. For instance, to obtain 𝑟 from

the results of running the circuit with 𝑚 = 8, 𝑎 = 16, 𝑁 = 21, and the measurement

85, you can use the following instructions:

from fractions import Fraction

m=8

N=21

Fraction(85,2**m).limit_denominator(N)

The output will be Fraction(2,3). The denominator will be the order 𝑟 , which is 3

in this case.

We have found out that 163 ≡ 1 mod 21. But wait a minute. We need 𝑟 to be even to be

able to compute 𝑎
𝑟
2 . D’oh, we are back to square one! Let’s try now with 𝑎 = 10. We can

create our circuit with shor = circuit_shor(10,21,8) and run it just as the previous one

to obtain the following results:

Value: 171 Frequency: 10

Value: 42 Frequency: 3

Value: 0 Frequency: 15

Value: 213 Frequency: 11

Value: 44 Frequency: 1

Value: 128 Frequency: 19

Value: 43 Frequency: 9

Grover’s algorithm 323

Value: 167 Frequency: 1

Value: 85 Frequency: 12

Value: 212 Frequency: 2

Value: 170 Frequency: 5

Value: 166 Frequency: 2

Value: 83 Frequency: 1

Value: 86 Frequency: 3

Value: 39 Frequency: 1

Value: 214 Frequency: 2

Value: 211 Frequency: 1

Value: 87 Frequency: 1

Value: 41 Frequency: 1

The most frequent non-zero values this time are 43, 85, 128, 171, and 213. If we divide them

by 256, we obtain good approximations of 1/6, 2/6, 3/6, 4/6, and 5/6, so it seems that the

order of 𝑎 = 10 should be 𝑟 = 6. Indeed, if you compute 106 and divide it by 21, you will

find that the remainder is 1, as needed. Moreover, 6 is even, so we are on the right track!

If we now compute 𝑥 = 𝑎
𝑟
2 + 1 mod 𝑁 , 𝑦 = 𝑎

𝑟
2 − 1 mod 𝑁 , 𝑔𝑐𝑑(𝑥, 𝑁), and 𝑔𝑐𝑑(𝑦, 𝑁), we

will be able to factor 21 as 3 ⋅ 7.

Exercise 13.2

Repeat this process to factor 15, but using 𝑎 = 7. Then, do the same with 𝑁 = 21

and 𝑎 = 11. Finally, repeat it with 𝑎 = 2 and 𝑁 = 35.

Now that we have implemented the quantum part of Shor’s algorithm successfully, it is

time to do some soul-searching. . . with the help of Grover’s method.

13.3 Grover’s algorithm
In Chapter 12, we studied Grover’s algorithm in detail, and, as you surely remember, there

are two main ingredients that it relies on: a Boolean function oracle that encodes the

324 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

elements that we want to find and Grover’s diffusion operator. In Section 10.3.1, we gave a

general (but not necessarily efficient) way of implementing oracles, so we will just focus

on coding Grover’s diffusion operator.

Grover’s diffusion operator is in charge of performing the inversion about the mean

operation. As we discussed in Section 12.2.3, this can be implemented with the following

circuit:

𝐻 𝑋 𝑋 𝐻

𝐻 𝑋 𝑋 𝐻

⋮ ⋮ ⋮ ⋮

𝐻 𝑋 𝑍 𝑋 𝐻

We already know how to write Qiskit code for every gate in the circuit with the only

exception being the multi-controlled 𝑍 gate. In order to implement it, we will just use

a ZGate object (which will instantiate a 𝑍 gate) and add to it a bunch of controls with

the ZGate().control(n-1) instruction. Thus, we can use the following function to create

Grover’s diffusion circuits at will:

from qiskit import QuantumCircuit

from qiskit.circuit.library import ZGate

def diffusion_circuit(n):

dc = QuantumCircuit(n)

for i in range(n):

dc.h(i)

dc.x(i)

mcz = ZGate().control(n-1)

dc.append(mcz, range(n))

for i in range(n):

dc.x(i)

Grover’s algorithm 325

dc.h(i)

return dc

We can see an example of the circuits that this function generates by using the following

instructions:

dc = diffusion_circuit(4)

dc.draw("mpl")

This will yield the following representation:

q0

q1

q2

q3

H

H

H

H

X

X

X

X

X

X

X

X

H

H

H

H

We are now ready to implement Grover’s algorithm in all its glory. For that, we will

construct a function receiving a quantum oracle for a Boolean function and a number of

iterations, and returning the circuit for Grover’s search with those parameters. For this,

we will rely on the build_oracle function that we developed in Section 10.3.1 and that we

have reproduced here for convenience:

def build_oracle(strings_one):

If the function is never 1, the oracle is the identity.

Hence, we return an empty circuit.

if len(strings_one) == 0:

return QuantumCircuit()

326 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

Number of bits that the function takes as input:

n = len(strings_one[0])

qc = QuantumCircuit(n+1)

for x in strings_one:

Find the positions in the string x where the bit is 0.

For this, we find the list of indices i such that x[i]==’0’.

bits_zero = []

for i in range(len(x)):

val = x[i]

if val == ’0’:

bits_zero.append(i)

Step 1 in our construction.

for bit in bits_zero:

qc.x(bit)

Step 2.

qc.mcx(list(range(n)), n)

Step 3.

for bit in bits_zero:

qc.x(bit)

return qc

Notice that this function creates a quantum Boolean oracle that uses an ancillary qubit to

store its output. As you surely recall, in Chapter 12, our analysis relied on phase oracles

instead. But don’t worry. We can use an ancillary qubit set to |−⟩ to induce a phase kickback

Grover’s algorithm 327

(as discussed in Section 12.2.1) and transform the Boolean oracle into a phase oracle. Easy

peasy!

Then, the piece of code that we need to implement Grover’s algorithm is as follows:

def grover_circuit(oracle, k, measure = False):

Number of qubits in the circuit (same as the oracle).

If we are working with an n-bit function, nqubits = n + 1.

We only measure the top qubits (hence nqubits-1 classical bits).

nqubits = oracle.num_qubits

qc = QuantumCircuit(nqubits,nqubits-1)

Set bottom qubit to |1>

qc.x(nqubits-1) # Ancillary qubit for phase kickback

Apply Hadamard gates to all qubits.

for i in range(nqubits):

qc.h(i)

Apply k iterations of oracle + diffusion operator

dc = diffusion_circuit(nqubits-1)

qc.barrier()

for i in range(k):

qc.append(oracle, range(nqubits))

qc.barrier()

qc.append(dc, range(nqubits-1))

qc.barrier()

Measure the top qubits if so instructed

if measure:

qc.measure(range(nqubits-1), range(nqubits-1))

328 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

return qc

In this implementation, we first set all the top qubits to |+⟩ with Hadamard gates, and the

bottom one to |−⟩ with an 𝑋 gate followed by a Hadamard gate. Then, we apply the oracle

and the diffusion operator 𝑘 times. Finally, we measure the top qubits (we have made this

optional, depending on the measure parameter, to more easily compute the probability of

finding the element that we are looking for).

Let’s try this with an example. We will work with a Boolean oracle that marks a single

element, let’s say 111, out of 8 possibilities. From Section 12.2.4, we know that we should

set a number of iterations 𝑘 = ⌊
𝜋
4

√
8⌋ = 2. Then, we can use the following instructions:

oracle = build_oracle(["111"])

grover = grover_circuit(oracle, 2, measure = True)

grover.decompose().draw("mpl")

This will create and draw the circuit that we need in order to run Grover’s algorithm, which

looks as follows:

q0

q1

q2

q3

3c

0,
U2

0,
U2

0,
U2

, 0,
U3

0,
U2

H

H

H

X

X

X

X

X

X

H

H

H

H

H

H

X

X

X

X

X

X

H

H

H

0 1 2

In order to run it and get some results, we can use the following instructions:

from qiskit_aer.primitives import SamplerV2 as Sampler

from qiskit_aer import AerSimulator

backend = AerSimulator()

sampler = Sampler(seed = 1234)

job = sampler.run([grover.decompose()], shots = 100)

results = job.result()

Grover’s algorithm 329

d = results[0].data.c

print(d.get_counts())

Notice that we need to decompose the circuit in order to run it on AerSimulator. An

alternative way of achieving this could be to use generate_preset_pass_manager, as we

did with Shor’s circuit in the previous section. In any case, the output that you’ll get when

running the instructions above is the following:

{’111’: 95, ’010’: 1, ’001’: 1, ’100’: 1, ’011’: 1, ’101’: 1}

This means that, 95 out of 100 times, we have indeed found the marked element!

We can also explicitly compute the probability of obtaining ’111’ as an output by using

Statevector after removing the measurements from the circuit, as follows:

from qiskit.quantum_info import Statevector

grover = grover_circuit(oracle, 2)

sv = Statevector(grover)

print("The probability of 111 is", abs(sv[’0111’])**2+abs(sv[’1111’])**2)

Notice that our circuit has an ancillary qubit (the bottom one) and that Qiskit reverses the

order of the strings in the statevector amplitudes. That’s why we have added the proba-

bilities of both ’0111’ and ’1111’, which are the two results compatible with measuring

’111’ on the upper register. Notice also that we have used abs to compute the absolute

value of the amplitudes and, then, we have squared them with **2. The result that we

obtained is the following:

The probability of 111 is 0.9453124999999958

This nicely fits our experimental results when running and measuring the circuit!

330 Chapter 13: Coding Shor and Grover’s Algorithms in Qiskit

Exercise 13.3

What is the probability of measuring ’111’ if we use the same oracle but a number

of iterations in the Grover algorithm that varies from 0 to 8?

This concludes this section and our implementation of Shor’s and Grover’s algorithms. In

the next chapter, we will move on to discuss what might be in store for quantum computing

in the near future.

Summary
In this chapter, we have implemented two of the most important quantum algorithms out

there: Shor’s and Grover’s. We started by writing code to create circuits for the all-important

quantum Fourier transform. From this point, we easily derived an implementation for the

inverse quantum Fourier transform too.

Then, we focused on implementing modular multiplication with quantum gates, although

we did this with a brute-force approach through the computation of their unitary matrices.

This allowed us to construct circuits to demonstrate the use of Shor’s algorithm with some

small integers.

After that, we shifted our attention toward Grover’s search algorithm. We started by

constructing circuits for Grover’s diffusing operator and, then, we revisited the function

that we introduced in Chapter 10 to create quantum Boolean oracles. Putting everything

together, we wrote a function to build the circuit for Grover’s algorithm; with it, we were

able to search for marked elements and even to compute our probability of success.

In the next chapter, we will move on to explore what the future of quantum computing

may look like in the next few years, including discussions on quantum error correction

and quantum supremacy.

Part 5

Ad Astra: The Road to
Quantum Utility and

Advantage

Over the last few parts of the book, we have been able to explore numerous quantum

algorithms, which have enabled us to inductively build our understanding on quantum

computing and its potential.

Nevertheless, as beautiful and surprising as the algorithms that we have introduced may be,

they do need to run son some quantum hardware. . . and we haven’t said much about that

yet. Thus, in this part of the book, we will go outside of the realm of theory and address

some of the questions that concern physical quantum computers.

This part includes the following chapters:

• Chapter 14, Quantum Error Correction and Fault Tolerance

• Chapter 15, Experiments for Quantum Advantage

14
Quantum Error Correction
and Fault Tolerance

Don’t find fault; find a remedy.

— Henry Ford

Throughout this book, we have explored some problems that quantum computers can tackle,

and we have gained a lot of perspective on the potential of quantum computing. Analyzing

whole functions in a single shot, breaking the limits of classical information, factoring huge

prime numbers, navigating through unsorted sets. . . quantum computers can do all that,

and this is just the beginning. The future of quantum computing is promising, to say the

least, but we should take some time to address the elephant in the room. All these promises

for the future are great, but. . . can we build the hardware that will make them a reality?

Ideal quantum computers are nowhere to be seen. If you’d like to run a quantum algorithm

on real quantum hardware without any errors, you are simply out of luck. At the moment,

we do have some quantum computers with seemingly impressive numbers of qubits, but

334 Chapter 14: Quantum Error Correction and Fault Tolerance

they are noisy. This means, to put it succinctly, that errors may arise during the execution

of circuits: maybe the state of a qubit is corrupted by some environmental phenomena, or

maybe the implementation of a quantum gate or a measurement operation is imperfect

and introduces errors of its own—all sorts of things could happen!

Most of the algorithms that we have introduced in this book need to run on close-to-ideal

quantum hardware. So, we need to find some solutions. We should nevertheless mention

that some interesting quantum algorithms can work on noisy hardware; you can find

some of these in our book A Practical Guide to Quantum Machine Learning and Quantum

Optimization: Hands-on Approach to Modern Quantum Algorithms [16].

Given these constraints, you could just sit back for a few decades waiting for physicists and

engineers to figure quantum hardware out and come up with better quantum computers;

that’s an option. Nevertheless, we will take a different path. You know what they say: if

life gives you lemons, make lemonade.

In this chapter, we are going to introduce some techniques that will show us how we

can use noisy quantum hardware and overcome the errors that it may introduce in our

quantum circuits. The topics covered in this chapter are the following:

• The need for error correction

• Quantum error correction: The Shor code

• Implementing the Shor code in Qiskit

• Fault-tolerant quantum computing

Through these sections, you will learn about the importance of error correction techniques,

and you will see how they’re already very much present in the world of classical computing.

You will then see how we can bring these techniques into one-qubit systems through the

Shor code, and we will show you how to implement it on Qiskit. Lastly, we will dedicate

some time to discussing fault-tolerant quantum computing, that is, what the path

ahead is for getting quantum algorithms to run without errors on noisy quantum hardware.

The need for error correction 335

Alpha Echo India Mike Quebec Uniform Yankee
Bravo Foxtrot Juliett November Romeo Victor Zulu

Charlie Golf Kilo Oscar Sierra Whiskey
Delta Hotel Lima Papa Tango Xray

Table 14.1: The ICAO phonetic alphabet

That’s the plan, and now we should get started. Before diving into all the quantum business,

let us first get a global perspective on (classical) error correction. This will lay the foundation

for us to better understand quantum error correction later on.

14.1 The need for error correction
If an air traffic controller wants to instruct a pilot to go through some taxiways identified

with the letters R and J, they will tell them to “taxi via Romeo and Juliet”. Much to the

disappointment of romantics and literature scholars, this is not an act of appreciation for

the work of William Shakespeare, but one of practicality. You see, when communicating

over radio, speaking out letters can easily lead to misunderstandings. The letter M could

easily be mistaken for an N or even an L, just as a P could be misheard to be a T, or a C to

be an E.

Given how noisy radio communications can be, there are way too many opportunities

for communication errors to take place when identifying letters verbally. For this reason,

instead of speaking out letters with their usual names, people communicating over radio

refer to each letter by a fixed codeword. In particular, in Table 14.1, you can find the set of

codewords that are used in aviation and military communications; keep in mind that each

of them begins with the letter that it represents.

By using these codewords, communication errors are much less likely to take place. The

word “em” (for M) can be easily misheard as the word “en” (for N), but it is much more

difficult to mistake the words “Mike” and “November”. Not only does this strategy prevent

misunderstandings, but it also makes the communication more robust against noise. If, say,

there were a lot of interference in the channel and, when saying “Mike”, the first letter “m”

336 Chapter 14: Quantum Error Correction and Fault Tolerance

were lost, the receiver would have no trouble in retrieving the message, as “Mike” is the

only code word that ends in “ike”. All of these advantages, however, come at the cost of

slowing down communication, as these codewords are longer than the usual names that

we give to letters.

This simple example that we have considered perfectly illustrates what error correction

codes are and what they aim to achieve. In general, an error correction code is a mechanism

that encodes a message creating redundancy in such a way that it is then possible to identify

certain communication errors and correct them. In our preceding example, we encoded

letters into codewords and this created redundancy: the codewords were much longer than

the names of the original letters, and then it was possible to retrieve full codewords from

parts of them (we illustrated this using the codeword “Mike” as an example). This then

made it possible to easily identify communication mistakes and reverse them.

Important note

An error correction code encodes messages in a way that creates redundancy and

provides ways of identifying certain communication errors and correcting them.

We should also mention that, in certain scenarios, it may suffice to be able to identify a

set of communication errors (without needing to provide a means for correcting them).

For this, you can resort to error detection mechanisms, which work in a similar way to

error correction codes. As a sample use case, error detection mechanisms are built into

bank account and credit card numbers, where certain digits are used as control digits to

protect the integrity of financial transactions against typing errors.

To learn more. . .

We only have space to discuss the most trivial aspects of classical error detection

and correction mechanisms. If you would like to learn more about classical coding

theory, we invite you to read Coding Theory: A First Course [81] by Ling and Xing.

So far, all of our work has been heuristic, and not particularly formal. We will now consider

our first (formal) error correction code on the simplest system possible: a one-bit system.

The need for error correction 337

This will lay the foundation for us to then introduce quantum error correction for one-qubit

systems.

14.1.1 Our first error correction code
Consider a channel of communication that allows the transmission of one-bit messages.

We will assume that, with a certain probability 𝑝, the bits in this channel are “flipped”.

This means that, with probability 𝑝, if a 0 was sent through the channel, a 1 arrived at the

receiving end (and vice versa). In this situation, and assuming 𝑝 to be reasonably small, is

it possible to send bits reliably?

The easiest solution to this problem would be to just send each bit three times. That is,

instead of just 0, we will send 000, and instead of 1 we will send 111. In this way, every

time we receive a set of three bits, if the three bits aren’t the same, we can be certain that at

least one bit was flipped. Moreover, we can assume with a high probability that the original

message is the bit that appears twice. For example, if we get the bits 001, we could infer

that the original message was 000. This follows from the fact that the original message

was either 000 or 111 and—as we are assuming the probability of bit flips to be small—it’s

more likely for one bit to have flipped (000 → 001) than for two (111 → 001) to have gone

through errors. This way of correcting errors is known as majority voting.

Now let’s try to make things a little bit quantitative. First, let’s assess the probability of

identifying whether an error (a bit flip) has taken place in the transmission of data. As we

have mentioned, if the three bits that we receive aren’t the same, we can be sure that a bit

flip has taken place, but we seek to address the converse question: if an error does take

place, what is the probability that the three bits won’t be equal (and that we will be able

to detect the presence of an error)? The only way for errors to go undetected is if all the

bits are flipped, and that would happen with probability 𝑝3. Therefore, the probability of

correctly identifying whether or not an error has taken place is

𝑃identify = 1 − 𝑝
3
,

338 Chapter 14: Quantum Error Correction and Fault Tolerance

which is large for small 𝑝. For instance, if 𝑝 is 10−2 (a probability of 1 in 100 of a bit flipping),

then the probability of having an undetected transmission error goes down to just 10−6, or

one in a million.

Now, let’s consider a different question. What is the probability that we will be able to

correctly recover the original message? Well, our method will only work if no bits are

flipped or if just one of them is. If two or more bits suffer transmission errors, we will

get the wrong message. So, let’s compute the probability that no bits or just one bit gets

flipped. The probability that no bits are flipped is (1 − 𝑝)3. The probability that only one

fixed bit is flipped is 𝑝(1 − 𝑝)2, but this can happen at three different places. Therefore, the

probability that our method will work is

𝑃correct = (1 − 𝑝)
3
+ 3𝑝(1 − 𝑝)

2
= 1 − 3𝑝

2
+ 2𝑝

3
,

where we have added the factor 3 to account for the fact that there are three bits.

In Figure 14.1, we can see the evolution of the probability of detecting errors and that of

recovering the correct message as 𝑝 changes. From this plot, we can deduce an obvious

fact, which is that the probability of properly correcting an error is bounded above by the

probability of detecting them. Moreover, we can see how, as 𝑝 grows, our method becomes

less and less efficient, but it should work fine for small values of 𝑝, as you are about to see

in an exercise.

Exercise 14.1

For the method that we have introduced, compute the probability of correctly

identifying whether or not an error occurred and of properly correcting any potential

bit-flip errors for:

(a) 𝑝 = 5%,

(b) 𝑝 = 10%,

(c) 𝑝 = 30%,

(d) 𝑝 = 50%.

The need for error correction 339

0.0 0.2 0.4 0.6 0.8 1.0
Error probability in the channel

0.0

0.2

0.4

0.6

0.8

1.0

P. Identify
P. Correct

Figure 14.1: The probability of correctly identifying whether or not bit flips have taken place
and correctly recovering the original bits in a naive error correction code, as a function of the
probability of error 𝑝

As you have been able to see for yourself, our method works well enough when 𝑝 is

reasonably small, but not for big values of 𝑝. In general, no error correction method

can protect against any kind of error occurring with any probability. After all, this is

mathematics, not magic!

Simple as it may appear to be, this has been our first proper error correction code. With

it, we have encoded one bit into three bits (creating redundancy) and, through majority

voting, we have built a method that is robust against a bit-flip in the transmission of the

three bits.

This is all we have to say about classical error correction, and we can now begin to explore

how quantum error correction actually works. You may be surprised to learn that the codes

that we are about to introduce will have some analogies with the innocent classical code

that we have been discussing! So, without further ado, let’s break free from bits and try to

dominate some quantum noise.

340 Chapter 14: Quantum Error Correction and Fault Tolerance

14.2 Quantum error correction
Just as in the last section we introduced a simple error correction code for one-bit systems,

in this section we will introduce some error correction codes for one-qubit systems. This

might seem like a humble and easy task, but—as you are about to find out—the jump from

classical error correction to quantum error correction is not exactly trivial.

For starters, there are a few obstacles that we need to take into account before we set out

to define quantum error correction codes. Firstly, when we designed our naive classical

code for a one-bit system, we simply copied its state into three bits. In the quantum world,

however, the no-cloning theorem would make that impossible straight away. But that’s

not all.

In a quantum system, there are far more possible errors than in a classical one. When you

have a single bit, your catalog of errors is rather small: either it gets flipped or it gets lost,

but that’s it. On the other hand, when you have a qubit, lots of things could happen. These

are some examples:

• As in the classical case, your qubit may suffer a bit flip, in such a way that |0⟩

becomes |1⟩ and vice versa. This would be the same as having the state go through

an unwanted 𝑋 gate.

• In the same way that the bit could go through an unwanted 𝑋 gate, it could also go

through an unwanted 𝑍 gate, thus introducing a phase flip, which would take the

state |+⟩ to |−⟩, and |−⟩ to |+⟩.

In real hardware, any unwanted quantum gate 𝑈 could be mysteriously applied to a qubit

(or several!) as a consequence of some physical process that hasn’t been accounted for. You

see, in our crude and finite reality, no physical system can be perfectly isolated from its

surrounding environment, and physical qubits are no exception. Moreover, these qubits

are extremely sensitive to any outside noise that could originate from the interactions of

the qubits with their environment or from imperfections in the quantum hardware itself.

However, this isn’t at all the full story; in a quantum computer, lots of others kinds of

errors may arise!

Quantum error correction 341

To learn more. . .

If you’d like to learn more about the current implementations of quantum hardware

and the kinds of errors that they are vulnerable to, you might want to read Hardware

for Quantum Computing [82] by Easttom.

If you learn more about the physical implementation of quantum computers, you will see

how some errors can’t even be addressed from an algorithmic point of view. Thus, from

the theoretical side of things, our only choice is to work within some fixed error models:

assuming that a fixed set of errors may occur and finding ways of dealing with them.

Following this approach, we will introduce error correction codes for one-qubit systems

step by step: first discussing a way of correcting bit-flip errors, then tackling phase-flip

errors, and finally combining both approaches into a single error correction code. As you

will see, this will end up allowing us to correct a significant set of one-qubit errors. Let’s

get to it!

14.2.1 Bit flips
Let us consider a simple scenario: assume that we know that a qubit is going to be exposed

to some noise, in such a way that it may suffer a bit-flip. Maybe this is a consequence of

our performing some operations to apply a quantum gate, or maybe of our transmitting

the qubit through some media—those details don’t quite matter for now. All we know is

that, with a small probability, our qubit will suffer a bit-flip.

This scenario is somewhat analogous the one we considered in our classical error correction

code, and the approach that we will take will be surprisingly similar.

Assume that the one-qubit state we want to preserve against bit-flip errors is

|𝛼⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ .

Back in our study of classical codes, we got an idea of how error correction codes are based

on the creation of some redundancy. For the classical code that we considered, we achieved

342 Chapter 14: Quantum Error Correction and Fault Tolerance

this redundancy by creating two new copies of the bit state that we wanted to protect, but

that’s not something that we can do directly with a qubit state. Nevertheless, we can take

an approach that is similar in spirit. Indeed, if we consider two ancillary qubits, we can

perform two CNOT operations, transforming our state as follows:

|𝛼⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩

𝛼0 |000⟩ + 𝛼1 |111⟩|0⟩

|0⟩

Needless to say, this is not a state where we have three copies of |𝛼⟩ (this is not |𝛼⟩⊗|𝛼⟩⊗|𝛼⟩,

as that would go against the no-cloning theorem), but you can see how, in some way, we

are exploiting a similar notion of redundancy to the one on which we built our classical

code. The fact that this circuit transforms the state as we have claimed holds no mystery;

you can verify it yourself using the definition of the CNOT gate.

Exercise 14.2

Verify that, indeed, the circuit above transforms the state (𝛼0 |0⟩ + 𝛼1 |1⟩) |0⟩ |0⟩ into

the state 𝛼0 |000⟩ + 𝛼1 |111⟩.

The circuit that we have introduced is called the encoding circuit, and it encompasses all

the operations that need to be performed in order to prepare our system for error correction.

At this point, some bit flips may occur in some of the qubits, and we need to find some

ways to correct them. Our solution will be to apply an error correction circuit, which

will perform a sequence of two CNOT operations controlled by the first qubit followed by

a Toffoli gate targeting it, as shown in the following representation:

Bit-flip noise

|𝛼⟩ |𝛼⟩

|0⟩

|0⟩

Encoding circuit Error correction circuit

|𝜓0⟩ |𝜓1⟩ |𝜓2⟩ |𝜓3⟩

Quantum error correction 343

After this procedure, if no more than one qubit has suffered a bit flip, we can be certain

that the state of the first qubit will be |𝛼⟩. We will later provide a general proof of how

and why this works, but, for now, let us analyze each possible scenario in which at most a

single qubit suffers a bit flip.

• If no qubit has suffered a bit flip, then |𝜓0⟩ = 𝛼0 |000⟩ + 𝛼1 |111⟩, hence

|𝜓1⟩ = 𝛼0 |000⟩ + 𝛼1 |101⟩ ,

as the action of the first CNOT flips the state of the second qubit when the first qubit

takes the value 1. Consequently,

|𝜓2⟩ = 𝛼0 |000⟩ + 𝛼1 |100⟩ = |𝛼⟩ |00⟩ ,

and the last Toffoli gate will have no effect on the system as the last two qubits are in

state |0⟩. Hence, |𝜓3⟩ = |𝜓2⟩ and the first qubit will be left in the state |𝛼⟩, as desired.

• If the first qubit suffered a bit flip, then we have

|𝜓0⟩ = 𝛼0 |100⟩ + 𝛼1 |011⟩ ,

which is transformed under the action of the CNOT gates as

|𝜓1⟩ = 𝛼0 |110⟩ + 𝛼1 |011⟩ ,

|𝜓2⟩ = 𝛼0 |111⟩ + 𝛼1 |011⟩

= (𝛼0 |1⟩ + 𝛼1 |0⟩) |11⟩ ,

hence—as the last two qubits are both in state |1⟩, the action of the Toffoli gate will

apply a negation on the first qubit, thus bringing the system to the state |𝛼⟩ |11⟩, and

restoring |𝛼⟩ in the first qubit, just as we wanted.

344 Chapter 14: Quantum Error Correction and Fault Tolerance

• If the second qubit suffered a bit flip, we have

|𝜓0⟩ = 𝛼0 |010⟩ + 𝛼1 |101⟩ ,

so the action of the CNOT gates will transform the state as

|𝜓1⟩ = 𝛼0 |010⟩ + 𝛼1 |111⟩ ,

|𝜓2⟩ = 𝛼0 |010⟩ + 𝛼2 |110⟩

= |𝛼⟩ |10⟩ ,

and the Toffoli gate will have no effect as the third qubit is in state |0⟩. Hence,

|𝜓3⟩ = |𝜓2⟩ and the first qubit will be in the state |𝛼⟩, as claimed.

• Lastly, if there were a bit flip on the third qubit, we would have

|𝜓0⟩ = 𝛼0 |001⟩ + 𝛼1 |110⟩ ,

and, as you can check for yourself, the action of the CNOT and Toffoli gates would

bring the system to the final state

|𝜓3⟩ = |𝛼⟩ |01⟩ ,

and the first qubit ends up in state |𝛼⟩.

Thus, we have seen how, if there is at most one bit flip, the first qubit always ends up in

state |𝛼⟩. What is more, you may have noticed that the last two qubits end up in a state that

allows us to identify whether there was a bit flip and which qubit suffered it. As it turns

out, all of this can be deduced from a general analysis of the action of our error correction

circuit, which we will now present. Now that you are well acquainted with the way these

gates operate, this will be easy.

If we feed the error correction circuit with a computational basis state of the form |𝜓0⟩ =

|𝑥⟩ |𝑦⟩ |𝑧⟩, the action of the CNOT gates will transform it into |𝜓2⟩ = |𝑥⟩ |𝑦 ⊕ 𝑥⟩ |𝑧 ⊕ 𝑥⟩,

Quantum error correction 345

and, therefore, the last Toffoli gate will bring this to

|𝜓3⟩ = |(𝑥 ⊕ (𝑦 ⊕ 𝑥) ⋅ (𝑧 ⊕ 𝑥))⟩ |𝑦 ⊕ 𝑥⟩ |𝑧 ⊕ 𝑥⟩

Now the states of the last two qubits are very easy to interpret: they will be 1 if and only if

their original state (𝑦 or 𝑧) was different from the one of the first qubit (𝑥). That’s why

these two bits reveal whether or not a bit flip may have taken place. If the two qubits are 0,

this means that all the states matched. If the two are 1, it means that the two last qubits

disagreed with the first. If only one of the last two qubits takes the state 1, it means that it

just had a different value compared to the first qubit. Measuring these two qubits thus helps

us identify whether an error occurred and where it occurred; in the jargon of quantum

error correction, we refer to this kind of measurement as syndrome measurement.

The state of the first qubit is slightly more tricky to analyze, but not too much. The

expressions (𝑦 ⊕ 𝑥) and (𝑧 ⊕ 𝑥) are 1 if and only if 𝑦 and 𝑧 differ from 𝑥 , respectively.

Therefore, (𝑦 ⊕ 𝑥)(𝑧 ⊕ 𝑥) will be 1 if and only if both 𝑦 and 𝑧 are different from 𝑥 .

Consequently, 𝑥 ⊕ ((𝑦 ⊕ 𝑥) ⋅ (𝑧 ⊕ 𝑥)) will be 𝑥 ⊕ 1 (that is, 𝑥 flipped) if both 𝑦 and 𝑧 differ

from 𝑥 , or else it will be 𝑥 . In short, this expression is simply implementing the majority

voting that we used in our classical error correction code: it is equal to the bit that appears

at least twice among 𝑥, 𝑦, 𝑧.

For those of you who enjoy algebra and are hungry for a more symmetric expression, we

can take a slightly longer route. Using the properties of Boolean algebra,

𝑥 ⊕ (𝑦 ⊕ 𝑥)(𝑧 ⊕ 𝑥) = 𝑥 ⊕ (𝑦𝑧 ⊕ 𝑥𝑦 ⊕ 𝑥𝑧 ⊕ 𝑥
2
)

= 𝑥 ⊕ 𝑥 ⊕ 𝑦𝑧 ⊕ 𝑥𝑦 ⊕ 𝑥𝑧

= 𝑦𝑧 ⊕ 𝑥𝑦 ⊕ 𝑥𝑧.

where we have used the fact that, for any bit 𝑥 , we have 𝑥2 = 𝑥 and 𝑥 ⊕ 𝑥 = 0. We have

also used the commutativity, associativity, and distributivity of the operations of Boolean

346 Chapter 14: Quantum Error Correction and Fault Tolerance

algebra. Now, as expected, the value that this will take is, precisely, the bit that appears at

least twice in 𝑥, 𝑦, 𝑧, as you can now see in an exercise.

Exercise 14.3

Show that 𝑦𝑧 ⊕ 𝑥𝑦 ⊕ 𝑥𝑧 implements majority voting among the bits 𝑥, 𝑦, 𝑧. That is,

show that the expression evaluates to 1 or 0 if and only if at least two of 𝑥 , 𝑦, and 𝑧

are 1 or 0, respectively.

In summary, this analysis reveals that our method ends up behaving in the same way

as the classical error correction code that we introduced back in Section 14.1.1. It creates

redundancy by encoding a one-qubit state into three entangled qubits; it can detect a bit-flip

error if the values of the three qubits don’t agree; and it can correct it if no more than one

qubit has suffered a bit flip. This analogy means that our performance assessments for our

bit-flip classical code also apply to our bit-flip quantum code. Thus, if the noise induces

a bit flip with probability 𝑝, our quantum error correction code will correctly identify if

quantum bit flips have occurred with probability 1−𝑝3, and it will return the original qubit

with probability 1 − 3𝑝2 + 2𝑝3.

To learn more. . .

We have presented a simple formulation of the bit-flip error correction code, but

there is an alternative one. In Chapter 10 of Quantum Computation and Quantum

Information: 10th Anniversary Edition [13], you can find a different approach to this

code, in which some qubits are measured a priori to determine whether bit flips have

taken place and—based on the outcomes of those measurements—the necessary

corrections are then performed. In that book, you can find similar alternative

formulations for all the codes that we will discuss in this chapter.

Our quantum error correction code needs three qubits in order to encode a single qubit.

In the lingo of quantum computing, we say that this code uses three physical qubits to

implement one logical qubit.

Quantum error correction 347

Important note

Consider some noise that induces bit flips with a certain probability. If a one-qubit

state |𝛼⟩ is encoded, exposed to the noise, and processed as

Bit-flip noise

|𝛼⟩

|0⟩

|0⟩

,

then the state in the first qubit will still be |𝛼⟩ if at most one qubit suffers a bit flip.

Moreover, the state of the last two qubits will be in the computational basis and, if

one or two qubits have suffered a bit flip, this state will be different from |00⟩.

That’s our quantum error correction code for bit flips. As you can see, in spite of the

complexities that quantum computing introduces, there are clear and direct analogies

connecting this code to the classical error correction code that we discussed in Section 14.1.1.

Now let’s try to go bigger than this. Imagine that instead of a bit-flip error (an unexpected

𝑋 gate), we have a phase-flip error (an unexpected 𝑍 gate). In this case, will our setup

work?

• If the original state were |0⟩, then the encoded state would be |000⟩, and the 𝑍 gate

would leave it as it is, so the final state on the first qubit would be |0⟩ = 𝑍 |0⟩.

• If the original state were |1⟩, the encoded state would be |111⟩, which, after the

application of a 𝑍 gate, would become − |111⟩. The error correction circuit would

then yield the final state − |1⟩ = 𝑍 |1⟩ on the first qubit.

By linearity, we can conclude that, for any state |𝛼⟩, if a phase-flip takes place, the final

state (on the first qubit) would be 𝑍 |𝛼⟩, so phase-flip errors are just ignored in this setting.

In a similar fashion, you can check for yourself that if the error is 𝑍𝑋 or 𝑋𝑍 , the final state

will be, respectively, 𝑍 |𝛼⟩ and −𝑍 |𝛼⟩ (which is 𝑍 |𝛼⟩ up to an irrelevant global phase). This

means that—while our current code is hopeless against phase-flip errors—it, in a vague

348 Chapter 14: Quantum Error Correction and Fault Tolerance

way, “commutes” with them, meaning that it ignores them and simply passes any phase

flips to the corrected state. This will be relevant later on in the chapter.

In light of the limitations of our error correction code, we will now discuss a quantum

error correction code for phase flips. This may seem more difficult to tackle, but don’t let

anything intimidate you—as you are about to find out, we have already done most of the

heavy lifting!

14.2.2 Phase flips
Bit flips, which we have just taken care of, occur when an unwanted 𝑋 gate is applied to a

qubit. Phase flips, on the other hand, take place when an unwanted 𝑍 gate is applied. Thus,

bit flips transform a state 𝛼0 |0⟩ + 𝛼1 |1⟩ into 𝛼0 |1⟩ + 𝛼1 |0⟩, whereas phase flips transform it

into 𝛼0 |0⟩ − 𝛼1 |1⟩.

Bit flips and phase flips may seem like completely different phenomena, but they are

actually related in a very easy way: through Hadamard gates! Indeed, as it turns out,

𝑋 = 𝐻𝑍𝐻 . In terms of circuits:

𝐻 𝑍 𝐻 = 𝑋

Thus, if we apply a Hadamard gate to a qubit before a phase flip, and we apply a Hadamard

gate afterward, the phase flip will just act like a bit flip! What is more, if no bit flip takes

place, adding those Hadamard gates will have no effect, as 𝐻 is its own inverse.

Exercise 14.4

Prove that, indeed, 𝑋 = 𝐻𝑍𝐻 . Deduce that also 𝑍 = 𝐻𝑋𝐻 .

This has a remarkable implication, which is that, if we want to construct an error correction

code for phase flips, we can just reuse our error correction code for bit flips! Indeed, all we

have to do is apply a Hadamard gate to every qubit right at the end of the encoding circuit

and at the beginning of the error correction circuit; in this way, every potential phase flip

will become a bit flip (and if there are no phase flips, this will have no net effect on the

Quantum error correction 349

Bit-flip noise

Phase-flip noise

𝐻 𝐻

𝐻 𝐻

𝐻 𝐻

Figure 14.2: Hadamard gates can be used to transform a phase-flip error into a bit-flip error

state), and we can correct that bit flip with the very same techniques that we have already

developed. That’s all it takes! This is illustrated in Figure 14.2.

Exercise 14.5

To get a better feel for what we are doing, consider a general state of the form

𝑎 |000⟩ + 𝑏 |111⟩ and compute, step by step, its evolution under the application of (1)

a Hadamard gate on each qubit, (2) a 𝑍 gate on the first qubit, and (3) a Hadamard

gate on each qubit.

Conclude that, indeed, the application of Hadamard gates before and after a potential

phase-flip error transforms it into a bit-flip error.

That is how a phase-flip error correction code can be constructed: by transforming phase

flips into bit flips with Hadamard gates and reusing our bit-flip error correction code.

Needless to say, the performance of this code will be equivalent to that of the bit-flip code:

it will be able to detect up to two phase flips, and it will properly correct the state if at most

one phase flip takes place. The success probabilities will also be the same.

350 Chapter 14: Quantum Error Correction and Fault Tolerance

Important note

Consider some noise that may induce phase flip errors with some probability. If a

one-qubit state |𝛼⟩ is encoded, exposed to noise, and processed as

Phase-flip noise

|𝛼⟩ 𝐻 𝐻

|0⟩ 𝐻 𝐻

|0⟩ 𝐻 𝐻

,

then the state in the first qubit will still be |𝛼⟩ if at most one qubit suffers a phase

flip. Moreover, the state of the last two qubits will be in the computational basis and,

if one or two qubits have suffered a phase flip, this state will be different from |00⟩.

With this, we have tools to detect and correct bit-flip and phase-flip errors. Now we will

introduce a quantum error correction code that combines these tools in a surprisingly

powerful way.

14.2.3 The Shor code
The Shor code is a quantum error correction code that uses nine physical qubits to encode

a single logical qubit. That’s three times as many physical qubits as all of our previous

codes! But the cost is justified, for this code will allow us to correct any error induced by

the application of an undesired gate on a single qubit. How? Let’s take it step by step. First,

we will introduce the code, then we will discuss why it protects against both bit-flip and

phase-flip errors simultaneously, and then we will be able to conclude that it can protect

against any single-qubit error.

The Shor code simply combines the phase-flip and bit-flip error correction codes that we

have just introduced, and it does it in a rather straightforward way, which is represented in

Figure 14.3. Now, this circuit might seem overwhelming, but it actually brings nothing new

to the table. In the Shor code, we are just applying our usual phase-flip error correction

Quantum error correction 351

Noise

|𝛼⟩ 𝐻 𝐻

|0⟩

|0⟩

|0⟩ 𝐻 𝐻

|0⟩

|0⟩

|0⟩ 𝐻 𝐻

|0⟩

|0⟩

Figure 14.3: The Shor code

code, with a small tweak: right after the encoding circuit and before the error correction

circuit, we apply the bit-flip error correction code to each of the three qubits, leading to

the use of a total of nine qubits; this is what is represented in the shaded area of the circuit.

In this way, we make sure that each of the three qubits that leaves the shaded area is free

of any bit-flip errors, and only phase-flip errors are left to be corrected. Keep in mind that

this works since, as we showed earlier on, the bit-flip error correction code ignores any

phase-flip errors and simply passes them on to the output state. That’s why this code can

handle both phase-flip and basis-flip errors simultaneously!

So, we have a code that can handle bit-flip and phase-flip errors simultaneously. That’s

impressive enough, isn’t it? Well, there’s one more thing to discuss here.

352 Chapter 14: Quantum Error Correction and Fault Tolerance

Let 𝑘 ≤ 9 be a natural number and let 𝑋𝑘 and 𝑍𝑘 be the 𝑋 and 𝑍 gates on the 𝑘-th qubit;

also, let 𝐸 denote the nine-qubit error correction circuit, placed right after the noise in

Figure 14.3. Given any input state |𝛼⟩ being fed into the Shor code, we will use |𝜓𝛼⟩ to

denote the encoded state—the state of the system right before the nine qubits are exposed

to noise. Based on what we know, the Shor code can correct phase-flip and bit-flip errors

(either on their own or occurring simultaneously on the same qubit). In terms of our

recently introduced notation, this can be stated as

𝐸(𝐼 |𝜓𝛼⟩) = |𝛼⟩ |𝜑0⟩ , 𝐸(𝑋𝑘 |𝜓𝛼⟩) = |𝛼⟩ |𝜑𝑥⟩ ,

𝐸(𝑍𝑘 |𝜓𝛼⟩) = |𝛼⟩ |𝜑𝑧⟩ , 𝐸(𝑋𝑘𝑍𝑘 |𝜓𝛼⟩) = |𝛼⟩ |𝜑𝑥𝑧⟩ ,

for some eight-qubit states |𝜑0⟩, |𝜑𝑥⟩, |𝜑𝑧⟩ and |𝜑𝑥𝑧⟩. Nevertheless, because of the linearity

of quantum operations, this means that 𝐸 will be able to correct errors produced by any

linear combination of the operators 𝐼 , 𝑋𝑘 , 𝑍𝑘 , and 𝑋𝑘𝑍𝑘! Indeed, given any scalars 𝜆1, … , 𝜆4,

𝐸 ((𝜆1𝐼 + 𝜆2𝑋𝑘 + 𝜆3𝑍𝑘 + 𝜆4𝑋𝑘𝑍𝑘) |𝜓𝛼⟩) =

= 𝜆1𝐸(𝐼 |𝜓𝛼⟩) + 𝜆2𝐸(𝑋𝑘 |𝜓𝛼⟩) + 𝜆3𝐸(𝑍𝑘 |𝜓𝛼⟩) + 𝜆4𝐸(𝑋𝑘𝑍𝑘 |𝜓𝛼⟩),

which will produce a state of the form |𝛼⟩ ⊗ |𝜑′⟩. Here comes the bomb: as it turns out,

every single-qubit gate acting on the 𝑘-th qubit can be written as a linear combination of 𝐼 ,

𝑋𝑘 , 𝑍𝑘 , and 𝑋𝑘𝑍𝑘 , as you are about to prove in an exercise.

Exercise 14.6

Prove that any 2 × 2 matrix can be written as a linear combination of the matrices 𝐼 ,

𝑋 , 𝑍 , and 𝑋𝑍 , where, in this case, 𝐼 denotes the 2 × 2 identity matrix.

Deduce that in an 𝑛-qubit circuit, any gate acting on the 𝑘-th qubit can be written

as a linear combination of the gates 𝐼 , 𝑋𝑘 , 𝑍𝑘 , and 𝑋𝑘𝑍𝑘 , where 𝐼 denotes the 2𝑛 × 2𝑛

identity matrix.

Quantum error correction 353

Thus it follows that the Shor code can actually correct any error induced by the application

of a single-qubit gate on any of the nine encoding qubits.

Important note

The Shor code, which is represented in Figure 14.3, encodes a single logical qubit

into nine physical qubits, and it makes it possible to correct any single-qubit error

affecting those nine qubits, assuming errors to consist in the application of some

unwanted quantum gate.

This error correction code was introduced in the article “Scheme for reducing decoherence

in quantum computer memory” [83] by Shor, and it is one of the canonical examples of

quantum error correction codes.

To learn more. . .

We have shown how the Shor code protects against errors induced by the intro-

duction of an undesired gate into one of the encoded qubits. However, it can do

even more than that. It can also protect against decoherence: transformations

in which an (encoded) qubit gets entangled with its environment. In “Scheme for

reducing decoherence in quantum computer memory” [83], you can explore all the

decoherence processes that the Shor code can detect and correct.

With this, we have built a basic foundational knowledge of quantum error correction.

Nevertheless, there is much more for you to learn if you want to invest the time and effort.

To learn more. . .

In Chapter 10 of the book Quantum Computation and Quantum Information: 10th An-

niversary Edition [13], you can deepen your knowledge of quantum error correction,

studying CSS codes and the stabilizer formalism for quantum codes.

You can also refer to “Topological codes” [84] to learn about other kinds of codes,

such as surface codes and color codes. Color codes, in particular, have been

354 Chapter 14: Quantum Error Correction and Fault Tolerance

demonstrated by a research team at Google [85] to be a viable means toward fault-

tolerant quantum computing, which we will discuss later in the chapter.

Now that we have understood how the Shor code works, it’s time for us to implement it,

so let’s get our hands dirty with Qiskit!

14.3 Implementing the Shor code in Qiskit
In order to get started qiskiting, we first need to import the quantum circuit class, as we

will inevitably need it:

from qiskit import QuantumCircuit

Remember that we are using version 2.1 of Qiskit, and that you can find instructions on

how to set up your computing environment in Appendix D.

Now that we are all set, let us implement the Shor code. We will do it defining a function,

ShorCode, which will take as input two arguments:

• a nine-qubit circuit qc, which we will assume has its first qubit set to the input state

and has the remaining qubits set to |0⟩,

• and a function noise, which should take as input a quantum circuit and append to it

a one-qubit gate introducing an error.

Our function will add the necessary gates to qc as well as the noise defined by noise. Since

all of this will be stored in qc, there is no need for the function to return any values (recall

that, in Python, objects are passed by reference, not by value).

Here is our implementation:

def ShorCode(qc, noise):

qc.barrier()

Implementing the Shor code in Qiskit 355

Encoding

qc.cx(0, 3)

qc.cx(0, 6)

for qubit in [0,3,6]:

qc.h(qubit)

qc.cx(qubit, qubit + 1)

qc.cx(qubit, qubit + 2)

Noise

qc.barrier()

noise(qc)

qc.barrier()

Error correction

for qubit in [0,3,6]:

qc.cx(qubit, qubit + 1)

qc.cx(qubit, qubit + 2)

qc.ccx(qubit + 2, qubit + 1, qubit)

qc.h(qubit)

qc.cx(0, 3)

qc.cx(0, 6)

qc.ccx(6, 3, 0)

Notice how we have added some barriers along the circuit. We included them for two

reasons: first, because they mimic the real implementation of the Shor code, where the

noise is unwanted and therefore cannot be “optimized” together with the rest of the

circuit. Second, and perhaps most importantly, because these barriers will make visual

representations of circuits cleaner.

356 Chapter 14: Quantum Error Correction and Fault Tolerance

Having defined the Shor code implementation, let’s test it out. We will prepare a nine-qubit

circuit and we will take |+⟩ = 𝐻 |0⟩ to be our input state. For the noise, we will apply a 𝑍

gate on the third qubit.

qc = QuantumCircuit(9) # Initialize the circuit.

qc.h(0) # Prepare the input state.

ShorCode(qc, lambda qc: qc.z(2)) # Apply the code with noise.

Notice that, in order to specify the noise, we have used lambda notation, which provides

a very convenient way of defining functions without the need to name them. For example,

the object lambda x: x + 1 is a function that takes an argument x and returns x + 1.

We can now use the draw function to obtain a visual representation of the circuit.

qc.draw(output="mpl")

The resulting image is shown in Figure 14.4, and it allows us to verify that our implemen-

tation matches the Shor code that we introduced in Figure 14.3. We can also see how the

input state has been properly initialized and how the error is correctly added.

That’s all we have to do in terms of implementation. Now we should probably test whether

our code actually works. To this end, we will retrieve the final state of our circuit and save

it in a statevector variable.

from qiskit.quantum_info import Statevector

statevector = Statevector(qc)

If you try to print statevector, you will likely be overwhelmed. It’s a list with 29 = 512

amplitudes, which doesn’t seem too appealing. However, since most of its entries are

zero, we can run a few lines of code to find the computational basis states with non-zero

amplitudes and the value of those amplitudes.

For example, we can run the following instructions:

from numpy import isclose

Implementing the Shor code in Qiskit 357

q0

q1

q2

q3

q4

q5

q6

q7

q8

H

H

H

H

Z

H

H

H

Figure 14.4: Our implementation of the Shor code with Qiskit

for index, value in enumerate(statevector):

if not isclose(value, 0):

Use bin to get a binary string for the index.

Remove the first two characters (which are ’0b’).

index_string = bin(index)[2:]

Add leading zeros.

index_string = index_string.zfill(9)

Flip the string (to account for Qiskit’s conventions).

index_string = index_string[::-1]

print(f"{value} |{index_string}>")

Here, we have used the bin function, which is a built-in function that, when given a

number, returns a string with its binary representation; however, since this representation

358 Chapter 14: Quantum Error Correction and Fault Tolerance

is preceded by the characters ’0b’, we also added [2:] to discard them. We also used

the zfill method, which adds leading zeros to a string until it has at least the number

of characters provided as an argument. Lastly, we reversed the string in order to make

the results consistent with our usual notation, accounting for the “peculiar” way in which

Qiskit labels qubits—assigning the topmost qubit to the rightmost qubit in a tensor product.

We already addressed this at length in Chapter 7 and Chapter 10.

As a side note, notice how we have used the isclose function to check whether value was

zero. We did this in order to account for any inaccuracies that may arise from the use of

floating-point arithmetic in the simulator.

Upon running the preceding code, we get this result:

(0.7071067811865471+0j) |000100100>

(0.7071067811865471+0j) |100100100>

This is simply the state |+⟩ |00100100⟩, which agrees with the expected behavior of the Shor

code. The first qubit is in our original state (free of errors) and the last qubits are telling us

that a phase error was corrected in the first block of three encoded qubits.

Let’s now consider a more sophisticated example, using as noise a 𝑅𝑌 (4) gate on the third

qubit (remember that we introduced 𝑌 -rotation gates in Chapter 3). To run this, we can

execute the following lines of code (they are analogous to what we’ve just done):

qc = QuantumCircuit(9)

qc.h(0)

Here we use a different error:

ShorCode(qc, lambda qc: qc.ry(4,3))

statevector = Statevector(qc)

for index, value in enumerate(statevector):

if not isclose(value, 0):

index_binary = bin(index)[2:]

Implementing the Shor code in Qiskit 359

index_string = index_binary.zfill(9)

index_string = index_string[::-1]

print(f"{value} |{index_string}>")

With the preceding code, we get the following output:

(-0.294260250091814+0j) |000000000>

(-0.294260250091814+0j) |100000000>

(0.6429703766239176+0j) |000111000>

(0.6429703766239176+0j) |100111000>

This is telling us that, if we let |𝑥⟩ = |00000000⟩, and 𝑦 = |00011100⟩, then, for 𝑎 ≈ −0.294

and 𝑏 ≈ 0.643, the final state is equal to

|𝜓⟩ = 𝑎 |0⟩ |𝑥⟩ + 𝑎 |1⟩ |𝑥⟩ + 𝑏 |0⟩ |𝑦⟩ + 𝑏 |1⟩ |𝑦⟩ .

From this expression, we can factor out the state of the first qubit as

|𝜓⟩ = 𝑎(|0⟩ + |1⟩) |𝑥⟩ + 𝑏(|0⟩ + |1⟩) |𝑦⟩

=
|0⟩ + |1⟩

√
2

⊗
√
2(𝑎 |𝑥⟩ + 𝑏 |𝑦⟩),

thus showing that the topmost qubit is in state |+⟩, just as we wanted. Notice that, in this

case, the remaining qubits are not in a computational basis state, but in a superposition.

That’s a consequence of the fact that the error that was corrected was neither 𝑋 , 𝑍 , nor

𝑋𝑍 .

With this, we have been able to implement and test the Shor code with Qiskit. To finish

the chapter, we would like to share a few words about fault tolerance and the near future

of quantum hardware.

360 Chapter 14: Quantum Error Correction and Fault Tolerance

14.4 Fault-tolerant quantum computing
Right now, quantum computers—having more than a handful of qubits—do exist, and some

are even available for public use at no cost. Our issue is that, as we discussed in Chapter 1,

at the moment, we live in the noisy intermediate-scale quantum era, also known as the

NISQ era. This means that our quantum hardware still has a limited number of qubits and

that there is no way for us to make it work like ideal hardware would.

This is problematic because, as we mentioned in the introduction, most of the algorithms

that we have discussed in this book are designed to run on ideal error-free quantum

computers, and they have no chance of being effective in current NISQ hardware. Other

quantum algorithms can be more or less resilient against noise and can run on NISQ

hardware, but for Shor and Grover. . . that’s not going to work.

Nevertheless, where there is a problem, there are people willing to solve it, and a lot of

effort is being invested in making quantum computers fault-tolerant: making them usable

(almost) as if they were ideal, in spite of their imperfections. Right now, our path toward

fault tolerance can be found in quantum error correction codes, which we have briefly

introduced in this chapter.

It is important to remark that what we have discussed in this chapter is just a drop in

the ocean. The world of quantum error correction is vast, and we hope to have given

you at least a small glimpse of how some of its most basic techniques can work. If you

would like to learn more, you can consult the references that we have dropped throughout

the chapter. Incidentally, if you were looking for a theoretical result that would give you

reasons to believe in the potential of quantum error correction, the threshold theorem

establishes that, as long as error rates are below a certain threshold, arbitrarily long quantum

computing processes are feasible using techniques from quantum error correction; you

can find this theorem in Section 10.6.1 of Quantum Computation and Quantum Information:

10th Anniversary Edition [13].

We should also mention that there are other techniques that—in conjunction with error

correction codes—will help pave the way toward the implementation of fault-tolerant

Fault-tolerant quantum computing 361

architectures. A notable example is the quantum gate teleportation mechanism, introduced

by Gottesman and Chuang [86]. From a bird’s-eye view, quantum gate teleportation

leverages entanglement to enable the fault-tolerant implementation of quantum gates

using some special quantum states known as magic states.

As our tools to achieve fault tolerance increase and are further refined, the future where

quantum computers will be fully usable gets closer and closer. Based on the progress that

we have seen in recent times, we have many reasons to be optimistic about the short-

or medium-term future. Across the industry, very significant advances are being made

toward making quantum hardware fault-tolerant and, therefore, fully useful [87], [88].

Chief among all of these achievements is the breakthrough that a team at Google made in

2024, introducing a quantum chip with an error rate low enough for effective quantum

error correction, thus paving the way for scalable and practical quantum hardware [85].

Who would’ve thought that some simple bit flips could have kept us so entertained? Indeed,

as the short story “Single-Bit Error” [89] by Ken Liu shows, a single bit flip can have

consequences far beyond what we could even imagine. In any case, and in spite of those

sneaky quantum errors, the future of quantum computing appears to be more than bright.

On that optimistic note, let’s wrap things up!

Summary
In this chapter, we have discussed the general limitations of current quantum hardware

and we have taken a look at the techniques that may help us overcome them.

We began our journey by introducing classical error correction and constructing our first

classical error correction code, which encoded a single bit into three bits. We also performed

a performance assessment of this code, computing the probability that it would properly

identify errors and safeguard the transmission of data.

Building on this work, we then introduced a couple of simple quantum error correction

codes that worked against bit-flip and phase-flip errors; we showed how in many ways

362 Chapter 14: Quantum Error Correction and Fault Tolerance

they were analogous to the classical code that we considered, and we were even able to

reuse our computations for the assessment of their performance.

Then, we combined our quantum error correction codes into the Shor code, which encodes

a qubit state into nine qubits and enables us to correct any single-qubit error induced by

the introduction of an unwanted gate. We also learned how to implement this code in

Qiskit and we were able to test it in a simple case.

Finally, we concluded the chapter with some general remarks on fault tolerance and the

prospects for near-term quantum hardware.

To put in succinctly, in this chapter, we’ve had a glimpse at some of the techniques that, in

the future, will most certainly allow us to overcome the limitations and flaws of quantum

hardware. In the following chapter, we will explore the different ways in which we can

assess whether or not quantum hardware is capable of producing results that are beyond

the possibilities of classical hardware. Get ready for our grand finale!

15
Experiments for Quantum
Advantage

There’s a million things I haven’t done. But just you wait, just you wait.

— Alexander Hamilton

Congratulations! You have reached the last chapter of this book. This has been quite a

ride, hasn’t it? In this journey together, we’ve studied quantum algorithms and protocols

that have been introduced in the last forty years and we’ve explored how to use Qiskit to

implement them. We’ve also discovered how quantum phenomena such as superposition,

entanglement, interference, and the uncertainty principle can enable us to do things that

would be impossible to achieve with classical computers.

Now it is time to take a look ahead and ponder what quantum computing holds in store

for the short or medium term. To that end, in this chapter, we are going to discuss

different ways in which researchers from all over the world have been pushing the limits of

364 Chapter 15: Experiments for Quantum Advantage

quantum hardware in an attempt to achieve the holy grail of quantum computing: quantum

advantage.

We will especially focus on random circuit sampling, a type of task that has been (and still

is!) central in quantum advantage experiments. We will expose its theoretical foundations

and show how it can be used to benchmark the performance of quantum computers. We

will also go through some practical demonstrations with Qiskit. Finally, we will briefly

discuss how quantum computing might evolve in the next few years.

The contents of this chapter are the following:

• The race for quantum advantage

• Random circuit sampling

• The best is yet to come

After reading this chapter, you will know about random circuit sampling and its prominent

role in current experiments for quantum advantage. You will also understand how random

circuit sampling can be used to benchmark the performance of quantum computers and how

to compute an important metric, called the cross-entropy benchmark fidelity, to estimate

that performance. You will also acquire some tools to think critically and correctly assess

the evolution of quantum computing in the next few years.

Let’s get to it!

15.1 The race for quantum advantage
Throughout this book, we have studied different protocols and algorithms with which

quantum computers offer some kind of advantage over classical computers. For instance,

in Chapter 11, we discussed Shor’s algorithm, which shows a (quasi) exponential speed-up

over known classical algorithms for factoring integers. Similarly, in Chapter 12, we showed

that any classical algorithm uses quadratically more queries than Grover’s algorithm when

searching on an unstructured database.

The race for quantum advantage 365

With these tools, it would be natural to think that demonstrating in practice that quantum

computers can offer an advantage should be straightforward. You may think, for instance,

of taking a big integer that you cannot feasibly factor with a classical computer and use

Shor’s algorithm to find its prime decomposition. Since you can always use a classical

computer to multiply back the factors and recover the original number, it should be easy

to check the results and show that quantum computers surpass classical ones, shouldn’t

it? Well, not so fast. This approach works neatly on paper but, unfortunately, there are

practical limitations that prevent us from carrying it out in practice with current quantum

hardware.

As we discussed in detail in Chapter 14, the kind of quantum computers that are available

today suffer from errors and noise and are limited in size. Procedures such as Shor’s

factoring algorithm require quantum error correction schemes that, despite recent advances

in the field, are still beyond what is possible with current quantum hardware. Were this

not enough, the execution of the algorithm would require a number of qubits that is way

higher than the size of the biggest quantum computer existing today.

These limitations have not deterred researchers from all over the world from trying to

demonstrate that, in practice, quantum computers can solve some tasks way faster than

classical ones. In fact, as you may know, in 2019 a team from Google announced that they

had achieved something called quantum supremacy [18]. This is such an important feat

that it merits a detailed discussion.

So what is quantum supremacy1? This expression was coined by John Preskill to describe

the moment in which a quantum computer carries out a task in much less time than it

would take to do it even with the most powerful classical supercomputer on Earth. It is

important to remark that the concrete computational task need not be of practical use. It is

only required that it can be solved much faster with the help of quantum computers than

with classical devices alone. In the case of the Google team experiments, the particular task
1The term “quantum supremacy” has been shunned by part of the quantum computing community because

it might evoke the use of “supremacy” by racist groups. We will use it only in this context and for historical
reasons. Quantum advantage seems to be the preferred term these days, although some researchers think that
it does not completely capture the meaning of quantum supremacy.

366 Chapter 15: Experiments for Quantum Advantage

was that of random circuit sampling, a problem that we will discuss in great detail in the

next section, but which has not awakened much interest outside of quantum supremacy

experiments (although some possible applications in randomness generation have been

proposed by some authors [90]).

Another thing that needs to be taken into account about this kind of experiment is that

quantum supremacy is a moving target. Whether quantum computers achieve a significant

advantage over classical ones depends, of course, on the capabilities of quantum hardware,

but also on the availability of faster classical supercomputers and better classical algorithms.

What, today, is beyond the reach of classical computers might become feasible if more

efficient algorithms are discovered or if new and better classical hardware is introduced. In

fact, the mere idea of quantum supremacy has created some kind of an “arms race” between

classical and quantum methods, with new developments on both fronts that sometimes

make previous achievements obsolete after a few months.

For instance, in Google’s original supremacy paper [18], it was reported that a certain ran-

dom circuit sampling problem was solved in about 200 seconds, while “the equivalent task

for a state-of-the-art classical supercomputer would take approximately 10 000 years”. This

claim was then disputed by researchers from IBM [91], who suggested a different method

that may reduce the classical computing time to a few days. Later, many developments on

both the classical [92]–[96] and quantum fronts [97]–[99] have been published, making

the race leadership change hands quite a few times. At the time of writing, Google has

announced a new breakthrough: with their 105-qubit quantum chip named Willow [100],

they’ve conducted a certain random circuit sampling task in under 5 minutes, but they esti-

mate that it would take 10 000 000 000 000 000 000 000 000 years (much longer than the age

of the universe!) to do something similar with the best classical supercomputer currently

available. Impressive, right? Moreover, recent results [101] published by researchers from

various Chinese institutions seem to keep the competition for the top quantum computer

in the world more open than ever.

We hope this has whetted your appetite to learn more about random circuit sampling,

because that is exactly what we are about to do in the next section.

Random circuit sampling 367

15.2 Random circuit sampling
Random circuit sampling (or RCS for short) is a task with a very descriptive name,

because it consists in sampling from the possible measurement outcomes of a random

quantum circuit. But let’s make things more explicit and concrete, to fully understand what

RCS actually is about and why it can be used to benchmark the performance of quantum

chips.

15.2.1 Defining random circuit sampling
In RCS, we are given a quantum circuit 𝐶. We know that if we apply 𝐶 to a set of qubits,

all of them in the |0⟩ state, we will obtain a certain quantum state |𝜓𝐶⟩. Therefore, if we

measure this state in the computational basis, we will obtain a binary string 𝑥 with a

probability that we will denote 𝑝𝑥 . The RCS task consists in generating strings 𝑥 according

to the probability distribution given by 𝑝𝑥 .

Notice that we are asked to generate binary strings according to 𝑝𝑥 . We are not required

to run the quantum circuit on an actual quantum computer. So, if we have a shortcut to

sample from measurements of |𝜓𝐶⟩ , we can use it to carry out the RCS task. This can be

done, for instance, if the number 𝑛 of qubits of 𝐶 is small enough that you can simulate

it classically. However, when 𝑛 grows, we do not know of any efficient classical method

that can address this problem and there is some compelling theoretical evidence [102] that

suggests that it is simply impossible to do so.

But imagine that you receive a huge circuit 𝐶, you don’t have access to a big enough

quantum computer, and you want to pretend that you can sample from |𝜓𝐶⟩. Can you

cheat? Is it possible, for instance, to just output a bit string 𝑥 uniformly at random and

fool everyone? After all, if 𝐶 is chosen at random, 𝑥 will also be random, right? Well, not

completely so. There are some noticeable differences between the probability distribution

induced on strings 𝑥 by 𝐶 and the uniform distribution. In fact, these difference are key in

understanding RCS, so let’s take a closer look at them.

368 Chapter 15: Experiments for Quantum Advantage

To make things easier to analyze from a theoretical point of view, we will assume that

instead of a random circuit 𝐶, we receive a random unitary 𝑈 that acts on 𝑛 qubits2 which

is to be applied to the 𝑛-qubit state |0⟩ in order to obtain the state |𝜓𝑈 ⟩ = 𝑈 |0⟩. This

will induce a probability distribution 𝑝𝑈 on 𝑛-bit strings 𝑥 . Namely, 𝑝𝑈 (𝑥) will be the

probability of obtaining 𝑥 when measuring |𝜓𝑈 ⟩ in the computational basis.

Now, following the very useful tutorial by M. Sohaib Alam and Will Zeng [104], we consider

two different scenarios: we sample strings 𝑥𝑠 by measuring |𝜓𝑈 ⟩ and we sample strings

𝑥𝑟 of 𝑛 bits uniformly at random. The former case corresponds to the situation in which

we actually use a quantum computer while the latter is the cheating strategy described

previously. It turns out that the probabilities 𝑝𝑈 (𝑥𝑠) and the probabilities 𝑝𝑈 (𝑥𝑟) are

different enough that we can distinguish between them, and that will eventually lead us

to define a useful benchmark metric for RCS. But before we turn to doing some proper

mathematics, it may be helpful to see all this graphically. Let’s write some code!

15.2.2 Probability distributions with random unitaries
In Qiskit, we can easily generate random unitaries of 𝑛 qubits by using the random_unitary

function. For instance, the following code generates a random unitary matrix of size 2 by 2

and prints it:

from qiskit.quantum_info import random_unitary

U = random_unitary(2, seed = 1234).to_matrix()

print(U)

Notice that we have set a value for the seed parameter to guarantee repeatability of the

results. With these settings, the output will be as follows:

[[-0.65182701+0.35104045j -0.06872086+0.66870741j]

[0.30111103-0.60101938j 0.3613751 +0.64615469j]]

2Technically, we say that 𝑈 is taken uniformly at random according to the Haar measure (see the paper by
Mezzadri [103] for more details).

Random circuit sampling 369

If you wish, you can check that this is indeed a unitary matrix by multiplying it times its

conjugate transpose.

Now that we know how to generate random unitary matrices, let’s try to study the proba-

bility distributions that we were talking about earlier. We will do the following: we will

generate 1000 random unitaries acting on 10 qubits and, for each of them, we will generate,

uniformly at random, 100 strings of 10 bits and store their probabilities according to 𝑝𝑈 .

To do that, we will use the following code:

import numpy as np

np.random.seed(1234)

n = 10

n_unitaries = 1000 # Number of unitaries we receive

n_samples = 100 # Number of strings to sample

p_r = [] # Probabilities according to U of the sampled strings

for i in range(n_unitaries):

U = random_unitary(2**n, seed = 1234 + i).to_matrix()

probs = abs(U[:,0])**2

for j in range(n_samples):

r = np.random.randint(0,2**n)

p_r.append(probs[r])

Note that the dimension of the matrix (the first parameter in the call to random_unitary)

is 210, because the number of qubits is 𝑛 = 10. We are using 1234 as the seed to generate

uniform random strings with the NumPy library. However, since with random_unitary

we need to specify the seed every time, we add 𝑖 to 1234 to generate different matrices

370 Chapter 15: Experiments for Quantum Advantage

in each iteration. Then, we obtain the probabilities associated to |𝜓𝑈 ⟩ by taking the first

column of U (with U[:,0]) and computing the square of its absolute value. This is exactly

what we need, because if we apply 𝑈 to the |0⟩ state, then we are multiplying 𝑈 times a

vector whose components are all 0 but the first one, which is 1. Thus, the amplitudes of

the resulting state |𝜓𝑈 ⟩ are the entries of the first column of 𝑈 . Finally, we sample a bunch

of strings 𝑥𝑟 uniformly at random and store their probabilities according to 𝑈 . Beware

that running this code can take several minutes because of the number of unitaries we are

generating (you can reduce it if you want it to run faster).

We can now plot the frequencies of the p_r probabilities with the following code:

%matplotlib inline

import matplotlib.pyplot as plt

plt.hist(p_r, bins = 100)

plt.show()

Figure 15.1 shows the resulting graphic. As you can see, this has a rather nice, regular

shape and, in fact, it can be shown that this kind of plot approaches what is known as the

Porter-Thomas distribution when the number of qubits grows (see the paper by Boixo et

al. [105] for more details). Notice, in particular, that most strings concentrate around the

smallest probabilities.

Now, we are going to do something similar, but sampling the binary strings according to

the probabilities induced by 𝑈 . To achieve that, we will use the following code:

p_s = [] # Probabilities according to U of the sampled strings

for i in range(n_unitaries):

U = random_unitary(2**n, seed = 1234 + i).to_matrix()

probs = abs(U[:,0])**2

Random circuit sampling 371

Figure 15.1: Histogram of the probabilities, according to a random unitary 𝑈 , of binary strings
sampled uniformly at random

for j in range(n_samples):

s = np.random.choice(2**n, p = probs) # Sample s according to probs

p_s.append(probs[s])

plt.hist(p_s, bins = 100)

plt.show()

We have used the random.choice function to sample numbers between 0 and 2𝑛 − 1

according to the probabilities induced by 𝑈 . The graphic created by executing this code is

shown in Figure 15.2. Notice the difference in shape compared to Figure 15.1. In particular,

here the strings tend to have slightly higher probabilities. This makes sense, because now

we are sampling 𝑥𝑠 according to 𝑝𝑈 and then we are considering the probabilities 𝑝𝑈 (𝑥𝑠),

so it’s natural that strings 𝑥𝑠 with higher probabilities will be selected. We will use this to

our advantage next, when we define the cross-entropy benchmark fidelity.

372 Chapter 15: Experiments for Quantum Advantage

Figure 15.2: Histogram of the probabilities of binary strings sampled according to 𝑝𝑈 for
random unitaries 𝑈

15.2.3 The cross-entropy benchmark fidelity
As we just showed, when given random unitary operators 𝑈 , there is an apparent difference

in the shape of the probability histograms that we obtain when sampling strings uniformly

at random and according to 𝑝𝑈 . But can we quantify this difference? The answer is that

not only can we do it, but it can be achieved in quite an intuitive and elegant way. Let’s

see how.

When comparing two different distributions, the first thing that comes to mind is to compute

their averages. In our case, we can do it with the following code:

a_r = round(np.mean(p_r),6)

a_s = round(np.mean(p_s),6)

print("Average probability of uniformly sampled strings:", a_r)

print("Average probability of strings sampled according to U:", a_s)

When we run it, we obtain the following output:

Random circuit sampling 373

Average probability of uniformly sampled strings: 0.000976

Average probability of strings sampled according to U: 0.001948

As you can see, the average probability 𝑎𝑠 (sampling according to 𝑈) is about double that

of the average probability 𝑎𝑟 (sampling uniformly at random). What is more, this latter

average is very, very close to 1/2𝑛, which is approximately 0.000977. This is no coincidence.

It can be shown (see [104] for more details) that 𝑎𝑠 is 2/(2𝑛 + 1), while 𝑎𝑟 is approximately

1/2𝑛. Obviously, when 𝑛 grows, 𝑎𝑠 is closer and closer to being twice as big as 𝑎𝑟 .

This leads to the definition of the cross-entropy benchmark fidelity, usually denoted

as 𝐹XEB. Imagine that we are given a random unitary 𝑈 of dimension 2𝑛 and we sample

some binary strings 𝑥1, 𝑥2, … , 𝑥𝑘 . This sampling can be done from measuring |𝜓𝑈 ⟩ = 𝑈 |0⟩

or with a different method (we don’t care). Then, the 𝐹XEB of the samples is defined by

𝐹XEB(𝑥1, … , 𝑥𝑘) ≔
(

2𝑛

𝑘

𝑘

∑

𝑗=1

𝑝𝑈 (𝑥𝑗)
)

− 1,

where 𝑝𝑈 (𝑥𝑗) is the probability of obtaining 𝑥𝑗 when measuring |𝜓𝑈 ⟩, as before. Notice

that this is just the average of the probabilities of the samples (exactly what we computed

earlier) times 2𝑛 and minus 1.

We can compute the 𝐹XEB of our samples with the following piece of code:

fxeb_r = round(2**n*np.mean(p_r)-1,3)

fxeb_s = round(2**n*np.mean(p_s)-1,3)

print("FXEB of uniformly sampled strings:", fxeb_r)

print("FXEB probability of strings sampled according to U:", fxeb_s)

When run, this code gives the following output:

FXEB of uniformly sampled strings: -0.001

FXEB probability of strings sampled according to U: 0.995

374 Chapter 15: Experiments for Quantum Advantage

In general, if you sample your strings according to 𝑝𝑈 , you will obtain values of 𝐹XEB

close to 1, while uniform random sampling will achieve values close to 0. What is more,

there are theoretical arguments that suggest that obtaining a value of 𝐹XEB that is bigger

than 0 is computationally hard for classical computers (see the papers by Aaronson and

his collaborators [106], [107] for more details). This is the basis for using 𝐹XEB as a way

of assessing the performance of quantum computers, a process usually called (not very

surprisingly) cross-entropy benchmarking and abbreviated XEB. This is exactly the

topic that we will address next.

15.2.4 XEB and random circuit sampling
Obviously, in random circuit sampling, we do not receive random unitary operators but

random quantum circuits. However, if these random circuits are constructed in an adequate

way, our analysis for random unitaries also applies to random circuits. A typical approach

is to create the circuits from a number of consecutive layers of one- and two-qubit gates

(see Google’s supremacy paper [18] for an example of this).

In Qiskit, the random_circuit function allows us to create random circuits in a fashion

that is somewhat like that of the RCS experiments. With it, we can create our version of

random circuit sampling and study its behavior under different levels of noise. We will

start with the case of perfect simulation (no noise), to have a baseline. We will create

1000 random circuits of 10 qubits, from which we will sample 100 strings and compute the

resulting 𝐹XEB. In order to converge to random unitaries, we will be using 1000 layers. Our

code is as follows:

from qiskit_aer.primitives import SamplerV2 as Sampler

from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager

from qiskit_aer import AerSimulator

from qiskit.circuit.random import random_circuit

from qiskit.quantum_info import Statevector

backend = AerSimulator()

Random circuit sampling 375

sampler = Sampler(seed = 1234)

p_c = [] # Probabilities according to U of the sampled strings

n_circuits = 1000

n_samples = 100

n = 10

n_layers = 1000

for i in range(n_circuits):

circ = random_circuit(num_qubits = n, depth = n_layers, seed = 1234 + i,

max_operands = 2, measure = True)

pm = generate_preset_pass_manager(backend=backend, optimization_level=1)

t_circ = pm.run(circ)

job = sampler.run([t_circ], shots = n_samples)

results = job.result()

d = results[0].data.c

v_s = [int(s,2) for s in d.get_bitstrings()]

circ.remove_final_measurements()

sv = Statevector(circ)

for s in v_s:

p_c.append(abs(sv[int(s)])**2)

print("FXEB", round((2**n)*np.mean(p_c)-1,3))

Most of the code is self-explanatory, but there are some things that we should highlight

here. The max_operands = 2 parameter in the call to random_circuit indicates that we

want quantum gates that act on at most 2 qubits. The circuits created by this function

may include gates that are not supported by AerSimulator, so we need to transpile them

376 Chapter 15: Experiments for Quantum Advantage

with generate_preset_pass_manager. Finally, we retrieve all the binary strings measured

when running the circuits, we convert them to integers with int(s,2), and compute their

actual probabilities using Statevector. Notice that, in order to do this, we first need to

remove the final measurements from the circuits. With this information, we can then

compute the 𝐹XEB of the samples. If you run this code (be warned: it can be quite slow),

you will obtain an 𝐹XEB of 1.04, which, as we already know from our previous analysis, is

around what we expect from a random circuit sampling experiment. Notice that this value

is higher than 1, which is perfectly consistent with the mathematical definition of 𝐹XEB

(this is not a probability!).

In actual quantum computers, the execution of circuits is affected by noise and, hence,

deviates from the results of perfect simulations. Let’s try to replicate that with Qiskit,

to study how errors can affect the 𝐹XEB that we obtain. In order to achieve that, we will

introduce a very simple type of noise: we will consider only errors in measurements, with

a certain probability of obtaining 1 instead of 0 and vice versa. The code that we will use is

the following:

from qiskit_aer.noise import NoiseModel, pauli_error

noise = NoiseModel()

p_error = 0.02

error_meas = pauli_error([("X", p_error), ("I", 1 - p_error)])

noise.add_all_qubit_quantum_error(error_meas , "measure")

noise_options = {"backend_options": {"noise_model": noise}}

sampler = Sampler(seed = 1234, options = noise_options)

p_c = [] # Probabilities according to U of the sampled strings

Random circuit sampling 377

Qiskit Aer includes quite a number of options to run noisy simulations. Here, we are

focusing only on the use of NoiseModel and a type of error modeled by pauli_error (for

additional options, you can check the Qiskit Aer documentation at https://docs.quant

um.ibm.com/guides/simulate-with-qiskit-aer). In this case, we are just adding, for

each qubit, a probability of 0.02 of applying an 𝑋 gate at the moment of measuring (thus

changing 1 to 0 and 0 to 1). Then, we can just use the main for loop in our previous code

block to run 1000 random circuits and compute the resulting 𝐹XEB. This can be quite slow

(over one hour of total execution time, depending on the specs of your computer), but if

you run it, you will obtain an 𝐹XEB of 0.808. If you then increase p_error to 0.05, you will

reduce the 𝐹XEB to 0.587. And if you use p_error = 0.1, your result will be 0.292. As you

can see, the higher the noise, the closer 𝐹XEB will be to 0.

In the case of real RCS experiments, of course, there are many other sources of errors

and noise: imperfections in the implementation of quantum gates, external interactions,

spontaneous decay of qubits from 1 to 0. . . All this adds up and, in fact, in the original

supremacy experiments, the reported 𝐹XEB was only 0.00224, which seems pretty low (to

put it mildly). But remember that we have reasons to believe [106], [107] that getting values

of 𝐹XEB that are strictly positive is hard for classical computers when a large number of

qubits is involved. And, of course, quantum hardware has improved quite a lot since 2019

and, for example, Quantinuum reported in June 2024 an 𝐹XEB of about 0.35 with its 56-qubit

trapped-ion quantum computer [98], [108]. That is much better, isn’t it?

There is still one question that remains to be answered, though. If simulating these random

circuits is hard for classical computers, how can we obtain the exact probabilities that we

need in order to compute 𝐹XEB? It seems to be an insurmountable problem, because the cases

for which we can efficiently compute the cross-entropy benchmark fidelity with classical

computers are, by definition, not in the supremacy regime. Nevertheless, certain tricks can

be used to estimate 𝐹XEB. For instance, in the original quantum supremacy problem, the

authors explicitly state that “with certain circuit simplifications, we can obtain quantitative

fidelity estimates of a fully operating processor running wide and deep quantum circuits”.

These simplifications include, for instance, removing “a slice of two-qubit gates (a small

https://docs.quantum.ibm.com/guides/simulate-with-qiskit-aer
https://docs.quantum.ibm.com/guides/simulate-with-qiskit-aer

378 Chapter 15: Experiments for Quantum Advantage

fraction of the total number of two-qubit gates), splitting the circuit into two spatially

isolated, non-interacting patches of qubits”. The resulting, smaller circuits can be simulated

exactly and their 𝐹XEB can be computed. Then, the 𝐹XEB for the global circuit is computed

as the product of the individual 𝐹XEB values. Other “tricks” involve the use of modified

sequences of gates, resulting in circuits that are much easier to simulate classically, but

that still have a high number of layers. The 𝐹XEB values for these circuits can be used to

verify that the 𝐹XEB estimations for the hard cases are accurate. Again, we encourage you

to read the original paper [18] for more details.

That is all we wanted to say about random circuit sampling, so it’s time to wrap up this

chapter. . . and the whole book!

15.3 The best is yet to come
As we have seen in the previous section, a lot of effort is being put into demonstrating

quantum advantage through random circuit sampling experiments, but, of course, that is

not the only approach that is being considered. Another prominent technique is that of

boson sampling [109], which is usually carried out in practice with photonic quantum

computers. Some research groups have claimed having achieved quantum supremacy with

this technique [110], [111] but, as in the case of RCS, this is a moving target because of

advances in classical algorithms for this kind of problem [112], [113].

In order to improve the performance of quantum devices and achieve quantum advantage

in these and other tasks, many companies have put forward roadmaps with their plans for

developing new, improved quantum chips in the next few years (see [114] for a very com-

plete report). Most efforts are focused on using quantum error correcting codes, along the

lines of what we described in Chapter 14, to achieve hundreds or even thousands of logical

qubits before the end of this decade. This might lead to the possibility of implementing, in

a fault-tolerant way, some of the quantum procedures that we have described in this book,

also paving the way for quantum advantage in real-world tasks.

At the same time, many researchers in the quantum computing community are exploring

practical applications of noisy quantum devices like the ones that are available today.

The best is yet to come 379

For instance, quantum machine learning and quantum optimization have emerged in the

last decade as promising areas of research both on the theoretical and applied fronts. To

learn more about the kind of algorithms that are being used in these fields, including

quantum annealing, the quantum approximate optimization algorithm (QAOA),

the variational quantum eigensolver (VQE), quantum support vector machines,

and quantum neural networks, we invite you to check out our book A Practical Guide

to Quantum Machine Learning and Quantum Optimization: Hands-on Approach to Modern

Quantum Algorithms [16]. We believe that it is a natural continuation of what you have

already studied here and that it will give you a more complete perspective of the whole

field of quantum computing.

In any case, two things seem very clear to us about the future of quantum computing: that

it is very difficult to predict with accuracy what new developments we will witness in the

next few years, and that they will certainly be exciting. We hope that you have enjoyed

this quantum journey and that you will join us for all that lies ahead. As the famous song

says. . . the best is yet to come!

Summary
In this final chapter, we’ve dived into the race towards quantum advantage and we’ve

discussed why the task of random circuit sampling plays a prominent role in it. We’ve also

discussed about the different probability distributions that arise when considering random

unitaries and how they can be used to define the useful cross-entropy benchmark fidelity.

All this was illustrated with Qiskit code that can be used to compute 𝐹XEB values for random

unitaries and random quantum circuits. In the latter case, also with a simple simulation of

the effect of noise.

Finally, we briefly discussed some of the future directions that quantum computing may

take in the next few years and pointed at some other possibilities for achieving practical

applications of quantum computing—for instance, in the fields of optimization and machine

learning.

380 Chapter 15: Experiments for Quantum Advantage

This brings our journey to its end. We started from very humble beginnings, by studying

quantum systems with a single qubit, and we expanded that all the way to describing

quantum supremacy experiments. Along the way, we learned about quantum money,

quantum key distribution, and quantum teleportation, among many other protocols, and

we studied important quantum procedures such as Shor’s and Grover’s algorithms.

We hope that you have enjoyed reading this book and that you have built a solid under-

standing of the foundations of quantum computing, learning how quantum computers can

be programmed to achieve wonderful feats. Quantum computing is still in its infancy, yet

we are sure it will bring us many more surprising and thrilling developments in the future.

We hope that you stay around to experience and enjoy them!

Appendices

All those appendices that we’ve been constantly referencing over the main text have their

home here. For those curious, we also share some notes on how this book was produced.

This part includes the following contents:

• Appendix A, Complex numbers and basic linear algebra

• Appendix B, The bra-ket notation and other foundational notions

• Appendix C, Measuring the complexity of algorithms

• Appendix D, Installing the tools

• Appendix E, Production notes

A
Mathematical Tools

A tensor is something that transforms like a tensor

— Anthony Zee

The goal of this appendix is to provide a short review of all the mathematical tools that we

use in this book. In particular, we shall review some basic notions about complex numbers

and discuss the foundational concepts of linear algebra. In addition to this, we will briefly

touch upon some modular arithmetic.

If you would like to learn more about any of the topics that we discuss here, there are

plenty of references throughout the text.

Complex numbers
In this section, we will briefly discuss some general properties of complex numbers. This

should be enough to understand the material in the book, but, if you want a deeper dive,

feel free to read Complex analysis by Bak and Newman [115].

384 Mathematical Tools

The set of complex numbers is the set of all numbers of the form 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are

real numbers and 𝑖2 = −1. This might not be the most formal way of presenting them, but

it will do for our purposes!

The way you operate with complex numbers is pretty straightforward. Let 𝑎, 𝑏 , 𝑥 , and 𝑦

be some real numbers. We add complex numbers as

(𝑎 + 𝑏𝑖) + (𝑥 + 𝑦𝑖) = (𝑎 + 𝑥) + (𝑏 + 𝑦)𝑖.

Regarding multiplication, we have

(𝑎 + 𝑏𝑖) ⋅ (𝑥 + 𝑦𝑖) = 𝑎𝑥 + 𝑎𝑦𝑖 + 𝑏𝑖𝑥 + 𝑏𝑦𝑖
2
= (𝑎𝑥 − 𝑏𝑦) + (𝑎𝑦 + 𝑏𝑥)𝑖.

In particular, when 𝑏 = 0, we can deduce that

𝑎(𝑥 + 𝑦𝑖) = 𝑎𝑥 + (𝑎𝑦)𝑖.

Given any complex number 𝑧 = 𝑎 + 𝑏𝑖, its real part, which we denote as Re 𝑧, is 𝑎, and

its imaginary part, which we denote as Im 𝑧, is 𝑏 . Moreover, any such number 𝑧 can be

represented in the two-dimensional plane as a vector (Re 𝑧, Im 𝑧) = (𝑎, 𝑏). The length of

the resulting vector is said to be the module of 𝑧, and it is computed as

|𝑧| =
√
𝑎2 + 𝑏2.

In addition, the counter-clockwise angle that the vector (𝑎, 𝑏) makes with the positive 𝑋

axis is said to be the argument of 𝑧, denoted as arg(𝑧).

If 𝑧 = 𝑎 + 𝑏𝑖 is a complex number, its conjugate is 𝑧∗ = 𝑎 − 𝑏𝑖. In layman’s terms, if you

want to get the conjugate of any complex number, all you have to do is flip the sign of its

imaginary part. It is easy to check that, given any complex number 𝑧,

|𝑧|
2
= 𝑧𝑧

∗
= 𝑧

∗
𝑧,

Mathematical Tools 385

which shows us, incidentally, that 𝑧𝑧∗ is always a non-negative real number.

One of the most well-known formulas involving the use of complex numbers is Euler’s

identity, which reads that, for any real number 𝜃,

𝑒
𝑖𝜃
= cos 𝜃 + 𝑖 sin 𝜃.

This formula can be easily derived from the usual series that defines the exponential

function. According to Euler’s identity and using the usual properties of exponentiation,

we must have, for any real numbers 𝑎 and 𝑏 ,

𝑒
(𝑎+𝑖𝑏)

= 𝑒
𝑎
𝑒
𝑖𝑏
= 𝑒

𝑎
(cos 𝜃 + 𝑖 sin 𝜃).

A complex number is said to be a phase if its module is one. Using Euler’s identity, we can

write any complex number 𝑧 as a product of its module and a phase, as

𝑧 = |𝑧| ⋅ 𝑒
𝑖 arg(𝑧)

.

Consequently, all phases can be written as a complex number of the form 𝑒𝑖𝜃 for a real 𝜃

(where 𝜃, to be precise, is the argument of the phase). Conversely, all complex numbers of

the form 𝑒𝑖𝜃 are phases if 𝜃 is a real number.

For any real number 𝜃, the complex conjugate of 𝑒𝑖𝜃 is

(𝑒
𝑖𝜃
)
∗
= cos 𝜃 − 𝑖 sin 𝜃 = cos(−𝜃) + 𝑖 sin(−𝜃) = 𝑒

−𝑖𝜃
,

where we have used the fact that, for any real 𝑥 , cos(𝑥) = cos(−𝑥) and sin(−𝑥) = − sin(𝑥).

Linear algebra
In this section, we will present a very broad overview of linear algebra. More than anything,

this is meant to be a refresher. If you would like to learn linear algebra from the basics,

we suggest reading Sheldon Axler’s wonderful book [116]. If you are all-in with abstract

386 Mathematical Tools

algebra, we can also recommend the great book by Dummit and Foote [117]. With this out

of the way, let’s do some algebra!

When most people think of vectors, they think of fancy arrows pointing in a direction. But,

where others see arrows, we mathematicians—in our tireless pursuit of abstraction—see

elements of vector spaces. And what is a vector space? Simple!

Vector spaces
Let 𝔽 be the real or the complex numbers. An 𝔽-vector space is a set 𝑉 together with an

“addition” function (usually represented by +, for obvious reasons) and a “multiplication by

scalars” function (denoted like usual multiplication). Addition needs to take any two vectors

and return another vector, that is, + needs to be a function 𝑉 × 𝑉 ⟶ 𝑉 . Multiplication

by scalars, as the name suggests, must take a scalar (an element of 𝔽) and a vector, and

return a vector, that is, it needs to be a function 𝔽 ×𝑉 ⟶ 𝑉 . Moreover, vector spaces must

satisfy, for any arbitrary 𝛼1, 𝛼2 ∈ 𝔽 and 𝑣1, 𝑣2, 𝑣3 ∈ 𝑉 , the following properties:

• Associativity for addition : (𝑣1 + 𝑣2) + 𝑣3 = 𝑣1 + (𝑣2 + 𝑣3)

• Commutativity for addition: 𝑣1 + 𝑣2 = 𝑣2 + 𝑣1

• Identity element for addition: there must exist a 0 ∈ 𝑉 such that, for every vector

𝑣 ∈ 𝑉 , 𝑣 + 0 = 𝑣

• Opposites for addition: there must exist a −𝑣1 ∈ 𝑉 such that 𝑣1 + (−𝑣1) = 0

• Compatibility of multiplication by scalars with multiplication in 𝔽: (𝛼1 ⋅ 𝛼2) ⋅ 𝑣1 =

𝛼1 ⋅ (𝛼2 ⋅ 𝑣1)

• Distributivity with respect to vector addition: 𝛼1(𝑣1 + 𝑣2) = 𝛼1𝑣1 + 𝛼1𝑣2

• Distributivity with respect to scalar addition: (𝛼1 + 𝛼2)𝑣1 = 𝛼1𝑣1 + 𝛼2𝑣1

• Identity for multiplication by scalars: 1 ⋅ 𝑣1 = 𝑣1

Mathematical Tools 387

To learn more. . .

If you, like us, love abstraction, you should know that vector spaces are usually

defined over an arbitrary field—not just over the real or complex numbers! If you

want to learn more, we suggest reading the book by Dummit and Foote [117].

These are some examples of vector spaces:

• The set of real numbers with the usual addition and multiplication is a real vector

space.

• The set of complex numbers with complex number addition and multiplication is a

complex vector space. Moreover, it can be trivially transformed into a real vector

space by restricting multiplication by scalars to multiplication of complex numbers

by real numbers.

• The set ℝ𝑛 with the usual component-wise addition and multiplication by scalars

(real numbers) is a vector space. If we fix 𝑛 = 2, 3, that’s where we can find those

fancy arrows everyone is talking about!

• Most importantly for us, the set ℂ𝑛 with component-wise addition and scalar multi-

plication by complex numbers is a vector space.

• Just to give a cute example, the set of all smooth functions on a closed finite interval

of the real numbers is a vector space. You can try to define addition and multiplication

by scalars of functions yourself.

When we refer to a vector space on a set 𝑉 with addition + and multiplication by scalars ⋅,

we should denote it as (𝑉 , +, ⋅) in order to indicate what function we are considering as

the addition function and what function we are taking to be the multiplication by scalars.

Nevertheless, in all honesty, (𝑉 , +, ⋅) is a pain to write, and we mathematicians—like all

human beings—have a natural tendency toward laziness. So we usually just write 𝑉 and

let + and ⋅ be inferred from context whenever that is reasonable to do.

388 Mathematical Tools

Bases and coordinates
Some 𝔽-vector spaces 𝑉 are finite-dimensional: this means that there is a finite family

of vectors {𝑣1, … , 𝑣𝑛} ⊆ 𝑉 such that, for any vector 𝑣 ∈ 𝑉 , there exist some unique scalars

𝛼1, … , 𝛼𝑛 ∈ 𝔽 for which

𝑣 = 𝛼1𝑣1 + ⋯ + 𝛼𝑛𝑣𝑛.

The scalars 𝛼1, … , 𝛼𝑛 are said to be the coordinates of 𝑣 with respect to the basis {𝑣1, … , 𝑣𝑛}.

Also, any 𝑣 that can be written in the preceding form is said to be a linear combination of

𝑣1, … , 𝑣𝑛. The natural number 𝑛 is said to be the dimension of the vector space, and it is a

fact of life that any two bases of a vector space need to have the same number of elements,

so the dimension is well defined. If you want proof (which you should want!), check your

favorite linear algebra textbook; either of the two that we have suggested should do the

job.

Two examples of finite-dimensional vector spaces are ℝ𝑛 and ℂ𝑛 (with the natural addition

and multiplication operations). For example, a basis of ℂ3 or ℝ3 would be

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

To further illustrate this, if we considered the vector (𝑖, 3 + 2𝑖, −2) in ℂ3, we would have

(𝑖, 3 + 2𝑖, −2) = 𝑖 ⋅ (1, 0, 0) + (3 + 2𝑖) ⋅ (0, 1, 0) + (−2) ⋅ (0, 0, 1),

and this representation in terms of these basis vectors is, clearly, unique. What is more, this

basis is so natural and common that it has a name, the canonical basis, and its vectors are

usually denoted as {𝑒1, 𝑒2, 𝑒3}. An analogous basis can be defined on ℝ𝑛 and ℂ𝑛 for any 𝑛.

Important note

We use the canonical basis extensively in this book, but with a different name and

notation. We refer to it as the computational basis.

Mathematical Tools 389

When you have a vector in a finite-dimensional vector space, sometimes it is handy to

work with its coordinates with respect to some basis of your choice rather than working

with its “raw” expression. In order to do this, we sometimes represent a vector 𝑣 with

coordinates 𝛼1, … , 𝛼𝑛 by a column matrix having the coordinates as entries. For example,

in the previous example, the vector (1, 3 + 2𝑖, −2) would be represented by the column

matrix of coordinates
⎛
⎜
⎜
⎜
⎜
⎝

1

3 + 2𝑖

−2

⎞
⎟
⎟
⎟
⎟
⎠

with respect to the canonical basis {𝑒1, 𝑒2, 𝑒3}.

Important note

It is very important to remember that the column matrix of coordinates of a vector

is always defined with respect to a certain basis.

If we considered, for instance, the basis {𝑒1, 𝑒3, 𝑒2}, then the coordinates of the aforemen-

tioned vector would be
⎛
⎜
⎜
⎜
⎜
⎝

1

−2

3 + 2𝑖

⎞
⎟
⎟
⎟
⎟
⎠

.

And, yes, order matters.

Linear maps and eigenstuff
Now that we know what vector spaces are, it is natural to wonder how we can define

transformations 𝐿 ∶ 𝑉 ⟶𝑊 between some 𝔽-vector spaces 𝑉 and 𝑊 . In fairness, you

could define any such transformation 𝐿 however you wanted—we are not here to set

boundaries on your mathematical freedom. But, if you want 𝐿 to play nicely with the

vector space structure of 𝑉 and 𝑊 , you will want it to be linear. That is, you will want to

390 Mathematical Tools

have, for any vectors 𝑣1, 𝑣2 ∈ 𝑉 and any scalar 𝛼 ∈ 𝔽,

𝐿(𝑣1 + 𝑣2) = 𝐿(𝑣1) + 𝐿(𝑣2), 𝐿(𝛼 ⋅ 𝑣1) = 𝛼𝐿(𝑣1).

Keep in mind that the addition and multiplication by scalars on the left-hand side of these

expressions is that of 𝑉 , while the operations on the right-hand side of the expressions are

those of 𝑊 .

Linear maps are wonderful. Not only do they have very nice properties, but they are

also very easy to define. If 𝑣1, … , 𝑣𝑛 is a basis of 𝑉 and you want to define a linear map

𝐿 ∶ 𝑉 ⟶𝑊 , all you have to do is give a value—any value—to 𝐿(𝑣𝑘) for every 𝑘 = 1,… , 𝑛.

Then, by linearity, the function can be extended to all of 𝑉 as

𝐿(𝛼1𝑣1 + ⋯ + 𝛼𝑛𝑣𝑛) = 𝛼1𝐿(𝑣1) + ⋯ + 𝛼𝑛𝐿(𝑣𝑛)

for any scalars 𝛼1, … , 𝛼𝑛 ∈ 𝔽. Furthermore, if we let {𝑤1, … , 𝑤𝑚} be a basis of 𝑊 and we let

𝑎𝑘,𝑙 ∈ 𝔽 be the unique scalars such that

𝐿(𝑣𝑘) = 𝑎1𝑘𝑤1 + ⋯ + 𝑎𝑛𝑘𝑤𝑛,

then the coordinates of 𝐿(𝑣) for any 𝑣 = 𝛼1𝑣1 + ⋯ + 𝛼𝑛𝑣𝑛 ∈ 𝑉 with respect to {𝑤1, … , 𝑤𝑚}

will be
⎛
⎜
⎜
⎜
⎜
⎝

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝛼1

⋮

𝛼𝑛

⎞
⎟
⎟
⎟
⎟
⎠

.

To put it in perhaps more schematic terms,

⎛
⎜
⎜
⎜
⎜
⎝

|

𝐿(𝑣)

|

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

|

𝑣

|

⎞
⎟
⎟
⎟
⎟
⎠

,

Mathematical Tools 391

where the column matrices represent the coordinates of the vectors with respect to the

bases {𝑣1, … , 𝑣𝑛} and {𝑤1, … , 𝑤𝑚}. We say that the matrix (𝑎𝑘𝑙)𝑘𝑙 is the coordinate matrix

of 𝐿 with respect to these bases. If 𝑉 = 𝑊 and we have a map 𝐿 ∶ 𝑉 ⟶ 𝑉 , we say that 𝐿

is an endomorphism or operator1 and, usually, we consider the same basis everywhere.

As an example, consider the endomorhpism on the Euclidean plane ℝ2 that rotates all

the vectors in the plane by a fixed angle 𝛼 counter-clockwise (this operation is clearly

linear). The vectors (1, 0) and (0, 1), if they suffer such a rotation, become (cos 𝛼, sin 𝛼) and

(− sin 𝛼, cos 𝛼). Thus, the coordinate matrix of this rotation operation must be

(

cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼)
.

Any two linear operators 𝐴 and 𝐵 acting on the same spaces can be added, thus giving

rise to the linear operator 𝐴 + 𝐵 which brings any vector 𝑣 to 𝐴(𝑣) + 𝐵(𝑣); the coordinate

matrix of 𝐴 + 𝐵 is, clearly, the sum of the matrices 𝐴 and 𝐵. This means that, the matrix

entries of 𝐴 + 𝐵 are (𝐴 + 𝐵)𝑗𝑘 = 𝐴𝑗𝑘 + 𝐵𝑗𝑘:

⎛
⎜
⎜
⎜
⎜
⎝

𝐴11 ⋯ 𝐴1𝑛

⋮ ⋱ ⋮

𝐴𝑛1 ⋯ 𝐴𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎝

𝐵11 ⋯ 𝐵1𝑛

⋮ ⋱ ⋮

𝐵𝑛1 ⋯ 𝐵𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝐴11 + 𝐵11 ⋯ 𝐴1𝑛 + 𝐵1𝑛

⋮ ⋱ ⋮

𝐴𝑛1 + 𝐵𝑛1 ⋯ 𝐴𝑛𝑛 + 𝐵𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

.

Any two linear functions 𝐴 ∶ ℂ𝑟 ⟶ ℂ𝑛 and 𝐵 ∶ ℂ𝑚 ⟶ ℂ𝑟 can be composed into the

linear function 𝐴 ◦ 𝐵 ∶ ℂ𝑚 ⟶ ℂ𝑛. The coordinate matrix of the composition 𝐴 ◦ 𝐵 is the

matrix product 𝐴𝐵, whose entries are given by

(𝐴𝐵)𝑗𝑘 =

𝑟

∑

𝑡=1

𝐴𝑗𝑡𝐵𝑡𝑘 .

Notice that if the dimensions of 𝐴 and 𝐵 are 𝑛 × 𝑟 and 𝑟 × 𝑛, those of 𝐴𝐵 are 𝑛 × 𝑚.

1This name is more ambiguous, as some authors use the term “linear operator” to refer to any linear map.

392 Mathematical Tools

There is a very special kind of endomorphism that can be defined on any vector space: the

identity. This is just a function 𝐼 that takes any vector 𝑣 to 𝐼 (𝑣) = 𝑣. If 𝐿 ∶ 𝑉 ⟶ 𝑉 is an

endomorphism, we say that a function 𝐿−1 is the inverse of 𝐿 if both 𝐿 ◦ 𝐿−1 and 𝐿−1 ◦ 𝐿 are

equal to the identity—actually, checking either of the two conditions is already sufficient

when working with endomorphisms on finite-dimensional vector spaces. The coordinate

matrix of the inverse of a map with coordinate matrix 𝐴 is just the usual inverse matrix

𝐴−1. What is more, a linear map is invertible if and only if so is its coordinated matrix.

When you have an endomorphism 𝐿 ∶ 𝑉 ⟶ 𝑉 , there may be some vectors 0 ≠ 𝑣 ∈ 𝑉 for

which there exists a scalar 𝜆 such that 𝐿(𝑣) = 𝜆𝑣. These vectors are said to be eigenvectors

and the corresponding value 𝜆 is said to be their eigenvalue. In some cases, you will be

able to find a basis of eigenvectors 𝑣1, … , 𝑣𝑛 with some associated eigenvectors 𝜆1, … , 𝜆𝑛.

With respect to this basis, the coordinate matrix of 𝐿 would be a diagonal matrix

⎛
⎜
⎜
⎜
⎜
⎝

𝜆1

⋱

𝜆𝑛

⎞
⎟
⎟
⎟
⎟
⎠

.

For all this, we say that an operator for which there exists a basis of eigenvectors is

diagonalizable. Obviously, by the very definition of basis, if an operator is diagonalizable,

then all the vectors in the space must be a linear combination of eigenvectors of the

operator.

The eigenvalues of a linear operator 𝐴 are all the values 𝜆 such that det(𝐴 − 𝜆𝐼) = 0, where

𝐼 is the identity matrix and det denotes the determinant. For any 2 × 2 coordinate matrix,

the determinant can be computed as

det
(

𝑎 𝑏

𝑐 𝑑)
= 𝑎𝑑 − 𝑏𝑐.

Mathematical Tools 393

This means that the eigenvectors of a matrix like the preceding one will be the values 𝜆

such that

det
(

𝑎 − 𝜆 𝑏

𝑐 𝑑 − 𝜆)
= (𝑎 − 𝜆)(𝑑 − 𝜆) − 𝑏𝑐 = 0.

Inner products and adjoint operators
On an 𝔽-vector space 𝑉 , we may wish to define an inner product ⟨−|−⟩. This will be an

operation taking any pair of vectors and returning a scalar, that is, a function 𝑉 × 𝑉 ⟶ 𝔽,

satisfying the following properties for any 𝑢, 𝑣1, 𝑣2 ∈ 𝑉 , and 𝛼1, 𝛼2 ∈ 𝔽:

• Conjugate symmetry: ⟨𝑣1|𝑣2⟩ = ⟨𝑣2|𝑣1⟩
∗. Of course, if the vector space is defined

over ℝ, then ⟨𝑣2|𝑣1⟩
∗
= ⟨𝑣2|𝑣1⟩, so ⟨𝑣1|𝑣2⟩ = ⟨𝑣2|𝑣1⟩.

• Linearity: ⟨𝑢|𝛼1𝑣1 + 𝛼2𝑣2⟩ = 𝛼1 ⟨𝑢|𝑣1⟩ + 𝛼2 ⟨𝑢|𝑣2⟩.

• Positive-definiteness: If 𝑢 ≠ 0, ⟨𝑢|𝑢⟩ is real and greater than 0.

It is easy to check that the following is an inner product on ℂ𝑛:

⟨(𝛼1, … , 𝛼𝑛)|(𝛽1, … , 𝛽𝑛)⟩ = 𝛼
∗
1𝛽1 + ⋯ + 𝛼

∗
𝑛𝛽𝑛.

When we have a vector space with an inner product—which is commonly said to be

an inner product space—two vectors 𝑣 and 𝑤 are said to be orthogonal if ⟨𝑣|𝑤⟩ = 0.

Moreover, a basis is said to be orthogonal if all its vectors are pairwise orthogonal.

With an inner product, we can define a norm on a vector space. We won’t get into the

details of what norms are but, very vaguely, we can think of them as a way of measuring

the length of a vector (don’t think about arrows, please, don’t think about arrows. . .). The

norm induced by a scalar product ⟨⋅|⋅⟩ is

‖𝑣‖ =
√
⟨𝑣|𝑣⟩.

A vector is said to be a unit vector if its norm is one. In addition, we say that a basis is

orthonormal if, in addition to being orthogonal, all its vectors are unit vectors.

394 Mathematical Tools

When we are given a matrix 𝐴 = (𝑎𝑘𝑙), we define its conjugate transpose to be 𝐴† = (𝑎∗
𝑙𝑘
),

that is
⎛
⎜
⎜
⎜
⎜
⎝

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

†

=

⎛
⎜
⎜
⎜
⎜
⎝

𝑎∗11 ⋯ 𝑎∗𝑛1

⋮ ⋱ ⋮

𝑎∗1𝑛 ⋯ 𝑎∗𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

.

The following identities can be easily checked for square matrices and, therefore, for linear

maps:

(𝐴 + 𝐵)
†
= 𝐴

†
+ 𝐵

†
, (𝐴𝐵)

†
= 𝐵

†
𝐴
†
.

Here, 𝐴𝐵 denotes the usual matrix multiplication.

If 𝐿 ∶ 𝑉 ⟶ 𝑉 is an endomorphism on a finite-dimensional vector space 𝑉 , we can define

its Hermitian adjoint as the only linear map 𝐿† ∶ 𝑉 ⟶ 𝑉 that has, as coordinate basis

with respect to some basis, the conjugate transpose of the coordinated matrix of 𝐿 with

respect to that same basis. It can be shown that this notion is well defined, that is, that you

always get the same linear map regardless of your choice of basis.

To learn more. . .

The definition that we have given is, well, not the most rigorous one. Usually, when

you have a pair of inner product spaces 𝑉 and 𝑊 with inner products ⟨⋅|⋅⟩𝑉 and

⟨⋅|⋅⟩𝑊 , the adjoint of a linear map 𝐿 ∶ 𝑉 ⟶𝑊 is defined to be the only linear map

𝐿† ∶ 𝑊 ⟶ 𝑉 such that, for every 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 ,

⟨𝑤|𝐿(𝑣)⟩𝑊 = ⟨𝐿
†
(𝑤) ∣ 𝑣⟩𝑉 .

We invite you to check that, for the particular case that we have considered (𝑉 = 𝑊

finite dimensional), both definitions agree.

We say that an endomorphism 𝐿 is self-adjoint or Hermitian if 𝐿 = 𝐿†. And it is a fact of

life (again, we encourage you to check your favorite linear algebra textbook) that every

Hermitian operator has an orthonormal basis of eigenvectors with real eigenvalues.

Mathematical Tools 395

Also, we say that an endomorphism 𝑈 is unitary if 𝑈†𝑈 = 𝑈𝑈† = 𝐼 , where 𝐼 denotes the

identity matrix. Among the many good properties of unitary operators, they preserve the

inner products of vectors: this means that, for any two vectors 𝑣 and 𝑤, if 𝑈 is unitary,

then

⟨𝑣|𝑤⟩ = ⟨𝑣
|
|𝑈

−1
𝑈𝑤⟩ = ⟨𝑣

|
|
|
𝑈

†
𝑈𝑤⟩ = ⟨𝑈𝑣|𝑈𝑤⟩ .

This means that they also preserve the norms of vectors; therefore, all the eigenvectors of

unitary operators must be phases. Indeed, if 𝜆 is an eigenvector of a unitary operator 𝑈

then, for any eigenvector 𝑣,

‖𝑣‖ = ‖𝑈𝑣‖ = ‖𝜆𝑣‖ =
√
⟨𝜆𝑣|𝜆𝑣⟩ =

√
𝜆𝜆∗ ⟨𝑣|𝑣⟩ = |𝜆| ⋅ ‖𝑣‖,

hence |𝜆| must be equal to 1.

A crash course in modular arithmetic
If your watch says it’s 15:00 and we ask you the time, you will say that it is three o’clock.

But you would be lying, wouldn’t you? Your watch says it’s 15:00 but you’ve just said that

it is three o’clock. What is wrong with you? Well, probably nothing. It turns out that, when

you were telling us the time, you were subconsciously working in arithmetic modulo 12.

Vaguely speaking, when you work with numbers modulo 𝑛, all you are doing is assuming

that 𝑛 and 0 represent the same number. In this way, when you work in arithmetic modulo

4, for example,

0 ≡ 4 ≡ 8 ≡ 12 ≡ 16 mod 4,

1 ≡ 5 ≡ 9 ≡ 13 ≡ 17 mod 4,

2 ≡ 6 ≡ 10 ≡ 14 ≡ 18 mod 4,

and so on and so forth. Notice how we have written ≡ rather than = to denote that those

numbers are not, well, equal on their own, but just that they are equal modulo 4—that’s

also why we have that cute mod 4 on the right.

396 Mathematical Tools

In this modular arithmetic setting, you can compute additions and multiplications as usual.

For example, when working modulo 4,

2 ⋅ 3 = 6 ≡ 2 mod 4.

Ha! Look at what we have done! Now you can tell all your friends that 2 times 3 is 2 (you

can then silently whisper “modulo 4” and still be technically correct).

We have just seen how, when you work with modular arithmetic, you can multiply numbers

just as you can add them. And this begs the question, can you find a multiplicative

inverse for any number in modular arithmetic? By this, we mean whether for any number

𝑥 and any number 𝑛, there exists a number 𝑦 such that 𝑥𝑦 ≡ 1 mod 𝑛. For example, the

multiplicative inverse of 3 modulo 5 would clearly be 2 as 3 ⋅ 2 ≡ 6 ≡ 1 mod 5, but can

these inverses be found for any number? Turns out that the answer is negative.

As a consequence of a result known as Bézout’s identity (which we will neither state nor

prove here), a necessary and sufficient condition for a number 𝑥 to have a multiplicative

inverse modulo 𝑛 is for 𝑥 and 𝑛 to be coprime, i.e., for their greatest common divisor to be

1. Now if 𝑥 has a multiplicative inverse 𝑦, then the multiplicative inverse of 𝑥𝑘 will be 𝑦𝑘

(modulo whatever). Thus, if (and only if) 𝑥 and 𝑛 are coprime, 𝑥𝑘 will have a multiplicative

inverse modulo 𝑛 for any natural number 𝑘.

To learn more. . .

Can’t get enough of modular arithmetic? Dummit and Foote have you covered!

Have fun [117].

B
The Bra-Ket Notation and
Other Foundational Notions

The bra-ket notation breaks the Law of Conservation of Sticks

— One of the authors of this book

The kets that are used to represent quantum states are simply a fancy way of representing

vectors in a complex vector space. In particular, the state of an 𝑛-qubit system is just a unit

vector in ℂ2𝑛 . Consequently, all the notions that we considered for arbitrary vectors also

apply to states. Just as two vectors could be orthogonal, two states can be orthogonal if

their scalar product is zero. Just as a bunch of vectors could form a basis, so can a bunch of

states, and this basis can be orthonormal if all the vectors within it are pairwise orthogonal.

There’s not a lot of mystery to this.

In this appendix, we will explore the missing ingredient of the bra-ket notation: bras. And

we will also briefly touch upon a very widely-used tool to represent one-qubit states: the

Bloch sphere.

398 The Bra-Ket Notation and Other Foundational Notions

Ket’s evil sibling: bras
Know those amazing kets we have been working with? We will now introduce a construc-

tion that is dual to them and that will allow us to easily refer to the amplitudes of any qubit

state.

Consider the canonical basis |0⟩ , … , |𝑁 − 1⟩ in ℂ𝑁 and a ket of the form |𝜓⟩ ≔ 𝛼0 |0⟩ + ⋯+

𝛼𝑁−1 |𝑁 − 1⟩. Its associated bra is the construction

⟨𝜓| ≔ 𝛼
∗
0 ⟨0| + ⋯ + 𝛼

∗
𝑁−1 ⟨𝑁 − 1| ,

where we use the superscript ∗ to denote complex conjugation (c.f. Appendix A). In terms

of matrices, the bras ⟨0| , ⟨1| , … ⟨𝑁 − 1| denote the row matrices

⟨0| =
(1 0 ⋯ 0)

, ⟨1| =
(0 1 0⋯ 0)

, … , ⟨𝑁 − 1| =
(0 ⋯ 0 1)

.

This means that, in general,

|𝜓⟩ =

⎛
⎜
⎜
⎜
⎜
⎝

𝛼0

⋮

𝛼𝑁−1

⎞
⎟
⎟
⎟
⎟
⎠

⟹ ⟨𝜓| =
(𝛼

∗
0 ⋯ 𝛼∗𝑁−1)

.

In short, in order to transform a ket into a bra, matrix-wise, we just have to transpose the

matrix and transform all the entries into their conjugates. This is denoted with a superscript

†; thus, ⟨𝜓| = |𝜓⟩
†, and |𝜓⟩ = ⟨𝜓|

†.

Now we get to the real pun of the bra-ket notation. Imagine that you have two kets

|𝜓⟩ =

⎛
⎜
⎜
⎜
⎜
⎝

𝜓0

⋮

𝜓𝑁−1

⎞
⎟
⎟
⎟
⎟
⎠

, |𝜑⟩ =

⎛
⎜
⎜
⎜
⎜
⎝

𝜑0

⋮

𝜑𝑁−1

⎞
⎟
⎟
⎟
⎟
⎠

.

The Bra-Ket Notation and Other Foundational Notions 399

What is their scalar product equal to? Well, it is not hard to notice that it will be equal to

the product ⟨𝜓| |𝜑⟩. Indeed,

⟨𝜓| |𝜑⟩ =
(𝜓

∗
0 ⋮ 𝜓∗

𝑁−1)

⎛
⎜
⎜
⎜
⎜
⎝

𝜑0

⋮

𝜑𝑁−1

⎞
⎟
⎟
⎟
⎟
⎠

= 𝜓
∗
0𝜑0 + ⋯ + 𝜓

∗
𝑁−1𝜑𝑁−1.

Physicists have a great sense of aesthetics, so—ignoring the Law of Conservation of Sticks—

they (and we) write ⟨𝜓|𝜑⟩ instead of the more awkward looking ⟨𝜓| |𝜑⟩. The construction

⟨𝜓|𝜑⟩ is known as a braket, as it is a bra followed by a ket—and that’s the pun of the

bra-ket notation!

One of the beautiful things about scalar products is that they allow us to effortlessly refer

to the amplitudes of a qubit state. Indeed, given any |𝜓⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩,

⟨0|𝜓⟩ = 𝛼0 ⟨0|0⟩ + 𝛼1���*
0

⟨0|1⟩ = 𝛼0, ⟨1|𝜓⟩ = 𝛼1,

where we have used the fact that all the states in the computational basis are orthogonal.

This means that, given any state of the preceding form, the probabilities of getting an

outcome 0 or 1 after a measurement can be computed as

𝑃0 = |⟨0|𝜓⟩|
2
, 𝑃1 = |⟨1|𝜓⟩|

2
.

To learn more. . .

For those of you who, like us, are mathematical geeks, a few formal clarifications are

in order. Kets are just a fancy way of denoting that a certain object is a vector in a

complex Hilbert space, and their associated bras are just their Riesz representations

in the dual space (see Theorem 16.1 in [118]). Thus, if |𝑣⟩ ∈ 𝐻 is a vector in a Hilbert

space,

⟨𝑣| ≔ (𝑥 ∈ 𝐻 ↦ ⟨𝑥, 𝑣⟩) ∈ 𝐻
∗
,

400 The Bra-Ket Notation and Other Foundational Notions

where 𝐻 ∗ is the topological dual of 𝐻 and we use ⟨⋅, ⋅⟩ to denote the inner product

of 𝐻 assuming it to be linear with respect to the second argument (for consistency

with the rest of the book).

As a final remark on the computation of bras from kets and kets from bras, if |𝜓⟩ is a ket

and 𝐴 is a linear operator, the associated bra to 𝐴 |𝜓⟩ would be ⟨𝜓| 𝐴†. Analogously, the

associated ket to a bra ⟨𝜓| 𝐴 is 𝐴† |𝜓⟩. If this is not intuitively obvious to you, you can

convince yourself by writing 𝐴 and |𝜓⟩ in terms of matrices.

The Bloch sphere
The state of a quantum computer can be somewhat difficult to visualize, especially as it

involves complex numbers. Nevertheless, at least for one-qubit systems, there is a simple

and elegant way of visualizing their states, and it only involves a humble sphere!

Consider an arbitrary one-qubit state of the form |𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ and let 𝑟1 = |𝑎|, 𝑟2 = |𝑏|,

𝛼1 = arg(𝑎) and 𝛼2 = arg(𝑏). Clearly, we will have

𝑎 = 𝑟1𝑒
𝑖𝛼1 , 𝑏 = 𝑟2𝑒

𝑖𝛼2 .

We know that 𝑟21 + 𝑟
2
2 = |𝑎|

2
+ |𝑏|

2
= 1 and, since 0 ≤ 𝑟1, 𝑟2 ≤ 1, there must exist an angle 𝜃

in [0, 𝜋] such that cos(𝜃/2) = 𝑟1 and sin(𝜃/2) = 𝑟2. The reason for considering 𝜃/2 instead

of 𝜃 in the cosine and sine will be apparent in a moment. Notice that, by now, we have

|𝜓⟩ = cos
𝜃

2
𝑒
𝑖𝛼1 |0⟩ + sin

𝜃

2
𝑒
𝑖𝛼2 |1⟩ .

If we multiply |𝜓⟩ by the global phase 𝑒−𝑖𝛼1 , we can obtain the equivalent representation

|𝜓⟩ = cos
𝜃

2
|0⟩ + sin

𝜃

2
𝑒
𝑖𝜑 |1⟩ ,

The Bra-Ket Notation and Other Foundational Notions 401

Figure B.1: An arbitrary one-qubit state in the Bloch sphere

where we have defined 𝜑 = 𝛼2 − 𝛼1. Remember that, as we discuss in Chapter 2, global

phases are computationally negligible.

In this way, we can describe the state of any qubit with just two numbers 𝜃 ∈ [0, 𝜋] and

𝜑 ∈ [0, 2𝜋] that we can interpret as a polar angle and an azimuthal angle, respectively

(that is, we are using what are known as spherical coordinates). This gives us a three-

dimensional point

(sin 𝜃 cos 𝜑, sin 𝜃 sin 𝜑, cos 𝜃)

that locates the state of the qubit on the surface of a sphere, called the Bloch sphere (see

Figure B.1).

Notice that 𝜃 runs from 0 to 𝜋 to cover the whole range from the top to the bottom of the

sphere. This is why we used 𝜃/2 in the representation of our preceding qubit. We only

needed to get up to 𝜋/2 for our angles in the sines and cosines!

In the Bloch sphere, |0⟩ is mapped to the North pole and |1⟩ to the South pole. In general,

states that are orthogonal with respect to the inner product are antipodal on the sphere.

For instance, |+⟩ and |−⟩ both lie on the equator, but on opposite points of the sphere. As

we already know, the 𝑋 gate takes |0⟩ to |1⟩ and |1⟩ to |0⟩, but leaves |+⟩ and |−⟩ unchanged,

at least up to an irrelevant global phase. In fact, this means that the 𝑋 gate acts like a

rotation of 𝜋 radians around the 𝑋 axis of the Bloch sphere. . . so now you know why we

402 The Bra-Ket Notation and Other Foundational Notions

use that name for the gate! In the same manner, 𝑍 and 𝑌 are rotations of 𝜋 radians around

the 𝑍 and 𝑌 axes, respectively.

We can generalize this behavior to obtain rotations of any angle around any axis of the

Bloch sphere. For instance, for the 𝑋 , 𝑌 , and 𝑍 axes we may define

𝑅𝑋 (𝜃) = 𝑒
−𝑖 𝜃

2
𝑋
= cos

𝜃

2
𝐼 − 𝑖 sin

𝜃

2
𝑋 =

(

cos 𝜃
2

−𝑖 sin 𝜃
2

−𝑖 sin 𝜃
2

cos 𝜃
2

)
,

𝑅𝑌 (𝜃) = 𝑒
−𝑖 𝜃

2
𝑌
= cos

𝜃

2
𝐼 − 𝑖 sin

𝜃

2
𝑌 =

(

cos 𝜃
2

− sin 𝜃
2

sin 𝜃
2

cos 𝜃
2
)
,

𝑅𝑍(𝜃) = 𝑒
−𝑖 𝜃

2
𝑍
= cos

𝜃

2
𝐼 − 𝑖 sin

𝜃

2
𝑍 =

(

𝑒−𝑖
𝜃
2 0

0 𝑒𝑖
𝜃
2)

≡
(

1 0

0 𝑒𝑖𝜃)
,

where we use the ≡ symbol for equivalent action up to a global phase. Notice that 𝑅𝑋 (𝜋) ≡

𝑋 , 𝑅𝑌 (𝜋) ≡ 𝑌 , 𝑅𝑍(𝜋) ≡ 𝑍 , 𝑅𝑍(𝜋2) ≡ 𝑆, and 𝑅𝑍(𝜋4) ≡ 𝑇 .

In fact, it can be proved (see, for instance, the book by Nielsen and Chuang [13]) that for

any one-qubit gate 𝑈 , there exists a unit vector 𝑟 = (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) and an angle 𝜃 such that

𝑈 ≡ cos
𝜃

2
𝐼 − 𝑖 sin

𝜃

2
(𝑟𝑥𝑋 + 𝑟𝑦𝑌 + 𝑟𝑧𝑍).

For example, choosing 𝜃 = 𝜋 and 𝑟 = (1/
√
2, 0, 1/

√
2), we can obtain the Hadamard gate,

for it holds that

𝐻 ≡ −𝑖
1
√
2
(𝑋 + 𝑍).

Additionally, it can also be proved that, again for any one-qubit gate 𝑈 , there exist three

angles 𝛼, 𝛽, and 𝛾 such that

𝑈 ≡ 𝑅𝑍(𝛼)𝑅𝑌 (𝛽)𝑅𝑍(𝛾).

In fact, you can obtain such a decomposition for any two rotation axes as long as they are

not parallel, not just for 𝑌 and 𝑍 .

The Bra-Ket Notation and Other Foundational Notions 403

To learn more. . .

In this book, we only use rotation gates every now and then, but they are core

in other areas of quantum computing such as quantum machine learning. If that

sounds like something you could be interested in, we invite you to read our other

book A Practical Guide to Quantum Machine Learning and Quantum Optimization:

Hands-on Approach to Modern Quantum Algorithms [16].

C
Measuring the Complexity
of Algorithms

The art of simplicity is a puzzle of complexity

— Douglas Horton

Computational complexity theory is the branch of theoretical computer science that is

concerned with quantifying the resources needed to solve problems with algorithms. It

asks questions such as “How much time is needed to multiply two integer numbers of 𝑛 bits

each?”, “Do you need more memory space to solve a problem than to check its solution?”,

or “Is randomness useful in computational tasks?”.

In this appendix, we will focus mainly on the mathematical techniques involved in estimat-

ing how much time is required to solve certain problems. For a thorough treatment of this

and other topics (including space or memory complexity, the role of randomness in compu-

tation, approximation algorithms and other advanced matters), you can check standard

406 Measuring the Complexity of Algorithms

computational complexity books such as the ones by Sipser [3], Papadimitriou [119], or

Arora and Barak [120].

To get started, in order to measure how much time is used by a certain algorithm, we first

need to assign a cost to its different instructions. This will depend on the computational

model used to describe the algorithm, but usually, simple instructions are assumed to be

executed in a unit of time. For instance, when it comes to finding a time metric for quantum

circuits, it is common to consider the number of quantum gates (usually, from a fixed

universal set of one- and two-qubit gates) needed to solve the problem as a function of the

size of the input, all under the assumption that the gates in the set are simple enough to

implement.

When analyzing the running time of an algorithm, we are usually more interested in

measuring how it grows with the size of the input than we are in finding concrete running-

time values for concrete problem instances. For example, we could be interested in knowing

whether the time needed for a certain task grows so rapidly that it quickly becomes

unfeasible to solve the problem when the input size becomes moderately big.

For this reason, we will define the running time of an algorithm as a function of the length

of its inputs, and not as a function of the inputs themselves. Namely, the running time of

an algorithm 𝐴 is a function 𝑇 that takes as input a non-negative integer 𝑛 and returns

the maximum number of steps (or instructions) that 𝐴 performs with an input 𝑥 of 𝑛 bits

before it stops. Notice that this is a worst-case definition of running-time: it is defined in

terms of the string that needs the most time in order to be processed.

Important note

The running time of an algorithm 𝐴 is a function 𝑇 such that 𝑇 (𝑛) is the maximum

number of steps that 𝐴 performs when given an input of length 𝑛.

In order to compare the running times of different algorithms, it is convenient to perform

some additional simplifications. We usually do not care about whether the running time

is exactly 𝑇1(𝑛) = 4321𝑛2 + 784𝑛 + 142 or, rather, 𝑇2(𝑛) = 𝑛3 + 3𝑛2 + 5𝑛 + 3. In fact, we

Measuring the Complexity of Algorithms 407

are more interested in whether 𝑇 (𝑛) grows roughly like 𝑛3 or like 𝑛2, because this implies

a qualitative difference: for values of 𝑛 that are big enough, any polynomial of degree 3

grows more rapidly than any polynomial of degree 2. In the context of computational

complexity theory, we would always prefer a 𝑇 (𝑛) that grows as 𝑛2 over one that grows as

𝑛3, because its behavior for big inputs (its asymptotic growth, in other words) is better.

This intuitive idea is captured by the famous big O notation. Given two time functions,

𝑇1(𝑛) and 𝑇2(𝑛), we say that 𝑇1(𝑛) is 𝑂(𝑇2(𝑛)) (and we read it is as “𝑇1(𝑛) is big O of 𝑇2(𝑛)”)

if there exist an integer constant 𝑛0 and a real constant 𝐶 > 0 such that for all 𝑛 ≥ 𝑛0, it

holds that

𝑇1(𝑛) ≤ 𝐶𝑇2(𝑛).

For example, you can check that 4321𝑛2 + 784𝑛 + 142 is 𝑂(𝑛3 + 3𝑛2 + 5𝑛 + 3).

The main idea behind this definition is that if 𝑇1(𝑛) is 𝑂(𝑇2(𝑛)), then the growth of 𝑇1 is

not worse than that of 𝑇2(𝑛). For example, it is easy to prove that 𝑛𝑎 is 𝑂(𝑛𝑏) whenever

𝑎 ≤ 𝑏 and that 𝑛𝑎 is 𝑂(2𝑛) for any 𝑎. On the other hand, when 𝑎 > 𝑏 , 𝑛𝑎 is not 𝑂(𝑛𝑏) and

2𝑛 is not 𝑂(𝑛𝑎). See Figure C.1 for an example with linear, quadratic, cubic, and exponential

functions. Notice how the exponential function eventually dominates all the others, despite

having 10−4 as its coefficient.

Important note

Given two non-negative functions 𝑇1(𝑛) and 𝑇2(𝑛), we say that 𝑇1(𝑛) is 𝑂(𝑇2(𝑛)) if

there exist 𝑛0 and 𝐶 > 0 such that

𝑇1(𝑛) ≤ 𝐶𝑇2(𝑛)

for every 𝑛 ≥ 𝑛0.

Big O notation is extremely useful to estimate the behavior of running times without

having to focus on small, cumbersome details. If the running time of an algorithm is

4321𝑛2 + 784𝑛 + 142, we can just say that it is 𝑂(𝑛2) and forget about the particular

408 Measuring the Complexity of Algorithms

0 5 10 15 20 25
x

0

500

1000

1500

2000

2500

3000

3500
5x
x2

10 1x3

10 42x

Figure C.1: Growth of linear, quadratic, cubic, and exponential functions

coefficients in the time function. This is also the reason why we can abstractly think about

number of steps and not, for example, miliseconds. The particular amount of time that

each step takes is a constant that will be “absorved” by the big O notation.

An example of this that is particularly important to us is that of logarithmic functions. It is

a well-known fact that logarithms in different bases are related by the following formula:

log𝑏 𝑥 =
log𝑎 𝑥

log𝑎 𝑏
.

Hence, log𝑎 and log𝑏 only differ in a multiplicative constant and they are equivalent as far

as the big O notation is concerned.

However, all these simplifications come at a cost. A running time such as 10100𝑛2 is certainly

𝑂(𝑛2). But it is not preferable to 𝑛3 unless 𝑛 > 10100, something that will never happen in

practical situations, as 10100 is much, much bigger than the number of atoms in the visible

universe. So use this notation wisely: with big O comes big responsibility.

D
Installing the Tools

We shape our tools and then our tools shape us.

— John M. Culkin

In this appendix, we will give you all the instructions needed to run the code examples

provided in the main text. We will start by guiding you through the process of installing

the software that we will use, and then we will learn how to access the real quantum

computers on which we will run our code.

Getting Python
All the quantum programming libraries that we use in this book are based on Python, so

you need to have a working Python distribution. If your operating system is macOS or a

Linux distribution, you probably have one already. If your Python version is at least 3.10,

then you are ready to go.

However, even if you already have Python installed on your system, we recommend that

you consider following one of these two options:

410 Installing the Tools

• Installing Anaconda: Anaconda is a data science software distribution that includes,

among other things, Python and many of its scientific libraries. In addition, it also

includes Jupyter, an extremely useful web-based interactive computing platform

that allows you to run code, write text and formulas, and visualize graphics, all

organized into notebooks. For convenience, we provide all the code of the book in

Jupyter notebooks that you can download from the book’s Github reporisoty: https:

//github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Computing.

If you install Anaconda, you will have most of the non-quantum software libraries

that we use in the book already on your system, plus some additional ones that you

may find convenient for other related projects.

There is a version of Anaconda called Anaconda Distribution, which is free to down-

load from https://www.anaconda.com/products/distribution. It is available for

Windows, Linux, and macOS. Anaconda Distribution provides a graphical installer,

so it is super easy to set up. In case of doubt, you can always check the installation

instructions at https://docs.anaconda.com/anaconda/install/index.html.

Once you install Anaconda, we recommend that you launch it and run JupyterLab.

This will open an IDE in your web browser that you can use to manage Jupyter

notebooks and start running code right away. For a quick introduction to how to use

JupyterLab, you can check the overview of its interface included in the JupyterLab

documentation: https://jupyterlab.readthedocs.io/en/stable/user/interfa

ce.html.

• Using Google Colab: If you prefer not to install anything on your own computer,

we also have an option for you. Google Colab is a web-based environment provided

by Google in which you can run Jupyter notebooks with Python code. In fact, its

interface its very similar to that of Jupyter and can be used to run all the code in

this book (we know because we did it ourselves!) in addition to many other projects,

especially those related to machine learning and data science.

https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Computing
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Computing
https://www.anaconda.com/products/distribution
https://docs.anaconda.com/anaconda/install/index.html
https://jupyterlab.readthedocs.io/en/stable/user/interface.html
https://jupyterlab.readthedocs.io/en/stable/user/interface.html

Installing the Tools 411

The main difference between using Jupyter and Google Colab is that Colab does

not run on your computer but is cloud-based: it uses hardware owned by Google.

They provide you with a (usually modest) CPU, some amount of RAM, and some

disk space, and you also have the chance to request a GPU to accelerate the training

of your machine learning models.

The basic version of Google Colab is free to use: you only need a working Google

account to start using it at https://colab.research.google.com/. And should you

ever need more computational power, you can upgrade to a paid version (see more

details at https://colab.research.google.com/signup).

By the way, the tutorials at https://colab.research.google.com/ are really

helpful, so you will be running your projects in almost no time.

Each of these options has its pros and cons. With Anaconda, you have perfect control over

what you install, you get to use your own hardware (which probably is more powerful

than the one available at Google Colab, maybe with the exception of those sweet GPUs),

and you can work offline. But you need to install everything yourself, keep it up to date,

and solve any version conflicts that may arise.

With Google Colab, you can start running code right away from any computer connected

to the Internet, without the burden of having to install Python and many other libraries,

and you can use quite powerful GPUs for free. However, you need to be online all the time,

there are some restrictions on the number of projects that you can run simultaneously (at

least, with the free version), and the CPU speed is not that great.

The good thing is that any of these possibilities (or any other that gets you a running

Python distribution) works perfectly well for the purpose of running the code in this

book. Moreover, they are perfectly compatible with each other, so you can start writing

a notebook on Google Colab and complete it with Anaconda, or vice versa. Since both

are free, you can try them both and use the one that better suits your needs at any given

moment.

https://colab.research.google.com/
https://colab.research.google.com/signup
https://colab.research.google.com/

412 Installing the Tools

Of course, we don’t want to be too prescriptive. If you don’t feel like relying on Anaconda

or on a cloud service, you can use your local machine without any add-ons and everything

will work just fine as long as you have the right versions of the packages that we will use.

Installing the libraries
Although both Anaconda and Google Colab come with a lot of data science and visualization

libraries already installed by default, they do not yet include any of the quantum computing

libraries that we use in this book.

However, getting them set up and running is a breeze with pip, a package manager that

comes bundled with Python—you don’t need to install Anaconda or access Google Colab

to use it. In order to install a new library with pip, you just need to run the following

instruction on your terminal:

pip install name-of-library

If you are using a Jupyter notebook to run your code, you can use exactly that same

instruction, but you need to write it in a cell of its own, with no additional code. If you

need to install several different libraries and you do not want to create a different cell for

each pip instruction, then you can put them all together in the same cell but you need to

use the escape symbol !. So, for instance, you can install three libraries in the same cell of

your Jupyter notebook like this:

!pip install first-library

!pip install second-library

!pip install last-library

Sometimes, you need to install a particular version of a library. This is the case with some

of the examples in this book. Don’t worry, because pip has your back in this too. You just

need to run the following instruction:

pip install name-of-library==version-number

Installing the Tools 413

For example, to install version 2.1 of Qiskit, which is the one that we use in this book, you

need to run the following instruction:

pip install qiskit==2.1

Of course, the same comments that we just made about escape symbols in Jupyter notebooks

apply to this case.

Important note

If you run a pip install command on a Jupyter notebook to install a different

version of a library that was already present on the system, you will probably need

to restart the kernel (if you are running a Jupyter notebook on your local machine)

or the runtime (in Google Colab) for the changes to take place.

In Table D.1, we have collected all the libraries needed for the code in this book in the order

they appear in the main text, together with the version that we have used to create the

examples. The second column specifies the name of each library in pip, so that is the one

that you need to use with the pip install command.

Library name Pip name Version number
Qiskit qiskit 2.1

Qiskit Aer qiskit-aer-gpu 0.17
Qiskit IBM Runtime qiskit-ibm-runtime 0.40

NumPy numpy 2.2
Pylatexenc pylatexenc 2.10
Matplotlib matplotlib 3.10

Table D.1: Libraries used in the book and their version numbers

You may have noticed that there are a couple of libraries in the list that we never explicitly

imported into our code. However, they are used by other packages to be able to plot circuits,

so they need them to be present in your system.

Some of the libraries already come with Anaconda and Google Colab. In fact, it is very likely

that the code in this book works with whatever version is included in those distributions,

414 Installing the Tools

Figure D.1: The IBM Quantum Platform dashboard

so installing the exact version we mention in the table should not be especially important.

For the libraries that do not come bundled with Anaconda and Google Colab, it is highly

recommended to stick to the versions listed in the table. This is especially important for

Qiskit and all its modules, which tend to change their APIs rather frequently.

In any case, for convenience, in the book notebooks that you can download from https:

//github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Computing, we have

explicitly included the installation commands of those libraries with the exact version

that we have used to create the examples. If you’re running the code on a local Python

installation, you just need to install these libraries once, so you can remove the pip install

commands after the first execution. However, if you’re using Google Colab, you will need to

run those commands every time you create a new runtime, because there is no persistence

of data from one session to another.

Accessing IBM’s quantum computers
In order to be able to run circuits on IBM’s quantum computers from your Python programs,

you first need to create an IBM account. This can be done through the IBM Quantum

https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Computing
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Computing

Installing the Tools 415

Figure D.2: The setup wizard for instances in the IBM Quantum Platform

Platform login page located at https://quantum.cloud.ibm.com/, and it is completely

free of charge.

After signing up and loggin in, you will see the page shown in Figure D.1. From this page

you can get your secret API key, which we use in Chapter 4, and you can create an instance.

Instances are ways of grouping quantum hardware resources and managing their access

permissions, but we don’t need to get into those details.

When you click the button to create an instance, you will be shown a setup wizard like the

one shown in Figure D.2—follow its steps and your instance will be set up in no time!

Important note

When creating an instance on the IBM Quantum platform, make sure to choose the

Open plan instead of the Pay As You Go plan; otherwise, you might end up paying

for additional quantum hardware resources. For the purposes of this book, the Open

plan offers more than you need!

https://quantum.cloud.ibm.com/

416 Installing the Tools

With this, you are all set to start coding, and you are ready to run quantum algorithms on

real quantum hardware! The adventure continues in Chapter 4.

E
Production Notes

I wanna be in the room where it happens.

— Aaron Burr

This book was written in LATEX by the two of us in two different countries (Spain and the

USA) and in a wide variety of places: in offices at Harvard University and the University

of Oviedo; in two apartments in Oviedo and an apartment in Cambridge (Massachusetts);

on aeroplanes and trains; in airports and train stations; at a hotel in Berlin; on the streets

of Madrid; in a sports pavilion; in the waiting rooms of emergency departments of two

different hospitals; near the beach; near the mountains; on the backseat of a car; and

perhaps in other locations that we can’t remember now.

We, Elías and Samuel, have different working styles: one of us is a local-first advocate

who won’t give up using Vim, and the other is more comfortable on the cloud—you’d be

surprised to know who is who. In order to collaborate efficiently, we used Overleaf in

conjunction with GitHub, which enabled us to smoothly integrate our workflows.

418 Production Notes

To help us write formulas, draw circuits, and format code in LATEX, we used quite a lot of

useful packages, such as quantikz, physics, and listings. To write the code examples

and run them, we used both Anaconda and Google Colab (as described in Appendix D).

All of these are excellent tools that made writing this book a much more pleasant and easy

experience.

Bibliography

[1] A. M. Turing, “On computable numbers, with an application to the Entschei-

dungsproblem,” Proceedings of the London Mathematical Society, vol. 2, no. 42,

pp. 230–265, 1936.

[2] D. Harel, Computers Ltd: What They Really Can’t Do. Oxford University Press, 2004.

[3] M. Sipser, Introduction to the Theory of Computation. Cengage Learning, 2012.

[4] E. Rich, Automata, Computability and Complexity: Theory and Applications. Pearson

Prentice Hall Upper Saddle River, 2008.

[5] P. Høyer, J. Neerbek, and Y. Shi, “Quantum complexities of ordered searching,

sorting, and element distinctness,” Algorithmica, vol. 34, no. 4, pp. 429–448, 2002.

[6] C. Orzel, How to Teach Quantum Physics to your Dog. Simon and Schuster, 2009.

[7] P. Moriarty, When the Uncertainty Principle Goes to 11: Or How to Explain Quantum

Physics with Heavy Metal. BenBella Books, 2018.

[8] L. Susskind and A. Friedman, Quantum Mechanics: the Theoretical Minimum. Basic

Books, 2014.

[9] P. Kok, A First Introduction to Quantum Physics. Springer, 2018.

[10] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics. Cambridge

University Press, 2018.

[11] K. Young, M. Scese, and A. Ebnenasir, “Simulating quantum computations on

classical machines: A survey,” arXiv preprint arXiv:2311.16505, 2023.

[12] X. Xu, S. Benjamin, J. Sun, X. Yuan, and P. Zhang, “A Herculean task: Classical

simulation of quantum computers,” arXiv preprint arXiv:2302.08880, 2023.

420 Bibliography

[13] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information:

10th Anniversary Edition. Cambridge University Press, 2011.

[14] M. Howard, J. Wallman, V. Veitch, and J. Emerson, “Contextuality supplies the

‘magic’ for quantum computation,” Nature, vol. 510, no. 7505, pp. 351–355, 2014.

[15] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2,

p. 79, 2018.

[16] E. F. Combarro and S. González-Castillo, A Practical Guide to Quantum Machine

Learning and Quantum Optimization: Hands-on Approach to Modern Quantum Algo-

rithms. Packt Publishing Ltd, 2023.

[17] R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and

Particles, 2nd ed. Wiley, 1985.

[18] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable

superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[19] D. C. Marinescu and G. M. Marinescu, Classical and Quantum Information. Academic

Press, 2011.

[20] P. A. M. Dirac, “A new notation for quantum mechanics,” in Mathematical proceed-

ings of the Cambridge philosophical society, Cambridge University Press, vol. 35,

1939, pp. 416–418.

[21] R. Schmied, “Quantum state tomography of a single qubit: Comparison of methods,”

Journal of Modern Optics, vol. 63, no. 18, pp. 1744–1758, 2016.

[22] G. Egan, Quarantine. Legend, 1992.

[23] J. Bricmont, Making sense of quantum mechanics. Springer, 2016, vol. 37.

[24] S. Teufel and D. Dürr, Bohmian Mechanics. Springer, 2009.

[25] M.-C. Chen, C. Wang, F.-M. Liu, et al., “Ruling out real-valued standard formalism

of quantum theory,” Phys. Rev. Lett., vol. 128, p. 040 403, 4 Jan. 2022.

[26] Z.-D. Li, Y.-L. Mao, M. Weilenmann, et al., “Testing real quantum theory in an

optical quantum network,” Phys. Rev. Lett., vol. 128, p. 040 402, 4 Jan. 2022.

[27] D. Aharonov, “A simple proof that Toffoli and Hadamard are quantum universal,”

arXiv preprint arXiv:quant-ph/0301040, 2003.

Bibliography 421

[28] S. Wiesner, “Conjugate coding,” ACM Sigact News, vol. 15, no. 1, pp. 78–88, 1983.

[29] A. Molina, T. Vidick, and J. Watrous, “Optimal counterfeiting attacks and general-

izations for Wiesner’s quantum money,” in Conference on Quantum Computation,

Communication, and Cryptography, Springer, 2012, pp. 45–64.

[30] J. Katz and Y. Lindell, Introduction to modern cryptography: principles and protocols.

3rd Edition. Chapman and hall/CRC, 2020.

[31] S. M. Bellovin, “Frank Miller: Inventor of the one-time pad,” Cryptologia, vol. 35,

no. 3, pp. 203–222, 2011.

[32] C. E. Shannon, “Communication theory of secrecy systems,” The Bell system techni-

cal journal, vol. 28, no. 4, pp. 656–715, 1949.

[33] S. N. Molotkov, “Quantum cryptography and VA Kotel’nikov’s one-time key and

sampling theorems,” Physics-Uspekhi, vol. 49, no. 7, p. 750, 2006.

[34] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution

and coin tossing,” in Proceedings of IEEE International Conference on Computers,

Systems, and Signal Processing, Bangalore, 1984, p. 175.

[35] C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public

discussion,” SIAM journal on Computing, vol. 17, no. 2, pp. 210–229, 1988.

[36] P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key

distribution protocol,” Physical review letters, vol. 85, no. 2, p. 441, 2000.

[37] R. C. Merkle, “Secure communications over insecure channels,” Communications of

the ACM, vol. 21, no. 4, pp. 294–299, 1978.

[38] W. Diffie and M. E. Hellman, “New directions in cryptography,” in Democratizing

Cryptography: The Work of Whitfield Diffie and Martin Hellman, 2022, pp. 365–390.

[39] D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,” Physical

Review Letters, vol. 81, no. 14, p. 3018, 1998.

[40] H. Bechmann-Pasquinucci and N. Gisin, “Incoherent and coherent eavesdropping

in the six-state protocol of quantum cryptography,” Physical Review A, vol. 59, no. 6,

p. 4238, 1999.

422 Bibliography

[41] V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols ro-

bust against photon number splitting attacks for weak laser pulse implementations,”

Physical review letters, vol. 92, no. 5, p. 057 901, 2004.

[42] C. Branciard, N. Gisin, B. Kraus, and V. Scarani, “Security of two quantum cryp-

tography protocols using the same four qubit states,” Physical Review A—Atomic,

Molecular, and Optical Physics, vol. 72, no. 3, p. 032 301, 2005.

[43] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Physical review

letters, vol. 67, no. 6, p. 661, 1991.

[44] A. C. Elitzur and L. Vaidman, “Quantum mechanical interaction-free measure-

ments,” Foundations of physics, vol. 23, pp. 987–997, 1993.

[45] V. Bergholm, J. Izaac, M. Schuld, et al., “PennyLane: Automatic differentiation of

hybrid quantum-classical computations,” arXiv preprint arXiv:1811.04968, 2022.

[46] C. Gidney, Quirk: A drag-and-drop quantum circuit simulator, https://algassert.

com/quirk, Accessed: 2025-06-01, 2016.

[47] T. C. Developers, Cirq: A Python framework for creating, editing, and invoking noisy

intermediate scale quantum (NISQ) circuits, https://github.com/quantumlib/

Cirq, Version 1.5.0, 2024.

[48] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “QuEST and high performance

simulation of quantum computers,” Scientific reports, vol. 9, no. 1, p. 10 736, 2019.

[49] A. Javadi-Abhari, M. Treinish, K. Krsulich, et al., “Quantum computing with Qiskit,”

arXiv preprint arXiv:2405.08810, 2024.

[50] C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators

on Einstein-Podolsky-Rosen states,” Physical review letters, vol. 69, no. 20, p. 2881,

1992.

[51] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test

local hidden-variable theories,” Physical review letters, vol. 23, no. 15, p. 880, 1969.

[52] B. S. Cirel’son, “Quantum generalizations of Bell’s inequality,” Letters in Mathemat-

ical Physics, vol. 4, pp. 93–100, 1980.

https://algassert.com/quirk
https://algassert.com/quirk
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq

Bibliography 423

[53] B. Hensen, H. Bernien, A. E. Dréau, et al., “Loophole-free Bell inequality violation

using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–

686, 2015.

[54] A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-

Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequalities,” Physical

review letters, vol. 49, no. 2, p. 91, 1982.

[55] S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,”

Physical Review Letters, vol. 28, no. 14, p. 938, 1972.

[56] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger,

“Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.

[57] D. Deutsch, “Quantum theory, the Church–Turing principle and the universal

quantum computer,” Proceedings of the Royal Society of London. A. Mathematical

and Physical Sciences, vol. 400, no. 1818, pp. 97–117, 1985.

[58] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,”

Proceedings of the Royal Society of London. Series A: Mathematical and Physical

Sciences, vol. 439, no. 1907, pp. 553–558, 1992.

[59] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,

“Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-

Rosen channels,” Physical review letters, vol. 70, no. 13, p. 1895, 1993.

[60] J.-G. Ren, P. Xu, H.-L. Yong, et al., “Ground-to-satellite quantum teleportation,”

Nature, vol. 549, no. 7670, pp. 70–73, 2017.

[61] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM Journal on

Computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[62] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.

MIT press, 2022.

[63] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–

126, 1978.

424 Bibliography

[64] J. P. Buhler, H. W. Lenstra, and C. Pomerance, “Factoring integers with the number

field sieve,” in The development of the number field sieve, Springer, 1993, pp. 50–94.

[65] D. Coppersmith, “Modifications to the number field sieve,” Journal of Cryptology,

vol. 6, pp. 169–180, 1993.

[66] C. Pomerance, “A tale of two sieves,” Notices of the American Mathematical Society,

vol. 43, no. 12, pp. 1473–1485, 1996.

[67] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–332, 1999.

[68] N. FIPS203, “Module-lattice-based key-encapsulation mechanism standard,” Federal

Information Processing Standards Publication, 2023.

[69] N. FIPS204, “Module-lattice-based digital signature standard,” Federal Information

Processing Standards Publication, 2024.

[70] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Annals of mathematics,

pp. 781–793, 2004.

[71] M. O. Rabin, “Probabilistic algorithm for testing primality,” Journal of number

theory, vol. 12, no. 1, pp. 128–138, 1980.

[72] R. Van Meter and K. M. Itoh, “Fast quantum modular exponentiation,” Physical

Review A—Atomic, Molecular, and Optical Physics, vol. 71, no. 5, p. 052 320, 2005.

[73] S. A. Kutin, “Shor’s algorithm on a nearest-neighbor machine,” arXiv preprint

quant-ph/0609001, 2006.

[74] I. L. Markov and M. Saeedi, “Constant-optimized quantum circuits for modular

multiplication and exponentiation,” arXiv preprint arXiv:1202.6614, 2012.

[75] C. Gidney, “Windowed quantum arithmetic,” arXiv preprint arXiv:1905.07682, 2019.

[76] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in 8 hours using 20

million noisy qubits,” Quantum, vol. 5, p. 433, 2021.

[77] C. Moore and S. Mertens, The nature of computation. Oxford University Press, 2011.

[78] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification

and estimation,” Contemporary Mathematics, vol. 305, pp. 53–74, 2002.

Bibliography 425

[79] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and weaknesses

of quantum computing,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1510–1523,

1997.

[80] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on quantum searching,”

Fortschritte der Physik, vol. 46, no. 4-5, pp. 493–505, 1998.

[81] S. Ling and C. Xing, Coding Theory: A First Course. Cambridge University Press,

2004.

[82] C. Easttom, Hardware for Quantum Computing. Springer, 2024.

[83] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,”

Phys. Rev. A, vol. 52, R2493–R2496, 4 Oct. 1995.

[84] H. Bombín, “Topological codes,” in Quantum Error Correction, D. A. Lidar and T. A.

Brun, Eds. Cambridge University Press, 2013, pp. 455–481.

[85] N. Lacroix, A. Bourassa, F. J. H. Heras, et al., “Scaling and logic in the color code on

a superconducting quantum processor,” arXiv preprint arXiv:2412.14256, 2024.

[86] D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum

computation using teleportation and single-qubit operations,” Nature, vol. 402,

no. 6760, pp. 390–393, 1999.

[87] B. W. Reichardt, D. Aasen, R. Chao, et al., “Demonstration of quantum computation

and error correction with a tesseract code,” arXiv preprint arXiv:2409.04628, 2024.

[88] W. van Dam, H. Liu, G. H. Low, et al., “End-to-end quantum simulation of a chemical

system,” arXiv preprint arXiv:2409.05835, 2024.

[89] K. Liu, “Single-bit error,” in Thoughtcrime Experiments, S. Harihareswara and L.

Richardson, Eds., CreateSpace Independent Publishing Platform, 2009.

[90] S. Aaronson and S.-H. Hung, “Certified randomness from quantum supremacy,”

in Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 2023,

pp. 933–944.

[91] E. Pednault, J. Gunnels, D. M. Maslov, and J. Gambetta, On “Quantum Supremacy”,

https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/.

https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/

426 Bibliography

[92] C. Huang, F. Zhang, M. Newman, et al., “Classical simulation of quantum supremacy

circuits,” arXiv preprint arXiv:2005.06787, 2020.

[93] F. Pan and P. Zhang, “Simulating the Sycamore quantum supremacy circuits,” arXiv

preprint arXiv:2103.03074, 2021.

[94] Y. Liu, X. Liu, F. Li, et al., “Closing the “quantum supremacy” gap: Achieving real-

time simulation of a random quantum circuit using a new Sunway supercomputer,”

in Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, 2021, pp. 1–12.

[95] R. Fu, Z. Su, H.-S. Zhong, et al., “Achieving energetic superiority through system-

level quantum circuit simulation,” arXiv preprint arXiv:2407.00769, 2024.

[96] V. Kasirajan, T. Battelle, and B. Wold, “Empowering large scale quantum circuit devel-

opment: Effective simulation of Sycamore circuits,” arXiv preprint arXiv:2411.12131,

2024.

[97] Q. Zhu, S. Cao, F. Chen, et al., “Quantum computational advantage via 60-qubit

24-cycle random circuit sampling,” Science bulletin, vol. 67, no. 3, pp. 240–245, 2022.

[98] M. DeCross, R. Haghshenas, M. Liu, et al., “The computational power of random

quantum circuits in arbitrary geometries,” arXiv preprint arXiv:2406.02501, 2024.

[99] A. Morvan, B. Villalonga, X. Mi, et al., “Phase transitions in random circuit sam-

pling,” Nature, vol. 634, no. 8033, pp. 328–333, Oct. 2024.

[100] H. Neven, Meet Willow, our state-of-the-art quantum chip, https://blog.google/

technology/research/google-willow-quantum-chip/.

[101] D. Gao, D. Fan, C. Zha, et al., “Establishing a new benchmark in quantum com-

putational advantage with 105-qubit Zuchongzhi 3.0 processor,” arXiv preprint

arXiv:2412.11924, 2024.

[102] A. Bouland, B. Fefferman, C. Nirkhe, and U. Vazirani, “On the complexity and

verification of quantum random circuit sampling,” Nature Physics, vol. 15, no. 2,

pp. 159–163, 2019.

[103] F. Mezzadri, “How to generate random matrices from the classical compact groups,”

arXiv preprint math-ph/0609050, 2006.

https://blog.google/technology/research/google-willow-quantum-chip/
https://blog.google/technology/research/google-willow-quantum-chip/

Bibliography 427

[104] M. Sohaib Alam and W. Zeng, Unpacking the quantum supremacy benchmark

with Python, https://medium.com/@sohaib.alam/unpacking- the- quantum-

supremacy-benchmark-with-python-67a46709d.

[105] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, et al., “Characterizing quantum supremacy

in near-term devices,” Nature Physics, vol. 14, no. 6, pp. 595–600, 2018.

[106] S. Aaronson and L. Chen, “Complexity-theoretic foundations of quantum supremacy

experiments,” arXiv preprint arXiv:1612.05903, 2016.

[107] S. Aaronson and S. Gunn, “On the classical hardness of spoofing linear cross-entropy

benchmarking,” arXiv preprint arXiv:1910.12085, 2019.

[108] Quantinuum, Quantinuum’s H-Series hits 56 physical qubits that are all-to-all con-

nected, and departs the era of classical simulation, https://www.quantinuum.com/

blog/quantinuums-h-series-hits-56-physical-qubits-that-are-all-to-

all-connected-and-departs-the-era-of-classical-simulation.

[109] S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” in

Proceedings of the forty-third annual ACM symposium on Theory of computing, 2011,

pp. 333–342.

[110] H.-S. Zhong, H. Wang, Y.-H. Deng, et al., “Quantum computational advantage using

photons,” Science, vol. 370, no. 6523, pp. 1460–1463, 2020.

[111] L. S. Madsen, F. Laudenbach, M. F. Askarani, et al., “Quantum computational advan-

tage with a programmable photonic processor,” Nature, vol. 606, no. 7912, pp. 75–81,

2022.

[112] G. Kalai and G. Kindler, “Gaussian noise sensitivity and boson sampling,” arXiv

preprint arXiv:1409.3093, 2014.

[113] J. Renema, V. Shchesnovich, and R. Garcia-Patron, “Classical simulability of noisy

boson sampling,” arXiv preprint arXiv:1809.01953, 2018.

[114] Quantum Computing Report Website, 2024: The year of quantum computing roadmaps,

https://quantumcomputingreport.com/2024-the-year-of-quantum-computing-

roadmaps/.

[115] J. Bak and D. J. Newman, Complex analysis, 3, Ed. Springer, 2010.

https://medium.com/@sohaib.alam/unpacking-the-quantum-supremacy-benchmark-with-python-67a46709d
https://medium.com/@sohaib.alam/unpacking-the-quantum-supremacy-benchmark-with-python-67a46709d
https://www.quantinuum.com/blog/quantinuums-h-series-hits-56-physical-qubits-that-are-all-to-all-connected-and-departs-the-era-of-classical-simulation
https://www.quantinuum.com/blog/quantinuums-h-series-hits-56-physical-qubits-that-are-all-to-all-connected-and-departs-the-era-of-classical-simulation
https://www.quantinuum.com/blog/quantinuums-h-series-hits-56-physical-qubits-that-are-all-to-all-connected-and-departs-the-era-of-classical-simulation
https://quantumcomputingreport.com/2024-the-year-of-quantum-computing-roadmaps/
https://quantumcomputingreport.com/2024-the-year-of-quantum-computing-roadmaps/

428 Bibliography

[116] S. Axler, Linear algebra done right. Springer, 2015.

[117] D. S. Dummit and R. M. Foote, Abstract algebra, 3rd ed. John Wiley and Sons, 2004.

[118] C. Clason, Introduction to Functional Analysis. Birkhäuser, 2020.

[119] C. H. Papadimitriou, Computational complexity. Addison-Wesley, 1994.

[120] S. Arora and B. Barak, Computational complexity: a modern approach. Cambridge

University Press, 2009.

Solutions

Chapter 1
(1.1) (a) If 𝑛 is 6670 or bigger, it is better to use the quantum computer. If 𝑛 is smaller

than 6670, the classical computer will be faster.

(b) If 𝑛 is 2 000 003 or bigger, it is better to use the quantum computer. If 𝑛 is smaller

than 2 000 003, the classical computer will be faster.

(c) If 𝑛 is 30 000 000 003 or bigger, it is better to use the quantum computer. If 𝑛 is

smaller than 30 000 000 003, the classical computer will be faster.

Independently of how fast the classical computer is and how slow the quantum

computer is, there will always be a value of 𝑛 from which using the quantum computer

will be preferable because 𝑓𝑞(𝑛) = 10𝑛 + 30 grows asymptotically more slowly than

𝑓𝑐(𝑛) = 𝑛
2 + 1.

(1.2) We need to prove that there is some 𝑛0 such that, if 𝑛 is bigger than 𝑛0, then 𝑐𝑛 is

bigger than 𝑛𝑘 . This is equivalent to 𝑘 log 𝑛 < 𝑛 log 𝑐, which is also equivalent to
log 𝑛

𝑛
<

log 𝑐

𝑘
. But log 𝑐 > 0 because 𝑐 > 1 and, thus, log 𝑐

𝑘
> 0. Since, by L’Hôpital’s

rule, log 𝑛

𝑛
tends to 0 when 𝑛 tends to infinity, there is always some value 𝑛0 such that,

if 𝑛 is bigger than 𝑛0, then log 𝑛

𝑛
<

log 𝑐

𝑘
.

Chapter 2
(2.1) (a) It is not a qubit state because it is not normalized (12 + 12 = 2 ≠ 1).

(b) It is a qubit state because 4/7 + 3/7 = 1.

430 Solutions

(c) It is not a qubit state because 22 ≠ 1.

(d) It is a qubit state as |
|𝑒
−𝑖|
|
2
= 1.

(e) We could take 𝑥 =
√
1 − 1/9 =

√
8/3.

(f) The values 𝑥 = (1/
√
2)𝑒𝑖𝜃 for any real 𝜃.

(2.2) (a) The probability of obtaining 0 will be 1/2, and so will the that of obtaining 1.

(b) The measurement will always return 0.

(c) The probability of obtaining 0 is 1/3. That of obtaining 1 is 2/3.

(d) The probability of obtaining 0 is 𝑝. That of obtaining 1 is 1 − 𝑝.

(2.3) All the probabilities are equal to 1/2 because |
|1/

√
2||
2
= |

|−1/
√
2||
2
= |

|𝑖/
√
2||
2
=

|
|𝑒
𝑖𝜃/

√
2||
2
= 1/2.

(2.4) The conjugate transpose of 𝑈1 is 𝑈1 itself and a simple verification reveals that

𝑈
†

1 𝑈1 = 𝑈1𝑈
†

1 = 𝑈1𝑈1 is equal to the identity matrix. Regarding the other matrices,

we have

𝑈
†

2 =
(

1 0

0 𝑖)
, 𝑈

†

3 =
(

0 −𝑖

𝑖 0)
, 𝑈

†

4 =
(

1 − 2𝑖 −𝑖

3 4)
.

The matrices 𝑈2 and 𝑈3 are unitary, but 𝑈4 is not because

𝑈4𝑈
†

4 =
(

14 14 − 𝑖

14 + 𝑖 17)
,

which is not equal to the identity matrix.

(2.5) We have

𝑋 |0⟩ =
(

0 1

1 0)(

1

0)
=

(

0

1)
, 𝑋 |1⟩

(

0 1

1 0)(

0

1)
=

(

1

0)
.

Solutions 431

(2.6) We already proved 𝑌 to be unitary in a previous exercise. Regarding 𝑍 , clearly 𝑍 = 𝑍†

and 𝑍2 is the identity, so 𝑍 is unitary. Moreover,

𝑌 |0⟩ =
(

0 −𝑖

𝑖 0)(

1

0)
=

(

0

𝑖)
= 𝑖 |1⟩ ,

𝑌 |1⟩ =
(

0 −𝑖

𝑖 0)(

0

1)
=

(

−𝑖

0)
= −𝑖 |0⟩ ,

𝑍 |0⟩ =
(

1 0

0 −1)(

1

0)
=

(

1

0)
= |0⟩ ,

𝑍 |1⟩ =
(

1 0

0 −1)
−
(

0

1)
=

(

−𝑖

0)
= − |1⟩ .

(2.7) We can easily compute that

𝑀𝑥𝑀
†
𝑥 =

(

1 𝑥∗√
2
+ 1

2

𝑥√
2
+ 1

2
𝑥𝑥∗ + 1

2
)
.

The only way for this to be equal to the identity is having 𝑥 = −1/
√
2. And it can be

readily verified that, with that value of 𝑥 , 𝑀𝑥 is unitary.

(2.8) (𝑈𝑉)(𝑈𝑉)† = 𝑈𝑉𝑉 †𝑈† = 𝑈𝐼𝑈† = 𝑈𝑈† = 𝐼 , and similarly for (𝑈𝑉)†(𝑈𝑉).

(2.9) The coordinate matrix of 𝐻𝑋 (with respect to the computational basis) is

𝐻𝑋 =
1
√
2 (

1 1

−1 1)
.

A direct computation reveals that 𝐻𝑋 |−⟩ = − |1⟩.

Chapter 3
(3.1) Indeed, 𝑋 |0⟩ = |1⟩ and 𝐻 |1⟩ = |−⟩.

432 Solutions

For a different way of obtaining |−⟩, notice that

𝐻 |0⟩ = |+⟩ =
1
√
2
(|0⟩ + |1⟩)

and, if we now apply 𝑍 , by linearity we obtain

𝑍
(

1
√
2
(|0⟩ + |1⟩)

)
=

1
√
2
(𝑍 |0⟩ + 𝑍 |1⟩) =

1
√
2
(|0⟩ − |1⟩) = |−⟩ ,

since 𝑍 |0⟩ = |0⟩ and 𝑍 |1⟩ = − |1⟩. Thus, we can also obtain |−⟩ by first applying 𝐻

and then 𝑍 to a qubit in state |0⟩.

(3.2) If the counterfeiter selects the |−⟩ state, the situation is almost like the one with state

|+⟩ presented in the main text, but with cases 1) and 2) interchanged. The probability

will then be, again, 1/2.

For the case in which the selected state is |0⟩ (respectively, |1⟩), the analysis is similar.

If the original state is |0⟩ (resp. |1⟩), the test will pass. If it is |1⟩ (resp. |0⟩), it will fail.

If the original state is |+⟩ or |−⟩, it will fail with probability 1/2. Adding everything

up, the probability of passing the test is 1/2.

(3.3) The probability of winning the lottery once is 10−6. The probability of winning it on

each of the ten consecutive draws is (10−6)10 = 10−60 (that is 0.0....01 with 59 zeros

between the decimal mark and the 1!). The probability of passing the 200 qubit tests

is (1
2
)200 ≈ 6.22 ⋅ 10−61, which is less than 10−60.

(3.4) The encrypted message is 100110 ⊕ 001101 = 101011. The original message is

1110011 ⊕ 0101101 = 1011110.

(3.5) They will keep positions 3, 5 and 6 and 7. The final key will be 0110.

(3.6) The conjugate transpose of 𝑅𝑦(𝜃) is

(

cos 𝜃
2

sin 𝜃
2

− sin 𝜃
2

cos 𝜃
2
)
.

Solutions 433

A simple computation shows that

(

cos 𝜃
2

− sin 𝜃
2

sin 𝜃
2

cos 𝜃
2
)(

cos 𝜃
2

sin 𝜃
2

− sin 𝜃
2

cos 𝜃
2
)

=
(

cos 𝜃
2

sin 𝜃
2

− sin 𝜃
2

cos 𝜃
2
)(

cos 𝜃
2

− sin 𝜃
2

sin 𝜃
2

cos 𝜃
2
)

=
(

1 0

0 1)
.

We can prove that 𝑅𝑌 (𝜃)𝑛 = 𝑅𝑌 (𝑛𝜃) by induction on 𝑛. If 𝑛 = 1, the result is trivial.

Consider 𝑛 > 1, and assume that 𝑅𝑌 (𝜃)𝑛−1 = 𝑅𝑌 ((𝑛 − 1)𝜃). Then,

𝑅𝑌 (𝜃)
𝑛
= 𝑅𝑌 (𝜃)𝑅𝑌 (𝜃)

𝑛−1
=

(

cos 𝜃
2

− sin 𝜃
2

sin 𝜃
2

cos 𝜃
2
)(

cos
(𝑛−1)𝜃

2
− sin

(𝑛−1)𝜃

2

sin
(𝑛−1)𝜃

2
cos

(𝑛−1)𝜃

2
)
.

The result follows by computing the matrix product and applying the trigonomet-

ric identities cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 = cos (𝛼 + 𝛽) and sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 =

sin (𝛼 + 𝛽).

Chapter 4
(4.1) This circuit can be constructed and represented as follows:

circuit_yt = QuantumCircuit(1)

circuit_yt.y(0)

circuit_yt.t(0)

circuit_yt.draw("mpl")

(4.2) This is the function that we were asked to implement:

def apply_gate(circ, gate):

if gate == "X":

circ.x(0)

elif gate == "Y":

circ.y(0)

434 Solutions

elif gate == "Z":

circ.z(0)

(4.3) This piece of code can find the final state of the circuit:

state = Statevector(circuit_yt)

print(state)

(4.4) This is how the measurement sample can be obtained:

sampler = StatevectorSampler()

job = sampler.run([circuit], shots = 4)

print(job.result()[0].data.meas.get_bitstrings())

Chapter 5
(5.1) (a) It’s valid, because |

|
|
1√
3

|
|
|

2

+
|
|
|
1√
3

|
|
|

2

+
|
|
|
1√
3

|
|
|

2

= 1/3 + 1/3 + 1/3 = 1.

(b) It’s valid, because |
|
1
2
|
|
2
+ |
|
1
2
|
|
2
+ |
|
1
2
|
|
2
+ |
|−

1
2
|
|
2
= 1/4 + 1/4 + 1/4 + 1/4 = 1.

(c) It’s valid, because |
|
|
1√
2

|
|
|

2

+
|
|
|
− 1√

2

|
|
|

2

= 1/2 + 1/2 = 1.

(d) It’s valid, because |
|
|
1√
2

|
|
|

2

+
|
|
|
𝑖√
2

|
|
|

2

= 1/2 + 1/2 = 1.

(e) It’s not valid, because |
|
|
2√
3

|
|
|

2

+
|
|
|
2√
3

|
|
|

2

+
|
|
|
− 1√

3

|
|
|

2

= 4/3 + 4/3 + 1/3 = 9/3 ≠ 1.

(f) It’s valid, because |𝑖|
2
= 1.

(g) It’s not valid, because |2|
2
+ |−𝑖|

2
= 5 ≠ 1.

(h) It’s valid, because |
|
|

√
2
3

|
|
|

2

+
|
|
|
−

√
1
3

|
|
|

2

= 2/3 + 1/3 = 1.

The values of 𝑥 that would make 1
2
|01⟩+𝑥 |10⟩ a valid state are those of the form 𝑒𝑖𝜃

√
3

2
,

where 𝜃 is any real number, because |
|
1
2
|
|
2
+
|
|
|
𝑒𝑖𝜃

√
3

2

|
|
|

2

= |
|
1
2
|
|
2
+
|
|
|

√
3

2

|
|
|

2

= 1/4 + 3/4 = 1.

Solutions 435

(5.2) It is easy to see that

|01⟩ = |0⟩ ⊗ |1⟩ =
(

1

0)
⊗

(

0

1)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
(

0

1)

0
(

0

1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Also, we have that

|10⟩ = |1⟩ ⊗ |0⟩ =
(

0

1)
⊗

(

1

0)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
(

1

0)

1
(

1

0)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Finally, it holds that

|11⟩ = |1⟩ ⊗ |1⟩ =
(

0

1)
⊗

(

0

1)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
(

0

1)

1
(

0

1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(5.3) Denote

|𝜓1⟩ =
(

𝑎1

𝑎2)
, |𝜓2⟩ =

(

𝑏1

𝑏2)
, |𝜑⟩ =

(

𝑐1

𝑐2)
.

Then it holds that

𝛼1 |𝜓1⟩ + 𝛼2 |𝜓2⟩ =
(

𝛼1𝑎1 + 𝛼2𝑏1

𝛼1𝑎2 + 𝛼2𝑏2)
.

436 Solutions

From this, it follows that

(𝛼1 |𝜓1⟩ + 𝛼2 |𝜓2⟩) ⊗ |𝜑⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(𝛼1𝑎1 + 𝛼2𝑏1)𝑐1

(𝛼1𝑎1 + 𝛼2𝑏1)𝑐2

(𝛼1𝑎2 + 𝛼2𝑏2)𝑐1

(𝛼1𝑎2 + 𝛼2𝑏2)𝑐2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We also know that

𝛼1 |𝜓1⟩ ⊗ |𝜑⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛼1𝑎1𝑐1

𝛼1𝑎1𝑐2

𝛼1𝑎2𝑐1

𝛼1𝑎2𝑐2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and that

𝛼2 |𝜓2⟩ ⊗ |𝜑⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛼2𝑏1𝑐1

𝛼2𝑏1𝑐2

𝛼2𝑏2𝑐1

𝛼2𝑏2𝑐2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Adding these two vectors together gives us the first identity. The second identity

follows from a similar computation.

(5.4) The results are as follows:

(a) 1√
2
|01⟩ − 1√

2
|11⟩

(b) 1
2
|00⟩ + 1

2
|01⟩ + 1

2
|10⟩ + 1

2
|11⟩

(c) 1
2
|00⟩ − 1

2
|01⟩ + 1

2
|10⟩ − 1

2
|11⟩

(5.5) (a) Each result has probability 1/4.

(b) The possible results are 00, 01 and 10, each with probability 1/3.

(c) The only possible result is 11, and it obviously has probability 1.

(d) We can obtain 01 or 11, each with probability 1/4, or 10 with probability 1/2.

Solutions 437

(e) We first need to write the state in terms of the computational basis. Since

|+⟩ = 1√
2
(|0⟩ + |1⟩), it holds that

|0⟩ |+⟩ = |0⟩
1
√
2
(|0⟩ + |1⟩) =

1
√
2
(|00⟩ + |01⟩).

Hence, the possible results are 00 and 01, each with probability 1/2.

(5.6) (a) We will obtain 0 and 1 each with probability 1/2. The collapsed states will be,

respectively, 1√
2
(|00⟩ + |01⟩) and 1√

2
(|10⟩ − |11⟩).

(b) We will obtain 0 with probability 2/3 and 1 with probability 1/3. The collapsed

states will be, respectively, 1√
2
(|00⟩ + |10⟩) and − |01⟩.

(c) The result will be 1 with probability 1. The state will still be 1+𝑖√
2
|11⟩.

(d) The result will be 0 with probability 1/2 and 1 with probability 1/2. The

collapsed states will be, respectively, − |10⟩ and 1√
2
(|01⟩ + 𝑖 |11⟩).

(e) If we measure the first qubit, we will obtain 0 with certainty and the state will

not change. If we measure the second qubit, we will obtain 0 with probability

1/2 and 1 with probability 1/2. The collapsed states will be, respectively, |00⟩

and |01⟩.

(5.7) Since |0⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩, |1⟩ ⊗ |0⟩, and |1⟩ ⊗ |1⟩ form a basis of the vector space of

4-dimensional column vectors, it is enough to consider the case in which both |𝜓1⟩

and |𝜓2⟩ are taken from {|0⟩ , |1⟩}. Assume that

𝑈1 =
(

𝑎11 𝑎12

𝑎21 𝑎22)
,

𝑈2 =
(

𝑏11 𝑏12

𝑏21 𝑏22)
.

438 Solutions

Then we have that

𝑈1 ⊗ 𝑈2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11𝑏11 𝑎11𝑏12 𝑎12𝑏11 𝑎12𝑏12

𝑎11𝑏21 𝑎11𝑏22 𝑎12𝑏21 𝑎12𝑏22

𝑎21𝑏11 𝑎21𝑏12 𝑎22𝑏11 𝑎22𝑏12

𝑎21𝑏21 𝑎21𝑏22 𝑎22𝑏21 𝑎22𝑏22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It follows then that

(𝑈1 ⊗ 𝑈2)(|0⟩ ⊗ |0⟩) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11𝑏11 𝑎11𝑏12 𝑎12𝑏11 𝑎12𝑏12

𝑎11𝑏21 𝑎11𝑏22 𝑎12𝑏21 𝑎12𝑏22

𝑎21𝑏11 𝑎21𝑏12 𝑎22𝑏11 𝑎22𝑏12

𝑎21𝑏21 𝑎21𝑏22 𝑎22𝑏21 𝑎22𝑏22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11𝑏11

𝑎11𝑏21

𝑎21𝑏11

𝑎21𝑏21

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

On the other hand, we have that

(𝑈1 |0⟩) ⊗ (𝑈2 |0⟩) =
(

𝑎11 𝑎12

𝑎21 𝑎22)(

1

0)
⊗

(

𝑏11 𝑏12

𝑏21 𝑏22)(

1

0)

=
(

𝑎11

𝑎21)
⊗

(

𝑏11

𝑏21)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11𝑏11

𝑎11𝑏21

𝑎21𝑏11

𝑎21𝑏21

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

as needed. The computation in the other cases is analogous.

From this, we deduce that for any column vectors |𝜓1⟩ and |𝜓2⟩ of size 2 it holds that

(𝑈1 ⊗ 𝑈2)(𝑈3 ⊗ 𝑈4)(|𝜓1⟩ ⊗ |𝜓2⟩) = (𝑈1 ⊗ 𝑈2) ((𝑈3 |𝜓1⟩) ⊗ (𝑈4 |𝜓2⟩))

= (𝑈1𝑈3 |𝜓1⟩) ⊗ (𝑈2𝑈4 |𝜓2⟩)

= ((𝑈1𝑈3) ⊗ (𝑈2𝑈4))(|𝜓1⟩ ⊗ |𝜓2⟩).

Solutions 439

In particular, this holds for |𝜓1⟩⊗|𝜓2⟩ taken from {|0⟩⊗|0⟩ , |0⟩⊗|1⟩ , |1⟩⊗|0⟩ , |1⟩⊗|1⟩},

which is a basis. Thus, it follows that (𝑈1 ⊗ 𝑈2)(𝑈3 ⊗ 𝑈4) = (𝑈1𝑈3) ⊗ (𝑈2𝑈4).

Now, if 𝑈1 and 𝑈2 are unitary, clearly (𝑈1 ⊗ 𝑈2)
† = 𝑈

†

1 ⊗ 𝑈
†

2 and

(𝑈1 ⊗ 𝑈2)(𝑈
†

1 ⊗ 𝑈
†

2) = (𝑈
†

1 ⊗ 𝑈
†

2)(𝑈1 ⊗ 𝑈2) = 𝐼2 ⊗ 𝐼2 = 𝐼4,

where 𝐼2 is the identity matrix of size 2 and 𝐼4 is the identity matrix of size 4. Thus,

𝑈1 ⊗ 𝑈2 is unitary.

(5.8) (a)

(

0 1

1 0)
⊗

(

1√
2

1√
2

1√
2

− 1√
2
)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

1√
2

1√
2

0 0

1√
2

− 1√
2

0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(b)

(

0 1

1 0)
⊗

(

0 1

1 0)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(c)

(

1 0

0 1)
⊗

(

1 0

0 −1)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

440 Solutions

(5.9) It holds that
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛼00

𝛼01

𝛼10

𝛼11

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛼00

𝛼01

𝛼11

𝛼10

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which is exactly the action of the 𝐶𝑁𝑂𝑇 gate.

(5.10) Assume that there exist matrices 𝐴 =
(

𝑎11 𝑎12

𝑎21 𝑎22)
and 𝐵 =

(

𝑏11 𝑏12

𝑏21 𝑏22)
such that

𝐴 ⊗ 𝐵 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11𝑏11 𝑎11𝑏12 𝑎12𝑏11 𝑎12𝑏12

𝑎11𝑏21 𝑎11𝑏22 𝑎12𝑏21 𝑎12𝑏22

𝑎21𝑏11 𝑎21𝑏12 𝑎22𝑏11 𝑎22𝑏12

𝑎21𝑏21 𝑎21𝑏22 𝑎22𝑏21 𝑎22𝑏22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This implies that 𝑎11𝑏12 = 0. Since 𝑎11𝑏11 = 1, 𝑎11 cannot be 0. Then, 𝑏12 must be 0.

But 𝑎22𝑏12 = 1, which is impossible. As a consequence, there are not matrices 𝐴 and

𝐵 such that 𝐴 ⊗ 𝐵 = CNOT.

(5.11) Let’s see how the matrix acts on the computational basis states. It holds that

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Solutions 441

so it takes |00⟩ to |00⟩. It also holds that

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

so it takes |01⟩ to |11⟩. Additionally,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

so it leaves |10⟩ unchanged. Finally,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and hence |11⟩ is taken to |01⟩. All this coincides exactly with the action of a CNOT

gate with control on the second qubit and target on the first one.

(5.12) (a) It is a product state because |10⟩ = |1⟩ ⊗ |0⟩.

(b) It is entangled. The proof is almost the same as the one provided in the main

text for 1√
2
(|00⟩ + |11⟩).

(c) It is a product state. In fact, it is the state |+⟩ |−⟩.

(d) It is entangled. Imagine that there are two states |𝜓1⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ and

|𝜓2⟩ = 𝑐 |0⟩ + 𝑑 |1⟩ such that |𝜓1⟩ ⊗ |𝜓2⟩ =
1
2
(|00⟩ + |01⟩ + |10⟩ − |11⟩). Then, we

442 Solutions

would have

1

2
(|00⟩ + |01⟩ + |10⟩ − |11⟩) = (𝑎 |0⟩ + 𝑏 |1⟩) ⊗ (𝑐 |0⟩ + 𝑑 |1⟩)

= 𝑎𝑐 |00⟩ + 𝑎𝑑 |01⟩ + 𝑏𝑐 |10⟩ + 𝑏𝑑 |11⟩ .

As a consequence, 𝑎𝑐 = 𝑎𝑑 = 𝑏𝑐 = 1/2 and 𝑏𝑑 = −1/2. Then, 𝑎𝑐𝑏𝑑 =

(𝑎𝑐)(𝑏𝑑) = 1/2 ⋅ (−1/2) = −1/4. But we also have that 𝑎𝑐𝑏𝑑 = (𝑎𝑑)(𝑏𝑐) =

1/2 ⋅ 1/2 = 1/4, which is a contradiction.

(5.13) We have already proved in the main text that 1√
2
(|00⟩ + |11⟩) is entangled. You can

prove that the rest of the Bell states are also entangled with a similar approach. But

we also can follow a more elegant way. Indeed, suppose that 1√
2
(|00⟩ − |11⟩) is not

entangled. Then, there exist |𝜓1⟩ and |𝜓2⟩ such that

1
√
2
(|00⟩ − |11⟩) = |𝜓1⟩ ⊗ |𝜓2⟩ .

We know that 1√
2
(|00⟩ − |11⟩) = (𝑍 ⊗ 𝐼)(1√

2
(|00⟩ + |11⟩)). Then, since 𝑍2 = 𝐼 2 = 𝐼 , it

holds that (𝑍 ⊗ 𝐼)(𝑍 ⊗ 𝐼) = 𝐼 ⊗ 𝐼 and thus

1
√
2
(|00⟩ + |11⟩) = (𝑍 ⊗ 𝐼)(𝑍 ⊗ 𝐼)(

1
√
2
(|00⟩ + |11⟩)) = (𝑍 ⊗ 𝐼)(

1
√
2
(|00⟩ − |11⟩))

= (𝑍 ⊗ 𝐼)(|𝜓1⟩ ⊗ |𝜓2⟩) = (𝑍 |𝜓1⟩) ⊗ |𝜓2⟩ .

Then, 1√
2
(|00⟩ + |11⟩) should be a product state too, and that is a contradiction. The

proof for the rest of the Bell states is similar.

Chapter 6
(6.1) These are two circuits that can create the Bell state that we need:

|0⟩ 𝐻

|0⟩

|0⟩

|0⟩ 𝐻

Solutions 443

(6.2) We will ignore normalization factors in this solution (just assume there is a global

1/
√
2 factor everywhere).

When a 𝑍 gate is applied on Alice’s qubit, we have

(𝑍 ⊗ 𝐼)(|00⟩ + |11⟩) = 𝑍(|0⟩) |0⟩ + 𝑍(|1⟩) |1⟩ = |00⟩ − |11⟩ .

When an 𝑋 gate is applied, we have

(𝑋 ⊗ 𝐼)(|00⟩ + |11⟩) = 𝑋(|0⟩) |0⟩ + 𝑋(|1⟩) |1⟩ = |10⟩ + |01⟩ .

When an 𝑋𝑍 gate is applied, we have

(𝑋𝑍 ⊗ 𝐼)(|00⟩ + |11⟩) = 𝑋𝑍(|0⟩) |0⟩ + 𝑋𝑍(|1⟩) |1⟩ = |10⟩ − |01⟩ .

(6.3) The case for 00 follows trivially from one of our solutions to Exercise 6.1. For 11, the

CNOT gate will transform the state as

1
√
2
(|10⟩ − |01⟩) ⟶

1
√
2
(|10⟩ − |11⟩) = |1⟩ ⊗ |−⟩ ,

so the Hadamard matrix will leave the state in |11⟩.

(6.4) It would suffice for her to apply the gates 𝑋𝑎𝑍𝑏𝑋 , thus adding an additional 𝑋 to

bring the state back to the Bell state that we originally considered.

(6.5) Alice and Bob could also agree to always pick 1.

(6.6) Using some basic trigonometry, we have that

𝑅𝑌 (𝛼)𝑅𝑌 (𝛽) =
(

cos(𝛼/2) − sin(𝛼/2)

sin(𝛼/2) cos(𝛼/2))(

cos(𝛽/2) − sin(𝛽/2)

sin(𝛽/2) cos(𝛽/2))

=
(

cos(𝛼/2) cos(𝛽/2) − sin(𝛼/2) sin(𝛽/2) − cos(𝛼/2) sin(𝛽/2) − sin(𝛼/2) cos(𝛽/2)

sin(𝛼/2) cos(𝛽/2) + cos(𝛼/2) sin(𝛽/2) − sin(𝛼/2) sin(𝛽/2) + cos(𝛼/2) cos(𝛽/2))

=
(

cos((𝛼 + 𝛽)/2) − sin((𝛼 + 𝛽)/2)

sin((𝛼 + 𝛽)/2) cos((𝛼 + 𝛽)/2))
= 𝑅𝑌 (𝛼 + 𝛽)

444 Solutions

(6.7) The expansion of the state is the following:

cos(−𝜋/8)
(

1
√
2
(|00⟩ + |11⟩)

)
+ sin(−𝜋/8)

(

1
√
2
(|01⟩ − |10⟩

)
,

hence the probability of success is (cos −𝜋/8)2 = (cos 𝜋/8)2.

(6.8) The given state is indeed equal to

1
√
2
(𝑅𝑌 (3𝜋/4) ⊗ 𝐼) ⋅ (𝑅𝑌 (−𝜋/4) ⊗ 𝑅𝑌 (−𝜋/4)) ⋅ (|00⟩ + |11⟩),

which, because of the invariance of Bell states under 𝑌 -rotations, is equal to

1
√
2
(𝑅𝑌 (3𝜋/4) ⊗ 𝐼)(|00⟩ + |11⟩),

and the result follows.

(6.9) It will suffice to check its action on the computational basis states. For |00⟩, the first

𝑋 gate transforms it into |10⟩, the CNOT gate into |11⟩, and the 𝑋 gate into |01⟩, as

expected. For |01⟩, the sequence is |11⟩, |10⟩, and |00⟩. For |10⟩, it is |00⟩, |00⟩, and |10⟩.

And, lastly, for |11⟩, the sequence of states is |01⟩, |01⟩, and |11⟩.

(6.10) An oracle for 𝑓0 is just the identity: no gates at all are needed!

This is an oracle for 𝑓1:

… …

… …

And this is an oracle for 𝑓3:
… …

… 𝑋 …

Chapter 7
(7.1) You can use the following piece of code:

Solutions 445

(a) state = Statevector(circuit)

print(state)

(b) backend = AerSimulator(seed_simulator = 18620123)

sampler = Sampler(backend)

circuit.measure_all()

job = sampler.run([circuit], shots = 8)

result = job.result()[0].data.meas

print(result.get_counts())

(c) from qiskit_ibm_runtime import QiskitRuntimeService

token = "YOUR TOKEN GOES HERE" # Replace with your IBM token

service = QiskitRuntimeService(

token = token, channel = "ibm_quantum"

)

backend = service.least_busy(

simulator = False, operational = True

)

from qiskit.transpiler.preset_passmanagers import (

generate_preset_pass_manager

)

pm = generate_preset_pass_manager(

backend=backend, optimization_level=1

)

446 Solutions

transpiled = pm.run(circuit)

sampler = Sampler(mode=backend)

job = sampler.run([transpiled], shots = 1024)

result = job.result()[0].data.meas

print(result.get_counts())

The result for the statevector computation will be as follows:

Statevector([0.70710678+0.j, 0. +0.j, 0. +0.j,

0.70710678+0.j],

dims=(2, 2))

When you run the circuit on the simulator, you will obtain 11 five times and 00 three

times. This is all consistent with the preparation of the 1√
2
(|00⟩ + |11⟩) state that we

are doing with our circuit. However, when you use an actual quantum computer, you

may obtain some stray 01 and 10 results. This is caused by the noise in the machine.

(7.2) You only need to change the values of b1 and b2 to those that Alice wants to send.

(7.3) In order to run the circuits on an actual quantum computer, you first need to create

a Sampler object based on an IBM backend and preset manager with the following

code:

from qiskit_ibm_runtime import QiskitRuntimeService

token = "YOUR TOKEN GOES HERE" # Replace with your actual IBM token

service = QiskitRuntimeService(token = token, channel = "ibm_quantum")

backend = service.least_busy(simulator = False, operational = True)

from qiskit.transpiler.preset_passmanagers import (

generate_preset_pass_manager

)

Solutions 447

pm = generate_preset_pass_manager(

backend=backend, optimization_level=1

)

sampler = Sampler(mode=backend)

Notice that this needs to replace all the instructions based on AerSimulator that we

show in the main text. Then, you also need to replace the instruction

circuit_list.append(circuit)

with

circuit_list.append(pm.run(circuit))

The rest of the code is identical to that used in the main text. When we ran this

simulation of the CHSH game on actual quantum hardware, we obtained a win

percentage of 84.3%, which is well above the 75% win rate that we would obtain if

Nature were classical instead of quantum. We think that this is very, very cool.

(7.4) The oracle for 𝑓0 is the identity function. Thus, you need nothing to implement it!

The oracle for 𝑓1 can be implemented with the following code:

circuit.cx(0,1)

Finally, the oracle for 𝑓3 can be implemented with the following instruction:

circuit.x(1)

In the cases of 𝑓0 and 𝑓3, the measurement results are always 0. For 𝑓1, the measure-

ment results are always 1.

448 Solutions

Chapter 8
(8.1) To prove that the tensor product is associative, consider column vectors

𝑎 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1

𝑎2

⋮

𝑎𝑘

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑎 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1

𝑏2

⋮

𝑏𝑙

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑎 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑐1

𝑐2

⋮

𝑐𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We know that

𝑎 ⊗ 𝑏 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1𝑏1

𝑎1𝑏2

⋮

𝑎𝑘𝑏𝑙

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and that

𝑏 ⊗ 𝑐 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1𝑐1

𝑏1𝑐2

⋮

𝑏𝑙𝑐𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, we have that

(𝑎 ⊗ 𝑏) ⊗ 𝑐 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1𝑏1𝑐1

𝑎1𝑏1𝑐2

⋮

𝑎1𝑏2𝑐1

⋮

𝑎𝑘𝑏𝑙𝑐𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Solutions 449

and also

𝑎 ⊗ (𝑏 ⊗ 𝑐) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1𝑏1𝑐1

𝑎1𝑏1𝑐2

⋮

𝑎1𝑏2𝑐1

⋮

𝑎𝑘𝑏𝑙𝑐𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Assume now that we are working with an 𝑛-qubit system. We will prove that |𝑗⟩ is a

column vector of size 2𝑛 with all zeros but the element on position 𝑗 + 1, which is a

1, by induction. For 𝑛 = 1, 𝑛 = 2, and 𝑛 = 3, we have already proved it in the main

text. Consider now 𝑛 ≥ 4 and assume that the result is valid for 𝑛 − 1, and consider a

basis state |𝜓⟩ of 𝑛 − 1 qubits.

If |𝜓⟩ = |0⟩ |𝜓′⟩, then the column vector for |𝜓⟩ will start with the elements of the

column vector of |𝜓′⟩ and, after that, it will have 2𝑛−1 zeros. But the column vector

for |𝜓′⟩ is, by the induction hypothesis, exactly of the form that we are interested

in. It follows that |𝜓⟩ also has the desired structure. The case when |𝜓⟩ = |1⟩ |𝜓′⟩ is

analogous.

(8.2) We can prove it by induction. When 𝑛 = 1, it is trivial. Now, consider 𝑛 > 1 and

assume that the result is true for 𝑛 − 1. Then, we have that

𝑛

⨂

𝑗=1

|+⟩ = |+⟩ ⊗

𝑛−1

⨂

𝑗=1

|+⟩ = |+⟩ ⊗
(

1
√
2𝑛−1

2𝑛−1−1

∑

𝑗=0

|𝑗⟩
)

=
(

1
√
2
(|0⟩ + |1⟩)

)
⊗

(

1
√
2𝑛−1

2𝑛−1−1

∑

𝑗=0

|𝑗⟩
)

=
1

√
2𝑛 (

|0⟩

2𝑛−1−1

∑

𝑗=0

|𝑗⟩ + |1⟩

2𝑛−1−1

∑

𝑗=0

|𝑗⟩
)

=
1

√
2𝑛 (

2𝑛−1

∑

𝑗=0

|𝑗⟩
)
,

as we needed.

(8.3) (a) It is valid, because |
|
|
1√
2

|
|
|

2

+
|
|
|
1√
2

|
|
|

2

= 1/2 + 1/2 = 1.

450 Solutions

(b) It is not valid, because you cannot add |000⟩ (a vector of size 8) and |11⟩ (a vector

of size 4).

(c) It is valid, because |
|
|
1√
3

|
|
|

2

+
|
|
|
1√
3

|
|
|

2

+
|
|
|
1√
3

|
|
|

2

= 1/3 + 1/3 + 1/3 = 1.

(d) It is valid, because |
|
|
1√
2

|
|
|

2

+ |
|
𝑖
2
|
|
2
+ |
|
−1
2
|
|
2
= 1/2 + 1/4 + 1/4 = 1.

(e) It is not valid, because |
|
1
2
|
|
2
+ |
|
1
2
|
|
2
+ |
|
1
2
|
|
2
= 1/4 + 1/4 + 1/4 = 3/4 ≠ 1.

(8.4) Since the GHZ has 3 qubits, it can only be the product of a one-qubit state with a

two-qubit state, or of a two-qubit state with a one-qubit state. We will show that the

first case is impossible (the other is analogous). Assume that

(𝑎 |0⟩ + 𝑏 |1⟩)(𝑐 |00⟩ + 𝑑 |01⟩ + 𝑒 |10⟩ + 𝑓 |11⟩) =
1
√
3
(|001⟩ + |010⟩ + |100⟩).

Then, 𝑎𝑐 = 0. If 𝑎 = 0, then 𝑎𝑑 = 0, but we know that 𝑎𝑑 = 1√
3
. Then, we must have

𝑐 = 0. But then 𝑏𝑐 = 0, which is a contradiction.

(8.5) (a) You will obtain 000 or 111, each with probability 1/2.

(b) You will obtain 00101 with probability 1/2, 01101 with probability 1/4, and

10101 with probability 1/4.

(c) You will obtain 111000 with probability 9/25 and 000111 with probability 16/25.

(d) You will obtain 0001, 0010, 0100, or 1000, each with probability 1/4.

(8.6) (a) You will obtain 0 with probability 2/3 and the state will then collapse to
1√
2
(|001⟩ + |100⟩). You will obtain 1 with probability 1/3 and the state will

then collapse to |010⟩.

(b) You will obtain 0 with probability 7/8 and the state will then collapse to
1√
14

|0001⟩ + 2√
14

|0010⟩ + 3√
14

|0100⟩. You will obtain 1 with probability 1/8

and the state will then collapse to |1000⟩.

Solutions 451

(c) You will obtain 0 with probability 1/2 and the state will then collapse to
1√
2
(|000⟩− 𝑖 |110⟩). You will obtain 1 with probability 1/2 and the state will then

collapse to 1√
2
(𝑖 |011⟩ − |101⟩).

(8.7) Since the CCNOT gate acts on three qubits, it could only be obtained as the product

of either a one-qubit gate and a two-qubit gate, or a two-qubit gate and a one-qubit

gate. The proof is similar in both cases, so we will only focus on the first situation.

Suppose, then, that there are matrices such that

(

𝑎11 𝑎12

𝑎21 𝑎22)
⊗

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33 𝑏34

𝑏41 𝑏42 𝑏43 𝑏44

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, 𝑎11𝑏11 = 1, so 𝑎11 is not 0. Since 𝑎11𝑏34 = 0, it follows that 𝑏34 = 0. But

𝑎22𝑏34 = 1, which is a contradiction.

(8.8) (a) It holds that

𝑇
2
=

(

1 0

0 𝑒𝑖𝜋/4)

2

=
(

1 0

0 𝑒𝑖𝜋/2)
=

(

1 0

0 𝑖)
= 𝑆.

(b) It holds that

𝑆
2
=

(

1 0

0 𝑖)

2

=
(

1 0

0 −1)
= 𝑍.

452 Solutions

(c) It holds that

𝑆
4
= 𝑍

2
=

(

1 0

0 −1)

2

=
(

1 0

0 1)
.

Hence, 𝑆3𝑆 = 𝑆𝑆3 = 𝐼 and, thus, the inverse of 𝑆 is 𝑆3. Since 𝑆 is unitary, then

𝑆† = 𝑆3.

(d) It holds that 𝑇 7𝑇 = 𝑇𝑇 7 = 𝑇 8 = 𝑆4 = 𝐼 . Hence, 𝑇 7 is the inverse of 𝑇 , which is

also 𝑇 †.

(e) We could obtain the result by simply multiplying the matrices, but we will do

it in a different way. Notice that 𝑋 |0⟩ = |1⟩ and 𝑋 |1⟩ = |0⟩. Also, 𝐻𝑍𝐻 |0⟩ =

𝐻𝑍 |+⟩ = 𝐻 |−⟩ = |1⟩. And 𝐻𝑍𝐻 |1⟩ = 𝐻𝑍 |−⟩ = 𝐻 |+⟩ = |0⟩. Since 𝑋 and

𝐻𝑍𝐻 coincide on a basis, they must be the same matrix.

(8.9) It is easy to see that the matrix for C𝑈 is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0

0 1 0 ⋯ 0

0 0 𝑢11 ⋯ 𝑢12𝑛

0 0 𝑢21 ⋯ 𝑢22𝑛

⋮ ⋮ ⋮ ⋱ ⋮

0 0 𝑢2𝑛1 ⋯ 𝑢2𝑛2𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with

𝑈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑢11 ⋯ 𝑢12𝑛

𝑢21 ⋯ 𝑢22𝑛

⋮ ⋱ ⋮

𝑢2𝑛1 ⋯ 𝑢2𝑛2𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

then, (C𝑈)† = C(𝑈†). Multiplying the matrices for C𝑈 and C𝑈†, and taking into

account that 𝑈𝑈† = 𝑈†𝑈 = 𝐼 , the result follows.

Solutions 453

Chapter 9
(9.1) (a) It would collapse to |0⟩ ⊗ 1√

2
(|00⟩ + |11⟩).

(b) It would collapse to |𝜓⟩ ⊗ |00⟩.

(c) This implies that performing a measurement on the first qubit will have no

effect on the two other qubits, and vice versa.

(9.2) Substituting |𝜓⟩ for 𝛼 |0⟩ + 𝛽 |1⟩, we can deduce that the CNOT gate will transform

the state as

(𝛼 |0⟩ + 𝛽 |1⟩) ⊗
1
√
2
(|00⟩ + |11⟩) = 𝛼 |0⟩ ⊗

1
√
2
(|00⟩ + |11⟩) + 𝛽 |1⟩ ⊗

1
√
2
(|00⟩ + |11⟩)

⟶ 𝛼 |0⟩ ⊗
1
√
2
(|00⟩ + |11⟩) + 𝛽 |1⟩ ⊗

1
√
2
(𝑋 ⊗ 𝐼)(|00⟩ + |11⟩)

= 𝛼 |0⟩ ⊗
1
√
2
(|00⟩ + |11⟩) + 𝛽 |1⟩ ⊗

1
√
2
(|10⟩ + |01⟩).

It is (at least from our view) much easier to take this approach than to multiply 8 × 8

matrices.

(9.3) If the initial Bell state for the entangled pair is 1√
2
(|10⟩ + |01⟩), then the state right

after the application of the first CNOT gate is

1
√
2
(𝛼(|010⟩ + |001⟩) + 𝛽(|100⟩ + |111⟩)) ,

and thus the state after the application of the subsequent Hadamard gate will be

1

2
(𝛼(|010⟩ + |110⟩ + |001⟩ + |101⟩) + 𝛽(|000⟩ − |100⟩ + |011⟩ − |111⟩)) .

If Alice’s measurement then yields 00, the state will collapse to 𝛼 |001⟩ + 𝛽 |000⟩, so

Bob will have to apply an 𝑋 gate on its qubit in order to retrieve |𝜓⟩.

454 Solutions

(9.4) These are all the two-bit constant functions:

𝑐1(0, 0) ≔ 0, 𝑐1(0, 1) ≔ 0, 𝑐1(1, 0) ≔ 0, 𝑐1(1, 1) ≔ 0

𝑐2(0, 0) ≔ 1, 𝑐2(0, 1) ≔ 1, 𝑐2(1, 0) ≔ 1, 𝑐2(1, 1) ≔ 1

And these are all the balanced ones:

𝑏1(0, 0) ≔ 0, 𝑏1(0, 1) ≔ 0, 𝑏1(1, 0) ≔ 1, 𝑏1(1, 1) ≔ 1

𝑏2(0, 0) ≔ 0, 𝑏2(0, 1) ≔ 1, 𝑏2(1, 0) ≔ 0, 𝑏2(1, 1) ≔ 1

𝑏3(0, 0) ≔ 1, 𝑏3(0, 1) ≔ 0, 𝑏3(1, 0) ≔ 0, 𝑏3(1, 1) ≔ 1

𝑏4(0, 0) ≔ 0, 𝑏4(0, 1) ≔ 1, 𝑏4(1, 0) ≔ 1, 𝑏4(1, 1) ≔ 0

𝑏5(0, 0) ≔ 1, 𝑏5(0, 1) ≔ 0, 𝑏5(1, 0) ≔ 1, 𝑏5(1, 1) ≔ 0

𝑏6(0, 0) ≔ 1, 𝑏6(0, 1) ≔ 1, 𝑏6(1, 0) ≔ 0, 𝑏6(1, 1) ≔ 0

(9.5) Using the enumeration of one-bit Boolean gates that we considered in Section 6.3,

there would only exist such gates for 𝑓1 and 𝑓2. For 𝑓1, 𝐺𝑓1 would be the identity

(applying no gates), and for 𝑓2, 𝐺𝑓2 would be an 𝑋 gate. Notice that, since 𝑓0 and 𝑓3

are constant, the corresponding “gates” 𝐺(⋅) would not be invertible, hence why they

cannot exist.

(9.6) The state of the system right before the measurement is

(

2𝑛−1

∑

𝑥=0

2𝑛−1

∑

𝑦=0

(−1)𝑓 (𝑥)+𝑥⊙𝑦

2𝑛
|𝑦⟩

)
⊗

1
√
2
(|0⟩ − |1⟩) =

(

2𝑛−1

∑

𝑥=0

2𝑛−1

∑

𝑦=0

(−1)𝑓 (𝑥)+𝑥⊙𝑦

2𝑛
|𝑦⟩

)
⊗ |+⟩ ,

and, since this is a tensor product of two states and |+⟩ is a (normalized) state, we

can simply ignore the last qubit and assume that we have 𝑛 qubits in the state

2𝑛−1

∑

𝑥=0

2𝑛−1

∑

𝑦=0

(−1)𝑓 (𝑥)+𝑥⊙𝑦

2𝑛
|𝑦⟩ .

Solutions 455

The amplitude of |0 ⋯ 0⟩ is then

2𝑛−1

∑

𝑥=0

(−1)𝑓 (𝑥)+𝑥⊙0

2𝑛

and the result follows.

Chapter 10
(10.1) We would only have to run the following piece of code:

circuit = QuantumCircuit(6)

circuit.mcx([0,2,4,5], 3)

(10.2) If we wanted to have certainty that the final state is |+⟩, it would suffice for us to

add a Hadamard gate right before the measurement. By doing this, since unitary

matrices are invertible, |+⟩ (and only |+⟩) would become |0⟩)—and all other states

would have a non-zero amplitude for |1⟩. Therefore, if we run a sufficiently large

amount of shots and we always get 0 as an outcome, we can be very certain that the

state is |0⟩. Of course, the more shots we run, the more certain we will be!

(10.3) We can run the following instructions:

state_1 = QuantumCircuit(1)

state_1.x(0)

result_1 = quantum_teleportation(state_1)

print(result_1.get_counts())

We will get that all the outcomes are 1.

(10.4) The following would be one possible alternative:

oracle = build_oracle(["010", "111", "011", "100"])

df = DJ(oracle)

job = sampler.run([dj], shots = 1)

456 Solutions

result = job.result()[0].data.c

print(result.get_bitstrings())

(10.5) We can try it for 𝑏 = 001, in which case the oracle would be constructed as

oracle = build_oracle(["001", "011", "101", "111"])

Chapter 11
(11.1) If you select 𝑎 = 6, 7, 9, 12, 14, 15, 18 you will finish at step 2, because you will

directly find a non-trivial factor of 21 when computing gcd(𝑎, 21).

The value 𝑎 = 16 is not valid, because its period is 3, which is odd. For 𝑎 =

8, 10, 11, 13, 19 the periods are, respectively, 𝑟 = 2, 6, 6, 2, 6 and, in these cases, you

will be able to factor 21. For 𝑎 = 17, the period is 6, but you will obtain only trivial

factors. The same happens with 𝑎 = 20, whose period is 2.

(11.2) If you select 𝑎 to be one of 3, 5, 6, 9, 10, or 12, you will find a factor of 15 at step 2. If

you select 𝑎 = 14, you will find that its period is 2, but it will give you only trivial

factors. For 𝑎 = 2, 4, 7, 8, 11, 13, the periods are 𝑟 = 4, 2, 4, 4, 2, 4 and they will lead

you to completely factor 15.

(11.3) If the result for the measurement of the second register is 1, the possible values for

the first register are 0, 2, 4, and 6. The possible differences are, thus, 2, 4, and 6. The

number 8 raised to any of those values is 1 mod 21. If the measurement on the second

register gives 8 as a result, the possible values are 1, 3, 5, and 7, and their differences

are again 2, 4, and 6.

(11.4) The coordinate on row 𝑗 , column 𝑘 is 1
2
𝑒
𝜋𝑖𝑗𝑘

2 . By noticing that 𝑒0 = 1, 𝑒
𝜋𝑖
2 = 𝑖, 𝑒𝜋𝑖 = −1,

and 𝑒
3𝜋𝑖
2 = −𝑖, it is easy to check that the matrix is correct.

(11.5) The first row is composed entirely of the element 1 (which we can consider as the

sole first root of unity). The second, fourth, sixth, and eighth rows are the 8th roots

of unity, because they correspond to values of 𝑘 equal to 1, 3, 5, and 7, which have

Solutions 457

no common factors with 8. The third and seventh rows are the fourth roots of unity,

because they correspond to values of 𝑘 equal to 2 and 6 and gcd(2, 8) = gcd(6, 8) = 2.

These roots are repeated twice. Finally, the fifth row consists of four repetitions of 1

and −1, which are the second roots of unity.

(11.6) Consider a computational basis state |𝑥⟩ |𝑦⟩, where 𝑥, 𝑦 = 0, 1. Let’s see how this is

transformed by the first circuit. After the first CNOT gate, the state will be |𝑥⟩ |𝑦 ⊕ 𝑥⟩.

After the second, it will be |𝑥 ⊕ 𝑦 ⊕ 𝑥⟩ |𝑦 ⊕ 𝑥⟩ = |𝑦⟩ |𝑦 ⊕ 𝑥⟩. Finally, after the third

gate, we will have |𝑦⟩ |𝑦 ⊕ 𝑥 ⊕ 𝑦⟩ = |𝑦⟩ |𝑥⟩, as required.

A similar computation shows that the second circuit also implements the SWAP gate,

but you can also reason by symmetry. If you read the first circuit from bottom to top,

you get the second one. But exchanging the bottom qubit with the top one is the

same as interchanging the top qubit with the bottom one, so this “bottom-up” circuit

also implements the SWAP gate.

(11.7) The state |1⟩ is an eigenvector of 𝑆 with eigenvalue 𝑒
𝑖𝜋
2 . Thus, 𝜃 = 1

4
. You can

determine this phase exactly if you use 𝑚 = 2 qubits on the upper register, because

you can express 𝜃 exactly as 1
2𝑚

= 1
4
.

Since 𝑆2 = 𝑍 , the circuit would be as follows:

|0⟩ 𝐻

QFT†

2

|0⟩ 𝐻

|0⟩ 𝑋 𝑆 𝑍

In the case of |1⟩ and 𝑇 , you would need 3 qubits because 𝜃 = 1
8
= 1

23
. The circuit

would be the following:

458 Solutions

|0⟩ 𝐻

QFT†

3
|0⟩ 𝐻

|0⟩ 𝐻

|0⟩ 𝑋 𝑇 𝑆 𝑍

Chapter 12
(12.1) The multi-controlled 𝑍 gate will multiply the global state by the phase −1 if the

input state is |1 ⋯ 1⟩, and it will leave any other computational basis states untouched.

Therefore, there is no real distinction between control and target qubits in terms of

the way in which the gate behaves. We can then conclude that, as long as there is

one target qubit and the remaining qubits are controls, the gate will behave in the

same way.

(12.2) Using L’Hôpital’s rule,

lim
𝑥→0

sin 𝑥

𝑥
= lim
𝑥→0

(sin 𝑥)′

𝑥′
= lim
𝑥→0

cos 𝑥

1
= 1.

(12.3) (a) We would need ⌊(𝜋/4)
√
8192⌋ = 71 iterations.

(b) The probability would be |
|
|
sin(101 arcsin(1/

√
(213)))

|
|
|

2

≈ 81%.

(12.4) The probability of getting 𝑠 in a measurement is bigger than or equal to 1/2 if and

only if |sin 𝜃𝑘 | ≥ 1/
√
2. Therefore, if we restrict ourselves to the positive 𝑌 half-plane,

the probability is bigger than 1/2 if 𝜋/4 < 𝜃𝑘 < 3𝜋/4. By a reasoning analogous to

the one used to compute 𝑘0, these constraints are satisfied by the values of 𝑘 such

that(𝜋/8)
√
𝑁 < 𝑘 < (3𝜋/8)

√
𝑁 .

(12.5) (a) No, it wouldn’t make sense because𝑚 is too large. We could just pick elements

at random as, having picked 𝑘 elements, the probability of finding one of the

Solutions 459

marked elements would be 1 − (1/2)𝑘 . Therefore, in order for the probability

of finding a marked element to be bigger than 90%, we would need to perform

𝑘 = 4 iterations, as 1 − (1/2)4 ≈ 94%, yet 1 − (1/2)3 = 87.5%.

On the other hand, if we performed Grover’s algorithm, after 𝑘 iterations, the

probability of finding a marked element would be

|sin 𝜃𝑘 |
2
=

|
|
|
sin((2𝑘 + 1) arcsin (1/

√
2))

|
|
|

2

=
1

2
,

regardless of the value of 𝑘, as arcsin(1/
√
2) = 𝜋/4 and the sine of any odd

integer multiple of 𝜋/4 is 1/
√
2.

(b) We would need to perform

𝜋

4

√
1024

5
≈ 11

applications of the Grover operator. After this many iterations, the probability

of finding a marked element will be

|sin 𝜃11|
2
=

|
|
|
|
|

sin
(
(11 ⋅ 2 + 1) arcsin

√
5

1024)

|
|
|
|
|

2

≈ 99.85%.

On the other hand, if we had picked 11 elements at random, the probability of

having found a marked element would have been

1 −
(
1 −

5

1024)

11

≈ 5.24%,

so it is very much worth it to use Grover’s algorithm.

(12.6) The characteristic polynomial of this matrix is

det(𝑅(2𝜔) − 𝐼𝑥) = 𝑥
2
− 2𝑥(cos 2𝜔) + 1,

460 Solutions

ant its roots are thus given by

𝑥 =
2 cos(2𝜔) ±

√
4 cos2(2𝜔) − 4

2
= cos(2𝜔) ± 𝑖 sin(2𝜔) = 𝑒

±𝑖(2𝜔)
.

Since the matrix has two distinct eigenvalues, it is diagonalizable. The only instance

in which it as a single eigenvalue is when 𝜔 = 0 (or a multiple of 𝜋), but in this case

the matrix is the identity (and it is already diagonal).

Chapter 13
(13.1) You can use the following piece of code:

from qiskit import QuantumCircuit

import numpy as np

qft3 = QuantumCircuit(3)

qft3.h(0)

qft3.cs(1,0)

qft3.cp(np.pi/4,2,0)

qft3.h(1)

qft3.cs(2,1)

qft3.h(2)

qft3.swap(0,2)

qft3.draw("mpl")

And you will obtain the following figure:

q0

q1

q2

H S

P (/4)

H S

H

Solutions 461

This is exactly the circuit we were looking for, because the controlled phase gate

between qubits 0 and 2 is the controlled-𝑇 gate that we needed.

(13.2) With 𝑁 = 15 and 𝑎 = 7, you easily recover 𝑟 = 4. With 𝑁 = 21 and 𝑎 = 11, you

obtain 𝑟 = 6. In both cases, you can successfully factor the numbers in a way very

similar to what we did in the main text. For 𝑎 = 2 and 𝑁 = 35, you need to change the

circuit a little bit, because the binary expansion of 35 is 6 bits long. Then, you need to

create the circuit with shor = circuit_shor(2,35,12). This is a much wider and

longer circuit, so it will take longer to run. Eventually, you will obtain measurement

results that, very likely, will include 1024, 1707, 2389, 2731, 3413, or 3755, among

other values. Using, for instance, limit_denominator, you can discover that 𝑟 = 12

and factor the number.

(13.3) You can find out with the following piece of code:

for i in range(11):

grover = grover_circuit(oracle, i)

sv = Statevector(grover)

print("The probability of 111 with", i, "iterations is",

abs(sv["0111"])**2+abs(sv["1111"])**2)

This will give you the following output:

The probability of 111 with 0 iterations is 0.12499999999999992

The probability of 111 with 1 iterations is 0.781249999999998

The probability of 111 with 2 iterations is 0.9453124999999958

The probability of 111 with 3 iterations is 0.3300781249999979

The probability of 111 with 4 iterations is 0.01220703124999987

The probability of 111 with 5 iterations is 0.5479736328124941

The probability of 111 with 6 iterations is 0.9997863769531125

The probability of 111 with 7 iterations is 0.5769729614257729

The probability of 111 with 8 iterations is 0.019456863403319972

The probability of 111 with 9 iterations is 0.3028912544250431

462 Solutions

The probability of 111 with 10 iterations is 0.9312659502029226

Notice how the probability of success decreases to almost 0 if you set your number

of iterations to 4. It is extremely important to correctly set this value in order for

Grover’s search to work properly!

Chapter 14
(14.1) (a) The probability of correctly identifying whether or not an error has taken

place will be 𝑃identify = 1 − 0.053 ≈ 99.99%, and that of correctly returning the

original bit will be 𝑃correct = 1 − 3(0.05)2 + 2(0.05)3 ≈ 99.28%.

(b) 𝑃identify = 1 − 0.13 = 99.90%,

𝑃correct = 1 − 3(0.1)2 + 2(0.1)3 = 97.20%.

(c) 𝑃identify = 1 − 0.33 = 97.30%,

𝑃correct = 1 − 3(0.3)2 + 2(0.3)3 = 78.40%.

(d) 𝑃identify = 1 − 0.53 = 87.50%,

𝑃correct = 1 − 3(0.5)2 + 2(0.5)3 = 50.00%.

(14.2) The action of the first CNOT gate leaves the state as

(𝛼0 |00⟩ + 𝛼1 |11⟩) |0⟩ ,

and the action of the second CNOT gate brings it to 𝛼0 |000⟩ + 𝛼1 |111⟩, as claimed.

(14.3) Since⊕ and ⋅ are commutative, assume without loss of generality that 𝑥 = 𝑦. Clearly,

𝑥 = 𝑦 = 𝑥𝑦. Now, if 𝑧 = 0, we have 𝑥𝑦 ⊕ 𝑦𝑧 ⊕ 𝑥𝑧 = 𝑥𝑦 ⊕ 0 ⊕ 0 = 𝑥𝑦, whereas, if

𝑧 = 1,

𝑥𝑦 ⊕ 𝑦𝑧 ⊕ 𝑥𝑧 = 𝑥𝑦 ⊕ 𝑦 ⊕ 𝑥 = 𝑥𝑦 ⊕ 𝑥𝑦 ⊕ 𝑥𝑦 = 𝑥𝑦,

thus proving the result.

Alternatively, you can just evaluate the formula for all possible assignments of 0 and

1 to 𝑥, 𝑦, and 𝑧 and check that the result holds.

Solutions 463

(14.4) Using the properties of matrix multiplication, it can be checked that

𝐻𝑍𝐻 =
1
√
2 (

1 1

1 −1)(

1 0

0 −1)

1
√
2 (

1 1

1 −1)
=

(

0 1

1 0)
= 𝑋.

Moreover, it then follows that 𝐻−1𝑋𝐻−1 = 𝑍 , but 𝐻 = 𝐻−1, hence 𝑍 = 𝐻𝑋𝐻 .

(14.5) The application of a Hadamard gate on each of the three qubits in a state 𝑎 |000⟩ +

𝑏 |111⟩ leaves the state as

𝑎 |+⟩ |+⟩ |+⟩ + 𝑏 |−⟩ |−⟩ |−⟩ .

Then the application of a 𝑍 gate on the first qubit transforms the state into

𝑎 |−⟩ |+⟩ |+⟩ + 𝑏 |+⟩ |−⟩ |−⟩ .

Finally, applying a Hadamard on each qubit brings the state to

𝑎 |100⟩ + 𝑏 |011⟩ .

Informally speaking, this illustrates how phase-flip errors become bit-flip errors when

surrounded by Hadamard gates.

(14.6) We will prove that {𝐼 , 𝑋, 𝑍, 𝑋𝑍} is a basis for the four-dimensional vector space of

2 × 2 matrices.

In a vector space, we say that some vectors 𝑣1, … , 𝑣𝑘 are linearly independent if the

only way in which 0 can be written as a linear combination of them is 0 ⋅ 𝑣1 +⋯0 ⋅ 𝑣𝑛.

With this definition in mind, we note that, in a finite-dimensional vector space of

dimension 𝑛, any set of 𝑛 linearly independent elements forms a basis (this can be

easily proved). Thus, for our purposes, it will suffice to show that 𝐼 , 𝑋, 𝑍, 𝑋𝑍 are

linearly independent, that is, if 𝑎, 𝑏, 𝑐 ∈ ℂ are such that 𝑎𝐼 + 𝑏𝑋 + 𝑐𝑍 + 𝑑𝑋𝑍 = 0,

then 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0.

If 𝑎𝐼 + 𝑏𝑋 + 𝑐𝑍 + 𝑑𝑋𝑍 = 0, then

𝑎𝐼 + 𝑏𝑋 + 𝑐𝑍 + 𝑑𝑋𝑍 =
(

𝑎 + 𝑐 𝑏 − 𝑑

𝑏 + 𝑑 𝑎 − 𝑐)
= 0.

This implies that 𝑎+ 𝑐 = 𝑎−𝑐, hence 𝑐 = 0 and, since 𝑎+ 𝑐 = 0, then 𝑎 = 0. Similarly,

one may deduce that 𝑏 = 𝑑 = 0.

It can be shown that, if some matrices 𝐴1, … , 𝐴𝑘 are linearly independent, so is the

set of all their tensor products

𝐴1 ⊗ 𝐴1, 𝐴1 ⊗ 𝐴2, 𝐴1 ⊗ 𝐴3, … , 𝐴𝑘 ⊗ 𝐴𝑘 .

This applies, in particular, to the set 𝐸 of all possible 𝑛 tensor products of 𝐼 , 𝑋, 𝑍, 𝑍𝑋 ,

which lie in the space of 2𝑛 × 2𝑛 matrices. Since this space has dimension 2𝑛 ⋅ 2𝑛, and

𝐸 has the same number of elements (4𝑛 = 2𝑛 ⋅ 2𝑛), we can conclude that 𝐸 is a basis

of the space of of 2𝑛 × 2𝑛 matrices.

464 Solutions

Index

A
adiabatic quantum computation 41

adjoint operators 393–395

amplitude amplification 285–292

amplitudes 23

Anaconda

installing 410

Anaconda Distribution 410

asymmetric cryptographic protocol

240

B
banknote

checking 48–50

creating 47, 48

BB84 protocol

implementing 89–92

Bernstein–Vazirani algorithm

203–205, 230, 231

big O notation 407

bit-flip 341–348

Bloch sphere 67, 400–402

boson sampling 378

bra 27

bra-ket notation 26–28, 398–400

braket 399

C
canonical basis 26, 388

CHSH game 127–135

simulating 152–156

CIRCUIT-SAT 282

Cirq 74

classical computers

used, for simulating quantum

computers 16–18

classical register 144

color codes 353

complex numbers

properties 383–385

computability theory 5

computational basis 26, 388

conjugate transpose 34, 394

constructive interference 199

control qubit 110, 177

controlled-controlled-NOT (CCNOT)

177

controlled-NOT (CNOT) 110–112

controlled-X gate 110

466 Index

cross-entropy benchmark fidelity

372–374

cross-entropy benchmarking (XEB)

374–378

CSS codes 353

D
destructive interference 199

Deutsch–Jozsa algorithm 192, 193,

221

implementing 227–230

oracles 194–196

oracles, building 222–227

usage 196–201

Deutsch’s algorithm 135, 136

implementing, in Qiskit 156–159

inner workings 138–141

oracle 136–138

discrete Fourier transform (DFT) 252

E
Elitzur-Vaidman bomb tester 65–68

encoding circuit 342

entanglement 13, 14, 112–115

error correction

need for 335–337

error correction circuit 342

error correction code 337–339

F
fault-tolerant quantum computing

334, 360, 361

finite-dimensional vector spaces 388

G
global phase 31, 42

Google Colab

using 410

Grover’s algorithm 9, 278, 279,

323–330

amplitude amplification

285–292

initial setup 282–285

iterations, used for achieving

goals 292–297

multiple iterations, using

297–301

oracles 279–282

Grover’s diffusion operator 285

H
halting problem 5

Hermitian adjoint 394

Holevo’s theorem 33

hybrid method 240

I
IBM’s quantum computers

accessing 414

illegitimate

detecting, quantummoney

50–54

information reconciliation 60

inner product 393–395

interference 14, 15

Index 467

inverse quantum Fourier transform

258

inversion about the mean 290

L
libraries

installing 412–414

linear algebra 385, 386

bases and coordinates 388,

389

maps and eigenstuff 389–392

vector spaces 386, 387

linear combination 388

logic gates 34

M
Mach-Zehnder interferometer 202

magic states 361

majority voting 337

measurement in the computational

basis 28

modular arithmetic

crash course 395, 396

multi- controlled NOT gate 209

multi-qubit gates

tensor product gates 175–177

Toffoli gates 177, 178

universality 175, 178–182

multi-qubit states 164–172

multi-qubit system

measuring 172–175

multiple qubits in Qiskit

equivalence of circuits, verifying

213–215

registers, using 211–213

working with 208–211

N
no-cloning theorem 10, 15, 16,

115–117

noisy-intermediate scale quantum (or

NISQ) 19

normalization condition 23

O
one qubit, in Qiskit

evolution of state, simulating

80, 81

results, obtaining from real

quantum hardware 85–89

sample, obtaining from simulator

81–85

working with 75–80

one-bit Boolean functions 135

one-time pad 55

oracle 136

P
PennyLane 72, 73

perfect secrecy 56

periodic sequence

obtaining, with quantum circuit

249–252

preparing 247

QFT, applying to 259–263

468 Index

searching, with quantum Fourier

transform (QFT) 252

state 247–249

phase flips 348–350

phase kick-back 140

phase oracles 281

post-quantum cryptographic protocols

239

prime factors

significance 236–240

privacy amplification 60

probability amplitudes 30

promise problem 196

protocols with individual qubits 64

alternative QKD protocols 64, 65

Elitzur-Vaidman bomb tester

65–68

public-key cryptographic protocol

240

Python distribution

working with 409–412

Q
Qiskit 74, 75

case 70–72

Deutsch’s algorithm,

implementing 156–159

Grover’s algorithm 323–330

QFT 308–312

Shor code, implementing

354–359

Shor’s algorithm 312–323

two-qubit systems, working with

in 144–149

QKD, with BB84 protocol 55–61

Alice 55–58

Bob 55–58

Eve 55–58

one-time pad 55–58

security 61–64

quantum annealing 379

quantum approximate optimization

algorithm (QAOA) 379

quantum bit (qubit) 13, 22, 23

bra-ket notation 26–28

information, extracting from

28–34

states 23–25

quantum circuit 40, 41

used, for obtaining periodic

sequence 249–252

quantum circuit model 41

quantum computers

applications and algorithms

18–20

simulating, with classical

computers 16–18

quantum computing

advantages 364–366

myths and realities 4–9

quantum cryptography 16

quantum error correction 340, 341

bit-flip 341–348

phase flip 348–350

Shor code 350–354

Index 469

Quantum Exact Simulation Toolkit

(QuEST) 74

quantum Fourier transform

counting with 301–304

quantum Fourier transform (QFT)

253, 255–259, 263–267

applying, to periodic sequences

259–263

in Qiskit 308–312

used, for searching periodic

sequence 252

quantum gate teleportation 192

quantum gates 34

quantum hardware

results, obtaining from 85–89

Quantum Key Distribution (QKD) 16,

55

quantummoney 46, 47

banknote, checking 48–50

banknote, creating 47, 48

illegitimate, detecting 50–54

quantum neural networks 379

quantum parallelism 201, 203

quantum phase estimation (QPE)

267–270

quantum phenomena

entanglement 13, 14

interference 14, 15

non-cloning theorem 15, 16

superposition 11–13

uncertainty principle 15, 16

quantum register 144

quantum software framework 70–72

quantum software framework, tools

Cirq 74

PennyLane 72, 73

Qiskit 74, 75

QuEST 74

Quirk 73

quantum state tomography 32

quantum support vector machines

379

quantum supremacy 365

quantum teleportation 14, 114, 184,

185

details 186–190

overview 191, 192

quantum teleportation protocol

216–221

quantum tomography 32

quantum-safe protocol 240

qubit state

global and relative phases

41–43

quantum circuit 40, 41

quantum gate 34–40

transforming 34

Quirk 73

R
random circuit sampling 366–368,

374–378

cross-entropy benchmark fidelity

372–374

470 Index

probability distributions, with

random unitaries 368–371

random unitaries

probability distributions with

368–371

relative phases 42

roots of unity 253

RSA protocol 239

S
Schrödinger’s cat 11

Shor code 334, 350–354

implementing, in Qiskit

354–359

Shor’s algorithm 240–242, 312–323

example 245, 246

methods

analysing 242–245

simulator

samples, obtaining from 81–85

six-state protocol 64

spherical coordinates 401

spin-down state 24

spin-up state 24

stabilizer method 17

superdense coding 14, 120–127

superdense coding protocol

using 149–152

superposition 11–13, 23

surface codes 353

SWAP gate 264

syndrome measurement 345

T
target qubit 110

tensor product 96, 107–110

tensor product gates 175–177

threshold theorem 360

Toffoli gate 177, 178

trial division 237

two-qubit gates 107

CNOT gate 110–112

entanglement 112–115

no-cloning theorem 115–117

tensor products 107–110

two-qubit states 96–101

two-qubit systems

measuring 102–106

working with, in Qiskit 144–149

U
uncertainty principle 15, 16

unitary operator 34

universality 175

unsorted list 274–278

V
variational quantum eigensolver (VQE)

379

vector space 386

examples 387

Vernam’s cipher 55

W
wavefunction collapse 12

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well

as industry leading tools to help you plan your personal development and advance your

career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and

ePub files available? You can upgrade to the eBook version at www.packtpub.com and as a

print book customer, you are entitled to a discount on the eBook copy. Get in touch with

us at customercare@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for

a range of free

www.packtpub.com
www.packtpub.com
mailto:customercare@packtpub.com
www.packtpub.com

472

Other Books You Might Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn Quantum Computing with Python and IBM Quantum (Second Edition)

Robert Loredo

ISBN: 978-1-80324-092-3

• Get familiar with the features within the IBM Quantum Platform

• Create and visualize quantum gates and circuits

• Operate quantum gates on qubits using the IBM Quantum Composer

• Install and run your quantum circuits on an IBM Quantum computer

• Discover Qiskit and its many features such as the Qiskit Runtime

• Get to grips with fundamental quantum algorithms and error mitigation techniques to

help you get started

• Understand the new era of quantum utility and how this moves us closer towards quantum

advantage

https://www.packtpub.com/en-us/product/learn-quantum-computing-with-python-and-ibm-quantum-9781803240923

473

Dancing with Qubits (Second Edition)

Robert S. Sutor

ISBN: 978-1-83763-462-0

• Explore the mathematical foundations of quantum computing

• Discover the complex, mind-bending concepts that underpin quantum systems

• Understand the key ideas behind classical and quantum computing

• Refresh and extend your grasp of essential mathematics, computing, and quantum theory

• Examine a detailed overview of qubits and quantum circuits

• Dive into quantum algorithms such as Grover’s search, Deutsch-Jozsa, Simon’s, and

Shor’s

• Explore the main applications of quantum computing in the fields of scientific computing,

AI, and elsewhere

https://www.packtpub.com/en-us/product/dancing-with-qubits-9781837634620

474

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com

and apply today. We have worked with thousands of developers and tech professionals,

just like you, to help them share their insight with the global tech community. You can

make a general application, apply for a specific hot topic that we are recruiting an author

for, or submit your own idea.

Share your thoughts
Now you’ve finished A Practical Guide to Quantum Computing, we’d love to hear your

thoughts! Please click here to go straight to the Amazon review page for this book and

share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

authors.packtpub.com
https://packt.link/r/1835885950

475

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781835885949

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781835885949

476

Subscribe to Deep Engineering
Join thousands of developers and architects who want to understand how software is

changing, deepen their expertise, and build systems that last.

Deep Engineering is a weekly expert-led newsletter for experienced practitioners, featuring

original analysis, technical interviews, and curated insights on architecture, system design,

and modern programming practice.

Scan the QR or visit the link to subscribe for free.

https://packt.link/deep-engineering-newsletter

https://packt.link/deep-engineering-newsletter

477

Join us on Discord!
Read this book alongside other users, developers, experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the authors via Ask Me

Anything sessions, and much more. Scan the QR or visit the link to join the community.

https://packt.link/deep-engineering-quantum

https://packt.link/deep-engineering-quantum

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Foreword
	Acknowledgements
	Preface
	Part 1: One Qubit to Rule Them All: Working with One Qubit
	Chapter 1: What Is (and What Is Not) aQuantum Computer
	Chapter 2: Qubits, Gates, andMeasurements
	Chapter 3: Applications and Protocolswith One Qubit
	Chapter 4: Coding One-Qubit Protocolsin Qiskit
	Part 2: Qubit Meets Qubit: TwoQubits and Entanglement
	Chapter 5: How toWork with TwoQubits
	Chapter 6: Applications and Protocolswith Two Qubits
	Chapter 7: Coding Two-QubitAlgorithms in Qiskit
	Chapter 8: How toWork with ManyQubits
	Chapter 9: The Full Power of QuantumAlgorithms
	Chapter 10: Coding with Many Qubits inQiskit
	Chapter 11: Finding the Period andFactoring Numbers
	Chapter 12: Searching and Countingwith a Quantum Computer
	Chapter 13: Coding Shor and Grover’sAlgorithms in Qiskit
	Part 5: Ad Astra: The Road toQuantum Utility andAdvantage
	Chapter 14: Quantum Error Correctionand Fault Tolerance
	Chapter 15: Experiments for QuantumAdvantage
	Appendices
	Appendix A: Mathematical Tools
	Appendix B: The Bra-Ket Notation andOther Foundational Notions
	Appendix C: Measuring the Complexityof Algorithms
	Chapter D: Installing the Tools
	Chapter E: Production Notes
	Solutions
	Index
	Other Books You Might Enjoy

