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Foreword

Distributed quantum computing (DQC) concerns with the execution of quantum
algorithms over networked quantum computers. Using several small, high-quality
quantum nodes instead of a single large quantum node has several advantages,
including cost, scalability and correctness of the computation. There are also several
challenges, as compiling and scheduling become more difficult when the network
must be considered.

Daniele Cuomo’s thesis opens interesting new perspectives on the design and
implementation of DQC systems, using powerful tools like group theory and ZX-
calculus. The models that are proposed shed some light on the inter-dependence
between quantum computation and communication.

Chapter 1 presents some technologies and components for distributed quantum
computing. The need for full system co-design is clearly illustrated and motivated.
Furthermore, a logical network design tool is introduced, which is very useful for
encoding network architectures and analyse their dynamics. I absolutely appreciated
such a comprehensive view of DQC architectures.

Chapter 2 deals with the quantum circuit model of computation, ranging from
fundamental concepts like reversibility and universality to more advanced ones like
global gates and transpilation. An appendix provides a very nicely presented overview
on the indefinite causal order framework, concerning quantum evolutions in which
two or more operators occur, in an order defined by an extra quantum system.

Chapter 3 focuses on entanglement-based computation, which is the core of
distributed quantum computing. Teleportation and TeleGate, which are major tools
for implementing non-local gates, are nicely introduced. Entanglement paths are
introduced, showing that their depth is constant independently of the number of
middle processors. Furthermore, an efficient method for distributing global gates
over multiple processors is introduced. Finally, groups of circuits that are relevant
in the context of universal computation are identified, preparing the ground for a
rigorous compilation model that will be presented in the last part of the thesis.

Chapter 4 is all about quantum noise, summarizing fundamental concepts that
concern faulty gate modelling and error correction. In the appendix, a contribution
to noise cancelling through the indefinite causal order framework is proposed. Here,
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Daniele Cuomo shows evidence of deep knowledge of the problem and of the most
relevant techniques for quantum error correction.

Finally, Chap. 5 contains the major contribution of the thesis. A novel formulation
of the compilation problem as an optimization problem is proposed. Then, clever
techniques for finding the best solutions (i.e. those with increased parallelism among
quantum gates) are described. The proposed compiler is evaluated considering both
Clifford and universal circuits generated at random.

I donot want to anticipate all the nice results proposed in this thesis. [ am pretty sure
that both advanced students and researchers in quantum computing will appreciate
the hard work done by Daniele Cuomo.

Parma, Italy Prof. Michele Amoretti
August 2024



Abstract

Quantum computers based on distributed architectures promise to be more scalable
and less fault-prone than single-core quantum computers.

In accordance with novel technologies under development worldwide, telegates
represent the fundamental operations supplied by distributed systems.

We give a comprehensive overview of distributed quantum computers based on
telegates.

With some of the best tools for reasoning—i.e. network optimization, circuit
manipulation, group theory and ZX-calculus—we have found new perspectives on
the way a distributed quantum computer should be developed.

vii
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Chapter 1 ®)
Introduction Check for

Distributed quantum computing stands as a pivotal applications in the field of quan-
tum technologies. Distributed architectures could serve as our gateway to transcend
the current NISQ era [1-6]. The integration of spatially distributed quantum proces-
sors presents an opportunity to construct scalable architectures that can effectively
address the inherent challenges of quantum noise [4, 7]. However, the endeavor of
interconnecting these distributed quantum processors is confronted with a set of
significant challenges [2, 8—12].

To establish a practical distributed quantum computing system, it is imperative to
stay abreast of state-of-the-art technologies under development worldwide. As such,
this work commences by reviewing some cutting-edge hardware technologies—
Sect. 1.1. This provides us (and the reader) with a realistic understanding of the fun-
damental components that comprise a distributed quantum computing system. Fol-
lowing this, we propose a modular and adaptable full-stack development in Sect. 1.2.
In fact, This framework builds upon prior propositions [2].

With Chaps. 2 and 3, we shift our focus from hardware technologies to the funda-
mental tools that underpin distributed computing paradigms. We employ the widely
accepted standard quantum circuit model to articulate quantum computation, begin-
ning with the basics of unitary synthesis and decomposition. These fundamentals
are not only crucial for local computations but also form the basis for understanding
distributed architectures.

For the sake of completeness, Chap. 4 provides a framework for addressing quan-
tum noise, arguably one of the most formidable challenges to date, given its inherent
scalability issues with hardware. This chapter offers a perspective on the magni-
tude of the noise problem, which will inevitably be a component of any distributed
computing system. The framework is bolstered by experimental results.

Drawing upon the knowledge gained throughout the preceding chapters, we con-
clude with numerical modeling and evaluation for complex scenarios of general

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 1
D. Cuomo, Architectures and Circuits for Distributed Quantum Computing,
Springer Theses, https://doi.org/10.1007/978-3-031-73808-1_1
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2 1 Introduction

interest—Chap. 5. We employ some of the most advanced tools for logical rea-
soning, such as network optimization, circuit manipulation, group theory, and the
zX-calculus. We meticulously identified and addressed numerous challenges, gain-
ing valuable insights on how a distributed quantum computing system should be
developed.

1.1 Technologies for Distributed Quantum Computing

1.1.1 Stationary-Flying Transduction

Qubit-qubit interaction generally works by means of some transducer. A transducer
can be seen as a physical interface “converting quantum signals from one form of
energy to another” [13]. It is especially true, in a distributed setting, that a transducer
is able to move an information stored into some stationary qubit—e.g. a trapped-ion,
a transmon or a quantum dot—into some flying object, usually photons. A photon is
therefore an information carrier or medium, able to cover a long distance. Therefore,
the medium can be used to make distant qubits interact.

The ability to engineer efficient transducers allows us to rethink at quantum
architectures as to be scalable and modular. Depending on the transducer [13—
22], different kinds of distributed architecture arise. For the sake of understanding
qubit-qubit interaction in a distributed setting, we now consider distributed ion-traps
architectures.

Scaling up a single ion-trap is challenging [23]. On the other hand, they represent
a promising technology for integration within a distributed architecture, as a result
of high gate fidelity [24, 25] and long life-time [26, 27]. In what comes next, we
consider a cavity-based integration.

1.1.2  Cavity-Optical Coupling

Considering the scenario of qubits stored on different processors, to couple them,
the physical setting needs to scatfer quantum information outside a processor and
reach the other one. This can be done by means of a single photon, canalized within
an optical fiber.

In order to achieve such a configuration, we here consider ions able to be modeled
as a three-levels system—see Fig. 1.1. Such a system depicts the experimental set-up
proposed in [28]." The specifics of the system comes from the ion species selected
to encode quantum information [31]. By placing such an ion within a cavity, this
creates an ion-cavity system, where now the ion interact with the cavity mode. The

! The interested reader can find other settings at Refs. [29, 30].
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Fig. 1.1 Simplified energy level structure of an ion (+) and relative photon emission (e)

| Be-—

Fig. 1.2 Exemplary representation of an ion-cavity system emitting a photon. For technical details

the reader may start from [32]
/
° . ’

Fig. 1.3 An ion-trap embedded with a cavity pointing at a single ion. Representation inspired by
a linear design [31, 35]

cavity has the role of collecting and scatter outside the system the photon emitted by
the ion. Figure 1.2 shows a pictorial representation of the ion-cavity able to do so.

The first step taking place is the excitation of the ion |0.) — |2.)—i.e. the red
arrow in Fig. 1.1. Ideally, a spontaneous decay of the ion brings its energy with equal
probabilities to one of the two lowest (and computationally relevant) states—i.e. |0)
and |1.). Furthermore, this happens with the emission of a photon which is coherent
with the state of the ion.

As we anticipated, the scattered photon can be canalized within an optical fiber;
the final configuration of the ion-fiber system is in the superposition !'//2(|0.0,) +
11.1.)).

A pictorial representation of a single node of the distributed architecture is shown
in Fig. 1.3. The cavity is pointing at one of the ions, which is coloured differently as
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an ion-trap may be composed by different ion species,? depending on whether it is
meant to perform computation or communication.

To achieve the non-local coupling we need to consider two ion-traps generating
and distributing the entanglement (at the same time), after which, a protocol called
entanglement swapping completes the process. A control system will take care of
accomplishing the task.

1.1.3 Control System

Summing up, to establish entanglement, the ions are simultaneously excited to an
electronic state that spontaneously decays, during which a single photon each is
emitted whose polarization is entangled with the ion’s internal state. These photons
are collected into optical fibres using free-space optics and sent to a common ferminal.

The terminal take care of detecting the photons by means of a probabilistic Bell
state measurement. This projects the ions into a maximally entangled state, heralded
by the coincident detection of the pair of photons—see Sect. 1.1.4 for details. This
is commonly referred as entanglement swapping.

It is important that the ion-traps are synchronized, so that the photon reach the
terminal at the same time.* Classical synchronization protocol would take care of
this by means of a master-clock. An experimental settings is available in Ref. [37].

Ultimately, to achieve scalability we need to consider the case of several proces-
sors. In the most basic scenario, all the processors are centralized, in the sense that
all of them are wired to a common terminal to perform bell state measurement. Such
a setting is the first example of scalable distributed architectures. The problems aris-
ing from such a setting is a scheduling problem. A multiplexer taking deterministic
choices would be enough to ensure that all the processors are carefully scheduled to
not create overlaps. An experimental settings, where four processors are scheduled
by means of a multiplexer, is available in Ref. [38].

1.1.4 Bell State Analyser

To keep the discussion easy we explained the main procedures by means of three-
levels systems for the ions. However, each of this state should be split to create
several possible configurations. This doesn’t change the whole protocol, but it has
consequences on the possible outcomes obtained by measuring the photons. Different

2 Which brings to the classification in communication and computation (or data)
qubits [2, 5, 33, 34].

3 Without synchronization, one can retrieve the likelihood of each photon source. This makes the
photons distinguishable, causing a loss in fidelity [36].
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ion species and kind of measurement lead to different configurations. In general, we
distinguish three main outcomes:

e One or both photons failed to be detected by the measurement. This means that
the whole procedure is basically wasted time, as the nodes need to attempt again
from scratch. This possibility can be a serious problem to practical computation,
as a low success rate leads to long waiting times.

e The protocol succeeded and the ions are in one of the four Bell states
{1®7), [®7), W), [W)}.

e The protocol partially succeeded. Namely, a superposition between two bell states
has been created, e.g. ] ¢i> or |\Ifi> This scenario may occur for several reasons—
depending also from the employed physical settings—it can be caused by dark
measurements [36], a rare and negligible scenario. Otherwise, it may come, for
example, from two clicks coming from the same detector.

Different Bell measurement settings brings to different sets of heralded entangle-
ments [39—42]. We here consider the quite general case of Ref. [39], as we think this
case may be particularly efficient for distributed computation. A pictorial represen-
tation of the setting is reported in Fig. 1.4. In fact such a configuration brings to a
50% chance of success—i.e. two clicks on different detectors—and 50% of partial
success—i.e. two clicks on the same detector. Namely, when the protocol succeeds,
the final state is in {|{W ™), |¥*)}, while in case of partial success, the output has an
ambiguous phase: |®*).

The ideal result coming from performing entanglement generation and distribution
followed by entanglement swapping is a maximally entangled state between distant
qubits. In practice, this is not achievable as each of the complicated techniques we
described are in general not perfect, resulting in a state slightly different from a Bell
pair. One can evaluate the final distributed state in terms of fidelity with some target
Bell state. E.g.,

f= (P70 |d7). (1.1)

where o is the generated state. For example, consider the experiments reported in
Ref. [39, 40]. The author’s proposal starts with the generation of a non-maximally

eIltaIlgled state 101 l-ph()t()n
3 3

Fig. 1.4 A common setting
for the Bell state
measurement [39]
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However, after the collection into the single mode fiber, the state gets projected to
the Bell pair
1
V2

Once performed the entanglement swap, the ion-ion average fidelity is 0.94; a
promising result. Unfortunately, in the perspective of practical computation, the
fidelity needs to be some f = 1 — & with ¢ small enough to keep the error rate man-
ageable, e.g. by means of error correction schemes—treated in Chap. 4. A possi-
ble solution is called entanglement distillation [43—45] (or purification). However,
choosing the best approach is not trivial and may very depend on the architecture
specifics.

(10.04) + [1.1.)). (1.3)

1.2 Full System Co-Design

We reported several important research fields deeply related to the implementation of
a first distributed and scalable architecture. We introduced the required technologies
to achieve qubit-qubit interaction when these are arbitrarily far apart.

The considered literature gives a perspective on how to integrate multiple quan-
tum processors into a scalable architecture, able to perform distributed quantum
computation.

Stemming from the above overview, we now need to extract a full-stack develop-
ment, by identifying the most important roles—and dependencies—and we will need
to engineer an ecosystem [2], providing a framework for distributed quantum com-
putation. As we are facing the early stage of quantum computation and distributed
architectures, it is wise to focus on the main challenges and assigning them to a
proper entity.* In fact, any proposal now is highly prone to changes, because of the
continuous growing of the field [3] and the huge advancing in both technology and
information theory.

We propose a design that starts from a bottom-up reasoning, stacking up a number
of layers where the lower ones provide some resources and flexibility which the upper
layers can rely on. More precisely, consider Fig. 1.5: this shows a linear stack where
each layer represents one of the fundamental subjects necessary to create a practical
framework.

4 As usual in the engineer terminology, an entity is something quite abstract, which needs to be
defined in terms of its roles and relations with other entities.
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Algorithm

Compiler

Transpiler

Quantum
Node

Quantum
Link

Classical
Link

Fig. 1.5 Full-stack development of a distributed quantum computing framework

1.2.1 Physical Layers

As usual, in architecture design, the first layer represents the hardware. For the sake
of clarity, we depicted a network composed of three quantum nodes. We already
discussed how such a network may be achieved by focusing on ion-traps integrated
with cavities, Bell state analysers and multiplexers—see Sects. 1.1 and 1.1.4.

A quantum node refers to the full hardware set-up working locally, which includes,
of course, the quantum processor. The nodes are inter-connected by quantum links
wherein mediums carries quantum information. Such a set-up can be achieved, for
example, by means of [38]:

e ion-traps, cavity-based transducers as quantum nodes and
e optical fibers, multiplexers and bell-state analysers as quantum links.

As explained in Sect. 1.1.3, as minimum requirement for the system to be opera-
tive, the network needs to be carefully handled by a classical control system, which
deals with real-time protocol synchronization. Because of its role, the control system
is mainly physical. In fact, it is directly connected to each quantum node by means of
classical links. The linkage will be also used to gather classical information coming
from measurement-based computation [46].
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Advancements in the physical network® will allow to evolve the layer, up to
becoming a quantum control system—as envisioned for example in Refs. [50-53]—
, a quantum control system will be able to optimize the efficiency of the network,
having access to a wider spectrum of resources—e.g. high-dimensional entangled
states—which can be manipulated to optimize the network efficiency, by means of
communication protocol fundamentally based on quantum communication theory. A
quantum control system may also be responsible for the definition of a (distributed)
error correction scheme—treated in Chap. 4.

1.2.2 Logical Layers

The transpiler maps logical gates and protocols to physical operations. For this
reason the transpiler very depends on the specifics for the physical network.

The scheduler we envision is in charge of optimizing network usage, also by
taking advantage of possible circuit transformation at run-time. Regardless of the
specific design for the scheduler, this would inherently provide the upper layers with
a simplified perspective for the network dynamics—e.g. as to be functioning over
discrete time domain. This means that any kind of unexpected delay or failure gets
negligible to the upper-layers, as these are handled by the scheduler and/or the control
system.

The compiler’s task is to map an hardware-agnostic algorithm to some equivalent
form, which is better suited for distributed computation.

The upper layer is an algorithm, an abstract input, which the framework takes
charge of and carefully spread throughout the whole stack in order to be processed.

Once the framework is ready-to-go, it will be able to accept some groups of
algorithms.,® up to universal groups. Refer to Chap. 2 for details.

1.3 Network Encoding

A logical network is a simplified representation of the physical architecture, which
is synthesised to a few main features. Namely, (i) a topology, describing the possible
interactions among nodes, and (ii) the kinds of interaction, referred as logical gates.
The set of logical gates will be the fundamental components upon which building a
computational paradigm.

Logical gates can be local—e.g. multi-qubit gates [S5-58]—and non-local—i.e.
telegates—. In fact, while local gates operate on logical nodes, telegates operates
throughout the logical network. This makes the latter resource much more expensive

3 Up to the development of a quantum internet [2, 5, 8, 10, 11, 47-49].

6 Parallel-based algorithms—e.g. see Ref. [54] for a parallel algorithm solving the quantum Fourier
transform—are natively meant to work on distributed architectures.
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and worth of dedicated analysis; especially considering the degree of novelty in the
context of computational paradigms that may arise. Refer to Sect. 3 for details.

In accordance with the current trend on quantum technologies, above reported,
we now propose a mathematical description of the logical network. Formally, let
N = (V, P, F) be a network triple representing the architecture. V. = Q U C is
a set of nodes describing qubits, therefore it is the disjoint union of computation
qubits O = {q1, g2, - - ., |0/} and communication qubits C = {c1, ¢2, ..., ¢|c|}. We
can represent n processors by partitioning V into P = { Py, P,, ..., P,}. Therefore,
a sub-set P; characterizes a processor as its set of qubits/nodes.

F=LUR is as a set of undirected edges. L represents the local couplings,
therefore

LC U P, x P,.

1

Notice that there is no particular assumption on connectivity nor cardinality
within processors. This keeps the treating hardware-independent and it allows for
heterogeneous architectures.

R represents entanglement links. Since entanglement links connect only com-
munication qubits, we introduce, for each processor, a set of those qubits only; i.e.,
C; = C N P;. Therefore, we have

Rc |J axc

Lj i)

Figure 1.6 shows an exemplary architecture, with three processors in P, six com-
putation qubits in Q, six communication qubits in C, three entanglement links in R
and ten local couplings in L.

Concerning minimal assumptions, we only care about architectures actually able
to perform any operation. This translated into a simple inter-processor connection
assumption. As regards local coupling, our work covers mainly (but is not limited
to) fully connected processors. lon-traps already satisfy such an assumption [59],

® Qubit Processor
Entanglement link == Jocal coupling

Fig. 1.6 Toy distributed quantum architecture with 3 processors
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but there may be others in the future to join. Consider as an example that, for super-
conductor processors, it has already been developed a high connectivity topology,
which has been proposed together with a blueprint to achieve full connectivity [60].

In order to keep consistency between the physical architecture and its logical
representation, it is mandatory to identify an array of essential tasks and design a full
system, that orchestrate these tasks, providing at last, a framework for distributed
quantum computation.

1.3.1 Time Domains and Network Dynamics

When the computation is running, the system we described starts working, which
inherently brings us to give a definition of time. A time domain may depend on
whether this describes a logical network or a physical one—such as the control
system.

It should be clear that the entanglement link generation has central interest in
our treating. In fact, we are also going to scan the time as such links go estab-
lished. Specifically, notice that link generations among different couples of qubits
are independent. For this reason we assume that all the possible links get generated
simultaneously and, as soon as all the states are measured, a new round of simultane-
ous generations begins. We define a primitive for the generic link generation, which
we will use throughout this thesis:

e:}\cbﬂ

For the sake of reasoning, the logical network dynamics is scanned by the parallel
generations of such a primitive. Namely, a unit of time is the lapse the system need
to establish one link. Any link that the the physical network is able to provide is, in
principle, available. From these some are generated in parallel, consumed and then
the network is ready to re-generate other links in the subsequent unit of time.

It is important to notice that there is not a unique way of defining the time domain,
and taking a choice may bring to critical limitations for the overall performance of
the system. It is not immediate to understand the specific roles that each layer should
be responsible of.

Given the early stage of distributed quantum technologies, we propose to model
the logical dynamics to be agnostic about potential faults occurring during link gen-
eration. A unit of time roughly corresponds to the heralding rate. With this choice,
we are overloading the physical layers, which are tasked with providing a fault-robust
network. While this assumption may seem like an oversimplification, for now, it helps
us identify what are the most important features characterizing distributed computa-
tion. Nevertheless, in the future, a more advanced design would render logical layers
resilient to faults.



1.3 Network Encoding 11

1.3.2 Architecture Encoding for Design Evaluation

Once every element comprising the full system is introduced, it is useful to con-
centrate on specific configurations that offer us a behavioral model representing
distributed quantum computation. Specifically, we now provide the specifics for the
logical network we will use to evaluate our design.

A generic quantum processor is, as before, made of computation and communi-
cation qubits, with an all-to-all local connectivity. We assume that a quantum node
has a single computation qubit. This assumption is reasonable as it stresses the archi-
tecture to be meant for distributed computation. Also, any extra qubit wouldn’t be
wasted, as fault-tolerance is very resource-demanding. Hence, a quantum processor
would benefit from the extra qubits as this are devoted to enhance the fidelity of
computation.

As regard the inter-processor connectivity, downstream of the topologies evalua-
tion made in [33], in this thesis we will consider networks that can be described as
grid lattices.” We assume that each processor has enough communication qubits to
guarantee the logical network’s structure.

In light of the above observations, it is reasonable and convenient to consider
the whole processor as a node, and define a function c that provides the number of
available links between two processors. Specifically, we first formalized a distributed
architecture as the network graph N' = (V, P, F) introduced in Sect. 1.3; this step
was important to understand the interior behavior of remote operations from a qubit
perspective. However, it is useful to re-state it to a more compact encoding. Formally
speaking, we will consider a quotient graph of N.

To not further weigh down the formalism, we re-model a logical network, by
considering the processors as nodes, corresponding to an enumeration for the partition
P,ie..p ={p1, P2, ..., D,}. All the entanglement links, connecting the same couple
of processors, now collapse to an only edge with integer capacity ¢, describing how
many parallel entanglement links the two processors supplies. We refer to this sets
of edges as

e U pi X Dj.
iji#

Hence, the new undirected graph is Q = (p, [).

In Fig. 1.7 we show the quotient graph related to the toy architecture of Fig. 1.6.
Throughout this thesis we will focus on edges of capacity ¢ = 1, omitting so the
capacity function from the network definition.

Putting things together, the control system provides a discrete perspective of the
dynamic network. At the beginning of a time-step t, the logical network corresponds
to a grid of available entanglement links, such as the small grid shown in Fig. 1.8.
As the computation runs, at each time-step a subset of A is selected to perform
inter-processors operations. See for example Fig. 1.9.

7 As reported in [33], a grid connectivity is convenient both for physical implementation and logical
optimization.
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Fig. 1.7 Quotient graph derived from Fig. 1.6. The processors become the nodes, the entanglement
links between a couple of processors gather into one edge, with capacity equal to the number of
original links [33]

Fig. 1.8 Exemplary grid lattice at any given time-step t

t t t
4, _tz, _ts,
t t t
4y _ts, _te,

Fig. 1.9 Dynamics of a grid-like network. This exemplary computation lasts 6 time-steps and, at
each time-step, some edges get selected to perform inter-processor operations

The reader can notice that, when selecting edges, the computation gets charac-
terized by paths and frees. Within next chapter, we will inspect the protocols—
i.e. entanglement path and entanglement tree—that ensure such data structures are
consistent representations of inter-processor operations.
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Chapter 2 ®)
Computing with Quantum Circuits e

2.1 Universality and Circuit Synthesis

In this section, we provide preliminary explanations that expound how a quantum
processor can execute any algorithm using only a limited set of gates. Such a set is
therefore called universal. We briefly get through the Boolean logic—which governs
classical computation—and how we can express any Boolean function within the
quantum framework. This gives provide the reader with a perspective of how quantum
logic can express a wider group of functions.

2.1.1 Boolean Logic

Classical computation is deeply based on Boolean logic. Since classical technologies
are really advanced and benefits from many years of research on physical imple-
mentations, several Boolean operators find direct implementation as classical gates.
However, our interested is narrowed to how we can express any boolean function
by means of quantum operators. Hence we can restrict the discussion to a single
logical operator: —(b; A by). In fact, for any Boolean variables by, b, € {0, 1}, the
—(b; A by) operator! is universal to Boolean logic [1], hence we need to find a
quantum operator able to realize it. The Toffoli operator [2] does the job. Formally, a
classical state b - b, gets encoded in the quantum state |b;) ® |by) ® |1). By apply-
ing the Toffoli operator to the encoded system, the last qubit encodes the Boolean
state =(Io; A by). This is shown in Fig.2.1.

To date, there is no direct physical implementation for the Toffoli operator. It
needs to be expressed as a composition of quantum operators physically realizable.

! The value is true iff no more than one variable is true.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 15
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[b1) ——e—— [b1)

[b2) ———— [b2)

1) — X — [=(b1Ab2))

Fig. 2.1 —(b; A by) operator by means of a Toffoli

2.1.2 Quantum Logic

We here report a step-by-step introduction to quantum logic and what a quantum
processors should have to provide universal computing. Quantum computing works
with the logic of pure states. A Hilbert space H of dimension d is closed under the
unitary group of degree d. This means that for any pure state |¢) € H and any unitary
operator U, it results U |¢) € H.

A generic quantum algorithm can be expressed as a system initialized to |0)®¢
and a unitary U operating on it. Figure2.2 gives a circuit representation.

Since quantum processors do not supply as primitive operator a generic uni-
tary, this is subject to one or more steps of decomposition or synthesis. A generic
decomposition is showed in circuit of Fig.2.3.

A universal operator set should be efficient, in the sense that the overhead caused
by the decomposition from a d-degree unitary to the operator set is upper-bounded by
some polynomial function. There are several (historically) important results showing
how such a requirement is achievable. We start from one coming from the work done
in [3, 4], showing that, given a generic 2-degree unitary U—i.e. it operates over a
single qubit —, the following operator is universal:

AU =10)(0|®L+[1)(1|®U 2.1)

This is a controlled-U operator in Feynmann’s notation [5]. We will use this notation
throughout this thesis because of its versatility. Even if it is a bit outdated, we think

0)®¢ — U — ujo)®

Fig. 2.2 Generic algorithm expressed as a unitary, operating over a |0)®¢ state

|0>®d Uy Us e Ug U|O>®d

Fig. 2.3 Generic decomposition of U into k unitaries
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T

_U_

Fig. 2.4 Circuit representation for the A(U) operator

it helps to highlight the logic behind the operators; it also helps us to keep consis-
tency throughout the chapters. In the circuit model the subject operator appears as
in Fig.2.4.

One can notice that the group of equation (2.1) is pretty compact, as it involves
only 2-qubit operators where one of them act always as control. Nevertheless, some
decomposition step is necessary to get closer to what real processors can actually
offer. To this aim, we need to introduce some further operators. The first one is known
as special unitary. We refer to this operator as Vg s and it is defined as follows [6]:

(€ Fcossp e tsindfy 92
Vaps = | _g* P sinsp "% cos 32 2.2)

The second operator represent a global phase shift:

e’ 0
Gy = < 0 eiy) (2.3)

It results that special unitaries composed with global phase shifts characterizes the
group of unitaries. It follows the same statement in matrix form:

Uy,a.8.6 = GyVa,p,s (2.4)
As consequence, the first decomposition we can apply comes from the circuit
equivalence of Fig.2.5.

A conditioned global phase shift is equivalent to a relative phase shift. Thus, let
R, such an operator, defined as follows:

1
R, = (O e(i)y> (2.5)

T S

— Uy,a,8,6 — — Va8 — Gy —

Fig. 2.5 First decomposition as a result of equivalence (2.4)
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_T_ _R’Y_

_G,y_

Fig. 2.6 Circuit representation of the equivalence A(Gy) =R, ® 1

The above statement allows us to synthesize A(G,) into R, ® 1. Figure2.6 shows
the corresponding circuit equivalence.

The final step to achieve universal computing through physically realizable oper-
ators is to decompose A (Vg g,5). To this aim, let us introduce the rotational operators
over the Pauli axes. Namely, X, = e **2, v, = e *¥'* and Z, = e **'~. Notice
also that

e ¥t = cos7/ — iEsinv), (2.6)
holds for any E € {X, Y, z}. Therefore, whenever y = m, each rotational operator
relates to the corresponding Pauli operator X, Y or Z. Formally, they are equivalent
up to the global phase G-, = —i.E.g. X; = X.

Now we proceed by reporting the results coming from [6]. Let A, 5, Bs o, Ca,g
be a triplet of special unitaries defined as follows:

® Ags = YipZo;

® Bs o p = Y-ipZ-wnp;

(] Ca,ﬂ = Z(ﬂ—a)/z.

With such a triplet, together with A(X) we are able to decompose A (Vg g 5), according
to the circuit equivalence shown in Fig.2.7.

We can finally show the universality by composing the two results and getting a
decomposition for A(U, 4 g 5)—see Fig.2.8.

Theorem The IBM gate set [7—11] is universal.

R T T

— Va,3,6 — — Cap — X — Bsap — X — Ao —

Fig. 2.7 Decomposition of A(Vy,g.s)

! f !

— Uy,a,8 — — Casp — X — Bsap — X — Aas

Fig. 2.8 Decomposition of A(Uy q,,5)
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Proof Allthe processors supplied by the IBM cloud have gate set {Z,,, X5, X, A(X)}.
To prove the universality of such a set, notice that R, = Z,,. Furthermore, any special
unitary V, g s can be factorized as follows [6]:

Va,p,6 = Za¥s52p

Since an TBM processor can run natively a generic Z,, gate, we only need to synthesise
Ys. This can be done, by using operations from the gate set only:

Ys = Xn/225+7rX3,7/2

In conclusion, since the gate set also provides A(X), any A(U) can be realized through
a composition of operations coming from the IBM gate set. O

Not all the existing processors are universal. D-Wave ones are an example. In fact,
the company goal is to build specific-purpose processors, meant to explore the field
of optimization problems through quantum annealing procedures [12].

2.1.3 Relation Between Classical and Quantum Logic

It has been shown [13] that, to achieve quantum universality, one can start from an
operator universal in the Boolean functions, i.e. the Toffoli, and by adding only a
single 1-qubit operator, the operator set is quantum universal. The subject operator
can be expressed as XH/ZZH/ZX,Y/Z.2 As stated in [14], this “[...] can be interpreted as
saying that Fourier transform is really all there is to quantum computation on top of
classical”, since X/, Z~,Xx), corresponds to a Fourier transform.

2.1.3.1 Special Case (i)

Whenever Vy s = Z,Y;5Zq, the circuit decomposition simplifies to Fig.2.9.
An important example is A(Zy) itself: Zy = Zup, - Zop.

2.1.3.2 Special Case (ii)

Whenever V, s = Z,Y5Z4X, the circuit decomposition simplifies to Fig.2.10.
Important examples are the Pauli matrices Y, Z and X itself.

2 As well as Y- X or as the more common Hadamard gate H. We are not going to use the latter in
this thesis as we opted to keep the treating closer to real gate implementations.
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N

— Va5 — — X — Al — x — Ay —

Fig. 2.9 Special case Vy s = Z¢YsZq

- T

— X — Aoy —

a,d

Fig. 2.10 Special case V4 5 = Z¢Y§ZoX

2.2 Linear Reversible Boolean Functions

A function g : I} — [ is linear and reversible iff it can be synthesised into a quan-
tum circuit composed by A(X) only. Such a function can be encoded into a squared
boolean matrix. A synthesis method finds a matrix decomposition made out of ele-
ments M,,,,; each of which relates to a A (X) gate with control and target qubits indexed
by u and v, respectively. Formally, an n-by-n boolean matrix A defines g. A circuit
generated by A(X) gates implements a unitary U, such that:

Ugb) = [g(b)) = |Ab),

for any boolean vector b € IF;.
There exist several methods, each generating a different decomposition [15]. An
optimal decomposition is available [16], which is based on Gaussian elimination.
This framework can help the designer to build efficient circuits and avoid to
produce duplicates.

2.3 The Clifford Group

The Clifford group C dues its importance to its implication in fault-tolerant compu-
tation [17], simulation [18] and benchmarking [19]. Such a group is generated by 3
operators:

C = (AX), Rep, Zapy). 2.7)

C can be efficiently simulated by a classical computer [20]. This has as comeback that
one can evaluate fault-tolerant protocols classically. As drawback, it is not universal.
However to achieve universality while at the same time providing an operator set
which can realize any quantum evolution efficiently one need to add a single 1-qubit
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operator, usually assumed to be R"/43 or the corresponding in rotational terms Z.,.
In fact, any unitary of dimensionality 2 can be approximated efficiently and with
arbitrary precision [21-23]. Formally, by properly composing single qubit operators
coming from C—i.e. X-5,, Z.,—together with Z., one can achieve universality in the
dense sense, by only introducing a polynomial overhead.*

Since we are facing with a discrete operator set composed by even fractions of &
only, we can re-state the nomenclature. Namely, the same universal operator set can
be expressed in the following intuitive way:

C" = (A(X), X", 27, 2. (2.8)

This nomenclature stresses the logic behind the relation Pauli-rotational gates, as the
power function degree says how many times one needs to apply the rotational gate
to simulate a Pauli operator.

2.4 Diagonal Phase Polynomials

Given a boolean b € [F5, a unitary D is a diagonal phase polynomial if its action on
|b) can be written as: .
Db) = ¢ ¥ /P|p), (2.9)

with f : [F; — IFg being a 3-degree polynomial, composed by three monomial sum-
mations [25, 26]—i.e. f = f; + f> + f3. This function defines the class of algo-
rithms known as instantaneous quantum polynomials [27], which has generator
set:

{27, A 2", M(2)). (2.10)

Notice that applying the A(Z'") operator twice results into the Clifford gate A(Z).
While, applying it three times corresponds to A(Z 7).

2.5 Global Gates

We here extend the basis gate set, introducing global gates. A global gate is an
operation able to entangle several qubits simultaneously [28-32]. For this reason it
is a promising resource, both in hardware and software terms. Citing [29]: “It has
been suggested that polynomial or exponential speedups can be obtained with global
[gates]”.

3 Commonly referred as the T gate.

4 Other extensions of C may be of interest. E.g. in Ref. [24] authors consider A(Zx;,) in their
generator set.
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T T - X - X - +++ - X - —Y—1/2Tﬁyl/27
- X - X - J—f - z
| |
X - — = - X - = z
S - X - . B R G z
(a) Single control, multiple targets. (b) Single target, multiple controls.

Fig. 2.11 Generic global operations

Fig. 2.12 Global gate
N2 (Z ® Z)

Theoretical advantages can be found in Ref. [33], where authors proved that any
n-qubit Clifford circuit can be synthesised to 4n — 6 global gates and any n-qubit
circuit with 72 non-Clifford gates can be synthesised with no more than 271 + O("/10gn)
global gates.

In this thesis, we refer to a global gates as an operation featured by either

e single control, multiple targets or
e single target, multiple controls.

The corresponding circuits are shown in Fig.2.11. Namely, one can see a global gate
as operators A(X®™) or A(Z®™).

Global gates do not limit to the ones presented above. Other kinds may feature mul-
tiple control qubits (or target). For our interest there is the A,(2®™) operator, which
operates globally and features two control qubits. Figure 2.12 shows an example with
two control and two target qubits.

As we show within the next Chapter, a feleportation protocol implementing a
global gate is fast, as the number of qubits involved does not affect the running
time. For this reason, computing with global gates on distributed architectures is
particularly appealing.

2.6 Transpiling Gates

Usually, a quantum processor does not supplies natively logical gates as A(X) and
A(Z). Therefore, there is need for a final mapping process made by the transpiler. A
transpiler work with a knowledge base, which can be used to express logical gates in
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Fig. 2.13 Circuit equivalent
to a A(X) gate, using
hardware-level operators

— yl/2 — - y-1/2 — z-1/2 —
=1/2
— X—1/2

terms of native gates. For example, Ion traps work with Ising gates and single-qubit
rotational gates.
Assuming to work with an ion-trap supplying a two-qubit Ising gate E"*" defined
as follows:
B = cos(7/+)1 ® 1 — 1sin(7/+)X ® X

the knowledge base will map any A(X) gate as in Fig.2.13.

Appendix
2.7 Programming in Higher Order Framework

2.7.1 Time-Ordered Framework

So far we have implicitly assumed that a quantum evolution undergoes a time-ordered
definition. Formally, consider two unitaries U and V and a state |¢}). Then, any time-
ordered framework force us to chose whether U operates on |9) before or after V. In
circuit representation, these two cases are respectively

[9) — U — v — vul9)

and

[9) — v — v — uwvv)

However quantum mechanics allows to think of more general frameworks, where,
not only states, but also operators can be superposed to create more complex sys-
tems. Such systems may bring new non-classical advantages. Attempts in formally
designing a higher-order framework is an active branch of research [34, 35], but
this is out of scope. Rather, in the following, we work with a higher-order oracle
implementing an indefinite casual order.

2.7.2 Indefinite Causal Orders

The indefinite causal order is an interesting property of quantum mechanics. In
brief, it is a quantum evolution where two or more operations occur, but the order
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Fig. 2.14 S%mulation of |9) — | 9) — U — VvV — U —
oracle S; losing the s ~

theoretical advantage |k) — | ) 4<L—17

in which they occur is causally ordered by an extra quantum system. This creates
a superposition of causal orders among those operations. Such a resource can be
used for several purposes. In Refs. [36—38], the indefinite causal orders is consid-
ered for thermalization protocols. A big line of investigation deals with enhancing
quantum communication [39-42]; we gave the first experimental witness for such
a resource [46].5 As regards computation, indefinite causal order would speed up
tasks that involves permuting operations [43—45]. In Ref. [47] authors implement a
photonic-based discrimination protocol solved by superposing unitaries.

The indefinite causal orders for computation consists essentially on superposing
two or more unitaries. The superposition is then coherently conditioned to an aux-
iliary qubit, called control qubit. For the case of 2 unitaries U, V, the superposing
unitary operator S can be defined as follows:

uv 0
s:[o VU]. @2.11)

By treating the operator S as an oracle—i.e. it takes a unit of time to run—it brings the
advantage of evaluating two different orders at the same time. This advantage comes
from the fact that we are extending the standard framework—which originally could
only superpose quantum states—to being able to superpose unitaries. This can be
used, for example, in Information Processing to distinguish between different evolu-
tion by means of a single check [47]. This is unthinkable with standard frameworks
where the order of execution of the unitaries must be defined.

However, implementing S does not necessarily reflect the advantage coming from
theory. It is necessary to make a distinction to what is a real implementation of S
and what is more like a simulation. In other words, implementing S means that
the physical settings preserve the theoretical advantages. Only in this case one can
treat S as an oracle. It is an open question if such a real implementation will ever
be possible [48, 49]. In the attempt of finding a solution, a framework meant to
superpose gravitational fields has been proposed [50].

Stemming from the above, what we can do now is to realize S by means of
simulation. Namely, an equivalent evolution which does not preserve the speed-up
advantage. An example is shown in Fig.2.14.

This example immediately shows the theoretical loss, as it requires 2 use for
one of the unitaries [51]. Specifically, since U operators run under complementary
conditions, one of them does not run, meaning that one time step is always dedicated
to perform an identity operation 1—an idle time.

5 We report this in Chap. 4.
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Fig. 2.15 Optimized decomposition of the controlled swap operation

An approach which seems to provide a more natural realization of S is investigated
in [45, 52]. These works use auxiliary qubits and controlled swaps. However, to date,
there is no technology providing such a gate natively, hence it is necessary to consider
it as an oracle to not lose the advantage. The best we can do now is providing an
efficient decomposition for it, whenever we have partial knowledge of the input—e.g.
an auxiliary qubit being in state |0). Figure 2.15 shows an optimized decomposition
w.r.t. the standard one [53].

Unfortunately, as long as native controlled swap are not physically implemented,
the speed-up advantage—w.r.t. a time-ordered framework—is still just theoretical
and it cannot be witnessed on real implementation. This is especially true when
trying to superpose more than two unitaries.

Nevertheless, a non-native implementation of indefinite causal orders may still
bring some sort of quantum advantage, as it can be used for magnitude amplifica-
tion [54-56].% In Sect. 4.10, we treat this concept—also experimentally—to enhance
communication capacity.
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Chapter 3 ®)
Entanglement-Based Computation e

Entanglement stands as one of the most captivating phenomena arising from the
principles of quantum mechanics. It also emerges as a highly promising resource in
the field of quantum science.

To our purpose we focus on one of the four Bell states. These states are fully
entangled, meaning that their correlation is maximal and the system is said to be
close. Let us introduce the |®™) state, defined as follow:

<
/2

Since the two system in |®*) present a non-local correlation, this state can be used
to perform non-local operations. Physically speaking, this means that one need to
perform what is called entanglement generation and distribution [1-3]:

|®*) = (100) + [11)).

e generation; despite the non-local correlation, the generation happens between sys-
tem which are in proximity one another. Generating a maximally entangled state
with high fidelity is generally hard and time-consuming.

e distribution; once that the entanglement is ready, it is possible to relocate the two
systems. The entanglement is, in principle, preserved.

As mentioned in the previous chapter, as we proceed into the design a distributed
quantum computing ecosystem, some assumptions are necessary to give insights and
performance analysis characterizing our design. We assume a system should provide
a logical primitive, &, which can be used as a reliable resource for computation. In
the circuit formalism, this correspond to an operator with no inputs and two output
wires:

€ :} |2+)
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30 3 Entanglement-Based Computation

Below we outline some of the most promising resources for distributed quantum
computing, all exploiting €. Before proceeding, we need to introduce a formalism
for measurement-based computation.

3.1 Measurement-Based Computation

A computing paradigm is called measurement-based whenever the quantum compu-
tation is interleaved by measurements acting on a sub-system [4]. The output of a
measurement is then used to perform classical conditioned quantum operations.

— (E)b

The output can then be used to choose whether performing or not a unitary
operation U over another qubit:

— b —

Whenever to a Pauli gate follows a Pauli measurement, there is no need to apply the
former. Precisely, instead of applying the quantum gate followed by the measurement,
one can always perform the measurement and then applying a classical correction
on the output, corresponding to the Pauli gate. Such a technique may be referred as
pushing technique as, intuitively, one can picture this manipulation as pushing the
gate beyond the measurement. See circuits in Fig. 3.1 for an example.

3.2 Teleportation

The first resource we report is called teleportation [3]. It is a protocol that, by fact,
teleport quantum information from a system to another, by means of entanglement.
Figure 3.2 shows the protocol steps in circuit representation. The wires are grouped by
color, representing different processor, or memories. A generic processor is referred
as p;. In the case of teleportation 2 processors p;, p ; are involved, which has the roles
of sender and receiver. At the beginning of the protocol, the quantum information
|@) is located within the sender, together with half of the Bell state |®*). The receiver
need to store the other part of the Bell state. At this point the receiver need to wait
that the receiver perform a few operations meant to “inject” the information within

— X — (Z),by = — (Z),7b: — z — (X),by = — (X),7by

Fig. 3.1 Pushing technique to avoid quantum gates
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Fig. 3.2 Quantum
teleportation protocol

between two parties P;

its half part of the entangled state. Because of the entanglement, now the quantum
information is already spread all over the system, which means that p;, the receiver,
also has partial knowledge of it.

The end of this part consists on measuring the entire system in the orthogonal
basis X ® Z. This is a necessary step in order to ensure that the receiver will get
exactly |g). In fact, the measurement will produce two boolean values, by, b,, that
the receiver will need to correct its state.

To understand how such a resource can be used in computation, consider that it is
often the case where two states need to interact but they are stored in such a position
that does not allow them to do so, unless some middle step is performed to approach
them. This means that a routing protocol would take care of moving those states
up to a couple of qubits which are able to interact one another. This can be done
by means of teleportation [S]. However, in local quantum computation, it is more
common to find some smart criteria to re-arrange the state storage when necessary,
by means of swapping protocols [6-8]. Even if this is the most common approach, it
may be smart as well to instead consider teleportation as an alternative to swapping
protocols.

When considering distributed architecture, this are generally assumed to deeply
exploit entanglement for their interconnection. Hence, it is more likely to see in the
future proposal exploiting teleportation, rather than swapping.

3.3 Non-Local Operations

The teleportation protocol results to be a basic example of a wider class of teleporting
protocols. It is in fact possible to, not only teleport states, but entire operations. For
this reason the procedure we report here can be also referred as tele-gate.

We already discussed the importance of the A(X) operator for quantum computa-
tion in Sect. 2.1. We here report a way to perform such an operation between states
belonging to different processors by means of non-local operations. We here report
a standard protocol to perform a non-local A(X), employing a few steps; as shown
in Fig.3.3.

Notice that performing a non-local operation is not limited to the consumption of
a Bell state ]@*). Rather, as discussed in Sect. 5.5, one can use any Bell state. For
the sake of simplicity, we will always refer to |<I>+) states.
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A¢ + ¢

[0) * zb2
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1) & ﬂ

[9) Bl xb1

If
(&3

P;

Fig. 3.3 Tele-gate performing A(X) between qubits belonging different processors

Similarly to the teleportation protocol—see Fig.3.2—, there is a step meant two
inject the control and target states within the entangled state. Thanks to this step, some
quantum information is exchanged between the two parties. However, to ensure the
equivalence with the subject operator, a measurement step is necessary. Hence, the
state that was originally fully entangled in |®*) is measured in the orthogonal basis
Z ® X. The output by, b, is then subject to a cross communication through classical
channels and eventually used to perform Pauli corrections, i.e., the last step of the
procedure: Z®* over the control qubit and X®' over the target qubit.

Mindful of Sect. 2.1, we don’t need further non-local operations in order to achieve
universal computation. However, it is useful to know that other tele-gates are certainly
possible. E.g. Fig. 3.4 shows the procedure to perform a A(Z) non-local operator.

One last useful observation concerns how to relate the protocol run-time with the
discrete time domain space we defined in Sect. 1.3.1. In the previous section, we
refer to a unit of time as being, roughly, the time to generate a link. Let this quantity
be Age. Forgetting, for a moment, about the post-processing, there is a short delay
¢ caused by local operations. We argue that such a quantity is realistic since (i) two
local operations are generally much faster than A¢ and (ii) as we proceed to define
more complex protocols, & remains invariant.

Fig. 3.4. Tele-gate A ¢c+e
performing A(Z) between
qubits belonging to different ) . 7b2
processors

p;

¢
<X>7 b2
Pj
|[9)
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Fig. 3.5 The entanglement p;

swap protocol inter-connects

two processors by means of Zb2
an intermediate one, which ¢
has direct connection with

both of them

Pk |®*)

3.4 Entanglement Swap

Here we report a protocol known as entanglement swap. It is a promising procedure
as it models scalable distributed architecture. Figure 3.5 shows the parties involved
and their actions. Specifically, assume that two processors p;, p; cannot rely on
a direct inter-connection through an entanglement pair. However they both share
an interconnection with a middle processor p;. The middle processor has therefore
stored in his memory two half of entangled pairs. By means of a local A(X) on his
system, py inter-connects p; with p;. As usual, an orthogonal measurement X ® Z
is necessary to apply eventual corrections over p; and p;, which at the end of the
procedure share a fully entangled state, ensuring the new inter-connection.

Depending on the time model adopted when dealing with this procedure, the
inter-connectivity among the processors find different treating. For example, the
work done in [9] has a more dynamic-like approach, making a distinction between
link and virtual link. Such a choice probably comes from an interest in modeling
a network of quantum technologies, where it is more common to deal with online
combinatorial problems [10]. Instead, our focus here is to smartly model distributed
architecture meant to perform algorithms. This brings us to see the inter-connectivity
within a more static time model; which translates into a simpler modeling for the
connectivity. We explain this in detail within next Sect. 3.5.

3.5 Entanglement Path

As our focus is on the treating of distributed quantum computing, we here pro-
vides a non-local A(X), which makes use of entanglement swaps. The circuit in
Fig.3.6 comes from the combination of the basic implementation of a non-local
A(X)—see Sect.3.3—with the entanglement swap protocol.

Itis important to notice that all the measurements happen at the same time. Hence,
the ¢ delay is constant as anticipated. Even more important to know is that this
result can be generalized to any number of middle processors py,, Py, - - - » Py, - For
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Ag +¢
le) * Zb2®by 'f
P;
¢
le) 1%
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¢
P;
|9) X XPb1®©b3 '—
Fig. 3.6 Tele-gate A(X) by means of entanglement swap
this reason we refer to {p;, P, , Pr,» - - - » P, » ©j} as an entanglement path of length
m + 1. We now give an inductive proof for this result.
Theorem 3.1 An entanglement path {p;,, p;,, - . ., b;, } has an implementation with

depth 3.

Proof Consider an entanglement path of length 2. A naive realization consists on
putting in strict sequence two entanglement swaps:

ZRil zb3
[®*) {
T (X),b1

- X - (Z),b2
|@*) {
Xb2 T (X),b3

_ X - (Z),bs
|@7) {

Pauli gates are the only ones we are going to optimize; since the others are inde-
pendent and no optimization can be applied. What follows is the base case for the
induction:

— Zb1 —— ——————— 7b3 — —_— 7b1®b3

— X2 T (X),b3 — T (X),bs

X — (Z),bs — X — (Z),bs

Xbs — —_— Xbo®by

The r.h.s. of the above equation has post-processing composed by z”1®®3 on first
qubit and X*>®+ on last qubit. Notice that the measurements are independent from
other operations.
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By assuming that such a shape is preserved in the inductive step, we show that
this transformation can be applied to any length m:

— Zb1®b3 P Bb2y.3 ———————— Zbam-1 ———————————— 7b1$b3B - Bbam-1
— Xb1©b3® Dby, -2 T (X),b2am-1 _ —T— (X),b2m-1
— X - (Z)b2m - X = (2)bom
XP2m —_ XP1®b3®---Bboy,
This proves that we can always consider an entanglement path {p; , p;,, ..., D;,}

to have circuit depth 3.

We just showed an efficient implementation for the entanglement path. Now we do
one last step to exploit such a result and performing a generalized remote operation
efficiently.

Theorem 3.2 A tele-gate of entanglement path {p;,, pi,, - . ., p;,.,} has depth 3.

Proof The theorem above allows us to assume that, to perform a remote operation by
using a path of length m, the computing qubits interact only with two communications
qubits and depend only by Pauli operations zP1®P3®®bum-1 gpd xb2®04®- @b We
can further propagate such operations as follows:

T Zb2m+2 —Ti Zb1 ®b3 B+ Dby 1 Bboma2
— Zb1@®P3® - Bbam-1 — X — (Z),bome1 e C u (Z),b2m+1
— Xb2®bg @ Bbom, T (X) ,b2m+2 B f (X),b2ame2

X XP2m+1 — X ———————————— Xb2®by®---®b2y, Bb2ms1

In this way the measurements are independent and the depth of the circuit is not
increased.

3.6 Entanglement Tree

Driven again by the aim of finding smart strategies to perform non-local gates with
low consumption of entanglement links; we now investigate a way to perform mul-
tiple operations by means of the same link. To get a first intuition of what we are
going to show, consider the following equivalence:
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e

—®

— X — = — X —
X — — X —
Fig. 3.7 Circuit representation of the equivalence (3.1)
Ag +¢
le) zb2®by '7
P;
¢
= X xb1 P,
¢
<X>vb4
Pj
|¢) X Xb1®b3 '7

Fig. 3.8 Remote implementation of A(X ® X)

AL®X) - -AX® 1) = A(X® X); 3.1)

which has circuit representation reported in Fig.3.7.

Beyond its simplicity, equivalence (3.1) gives us a different perspective to imple-
ment multiple non-local operations by means of few entanglement links. This hap-
pens for the case of two processors p;, p;, butitcan be generalized. In fact, a corollary
that follows from Theorem 3.2 and from [11, 12] is that a global gate A(X®")—or
A(Z®™)—, distributed over a network Q = (p, [), involves a sub-set of links form-
ing what we call an entanglement tree. Namely, a sub-graph satisfying the standard
properties of a tree.

In fact, stemming from Eq. (3.1), the target systems are essentially independent,
up to the common control qubit. Hence, there is no reason to restrict them to be
part of the same processor. For the case under consideration—i.e. A(X ® X)—, the
maximum number of processors is three. Figure 3.8 shows the circuit protocol to
perform A(X ® X), where the system is spread over three processors.

We will use this technique in Chap. 5 to minimize entanglement links
consumption.
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3.7 The Role of Clifford Group in Distributed Architectures

In our model, we showed that by postponing the Pauli-corrections, we get the com-
bined advantage of (i) parallelizing remote operations and (ii) delaying the correction,
which amortizes the impact of the traveling time that a boolean value takes to reach
its destination(s). An ideal result would be to push all the corrections to the end of the
circuit. In fact, as already discussed in this chapter, if the corrections reach the end
of the circuit, they could be replaced by classical computation. Driven by this goal,
we now investigate the properties of quantum circuits to find when such a condition
is satisfied, starting from the Clifford group C, restated as follows:

C = (AX), A(2), X", 2", ¥

Even though the Clifford group is not universal, its properties make it a good
starting point for the design of a computational paradigm for distributed architectures.
For example, adding only one extra operator to the group generator makes it universal.
In Sect. 2.3, we referred to such an extension as the group C* = (A(X), X2, 22, 2').

3.7.1 Implication on Post-processing

As said at the beginning of Sect. 2.3, important benefits could be achieved by post-
poning the Pauli corrections to the end of the circuit, where they can be computed
classically. In the context of Clifford circuits, the distributed computation results to
be independent from classical communication, as we can always apply the following
rules:

e A(X) - XPR1=x"P®%XP  A(X)

e AX)-1®2zZ°P=2°® 2P A(X)

o [A(X),1®X"]=[AX),Z°®1]=0.

Similarly, for £,z circuits, we can use the following rules:

e A(Z) - XPR1=XP®2Z° A(Z)
o [AN(2),Z°P®1]=[A(Z),1®2ZP]=0

Finally, the last single layer circuit L. can be handled as follows:
o Y/.xP=zP.Y"
o V. 7P =xP .y

o X/.gbxgbxb. y'h
o 7/ .xXP X xbygb .7
o [X/, XP]=[z2", Zz°]=0.

Remark 3.1 By means of the above rules, all the post-processing operations can
be pushed forward, up to end of the circuit and they can be computed efficiently by
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a classical computer. Furthermore, since no post-processing occurs during quantum
computation, the entanglement path length has negligible impact to the running-time
(thanks to the non-locality of the operations).

3.8 Compiling and Scheduling a Circuit

The results shown in Sect. 3.7.1 unveil the dependency of quantum computation from
classical communication. We can characterize computation with a simple model,
that rules out the specifics of classical channels. Specifically, for a given network
Q = (p, ), we already defined its dynamics as time-steps t, {5, .. .. Each of which
relates to some subset Q; € Q. We want to keep consistency between network and
circuit dynamics and, for this reason, we re-state the concept of layer1 to one more
suitable for our scenario. Let £, be the set of operations running within time-step t.
We refer to ¢, the layer running at time t, a compiler is a map C — £ with C being
a quantum circuit and
L= {li}.

A compiled circuit £ will pass by a scheduler and a transpiler, which will take care
of allocating resources to run L. Specifically, for each £; € £ the scheduler builds a
subset Q; C Q. The optimization ends with a transpiler, which maps logical gates
to physical ones. The quality of distributed computation is given by:

e the E-depth, which is the cardinality ||, and
e the E-count, which is the overall number of links used to perform each layer
Et e L.

The transpiler very depends on the specifics of each processor, hence, it is out of
the scope of this thesis.

3.9 Protocols for Universal Computation

We now identify groups of circuits that are pivotal in the context of universal compu-
tation. We will work with such groups to provide a simple and rigorous compilation
model.

I A circuit layer commonly refers to a set of gates that appears within the same column.
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3.9.1 Controlled Unitary Protocol

The strategy we show here, introduced in [13, 14], is another way of performing non-
local operations. It is quite similar and, for many scenarios, completely equivalent to
the protocols we introduced this far. However, features coming either from hardware
or algorithm would happen to benefit from this slightly different strategy. For our
example, consider the gate A(U). As we are facing a parameterized target unitary,
Pauli correction do not propagate trivially in general. For this reason, it may be better
to apply the correction before the gate, as showed in Fig. 3.9. Notice that this approach
forces processor p; to wait for the value by, coming from p;, before proceeding with
the computation.

3.9.2 Implications on Protocol’s Run-Time

As mentioned, Pauli operators propagate non-trivially over more general gates—e.g.
the controlled-phase gate A(Z")—, we are forced to apply the corrections before
the local gate. This means that local gates are delayed, waiting for the arrival of
classical information. Nevertheless, it is important to notice that such a delay does not
depend on the number of qubits involved in the operation, resulting again in efficient
implementation of global gates. See, as an example, the protocol in Fig. 3.10.

; A@+é

P; lo) * zP2

lo) X (Z),b1
_pel
‘79> Xb1 (X),bg

P;

P

9 1*]

Fig. 3.9 Non-local implementation of A(U)
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Fig. 3.10 Remote implementation of INCAE- YA
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Chapter 4 ®)
Essentials on Quantum Noise Qouck i

4.1 Quantum Noise

Assuming a good characterizing model for the noise affecting quantum information
can be challenging. A highly generic one can be described as the evolution N on an d-
dimensional system, where a state of interest o evolves together with the environment
in a state p [1]:

N(©) = Treny (U(o ® p)U').

Let {|ex )}« be an orthonormal basis for the environment. One can assume the environ-
ment system as being in the state p = |eg) (ep|. This assumption is non-restrictive as
the basis is generic and if the considered environment was not pure, one can always
introduce an extra reference system to purify p. It follows that

N(@o) =) (el U ® leo) (eo))U" lex) .

k

By defining N; = (ex| U |eg), known as Kraus operator, A becomes

N(o) = ZNkaN;:. 4.1)
k

Decoherence is the most problematic noise affecting information. This can be repre-
sented with the Kraus formalism in terms of Pauli operators acting on each qubit inde-
pendently [2—4], hence the set {N; }; as the form {, /0 Ey}«, such that » b = land
Ex belongs to the Pauli group P = {1, £i1, £X, +iX, +v, £iY, +7, +12}%7.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 41
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~

{X,1} and p = 0.3. {1}, i.e., a noiseless evolution. {Z,1} and p =0.3.

Fig. 4.1 Example of Pauli noise for 2-dimensional Hilbert space in Bloch sphere representation

A further refinement is achievable. In fact, from an information perspective, the
global phase has no relevance. Hence, by considering the “quotient” group'

E = {1, X, 2, x2}® c P, 4.2)
one can assume {E;}; C E.

A comparison among Pauli noise evolution for a 2-dimensional state is given in
Fig.4.1.

4.2 Estimating an Evolution

For a given evolution N, another useful representation of its action on a state o is
through its Choi matrix [5] ¢,,. When the Kraus operators of N are known—i.e.
{/Pr Er}x—the Choi matrix is immediately defined as [6]:

Sy = \/OuBu|En)) ((Eml, 4.3)

with |E)) being the vectorization of E. When the evolution is unitary—i.e. U(c) =
UoU'—, Eq. (4.3) simplifies to

S = [0 ((Ul. (4.4)

Working with Choi matrices allows to compute the fidelity of some unknown
evolution w.r.t. a target one. For example, given a target unitary evolution ¢/ and
an experimental evolution &, both operating on d-dimensional Hilbert space. The
following function is a proper fidelity for the two channels:

! Being aware of the equivalence Xz = —1iY.
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1
fU, &) = - Tr (/S (4.5)

Estimating ¢, is an expensive procedure based on a orthogonal set of measure-
ments. A sufficient and common one is the Pauli group. In the circuit model we refer
to this procedure as follows

o — & — (XY.2)

The circuit above represent a state tomography—i.e., how &£ affects o. It works
by running k sets of experiments to obtain an estimator for {py }«.

Similarly, a process tomography starts from an orthogonal set of input states in
order to fully characterize ¢¢. In the circuit model we express such an estimation as

[0,1,+i) — € — (XY,2)

Tomography methods are intractable when considering high-dimensional sys-
tems.

4.3 Modeling Faulty Gates

According to the Pauli-Lindblad master equation [4, 7-9], a faulty operation can be
modeled as U o N. In words, the model allows to think of a faulty operator as the
composition of an ideal operator U preceded by some Pauli-noise N'—see Fig.4.2.

For numerical evaluations, a common assumption is that a quantum evolution
undergoes a depolarization [10] D, which can be expressed as a mixture of Pauli

€ITOrS:
/ 3 [ A

Starting from Eq. (4.6), it is possible to relate A to a triplet of probabilities for the
Pauli errors X, Y and Z. A method to do that is outlined in Ref. [11]. Furthermore,
according to Ref. [2], the approximation

D(o) ~ (1 —p)?0 +p(l — p)(XoX + Z0Z) 4+ p’XZoXZ. (4.7)
Fig. 4.2 Faulty operation U

expressed as the composition

UoN
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Fig. 4.3 Propagation over A(X) operator
— X — z1/2 — = — z-1/2 — X — — 7 — x1/2 — = — 312 — 7 —

Fig. 4.4 Pauli noise affecting orthogonal single-qubit operators

is a good model for decoherence and it applies independently to each qubit of the
system—i.e., D®_ for a d-dimensional system.

The joint result of equation (4.7) together with the Pauli-Lindblad assumption,
allows to investigate circuit as a composition of ideal operators affected by some
single qubit Pauli error that affect the logic of computation. Such errors propagate
among the circuit coherently with the logical operators. As basic example, consider
the operator A(X). According to Eq. (4.7), a Pauli error may precede its execution
and propagates through the system as in Fig. 4.3.

Despite the simplicity of the example, the two propagation rules shown in
Fig.4.3 are complete, as A(X) is the only non-single qubit necessary for universal
computation.”

As regards single-qubit operators, consider operators 77,X3, necessary to gen-
erate the Clifford group as Sect. 2.3. In such a case, orthogonal Pauli errors invert
their logic, as in circuits of Fig.4.4.

4.4 Error Correction and Logical Computing

4.4.1 Code Functions

Similarly to what is done in classical information [12], quantum information can
be protected through the introduction of an error correction scheme [3]. This starts
with the definition of a code function I', which introduce redundancy to the system
and exploit it to restore the original information, in case an error occurs. Formally,
a code function I',, : H® — H®*+m)  able to encode k qubits into k + m with
m > 0. The code is said to have ratio ﬁ When defining a code, a desideratum is
to achieve a high ratio. Another likewise important metric is the distance of a code.
Specifically, I'x ,, creates a codeword space s.t. |[Im(I' )| = 2k+m where only 2k
elements are valid codewords. Generally speaking a highly sparse valid space allows
for higher distance among valid codewords. On contrary a dense valid space makes
fuzzier the identification of a couple of valid-invalid codewords. This issue is treated

2'We discussed this in detail in Sect. 2.



4.4 Error Correction and Logical Computing 45

Fig. 4.5 Example of code

function I'y » : H — H®? lo®9) —

[0®9) —

more formally in Sect. 4.7, while now it is just important to observe that distance and
ratio are, by their nature, inversely proportional, creating a challenging trade-off to
handle.

Redundancy Through Entanglement

As an example, consider a code function which takes in input a generic single qubit
|¢#) = « |0) 4+ B|1) and generates a logical qubit

19) = |0) + B|1) = «]000) + B]111). (4.8)

Such code can be implemented as in Fig.4.5.

Coherently with the definition of code, the system has 3 qubits with 2% = 2 pos-
sible outcomes: [000) and |111). After the application of I'; 5, some errors become
detectable. For example, assume that the bit-flip noise X +— {1, X} affects each qubit,
with i.i.d. error probability p. One can perform a projection over the even space and
the odd space for qubits 1 and 2, and then the same for qubits 2 and 3. This can be
done by performing the non-destructive measurement®

®2 — (100) (00| + [11) (11]) — (J01) (01| + |10) (10]). 4.9)

The eigenvalues are £1 and the detectable errors are represented in the table below.

Syndrome Detection
+1,+1 IQI®I
~1,41 X®I®I
“1,-1 I®X®I
+1,-1 I®I®X

Notice that Z®2 has no effectona [000) 4+ B |111), whatever the target qubits are.
For this reason its measurement can be used to detect some error, without affecting
the original state.

This error correction scheme works for p < % Without the scheme the minimum
fidelity is

f=min/@IX(9) @)1 =/1-

3 A possible implementation of non-destructive measurement is given in Sect. 4.6.
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The probability of getting an error on the scheme is given by p, = 3p*(1 — p) + p°,
so it is required that /T — p, > 4/1 — p, which happens when p < %

4.5 Stabilizer Codes

Generally speaking, defining an efficient code is a hard task. Here, we review a
fundamental family called stabilizer codes, which is particularly helpful as it can
relate to linear codes coming from classical error correction.

A code function I'y ,, is a stabilizer code if its image is characterized by an abelian
subgroup* S C E as follows

In(Trm) ={19) : S|?) =[P),Vs eSS}

S must be abelian in order to stabilize a non-trivial code. Consider the case
[S1,S2] =1, then S;S, |#) = —S,S; [#) = — |[#), but also S1S; |¥#) = |#); hence
[#) = — |#) = 0 and S stabilizes the trivial code Im(I'; ) = {0}.

For 2F possible outcomes, a stabilizer group S has 2™ elements and, since it is
abelian, it can be specified by m generators {Sy, S, ..., Sy }. The benefit of using
generators is that to check whether a state vector is stabilized by S or not, one needs
only to check it for the generators.

To see how the correction strategy works, consider an error operator E € [E. Let
us analyse how E relates with a generator S;.

1. 3S; : ES; = —S;E, then S;E [#) = —ES; |[#) = —E |#). Therefore, E [#)isa —1
eigenvector of S; and E can be detected by measuring S;.

2. Otherwise ES; = S;E VS;, then if E € S, it clearly doesn’t corrupt the state. So
the problem arises when E ¢ S, making E undetectable.

The set of undetectable errors is given by Cg(S) \ S, where C is the centralizer
function. Nevertheless, a noise A/ with some undetectable operators, may still be
correctable. Formally, a generic noise N(0) = ), pxEx0 Ey is correctable if any
two operators E;, E; € {Eg}y, differ in syndrome or have the same syndrome but
differ by a stabilizer, i.e.

EiEj eSuU (E N C]E(S))

‘A group of which components commute one another. Le. [S;, S;j] = 0 holds for any S;, S; € S.
5 Because any couple of [E either commutes or anti-commutes.
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4.6 Relation with Classical Binary Codes

Instead of expressing the error detection as the measurement operator Z®2, we can
use the math coming from classical linear codes to define a quantum error correction

scheme, e.g.
110
H= (0 1 1) '

H can be used as parity-check matrix to detect and correct a bit flip occurring in
one of the three physical qubits of |#)—see Fig.4.6. Clearly, this is true as long as
ancillary qubits undergoes a negligible noise.

Ancillary qubits allows to abstract from the hardware, while the real implemen-
tation of this scheme very depends on what kind of measurements the quantum
processor supplies.® Since E € E, one can represent a generic error as a 2(k + m)-
dimensional binary vector (ex|e,), such thatif e¢; , = 1, E has an X operator affecting
the i-th qubit, or the identity otherwise. Symmetrically, for e; , the subject operator
is Z.

With the same criteria, let (s; «|s; .) be the binary vector representing a generator
S;. Thus one can construct an m x 2(k 4+ m) matrix H such that

sl,x|sl,z
H= : (4.10)

Sim,x|Sm,z

To check if the noise N is fully correctable, for any couple (e; . |e; ), (ejxlejz),
related to the operators E;, E;, the following holds:

Xb1A—by —

’19> PR —

X—b1Aby —

Fig. 4.6 The gray coloring helps to visualize how the classical matrix representation H of the
detection scheme is implemented by means of auxilliary qubits

6 See for example [13] for an experimental implementation, based on ancillary qubits to get non-
destructive measurements.
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H(ei,x + ej,x|ei,z + ej,z).r # 0.

To get a stabilizer code starting from a classical linear code function’ %y ,, : F —
IF%HM) , with 0 < m < k and parity-check matrix Hy. The corresponding matrix for

the quantum paradigm is given by

_(Hz 0
Hr = < o Hz) @.11)

If the code is self-orthogonal—i.e. Im(Ek’m)J- C Im(Xg ,)—, Hr relates to a sta-
bilizer group S—in accordance with matrix (4.10)—for k — m logical qubits and
k 4+ m physical qubits.® Formally, following this procedure leads to a quantum code
I'x—m.m such that

IN(Ciomm) = {|P) : S|P) =|P),VS €S}

A slightly more general definition considers a couple of classical linear codes
Sk > Skomy- As long as Im(Zg, ,) " € Im(Zg, ) and ky + my = ka + m; hold,
we can perform the parity check, in accordance with matrix (4.11). The result is a
quantum code Iy ,, with k = ky + ky — m; — my and m = m + my. 'y, is called
CSS code because of their creators Calderbank, Shor and Steane [14, 15].

4.7 Distance and Bounds

4.7.1 Classical Bounds

Consider a codeword set s.t. |[Im(Z )| = 2k defined in a 2¥t"-dimensional Ham-
ming space. An error relates to a codeword u, creating a new word it = u + e.
Generally speaking i can relate to more than one u or e, making the definition of a
good code a hard task. A good code should be able to relate any error e to one and
one only codeword «. In this sense, such a code relates to each u a lattice sphere,
centered in 1 with radius r. Each word # in the sphere is such that d(u, #) < r and
d(v, u) > r for any other codeword v. In order to avoid any overlap, the radius is
upper-bounded by r < |d/2], where d is the minimum distance of the code. From
this the Hamming bound follows:

ld/2]
l

i=0

7 I’ is a binary n-dimensional Hamming space, i.e. a vector of n binary values.
8 Notice the loss in the ratio—i.e. m/(k + m)—caused by “quantizing” a classical code.
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where 2" is the maximum number of words orthogonal to the code and (ktm) is the
number of errors involving i bits. Whenever the spheres saturate this bound, without
creating any overlap, the code is said to be perfect.’

The minimum possible distance to not run into overlaps is 3. To see that consider
the basic case of two codewords 01, and 11. A parity-check with even result on the
first codeword is indistinguishable from an odd result on the second codeword. It is
possible to define a group of perfect codes!? of distance d = 3. Namely, by setting
k=2"—h—1and m = h it results

1
<2h - 1) _ o

i=0 !

Notice how the ratio—i.e. 1 — 2,,’1—_1—rapid1y grows to 1 as i grows. More in general,

for any high-dimensional code %y ,, and minimum distance d o k + m, it is possible

to prove [3] that the ratio 1 — h,(d/(k 4+ m)) is achievable , where b, is the binary
entropy.

4.7.2 Quantum Bounds

For a given noise N (o) = > i PkExOEg, let {Ey, };  {Ei}« be the set of undetectable
errors. Then, the code distance is given by

d =min{w(E) : E € {E}i},
where tv is the weight function, counting the number of single-qubit components
differing from the identity operator I. If the code Im(I'k ) is characterized by a
stabilizer group S, then

d =nin{w(®) : Ee€ Ce(S) S} (4.12)

Symmetrically to classical codes, the Hamming bound related to a code I'y ,, is

given by
Ld/2]
(k
Z 3’( +m> < 2",
i=0 !

The new factor 3’ expresses the possible error combinations from E involving
any i qubits. Saturating the Hamming bound establishes a perfect code only if this
is non-degenerate.

9 Despite its name, the code is still unable to apply correction whenever u; + e; = us + e, occurs,
with uy, us being codewords and e}, e; being errors.

10 Known as Hamming codes.
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Consider, as an example, the following stabilizer set
S = (X14223, X2,523 .4, X1,324,5, X2,471,5)

S generates a code I'y ,, such that m = log |S| = 4 and, as the operators are defined
over a 5-dimensional system, k = 1. Ultimately, according to (4.12), the distance
is given by any E operating on at least 3 qubits, coming from the centralizer group
Ci(S), e.g. E = Z)2.4%4. To see that, consider any 1- or 2-qubits operator and check
that it anti-commutes with some element from S. Hence d = to(E) = 3. The sphere

coverage is
1
(5
Zs() =16 =2"
iz N

and, therefore, the code is perfect.

4.8 The Role of Stabilizers in Computing

There is a tight relation between communication and computing scenarios, as regards
error correction. Namely, in communication, noise affects information conveyed
through a physical channel. Similarly, in computing, noise affects information during
the life-time of an algorithm. Both scenarios run under the same noise model N (o) =
> PkEvo Ex. However, during computation, logical states demand for the definition
of logical operators.

A unitary operator U is a logical operator for a code I' stabilized by S if, for any
logical state |#) and any S € S, the following holds:

U[9) € Im("), UsSU' €.
To prove that, it is sufficient to show that
usu'u|9) =Us|9) =U|9)

holds for all S in the generator of S. Notice that usu’ stabilizes U [9).
Defining a Stabilizer Code From Scratch

From the above emerges a general way to build a stabilizer code by defining together
a code function I'; ,, and its stabilizer group S. Formally consider the state |#) =
[9) ® |0)®™, whichis (trivially) stabilized by the group S = (Zgi1, Zk42s - - - » Zktm)-
Let U be a unitary operator mapping S to itself,'! then

11 This may be any operator coming from the Clifford group, as it satisfies the closure over the Pauli
group.
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[9)

) X

Fig. 4.7 Transversal implementation of a logical A(X)

Im(Ty ) = (U9) : SUW) =U9),VS €S},

where S = (5, S5, ..., 5,) and §; = UZ,,,;UT.
If the code is meant for computation, the only missing ingredient is the set of
logical operators, which is

{zi.% : Z; =Uz,U", X; = Ux;U'}

l<i<k®
Achieving Fault-Tolerant Computing

Let I" be any stabilizer code satisfying self dualzty and being doubly-even."
Then the Clifford group generators A(X), X2 and Z? relate to fault-tolerant logical
operators A(X), X3 , 73,

These operators can be claimed to be fault-tolerant because they admit (in princi-
ple) a so-called transversal implementation, which is very efficient in terms of circuit
depth and error propagation. Figure 4.7 shows an example of transversal implemen-
tation of A(X) between two logical qubits |[¢#) and |@). Its efficiency is given by the
fact the each physical operator acts on independent pairs of physical qubits. For the
same reason, also the noise does not mix up among the physical qubits.

As regard fault-tolerance for the universal gate set C*—see Sect. 2.3—and espe-
cially for the non-Clifford operator Z i; there are some proposal for transversal imple-
mentation for the logical operator 71 , but these usually do not relate to any stabilizer
group. Hence, in literature, two main branches of research emerged:

e circuit manipulation with the goal of minimizing 7 occurrences [16, 17];
e design of 7 by means of injection protocols [18-20].

A basic example of i injection is shown in Fig. 4.8; this performs the injection
by introducing one auxiliary qubit to the processor, prepared in the state

) = \i@(m e 1)), (4.13)

12 1(IN) = Im(M)~..
13 Any codeword has Hamming weight divisible by 4.
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Fig. 4.8 Example of 24
gate injection

70/2 — Z1/4|9)

~ —e

Normal forms—see Sect. 2.3—for universal circuits are also possible. An inter-
esting result in this sense is available in Ref. [21], where authors showed that
non-Clifford operators can be pushed to the beginning of the circuit.

4.9 Conclusion

With this chapter we covered many important topics to know when dealing with
quantum computation. Especially considering the current state-of-the-art of quantum
technologies, which are commonly referred as Noisy Intermediate-Scale Quantum
(NISQ) architectures [22]. With the incoming Chap. 5, we will focus on optimizing
circuits by means of circuit compilation, which preserves the circuit logic, while aim-
ing to circuits more compliant to the hardware limitations. For practical reasons, we
will consider circuit optimization without error correction schemes, as at the current
stage of quantum technologies, these are to be considered at an early stage, where
the gain promised by the theory struggle to be witnessed in real implementations. In
fact, such schemes usually demands for more resources than the actual availability.

In accordance with our full-stack development proposed in Chap. 1, we expect
error correction scheme implementations to show up at the control system level.
Hence, a scheme will be in charge of providing a logical view of the physical
resources. Because of such an organization, the compiler should not affect the logic
on which the scheme relies on. This observation lead to think of new challenges
specific to distributed architectures.

Before proceeding with the investigation of distributed compilers, we conclude
the chapter by making some observation on the complication arising when trying
and embedding error correction schemes within a distributed system.

4.9.1 Open Challenges

As already shown in Chap. 2, telegates work by means of the generation and distri-
bution of Bell states. Implementing a transversal logical telegate would result into a
high parallelism of each required task. However, it is not straightforward to import
the quantum error correction schemes into the distributed paradigm. To understand
why, consider Fig.4.9, it shows all the telegate steps but the last one—i.e. the post-
processing. The bold representation refer to a transversal implementation, according
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Fig. 4.9 Transversal lo) * - -
telegate, without T
post-processing — x — (2
) |
—T— x)
9) — x --

to the formalism we introduced—see Fig.4.7. Unfortunately, such an implementa-
tion is not logical in general, as the Bell states may affect the system which can end
up outside the code scheme. For example, assuming:

%) = o) & (4.14)

In such a case the Bell states are independent one another and because of this, there
is a time lapse during which the system lays outside the code scheme and, for this
reason, it is vulnerable to undetectable errors. The time lapse starts when applying the
transversal operators A(X) and can only be restored by the post-processing, hoping
that no error occurred in the meantime. In other words, the only detectable errors
would be those caused by the post-processing, which, however, from a hardware
perspective, results to be the most reliable step. Hence, this should not be considered
as a practical way to proceed.

A possible way round is to generate and distribute a maximally entangled system,
e.g., the generalized GHZ state:

|®*) = %( o) BkF 4 1)@k, (4.15)

Since the distributed system is now fully entangled, such a system can be used not only
to perform the non-local operator A(X), but it results that the measurement outcome
can be used to detect errors, combining so the syndrome with the post-processing.

The proposed distributed encoded system—Eq. (4.15)—seems to be the solution
to the problem. However, it has significant drawbacks from an hardware perspective.
It should be already clear, this far, that generating a Bell state with high fidelity and
within a reasonable time lapse is very challenging. It naturally gets more complex,
when thinking at higher degree systems, as the one of Eq. (4.15).'4

In conclusion, to model a fault-tolerant scheme for A(X), Eq. (4.15) may be an
assumption too strong to be practical. A more clever approach would be to define
the generation and distribution protocol as to be part of the encoding. Very little
has been done in this direction experimentally. An inspiring set-up can be found in
Ref. [24], where authors managed to create a Shor code [25] by means of photons

14 For example the smallest transversal code has k = 1 and m = 6 [23], resulting in the generation
and distribution of a maximally entangled system of 14 qubits.
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paired in Bell states. As being photon-based, this may bring to future experimental
settings where stationary-flying hybrid systems are considered.

Appendix
4.10 Noise Canceling Through Indefinite Causal Orders

Similarly to what we have done in Sect. 2.7, we now report the possible advantages
coming from the indefinite causal order framework, applied to non-unitaries. Namely,
noisy channels are superposed in order to increase the overall capacity [26-29]

There are several ways to physically implement an indefinite order. Most of real-
izations are photonic-based [30-34], but it is not the only way. Indeed, within this
Section we go over the work in Ref. [35]; presenting an implementation with a
programmable technology, based on superconductors [36, 37].

The Indefinite Causal Orders for two evolution A+ {N,,}, and M > {M,,},, is
given by [38]:

S(0.5) =Y Sun(o ® 3)S},,. (4.16)

nm

where s« is a control state and {S,,, },, denotes the set of Kraus operators such that
Snm:Nan®|0> <O|+MmNn®|1) (1| (417)

Therefore, under the assumption of errors in E—see Eq.4.2—, it is also true that

Em 0
Sum = A/ PnPm |: 0 E :| . (418)

ASN,M,, = /DuDm Enm and My N, = /DDy Emn»> With By, By, being in the Pauli
group.

Asdiscussed in Sect. 2, higher-ordered circuit frameworks are not presented within
this thesis. An oracle is sufficient to our purpose.

Syndrome Detection
+1,41  I®I®I
—1,+1 X®IXI
~1,-1 I®X®I
+1,-1 I®I®X

Our aim here is to report our work published as in [35]. Namely, experiencing
and evaluating the indefinite causal order within a Noisy Intermediate-Scale Quan-
tum (NISQ) architecture [22], based on superconductors. NISQ architectures are
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widespread and they promise to be resources of practical interest in the next future.
Furthermore, the design is likely to rapidly evolve, also by considering the Indefinite
Causal Order as resource. Our hope is to enrich the knowledge on the capabilities
of current quantum technologies, with the long-term goal of contributing to shape
future architecture designs.

The experiment set-up is meant to witness the communication advantage, resulting
from a specific case of the subject evolution. According to quantum Shannon theory
[39], the capacity is a metric to quantify the ability for a noisy channel to convey
quantum information, without destroying it. A channel with null capacity destroys
the coherence of the quantum information, meaning that it is not possible to retrieve
the original information. By superposing two or more null capacity channels, the
result is a new channel with a not-null capacity, an interesting behaviour from a
practical point of view [27, 28].

In the following we consider the bit-flip channel X +— {X, 1} and the phase-flip
channel Z +— {Z, 1}, having noise probability, respectively, p and qg. Ultimately, by
preparing the control state to be s = |+) (+], it occurs the evolution represented in
Fig.4.10 [27].

According to the bottleneck inequality [39], given the composite operation Z o X
and let €(-) be the quantum capacity, the following upper-bound holds [27]:

ZoX) = 1 —max{h2(p), h2(D)}, (4.19)

where b, denotes the binary Shannon entropy. Also, the same inequality holds for
X o Z.

Whenever both p and g are equal to %, we have that both the configurations are
characterized by a null capacity, i.e., &(Z o0 X) = €(X 0 Z) = 0.

Let us now superpose the two noises. Accordingly, with probability pg the out-
put of circuit 4.10 is given by the second addendum, namely, (Yo Y) ® |-) (-|. As
consequence the capacity of S is lower-bounded by €(S) > }1, as shown in [28].
Specifically, o occurs to pass through Y (o) = Yo'Y, coherently with control state
being |-) (-|. Therefore, it is possible to exploit the control state to gain a heralded
unitary evolution ) via post-selection through the occurrence of |-) (-|. Since )Y
is unitary, it is also reversible, therefore we can restore the information, gaining a
perfect transmission of o, i.e.,

Yo)(o) =YYoYY =o0. (4.20)

Fig. 4.10 Superposition of |

causal orders for bit-flip and S ()R (+] + pa(YoY)®|-)(-|
phase-flip |+) — —
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4.10.1 Quantum Simulation

In this section we present our steps to realize S of Fig. 4.10. We already discussed that
the state of the art on quantum technologies doesn’t allow any native implementation
of the indefinite causal orders. Hence our goal is to witness the communication
advantage through quantum simulation.

When considering non-unitaries, as in the case of our interest, the overhead grows
up w.r.t. superposing unitaries. The reason is that non-unitaries are naturally harder
to engineer and need to be simulated as well. Specifically, for any Hilbert space H,
the corresponding set of density states lies in the convex map C(H).

According to the Stinespring dilation [40], one can always associate to a non-
unitary evolution A/ : C(H) — C(H) a unitary one, Axs, defined as follows:

Ay 1 C(H) ® C(A) — C(H) @ C(A) 4.21)

where C(A) is an auxiliary system with associated basis { |ay) (awl }Uw. Since A is
unitary, it has direct realization with the circuit algorithm. To simulate A/ from a real-
ization of A/, one need to discard the auxiliary system. In terms of operations, dis-
carding the auxiliary system means applying a partial trace Tr, : C(H) ® C(A) —
C(H). Specifically, for a generic state o = ), cijow(193) (9] ® lay) (@wl), the
partial trace outputs the following [41]:

Tra(0) = Y cijou |9:) (9| (awlay). (4.22)

ijow

Since H and A are taken to be generic systems, Eq. (4.22) has a direct generalization
to the form Tr;, ;. tracing out subsystems indexed by iy, ..., ig.

In summary, we just outlined a method to realize an operation A/, involving two
steps:

1. realizing the circuit Ax/;
2. discarding the auxiliary system with a partial trace Tr>.

To our purpose, we apply this method, restricted to evolution {E, 1}. In circuit
representation this is shown in Fig.4.11. To superpose them we need an extra qubit,
which encodes the control system. The final realization is shown in Fig.4.12.

Fig. 4.11 Stinespring
dilation simulating a generic L

Pauli noise E [9) — {E1} —
[p) —l—
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19) B — B — B —

[p) J-‘

|a)

|

Fig. 4.12 Circuit implementing an indefinite causal orders between two Pauli noise E;, E;

4.10.2 Physical Setting

Starting from circuit 4.12, we can do a step closer towards the real physical setting
meant for us to witness the communication advantage of the indefinite causal order.
To this aim we need to simulate the evolution from Fig.4.10, for the case of i.i.d.
probabilities—i.e. p = g = % Figure 4.13 shows the physical setting we used for our
experiments. Notice that we added specific state preparations and measurements for
information and control qubits. This update express a process tomography settings,
explained in detail in Sect. 4.2. Second and third qubits are not measured, rather, their
final output is ignored, which naturally express trace out over those systems—i.e.
Try 3.

At the end each run a post-selection occurs. Namely, coherently with our discus-
sion of Sect.4.10, we only keep those outputs where the control qubit results in the
state |-). To the given set of outputs, we then apply a classical bit-flip in case the
information qubit was subject to a measurement (X) or (Z). In fact, aware of the
fact that the communication advantage comes from the post-processing of equation
(4.20), which is a Pauli operation, this can be computed classically and has an effect
only when measuring (X) and (Z).

Circuit Decomposition and Optimization
As already discussed in Sect. 2.7.2, it is often the case that a real quantum technology

doesn’t supply natively a gate. For our setting of Fig.4.13, this is the case of the
3-qubits gates, which have expensive decomposition [42].

01,4+1) — 2z — X — 2 (x,Y,2)

[+) ———e— X —e—— (X)

Fig. 4.13 Circuit representation of the quantum experiment setting we used to witness the
communication advantage
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T —_—
[+) — zl/4 — X — z-1/4 — X — z1/4 — X — z-1/4 — x-1/2 — &= |+) ﬂh
l l e

Fig. 4.14 Whenever the second wire takes |+) as input, the gate r.h.s. is equivalent, up to a global
phase, to the decomposition Lh.s

Fig. 4.15 Bloch sphere
representation of the
experimental
characterization for the
physical setting of Fig.4.13

To witness the communication advantage we managed to do some optimization
on the first occurrence of such a gate. The rationale behind the optimization is that
the gate decomposition could be simpler in case we have some knowledge of the
input. We indeed know there is at least one qubit prepared in the state |+). This is
enough to use the decomposition in Fig.4.14 instead of the standard one.

The final result is shown by plotting the characterization of the channel as a
bloch sphere—See Fig.4.15. It represents the experimental characterization for the
physical setting of Fig.4.13. Gray sphere represents the ideal sphere, corresponding
to a set of pure states. The inside coloured sphere is the deformation induced by
the imperfections caused by the employed technology, which in this case is the
santiago processor provided by IBM,'> which has a quantum volume [43] of 16.

15 The processor has been retired at the time of writing.
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Chapter 5 ®)
Circuit Synthesis and Resource G
Optimization

As outlined in Chap. 1, a full-stack development of a distributed system for quantum
computation requires to be carefully engineered. The proposed stack allows a circuit
designer to focus on the logic of its algorithm, without necessary consider all the
issues coming from the physical infrastructure that will take care of computing it.

In this chapter we consider the logical layers interfacing with the algorithm (writ-
ten in circuit model). These take care of optimizing the circuit, adapting it to the
constraints given by the physical layers. Historically, a module called compiler does
all the job and the corresponding optimization problem is called the compilation prob-
lem. This is generally a tough task to solve, even on single processor, and for which
an NP-hardness proof is available [1]. An ever growing literature arises with a variety
of proposals for local computation [2—16] and for distributed computation [17-26].

Whilst quantum processors are already available, distributed architectures are
at an early stage. For this reason we need to identify the main components of such
technologies. A key component supplies felegates as the fundamental inter-processor
operations [27-29]. We already discussed in Chap. 2 how telegates work, but we
report below the main steps.

Each telegate can be decomposed into several tasks, that we group as follows: (i)
the generation and distribution of entangled states among different processors, (ii)
local operations and (iii) classical communications. These tasks makes the telegate
an expensive resource, in terms of running time and/or fidelity. As a consequence,
they have critical impact on the performance of the overall computation. In contrast
to such a limit, telegates offer remarkable opportunities of parallelization. In fact,
much circuit manipulation is possible to keep computation independent from tele-
gate’s tasks. Therefore, we aim to model an optimization problem that embeds such
opportunities. To do so we propose a role for both compiler and scheduler, within
the stack defined in Chap. 1. The compiler anticipates the scheduler, facilitating its
job in selecting network resources.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 61
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5.1 Compiler’s Strategy

The compiler is responsible for the mapping of an unstructured quantum circuit into
a structured one. With this procedure we obtain two advantages. One is the direct
consequence of working with structured circuits: having knowledge of the circuit
structure allows to give formal definition of the optimization problem. Furthermore,
we can look for structures that are compliant with a distributed architecture.

A compileris amap C — L, where C is an unstructured circuit and £ is a layered
circuit. A layer £; € L runs at time-step t. In order to do so, the scheduler will take
care of selecting the entanglement links to be used.

As anticipated, the compiled circuit £ features some properties that inform us
about the kind of gates occurring at a certain time-step. More precisely, for any
given time-step t, the compiler produces a layer ¢, composed by a global gate—e.g.
A(Z8™),

We specify the compiler depending on what group the input algorithm belongs.
We start by addressing the Clifford group and conclude with other relevant groups
in the context of universal computation.

5.2 Scheduler’s Strategy

The scheduler is responsible for the allocation of the resources used to run global
gates. At each time-step, the scheduler generates a resource demand, selecting which
entanglement links have to be established. For this reason, the scheduler holds a repre-
sentation of the physical layer. For the sake of reasoning, we assume one computation
qubits per processor. The communication qubits are fixed and their derivation comes
from the network topology.

According to the protocols we defined in Chaps. 1 and 3, the interaction among
qubits requires the use of some entanglement links. To connect those distant qubits,
the scheduler outputs an entanglement tree. The search for a tree coverage can be
expressed as a generalization of the minimum spanning tree problem [30, Chap. 4.5].
Such a generalization is known as minumum Steiner tree problem [31], which is not
tractable. Nevertheless efficient approximation ratio have been achieved [32—34] and
it can be used for any topology. A further interesting result is that for lattice topologies
the problem admits a polynomial-time approximation scheme [35]. Finally, we report
a result important to us within the following remark [36, 37]:

Remark The minimal Steiner tree on rectangular lattices can be found in polynomial
time.

For this reason, we will work with rectangular lattices as representation of the physical
layers.
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5.3 Objective Function

To optimize a circuit, we need to identify the objective function, so that we give a rate
to the expected performance. A common approach is to evaluate only those operators
which are somehow a bottleneck to computation. Considering the universal gate set
C*—defined in Sect. 2.3, in the context of fault-tolerant quantum computing [38], the
bottleneck is the z'"* operator [39, 40], since error correction protocols are designed
for the Clifford group C. Conversely, on current NISQ technologies, the bottleneck
lies in the interaction between qubits—as for the case of A(X). The relevant metric
can either be the number of occurrences of some operator O, namely the O-count,
or the number of layers containing O at least once, namely the O-depth. To rate a
compiled circuit on distributed architectures, we do something along the lines of
this approach. Specifically, the bottleneck are the non-local operators, each of which
implies one occurrence of entanglement generation and distribution stage. We refer
to such a stage as the & operator. Therefore, we will rate a circuit by means of its
¢-depth and E-count.

The above remark tells us that we can find, for any global gate, the minimum €-
count possible, by constructing an entanglement tree treated as a minimum Steiner
tree problem. Figure 5.1 shows an example computed with the method provided by
the networkx library [41].

5.3.1 Reduction to Normal Form

Normal forms generally provide a useful perspective of something under study. Being
able to rely on a well defined structure can be very helpful for the design of a complex
framework as the one under analysis.

If we can express the Clifford group in some normal form, we may be able to
define optimization strategies that can relax their assumption on the problem they
are tackling. Potentially, normal forms can reduce and simplify the domain we have
to consider. Clifford group is known to be a first useful tool to characterize quantum

(a) Link availability. (b) An entanglement tree.

Fig. 5.1 Example of entanglement-based architecture, with nine nodes disposed and connected as
a rectangle lattice
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Fig. 5.2 Any Clifford
function can be built as a — — — — —
composition of 3 blocks [42]

technologies. Even when expressed in normal form, its property holds.! For this
reason, throughout this thesis we often refer to the Clifford group to benchmark our
framework.

It has been shown in [42] that any Clifford function can be represented in the
normal form depicted in Fig.5.2. This normal form is of practical interest as it can
be obtained starting from any Clifford circuit, which is in general not in normal
form. Such a result comes from the employment of a ZX-calculus reasoner, e.g. [43].
zX-calculus [42, 44] is a graphical language, arisen as an optimizer for quantum
circuits, that translates a quantum circuit into a ZX-diagram. The main difference
between the diagram and the original circuit is that the former works with zZX-rules,
which serve as a reasoning tool to smartly generate a new circuit, equivalent to the
original one. ZX-calculus was introduced in the literature in 2007 [45], with the
main objective of minimizing a circuit gate-depth, and its potential is attracting the
interest of researchers coming from different fields. In fact, we use it here to perform
architecture-compliant optimization.

Coming back to Fig. 5.2, we use the circuit symbol — to express a generic Pauli
state preparation. Similarly, the symbol — expresses a generic Pauli measurement.

The normal form suggests that the problem can be separated into three parts,

corresponding to Ca(z), Cax) and Ca(z. For two of them—i.e., Cn(z) and Caz)—
the order relation is trivial (as all A(Z) commute), which gives a lot of room for

optimization. A bit trickier are instead C,(x) gates, as these do not commute in
general. For this reason, we treat C,(x) and C, (g circuits differently.

With our previous work published in [46], we addressed the optimization of C,(z)
circuits. We here enhance our strategies and also include C,x) circuits. We close the
investigations with an extensive performance analysis of our framework for Clifford
circuits. This will be followed by investigations for other groups of circuit, important
for their role in universal computation.

1 Clifford circuit can be used to characterize the noise model affecting an architecture, with a
precision up to its standard deviation.
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(a) Fully commuting circuit Cpz). (b) Non-commuting circuit Cagx), in general.

5.3.2 Layering C,(z) Circuits

Starting with C,(z), these features two properties we can take advantage of:

1. Ci(z) is fully commuting;
2. A(Z) gates are symmetrical.

Because of (1), the compiler can re-arrange the gates in C(z) in any order, preserving
the unitary function to be computed. For this reason, it is possible to gather any set
of m gates that share the same control qubit into a global gate A(Z®™). Also, feature
(2) means that control and target qubits are interchangeable. Hence we can use any
qubit as pivot to create a global gate. The best we can do is to start from the qubit
with the most number of interactions. This is the first pivot selected by the compiler.
The first layer £ is composed by a global gate with such a qubit as control. After that,
we remove from the evaluation the gathered gates and proceed to build £, the same
way. We proceed iteratively until there are no more gates to compile. The result—i.e.
L rz)—is a sequence of global gates with decreasing number of targets.

5.3.3 Layering Cx) Circuits

Cax) computes a linear bijective parity function g : I, — I} [47]. Such a function
is also defined by a n-by-n matrix M, with elements in the boolean space I, iff

|g () = M]b), (5.1

for any basis string b.
For a given control-target system |q,, ¢,), a A(X) gate operating on it can be
written as
Ry =1 +ry,

with r,, being the zero matrix and one on element u, v.

The matrix M can be derived by C,x) by multiplying its elements R,,,,. Any decom-
position M into R,,, matrices is a valid implementation of g. There are a number of
methods generating different decompositions [47].
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Once identified a matrix M, the compiler gathers rows to form global gates. Specif-
ically, we can find, within the decomposition of M, sequences Ry, , Ryy,, - - - » Ruy,,
relating to global gates A(X®™). This is a greedy process.

5.3.4 Analysis on the Upper-Bounds and Future Perspective

There is a fair doubt arising from the employment of normal forms for compilation:
do we know the overhead cause by mapping any Clifford circuit to some normal
form? If yes, is it reasonable?

The answer is positive to both questions. By working with normal forms, we are
not only able to work with a circuit with known shape, but we can also upper-bound
the overhead for the number of introduced operations. Depending on whether or not
ancillae are considered, the system get more complex in terms of space or run-time.
In Ref. [48], authors treat both cases, and prove linear upper-bounds.

Normal forms unlock also better opportunities from an hardware perspective.
Specifically, dealing with well defined circuit allows to extend the gate set with more
practical operators, as the A(X®™") introduced in Chap. 2. From a hardware perspec-
tive, these are also commonly referred as to act globally and simultaneously [49-52].
Citing [49]: “It has been suggested that polynomial or exponential speedups can be
obtained with global [gates]”.

Other results in terms of overhead can be found in Ref. [53], where authors
proved that any n-qubit Clifford circuit can be synthesised to 4n — 6 global gates
and any n-qubit circuit with 7 non-Clifford gates can be synthesised with no more
than 211 + O("/10gn) global gates.

Ultimately, our choice to employ the normal form of Fig. 5.2 has several benefits,
besides the ones we already discussed:

e It is practical, as the open-source pyzx [43] provides the tools to perform the
mapping.

e It is efficient, as the pyzx engine works to minimize the number of two-qubit
gates.

e It has a good shape, as C,(y) circuits are generally easier to optimize than C, )
ones.

5.3.5 (Clifford Performance Analysis

We conclude the evaluation of our framework with this section. We now tackle the
compilation on Clifford circuits uniformly generated at random.

On behalf of techniques and results we introduced within this thesis, we now fix
some parameters, such as, graph topology and compilation strategy. Our interest now
is to look out at the performances a distributed architecture would achieve. We argued
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Fig. 5.3 1000 Clifford circuits have been generated uniformly at random for each of 4 grid
topologies. The compilation performance is shown as the triplet E-count, &-depth and their ratio

that the grid lattice is a good family of lattices because of their ratio edges-to-nodes.
Hence, we now consider 4 different grid lattices.

Any generated Clifford circuit is pre-processed to its normal form. As before, we
tackle the compilation problem as the problem of finding minimum Steiner Trees that
define how Global Gates are performed throughout the network. More specifically,
since the A(Z) has no notion of control nor target, whenever two operators share a
processor, we can compile the corresponding global gate by looking for a Steiner
tree rooted in the common processor.

As the circuit made of A(Z) is fully commuting, we can select the operations
according to a greedy criterion, which is also optimal. Namely, at each time-step
the qubit involved in the highest number of operations is pivoting the iteration. All
the qubits interacting with the pivot are gathered, together with the pivot, which is
going to be the root of the minimal Steiner tree. This is repeated until each operation



68 5 Circuit Synthesis and Resource Optimization

has been compiled. This is clearly optimal, up to the algorithm to find the Steiner
tree—that we already argued being optimal on grid lattices.

As regards C,(x), this comes from an optimal synthesis. For this reason, com-
mutation rules tends to apply only among neighboring operations. Hence, exploring
combinations different from the given optimal would luckily bring to unsatisfactory
results. For this reason, each operation A(X) has its own dedicated time-step, where
the minimum entanglement path is assigned to compute the operation.

The performance—shown in Fig. 5.3—is described in terms of &-depth, &-count
and their ratio. The ratio gives a measure for the hardware employment. Le., the
lowest value, the more parallelism is achieved. The reader can appreciate how our
optimizer gets better results as the hardware increases in size. This is probably related
to the decomposition of the compilation problem in three parts, two of which are
solved at optimum.

5.4 Towards Universal Computation

We now identify unitary operators of relevance for quantum computation and for
entanglement-based architectures. There exist, in fact, unitaries that are hard torealize
in a quantum processor, but important in application scenarios. In addition, these can
be expressed as global gates requiring just a few entanglement links.

5.4.1 Universal Circuit Decomposition

We can achieve universality by using diagonal phase polynomials D;
Difp) = e ¥ ®|b), (5.2)
linear reversible boolean functions A;
Ailb) = |gi(b)) (5.3)

and local gates. Specifically, any unitary U can be decomposed as in Fig. 5.4, where
local operators are interleaved by unitaries U;, such that

Ui|b) = Dia|b) = e 7 P |g; (b)). (5.4)

Starting from the decomposition given in Fig.5.4, it is also possible to build a
normal form which makes use of auxiliary qubits that inject Hadamard gates [54].

2 The depth could be optimized with the employment of quasi-parallelism. However, we are now
considering topologies with capacity ¢ = 1.
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The resulting circuit is a single occurrence of a unitary coming from the group of
Equation (5.4), followed by a sequence of measurement-based Clifford operators.
This justifies our interest into the optimization of unitaries from Eq. (5.4). Further
motivations come from the fact that each of the subject operators—i.e. /\(ZSZ”‘ ),
AXE™) and A»(Z2™).—is universal on its own, by adding the single-qubit unitary
group U(2) to the generator set.

5.4.2 Circuit Synthesis and Optimization

We now propose a method to realize unitaries from Eq. (5.4) with global gates.
First of all, we rule out from the modeling any local operator, as there is no need
for link optimization. Our goal is therefore to build global gates for the following
three global gates: /\(ZSZ'”), AXE™) and Ao (28™).
Starting from A(Z-,) gates, as these gates are diagonal, it is trivial to construct
global gates by re-arranging the circuit into one composed by operators in cascade—

see Fig. 5.5. Specifically, we select as pivot qubit the one that has the higher number of
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Fig. 5.6 A remote global
gate A2(Z ® Z), by means of
one entanglement link [55]
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interactions with the others. Since diagonal operators are symmetrical, the pivot qubit
can be considered the control qubit of a global gate targeting to all the interacting
qubits.

As regards circuits composed of A(X,;) gates, these do not commute in general.
Hence, we cannot re-arrange the gates arbitrarily as for diagonal phase polynomials.
What we do, instead, is gathering those gates that share the control qubit (or the
target) and that are in proximity one another, within the circuit. This is a greedy
selection.

The last kind of global gate is A,(2%™). This is a bit trickier to generate, as there
are several ways one can approach the problem. Similarly to what we do for A(Z-/,)
gates, we select two pivots, which play the role of control qubits. We want the pivots
to belong the same node—see Fig.5.6. In case this does not occur, we teleport one
or both qubits.

In conclusion, for any given global gate, we compute an entanglement tree by
solving the minimum Steiner tree problem. As mentioned before, a global gate cor-
responding to 3-degree monomials may have the two control qubits allocated on
different processors. In such a case, before computing an entanglement tree, we look
for a shortest entanglement path that teleports the control qubits to the same core.

5.4.3 Circuit Cost Analysis

Here we report the results we obtained with our circuit synthesis and optimization
strategies. A simulation run can be summarized in the following steps:

1. Sample generation (graphs and circuits).
2. Global gate synthesis.
3. Entanglement trees construction.
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The outcome of a simulation is the count of links requested by the entangle-
ment trees. The count is an index for the resource load required to run a circuit.
Figure 5.7 shows the links count for the three different groups of circuits. When scal-
ing the number of processors, more combinations are available and the circuit size
increases. It is for this reason that the count for 3-degree monomials grows the most,
followed by linear reversible boolean functions and, then, 2-degree monomials.

With the next round of experiments, we evaluate under what assumptions,
entanglement-based architectures are in line with noisy intermediate-scale quan-
tum paradigm [56]. Quantum noise has high impact on such architectures, impeding
to achieve a fidelity arbitrarily high. In accordance, we estimate the computation
infidelity, varying the quality of entanglement links—i.e. [0.995, 1.000]. In other
words, we sweep the link fidelity.

Another axis represents the hardware, which we assume to be made of processors,
arranged in grid disposition. Each processor has the minimal required resources, i.e.,
two computation qubits and four communication qubits.

For each unitary group and hardware size, we generate a sample of 10 circuits?
and take the average count. Finally, for a given hardware size, link fidelity and count,
we calculate the computation infidelity—see Fig. 5.8.

It can be observed that 2-degrees monomials—Fig.5.8b—have good perfor-
mance, with an infidelity in average < 0.1 and, for the 75% of the population—i.e. the
upper quartile—, the infidelity is < 0.2. A bit less performing are the linear reversible
boolean functions—Fig. 5.8c—, with median below 0.2 and upper quartile roughly
at 0.4. The most concerning results regard 3-degree monomials—Fig. 5.8a—, which

3 Which we verified being big enough, as the standard deviation is small.
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Fig. 5.8 Computation performance for the three unitary groups. The hyperplanes denote median
and upper quartile

have upper quartile around 0.8 and median at 0.3. This means that computing such
circuits demands for higher link quality.

5.5 Conclusion: The Importance of Layering
the Architecture

According to our envision of the full-stack development—see Sect. 1.2—compiler
and scheduler take care of creating a logical circuit which is compliant with the
hardware. To understand how helpful a software layer is, it is important to keep in
mind that its role should be interpreted in two different ways.

1. Lower layers guarantee a reliable abstraction on which one can build a logical
paradigm.
2. Upper layers lighten the lower layers from all the tasks which are merely logical.

Specifically to the second interpretation, consider that each layer of the stack has
important and complex tasks to care about. Lower layers are more prone to treat real-
time problems. In fact, the scheduler cares about synchronization and connectivity
maximization. The hardware layer cares of being efficient in terms of, e.g., push-
ing the technologies at their maximal performance to get high fidelities and high
success rates. The above tasks are for sure hard. For this reason, identify what can
be delegated to a logical reasoner—i.e. compiler and scheduler—may bring critical
advantages to the overall architecture.

To get a practical intuition of what we are stating, consider for example our
assumption for the £ operator. We used this assumption to provide the reader with
a model relatively easy to understand. But with a careful knowledge of the underly-
ing architecture from an information theory perspective, something better can be



5.5 Conclusion: The Importance of Layering the Architecture 73

achieved. As an example, consider the stationary-flying system—see Chap. 1—
generating and distributing entangled states. When it succeeds, it generally means
that a heralded Bell state has been produced—i.e. {|¥*), |W™), |®*), |P7)}.

Now; if the reader believe, as we do, that delegating to the compiler to analyse
post-processing will bring advantages to the general performance of the quantum
computation, then it is clear that this approach does not stop to the models we
created throughout this chapter. As a matter of fact, Bell states differ one another by
Pauli corrections, which are usually treated at the hardware layer to provide the upper
layers with |®*). But, even if local operations are very efficient, when it comes to
multiple repeated steps—as for the case of quantum computation—every single gate
avoided has a positive impact on the final fidelity. For the case we are considering
now, the presence of a compiler enable the hardware to delegate the corrections,
which now includes them to the big set of logical instructions to optimize. As basic
example consider the circuitin Fig. 5.9, where a A(X) runs with a different Bell state.

Let us see numerically what happens without delegating the correction to the
compiler. Consider a single-qubit gate error of probability p = 10~". Then, for 10 -
m non-local operations, the probability get worse of m orders of magnitude, i.e.
107", On contrary, the compiler eliminates all the corrections, preserving the
error probability to 10™". The same reasoning applies to the running-time.

With our models we covered several interesting group of circuits, for which the
compiler eliminates every single correction from the quantum computation. The Bell
state correction is no different. Specifically, instead of performing Pauli-corrections,
the compiler keeps track of the logical error propagation caused by avoiding it. At the
end of the computation the compiler provides the classical computer the necessary
bit-flip corrections to get the right final state.

P;
) z7b2 — P;
—( (Z), b1 L2 e
- =
v _— (X), by |9) —P—
) —b X1 — e
Pj

Fig. 5.9 Non-local A(X) performed by means of |W~). This example shows how to avoid Pauli
corrections
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