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Introduction

Last century, the development of semiconductor microelectronic

technology changed the whole world. The world entered the

information society from the industrial society. The productive

forces rose greatly, which promoted the development of human

material and the spirit of civilization. Just because of the importance

of semiconductor microelectronic technology, many governments

and international companies invested heavily in developing the

technology, hoping tomake a break through and occupy an advanced

position in the development of the whole information technology.

Integrated circuits were invented in 1958, and in subsequent

years, development and progress in the degree of integration

have largely followed Moore’s law. Moore’s law is a rule that

combines technology development and economics to predict the

degree of advancement in microelectronic circuit integration within

a specified period. It predicts that the degree of microprocessor

integration would double every 18 months in DRAM. Moore’s law

is still proving accurate today. However, as the sizes of circuit

elements approach their physical limits, the optical method used

in manufacturing 16-nm-node chips is also approaching a limit.

Although the scaling of microelectronic circuit elements still follows

Moore’s law, the unit density of power consumption will become

unacceptable. Therefore, on the one hand, people continuously

develop microelectronic technology, while on the other hand, they

consider the developing road after Moore’s law is broken, that is,

more Moore’s law or more than Moore’s law.

Physically, when the scale of the circuit element decreases to

10 nm or even less, the quantum effect will appear and play

an increasingly important role. The electron transport becomes
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non-classical and non-linear, and even the electron motion likes the

waveguide motion. This book consists of two parts: (i) non-classical,

non-linear transport, and (ii) quantum waveguide theory.

The first part discusses the quantum correction effect in

ultrasmall devices, including strong field transport and transport

related to space (Chapter 2). The quantum mechanics effect is most

obvious in the longitudinal transport of superlattices because the

longitudinal length of the superlattice is about 10 nm, smaller than

the electron mean free path. Quantum transport includes resonant

tunneling (Chapter 3) and longitudinal transport of a superlattice

(Chapter 4), which were observed early in the last century eighties.

Due to the development of electron beam lithography in the last

century nineties, people can fabricate an ultrathin metallic wire

on a two-dimensional electron gas (2DEG). Applying a bias voltage

on a metallic contact can form a small quantum dot in the 2DEG

underneath the contact. In studying the transport of quantum dots

and thin circuits, Landauer and Büttiker proposed their famous

formulas named after them. This kind of transport is named

mesoscopic transport (Chapter 5). People fabricated 3D quantum

dots in the longitudinal direction of a quantum well by using

lithography. The quantum dot is confined in the upper and lower

directions by the barriers in the original quantum well, and its

lateral direction is confined by vacuum due to the lithography. These

kinds of quantum dots are similar to an artificial atom, in which

the electrons are filled according to the shell. This characteristic

is reflected in the quantum transport, for example, the Coulomb

blockade (Chapter 6). Last, we introduce the applications of single-

electron transport: single-electron transistor (Chapter 7) and single-

electron memory (Chapter 8).

The second part studies quantum waveguide theory, mainly

our own works. Since the Aharonov–Bohm effect (AB effect) was

experimentally discovered by Webb et al., there have been many ad-

vances in the transport of mesoscopic systems. Electron transport in

mesoscopic systems is not of the diffusing type but of the waveguide

type because there are no electron collisions in such small systems.

Transport of the waveguide type has many characteristics different

from those of the diffusing type, and the theoretical research

methods of these two types are also different. The former is based
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on quantum mechanics, while the latter is based on the classical

statistical physics: Boltzmann equation. In application, mesoscopic

systems, especially semiconductor mesoscopic systems, will be the

basis of next-generation microelectronics.

This part summarizes the research results of our group in this

field in the past 20 years. Chapter 9 covers the general concept of

quantum transport. Chapter 10 discusses 1D quantum waveguide

theory, which proposes two basic equations similar to Kirchhoff

equations in electric circuits. Then the two basic equations are

applied to many cases: AB rings, quantum interference devices, etc.

Last, the theory is extended to the hole case, whose wave function

has two components. Chapter 11 describes 2D quantum waveguide

theory. When the width of the circuit is so large that the energy level

spacing between the transverse modes in the circuit is comparable

to the electron kinetic energy, we should consider the transport

of multiple transverse modes, that is, 2D waveguide theory. In

this chapter, the transfer matrix method, the scattering matrix

method, and the theory of a waveguide with multiple terminals

are developed. Chapter 12 discusses the 1D quantum waveguide

theory of Rashba electrons. In recent years, much attention has

been paid to the field of Rashba spin–orbit interaction (RSOI) in

low-dimensional semiconductor structures because of its potential

application in spintronic devices, which is based on the idea of the

possible manipulation of electron spin by a magnetic or an electric

field. Chapter 12 extends the 1D quantum waveguide theory of

electrons without considering spin to the case of electrons with spin

and RSOI, deriving the boundary conditions of the Rashba current.

The theory is applied to study the transport of Rashba electrons in

turning structures, spin-polarized devices, etc. Chapters 13 and 14

extend the 1D quantum waveguide theory of a Rashba electron in

straight-line structures to curved-line structures. For this objective,

the transfer matrix method is developed. With this method, the

Rashba electron transport in the AB circular ring and square ring

and related spin polarization modulation are studied. In Chapter 15,

the 1D quantum waveguide theory of a Rashba electron is extended

to the 2D case and some basic results are obtained.

The second edition contains two new chapters as follows.

Chapter 16 theoretically investigates, by using the transfer matrix
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method, Rashba electron’s spin transport in a straight waveguide

with a stub which has a smooth boundary. Chapter 17 studies the

spin transport of electrons in an elliptical ring with the Rashba spin–

orbit interaction. It focuses on the spin flip in two kinds of rings and

expects to find a suitable structure and conditions for a spin inverter.

In summary, the transport theories and experiments beyond

classical transport quantum waveguide are introduced, which are

prepared for future semiconductor micro- and nanoelectronics.

They will be the basis of next-generation semiconductor electronics

and industry.We believe that these theorieswill havemore andmore

applications, popularization, and developments.

Jian-Bai Xia
Duan-Yang Liu

Wei-Dong Sheng
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Chapter 1

Properties of Quantum Transport

1.1 Characteristic Length [1]

In traditional transistors, whose length is larger than the average

free path of electrons, the electron’s movement is classical, which

can be described by the Boltzmann equation. But when the scale

of a device is so small that its scale is about or smaller than some

characteristic lengths, there will be distinct quantum effects of

current.

Electrons in two-dimensional electron gas (2DEG) are degene-

rate at low temperature, so their Fermi wave vector can be written

as

kF =
√
2πns, (1.1)

where ns is the area density of 2DEG. The electrons’ Fermi

wavelength is

λF = 2π

kF
=

√
2π

ns
. (1.2)

For electrons with area density ns = 5 × 1011 cm−2, the Fermi
wavelength is about 35 nm, so it is obviously comparable to the

scale of mesoscopic devices. At low temperature, electric current

QuantumWaveguide in Microcircuits (Second Edition)
Jian-Bai Xia, Duan-Yang Liu, and Wei-Dong Sheng
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is contributed mostly by electrons near the Fermi energy, and

other electrons with energy less than the Fermi energy have no

contribution to the conductance. Therefore, the Fermi wavelength

is associated with the quantum effect of current.

Electrons which move in a semiconductor are scattered by

impurities, defects, or phonons, and their momentum relaxation

time τm and scattering time τs have the following relationship:

1

τm
= 1

τs
αm, (1.3)

where αm is a constant between 0 and 1, and it denotes the

effectiveness of different scatterings for the momentum relaxation.

The mean free path Lm is defined as the average distance

travelled by an electron before it loses its momentum, so it can be

written as

Lm = vFτm, (1.4)

where vF is the Fermi velocity, and for electrons with area density
ns = 5× 1011 cm−2. On the basis of Eq. 1.1, we obtain

vF = �kF
m∗ = �

m∗
√
2πns = 3× 107 cm/s, (1.5)

wherem∗ is the electron’s effective mass,m0 is the static mass of an

electron. Ifm∗ = 0.067m0, τm ∼= 100 ps, then it can be obtained from

Eq. 1.4 that Lm = 30 μm.

The phase relaxation length is defined as the average distance

travelled by an electron before the electron wave loses its phase.

Similar to the momentum relaxation time τm, the phase relaxation

time τϕ has the following relationship with the scattering time τs:

1

τϕ

= 1

τc
αϕ , (1.6)

where αϕ is a constant between 0 and 1, and it denotes the

effectiveness of different scatterings for the phase destruction.

To understand the concept of phase destruction, we imagine an

experiment of AB ring. The incident electron beam splits in two

at one end of the ring, then moves along up and down the two

arms, then meets at the other end of the ring. If the lengths of

each arm are the same, the phases of two waves at the meeting

point are equal, and the amplitude increases. Assume that there is
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an impurity or defect (named scatterer) in one arm. Then it will

scatter the electron wave passed. Because the scattering is elastic,

it does not change the electron’s energy, just its phase. When the

two electron waves meet, their phases are unequal, so interference

makes the amplitude reduced. Because the scatterer is fixed, the

phase relationship between the two paths is definite.

If we apply a magnetic field perpendicular to the ring, the

electron wave moving up or down the arm is added or reduced a

phase factor, which is in proportion to the magnetic flux � through

the ring (magnetic field strength multiplied by the area of the ring).

Therefore the amplitude of the output electron wave oscillates with

�, and it is the AB effect. In case there are scatterings in the arms,

although the amplitude reduces when � = 0 (the magnetic field

is zero), when the strength of the field increases, the amplitude’s

oscillation with � doesn’t change. When � reaches a certain value,

the amplitude reaches its maximum. We can say that the loss of the

phase at the scatterings has been compensated by themagnetic field.

In this condition, we can consider

αϕ = 0, τϕ → ∞. (1.7)

That is, the elastic scattering of static scatterers does not affect the

phase relaxation time. This fact has been proved by the experiment.

Experiments found that the length of the two arms of the AB ring is

much larger than the mean free path Lm in general—i.e., an electron

has experienced repeatedly the momentum elastic scattering, but

experiments still observe the AB oscillation.

A major factor which affects the phase relaxation is the inelastic

scattering of the electron-phonon. A phonon is a quantum mode

of lattice vibrations, and it is not a fixed point as an impurity or

a defect, so its scattering on electrons is random. As it is inelastic

scattering, in every scattering the electron’s energy will increase

or decrease the energy of a phonon. When two electron waves

scattered by phonons meet, the relationship of their phases is

irregular, so the average amplitude of the electron wave reduces. In

other words, fixed scatterers do not contribute to phase relaxation;

only fluctuating scatterers do.

Assume that after time τϕ , the mean square energy that the

electron gains during phonon scattering is equal to the square of
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energy that the electron gains each time multiplied by the number

of scatterings:

(�ε)2 = (�ω)2
(
τφ/τs

)
, (1.8)

where �ω is the energy of a phonon. The phase relaxation time is

defined as that after time τϕ when the mean square value of an

electron’s phase change is of orders one:

�ϕ ≈ (�ε) τϕ/� ≈ 1. (1.9)

From Eqs. 1.8 and 1.9 we have

τϕ =
( τs

ω2

)1/3
. (1.10)

Therefore the influence of a low-frequency phonon (acoustic

phonon) on the phase relaxation is small. A major factor of phase

relaxation is the optical phonon.

At low temperature, a major factor of the phase relaxation is

electron–electron scattering. The frequency of electron–electron

scattering is determined by the difference in electron energy E
and Fermi energy EF: � = E – EF. Because � is small, the states

which can be scattered are very few according to the Pauli exclusion

principle. So the probability of scattering goes to zero. In 2DEG, it

has been proved that

�

τϕ

≈ �2

EF

[
ln

(
EF
�

)
+ const

]
. (1.11)

Because the hot electron’s average energy� ≈ kBT , the relationship
between τϕ and T is the formula that � is replaced by kBT in

Eq. 1.11.

In high-mobility semiconductors, τϕ ≤ τs in general. In low-

mobility semiconductors, τϕ changes less while τs decreases greatly,

so τϕ � τs.

1.2 Non-equilibrium Transport

When the scale of a device is smaller than 100 nm, a few volts in

the applied voltage can lead to very high electric fields of the order

of 10,000 V/cm. These high fields lead to values of the carrier drift
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velocity of the order of 107 cm/s. Because there is not enough time

for these electrons to exchange energy with the surroundings, their

average energy is higher than the thermal average value kBT , so that
they are called “hot electrons.”

When the electric field strength is small, the drift velocity of

electrons is proportional to the electron field strength,

vd = μE , (1.12)

where the proportional coefficient μ is called mobility. The regime

where Eq. 1.12 is valid is called the linear-response regime. In this

regime, the Einstein relation expresses the diffusion in terms of the

mobility and thermal equilibrium temperature as

D = μkBT
e

, (1.13)

where e is the electron charge taken with its sign. The Nyquist

relation expresses the available noise power Pav of a two-terminal
network for unit bandwidth of frequency� f in terms of the thermal
equilibrium temperature as

Pav
� f

= kBT . (1.14)

Therefore, under the thermal equilibrium we have

Pav
� f

= kBT = eD
μ
. (1.15)

Equation 1.15 is just a macroscopic expression of the fluctuation-

dissipation theorem.

Under hot-electron conditions, the Einstein andNyquist relations

no longer hold in general. Figure 1.1 schematically shows the drift

velocity, diffuse coefficient, and white noise as functions of the

electric field in the linear-response and hot-electron regimes [2].

The experimental evidences of themain effects related to the hot-

electron conditions are as follows [2], as shown in Fig. 1.1:

(1) Deviation from Ohm’s law through a nonlinear dependence of

the drift velocity upon electric field strength

(2) Deviation from the Einstein relation of the diffusion coefficient

through a diffusivity which depends on the electric field

strength
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Figure 1.1 Schematic illustration of the drift velocity, diffusion coefficient,

and white noise as functions of electric field strength.

(3) Deviation from the Nyquist relation of the noise power per unit

bandwidth through an increase of the white-noise temperature

Tn
(4) Anisotropy with respect to the direction of the applied electric

field of the kinetic coefficients: differential mobilityμ′, diffusion
coefficient D, white-noise temperature Tn

(5) Negative differential mobility for electric field strengths above a

threshold value

In the linear-response regime, the transport behavior can be

described by the Boltzmann equation, and it can be solved by the

perturbation method. In the hot-electron regime, the transport is
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nonstatic, the distribution function deviates far from the balance

distribution function, and its variation with the time is large. It is

believed that if the concepts of the Boltzmann equation and the

distribution function are still valid, three main assumptions will

justify such an approach: (i) Carrier density should be sufficiently

low so that only binary collisions occur. (ii) The time between

successive collisions, τ , should be long enough when compared

with the duration of a collision, τcoll—i.e., τcoll/τ 
 1. (iii) Density

gradients should be small over the range of the interparticle

potential. In this case the perturbation method cannot be used to

solve the Boltzmann equation, but the Monte Carlo method can be.

1.3 Quantum Effect

The hot-electron effect is a nonlinear transport behavior in

ultrasmall devices, but the electron movement is still classical. If

the scale of the devices becomes smaller and smaller, a series of

quantum effects will appears [3].

1.3.1 Statistical Thermodynamics

Generally, modeling of quantum phenomena is more complicated

than modeling of classical and/or semiclassical phenomena. For

instance, one should consider the full nonlocal nature of the

potential interactions in the dynamical variables. Consider a simple

potential barrier system, where the potential distribution is

V (x) = V0u (−x) ,
u (x) =

{
1, x ≥ 0

0, x < 0

(1.16)

where u(x) is the Heavyside step function. For the case V0 → ∞,

the Wigner distribution as a function of space coordinate x and
momentum k obtained quantum mechanically is shown in Fig. 1.2

[4]. It may be seen that far from the barrier, the distribution

approaches the classical Maxwellian form, but near the barrier it

differs greatly. The repulsion from the barrier is required by the

vanishing of the wave function at the barrier, but the first peak of
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Figure 1.2 The Wigner distribution function as a function of space

coordinate x and momentum k for a half infinite barrier.

the wave function, as onemoves away from the barrier, occurs closer

to the barrier for higher-momentum states. This variation exists for

distances of the order of several thermal de Broglie wavelengths,

λD =
(

�
2

2m∗kBT

)1/2

. (1.17)

Thus, nonlocal variation can be expected over the range of 20–40 nm

even at room temperature.

It is clear that the electron density no longer varies simply

according to the Boltzmann distribution. The statistical mechanics

should bemodified with quantummechanics, which is related to the

electron momentum. One form introduces a quantum pressure term

as a modification of the electron temperature,

β−1 = kBTe − �
2

8m∗ ∇2 ln (n) . (1.18)

Although the results obtained using this model are in agreement

with the intuitive expectations, the correction term does not have

the momentum dependence expected from Fig. 1.2.

People attempt to more properly treat quantum effects without

such hydrodynamic approximations. A problem with the use of

quantum approaches to device modeling is that most quantum

discussions, especially those of quantum transport, tend to revolve

around closed systems, whereas most devices are open systems.

In treating such open systems quantum mechanically, it is quite

difficult to properly define the reservoir (thermal equilibrium

contact) regions, as well as the interface regions between the
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reservoirs and the active device region. Because of the nonlocal

nature of the quantum system, errors in defining the contact region

will propagate throughout the device, often leading to spurious

results.

The double-barrier resonant tunneling diode (DBRTD) is a typi-

cal device of quantum mechanical effect. The Wigner distribution

function is calculated from the density matrix through the Fourier

transform, often called a Weyl transform. The Wigner distribution

has been used to model the DBRTD. It is found that the Wigner

function shows a depletion region in the cathode area, which arises

from a contact potential drop and the tendency to form a bound

state in this area. Such contact potential drops are typical of most

open systems, whether classical or quantum. Generally, the cathode

“barrier” will develop when there is a mismatch between the

injection characteristics of the cathode reservoir and the dissipative

nature of the active device region. It is largely eliminated if a lightly

doped region is introduced adjacent to the barrier layers.

1.3.2 Phase-Coherent Effect

When electrons pass through a device, if the size of the device

is smaller than electrons’ coherent length (inelastic mean free

path), different waves will interfere. The coherent effect will

result in additional scattering, then reduce the conductivity. In

addition, the coherent effect also will result in the Aharonov–Bohm

effect, universal conductance fluctuation, etc. All these are named

mesoscopic effects.

One of important problems is the conductance fluctuation caused

by quantum effects. Assume that the action area of the gate is

0.1 × 0.05 μm2, and carrier concentration in the inversion layer is

2× 1012 cm−2, then there are only 100 electrons under the gate. The
conductance change caused by the phase coherence is on the order

of e2/h, about 40 μS. If the normal conductivity is 1000 mS/mm,

then for a device with a gate width of 0.1 μm, the total conductance

is 100 μS. Therefore, the conductance fluctuation caused by the

phase coherence is 40% of total conductance, so it will limit the

performance of the device greatly.
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Figure 1.3 Current–voltage curves for a MESFET of 45 nm gate length and

20 μm gate width.

Figure 1.3 shows the current–voltage curves for a MESFET of

45 nm gate length and 20 μm gate width. Fluctuations, which are

not time varying but d.c. fluctuations, are clearly evident in this

figure, and these are estimated to have a rms (root-mean-square)

amplitude of about 10 μS. In spite of the large gate width, it

appears that the quantum fluctuations are clearly evident even at

300 K. Although the amplitudes of the conductance differ greatly,

the fluctuations are of comparable rms amplitude. This strongly

suggests a fundamental origin such as quantum interference.

A 0.1 μm gate width device is quite nearly a device formed on

a quantum wire, which can be looked upon as a quantum wire

device. The quantum wire has a series of the transverse bound

states. When the gate potential increases, the number of the electron

channels increases, resulting in a step-type jump in the conductance.

The height of the step is 2e2/h. Figure 1.4 is the variation of the
conductance of a wire with a rough boundary as the Fermi energy

(gate potential) is varied. The upper curve is for �/λF = 0.1, and

the lower curve is for �/W = 0.1, where � is the variation of the

gate width, λF is the Fermi wavelength, W is the gate width, and L
is the gate length. From Fig. 1.4 we see that the conductance curves
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Figure 1.4 Variation of the conductance of a wire with the Fermi energy.

are basically of step form, and derivate from the step form due to

the fluctuation of the gate width. Thus, the fluctuation of the gate

width is also a reason behind the conductance fluctuation for narrow

devices.

In addition, if the orbit of a ballistic electron surrounds an

obstacle, such as an impurity atom, then interference between two

orbits also will result in the phase-coherent effect. Especially when

there is a perpendicular magnetic field in the area surrounded by

two orbits, the Ahanorov–Bohm effect (AB effect) will occur. Here,

the wave function in the closed loop can be expressed by the integral

along the loop:

� ≈ exp

[
e
�

(∫
1

A · dl −
∫
2

A · dl
)]

= exp

[
e
�

∮
B · dS

]

= exp

(
�

�0

)
, (1.19)

where �0 = h/e is the magnetic flux quantum. The electric current
passing through the closed loop will oscillate periodically with the

magnetic flux. When a current of 10 mA passes through the loop, if

there is a magnetic field of 0.02 T, then the AB effect can result in

distinct fluctuation.
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1.3.3 Coulomb Blockade Effect

Experiments found that for a small quantum dot, only when the

electric voltage is larger than a certain value, the electron can pass

through the dot. The reason is that the Coulomb interaction between

the electron in the quantum dot and electron in the circuit will reject

the entry of the second electron to the quantum dot. Only when

the energy of the electron exceeds the Coulomb interaction energy,

the second electron can enter the quantum dot and the current can

occur. This appearance is called Coulomb blockade effect, and the

relationship curve between voltage and current has the shape of

a step, which is called Coulomb staircase. The Coulomb blockade

effects have been observed in 2DEG systems in Si-MOSFET and GaAs

heterojunction.

From the point of view of large-scale integrated circuits, all the

above effects are unfavorable, and we should avoid these in design.

On the other hand, these mesoscopic effects may be utilized in

the new generation of electronic devices. For example, in a device

which has a size smaller than the inelastic scatteringmean free path,

electrons follow the motion law of quantum mechanics, so we can

utilize properties of quantum interference and quantum waveguide

to design a device and to control the movement of electrons. And we

can design a single-electron transistor by using Coulomb blockade

effects, which can greatly reduce the number of electrons stored

in one bit, and can reduce power dissipation of memory devices.

Because the spin of electron has a much longer scattering time and

distance than that of the electric charge, we can utilize spin as the

information carrier to design spintronics devices and so on.

1.4 Landauer–Büttiker Formula

Datta first proposed the concept of quantum device in 1989 [5],

which can be understood only by considering the electron’s wave

property. Concepts which can describe the electron’s movement are

no longer the scattering probability, relaxation time, mobility, and

so on. For a two-terminal device, assume that a+, a− and b+, b−

are amplitudes of the electron wave in the input circuit and output
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Figure 1.5 Two-terminal device, where a+, a− and b+, b− are amplitudes of
the electron wave in the input circuit and output circuit, respectively.

circuit, respectively. Then, for a definite energy E , they can be related
by a scattering matrix,(

a−

b−

)
=

(
r (E ) t′ (E )
t (E ) r ′ (E )

)(
a+

b+

)
, (1.20)

where r(E ), r ′(E) and t(E ), t′(E ) denote reflection and transmission
coefficients, respectively, which are determined by the internal

potential and structure.

The circuit has a certain width, and there are transverse modes

with different energy. In general, the transport in the longitudinal

direction is of multimode, so the amplitudes a+, a− are column

matrices with size (Ma × 1), b+, b− are column matrices with size

(Mb × 1). Similarly, r is a matrix with size (Ma × Mb), t is a matrix
with size (Mb × Ma), and so on. Ma and Mb are the number of
transversemodes in the input circuit and output circuit, respectively.

In the Landauer–Büttiker formula, the conductance is expressed

by the scattering matrix, so this theory is suitable for solving the

conductance of a system which is made of different materials or

conductors of different shapes that are put in contact with each

other. This theory is the basic theory in the research onmescoscopic

transport.

Suppose that an electron moves in an ideal conductor along the z
axis, and neglect the positive ions in lattice points and scattering of



April 2, 2025 16:17 JSP Book - 9in x 6in 01-QWM-01

16 Properties of Quantum Transport

positive electric charge on the electron. In the absence of a magnetic

field (so take no account of spin), the Hamiltonian of the electron is

H = p2

2m
+ V (x , y) , (1.21)

where V (x) is the lateral confinement potential in the wire. On

the basis of the Hamiltonian (1.21), we can obtain the system’s

eigenstate:

�αk (x , y, z) = 1√
2π

eikzφα (x , y) , (1.22)

where k is the wave vector along the z direction of the wire,

α denotes the α-th transverse eigenstate, and the eigenenergy

corresponding to the α-th eigenstate is Eαk = Eα + �
2k2/2m. The

first term and the second term are lateral and longitudinal energy,

respectively, and the lateral energy Eα is determined by the lateral

confinement potential V (x). We can use a square potential well to
express the lateral confinement potential of an ideal wire. Suppose

that the well in one direction is very narrow, and the width in

another direction isW , then the lateral energy Eα = (n�π)2/2mW2

has discrete energy levels. Therefore, the energy spectrum of the

system is made up of a series of parabolic and discrete energy

subbands, and the minimum value of the corresponding curve is Eα .

When T = 0 K, the current in the α-th channel of the wire can be

expressed as

Iα = 2

2π

∫ kmax

0

evαkdk = 2

2π

∫ kmax

0

evαk
dk
dEαk

dEαk

= 2e
h
(μ − Eα) , (1.23)

where vαk = 1/� × dEαk/dk is the electron’s group velocity, and μ is

the chemical potential (Fermi energy level).

If the width of the ideal conductor is small enough, then the

energy gap between two energy subbands will be large enough so

that the electron can just occupy the lowest energy band, and then

this energy band will become the one and only allowed channel.

At present we can calculate the net current in the wires with the

chemical potentialsμ1 andμ2, respectively, connected to each other:

I = I1 − I2 =
(
2e
h

)
μ1 −

(
2e
h

)
μ2 =

(
2e2

h

)
(V1 − V2) . (1.24)
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Therefore, the conductance of the two-terminal and single-channel

device is

G = I
V1 − V2

= 2e2

h
. (1.25)

This is the Landauer formula of the two-terminal and single-channel

system; 2e2/h is called the quantum conductance.

If the wire has finite width, the electron may occupy several

subbands. Assume that N subbands have been filled in, and f (E )
denotes the probability that the subbands have been occupied by

the electron. At present the current can be written as

I = 2e
h

∫ ∞

0

dE

⎡
⎣ f1 (E )∑

i

Ti (E )− f2 (E )
∑
j

Tj (E )

⎤
⎦, (1.26)

where Ti = ∑
j Ti j = ∑

j |ti j |2 denotes the total transmission
probability that an electron transport from all channels of wire

1 to the i -th channel of wire 2. f1(E ) and f2(E ) are the Fermi–
Dirac distribution function in the wire 1 and wire 2, respectively.

Therefore the current of the system is

I = 2e
h

∫
dE [ f (E )− f (E + VD)]T (E ) , (1.27)

where f (E ) is the Fermi–Dirac distribution function, VD = V1 − V2
is the bias voltage on the system, T (E ) = 
iTi(E ) is the total
transmission probability. For a small bias, Eq. 1.27 can be simplified

as

G = I
VD

= 2e2

h

∫
dE

(
− ∂ f

∂E

)
T (E ). (1.28)

At low temperature,−∂ f/∂E = δ(E − EF), then in the endwe obtain

G = 2e2

h
T (EF) = 2e2

h

Ma∑
i=1

Mb∑
j=1

∣∣ti j (EF)∣∣2. (1.29)

where ti j (EF) is the transmission coefficient shown in Eq. 1.20, and
Eq. 1.29 is the Landauer–Büttiker formula for the two-terminal and

multichannel device. It follows that the key point of utilizing the

Landauer–Büttiker formula is solving the transmission coefficient

matrix t. Most research studies on mesoscopic transport focus on
this problem.
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The two-terminal Landaure formula can be extended to the

multi-terminal device. Considering a three-terminal device, we can

write its scattering matrix functions similar to Eq. 1.20:⎛
⎝a−

b−

c−

⎞
⎠ =

⎛
⎝ raa tab tac
tba rbb tbc
tca tcb rcc

⎞
⎠

⎛
⎝a+

b+

c+

⎞
⎠ . (1.30)

Büttiker has proved that current Ii (i = a, b, c) has the following
relationship with the chemical potential of every circuit μi :

Ii = 2e2

h

∑
j=a,b,c

(
Ti jμ j − T jiμi

)
, (1.31)

where

Ti j =
M∑

m,n=1

∣∣(ti j)mn∣∣2. (1.32)

When there is no external magnetic field, Ti j = T ji , Eq. 1.31 can be
written as

Ii = 2e2

h

∑
j=a,b,c

Ti j
(
μ j − μi

)
, (1.33)

whereμ j −μi corresponds to the bias voltage between two circuits.

The conductance between each pair of circuits can be defined as

Gi j = 2e2
h Ti j , i, j = a, b, c (i �= j) . (1.34)

Equations 1.29 and 1.31 are the fundamental formulas of quantum

conductance. They form the theoretical basis of future quantum

devices. For a certain device, we should obtain scattering matrices

raa(E ), tab(E ), . . . . It is shown in Eq. 1.31 that the quantum device

is nonlocal, and change of any terminal’s chemical potential will

influence currents in all circuits.

1.5 Quantum Interference Transistor

By using the interference effect of the electron wave, Datta [5]

proposed the concept of “quantum interference transistor,” as shown

in Fig. 1.6a. The structure consists of a conducting channel with a

barrier in the middle. The length L is small enough so that electrons
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Figure 1.6 (a) A proposed quantum interference transistor, which consists

of a conducting channel with a barrier in the middle. (b) Calculated

conductance versus potential difference between the channels.

travel ballistically across it. The channels are narrow enough to

be single-mode in the z direction. Without a gate voltage, the two
channels have been assumed to be perfectly symmetric, so that the

electrons passing channels 1 and 2 have the same phases when

they meet at the drain of the device, the amplitude of the electron

wave—i.e., the conductance will be maximum. But an applied gate

voltage changes the average potential in channel 1 with respect

to that in channel 2, resulting in the phase difference of electron

waves traveling in channel 1 and channel 2, and the decrease in the

conductance. Figure 1.6b shows the calculated conductance versus

bias gate voltage, i.e., potential difference between the channels.

Figure 1.7a is another quantum interference transistor proposed

by Datta [5]. It differs from the ordinary transistor in that the gate

is not at the position between the source and the drain, but at

the position beside the source and the drain. Thus it provides two

primary paths from the source to the drain, with the gate controlling

their interference,much like the Ahanonov–Bohmdevice. The length

L can be controlled by the gate voltage, as shown in Fig. 1.7a.

Figure 1.7b is the calculated conductance as a function of the
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Figure 1.7 (a) Another proposed quantum interference transistor, which

has the gate beside the source and the drain. (b) Calculated conductance

versus the length L.

effective length L. From the figure we see that the conductance

is modulated by 100% as the length L is changed. Therefore, the
quantum interference transistor controls current not by changing

the number of electrons, but by changing the phase.

In order to calculate the scattering matrix the authors proposed

a one-dimensional quantum waveguide theory [6], which can be

used to explain intuitively the above A-B devices and the quantum

interference transistors, andwhich is also suitable for any shape and

structure of one-dimensional quantum waveguide circuits. We also

consider the quantum waveguide circuits with definite width. For

details, see Chapter 9 and hereafter.
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1.6 Spintronics Devices

Electron spin, or intrinsic electronic angular momentum, is another

intrinsic property of electron besides electric charge. The electron

spin has two discrete values±�/2, which are generally named spin-

up and spin-down states respectively. This is very similar to the

high and low levels or switch off and switch on, which are used to

realize logic 1 and 0 states. Thus, the 1/2 spin system is an ideal

two-level system, and spin-up and spin-down states are an ideal

choice to realize the quantumbit in quantum calculation. Recently, in

traditional electronic industry, device integration has become higher

and higher, and the size of devices smaller and smaller, which results

in distinct quantum effects and too much energy consumption.

Therefore, naturally, people think of utilizing spin-free degree, which

was formerly always neglected, to replace or to combine the charge-

free degree. The research on how to control spin-free degree

effectively has attracted wide attention from scientists, and was

named spintronics by S. A.Wolf et al. formally in 2001 [7]. Spintronics
researches a particle’s spin in a solid and applies it in devices,

and it contains spin polarization’s produce, control, transport, and

exploitation. It is an interdiscipline field which involves electronics,

magnetism, optics, and micro- and nanoprocessing technology.

According to the materials researched, it can be grouped into two

areas: metal spintronics and semiconductor spintronics.

Ideal spintronics devices realize functions by controlling spin

orientation and spin, so they may not be restricted by the number

of electric charges and energy dissipation. They have lower power

dissipation and faster running speed. Moreover, electronic storage

devices based on spin have the advantage of nonvolatility. These

devices clearly show that spintronics will have wide prospects

of development and application in areas of quantum calculation,

communication, molecules, chemistry, and so on. Therefore, people

expect spintronics to construct the physical foundation of a new

generation of nanoelectronics, and spintronic devices to replace the

current microelectronic devices.

The symbol of spintronics’ birth is the discovery of the giant

magnetoresistance (GMR) of the metallic multilayer structure in
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1988 [8, 9]. The proposal of spin valves and room temperature

magnetic sensor utilizing anisotropic magnetoresistance make

GMRs a great success in commerce. Nowadays a new generation of

the magnetic head of high-density disk is using the GMR principle.

Thanks to the high sensitivity to the magnetic field of GMR, each

GMR magnetic head has be reduced to 30–50 nm, and more than

4 T volume in desktops and more than 1 T volume in laptops have

been realized.

Now spintronics devices that are practical are mostly made of

metal magnetic materials, which belong to the first category of

spintronics, i.e., magnetoelectronics. In 1995 scientists found a new

phenomenon, tunneling magnetoresistance (TMR) [10]. When the

moments of the above and underneath ferromagnetic layers change

from parallel to antiparallel, the tunneling resistance changes

20–30%. The magnetic tunnel junction (MTJ) utilizing the TMR

technology has been created, and new magnetoresistive random

access memory (MRAM) is expected to replace nonvolatile memory

based on CMOS. This new generation of memory has advantages

such as no loss on data when power fails, rapid reading speed

comparable to static random access memory (SRAM), and large

memory space comparable to dynamic random access memory

(DRAM), so it has wide application prospects.

The second category of spintronics mainly studies semiconduc-

tors, and it hopes to create an imbalance of spin number to realize

spin transistor and spin valve, and then replace traditional electronic

devices. These new spintronic devices have characteristics such

as low energy consumption and rapid switching speed. Because

ready-made mature semiconductor technology and equipment can

be used to reduce developing cost, these devices have attractedwide

attention. To utilize spin-free degree in semiconductors, we must

produce, keep, control, and detect the spin polarization of carriers.

There are several methods which can produce spin current:

ohmic injection, tunnel injection, ballistic electron injection, utilizing

the giant Zeeman splitting of a dilutemagnetic semiconductor (DMS)

in a magnetic field, utilizing a ferromagnetic semicondutor (FMS)

as spin calibrator, the optical method, and so on. Ohmic injection

uses a ferromagneticmetal (FM) as electrode to inject spin-polarized

electrons. If the ohmic contact is created in the junction between FM
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and semiconductor, then it can be expected that the spin-polarized

current in the FM can be injected into the semiconductor. However,

the ohmic contact by heavy doping produces scattering of spin

flip, which reduces spin polarization. At T < 10 K, from FM-InAs

ohmic contact, spin-polarized electrons of 4.5% have been obtained

[11]. At room temperature, from the Fe-GaAs contact, spin-polarized

electrons of 2% have been obtained [12].

As for how to control the spin polarization of carriers in a

semiconductor, various semiconductor spintronic devices have been

proposed. The spin field-effect transistor (SFET) proposed by Datta

and Das in 1989 [13] is one such original device, and also the

most famous one. Other important ones include the graphene spin

field-effect transistor, metal-oxide-silicon spin field-effect transistor,

Johnson spin switch, unipolar spin transistor, and so on. Despite

making great efforts, people have not succeeded even with the

original Datta–Das transistor yet, which shows that we have a long

way to go, and there is much work to do.

The spin transistor first proposed by Datta and Das [13] is based

on controlling the spin of an electron. The principle it works on is

shown in Fig. 1.8a.

The principle of the electro-optic modulator shown in Fig. 1.8a

should be introduced first. A polarizer at the input polarizes the light

at 45◦ to the y axis (in the y − z plane), which can be represented as
combination of the z- and y-polarized light:(

1

1

)
(45◦ pol)

=
(
1

0

)
(zpol)

+
(
0

1

)
(y pol)

. (1.35)

Because of the electro-optic material the dielectric constant εzz is

slightly different from εyy . As this light passes through the electro-

optic material, the two polarizations suffer different phase shifts k1L
and k2L, where L is the length of the crystal. The light emerging
from the electro-optic material is represented as ((eik

L
1 )/(eik

L
2 )). The

analyzer at the output lets the light with polarization (1/1) to pass

through, so the output power P0 is given by

P0 ∝
∣∣∣∣(1 1 )

(
eik1L

eik2L

)∣∣∣∣
2

= 4 cos2
(k1 − k2) L

2
. (1.36)

The light output is modulated by a gate voltage that controls the

difference between the phase shifts�θ = (k1 − k2)L.
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Schottky

Figure 1.8 (a) Electro-optic modulator. (b) Spin transistor similar to

electro-optic modulator.

The theorem of the spin transistor is based on the interaction of

the electron orbit and spin, i.e., the Rashba interaction [14],

HR = α

�
(σ × p)y = iα

(
σx

∂

∂z
− σz

∂

∂x

)
, (1.37)

where α is named the Rashba coefficient, generally being 1 −
10 × 10−10 eV · cm, and σx and σz are the Pauli matrices. In

the case of Fig. 1.8b the gate voltage produces a perpendicular

electric field to the two-dimensional electron gas (2DES); i.e., it

produces a nonsymmetric potential with respect to the x − z plane,
which produces a Rashba interaction between the orbit and spin

of electrons, as shown in Eq. 1.37. The Rashba coefficient α is

proportional to the electric field.

In the spin transistor shown in Fig. 1.8b, both ends are FM iron

contacts, which are magnetized in the x direction and correspond
to the polarizer and the analyzer in the electro-optic modulator

of Fig. 1.8a. Electrons injected through the source electrode are

spin-polarized along the x direction, which can be represented as a
linear combination of positive z-polarized and negative z-polarized
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electrons: (
1

1

)
(+x pol)

=
(
1

0

)
(+z pol)

+
(
0

1

)
(−z pol)

. (1.38)

Due to the Rashba term (1.30), in the absence of a magnetic field,

the Rashba term causes the spin-up and spin-down states to split.

If an electron is traveling in the x direction with kx �= 0 and kz = 0,

then considering the Rashba term, the energies of the electron can

be written as

E (+z pol) = �
2k2x1
2m∗ + αkx1,

E (−z pol) = �
2k2x2
2m∗ − αkx2. (1.39)

Electrons with two kinds of spin polarization have the same energy,

and it can be proved that they have different wave vectors. Their

difference is

kx2 − kx1 = 2m∗α
�2

. (1.40)

Therefore there is a differential phase shift for spin-up and spin-

down electrons after they pass through the junction area, and this

shift is shown as

�θ = (kx2 − kx1) L= 2m∗αL
�2

. (1.41)

For InGaAs/InAlAs heterostructures, from the experimentally ob-

served zero-field spin splitting, α was estimated to be ∼3.9−10

eV·cm. To make a phase difference of π , L is about 0.67 μm,

which is less than the mean free path (≥1 μm) in high-mobility

semiconductors at low temperatures. Therefore we can change the

gate voltage, and then change the Rashba coefficient α to modulate

the spin current just as the electric-optic modulator.

1.7 Carbon-Based Electronics [14]

In the last few decades, microelectronics has made dramatic

advances, including the continuous miniaturization or “scaling” of

electronic devices, particularly of the silicon-based large-scale inte-

grated circuit (LSIC). However, this device scaling and performance
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enhancement cannot continue forever. A number of limitations in

the fundamental scientific as well as technological nature of silicon

devices place limits on their ultimate size and performance.

The approaches towards making a breakthrough in the limits are

divided into two types. One is moving away from the traditional

electron transport-based electronics: e.g., the development of

spin-based devices. The other approach maintains the operating

principles of the currently used devices, primarily those of the

field-effect transistor, but replaces a key component of the device,

the conducting channel, with carbon nanomaterials such as one-

dimensional (1D) carbon nanotubes (CNTs) or two-dimensional

(2D) graphene layers, which have superior electric properties. This

book focuses mainly on the first kind of research and introduces

only carbon-based devices in this section. The main problem with

carbon-based devices is that it is difficult to integrate them into

one large-scale circuit as silicon-based devices. Now the single

carbon nanotube field-effect transistor (CNTFET) and graphene

nano-ribbon field-effect transistor (GNRFET) have emerged.

Recently, graphene became the object of intense experimental

studywhen itwas realized that single layers, or a few layers, could be

produced relatively easily bymechanical exfoliation of graphite [15],

or by heating SiC [16]. Figure 1.9a shows the carbon atom structure

in a honeycomb arrangement, and Fig. 1.9b shows the electronic

band structure of this 2D material [14]. From Fig. 1.9b we see that

the linear dispersion at low energies near the� point in the Brillouin

Figure 1.9 (a) Atomic structures of graphene and carbon nanotube. (b)

Electronic structure of graphene.
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zone makes the electrons and holes in graphene mimic relativistic

particles that are described by the Dirac relativistic equation for

particles with spin 1/2. Their dispersion,

E = �vF
√
k2x + k2y , (1.42)

where vF ≈ 106 m/s is the Fermi velocity. The linear dispersion

means that quasi-particles in graphene display properties quite

different from those of conventional semiconductor materials—e.g.,

the anomalous quantum Hall effect and half-integer quantization of

the Hall conductivity. The quantum Hall effect in graphene can be

observed even at room temperature.

1.7.1 Electronic Structure

As in Fig. 1.9a, the CNT is thought of as being formed by the rolling

of a piece of a ribbon of graphene to form a seamless cylinder. The

rolling process forming the nanotube and the resulting nanotube

structure are specified by a pair of integers (n,m) defining the chiral
vector,

Ch = na1 +ma2, (1.43)

where a1 and a2 are the unit vectors of the graphene honeycomb
lattice. The length of Ch describes the circumference of the

nanotube Ch = πdCNT. The periodic boundary conditions around
the circumference of a nanotube require that the component of

the momentum along the circumference, k⊥, be quantized: Chk⊥ =
2πν, where ν is a non-zero integer. This quantization leads to the

formation of metallic and semiconducting nanotubes.

Whereas the infinite 2D graphene is a semi-metal, if the graphene

is a narrow ribbon, there will be a gap in the energy band due to the

quantization of kx or ky . The bandgap is inversely proportional to
the widthW of the GNR, and is approximately given by

Eg ≈ 2π�vF/(3W). (1.44)

The electronic states in GNRs are not degenerate, whereas those

of CNTs are doubly degenerate. This is due to the difference in the

boundary conditions: in a GNR the wavefunction has to vanish at the

edges, whereas in a CNT thewavefunction is periodic in the direction

of the circumference.
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1.7.2 Electric Properties

The 1D nature of the electronic states of CNTs leads to a new type of

quantized resistance related to its contacts with three-dimensional

(3D)macroscopic objects such asmetal electrodes. The confinement

of the electrons in the CNT around its circumference produces a

small number of discrete states (modes) that overlap the continuous

states of themetal electrodes. This mismatch of the number of states

that can transport the current in the CNTs and the electrodes leads

to a quantized contact resistance, RQ. The resistance is determined
by the number of modes, M, in the CNT that have energies lying
between the Fermi levels of the electrodes:

RQ = h
2e2M

. (1.45)

For a metal CNT, M = 2, so that RQ = h/4e2 = 6.45 k�.

Excluding this quantized contact resistance and other contact

resistances such as those caused by the Schottky barriers, the

transport in the CNT is ballistic; i.e., no carrier scattering or energy

dissipation takes place in the body of the CNT. The length over which

a CNT behaves as a ballistic conductor depends on its structure

perfection, temperature, and the size of the driving electric field. In

general, ballistic transport can be achieved over lengths ≤100 nm.
Even in long CNTs, or at high bias, many scattering collisions can

take place. The mobility in CNTs can still be very high, as much as

1000 times higher than in bulk silicon.

Due to the 1D nature of the CNT, small-angle scattering is

forbidden. There will only be backscattering, so that the elastic

scattering in CNTs is weak, and the inelastic scattering determines

their transport properties. At low temperature and low bias, only

low-energy acoustic phonons can scatter the electrons, which

results in an inverse temperature dependence of the carriermobility

in semiconducting CNTs, while in bulkmaterials the acoustic phonon

scattering leads typically to a ∼1/T 5 temperature dependence of

mobility due to the small-angle scattering. Thus the CNT has very

high mobility even at room temperature.

In addition to the low-energy acoustic phonons, electron

scattering by the optical phonon of the radial breathing mode

(RBM) is important in the low-bias regime. The RBM phonon energy
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is inversely proportional to the tube diameter, and its energy is

comparable to the thermal energy at room temperature for tubes

in the diameter range of 1.5–2.0 nm. For electrons to emit an optical

phonon, their energy must be larger than the optical phonon energy.

This can be achieved only under a very high bias of a few V cm−1.
Such scattering processes were first observed in metallic tubes, in

which the current was found to saturate at about 25 μA.

As the carrier energy increases further, other inelastic process

can take place, in particular impact excitation. The high-energy

electron can excite an electron–hole pair and lose its energy. The

electron–hole interaction is very strong in CNTs, which leads to the

formation of excitons with large binding energy of a few tenths of

an electronvolt. The calculations suggest that the impact excitation

processes in CNTs aremuchmore efficient than in conventional bulk

semiconductors—about four orders of magnitudes higher.

Figure 1.10 shows the calculated scattering probabilities, 1/τ , for

a (19,0) nanotube as a function of the energy higher than that of the

first subband [14], where �1, �2, �3, and �4 denote the energies

of subsequent subbands, respectively. The peaks labeled by A-Ph

are the longitudinal acoustic ones; RBM, the radial breathing mode;

O-Ph, the optical phonon; and I-Exc, the impact excitation exciton

scatterings. The various curves represent angular momentum bands

with different circumferences.

Figure 1.10 Calculated scattering probabilities, 1/τ , for a (19,0) nanotube

as a function of the energy higher than that of the first subband.
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1.7.3 Carbon Nanotube Field-Effect Transistor

The first carbon nanotube field-effect transistors (CNTFETs) were

reported in 1998 [17, 18]. In a CNTFET one (or more) CNT plays

the role of the channel. Figure 1.11 shows two different CNTFET

structures: a top-gate CNTFET and an array of CNTFETs with

wrap-around gates. The CNT as an FET channel has a number of

advantages. Its small diameter allows optimum coupling between

the gate and the channel. This strong coupling makes the CNT the

ultimate thin-body semiconductor system and allows the device to

be made shorter while avoiding the dreaded “short-channel effects.”

All bonds in the CNT are satisfied and the surface is smooth, so that

the scattering by surface and roughness is absent. The key advantage

is the low scattering in the CNT and the high mobility of the FET

channel.

In MOSFETs, in addition to the channel, the source, drain, and

gate are all made of heavily doped Si and the contacts are ohmic.

This is not generally true for the CNT–metal contacts used in CNT

Figure 1.11 Schematic of two different CNTFET structures.
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electronics. Metals like Au, Ti, Pd, and Al are used for the source

and drain electrodes. The different work functions of the metal and

the CNT lead to transfer of charge at their interface. The resulting

interface dipole produces an energy barrier, the so-called Schottky

barrier. The Schottky barrier height depends on their respective

work function (�), the CNT bandgap, and the details of chemical

bonding at the interface.

There are two Schottky barriers in an FET, one at the source

and the other at the drain, as schematically shown in the insets of

Fig. 1.12. Generally, it transports only one type of carrier: electrons

or holes. From the left inset of Fig. 1.12 we see that if the electrode

is a metal with high work function, such as Pd, and the valence band

of the CNT is close to the metal Fermi level EF, a nearly barrierless
contact for holes will be formed. But electron injection at the other

end would experience the maximum barrier of Eg, so that it is a
unipolar device, a p-type CNTFET operation. If the electrode is a

low work function metal such as Al, then it allows the electron

transport and forbids the hole transport, as shown in the right inset

of Fig. 1.12. Figure 1.12 shows the source–drain current as a function

Figure 1.12 The source–drain current as a function of the gate voltage for

different drain biases, increasing from 0.1 to −1.1 V in −0.2 V steps. The
insets are the contact potential between the electrodes and the CNT.
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of the gate voltage for different drain biases, increasing from 0.1

to 1.1 V in −0.2 V steps. From the figure we see that in the gate

voltage variation range of 1 eV, the current can vary 5 ∼ 6 orders

of magnitudes.

In general, the key advantage of CNTFETs over Si MOSFETs in

logic applications is their much low capacitance of ∼10 aF (for a
dCNT = 1 nm, L = 10 nm, tox = 5 nm device) and their somewhat

lower operating voltage. Thus, the CNTFETs have lower switching

energy per logic transition. The dynamic switching energy of a

device is given by 0.5(Cdev + Cwire)V 2, where Cdev and Cwire are the
device andwire capacitance contributions, respectively. Tominimize

the switching energy, minimum-sized devices and interconnects

should be used, as well as minimum supply voltage. The CNTFETs

have the Ion/Iout ratios in the range of 105 ∼ 107. Then the CNT

can have a considerable advantage, of up to a factor of 6 over the

convenient MOSFET.

More complex structures such as ring oscillators have been

fabricated [19]. To build these circuits the complementary MOS

architecture is preferred, which involves pairs of n- and p-type

transistors. CNTs, in which the valence and conduction bands are

mirror images of each other (equal effective masses for electrons

and holes), are ideally suited for such application. The two types

(p- and n-) of FETs can bemade by doping the CNTs, but it is difficult

to control doping in nanoscale devices. The ambipolar behavior of an

undoped CNT can be successfully utilized to implement the CMOS

architecture. For a given undoped CNTFET with a fixed energy gap

and oxide thickness, tuning the work function of the gate metal is

the only way. When the work functions are properly selected, the

two characteristics can be relatively shifted toward each other, and

this leads to a distinguishable on-state in one and an off-state in the

other.

Figure 1.13 shows the scanning electron microscope image of a

CNT ring oscillator circuit, and the frequency response in different

supply voltages [14]. It is a ring oscillator using Pd gates for p-FETs

and Al gates for n-FETs. The frequency response shows a strong

dependence on the supply voltage. A 72 MHz frequency is measured

for a supply voltage of about 1 V.
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Figure 1.13 Scanning electron microscope image of a CNT ring oscillator

circuit and the frequency response in different supply voltages.

1.7.4 Graphene Ribbon Transistor

The sub-10 nm width graphene ribbon field-effect transistor

(GNRFET) has been fabricated [20]. The schematic structure of the

GNRFET is shown in Fig. 1.14a, and the AFM images of two GNRs

are shown in Fig. 1.14b,c. The height of the GNR is 1.5 nm, which is

assigned as two-layer GNRs. The Ti-As is used as contact electrodes

(source and drain) to minimize the Schottky barrier for holes in a

p-type transistor. The GNRFET is placed on a 10 nm thick SiO2 layer,

and p++ Si is used as backgate. The widths of the GNRs in Figs. 1.13b
and 1.14c are 5 and 60 nm, respectively.

Figure 1.15 shows the current–voltage characteristics for the

w ≈ 2 nm, L = 236 nm GNR device shown in Fig. 1.14b [20].

Figure 1.15a is current vs. gate voltage (Ids ∼ Vgs) under various Vds,
and the dashed lines are the turn-on and cut-off states of the current

I = 3.2 μA and 10−12 A, respectively. Thus, at room temperature,

when Vds = 0.5 V, the ratio of the turn-on and cut-off currents

Ion/Ioff > 106. Figure 1.15b is (Ids ∼ Vds) under various Vgs.
From the figure, the subthreshold slope, ∼210 mV/decade, and

transconductance,∼1.8 μS, are obtained.
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Figure 1.14 (a) Schematic structure of the GNRFET. (b, c) The AFM images

of two GNRs.

Comparing experiments with theoretical modeling, it was found

that the narrow device (Fig. 1.15) delivered about 21% of the

ballistic current at Vds = 1 V. The highest proportion that can be

reached is 38%. The reason is that the optical phonon (OP) or zone

Figure 1.15 Transistor performance of the GNRFET shown in Fig. 1.14b.

(a) (Ids∼ Vgs) under various Vds. (b) (Ids∼ Vds) under various Vgs.
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boundary phonon (ZBP) emission needs higher energy (∼0.2 eV). A
carrier backscattered by emitting an OP/ZBP does not have enough

energy to overcome the barrier near the source end of the channel,

so that the OP/ZBP has a small effect on the current in GNRFETs. The

wide GNRFETs (Fig. 1.14c) deliver higher current density of∼2000–
3000 μA/μm.

1.7.5 Future of Carbon-Based Devices

Carbon nanotubes are ideal 1D model systems to study electrical

and optical phenomena on the nanometre scale. Some new states

of condensed matter such as the Luttinger–Tomonaga liquid can be

studied. Graphene has exhibited a number of unique phenomena

such as anomalous quantum Hall effect, Klein paradox, and so forth.

New information on the physics of the nanoscale is expected to be

found through the study of nanotubes and graphene. At the same

time, the nanotechnology to handle and process nanomaterials has

been developed. Besides electronic switching, emission/detection,

and sensitive devices, nanotubes offer the potential of very fast

(THz) transistors, ultimately scaled logic devices, and simpler and

cheaper self-assembly-based fabrication. The excellent electrical

conduction of metallic CNTs may eventually allow the develop-

ment of electronic systems, where both active and interconnects

are based on the same material: CNTs. Further integration to

include optics could lead to a unified electronic-optoelectronic

technology.

The large electronic and spin coherence lengths of bothmaterials

could lead to quantum interference and spintronic devices. Spin-

polarized injection can be achieved using manganite electrodes.

The weak spin-orbit coupling and short transit times of carriers in

nanotubes tend to preserve the spin polarization. Spin transport

and spin precession over micrometer-scale distances have been

demonstrated in single graphene sheets at room temperature.

Single-wall carbon nanotubes (SWNTs) are potential candidates

for application in electronic devices. The most severe bottleneck

is to grow uniform, single type and scale of SWNTs, because the

as-synthesized SWNTs are a mixture of semiconducting (SC) and

metallic (M) tubes. Recently, the separation of SC and M tubes
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Figure 1.16 Source–drain current versus gate voltage for two functional-

ized SWNT FETs at Vds = −0.1 V and−0.01 V, respectively.

has achieved some advances. The metallic M-SWNT cab be etched

from the mixture through a controlled cycloaddition reaction with

fluorinated polyolefins. The as-grown commercial nanotube mats

are functionalized into a network of tubes that can then be dispersed

in an organic solvent [21]. The resulting “denser” semiconducting

inks, when coated as a percolating array, lead to high-mobility

devices without requiring further nanotube separation.

Figure 1.16 shows the source–drain current versus gate voltage

for two functionalized SWNT FETs [21]. The field-effect mobilities

deduced from the linear regime are 10 cm2/V·s and 104 cm2/V·s
with on/off ratio in excess of 105.

Along with the progressive improvement in the rapidly evolving

technology of CNTs and graphene, the prospects of carbon-based

devices are very bright.
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Chapter 2

Non-equilibrium Transport

In devices scaling larger than 100 nm the transport is described by

the classical Boltzmann equation,

∂ f
∂t

+v · ∂ f
∂r

+ eE
�

· ∂ f
∂k

=
∫
dk′ [ f (k′)W (

k′, k
) − f (k)W

(
k, k′)],
(2.1)

where f (k, r, t) is the single-particle distribution function at time t,
momentum space k, and real space r. For semiconductors, the group
velocity of the carrier is given by

v = 1

�

∂ε (k)
∂k

. (2.2)

When the scale of the devices becomes smaller, the electron

transport will be nonlinear and nonstatic, as shown in Fig. 1.1. The

distribution function is a derivate of the equilibrium distribution

farther and largely varies with space and time. In some cases,

it is recognized that the concepts of the Boltzmann equation

and the distribution function are still effective, whose three main

assumptions, that is, effective mass, energy band model, and

electron collisions at space and time are instantaneous, are all

tenable. But the Boltzmann equation cannot be solved by the

ordinary perturbation method, while it can be by other methods, for

example, the Monte Carlo method.
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2.1 Monte Carlo Method

The Monte Carlo method utilizes the numerical method to simulate

the movement of one or many electrons in the applied fields and

scattering processes [1]. The macrophysical quantities, for instance,

drift velocity, diffusion coefficient, and energy, are the assemble

averages of corresponding physical quantities. If the system is a

steady, space homogeneous distributed system, it is enough to

simulate the movement of an electron. The statistical distribution of

a given subsystem does not depend on the initial state of any other

small part of the same system, since over a sufficiently long time the

effect of this initial state will be entirely outweighed by the effect of

themuch larger remaining parts of the system. It is also independent

of the initial state of the particular small part considered, since in

time this part passes through all possible states, any of which can

be taken as the initial state. It means that the average of a variable

φ over the assemble equals the average of that variable over a

sufficiently long time,

φ̄ =
∫

φ (k) f (k) dk∫
f (k) dk

=
∫ T
0

φ [k (t)] dt
T

+ O
(
T −1/2) , (2.3)

where O(T −1/2) represents the fluctuation proportional to T −1/2.
When T is long enough, the statistical error can be neglected and

the simulation reaches convergence.

If the system is not steady, or inhomogeneous, then the

movement of many particles (assemble) should be studied. At any

time the transport properties of the assemble can be obtained

by the average of the simulation of these particles. This Monte

Carlo simulation of many particles is generally used to simulate the

various instantaneous properties of a homogeneous system in the

varied electric field. In the simulation of many particles the initial

distribution of particles should be given and the instantaneous

characteristics of the transport property actually depend on the

initial distribution. This method is called a many-particle Monte

Carlo simulation.

The free flight of electrons at intervals of two collisions satisfies

Eq. 2.2 and

�
dk
dt

= −eE. (2.4)
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Assume that the scattering probability of electrons is λ(t), there are
N0 particles have the same initial state and the number of particles
that have not collided at time t is denoted by N(t). Then the number
of first collisions between the time t and t+ dt is−dN(t), and

−dN (t) = N (t) λ (t) dt. (2.5)

Solving Eq. 2.5 we obtain

N (t)
N0

= exp

[
−
∫ t

0

λ
(
t′
)
dt′

]
. (2.6)

Equation 2.6 is the probability of particles that have not collided at

time t. Hence the probability of particles that have collided at time t
is

P (t) = 1− exp

[
−
∫ t

0

λ
(
t′
)
dt′

]

=
∫ t

0

λ
(
t′
)
exp

[
−
∫ t′

0

λ
(
t′′
)
dt′′

]
dt′

=
∫ t

0

f
(
t′
)
dt′, (2.7)

where

f (t) = λ (t) exp
[
−
∫ t

0

λ
(
t′
)
dt′

]
, (2.8)

representing the collision distribution function at time t.
The Monte Carlo method is semi-classical, which simulates the

random movement of a single or many particles. On this basis,

the needed properties are obtained through a proper statistical

average. In the semi-classical picture, the microscopic movement

of charged particles can be looked as a series of free flight and

stochastic scatterings. The Monte Carlo method deals with the

stochastic events related to scattering by a series of stochastic

numbers between 0 and 1. On the other hand, for a given electric

field, initial state, and free flight time, the whole flight process is

completely determined.

From Eq. 2.7 the free flight time tf can be obtained with the
stochastic number rt through the integration equation

rt = 1− exp

[
−
∫ tf

0

λ
(
t′
)
dt′

]
. (2.9)
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From Eq. 2.9 we obtain∫ tf

0

λ (t) dt = − ln (1− rt) . (2.10)

Actually the solution of the integration equation (Eq. 2.10) for such

a scattering event is difficult. Rees [2] introduced the concept of

self-scattering, making the problem simpler. Assume that the total

scattering probability �, including the self-scattering, is a constant,

independent of energy,

� = λ (E )+ λs (E ) , (2.11)

where λs(E ) is the self-scattering probability. Inserting � into

Eq. 2.10 instead of λ(t), we obtain

tf = − 1

�
ln (1− rt) . (2.12)

The flight time tf can be easily calculated from the stochastic

number rt.
Suppose that the initial state of each free flight is ka. Then from

the movement Eqs. 2.2 and 2.4 we can determine the momentum

kb and energy of the final state. With this method the scattering
probability of the final state by various scattering mechanisms

λi(kb) can be calculated. Given a stochastic number r , if
j∑

i=1
λi (kb) < r� <

j+1∑
i=1
λi (kb), (2.13)

then we think that the collision of electrons is caused by the j -th
scattering mechanism, whose scattering probability is λj(kb). From
the momentum kb and energy of the final state and λj(kb), we can
determine the electron energy and momentum of the initial state of

the next free flight.

If the Eq. 2.13 is not satisfied and

N∑
i=1
λi (kb) < r� < �, (2.14)

then we think that the electron undergoes a self-scattering and the

electron energy and momentum of the next flight’s initial state is

the same as those of the above flight’s final state. Repeating the

above described process, we can obtain the movement course of a
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single electron in the long period of time or the situations at various

times and positions of assemble electrons.

The physical quantity in the static state is given by Eq. 2.3, in the

Monte Carlo simulation,

φ̄ = 1

T

∑
i

∫ ti

0

φ
[
k
(
t′
)]
dt′, (2.15)

where ti is the flight time of each flight.
The distribution function can be calculated by a similar method.

At the beginning of the calculation, we prepare a k-space mesh and
in the process of simulation record the duration of the electron in

eachmesh lattice. If the time is long enough, the normalized duration

time represents the distribution function of electrons.

2.2 Time-Related Transport Behaviors in
Homogeneous Semiconductors

2.2.1 Drift Diffusion Model

The Monte Carlo simulation needs the knowledge of the relaxation

mechanisms, of energy band shapes, and of the coupling constants

and requires rather long computation times. Moreover, the transient

response is scarcely given. Nougier et al. [3] developed a simple

model based on the relaxation time approximation to study the

transient response in semiconductors and compared the results

with the numerically computed curves.

The dynamical equations, in the relaxation approximation, are

balanced equations related to the drift velocity v̄(t) and to the

average energy ε̄(t) of the carriers. One then defines the momentum
and energy relaxation time τp and τε , which are the functions of

energy. The balanced equations are

m∂ v̄ (t)
∂t

= qE − mv̄ (t)
τp (ε̄)

and
∂ε̄ (t)

∂t
= qE v̄ (t)− ε̄ (t)− ε0

τε (ε̄)
, (2.16)

where E is the electric field, q is the electron charge, and ε0 is the

average energy in thermal equilibrium.
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In the steady-state condition, equating d (mv̄)/dt and dε̄/dt to
zero in Eq. 2.16 gives

τp (εs) = m∗vs
qE

, τε (εs) = εs − ε0

qEvs
(2.17)

where vs and εs are the drift velocity and energy in the steady-state

condition, which are all functions of the electric field or the energy

ε̄. Inserting Eq. 2.17 into Eq. 2.16 gives

d (mv̄)
dt

= q
[
E − v̄

vs (ε̄)
Es (ε̄)

]
= q

[
E − v̄

μs (ε̄)

]
and

dε̄
dt

= q [E v̄ − Es (ε̄) vs (ε̄)] = q
[
E v̄ − μs (ε̄) E 2s (ε̄)

]
, (2.18)

where μs (ε̄) = vs (ε̄)/Es (ε̄) is the steady-state mobility.
Figure 2.1 shows a comparison between the transient energy

ε̄ (t) in p-Ge deduced from the solution of the Boltzmann equation

by an iterative method and from the relaxation time approximation.

From the figure we see that the electron energies increase with

time and the electric field, and approach saturation, but have no

overshoot. The discrepancy between the results of the two methods

is less than 10% until at least 20 kV/cm.

2.2.2 Transport in a Strong Electric Field

The calculated τp and τε as functions of the difference between the

average and thermal energies for the case of electrons in Si and GaAs

at 293 K are shown in Figs. 2.2 and 2.3, respectively [4]. From the

figure we see that in the hot-electron regime the relaxation times

are not constants, which depend on the electron energy. For GaAs,

τp and τε increase first, then decrease with ε − ε0 increasing, and

for Si, τp decreases and τε increases with ε − ε0. The momentum

relaxation times are larger than the energy relaxation times by 1

order of magnitude.

The balanced equations Eq. 2.18 have already been used

successfully to determine the dependence on time of the drift

velocity and the average energy; when a given time configuration of

the electric field is applied to the semiconductor, a good agreement

with more exact calculations has been observed. Figure 2.4 shows
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Figure 2.1 Comparison between the transient energy ε̄ (t) in p-Ge deduced
from the solution of the Boltzmann equation by an iterative method and

from the relaxation time approximation: (a) at 300 K and (b) at 77 K.

a comparison of the draft velocities as functions of time when a

step of the electric field is applied between the results obtained

with the relaxation time description (dots) and Monte Carlo or

the iterative method (curves) [4]. It can be seen that for the five

semiconductors studied, the results obtained by both methods are

in good agreement. Consequently, owing to its simplicity, the balance
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Figure 2.2 The momentum relaxation time as a function of the difference

between the average and thermal energies for the case of electrons in Si and

GaAs at 293 K.

Figure 2.3 The energy relaxation time as a function of the difference

between the average and thermal energies for the case of electrons in Si and

GaAs at 293 K.



April 4, 2025 15:45 JSP Book - 9in x 6in 02-QWM-02

Time-Related Transport Behaviors in Homogeneous Semiconductors 47

Figure 2.4 Comparison of the draft velocities as functions of time when

a step of the electric field is applied between the results obtained with

the relaxation time description (dots) and the Monte Carlo or the iterative

method (curves).

equation method with the relaxation time approximation is very

useful for the study of time-dependent phenomena.

From Fig. 2.4 we see that in a time of less than 1 ps the draft

velocities rise rapidly, reaching 107 ≈ 108 cm/s. Then due to the

momentum and energy relaxations, whose relaxation times are

0.1 ≈ 1 ps, the draft velocities decrease gradually and approach

the steady-state values. The rapid increase of the draft velocity in a

strong electric field is called a velocity overshoot. It is because at the

initial stage of applying an electric field the electrons are accelerated

suddenly by the strong electric field and do not have enough time to

be scattered, so they can reach a very high draft velocity. Transport at

this stage is called ballistic transport. The scattering plays a rolewith

passage of time, which compensates the accelerating action of the

electric field and makes the draft velocity approach a steady-state

value.

In a transistor the size of the base region can be reduced to

100 nm or less without allowing the increase of the base resistance.

In such a thin-base-region transistor the length of the electron-

traveling region is very short, the transport of electrons could be

near ballistic by a hot-electron injection structure, and then the

working frequency will be very high. Hence such a transistor can

be used to design a high-frequency transistor. Figure 2.5 shows a

model of n-p-n heterojunction bipolar transistors of types (A), (B),

and (C) [5]. The material in the n+-emitter and p+-base regions is
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Figure 2.5 Model of n-p-n heterojunction bipolar transistors of types (A),

(B), and (C).

AlxGa1−xAs. The compositional grading x is linear and starts with
x = 0.3 at 500 Å inside the emitter from the emitter-base junction

and endswith x = 0 at the base-collector junction (types (A) and (C))

or at the emitter-base junction (type (B)). The grading for transistors

of types (A) and (C) produces a quasi-electric field of about 20

kV/cm in the base region.

Figure 2.6 shows the profile of the mean electron velocity in a

type (A) transistor (solid curve) and a type (B) transistor (dashed

curve). The mean electron velocity in (A) reaches as high as 4.5 ×
107 cm/s at base-collector junction. This is because electrons in the

graded base region travel more or less ballistically as a result of

the accelerating force of the quasi-electric field. The mean electron

velocity in (B) is as low as 5 × 106 cm/s (notice that the ordinates

in Fig. 2.6 are different for (A) and (B)) in the substantial part of the

base region, suggesting that the electron motion in the nongraded

base region is diffusion dominated.

Figure 2.6 Profile of the mean electron velocity in a type (A) transistor

(solid curve) and a type (B) transistor (dashed curve).
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Figure 2.7 Current-gain cutoff frequencies fT of transistors of types (A),
(B), and (C).

Figure 2.7 shows the current-gain cutoff frequencies fT of

transistors of types (A), (B), and (C). It is seen in Fig. 2.7 that the

fT of a type (A) transistor shows an extremely high maximum value

of about 150 GHz at Ic = 1.4 mA/μm2. The maximum fT of a type
(B) transistor reaches only 58 GHz at Ic = 0.6 mA/μm2. This is

due to a large base capacitance caused by the diffusion-dominated

electron transport in the base region. The maximum fT of a type (C)
transistor reaches only 80 GHz at Ic = 0.5 mA/μm2, smaller than

that of type (A). The decrease of fT is due to the appearance of the
base-push-out effect.

2.2.3 Application of a Balance Equation

From the above discussion we see that the results obtained by

the relaxation time description (the balance equation) and the

Monte Carlo or the iterative method are in good agreement. Due

to its simplicity, the balance equation method with the relaxation

time approximation is very useful for the study of time-dependent

phenomena. The balance equation can be used to study the

transport properties not only in the strong electric field case but also

in the weak electric field case. In the weak electric field case, the

momentum and energy relaxation times can be taken as constants;

the calculation will be very simple. In the following we give an
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example: the terahertz (THz)-photocurrent resonances in miniband

superlattices.

When a laser beam from the free electron laser (FEL) irradiates

the GaAs/Al0.3Ga0.7As superlattice in the differential conductance

(DC) bias, giving pulses of intense THz radiation with a pulse

length of several microseconds. The GaAs/Al0.3Ga0.7As superlattice

consists of 40 periods of an 8 nm wide GaAs well and 2 nm thick

AlGaAs barrier. The width of the miniband is � = 22 meV, and the

electron density is 3 × 1015 cm−3. The measured DC currents as
functions of the DC bias for different laser powers are shown in

Fig. 2.8 [6]. The FEL frequency was fixed to 0.6 THz (Fig. 2.8a) and

1.5 THz (Fig. 2.8b). The curves in the figure are shown for increasing

FEL intensity from up to down. From Fig. 2.8 we see that at low

intensities an additional peak emerges in the negative differential

conductance (NDC) region. When the intensity is increased further,

the first peak starts to decrease and a second peak at about twice the

voltage of the first peak is observed due to a two-photon resonance.

Figure 2.8 DC current-voltage for increasing the FEL intensity (the curves

are shifted downward for an increasing laser intensity). The FEL frequency

was fixed to 0.6 THz (a) and 1.5 THz (b).
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The position of the peaks does not change with the intensity of the

FEL. The authors attribute the first additional peak to a resonance

of the external laser field where the Bloch frequency ωB = ω. In

Fig. 2.8b the laser frequency is 1.5 THz and the peaks are shifted to

higher voltages and are much more pronounced. However, only the

fundamental and the second harmonics are observed.

The Bloch oscillation is a special phenomenon in the longitudinal

transport of the superlattice. In the intense electric field F the

electron moves periodically in the one-dimensional (1D) Brillouin

zone (BZ) of k space, −π/L ≤ k ≤ π/L, where L is the period of
the superlattice. The oscillation is called the Bloch oscillation, whose

oscillation frequency is ωB = eFL/h, proportional to the DC voltage
and the superlattice period.

We use the balanced equations (Eq. 2.16) to study the miniband

transport of superlattices under a direct bias and an alternating elec-

tric field and compare the theoretical results with the experimental

results [7]. We take the relaxation time τv and τε as constant, and the

balanced equations are rewritten as

dv
dt

= eF (t)
m∗ − v

τv

and

dε
dt

= eF (t) v − ε − ε0

τε

, (2.19)

where m∗ is the effective mass along the electron draft direction
(longitudinal direction), which depends on the energy ε, and

m∗ = m∗
0

1− 2ε/�
and m∗

0 = 2�2

�d2
, (2.20)

where the origin of energy is at the conduction band bottom, � is

the width of the miniband, and d is the period of the superlattice.
In calculation we take the experimental parameters � = 23 meV,

d = 10 nm, ε0 = 0.05�, τv = 1.3 ps, τε = 6.5 ps, and the frequency of

the alternating field ν = 0.6 THz. The electric field is applied to the

superlattice from t = 0,

F (t) = F0 + F1 cosωt. (2.21)

The balanced equations (2.19) are solved by a numerical method,

and the velocity v(t) and energy ε(t) are obtained as functions of t.
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Figure 2.9 The v(t) and ε(t) for F0 = 0.5 and F1 = 1 (solid curve) and

F0 = 0.5 and F1 = −1 (dashed curve).

Figure 2.9 shows the v(t) and ε(t) for F0 = 0.5 and F1 = 1 (solid

curve) and F0 = 0.5 and F1 = −1 (dashed curve). The unit of

the electric field is 1000 V/cm in the following. From Fig. 2.9 we

see that after 10 periods of the external alternating field the v(t)
and ε(t) reach steady states. At the initial stage the velocity and
energy of electrons all reach very large values, which means there

are “overshoot” and “overhot” behaviors, and the electrons do not

have enough time to collide. The v(t) and ε(t) for F0 = 0.5 and

F1 = −1 are similar to those for F0 = 0.5 and F1 = 1, only different

from a phase π .

In the steady state the v(t) is a periodic function with a period
T = 2π/ω, which consists of DC term and harmonic terms of ω,

v (t) = v0 +
∑
n=1

vn cos (nωt + ϕn). (2.22)

Here for definition we assume that all vn (except v0) are positive. By
Fourier transform, we obtained all vn and cosϕn. If cosϕ1 <0, that

means that the first harmonic current is in the opposite phase with

the driven alternating field and the energy will be transferred to the

alternating field, that is, the alternating field will be amplified.

The DC current is given by j0 = ev0n, where n is the electron
concentration, which is taken as 1015 cm−3 in the following. The DC
currents as functions of F0 for different F1 are shown in Fig. 2.10
[7]. From Fig. 2.10 we see that the global characteristic is in

good agreement with the experimental results [7]: Fig. 2.8. The
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Figure 2.10 DC currents as functions of F0 for different F1.

DC currents show resonance peaks in the fields F0 corresponding
to the Bloch frequency ωB = ω, 2ω, 3ω, . . . . The resonance peaks

in the DC current grow with increasing laser intensity (F1), and
simultaneously the current at the low bias side decreases.

The harmonic components of current j0, j1, j2, and j3 as

functions of F0 for F1 = 2 are shown in Fig. 2.11 [7]. From Fig. 2.11

Figure 2.11 Harmonic components of current j0, j1, j2, and j3 as functions
of F0 for F1 = 2.
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Figure 2.12 Cosines of the phase angle for each component cosϕn as

functions of F0 for F1 = 2.

we see that they also have resonance peaks at the resonance

frequencies ωB = ω, 2ω, and 3ω. At ωB = ω, the values of j1 and j2
exceed that of j0. The cosines of the phase angle for each component
cos φn as functions of F0 for F1 = 2 are shown in Fig. 2.12. From

Fig. 2.12 we see that cos φn oscillates with the DC field F0 and
becomes negative at the field range corresponding to the Bloch

frequency ωB between ω and 2ω. Cos φ1 is negative for ωB > ω, and

with resonance peaks at ωB = 2ω, 3ω, . . . .

2.2.4 Device Design Considering a Strong Field Transport

When we want to design high-speed devices, the main goal is to

find the best way of making the electron go as fast as possible along

the active region of submicron devices. Generally for a given active

region of width d, the problem is to find the optimum electric field

configuration and the doping concentration that should characterize

the component.

The simplest way to solve this problem is to study the motion of

an ensemble of electrons in a uniform bulk semiconductor to a time

configuration of the electric field. From the variation of the average

drift velocity v(t), the average distance d traveled by the carrier over
a time tand, consequently, the average velocity over a distance d can
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Figure 2.13 Average velocity and average energy of electron in GaAs. The

impurity concentration ND = 0 and T = 77 K subjected to a time-electric-

field step as functions of time. (a) At t = 0 an electric-field step �E =
7 kV/cm is applied; (b) an electric field pulse �E = 70 kV/cm with the

duration�t = 0.06 ps is applied.

be obtained from the following equations:

d =
∫ T

0

v (t) dt, v (d) = d
T
. (2.23)

Figure 2.13 shows the average velocity and average energy of

electrons in GaAs. The impurity concentration ND = 0 and T = 77 K

are subjected to a time-electric-field step as functions of time [8].

The results are obtained by the Monte Carlo simulation. (a) At t = 0
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Figure 2.14 Electron average velocities v as functions of traveling distance
d: (a) overshoot case and (b) ballistic case.

an electric-field step �E = 7 kV/cm is applied; (b) an electric field

pulse �E = 70 kV/cm with the duration �t = 0.06 ps is applied,

shown by dashed curves in figures. The former case is called an

overshoot, and the latter case is called ballistic by the authors.

When the electron energy is smaller than the polar optical

phonon energy (case 1) or smaller than the intervalley energy of

� and L valleys �ε�L (case 2), the scattering probability is small.

Thus, it is possible to obtain very high instantaneous drift velocities

3.5× 107 and 108 cm/s, respectively, in the two cases.

The distance and average velocity of electrons in the time period

T can be calculated by Eq. 2.23. For the two cases the calculated v(d)
curves are shown in Fig. 2.14. From the figure we see that in the case

of an overshoot the maximum average velocity is only half of that

in the ballistic case, which occurs at d = 375 nm. At this distance

the average energy reaches the polar optical phonon energy. In the

ballistic case, the average velocity decreases monotonously with the
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distance, and at d = 0 it has the maximum value 7.3 × 107 cm/s.

This is because after the electric field pulse the electron does not

have energy supplement and the farthest distance is about 200 nm.

2.3 Transport Related to Space

Because the scale of the device becomes smaller and smaller, the

role of the velocity overshoot in FET operation is still not entirely

clear. The reason is multifold. For one, the overshoot, which may

be important in FETs, arises not from the time dependence directly

but from the fact that electrons travel across the device in small

amounts of time. Transport at each point may, therefore, be time

independent. It is the rapid variation (the gradients) of the electric

field that results in a velocity overshoot and therefore in increased

velocities in FETs even if the transistor is continuously on. Since the

spatial gradients of the field are so important, the devices must be

very short to exhibit such high gradients.

A high-electron-mobility transistor (HEMT) is shown in Fig. 2.15

[9]. The wider-gap AlGaAs is grown on top of GaAs and is highly

doped. The electrons, however, leave their donors and transfer to the

lower-gap GaAs, leaving the AlGaAs virtually depleted and creating a

high-mobility channel in the GaAs, which is almost free of impurities

(modulation doping effect). Electrons move in the high-mobility

Figure 2.15 Schematic representation of the AlGaAs/GaAs HEMT.
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channel, whose length is smaller than 1 μm; hence the electron

transport is related to the space.

Here the Monte Carlo simulation needs simultaneously to study

the electron motion orbits in the real and momentum spaces. And

because the electric field at each point of space is not only decided

by the applied electric field but also related to the charge density

at that point, the complete self-consistent Monte Carlo simulation

should include the solutions of Poisson’s equation.

The average velocities of electrons in GaAs after injection in the

〈100〉 direction at k values are shown in Fig. 2.16 [9]. Figure 2.16a is
for a given electric field in the base (10 kV/cm), and in Fig. 2.16b

the electric field is varied and the injection energy (k value) is
fixed. The injected electron is accelerated by a constant electric field

and then decelerated due to scattering. Curves a–g in Fig. 2.16a

are for injection energies below �E�L and only curve h is for an

energy slightly above �E�L. One can see that within the � valley

average near-ballistic velocities of up to 8 × 107 cm/s are possible

over distances close to 1000 Å. But if the electrons transfer to

Figure 2.16 Average velocities of electrons in GaAs after injection in the

〈100〉 direction at k values. (a) Various injection energies for a given electric
field in the base (10 kV/cm); (b) the electric field is varied and the injection

energy (k value) is fixed.
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the L valley, the velocity decreases quickly due to the intervalley

scattering, as shown by curve h; the ballistic distance decreases to

a few hundred angstroms. Figure 2.16b shows the field dependence

of the velocity. The higher fields accelerate the electrons above�E�L

and electron transfer, thus decreasing the velocity. When the electric

field is 10 kV/cm, the scattering is compensated by the acceleration

of the electric field. The ballistic velocity can be kept to a longer

distance. Therefore, the near-ballistic range should extend from a

few hundred to thousand angstrom distances depending on the

injection energy and the electric field.

Generally, the range in which the electron velocity increases from

0 to the maximum in Fig. 2.16 is called the ballistic range and the

range after the maximum to the point of reaching the steady-state

velocity is called the overshoot range. In a moderate electric field

the steady-state velocity is smaller than 107 cm/s. The separation of

the ballistic range and the overshoot range is not always as clear as

indicated above, and the ballistic range does not always extend to the

point of velocity maximum. Especially when the electron injection

energy is small (or zero) the velocity maximum is reached only after

4000 Å for an electric field of 10 kV/cm, while the ballistic range

is much shorter (∼1000 Å). The velocities as functions of distance
for two different injection energies and electric fields are shown in

Fig. 2.17 [9].

Figure 2.18 shows the velocity as a function of distance in the

channel for a gate voltage of 0.4 eV and various drain voltages of

the HEMT device shown in Fig. 2.15 [9], where the heavy horizontal

bar marks source, gate, and drain regions. An overshoot is clearly

present, particularly at the right side of the gate. There is, however,

also a significant portion (close to the source) of the device in

which the velocity is below the maximum steady-state value. In this

region, the mobility is degraded by hot-electron effects and the field

gradients are too small to produce an overshoot. As a consequence,

figures of merit such as current switching time, cutoff frequency,

and the average draft velocity in the channel, etc., are complicated

averages over overshoot regions and regions ofmobility degradation

and may show no direct trace of overshoot effects.

An alternativemethod for studying space-dependent phenomena

makes use of the balance equation as obtained by the integration
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Figure 2.17 Velocities as functions of distance for two different injection

energies and electric fields.

of the Boltzmann equation over k space [4]. In the single-valley

case, by using a 1D treatment this integration leads to the

three fundamental macroscopic equations similar to the balanced

equations Eqs. 2.16, which express, respectively, the conversation of

the number, momentum, and energy of the particle ensemble,

∂n
∂t

+ ∂ (nv̄)
∂x

= 0,

∂

∂t
(nm∗v̄) = enE − ∂

∂x
(nkBT )− ∂

∂x

(
nm∗v̄2

) − nm∗v̄
τp (ε̄)

,

and

∂

∂t
(nε̄) = enE v̄ − ∂

∂x
[nv̄ (ε̄ + kBT )]− n

ε̄ − ε0

τε (ε̄)
. (2.24)

Solving Eq. 2.24 and Poisson’s equation, the spatial dependence of

the drift velocity is obtained for a GaAs n+-n-n+ structure under

static conditions at 77 K and compared with that obtained with the

Monte Carlo method. The results are shown in Fig. 2.19 [4]. It is seen

that the agreement is good. The non-uniform velocity distribution in

space is similar to that in Fig. 2.18.
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Figure 2.18 Velocity as a function of distance in the channel for a gate

voltage of 0.4 eV and various drain voltages of the HEMT device shown in

Fig. 2.15.

Figure 2.19 Spatial dependence of the drift velocity for a GaAs n+-n-n+

structure under static conditions at 77 K obtained from a Monte Carlo

simulation (+ + +), and an analytical solution of Eq. 2.24 under static
conditions ( ).
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2.4 Transport in a Si-MOSFET

Silicon metal-oxide semiconductor field-effect transistors (Si-

MOSFETs) have been investigated using a large variety of physical

models, from full-band Monte Carlo simulations to parabolic-band

approximations coupled to Monte Carlo or simplified solutions to

the transport equation, but relatively consistent results cannot be

obtained. The reason is that the energy band structure of Si is

more complicated. It is an indirect bandgap semiconductor, the

conduction band bottom is not at � point but at X point in the BZ.

Thus the various scattering and impact ionization mechanisms are

highly anisotropic. Besides, the basic knowledge of transport of the

high-energy (>1 eV) electrons in Si is still missed.

For example, due to the anisotropic band structure of Si and

the anisotropic intrinsic in ionization processes the spread in the

ionization rate is extended over about 1 order of magnitude. Taking

into account the realistic joint density of states in Si, and the

anisotropic ionization processes, Sano et al. [10] calculated the

ionization rate at every point in the first BZ, as shown in Fig. 2.20

by points, with the electron energy measured from the conduction

band edge. From the figure we see a large spread in the ionization

Linear

Logarithmic

Figure 2.20 Calculated ionization rate as a function of electron energy

marked by points, each point for a k point in the first Brillouin zone.
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rates at low electron energies (≤3 eV), which extends over 2

orders of magnitude. The anisotropy is greatly diminished above

3 eV, where the direct transition across the gap becomes possible.

Therefore, a realistic model of the ionization process has to reflect

this complexity at low electron energies associated with the realistic

joint density of states.

The present anisotropic ionization rate wii (k) can be trans-

formed into the isotropic energy-dependent ionization rate wii (ε)
by integrating it over all directions,

wii (ε) =
∫
dkδ (ε − εk)wii (k)∫

dkδ (ε − εk)
. (2.25)

Here the wave-vector-dependent ionization rate wii (k) is logarith-
mically interpolated with the eight nearest corners (k(n)) (n= 1, . . . ,

8) of each cubic mesh in the BZ,

ln [wii (k)] =
8∑

n=1

[ ∏
m=x , y, z

(
1−

∣∣km − k(n)m
∣∣

�km

)]
× ln

[
wii

(
k(n)

)]
.

(2.26)

The ionization rates interpolated logarithmically and linearly are

shown in Fig. 2. 20 [10] by solid and dotted lines, respectively. From

the figure we see that the linear interpolation yields a value larger

than all values for the different ks, with a given energy near the
threshold. This is because when the interpolation is done with a

large mesh spacing, the energies at the eight corners in a cubic mesh

could vary greatly so that some rates in a cubic mesh could be quite

large. As a result, the ionization rate linearly interpolated from those

values could be larger than the values for the different ks with a
given energy.

The present energy-dependent ionization rate averaged over all

directions (solid line) is compared in Fig. 2.21 [10] with Kane’s

ab initio theoretical result (dotted line), the rates extracted from

recent experiments of the IBM group (dashed line), and the ab initio

calculation result of the Osaka group (black points). The present

results closely agree with those of both the IBM group and the Osaka

group.

On the basis of the relative consistence of the ionization rates

and electron-phonon scattering rates Sano et al. applied the full-

band Monte Carlo method to simulate a typical MOSFET structure
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Figure 2.21 Present energy-dependent ionization rate averaged over all

directions (solid line) is compared with Kane’s ab initio theoretical result

(dotted line), the rates extracted from recent experiments of the IBM group

(dashed line), and the ab initio calculation result of the Osaka group (black

points).

with two different gate lengths Lg = 250 nm and 40 nm to present,

respectively, submicron and sub-0.1-micron devices. Figure 2.22

shows the electric field profiles as a function of distance along the

channel under various applied source-drain voltages Vd [11]. From

Figure 2.22 Electric field profiles as a function of distance along the

channel under various applied source-drain voltages Vd. Notice that the
scales of the electric fields of the two MOSFETs are different.
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Figure 2.23 Electron energy distributions integrated over the drain regions

at 300 K (solid lines) and 77 K (dotted lines) for (a) Lg = 250 nm and

(b) 40 nm.

the figurewe see that there is a very large electric field in the channel

of the gate region. Especially in the small-scale device (Lg = 40 nm),

the electric field can reach 1000 kV/cm.

Figure 2.23 shows the electron energy distributions integrated

over the drain regions at 300 K and 77 K [11]. The shapes of the

energy distribution are very different for the two devices: in the

250-nm-gate MOSFET, electrons suffer several energy-dissipating

scatterings before they reach the drain and, thus, the energy

distribution in the regions between several hundred millielectron

volts and qVd smoothly decreases. The number of electrons at

77 K in these energy regions is much larger because of the

reduced phonon scattering. This fact demonstrates the diffusive

transport property. On the other hand, in a 40-nm-gate MOSFET,

the energy distribution does not show significant energy dissipation

and the contribution of ballistic electrons ismuchmore pronounced.

The electron energy distribution shows a clear transition from

a diffusion-energy-dissipating transport regime in a 250-nm-gate

MOSFET to a quasi-ballistic transport regime in a 40-nm-gate

MOSFET.
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Figure 2.24 (a) Fractions of electrons with energy above the cutoff energy

Ec (normalized by the total number of electrons) as a function of (E − Ec)
for Lg = 250 nm MOSFET (solid lines) and 40 nm MOSFET (dotted lines).

(b) Normalized ionization rate for two MOSFETs at 300 K as a function of

drain voltage.

Such transition of transport characteristics implies that the

fraction of overshoot electronswith respect to thewhole electrons in

the drain becomes larger as the device size decreases. Figure 2.24a

shows the number of electrons with energy above the cutoff energy

Ec (normalized by the total number of electrons) as a function

of (E − Ec) [11]. The number of electrons with energy above Ec
decreases rapidly in the 250-nm-gate MOSFET, whereas it occupies

quite a large portion in the 40-nm-gate MOSFET. Therefore, as the

device size shrinks, impact ionization tends to be more significant,

as shown in Fig. 2.24b. In other words, even if the supply drain

voltage is reduced, hot carrier effects could still exist in sub-0.1-

micron devices and even more violent than in submicron devices.

2.5 Quantum Simulation Method: Quantum
Moment Equations

The classical semiconductor transport theory is based on the

Boltzmann transport equation (BTE). The Monte Carlo method
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provides the most accurate and detailed solution but is limited in

practical engineering applications for its computational expenses.

One improvement uses a set of quantum moment equations

developed from a Wigner function prototype, which preserves

explicit quantum corrections as well as the classical hydrodynamic

model features [12]. Explicit quantum corrections are built into

these equations by using the quantum-mechanical expression of

the second moments of the Wigner function, which results in an

average electron energy that consists of drift kinetic, thermal, and

quantum-potential terms. These equations are then applied to the

numerical simulation of ultra-submicron GaAsmetal-semiconductor

field-effect transistors (MESFETs), which demonstrates expected

quantum effects in the devices.

To get explicit quantum corrections into the moment equations,

several methods have been proposed. On the basis of the quantum

representation of the second moments 〈p2〉, the quantum correc-

tions through the energy representation are explicitly incorporated,

w = 1

2
m∗v2 + 3

2
kBT + Uq, (2.27)

where T is the average electron effective temperature; Uq is the
quantum correction,

Uq = − �
2

8m∗ ∇2 ln (n) ; (2.28)

and n is the electron density. The quantum correction involves the

second-order space derivative of the log density. Thus the correction

tends to smooth the electron distribution, especially where the

electron density has a sharp change, for example, when approaching

a large potential barrier.

A set of quantummoment equations with temperature represen-

tation is then written as
∂n
∂t

+ ∇ · (nv) = 0,

∂v
∂t

+ v · ∇v = −qE
m∗ − 1

nm∗ ∇ (
nkBTq

) − v
τm
,

and

∂T
∂t

+ 1

3
v · ∇ (

Tq
) = −2

3
∇ · (vTq) + m∗v2

3kB

(
2

τm
− 1

τw

)
− T − T0

τw
,

(2.29)
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Figure 2.25 MESFET structure for simulation.

where E is the electric field, τm is the momentum relaxation time, τw

is the energy relaxation time, T0 is the lattice temperature, and

Tq = T + 2

3kB
Uq. (2.30)

This set of equations preserves all classical features and gives

explicit quantum corrections. As � goes to zero, the equations

return to full classical hydrodynamics equations. From Eq. 2.30

one observes that if the thermal energy of the electron is large,

the quantum correction has less effect. But as the temperature is

lowered, the quantum correction will become dominant. Allying

with the Poison equation, Eq. 2.29 forms the basic equations for

numerical simulation of ultra-small devices.

The MESFET for simulation is shown in Fig. 2.25 [12], which

consists of semi-insulating substrate; an active layer; and three

electrodes, source, gate, and drain. The source and drain electrodes

are ohmic contact, and the gate electrode is a Schottky contact. The

gate voltage Vg produces a depletion region in the channel, whose
thickness depends on Vg, then decides the conduction channel

between the source and drain.

The parameters of the simulated MESFET device are gate

length 24 nm, doping in the channel 1.5 × 1018 cm−3, and
lattice temperature 300 K. Assume that the electron property is
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Figure 2.26 I–V characteristics of the 24-nm-gate device.

independent along the transverse coordinate z, the current is along
the x direction, and the perpendicular direction is y direction. The
finite-differencemethod is used to discretize Eq. 2.29 and the Poison

equation in the x − y two-dimensional (2D) MESFET structure

(Fig. 2.25).

The I–V characteristics of the device are shown in Fig. 2.26 [12].
The gate voltage runs from 0 to −2.5 V. The characteristics suggest
that the device has a normal working performance. Saturation of

the current is observed. When Vg = −2.5 V, the electrons are

completely depleted in the channel. The remaining current is due to

the substrate current as the electrons are pushed into the substrate.

Within the saturation region, the maximum transconductance

occurs near Vg = −0.5 V.
The effect of the gate length on the transconductance is

investigated at a drain voltage of 2.0 V, for a fixed active layer depth

and doping concentration. Figure 2.27 shows the transconductance

characteristics in the range of gate lengths from 24 to 96 nm,

for two active layer depths (a = 30 nm and 39 nm) [12]. The

transconductance for a = 30 nm has a maximum value of about 800

mS/mm at a gate length of 60 nm. The transconductance for a =
39 nm decreases monotonically for the entire range as gate length
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Figure 2.27 Transconductance versus gate length for two active layer

depths (a = 30 nm and 39 nm).

decreases. The small aspect ratio effect begins at a larger gate length

for thicker active devices.

2.6 Simulation of Ultra-Small HEMT Devices

The schematic structure of a HEMT is shown in Fig. 2.15. In a

GaAs MESFET the impurity doping in the channel is high and

ionized impurity scattering decreases the electron mobility at room

temperature from the best value of ∼9000 cm2/(V·s) to 2000 ≈
3000 cm2/(V·s). In the 1970s the modulation doping heterojunction
was proposed. In a wide-gap semiconductor, for example AlGaAs,

there is a δ doping layer. At room temperature the impurities are

ionized and the electrons from the ionized impurities move into the

neighboring GaAs layer. Due to the space charge effect of the ionized

impurities a potential well of triangular shape is formed at the

interface of AlGaAs and GaAs. The electrons gather in this quantum

well and form a two-dimensional electron gas (2DEG) layer. Because

the doping layer leaves from the interface a distance, the ionized

impurities provide electrons and at the same time do not scatter

the electrons in the 2DEG, thus greatly increasing electron mobility,

which may even exceed the best value in bulk GaAs.
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Zhou et al. [13] used the quantum moment equations (Eq. 2.29)

to simulate the HEMT devices, including the carrier degeneracy

effects. As the electron density increases to a high concentration

level, the Pauli principle ensures that not all electrons can return

to the lowest energy level, even at equilibrium. The effect leads

to a higher value of the total average energy of the electrons. A

direct effect of the degeneracy is on the electron mobility, which is

determined by the scattering processes at a given energy level. The

momentum and energy relaxation times are computed from Monte

Carlo results. If one assumes that the increase of energy due to

degeneracy is essentially the thermal energy 3/2 γ kBT , then the use
of scattering rates from the Monte Carlo results without degeneracy

calculated at T instead of γ T remains good approximation.
Modulation of the momentum equations (Eq. 2.29) can be

made by assuming a drift Fermi–Dirac distribution function, which

results in a degeneracy correction factor to the effective electron

temperature. The total electron energy can be written as

w = 1

2
m∗v2 + 3

2
γ kBT + Uq, (2.31)

where γ is the degeneracy factor,

γ = γ (μ/kBT ) = F3/2 (μ/kBT )
F1/2 (μ/kBT )

, (2.32)

Fj is the Fermi–Dirac integral, and μ is the Fermi energy measured

from the conduction band bottom. After modification of the

equations, the Tq in Eq. 2.29 is changed to

Tq = γ T + 2

3kB
Uq. (2.33)

The degeneracy factor γ as a function of the factor n/(kBT )3/2 is
shown in Fig. 2.28 for GaAs and AlGaAs [13]. The degeneracy factor

γ rises significantly only after the ratio of density to thermal energy

exceeds 1020 cm−3·eV−3/2, that is, the degeneracy effect occurs at a
high density and low temperature.

The electron density profile of a 24-nm-gate-length device at the

center of the gate as a function of the distance from the surface (see

Fig. 2.25) into the bulk at a bias condition of Vg = −1.5 V and Vd =
1.0 V is shown in Fig. 2.29 [13], where the interface between GaAs

and AlGaAs is at 40 nm. The solid line is the result including the
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Figure 2.28 Degeneracy factor γ as a function of the factor n/(kBT )3/2 for
GaAs and AlGaAs.

Figure 2.29 Electron density profile of a 24-nm-gate-length device at the

center of the gate as a function of the distance from the surface (see

Fig. 2.25) into the bulk.

quantum pressure effect, and the dashed line is that neglecting the

quantum pressure effect. From the figure one sees that a parallel

conduction channel in the AlGaAs is present but is reduced by

the quantum effect. The conduction electrons are mostly confined

within 10 nm of the interface in the GaAs. The tail of the density

distribution in the GaAs (toward the bulk) shows evidence thatmore
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Figure 2.30 I–V characteristics for a 24-nm-gate-length device.

electrons are pushed into the substrate when the quantum pressure

is included.

The computed I–V characteristics for a 24-nm-gate-length

device are shown in Fig. 2.30 [13], where the gate bias runs from

0 to −2.5 V, in steps of −0.5 V. The transconductance decreases
linearly from about 500 mS/mm to some 250 mS/mm as the gate

bias becomes more negative.
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Chapter 3

Resonant Tunneling

In 1970 Tsu and Esaki [1] proposed a one-dimensional superlattice.

At the same time they proposed the concept of resonant tunneling.

They indicated that in such a structure the period is smaller than

the electronmean free path and intriguing transport properties such

as negative differential conductivity and Bloch oscillation can be

realized. Soon afterward Chang et al. [2] observed experimentally

the resonant tunneling of electrons in double-barrier structures

having a thin GaAs potential well sandwiched between two GaAlAs

barriers. The current and conductance characteristics of this struc-

ture show the resonant singularities corresponding to the resonant

states in the GaAs quantum well. The singularities actually exhibit a

decrease in current, giving rise to a negative differential resistance

(NDR). Due to the development of the molecular beam epitaxy

technology, and the improving of the quality of the sample, the

negative resistance can be observed not only at a low temperature

but also at room temperature clearly [3–5]. The peak-to-valley ratio

(PVR) representing the level of the resonant tunneling structure of

30 and 63 at 300 K and 77 K, respectively, has been reached for an

AlAs/InAs/AlAs double potential barrier structure [5].

As for application, the advantage of the resonant tunneling diode

(RTD) is that the basic time related to the tunneling process is very
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short, generally taken as the reciprocal of the quasi-confined state

in the quantum well (i.e., the reciprocal of the resonant width).

For the high-frequency response of a RTD, it is decided by two

time constants: one is the tunneling time through the barrier and

the other is the RC time constant associated with the structure

capacitance. Optimizing the device structure, these time constants

can be minimized. The frequency of the mixed frequency device

using the NDR effect has reached 1.8 THz (1.8× 1012 Hz). When the

NDR effect is used as an oscillator, the frequency reached is 0.42 THz

[6]. When the NDR effect is used for a high-speed switch, the raising

time is shorter than 2 ps [7].

3.1 Single-Barrier Structure

To explain some basic concepts of resonant tunneling (RT), we

consider a single potential barrier as shown in Fig. 3.1. Assume that

both sides are GaAs material and the middle potential barrier is

AlxGa1−xAs material, whose width is w = 2a, and the barrier height
is V0 depending on x . The Schrödinger equation of electron motion
is (

−�
2

2

∂

∂z
1

m∗(z)
∂

∂z
+ Veff(z)

)
ϕ(z) = Eϕ(z), (3.1)

where m∗(z) is the effective mass, which is generally different for
GaAs and AlxGa1−xAs, and thus is a function of z.

An electron with energy E enters into the structure from the

left 1 region and leaves from the right 3 region. The electron wave

Figure 3.1 Energy band diagram of the single potential barrier.
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function in the three regions in Fig. 3.1 are, respectively,

ϕ1(z) = a1eikz + b1e−ikz, z < −a;
ϕ2(z) = a2eKz + b2e−Kz, −a < z < a;

and

ϕ3(z) = a3eikz + b3e−ikz, z > a, (3.2)

where

k =
√
2m1

∗E
�2

, K =
√
2m2

∗(V0 − E )
�2

. (3.3)

where m1
∗ and m2

∗ are the electron effective masses in the 1,3 and
2 regions, respectively. In the 1 and 3 regions, the electron energy

E > 0. Hence the electron waves are plane waves. In the 2 region,

E < V0, and the electron wave is an evanescent wave.
By use of the boundary conditions at the interface of the 1 and 2

regions (z= −a),
ϕ1(−a) = ϕ2(−a),

and

1

m1
∗
∂ϕ1

∂z

∣∣∣∣
−a−

= 1

m2
∗
∂ϕ2

∂z

∣∣∣∣
−a+

. (3.4)

We obtain

a1 + b1 = a2 + b2,

and

ik
m1

∗ (a1 − b1) = K
m2

∗ (a2 − b2). (3.5)

In calculating Eq. 3.5 we assumed that the coordinate origin is taken

at z= −a. The choice of the coordinate origin can be as one pleases;
the results are only different from a phase factor.

Introduce the concept of the transfer matrix, which connects

the coefficients of the wave function at point A to those at point

B. For example, the coefficients of the wave function at the 1

region z = −a− are a1 and b1 and those at the 2 region at

z = −a+ are a2 and b2. They are connected by the transfer matrix
M1, (

a1
b1

)
= M1

(
a2
b2

)
. (3.6)
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The M1 can be calculated directly from Eq. 3.5,

M1 = 1

2

∣∣∣∣ (1− ir) (1+ ir)
(1+ ir) (1− ir)

∣∣∣∣ , (3.7)

where r = m1
∗K/m2

∗k.
In the 2 region, define the transfer matrix,(

a2
b2

)
= M2

(
a′
2

b′
2

)
, (3.8)

where a2′ and b2′ are the coefficients of ϕ2(z) with the coordinate
origin at z= a. Thus

M2 =
∣∣∣∣ e−2Ka 0

0 e2Ka

∣∣∣∣ . (3.9)

Using the boundary conditions at the interface of the 2 and 3 regions

(z= a), we obtain

a′
2 + b′

2 = a3 + b3,

and

K
m2

∗ (a
′
2 − b′

2) = ik
m1

∗ (a3 − b3). (3.10)

Define the transfer matrix,(
a′
2

b′
2

)
= M3

(
a3
b3

)
. (3.11)

The transfer matrix M3 can be calculated from Eq. 3.10,

M3 = 1

2

∣∣∣∣∣∣∣∣

(
1+ i

r

) (
1− i

r

)
(
1− i

r

) (
1+ i

r

)
∣∣∣∣∣∣∣∣
. (3.12)

The total transfer matrix M connects the wave function at the input

end and that at the output end. Hence(
a1
b1

)
= M

(
a3
b3

)
, (3.13)

where

M = M1M2M3.
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Suppose the coefficient of the injectedwave function eikz at the input
end a1 = 1; then b1 represents the amplitude of the reflective wave
e−ikz. At the output end the coefficient of the transmitted wave eikz is
a3 and the coefficient of the returning wave e−ikz b3 = 0. Thus from

Eq. 3.13, (
1

b1

)
=

(
M11 M12
M21 M22

)(
a3
0

)
. (3.14)

We obtain

a3 = 1/M11 and b1 = M21a3 = M21/M11 . (3.15)

The transmission probability and the reflection probability are,

respectively,

T = |a3|2 and R = |b1|2. (3.16)

The transfer matrix elements M11 and M21 in Eq. 3.15 can be

calculated from Eq. 3.13 and Eqs. 3.7, 3.9, and 3.12,

M11 = 1

4

[(
2− ir + i

r

)
e−2Ka +

(
2+ ir − i

r

)
e2Ka

]

= cosh(2Ka)− i
2

(
r − 1

r

)
sinh(2Ka),

and

M21 = 1

4

[(
ir + i

r

)
e−2Ka +

(
−ir − i

r

)
e2Ka

]

= − i
2

(
r + 1

r

)
sinh(2Ka). (3.17)

Then from Eqs. 3.15 and 3.16 we obtain

T = 1

1+ (
r + 1

r

)2
sinh2(2Ka)

,

and

R =
(
r + 1

r

)2
sinh2(2Ka)

1+ (
r + 1

r

)2
sinh2(2Ka)

. (3.18)

It is deduced from Eq. 3.18 that T + R = 1, which means the

conservation of particle number.

The problem of the barrier tunneling is a nonstatic problem.

We only know the amplitude of the injected wave and need to
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calculate simultaneously the amplitudes of the reflective wave and

transmitted wave. The transfer matrix method is suitable for the

two-terminal device with a complicated structure in the middle. For

themultiple terminal devices, the scatteringmatrixmethod is useful.

Suppose there is an M terminal device, there are injected wave

and transmitted wave at each terminal, and their coefficients are

bi and ai (i = 1, 2, . . . , M), respectively. The scattering matrix S
connects the two sets of coefficients,⎛

⎜⎜⎜⎝
a1
a2
...

aM

⎞
⎟⎟⎟⎠ = (S(E ))

⎛
⎜⎜⎜⎝
b1
b2
...

bM

⎞
⎟⎟⎟⎠ . (3.19)

If the coefficient of the injected wave at the j -th terminal bj = 1,

those at other terminals all equal zero. Then the coefficients of the

transmitted waves at all other terminals and that of the reflective

wave at the j -th terminal can be calculated from Eq. 3.19,

ai = Si j (i = 1, · · ·M, �= j)

and

aj = S j j . (3.20)

We take the single-barrier tunneling as an example to calculate the

scatteringmatrix. Define b2e−Kz as thewave that travels toward right
and a2eKz as the wave that travels toward left. Then the scattering
matrix at the boundary z= −a is written as(

b1
b2

)
= (S1)

(
a1
a2

)
. (3.21)

The scattering matrix S1 can be calculated from Eq. 3.5,

S1 = 1

1+ ir

(
1− ir 2ir
2 −1+ ir

)
. (3.22)

In the barrier 2 region the scattering matrix is(
a2
b′
2

)
= (S2)

(
b2
a′
2

)
(3.23)

and

S2 =
(

0 e−2Ka

e−2Ka 0

)
. (3.24)
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The scattering matrix at the boundary z= a is(
a′
2

a3

)
= (S3)

(
b′
2

b3

)
. (3.25)

S3 can be calculated from Eq. 3.10,

S3 = 1

1+ ir

(−1+ ir 2

2ir 1− ir

)
. (3.26)

The total scattering matrix in the single-barrier tunneling case is(
b1
a3

)
= (S)

(
a1
b3

)
. (3.27)

But the total scattering matrix is not the multiplication of three

matrices S1, S2, and S3 but equals a special multiplication of three
matrices introduced by Ando et al. [7],

S = S1 ⊗ S2 ⊗ S3. (3.28)

Suppose that there are two scattering matrices,

S1 =
(
r1 t′1
t1 r ′

1

)
and S2 =

(
r2 t′2
t2 r ′

2

)
. (3.29)

The matrix elements of the multiplication of S1 and S2S12 = S1 ⊗ S2
are

t12 = t2(1− r ′
1r2)

−1t1,

t′12 = t′1(1− r2r ′
1)

−1t′2,

r12 = r1 + t′1r2(1− r ′
1r2)

−1t1,

and

r ′
12 = r ′

2 + t2r ′
1(1− r2r ′

1)
−1t′2. (3.30)

The results obtained from the transfer matrix method and the

scatteringmatrixmethods are the same. The transfermatrixmethod

is convenient for the two-terminal devices, but for the multi-

terminal devices we can only use the scattering matrix method.

Besides, if the length of the barrier region a is too large the

transfer matrix element (Eq. 3.9) e2Ka from the evanescent wave

will approach infinite, resulting in calculation divergence difficulty.

While in the scattering matrix (Eq. 3.24) where the two matrix

elements are e−2Ka , the divergence difficulty does not appear.
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In Eq. 3.16 the transmission probability T and reflection

probability R equal the square of the coefficients of the transmitted
wave a3 and the reflective wave b1, respectively. In the general cases,
they should equal

T = |a3|2v2 and R = |b1|2v1 . (3.31)

The injected electron current,

I = |a1|2v1, (3.32)

where v1 and v2 are the velocities of the electron waves at the input
end and output end, respectively. For the conduction band electron

the velocity is proportional to the wave vector, v = �k/m∗. In the
case of a single barrier (Fig. 3.1) k1 = k2, then Eq. 3.16 is valid, but is
a special case.

To illustrate the meaning of Eq. 3.31 we consider a non-

symmetric single potential barrier as shown in Fig. 3.2, where the

energy bottom of the output region is lower than those of the input

and barrier regions −V1. In this case, the transfer matrices M1 and
M2 are the same as Eqs. 3.7 and 3.9, while

M3 = 1

2

∣∣∣∣∣∣∣∣

(
1+ i

r ′

) (
1− i

r ′

)
(
1− i

r ′

) (
1+ i

r ′

)
∣∣∣∣∣∣∣∣
, (3.33)

where

r ′ = m1
∗K

m2
∗k′ and k′ =

√
2m1

∗(E + V1)
�2

. (3.34)

Suppose the injected electron current is 1. From Eqs. 3.31 and

3.32 we define

a1 ∼ 1√
k
, a3 ∼ t√

k′ , and b1 ∼ r√
k
. (3.35)

Figure 3.2 Non-symmetric single potential barrier schematic diagram.
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The transmission probability and reflection probability are, respec-

tively,

T = |t|2 and R = |r|2. (3.36)

Equation 3.14 is changed to(
1/

√
k

r/
√
k

)
=

(
M11 M12
M21 M22

)(
t/

√
k′

0

)
, (3.37)

1√
k

= M11t√
k′ , t =

√
k′

k
1

M11
,

r√
k

= M21t√
k′ , r = M21

M11
.

(3.38)

Meanwhile, Eqs. 3.17 and 3.18 are changed as

M11 = 1

2

(
1+ r

r ′

)
cosh 2Ka − i

2

(
r − 1

r ′

)
sinh 2Ka,

and

M21 = 1

2

(
1− r

r ′

)
cosh 2Ka − i

2

(
r + 1

r ′

)
sinh 2Ka. (3.39)

Similarly, the scattering matrix should be correspondingly changed

[8]. The wave function in the l-th channel is written as

ϕl(z) = 1√
kl

(
aleiklz + ble−iklz) . (3.40)

The scattering matrix is defined as⎛
⎜⎜⎜⎝
a1
a2
...

aM

⎞
⎟⎟⎟⎠ = (S(E ))

⎛
⎜⎜⎜⎝
b1
b2
...

bM

⎞
⎟⎟⎟⎠ , (3.41)

where al/
√
kl and bl/

√
kl are the coefficients of the transmitted and

injected waves at the l-th channel, respectively.
For the non-symmetric single barrier (Fig. 3.2), the coefficient

of the injected wave is b1/
√
k1 = 1/

√
k1 and the amplitudes of the

reflective and transmitted waves are, respectively,

r =
√
k1 ·

(
a1√
k1

)
= a1 = S11
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and

t =
√
k2 ·

(
a2√
k2

)
= a2 = S21. (3.42)

Therefore, the scattering matrix defined in Eq. 3.41 satisfies the

unitarity, that is,

S+S = 1. (3.43)

In the two-terminal case, we have

|S11|2 + |S21|2 = |t|2 + |r|2 = 1. (3.44)

In the n-terminal case, ∑
l

Snl S∗
ml = δnm. (3.45)

The transmission and reflection probabilities are, respectively,

Tnm = |Snm|2, m �= n,

and

Rn = |Snn|2. (3.46)

If there are no applied magnetic field and spin-orbital coupling, for

the real energy E the wave functions ψ and ψ∗ are all the solutions
of Schrödinger equation and hence the S matrix is symmetric, that
is,

Smn = Snm. (3.47)

Equation 3.47 represents an important result: detailed balance

principle Tmn = Tnm, that is, for any structure the transmission
probability of the positive injection path equals that of the anti-

injection path. It is also indicated from Eq. 3.47 that not only the

amplitudes but also the phases are all equal.

In the actual case the chances of using the transfer matrix or

scatteringmatrix to solve analytically the transport problem are less.

Even in the single-barrier problem as shown in Fig. 3.1, the tunneling

current is measured in the electric voltage bias V , that is, the barrier
is under an applied electric field F . The electron motion equation
includes a potential energy term,

V (z) = V0(z)− eF z, (3.48)
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where V0(z) is the potential without the electric field, as shown in
Fig. 3.1, the second term is the additional electric field potential

term, which makes the potential energy inclining downward. This

time the electron wave function is not a plane wave but a special

function Ai(z) and it is nearly impossible to use this function to
calculate the transfer or scattering matrix.

Generally one uses the numerical method to solve the electron

wave propagation problem in a structure with an arbitrary form of

potential [9]. The electron motion Schrödinger equation (in atomic

units, length = Born radius aB and energy = Rydberg R) is written
as

− 1

2m∗
∂2

∂z2
ϕ(z)+ V (z)ϕ(z) = Eϕ(z) (3.49)

or

∂2ϕ(z)
∂z2

= −2m∗[E − V (z)]ϕ(z). (3.50)

Suppose that the wave function at the output end is eik
′z. Then the

boundary conditions at the interface between the barrier (2 region)

and the output end (3 region) are

ϕ(z = a) = 1

and

dϕ
dz
(z = a) = ik′. (3.51)

Starting from the initial condition (Eq. 3.51), integrating Eq. 3.50

from right to left, we obtain the values of the wave function and its

differential U and U ’ at z = −a. The wave function at the input end
is

ϕ(z) = a1eikz + b1e−ikz. (3.52)

The values of the wave function and its differential at z= −a are
ϕ(z = −a) = a1 + b1 = U1

and

dϕ
dz
(z = −a) = ik(a1 − b1) = U ′

1. (3.53)
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The coefficients a1 and b1 can be calculated from Eq. 3.53. According

to the definition of the transfer matrix (Eq. 3.13),(
a1
b1

)
= (M)

(
1

0

)
. (3.54)

Hence,

a1 = M11 and b1 = M21. (3.55)

This numerical method is suitable for arbitrary potential barrier

form or hole tunneling (heavy hole and light hole, and there is

coupling between them) case [9].

3.2 Resonant Tunneling of Double Potential
Barriers

Similar to the symmetry of the scatteringmatrix S (Eq. 3.47), we give
the symmetry of the transfer matrix. In the case of no magnetic field

and spin-orbital coupling the wave functions ϕ(z) and ϕ∗(z) are all
the solutions of the Schrödinger equation. Thus

ϕ1
∗(z) = a1∗e−ikz + b1∗eikz

and

ϕ3
∗(z) = a3∗e−ikz + b3∗eikz. (3.56)

From the definition of the transfer matrix Eq. 3.13,(
b1∗

a1∗

)
=

(
M11 M12
M21 M22

)(
b3∗

a3∗

)
. (3.57)

Take the complex number of Eq. 3.57(
b1
a1

)
=

(
M11∗ M12∗

M21∗ M22∗

)
=

(
b3
a3

)
(3.58)

and rearrange the order,(
a1
b1

)
=

(
M22∗ M21∗

M12∗ M11∗

)
=

(
a3
b3

)
. (3.59)

Then we obtain the symmetry relation,

M11∗ = M22 and M12∗ = M21. (3.60)
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For single potential barrier structure we obtained the transfer

matrix from Eq. 3.15,

M =
∣∣∣∣∣
1/t1 r∗

1/t
∗
1

r1/t1 1/t∗1

∣∣∣∣∣ , (3.61)

where r1 and t1 are amplitudes of the reflective and transmitted
waves, respectively. For the double-barrier structure, suppose the

width of themiddle potential well isw. Then the total transfermatrix
is

M =
∣∣∣∣∣
1/t1 r∗

1/t
∗
1

r1/t1 1/t∗1

∣∣∣∣∣ ·
∣∣∣∣∣
e−ikw 0

0 eikw

∣∣∣∣∣ ·
∣∣∣∣∣
1/t1 r∗

1/t
∗
1

r1/t1 1/t∗1

∣∣∣∣∣ . (3.62)

The matrix element

M11 = e−ikw/t21 + eikw R1/T1, (3.63)

where R1 = |r1|2 and T1 = |t1|2 are the reflection and transmission
probabilities, respectively, for the single-barrier structure. The total

transmission probability can be calculated from Eq. 3.63,

T = 1/|M11|2 =
[
1+ 4R1

T 2
1

cos2(kw + θ)

]−1
, (3.64)

where θ is the phase angle of t1 and t1 = |t1|eiθ .
From Eq. 3.64 we see that though the transmission probability

T1 of the single barrier is small, when kw + θ = (n + 1/2)π the

transmission probability T of the double barrier equals 1. Physically,
because the electron energy equals the energy of the confined

state in the quantum well there occurs RT and the transmission

probability can reach 1. If the electron energy deviates the resonant

energy, the transmission probability descends rapidly, even several

orders of magnitude.

Figure 3.3 shows the calculated transmission probabilities of an

AlAs/GaAs/AlAs double potential barrier structure as functions of

electron energy [10]. The barrier height V0 = 1.355 eV, barrier width

LB = 2.3 nm, and the three curves correspond to GaAs potential well

widths LW = 5 nm, 7 nm, and 9 nm, respectively. When the electron

energy equals the energy of a quasi-confined state there is a RT peak

and the transmission probability reach 1. For a narrow quantum

well LW = 5 nm the confined states are less and their energies are
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Figure 3.3 Calculated transmission probabilities of an AlAs/GaAs/AlAs

double potential barrier structure as functions of electron energy.

higher. There are only two resonant peaks in the energy range of

E = 0≈ 0.6 eV. For a wide quantum well LW = 9 nm there are three

resonant peaks at lower energies.

Expanding the formula of the RT probability Eq. 3.64 near the

resonant energy En, we obtain the Lorentz line-shape,

T (E ) = �2
n/4

�2
n/4+ (E − En)2

, (3.65)

where �n is the half-height width of the resonant peak,

�n =
(

�
2EnT 2

1

2m∗w2R1

)1/2
. (3.66)

The confined state in the quantumwell of a double-barrier structure

is a quasi-confined state. If an electron stays at the state, it will

escape from the well and thus the energy of the quasi-confined state

is a complex number,

E = E0 − i�n/2. (3.67)

The wave function of electron state,

ϕ(t) = e−i E
�
t = e−i t

�
(E0−i�n/2)

= e−i E0
�
t− �n

2�
t . (3.68)
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From Eq. 3.68 the electron density obtained is

|ϕ(t)|2 = e− �n
�
t . (3.69)

It means that in the well the electron density decays with time. Then

we define the electron lifetime

τ = �

�n
. (3.70)

The above calculation results are obtained by assuming that the

single electron has only momentum k in the z direction. Actually
the electrons at the input end have momentum k in the three-

dimensional (3D) space and obey the Fermi distribution,

f (k) = 1

1+ e(E−EF)/kT . (3.71)

The tunneling current equals the integration of all electron states,

J = +e 2

(2π)3

∫
T (Ez) f (k)vz(k)dk, (3.72)

where vz(k) is the velocity in the z direction,

vz = 1

�

∂E (k)
∂kz

= �kz
m∗ . (3.73)

The total electron energy,

E = Ez + Et = �
2k2z
2m∗ + �

2k2t
2m∗ , (3.74)

where

k2t = k2x + k2y .

The integration of Eq. 3.72 can be divided into integration over kz
and kt ,

J = em∗

2π2�2

∫ ∞

0

dEzT (Ez)
∫ ∞

0

dEt [ fl(Ez, Et)− fr(Ez, Et)] ,

(3.75)

where fl and fr are the Fermi distribution function (Eq. 3.71) of
electrons at the left side and the right side of the barrier, respectively.

If there is no bias voltage on the structure, fl = fr and J = 0, there

is no tunneling current. If a bias voltage is applied to the structure,

the potential energy curve inclines toward right (reverse voltage), so

fl > fr and tunneling current is produced.
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Integrating Eq. 3.75 for Et ,∫ ∞

0

dEt [ fl(Ez, Et)− fr(Ez, Et)]

=
∫ ∞

0

dEt

[
1

1+ e(Ez+Et−EF)/kT
− 1

1+ e(Ez+Et−EF+eV )/kT

]

= kT ln
(

1+ e(EF−Ez)/kT

1+ e(EF−eV−Ez)/kT

)
, (3.76)

where EF is the Fermi energy of the left side and that of the right side
is EF −eV due to the bias voltage. Inserting Eq. 3.76 into Eq. 3.75 we
obtain

J = em∗kT
2π2�2

∫ ∞

0

dEzT (Ez) ln
(

1+ e(EF−Ez)/kT

1+ e(EF−eV−Ez)/kT

)
. (3.77)

Equation 3.77 was derived first by Tsu et al. [1].

When T = 0, the electron energy distribution is step-like,

ln
[
1+ e(EF−Ez)/kT

] =
⎧⎨
⎩
EF − Ez
kT

, Ez < EF

0. Ez > EF
(3.78)

Thus Eq. 3.77 is written as

J = em∗

2π2�2

[∫ EF

0

dEzT (Ez)(EF − Ez)

−
∫ EF−eV

0

dEzT (Ez)(EF − eV − Ez)
]
. (3.79)

If EF − eV < 0, the Fermi energy level descends to the bottom of

the energy band at the left side (E = 0). The right side is completely

empty for the tunneling electron from the left side, so the second

term in Eq. 3.79 equals zero.

At the neighbor of the resonant energy En the tunneling

probability can be expanded as in Eq. 3.65. In the limit that �n

approaches zero, it changes to be a δ function,

δ(Ez − En) = 1

π
lim

�n→0

�n/2(
�2
n/4

) + (Ez − En)2
. (3.80)

Thus

T (Ez) ≈ π · �n

2
δ(Ez − En). (3.81)
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Figure 3.4 Calculated current density at 0 K for the double- and triple-

barrier cases as a function of applied voltage.

Inserting Eq. 3.81 into Eq. 3.79, and assuming that EF − eV < 0, we

obtain

J = em∗Tres�n
4π�2

(EF − En), (3.82)

where Tres is a constant. From Eq. 3.82 we see that the tunneling

current is proportional to EF − En. When the En is far away from
EF, the tunneling current is larger, and when En approaches EF, the
tunneling current approaches zero.

Figure 3.4 shows the calculated current density at 0 K for

the double- and triple-barrier cases, without the constant factor

em∗/2π2
�
2 as a function of applied voltage [1]. Note that the I–V

characteristics indicate a fine structure having differential negative

conductivities. The first peak for the double-barrier case is located

approximately at 0.16 eV, which is about twice the transmission

peak of 0.082 eV. This is because the bottom of the well shifts
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Figure 3.5 Schematic energy band of the finite superlattice: the upper part

is without bias and the lower part is with bias.

only half the amount of the applied voltage for this case. When

the voltage increases continuously, EF approaches the energy of
the second confined state of the well and there appears the second

resonant current peak. For the triple-barrier case, the situation

is more complicated, EF can be resonant with the energy of the
confined state in the first well or in the second well, and thus

multiple resonant peaks appear.

Tsu et al. [1] calculated the tunneling probabilities of the

superlattices composed of multi-barriers with the transfer matrix

method. The schematic energy band of the finite superlattice is

shown in Fig. 3.5: the upper part is without bias, and the lower part

is with bias. Figure 3.6 shows in the case of no bias the transmission

probabilities as functions of electron energy for the double, triple,

and quintuple barriers. The barrier and well widths are 2 nm

and 5 nm, respectively. The barrier height is 0.5 eV. Note that the

resonant energies for the triple barrier case is split into doublets and

those for the quintuple barrier case are split into quadruplets. The

line widths are roughly determined by the tunneling probability of

the barrier width. Generally, for n barriers, there will be an (n − 1)-

fold splitting. This splitting is caused by the coupling of the energy

levels of the neighboring wells.

Using the negative resistance property produced by the RT

effect one can design and fabricate the two-terminal RT oscillator.

Figure 3.7 shows the simplest equivalent circuit of a two-terminal

RT oscillator [11], where −RD and CD represent the resistance

and capacitance of the device, respectively. Rs and Ls are parasitic
resistance and inductance of the lead, respectively. This equivalent
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ELECTRON ENERGY IN eV

Figure 3.6 Transmission probabilities as functions of electron energy for

the double, triple, and quintuple barriers.

Figure 3.7 Equivalent circuit of a two-terminal RT oscillator.
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circuit has been successfully applied to analyze the tunneling

diodes, and the calculated I–V characteristics are in agreement

with experimental results. The real part of the impedance in the

equivalent circuit Reg is

Reg = Rs + −RD
1+ (ωRDCD)2

. (3.83)

For steady oscillation Reg should be negative; then the cutoff
frequency can be calculated from Eq. 3.83,

fmax = 1

2π RDCD

√
RD
Rs

− 1. (3.84)

For raising the fmax the parasitic resistance Rs and the diode

capacitance CD should be minimum. Differentiating Eq. 3.84 to RD,
we obtain the condition that fmax is maximum and

RD = 2Rs. (3.85)

That means that the absolute value of the negative resistance RD is
also very small. Therefore, a steep drop of the current and high peak-

valley ratio in the I–V characteristic curvewill be helpful to raise the
fmax. Another demand for the RT oscillator is large power output,
generally,

Pmax ≈ (Vp − Vv)(Ip − Iv), (3.86)

where Vp, Ip, Vv, and Iv are the voltage and current of the current
peak and valley, respectively. Thus large peak-valley ratio and high

current density are necessary for a high performance oscillator.

Brown et al. obtained oscillations at frequency 712 GHz in

InAs/AlSb double-barrier resonant tunneling diodes (RTDs) at room

temperature [12]. The InAs/AlSb materials system has several

advantages over GaAs/AlAs for making high-speed RTDs. First, the

InAs/AlSb band offset (staggered type II at the � pint) allows an

electron to tunnel more easily through the AlSb barrier than the

AlAs barrier (type I band offset). This leads to a larger difference

of the peak and valley currents �I = Ip − Iv and a smaller RD. A
second advantage is that the electron effective mass in InAs (0.023

m0) is smaller than that in GaAs (0.067 m0), so the electrons will

drift across a given depletion layer much more rapidly in InAs than
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Figure 3.8 DC I −V characteristic (solid line) and differential conductance
(dotted line) of a 1.8 μm diameter diode.

in GaAs. A third advantage is that InAs RTDs have a lower total series

resistance Rs.
Figure 3.8 shows the direct current (DC) I–V characteristic and

differential conductance of a 1.8 μm diameter diode with a negative

voltage applied to the top contact [12]. The I–V curve shows a

peak-to-valley current ratio of about 3.4 at room temperature and a

peak current density of 2.8 × 105 A cm−2, corresponding to �I ∼=
2.0 × 105 A cm−2. The discontinuous nature of the experimental
I–V curve in the NDC region is caused by self-rectification of the

oscillations.

Figure 3.9 shows the highest power density as a function of

the frequency obtained in the InAs/AlSb RTDs (dotted line) and

GaAs/AlAs RTDs (solid line) [12]. At 360 GHz an absolute power of

3 μWwas obtained, corresponding to a power density of 90Wcm−2.
This is 50 times the power density obtained previously from

GaAs/AlAs RTDs at 370 GHz. At 712 GHz a power of 0.3 μW was
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Figure 3.9 Highest power density as a function of the frequency obtained

in the InAs/AlSb RTDs (dotted line) and GaAs/AlAs RTDs (solid line).

obtained, corresponding to a power density of 15 Wcm2. The power

density decreases with the oscillation frequency increasing.

The RTD oscillators have not applied on a large scale; the

difficulties are operation at room temperature and large-scale

integration.

3.3 Hole Resonant Tunneling

Mendez et al. first observed the hole RT in the GaAs/AlAs double-

barrier structure [13]. The conductance (dI/dV) versus voltage
bias of an undoped AlAs/GaAs/AlAs double-barrier structure for

four temperatures is shown in Fig. 3.10 [13]. There are many

conductance minima representing the positions of resonant peaks.

On the basis of the temperature dependence behavior and the

relative strength of the resonances, the authors assigned the high

T set of structures to RT of light holes and the low T set to heavy

hole tunneling. To compare with experiments they assumed that
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Figure 3.10 Conductance (dI/dV) versus voltage bias of an undoped

AlAs/GaAs/AlAs double-barrier structure for four temperatures.

the effective masses of the light and heavy holes in GaAs are 0.1

m0 and 0.6 m0, respectively. The width of the GaAs and AlAs layers

are 5 nm and the barrier height is 550 meV. Assuming that there is

no coupling between the light hole and heavy hole, they calculated

the tunneling probabilities as functions of energy separately for two

kinds of holes; the results are shown in Fig. 3.11 [13]. It is considered

approximately that the bias voltages to which the tunneling peaks

correspond multiplied by the electron charge e are twice the energy
to which the tunneling probability peaks correspond. From Fig. 3.11

the light hole resonant peaks should be at 0.168 and 0.634 V, which

contrasts with the experimental values of 0.43, 0.67, and 1.45 V. The

heavy hole resonant peaks should be at 0.038, 0.154, 0.344, 0.604,

and 0.915 V, while experimentally only four peaks, at 0.20, 1.15,

1.81, and 2.33 V, were observed. The authors believed that non-

parabolicity effects and band mixing (coupling between light hole

and heavy hole) are probably themain reasons for the discrepancies

found.
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Figure 3.11 Calculated tunneling probabilities as functions of energy

separately for two kinds of holes.

The authors also studied the effect of a strong magnetic field

on the positions of resonant current peaks. The magnetic field is

applied along the current direction. If the hole energy band is a

simple parabolic band, the problem is simpler. The hole energy band

in the plane perpendicular to the magnetic field direction is split

into a series of Landau energy levels. The basis state energy equals

�ωc/2 ≈ B . In the strong magnetic field the RT energy will increase
linearly with the magnetic field. The surprising results are that with

the magnetic field increasing some peak energy increases, but some

peak energy decreases, which proves the complexity of the valence

bands. We should consider the coupling between light and heavy

holes and the non-parabolicity.

To solve the above problem, Xia proposed the hole RT theory [9].

In the double-barrier structure, the effective mass Hamiltonian is

written as

H = HL + V (z), (3.87)

where V (z) is the effective potential of the structure,

HL = 1

2

∣∣∣∣∣∣∣∣
P1 R Q 0

R∗ P2 0 −Q
Q∗ 0 P2 R
0 −Q∗ R∗ P1

∣∣∣∣∣∣∣∣
, (3.88)
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P1 = (γ1 + γ2)P 2|| + (γ1 − 2γ2)P 2z ,

P2 = (γ1 − γ2)P 2|| + (γ1 + 2γ2)P 2z ,
(3.89)

Q = −i2
√
3γ3Pz(Px − i Py),

R =
√
3
[
γ2(P 2x − P 2y )− i2γ3Px Py

]
,

where P⊥ and Pz are the momentum operators perpendicular and

parallel to the z direction, respectively. γ1, γ2, and γ3 are the

Luttinger parameters.

For the superlattice or double-barrier structures only Pz is the
operator; Px and Py can be replaced by their eigen-values kx and ky .
To simplify the calculation of the transfer matrix, we transform the

Hamiltonian (3.88) by a unitary transform proposed by Briodo et al.

[14],

U =

∣∣∣∣∣∣∣∣∣∣∣

1√
2
e−iφ 0 0 − 1√

2
eiφ

0 1√
2
e−iη − 1√

2
eiη 0

0 1√
2
e−iη 1√

2
eiη 0

1√
2
e−iφ 0 0 1√

2
eiφ

∣∣∣∣∣∣∣∣∣∣∣
, (3.90)

where φ and η are determined by kx and ky . The transformed
Hamiltonian becomes two independent 2× 2 matrices,

UHLU + = 1

2

∣∣∣∣∣∣∣
P1 i |Q|P2 + |R| 0 0

−i |Q|P2 + |R| P2 0 0

0 0 P2 −i |Q|P2 + |R|
0 0 i |Q|P2 + |R| P2

∣∣∣∣∣∣∣ ,
(3.91)

where

|R| =
√
3
[
γ 2
2 (k

2
x − k2y)+ 4γ 2

3 k
2
x k

2
y

]1/2
and

|Q| = 2
√
3
[
k2x + k2y

]1/2
. (3.92)

Even with the 2 × 2 matrix the tunneling problem still cannot be

solved analytically. We will use the numerical integration method

[9]. We first consider the upper-left 2 × 2 matrix of Eq. 3.91; the

result of the lower right 2× 2 matrix is the same.

H1 = 1

2

∣∣∣∣ P1 i |Q| pz − |R|
−i |Q| pz − |R| P2

∣∣∣∣ . (3.93)
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Figure 3.12 Potential barrier region for hole tunneling.

The potential barrier region is illustrated in Fig. 3.12. On the left side

of the potential barrier region V (z) is assumed to be zero. The hole
wave function is of the form

ψ =
(
a
b

)
eik‖·r‖+ikzz. (3.94)

As the holes enter into the potential barrier region, where V (z) is
not a constant (see Fig. 3.12), the hole wave function becomes

ψ =
(
U1(z)
U2(z)

)
eik|| ·r, (3.95)

where k‖ is still a good quantum number.

From the effectivemass equationwith the Hamiltonian (3.93) we

obtain the differential equations satisfied by U1 and U2,

U ′′
1 = 1

γ1 − 2γ2

{
(γ1 + γ2)k2||U1 − |R|U2 + |Q|U ′

2 − 2[E − V (z)]U1
}
,

and

U ′′
2 = 1

γ1 + 2γ2

{
(γ1 − γ2)k2||U2 − |R|U1−|Q|U ′

1−2[E − V (z)]U2
}
.

(3.96)

From Eq. 3.96 we see that there is coupling between the heavy and

light holes, so we cannot deal with the heavy hole and light hole

independently.

First we calculate the holewave function on the left side and right

side of the barrier region. Because V (z)= V0 is a constant on the left
and right sides, inserting the hole wave function (Eq. 3.94) into the

effective mass equation with the Hamiltonian (Eq. 3.93) we obtain

the eigen-energy

E − V0 = 1

2
γ1k2 ± [

r22k
4 + 3(γ 2

3 − γ 2
2 )(k

2
x k

2
y + k2yk

2
z + k2z k

2
x )
]1/2

,

(3.97)
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where the sign ± corresponds to the light and heavy holes,

respectively. For given kx and ky , the kz can be calculated from

Eq. 3.97. The coefficients a and b of the hole wave function (3.94)
can be equally calculated.

When the energy and the parallel wave vectors kx and ky are
given, there are generally four independent hole states on the left-

hand side of the potential barrier region: the heavy hole states ψh,kh

andψh,−kh with perpendicular wave vectors kh and−kh and the light
hole statesψl ,kl andψl ,−kl with perpendiculars kl and−kl. The kh and
kl are calculated from Eq. 3.97 for given E , V0, kx , and ky . At the left
side and right side, the wave functions are, respectively,

ψl = αψh,kh + βψh,−kh + γψl ,kl + δψl ,−kl

and

ψr = α′ψh,k′
h
+ β ′ψh,−k′

h
+ γ ′ψl ,k′

l
+ δ′ψl ,−k′

l
. (3.98)

The coefficients (α, β , γ , δ) and (α′, β ′, γ ′, δ′) are connected by a
transfer matrix, ⎛

⎜⎜⎝
α

β

γ

δ

⎞
⎟⎟⎠ = (M)

⎛
⎜⎜⎝

α′

β ′

γ ′

δ′

⎞
⎟⎟⎠ . (3.99)

Suppose at the right side a heavy hole state goes out; then the

boundary conditions at the right barrier of the barrierU1,U ′
1 andU2,

U ′
2 can be determined. Numerically integrating Eq. 3.96 from right

to left (e.g., by the Adams method), we obtain the values of wave

functions and their derivativesU1,U ′
1 andU2,U

′
2 at the left boundary

of the barrier region.

The hole wave functions are given by Eqs. 3.98 and 3.94; thus

their coefficients α, β , γ , and δ are determined by the following set

of equations:

ah,khα + ah,−khβ + al ,klγ + al ,−klδ = U1,

bh,khα + bh,−khβ + bl ,klγ + bl ,−klδ = U2,

ikhah,khα − ikhah,−khβ + iklal ,klγ − iklal ,klδ = U ′
1,

and

ikhbh,khα − ikhbh,−khβ + iklbl ,klγ − iklbl ,klδ = U ′
2, (3.100)
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where (ahkh , bhkh) and (alkl , blkl ) are the coefficients of the wave
function (Eq. 3.94) for the heavy hole and light hole, respectively.

If there is a heavy hole at the right side (k′
z > 0), the transfer

matrix equation (Eq. 3.99) will be⎛
⎜⎜⎝

α

β

γ

δ

⎞
⎟⎟⎠ = (M)

⎛
⎜⎜⎝
1

0

0

0

⎞
⎟⎟⎠ . (3.101)

From Eq. 3.101 we obtain

M11 = α, M21 = β, M31 = γ , and M41 = δ . (3.102)

Similarly if there is a light hole at the right side (k′
z > 0), we obtain

M13 = α, M23 = β, M33 = γ , and M43 = δ. (3.103)

Knowing the transfer matrix (doesn’t need all matrix elements), the

transmission amplitudes T and the reflection amplitudes R can be
calculated from Eq. 3.99,

Thh = M33
D
, Thl = −M31

D
,

Rhh = M21M33 − M23M31
D

, Rhl = M41M33 − M43M31
D

, (3.104)

Tlh = −M13
D
, Tll = M11

D
,

Rlh = −M21M13 + M23M11
D

, Rll = −M41M13 + M43M11
D

,

and

D = M11M33 − M13M31, (3.105)

where Thh represents the transmission amplitude from heavy hole

state to heavy hole state, Thl that from heavy hole state to light hole

state, etc.

Figure 3.13 shows the transmission probabilities of the heavy

and light hole log10(T ∗T ) as functions of energy E at F = 0 and

k‖ = 0 [9]. Since for k‖ = 0 there is no coupling between heavy and

light holes and the resonant peaks correspond to the independent

heavy and light hole states in the quantum well, similar to Fig. 3.11.

Figures 3.14 and 3.15 show the transmission probabilities

(T ∗T )hh and (T ∗T )hl as well as (T ∗T )ll and (T ∗T )lh as functions of
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Figure 3.13 Transmission probabilities of the heavy and light hole

log10(T ∗T ) as functions of energy E at F = 0 and k‖ = 0.

Figure 3.14 Transmission probabilities (T ∗T )hh and (T ∗T )hl as functions
of energy E at F = 0 and k‖ = 0.3 (2π/7 nm).

energy E at F = 0 and k‖ = 0.3 (2π/7 nm), respectively [9]. From

Fig. 3.14 we see that (T ∗T )hh and (T ∗T )hl contain almost all the
resonant peaks of the heavy and light holes, which means that there

is strong mixing between them. One peak is an exception: the fourth
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Figure 3.15 Transmission probabilities (T ∗T )ll and (T ∗T )lh as functions of
energy E at F = 0 and k‖ = 0.3 (2π/7 nm).

peak appears in the hh curve but not in the hl curve. Similarly, in

Fig. 3.15 the fourth peak appears only in the lh curve. It indicates

that this peak is derived from a heavy hole resonance.

3.4 Resonant Tunneling in Dilute Magnetic
Semiconductors

When magnetic ions, for example, Mn2+, are doped in the semi-
conductor, then in the magnetic field the electronic energy levels

with different spin orientations will split and the splitting energy is

large, which is called giant Zeeman splitting energy. These kinds of

semiconductors are called dilute magnetic semiconductors (DMSs).

The giant Zeeman splitting energy

�E = N0αxeff 〈Sz〉 σz, (3.106)

where N0α is the s-d exchange interaction energy. For Zn1−xMnxSe
DMS, N0α = 0.27 eV. xeff is the effective concentration of magnetic
ions, 〈Sz〉 is the thermal average magnetic moment of magnetic ions:

〈Sz〉 = SBJ

(
SguBB

kB(T + T0)

)
, (3.107)
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where BJ is the Brillouin function and J is the angular momentum
quantum number of magnetic ion basis state. For Mn2+ ion, S = J
= 5/2. σz is the spin of conduction electrons. For holes in valence

band, Eqs. 3.106 and 3.107 are still valid, except the parameters are

changed to those of the valence band.

If the magnetic ion concentration x is several percents, in the
moderatemagnetic field the giant Zeeman splitting energy can reach

several even several tens of millielectron volt orders of magnitudes.

This energy level splitting will have different effects on the electrons

with positive and negative spin orientations. Chang et al. studied the

RT of electrons through a DMS potential barrier structure [15].

When a small bias is applied across the structure, a non-

equilibrium electron population will be generated. The current

density J = �σ J σ can be calculated,

J σ = e2V
2π2l2B

∑
n

(
1

2π

)∫ kFn

0

dkz

(
−∂ f0

∂E

)
T σ vσ

z , (3.108)

where T σ (n,EF) is the transmission probability at the Fermi energy
for different spin orientations, vσ

z = �kσ
z /m is the group velocity,

(1/2)πl2B is the density of state of each Landau level, lB = √
�/eB is

the magnetic length, and f0 is the equilibrium distribution function.

We use the approximation −∂ f0/∂E ≈ δ(E − EF) when kBT � EF.
The low-temperature conductance is given by

σσ = σ0
∑
n

T σ (kσ
nF ), (3.109)

where

kσ
nEF =

√
2m
�2

[
EF −

(
En ± �

2

)]
, (3.110)

σ0 = e2/2πl2Bh, � = J s−d 〈Sz〉 is the giant Zeeman splitting, and
En = (n+ 1/2)�ωc is the energy of the Landau level. The total

conductivity is the sum of the conductivity of each Landau level at

the Fermi energy and for each spin state.

The degree of spin polarization (SP) of the current density is

defined by

P = J ↓ − J ↑

J ↓ + J ↑
, (3.111)
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Figure 3.16 Electron tunneling through a single ZnSe/Zn1−xMn0.07Se
(x = 0.07) barrier, TMR �R/R , and spin polarization as functions of

magnetic field for different DMS barrier thicknesses.

where J ↑ ( J ↓) is the spin-up (spin-down) current density of the
spin-polarized current. The tunneling magnetoresistance (TMR) as

a result of tunneling through the NMR/DMS structures is defined by

�R
R

= R(B)− R(0)
R(0)

= R(B)
R(0)

− 1 = σ (0)

σ (B)
− 1. (3.112)

Figure 3.16 shows the TMR�R/R as a function of themagnetic field
for different single DMS barrier thicknesses [15]. The inset gives the

SP versus the magnetic field. The potential profiles for B = 0 and

B �= 0 are also plotted. The solid, dashed, dotted, and dash-dotted

curves correspond to different thicknesses of the DMS layer: 5, 10,

15, 20 nm, respectively. The other parameters for ZnSe/Zn1−xMnxSe
are m∗ = 0.16 m0, T0 = 1.4 K, N0α = 0.17 eV, and potential barrier

height Vb = 10 meV (x = 0.07). From Fig. 3.16 we see that the

TMR decreases and oscillates with an increasing magnetic field.

The oscillations of the TMR and the SP are weakened by increasing

the DMS barrier thickness. These oscillations are mainly attributed

to the oscillation of the spin-down conductivity component σ ↓/σ0,
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Figure 3.17 (a) Tunneling magnetoresistance (TMR) �R/R of a NMS

double-barrier structure with DMS contacts as a function of magnetic

field. The inset shows the spin polarization as a function of magnetic

field. (b) Total conductivity (thick curve), spin-up (dotted), and spin-down

(dashed) components as functions of magnetic field.

which is enhanced by an increasing magnetic field and weakened

by the thickness of the DMS layer. The σ ↓/σ0 is larger than that of
spin-up component σ ↑/σ0, since the barrier height seen by the spin-
up electron is higher than that seen by the spin-down electron due

to the magnetic field–induced s–p exchange interaction. Therefore
the SP increases and saturates with an increasing magnetic field and

barrier thickness.

Figure 3.17 shows the TMR �R/R of a non-magnetic semi-

conductor (NMS) double-barrier structure with a DMS well and

contacts as a function of magnetic field [15]. The inset in Fig. 3.17a

shows the SP as a function of magnetic field. The parameters are EF
= 60meV and Vb = 75meV for Cd1−yMgyTe/Cd1−xMnxTe (x = 0.04,

y = 0.08). From Fig. 3.17a we observe a peculiar beat pattern in the

TMR and SP curves, which is directly related to the superposition

of the s–p spin-split transmission channels. When the magnetic

field increases, the landau levels are swept across the Fermi surface

one by one, resulting in oscillations in the magnetoresistance,

similar to those of Shubnikov de Haas (SdH) oscillations. And the

s-d exchange interaction leads to a giant Zeeman splitting. The

beating is a result of the fact that the total current is composed

of spin-up and spin-down components. The interplay between the

spin-up and spin-down channels results in the beat pattern in
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Figure 3.18 (a) Tunneling magnetoresistance (TMR) �R/R of a DMS

double-barrier structure with NMS contacts as a function of magnetic field.

The inset shows the spin polarization as a function of magnetic field. (b)

Total conductivity (thick curve), spin-up (dotted), and spin-down (dashed)

components as functions of magnetic field.

the magnetoresistance. This is clearly demonstrated in Fig. 3.17b,

which shows the total conductivity (thick curve), spin-up (dotted),

and spin-down (dashed) components. The phase difference of both

currents results in the beat pattern of the total TMR and SP.

Figure 3.18a shows the TMR �R/R of a DMS double-barrier

structure with a NMS well and contacts as a function of magnetic

field [15]. The inset shows the SP as a function of magnetic field. The

parameters are EF = 60meV and Vb = 75meV for ZnSe/Zn1−xMnxSe
(x = 0.2). Similar oscillating and beat behaviors as in Fig. 3.17a

are found. Figure 3.18b shows the total conductivity and two

components as functions of magnetic field. The left-down inset is

the schematic diagram of the potential energy; in the magnetic field

the potential heights for the spin-up and spin-down electrons are

different, resulting in different tunneling probabilities T↑↓. From
Fig. 3.18a we see that the beat of the magnetoresistance is obvious.

The SP oscillates with themagnetic field and is obviously larger than

1, that is, the spin-down current is dominant.

Grube et al. fabricated a BeTe/Zn1−xMnxSe/BeTe double-barrier
RTD and observed a SP of up to 80% in the tunneling current with a

semimagnetic layer of only 3.5 nm thickness [16]. Figure 3.19 shows

the schematic diagram of the potential energy of this device; the

middle potential well is DMS Zn1−xMnxSe, and the magnetic field
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Figure 3.19 Schematic diagram of the potential energy of BeTe/

Zn1−xMnxSe/BeTe double-barrier resonant tunneling diode (RTD).

is applied in the z direction (perpendicular to the junction). Due
to the giant Zeeman splitting effect the energy levels of the spin-

up and spin-down electrons split. In the magnetic field B = 2.5 T

the splitting energy is about 20 meV. When the bias is applied to

the diode, if the Fermi energy level of the electron in the injecting

region and the spin-down energy level in the well region coincide,

there will be a tunneling current with spin-down polarization. At the

same time the spin-up electron cannot tunnel through the device.

Therefore in the collecting region we obtain electrons with only one

spin orientation; the SP degree approaches 1 or−1.
To measure the SP degree a III-V Al0.07Ga0.93As/GaAs LED is

grown directly on the bottom of the RTD. The tunneling current from

the RTD is directly injected into the LED, and the spin-polarized

electrons combine with holes in the quantum well. Measuring

the circular polarization degree of the luminescent light, one can

determine the SP degree according to the selected rule of the

electron-hole transition [17].

The SP degree of injected current can be derived from the circular

polarization degree of the LED luminescence [17],

Popt = (3n↑ + n↓)− (3n↓ + n↑)
(3n↑ + n↓)+ (3n↓ + n↑)

= 2n↑ − 2n↓

4n↑ + 4n↓ = 1

2
PJ, (3.113)

where n↑ and n↓ are the occupied number of spin-up and spin-down
electrons, respectively. PJ is the SP degree of the current; thus the SP
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Figure 3.20 Magnetic dependence of the spin polarization degree (•) at
a constant voltage of 1.9 V at the beginning of the first resonance in the

AlGaAs/GaAs LED. For comparison the results for the nonmagnetic RTD are

also shown (+,×).

degree of the current is double of the circular polarization degree of

luminescence.

Figure 3.20 shows the magnetic dependence of the SP degree (•)
at a constant voltage of 1.9 V at the beginning of the first resonance

in the AlGaAs/GaAs LED [16]. For comparison the results for the

nonmagnetic RTD are also shown (+, ×). The results prove that
the magnetic RT structure is the origin of the spin injection. From

Fig. 3.20 we see that the SP degree increases with the magnetic

field until it saturates at 80% for fields above 2–3 T, coinciding very

well with the saturation of the giant Zeeman splitting in DMSs. Test

measurementswith optical excitation of nonpolarized carriers in the

same structure with nonmagnetic BeTe-ZnSe tunneling structures

reveal only a small polarization degree below 15%.

Figure 3.21 shows the voltage dependence of the SP degree and

I–V curve at a constant magnetic field of 2.5 T around the first

resonance of the 3.5 nm/3.0 nm BeTe/Zn0.94Mn0.06Se RTD [16].

From Fig. 3.21 we see a clear reduction of the polarization degree

over the resonance, which can be explained by the offset of the

resonant spin-down level in the well (see Fig. 3.19). Although a
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Figure 3.21 Voltage dependence of the spin polarization degree and I–V
curve at a constant magnetic field of 2.5 T around the first resonance of the

3.5 nm/3.0 nm BeTe/Zn0.94Mn0.06Se RTD.

reversal of the spin orientation has not been observed, the SP at a

constant drive current of 50 μA can be from 80% down to 38% by

merely changing the external voltage from 1.8 to 2.3 V. The reason

that the spin-up polarization has not been observed is because the

transit time is well above 10−7 s in the present RTD, whereas

the spin-relaxation times in diluted magnetic semiconductors are

in the range of 10−12 s. Thus, electrons that enter the ZnMnSe
quantum well in resonance with the higher energy spin-split

subband level will very likely relax into the lower energy spin-split

level before they are injected into the III-V material.

Xia et al. studied theoretically the spin-polarized current through

a RTD made of a semimagnetic semiconductor [18]. The structure

is shown in Fig. 3.19; the parameters are the same as in Ref. [16]:

B = 2.5 T, T = 1.6 K, T0 = 1.4 K, and concentration of Mn2+ ions

x = 0.06. Because the temperature is very low, we take T = 0 K

in the calculation. Thus the tunneling current is given by Eq. 3.79.

Because the RTD is in the magnetic field along the z direction
(current direction), one should use the density of states of Landau

energy levels instead of the two-dimensional density of states in

Eq. 3.79,

J = e
2π2�

(
eB
π�c

)∫ EF

0

dEzN(EF − Ez)T (Ez) , (3.114)
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where eB/(π�c) is the density of states of each Landau energy level,

N(EF − Ez) = int

(
EF − Ez
�ωc

− 1

2

)
. (3.115)

The transmission probability T (Ez) is calculated by the numerical
method.

The parameters of the RTD are well width 3.5 nm, barrier width

3 nm, and potential barrier height 1890 meV. The electron effective

masses are assumed to be equal for the well and barrier, m∗ = 0.16

m0. For the BeTe/ZnTe quantumwell there are three confined states

in thewell, whose energies are 132, 521, and 1135meV, respectively.

The electron density n in the injection region is 1019 cm−3. Using
the relation EF = �

2(3π2n)2/3/(2m∗), we obtain the Fermi energy
EF = 105.8 meV. In the calculation we take EF = 100 meV.

Figure 3.22 shows the spin-polarized tunneling current (down

∇ , up �), total current (�), and SP degree (•) as functions of
bias voltage at B = 2.5 T when the Fermi level crosses over the

first quasi-confined state [18]. From Fig. 3.22 we see that when

the electric field is such that the Fermi level is near the first

confined state there is only one kind of spin orientation, that is,

spin-down, and the polarization degree reaches 1. As the electric

field (voltage) increases, the current of the other kind of spin

orientation, that is, spin-up, increases and the polarization degree

decreases gradually. These results are basically consistent with

Figure 3.22 Spin-polarized tunneling current (down∇ , up�), total current

(�), and spin polarization degree (•) as functions of bias voltage at B = 2.5 T

when the Fermi level crosses over the first quasi-confined state.
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the experimental results [16]. When the electric field increases

continuously the opposite process occurs. The current of the spin-

up becomes larger than that of the spin-down, and consequently,

the polarization degree becomes negative. But this behavior has

not been observed experimentally; the reason has been indicated

above.
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Chapter 4

Longitudinal Transport of Superlattices

Longitudinal transport in a superlattice is transport along the

growth direction of the superlattice; the resonant tunneling dis-

cussed in the preceding chapter is one of the forms of longitudinal

transports. The path of the longitudinal transport is very short, only

several or several tenths of nanometers. The effect of scattering on

electron motion is not obvious. Electron motion is mainly controlled

by the quantum effect. At the same time, electron motion velocity is

generally very higher than the thermal balance velocity of carriers;

therefore these kinds of devices are called quantum effect devices

or hot-electron devices [1]. The advantage of such a device is high

velocity, and it can be used to fabricate high-frequency devices. But

due to the delay of the circuit, for example, the RC time delay, the

extremely high velocity in the active region cannot be represented

in the whole device performance. Now people use the strong

or modulated nonlinear current-voltage characteristics or special

electrode symmetry to realize a more complex circuit performance

and to replace the circuit unit constructed by a large number of

transistors or passive circuits; for example, they use a few tunneling

devices to realize a multiple value memory and logic circuit.

The largest obstacles of the practical application of quantum

effect devices and hot-electron devices are the difficulties of room
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temperature operation and large-scale integration, resulting in that

they are now only used in some special cases.

4.1 Miniband Transport of a Superlattice

When the potential barrier width of a superlattice becomes

gradually smaller, the confined states of neighboring wells will

interact and the energy of a single confined state becomes a

broad band, called a miniband. These neighboring confined states

in quantum wells are similar to the atoms of a one-dimensional

(1D) atomic chain. Assume that the energy of each atomic state

is E0, the interaction energy of neighboring atoms is V0, and the
distance between neighboring atoms is d; then the tight binding
wave function of the atomic chain is

ψk = 1√
N

∑
i

eikRiφi (r), (4.1)

where k is thewave vector, Ri is the coordinate of the i -th atom, φi (r)
is the wave function of the i -th atom, and N is the total number of

atoms. The energy of the atomic chain,

E = ψ∗Hψ = 1

N

∑
i j

e−ikR jφ∗
j (r)He

ikRiφi (r)

= E0 + V0eikd + V0e−ikd

= E0 + 2V0 cos kd. (4.2)

Equation 4.2 can be also written as

Ez(k) = E0 − �

2
cos kd, (4.3)

where� = 4|V0| is the miniband width, which is proportional to the
interaction energy V0 of confined states in neighboring wells, that is,
proportional inversely to the width of the barrier. Figure 4.1 shows

� as functions of the barrier width for a fixed well widthw = 3.5 nm

in a GaAs/AlAs superlattice.

The miniband given by Eq. 4.3 is different from the ordinary

energy band of the semiconductor in the following points: (i) The

semiconductor energy band is three-dimensional isotropic, while

the superlattice miniband is highly anisotropic; in the x and y
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Figure 4.1 � as functions of the barrier width for a fixed well width

w = 3.5 nm in a GaAs/AlAs superlattice.

directions it is same as the bulk energy band, but in the z direction
it is a band with a small width � (generally several tenths of

millielectron volts). (ii) A semiconductor energy band is defined

in the Brillouin zone −π/a < k < π/a for each direction, where
a is the lattice constant. The miniband is defined in the Brillouin
zone of z direction −π/d < k < π/d, where d is the period of the
superlattice in the z direction. d � a, so the Brillouin zone of the
miniband is very smaller than that of the bulk energy band. (iii)

In the applied electric field the electrons in the bulk material move

near the center of the Brillouin zone and are scattered by impurities

or other scattering centers. The derivation of distribution function

from the balance state is very small, so the transport can be treated

by the perturbation method, for example, solving the Boltzmann

equation. In the superlattice due to the small Brillouin zone in the

z direction, in the electric field the electron can reach the edge of
the Brillouin zone (k = ± π/d) before it is scattered. At the edge
of Brillouin zone the electron effective mass is negative, so negative

conductance is possible.

The electron motion equation in a semiconductor is

�
dk
dt

= eF, (4.4)
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where k is the wave vector and F is the applied electric field. In
the electric field along the z direction the electron moves from the

center of the Brillouin zone and after time τ reaches the edge of the

Brillouin zone π/d. Then

�k = �

(π

d

)
= eF τ . (4.5)

If the scattering relaxation time is longer than τ , then the electrons

can reach the edge of the Brillouin zone and produce negative

conductance. Esaki et al. predicted the Bloch oscillation is probably

observed in superlattices on the basis of this idea [2]. Equation 4.5

becomes a necessary condition of occurrence of negative differential

conductance (NDC). In the following we accept the relaxation

approximation proposed by Huang et al. [3].

From Eq. 4.3 the electron velocity in the z direction

v = 1

�

∂Ez(k)
∂k

= �d
2�

sin kd. (4.6)

From Eq. 4.4 the variation of the electron wave vector with time is

k = k0 + eF
�
t, (4.7)

where k0 is the initial wave vector. Suppose the electron scattering
time is τ ; then the average drift velocity,

vd(k0) = 1

τ

∫ ∞

0

v(k0, t)e−t/τdt

= �eF d2τ
2�2

· cos k0d + �

eF dτ sin k0d

1+ ( eF dτ
�

)2 . (4.8)

The electron total energy

E = Ez(k)+ �
2k2||
2m∗ . (4.9)

Assuming that the electrons satisfy the Boltzmann distribution, the

electron density

n = C
4π2

∫ π/d

−π/d
dk exp

(
− Ez(k)
kBT

)∫ ∞

0

dk2|| exp

(
− �

2k2||
2m∗kBT

)

= C · m
∗kBT

π�2d
I0

(
�

2kBT

)
, (4.10)

where I0 is the zero-order Bessel function of an imaginary argument.
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The calculation of the current density is similar to Eq. 4.10.

Calculate the statistical average of the drift velocity vd(k),

j = C
evd0
4π2

· 2m
∗kBT
�2

∫ π/d

−π/d
dk cos kd exp

(
− Ez(k)
kBT

)

= C
evd0m∗kBT

π�2d
I1

(
�

2kBT

)

= nevd0
I1(�/2kBT )
I0(�/2kBT )

, (4.11)

where

vd0 = �eF d2τ
2�2

· 1

1+ ( eF dτ
�

)2 . (4.12)

In calculating Eq. 4.11 the term sin kd in vd(k) (Eq. 4.8) is odd
symmetric to k. Hence its contribution to the integration for k equals
zero.

Therefore the current composes two parts: one is related to

electric field strength F , which is included in vd0 (Eq. 4.12); the
other is related to temperature, which is included in I1/I0. When the
electric field is very small, eFdτ/h� 1, then

vd0 = �eF d2τ
2�2

= eF τ

mz
∗ , (4.13)

wheremz
∗ is the effective mass in the z direction,

1

mz
∗ = 1

�2

∂2Ez(k)
∂k2

∣∣∣∣
k=0

= 1

�2

�d2

2
. (4.14)

Equation 4.13 is the result of the linear transport theory. If the

electric field F and the relaxation time τ are large enough so

eFdτ/h ≈ 1, then nonlinear conductancewill appear and the current

will not be proportional to the electric field.

Sibille et al. observed first the nonlinear conductance caused by

the miniband transport [4]. They grew some GaAs/AlAs superlattice

samples: the width of the GaAs layer is 10∼20 monolayers (2.83 Å)
and that of the AlAs layer is 3∼7 monolayers. The I–V curves of

three samples at 300 K are shown in Fig. 4.2 [4], where (12/4)

represents that the monolayer number of GaAs and AlAs, 12 and 4,

respectively. From Fig. 4.2 we see that when the bias voltage is very
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Figure 4.2 I–V curves of three samples at 300 K.

small (3 V) there appears nonlinear conductance. From Eq. 4.12 the

drift velocity can be phenomenally written as

vd(F ) = μF
1+ (F /F0)β

, (4.15)

where β is a parameter. When β = 2, Eq. 4.15 is just Eq. 4.12. When

β > 1, vd(F ) reaches maximum if F equals a critical field Fc. When
F > Fc, vd(F ) decreases and exhibits a negative differential velocity
(NDV). When β = 1, vd(F ) approaches a saturated value; there is
no maximum, as shown in Fig. 4.2. When β = 2, vd(F ) reaches the
maximum vp = μF0/2 at F = F0.

Sibille et al. measured the I–V curves for another set of samples

that have larger miniband widths �. The I–V curves for samples

with � = 133, 81, and 52 meV are shown in Fig. 4.3 [5]. Different

from Fig. 4.2 the I–V curves in Fig. 4.3 show obvious NDC behavior.

A shown in Fig. 4.3 the samples are ohmic at a low bias and

exhibit NDC beyond a critical voltage. The peak electron velocity vp
can be estimated from the peak current density J p by applying J p =
envp, where n= 6× 1016 cm−3 is the electron density. For the (17/4)
sample, J p = 40 kA/cm2 and vp = 4 × 106 cm/s; for the (13/3)

sample, J p = 140 kA/cm2 and vp = 107 cm/s. Because the electron

velocity is very high, these samples can be used to fabricate high-

frequency devices. For the highest value, a simple calculation leads
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Figure 4.3 I–V curves for samples with � = 133 (i), 81 (ii), and 52

(iii) meV.

to an expected maximum fundamental frequency fmax = vp/L of
200 GHz, where L is the device thickness L= 0.5 μm.

Another NDC mechanism was proposed, relying on a transition

between Bloch miniband transport and hopping transport between

Wannier–Stark quantized levels (WSL). To differentiate between the

negative effective mass (NEM) and WSL mechanisms, the edFc and
vp/d as a function of � for a series of samples are shown in Fig. 4.4

[4]. According to the NEMmechanism, Eqs. 4.12 and 4.15, (β = 2),

Fc = �

edτ
, edFc = �

τ
, (4.16)

and

vp = μFc
2

= �d
4�

,
vp
d

= �

4�
. (4.17)

On the other hand, the WSL theory predicts edFc ≈ � and a

superlinear dependence of vp/d on �. From Fig. 4.4 we see that the

experimental values of edFc rapidly and strongly deviate from the
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Figure 4.4 edFc and vp/d as a function of � for a series of samples. Inset:

Conduction band diagram of the relevant levels.

line predicted by the WSL mechanism. Furthermore, vp/d appears
to vary linearly with � at least to � = 100 meV. These two features

strongly argue against the WSL mechanism and in favor of the NEM

one.

Figure 4.5 shows the frequency dependence of the device

conductance for several applied biases [6]. Both curves (two

samples) exhibit sharp resonances, resulting in a large negative

conductance at peak frequency fm. The resonance frequencies are
2.7 GHz and 4.9 GHz for the samples of total thickness L= 1.2 μm

and 0.6 μm, respectively. The fm indeed scales almost linearly with
the inverse of the square loop (SL) thickness, a logical consequence

of a transit time effect.
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Figure 4.5 Microwave conductance as a function of frequency for several

applied biases.

4.2 Bloch Oscillation in Superlattices

When Esaki et al. proposed the miniband transport of a superlattice,

they predicted that it is possible to observe the Bloch oscillation in

the superlattice [2]. If the collision relaxation time in the superlattice

τ satisfies Eq. 3.5, then the Bloch oscillation can occur, whose period

equals the time that the electron travels one circle along the Brillouin

zone.



April 2, 2025 16:20 JSP Book - 9in x 6in 04-QWM-04

124 Longitudinal Transport of Superlattices

�
�k
T

= �

(
2π

d

)
1

T
= eF

T = �

eF

(
2π

d

)
, ωB = 2π

T
= eF d

�
, (4.18)

where ωB is called Bloch oscillation frequency. To observe Bloch

oscillation experimentally, people have made many years efforts,

until 1996, when the strong terahertz photoelectric resonance at

Bloch oscillation frequency was observed [7].

The experimental sample in the superlattice structure consists

of 40 periods of 8 nm wide GaAs wells and 2 nm AlGaAs barriers

(miniband width � = 22 meV). The superlattice is homogeneously

Si doped with a concentration of n = 3 × 1015 cm−3. In the

University of California, Santa Barbara (UCSB), free electron laser

(FEL) were used as a terahertz radiation source, giving pulses of

intense terahertz radiation with a pulse of several microseconds.

Therefore the electric fields, including direct and alternating, are

applied to the superlattice sample longitudinally.

F = F0 + F1 cosωt. (4.19)

Figure 4.6 shows the DC current-voltage curve for increasing FEL

intensity. The FEL frequency was fixed to be 0.6 THz (Fig. 4.6a)

and 1.5 THz (Fig. 4.6b) [7]. The curves are shifted downward for

increasing laser intensity (F1). From the figures we see that besides

theNDC, there are a series of resonance peaks at the Bloch frequency

and their harmonics. When the laser intensity is increased further

the first peak starts to decrease and a second peak at about twice

the voltage of the first peak is observed due to a two-photon

resonance. At the highest intensities up to a four-photon resonance

was observed. The authors attributed the first additional peak to

a resonance of the external laser field where the Bloch frequency

ωB = ω. The other peaks are higher resonances, where ωB = nω.
To explain this behavior we still use the relaxation time

approximation [3] used in the last section to calculate the current

density in the presence of an alternating field. Similar to Eqs. 3.6 and

3.7, in the electric field (Eq. 4.19) we have

k = k0 + eF0
�
t + eF1

�ω
sinωt. (4.20)
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Figure 4.6 DC current-voltage curve for increasing FEL intensity. The FEL

frequency was fixed to 0.6 THz (a) and 1.5 THz (b).

v(t) = �d
2�

sin kd

= �d
2�

sin

(
k0 + eF0t

�
+ eF1

ω
sinωt

)
d

= v0
2i

[
ei(α+β sinωt) − e−i(α+β sinωt)] . (4.21)

Expanding Eq. 4.21 to t, we obtain

v(t0) = v0

{
sinα

[
J 0(β)+ 2

∞∑
k=1

J 2k(β) cos 2kωt

]

+ cosα

[
2

∞∑
k=0

J 2k+1(β) sin(2k+ 1)ωt

]}
. (4.22)

where

v0 = �d
2�

, α = eF0d
�

t + k0d, and β = eF1d
�ω

. (4.23)

When the collision relaxation is taken into account, the electron drift

velocity equals

vd(k0) = 1

τ

∫ ∞

0

v(k0, t)e−t/τdt. (4.24)
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Inserting Eq. 4.23 into Eq. 4.24, at last we obtain

vd0 = �eF d2τ
2�2

∞∑
n=0

J n

(
eF1d
�ω

)
Qn,

Qn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1+
⎛
⎝eF0dπ

�

⎞
⎠

2 , n = 0

1+
nω�
eF0d

1+
⎛
⎝eF0d

�
+nω

⎞
⎠

2

τ 2

±
1− nω�

eF0d

1+
(
eF0d
�

− nω
)2

τ 2

.
n = 2k
n = 2k+ 1

(4.25)

Phenomenally we can write Eq. 4.25 as follows:

vd0 =
∞∑
n=0

vdn(F0),

vdn(F0) = μnF0

1+
(
F0
Fc

± nωτ
)2 . (4.26)

Equation 4.26 can be used to explain the peak positions in Fig. 4.6.

Differentiating vdn(F0) in Eq. 4.26 to F0, we obtain

F0 = nωτ Fc = nωτ · �

edτ
, where nω = F0ed

�
= ωB. (4.27)

vdn (F0) have maximum values. This explains the peaks correspond-

ing to nωFEL in the I–V curve of Fig. 4.6, that is, the terahertz

laser excites the Bloch oscillation in the superlattice. When the laser

intensity F1 increases, the amplitudes of peaks change according to
the expanding coefficients in Eq. 4.25 J n(eF1d/�ω), which oscillates
as F1 increases.

We calculated the direct current (DC)’s conductance with the

above relaxation time approximation theory. In the followingwewill

use the simplified balance equation theory [8] to study the dynamic

behavior of the superlattice in the DC and alternating current (AC)

electric fields,

dvd
dt

= eF (t)
mz

∗(ε)
− vd

τv
,

dε
dt

= eF (t)vd − (ε − εT)

τε

, (4.28)
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where vd is the drift velocity; ε is the electron energy; mz
∗ (ε) is the

electron effective mass,

1

mz
∗(ε)

= 1

�2

∂2Ez(k)
∂k2

= �d2

2�2
cos kd = 1

mz
∗(0)

(
1− 2ε

�

)
; (4.29)

εT is the electron average thermal energy,

εT = �

2

[
1− I1(�/2kT )

I0(�/2kT )

]
; (4.30)

and τv and τε are the electron momentum and energy scattering

relaxation times, respectively.

To check the simplified balance equation (Eq. 4.28), we calculate

the steady solution of Eq. 4.28 in the DC bias voltage. Let eF(t) = eF
and dvd/dt = dε/dt = 0. We obtain

ε = C + εT

1+ 2C/�
, C = (eF )2τvτε

m∗
z(0)

. (4.31)

vd = 1

eF τε

[ε − εT] = 1

eF τε

C · I1/I0
1+ 2

�
C

= vd0 · I1
I0
, (4.32)

vd0 = �eF d2τv
2�2

· 1

1+ ( eF dτ
�

)2 , τ = √
τvτε . (4.33)

Equation 4.32 is just Eq. 4.11 and Eq. 4.12; only the relaxation time

τ is replaced by τv and τε .

If the peak value of the drift velocity vp and the critical electric
field Ec are known from the experiment, then the τv and τε

can be calculated from Eq. 4.32. For example, for the GaAs/AlAs

superlattice, T = 300 K, � = 110 meV, vp/d = 1.4 × 1012 s−1, and
eEcd = 3.1 meV and we obtain τε = 2.2 × 1012 s−1, and τv = 1.1 ×
1013 s−1 [8].

Introduce the efficiency of oscillator η,

η( f ) = Palt
Pbias

=
∫
v(t)F1 cosωtdt∫

v(t)F0dt
, (4.34)

where Pbias and Palt are the powers absorbed from the bias source

and the alternating field, respectively. The integration is taken

over an oscillation period, and f = ω/2π is the frequency of the

alternating field. If v(t) and alternating field F1 cosωt have the
same phases, then Palt > 0 (η > 0) energy of the alternative field
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Figure 4.7 Calculated efficiencies as a function of frequency for the

mentioned superlattice parameters [8]; (a), (b), and (c) correspond to

different DC biases F0/Fc = 2, 4, and 8.

is absorbed by the superlattice. If v(t) and F1cosωt have opposite
phases Palt < 0 (η < 0) energy is transferred to the alternating field,

that is, the alternating field is amplified and, in principle, oscillation

of the system is possible.

Figure 4.7 shows the calculated efficiencies as a function of

frequency for the mentioned superlattice parameters [8]; (a), (b),

and (c) correspond to different DC biases F0/Fc = 2, 4, and 8. The

number marked at each curve is the strength of the alternating
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field F1/Fc. From the figure we see that the frequency range of

amplification (η < 0) extends from almost DC to about the Bloch

frequency f
 = eF0d/h that lies in the terahertz frequency range.
With an increasing bias field the η( f ) curves show a fine structure

near the subharmonics fn = f
/n, where n= 2, 3, . . .

Experimentally Wankle et al. have observed that when a micro-

wave of 600 GHz irradiates on the GaAs/Al0.3Ga0.7As superlattice, a

strong third-order harmonic wave related to the injection power can

be excited [9]. The transfer efficiency can reach 0.1%.

4.3 Hopping Conduction between Wannier–Stark
States

Wannier [11] predicted early that when a quasi-continuous band is

under an applied electric field, it can split into a serious of discrete

energy states and the wave function changes from the expanded

state to the local state. Later these states are called Wannier–

Stark states. In the preceding section we discussed the longitudinal

miniband transport in a superlattice. When the applied electric field

along the z direction F is large enough, so that eFd > � (miniband

width), that is, the potential difference between neighboring wells

is larger than �, then the miniband doesn’t exist, which splits into

a series of discrete energy levels. The electron state is localized in

a quantum well, and becomes the Wannier–Stark state. In this case

the conduction is determined by the hopping conduction of electron

states of neighboring quantum wells, as shown in Fig. 4.8 [12].

Figure 4.8 shows the energy bands of neighboring two quantum

wells with s distance d in the applied electric field F . The potential
difference is eFd. If eFd is such that level 1 coincides with level
2′, electrons may tunnel resonantly from 1 to 2′, marked by (a),
followed by an inelastic scattering process marked by (b) to level

1′, in order to repeat the process onto the next cell. Another process
is the direct inelastic scattering process from 1 to 1′, marked by (c).
These two processes all need the participation of phonons; thus the

hopping conductance is obviously lower than that within one band,

resulting in NDC.
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Figure 4.8 Energy bands of two neighboring quantumwells with a distance

d in the applied electric field F .

To study the hopping conductance of Wannier–Stark states, we

used the one-band model to calculate the Wannier–Stark state [13].

The effective mass Hamiltonian of electron in the electric field along

the z direction is

H = E (k)+ eF z, (4.35)

where E (k) is the 1D energy band dispersion relation as shown

in Eq. 4.3. We write the Schrödinger equation in the momentum k
space, [

E (k)+ eF i
d
dk

]
ψ(k) = Eψ(k), (4.36)

where the coordinate z becomes an operator in the momentum

space:

z = i
d
dk
. (4.37)

The solution of Eq. 4.36 is easily obtained,

ψ(k) = C exp
{

− i
eF

∫ k

0

[E − E (k′)]dk′
}
, (4.38)
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where C is a normalization constant. Because E (k) is a periodic
function of k, ψ(k) must be a periodic function in momentum space

with period 2π/d, which demands that

1

eF

∫ π/d

−π/d
[E − E (k)]dk = 2πn. (4.39)

The eigenenergy is obtained from Eq. 4.39,

E = eF nd + d
2π

∫ π/d

−π/d
E (k)dk. (4.40)

Equation 4.40 is just theWannier–Stark ladder formula first derived

by Wannier [12]. The second term in Eq. 4.40 is the average energy

of the energy band.

The energy band E (k) can be expanded by a series of cosine
functions,

E (k) =
N∑
n=0
λn cos(nkd). (4.41)

Then the eigenenergy in Eq. 4.40 is

E = eF nd + λ0. (4.42)

Equation 4.42 represents the energy of the electron state in each

quantum well, called the Wannier–Stark ladder.

The normalization constant C = √
d in awave function (Eq. 4.38)

is obtained from the normalization condition,

1

2π

∫ π/d

−π/d
|ψ(k)|2dk = 1. (4.43)

With the eigenenergy (Eq. 4.42) we transform the wave function

ψ(k) (Eq. 4.38) into the coordinate representation,

ψ(z) =
√
d

2π

∫
dkϕk(z) exp

{
−i 1
eF

∫ k

0

[E − E (k′)]dk′
}

=
√
d

2π

∫ π/d

−π/d
dkUk(z′) exp

{
i z′k+ 1

eF d

N∑
n=1

λn

n
sin(ndk)

}
,

(4.44)

where z′ = z-nd and ϕk(z) is the Bloch function with wave vector k in
the single band,

ϕk(z) = eikzUk(z). (4.45)
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Equation 4.44 gives a general formula of the wave function for any

form of band energy E (k). If we take only two terms in the band
energy expansion (Eq. 4.41),

E (k) = λ0 + λ1 cos kd, (4.46)

and let z′/d = ν −n (i.e., the coordinate at the center of the well) and
let Uk(z)= U0 be a constant, from Eq. 4.44 we obtain

ψ(z) = 1√
d
J n−v

(
λ1

eF d

)
U0. (4.47)

Equation 4.47 is just the result obtained by Bastard et al. [14] with

the one-band tight-binding model.

At the same time Xia et al. used a finite Kronig–Penny model

and series expansion method to calculate the eigenenergies and

eigenstates of the Wannier–Stark state. Because the Wannier–Stark

state is a local state, we take a large potential well with a finite

number of quantum wells and an infinite high barrier at the two

edges. We expand the wave function in a series of sine functions,

ψ(z) =
√
2

L

∑
n

Cn sin
(nπz

L

)
, (4.48)

where L is the width of the large well, the sine function guarantees
that the wave function equals zero at the edges, and the origin of

the z coordinate is taken at the left edge. Inserting the wave function

(Eq. 4.48) into the equation,

− 1

2m∗
d2ψ
dz2

+ [V (z)+ eF z]ψ = Eψ, (4.49)

where m∗ is the effective mass and V (z) is the Kronig–Penny

potential (finite superlattice potential), we obtain the secular

equation for the expansion coefficients Cn in an expanded form

(Eq. 4.48).

In calculationwe take the parameters for the GaAs/Al0.35Ga0.65As

superlattice: m∗ = 0.085 m0, potential barrier height 0.26 eV, and

widths of the well and the barrier 3 nm and 3.5 nm, respectively.

Figure 4.9 shows the distribution of the wave functions along the z
direction for the electric field 2 × 104 Vcm−1 (curve 1) and 5 × 104

Vcm−1 (curve 2) [13]. The unit of the abscissa is the superlattice d.
FromFig. 4.9we see thatwhen the electric field is small (curve 1) the
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Figure 4.9 Distribution of the wave functions along the z direction for the
electric field 2× 104 Vcm−1 (curve 1) and 5× 104 Vcm−1 (curve 2).

wave function extends over 10 periods and when the electric field

is large (curve 2) the wave function extends over 7 periods, more

local than the former. It is also to be noted that the wave function

is not symmetrical with respect to the origin: on the left-hand side

(lower potential) the wave function is oscillatory, taking positive

and negative values at successive wells, while on the right-hand

well (higher potential) the wave function is always positive, with

the maxima at the successive wells. It is also found that the wave

function values calculated from the numerical method and Eq. 3.47

are in good agreement.

Tsu et al. calculated inelastic scattering probabilities of process

(c) in Fig. 4.8 for phonon emission at 300 K as a function of F , at
fixed transverse energies ε⊥ = �

2k2⊥/2m
∗ = 0.1 eV [12]. Three curves

in Fig. 4.10 correspond to the total energy of the first well ε1 = 0.01,

0.02, and 0.1 eV (in the figure ε1 = 0.2 eV is wrong; it should be
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10–1

10–2

10–3

Figure 4.10 Transition probabilities of process (c) in Fig. 4.8 for phonon

emission at 300 K as a function of F , at fixed transverse energies ε⊥ =
�
2k2⊥/2m

∗ = 0.1 eV. Three curves correspond to the total energy of the first

well ε1 = 0.01, 0.02, and 0.1 eV.

0.02 eV).

ε1 = E0 + [
V 2 + α2

]1/2 + �
2k2⊥
2m∗ , (4.50)

where E0 is the energy of the confined state in the quantum well,

V is the interaction energy of neighboring wells, and 2α is the

energy-level difference of the two wells. From Fig. 4.10 we see that

the transition probability increases with increasing electric field F ,
reaches a maximum, and decreases as F increases continuously.

The larger is the ε1, the larger is the critical field Fc, at which the
transition probability reaches themaximum. Thus Fc is proportional
approximately to �, which corresponds to the formation of the

Wannier–Stark state, Fc ≈ �/ed. When the electric field F is small,
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the transition probability oscillates with F . It is caused by the Bessel
function factor in the Wannier–Stark wave function (4.47).
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Chapter 5

Mesoscopic Transport

5.1 Contact Resistance

It is found experimentally that when we measure a sample of

high mobility and small size, the current is always finite, though

the transport is ballistic. There occurs a problem: where does the

resistance come from?

Consider an experimental installation as shown in Fig. 5.1a [1]. A

conductor of length Land widthW is placed between contacts 1 and

2. According to the classical theory, the conductance of this conduc-

tor will equal G= σW/L, where σ is the conductivity, independent of

the sample dimensions.When the length Ldecreases, thenwewould
expect the conductance to grow infinitely. Experimentally, however,

it is found that the measured conductance approaches a limiting

value Gc when the length of the conductor becomes much shorter
than the mean free path (L� Lm).

Theory analysis indicates that the resistance arises from the

interface between the conductor and the contact; hence the

resistance G−1
c is called contact resistance. This contact resistance is

not due to the difference of two materials. The current is carried in

the contacts by infinitely transversemodes, but inside the conductor

only a few modes. This requires a redistribution of the current
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Figure 5.1 (a) A conductor connected with two contacts. (b) Conductor

energy band and electron filling state.

among the current-carrying modes at the interface, leading to

interface resistance.

To calculate the contact resistance G−1
c we consider a ballistic

conductor and calculate the current through it for a given applied

bias μ1 − μ2. Numerical calculations indicate that an electron can

exit from a narrow conductor into a wide contact with negligible

probability of reflection [2]. Therefore, the reflection is negligible

only when being transmitted from the narrow conductor to the wide

contact. Going the other way, from the contact to the conductor,

the reflections can be quite large.
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The +k state in the conductor is occupied by electrons coming
from the left contact until μ1, while the −k state is empty because
electrons are reflectionless through the right contact. The −k state
is occupied only by electrons coming from the right contact until

μ2, and the +k state is empty because electrons are reflectionless
through the left contact. The quasi-Fermi energy levels of +k and
−k states are μ1 and μ2, respectively, when a bias V = μ1 − μ2 is

applied (see Fig. 5.1b). At a low temperature the current equals that

carried by the electrons in the states between μ1 and μ2 (shaded

part of Fig. 5.1b).

The states in the narrow conductor belong to different transverse

modes or subbands, as shown in Fig. 5.1b. Each mode has a

dispersion relation E (N , k) with a cut-off energy

εN = E (N, k = 0), (5.1)

below which the current cannot propagate. The number of trans-

verse modes at an energy E is obtained by counting the number of
modes having cut-off energies smaller than E :

M(E ) =
∑
N

θ(E − εN). (5.2)

Consider a single transverse mode whose +k state is occupied

according to some distribution function f +(E ). A uniform electron

gas with n electrons per unit length moving with a velocity v carries
a current equal to env. Since the electron density associated with a
single k state in a conductor of length L is (1/L) we can write the
current I+ carried by the+k states as

I+ = e
L

∑
k

v f +(E ) = e
L

∑
k

1

�

∂E
∂k

f +(E ). (5.3)

Changing the summation over k to the integration, we obtain

I+ = e
L

· L
π

∫
dk · 1

�

∂E
∂k

f +(E ) = 2e
h

∫ ∞

ε

f +(E )dE , (5.4)

where ε is the cut-off energy of the transverse mode. If there are

multi-modes then Eq. 5.4 can be written as

I+ = 2e
h

∫ ∞

−∞
f +(E )M(E )dE , (5.5)
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where M(E ) is given by Eq. 5.2. The general result given by Eq. 5.4
is that the current carried per mode per unit energy by an occupied

state equals 2|e|/h (which is about 80 nA/meV).
At a low temperature the total current

I = I+ − I− = 2e
h

[∫ μ1

−∞
f +(E )M(E )dE −

∫ μ2

−∞
f −(E )M(E )dE

]
.

(5.6)

The number of modes M is constant over the energy range μ1 < E
< μ2, we can write

I = 2e
h
M
[∫ μ1

−∞
f +(E )dE −

∫ μ2

−∞
f +(E )dE

]

= 2e2

h
M
(μ1 − μ2)

e
, (5.7)

G = 2e2

h
M. (5.8)

Equation 5.8 is a universal result, independent of the length and

width of the conductor, the energy band dispersion, etc. The

conductance is quantized, which is integral times of 2e2/h. The
contact resistance is given by

G−1
c = h

2e2M
= 12.9 k�

M
. (5.9)

The contact resistance goes down inversely with the number

of modes. The contact resistance of a single-mode conductor is

∼12.9 k�, which is certainly not negligible. Only if the size of

the sample reaches macro-size, the M approaches infinite, and the

contact resistance can be neglected. Assuming that the width of

the sample is W and the electron energy is E , we can estimate the
number of modes M,

E = �
2

2m∗
(nπ
W

)2
and

M = Int

[
W
π

√
2m∗E
�2

]
= Int

[
W
λf/2

]
, (5.10)

where λf is the Fermi wavelength and Int(x) represents the integer
that is just smaller than x . If the typical electron density ns = 3.6 ×
1011 cm−2, then M = 1 forW = 22 nm and M = 47 forW = 1 μm.
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Figure 5.2 Point-contact resistance as a function of gate voltage at 0.6 K.

Inset: Point-contact layout.

Wees et al. reported the first measurements of the conductance

of single ballistic contacts in a two-dimensional electron gas (2DEG)

[3]. A novel quantum effect is found: the conductance is quantized

in units of 2e2/h, as shown in Eq. 5.8. A high-mobility 2DEG is

formed on the interface of GaAs/AlGaAs heterostructure grown by

molecular beam epitaxy. The electron density is 3.56 × 1011 cm−2,
and the mobility 85,000 cm2/Vs (at 0.6 K). Using electron beam

lithography, a metal gate is made on top of the heterostructure,

with an opening 250 nm wide (inset in Fig. 5.2). The point contacts

are defined by the application of a negative voltage to the gate. At

Vg = −0.6 eV the electron gas underneath the gate is depleted,

the conduction taking place through the point contact only. At this

voltage the point contacts have their maximum width, about equal

to the opening between the gates. By a further decrease of the gate

voltage, the width of the point contacts can gradually be reduced,

until they are fully pinched off at Vg = −2.2 eV.
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Figure 5.3 Point-contact conductance as a function of gate voltage,

obtained from the data of Fig. 5.2 after subtraction of the lead resistance.

Figure 5.2 shows the measured resistance of a point contact as

a function of gate voltage [3]. In total, 16 plateaus are observed

when the gate voltage is varied from −0.6 to −2.2 V. The measured
resistance consists of the resistance of the point contact, and a

constant series resistance from the 2DEG leads to the point contact.

The conductance calculated from the measured resistance after

subtraction of a lead resistance of 400 � as a function of gate

voltage is shown in Fig. 5.3 [3], which shows clear plateaus at integer

multiples of 2e2/h, verifying the theoretical result of Eq. 5.8.
Equations 5.8 and 5.9 are general theoretical results. It is still

not clear how is contact resistance is formed. Kirczenov calculated

the conductance of a short, narrow ballistic channel in a 2DEG [4].

The model is of a heterostructure in the x − y plane with a 2DEG
occupying the left (L) and right (R) half-spaces, x < −d and x > d,
respectively, and a narrow channel (C) of length 2d centered on the x
axis connecting the 2D regions; see Fig. 5.4 lower-right inset [4]. The

shaded part is the infinite high potential barrier region produced by

the metallic gate.
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Figure 5.4 Conductance G as a function of the electron Fermi level ξ at

T = 0 K. U = 0, d = 0, 1, 5, and 10 for curves a, b, c, and d. Curve

e: U = 2.5 and d = 10.

Suppose that an electron moves from the left region into the

channel region. Its energy is ε, wave vector is k = (k, K), and k and
K are the components along the x and y directions, respectively. The
wave function in the left region can be written as

ψ L
k (r) = eikxφk(y)+

∑
k′
aLk′e−ik′xφk′(y), (5.11)

where φk(y) = eiky and k′ = (2m∗εk/�2 − K ′2)1/2. The second term
in Eq. 5.11 represents the reflection wave. The sum is over all

transverse momentum K ′ so that imaginary values of k′ (evanescent
partial waves) are included. In the channel the wave function is

ψc
k (r) =

∑
n

(
a+
n e

iqnx + a−
n e

−iqnx)φn(y), (5.12)

where φn(y) is the eigenfunction of the n-th transverse eigenstate
of the confining potential U (y), φn = √

2/w sin(nπy/w), and qn =[
2m∗εn/�2 − (nπ/w)2

]1/2
. In the right-hand region the transmitting

wave (not including the reflection wave) is

ψ R
k (r) =

∑
k′
aRk′eik

′xφk′(y). (5.13)

Using the boundary conditions at x = −d and x = d, the continuities
of the wave function and its differential, we obtain four sets of
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equations of the coefficients aLk′ , a+
n , a

−
n , and a

R
k′ . Eliminating aLk′ and

aRk′ from the sets of equations yields the equations of a+
n and a

−
n [4],∑

n

[
(Tmn + qnδmn)e−iqnda+

n + (Tmn − qnδmn)eignda−
n

] = 2ke−ikdMKm

and ∑
n

[
(Tmn − qnδmn)eiqnda+

n + (Tmn + qnδmn)e−ignda−
n

] = 0

(m = 1, 2, · · · ), (5.14)

where

Tmn =
∑
k′
k′Mk′mM−k′n

and

Mkn =
∫ w/2

−w/2

φk(y)φn(y)dy. (5.15)

In terms of a+
n and a−

n , the electric current carried through the

channel by ψk is

ix(k) = < ψk| jx |ψk >= i�e
2m∗

∫ w/z

−w/z

(
ψ∗
k
∂ψk

∂x
− ψk

∂ψ∗
k

∂x

)
dy

= − �e
m∗

[
Re

∑
n

qn(|a−
n |2 − |a+

n |2)+Im
∑
n

qn(a+∗
n a−

n −a+
n a

−∗
n )

]
.

(5.16)

Under the electric potential V , the electron Fermi circle shifts dk
along the x direction. The total current J through the channel at
T = 0 is given by the sum of the contributions of all states ψk in

the k space, which is the difference of the Fermi circles before and
after shift, and in the energy interval eV near the Fermi energy EF,
where V is the potential difference between the two 2DEG regions.

The conductance is then

G =
∣∣∣∣ JV

∣∣∣∣ = −2
∫ a

−a

m∗e
h2k

ix (k) dK , (5.17)

where a = (
2m∗EF/�2

)1/2
and k = (

2m∗EF/�2 − K2
)1/2

.

Figure 5.4 shows the calculated conductance as a function of

electron Fermi energy [4], where the energy unit � = h2/8m∗W2,
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ÊF = EF/�, Û = U0/�, U0 is the potential inside the channel, the
aspect ratio d̂ = 2d/W , and the abscissa ξ = (

ÊF − Û
)1/2

. Û = 0

and d̂ = 0, 1, 5, and 10 for curves a, b, c, and d. Curve e: Û = 2.5 and

d̂ = 10.

The horizontal scale is for curve d; the other curves are offset

to the right by multiples of 1.1. Curve a is the limiting case of

zero aspect ratio, d̂ → 0. For this “ideal” point contact there is

no quantization of conductance; a channel of nonzero length is

necessary for quantization. In the cases of curves b, c, and d the

conductance is close to G = ν2e2/h near the right-hand side of each
plateau. But the rise to each plateau is oscillatory, the strength of

the oscillations increasing with d and with ν. The ν = 1 step of

curve d is shown enlarged in the upper left. The resonance peaks

correspond to the condition nλf/2 = 2d, where λf is the electron
Fermi wavelength. This indicates that the open-ended channel

supports longitudinal resonant states, i.e. the quasi-standing wave

in the channel and at this time the conductance decreases. The curve

e is for Û = 2.5 and d̂ = 10. The main effect is to increase the

amplitude of the oscillations.

5.2 Landauer Formula

The last section discussed the case of an ideal conductor. Now if

there is a scatterer in the conductor, as shown in Fig. 5.5, the carriers

have a probability T for traveling of the scatterer and a probability

R of being reflected. The left reservoir injects carriers into the

perfect wire up to a quasi-Fermi energy μ1, and the right reservoir

emits carriers up to a quasi-Fermi energy μ2 (see Fig. 5.4b). The

net current, for two injection directions, is given by the sum of the

contributions of all states in the energy range between μ2 and μ1,

I = eυ
(

∂n
∂E

)
(μ1 − μ2), (5.18)

where v is the Fermi velocity and ∂n/∂E is the density of states

for two spin directions and for carriers with a positive velocity. In

one dimension ∂n/∂E = 1/π and ∂n/∂E = 1/π�v . Thus, the total
current emitted by the left reservoir due to the difference in the
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Figure 5.5 The scatterer is connected to two incoherent reservoirs by ideal

1D conductors.

quasi-Fermi levels is

I =
( e

π�

)
(μ1 − μ2). (5.19)

When T 	= 1,

I =
( e

π�

)
T (μ1 − μ2). (5.20)

Next, we have to determine the voltage across the scatterer. The

carrier densities can be characterized by the chemical potentials

μA and μB (see Fig. 5.5b). The respective levels μB, between μ1

and μ2, are determined such that the number of occupied states

(electrons) above μB is equal to the number of empty states (holes)

below μB. Since carriers have a transmission probability T , the
number of occupied states is T (∂n/∂E )(μ1−μB), and the number of

unoccupied states is (2 − T )(∂n/∂E )(μB − μ2). Thus, the chemical

potential μB is determined by

T
(

∂n
∂E

)
(μ1 − μB) = (2− T )

(
∂n
∂E

)
(μB − μ2). (5.21)

To the left of the barrier we have both incident carriers and

reflected carriers. The number of occupied states is (1+ R)(∂n/∂E )
(μ1 − μA), and the number of unoccupied states is [2 − (1 +R)]
(∂n/∂E )(μA − μ2). Thus, the chemical potential μA is determined

by

(1+R)
(

∂n
∂E

)
(μ1−μA) = [2− (1+ R)]

(
∂n
∂E

)
(μA−μ2). (5.22)
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From Eqs. 5.21 and 5.22 we obtain

μA − μB = R(μ1 − μ2). (5.23)

The charge neutrality requires that the separation between the

chemical potential μA or μB, respectively, and the band bottom

be the same as in equilibrium. The conduction-band bottoms are

displaced against each other by a potential difference,

eV = μA − μB = R(μ1 − μ2). (5.24)

From Eqs. 5.20 and 5.24 we obtain the conductance,

G = I
V

= 2e2

h
· T
R
. (5.25)

Equation 5.25 is called the Landauer formula.

In the case of measurement of mesoscopic systems we run into

three separate problems [1]. Firstly, mesoscopic probes are often

invasive, that is, they change what we are trying to measure. With

macroscopic conductors, the probes represent aminor perturbation.

But for a small conductor, the probe can very well be the

dominant source of scattering (and hence resistance). But this is

not the main problem. It is likely that there will be more of less-

invasive microscopic measurements as nanotechnology progresses,

for example, using weakly coupled scanning tunneling probes.

Secondly, mesoscopic probes are seldom identical so the two

voltage probes could very well couple differently to the +k and −k
states. Only if the two-voltage probes couple identically to the +k
and −k states, the measurement result of resistance will be given
by Eq. 5.25. Otherwise the measured resistance will lie somewhere

between the extremes

h
2e2M

1

T
and

h
2e2M

1− 2T
T

. (5.26)

Finally, mesoscopic measurements are strongly affected by quantum

interference effects unless the distance of the probes from the

scatterer is much greater than the phase-relaxation length. We

would expect that a probe to the left of the scatterer to measure

a potential of approximately 1 (equal to that of the left reservoir).

However, due to quantum interference it could measure any

potential between 0 and 1 depending on its distance from the

scatterer. The reason is that the probe may not “see” the electrons
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from the left reservoir due to destructive interference between the

incident wave and the reflected wave. Therefore, in phase-coherent

conductors the +k and −k states can be strongly correlated so

distribution functions only tell part of the story.

The above discussion of Eq. 5.25 is under the assumption that

T = 0. When T 	= 0 we should consider the electron Fermi

distribution f (E ). The net current flowing from the left reservoir

to the right reservoir is now given by

I = 2e
h

[∫
dE

(
− ∂ f

∂E

)
T (E )

]
(μ1 − μ2), (5.27)

where

− ∂ f
∂E

= [ f (E − μ1)− f (E − μ2)]/(μ1 − μ2). (5.28)

Similarly, to determine the chemical potential we have to multiply

Eqs. 5.21 and 5.22 by −∂ f /∂E and integrate over the energy. This

yields a voltage

eV =
∫
dE (−∂ f /∂E )R(E )(∂n/∂E )∫
dE (−∂ f /∂E )(∂n/∂E )

(μ1 − μ2). (5.29)

With Eqs. 5.27 and 5.29 we obtain the conductance

G = 2e2

h

[∫
dE (−∂ f /∂E ) T (E )

]
×

∫
dE (−∂ f /∂E ) υ−1(E )∫

dE (−∂ f /∂E ) R(E )υ−1(E )
,

(5.30)

where we have used ∂n/∂E = 1/π�v(E ). At zero temperature we
have−∂ f /∂E = δ(E − EF) and Eq. 5.30 reduces to Eq. 5.25.

5.3 Many-Channel Case

If the ideal conductors include N independent conducting channels,
at zero temperature all the channels have the same energy. The

electrons in these channels can be transmitted or reflected each

other, having the probabilities T ji and R ji , respectively, as shown in
Fig. 5.6 [5]. T ji represents the transmission probability of electrons
from the left i -th channel to right j -th channel, and R ji represents
the reflection probability of electrons from the left i -th channel to
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Figure 5.6 A multichannel system S. Indices i and j run from 1 to N.

left j -th channel. The scattering property can be described by a
2N × 2N matrix S ,

S =
∣∣∣∣ r t′

t r ′

∣∣∣∣ , (5.31)

where r and t are the reflection and transmission coefficients of
electrons from the left-hand side to right-hand side, respectively. The

transmission probability T ji = |tj i |2, and reflection probability R ji =
|r ji |2. r ′ and t′ are those from the right-hand side to left-hand side.

The matrix S (Eq. 5.31) is unitary due to current conservation
because Ti j and Ri j transform the lead currents. Furthermore, when

time-reversal symmetry holds in the absence of a magnetic field,

SS∗ = I and S = S̃ , (5.32)

where the asterisk denotes complex conjugation, the tilde denotes

the matrix transpose, and I is the unit matrix.
Assume that the interference effects between different input

channels are neglected. The energy range is between μ2 and μ1, and

carriers are injected into the perfect conductor only from the left-

hand side reservoir. The current injected into the left channel j by
the reservoir is ev j (∂n j/∂E )(μ1 − μ2). The density of states (with

a positive velocity) is given by ∂n j/∂E =1/π�v j . Therefore, the
current fed into the j -th channel is (e/π�)(μ1 − μ2), independent

of the channel velocity. The current from the left j -th channel

transmitted into the right i -th channel is (e/π�)Ti j (μ1 − μ2). The
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total current in the right i -th channel becomes

Ii = 2e
h

⎛
⎝ N∑

j=1
Ti j

⎞
⎠ (μ1 − μ2). (5.33)

It is convenient to introduce a total transmission probability and

reflection probability into the i -th channel,

Ti =
∑
j

Ti j , Ri =
∑
j

Ri j . (5.34)

Thus the current in the right i -th channel is

Ii = 2(μ1 − μ2)e
h

Ti , (5.35)

and the total current is given by

Itot =
∑
i

Ii = 2(μ1 − μ2)e
h

∑
i

Ti = 2(μ1 − μ2)e
h

Tr(tt†). (5.36)

On the other hand, the current in the left i -th channel is

Ii = 2(μ1 − μ2)e
h

⎡
⎣1−

∑
j

Ri j

⎤
⎦ = 2(μ1 − μ2)e

h
(1− Ri ) , (5.37)

and the total current is

Itot =
∑
i

Ii = 2(μ1 − μ2)e
h

∑
i

(1− Ri ). (5.38)

Comparing Eqs. 5.36 and 5.38, we find that current conservation

implies ∑
i

Ti =
∑
i

(1− Ri ). (5.39)

Similar to the single-channel case (Eqs. 5.21 and 5.22), we determine

the chemical potential μ1 and μ2. On the right side of the barrier the

number of occupied states with energy higher than μB is∑
i

Ti (∂ni/∂E )(μ1 − μB). (5.40)

The number of unoccupied states with energy smaller than μB is∑
i

(2− Ti )(∂ni/∂E )(μB − μ2). (5.41)
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Again μB is determined such that the number of occupied states is

equal to the number of unoccupied states,∑
i

Ti

(
∂ni
∂E

)
(μ1 − μB) =

∑
i

(2− Ti )
(

∂ni
∂E

)
(μB − μ2). (5.42)

Similarly, the chemical potential to the left is determined by∑
i

(1+ Ri )
(

∂ni
∂E

)
(μ1 − μA) =

∑
i

(1− Ri )
(

∂ni
∂E

)
(μA − μ2).

(5.43)

Therefore, the voltage across the scatterer is given by

eV = μA − μB =
∑
i
(1+ Ri + Ti )υ−1

i

2
∑
i

υ−1
i

(μ1 − μ2), (5.44)

where we have used ∂ni/∂E = 1/π�vi . With the help of Eqs. 5.36
and 5.44 we obtain the conductance

G = 2e2

h

∑
i

Ti ·
2
∑
i

υ−1
i∑

i
(1+ Ri − Ti )υ−1

i

. (5.45)

5.4 Multi-Terminal Devices

Since 1985 many mesoscopic experiments have been conducted

using miniature Hall bridges fabricated on both metallic and semi-

conducting samples. However, because of the reasons mentioned

above (see Section 5.2), for a while there was serious confusion

about how such four-terminal measurements should be interpreted.

Büttiker [6, 7] found a simple and elegant solution to this problem.

He noted that since there is really no quantitative difference between

the current and the voltage probes, one could treat all the probes on

an equal footing and simply extend the two-terminal linear response

formula to a multi-terminal response formula.

Consider the conductor shown in Fig. 5.7 [6]. The leads in Fig. 5.7

are connected to reservoirs that are at chemicals μ1, μ2, μ3, and μ4,

and the center conductor is an Aharonov–Bohm ring with a uniform

magnetic flux through the hole. Assume that these perfect leads are

strictly one-dimensional (1D) quantum channels, that is, there are
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Figure 5.7 Conductor with four terminals connected via perfect leads to

four reservoirs at chemical potentials μ1, μ2, μ3, and μ4. An Aharonov–

Bohm flux� is applied through the hole of the sample.

only two states at the Fermi energy, onewith positive velocity (taken

to be the direction away from the reservoir) and one with negative

velocity. Scattering in the sample is elastic. The elastic scattering

properties of the sample are described by the probabilities Ti j (�)
for carries incident in lead j to be transmitted into lead i and
probabilities Rii (�) for carriers to be reflected into lead i . Current
conservation and time-reversal invariance in the presence of a flux

imply

Rii (�) = Rii (−�), Ti j (�) = T ji (−�). (5.46)

The potential μi are distributed in the range around the Fermi

energy, which is so narrow that the energy dependence of the

transmission and reflection probabilities in this range can be

neglected. It is convenient to introduce a fifth chemical potential μ0,

which is smaller than the lowest of the four potentials μi . Below

μ0 the states with negative and positive velocities are filled and

zero net current flows in each of the leads. The reservoir injects a

current evi (dni/dE)�μi into lead i , �μi = μi − μ0. Here vi is the
velocity at the Fermi energy in lead i and dni/dE = 1/2π�vi is the
density of states for carriers with a negative or a positive velocity

at the Fermi energy. Thus the current injected by the reservoir i
is (e/h)�μi . Consider the current in lead i . A current (e/h)Rii�μi

is reflected back to the reservoir i . Carriers that are injected by
the other reservoir j into lead i reduce the current in lead i by
−(e/h)Ti j�μ j . Collecting all results from lead j ( j 	= i) we obtain
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the current in lead i ,

Ii = e
h

⎡
⎣(1− Rii )μi −

∑
j 	=i

Ti jμ j

⎤
⎦ . (5.47)

Note that these currents are independent of the reference potential

μ0 since the coefficients multiplying the potentials add to zero.

Equation 5.47 is called the Büttiker formula [6].

Consider a four-probe configuration as shown in Fig. 5.7 where a

current I1 is led into lead 1 and leaves through lead 3, and a current
I2 is fed into lead 2 and leaves the sample through lead 4. Thus
we have to solve Eq. 5.47 under the condition that I1 = −I3 and
I2 = −I4.We obtain the currents I1 and I2 as a function of differences
of voltages, Vi = μi/e,

I1 = α11(V1 − V3)− α12(V2 − V4),

and

I2 = −α21(V1 − V3)+ α22(V2 − V4), (5.48)

where the conductance

α11 =
(
e2

h

)
[(−R11)S − (T14 + T12)(T41 + T21)]/S ,

α12 =
(
e2

h

)
(T12T34 − T14T32)/S ,

α21 =
(
e2

h

)
(T21T43 − T23T41)/S , (5.49)

α22 =
(
e2

h

)
[(1− R22)S − (T21 + T23)(T32 + T12)]/S ,

and

S = T12 + T14 + T32 + T34 = T21 + T41 + T23 + T43. (5.50)

Taking into account Eq. 5.46, we see that the diagonal elements are

symmetric in the flux α11(�)= α11(−�) and α22(�)= α22(−�) and

that the off-diagonal elements satisfy α12(�)= α21(−�). Therefore,

for the four-probe conductor the Onsager relations hold [6].

Suppose the current flows from lead 1 to lead 3. The potentials

measured are μ2 = eV2 and μ4 = eV4 under the condition that
the current in leads 2 and 4 is zero. Using Eq. 5.48 and taking
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I2 = 0, we obtain the current I1 as a function of V2 − V4. Thus in
this configuration the measured resistance is

R13,24 = V2 − V4
I1

= α21

α11α22 − α12α21
. (5.51)

Since α21 is not symmetric the resistance R13,24 is also not

symmetric. Now we switch the current and the voltage leads but

keep the flux fixed. This means that I1 in Eq. 5.46 is zero. This yields
a resistance

R24,13 = α12

α11α22 − α12α21
. (5.52)

The sum of these two resistances is symmetric.

For a given flux there are generally six resistances,

Rnm,kl =
(
e2

h

)
(TkmTln − TknTlm)

/
D, (5.53)

where D = (α11α22 − α12α21)S . The resistances given by Eq. 5.53
obey Rmn,kl = −Rmn, lk = −Rnm,kl and the reciprocity relation

Rmn,kl(�) = Rkl ,mn(�). The reciprocity relation states that the

resistance measured in the presence of a flux � is equal to the

resistance measured in the presence of a flux −� if the reversal of

the flux is accompanied by an exchange in the role of the current and

voltage leads.

If the lead has a definite width, there are many states at the

Fermi energy. Motion in the transverse direction is quantized and

characterized by a set of discrete energies, En. To this energy we
have to add the kinetic energy for motion along the direction of the

lead, �2k2/2m, such that EF = �
2k2/2m+ En. Each transverse state

provides a channel. Suppose all the leads are identical and support N
quantum channels. The probability of a carrier incident in channel n
in lead i to be reflected into the same lead into channelm is denoted

by Rii,mn, and the probability of a carrier incident in lead j in channel
n to be transmitted into lead i into channel m is Ti j,mn. Then the
scattering matrix (Eq. 5.31) becomes a 4N × 4N matrix.

Nowwe apply the Büttiker formula (Eq. 5.47) to themultichannel

case. Assume that the reservoir feeds all channels equally up to the

chemical potentialμ j . The current injected into each channel of lead

j is (e/h)�μ j independent of the velocity and the density of states

of this channel. The current in lead i due to the carriers injected
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in lead j is Ii j = −(e/h)�mnTi j,nm�μ j . Therefore, if we introduce

the trace Rii = �mnRii,mn, we can get Ti j = �mnTi j,mn, which has
the symmetry properties given in Eq. 5.46. The conductance in the

multichannel case is given by Eq. 5.47, except that 1 − Rii in the
single-channel case is replaced by N − Rii in the multichannel case.
Thus the symmetry properties of themultichannel case are the same

as those for the single-channel case.

5.5 Some Applications of the Büttiker Formula

5.5.1 Three-Probe Conductor

The three-probe conductor is shown in Fig. 5.8 [7], where probe 3 is

used to measure the chemical potential μ3. In general, the Büttiker

formula can be written as a matrix form, in the case of a three-probe

conductor,⎛
⎝ I1
I2
I3

⎞
⎠ =

(
e2

h

)⎛
⎝ T12 + T13 −T12 −T13

−T21 T21 + T23 −T23
−T31 −T32 T31 + T32

⎞
⎠

⎛
⎝ V1
V2
V3

⎞
⎠ .

(5.54)

Suppose the current always leaves the conductor through lead

2. V2 is the lowest, and thus V2 can be taken to be zero. Because of

Figure 5.8 Three-probe conductor.
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the current conservation, I1 + I2 + I3 = 0, so the three equations in

Eq. 5.54 are not independent. Equation 5.54 can be simplified to be

2× 2 dimensional,(
I1
I3

)
=

(
e2

h

)(
T12 + T13 −T13

−T31 T31 + T32

)(
V1
V3

)
. (5.55)

The inverse equation of Eq. 5.55 is(
V1
V3

)
=

(
R11 R12
R21 R22

)(
I1
I3

)
, (5.56)

where

(R) =
(
h
e2

)(
T12 + T13 −T13

−T31 T31 + T32

)−1
. (5.57)

Suppose that the currents from lead 1 to lead 2, the voltage is V1–
V3, thus I2 = −I1, I3 = 0, and From Eq. (5.56) can calculate the

resistance,

V1 = R11 I1, V3 = R21 I1,

and

R12,13 = (V1 − V3)/I1 = R11 − R21. (5.58)

Using Eq. 5.57 yields

R11 =
(
h
e2

)
1

D
(T31 + T32), R21 =

(
h
e2

)
T31
D
,

and

D = T12T31 + T12T32 + T13T32. (5.59)

where D is the determinant of the matrix in Eq. 5.57. Inserting

Eq. 5.59 into Eq. 5.58 yields

R12,13 =
(
h
e2

)
T32
D
. (5.60)

Similarly,

R12,32 = V3
I1

= R21 =
(
h
e2

)
T31
D
. (5.61)

The determinant D is invariant under flux reversal, D(�)= D(−�).

The diagonal elements in the matrix of Eq. 5.57 are, respectively,

1− R11 = T12 + T13 = T21 + T31
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and

1− R33 = T31 + T32 = T13 + T23. (5.62)

Thus

D(−�) = T21T13 + T21T23 + T31T23(�). (5.63)

The resistances R12,13 and R12,32 in Eqs. 5.60 and 5.61 are neither
symmetric nor asymmetric under flux reversal due to T32 and T31.
However the combined resistance (the two-terminal resistance)

R12,12 = V1 − V2
I

=
(
h
e2

)
T31 + T32

D
(5.64)

is symmetric. Thus, with regard to the two-terminal conductance,

the fact that we have an additional lead does not change the

symmetry.

Two-terminal conductance in the presence of an additional lead

G = (R12,12)−1 differs now from Eq. 5.25. It is given by

G =
(
e2

h

)
(Tel + Tin), (5.65)

where the elastic transmission probability describing the transmis-

sion of carriers that emanate from lead 1 and end up in lead 2

without entering reservoir 3 is given by

Tel = T21. (5.66)

The inelastic transmission probability Tin describes carriers that
emanate from lead 1 and reach reservoir 3 and from reservoir 3

reach reservoir 2. Comparing Eq. 5.65 with Eq. 5.64 yields

Tin = T31T23
T31 + T32

. (5.67)

Thus, the additional lead connected to an electron reservoir acts like

an inelastic scatterer.

Equation 5.65 allows us to describe the continuous transition

from completely coherent transmission through the conductor to

completely incoherent or sequential transmission. In the coherent

transmission case, carriers are not allowed to enter reservoir 3,

Consequently, T13 = T32 = 0, and two-terminal conductance is given

by Eq. 5.25, that is, Tel = T and Tin = 0. In the completely incoherent

case, T21 = Tel = 0. In this case Eq. 5.64 yields

R12,12 =
(
h
e2

)(
1

T31
+ 1

T23

)
. (5.68)

Equation 5.68 is just the classical addition of series resistors.
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Figure 5.9 Four-probe conductor with tunneling barrier junctions (dark

areas) for two of the probes.

5.5.2 Four-Probe Conductor

The four-probe conductor is shown in Fig. 5.9 [7].

Current is fed in at probe 1 and taken out at probe 2. Probes 3 and

4 serve to measure the voltage and are weakly coupled via tunneling

barriers to the conductor, as shown in the dark parts in Fig. 5.9. The

probabilities for transmission from probe 3 or 4 into the conductor

and into reservoir 1 or 2 are small, denoted by ε. If the transmission

probability T12 is zero order of ε; then T13, T14, T23, and T24 are
first order; and T34 is second order. Evaluation of Eq. 5.53 yields a
resistance that reserves the lowest order of ε,

R12,34 = h
e2

1

T12

T31T42 − T32T41
(T31 + T32)(T41 + T42)

. (5.69)

T = T21 = T12 has the symmetry of the transmission probability, and
the sums T31 + T32 and T41 + T42 are also symmetric with regard to
flux reversal. Because 1− R33 = T31 + T32 + T34, since T34 is zero to
order ε, so T31 + T32 is symmetric. Therefore, Eq. 5.69 has precisely
the symmetry required by the reciprocity theorem,

R12,34(�) = R34,12(−�). (5.70)

5.6 Experimental Results

5.6.1 Two-Terminal Conductor

Using molecular beam epitaxy, it is possible to grow AlGaAs-

GaAs heterojunctions routinely with two-dimensional (2D) electron
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Figure 5.10 AlGaAs/GaAs-modulated doped heterojunctions with the

electrodes over the 2DEG; (a) Vg = 0 V and (b) Vg = −1 V.

mobility μ ≥ 106 cm2/Vs for a carrier density of n ≈ 3 × 1011

cm−2. The metallic electrodes are made over the 2DEG by using the
electron beam lithography as shown in Fig. 5.10a. Timp [8] used the

electrostatic potential provided by a split gate geometry to constrain

laterally electron gas to the region within the gap between the

gates to make a 1D constriction. Figures 5.10a and b schematically

represent a typical device inwhich both gate electrodes are biased at

Vg = 0 V and−1 V, respectively. In the case of a negative bias voltage
the 2DEG at the AlGaAs/GaAs interface immediately beneath the

gate electrodes is depleted and so the 2DEG is laterally constrained

along the y axis and the electron gas becomes 1D.
Figure 5.11 shows the two-terminal resistance (conductance),

R12,12 (G12,12), as a function of the applied gate voltage [8]; (a) and
(b) correspond to the gate widths 200 nm and 600 nm. The series

resistance, found at Vg = 0 V, was subtracted from the measured

resistances. From Fig. 5.11 we see that the average conductance

is approximately 2e2N/h, with N an integer ranging from 1 to

about 10, and evidently is quantized in steps of 2e2/h with about
1 − 5% accuracy as an increasing negative gate voltage makes the

constriction narrower. These results verify the theoretical results

of Figs. 5.2 and 5.3. When the gate width increases from 200 nm

to 600 nm (Fig. 5.11b) the quantized degree of the conductance

becomes worse.
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Figure 5.11 Two-terminal resistances (conductance), R12,12 (G12,12), as a
function of the applied gate voltage; (a) and (b) correspond to the gate

widths 200 nm and 600 nm.

5.6.2 Two-Terminal Device in the Magnetic Field

Consider an ideal 2D conductor without impurities or inhomogene-

ity of width w connecting two electron reservoirs as shown in

Fig. 5.12 [9]. The chemical potentials of reservoirs are μ1 and μ2,

respectively, the conductor is along the x direction, the transverse
direction is the y direction, and the magnetic field is in the z
direction. The electron Hamiltonian is

H = 1

2m∗

(
p− eA

c

)2

+ V (y). (5.71)

Take the vector potential

A = (−By, 0, 0), (5.72)

and let the electron wave function

ψ jk = eikx f jk(y). (5.73)

Figure 5.12 Perfect two-dimensional conductor connected to reservoirs.
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We obtain the equation of the transverse wave function f ,[
− �

2

2m∗
∂2

∂y2
+ 1

2
m∗ω2

c (y − y0)2 + V (y)
]
f = E f, (5.74)

where ωc = eB/m∗c, y0 = kl2B, and lB = (�c/eB)1/2 is the magnetic
length. Therefore, the effect of themagnetic field is to add a parabolic

potential to the original transverse potential; the origin of the

parabolic potential is at y0.
Suppose the transverse potential is a square wall with infinite

barriers at the edges y1 and y2 of the conductor. Solving Eq. 5.74
yields the electron energy levels as a function of y0 as shown in
Fig. 5.13 [9]. When y0 is near the center of the well, far from y1
and y2, the electron is less effected by the V (y), and thus the energy
levels are Landau levels,

E jk = �ω0

(
j + 1

2

)
. (5.75)

When y0 is near the edges, the energy of a state depends on the y0
through the distance y1 − y0 to the lower edge and y2 − y0 to the
upper edge, as shown in Fig. 5.13. In general, the energy of a state is

determined by

E jk = E ( j, ωc, y0(k)) . (5.76)

The carriers in an edge state acquire a longitudinal velocity,

v jk = 1

�

dE jk

∂k
= 1

�

dE jk

dy0
· dy0
dk

, (5.77)

which is proportional to the slope of the Landau level. dE/dy0 is
positive at the upper edge y2 and negative at the lower edge (see
Fig. 5.13). While dy0/dk = l2B is positive, therefore, the velocity is
positive along the upper edge and negative along the lower edge.

Note that it is only the edge states that contribute to carrier flow

because the bulk Landau states have no velocity, as the region in Fig.

5.13, where E is independent of y0.
Figure 5.14 depicts a single impurity near the edge of a sample.

The quasi-classical skipping orbits are scattered by this impurity [9],

but due to the magnetic field the scattered orbits are never further

then a cyclotron radius away from the edge. After scattering by the

impurity, the orbits return to the edge and continue to follow the
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Figure 5.13 Energy spectrumof a perfect conductor in a highmagnetic field

for a rectangular confining potential (walls at y1 and y2).

Figure 5.14 Quasi-classical skipping orbits along the upper edge of the

sample in the presence of a localized impurity.

edge, and the velocity is positive. The key point is that an impurity

cannot effectively reverse the direction of motion of a carrier. There

is no scattering backward against the flow of carriers if the average

distance between impurities is larger than the cyclotron radius.
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To obtain the criterion for the strength of the field we can make

use of the fact that the Landau states are a harmonic-oscillator wave

function. The cyclotron radius of a state in the j -th Landau level is〈
�y2

〉1/2 = lB

(
j + 1

2

)1/2

. (5.78)

From Eq. 5.78 we obtain the critical magnetic field Bcrit for the onset
of backscattering,

2πl2e Bcrit > �0

(
N + 1

2

)
, (5.79)

where �0 = hc/e is magnetic flux quanta and N is the largest

index of Landau state. le is the average distance between impurities.
Therefore, Eq. (5.79) can be looked as the condition that the

backscattering cannot be occurred.

In a strong magnetic field B > Bcrit the current fed into an edge
state by a reservoir is the same as the current fed into a quantum

channel in a zero-field perfect conductor. The resulting two-terminal

resistance for a perfect conductor in a high magnetic field is thus

R = h
e2

· 1
N
, (5.80)

where N is the number of edge states (with a positive velocity).
If the conductor has a disordered section connected at its left

and right ends to ideal perfect conductors, the disordered part of

the conductormixes the channels of the perfect conductors. Carriers

incident in channel j (edge state j) from the left have a probability

amplitude ti j for transmission into channel i and a probability

amplitude ri j for reflection into channel i . Therefore, the transmitted
current is

Ii = e
h

N∑
j=1

Ti j�μ, (5.81)

where Ti j = |ti j |2. Summing over all incident channels gives a total
transmitted current,

I = e
h

N,N∑
i, j=1

Ti j�μ. (5.82)

The voltage drop is eV = �μ, and the Landauer resistance in this

case is

R = h
e2

· 1
T
, T =

N,N∑
i, j=1

Ti j . (5.83)
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5.6.3 Quantum Hall Effect

We discuss how the quantum Hall effect is established in an open

conductor with current probes and Hall bars. Figure 5.15 shows a

conductor where the Hall bars are of the same width as the probes

connected to the current source and sink [9]. In the conductor

of Fig. 5.15, N edge states connect the four contacts in a cyclical

fashion. Assume that all the contacts are ideal and same and

there is no scattering from one edge to the other edge. Under

these circumstances, the edge states provide perfect transmission

channels for carriers and lead to transmission probabilities, T41 =
T34 = T23 = T12 = N . All the other transmission probabilities

are zero. The Hall resistance R13,42 is determined by T41T23 −
T43T21, which is equal to N2. Evaluation of the subdeterminant

D in Eq. 5.53 yields D = N3. All Hall resistance values of the
conductor of Fig. 5.15 are quantized and given by ±(h/e2)(1/N).

Figure 5.15 Ideal Hall conductor.
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Figure 5.16 (a) A schematic view of the four-probe GaAs-AlxGa1−xAs wire
with a narrow cross gate. (b) R12,43 and R13,42 − R12,43 at Vg as functions of
magnetic field.

The longitudinal resistance, for example, R12,43 are zero, since in
the products forming the expression, T41T32 − T42T31, at least one
transmission probability always is zero.

The above conductor is an ideal conductor. Washburn et al. [10]

added a potential barrier in this conductor, as shown in Fig. 5.16.

They manufactured a narrow gate on the circuit center. Applying

a negative bias voltage on the gate is equal to adding a potential

barrier in the circuit; the barrier height is controlled by the bias

voltage. Because the barrier is higher in the center region and lower
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in the edge region, the edge states near the edge (solid lines) can

tunnel through the barrier. Those near the center region (dashed

lines) are reflected into the opposite edge and move in the opposite

direction, as shown in Fig. 5.16.

Assuming that there are K edge states that are reflected, we have
T41 = N , T34 = N − k, T14 = K , T23 = N , T12 = N − k, and T32 =
K and all other Ti j equal zero. It can be proved from Eq. 5.53 that

D = N2(N − k),

R13,42 =
(
h
e2

)
(T41T23 − T43T21)/D

=
(
h
e2

)
1

N − K
,

R42,13 =
(
h
e2

)
(T14T32 − T12T34)/D

= −
(
h
e2

)
N − 2K
N(N − K)

,

and

R12,43 =
(
h
e2

)
(T41T32 − T42T31)/D

=
(
h
e2

)
K

N(N − K)
. (5.84)

Figure 5.16b shows R12,43 and R13,42 − R12,43 as functions of

magnetic field H at Vg = 0 [10]. These combinations are the nearest

correspondence to the classical resistance ρxx and ρxy , which are the

parameters usually studied in large samples. From the figure we see

that R12,43 approaches zero over wide regions of field (4.9 < H <

5.5 T and 8.5< H < 10 T), and in the same ranges R13,42 is quantized
to h/4e2 and h/2e2, respectively.

Figure 5.17 shows R13,42 as a function of gate voltage for several
values of the magnetic field [10]. From the figure we see that when

Vg = 0, R13,42 changes from h/(5e2) and h/(4e2) to h/(2e2) with
magnetic field increasing, indicating that the number of occupied

Landau levels decreases. When Vg decreases, K changes from 0

to 1 or 2, and from Eq. 5.84 R13,42 increases and raises to the

next plateau, for example, from h/(4e2) to h/(2e2). From the above

discussion we conclude that backscattering by the gate potential
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Figure 5.17 R13,42 as a function of gate voltage for several values of the
magnetic field.

does not destroy the quantized Hall effect. Instead, there is always

a region in which the various four-probe resistances are quantized

to h/e2i .
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Chapter 6

Transport in Quantum Dots

Since the single-electron effect in quantum dots and single-electron

transistor were discovered, many new physical behaviors have

been discovered, for example, core shell-like filling of electrons in

quantum dots of regular shapes, electron levels of quantum dots in a

perpendicularmagnetic field, form ofmolecular state in two or three

coupling quantum dots, coherent molecular states, covalent states,

and ionic states. The high-order effects include resonant tunneling,

Kondo effect caused by a strong coupling, mixed valence physics

connected with the Anderson model, Fano resonance produced

by the existence of resonance or non-resonance channels, etc. In

the application aspects, many interesting proposals are suggested,

for example, single-electron transistors (SETs) and quantum bite

based on the electron spin used for quantum calculation. Some

noticeable and useful devices have been invented, for example,

scanning SET used to detect the local electric field and radio

frequency (RF) SET used to detect electric charge at the level of

10−5e/
√
H z.
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6.1 Single-Electron Effect and Single-Electron
Transistor

In the beginning of the twentieth century, physicist Millikan made

the famous oil-drop experiment. He found that the electric charges

brought by the tiny broken oil drops are always integral times

of a basic electric quantity; then he deduced that the particle

bringing the basic electric quantity is an electron and the basic

electric quantity e = 1.602 × 10−19 C. But at that time Millikan
could not obtain a single electron. Today the development of

micro-lithography technology has made it possible to fabricate

semiconductor micro-structures with a scale smaller than 100 nm.

In this kind of structure one can operate electron motion one by one

through a changing voltage. This is the single-electron effect.

In 1989 Scott-Thomas et al. created a dual-gate device with a

70 nm gap in the lower gate on narrow Si inversion layers. Figure 6.1

shows the schematic cross section (a) and the top view (b) of the

slotted-gate device [1]. The inversion layer, formed by the positively

biased upper gate, is confined by the lower gate. The width of the

channel is controlled by the lower gate, and the electron density in

Figure 6.1 Schematic cross section (a) and top view (b) of the slotted-gate

device.
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the inversion layer is controlled by the upper gate voltage (positive).

The width of the narrow channel is 20 nm.

Earlier, people also experimented with electrons through a

narrow channel but did not obtained any regular results. Due to the

limitation of the lithography technology the width of the channel is

3 ≈ 5 times of the present channel. Besides the electron mobility is

lower. The experimental results of conductance from the device of

Fig. 6.1 are shown in Fig. 6.2 [1]. The top panel shows G for a 10 μm
long metal-oxide semiconductor field-effect transistor (MOSFET) as

a function of the voltage on the upper gate VG, which is proportional
to the number of electrons per unit length. The periodic oscillations

can be clearly identified, although they are accompanied by random,

see [1]. That the oscillations are truly periodic is determined in the

next three panels, which show the power spectral density, that is,

the square of the modulus of the Fourier transform, for devices of

10, 2, and 1 μm lengths. Each device has a peak in its spectrum at

a nonzero frequency. For a L = 10 μm device (second panel), the

peak is at 1/�VG = 43 V−1, that is, the oscillation period of the VG is
�VG = 0.023 V.

The electron charges in the channel equal the channel capaci-

tance multiplied by VG, C/L is the capacitance of unit length, and
e(N/L) = (C/L)VG. Therefore, in Fig. 6.2 G can be looked at as a
function of number of electrons N . The oscillation of G with VG is
equivalent to that with N . The voltage difference�VG for one period
of oscillation is necessary for adding an electron. The experiments

found that there is no correlation between �VG and the channel
length L, as shown in the next three panels of Fig. 6.2. The authors
thought that the actual length of a channel is determined by the

distance between two impurities in the channel, not the apparent

length L as shown in Fig. 6.1b. The electrostatic potential produced
by the impurities forms a barrier for electrons, forming a quantum

dot. Thus, the period�VG of G oscillation is decided by the distance
between two impurities, not L. The bottom panel of Fig. 6.2 is

the Fourier spectra for the 1 μm long channel in a magnetic field.

Comparing the two lowest panels we found that the oscillation

period of G is independent of the magnetic field.
The above impurity barrier model is only a surmise and has

not been verified experimentally. To study the relation between
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Figure 6.2 Top panel: G versus VG for a 10 μm long inversion layer. Next

three panels: Fourier power spectra of the data of the top panel and for 2

and 1 μm long channels. Bottom panel: Fourier spectra for the 1 μm long

channel in a magnetic field.

the oscillation period of G, �VG, and channel length Meirav et al.
used a GaAs/AlGaAs-modulated doping heterojunction instead of a

Si inversion layer and made the metal gate with two constrictions

as shown in Fig. 6.3 [2]. Each constriction is about 100 nm long,

defining a segment of length L0 between them.When a negative Vb is
applied, these constrictions induce saddle-shaped potential barriers

for electrons moving along the channel.
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Figure 6.3 Schematic drawing of a device structure along with a scanning

electron micrograph of one sample.

The measured G as a function of Vg − Vt are shown in Fig. 6.4 [2],
where Vt is a sample-dependent threshold and Vb was held fixed,
typically at about −0.5 V. Figures 6.4a and 6.4b show data for two

samples, which had the same geometry L0 = 1 μm. The periodic

oscillations are clearly seen, with the same period in both samples.

The channels without constrictions had monotonic dependence or,

occasionally, random fluctuation patterns, but no similar periodic

behavior. Figures 6.4c and 6.4d show results for samples with

progressively shorter lengths and correspondingly longer periods,

consistent with the geometry.

The oscillations in Fig. 6.4 recurred with the exact same period

even after samples were warmed to room temperature and cooled

again, as shown in Fig. 6.5 [2]. In previous experiments, such thermal

cycling invariably led to random changes or total disappearance of

the periodicity, understood as the result of the redistribution of

interface charges (impurities). Here no such randomness is seen.

Thus, for the first time, we can control the period of the oscillation

by the geometry of the devices. This is because the GaAs/AlGaAs

heterostructure material is rather clean, making the incidence of

charged impurities in the channel less common than in Si inversion

layers.

There is still one problem: whether each oscillation corresponds

to precisely one electron added to the system. We should estimate

the increment in Vg required to add one electron to the segment
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Figure 6.4 G as a function of Vg − Vt for four samples of different L0:
(a) 1 μm, (b) 1 μm, (c) 0.8 μm, and (d) 0.6 μm.

of the channel between the two constrictions. Three-dimensional

computer simulations of these structures gave estimates of the

relation between Vg and the total charge in the channel. For all

samples shown the estimated charge increase per�Vg is remarkably
close to one electron, within 10% for most samples. The possibility

of more than one electron per�Vg is outside the error margin.
Kouwenhoven et al. studied similar single charging effects in a

lateral split-gate quantum dot defined by metal gates in the two-

dimensional electron gas (2DEG) of a GaAs/AlGaAs heterostructure

[3]. Figure 6.6 shows a scanning electron microscope (SEM)

photograph of the gate geometry, which is fabricated on top of a

GaAs/AlGaAs heterostructure containing 2DEG [3]. The gate F is

denoted as the finger gate, gates 1 to 4 as quantum point contact

(QPC) gates, and gate C as the center gate. A negative voltage−0.4 V
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Figure 6.5 Conductance versus gate voltage for one sample taken in

different runs, between which the sample was warmed to 300 K.

Figure 6.6 SEMphotograph of the gate geometry, which is fabricated on top

of a GaAs/AlGaAs heterostructure containing 2DEG.
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depletes the 2DEG underneath the gates. The narrow channels

between gates 3–1, 1–C, C–2, and 2–4 are completely pinched off

at this gate voltage. Applying a negative voltage to the gates F, 1, 2,

and C forms a dot in the 2DEG. The radius of the dot is estimated as

300 nm. QPC gates 1 and 2 are used to control the conductance of

the tunneling barrier between the dot and the wide 2DEG regions,

and the center gate is used to vary the number of electrons in

the dot. This gate structure allows an independent control of the

conductance of the two 2DEG leads and enables you to vary the

number of electrons that are localized in the dot.

The gate voltages V3 and V4 are taken to be zero, so there is no
quantum dot formed between gates 3, 4, and F. The gate voltages V1
and V2 are taken to be smaller than −1.4 V, so G1 and G2 � 2e2/h.
The measured conductance of the dot versus center gate voltage

VC is shown in Fig. 6.7 [3]. The oscillations appear as sharp peaks
with an amplitude up to e2/h. Experiments found that only when
both QPC conductance values are below the quantized plateau value

2e2/h does the amplitude of the Coulomb oscillations increase as
the QPC conductance values decrease. From Fig. 6.7 the oscillation

period�VC = 8.3 mV, a capacitance between the dot and the center

Figure 6.7 Conductance of the dot versus center gate voltage VC for G1 and
G2 � 2e2/h.
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gate is derived CC = e/�VC = 0.19 × 10−16 F. To determine the
total capacitance between the dot and the six gates of the sample,

the authors measured the oscillations by varying the voltage on the

different gates, while keeping the voltage on the remaining gates

fixed. Then they obtained the capacitances between the dot and each

gate, added these capacitances, and obtained the total capacitance

�Cg = 1.71× 10−16 F.
Using QPC gates 3 and 4, one can increase the dot size to two

strongly coupled dots (i.e., one dot with a double size) and one dot

with three times the size. Figure 6.8 shows the Coulomb oscillations

versus the center gate voltage. The periods in the gate voltage are

�V1dot = 9.0 mV, �V2dot = 5.3 mV, and �V3dot = 3.6 mV, yielding

capacitances between the center gate and the dot CC,1dot = 1.8 ×
10−17 F, CC,2dot = 3.0 × 10−17 F, and CC,3dot = 4.4 × 10−17 F, which
have the ratios 1.2:2:3. This result shows that the gate capacitance

scales with the size of the dot.

The charging effect can be described in terms of the capacitance

C between the dot and its environment. An estimate of C is obtained
from the self-capacitance C0 = 8εrε0R between a 2D dot with a disc
shape and infinity, where R is the radius of the disc, ε0 is the vacuum
dielectric constant, and ε0 = 8.854 × 10−12 F/m. A dot with R =
300 nm and εr = 13 in GaAs gives C0 = 2.8× 10−16 F and a charging
energy e2/C0 = 0.6 meV, which exceeds the thermal energy kBT for

temperatures below 4 K. From the electron density of the ungated

2DEG and the dot area, the number N of electrons in the dot is

estimated to be about 500. The average energy separation between

the discrete states 2EF/N is therefore∼0.03meV,where EF = 7meV

is the 2DEG Fermi energy. This is less than one-tenth of the charging

energy, so the charging effect is dominant in the electron transport

process.

The transport of a quantum dot can be described schematically

by Fig. 6.9 [3], whereμl andμr denote the chemical potentials of left

and right electron reservoirs, respectively, and μl > μr. The center

part is the dot, separated from the reservoirs by the barriers, eϕn
is the electrostatic energy of N electrons. At temperature T = 0 K,

the ground state energy of N electrons is the sum of single electron
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Figure 6.8 Conductance of the dot versus the center gate voltage VC for
different sizes of the dot.

energy E p plus the electrostatic energy,

U (N) =
N∑
P=1

E P + (−eN + CgVg)2

2C
, (6.1)
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Figure 6.9 Two situations for different gate voltages. (a) Coulomb blockade

of electron tunneling. (b) One-by-one electron tunneling at the N → N+ 1

transition.

where Cg is the capacitance between the dot and one gate (e.g., the
center gate) and C is the total capacitance between the dot and all
gates.

The minimum energy necessary to add the N-th electron to the
dot is

μd(N) = U (N)− U (N − 1)

= EN + (N − 1/2)e2

C
− e

Cg
C
Vg. (6.2)

Thus, the difference of the chemical potentials of the (N+ 1) and N
electrons,

μd(N + 1)− μd(N) = EN+1 − EN + e2/C . (6.3)

This energy gap leads to blockade for tunneling of an electron into

and out of the dot, as shown schematically in Fig. 6.9a, where N
electrons are localized in the dot. The (N + 1)th electron cannot

tunnel into the dot because the resulting electrochemical potential

μd(N + 1) is higher than the electrochemical potentials of the

reservoirs. So for μd(N) < μl and μl < μd(N + 1) the electron

transport is blocked, which is known as the Coulomb blockade (CB).

The CB can be eliminated by increasing the center gate voltage, so

μd(N + 1) is lined up between μl and μr [μl < μd(N + 1) < μr],

as illustrated in Fig. 6.9b. In this case, the (N + 1)th electron can

tunnel into the dot and then tunnel out of the dot to the right 2DEG

reservoir, causing the electrochemical potential to drop to μd(N).
Now a new electron can tunnel into the dot and repeat the cycle. This

process, where current is carried by successive discrete charging

and discharging of the dot, is known as single-charge tunneling.
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Figure 6.10 I–V characteristics for different center gate voltages, demon-

strating the Coulomb staircase. The curves correspond to different values of

VC (in steps of 1 mV) and are offset for clarity (I = 0 occurs at V = 0).

In the case of Fig. 6.9b the potential difference of left and

right reservoirs eV = μl − μr is small, so only one electron is

allowed to move through the dot, that is, the dot only opens a one-

electron channel. If the bias voltage eV increases continuously, so the
chemical potential differenceμl−μr can include two electron states,

then the dot opens a second electron channel. Therefore, in the I–V
characteristic curve, when V increases, the current will step-likely

increase, as shown in Fig. 6.10 [3], where each step corresponds to

one electron transport. This I–V curve is called the Coulomb stair-

case. The current steps�I ≈ 0.2 nA occur at voltage intervals�V ≈
0.67 mV. This voltage difference is a direct measure of the charging

energy in the sample �V = e/C , which yields a total capacitance
C = 2.4 × 10−16 F. Suppose that the total tunnel conductance is G.
One extra elementary charge e is transported through the dot in a
typical time C/G, yielding�I ≈ eG/C . This gives G ≈ (4 M�)−1 and
the tunnel time C/G ≈ 10−9 s.
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Figure 6.11 Schematic potential landscape through the quantum dot. (a) to

(d) represent 4 stages of potential barrier height variation in a RF cycle.

When the two gates (gates 1 and 2 in Fig. 6.6) are applied

alternating voltages with phase difference π (frequency f = 10

MHz), in one period the heights of two barriers beside the dot vary

such as shown in Fig. 6.11a–d. The solid arrow denotes allowed

electron motion, and the dashed arrow denotes forbidden electron

motion. Thus, in one period of voltage variation just one electron

tunnels through the dot. The AC frequency is f , and the current
I = ef. If the bias voltage V is increased, so that the number of

charge states in the interval betweenμl andμr increases to n, then n
electrons can tunnel through the dot per radio-frequency (RF) cycle,

yielding a quantized current I = nef.
The measured I–V curves for RF signals with a phase difference

of π applied to gates 1 and 2 are shown in Fig. 6.12 [4]. The I–V
curves have current plateaus at multiple values of ef, demonstrating
that a discrete number of electrons are transferred through the

quantum dot for each RF cycle. The curves correspond to different

center gate voltages VC (in steps of 1 mV) and are offset for clarity



April 2, 2025 16:23 JSP Book - 9in x 6in 06-QWM-06

182 Transport in Quantum Dots

Figure 6.12 I–V characteristics when two phase shifted RF signals are

applied with a frequency f = 10 MHz. The curves correspond to different

center gate voltages VC (in steps of 1 mV) and are offset for clarity by an
integer times ef. Dotted lines show the current plateaus at integer values

of ef.

by an integer times ef (I = 0 occurs at V = 0). The height of each

plateau is e× 10 MHz= 1.6 pA.

Figure 6.13 shows I–V characteristics for different frequencies

f = 5, 10, and 20 MHz. The different curves in each group

correspond to different VC [4]. The current is proportional to f ,
varying in the interval between nef and (n + 1)ef. This behavior
of transport in the RF field is called a turnstile effect, which is like

the turnstile in the hotel allowing one or several people through

it in each cycle. Comparing Figs. 6.12 and 6.10, we found that the

current scales are pA and nA for the turnstile effect and the Coulomb

staircase, respectively.

The most hopeful application of the single-electron effect is the

single-electron transistor (SET), which can be used to fabricate

memory of a large capacity. Now in the 4G DRAM, each bite

accumulates about 500,000 electrons, dissipating a lot of energy.

If we would fabricate 16 T memory, we should reduce largely
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Figure 6.13 I–V characteristics for different frequencies f = 5, 10, and

20 MHz.

the number of electrons in each bite, for example, to less than

100. Therefore, the SET is the best choice of future large-capacity

memory. But now it is far from the actual application of the SET, its

volume is not small enough, the capacitance is too large and so the

charging energy e2/C is too small, and the device should operate at
an ultra-low temperature so kBT � e2/C . The goal is to reduce the
size of the quantum dot, reduce the capacitance and the number of

electrons in the dot, and raise the operating temperature.

6.2 Transport of a Quantum Dot in a Magnetic
Field

Experiments found that the conductance oscillation with the gate

voltage exists for a quantum dot even in the perpendicular magnetic

field. The geometry of the device is shown schematically in Fig. 6.14a

[5]. It is amodulation doping GaAs/AlGaAs heterostructure, inwhich
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Figure 6.14 Schematic top view of the device, showing the path of the

edge states associated with the lowest two Landau levels. The lithographic

dimension is 500 nm by 700 nm. (b) Energy levels of a dot with a parabolic

confining potential as a function of ωc = eB/m*.

the upper gate (a negative bias) is used to define the dot and the

lower gate (a positive bias) is to adjust the electron density. The

magnetic field is perpendicular to the 2DEG, which forms the edge

states in the dot. Figure 6.14b shows the calculated magnetic energy

levels as functions of magnetic field ωc/ω0 in the parabolic confining

potential (1/2)m*ω2
0r

2. The heavy line represents the energy of the

single-particle state that is 78th lowest in energy.

The conductance G versus the gate voltage Vg applied to the
lower gate is shown in the inset of Fig. 6.15 [5]. The conductance
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Figure 6.15 Amplitude and position of a conductance peak as a function of

magnetic field at T = 0.1 K. Inset: Conductance versus Vg for the device at
B= 3 T.

consists of a periodic series of sharp peaks, but the amplitudes

are much smaller than those in the absence of a magnetic field.

The full scale of the ordinate is 0.03 e2/h. The amplitude and

position of a particular conductance peak as a function of magnetic

field for B = 1.5 − 4.5 T is shown in Fig. 6.15. The amplitude

oscillates periodically with the magnetic field and drops by as much

as orders of magnitude. Commensurate with these dips, oscillations

are observed in the position of the peak. This structure washes

out rapidly with an increasing temperature and is almost entirely

destroyed by T ≈ 0.3 K.

The conductance oscillation in the inset of Fig. 6.15 can be

explained by the standard CB model (see Fig. 6.9). The gate voltage

corresponding to a conductance peak is given from Eq. 6.2,

Vg(N) = μd(N)− μ

ae
=

(
1

ae

)[(
N − 1

2

)
U + (EN − μ)

]
+const,

(6.4)

where U = e2/C is the electron Coulomb energy, μ is the chemical

potential in the leads, and a is a dimensionless constant, which can
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be determined from the temperature dependence of the width of a

conductance peak and is found to be 0.4 for this device. Therefore,

the position of a conductance peak is determined mainly by the

Coulomb term (N − 1/2)U and the single-particle term EN–μ.
The Coulomb energy does not vary with the magnetic field, so the

variation of the position of the peak shown in Fig. 6.15 results from

variation in EN .
The single-particle energy levels as a function of magnetic field

is shown in Fig. 6.14b, which consists of two Landau levels (LLs).

Due to the confinement potential of the dot the LLs are composed

of discrete nondegenerate states. States in the first LL fall in energy

with increasing B , while those in the second LL rise. The electron
alternately occupies a state in the first LL and a state in the second

LL as the magnetic field is increased, as shown by the dark line in

Fig. 6.14b. Consequently, the position of the N-th peak oscillates.
At a particular B , if the N-th single-particle state is in the first

LL (the outer-edge state shown in Fig. 6.14a), it couples well to the

leads and transport can occur by resonant tunneling through this

state. If the N-th state is in the second LL (the inner-edge state), the
coupling to the lead is weak and the peak amplitude is suppressed.

A dip in amplitude is thus expected whenever the N-th state is in
the second LL, that is, when the position of the peak is moving up

in energy. The dip in conductance disappears when kBT becomes

comparable to the single-particle level spacing in the first LL, since

transport can then occur by thermal activation to the nearest energy

state in the first LL.

The above discussion has not taken into account electron spin.

Experiments found that the difference between an even- and odd-

numbered finite fermion system, known as the even-odd parity

effect, is a distinct feature reflecting the unique behavior of fermions

in the presence of both orbital and spin degrees of freedom. The

peak spacing fluctuation in CB peaks provides unique information

about single-particle energy level, many-body interaction effect, and

the parity of electron numbers. To study the parity effect of the CB

peaks, Chang et al. fabricated a quantum dot of a small diameter

(lithographic diameter 160 nm), as shown in Fig. 6.16a [6], which

contains the number of electrons N ≈ 10, made from a crystal of
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Figure 6.16 Scanning electron micrograph of a small-scale device (top).

Schematic diagram of the peak positions as a function of gate voltage

(bottom).

density n= 3.5× 1011 cm−2. According to the interactionmodel, the
spacing between conductance peaks should be

�Vg = C
eCg

(
�E + e2

C

)
, (6.5)

where �E is the interaction energy of an even number of particles.
The theoretical conductance versus the Vg curve will be shown as
Fig. 6.16 (bottom).

Figure 6.17 shows the fluctuation of peak spacing in device 2

for a strong coupling case (a) and a weak coupling case (b) at

T = 75 mK [6]. The lithographic diameter of device 2 is 230 nm,

which contains about 50 electrons, with the electron density 3.5

× 1011 cm−2 (rs = 0.93). For the strong coupling case (Fig. 6.17a)

the peak pairing is observable obviously. The spacing of 2, 4, 6,

8, . . . is larger than that of 1, 3, 5, 7, . . . Moreover, peak height

pairing is also visible over several peaks. On the other hand, for
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Figure 6.17 Fluctuation of peak spacing in device 2 in the case of strong

coupling to the leads (a) and in the case of weak coupling (b) at T = 75 mK.

Inset in (b): Spacing of conductance peaks as a function of order number of

valleys; solid circles for the case of strong coupling and empty squares for

weak coupling.

the weak case (Fig. 6.17b) the peak pairing behavior is not as

obvious as that for device 2. The difference in behavior is believed

to be a consequence of the modulation in the electron–electron

interaction due to the difference of coupling strengths in two cases

and suggests that strong Coulomb interaction plays an important

role in deciding the peak spacing fluctuation. The inset in Fig. 6.17a

shows several features of the Kondo effect. The Kondo valley shows

the characteristic of unpaired electrons.
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6.3 Kondo Effect in Quantum Dot Transport

In the preceding section it was found that the spacing of conductance

peaks for even and odd numbers of electrons is non-equal (see

Fig. 6.17). This behavior can be explained by Eq. 6.5. Experiments

found further that when the temperature descends to very low the

conductance valley of the odd number of electrons rises with a

decreasing temperature, approaching the limiting value 2e2/h. This
behavior cannot be explained by the single-electron energy and the

Coulomb energy (Eq. 6.5).

In 1964 Kondo explained the anomalous temperature de-

pendence of the resistance of metal. When the temperature is

decreased, the resistance of a pure metal decreases, and at a certain

temperature it is saturated. The temperature dependence changes

considerably when a small concentration of magnetic atoms, such

as cobalt, is added to the metal. Rather than getting saturated at

a low temperature, the resistance increases as the temperature

is lowered further, as shown in Fig. 6.18, where the solid line is

for the pure metal and the dotted line is for the doped metal.

Because in 1964 Kondo provided a theoretical explanation, since

Figure 6.18 Schematic temperature dependence of the resistance of a pure

metal (solid line) andmetal with a small concentration ofmagnetic impurity

atoms (dashed line). The latter curve shows a minimum around the Kondo

temperature.
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then the phenomenon has been referred to as the Kondo effect, and

the turning temperature (∼10 K) in Fig. 6.18 is called the Kondo
temperature.

When the temperature is lower than TK, the mobile electrons
in the host metal tend to screen the non-zero total spin of the

electrons in the magnetic impurity atom. In the simplest Anderson

model of a magnetic impurity, there is only one electron level with

energy ε0 and the impurity spin is 1/2. The exchange processes

can effectively flip the impurity spin while simultaneously creating

a spin excitation in the Fermi sea. When many such processes are

added coherently, a new state—the Kondo resonance—is generated

with the same energy as the Fermi level. Such resonance is very

effective at scattering electrons with energies close to the Fermi

level. The strong scattering contributes greatly to the resistance.

The whole system, that is, the magnetic impurity atom plus its

surrounding electrons, forms a spin singlet. The energy scale for this

singlet state is the Kondo temperature.

A quantum dot connected to source and drain leads can nicely

mimic the above situation of a localized spin impurity in a Fermi

sea. Therefore, the Kondo effect was expected to occur in quantum

dot systems as well. However, there is an important difference

between metal and quantum dot systems. In a metal, electrons

are described by plane wave functions. Scattering from impurities

mixed electron waves with different momentums. The momentum

transfer increases the resistance. In a quantum dot, on the contrary,

all the electrons have to travel through the device as there is no

electrical path around it. In this case, the Kondo resonance makes

it easier for states belonging to a bulk metal. Figure 6.19 shows

the Anderson model of a magnetic impurity, applied to a single-

level quantum dot connected to source and drain leads [7]. The

level has an energy ε0 below the Fermi energy of the leads and

is initially occupied by one spin-up electron (leftmost diagram of

Fig. 6.19). Adding another electron is prohibited by the charging

energy EC. By virtue of quantum uncertainty, the spin-up electron

can momentarily tunnel out of the dot, leaving the dot-lead system

in a classically forbidden virtual state (middle diagram of Fig. 6.19).

If the spin-up electron is replaced by a spin-down electron from the

leads (rightmost diagram of Fig. 6.19), the dot spin has effectively
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Figure 6.19 The Anderson model of a magnetic impurity, applied to a

single-level quantum dot connected to source and drain leads.

been flipped. Many such events combine to produce the Kondo effect

in quantum dots, which leads to the formation of an extra resonance

at the Fermi level of the leads.

When the energy level ε0 is occupied by two electrons, the total

spin is zero, the virtual state does not exist, and thus there is no

spin exchange interaction, that is, no resonant tunneling caused

by the Kondo state. Only when the EC is lowered to the Fermi

level of the lead can conductance occur. The conductance as a

function of the gate voltage Vg is shown in Fig. 6.20 [7], where

the solid curve is for T � TK, the dotted curve for T ≈ TK, and
the dashed curve for T < TK. Although the dot has two tunnel

barriers and the charging energy tends to block electrons from

tunneling into or out of it, the Kondo effect ensures that electrons are

transmitted perfectly through the dot. The Kondo effect only occurs

for odd electron numbers, resulting in the odd-even asymmetry

between the different Coulomb valleys. Figure 6.20b shows that

in the Kondo valleys conductance increases logarithmically with

a lowering temperature, getting saturated at 2e2/h. Figure 6.20c
shows that the Kondo resonance leads to a zero-bias resonance in

the differential conductance, dI/dV, versus the bias voltage V .
Haldane [8] derived the Kondo temperature using the parame-

ters of the Anderson model,

TK =
√

	EC
2

eπε0(ε0+EC)/	EC , (6.6)

where 	 is the width of the dot level, which is broadened

by electrons tunneling to and from it. So the parameters that

characterize the single-level dot system—EC, ε0, and 	—can be

replaced by a single energy scale, TK. The advantage of quantumdots
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Figure 6.20 (a) Conductance as a function of the gate voltage Vg, where the
solid curve is for T � TK, the dotted curve for T ≈ TK, and the dashed curve
for T < TK. (b) In the Kondo valley G as a function of log(T ). (c) Differential
conductance dI/dV versus bias voltage V .

in studying the Kondo effect is that the parameters that determine

the Kondo temperature can be easily changed by adjusting the

voltages on the gates.

As shown in Fig. 6.20b in the Kondo valleys conductance

increases logarithmically with a lowering temperature, getting

saturated at 2e2/h, which is called “unitary limit” of conductance.
Van derWiel et al. [9] first observed experimentally the Kondo effect

of the quantum dot in the unitary limit, that is, the CB for electron

tunneling is overcome completely by the Kondo effect.

In Fig. 6.21a [9] an AB ring is defined in a 2DEG; in both arms of

the ring a quantum dot can be defined by applying negative voltages

to the gate electrodes. A quantum dot of size ∼200 × 200 nm,

containing ∼100 electrons, is formed in the lower arm using gate
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Figure 6.21 (a) Device structure diagram. (b) G as a function of Vgl for
B = 0 T and 0.4 T at T = 15 mK.

voltages Vgl and Vgr. The gate voltage of the upper arm Vgu is kept
at zero. The energy-level spacing of a single electron in the dot

is about 100 μeV. Figure 6.21b shows G as a function of the left

gate voltage. The right gate voltage is fixed at Vgr = −488 meV. At
B = 0 regular Coulomb oscillations are observed with low valley

conductance, while in the magnetic field the valley conductance

increases considerably and can even reach 2e2/h. The pronounced
peak reflects the Kondo resonance at the Fermi energy at the unitary

limit.

More detailed results are shown in Fig. 6.22 [9]. Figure 6.22a

shows Coulomb oscillations for different temperatures. At the

base temperature, the valley Vgl = −413 and −372 mV reach

the maximum possible conductance value of 2e2/h. When the

temperature is increased, two separate Coulomb peaks developwith

growing peak spacing. The conductance in the center of the valley

has a logarithmic T dependence with a saturation at 2e2/h for a low
T . Figure 6.22b shows the differential conductance for different T
values in the middle of the Kondo plateau at 2e2/h. The pronounced
peak around VSD = 0 reflects the Kondo resonance at the Fermi

energy. The peak height has the same T dependence as shown in

Fig. 6.22a, right inset. The width of the peak increases linearly with

temperature (Fig. 6.22b, inset).

Last we return to the effect of a magnetic field. Experiments

found near B = 0, regular Coulomb oscillations are observed, but

the Kondo effect typically changes the valley conductance by only
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Figure 6.22 (a) Coulomb oscillations in G versus Vgl at B = 0.4 T for

different temperatures. T ranges from 15 mK (thick black trace) to 800 mK

(thick red trace). Vgr is fixed at −448 mV. The right inset shows the

logarithmic T dependence between ∼90 and ∼500 mK for Vgl = −413 mV.
(b) Differential conductance dI/dVSD versus dc bias voltage between source
and drain contacts VSD for T ranging from 15 mK up to 900 mK. The inset

shows that the width of the zero-bias peak measured from the FWHM

increases linearly with T .

∼20%. A big change occurs at B ≈ 0.1 T, reflecting the onset of a

different transport regime, an observation that seems common for

half-open quantum dots. The magnetic scale corresponds to adding

a flux quantum to the area of the dot, implying that time-reversal

symmetry is broken.
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6.4 Single-Electron Transport in Vertical
Quantum Dots

Apart from the quantumdot defined on the 2DEGby the gate voltage,

there is another kind of quantum dot—the three-dimensional (3D)

quantum dot fabricated by the lithography technology, which has

a well-defined confinement potential. Such a quantum dot can

be regarded as an artificial atom. Associated with the rotational

symmetry, as well as the parabolicity in the in-plane 2D harmonic

confinement potential, atom-like properties such as shell-filling and

abidance of Hund’s first rule are all observed. Furthermore, this

allows us to discuss the way of spin-filling for a given characteristic

of the quantum state. When the single-particle states in the dot are

separated by a large energy�E , an antiparallel spin-filling, forming
a singlet state, is favored. For a small �E , parallel filling, forming a
triplet state, is observed, which is in line with Hund’s first rule. The

magnetic field B can be used to tune �E (B); this allow us to alter

the way of spin-filling.

6.4.1 Quantum Dot and Single-Electron Energy Levels

The schematic diagram of the device is shown in Fig. 6.23 [10].

The vertical quantum dot is fabricated by a double-barrier structure

(DBS), which consists of an undoped 12 nm In0.05Ga0.95As well

and two undoped Al0.22Ga0.78As barriers of thicknesses 9.0 and

7.5 nm, respectively. This is processed to form a circular mesa

with a nominal top-contact diameter D of 0.54 μm. Figure 6.23b

shows typical scanning electron micrographs of a circular mesa and

a rectangular mesa. The dot is strongly confined in the vertical

direction by the heterostructures, whereas it is softly confined in

the lateral direction by the Schottky-gate-induced depletion region.

This depletion region is well approximately by a harmonic potential,

and the characteristic energy �ω0 is evaluated from measurements

of the magnetic field dependence of the Coulomb oscillations. The

values of �ω0 obtained for various numbers of electrons in the dot

are shown in Fig. 6.23c. The effective lateral confinement becomes

weak as the number of electrons in the dot increases, due to the

effect of Coulomb screening.
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Figure 6.23 (a) Schematic diagram of the device. (b) Scanning electron

micrographs of a circular mesa and a rectangular mesa. (c) Values of �ω0

as a function of number of electrons in the dot.

The eigenstates for a 2D harmonic quantum dot in the perpen-

dicularmagnetic field are the Fock–Darwin states, and their energies

are expressed by

En, l = − l
2
�ω0 +

(
n+ 1

2
+ 1

2
|l|
)
�

√
4ω2

0 + ω2
c , (6.7)

where n and l are the radial quantum number and angular

momentum quantum number, respectively, and �ωc = eB/m∗ is the
cyclotron energy.
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6.4.2 Shell Filling and Hund’s First Rule

The Coulomb oscillations in the current versus gate voltage at B = 0

T for a D = 0.5 μm dot is shown in Fig. 6.24a, and Fig. 6.24b shows

the addition energy versus electron number for two different dots

with D= 0.5 and 0.44μm [11]. This series of current peaks is caused

by electrons filling in the dot from N = 1, but the spacing between

peaks is not equal, differing from that on the 2DEG.

From Eq. 6.7, when ωc = 0,

En, l = (2n+ 1+ |l|) �ω0. (6.8)

Thus, according to the energy the electron energy level forms

various shells: (n, l) = (0, 0), �ω0; (0, ± 1), 2�ω0; (1, 0), (0, ± 2),

3�ω0. . . . Each orbital state fills two electrons, then the first three

shells fill 2, 4, and 6 electrons. The current peak spacing in Fig. 6.24a

is caused by Coulomb energy and also by the energy-level spacing

�ω0. Thus the spacing of current peaks after 2, 6, and 12 electrons is

larger than others. This is also reflected in Fig. 6.24b, which shows

the addition energy as a function of electron number for two dots.

The electronic states are expected to be significantly modified

by a magnetic field B perpendicular to the dot. The B dependence
on the position of the current oscillations is shown in Fig. 6.25 for

B increasing from 0 to 3.5 T in steps of 0.05 T [11]. The positions

of first three peaks depend monotonously on B , whereas the other
peaks oscillate back and forth a number of times. The number of

wiggles increases with N . A close inspection of the figure reveals
that the current peaks generally shift in pairs with B . This even-odd
effect persists up to N = 40.

For the simplest explanation of the magic number and the B
dependence we ignore, for the moment, the Coulomb interaction.

The magnetic energy spectrum is given in Eq. 6.7. At B = 0, Enl
has degenerate sets of states, which are separated by �ω0 from each

other and are completely filled by N = 2, 6, 12, 20, etc., as shown

in Fig. 6.24. When B increases the original degenerate states split

into a series of singlet states. The rearrangement of the pairing

can be understood in terms of Hund’s rule. Hund’s rule favors the

filling of electrons with spin-up and spin-down in a singlet state,

decreasing the interaction energy. The detailed discussion can be

seen in Refs. [10] and [11].
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Figure 6.24 (a) Coulomb oscillations in the current versus gate voltage at

B = 0 T for a D = 0.5 μm dot. (b) Addition energy versus electron number

for two different dots with D = 0.5 and 0.44 μm.

6.4.3 Single-Electron Tunneling Spectrum in the
Magnetic Field

Below we introduce the elastic tunneling between two vertical

coupled quantum dots [12]. The vertical double quantum dot device

is like that shown in Fig. 6.23, but is made from a triple barrier

heterostructure (TBS) and is located in a cylinder mesa whose

diameter is 0.6 μm.

By appropriately tuning both VG and the source-drain voltage VS
one can obtain configurations as shown in Fig. 6.26 [12]. The lowest

(n,l) = (0,0) orbital state of the left dot is aligned with the Fermi

level of the left reservoir (source), and the lowest orbital state of

the right dot is always located below the lowest orbital state of the

left dot, and above the Fermi level of the right reservoir (drain). In
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Figure 6.25 Gate voltage positions of the current oscillations versus

magnetic field for a dot with D = 0.5 μm.

such a configuration, due to the CB in each dot, as well as inter-dot

electrostatic interactions, the left dot acts as a “turnstile” so that the

electron number in the right dot is always zero or one, no matter

how large the source-drain voltages are. When the source-drain

voltage is turned in such a way that a higher orbital (n,l) state in
the right dot is aligned with the left (0,0) state in the left dot, elastic

tunneling gives rise to a peak of current. This “inter-dot tunneling

spectroscopy” enables us to demonstrate the single-particle nature

of electronic states in the right dot.

The positions of the current peaks changing with magnetic field

B are plotted in Fig. 6.27a [12]. The positions agree well with

the dependence of the calculated Fock–Darwin states En, l after
subtracting E0,0, that is, the B dependence of the orbital states

of the right dot. Thus we can label (n,l) for each current peak

by comparison with the Fock–Darwin diagram. The peak heights

measured 30 mV above in VG from the threshold line are plotted in

Fig. 6.27c. It is clear that the current peak is significantly smaller
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Figure 6.26 Potential landscape for the double quantum dot structure at

various source-drain voltages. The horizontal lines in each dot represents

single-particle energy levels at zero magnetic field. Solid (dotted) arrows

indicate elastic (inelastic) three-step sequential tunneling processes via two

0D states.

Figure 6.27 (a) Experimental data showing the positions in VS on the varies
current peaks. (b) Theoretically calculated Fock–Darwin states. (c) Heights

of the current peaks shown in (a).
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when the peak is associated with a higher angular momentum state.

This demonstrates the existence of angular momentum selectivity

for the electron inter-dot tunneling between the (0,0) state of the

left dot and the higher orbital state of the right dot. The tunneling

probability between the (0,0) state and the higher orbital states is

small but not zero. For explanation of this, the authors proposed an

incoherent sequential tunneling model; the tunneling probability is

proportional to the product of the “local density of state,”

T ∝
∫
dxdy|ψ0,0(x , y)|2|ψn, l(x , y)|2. (6.9)

The transmission becomes small (but are non-zero) when the

angular momentum of ψn, l is large.

6.4.4 Spin Blockade Effect

Except the CB effect, one also observed the spin blockade effect

caused by the Pauli exclusion principle, which prevents two

electrons of parallel spin from occupying a single spatial orbital.

Ono et al. [13] found that the Pauli effect, in combination with the

CB, can be used to block current altogether in one direction while

permitting it to flow in the opposite direction, thereby realizing a

fully controllable spin-Coulomb rectifier.

The schematic of the double-dot device is shown in Fig. 6.28b,

and the electron transport in the forward bias (upper) and backward

bias (down) is shown in Fig. 6.28a [13]. Suppose there are two

sites, site 1 and site 2, weakly coupled together and one electron

is permanently localized on site 2. Now consider the transport of a

second electron through the system between two contact leads. The

number of electrons on site 1 (or site 2), N1 (N2), varies between 0
and 1 (1 and 2). Crucially, the spin effect also markedly influences

electron transport. Because the tunnel coupling between the two

sites is sufficiently weak, the (N1,N2) = (1,1) spin singlet and spin

triplet are practically degenerate. For (N1,N2) = (0,2), only a spin

singlet is permitted because of Pauli exclusion. Therefore, electron

transport is only allowed for a channel made from the (1,1) and

(0,2) singlet states. For a forward bias, either the (1,1) singlet or

triplet can be populated with the same probability by injection of an

electron onto site 1 from the left lead. If the (1,1) singlet is populated,
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Figure 6.28 (b) Schematic of the double-dot device. (a) Electron transport

in the forward bias (upper) and backward bias (down).

a single-electron tunneling current can flow through the singlet

state. Once the triplet is populated, however, subsequent electron

transfer from site 1 to 2 is blockaded by Pauli exclusion. Note that

an electron arriving on site 1 usually cannot go back to the left lead

because of the fast relaxation of the hole state left behind the lead.

Thus the (1,1) triplet will sooner or later be occupied on a time

scale sufficiently longer than the electron tunneling time between

the leads and this should lead to clear current suppression. Because

this blockade is due to spin and not charge, we hereafter refer to this

process as a “spin blockade.” On the other hand, for a reverse bias an

antiparallel spin electron can always be injected onto site 2 from the

right lead.

The differential conductance dI/dV and current I , flowing
vertically through the two dots as a function of VG and V , is shown in
Fig. 6.29 [13]. VG and V are used to change the electrostatic potential
of the two dots together (number of electrons) and the potential

offset between the two dots, respectively. In the lower-right inset
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Figure 6.29 The differential conductance dI/dV and current I flowing
vertically through the two dots as a function of VG and V . Lower-right inset:
dI/dV ≈ VG measured for a small V (∼0 V). Upper-left inset: magnified plots
of I versus V for VG fixed at peak P (black curve) and in the middle between
the peaks P and Q (red curve) on a logarithmic scale.

dI/dV ≈ VG measured for a small V (∼0 V) shows clear Coulomb
oscillation peaks. The second peak (P) and the third peak (Q) are

much large. This implies that tunneling is elastic between the source

and drain leads for N= 1→ 2 and 2→ 3. For |V | ≥ 1mV, transport is

nonlinear (see potential diagrams in themain diagram). The current

is clearly suppressed in the forward bias because of a spin blockade,

whereas a large current still flows in the reverse bias because of

inelastic tunneling via the singlet states. The upper-left inset shows

magnified plots of I versus V for VG fixed at peak P (black curve) and
in themiddle between the peaks P andQ (red curve) on a logarithmic

scale. Both curves show strong current suppression (I ≈ 2 pA) due

to the spin blockade. In the vicinity of V = 0 V, the red curve shows

strong current suppression due to a CB.
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6.4.5 Single-Electron Tunneling in Coupled Quantum
Dots

Using the coupled quantum dots structure (e.g., Fig. 6.28b) the

electron filling and the CB effects can also be studied by changing

the gate voltage VG. Figure 6.30a shows calculated addition energy
spectra, �2(N) = U (N + 1)−2U (N) + U (N − 1) for different

spacings between two dots b [14]. U (N) is the total energy of the
N-electron system, and �2(N) can reveal a wealth of information
about the energy required to place an extra electron into a quantum

dot system. When b is small the coupled quantum dot is rather

similar to a single quantum dot. At intermediate dot separation, the

spectra pattern becomes more complex. However, at a larger inter-

dot distance, a simple picture emerges that the coupled quantumdot

is about to dissociate. For example, at b = 7.2 nm a strong peak at

N = 2, 4, and 12 and a weaker peak at N = 8 appear that can be

easily interpreted from the peaks appearing in the single quantum

dot spectrum. The peaks at N = 4 and 12 are a consequence

of symmetric dissociation into two closed shells N = 2 and 6 of

quantum dots, respectively, whereas the peak at N = 8 corresponds

to the dissociation into two identical stable quantum dots holding

four electrons each, filled according to Hund’s rule to give maximal

spin. The peak at N = 2 is related to the localization of one electron

on each constituent dot, the two-electron state being a spin-singlet

configuration.

Due to the difficulty in fabricating two perfectly identical con-

stituent quantumdots in the coupled quantumdot, the experimental

spectra (Fig. 6.30b) are different from those of theoretical spectra.

(i) The spectrum for the most strongly coupled quantum dot (b =
2.5 nm) resembles that of the quantum dot up to the third shell

(N = 12). (ii) For intermediate coupling (b = 3.2 to 4.7 nm), the

spectra are quite different from the quantum dot spectrum, and a

fairly noticeable peak appears at N = 8. (iii) For weaker coupling

(b= 6.0 and 7.5 nm) the spectra are different again, with prominent

peaks at N = 1 and 3.

In calculation the authors took the well width w = 12 nm,

the well depths V0 ± d, V0 = 225 meV, d = 0 or a realistic
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Figure 6.30 (a) Calculated �2(N)/�2(2) for coupled QDs with different

inter-dot distances b. Also shown is the calculated reference spectrum for

a single QD. (b) Experimental �2(N)/�2(2) for several inter-dot distances

between 2.5 and 7.5 nm. (c) Same as panel (a), but for coupled QDs obtained

using δ = 1 or 0.5 meV.

value 0.5 or 1 meV. Taking into account this mismatch of well

depth the authors confirmed the spectra character of the coupled

quantum dot by performing the theoretical calculations with δ =
1 or 0.5 meV. The results are shown in Fig. 6.30c. The overall

agreement between theory and experiment of the general spectral

shape is quite good, indicating the crucial role played by a

mismatch. In particular, the appearance of the spectra in the weak

coupling limit for small N values is now correctly given, as well

as the evolution with b of the peak appearing at N = 8 for

intermediate coupling. A comparison between Figs. 6.30b and 6.30c

reveals that for small values of b (≤4.8 nm), for a reasonable

choice of parameters (w, δ), a mismatch does not produce sizable
effects.
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Chapter 7

Silicon Single-Electron Transistor

The operation principle of the single-electron transistor (SET) is

to control one electron through a very small quantum dot. The

performance of the SET is enhanced with the decreasing scale of

the quantum dot. Therefore, the quantum dot is generally smaller

than 10 nm, very suitable to be high-density integrated. Meanwhile,

the property of a single electron permits it to operate at ultra-low

power because the power dissipated in the circuit is proportional

to the number of participating electrons. SETs have a peculiar

I–V characteristic, which is absent for a general MOSFET. All these

properties make it possible for SETs to become high-performance

circuits in a very small area.

At the early stage of single-electron transistor research the used

materials are metals or compound semiconductors, mainly studying

quantum dot physics. But considering the application of the SET, the

most suitable material is silicon. Because Si SETs are compatible

with general MOSFETs, it is easier to integrate a Si SET into the

present very large scale integration (VLSI). Another convenience is

that one can use the present mature microprocessing technology

to fabricate a SET. Now the Si SET has been considered as one of

the most suitable candidates of the unit device in future ultra-high

density and ultra-low power VLSI.
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7.1 Principle of a Single-Electron Transistor

Figure 7.1a is a schematic diagram of the equivalent circuit of

a single-electron quantum dot [1]. The two leads of the dot are

connected with the source and gate, and Ct and Cg are the tunneling
capacitance and gate capacitance, respectively.

When an electron tunnels into the dot, the electrostatic energy

(Coulomb energy) changes,

�U = e2

2Cdot
, (7.1)

where Cdot is the total capacity of the dot. If the dot is small enough,
�U can be comparable with the thermal energy, even larger than it,

thus only when the gate provides the extra energy can the electron

tunnel into the dot. This is the Coulomb blockade (CB) effect, which

is the foundation of the single-electron transistor (SET). A more

detailed description of a SET is that the electrostatic energy of the

system

U = Q2dot
2Cdot

+
(
Cg
Cdot

)
QdotVg + const., (7.2)

where Qdot = − Ndote is the charge in the dot and Cg is the gate-dot
capacitance. U can be rewritten as

U =
(
Ndote− CgVg

)2
2Cdot

. (7.3)

Figure 7.1 (a) Schematic diagram of the equivalent circuit of a single-

electron quantum dot. (b) Ndot as a function of Qs = CgVg at T = 0 K.



April 2, 2025 16:27 JSP Book - 9in x 6in 07-QWM-07

Principle of a Single-Electron Transistor 211

Figure 7.2 Equivalent circuit of the SET.

At T = 0 K, taking U as the minimum, one obtains Ndot as a
function of Vg, as shown in Fig. 7.1b.When Vg increases by each e/Cg,
Ndot increases one step. At a finite temperature, this step character
becomes indistinct due to thermal fluctuation.

Figure 7.2 is the equivalent circuit diagramof a SET [1], where the

dot is connected with the source and drain by the tunneling barriers

Cs and Cd, respectively. Meantime, it is connectedwith the gate by the
capacitively coupling, so it becomes a three-terminal device similar

to the metal-oxide semiconductor field-effect transistor (MOSFET).

Different from the single-electron quantum dot shown in Fig. 7.1a,

in a SET there is current flowing from the source to the drain under

the control of the gate.

The total energy of the N electrons in the dot is

E (N) = U (N)+
N∑
k=1

εk =
(
Ne− CgVg − CdVds

)2
2Cdot

+
N∑
k=1

εk, (7.4)

where Cd is the source-dot capacitance, Vds is the source-drain
voltage, and εk is the k-th quantum level of the quantum dot. The
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Figure 7.3 Conduction band potential energy diagram of the SET. (a)

Condition for single-electron tunneling. (b) Condition for a Coulomb

blockade.

chemical potential of the N-th electron in the quantum dot is

μN = E (N)− E (N − 1)

= (2N − 1) e2 − 2eCgVg − 2eCdVds
2Cdot

+ εN . (7.5)

Figure 7.3 is the conduction band potential energy diagram of the

SET [1]. When the chemical potential of the electron in the quantum

dot satisfies

μN+1 > μs ≥ μN ≥ μd > μN−1, (7.6)

the electron can enter the quantum dot from the source and then

move out to the drain, as shown in Fig. 7.3a, where μs and μd are

the chemical potential of the source and drain, respectively. Because

only one electron can enter into and move out of the quantum dot,

the transport is called single-electron tunneling. When Vg increases,
so μN is lower than μd,

μN+1 > μs ≥ μd > μN , (7.7)

the electron cannot tunnel into the dot and this case is called a CB.

Thus the drain current oscillates with the gate voltage, as shown in

Fig. 7.4 [4], where each peak represents the flowing of one electron.

Define the energy needed to increase an electron in the quantum

dot as the single electron additional energy Ea,

Ea = μN − μN−1 = e2

Cdot
+ (εN − εN−1) = EC + �E , (7.8)

where EC is the Coulomb charge energy of a single electron and
�E is the spacing of the quantum levels. When the potential energy
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Vds = 1.0 mV

Vsub = 0 mV

Figure 7.4 Id − Vg curves for Vds = 1.0mV; the temperature decreases from

room temperature to 15 K.

of the quantum dot increases to Ea, it satisfies the single-electron-
tunneling condition in Eq. (7.6). In the I–V curve (Fig. 7.4) the

oscillation period is

�Vg = Ea
eα

= Cdot
eCg

Ea = e
Cg

+ Cdot
eCg

�E , (7.9)

where α = Cg/Cdot is a gain modulation factor, which changes the
dot potential into Vg. When the dot is large enough, �E can be

neglected compared with EC and �Vg is approximately a constant;
this case is called the Coulomb oscillation.

Figure 7.4 shows the Id − Vg curves for Vds = 1.0 mV [4]. When

Vg is fixed at the peak value of the Coulomb oscillation, Id increases
monotonously with an increasing Vds, as shown in Fig. 7.5. When Vg
is fixed at the CB regime, Id keeps a low value as Vds increases until
Vds is larger than a definite value so that μd is lower than μN ; then

Id increases continuously with Vds, as shown in Fig. 7.5.
Figure 7.6 shows the contour plot of Id in a SET as a function of

Vg and Vds [1], which gives thewhole picture of the CB characteristic.
At a low Vds along the Vg axis, there are a series of rhombus current
blockade regimes (deep gray), called the CB regime or the Coulomb
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Figure 7.5 Id − Vds characteristic curve of a SET under the single-electron-
tunneling condition and the Coulomb blockade condition.

diamond. In each CB regime the number of electrons keeps an

integer number. Between two neighboring CB regimes there exist

light-gray regimes called single-electron-tunneling regimes. In each

single-electron-tunneling regime the number of electrons jumps

between N − 1 and N and the electron flows from the source to the

drain, producing a tunneling current.

The slope of the boundary between the CB regime and the single-

electron-tunneling regime reflects the difference of the influence of

Vg and Vds to the quantum dot potential; thus they are determined

by the ratio of capacitances of the SET. The slope of the descending

boundary of the diamond is Cg/Cd, and the slope of the raising

boundary is Cg/(Cg + Cs). The slope of the descending boundary
corresponds to the voltage gain of the SET, which has an important

influence on the performance of the SET circuit.

The operation of the SET has to meet two conditions; the first is

that the Coulomb charging energy is much larger than the thermal

energy,

Ea > 20− 100 kBT . (7.10)
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Figure 7.6 Contour plot of Id in a SET as a function of Vg and Vds.

If the temperature is not low enough, even in the case that the

condition (7.6) does not satisfy, the thermally exited electron

will tunnel through the quantum dot, resulting in closing of the

neighboring CB peaks and increase of the valley current of the CB

oscillation. Theoretically, the full width at half maximum (FWHM) of

the CB peak is proportional to kBT /(αe). While the spacing between
gate voltages of peaks �Vg = Ea/(αe), the ratio of �Vg and FWHM
demonstrates the ratio of peak to valley of a CB oscillation Ea/kBT .
To increase the ratio of peak to valley the condition (Eq. 7.10) should

be satisfied.

Figure 7.7 shows calculated Ea, EC, and �E of a Si SET as a

function of quantum dot size. The Si SET is a spherical Si quantum

dot buried in the SiO2 base [1]. From the figure we see that the room

operation of the SET demands that the size of the SET be smaller

than 2 or 3 nm. The capacitance of this ultra-small quantum dot is

smaller than 1 aF. In this condition the proportion of the �E in the
total energy will increase rapidly and there will appear the quantum

effect in the SET characteristics.
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Figure 7.7 Calculated Ea, EC, and�E of a Si SET as a function of QD scale.

The second condition comes from the uncertainty relation. To

avoid the fluctuation or uncertainty of the number of electrons in

a quantum dot, the electron should be localized well in the quantum

dot, separated from the source and drain, which gives the condition

Rt � h/e2 = 25.8 k�, (7.11)

where Rt is the resistance of the tunneling barrier. Rq = h/e2 is
called the quantum resistance. A too-high tunneling resistance will

result in very lowdrain current and lowdrivability, which is themain

shortcoming of the SET.

7.2 Early Works of Set Operating at Room
Temperature

Takahashi et al. [2] fabricated a Si SET by converting a one-

dimensional (1D) Si wire substrate into a small Si island with

a tunneling barrier at each end by means of pattern-dependent

oxidation of a very thin Si layer on SiO2. With this structure, the

total capacitance was reduced to∼2 aF, which enabled conductance
oscillation of the SET at room temperature.
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Figure 7.8 Schematic diagram of the Si SET.

(a) (b)

Figure 7.9 Cross-sectional view of a SET (a) and an equivalent circuit (b).

Figure 7.8 shows the schematic diagram of the Si SET [2].

Figure 7.9 shows the cross-sectional view of a SET (a) and an

equivalent circuit (b) [2].

The conductance as a function of gate voltage in different

temperatures is shown in Fig. 7.10 [2]. Here, the drain voltage was

1 mV and the source and back-gate voltages were fixed at 0 V.

Conductance oscillations are observed even at room temperature.

These oscillations are due to the CB by tunneling barriers with a

very small capacitance. The capacitance can be estimated from the

conductance characteristics. From the oscillation period �Vg in the
gate voltage, ∼500 mV, the gate capacitance Cg is calculated to be
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Figure 7.10 Conductance as a function of gate voltage in different

temperatures.

∼0.3 aF according to Cg = e/�Vg. This value is consistent with the
capacitance estimated from the dimensions of the structure. Hence,

the back-gate capacitance Cb is determined to be ∼0.01 aF because
the cycle of the conductance oscillation as a function of the back-gate

voltage is 30 times that for the front-gate voltage.

In Fig. 7.11 the source-drain current as a function of drain voltage

Vd at the gate voltage corresponding to the conductance valley is
shown [2]. The figure is similar to Fig. 7.5 in the CB condition.

The gate voltage Vg and back-gate voltage are fixed at 0.7 and 0 V,
respectively. The drain current is blocked over a Vd range of 160 mV.
The drain capacitance Cd is found to be ∼1 aF on the basis of the
offset in the drain voltage of 160 mV. Taking into account that the

source capacitance Cs does not exceed Cd in the present structure,
one obtains the total capacitance Ct = Cs + Cd + Cg + Cb < 2.3 aF.

This small value corresponds to a very large charging energy (e2/Ct)
of 70 meV, ensuring conductance oscillation at room temperature.

Ono et al. [3] developed a new oxidation method related

to the original pattern-dependent oxidation (PADOX) method,
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Figure 7.11 Source-drain current as a function of drain voltage Vd at the
gate voltage corresponding to the conductance valley.

the vertical pattern-dependent oxidation (V-PADOX). The method

applies thermal oxidation to a Si wire with a fine trench across it

on a silicon-on-insulator substrate. During the oxidation, the Si wire

with the fine trench is converted, in a self-organized manner, into

a twin SET structure with two single-electron islands, one along

each edge of the trench, due to position-dependent oxidation rate

modulation caused by stress accumulation. Figure 7.12 shows the Si

wire with a fine trench across it [3]. The key aspect of the method,

thermal oxidation, is carried out just after the wire with a fine

Figure 7.12 Si wire with a fine trench across it.
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Figure 7.13 Resulting SET structure and the corresponding equivalent

circuit. Those for the original PADOX are also shown for comparison.

trench is defined. During the oxidation the region below the trench

is turned into twin Si islands, one along each edge of the trench. The

resulting SET structure and the corresponding equivalent circuit

are schematically shown in Fig. 7.13 [3]. Those for the original

PADOX are also shown for comparison. In this figure, the broken

lines represent preoxidation Si patterns and the hatched regions

represent islands and leads after oxidation. The width of the island

is 60 nm, and the length is 30 nm.

Figure 7.14 shows the conductance G, measured at 40 K with a
drain voltage of 10 mV, as a function of the top-gate voltage Vg, the
side-gate voltage VA = − 4 V, and VB = 0 V [3]. Three peaks are

observed, peaks A1, B1, and B2. Changing the side-gate voltages VA
and VB, one can demonstrate that peak A1 originates from island

A, which is closer to side gate A than island B is, and peaks B1

and B2 originate from island B. This confirms that a SET is formed

along each edge of the fine trench and both SETs can be individually

controlled. But in the present device the independent control effect

of the side gate is not obvious.
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Figure 7.14 ConductanceG, measured at 40 Kwith a drain voltage of 10mV,
as a function of the top-gate voltage Vg.

7.3 Si Set Operating at Room Temperature

In Section 7.1 we discussed the condition of operation of a SET

at room temperature. As in Eq. 7.10 and Fig. 7.7, the size of

the quantum dot should be smaller than 2 or 3 nm. In this

case the spacing between single-electron energy levels �E will

be much larger than the thermal energy and there will appear

new quantum effects. Ishikuro et al. [4] fabricated the SET in the

form of point-contact MOSFETs with various channel widths using

electron beam lithography and the anisotropic etching technique

on a silicon-on-insulator substrate. The device with an extremely

narrow channel shows CB oscillations at room temperature. At a low

temperature, negative differential conductance and fine structures

are superposed on the device characteristics, which are attributed

to the quantummechanical effects in the quantum dot.

The schematic view of the point-contact MOSFET is shown in

Fig. 7.15 [4]. It is found that the device with a 30 nm width shows
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Figure 7.15 Schematic view of the point-contact MOSFET.

normal MOSFET operation even at 4.2 K. As the width decreases,

the drain current decreases and, when the channel is extremely

narrow, the device shows clear CB oscillations, which indicates that

the channel is separated by tunnel barriers.

Figure 7.4 shows the drain current as a function of Vg. The
temperature is changed from room temperature down to 21 K.

The CB oscillation can be observed even at room temperature.

Different from the CB characteristics of the semi-classical model,

(i) the intervals between the peaks are not constant and (ii)

negative differential conductance (NDC) and the fine structures are

superposed on the Ids − Vds characteristics. From the experimental

results one can estimate that the single-electron charging energy

EC = 58 meV and the spacing between quantum levels �E =
30 meV, which are all much larger than the thermal energy at room

temperature. Knowing EC, one obtains Cg = 0.085, Cd = 0.50, Cs =
0.80, and Csub = 0.009 aF. Suppose the quantum dot is spherical and

its diameter is estimated to be 6 nm.

Figure 7.16 shows the three-dimensional (3D) plot of the Ids as a
function of the Vg and Vds at 4.2 K [4]. Clear rhombus shapes caused
by CB oscillations are observed. NDCs and fine structures appear in

parallel with the sides of the rhombus shapes.
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Figure 7.16 Three-dimensional plot of the Ids as a function of the Vg and Vds
at 4.2 K.

Saitoh et al. [5] reported room temperature (RT) observation

of NDC in a silicon single-dot single-hole transistor (SHT). They

reduced the dot size to as small as 2 nm by improving the fabrication

technique. In the single-dot SHT, both large CB oscillation and clear

NDC due to large quantum-level spacing�E are observed at RT. The
NDC appears as clearly as CB oscillations in the present SHT so the

merged current blockade region (extended CB region) is observed.

The schematic of the point-contact MOSFET SHT is shown in

Fig. 7.17a [5]. Two rectangles A and A’ form the source and drain,

and at the opposite angles a SHT (a single dot sandwiched by

two tunneling barriers) is self-formed in the point-contact channel.

To reduce the channel thickness as well as the channel width,

they removed the buried oxide (BOX) just under the point-contact

channel by hydrogen fluoride (HF). As a result, the etching of
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Figure 7.17 (a) Schematic of the point-contact MOSFET SHT. (b) The point-

contact channel before and after SCI (NH4OH/H2O2/H2O) etching.

the channel proceeds from both the top and the bottom and the

channel thickness is effectively reduced while the source/drain

silicon on insulator (SOI) regions are kept relatively thick, as shown

in Figs. 7.17b and 7.17c. The height and thewidth of the final channel

are estimated to be less than 5 nm.

The drain current Id as a function of the gate voltage Vg at RT is
shown in Fig. 7.18a [5]. A large CB oscillation with one current peak

is observed. The peak-valley current ratio (PVCR) is as high as 40.4.

An enormously high PVCR of the observed CB oscillation indicates an

ultra-small dot is successfully formed in the extremely constricted

channel. Figure 7.18b shows Id as a function of the drain voltage Vds
at RT. In the negative Vds region, clear NDC with the PVCR of 11.8 is
observed.

The most probable origin of clear NDC in the single-dot

SETs/SHTs is the resonant tunneling at the source-side barrier due
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Figure 7.18 (a) Drain current Id as a function of the gate voltage Vg at RT.
(b) Id as a function of the drain voltage Vds at RT.

to large�E in the ultra-small dot. The schematics of the conduction
band profile in a SET with an ultra-small dot are shown in Fig. 7.19a

[5]. For simplicity, electron transport in SETs is considered instead

of hole transport in SHTs. Since �E is much larger than the

thermal energy at RT in the present device, electrons in the source

cannot tunnel to the excited states in the dot and only ground

state is accessible. At low Vds, the tunneling rate of electrons from
the source to the dot is relatively high because electrons tunnel

through the thin tunneling barrier close to the Fermi level in the

source. As Vds increases, the energy levels in the dot fall down

and electrons must tunnel through the thicker barrier close to the
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Figure 7.19 (a) Schematics of the conduction band profile in a SET with an

ultra-small dot. (b) Comparison of the calculated Id − Vds characteristics of
the SHT with a 2 nm spherical silicon dot and the experimental data.

band edge in the source. Consequently, the tunneling rate decreases

and NDC appears. Figure 7.18b compares the calculated Id − Vds
characteristics of the SHT with a 2 nm spherical silicon dot and the

experimental data; the agreement is good.

The contour plots of the differential conductance ∂ Id/∂Vds and
Id as a function of Vg and Vds are shown in Figs. 7.20a and 7.20b,
respectively [5]. In Fig. 7.20a two rhombus-shaped CB regions and

a large NDC region are observed. In Fig. 7.20b the CB region is

extended from low Vds to negative and high Vds as a result of the
existence of the large NDC region. Such extended CB region and

the NDC region have so far been observed only at a much low

temperature. The NDC in a single-dot SHT is very simple and more

suitable for circuit application.
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Figure 7.20 Contour plot of the differential conductance ∂ Id/∂Vds (a) and
Id (b) as a function of Vg and Vds, respectively.

7.4 Si Set Used as a Logic Circuit

The ultimate aim of the Si SET is to fabricate VLSI with ultra-high

device density and ultra-low power loss. The single-electron logic

circuit can be divided into two kinds: one is the CMOS-like SET logic

circuit, in which the SET is used as an on/off switch device, similar

to the general MOSFET in a CMOS logic circuit; and the other is the

charging state logic circuit, where one bite is represented by one

electron.

Ono et al. [6] fabricated a complementary single-electron

inverter in which two identical SETs are packed on a silicon-on-

insulator substrate (see Fig. 7.12). The resulting circuit occupies a

very small area: 100 × 100 nm for each SET. For complementary
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Figure 7.21 Structure of the complementary single-electron inverter.

(a) Basic pattern before (top) and after (bottom) oxidation. (b) SEM image

of the inverter. (c) Its equivalent circuit.

operation, the electric characteristics of one of the SETs are shifted

using a side gate situated near the SET. The structure of the

complementary single-electron inverter is shown in Fig. 7.21a [6],

the equivalent circuit is shown in Fig. 7.21c, and the scanning

electron microscope (SEM) image of the inverter is shown in

Fig. 7.21b. The flow of electrons is indicated by the arrows. In the

equivalent circuit, VIN and VOUT represent the input and output

voltages. VDD, VA, and VB are the voltages applied to the power-
supply terminal and the two side gates, A and B, respectively.

Figure 7.22a shows input-output transfer characteristics of the

inverter for a power-supply voltage VDD of 20 mV [6]. For this

measurement, a negative constant voltage (VB = − 7 V) was applied
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Figure 7.22 (a) Input-output transfer characteristics of the inverter for a

power-supply voltage VDD of 20 mV. (b) Drain-current characteristics of the
two SETs for the drain voltage of 20 mV with the same side-gate voltage

VA = 0 V and VB = − 7 V. (c) Output voltage for a square-wave input with an

amplitude of 20 mV.

to the side gate B to shift the current curve of SET B in the positive

VIN direction while gate A was grounded. Thus SET A and SET

B operated as p- and n-type transistors, respectively. The drain-

current characteristics of the two SETs for the drain voltage of 20mV

with the same side-gate voltage VA = 0 V and VB = − 7 V are shown

in Fig. 7.22b. The output voltage for a square-wave input with an

amplitude of 20 mV is shown in Fig. 7.22c. The amplitude of the

output is nearly the same as that of the input and the power supply

voltage. But the switching speed is low, and it is caused by the slow

response of the external circuit due to a large capacitance in the

measurement system.
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Figure 7.23 (a) Switching operation for a square-wave input with an

amplitude of 50 mV. (b) Corresponding conductance characteristics of SET

1 (solid curve) and SET 2 (dotted curve).

Ono et al. [7] fabricated a Si SET current switching device on the

basis of the Si SET inverter. The structure of the switching device is

similar to that of the inverter. The switching operation for a square-

wave input with an amplitude of 50 mV is shown in Fig. 7.23a

[7], and the corresponding conductance characteristics of SET 1

(solid curve) and SET 2 (dotted curve) are shown in Fig. 7.23b. δVg
represents the amplitude of the square-wave input. Similarly, the

switching speed is low.

The main shortcoming of the Si SET used as a device is that

the speed is too slow. Apart from the tunneling resistance Rt,
there is also the parasitic resistance of the external circuit. Due

to the uncertainty relation Rt should be larger than the quantum
resistance h/e2 ≈ 25.8 k� (see Eq. 7.11). The parasitic resistance

comes from the undoped ultra-thin SOI region between the channel

and the gate, which is serially connected with the intrinsic SET,

resulting in large parasitic resistance. Although the upper limit

of the peak conductance of SETs is determined by the quantum

conductance (= e2/h ≈ 38.8 μS), further degradation of the peak

conductance due to parasitic series resistance is a crucial issue.

Saitoh et al. [8] improved the silicon point-contact SET (see

Fig. 7.17). By narrowing only the point-contact region and sup-

pressing the parasitic series resistance, a peak conductance as

large as 8.8 μS and single-electron addition energy as large as

128 meV are simultaneously obtained. Figure 7.24 shows the
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Figure 7.24 Id Vg characteristics of the fabricated SET at a fixed Vds− =
10 mV at several temperatures.

Id − Vg characteristics of the fabricated SET at a fixed Vds =
10 mV at several temperatures [8]. In Fig. 7.24 the conductance

of the second peak at 8 K is 8.8 μS, which is much larger than

the reported values (usually about 0.1 μS). This indicates that the

relatively thick SOI layer successfully suppresses the parasitic series

resistance. In themeantime, the height of the second peak decreases

with an increasing temperature from 8 to 77 K. This temperature

dependence is quite different from previously reported Si SETs,

where the peak current increases with an increasing temperature.

Since in this SET the quantum-level spacing�E is sufficiently large,
only one quantum level, closest to the Fermi level, contributes

significantly to one current peak when kBT � �E ; the integrated
area of one peak is independent of temperature. Therefore, the

peak conductance decreases as the temperature increases and

the peak width broadens. However, the first current peak keeps

almost constant with an increasing temperature. This is because

the conductance of the first peak is easily affected by the tunneling

through the next level with higher coupling to reservoirs at a

relatively high temperature.
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I V characteristics at a fixed V 4.55 V, where theFigure 7.25 d − ds g =
Id − Vg curve has its peak, at several temperatures.

Figure 7.25 shows the Id − Vds characteristics at a fixed Vg =
4.55 V, where the Id − Vg curve has its peak, at several temperatures
[8]. A current staircase is observed at 8 K, and the fine structure

(nonlinear behavior) persists up to 77 K. In this case, the staircase

feature arises from the discreteness of quantum levels. When kBT
� �E , only the ground state is accessible for an electron for a low
drain voltage and the current is kept constant until a drain voltage

at which the first excited state becomes aligned with the Fermi level

in the reservoirs and begins to contribute to conduction. Thus, each

plateau of the staircase corresponds to a different quantum state in

the dot.

The energy spacing between the ground state and the first

excited state�E can be derived from the drain voltage at which the

drain current starts to increase from the first plateau, because the

first excited state starts to contribute to electron transport at this

drain voltage. Because the onset drain voltage is about 0.05 V in Fig.

7.25, the quantum-level spacing is estimated to be about 19 meV.

The coulomb charging energy is roughly estimated to be 109meV as
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the difference between the single-electron addition energy and the

quantum-level spacing.
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Chapter 8

Silicon Single-Electron Memory

Memory is the first and foremost application of silicon single-

electron devices (SEDs) and has been extensively researched. One

reason is that the SEDs can operate in smaller dimensions and

this directly leads to the increased memory density. Another is

that memory usually has a periodic and simple structure and this

is expected to make the implementation of the emerging devices

straightforward. The scaling limit in the current silicon memories,

both flash memory and dynamic random access memory (DRAM),

also adds to the demand for single-electron memories.

The memory unit with a discrete trap-like memory node has

attracted much attention because it operates using fewer electrons

and can possibly operate at a high density, a high speed, and low

power dissipation. In these memories, the memory node includes

floating-node type or natural nitride trap and semiconductor

nanocrystals. The electrons are injected into the memory node,

causing the shift of the critical voltage, whose principle is the

same as that of general erasable programmable read-only memories

(EPROMs) or electrically erasable and programmable read-only

memories (FEPROMs), but the total number of electrons involved in

the memory node is far less than the latter. This kind of memory is

called a few-carriers memory.
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8.1 Memory of Floating-Gate-Node Type

Most of the proposed single-electron memories are floating-node

types, in which a limited number of electrons are stored in the

floating memory node and the presence of the charge is detected

by a charge-sensing device. SEDs can be used in either electron

storage or charge sensing schemes. Both schemes are shown in

Figs. 8.1 and 8.2 [1], respectively. Possible combinations of them are

numerous.

A distinctive device in electron storage schemes is the electron

trap, which consists of one, two, or more serial tunnel junctions and

a capacitor (Fig. 8.1a–c). Another electron storage scheme is based

on a serially connected transistor and a storage capacitor (Figs. 8.1d

and 8.1e). Since transistors are three-terminal devices, this scheme

provides flexibility in memory operations. Figure 8.2 shows various

kinds of charge-sensing devices used in single-electron memories.

Their drain current is modulated by the charge in the memory

node. Thus the memory charge can be detected by the current of

the sensing line. Apart from the single-electron transistor (SET)

Figure 8.1 Various electron storage schemes used in single-electron

memories.
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Figure 8.2 Various kinds of charge-sensing devices used in single-electron

memories.

and multiple-tunnel-junction (MTJ) SET, the minimum metal-oxide

semiconductor field-effect transistor (MOSFET) is also sensitive

enough to detect a single electron.

In the relationship between the potential of the memory node V
and the gate voltage Vg, Fig. 8.3 [1], tunneling of the electron into and
out of the memory node is prohibited by the Coulomb blockade (CB)

in the region−Qc/C < V < Qc/C . The critical charge Qc is given by

Qc = eC
C�

(
1+ �

2

)
, (8.1)

where C� is the total capacitance C + Cg, C is the capacitance of the
MTJ, and Cg is the gate capacitance. � determines a multiple value

Figure 8.3 Potential of the memory node V as a function of gate voltage Vg
for double- and multiple-tunnel-junction traps.
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Figure 8.4 Electrostatic energy of the MTJ trap system with an extra

electron as a function of its position when Vg = 0 and Cg/C = 3 [1].

condition, given by

� =
(
1− 1

N

)
Cg
C
, (8.2)

where N is the number of serially connected tunnel junctions.
The operation principle of the memory is shown in Fig. 8.3 [1].

V increases with a slope of Cg/C� until the boundary of the CB

regime (V = Qc/C ) is reached, where an electron tunnels into the
memory node and the V drops abruptly by e/C� . Even if the Vg
sweep is reversed, the electron is trapped until the sweep reaches

the other boundary (V = −Qc/C ), where the electron tunnels out of
the memory node. Thus a hysteresis loop appears, and bistability is

attained at Vg = 0 for 1< � < 3.

The stability of a trapped electron can be assessed by calculating

the electrostatic energy of the system as a function of the position of

an extra electron, see Fig. 8.4 [1]. For the number of tunnel junctions

more than one (N > 1), the curves become convex and an energy

barrier appears between stateswith andwithout an extra electron in

the memory node. This results in the stable storage of an electron in

the node. If there is only one tunnel node (N = 1) the stable storage

is impossible, only if the tunnel resistance is nonlinear, as shown in

Fig. 8.1a.
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Figure 8.5 (a) Scanning electron micrograph of the compact silicon single-

electron memory cell. (b) Equivalent circuit of the memory cell.

8.2 Si Set Used as Memory

Stone et al. [2] fabricated a compact single-electron memory in

silicon, which is based on the CB effect observed in highly doped

silicon nanowires. The circuit shows clear memory operation with

a > 100 mV gap between “0” and “1” levels when tested at a

temperature of 4.2 K. The response of the circuit to write and erase

pulse sequences is also presented. The silicon nanowires used as

MTJs are 500 nm in length and have a width of 50 nm. The devices

were fabricated in a silicon-on-insulator (SOI) material. Figure 8.5

shows a scanning electron micrograph of the compact cell after

oxidation, and the equivalent circuit diagram is shown in Fig. 8.5b

[2]. The memory cell consists of MTJ1 and a memory node that

occupies an area of only 0.5 μm2. The second device, MTJ2, forms

an electrometer that has the function of detecting the state of the

memory node. Each MTJ has a side gate to trim its operating point.

The voltage VMC controls the amount of charge on the memory node
via capacitor CM.

Memory operation is demonstrated by the two distinct levels

in the memory node voltage as the voltage VMC is scanned over a
range as shown in Fig. 8.6a [2]. If VMC is increased positively from
zero the voltage on the memory node VM increases until it reaches
+VC, the CB voltage. Further increase of VMC results in a single

electron flowing through MTJ1 onto the memory node, and the node

voltage VM then falls back below the Coulomb gap voltage +VC by



April 2, 2025 16:27 JSP Book - 9in x 6in 08-QWM-08

240 Silicon Single-Electron Memory

Figure 8.6 (a) Schematic representation of the hysteresis loop in amemory

node voltage VM as capacitor voltage VMC is swept. (b) Hysteresis loop at
4.2 K. VMC is swept in the range of±1.3 V.

an amount e/C (where C is the self-capacitance of the memory

node). A subsequent increase of VMC adds electrons to the memory
node one by one. If VMC is reduced toward zero the memory node
voltage will fall finally to −VC. The excess electrons at A in Fig.

8.6a leave the memory node via MTJ, and VM is held at −VC. The
remaining electrons are trapped on the node. If a negative voltage

VMC is applied to the capacitor electrons are removed one by one
from the node, which remains clamped at −VC. The cyclic operation
of VMC results in the two levels as shown in Fig. 8.6a as parts of a
hysteresis loop—the basis of memory operation. Figure 8.6b shows

the measured current of the MTJ2 IE as a function of VMC at 4.2 K,
showing the hysteresis loop.

The response of the memory to “write” and “erase” pulses is

shown in Fig. 8.7 [2]. Positive and negative voltages were applied

alternatively by VMC separated by read periods of 0 V, while the
memory current was monitored. During the read periods two

distinct levels can be seen at B and D, signifying the “0” and “1”

states. The change in current between B and D is determined by

the CB gap, which is set by the trimming gate VT of MTJ1. The self-
capacitance of the island was estimated to be 100 aF. For a Coulomb

gap of 0.05 V this would give an excess or shortfall of 30 electrons at

two levels of VM in Fig. 8.7b.
Takahashi et al. [3] fabricated a Si memory device composed of

a small one-dimensional (1D) Si-wire MOSFET and a SET. The 1D
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Figure 8.7 Memory read-write characteristics of single-electron memory.

(a) Drive pulse wave form. (b) Electrometer output pulses monitoring the

memory node.

MOSFET provides a very steep subthreshold slope that is very close

to the physical limit at room temperature. This guarantees a low-

voltage operation as well as a small size. The very small number of

stored electrons is detected by a highly sensitive SET electrometer.

The device can operatewith an extremely small number of electrons,

which ensures ultra-low-power and high-speed operation.

The SEM image of the Si memory device is shown in Fig. 8.8a,

and its equivalent circuit is shown in Fig. 8.8b [3]. The memory

node is connected via the 1D MOSFET to an electron reservoir

(side electrode). By using the MOSFET to control electron transport

between the memory node and the side electrode, high write/erase

speed can be achieved without sacrificing retention time. This is
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Figure 8.8 (a) SEM image of the Simemory device. (b) Its equivalent circuit.

in contrast to flash-memory-type single-electron memories, whose

operating speed is limited by the low tunneling rate between the

memory island and the channel to ensure sufficient storage time.

The SET is used to sense a small number of electrons stored in the

memory node. The Id − Vd characteristic of the device with the
initially 30 nm wide 1D MOSFET with the 80 nm long gate shows

that the conductance is remarkably high in spite of a channel width

of only 20 nm. This guarantees a high driving capacity of the 1D

MOSFET connected to the small memory node.

Figure 8.9 shows how the device state evolves as the lower-gate

voltage (Vlg) is scanned in the positive direction and then in the
reverse direction [3]. Initially, Vlg was set at a low voltage of −2.7 V,
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Figure 8.9 Hysteresis characteristics of the SET current representing the

“write” and “erase” actions of the Si memory device.

at which the channel of the 1D MOSFET was closed. Then the side-

electrode voltage Vse was changed from 0 V to−1 V before the start
of the Vlg scan at various scan speeds. The rapid fall of the SET
current at Vlg of about −2.3 V, where the 1D MOSFET is turned on,
corresponds to the “write” action. The written information is held

while Vlg is scanned back because the 1D MOSFET is turned off.

The number of electrons in the memory node for a “write” voltage

is estimated to be about 100. In Fig. 8.9 the threshold gate voltage

at which the write operation occurs becomes lower as the scanning

speed of Vlg decreases. This indicates that electron writing proceeds
very slowly through the 1D MOSFET at gate voltages slightly lower

than the threshold.

8.3 Floating Gate Memory Operating at Room
Temperature

Guo et al. [4] fabricated a room-temperature silicon SET memory

that consists of (i) a narrow channelMOSFETwith awidth (∼10 nm)
smaller than the Debye screening length of single electron and (ii)

a nanoscale polysilicon dot (7 nm × 7 nm) as the floating gate
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Figure 8.10 Schematic of a single-electron MOS memory that has a narrow

silicon channel and a nanoscale polysilicon dot as the floating gate. The

cross-section view illustrates the floating gate and the channel region.

embedded between the channel and the control gate. They observed

that storing one electron on the floating gate can significantly

screen the channel from the potential on the control gate, leading

to a discrete shift in the threshold voltage, a staircase relationship

between the charging voltage and the threshold shift.

Figure 8.10 shows the schematic of the single-electron MOS

memory [4]. The polysilicon dot and the Si channel is formed

by thermal oxidation, which would consume silicon, reducing the

thickness of the polysilicon dot by about 9 nm and the lateral

size of the dot and the silicon channel width by about 18 nm.

It is noted that no tunnel oxide is intentionally added between

the channel and the polysilicon floating gate. This will allow fast

charging andminimize the potential difference between the channel

and the floating dot during the charging process, so the CB effect can

regulate the number of electrons stored on the floating dot gate for a

given charging voltage. The potential barrier still exists between the

channel and the floating gate because of the grain boundary and a

thin native oxide.

First, a voltage pulse positive relative to the ground source was

applied to the control gate and the drain voltage was maintained

at 50 mV. This caused the electrons to tunnel from the channel to

the floating dot. At various gate pulse voltages from 2 to 14 V the

measured I–V characteristics are shown in Fig. 8.11 [4]. Despite

a continuous charge voltage, the threshold voltage (defined as the



April 2, 2025 16:27 JSP Book - 9in x 6in 08-QWM-08

Floating Gate Memory Operating at Room Temperature 245

Figure 8.11 Room temperature I–V characteristics of the device before

and after the charges are stored onto the floating dot.

gate voltage at which the drain current reaches 100 pA) always

shifts a discrete increment of about 55 mV and each threshold shift

corresponds to a charging voltage interval of∼4 V.
Therefore, there is a staircase relation between the threshold

voltage shift and the charging voltage, as shown in Fig. 8.12a [4].

Moreover, for a given charging voltage, the threshold shift is self-

Figure 8.12 (a) Threshold voltage as a function of the charging voltage on

the control gate, showing a staircase relation with ∼4 V for each stair. (b)
Threshold voltage as a function of the charging time, while the charging

voltage is fixed at 10 V.
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limited, the threshold voltage shift is independent of the charging

time, as shown in Fig. 8.12b. Since there is no intentional tunnel

oxide, the charge stored at the floating gate can be held for an

average of 5 s after the control-gate potential is set back to the

ground, and after 5 s the threshold voltage of the device returns to

its origin value (the first I–V on the left in Fig. 8.11).
Nakajima et al. [5] fabricated seemingly at the same time a Si

single-electron field-effect transistor (FET) memory device having

a self-aligned floating dot gate. This device demonstrates single-

electron memory operation at room temperature. Figure 8.13a

shows the structure of this FETmemory and 8.13b the cross-section

view of the structure along the a − a′ line in Fig. 8.13a [5]. By use
of the self-aligned manufacture a floating dot having a side length of

about 30 nm is located on a narrow channel wire. The channel width

is equal to or slightly larger than the floating dot. Finally, a second

gate oxide 200 nm thick and a poly-Si control gate were deposited

by low-pressure chemical vapor deposition (LPCVD).

Figure 8.14 shows the typical drain current Id versus gate voltage
Vg characteristics of the device [5]. For the device having a floating
dot (Fig. 8.14a), an increasing Vg produced an Id shift at a Vg of
3.9 V. However, with a decrease of Vg, the Id shift did not occur,
indicating a hysteresis of the Id − Vg curve. It means that the Vg
reaches the CB boundary and an electron enters into the floating

gate dot, resulting in the Id shift. With a subsequent Vg increase
(Fig. 8.14b), an additional Id shift occurred at 5.1 V, the Vg, at which
the Id shift occurred, is called threshold voltage Vth (3.9, 5.1 V). For
the device without a floating dot (Fig. 8.14c) such a quantized Vth
shift and the Id − Vg curve hysteresis could not be observed.

From Figs. 8.14b and 8.14a the neighboring threshold voltages

Vth separation �Vw is 1.2 V and the quantized threshold voltage

�Vth is 0.1 V, which are related to the capacitances,

�Vw = e
Cgt

,

and

�Vth = e
Cgc + Cgt

, (8.3)

where Cgt is the capacitance between the control gate and the

floating dot gate, which is estimated to be 0.16 aF from the
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Figure 8.13 (a) Schematic diagram of Si single-electron FET memory with

a self-aligned floating gate. (b) Cross-section view along the a − a′ line.

geometrical factors of the device. The �Vw is calculated to be 1.0 V,
which is close to that obtained from measurement 1.2 V. Cgc is the
capacitance between the control gate and the narrow channel wire,

which is estimated to be 1.4 aF, giving �Vth a value of 0.1 V, in
agreement with the measurement result.

8.4 Silicon Nanocrystal-Based Memory

The floating gates introduced in above sections are fabricated

by lithography technology. The size of dots is limited by the

manufacture condition. This section introduces a new kind of

quantum dot (nanocrystals) formed by the chemical method. Tiwan
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Figure 8.14 Drain current versus control gate voltage at room temperature

for (a) and (b) FET with a floating dot gate and (c) FET with no floating dot

gate.

et al. [6] fabricated a newmemory structure using threshold shifting

from charge stored in nanocrystals of silicon (∼5 nm in size). A

threshold voltage shift of 0.2–0.4 V with read and write times less

than hundreds of a nanosecond at an operating voltage below 2.5 V

has been obtained experimentally. The retention times aremeasured
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Figure 8.15 (a) Schematic cross section of the device. (b–d) Band diagram

for (b) injection, (c) storage, and (d) removal of an electron from a

nanocrystal.

in days and weeks, and the structure has been operated in excess of

109 cycles without degradation in performance.

Figure 8.15 shows a schematic cross section and band diagram

during injection (write cycle), storage (store), and removal (erasure)

of an electron in the device [6]. A thin tunneling oxide (1.1–1.8 nm

thick) separates the inversion surface of an n-channel silicon FET

from a distributed film of nanocrystals of silicon that covers the

entire surface channel region. A thicker tunneling oxide (4.5 nm or

thicker) separates the nanocrystals from the control gate of the FET.

An injection of an electron occurs from the inversion layer via direct

tunneling when the control gate is forward biased with respect to

the source and drain. The resulting stored charge screens the gate

charge and reduces the conduction in the inversion layer, that is,

it effectively shifts the threshold voltage of the device to be more

positive, whose magnitude for a single electron per nanocrystal is

approximately given by

�Vth = enw
εox

(
tc + 1

2

εox

εSi
tw

)
, (8.4)
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Figure 8.16 A demonstration of the bistability as a result of injection of

electrons into nanocrystals. The characteristics are measured with a 20 ns

gate voltage pulse.

where �Vth is the threshold voltage shift, tc is the thickness of
the control oxide under the gate, tw is the linear dimension of the
nanocrystal well, the ε’s are the permittivities, q is the magnitude of
the electronic charge, and nw is the density of nanocrystals. For tw =
5 nm, 5 nm apart, nw = 1× 1012 cm−2, tc = 7 nm, and the threshold

shift is nearly 0.36 V for one electron per nanocrystal. This is easily

current-sensed.

Figure 8.16 shows the drain current-gate voltage characteristics

in the presence and absence of electrons in nanocrystals [6]. The

characteristics are obtained using 20 ns pulses, applied between

gate and grounded source, with the drain maintained at 100 mV.

The threshold shift of ∼0.25 V under a 1.25 V static gate bias

shows the effect of the storage of electrons, estimated to be one

electron per nanocrystal. At a 3 V static gate bias the threshold shift

is nearly 1.2 V, corresponding to a larger number of electrons per

nanocrystal.
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The refresh times for the structures are very large, that is, the

stored charge does not leak out in accurately measurable times at

room temperature. Leakage of the charge occurs either laterally by

conduction between the nanocrystals or from the silicon surface

with an eventual path to the n+-doped source and drain regions.
The band alignment is unfavorable for tunneling, and the charge

movement within the bulk silicon requires diffusion of carriers.

Thus, the nanomemory has a long retention time. The write time

constants are about 100 ns, which are in the range of theoretical

expectations, and should scale exponentially with a reduction in the

tunneling oxide thickness. The corollary to the long refresh time is

an increase in erase times for the charge. Complete removal of the

charge requires milliseconds at voltages of 3 V and above.

Applying a pulse voltage of ±2.5 V can complete a circle of

writing (1 μs) and erasing (1 ms). The test shows that after 109

circles the threshold voltages persist basically unchanged. It is due

to direct tunneling in the charging and discharging of the structure

to prevent hot-carrier degradation. Besides, the test used a smaller

nanocrystal density to limit power dissipation.

8.5 Retention Property of Nanocrystal Floating
Memory

The key of the non-volatility memory of the nanocrystal floating

memory is the long period retention property of the electrons in

the memory. When some electrons are stored in the nanocrystals,

under a selected voltage the stored electrons have a probability

to tunnel out of the nanocrystal, leading to a gradual change

of the channel current. This gradual change reflects directly the

information of the potential height/width, internal electric field,

defects, interface states, etc. Thus, research of the time variation of

the memory window and the charging and discharging behavior of

the Si nanocrystal will clearly explain the retention property of the

Si nanocrystal memory devices.

Hinds et al. [7] studied the lifetime of the emission of a single

electron stored in a nanocrystalline Si (nc-Si) dot in order to
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Figure 8.17 (a) Schematic of a single-electron memory device isolating a

single nc-Si and a floating gate memory node. (b) Planar scanning electron

microscopy view of a representative memory device showing a single nc-Si

dot near the center of the narrow channel active region.

understand the physical processes for memory application. The

schematic of the FET with nc-Si floating gate nodes is shown in

Fig. 8.17a [7]. A small active area FET channel (50 × 25 nm) is

defined by electron beam lithography on a thin (20 nm) SOI channel

and allows for the electric isolation of a single nc-Si dot. Remote

plasma-enhanced chemical vapor deposition is used to form 8 ±
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Figure 8.18 Time dependence of the channel current after the writing

process.

1 nm diameter nc-Si dots. Electrons stored in a dot result in an

observed discrete threshold shift of 90 mV.

For a 25 nm wide channel and a gate oxide thickness of 50 nm

the observed shift in Vth is 90 mV. Notable is the discrete step in
drain current at a constant gate bias after awriting pulse as shown in

Fig. 8.18 [7]. A stepwise increase in drain current clearly shows the

discrete emission of an electron from the nc-Si dot. The data shown

in Fig. 8.18 is a representative example ofmemory lifetime, and there

was a significant distribution of lifetimes for other pulses under the

same conditions. For the erase voltage Ve = −2.25 to −0.25 V and
T = 295 K the distribution of the measured memory lifetime is

quite broad, with the mean value being nearly equal to the standard

deviation. The median lifetime as a function of gate bias is shown

in Fig. 8.19 [7]. The shown curves are calculated from a polarizable

Schrodinger equation for a 1D confined potential well at the given

nc-Si dot diameter. Most notable is the rather small dependence

of lifetime on bias over a large voltage range and different slopes

for positive and negative biases. The temperature dependence of

lifetime is seen to be proportional to 1/T 2, which is consistent with

a direct tunneling process.
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Figure 8.19 Observed median lifetime (solid points) of a nc-Si memory

device as a function of applied gate bias.

Because the lifetime has a weak dependence on the gate bias,

it is able to infer that the observed electron emission in the nc-Si

memory is not from a defect site on the SOI channel/SiO2 interface

or from the nc-Si/SiO2 interface. Thus, the stored electron behaves

as if it were delocalized over the whole dot. To explain the lifetime

as a function of applied gate bias, an important concept is that the

electron will be attracted to the top of the dot with a positive bias,

thus reducing the tunnel current from the bottom of the dot into the

channel. And in the negative bias the electron will be attracted to the

bottom of the dot, increasing the tunnel current. Figure 8.19 shows

the calculated lifetimes as a function of gate bias for three different

nc-Si dot diameters. The lifetime can be improved by increasing the

tunnel oxide thickness, but this would also increase the write and

erase times in a similar fashion. To improve the retention time while

not increasing write and erase times it is possible to take advantage

of the shallow interfacial traps on the nc-Si interface, for example,

the Si3N4 trap.

Saitoh et al. [8] proposed an ultra-narrow silicon floating gate

memory, in which the channel width is scaled to sub-10 nm. In

this ultra-narrow-channel memory a larger threshold voltage shift

has been observed than in the wide-channel memory. From the
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Figure 8.20 (a) Room-temperature hysteresis characteristics of the devices

with various channel widths. (b) Measured and calculated results of the

channel width dependence of�Vth.

numerical calculation, it turns out that this is caused by bottleneck

regions that dominate the conductance of the whole channel in the

ultra-narrow channel. Moreover, a longer charge-retention time has

been also obtained in this device.

Figure 8.20a shows the drain current Id as a function of the gate
voltage Vg with a drain voltage Vds = 100 mV for different channel

widths at room temperature [8]. Vg scan proceeds from −1 to 10 V
and back to −1 V. Hysteresis loops are observed in all the devices,
and �Vth increases as the channel width decreases. Figure 8.20b
shows measured �Vth as a function of estimated channel width.
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Figure 8.21 Calculated results of the potential distribution in a 75 nmwide

channel and a 10 nm wide channel.

When the channel is narrower than 25 nm, �Vth rapidly increases.
The characteristics of 5 μm wide devices (also shown in Fig. 8.20b)

are almost the same as 75 nm wide channel devices. From �Vth in
the wide-channel devices, the average number of electrons per dot

is estimated to be approximately 0.25.

To understand the mechanism of the large �Vth in the ultra-
narrow channel, the potential distributions are calculated in a 75 nm

wide channel and a 10 nmwide channel when one-fourth of the dots

are occupied by one electron, and the results are shown in Fig. 8.21

[8]. In the wide channel, the current can flow through the wide and

low-potential region. In the ultra-narrow channel, the current path

is completely blocked at the bottleneck region where one dot covers

almost the entire channel (bottleneck effect). Moreover, the average

potential in the ultra-narrow channel is higher than in the wide

channel because of the effects of dots on the side surfaces. These

effects are the origins of large�Vth in the ultra-narrow devices.

Figure 8.22a shows the measured retention characteristics [8].

First change the gate voltage from 0 to 10 V (write) or−10 V (erase),
and then suddenly change the gate voltage to 0 at a time t = 0. Vth
was measured several times afterward. It is apparent that the ultra-

narrow channel (5 nm) device has a wider memory window than

the wide channel (5 μm) device at 104 s after programming. Even

in comparison to normalized�Vth, the ultra-narrow channel device

has longer retention time, as shown in Fig. 8.22b. In the time scale,

the retention time in the 5 nm wide channel device is five times

longer.
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Figure 8.22 (a) Measured retention characteristics in a 5 nm wide device

and a 5 μm wide device. (b) Retention characteristics when �Vth is

normalized to the value at 1 s.

Longer retention time in the ultra-narrow-channel devices can

be explained by the following two mechanisms. One is a classical

bottleneck effect. The linear relationship between�Vth and the total
number of electrons in dots is valid for the wide channel device,

while a strong nonlinear relationship exists for the ultra-narrow-

channel device. This is because a small number of electrons in

several bottleneck regions dominate the conductance of the whole

channel and the influence of one electron is much larger in the ultra-

narrow-channel devices. It is found that when electrons are emitted

from dots and the total number of electrons is decreased by 90%,
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Figure 8.23 Schematic diagram of Si self-aligned doubly stacked dot

memory.

�Vth decreases by 90% in the 75 nm wide channel device and by

61% in the 5 nm wide channel device. The other mechanism is the

quantum confinement effect. The tunneling rate from a dot to the

ultra-narrow channel is lower than that to the wide channel because

the ground energy level in the ultra-narrow channel is lifted up

due to the increased quantum confinement.

The manufacture of an ultra-narrow channel is difficult. Ohba

et al. [9] proposed a Si dot memory whose floating gate consists of

self-aligned doubly stacked Si dots, as shown in Fig. 8.23. A smaller

Si dot exists immediately below an upper dot and lies over the thin

tunnel oxide. It is experimentally shown that charge retention is

improved compared to the usual single layer Si dot memory. Due to

the quantum confinement effect and the CB effect of the lower layer

dots, the energy of electronic states increases and the tunneling rate

of electrons in the upper layer dots through the lower layer dots

decreases, leading to increase of the retention time.

The upper diagram in Fig. 8.24 shows the energy band diagrams

in a low-gate-voltage (Vg) region [9], and Veff represents the voltage
difference between the channel and the charged Si dot. In the

usual single-dot memory the electrons only pass through a thin

tunnel oxide. However, in the doubly stacked dotmemory, the tunnel

probability Pt will decrease by the energy barrier height�E , which
is due to CB and quantum confinement in the lower Si dot. Since

the lower dot is smaller than the upper dot, �E will be determined
by the lower dot size effects. The ratio of tunnel probability

αret = Ptsingle/Ptdouble in a low-voltage region is a measure of
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Figure 8.24 Upper diagram: In a low Vg region. Lower diagram: In write
operation the energy band diagrams for single and double-dot memory.

retention improvement of the double-dot memory compared to the

single-dot one. The retention improvement factor is obtained as

follows:

αret = α (Veff ≈ 0) =
(
2kBT
�E

)
sinh

(
�E
kBT

)
. (8.5)

The exponential dependence on�E is very important.
Figure 8.25 shows the retention factor αret as a function of�E at

300 K. With a decrease of the lower dot diameter the αret increases

in orders of magnitude. Though the w/e speed reduction factor αw/e

is small and less than 10, the retention is improved exponentially.

The lower diagram of Fig. 8.24 shows the band diagram in write

operations. When the write/erase process is in the |Veff|> 2�E , a
high speed will be possible in the double-dot memory because there

is no energy barrier in the tunneling process. As in the retention



April 2, 2025 16:27 JSP Book - 9in x 6in 08-QWM-08

260 Silicon Single-Electron Memory

Figure 8.25 Retention improvement factor αret as a function of �E . The
corresponding lower Si dot diameter D is plotted in the upper abscissa. αw/e
is the velocity reduction factor.

case, the current ratio αw/e is a measure of the speed reduction. The

speed reduction factor is approximately expressed as

αw/e = α

(
Veff >

2�E
e

)
= 2[

1−
(
2�E
Veff

)] . (8.6)

It is important that αw/e have no exponential dependence on�E .

Figure 8.26 Time dependence of the memory window at the same bias

condition for the double-dot memory, the double-dot memory with larger

dots, and the single-dot memory.
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Figure 8.26 shows the time dependence of the memory window

at the same bias condition for the double-dot memory, the double-

dot memory with larger dots, and the single-dot memory [9]. The

value for a 5 nm lower dot memory (solid dots) is larger than that

for the single-dot memory (empty circle) by more than 102 times,

consistent with the retention factor αret ≈ 300 in Fig. 8.25. For the

larger double-dot memory (dashed line) �Vth disappears at 104 s,
corresponding to αret ≈ 30 in Fig. 8.25.
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Chapter 9

Properties of Quantum Transport

9.1 Characteristic Length [1]

In traditional transistors, the electron’s movement is classical. But

when the scale of the device is so small that its scale is about equal

to or smaller than some characteristic lengths, there will be distinct

quantum effects of current.

Electrons in two-dimensional electron gas (2DEG) degenerate at

a low temperature, so their Fermi wave vector can be written as

kF =
√
2πns, (9.1)

where ns is the area density of 2DEG. The electrons’ Fermi

wavelength is

λF = 2π

kF
=

√
2π

ns
. (9.2)

For electrons with an area density ns = 5 × 1011 cm−2, the Fermi
wavelength is about 35 nm, so it is obviously comparable to the scale

of mesoscopic devices. At a low temperature, the electric current

is contributed mostly by electrons near the Fermi energy; other

electrons with energy less than the Fermi energy do not contribute

to the conductance. Therefore the Fermi wavelength is associated

with the quantum effect of current.
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Electrons that move in a semiconductor will be scattered by

impurities, defects, or phonons. Theirmomentum relaxation time τm

and scattering time τs have the relationship

1

τm
= 1

τs
αm, (9.3)

where αm is a constant between 0 and 1, and it denotes effectiveness

for momentum relaxation of different scatterings.

Themean free path Lm is defined as the average distance traveled
by an electron before it loses its momentum. So it can be written as

Lm = kFτm, (9.4)

where kF is the Fermi velocity, and for electrons with an area density
ns = 5× 1011 cm−2, on the basis of Eq. 9.1, we obtain:

kF = �kF
m∗ = �

m∗
√
2πns = 3× 107 cm/s, (9.5)

where m∗ is the electron’s effective mass and m0 is the rest mass of

an electron. If m∗ = 0.067 m0 and τm ∼= 100 ps, then from Eq. 9.4

Lm = 30 μm can be obtained.

The phase relaxation length is defined as the average distance

traveled by an electron before the electron wave loses its phase.

Similar to the momentum relaxation time τm, the phase relaxation

time τϕ has the following relationship with the scattering time τs:

1

τϕ

= 1

τc
αϕ , (9.6)

where αϕ is a constant between 0 and 1, and it denotes the

effectiveness for phase destruction of different scattering.

To understand the concept of phase destruction, we imagine an

experiment of an Aharonov–Bohm (AB) ring. The incident electron

beam splits into two at one end of the ring, moves up and down the

two arms, then meets at the other end of the ring. If the lengths

of both arms are the same and the phases of the two waves at the

meeting point are equal, then the amplitude rises. Assume that there

are impurities or defects (named scatterers) randomly distributed in

each arm. They will scatter the passing electronwave. Because these

scatterers are static and elastic, they do not change the electron’s

energy, just change its phase. When the two electron waves meet,

their phases are unequal and so interference reduces the amplitude.
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Because the scatterers are static, the phase relationship between the

two paths is definite.

If we add a magnetic field perpendicular to the ring, the electron

wave moving up or down an arm get a extra positive or negative

phase shift, which is in proportion to the magnetic flux � through

the ring. Therefore the amplitude of the output electron wave

oscillates with �, and it is the AB effect. In the case that there are

scatterings in the arms, although the amplitude reduces when� = 0

(the magnetic field is zero), when the strength of the field increases,

the amplitude’s oscillation with � doesn’t change. When � reaches

a certain value, the amplitude reaches its maximum. We can say that

the loss of the phase at the scatterings was compensated by the

magnetic field. In this condition, we can consider

αϕ = 0, τϕ → ∞, (9.7)

that is, the elastic scattering of static scatterings doesn’t affect the

phase relaxation time. This fact has been proved by the experiment.

Experiments found that the length of two arms of an AB ring is much

larger than the mean free path Lm in general, that is, an electron

has experienced repeatedly the momentum elastic scattering but

experiments still observe the AB oscillation.

A major factor that affects phase relaxation is the inelastic

scattering of electron-phonon. A phonon is one quantum mode of

the lattice vibrations, which is not a static point as an impurity or

a defect, so its scattering on electrons has the property of being

random. As it is inelastic scattering, in every scattering the electron’s

energy will increase or decrease the energy of a phonon. When two

electron waves scattered by phonons meet, the relationship of their

phases is irregular, so the average amplitude of the electron wave

reduces. In summary, rigid scatterers do not contribute to phase

relaxation, only fluctuating scatterers do.

Assume that after time τϕ , the mean square energy that the

electron gains in phonon scattering is equal to the square of energy

that the electron gains each time multiplied by the number of

scattering:

(�ε)2 = (�ω)2
(
τϕ

/
τs
)
, (9.8)

where �ω is the energy of a phonon. The phase relaxation time is

defined as that after time τϕ the mean square value of an electron’s
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phase change is roughly equal to 1:

�ϕ ∼ (�ε) τϕ/� ∼ 1. (9.9)

It can be obtained from Eq. 9.8 and Eq. 9.9:

τϕ =
( τs

ω2

)1/3
. (9.10)

Therefore for the low-frequency phonon (acoustic phonon), its

influence on the phase relaxation is small. A major factor of phase

relaxation is the optical phonon.

At a low temperature, a major factor of the phase relaxation

is electron–electron scattering. The frequency of electron–electron

scattering is determined by the difference of electron energy E and
Fermi energy EF: � = E − EF. Because � is smaller, the states

that can be scattered are very few because of the Pauli exclusion

principle. So the probability of scattering goes to zero. In 2DEG, it

has been proved that

�

τϕ

∼ �2

EF

[
ln

(
EF
�

)
+ const.

]
. (9.11)

Because the hot electron’s average energy� ≈ kBT , the relationship
between τϕ and T is the formula when � is replaced by kBT in

Eq. 9.11.

9.2 Phase-Coherent Effect [2]

When electrons pass through a device, if the size of the device is

smaller than electrons’ coherent length (inelastic mean free path),

different waves will interfere. The coherent effect will result in

additional scattering, then reduce the conductivity. In addition, the

coherent effect will result in the AB effect, universal conductance

fluctuation, etc.; all these are named mesoscopic effects.

One of important problems is the conductance fluctuation caused

by the quantum effects. Assume the action area of the gate is 0.1

× 0.05 μm2 and the carrier concentration in the inversion layer is

2× 1012 cm−2. Then there are only 100 electrons under the gate. The
conductance’s change caused by the phase coherence is on the order

of e2/h, about 40 μS. If the normal conductivity is 1000 mS/mm,
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then for a device with a gate width 0.1 μm, the total conductance

is 100 μS. Therefore the conductance fluctuation caused by the

phase coherence is 40% of total conductance, so it will limit the

performance of the device greatly.

In addition, if the orbit of a ballistic electron surrounds an

obstacle, such as an impurity atom, then interference between two

orbits will also result in the phase coherent effect. Especially when

there is a perpendicular magnetic field in the area surrounded by

two orbits, the AB effect will occur. Here the wave function in the

closed loop can be expressed by the integral along the loop:


 ∼ exp

[
e
�

(∫
1

A · dl−
∫
2

A · dl
)]

= exp

[
e
�

∮
B · dS

]

= exp

(
�

�0

)
, (9.12)

where �0 = h/e is the magnetic flux quantum. The electric current
passing through the closed loop will oscillate periodically with the

magnetic flux. When a current of 10 mA pass through the loop, if

there is a magnetic field of 0.02 T, then the AB effect can result in

distinct fluctuation.

9.3 Coulomb Blockade Effects

Experiments found that for a small quantum dot, only when the

electric voltage is larger than a certain value, the electron can pass

through the dot. The reason is that the Coulomb interaction between

the electron in a quantum dot and the electron in a circuit will reject

the entry of the second electron to the quantum dot. Only when

the energy of the electron exceeds the Coulomb interaction energy,

the second electron can enter the quantum dot and the current can

occur. This appearance is named Coulomb blockade (CB) effects, and

the relationship curve between voltage and current has the shape of

a step, which is named the Coulomb staircase. The CB effects have

been observed in 2DEG systems in Si metal-oxide semiconductor

field-effect transistor (Si-MOSFET) and GaAs heterojunction.

From the point of view of a large-scale integrated circuit, all

effects above are unfavorable, and we should avoid these in design.
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On the other hand, these mesoscopic effects may be utilized in

the new generation of electronic devices. For example, in a device

that has a size smaller than the inelastic scattering mean free path,

electrons follow the motion law of quantum mechanics, so we can

utilize properties of quantum interference and quantum waveguide

to design the device and to control the movement of electrons. And

we can design a single-electron transistor by using CB effects, which

can greatly reduce the number of electrons stored in one bit and can

reduce power dissipation of memory devices. Because spin of an

electron has a much longer scattering time and distance than that

of electric charge, we can utilize spin as the information carrier to

design spintronics devices and so on.

9.4 Landauer–Büttiker Formula

Datta first proposed the concept of a quantum device in 1989 [3],

which can only be understood by considering an electron’s wave

property in simple terms. Concepts that can describe an electron’s

movement are no longer scattering probability, relaxation time,

mobility. and so on. For a two-terminal device, assume that a+ and
a− are amplitudes of the electron wave in the income circuit and b+

and b− are amplitudes of the electron wave in the outcome circuit.

Then for a definite energy E , they can be related by a scattering
matrix

(
a−

b−

)
=

(
r (E ) t′ (E )
t (E ) r ′ (E )

)(
a+

b+

)
, (9.13)

where r(E ) and r ′(E ) denote reflection coefficients and t(E ) and
t′(E ) denote transmission coefficients, which are determined by the
internal potential and structure.

The circuit has a certain width. Then there are transverse modes

with different energies. In common, the transport in the longitudinal

direction is multimode, so the amplitudes a+ and a− are column

matrices of size (Ma × 1) and b+ and b− are column matrices of

size (Mb × 1). Similarly, r is a matrix with size (Ma × Mb), t is a
matrix with size (Mb × Ma), and so on. Ma and Mb are the number
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of transverse modes in the income circuit and outcome circuit,

respectively.

In Landauer–Büttiker formula, conductance is expressed by

the scattering performance, so this theory is suitable for solving

conductance of a system that is made of different materials or

conductors of different shapes in contact with each other. This

theory is the basic theory in the research on mesoscopic transport.

Suppose an electron moves in an infinite ideal conductor along

the z axis and ignore the positive ions in lattice points and the

scattering of positive electric charge on the electron. In the absence

of a magnetic field (so take no account of the spin), the Hamiltonian

of the electron is

H = p2

2m
+ V (x , y) , (9.14)

where V (x , y) is the lateral confinement potential in the wire. On
the basis of the Hamiltonian (Eq. 9.14), we can obtain the system’s

eigenstate


αk (x , y, z) = 1√
2π

eikzφα (x , y) , (9.15)

where k is the wave vector along the z direction of the wire,

α denotes the α-th transverse eigenstate, and the eigenenergy

corresponding to the α-th eigenstate is Eαk = Eα + �
2 k2/2 m. The

first term and the second term are lateral and longitudinal energy,

respectively, and the lateral energy Eα is determined by the lateral

confinement potential V (x , y). We can use the square potential

well to express the lateral confinement potential of an ideal wire.

Suppose the well in one direction is very narrow and the width in

another direction isW . Then the lateral energy Eα = (n�π)2/2mW2

has discrete energy levels. According to this, the energy spectrum of

the system is made up of a series of parabolic and discrete energy

bands and the minimum value of the corresponding curve is Eα .

As shown in Fig. 9.1, every parabola denotes a lateral energy band,

which is named the allow mode.

When T = 0 K, the current in the α-th channel of the wire can be

expressed as

Iα = 2

2π

∫ kmax

0

evαkdk = 2

2π

∫ kmax

0

evαk
dk
dEαk

dEαk = 2e
h
(μ − Eα) ,

(9.16)
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Figure 9.1 Dispersion relation E (k) as the function of k.

where vαk = 1/� × dEαk/dk is electron’s group velocity and μ is the

chemical potential (Fermi energy level).

If the width of the ideal conductor is small enough, then the

energy gap between two energy bands will be large enough for the

electron to just occupy the lowest energy band, and then this energy

band will become the one and only allow channel. At present we can

calculate the net current in the wires with the chemical potentials

μ1 and μ2 connected to each other:

I = I1 − I2 =
(
2e
h

)
μ1 −

(
2e
h

)
μ2 =

(
2e2

h

)
(V1 − V2) . (9.17)

Therefore the conductance of a two-terminal, single-channel device

is

G = I
V1 − V2

= 2e2

h
. (9.18)

This is the Landauer formula of a two-terminal, single-channel

system; 2e2/h is called the quantum conductance.

If the wire has a finite width, the electron may occupy several

energy bands. Assume that N channels have been filled in and f (E )
denotes the probability that the channel has been occupied by the

electron. At present the current can be written as

I = 2e
h

∫ ∞

0

dE

[
f1 (E )

∑
i

Ti (E )− f2 (E )
∑
i

Ti (E )

]
, (9.19)



April 2, 2025 16:28 JSP Book - 9in x 6in 09-QWM-09

Landauer–Büttiker Formula 273

where Ti = ∑
j Tij = ∑

j |tij|2 denotes the total transmission

probability of an electron transport from all channels of wire 1 to

the i -th channel of wire 2. f1(E ) and f2(E ) are the Fermi–Dirac
distribution function in wire 1 and wire 2, respectively. Therefore

the current of the system is

I = 2e
h

∫
dE [ f (E )− f (E + VD)]T (E ) , (9.20)

where f (E ) is the Fermi–Dirac distribution function, VD = V1 −V2
is the bias voltage of the system, and T (E ) = �i Ti (E ) is the total
transmission probability. For a small bias, Eq. 9.20 can be simplified

as

G = I
VD

= 2e2

h

∫
dE

(
− ∂ f

∂E

)
T (E ). (9.21)

At a low temperature,−∂ f /∂E = δ(E−EF). So in the end, we obtain

G = 2e2

h
T (EF) = 2e2

h

Ma∑
i=1

Mb∑
j=1

∣∣tij (EF)∣∣2, (9.22)

where tij(EF) is the transmission coefficient shown in Eq. 9.13, and
Eq. 9.22 is the Landauer–Büttiker formula for the two-terminal,

multichannel device. It follows that the key point of utilizing the

Landauer–Büttiker formula is solving the transmission coefficient

matrix t. Most research on mesoscopic transport focuses on this
problem, so next we will introduce three methods that are widely

used to calculate the transmission coefficient matrix.

The two-terminal Landauer formula can be extended to the

multi-terminal device. Considering a three-terminal device, we can

write its scattering matrix functions similar to Eq. 9.13:⎛
⎝a−

b−

c−

⎞
⎠ =

⎛
⎝ raa tab tac
tba rbb tbc
tca tcb rcc

⎞
⎠

⎛
⎝a+

b+

c+

⎞
⎠ . (9.23)

Büttiker has proved that the current Ii (i = a, b, c) has the following
relationship with the chemical potential of every circuit μi :

Ii = 2e2

h

∑
j=a,b,c

(
Tijμ j − T jiμi

)
, (9.24)
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where

Tij =
M∑

m,n=1

∣∣(tij)mn∣∣2. (9.25)

When there is no external field, Tij = T ji and Eq. 9.24 can be written
as

Ii = 2e2

h

∑
j=a,b,c

Tij
(
μ j − μi

)
, (9.26)

whereμ j −μi corresponds to the bias voltage between two circuits.

The conductance between each pair of circuits can be defined as

Gij = 2e2

h
Tij, i, j = a, b, c (i 	= j) . (9.27)

Equations 9.22 and 9.27 are the fundamental formulas of quantum

conductance. They form the theoretical basis of future quantum

devices. For a certain device, we should obtain scattering matrices

raa(E ), tab(E ), . . . It is shown in Eq. 9.24 that the quantum device

is non-local, and change of any terminal’s chemical potential will

influence currents in all circuits.

9.5 Spintronics

Electron spin, or intrinsic electronic angular momentum, is another

intrinsic property of an electron besides electric charge. The

electron spin has two discrete values ±�/2, which are commonly

named the spin-up state and the spin-down state. This is very

similar to the high and low levels or switch off and switch on

used to realize logic ‘1’ and ‘0’ states. Moreover, a 1/2-spin system

is an ideal two-level system, and spin-up and spin-down states

are an ideal choice to realize the quantum bit (qubit) in quantum

calculation. Recently in the traditional electronic industry, devices

are getting more and more integrated and the size of devices is

getting smaller and smaller, which results in distinct quantumeffects

and too much energy consumption. Therefore, naturally, people

think of utilizing spin-free degree, which always was neglected

formerly, to replace or to combine the charge-free degree. Therefore,
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the research on how to control spin-free degree effectively has

attracted wide attention of scientists and was named “spintronics”

byWolf et al. formally in 2001 [4]. Spintronics researches a particle’s

spin in a solid and applies it in devices, and it contains spin

polarization’s production, control, transport, and exploration. It is an

interdiscipline field that involves electronics, magnetism, optics, and

micro- and nanoprocessing technology. According to the materials

researched, it can be grouped into two areas: metal spintronics and

semiconductor spintronics.

Ideal spintronics devices realize functions by coupling of spin

orientation and spin, so they may not be restricted by the number

of electric charges and energy dissipation, and they have a lower

power dissipation and a faster running speed. Moreover, electronic

storage devices based on spin have the advantage of nonvolatility.

This shows clearly that spintronics will have wide prospects of

development and application in areas of quantum calculation,

communication, molecules, chemistry, and so on. Therefore people

expect that spintronics can construct the physical foundation of a

new generation of nanoelectronics and the spintronics device will

replace the current microelectronics devices.

The symbol of spintronics’ birth is the discovery of the giant

magnetoresistance (GMR) of the metallic multilayer structure in

1988 [5, 6]. The proposition of spin-vales and room-temperature

magnetic sensor utilizing anisotropic magnetoresistance makes for

great success of GMR in commerce. Nowadays a new generation of

the magnetic heads of high-density disks is using the GMR principle.

Now thanks to the high sensitivity to themagnetic field of GMR, each

GMR magnetic head has to be reduced to 30–50 nm and more than

4 T volume in desktops and more than 1 T volume in laptops have

been realized.

Now spintronics devices are mostly made of metal magnetic

materials, which belong to the first category of spintronics, that is,

magnetoelectronics. In 1995 scientists found a new phenomenon,

tunneling magnetoresistance (TMR) [7], which has larger mag-

netoresistance and smaller coercive force. The magnetic tunnel

junction (MTJ) utilizing the TMR technology has been created, and

new magnetoresistive random access memory (MRAM) is expected
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to replace nonvolatile memory based on the complementary metal-

oxide semiconductor (CMOS). This new generation of memory has

advantages such as no data loss on power failure, a rapid reading

speed comparable to static random access memory (SRAM), and

largememory space comparable to dynamic random accessmemory

(DRAM), so it has wide application prospects.

The second category of spintronics mainly studies semicon-

ductors, and it hopes to create an imbalance of the spin number

to realize spin transistors and spin valves and then replace

traditional electronic devices. These new spintronics devices have

characteristics such as low energy consumption and rapid switching

speed. Because ready-made mature semiconductor technology and

equipment can be used to reduce the developing cost, these

devices have attracted wide attention. To utilize spin-free degree in

semiconductors, wemust produce, keep, control, and detect the spin

polarization of carriers.

There are several methods that can produce spin current: ohmic

injection, tunnel injection, ballistic electron injection, utilizing the

giant Zeeman splitting of a dilute magnetic semiconductor (DMS)

in a magnetic field, utilizing a ferromagnetic semiconductor (FMS)

as a spin calibrator, the optical method, and so on. Ohmic injection

means using a ferromagnetic metal (FM) as an electrode to inject

spin-polarized electrons. If the ohmic contact is created in the

junction between the FM and the semiconductor, then it can be

expected that the spin-polarized current in the FM can be injected

into the semiconductor. However, the ohmic contact by heavy doping

produces scattering of the spin flip, which reduces spin polarization.

At T<10 K, from FM-InAs ohmic contact, spin-polarized electrons

of 4.5% have been obtained [8]. At room temperature, from the Fe-

GaAs contact, spin-polarized electrons of 2%have been obtained [9].

The scanning tunneling microscopy (STM) experiment has

proved that a process of vacuum tunnel can inject spin-polarized

electrons into a semiconductor effectively [10]. The FM-insulator-

FM tunnel junction with a high magnetoresistance experiment has

determined that the tunneling barrier can remain spin polarization

of electrons in the tunneling process. This means tunneling is a

more effective method of spin injection than diffusive transport. The

two methods above both rely on the ferromagnetic film’s epitaxial
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growth on a semiconductor and demand a sharp interface and a

high-quality Schottky potential barrier between the metal and the

semiconductor.

The third method is using ballistic transport. From the energy

difference of the conduction bands of two kinds of spin in a

ferromagneticmaterial and the conduction band of a semiconductor,

we can determine the ballistic electron’s spin transmissivity and

reflectivity at the junction. If we create a point contact between

a FM and a nonferromagnetic metal, experiments have proved

that current with spin polarization up to 40% is realized in a

nonferromagnetic metal by using a ballistic injection [11]. Using the

DMS Be0.07Mn0.03Zn0.9Se as the spin aligner, at a low temperature

(∼10 K) and an external magnetic field (>1 T), spin polarization
injection efficiency up to 90% is realized when electrons pass

through the Be0.07Mn0.03Zn0.9Se with a width of 300 nm [12]. This is

because in a magnetic field, a low concentration of Mn ions creates

giant Zeeman splitting in the conduction and valence bands by the

sp-d interaction and the electron’s effective Lande g-factor may be
up to 100. At a low temperature, electrons only occupy the lowest S
= −1/2 band, so a spin polarization current is produced. Similarly, a
FMS can be used as a spin aligner.

The optical method is an important method to produce a

spin current, and it is also an important method to detect spin

polarization of carriers. Assume that there is a sample of a GaAs

quantum well, and its direction of growth is along the z axis. In the
GaAs quantum well, the energies of the heavy hole and the light

hole are split and the heavy hole state is the ground state, while

the light hole state is the excited state. Using a beam of circularly

polarized light (σ+) with energy equal to a light exciton to radiate
on the quantum well sample along its growth direction, due to the

transition selection rule of heavy holes, light holes, and electrons,

this beam of light can just excite electrons in light hole states of

Lz = −1/2 to electron states of Sz = 1/2 (�Lz = +1), so in the
conduction band electrons with Sz = 1/2 are much more than

electrons with Sz = −1/2. After the laser stops, electrons in the
conduction band will recombine with the heavy hole and produce

light with σ+ polarization and σ− polarization, which correspond to
electron–heavy hole transition (Sz = −1/2→ Lz = −3/2) and (Sz =
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+1/2→ Lz = 3/2), respectively. Therefore the intensity of light with

σ− polarization I− is much larger than that of light with σ+

polarization I+, and I+/I− is equal to the ratio of numbers of

electrons with Sz = 1/2 and electrons with Sz = −1/2.
About how to control spin polarization of carriers in a semi-

conductor, various semiconductor spintronics devices have been

proposed. The original one is a spin field-effect transistor (SFET)

proposed by Datta and Das in 1989 [13], which is also the most

famous one. We will introduce it in detail in the next part. Other

important ones are the graphene spin field-effect transistor, the

metal-oxide-silicon spin field-effect transistor, the Johnson spin

switch, the unipolar spin transistor, and so on. Although making

great efforts, people have not succeeded even in the original Datta–

Das transistor yet, which shows that we have a long way to go and

there is much work to do.

The third category of spintronics is very different from the first

two. It attempts to control spin the quantum state of a single

electron or several electrons and then realize quantum calculation

and quantum communication. In otherwords, it attempts to produce

a qubit by using the two-quantum-state system of spin. The study of

this kind of spintronics devices is in the very early stages. Due to the

advantage that a qubit can be laid in solid materials, it has a better

prospect than some other schemes of quantum calculation, such as

iron trap and cavity quantum electrodynamics.

9.6 Rashba Spin-Orbit Interaction

Datta andDas first proposed the concept of the spin transistor, which

is based on controlling the spin of an electron [13]. The paper’s

title is “Electronic Analog of the Electro-optic Modulator,” and its

principle is as shown in Fig. 9.2. Figure 9.2a is an electro-optic

modulator, and Fig. 9.2b is a spin transistor similar to an electro-

optic modulator.

The principle of the electro-optic modulator should be intro-

duced first. A linearly polarized light at 45◦ to the y axis is radiated
from the left of the electro-optic modulator along the x direction,
and it can be represented as a combination of the z- and y-polarized
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Figure 9.2 (a) Electro-optic modulator; (b) a spin transistor similar to an

electro-optic modulator.

light (
1

1

)
(45◦ pol)

=
(
1

0

)
(z pol)

+
(
0

1

)
(y pol)

. (9.28)

Because the electro-optic effect makes the dielectric constant εzz

slightly different from εyy , as this light passes through the electro-

optic material, the two polarizations suffer different phase shifts k1L
and k2L, where Ldenotes the length of the crystal. The light emerging
from the electro-optic material is represented as ((eik

L
1 )/(eik

L
2 )). The

analyzer at the output lets the light with polarization (1/1) pass

through, so the output power Po is given by

Po ∝
∣∣∣∣(1 1 )

(
eik1L

eik2L

)∣∣∣∣
2

= 4 cos2
(k1 − k2) L

2
. (9.29)

The light output is modulated by a gate voltage that controls the

difference of the phase shifts�θ = (k1 − k2)L.
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The theorem of the spin transistor is based on the interaction of

the electron orbit and spin, that is, the Rashba interaction [14],

HR = α

�
(σ × p)y = iα

(
σx

∂

∂z
− σz

∂

∂x

)
, (9.30)

where α is named as the Rashba coefficient and generally is

(1− 10)× 10−10 eVcm and σx and σz are the Pauli matrices.

In the spin transistor as shown in Fig. 9.2b, both ends are FM iron

contacts, which are magnetized in the x direction and correspond
to the polarizer and analyzer in the electro-optic modulator of

Fig. 9.2a. Electrons injected through the source electrode are spin-

polarized along the x direction, which can be represented as a

linear combination of positive z-polarized and negative z-polarized
electrons (

1

1

)
(+z pol)

=
(
1

0

)
(+z pol)

+
(
0

1

)
(−z pol)

. (9.31)

Due to the Rashba term in the effective mass Hamiltonian (Eq. 9.30)

HR = α(σzkx − σxkz), in the absence of a magnetic field, the Rashba
term causes the spin-up and spin-down states to split. If an electron

is traveling in the x directionwith kx 	= 0 and kz = 0, then considering

the Rashba term, the energies of the electron can be written as

E (+z pol) = �
2k2x1
2m∗ + αkx1,

and

E (−z pol) = �
2k2x2
2m∗ − αkx2. (9.32)

Electrons with two kinds of spin polarizations have the same energy,

so

kx2 − kx1 = 2m∗α
�2

. (9.33)

Therefore there is a differential phase shift for spin-up and spin-

down electrons after they pass through the junction area, which is

shown as

�θ = (kx2 − kx1) L= 2m∗αL
�2

. (9.34)

For InGaAs/InAlAs heterostructures, from the experimentally ob-

served zero-field spin splitting, α was estimated to be∼3.910 eV·cm.
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To make a phase difference of π , L is about 0.67 μm, which is less

than the mean free path (≥1 μm) in high-mobility semiconductors

at low temperatures.

All the above discussion is in the condition kx 	= 0 and kz = 0.

For a general case, both kx and kz should be taken into account, so
the Hamiltonian is more complex. And If kz 	= 0 and kx = 0, the

eigenstates are (1/1) and (1/(−1)) so the incoming beam is not split

at all. It goes entirely into one of the eigenstates, and consequently

no current modulation is expected. As the angle θ of propagation of

the electrons with the x axis is increased, it can be shown that the
effect is reduced gradually to zero at θ = 90◦. To prevent this effect,
Datta and Das suggested a confining potential V (z), which makes
electrons form a series of discrete subbands in the z direction. If the
confining potential is narrow enough so the different subbands are

sufficiently far apart in energy, then subband mixing can be neglect.

Then we return to the case kz = 0, when the current modulation is

the strongest.

Since Datta’s paper was reported, many kinds of semiconductor

spintronics devices have been proposed, almost all of which are

based on the spin-orbit interaction (SOI), especially the Rashba spin-

orbit interaction (RSOI) [14]. The SOI researched by spintronics can

be classified into two classes: the RSOI and the Dresselhaus spin-

orbit interaction (DSOI) [15]. The RSOI causes a spin split of electron

states in the absence of an external field, that is, 1 order term of

momentum arises in the Hamiltonian of the system, which makes

the dispersion relation of the electron energy split from the single

parabolic curve to two ones.

Both SOIs can be obtained from the Dirac relativistic wave

equation and are related to the spin-orbit coupling term in the

nonrelativistic limit, that is, the Thomas term. For a semiconductor

heterojunction, if V (z) is not inversion symmetric at the junction of
2DEGs, the Thomas term can be written as

HR = iα
(

σy
∂

∂x
− σx

∂

∂y

)
,

which is just Eq. 9.30, and the Rashba coefficient α is related to

the symmetry breaking of V (z). On the other hand, if the system
studied has the bulk crystal inversion asymmetry, such as diamond
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or zincblende semiconductor structures, the spin-orbit coupling

term can be written as

HD = β
[
σxkx

(
k2y − k2z

) + σyky
(
k2z − k2x

) + σzkz
(
k2x − k2y

)]
,

(9.35)

where β is the strength coefficient of spin-orbit coupling, which is

related to a specific material. This expression of spin-orbit coupling

was first proposed by Dresselhaus in 1955 [15], so it is known as

Dresselhaus spin-orbit interaction.

9.7 QuantumWaveguide Theory

It follows that the key point of utilizing the Landauer–Büttiker

formula is solving the transmission coefficient matrix t. Actually
most research on mesoscopic transport focuses on this problem.

To calculate the scattering matrix, authors proposed and developed

quantum waveguide theory, including one-dimensional quantum

waveguide theory [16], two-dimensional quantum waveguide

theory [17], and theory of one-dimensional quantum waveguide

taking account of the Rashba interaction [18, 19]. In other chapters

we will introduce these theories, related calculation methods, and

some results.
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Chapter 10

One-Dimensional QuantumWaveguide
Theory

In the 1980s, most of the initial work on electron transport in a

small system dealt with metal samples, in which many transverse

subbandswere involved and the transport was diffusive. At the same

time, advances in semiconductor microtechnology made it possible

to fabricate extremely high mobility quantum wires with narrow

widths, in which only a few of the lowest subbands are occupied and

the transport is ballistic. The allowed modes in the channel are then

the “waveguide” modes.

It follows from Chapter 9 that the key point of utilizing the

Landauer–Büttiker formula is solving the transmission coefficient

matrix t. Here we introduce the one-dimensional quantum wave-

guide theory [1, 2], which can be applied to one-dimensional

quantumwaveguide circuits of any shape and any structure. The so-

called one-dimensional circuit means that the width of the circuit is

narrow enough for the energy spacing between subbands produced

by the transverse confinement to be much larger than the electron’s

longitudinal kinetic energy and there is only one mode of electron

moving in the circuit. The single-mode movement of an electron is

QuantumWaveguide in Microcircuits (Second Edition)
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described by the plane wave function with the wave vector k along
the circuit’s direction, which follows the quantummechanics law.

10.1 Two Basic Equations

Let ψi be the wave function in the i -th circuit,
ψi = c1i eikx + c2i e−ikx , (10.1)

where the coordinate x axis is along the longitudinal direction of the
circuit.

The core of this theory is giving boundary conditions at each

intersection crossed by more than two circuits, which is described

by two basic equations. The first one is the continuity of the wave

functions at the intersection, which can be written as

ψ1 = ψ2 = ψ3 = · · · = ψn, (10.2)

where ψi denotes the value of wave function in the i -th circuit at the
intersection. The second equation is the conservation of the current

density, ∑
i

∂ψi

∂xi
= 0, (10.3)

where all the coordinates x point to or back to the intersection.
In the general case, especially when there is spin-orbit interac-

tion, we introduce a current density operator Li , which has a more
complex form than ∂/∂xi , as in Eq. 10.3. Generally we can obtain it
from the Hamiltonian

Li = − i
�
[l , H ] . (10.4)

The second equation can be written as∑
i

Liψi = 0. (10.5)

The completeness of Eqs. 10.2 and 10.3: From Eq. 10.1 there are

2n unknown coefficients for the n circuits crossing the intersection,
among which the n coefficients can be determined by the n
equations Eqs. 10.2 and 10.3. The other half of the coefficients will

be determined by the boundary conditions at the other intersections

or the conditions at the input or output terminals. Hence the set

of equations Eqs. 10.2 and 10.3 at all intersections is complete for

determining the wave function of the whole system.
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10.2 Ring with Two Arms

To illustrate the application of the above theory, we consider the

structure of a ring with two arms as shown in Fig. 10.1a in the

absence of a magnetic field. The two arms of the ring have different

lengths L1 and L2. We introduce the local coordinate system for

each circuit such that the direction is along the electron-current

direction and the origin is taken at the intersection. The choice of

the coordinate origin is noncritical; it only affects a phase factor on

the wave function.

We assume that an electron with a wave vector k enters through
circuit 1 and departs from circuit 4. In the local coordinate system,

the wave functions in circuits 1–4 shown in Fig. 10.1a can be written

as

ψ1 = eikx + ae−ikx ,

ψ2 = c1eikx + c2e−ikx ,

ψ3 = d1eikx + d2e−ikx , (10.6)

and

ψ4 = geikx ,

Figure 10.1 Various configurations of mesoscopic structures: (a) a ring

with two arms, (b) a quantum interference transistor, (c) a quantum

interference device with two drains, and (d) a quantum interference device

with two gates. s, g, and d represent the source, gate, and drain, respectively.
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where in ψ1 the coefficient of the injected wave is 1, denoting that

one electron enters, and in circuit 4, ψ4 has only one term, denoting

the output wave without the input wave. Thus the coefficients a and
g are the reflection and transmission amplitudes, respectively.

The boundary condition equations Eq. 10.2 and Eq. 10.3 for the

wave function (Eq. 10.6) can be written at the A and B points,

1+ a = c1 + c2,

1+ a = d1 + d2,

1− a = c1 − c2 + d1 − d2,

c1eikL1 + c2e−ikL1 = g,

d1eikL2 + d2e−ikL2 = g, (10.7)

and

c1eikL1 − c2e−ikL1 + d1eikL2 − d2e−ikL2 = g.

Solving the set of linear algebraic equations (10.7), we obtain the

transmission function [1]

T = |g|2 = 64

�2
L
[1− cos (kL)] [1+ cos (k�L)] ,

�2
L = 4

{
[4− 5 cos (kL)+ cos (k�L)]2 + [4 sin (kL)]2

}
, (10.8)

and

L= L1 + L2, �L= L2 − L1.

From Eq. 10.8 we see that the amplitude of the output wave changes

periodically not only with L but also with �L. It is caused by the
phase-coherent effect. The T as a function of kL for different k�L
and T as a function of k�L for different kL are shown in Figs. 10.2a
and 10.2b, respectively.

10.3 Aharonov–Bohm Ring

The structure of the Aharonov–Bohm (AB) ring is the same as that

in Fig. 10.1a. When amagnetic field is applied perpendicularly to the

ring, in the magnetic field the Schrödinger equation is[
1

2m∗

(
p+ e

c
A
)2

+ V (r)
]

ψ (r) = Eψ (r) , (10.9)
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Figure 10.2 (a) T as a function of kL for different k�L; (b) T as a function

of k�L for different kL.

where A is the vector potential of the magnetic field B,

A = ∇ × B. (10.10)

As the magnetic field B is perpendicular to the ring plane, according
to the Gauss theorem the vector potential A is along the ring

direction and its magnitude

A = �

L
, (10.11)

where� = B · S is the magnetic flux through the ring section area S
and L is the ring round length.

Inserting Eq. 10.11 into Eq. (10.9), we obtain the one-

dimensional (1D) Schrödinger equation,[
1

2m∗

(
�

i
d
dx

− e
c

�

L

)2

+ V (x)

]
ψ (x) = Eψ (x) . (10.12)

The wave function ψ(x) is still a plane wave with wave vector k1, its
eigenenergy

E = �
2

2m∗

(
k1 − e�

�cL

)2

, (10.13)
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which should be equal to the energy of the injected electron,

�
2k2/2m∗. Thus we have

k1 = k+ e�
�cL

. (10.14)

For the electron moving in the opposite direction in the ring, we

obtain the wave vector of the electron,

k2 = k− e�
�cL

. (10.15)

The wave functions in circuits 1-4 shown in Fig. 10.1a are written as

ψ1 = eikx + ae−ikx ,

ψ2 = c1eik1x + c2e−ik2x ,

ψ3 = d1eik2x + d2e−ik1x , (10.16)

and

ψ4 = geikx ,

where k1 and k2 are given in Eqs. 10.14 and 10.15, respectively.
Similarly, we can write down the boundary condition equations at

the A and B points and obtain a set of linear algebraic equations for

the coefficients a, c1, c2, d1, d2, and g. For the case L1 = L2 = L0, we
obtain [1]

g = 8i
�k

(sin k1L0 + sin k2L0)

and

�k = 2+ 8 cosφ + 9e−ikL − eikL, (10.17)

where

φ = (k2 − k1)
L
2

= e�
�c
. (10.18)

From Eq. 10.17 we obtain the transmission function

T = |g|2 = 64

�2
k
(1− cos kL) (1+ cosφ) ,

where

�2
k = 4

[
(1+ 4 cosφ − 5 cos kL)2 + (4 sin kL)2

]
. (10.19)
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Figure 10.3 T as a function of φ/π for different kL values in the AB ring.

From Eq. 10.19 we see that the T varies periodically as the magnetic
flux� changes with the period

� = hc
e
. (10.20)

This is the basic result of the AB effect, which is in agreement with

the results of Datta and Bandyopadhyay [3]. The T as a function of

φ/π for several kL values is shown in Fig. 10.3. From the figure we

see that when kL is close to 0 (or integer times of 2π) the wave’s
shape is close to the harmonic wave and when kL is close to π the

wave’s shape deviates from the harmonic wave, indicating there are

components of higher harmonics.

10.4 Quantum Interference Devices

The quantum interference transistor [4, 5] as shown in Fig. 10.1b

differs from the ordinary field-effect transistor (FET) in that the gate

lies outside the classical path of electrons. Conductance oscillations

as a function of the gate potential have been observed in such a

structure. The wave functions in circuits 1–3 (Fig. 10.1b) can be

written as

ψ1 = eikx + ae−ikx ,

ψ2 = c sin [k (x − L)] , (10.21)
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and

ψ3 = geikx ,

where it is assumed that the wave function at the gate is zero, that

is, it is a standing wave in circuit 2, and L is the distance between the
intersection and the gate.

Applying the boundary conditions (Eqs. 10.2 and 10.3), we obtain

1+ a = −c sin kL,
1+ a = g,

and

1− a + ic cos kL= g. (10.22)

From Eq. 10.22 it is easy to obtain

a = − i cos kL
2 sin kL+ i cos kL

and

g = 2 sin kL
2 sin kL+ i cos kL

. (10.23)

The T = |g|2 as a function of kL is shown in Fig. 10.4 (dashed line).
It can be seen that the conductance curve is in good agreement

with the experimental single-mode results [4]. This conductance

oscillation is also caused by the phase-coherent effect. When the

injected electron wave arrives at the intersection, one part goes to

the gate and is reflected from the gate. On this path the phase change

is 2kL. This part of the wave meets the wave at the intersection,
and there is an interference effect. Consequently, the amplitude of

the output wave varies periodically with 2kL, as shown in Fig. 10.4
(dashed line).

As a development of the interference device, we consider the

structure with two drains controlled by one gate as shown in

Fig. 10.1c, and the two drains are separated by a distance D. The
wave functions in circuits 1–5 can be written as

ψ1 = eikx + ae−ikx ,

ψ2 = c1eikx + c2e−ikx ,

ψ3 = d sin [k (x − L)] ,

ψ4 = g1eikx , (10.24)
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Figure 10.4 T as function of kL; dashed line for the single-drain structure
in Fig. 10.1b; solid lines for different kD in the first drain of the structure in
Fig. 10.1c.

and

ψ5 = g2eikx .

Similarly applying the boundary conditions Eq. 10.2 and Eq. 10.3 we

obtain the T1 and T2 as functions of kL for three kD values shown
in Figs. 10.4 and 10.5, respectively. From Fig. 10.4 we see that in the

drain near the gate, the conductance oscillations are nearly the same,

independent of kD, and their magnitudes are about half of that in the
single-drain structure (dashed line). In the drain far away from the

gate, the conductance oscillations critically depend on the kD. When
kD= 0.5π , the T2 = 1 at kL= π . The results of the two-gate structure

Fig. 10.1d are not given here; the reader can consult Ref. [1].

Figure 10.5 T2 as a function of kL for different kD values in the second drain
of the structure in Fig. 10.1c.
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10.5 Stub Model

For comparison with the theoretical results of the ideal two-

dimensional (2D) electron waveguide model [6], we calculate the

transmission function T for the single- and double-gate (stub)

structures (as shown in Fig. 10.1d) with the same parameters as in

Ref. [6]. Of course, the width effect is neglected in our model. We

take the electron effective mass m∗ = 0.05 m0, the electron energy

E = 0.08 eV, and the separation between two stubs D = 95 Å. In

Fig. 10.6 the T for the structures of a single stub, two identical stubs,
and two stubs with length difference are given, respectively. From

the figure we see that there is qualitative agreement with the 2D

theoretical results for the structure with equal length [6]. In the case

of a single stub, the transmission valley is narrow, while in the case

of two identical stubs the valley becomes broader. In the case of two

stubs of different lengths, there appears an additional peak at the

transmission valley. It is found that the height of the additional peak

is sensitive to the kD, and the T as a function of kL∗ (length of the
shorter one of the two stubs) is shown in Fig. 10.6d. From the figure

Figure 10.6 T as a function of L for (a) a single stub, (b) two identical
stubs, and (c) two stubs with a length difference �L = 10 Å. (d) T as a

function of kL∗ for kD= 3.0, π , and 3.3.
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we see that if kD = π , there is a strong peak at the transmission

valley; if kD deviates from π , the resonant peak decreases greatly.

10.6 One-Dimensional Waveguide Theory of
Holes

On the basis of the 1D waveguide theory of electrons we developed

the 1D waveguide theory of holes [2]. The hole has an orbital angle

momentum l = 1 (p state), which is coupled with spin s = 1/2

to get the total angle momentum J = 3/2 and 1/2. Generally, the

J = 3/2 state is the basic state, that is, at the top of the valence band.

Thus the hole wave function has four components, corresponding to

J = 3/2, 1/2,−1/2, and−3/2 states. The motion of the hole can be
described by the following 4× 4 Luttinger Hamiltonian [7]

H = 1

2m0

⎛
⎜⎜⎝
P1 Q R 0

Q∗ P2 0 R
R∗ 0 P2 −Q
0 R∗ −Q∗ P1

⎞
⎟⎟⎠ , (10.25)

where

P1 = (γ1 + γ2)
(
p2x + p2y

) = (γ1 − γ2) p2z ,

P2 = (γ1 − γ2)
(
p2x + p2y

) = (γ1 + 2γ2) p2z ,

Q = −i2
√
3γ3

(
px − i py

)
pz, (10.26)

and

R =
√
3γ2

(
p2x − p2y

) − 2iγ3 px py ,

where γ1, γ2, and γ3 are Luttinger effective mass parameters.

We assume that the hole is confined in the x–y plane; then the
momentum pz can be set to 0. Therefore, the Q term in Eq. 10.26

vanishes, and the Hamiltonian (Eq. 10.24) splits into two 2 × 2

equivalent blocks,

H = 1

2m0

(
P1 R
R∗ P2

)
. (10.27)

In the axial approximation γ2 = γ3 and R = √
3γ2

(
px − ipy

)2
.
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Figure 10.7 (a) Circuit l with a polar angle θ ; (b) branch structure;

(c) quantum-interference device with one gate; (d) quantum interference

device with two gates.

The wave function of a hole in the 1D circuit is different from

that of the electron. The electron wave function is a plane wave

independent of the direction of the circuit, while the hole wave

function is two components and dependent on the direction of the

circuit. We study the hole wave function in the circuit shown in

Fig. 10.7a with a polar angle of θ . The Hamiltonian can be written

as

H = − �
2

2m0

(
(γ1 + γ2)

√
3γ2e−2iθ

√
3γ2e2iθ (γ1 − γ2)

)
d2

dl2
, (10.28)

where l is the coordinate along the circuit.We take thewave function
as a plane wave form,

φ =
(
c1
c2

)
eikl , (10.29)

where k is the wave vector and c1 and c2 are the coefficients to be
determined. Substituting Eq. 10.29 into the effective mass equation

Hφ = Eφ will give rise to the following secular equation:∣∣∣∣∣ (γ1 + γ2)− ε
√
3γ2e−2iθ

√
3γ2e2iθ (γ1 − γ2)− ε

∣∣∣∣∣ = 0,

ε = E
/(

�
2k2

2m0

)
.

(10.30)
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From Eq. 10.30 we obtain

ε = γ1 ± 2γ2. (10.31)

From the definition of ε in Eq. 10.30, m0/ε corresponds to the

effective mass of a hole. Then the values of ε in Eq. 10.31 correspond

to the light hole state and the heavy hole state, respectively. Thewave

functions of the heavy hole state and light hole state are

φh (θ , k) = φh (θ) eikl =
(

1/2

−√
3e2iθ /2

)
eikl

and

φl (θ , k) = φl (θ) eikl =
(√

3e−2iθ /2
1/2

)
eikl . (10.32)

For the hole state with a given energy E , the general wave function
in the circuit Fig. 10.7a can be written as

� = c1φh (θ) eikhl + c2φl (θ) eikll + c3φh (θ) e−ikhl + c4φl (θ) e−ikll ,
(10.33)

where

kh =
√
2mhE , kl =

√
2mlE

mh = m0

γ1 − 2γ2
, and ml = m0

γ1 + 2γ2
(10.34)

are the wave vectors of the heavy hole and light hole, respectively;

and c1, c2, c3, and c4 are the coefficients to be determined by the
boundary conditions.

The first boundary condition for the hole wave functions are

the same as that for the electron wave function (Eq. 10.2). The

second boundary condition is given by Eqs. 10.4 and 10.5, namely

the current density operator

Ll = 1

m0

(
(γ1 + γ2)

√
3γ2e−2iθ

√
3γ2e2iθ (γ1 − γ2)

)
pl. (10.35)

The corresponding boundary conditions at the intersection are

�1 = �2 = · · · = �n

and
n∑
i=1

Li�i = 0. (10.36)
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10.7 Quantum Interference Device of a Hole

Obviously, the hole case is more complicated than the electron case,

there are four unknown coefficients in each circuit, and generally we

cannot obtain the analytical results from the set of linear equations

of coefficients. In the following we consider the hole transport in

the quantum interference transistors [4, 5] with one gate, as shown

in Fig. 10.7c. We assume that an incident heavy hole wave with a

wave vector k enters into source circuit 1 and departs from the drain

circuits 3. Stub 2 is the gate, whose length L is controlled by the gate
voltage. The wave function in stub 2 is a standing wave with its zero

pint at the gate. If we choose the node O as the origin of all three

circuits, then the wave functions can be written as

�1 = φh (0) eikl1 + a1φl (0) eik
′l1 + a2φl (0) e−ik′l1 ,

�2 = c1φh (π/2) sin [k (l2 − L)]+ c2φl (π/2) sin
[
k′ (l2 − L)

]
,

and

�3 = d1φh (0) eikl3 + d2φl (0) eik
′l3 , (10.37)

where k and k′ are the wave vectors of a heavy hole and a light hole,
respectively (see Eq. 10.34).

Applying the boundary conditions (Eq. 10.36) we obtain a set of

linear algebraic equations of six coefficients in Eq. 10.37. The final

results are given in Ref. [2]. It is noticed that the current densities of

the heavy hole and light hole equal �k/mh and �k′/ml multiplied by

their corresponding coefficients, respectively. The transmission and

reflection functions can be written as

Thh = |d1|2 , Thl = |d2|2 kk′ ,

Rhh = |a1|2 , and Rhl = |a2|2 kk′ , (10.38)

where Thh represents the transmission probability of one heavy hole
to one heavy hole, Thl the transmission probability of one heavy hole
to one light hole, Rhh the reflection probability of one heavy hole to
one heavy hole, and Rhl the reflection probability of one heavy hole
to one light hole.
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Figure 10.8 Transmission and reflection functions as functions of kL for the
one gate structure shown in Fig. 10.7c. (a) k′/k= 0.395; (b) k′/k= 0.4.

The numerical calculation results for Thh, Thl, and Rhh as

functions of kL are shown in Fig. 10.8a. In calculation we take

the GaAs effective mass parameters γ1 = 6.85 and γ2 = 10.5.

From the figure we see that the Thh, Thl, and Rhh all oscillate

with kL in a period of about 5 π . With these parameters the

ratio between the light hole and heavy hole wave vector k′/k is
approximately 0.395. If we substitute it with a close value 0.4, then

all the trigonometric functions in the results have a common period

5 π and we obtain a more regular oscillation shape, as shown in

Fig. 10.8b.

The oscillation period for the electrons is π in the same single-

stub structure [1]. The Thh curve in Fig. 10.8b shows twomain peaks
and two main valleys in each period. Besides, at the positions of Thl
peaks, the Thh curve shows a sharp dip around π and 3π . It means

that one part of the heavy hole is converted to a light hole. This arises

from the interference between the heavy hole and light hole waves.

We also find that the peak value of Thl is about 0.2, which means a
relatively small fraction of the heavy holewave can be converted into

a light hole wave.

If an incident light hole wave with wave vector k′ enters into
source 1, the transmission and reflection functions can be calculated

in a similar way and its numerical results are shown in Fig. 10.9. The

ratio k′/k is chosen as 0.4 so that these functions have a period of
2π with respect to k′L. The peaks of Rll are much sharper than that
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Figure 10.9 Transmission and reflection functions as functions of k′L for
the one-gate structure shown in Fig. 10.7c. k′/k is set to be 0.4.

of Rhh shown in Fig. 10.8b, and Tll shows resonant plateaus rather
than peaks.
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Chapter 11

Two-Dimensional QuantumWaveguide
Theory

Though many fundamental transport properties of quantum wave-

guides have been found in the study of idealized structures, in

real waveguides the boundaries are usually defined via electrostatic

confinement from metal gates and thus the geometries can be

complicated. In this case, realistic lateral guiding potentials shall

be taken into account, especially when the electrons are of high

energies and would transport beyond the single-mode regime [1, 2].

When thewidth of the circuit is so large that the energy-level spacing

between the transverse modes in the circuit is comparable to the

electron kinetic energy, we should consider the transport ofmultiple

transverse modes, that is, the two-dimensional waveguide theory. In

this chapter, we will describe various theoretical approaches, such

as the basic mode-matching technique, the transfer matrix, and the

scattering matrix methods, to study electron transport through two-

dimensional quantum waveguides. In the end, we will apply the

theory to two-electron waveguide devices.

Figure 11.1 illustrates a typical two-dimensional quantum

waveguide. The device can have several terminals, some of which

may be used for input and the others for output. In general, one
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Scattering region

II

III

I

Figure 11.1 Schematic view of a two-dimensional multi-terminal quantum

waveguide.

would like to know the output of the waveguide device if all the

input information is given. Let AinI and A
out
I denote the incoming and

outgoing electron waves to and from terminal I, respectively. All the

outgoing waves can be related to the incoming waves by a matrix S
in the linear response regime as follows:⎡

⎢⎢⎣
AoutI

AoutII

AoutIII

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
S11 S12 S13

S21 S22 S23

S31 S32 S33

⎤
⎥⎥⎦
⎡
⎢⎢⎣
AinI
AinII
AinIII

⎤
⎥⎥⎦ . (11.1)

Here S is called the scattering matrix. For a scatterer, all the

transport properties, including the transmission matrix, can be

readily determined if the scattering matrix is obtained. In some

simple cases, like for a two-terminal waveguide, it is common to

use a transfer matrix method to obtain the transmission coefficient.

11.1 Transfer Matrix Method [3]

Let us start with a simple case, a two-terminal waveguide as

illustrated in Fig. 11.2, as an example. The structure has two

terminals L and R and a step-like interface between them. In

terminals L and R, the electron wave functions can be written as

ϕL (x , y) =
NL∑
n=1

(
aLne

ikLn x + bLne
−ikLn x

)√
2

WL

sin

(
nπ
WL

y
)
,
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Figure 11.2 Schematic view of a two-terminal quantum waveguide.

and

ϕR (x , y) =
NR∑
n=1

(
aRn e

ikRn x + bRn e
−ikRn x

)√
2

WR

sin

(
nπ
WR

y
)
, (11.2)

where the longitudinal wave numbers kLn and k
R
n satisfy(

�kLn
)2

2m∗ + �
2

2m∗

(
nπ
WL

)2

= EF and

(
�kRn

)2
2m∗ + �

2

2m∗

(
nπ
WR

)2

= EF.

(11.3)

Here EF is the electron Fermi energy and NL (NR) is the number of
transverse modes in terminal L(R). If one sets x = 0 at the interface,

the continuity of the wave function requires

NL∑
n=1

(
aLn + bLn

)√ 2

WL

sin

(
nπ
WL

y
)

=
NR∑
n=1

(
aRn + bRn

)√ 2

WR

sin

(
nπ
WR

y
)
.

(11.4)
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Similarly, matching the first derivatives of the wave functions at the

interface gives

NL∑
n=1

kLn
(
aLn − bLn

)√ 2

WL

sin

(
nπ
WL

y
)

=
NR∑
n=1

kRn
(
aRn − bRn

)

×
√

2

WR

sin

(
nπ
WR

y
)
. (11.5)

Supposing WL < WR. We multiply both sides of Eqs. 11.4 and 11.5

by
√
2/WR sin (mπy/WR) and

√
2/WL sin (mπy/WL), respectively,

integrate from 0 toWL, and obtain

NL∑
n=1

Cnm
(
aLn + bLn

) = aRm + bRm (11.6)

and

kLm
(
aLm − bLm

) =
NR∑
n=1

CmnkRn
(
aRn − bRn

)
, (11.7)

where

Cnm = 2√
WLWR

WL∫
0

sin

(
nπ
WL

y
)
sin

(
mπ

WR

y
)
dy. (11.8)

If the widths of the two terminals are not much different, that is,

WL ≈ WR, one may set NL = NR and the above equations can be
rewritten as[

La
Lb

]
= T

[
Ra
Rb

]
= 1

2

[
M1 +M2 M1 −M2

M1 −M2 M1 +M2

] [
Ra
Rb

]
. (11.9)

Here L(R)a =
[
aL(R)1 , aL(R)2 , . . . , aL(R)NL(R)

]T
and L(R)b =

[
bL(R)1 , bL(R)2 , . . . ,

bL(R)NL(R)

]T
are the vectors for terminal L and R, respectively; M1 =(

CT
)−1

; and M2 = (
KL

)−1 CKR. C is the matrix with elements Cnm
as defined in Eq. 11.8, while KL and KRare diagonal matrices with
elements (KL)nn = kLn and (K

R)nn = kRn
T is commonly known as the transfer matrix that relates all

the wave components in the output port to those in the input

terminal. Once it is obtained, the transmission and reflection

amplitudes can be calculated in a straightforward manner. For an
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example, supposing electrons propagate in the ground transverse

mode from the left terminal, we have the incident wave La =[
1/kL1, 0, . . . , 0

]T
and Rb = 0. The transmitting wave can then be

obtained by Ra = [
t11/kR1 , t21/k

R
2 , . . . , tn1/k

R
n

]T = 2 (M1 +M2)
−1La ,

followed by the reflecting wave Lb = [
r11/kL1, r21/k

L
2, . . . , rn1/k

L
n

]T
= 1

2
(M1 −M2)Ra .
Beyond the single-mode regime, the total transmission and

reflection amplitudes T and R are given by

T =
∑

real kRi ,k
L
j

∣∣ti j ∣∣2 and R =
∑

real kLi ,k
L
j

∣∣ri j ∣∣2 . (11.10)

It is noted that one needs to include only the propagating modes

with real wave numbers as all the evanescent states would

eventually decay in the terminals [4]. The unitary condition is now

given by T + R = Ni, where Ni is the number of propagating modes
in the incident port.

For a general waveguide with two aligning terminals, it is

possible to divide the structure into a number of uniform sections

(see Fig. 11.3). In this way, the total transfer matrix can be

constructed as a product of Tm, which describes the scattering by
the interface between the (m−1)-th andm-th section and Tfm, which

Figure 11.3 Schematic view of a two-terminal quantum waveguide that is

divided into a number of transverse slices along its longitudinal direction.
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Figure 11.4 The conductance G in units of 2e2/h versus kW/π for a

triangular cavity structure as shown in the inset, where the solid line was

calculated by the transfer method and the dotted line wa obtained by the

recursive Green’s function method.

describes free propagation from across them-th section, that is,

T =
∏
m

TmTfm =
∏
m

Tm

[
P−
m 0

0 P+
m

]
, (11.11)

where P±
m are diagonal matrices with elements

(
P±
m

)
nn = e±ikmn Lm . Lm

is the dimension of them-th section along the propagating direction.
Figure 11.4 is the conductance G in units of 2e2/h versus kW/π

for a triangular cavity structure as shown in the inset, where the

solid line was calculated by the above transfer matrix method and

the dotted line was obtained by the recursive Green’s function

method [3]. From the figure we see that the agreement between

the two results is good. In the numerical calculation of the transfer

method, we divide the cavity into 20 segments along the longitudinal

direction, and the transverse modes N is chosen to be 5. From

Fig. 11.3 we see that when kW/π = 1.3 or 1.73, the conductance

G ≈ 0, that is, the two-dimensional (2D) circuit is blocked for

electrons.

Figures 11.5a and 11.5b are the three-dimensional (3D) plots

of the electron probability density (|�|2) in the triangular cavity
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Figure 11.5 A three-dimensional plots of the electron probability density

(|�|2) in the triangular cavity structure (a) for kW/π = 1.73 and G = 0.04

and (b) for kW/π = 1.57 and G = 0.972.

structure for which the transmission profile has been shown in

Fig. 11.4 [3]. In the two figures, the electron is incident from the

upper left. Figure 11.5a is for kW/π = 1.73 and G = 0.04, that is,

the blocked case, and the electron density is concentrated mainly

in the cavity, forming the standing wave (confined state), while on

the right side of the cavity, there is nearly zero electron density.

Figure 11.5b is for kW/π = 1.57 and G = 0.972, that is, the

transmitted case, and the electron density at the input end (left)

and the output end (right) are nearly same; the electron does not

form the confined state in the cavity. This gives a physical picture of

conductance in the 2D waveguide: if the electron forms a confined

state in the cavity, the circuit is blocked and vice versa.

The transfer matrix method can be applied to many waveguides

with different geometries, which most of the time gives reasonable

results. However, the free propagation part Tfm contains both wave
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components eik
m
n Lm and e−ikmn Lm . For evanescent mode m, the wave

number kmn becomes imaginary and thus eik
m
n Lm = e−|kmn |Lm can be

very small while e−ikmn Lm = e|kmn |Lm can be very big. Numerical errors
would therefore inevitably accumulate during the calculation, which

eventually destroys the unitary condition and renders the result

useless [4]. In the next section, we will introduce a more stable

method to calculate the scattering matrix directly.

11.2 Scattering Matrix Method [5]

For general waveguide devices, especially those with multiple

terminals, each and every port can be used for input or output

purpose. In this sense, it is the scattering matrix instead of the

transfer matrix that represents its most fundamental property. Let

us take an example of the two-terminal device as illustrated in

Fig. 11.2. La(Lb) and Rb(Ra) denote the incoming (outgoing) wave
components to ports L and R, respectively. Hence we may define

Lin = La , Lout = Lb,Rin =Rb, andRout =Ra and look for the scattering
matrix to relate every outgoing wave to all the incoming waves, that

is, [
Lout
Rout

]
= S

[
Lin
Rin

]
=

[
S11 S12
S21 S22

] [
Lin
Rin

]
. (11.12)

For the interface between the two channels as illustrated in Fig. 11.2,

the scatteringmatrices be derived from Eq. 11.9 in a straightforward

manner as follows:

S11 = − (
M−1
1 +M−1

2

)−1 (
M−1
1 −M−1

2

)
, S12 = 2

(
M−1
1 +M−1

2

)−1
,

S21 = 2 (M1 +M2)
−1 , and S22 = − (M1 +M2)

−1 (M1 −M2) .

(11.13)

Free propagation across a uniform channel of length L is described
by the scattering matrix

Sf =
[
0 P
P 0

]
, (11.14)

where P is a diagonal matrix with elements Pnn = eiknL.
The total scattering matrix for a general waveguide structure can

be calculated in a way similar to what is depicted in Fig. 11.3. When
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combining two consecutive sections A and B into a single section

A+B, the overall transfer matrix is just a simple matrix product of
the two individual matrices, that is, TA+B = TATB. However, the
overall scattering matrix SA+B can’t be written as a simple function
of SA and SB. Let us start with the definition of SA and SB,[

LoA
RoA

]
= SA

[
LiA
RiA

]
=

[
S11A S12A
S21A S22A

][
LiA
RiA

]
(11.15)

and [
LoB
RoB

]
= SB

[
LiB
RiB

]
=

[
S11B S12B
S21B S22B

][
LiB
RiB

]

and remind that the right port of section A aligns with the left port

of section B, that is, RiA = LoB and R
o
A = LiB. We may eliminate

the connecting port and obtain the overall scattering matrix as

follows:[
LoA
RoB

]
= SA+B

[
LiA
RiB

]
=

[
S11A+B S12A+B
S21A+B S22A+B

][
LiA
RiB

]
, (11.16)

where

S11A+B = S11A + S12A S
11
B

(
1− S22A S

11
B

)−1
S21A ,

S12A+B = S12A
(
1− S11B S

22
A

)−1
S12B ,

S21A+B = S21B
(
1− S22A S

11
B

)−1
S21A , (11.17)

and

S22A+B = S22B + S21B S
22
A

(
1− S11B S

22
A

)−1
S12B .

By defining a composition operator SA+B = SA ⊗ SB, we can express
the overall scattering matrix for a waveguide as depicted in Fig. 11.3

as [5, 6]

S = S1f ⊗ S12 ⊗ S2f . . . ⊗ Sm,m+1 ⊗ Sm+1
f ⊗ . . . ⊗ SNf , (11.18)

where Sm,m+1 describes the scattering across the interface between
the m-th and (m+1)-th sections, Smf is for free propagation across
section m, and N is the total number of sections. It is noted that

the composition operator, like thematrixmultiplication, satisfies the
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associative law but not the commutative law, that is,

(SA ⊗ SB)⊗ SC = SA ⊗ (SB ⊗ SC) , SA ⊗ SB �= SB ⊗ SA.

The overall scattering matrix for a two-terminal waveguide device is

commonly written in an intuitive way as S =
[
r t′

t r′

]
, where t and r

are the transmission and reflection matrices, respectively.

Although the transfer matrix method is very efficient for

structures whose dimensions are not very large, it is numerically

singular for structures with dimensions much larger than the

electron de Broglie wavelength, while the same problem does not

exist in the scattering matrix method, and we found that numerical

errors would not accumulated in the composition of scattering

matrices. Figure 11.6 shows the conductance G versus kW/π for

a multiple-stub structure shown in the inset [5]. The length of the

channel linking the two adjacent stubs on one side of the main wire

is set to be 2W , where W is the width of the terminal as well as the

width and height of the stub. Similar structures are found to exhibit

perfect quantum-modulated transistor action.

Figure 11.6 Conductance G versus kW/π for a multiple-stub structure

shown in the inset.
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11.3 Waveguide with Multiple Terminals

In many applications, such as quantum directional coupler [7], the

waveguide device comes with multiple terminals. In this section, we

will illustrate how to construct scattering matrices for two typical

four-terminal structures.

The first device is depicted in Fig. 11.7, which can be regarded as

two coupled parallel waveguides. The structure as shown is divided

into three sections, the left two terminals L1 and L2, the connecting

section W, and the right two terminals R1 and R2. Correspondingly,

the overall scattering matrix can be expressed as

S = SL1, L2;W ⊗ S fW ⊗ SW;R1, R2 . (11.19)

The scattering by the interface between L1, L2 and W is de-

scribed by SL1,L2;W, which is defined by
[
AoL1 ;A

o
L2
;AoW

] = SL1,L2;W[
AiL1 ;A

i
L2
;AiW

]
. By using the mode-matching technique, we have

M1

[
AiL1 ;A

o
L1
;AiL2 ;A

o
L2

] = M2

[
AiW; A

o
W

]
, where

M1 =

⎡
⎢⎣
CT1 CT1 CT2 CT2
KL −KL 0 0

0 0 KL −KL

⎤
⎥⎦ , M2 =

⎡
⎢⎣

1 1

C1KW −C1KW
C2KW −C2KW

⎤
⎥⎦ . (11.20)

Figure 11.7 Schematic view of a four-terminal quantum waveguide.
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Figure 11.8 The inverse resistance R−1
12,12 versus kW/π for the four-

terminal structure shown in the inset.

Rearranging the above matrix equation, we can obtain SL1,L2;W as

follows:

SL1,L2;W =

⎡
⎢⎢⎣
CT1 CT2 −1

−KL 0 −C1KW
0 −KL −C2KW

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

−CT1 −CT2 1

−KL 0 −C1KW
0 KL −C2KW

⎤
⎥⎥⎦. (11.21)

SW;R1,R2 can be obtained in a similar way.
Figure 11.8 shows the calculated Büttiker resistance R12,12

for the four-terminal structure as shown in the inset [5]. The

parameters are taken to be the same as those adopted in Fig. 11.8

of Ref. [6]. A comparison of our results with those in Ref. [6] shows

that the two results are consistent each other as kW/π<7. When
kW/π>7, the profile of our results becomesmore complicatedwhile
that in Ref. [6] becomes simpler. This is because when kW/π>7,
the mode-mixing effect is enhanced and the interference between

various modes becomes more complicated for higher electron

energies, which have not been considered in Ref. [6].

The second device, as illustrated in Fig. 11.9, is a cross structure

with four ports. As the terminals don’t align with each other like

that shown in Fig. 11.7, it is not possible to construct the overall
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Figure 11.9 Schematic view of a quantumwaveguide with a cross junction.

scattering matrix from those for the individual sections. Let us

first expand the wave functions in I and III as well as II and IV

onto the transverse modes φn (y) =
√

2
W sin

( nπ
W y

)
and φn (x) =√

2
W sin

( nπ
W x

)
, respectively, as in Eq. 11.2. Here W is the width

of each of the four terminals. Next we introduce four auxiliary

functions ζ α
n (xy) (α = I, II, III and IV) in the internal cross junction so

that each of themmatches the transversemode in the corresponding

terminal, that is, ζ α
n |

σα
= φα

n . Thanks to the simple device geometry,

ζ α
n ’s are found to be [8]

ζ 1n (x , y) =
(
cos knx − sin knx

tan knW

)
ϕn (y) ,

ζ 2n (x , y) = sin kny
sin knW

φn (x) ,

ζ 3n (x , y) = sin knx
sin knW

φn (y) , and

ζ 4n (x , y) =
(
cos kny − sin kny

tan knW

)
ϕn (x) . (11.22)
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Hence the wave function in the cross junction is given by

ψ (x , y) =
∑
α,n

(
aα
n + bα

n

)
ζ α
n (x , y) (11.23)

and continuity of the first-order derivatives gives∑
n

ikn
(
aα
n − bα

n

)∇φα
n

∣∣
σα

=
∑
α′ ,n

(
aα′
n + bα′

n

)
∇ζ α

n

∣∣
σα′ . (11.24)

By proper integration of the above equations, we may eliminate

ζ α
n and φα

n and obtain the overall scattering matrix for the cross

junction, S+ = (iK4 + D)−1 (iK4 − D) where

K4 =

⎡
⎢⎢⎣
K′ 0 0 0

0 K′ 0 0

0 0 K′ 0
0 0 0 K′

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣

−C1 FA C2 A
AF −C1 FAF C2
C2 FAF −C1 AF
A C2 FA −C1

⎤
⎥⎥⎦ . (11.25)

with thematrix elements given byK′
mn = k′

nδmn (k
′
n = knW/π), Fmn =

(−1)n+1δmn, Amn = 2mn/
[
πm2 − π

(
k′
n

)2]
, (C1)mn = k′

ntgk
′
nπδmn,

and (C2)mn = k′
n

sink′
nπ

δmn. Similarly, we may obtain the scattering

matrix for the L-shaped junction, which consists of ports I and II,

as follows:

SL =
[
iK′ − C1 FA

AF iK′ − C1

]−1 [
iK′ + C1 −FA

−AF iK′ + C1

]
. (11.26)

Further, the scattering matrix for the T-shaped junction, which

consists of ports I, II, and III, can be given by

ST =

⎡
⎢⎢⎣
iK′ − C1 FA C2

AF iK′ − C1 FAF

C2 FAF iK′ − C1

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣
iK′ + C1 −FA −C2

−AF iK′ + C1 −FAF
−C2 −FAF iK′ + C1

⎤
⎥⎥⎦.

(11.27)

Figure 11.10 shows the transmission coefficients versus kW/π for

the structure with rounded corners shown in the inset [8]. The

solid line is for forward transmission, and the dotted line is for side

transmission. From the figure we see that the forward transmission

profile has a sharp dip (anti-resonance). It is attributed to the

quantum bound state. The bound energy of the quantum bound

state becomes larger with enlargement of the internal junction area.
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Figure 11.10 Transmission coefficients versus kW/π for the structure

with rounded corners shown in the inset. The solid line is for forward

transmission, and dotted line for side transmission.

Therefore the scattering of the propagating states with the bound

state is enhanced.We also find the side transmission ismuch smaller

due to the enhanced reflection.
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Chapter 12

One-Dimensional QuantumWaveguide
Theory of a Rashba Electron [1]

Some of the first observations of quantum interference were made

using thin metal films and silicon inversion layers [2, 3]. Since then

most of the quantum interferences and ballistic transports are ob-

served in two-dimensional systems. The physics of quantum inter-

ference includes the Aharonov–Bohm effect, quantum interference

transistors, universal conductance fluctuations, ballistic electron

transport and Landauer–Büttiker formula, quantized conductance

in point contacts, multi-terminal devices, quantum dot resonant

tunneling devices, etc. In these structures the electron movement is

dominated by quantum mechanics, not classical mechanics. In the

past 20 years, mesoscopic physics and spintronics have become two

most active areas in condensed matter physics.

The nature of the spin of carriers in semiconductors has received

considerable attention. With the rapid progress in semiconductor

fabrication techniques, it is now possible to dope magnetic

impurities inside semiconductors to produce diluted magnetic

semiconductors (DMSs). The doped Mn ions interact with the

carriers through sp-d exchange interaction, which results in a giant

Zeeman splitting of the spin sublevels of the electron and hole.
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A spin-polarized current can be produced by DMS-semiconductor

heterostructures [4] or resonant tunneling with a DMS as a

potential well [5] due to the giant Zeeman splitting. Now the spin

coherence relaxation time has reached the nanosecond level at room

temperature and the coherence distance exceeds 100μm. The ability

to preserve coherence spin states in semiconductors may enable

quantum computing in the solid state. On the other hand, it was

found that the Curie temperature TC in a DMS in excess of 100 K
has been realized in (GaMn)As systems [6]. The high TC DMSs can
be used as an efficient spin injector from a ferromagnetic DMS into

a semiconductor without applying a magnetic field. Datta [7] has

proposed a spin transistor device.

For a conduction-band electron in zinc-blende semiconductors

the dominant spin-orbit interaction (SOI) in low-dimensional

semiconductor structures comes from two physical factors: one

is the Rashba SOI [8], which arises from the structure inversion

asymmetry of the confined potential, for example, in a triangle well

formed in modulated-doped heterojunctions or the external electric

field. The other is the Dresselhaus SOI [9] induced by the lack of bulk

inversion symmetry, for example, in III-V compounds. Sheng et al.

[10] studied theoretically electron spin states in one-dimensional

ring in the presence of both the Rashba SOI and the Dresselhaus

SOI in a perpendicular magnetic field. They found that persistent

charge current, persistent spin current, etc., are very sensitive to the

strength of the Rashba and Dresselhaus SOI.

In this chapter, we apply the one-dimensional quantum theory

[11] to the case of an electronwith a spin in the presence of a Rashba

SOI [8].

12.1 Rashba State Wave Function

In 1960 Rashba proposed Hamiltonian about an electron’s spin in a

semiconductor [8]

HR = α [σ × k] · n, (12.1)

where σ is the Pauli matrix of an electron’s spin, k is the wave vector
of the electron, n is the unit vector perpendicular to the interface,
and α is the Rashba coefficient. Andrada et al. [12] proved that
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when the potential V (z) is asymmetric along the n direction, that
is, dV(z)/dz �= 0, α is not equal to zero, that is, there is a Rashba

effect. In most two-dimensional electron gases (2DEGs) formed in

themodulation doping heterojunction structure V (z) is asymmetric,
so in many modulation doping field-effect transistors (MODFET)

there is a Rashba effect. Moreover, in the ordinary quantum well,

if there is a, external electric field perpendicular to the interface,

the Rashba effect will arise and the strength of the Rashba effect

is proportional to dV(z)/dz. To fabricate spin-controllable devices
by utilizing the Rashba effect, we have studied quantum waveguide

theory of Rashba electrons [1].

According to Eq. 12.1, the Hamiltonian of an electron in the two-

dimensional (2D) system with the Rashba spin-orbit interaction

(RSOI) is

H =

⎛
⎜⎜⎝− �

2

2m∗ ∇2 + V (x , y)
α

�

(
i px + py

)
α

�

(−i px + py
) − �

2

2m∗ ∇2 + V (x , y)

⎞
⎟⎟⎠ , (12.2)

where m∗ is the electron effective mass and α is the Rashba

coefficient. If the electron moves in a one-dimensional (1D) straight

circuit with a polar angle θ(see Fig. 12.1a) and the potential is zero

in the circuit, then the Hamiltonian can be written as

H =

⎛
⎜⎜⎝− �

2

2m∗
∂2

∂l2
αe−iθ ∂

∂l

−αeiθ
∂

∂l
− �

2

2m∗
∂2

∂l2

⎞
⎟⎟⎠ , (12.3)

where l is the coordinate along the circuit. The electron wave

function has the plane wave form,

� =
(
c1
c2

)
eikl . (12.4)

Then the eigenenergies are determined as

E = �
2

2m∗ k
2 ± αk, (12.5)

and the wave functions are calculated to be

φ1 (θ) = 1√
2

(
1

ieiθ

)
and φ2 (θ) = 1√

2

(
1

−ieiθ
)
, (12.6)

corresponding to the−αk and+αk terms in Eq. 12.5, respectively.
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The spin orientations of the states φ1 and φ2 can be determined

by φ+
i sxφi and φ+

i syφi , respectively, where sx and sy are the spin
component operators along the x and y directions, respectively.

S̄x1 = − sin θ , S̄x2 = sin θ ,

S̄y1 = cos θ , S̄y2 = − cos θ , (12.7)

S̄z1 = 0 and S̄z2 = 0.

From Eq. 12.7 we found that the spin orientation of the φ1 and φ2

states are perpendicular to the circuit and the angles between the

spin and the circuit are+π/2 and−π/2, respectively. Afterward, we

call the spin with the angle +π/2 to the circuit as spin-up and that

with the angle−π/2 as spin-down.

If the electron states φ1 and φ2 have the same energy E , from
Eq. 12.5 we obtain their wave vectors,

k1 = k0 + kδ , k2 = k0 − kδ ,

k0 = m∗

�2

√
α2 + 2�2

m∗ E , and kδ = m∗

�2
α. (12.8)

Therefore, due to the RSOI the electrons with the same energy will

have different wave vectors and spin orientations. Note that there is

another pair of solutions associated with−k0.
Up to now, we have only considered that the electron can

pass through the circuit freely. Now we consider the case with

a ferromagnetic contact [7] (see Fig. 12.1b) or a gate [11] (see

Fig. 12.1c) at the end of the circuit, and either the spin-up (or spin-

down) electrons or all electrons cannot pass through the circuit. If

the spin-up electrons are reflected, then the wave function in the

circuit will not have the plane wave form as in Eq. 12.4. It has the

form of a standing wave, as

� = φ1 (θ) eik1l − φ2 (θ + π) e−ik2l

= φ1 (θ) eikδl sin (k0l) , (12.9)

where the origin of the coordinate I is at the contact or gate and we
have used the relation φ2(θ + π) = φ1(θ) and Eq. 12.8. If the spin-

down electrons are reflected, the wave function will have the form

� = φ2 (θ) e−ikδl sin (k0l) . (12.10)
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Figure 12.1 Several structures: (a) a turning structure, (b) a spin-polarized

device, (c) a spin-polarized interference device, and (d) another spin-

polarized interference device.

The main result of this section is that the phase of the Rashba

wave function depends on the direction of the circuit θ , as shown

in Eq. 12.6. The electron without considering the spin does not

have this property [11], while the hole has a similar property, see

Section 10.6.

12.2 Boundary Conditions of the Rashba Current

Now we know all wave functions in every circuits. Another main

problem is the boundary conditions at the intersection. If the

intersection is crossed by n circuits, let �i be the wave function

of the i -th circuit. At the intersection there are two boundary

conditions: one is the continuity of the wave functions, and the other

is the conservation of the current density. The first one is simple; it
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demands that

�1 = �2 = · · · = �n. (12.11)

The second one can be determined by the current density operator

Li , which is the operator of the derivative of the coordinate along the
i -th circuit for the case of a simple electron. Now we calculate the

form of the operator Li from Eq. 12.3. Because the RSOI is related to

the momentum, Li is determined by the commutation relation as

Li = − i
�
[l , H ] = i

�

⎛
⎜⎝− �

2

m∗
∂

∂l
αe−iθ

−αeiθ − �
2

m∗
∂

∂l

⎞
⎟⎠ . (12.12)

If we assign all positive directions of li to be pointing to the

intersection, the second boundary condition has the form
n∑
i=1

Li�i = 0. (12.13)

For the plane wave in Eq. 12.6, in spite of the spin-up or spin-down

state, we get

L� = �k0
m∗ �. (12.14)

For the standing waves in Eqs. 12.9 and 12.10, with the coordinate

origin at the intersection and L as the distance from the gate to the

intersection, we get

L� = −�k0
m∗ i cot [k0 (l − L)]�. (12.15)

It can be expected that all �k0/m∗ terms in the equations of the
second boundary condition (Eq. 12.13) can be counteracted. From

Eq. 12.14 we see that though the Rashba states have different wave

vectors of k1 and k2, their travel velocities are the same �k0/m∗. This
will make the calculation more convenient.

12.3 Kinetic Property of a Rashba Wave in
Branch Circuits

12.3.1 Turning Structure

First we consider the turning structure, the simplest situation in

Fig. 12.1a. Suppose an incident electron with energy E enters
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circuit 1 (Fig. 12.1a). Then there will be transmitted waves in circuit

2 and reflected waves in circuit 1. The wave functions in circuits 1

and 2 can be written as

�1 = a10φ1 (0) eik1l1 + a20φ2 (0) eik2l1 + a1φ1 (π) e−ik1l1

+ a2φ2 (π) e−ik2l1 ,

and

�2 = c1φ1 (π/2) eik1l2 + c2φ2 (π/2) eik2l2 , (12.16)

where a10 and a20 are the coefficients of the known incident wave
functions, a1 and a2 are the coefficients of reflected wave functions,
and c1 and c2 are the coefficients of transmitted wave functions.
From the boundary condition Eq. 12.11, we obtain

A10

(
1

i

)
+A20

(
1

−i
)

+A1
(
1

−i
)

+A2
(
1

i

)
= c1

(
1

−1
)

+c2
(
1

1

)
.

(12.17)

From the boundary condition Eqs. 12.13 and 12.14, we obtain

A10

(
1

i

)
+A20

(
1

−i
)

−A1
(
1

−i
)

−A2
(
1

i

)
= c1

(
1

−1
)

+c2
(
1

1

)
,

(12.18)

where

A10 = a10eik1L1 , A20 = a20eik2L1 ,

A1 = a1e−ik1L1 , and A2 = a2e−ik2L1 . (12.19)

We assumed that the coordinate origin of circuit 1 is at the magnetic

contact, which is at a distance L1 from the intersection point O, and

the coordinate origin of circuit 2 is at the intersection point O.

The solutions of Eqs. 12.17 and 12.18 are

A1 = A2 = 0,

c1 = 1− i
2

A10 + 1+ i
2

A20,

and

c2 = 1+ i
2

A10 + 1− i
2

A20. (12.20)

From Eq. 12.20, we see that in this structure there is no reflected

wave. We can prove that for any simple turning structure, the
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reflected waves are zero, no matter what the turning angle is. If the

incident wave has only one spin orientation, for example, spin-up,

with the wave vector k1, that is, a20 = 0 and a10 = 1, then from

Eqs. 12.20 and 12.16 we see that it divides into two waves with the

wave vectors k1 and k2 and the same probability 1/2. If the incident
wave has the spin orientation in the positive x direction, then a10 =
1/

√
2 and a20 = i/

√
2. From Eq. 12.20 we obtain c1 = eik0L1 sin (kδL1)

and c2 = eik0L1 cos (kδL1), that is, two incident waves with the wave
vectors k1 and k2 have an interference effect as they arrive at point
O. We find that the spin of the electron moving from circuit 1 to

circuit 2 through the intersection has not changed. Generally, this

conclusion is not related to the direction of circuit 2. So if there is no

branch at the intersection like this one, the electron passes through

the intersection just like in one circuit. The only difference is that the

spin-up and spin-down components will be redistributed depending

on the direction of circuit 2 and kδL1.
Figure 12.2 shows the transmission probabilities T21 = |c1|2

and T22 = |c2|2 as functions of α, when the incident electron has

a spin in the positive x direction and m∗ = 0.1 m0, E = 10 meV, and

Figure 12.2 T21 and T22 of the turning structure in Fig. 12.1a as functions
of the Rashba coefficient α form∗ = 0.1m0, E = 10 meV, and L1 = 100 nm.
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L1 = 100 nm. The parametersm∗, E , and L1 are fixed in the following
figures. We see that T21 and T22 change periodically with α. Due to

the interference effect, when the spin at the intersection is polarized

along the spin-up direction in circuit 2, T21 = 1 and T22 = 0. In the

opposite case, T21 = 0, T22 = 1. It is noticed that the interference

effect is only related to the phase kδL1 ≈ αL1, independent of the
electron energy E .

12.3.2 Spin-Polarized Device

Now we add a ferromagnetic contact that is magnetized in the spin-

up direction in circuit 2 at the distance L2 from the intersection O, as

shown in Fig. 12.1b. According to the property of the ferromagnetic

material, we expect to get a spin-polarized device. It will allow the

spin-up electron to pass through completely in circuit 2 and forbid

the spin-down electron from going through.

Again we assume that an incident electron with energy E and

along the positive x direction enters circuit 1. The wave functions
can be written as

�1 = a10φ1 (0) eik1l1 + a20φ2 (0) eik2l1 + a1φ1 (π) e−ik1l1

+ a2φ2 (π) e−ik2l1 ,

and

�2 = c1φ1 (π/2) eik1l2 + c2φ2 (π/2) e−ik0l2 sin [k0 (l2 − L2)] . (12.21)

Using the boundary conditions Eqs. 12.11 and 12.13 at the

intersection O, the calculated results are

A2 = −i A1 = − A10 − i A20
2

e2ik0L2

and

c1 = 1− i
2

A10 + 1+ i
2

A20. (12.22)

From Eq. 12.22 we see that the absolute values of c1, A1, and
A2 are not related to L2, so we will neglect L2 in the following

discussion. The transmission probability T21 = |c1|2 = sin2 (kδL1)
equals that in the above case, and there is no spin-down electron

passing through the end of circuit 2. The reflection probability R11 =
R12 = cos2(kδL1)/2, depending on the Rashba coefficient α. When
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kδL1 = m∗αL1/�2 = nπ , T21 = 0, and all electrons are reflected.

When kδL1 =m∗αL1/�2 = nπ/2, T21 = 1, and all electrons leave with

spin up from circuit 2. So this structure is a polarization-modulation

spin diode. If the ferromagnetic contact is magnetized in the spin-

down direction in circuit 2, the reflection and transmission will be

reversed.

12.3.3 Spin-Polarized Interference Device

Here we investigate the structure with a gate as shown in Fig. 12.1c.

In this case, circuit 1 acts as the source, circuit 3 acts as the drain,

and stub 2 acts as the gate, whose length L2 can be controlled by a
gate voltage. Again we assume that an incident electron with energy

E and spin-polarized along the positive x direction enters circuit 1.
The wave functions can be written as

�1 = a10φ1 (0) eik1l1 + a20φ2 (0) eik2l1 + a1φ1 (π) e−ik1l1

+ a2φ2 (π) e−ik2l1 ,

�2 = b1φ1 (0) eikδl2 sin [k0 (l2 − L2)]

+ b2φ2 (0) e−ikδl2 sin [k0 (l2 − L2)] ,

and

�3 = c1φ1 (π/2) eik1l2 + c2φ2 (π/2) eik2l2 . (12.23)

Using the boundary conditions Eqs. 12.11 and 12.13 at intersection

O, we obtain

A2 = − i
D
cos (k0L2) A10,

A1 = − i
D
cos (k0L2) A20,

c1 = i
D
sin (k0L2)

[
1− i
2

A10 + 1+ i
2

A20

]
,

and

c2 = i
D
sin (k0L2)

[
1+ i
2

A10 + 1− i
2

A20

]
, (12.24)

where

D = 2 sin (k0L2)+ i cos (k0L2) . (12.25)
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Figure 12.3 T31, T32, R1, and R2 of the spin-polarized interference device in
Fig. 12.1c as functions of α for L2 = 50 nm and other parameters the same

as Fig. 12.2.

Comparing Eq. 12.24 to Eq. 12.20, we find that they are similar,

c1 and c2 are multiplied by a coefficient that is only related to

| sin(k0L2)/D|2, and the reflection is not zero now. These two effects
are caused obviously by the gate. If there is no gate, the structure

is the turning structure, as shown in Fig. 12.1a. The transmission

probabilities T21 and T22 oscillate periodically with the Rashba

coefficient α, as shown in Fig. 12.2. Now we can expect that they can

be further controlled by the gate voltage.

Figure 12.3 shows the transmission and reflection probabilities

as functions of α for L2 = 50 nm. From Fig. 12.3 we see that T31 and
T32 oscillate periodically with α, as in Fig. 12.2, but their amplitudes

decrease with α, reach a minimum at α = 73 meV nm, and then

increase afterward. This modulation is caused by the interference

effect related to cot(k0L2). Figure 12.4 shows the transmission and
reflection probabilities as functions of α for L2 = 80 nm. From

Fig. 12.4 we see that when L2 is changed by the gate voltage, the
amplitudes of T31 and T32 increase with α, reach a maximum at
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Figure 12.4 The same as Fig. 12.3 but for L2 = 80 nm.

α = 50 and 60 meV nm, then decrease to zero at α = 85 meV nm.

The interference effect of the gate is obvious, but it only changes

the magnitude of T31 and T32 simultaneously, while the interference
effect between electrons with spin-up and spin-down changes T31
and T32 alternatively, as shown in Fig. 12.2.

For showing the prominence of the gate, we keep the RSOI

coefficient α as a constant and show the transmission probabilities

T31, T32, R1, and R2 as functions of L2 for α = 50 meV nm in

Fig. 12.5. From Fig. 12.5 we see that the amplitudes of T31 and T32
oscillate simultaneously with L2 and their relative magnitudes are
determined by the α. So making use of controlling the gate voltage,

this structure is a spin-polarized interference device.

12.4 General Theory for a Structure with
Multiple Branches

We assume that except the input circuit there are n1 free output
circuits ( j = 1, 2, . . . , n1), n2 circuits with gates (k = n1 + 1, . . . ,
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Figure 12.5 T31, T32, R1, and R2 of the spin-polarized interference device in
Fig. 12.1c as functions of L2 for α = 50 meV nm and other parameters the

same as Fig. 12.2.

n1 + n2), and n3 circuits with ferromagnetic contacts, which allow
spin-up or spin-down electrons to pass through (m = n1 + n2 +
1, . . . , n1+n2+n3). The orientation angle θ and the phase functions

φ1 and φ2 (Eq. 12.6) of each circuit are denoted by the subscripts j ,
k, andm.

The wave functions in the input circuit are incident wave �i and

reflection wave�r,

�i = a10eik1liφi1 + a20eik2liφi2,

and

�r = a1e−ik1liφi2 + a2e−ik2l1φi1. (12.26)

The output waves in the j -th circuit,

� j = aj1eik1l jφ j1 + aj2eik2l jφ j2. (12.27)

In the k-th circuit,

�k = ak1eikδlk sin [k0 (lk − Lk)]φk1 + ak2e−ikδlk sin [k0 (lk − Lk)]φk2.
(12.28)
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In them-th circuit,

�m = am1eik1lmφm1 + am2e−ikδ lm sin [k0 (lm − Lm)]φm2 (12.29)

or

�m = am1eikδlm sin [k0 (lm − Lm)]φm1 + am2eik2lmφm2 (12.30)

for spin-up and spin-down allowing circuits, respectively. The Lk and
Lm are the distances from intersection O to the gate or contact.

The boundary conditions of the wave functions at intersection O

are

�i + �r = �t , t = 1, 2, . . . n1 + n2 + n3, (12.31)

and

�i−�r =
n1∑
j=1

� j+i
n1+n2∑
k=n1+1

cot (k0Lk)�k+
n1+n2+n3∑
m=n1+n2+1

Jm�m, (12.32)

where

Jm�m = am1φm1 + am2 [−i cos (k0Lm)]φm2
and

Jm�m = am1 [−i cos (k0Lm)]φm1 + am2φm2 (12.33)

for the wave functions (Eq. 12.29 or Eq. 12.30), respectively.

Solving Eqs. 12.31 and 12.32 we can obtain the reflection

coefficients a1 and a2 and the transmission coefficients of every
circuits at1 and at2 for t= 1, 2, . . . , n1, n1 + n2 + 1, . . . , n1 + n2 + n3.
For the circuits with gates j = n1 + 1, . . . , n1 + n2, there is no
transmission wave in them, so we do not need to calculate the

coefficients aj1 and aj2. For the circuits with a ferromagnetic contact
m = n1 + n2 + 1, . . . , n1 + n2 + n3, one spin wave is allowed to pass,
another is forbidden, so we only need to calculate the coefficient of

plane wave.

In terms of the transmission probability, in the circuits 1 ≤ j ≤
n1, T j = |aj1|2 + |aj2|2, in the circuits n1 + 1 ≤ k ≤ n1 + n2, Tk = 0,

and in the circuits n1 + n2 + 1 ≤ m ≤ n1 + n2 + n3, Tm = |am1|2 or
|am2|2. The reflection probability R = |a1|2+|a2|2. Because the travel
velocities of the electrons with spin-up and spin-down are the same

�k0/m∗, T and R are proportional to the square of the coefficients of
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the wave functions. For all the above cases we proved that
∑
Tt + R

= 1, that is, the conversation of the particle current.

For simplicity we first consider the case of n3 = 0, that is,

there is no circuit with a ferromagnetic contact. From the boundary

condition Eqs. 12.31 and 12.32 we obtain

�i − �r = (n+ i D)�j, D =
n1+n2∑
k=n1+1

cot (k0Lk). (12.34)

From Eqs. 12.31 and 12.32 we obtain

�i = 1

2
(1+ n1 + i D)�j,

�r = 1

2
(1− n1 − i D)�j,

�j = 2

1+ n1 + i D
(A10φi1 + A20φi2) ,

and

�r = 1− n1 − i D
1+ n1 + i D

(A10φi1 + A20φi2) . (12.35)

From Eq. 12.35 we obtain

aj1 = 2

1+ n1 + i D

(
A10φ+

j1φi1 + A20φ+
j1φi2

)
,

aj2 = 2

1+ n1 + i D

(
A10φ+

j2φi1 + A20φ+
j2φi2

)
,

A1 = 1− n1 − i D
1+ n1 + i D

A20,

and

A2 = 1− n1 − i D
1+ n1 + i D

A10. (12.36)

The wave function in a circuit with a gate is similarly given by

Eq. 12.35. Their coefficients can also be calculated. But the current

in these circuits equals zero, so the calculated coefficients are

meaningless.

We apply the above result to a few special examples:

• Consider a turning structure as in Fig. 12.1a, where n1 = 1,

n2 = 0, θi = 0, and θj = π/2. From Eq. 12.36 we obtain

aj1 = 1− i
2

A10 + 1+ i
2

A20,

aj2 = 1+ i
2

A10 + 1− i
2

A20, (12.37)
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and

A1 = A2 = 0.

just as Eq. 12.20.

• Consider a spin-polarized interference device as in Fig.

12.1c, where n1 = 1, n2 = 1, θi = 0, θj = π/2, and θk = 0.

From Eq. 12.36 we obtain

aj1 = 1− i
2+ i cot (k0Lk)

A10 + 1+ i
2+ i cot (k0Lk)

A20,

aj2 = 1+ i
2+ i cot (k0Lk)

A10 + 1− i
2+ i cot (k0Lk)

A20,

A1 = −i cot (k0Lk)
2+ i cot (k0Lk)

A20,

and

A2 = −i cot (k0Lk)
2+ i cot (k0Lk)

A10, (12.38)

just as Eqs. 12.24 and 12.25.

• Another spin-polarized interference device with the free

circuit and the circuit with gate exchanged, where n1 = 1,

n2 = 1, θi = 0, θj = 0, and θk = π/2. FromEq. 12.36we obtain

aj1 = 2

2+ i cot (k0Lk)
A10,

aj2 = 2

2+ i cot (k0Lk)
A20,

A1 = −i cot (k0Lk)
2+ i cot (k0Lk)

A20,

A2 = −i cot (k0Lk)
2+ i cot (k0Lk)

A10. (12.39)

It means that there is no interference effect between the

electrons with spin-up and spin-down and the two kinds of

electrons move independently. The device behaves like an

ordinary quantum interference device.

For the case that there is one circuit with a ferromagnetic

contact, n3 = 1, the boundary conditions Eqs. 12.31 and

12.32 become

�i + �r = �m = am1 [− sin (k0Lm)]φm2 (12.40)
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and

�i − �r = (1+ n1+ i D) am1φm1+ {(n1+ i D) [− sin (k0Lm)]

+ [−i cot (k0Lm)]} am2φm2. (12.41)

From Eqs. 12.40 and 12.41 we can calculate analytically the

coefficients am1 and am2 and other coefficients aj1, aj2, ak1,
and ak2.

am1 = 2

2+ n1 + i D

(
A10φ+

m1φi1 + A20φ+
m1φi2

)
,

am2 = −2 (A10φ+
m2φi1 + A20φ+

m2φi2
)

(1+ n1) sin (k0Lm)+ i [D sin (k0Lm)+ cos (k0Lm)]
,

aj1 = am1φ+
j1φm1 + am2 [− sin (k0Lm)]φ+

j1φm2,

aj2 = am1φ+
j2φm1 + am2 [− sin (k0Lm)]φ+

j2φm2,

ak1 = − 1

sin (k0Lk)

{
am1φ+

k1φm1+ am2 [− sin (k0Lm)]φ+
k1φm2

}
,

ak2 = − 1

sin (k0Lk)

{
am1φ+

k2φm1+ am2[− sin (k0Lm)]φ+
k2φm2

}
,

A2 = am1φ+
i1φm1 + am2 [− sin (k0Lm)]φ+

i1φm2 − A10,

and

A1 = am1φ+
i2φm1 + am2 [− sin (k0Lm)]φ+

i2φm2 − A20.

(12.42)

We apply this to some special examples.

• Consider a turning structure with an output circuit with a

ferromagnetic contact, as shown in Fig. 12.1b, where n1 =
n2 = 0, n3 = 1, θi = 0, and θm = π/2. From Eq. 12.42 we

obtain

am1 = 1− i
2

A10 + 1+ i
2

A20,

am2 = 2ieik0Lm
(
1+ i
2

A10 + 1− i
2

A20

)
,

A2 = −e
2ik0Lm

2
(A10 − i A20) ,

and

A1 = −e
2ik0Lm

2
(i A10 + A20) , (12.43)

just as Eq. 12.22.
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• Consider a branch structure with two output circuits, one

with a ferromagnetic contact and one free, where n1 = 1,

n2 = 0, n3 = 1, θi = 0, θj = −π/2, and θm = π/2, as shown in

Fig. 12.1d. From Eq. 12.42 we obtain

am1 = 1− i
3

A10 + 1+ i
3

A20,

am2 = − 2

2 sin k0Lm + i cos k0Lm

(
1+ i
2

A10 + 1− i
2

A20

)
,

aj1 = 2

2+ i cot k0Lm

(
1+ i
2

A10 + 1− i
2

A20

)
,

aj2 = am1,

A2 = 1

3
(−2A10 + i A20)+ 1

2+ i cot k0Lm
(A10 − i A20) ,

and

A1 = −1
3
(i A10 + 2A20)

+ 1

2+ i cot k0Lm
(i A10 + A20) . (12.44)

Figure 12.6 shows the transmission probabilities T21, T31, T32, R1,
and R2 as functions of α for L2 = 50 nm. From Fig. 12.6 we see that

T21 = T32 and both are not influenced by the contact in circuit 2. T32
oscillates with α due to the inference effect related to cos2 (kδL1),
is modulated simultaneously by the interference effect related to

1/(4 + cot2 k0L2), and reaches a minimum at α = 73 meV nm. So

we can modulate the electron current of one kind of spin by using a

ferromagnetic contact.

12.5 Summary

We have discussed the properties of the Rashba wave function in

the planar 1D waveguide and obtain the following results. Due to

the Rashba effect, the plane waves of an electron with energy E
divide into two kinds of waves with the wave vectors k1 = k0+ kδ

and k2 = k0 − kδ , where kδ is proportional to the Rashba coefficient,

and their spin orientations are +π/2 (spin-up) and −π/2 (spin-

down) with respect to the circuit, respectively. Unlike the electron
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Figure 12.6 T21, T31, T32, R1, and R2 of the spin-polarized interference
device in Fig. 12.1d as functions of α for L2 = 50 nm and other parameters

the same as Fig. 12.2.

without considering the spin, the phase of the Rashba wave function

depends on the direction angle θ of the circuit. The travel velocity

of the Rashba waves with the wave vector k1 or k2 is the same,
�k0/m∗. The boundary conditions of the Rashba wave functions at
the intersection of circuits are given from the continuity of wave

functions and the conservation of current density. We considered

three cases: a free circuit, a circuit with a gate, and a circuit with a

ferromagnetic contact. In the case of gate or ferromagnetic contact in

the circuit, the Rashba wave function becomes a standing wave form

e±ikδl sin [k0 (l − L)] , where L is the position coordinate of the gate
or contact. Using the boundary conditions of Rashba wave functions

we studied the transmission and reflection probabilities of a Rashba

electron moving in several structures and found the interference

effects of the two Rashba waves with different wave vectors and the

Rashba waves with the gate and the ferromagnetic contact. Finally,

we derived a general theory for a structure with multiple branches.
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The theory of Rashba 1D waveguide, including the wave functions

and the boundary conditions at the intersection, can be used to

design various spin-polarized devices.
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Chapter 13

1D QuantumWaveguide Theory of
Rashba Electrons in Curved Circuits

Since the Datta–Das spin field-effect transistor [1] was proposed, the

Rashba spin-orbit interaction (RSOI) [2] has attracted considerable

attention on account of its conceivable applications in spintronics. A

great deal of spintronic devices based on RSOI have been proposed

[3–6], most of which focus on ballistic straight waveguides [7–9] and

rings or analogous structures [10–12]. They are expected to control

spin-polarized transport on the basis of the interferences of different

paths [13]. Conductance properties of rings or analogous structures

with several diametrically connected leads have been discussed [5,

14]; some researchers consider similar structures as a spin filter

[6, 12]. Földi et al. [10] accounted for the spin transformation

properties of a quantum ring with RSOI and indicated that it can

serve as a one-qubit quantum gate for electron spin, and Shelykh

et al. [6] invested a gated ballistic AB ring with three asymmetrically

situated electrodes and showed that it was able to demonstrate the

properties of both the quantum splitter and spin filter. In recent

years, there have also been experiments about the spin transport

in these structures [15–17], where the AB effect plays an important

role.
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But the AB rings are not made of straight circuits such as

structures discussed in Chapter 12, so transports in these rings

cannot be studied using the theory in the previous chapter.

Therefore we divide the curved part into N segments, where N is a

big number so that every segment can be regarded as a small straight

line. Then we investigate the electron’s movement in every straight

segment and every vertex. When every straight segment tends to be

infinitely small, the wave function of the Rashba electron passing

through a curve can be obtained.

13.1 Transfer Matrix of a Rashba Electron in a 1D
Two-Terminal Structure [18]

Firstly, we apply boundary conditions in Chapter 12 to a turning

structure. An incident electron with energy E enters circuit 1 at

angle θ , passes through a corner, and then enters circuit 2 at angle

φ. The wave functions in the circuits can be written as

�1 = a10φ1 (θ) eik1l1 + a20φ2 (θ) eik2l1 + a1φ1 (θ + π) e−ik1l1

+ a2φ2 (θ + π) e−ik2l1

and

�2 = c1φ1 (ϕ) eik1l2 + c2φ2 (ϕ) eik2l2 , (13.1)

where a10 and a20 are amplitudes of the inject waves, a1 and a2 are
those of the reflecting waves, and c1 and c2 are those of the output
waves. l1 and l2 are the coordinates of circuits 1 and 2, respectively.
φ1 and φ2 are the phase factors of spin-up and spin-down electrons,

given in Eq. 12.6, k1 and k2 are the wave vectors, given in Eq. 12.8,
respectively. Applying Eq. 13.11 and Eq. 13.13, we can find that there

is no reflected wave function in circuit 1, at the intersection a1 = 0,

a2 = 0.

In a circuit with angle θ , we can write the wave function as

� = {[φ1 (θ) , φ2 (θ)]} � = [φ1 (θ) , φ2 (θ)]

(
a1
a2

)
. (13.2)

In the following part of the chapter, we will adopt � to describe the

wave function in most time. If we take the origins of the coordinates
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l1 and l2 all at the intersection, then Eq. 13.1 can be written as

[φ1 (ϕ) φ2 (ϕ)]

(
c1
c2

)
= [φ1 (θ) φ2 (θ)]

(
a10
a20

)
. (13.3)

We can use a simple transfer matrix

Mθ→ϕ =
(

φ+
1 (ϕ)

φ+
2 (ϕ)

)
[φ1 (θ) φ2 (θ)] = 1

2

(
1+ e−i(ϕ−θ) 1− e−i(ϕ−θ)

1− e−i(ϕ−θ) 1+ e−i(ϕ−θ)

)
(13.4)

to describe the transform of the wave function� at the intersection

of the turning structure. Accordingly the transfer matrix of one

circuit with length L can be written as

ML =
(
eik1L 0

0 eik2L

)
. (13.5)

In the following, we will calculate the spin transport on the basis of

Eq. 13.4 and Eq. 13.5 when there is no branch. If at the intersection

there are branches, we can calculate that by utilizing the boundary

conditions Eq. 12.11 and Eq. 12.13.

All the results above are in the condition of no magnetic field.

Now we consider the two-dimensional (2D) system in the external

magnetic field perpendicular to the circuit plane. In this case, for a

close ring the wave vector k in Hamiltonian will be replaced by

keff = k± eA/�, (13.6)

where the ± sign depends on the relative orientations of the

magnetic field and the k, |A| = �m/L is the vector potential, and
�m and L are the magnetic flux through the closed loop and its
perimeter, respectively. So if we substitute keff for k, the k1 and k2
in Eq. 13.1 and Eq. 13.5 will be changed to

k1 = k0 + kδ − kA , k1 = k0 − kδ − kA ,

k0 = m∗

�2

√
α2 + 2�2

m∗ E , kδ = m∗

�2
α, and kA = ±eA

�
. (13.7)
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Figure 13.1 Several structures: (a) an AB ring, (b) an AB SL, and (c) a AB

double SL.

13.2 Electron Structure of a Closed Circle [1]

The structures studied in this section are shown in Fig. 13.1.

Figure 13.1a is an Aharonov–Bohm (AB) ring, and the angle between

the inject circuit i and the output circuit e is θ . Figure 13.1b is an AB

square loop structure, and Fig. 13.1c is an AB double square loop.

First we calculate the electron structure of a closed circular ring (as

Fig. 13.1a without inject and output circuits) by the transfer matrix

method. According to Eq. 13.4 and Eq. 13.5, we can get the transfer

matrix of arbitrary structure with no branches. For a closed circle,

we divide the circle into N segments, each segment can be seen as a
straight line segment, andwe calculate the transfermatrices in every

segments and every intersections. When the N is large enough, the

product of all matrices according to the order of transport is the total

transfer matrix M.

It can be inferred fromEq. 13.4 and Eq. 13.5 that the total transfer

matrix M is just concerned with the electron energy E , the Rashba
coefficient α, the external magnetic B , and the radius of the circle R .
Now we fix up the last three coefficients, so theM can be written as

M(E ). It is noticed that the eigenstates of the circle exist just when
M(E ) has an eigen value of 1, that is, when

det [M (E )− I ] = 0 (13.8)

and the corresponding eigen vector describes the eigenstate in the

form of� .

Next we will give the analytical solution of this problem. We

consider one segment and the intersection at its heel. If the N is

large enough, the length of the segment can be written as Rδθ , and
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δθ = (φ − θ) is the turning angle at the intersection in Eq. 13.4. If the

wave vector is in the counter-clockwise (CCW) direction, δθ>0, and

for the wave vector in the clockwise (CW) direction, δθ<0. δθ is an

infinitesimal quantity, and Nδθ = 2π . For one segment, the transfer

matrix is

Mδθ = 1

2

(
1+ e−iδθ 1− e−iδθ

1− e−iδθ 1+ e−iδθ

)(
eik1Rδθ 0

0 eik1Rδθ

)
. (13.9)

Because Mδθ is very close to I, so we assume that its eigen value is

eimδθ , where m is an integral. Ignoring twice and more power terms

of δθ and solving the secular equation

det
(
Mδθ − eimδθ

) = 0, (13.10)

we obtain the eigenenergy for B = 0,

ε =
(
m+ 1

2

)2

+ 1

4
±

(
m+ 1

2

)√
1+ ᾱ2, (13.11)

wherem is the quantum number of the quantum energy level. In this

paper, we use the dimensionless physical quantities. If the energy

unit E0 = �
2/(2m∗R2), then the energy ε = E/E0, the magnetic

field b= (�eB/m∗c)/E0, and the Rashba coefficient ᾱ = (α/R)/E0 =
α(2m∗R/�2).

We can also get the eigen vectors of the transfer matrixMδθ ,

Mδθ

(
cosϕ′

sinϕ′

)
= eimδθ

(
cosϕ′

sinϕ′

)
, (13.12)

where

tanϕ′ = ᾱ ±
√
1+ ᾱ2.

Because the total transfer matrix M = (Mδθ )
N , these vectors are

also the eigen vectors of M, and the eigen value becomes eim2π . It
is obvious that when m is an integer, these states describe eigen

Rashba states of the circle. In the presence of a magnetic field, the

corresponding eigenenergy is

ε =
(
m+ b

4
+ 1

2

)2

+ 1

4
±

(
m+ b

4
+ 1

2

)√
1+ ᾱ2. (13.13)

According to Eq. 13.2 and Eq. 13.12, the eigen Rashba states in the

circle with a suffix m are

�m (θ) = [φ1 (θ) φ2 (θ)]

(
cosϕ′

sinϕ′

)
= 1√

2π
eimθ

(
cosϕ

sinϕeiθ

)
,

(13.14)
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where tanϕ = (1+ √
1+ ᾱ2)/ᾱ is for the + sign in Eq. 13.13 and

tanϕ = (1− √
1+ ᾱ2)/ᾱ is for the – sign, which are defined as spin-

up and spin-down states, respectively. The spin orientation of each

state can be described as a function of θ ,

S (θ) = sin (2ϕ) cos θ êx + sin (2ϕ) sin θ êy + cos (2ϕ) êz. (13.15)

We find that the spin-up and spin-down states have the opposite

local spin orientation, and everywhere their components in the

x–y plane point to the center along the radius, or in the opposite
direction, respectively. These results are identical to those obtained

from solving the Schrödinger equation with the Hamiltonian in the

polar coordinates [19, 20]

Hpo=
⎛
⎝

(−i ∂
∂θ

+ b
4

)2 1
2

[
αe−iθ (−i ∂

∂θ
+ b

4

) + α
(−i ∂

∂θ
+ b

4

)
e−iθ ]

1
2

[
αeiθ

(−i ∂
∂θ

+ b
4

) + α
(−i ∂

∂θ
+ b

4

)
eiθ

] (−i ∂
∂θ

+ b
4

)2

⎞
⎠

(13.16)

Notice that the nondiagonal elements are written to ensure the

Hermitian of the Hamiltonian. On the basis of Eq. 13.16, we can also

obtain Eq. 13.13 to Eq. 13.15.

Figure 13.2 | det[M(E ) − I ]| of the closed circular ring as functions of the
electron energy ε for ᾱ = 1 and b= 0, 1, and−1.
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We calculate the eigenenergies numerically. Figure 13.2 shows

the numerical results of the transfer matrix method, the

| det(M(E )− I )| as functions of ε for α = 1 and b= 0, 1, and−1. From
the figure we see that the zero points correspond to the energies of

eigenstates, for example, in the case of b = 0, ε = 0.38, 1.2, 3.0, 4.6,

7.6, 10.0, 14.1, 17.4, etc., which are in agreement with the results of

Eq. 13.13. In the calculation, we take N = 1000.

13.3 Electron Structure of a Closed Square Loop
[18]

Although the spin states and electron structure in a close circle have

been investigated in some literature [19, 20] by other methods, our

method can be utilized to calculate more anomalistic geometry, such

as a closed square loop (as in Fig. 13.1b without inject and output

circuits). Assume that the side length of the square loop is L. We can
get the transfer matrix for a CCW circuit as

MSL =

−1
4

⎛
⎝ A4 − 3A3B − A2B2 − AB3 i

(
B4 − B3A − B2A2 + BA3

)
i
(
A4 − 3A3B − A2B2 + AB3

)
B4 − B3A − B2A2 − BA3

⎞
⎠,

(13.17)

where A = eik
L
1 , B = eik2L, k1, and k2 are defined in Eq. 13.8.

The matrix in CW is also easy to obtain. Similarly, we use the

dimensionless physical quantities, taking the energy unit E0 =
�
2(2m∗L2). Then the energy ε = E/E0, the magnetic field b

= (�eB/m∗c)/E0 = 2eBL2/�c, and the Rashba coefficient α =
(α/L)/E0 = α(2m∗L/�2). We can also get the eigenenergies and

vectors on the basis of Eq. 13.8. From Eq. 13.8 and Eq. 13.17 we

obtain the secular equation,(
C − y i D
i D∗ C ∗ − y

)
= 0, (13.18)

where

C = −e2i ᾱ + 3ei ᾱ + 1+ e−i ᾱ ,

D = −ei ᾱ + 1+ e−i ᾱ − e−2i ᾱ ,

y = 4e−4i x ,
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and

x = k0L− kAL=
√(

ᾱ

2

)2

+ ε − b
8
. (13.19)

From Eq. 13.18 we obtain the eigenenergies of a closed square loop,

ε =
(

±ϕ

4
+ π

2
m+ b

8

)2

−
(

ᾱ

2

)2

and

ϕ = arccos

(
1+ 4 cos ᾱ − cos 2ᾱ

4

)
, (13.20)

where m is an integer and ±(φ/4) + (π/2)m + (b/8) > 0. As we

know, this is the first result of eigenenergies of Rashba states in a

square loop obtained by the transfer matrix method, which cannot

be obtained by solving the Schrödinger equation. With the transfer

matrix method we can calculate the eigenstates of a closed loop of

any shape, for example, triangle, pentagon, hexagon, rectangle, and

ellipse.

About the eigenstates, in the straight-line section, the states are

just denoted by Eq. 13.4 and Eq. 13.6; the spin orientation of the

Rashba states with the wave vectors k1 and k2 are all perpendicular
to the circuit; the angles between the spin and the circuit are +π/2

and−π/2; respectively; and the coefficients of the spin-up and spin-

down states, which describe eigenstates in the form of� in Eq. 13.2,

can be determined by MSL� = � .

13.4 Spin Interference in an AB Ring [18]

Now we consider an interference structure, the AB ring as in

Fig. 13.1a. We use the transfer matrices Eq. 13.4 and Eq. 13.5 to

describe the spin transport in a circular circuit, and the boundary

conditions Eq. 13.11 and Eq. 13.13 to describe the transport through

the intersection. We obtained the reflection and transmission

coefficients in AB rings as functions of the electron energy ε, the

Rashba coefficient α, and the external magnetic field B .
We assume that an electron with energy ε enters circuit i of

the AB ring from left to intersection A, then two transmitted waves
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depart from intersection A, meet at intersection B, and depart from

circuit e. At the same time, two reflected waves depart from circuit i.

Write the wave functions in the four circuits of the AB ring and the

boundary conditions at the intersections A and B. In the two arms

of the AB ring, the wave functions at point B are related with those

at point A by the transfer matrices. There will be 20 coefficients

for all wave functions in all circuits. We have 12 equations from the

boundary conditions at two intersections and 8 equations from the

transfer matrices in two arms of the geometries. So we can solve this

problem and get coefficients of reflection and transmission waves

uniquely.

The transmission and reflection coefficients are T1 = |tup|2, T2
= |tdown|2, and R1 = |rup|2, R2 = |rdown|2. Figure 13.3 shows T1, T2,
R1, and R2 as functions of the electron energy ε for the magnetic

field b = 0, θ = 0, ᾱ = 1, and coefficients of injected waves are a10
= 1 and a20 = 0. In this case, R1 = 0 and T2 = 0. From Fig. 13.3

we see that the zero points of the R2 curve are ε = 0.3, 1.3, 2.8, 4.8,

7.3, 10.3, 13.8, 17.8, etc., which just correspond to the eigenenergies

of eigenstates in the closed AB ring, calculated from Eq. 13.13. It

Figure 13.3 T1 and R2 of the AB ring in Fig. 13.1a as functions of ε for

θ = 0, ᾱ = 1, b= 0, a10 = 1, and a20 = 0.
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Figure 13.4 T1 and T2 of the AB ring in Fig. 13.1a as functions of b for
θ = 0, ᾱ = 1, ε = 0.5, and a10 = 1, a20 = 0 (T1,T2) and a10 = 0.707, a20 =
0.707i(T1’,T2’).

means that when the energy of the injected electron equals the

energy of the eigenstate in the closed ring, there will be no reflection

completely and there will be resonance.

Figure 13.4 shows the T1 and T2 as functions of the magnetic
field b for the fixed electron energy ε = 0.5, θ = 0, ᾱ = 1, and the

coefficients of injected waves a10 = 1, a20 = 0, and a10 = 0.7071,

a20 = 0.7071i . From Fig. 13.4 we see that for both cases, T1 and
T2 curves all oscillate with the magnetic field b and the oscillating
period is b = 4, though their zero points are different. From the

definition of b = 2eBR2/c�, we obtain the period of the magnetic
flux is �m = hc/e, independent of the magnitude of the ring. This is
the first proof of the AB effect of the Rashba spin current.

13.5 Spin Interference in an AB Square Loop [18]

For comparing our results with the experiment in Ref. [15] and

analytical account in Ref. [21] of Koga, we consider the spin
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interference in a square loop as shown in Fig. 13.1b, similar to the

geometry of sample 2 in Koga’s paper. We illustrate our method in

detail. Using Eqs. 13.4 and 13.6, the wave functions in the input

circuit i and the output circuit e can be written as

�i = a10

(
1

−1
)
eik1l1 + a20

(
1

1

)
eik2l1 + a1

(
1

1

)
e−ik1l1

+a2
(
1

−1
)
e−ik2l1

and

�e = d1

(
1

−i
)
eik1l2 + d2

(
1

i

)
eik2l2 . (13.21)

The wave functions in the closed square loop at points A and B can

be written as

�c (A) = b1

(
1

i

)
eik1l2 + b2

(
1

−i
)
eik2l2 + b3

(
1

−i
)
e−ik1l2

+b4
(
1

i

)
e−ik2l2

and

�c (B) = c1

(
1

1

)
eik1l

′
2 + c2

(
1

−1
)
eik2l

′
2 + c3

(
1

−1
)
e−ik1l ′2

+c4
(
1

1

)
e−ik2l ′2 ,

(13.22)

where the origins of the coordinates l2 and l ′2 are at points A and B,
respectively.

Using the boundary conditions Eqs. 13.11 and 13.13 we obtain

the following group of equations:

a10 + a20 + a1 + a2 = b1 + b2 + b3 + b4,

−a10 + a20 + a1 − a2 = i (b1 − b2 − b3 + b4) ,

b1 + b2 + b3 + b4 = d1 + d2,

b1 − b2 − b3 + b4 = −d1 + d2,

c1 + c2 + c3 + c4 = d1 + d2,

c1 − c2 − c3 + c4 = i (−d1 + d2) ,

a10+ a20− a1− a2+ c1+ c2− c3− c4 = b1+ b2− b3− b4+ d1+ d2,
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and

−a10 + a20 − a1 + a2 + c1 − c2 + c3 − c4 = i (b1 − b2 + b3 − b4
−d1 + d2) . (13.23)

The coefficients c1, c2, c3, and c4 are related to the coefficients b1, b2,
b3, and b4 by the transfer matrices,(

c1
c2

)
= M1

(
b1
b2

)
,

(
c3
c4

)
= M2

(
b3
b4

)
. (13.24)

The transfer matrices M1 and M2 are calculated in a way similar to

Eq. 13.17.

M1 = 1

4

⎛
⎝
(1+ i)

(−A4 + 2A3B + A2B2
)

(1− i)
(
A3B + AB3

)

(1− i)
(
A3B + AB3

)
(1+ i)

(
A2B2 + 2AB3 − B4

)

⎞
⎠

and

M2 = 1

4

⎛
⎝
(1+ i)

(−A∗4 + 2A∗3B∗ + A∗2B∗2) (1− i)
(
A∗3B∗ + A∗B∗3)

(1− i)
(
A∗3B∗ + A∗B∗3) (1+ i)

(
A∗2B∗2 + 2A∗B∗3 − B∗4)

⎞
⎠,

(13.25)

where A = eik
L
1 and B = eik2L.

Equations 13.23 to 13.25 are for the case of no magnetic field. In

the case of a magnetic field perpendicular to the loop plane, the k1
and k2 in �i and �e in Eq. 13.21 are k0 ± kδ , while those in �c in

Eq. 13.22 are k0 ± kδ + kA and kA = ± eA/� = ± e�m/�L, where the
± sign of kA depends on the direction of the wave, CW or CCW (see

Eq. 13.6).

Solving Eqs. 13.23 and 13.24 we obtain the T1, T2, R1, and R2 of
the square loop as functions of electron energy ε for b= 0, ᾱ = 1, a10
= 1, and a20 = 0, as shown in Fig. 13.5. From Fig. 13.5 we see that

R1 = 0, T1 = T2, and the zero points of R2 are ε = 1.9, 2.6, 8.9, and

10.4, which are just the energies of eigenstates in the closed square

loop given by Eq. 13.20. Figure 13.6 shows the T1, T2, R1, and R2 of
the square loop as functions of the magnetic field b for ε = 0.5, ᾱ =
1, a10 = 1, and a20 = 0. From Fig. 13.6 we see that the T1, T2, and
R2 all oscillate with the magnetic field and the oscillating period is
b = 12.5. According to the definition of the b in the square loop b
= 2eBL2/�c, the oscillating period corresponds to �m = hc/e, the
same as the AB ring.
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Figure 13.5 T1, T2, and R2 of the AB SL in Fig. 13.1b as functions of ε for

b= 0, ᾱ = 1, a10 = 1, and a20 = 0.

Figure 13.6 T1, T2, R1, and R2 of the AB SL in Fig. 13.1b as functions of b for
ε = 0.5, ᾱ = 1, a10 = 1, and a20 = 0.
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13.6 Spin Interference in an AB Double Square
Loop [18]

In the experiment in Ref. [15] Koga et al. found that the period of

the AB oscillation is �m = hc/2e, half of the theoretical prediction.
We think that their circuit is actually an AB double square loop, as

shown in Fig. 13.1c, and the Rashba electron travels twice in the

loop. Similarly we write the wave functions in each circuit, and use

the boundary conditions and the transfer matrices, and obtain the

set of equations of wave function coefficients.

Solving the set of equations we obtain the T1, T2, R1, and R2 of
the double square loop as functions of the electron energy ε for b =
0, ᾱ = 1, a10 = 1, and a20 = 0, as shown in Fig. 13.7. From Fig. 13.7

we see that R1 = 0, T1 = T2, and the zero points of R2 are ε = 0.6,

1.9, 2.6, 4.7, 6.0, 8.9, 10.4, 14.1, and 16.3, which are the energies

of eigenstates in the closed double square loop. In there ε = 1.9,

2.6, 8.9, and 10.4 are the energies of eigenstates in the closed single

square loop. So if the closed loop has n circles, there are n times of

Figure 13.7 T1, T2, and R2 of the AB double SL in Fig. 13.1c as functions of
ε for b= 0, ᾱ = 1, a10 = 1, and a20 = 0.
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Figure 13.8 T1, T2, R1, and R2 of the AB double SL in Fig. 13.1c as functions
of b for ε = 0.5, ᾱ = 1, a10 = 1, and a20 = 0.

eigenstates in the loop. Figure 13.8 shows the T1, T2, R1, and R2 of
the double square loop as functions of the magnetic field b for ε =
0.5, ᾱ = 1, a10 = 1, and a20 = 0. From Fig. 13.8 we see that the T1, T2,
and R2 all oscillate with the magnetic field and the oscillating period
is b= 6.28. According to the definition of the b in the square loop, the
oscillating period corresponds to �m = 3.14�c/e = hc/2e. It is half
of that of the single square loop, in agreement with the experimental

results [15].

Finally, we consider that electrons in Koga’s experiment [15] are

not spin-polarized, so we average our results for all spin orientation

and get the total transmission coefficient T . Figure 13.9 shows T as

a function of α (θ in Koga’s papers) for b = 0 and ε = 0.5 and 50,

corresponding to E = 0.01 meV and 1.0 meV for L= 1200 nm and

m∗ = 0.047 me, as in Ref. 15. We note that the period is small, just

about 1/4 of that in Koga’s papers, and the curve is not very regular.

So we consider that though Koga et al. got the biggest change of σ ,

they didn’t control 
θ from 0 to 0.75 π . Maybe the variety range of

α is just about 1/4 of what they expected.



April 2, 2025 16:29 JSP Book - 9in x 6in 13-QWM-13

352 1D QuantumWaveguide Theory of Rashba Electrons in Curved Circuits

Figure 13.9 T as functions of α (θ in Koga’s papers) for b = 0 and ε = 0.5

and 50.

13.7 Summary

We studied the spin waveguide transport of electrons with Rashba

spin-orbit interaction (RSOI) in the curved circuits. The eigenstates

of the circular and square loops were studied by using the transfer

matrixmethod. the transfermatrixM(E ) of a circular arc is obtained
by dividing the circular arc into N segments and multiplying the

transfer matrix of each straight segment. The energies of eigenstates

in a closed loop are obtained by solving the equation det[M(E ) −
I ] = 0. For the circular ring, the eigenenergies obtained with

this method are in agreement with those obtained by solving

the Schrödinger equation. For the SL, the analytic formula of the

eigenenergies is obtained first. The transport properties of the AB

ring, AB SL, and double SL are studied using the boundary conditions

and the transfer matrix method. In the case of no magnetic field,

the zero points of the reflection coefficients are just the energies

of eigenstates in closed loops. In the case of a magnetic field,

the transmission and reflection coefficients all oscillate with the

magnetic field. The oscillating period is �m = hc/e, independent of
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the shape of the loop, where �m is the magnetic flux through the

loop. Finally, we compared our results with Koga’s experiment.
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Chapter 14

Spin Polarization of a Rashba Electron
with a Mixed State

In recent years, much attention has been paid to the field of RSOI

[1] in low-dimensional semiconductor structures due to its potential

applications in spintronic devices [2–4], which is based on the idea

of the possible manipulation of the electron spin by an electric

field [5]. Although spin transistors have yet to be achieved, the

fundamental interest in understanding the effect and application

of RSOI on macroscopic low-dimensional semiconductor structures

continues [6, 7]. Many investigations focus on ballistic macroscopic

rings [8–11] because a quantum ring exhibits an intriguing spin

interference phenomenon [12, 13]. For instance, Chang et al. have

studied persistent current in a quantum ring with two kinds of SOIs

[9] and have shown that effective periodic potential caused by SOIs

results in the weakening of the spin current and the localization of

electrons. Ballistic electron transport of a Rashba electron through

a chain of quantum circular rings has been investigated by Molnar

et al. [10]. They have shown a periodic dependence on the incident

electron’s energy, through the parameter ka, the magnetic field
B , and the strength of the RSOI α. Recently Naeimi et al. have

shown that a double quantum ring in the presence of RSOI and a
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magnetic flux can work as a spin-inverter [11]. Most investigations

on quantum rings with RSOI focus on the circular ring because

its Hamiltonian can be written as a one-dimensional model [14].

Without this advantage, spin transport in other shapes of rings is

not convenient to calculate.

In previous work the injected electron is in the pure state, but

for many cases, we expect a spin polarizer to get a spin polarization

current from a nonpolarized state. To achieve this objective, in

addition to an electric field, a magnetic field is also required. In this

chapter, we study in detail the spin transport of Rashba electrons in

an AB square ring with a magnetic flux. In addition, we study the

spin polarization and its manipulation by α or B .

14.1 Transfer Matrix of a Rashba Electron in an
AB Ring with a Magnetic Flux

In the presence of Rashba spin-orbital interaction (RSOI) and of a

magnetic field B perpendicular to the x − y plane, the appropriate
Hamiltonian of an electron in the two-dimensional (2D) system in

the x − y plane is

H =

⎛
⎜⎝

�
2

2m∗ (p+ eA)2 + V (x , y)
α

�

(
i px + py

)
α

�

(−i px + py
) �

2

2m∗ (p+ eA)2 + V (x , y)

⎞
⎟⎠ ,

(14.1)

where m∗ is the electron effective mass, α is the Rashba coefficient,
and the Zeeman energy has been neglected [13]. For a one-

dimensional (1D) circular ring structure this Hamiltonian can be

rewritten as

H = �
2

2m∗R2

[(
−i ∂

∂ϕ
+ ᾱ

2
σr − φ

φ0

)2

− ᾱ2

4

]
, (14.2)

where φ is the azimuthal angle, R is the radius, ᾱ = α
(
2m∗R
�2

)
is

the normalized Rashba constant, σr = cosϕσx + sinϕσy , φ is the

magnetic flux through the ring, and φ0 = h/e. We can introduce the
dimensionless Hamiltonian. Then the eigenenergy and eigenstates
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in this system can be given as

Eμ =
(
m+ b

4
+ 1

2
+ (−1)μ

2

√
1+ ᾱ2

)2

− ᾱ2

4
(14.3)

and

�μ = eimϕχμ(ϕ), (14.4)

where μ = 1 and 2, which refer to the up- and down-spin states,

respectively, b = 2eBR2/�, and the orthogonal spinors χμ(ϕ) can be

expressed in the terms of the eigenvectors (1,0)T and (0,1)T of the

Pauli matrix σz as

χ1(ϕ) =

⎛
⎜⎝ cos

β

2

eiϕ sin
β

2

⎞
⎟⎠ (14.5)

and

χ2(ϕ) =

⎛
⎜⎝ sin

β

2

−eiϕ cos β

2

⎞
⎟⎠ , (14.6)

where β ≡ arctan(−ᾱ). These results are obtained from the 1D

Hamiltonian Eq. 14.2, but for a variety of 1D ring, such as a square

ring or an elliptical ring, we can’t find the 1D Hamiltonian. To study

a Rashba electron’s transport in these structures, we divide a curved

line into N segments [15]. For a curved line, such as an elliptical ring
or a circular ring, N is large enough and every segment is very small,
and then every segment can be approximated to be a line segment

along the tangential direction. For every segment we can obtain the

eigenstates and we can write the wavefunction in the curve as

� = (ψ1(θ), ψ2(θ))� = (ψ1(θ), ψ2(θ))

(
a(l)
b(l)

)
, (14.7)

where

ψ1(θ) = 1√
2

(
1

ieiθ

)
, ψ2(θ) = 1√

2

(
1

−ieiθ
)
,

l denotes the coordinates on the curve line, and θ is the azimuthal

angle of the tangent line of the curve. Adopt � to describe the wave

function and by using Griffith’s boundary conditions [16–18] in each

vertex, we can relate the wave function at the two endpoints by
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Figure 14.1 Two structures: (a) an AB square ring and (b) an AB circular

ring.

a transfer matrix. For a polyline structure, such as a square ring,

every lead is a natural line segment, so N is the number of leads.

All analyses on the curved line remain correct, and actually a curved

line is approximated to be a multistage polyline in our method. In

a circular ring this method gave results that are identical to those

obtained from 1D Hamiltonian [15], so this method is reasonable.

Consider a 1D square ring as shown in Fig. 14.1a. Here the

electron current is injected from circuit i and the output circuit e

is on the right side. We assume that at point A the down arm is

with the polar angle θ1 and the up arm is with the polar angle θ2.

Therefore in Eq. 14.7 θ1 and θ2 correspond to the corresponding

side of the square ring. The side length of the square is denoted

by L, and the strength of RSOI in the square is denoted by αs . In

this chapter, we use the dimensionless physical quantities. Similar

to R in the circular ring, L can be treated as the size of the square
ring. If the energy unit E0 = �

2/(2m∗L2), then the energy ε = E/E0,
the magnetic field b = (�eB/m∗)/E0, and the Rashba coefficient
ᾱs = (αs/L)/E0 = αs(2m∗L/�2). Similar to Ref. [15], we can write
the state of the electron in every part of the structure. We adopt �

to describe the wave function in the two arms of the square ring:

� j
up =

(
a jup (l jup)

b jup (l jup)

)
, (14.8)

�
j
down =

(
a jdown (l jdown)

b jdown (l jdown)

)
, (14.9)
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�i =
(
ai

bi

)
eik0li +

(
ar

br

)
e−ik0li , (14.10)

and

�0 =
(
at
bt

)
eik0lo , (14.11)

where up and down denote the upper and lower arms of the

square ring and j = 1 or 2, which correspond to the clockwise

and counterclockwise motions of electron through the square ring,

respectively. In particular, l1up and l
2
up or l

1
down and l

2
down have opposite

directions. According to the transfer matrix method, we can obtain

the � of each arm if we know its value at any one point, so

there are 12 unknown coefficients in � j
up, �

j
down, �i, and �0.

Using Griffith’s boundary conditions [16–18], we can determine all

unknown coefficients. We assume that the original points of li and lo
are point A and point B, respectively, then when ai = 1 and bi = 0,

we have ar = r11, br = r12, at = t11, and bt = t12; similarly, when
ai = 0 and bi = 1, we have ar = r21, br = r22, at = t21, and bt = t22,
where σ = 1 or 2, which denote the spin-up and spin-down states

in the z direction. The spin-dependent transmission coefficient of an
electron with incoming spin σ and outgoing spin σ ′ can be written
as Tσσ ′ = |tσσ ′ |2. For comparison the spin transport in an AB circular
ring as shown in Fig. 14.1b is also calculated.

14.2 Description of Spin Polarization of a Rashba
Electron

In the above discussion, the injected electron is in the pure state,

but for many cases, this condition can’t be satisfied. We assume

that the rate for spin-up is P1 and the rate for spin-down is

P2. Then it is convenient to introduce a spin polarization P to

describe the difference between the spin-up and spin-down electron

transmissions:

P = P1 − P2
P1 + P2

. (14.12)
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Obviously, −1 ≤ P ≤ 1, P = −1, and P = +1 represent complete
spin polarization in the z direction. Now we define

Q ≡ P1/P2. (14.13)

Then P = (Q − 1)/(Q + 1). There is a one-to-one correspondence

between Q and P , and Q and P have the same changing trend, so

we can study the variation of Q instead of the variation of P . We can
obtain the relationship of Q of the injected electron Qi and outgoing
electron Qo:

Qo = T11Qi + T21
T21Qi + T22

. (14.14)

First we consider the change of Q though a structure �Q. In the
condition Qi < Qfix, we have �Q < 0; in the condition Qi > Qfix,
�Q> 0, and in the condition Qi = Qfix,�Q= 0, where

Qfix = −(T11 − T22)+
√
(T11 − T22)2 + 4T12T21
2T12

. (14.15)

We can determine that the spin polarization can be changed though

a structure, and Qfix(P fix) is the sign value of Q(P ) of the outgoing
electron. Because T12 = T21, Qfix is determined by (T11 − T22)/T12.
Another condition we are interested in is the injected electron is

totally nonpolarized. In this case Qi = 1, so Qo = (T11 + T21)/(T12 +
T22)≡ Qsp. In this condition, P sp = (Qsp − 1)/(Qsp + 1) can describe

the polarization of the spin of the outgoing electron when the

injected electron is nonpolarized.

14.3 Spin Transport in a Square Ring and a
Circular Ring with a Magnetic Flux

In this section we present the numerical result for the spin-

dependent electron transport in a square ring and a circular ring.

The effect of the RSOI strength α, the magnetic field B , and the
incident electron energy E are investigated for different conditions,
and two structures are compared with each other. Further, we use

the dimensionless physical quantities as in section 14.2, but for B ,
we measure the magnetic flux φ in units of φ0 = h/e.

In Fig. 14.2 we show the spin-dependent electron transmission

coefficients T11, T12(T21), and T22 and the electron spin polarizations
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Figure 14.2 (a, c) The spin-dependent electron transmission coefficients

T11, T12(T21), and T22 and (b, d) the electron spin polarizations P fix and P sp

of the emergent electron as a function of the magnetic flux φ. (a, c) for the

AB square ring, and (b, d) for the circular ring.

P fix and P sp of the emergent electron as a function of the

magnetic flux φ. The relevant parameters in our calculation are that

E = 10 and ᾱ = 1.0. Figure 14.2a shows the electron transmission

coefficients for the square ring in Fig. 14.1a, and Fig. 14.2b shows the

electron transmission coefficients for the circular ring in Fig. 14.1b.

We can see that for both cases, the electron transmission coefficient

curves all oscillate with the magnetic flux φ and the oscillating

period is φ/φ0 = 1. It proves that the AB effect exists in two kinds of

AB rings. In these figures, T11 �= T22 for any regions in which φ/φ0 is

not an integer number. According to our theory in Section 14.2, this

means that the AB rings can act as spin polarizers in the presence

of both the RSOI and the perpendicular magnetic field. In Fig. 14.2c

and Fig. 14.2dwe show the P fix and P sp as a function of themagnetic
flux φ for the square ring and the circular ring, respectively. High

polarization of spin can be reached in two structures, but there are

some differences. In our calculation, in the circular ring, the peak
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Figure 14.3 T11, T12(T21), and T22 as a function of the injected electron’s
energy (a) for the AB square ring and (b) for the AB circular ring.

of P fix or P sp is sharp, while in the square ring, the peak area and
the valley area of P is wide. This means that the square ring has a
higher stability as a spin polarizer. This fact shows that the geometry

of the structure is an important parameter formodulation of the spin

transport if other parameters are fixed.

Now we investigate the effects of the energy of the injected

electron on the spin transport. Figures 14.3a and 14.3b show T11,
T12(T21), and T22 as a function of the injected electron’s energy
E for ᾱ = 1.0 and φ/φ0 = 0.4 in the square and circular rings,

respectively. From Fig. 14.3 we see that the electron transmission

coefficients oscillate with the energy, but “the period” increases with

increasing E . This result is due to the expression of the eigenenergy
of corresponding close rings in Ref. [15]. Comparing the electron

transmission coefficients in the two rings, we find that the electron

transmission coefficients in the circular ring oscillate more rapidly

because the energy-level spacing is smaller in the circular ring. This

result shows again that the square ring has a higher stability as a

spin device.

Figure 14.4a and Fig. 14.4b show T11, T12(T21), and T22 as a
function of the Rashba strength ᾱ in the square ring and in the

circular ring, respectively. The relevant parameters are E = 10 and

φ/φ0 = 0.4. Again we see that the electron transmission coefficients

in the circular ring oscillate much more rapidly, so it means that the

stability of the circular ring is worse than the square ring as a spin

device.
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Figure 14.4 T11, T12(T21), and T22 as a function of the Rashba strength ᾱ

(a) for the AB square ring and (b) for the AB circular ring.

14.4 Spin Polarization of a Rashba Electron in a
Quantum Ring

To obtain a higher spin polarization and more effective modulation,

we should take account of the effect of more parameters together. In

Fig. 14.5 we show the effect of the Rashba strength and themagnetic

flux on the spin polarization transport. We focus on the realization

of spin polarizer, so the spin current density is as important as the

spin polarization. We define the effective P

P ef = 1

2
P sp

∑
σ,σ ′=1,2

Tσσ ′ . (14.16)

Figure 14.5 Contour map of effective spin polarization P ef as a function of
the Rashba strength ᾱ and themagnetic flux φ(a) for the AB square ring and
(b) for the AB circular ring.
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If the injected electron is nonpolarized, the sign of P ef denotes
the spin-polarization direction on the z axis and its absolute value
contains information of both electron current density and spin

polarization of the outgoing electron. Only when both of them reach

a higher value, P ef have a considerable value. The contour maps of
P ef as a function of ᾱ and φ in the square ring and in the circular ring

are shown in Fig 14.5a and Fig. 14.5b, respectively. In our calculation

the incident electron energy E = 10. As shown in Fig. 14.5, |P ef| is
very small for most of the region of (ᾱ, φ/φ0), so we must choose

suitable parameters for a spin polarizer. For instance, we can set ᾱ =
1.0 andmodulate φ in both structures. This condition is discussed in

Fig. 14.2. Another result is that we don’t need large Rashba strength

and magnetic field. If the scale of the structure is about 100 nm

and m∗/me � 0.1, then we get α = ᾱ�2/(2m∗L) � 4.0 meV nm

and B � 0.1T. Comparing Fig. 14.5a with Fig. 14.5b, we can clearly

find that P ef changes more rapidly in the circular ring and there
is a wider region of (ᾱ, φ/φ0) in the square ring, which is useful

for modulating the spin polarization. These results are reasonable.

Many research studies have indicated that the transport in an AB

ring is related to the energy band structures of a corresponding

closed ring. Eigenenergies of Rashba states in a square loop are given

in Ref. [15], and we can find the energy-level spacing is much larger

than that in Eq. 14.3. As a result the spin transport of a Rashba

electron in the square ring is not so sensitive to relevant parameters

as that in the circular ring. In addition, when the ᾱ and φ/φ0 are the

same in two kinds of rings, the arms of the square ring are longer

and a spin-dependent quantum interference phenomenon is more

likely to occur. This fact may be another reason why the geometry is

important.

14.5 Summary

In this chapter, we studied the spin polarization in a square ring

and in a circular ring with the RSOI and the magnetic flux. We

developed the 1D quantum waveguide theory in straight waveguide

systems and applied it in the 1D curve systems. The effects of Rashba

strength, magnetic field, and incident electron energy were taken
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into account. We found that for appropriate values of parameters,

both kinds of AB rings can work as spin polarizers and modulation

by some parameters is realizable. Comparing the results in two

structures, it was found that the spin polarization in the square ring

has a wider peak (valley) area and it means that the square ring has

higher stability as a spin polarizer.
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Chapter 15

Two-Dimensional QuantumWaveguide
Theory of Rashba Electrons

The first model of spin transistor proposed by Datta [1] working

by controlling the strength of Rashba spin-orbit interaction (RSOI)

[2] was demonstrated to be feasible in narrow-gap semiconductors

[3]. Then many device ideas were brought forward [4–10]. Recently,

Koo et al. [11] reported the demonstration of the spin-injected field-

effect transistor in a high-mobility InAs heterostructure. They con-

firmed the Datta’s theory [1]—an oscillatory channel conductance

as a function of monotonically increasing gate voltage. Besides, a

great deal of one-dimensional (1D) devices were proposed [12, 13].

The 1D quantum waveguide theory have been introduced in the

previous three chapters. When the width of the waveguide is not

narrow enough, the 1D approach cannot work; the transport of the

electrons will be in some transverse excited states synchronously,

not only the ground state; and the transmission will be concerned

with the structure shape.

The two-dimensional (2D) quantum waveguide transport for

a spinless electron has been introduced in Chapter 11, but that

for a Rashba electron has rarely been studied [5]. In our work

for this chapter we applied the 1D quantum waveguide theory of

QuantumWaveguide in Microcircuits (Second Edition)
Jian-Bai Xia, Duan-Yang Liu, and Wei-Dong Sheng
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a Rashba electron to the 2D cases, which can operate the spin

flip and the electron block more effectively. We used the transfer

matrix method [16, 17] with the boundary conditions derived in

Refs. [14] and [15] to study the 2D ballistic transport of Rashba

electrons in straight structures of various shapes, including square

stub, triangular stub, and periodic structures [19]. We found that the

boundary condition for the derivative of the wave functions at the

discontinuous interface used by Wang et al. [5] is not reasonable,

so it is necessary to formulate the theory and calculate the results

correctly. And the 2D quantum waveguide theory for a Rashba

electron may be useful for designing the spin-injected field-effect

transistor.

15.1 Transfer Matrix Method Considering
Spin [19]

The transfer matrix method’s general formalism of a spinless

situation has been described in Chapter 11 and many papers [16–

18]. Now we apply it to Rasbha electrons. If ballistic electrons

move along a straight channel in two-dimensional electron gasses

(2DEGs) that work in the presence of the Rasbha spin-orbit

interaction (RSOI), we can divide the channel into some segments

(see Chapter 11) and in each segment the width is constant. If we

assume that 2DEGs are in the x − y plane and the channel is in the x
direction, in each segment the wave function can be written as

�m (x , y) =
N∑
n=1

[
am1nφ1 (0) e

ikm1nx + am2nφ2 (0) e
ikm2nx

+bm1nφ1 (0) e−ikm2nx + bm2nφ2 (0) e
−ikm1nx

]
ϕmn (y) , (15.1)

where m denotes the m-th segment and φ1 and φ2 are the phases of

the Rashbawave functions in Eq. 12.6 [14]. The argument θ in φ1 and

φ2 is the azimuth angle of the circuit; in our case θ = 0 or π . km1n and
km2n are the wave vectors [14] depending on the transverse energy of
the electron in them-th segment,

km1n = km0n + kδ , km2n = km0n − kδ
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and

km0n = m∗

�2

√
α2 + 2�2

m∗ E
mn
|| , kδ = m∗

�2
α, (15.2)

where α is the Rashba coefficient, E || is the longitudinal kinetic
energy

Emn|| = E − �
2

2m∗

(
nπ
Wm

)2

, (15.3)

Wm denotes the width of the m-th segment, and n denotes the n-th
transverse sublevel. The sumover n includes evanescentmodes, that
is, km0n is imaginary.

In this chapter we use dimensionless units of physical quantities.

The length of the unit is the width of the input channelW0, the wave

vector unit is π/W0, and the units of the energy and the Rashba

coefficient are

ε0 = �
2

2m∗

(
π

W0

)2

and α0 = �
2

2m∗

(
π

W0

)
, (15.4)

respectively. With the dimensionless units, km0n and kδ in Eq. 15.2 can

be written as

km0n =
√(α

2

)2
+ E −

(
nW0

Wn

)2

and kδ = α

2
. (15.5)

Then we match the wave function and the current density, J x left-
multiplying the wave function, at each interface of segments, with

different widths. J x is the current density operator (4.12) [14]

J x = − i
�
[l , H ] = i

�

⎛
⎜⎝− �

2

m∗
∂

∂l
αe−iθ

−αeiθ − �
2

m∗
∂

∂l

⎞
⎟⎠ . (15.6)

It is noticed that the result of the operator J x left-multiplying the
wave function is rather simple [14].

J x�σn = J xφσ (θ) eikσnx = �k0n
m∗ �σn. (15.7)

This means that the current density is independent of spin σ , which

is in contrast to the result of Ref. [5], where the authors used the

derivative operator instead of the current density operator J x .
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Considering the orthogonality of φ1 and φ2, we divide the Rashba

electron wave functions into two parts, spin-up and spin-down. We

write the expression of �m in Eq. 15.1 in the matrix form and adopt

a 4N dimensional column vector to describe the wave function in the

m-th segment as the following form:

�m = φ1 (0)⊗ �m
1 + φ2 (0)⊗ �m

2 (15.8)

and

�m
σ = (

aσ1eik
m
σ1x , aσ2eik

m
σ2x , · · · aσNeik

m
σN x , bσ1e−ikm3−σ1x ,

bσ2e−ikm3−σ2x , · · · bσNe−ikm3−σN x
)T

= (
Amσ , B

m
σ

)T
, (15.9)

where σ = 1 or 2. We assume the hard wall approximation at the

edge of channel, hence the transverse wave functions

ϕmn (y) =
√

2

Wm
sin

[
nπ
Wm

(
y − ym0

)]
, (15.10)

where ym0 is the coordinate of the down edge of the m-th segment.
This assumption is adopted in the whole chapter. The boundary

conditions of the wave function and the current density at the

interface of them-th and the (m+ 1)th segment are

�m = �m+1

and

J x�m = J x�m+1. (15.11)

Then left-multiplying Eq. 15.11 by φ1(0) and φ2(0), respectively, we

get

�m
σ = �m+1

σ (15.12)

and

J x�m
σ = J x�m+1

σ , (15.13)

where σ = 1 or 2. So it is derived from Eqs. 15.12 and 15.13 that

for movement in the straight channel, there is no mixing between

the wave functions of spin-up (σ = 1) and spin-down (σ = 2) and

the transfer matrix, which relates �σ on two sides of the interface,

is independent of σ . In the following we will omit the index σ .
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There are two cases: the transverse width of the m-th segment Wm

is smaller than Wm+1 of the (m + 1)th segment, or vice versa. For

the former, we multiply both sides of Eq. 15.12 by ϕm+1
n (y) and

both sides of Eq. 15.13 by ϕml (y) and integrate over the transverse
coordinate range of the (m + 1)th and m-th segments, respectively.
We get

N∑
l=1

(
aml + bml

)
Sl ,n = am+1

n + bm+1
n (15.14)

and

km0l
(
aml − bml

) =
N∑
n=1

km+1
0n

(
am+1
n − bm+1

n

)
Sl ,n, (15.15)

where Sl ,n is defined as

Sl ,n =
∫
Wn

ϕml (y)ϕ
m+1
n (y) dy. (15.16)

Now if we adopt the expression of �m in Eq. 15.8 and Eq. 15.9, we

can obtain the transfer matrix connecting the �m on the left side of

the interface and the�m+1 on the right side [16]

�m = Mm,m+1�m+1,

Mm,m+1 = 1

2

(
M+ + M− M+ − M−

M+ − M− M+ + M−

)
, (15.17)

M+ = (
ST

)−1
, and M− = (Km)−1 SKm+1. (15.18)

Km is the diagonal matrix with elements km0n. For the case of

Wm >Wm+1, we can similarly obtain the transfer matrix.
In the straight m-th segment, the transfer matrix connecting the

�m on the left end and the right end of the segment is the diagonal

matrix, dependent on σ .

Mm,σ =
(
P−

σ 0

0 P+
σ

)
(15.19)

and (
P−

σ

)
nl = e−ikmσnLmδnl ,

(
P+

σ

)
nl = eik

m
3−σnLmδnl ,

where Lm is the length of them-th segment.
In this chapter, we assume that an incident electron with energy

E0 enters the channel and the state of the incident electron is known.
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So the coefficients of the wave functions at the input end and the

output end Ainσ are certain and Boutσ = 0. The total transfer matrix

Mσ is the multiplication of all partial transfer matrices in due order,

which is just related with E , σ , and the channel’s structure.

Mσ =
∏
m

Mm,σMm,m+1 =
(
Mσ, 1 Mσ, 2

Mσ, 3 Mσ, 4

)
. (15.20)

From the transfer matrix Eq. 15.20 we can obtain Aoutσ and B inσ .

Aoutσ = (Mσ, 1)
−1 Ainσ and B inσ = Mσ, 3 (Mσ, 1)

−1 Ainσ . (15.21)

The transmission and reflection coefficients tij and rij are related
to the wave function coefficients. Supposing that the incident

electron propagates in the ground transverse mode of the input

channel [16]

Ain =

⎛
⎜⎜⎜⎝
k−1/2
01

0
...

0

⎞
⎟⎟⎟⎠ , B in =

⎛
⎜⎜⎜⎜⎝
r11k

−1/2
01

r21k
−1/2
02

...

rN1k
−1/2
0N

⎞
⎟⎟⎟⎟⎠ , and Aout =

⎛
⎜⎜⎜⎜⎝
t11k

−1/2
01

t21k
−1/2
02

...

tN1k
−1/2
0N

⎞
⎟⎟⎟⎟⎠ .

(15.22)

The total transmission and reflection probabilities T and R equal

Ti =
N∑
j=1

∣∣tj i ∣∣2 and Ri =
N∑
j=1

∣∣r ji ∣∣2, (15.23)

for one electron incident in the i -th transverse mode. The summa-
tion is over all the traveling waves in the longitudinal direction. It

can be proved that the current density is conserved.

Ti + Ri = 1. (15.24)

15.2 Spin Interference in Two Kinds of 2D
Waveguides [19]

First we studied the transmission probabilities in the stub structure

as shown in Figs. 15.1a and 15.1b. We take the dimensionless

parameters as L1 = L2 = L3 = 1,W1 =W3 = 1,W2 = 1.8, and α = 0.5,

and define the effective wave vector of the incident electron,

keff =
√(α

2

)2
+ E0, (15.25)
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Figure 15.1 Two kinds ofwaveguideswith different stubs: (a) a square stub

and (b) a triangle stub.

where E0 is the energy of the incident electron. For 1 < keff < 2,

the transmission probabilities as functions of keff for two structures
are shown in Fig. 15.2. From Fig. 15.2 we see that the T versus

keff relation is independent of σ (=1 or 2, corresponding to ±α).

Furthermore, it is also independent of the magnitude of α if we take

keff as the variable. That means the calculated results of the two-
dimensional (2D) quantum waveguide transport for the spinless

electron published in pervious papers [16–18] are also valid for

the Rashba electrons; only the variable keff is changed from
√
E0 to

Eq. 15.25. In Fig. 15.2 the T curve has a sharp dip at keff = 1.85 and

the position of the dip depends on the length of the stub W2; here

we take W2 = 1.8. If we look at the stub as a gate, over which we

make a metal electrode, then the gate length W2 can be controlled

by the gate voltage. So the transmission probability of the electron

with a fixed energy E0 can be controlled by the gate voltage. For
square stubs (solid line), all vales have those energies where k0n in
Eq. 15.2 equals 1. If we assumed stubs are totally closed, these points

correspondwith eigenenergies.We can infer that this rule holds true

for triangular stubs.

For 2< keff < 3, the transmission probabilities as functions of keff
are shown in Fig. 15.3. There are two modes of incident electrons:

one is at the first sub-band and the other is at the second sub-

band. Similarly, there are two modes of outgoing electrons, so the

transmission probabilities have four qualities, Tij (i , j = 1 or 2),
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Figure 15.2 T as a function of E in the structure in Figs. 15.1a and 15.1b,
when 1< keff < 2 and N = 5.

Figure 15.3 Tij (i , j = 1 or 2) as a function of E in the structure in Fig. 15.1a
when 2< keff < 3 and N = 5.
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which denotes the transmission probability from the j -th mode to
the i -th mode. From Fig. 15.3 we see that the T11 and T21 are larger
and the T12 and T21 are smaller, but not zero. This means that in
the transport process there is coupling between differentmodes.We

also found that T12 = T21.
Though the transmission probabilities are independent of the

spin orientation (σ ), if we put a ferromagnetic contact oriented

in the x direction at the output end, which permits only electrons
with spin σx to pass through, then the spin polarization along the x
directionwill depend on the Rashba coefficientα and the total length

of the structure

P = J+ − J−
J+ + J−

, (15.26)

where J+ and J− are current densities of spin along the +x and
−x directions, respectively. Figure 15.4 shows the spin polarizations
as functions of α for keff = 1.7. The coefficients of incident wave

function are Ain1 = 1/
√
2 (1, 0, 0 . . .)T and Ain2 = 1/

√
2 (i, 0, 0 . . .)T .

From Fig. 15.4 we see that the spin polarization of the outgoing

Rashba electron can be modulated by the Rashba coefficient and the

relation of P and α is immovable even when E or the structure of

the waveguide changes.

Figure 15.5 shows the transmission probabilities as functions of

the width of the stubs for the structure of Fig. 15.1a with parameters

L1 = L3 = 1, L2 = 0.5, W1 = W3 = 1, N = 3, α = 0.889, and incident

electron energies E0 = 3.4, 3.5, and 3.6. We choose this value of

α for comparing with results of Fig 15.7. From Fig. 15.5 we see

that the transmission probability equals zero at a definite width of

stubWstub, which is different for different incident electron energies.

Figure 15.6 shows the transmission probabilities as functions of the

width of the stubs for the same parameters as Fig. 15.5, but α = 0.5.

Comparing Figs. 15.5 and 15.6, we found that the positions of the

transmission probability valleys change with the Rashba coefficient

α; when α increases, the Wstub of the transmission probability

valley decreases. This means that we can control the transmission

probability by changing the Wstub, that is, changing the gate voltage

over the stub, or changing the Rashba coefficient α, that is, changing

the perpendicular electric field to the 2DEG.
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Figure 15.4 P as a function of α; this function is the same as the 1D case

and is not related with the structure.

Figure 15.5 T as a function of Wstub in the waveguide with a single square

stub; the length of the stub is 0.5, α = 0.889, and N = 3 for E0 = 3.4, 3.5,

and 3.6.
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Figure 15.6 T as a function of Wstub in the waveguide with a single square

stub; the length of the stub is 0.5, α = 0.5, and N = 3 for E0 = 3.4, 3.5,

and 3.6.

Then we investigate the influence of the number of stubs. We

investigate the structure where there are three configurations that

are the same as the structure of Fig. 15.5, with the parameters N = 3

and α = 0.889. We select this α value so that P = 1. Figure 15.7

shows T as a function ofWstub when E0 = 3.4 and 3.8. From Fig. 15.7

we see that the transmission probabilities equal zero at the same

Wstub as the single stub structure but the half-widths of the valleys

decrease greatly. Trends in two curves are similar: T ≈ 1 in most

range of Wstub, and T decreases to zero in a very small range. In

these regions in which T ≈ 0, we can completely block the electron.

Figure 15.8 shows T as a function of Wstub when square stubs are

replaced by triangular ones, and E = 3.4 and 3.8. FromFigs. 15.7 and

15.8 we see that these regions in which T ≈ 0 depend on the shape

of the structure. With the multistub structure we can control the T
more effectively. In Fig. 15.8 the dip in the solid line looks strange

because it is too sharp to be expressed. And there are some very

sharp dips, which can be explained by the (nW0/Wn) in Eq. 15.5. It

make the condition of resonance become unsatisfied rapidly.



April 2, 2025 16:32 JSP Book - 9in x 6in 15-QWM-15

378 Two-Dimensional QuantumWaveguide Theory of Rashba Electrons

Figure 15.7 T as a function ofWstub in waveguides with three square stubs

that are the same as Fig. 15.5, for E0 = 3.4 and 3.8.

Figure 15.8 T as a function of Wstub in waveguides with three triangular

stubs that are the same, other parameters are the same as
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Physically, in the case of T = 0 there is an eigen standing wave

state in the stub region between the input and output waveguides

for each structure. Figure 15.2 shows thatwhen E is in a small region
T decreases rapidly. It is because for these E values there is almost
a complete standing wave in the mid-region, so at the interfaces of

input and output waveguides between the mid-region, � ≈ 0, so

R = 1 and T = 0. And the eigenenergy E of these standing waves

depends on the E , Wstub, and the shape of the structure. So we can

select a structure of a suitable shape and parameter and apply gate

voltage and perpendicular electric field to block the electron.

15.3 The Unitary Condition [19]

Nowwe prove that the unitary condition Eq. 15.24 is always tenable.

Considering that Mmσ are unitary matrices, we just need to prove

that currents on the two sides of the interface of the m-th and the
(m + 1)th segment are equal. For every wave function � in the

waveguide, the current in the x direction is Re(�+ J x�). Considering
the orthogonality of ϕmn (y) and the express of �m in Eq. 15.1,

J m = J m1 + J m2 and

J mσ = Re

[
N∑
n=1

k0n
(
amσne

ikmσnx + bmσne
−ikm3−σnx

)∗

(
amσne

ikmσnx − bmσne
−ikm3−σnx

)]
. (15.27)

So if we define a new�m and J x�m as Eq. 15.8 and

�m
σ = (

aσ1eik
m
σ1x + bσ1e−ikm3−σ1x , aσ2eik

m
σ2x + bσ2e−ikm3−σ2x ,

· · · aσNeik
m
σN x + bσNe−ikm3−σN x

)T
,

and

J x�m
σ = Km

(
Amσ − Bmσ

)T
. (15.28)

Then formula J mσ = Re
[(

�m
σ

)∗ J x�m
σ

]
remains effective and

Eq. 15.14 and Eq. 15.15 can be written as

�m
σ = (

ST
)−1

�m+1
σ (15.29)
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and

J x�m
σ = S

(
J x�m+1

σ

)
. (15.30)

Left-multiplying Eq. 15.30 byHermitian conjugation of Eq. 15.29 and

taking the real component

J mσ = Re
[(

�m
σ

)+ J x�m
σ

]
= Re

[(
�m+1

σ

)+
J x�m+1

σ

]
= J m+1

σ .

(15.31)

So the unitary condition is satisfied in our method.

15.4 Summary

We studied the 2D ballistic transport of Rashba electrons in a

straight structure in 2DEGs. We derived the transfer matrix relating

the wave functions at the input end and at the output end of the

structure and found that for movement in a straight structure, there

is nomixing between thewave functions of spin-up (σ = 1) and spin-

down (σ = 2) and the transfer matrix is independent of σ in the

interface. We investigated the influence of the structure on electron

transport. It is found that the transmission probabilities as functions

of the effective wave vector keff are independent of the sign and
magnitude of the Rashba coefficient α. The transmission probability

depends on the shape of the structure, especially the stub width. If

we change the stub width by the gate voltage, we can control the

transmission probability of the electron with a fixed energy. The

transmission probabilities of the electron with an energy higher

than the second transverse sub-band include contributions from

different sub-bands, which means in the transport process there

is coupling between different sub-bands. The spin polarization

along the x direction depends on the Rashba coefficient, so we can
control the spin polarization of the outgoing Rashba electron by

changing the Rashba coefficient, for example, changing the applied

perpendicular electric field. For themultistub structure, T decreases
rapidly in a certain small region of Wstub and T keeps high at

the other Wstub for a certain Rashba coefficient α. And the anti-

resonance is found, where the quasi-confined state is formed in the

center part of the structure. So, we can modulate a spin-polarized
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current by controlling the incident electron energy E0 and by

changing the shape, parameters of the stub, the applied gate voltage,

and the perpendicular electric field. With the 2D stub-like structures

we can design the spin-injected field-effect transistor. We proved the

unitary condition of the transfer matrix, that is, the conservation

condition of the current density.
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By using the transfer matrix method, we theoretically investigated

Rashba electron’s spin transport in a straight waveguide with a

stub which has a smooth boundary. It is proved that the two spin

states propagate independently. The conductance of the waveguide

has been calculated. Conductance quantization is common in this

structure when we change the Fermi energy and the width of the

stub. If the shape of the stub converges toward the limit–a quadrate

stub, the conductance will reduce distinctly due to reflection.

In 1990, Datta [1] proposed an innovative device in which

spin current can be modulated by changing Rashba spin-orbit

interaction (RSOI) [2] strength via gate voltage. This proposal which
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was called spin field effect transistor (SFET) has been expected

to work in quantum computer based on spintronics. Since then

researchers have been trying to experimentally demonstrate it in

laboratory, for example, Koo et al. reported that in a high-mobility

InAs hetrostructure they observed oscillatory channel conductance

which was modulated by gate voltage and exactly fit to Datta’s

theory. On the other hand, a series of similar devices in theory

have been proposed [4–10], most of which are one dimensional

(1D) devices [11, 12], i.e. the lateral width is so narrow that

there is only one lateral model occupied by electrons. 1D devices

feature manifold advantages, like simple and easy to calculate, yet

it is extremely demanding with regard to fabrication. However, if

multiple lateral models in waveguides were involved, shape factor of

the device would have been used to control the spin current [13, 14].

Therefore, in recent studies, two-dimensional (2D) waveguides with

straight [15], nonuniform [16], and random configurations [17] in

presence of RSOI have been investigated by using scattering matrix

method.

In previous work, we had developed 1D quantum waveguide

theory of Rashba electron [18, 19], which in our opinion is

reasonable to be applied to 2D cases. In this work, we applied this

theory to a 2D waveguide with smoothly fluctuant boundaries. In

contrast to other published results, we used the transfer matrix

method [20, 21] with the boundary condition derived in Ref.18 to

study the 2D ballistic transport Rashba electrons in this structure.

We expected to investigate the influence of the shape of stub and

Fermi energy on the conductance.

16.1 How to Calculate Conductance of Rashba
Electron

We consider a waveguide in two-dimensional electron gas (2DEG)

with a RSOI strength α in x–y plane, the spin-dependent Hamilto-
nian of a charged particle of effective massm thus is [23](

P2/2m∗ + V (x , y) α/�(i px + py)
α/�(−i px + py) P2/2m∗ + V (x , y)

)
, (16.1)
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Figure 16.1 Schematics of the waveguides with a stub which has smooth

boundaries: (a) the stub is wider than tunnel, (b) the stub is narrower than

the tunnel.

where V (x , y) is assumed to be a hard wall approximation at

the boundaries of the waveguide in this work. Waveguides under

investigation have transverse symmetric and smooth boundaries as

shown in Fig. 16.1. The x−axis along the waveguide is the axis of
symmetry. The width of the waveguide is described by the function
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w(x) = w0+ δw(x). We assume that δw(x) �= 0 in a limited area

−b/2 < x < b/2, where a stub can be created. To get a smooth stub,
we take

δw(x) =
{
(h − w0) exp

(
β

(
b2

4(x + b/2)(x − b/2)
+ 1

))
, −b/2 < x < b/2

0, |x| ≥ b/2

.

(16.2)

In this equation, h is the width of the stub, and β is a parameter

which indicates the rate of change of the waveguide’s width near

x = 0. If h > w, the width of the stub is greater than that of the
incident waveguide as shown in Fig. 16.1a; and if h < w, there is a
narrow stub which is shown in Fig. 16.1b. If β increases, δw(x) will
decrease faster near x = 0. If β → +∞, δw(x) → δ− function. If

β → 0, δw(x) will approach a rectangular function, i.e. the stub will
become a quadrate stub in the area |x| < b/2. On the other hand, we
can say when β is small enough, the width will change mainly and

rapidly near |x| = b/2, and the limit is a rectangular stub.
In this work, we calculate the conductance by using transfer

matrix method which has been proved to be an effective method for

electron transport in 2DEG [20–22] in presence of RSOI [5, 19, 23].

If ballistic electrons with energy E move along the waveguide in Fig.
16.1, we can divide thewaveguide into several segments, and in each

segment the width is constant. In each segment the wave function

can be written as

�m(x , y)= 1√
2

N∑
n=1

⎡
⎢⎢⎣
am1,n

(
1

i

)
eik

m
1,nx + am2,n

(
1

−i
)
eik

m
2,nx

+bm1,n
(
1

i

)
e−ikm2,nx + bm2,n

(
1

−i
)
e−ikm1,nx

⎤
⎥⎥⎦ϕmn (y),

(16.3)

where N is the number of transversemodes occupied in the incident
circuit or in the stub, σ = 1, 2 denotes the two spin states, and m
denotes them -th segment. ϕmn (y) = √

2/Wm sin[(nπ/Wm) (y− ym0 )],
and km1,n, k

m
2,n are the wave vectors [19],

km1,n = km0,n + kδ , km2,n = km0,n − kδ , (16.4)

km0,n = m∗

�2

√
α2 + 2�2

m∗ E ||, kδ = m∗

�2
α, (16.5)
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where E || is the longitudinal kinetic energy, E || = E − (
�
2/2m∗)

(nπ/Wm)
2, Wm denotes the width of the m -th segment. The sum

over nmay include evanescent modes, i.e. km0,n is imaginary.
By considering the form of�m(x , y), it can be represented by

�m
σ = (aσ, 1eik

m
σ, 1x , aσ, 2eik

m
σ, 2x . . . aσ,Neik

m
σ,nx ,

bσ, 1e−ikm3−σ, 1x , bσ, 2e−ikm3−σ, 2x . . . bσ,Ne−ikm3−σ,nx)T

= (Amσ , B
m
σ )

T , (16.6)

Then we can match the wavefunction in the incident point � in and

the wavefunction in the outside segment�out by adopting boundary

conditions on every dividing line between two segments[18, 23].

With the transfer matrix method, we obtain [24]

� in
σ = Mσ�out

σ , (16.7)

Based on this equation, we can calculate all spin current in each

transverse mode in incident wavefunction and output wavefunction

according to current operator in Ref. 23, then all transmission and

reflection coefficients tσ, i j and rσ, i j can be extracted [24]. The total
transmission and reflection probabilities of certain spin Tσ and Rσ

equal

Tσ, i =
N∑
j=1

∣∣tσ, j i ∣∣2 , Rσ, i =
N∑
j=1

∣∣rσ, j i ∣∣2 . (16.8)

It is worth noting that two parts of the wave, spin up and spin down,

propagate independently. Actually it can be proved that

T1, i j = ∣∣t1, i j ∣∣2 = ∣∣t2, i j ∣∣2 = T2, i j = Ti j . (16.9)

and the current density is conserved [23].

Tσ, i + Rσ, i = 1. (16.10)

so the transmission probabilities are independent of the spin

orientation σ .

As all transmission and reflection probabilities can be obtained, if

the temperature is low enough, we can obtain the total conductance

of the quantum waveguide from the Landauer–Büttiker formula,

G(EF ) = G0
N∑

i, j=1
Ti j , (16.11)

where EF is the Fermi energy of the 2DEG, and G0 = e2/π�.
Considering the form of Eq. (16.11), we evaluate conductance G in
units of G0 in this work.
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16.2 Conductance and Boundary Shape

In this section, we present the numerical results for conductances

of structures in Fig. 16.1 and discussions. Hereafter, unless explicitly

specified, m∗ = 0.07me, α = 10 meV.nm, w0 = 40 nm, b = 40 nm.

Mainlywe focus on the influence of the Fermi energy EF of the 2DEG
and the shape of the stub.

Fig. 16.2 presents the conductance as a function of the Fermi

energy of waveguide in Fig. 16.1(a) with h = 80 nm. We choose two

values of β for comparison, i.e. (1) β = 1, (2) β = 0.01. For the

case β = 1, the boundary of the stub has more gentle gradient. As

shown in the figure, in the area EF < 40 meV, the conductances in

two cases are nearly same and increase in a step-like manner. In the

area EF > 40meV, this characteristic remains in thewaveguidewith

β = 1; for the waveguide with β = 0.01, the conductance oscillates

when EF rises. The phenomenon that the conductance increases by
the same amount step by step is so called ’conductance quantization’.

Figure 16.2 ConductanceG ofwaveguide in Fig. 16.1(a) vs the Fermi energy
EF with different stub’s shape parameter β: (1) β = 1, (2) β = 0.01.
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Figure 16.3 Conductance G of waveguide in Fig. 1(b) vs the Fermi energy
EF with different stub’s shape parameter β: (1) β = 1, (2) β = 0.01.

The reason is thatwhen a new transversemode in thewaveguide has

been occupied by electrons, according to Eq. (16.11), the new mode

will contribute to the conductancewith a unitG0 . However, Ti j is not
always equal to or approximately equal to 1; when there are several

occupied transverse modes and the width of the waveguide declines

rapidly, Ti j would be far from 1 due to the significant reflection.

In Fig. 16.2 it is the exactly the same for when EF > 40 meV and

β = 0.01, so the conductance is much smaller than that in the case

β = 1.

Fig. 16.3 also shows G as a function of EF , but for the case h =
20 nm, i.e. the stub is narrower than the waveguide. We choose two

values of β for comparison, i.e. (1) β = 1, (2) β = 0.01 . again. Unlike

Fig. 16.2, the curve of G looks like two stairs for both two cases. This
means the shape of the stub has little influence on the conductance.

This is because there are only two transverse modes in the stub, so

it is close to the case of one-dimensional approach, the shape of the

waveguide can be ignored. Or we can say, the significant reflection
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Figure 16.4 Conductance G vs the stub’s width hwith different stub’s shape
parameter β: (1) β = 1, (2) β = 0.01.

is more likely to occur when there are more occupied transverse

modes.

To further investigate the influence of the width of the stub, we

study the relationship between the conductance and thewidth of the

stub directly. In Fig. 16.4, G as a function of h has been shown. Two
values of β are chosen for comparison: (1) β = 1, (2) β = 0.01.

To observe the tendency of the conductance when more transverse

modes are occupied, we choose a relatively large Fermi energy EF =
80 meV. Similar to Fig. 16.3, when h < 40 nm, the curve of G looks
like stairs for both two cases. Conductance quantization appears

when h increases and a higher transverse mode becomes occupied.

For waveguide with β = 1 this phenomenon remains the same for

all regions of h. However, for the waveguide with β = 0.01 the

conductance G reduces significantly when h > 50 nm. Because in

this case the boundary is much sharper, the reflection is much more

remarkable.
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Figure 16.5 Conductance G vs stub’s shape parameter β with different

Fermi energy: (1) EF = 30 meV, (2) EF = 50 meV, (3) EF = 80 meV.

Finally we discuss the influence of β directly. Fig. 16.5 shows G
as a function of β in the waveguide with h = 80 nm, we choose

this value of h because there are relatively more transverse modes
occupied by electrons. And there are three values of EF that have

been involved: (1) EF = 30 meV, (2) EF = 50 meV, (3) EF = 80

meV. As shown in Fig. 16.5, It is worth noting that G is almost

independent of β if β exceeds a certain value for all cases; and this

time the value of G in unit of G0 is close to the number of the
transverse modes occupied by electrons in the incident waveguide.

It means that once β exceeds a certain small value (≈ 0.1), the

electron can freely penetrate the waveguide in every transverse

mode occupied. On the other hand, if β is very small, such as β <

0.05, the conductance increases rapidly when β increases. Because

when β is small enough, the width of the waveguide drops abruptly

near |x| = b/2, and the steep decline of the width of the waveguide
along the propagate direction results in significant reflection of

electrons.
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16.3 Summary

We studied the two-dimensional ballistic transport of Rashba

electrons in a straight structure with a stub which has a smooth

boundary in 2DEG by using transfer matrix method, and the

conductance of the waveguide has been calculated. We found that

for the movement in a straight structure, there is nomixing between

the wave functions of spin up (σ = 1) and spin down (σ = 2).

We investigated the influence of the shape of the structure and

Fermi energy on the conductance. Because the number of transverse

modes occupied is determined by Fermi energy EF , the width of the
stub h and another shape parameter β which indicates the rate of

change of the waveguide’s width in the stub, the phenomenon called

‘conductance quantization’ is common for many cases. For the case

β is not very small, the waveguide has gentle boundary and G in
unit of G0 is nearly equal to the transverse modes occupied in the

waveguide. If β is small enough, the stub is close to a rectangular

stub; and then the conductance will reduce significantly. This is

because there is a significant reflection on the right boundary of the

stub.
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Chapter 17

Spin Flip in a Quantum Ring

Nowadays much of research in semiconductor spintronics has

been shifting toward the field of the Rashba spin-orbit interaction

(RSOI) [1] in low dimensional semiconductor structures [2–7]. Many

low dimensional semiconductor structures with RSOI have been

intensively studied [8–11], and these structures are expected to

be potential spin devices, such as spin-inverter or spin-polarizer.

In these quantum structures, spin transport is a basic problem, so

many investigations focus on ballistic macroscopic circular rings

[12–18] as its one dimensional Hamiltonian [19]. In macroscopic

circular rings, Many intriguing spin interference phenomena [20,

21] have been found. For instance, Ballistic electron transport of

Rashba electron through a chain of quantum circular rings has been

investigated byMolnar et al [14]. They have shown that a periodic of

spin transport is determined by the incident electron’s energy E , the
magnetic field B , and the strength of the RSOI α. Recently Naeimi et
al. have shown that a double quantum rings in the presence of RSOI

and a magnetic flux can work as a spin-inverter [18].

In this paper, we study the spin transport of electrons in an

elliptical ring with the RSOI, the same case in an circular ring is

studied for comparison. We focus on the spin flip in two kinds of
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rings, and expect to find a suitable structure and conditions for a

spin inverter.

17.1 Spin Transport in Two Kinds of Quantum
Ring

For a ring in x − y plane, in the presence of Rashba spin-orbital
interaction, the effective Hamiltonian of an electron in this two

dimensional system could be written as:

H =
(
p2/2m∗ + V (x , y) α/�

(
i px + py

)
α/�

(−i px + py
)
p2/2m∗ + V (x , y)

)
, (17.1)

wherem∗ is the electron effective mass, α is the Rashba coefficient.

For a one-dimensional (1D) circular ring, Eq. (17.1) can be rewritten

into a 1D form [19]. With this 1D Hamiltonian, the eigenvalues,

eigenstates and spin transport problems could be easily solved.

However, for other 1D rings, such as hexagonal or elliptical rings,

we cannot find 1D Hamiltonian. To solve problems of spin transport

in these structures, we adopted the method of dividing a curved line

into N segments [22]. For a curved line, such as an elliptical ring or
a circular ring, N is large enough and every segment is very small,

so each segment can be approximated to be a line segment along

the tangential direction. For every linear segment, we could easily

obtain its eigenstates [23]:

φ1(θ) = 1√
2

(
1

ieiθ

)
, φ2(θ) = 1√

2

(
1

−ieiθ
)
, (17.2)

where θ is the azimuthal angle of the segment. Based on Eq. (17.2),

we can write the wavefunction in the curve as

� = ((
φ1(θ) φ2(θ)

))
� = ((

φ1(θ) φ2(θ)
))(a(l)

b(l)

)
, (17.3)

where l denotes the coordinates on the curved line, θ is the

azimuthal angle of the tangent line of the curve. By Adopting �

to describe the wave function and by using the Griffith’s boundary

conditions [22–25] in each vertex, we can relate the wave function

at the two endpoints by a transfer matrix. For a polyline structure,

such as a hexagonal ring, every lead is a natural line segment, so N is
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the number of the leads. In circular ring this method gave results

which are identical with those obtained from one-dimensional

Hamiltonian [22], so this method is reasonable.

In each arm of an Aharonov-Bohm (AB) ring, the transfer matrix

connect the wave functions at a junction with the wave function

at the other junction. According to the wave function must be

continuous and the spin current must be conserved at the junctions,

so we can just determine all unknown coefficients when an electron

beam is injected into the AB ring. In our method, rings with any

shape could be easily dealt with. For instance, spin transport in a

polyline structure ismore convenient to be calculated in ourmethod.

Consider an one dimensional AB ring, for example, an elliptical

ring as show in Fig. 17.1a, the electron current is injected from

circuit i at point A, and output circuit e is at the right side

with intersection point B. We assume the semimajor axis and the

semiminor axis of the ellipse is denoted by ae and be, respectively,
and the strength of RSOI in the ring is denoted by α. The size of the

AB ring can be denoted by the distance between point A and point

B, so the characteristic length of the elliptical ring can be denoted

by ae. In this paper, we adopt the dimensionless physical quantities.
Taking the energy unit E0 = �

2/(2m∗a2e ), then the energy ε = E/E0,
and the Rashba coefficient α = (α/ae) /E0 = α

(
2m∗ae/�2

)
. For a

circular ring as shown in Fig. 17.1b, their dimensionless physical

quantities are similar, just the ae is replaced by the radius of the
circle R . For any one dimensional AB ring, the wave function in the
upper and lower arms can be divided into two components: one in

clockwise direction and another in counterclockwise direction, so

they can be written as:

� j
up =

(a jup(l jup)
b jup(l

j
up)

)
, (17.4)

�
j
down =

(
a jdown(l

j
down)

b jdown(l
j
down)

)
, (17.5)

where up and down denote the upper and lower arms of the square

ring, j = 1, 2 correspond to the clockwise and counterclockwise

directions, respectively. In particular, l1up and l2up, or l
1
down and l2down

have opposite positive direction. The wavefunction of the electron in



April 7, 2025 13:7 JSP Book - 9in x 6in 17-QWM-17

398 Spin Flip in a Quantum Ring

Figure 17.1 Two structures: (a) AB elliptical ring, (b) AB circular ring.

the input and output lead can be written as:

�i =
(
ai
bi

)
eik0li +

(
ar
br

)
e−ik0li , (17.6)

�o =
(
at
bt

)
eik0lo , (17.7)

According to the transfer matrix method, we can obtain � of

each arm if we know its value at any one point, so there are 12

unknown coefficients in� j
up,�

j
down,�i ,�o. Using Griffith’s boundary

conditions [23–25], we can determine all unknown coefficients. We

assume the original point of li and lo are point A and point B,

respectively, then when ai = 1, bi = 0, we have ar = r11, br = r12,
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at = t11, bt = t12. And similarly, for ai = 0, bi = 1, we have ar = r21,
br = r22, at = t21, bt = t22, where σ = 1, 2 denote spin up and

down states that are quantized in z direction. The spin dependent
transmission coefficient of an electron with incoming spin σ and

outgoing spin σ ′ can be written as Tσσ ′ = |tσσ ′ |2 .
For a spin-inverter, we expect that T12 and T21 are as large as

possible, and for T11, T22 to be the opposite, therefore the spin flip
degree could be given as Ref [18]:

P = (Tσσ − Tσσ ′)/(Tσσ + Tσσ ′), (17.8)

where σ �= σ ′. For P = 1, it means that the conservation of the

spin degree of freedom during the transition of the spin current.

And P = −1 means the spin flip during the spin injection and

transmission. Now there is a problem that for σ = 1, 2, P not always
has same value, and for a spin-inverter, Tσσ and Tσσ ′ should be

identical for spin up or spin down injection. We have calculated the

spin transport in many configurations, and find out that T12 = T21 is
satisfied in any case, and T11 = T22 is satisfied in the absence of the
perpendicularmagnetic field. Considering this fact, we can expect an

AB ring as a spin-inverter just in the presence of RSOI.

17.2 Spin Flip in Quantum Rings

In previous work, we found that P is associated with α only in a

certain AB ring, which possesses the same behavior as the Datta spin

filed effect transistor [26]. In this paper, we intent to compare spin

flip in different AB rings, especially in the elliptical ring and in the

circular ring.

In Fig. 17.2 we show the P as a function of the RSOI strength α in

the elliptical ring, and in the circular ring. The relevant parameters

in our calculation are as follows: ε = 5, and be/ae = 0.6 for

the elliptical ring. We can see that the P in the elliptical ring

oscillates between −1 and 1 when the α changes. This means that

as a spin-inverter, the elliptical ring is sensitive and can work in a

reasonable range of α, i.e. α < 2. The P in the circular ring has a

different expression because it decreases monotonously when the

α increases, and it has asymptotic value −1. Therefore, in a single
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Figure 17.2 P as a function of the RSOI strength α: (1) in the elliptical ring,

and (2) in the circular ring.

circular ring it is unrealistic to modulate the spin of the emergent

electron completely. And only when α is very large (> 5), the P can
reach a value less than −0.9. For an AB ring with ae(/R)= 50 nm,

m∗/me = 0.1, α � α ∗ 7.62 meV.nm, so to make the AB ring work
as a spin-inverter well, we need a RSOI strength α > 40 meV.nm in a

circular ring, but in a elliptical ring we just need α � 12 meV.nm. On

the other hand, if a large α can be reached, a spin-inverter based on

a circular ring can work in a vast range of α, so it has a high stability.

To study the influence of the geometry on the spin transport ulte-

riorly, we compare P in elliptical rings with different eccentricities.
The contour maps of P as a function of the RSOI strength α and

the semiminor axis be in a elliptical ring is shown in Fig. 17.3. Here
the energy of the electron ε = 5. We find that if be/ae is small (as
be/ae < 30), spin inversion can occur for some regions of α, and

these regions are nearly same for all be, such as α � 1.62. For

these cases, P oscillates between 1 and −1 when the α increases,

but if be/ae is close to 1, i.e. the elliptical ring is close to a circular
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Figure 17.3 Contour map of P as a function of the Rashba strength α and

the ratio of the semiminor axis be and the semimajor axis ae in the elliptical
ring.

one, P decreases monotonically and have a asymptotic value −1
when the α increases. As be/ae increases, P as a function of the RSOI
strength α changes more andmore gently. We infer that the increase

of the transverse size of the ring weakens the quantum confinement

effect, and then undermines the interference of two spin states in the

longitudinal dimension.

To produce ideal ellipses is virtually impossible, and to produce

an inscribed polygon of the ellipse is a concise and effective method.

To consider this possible geometry, we calculated P in the inscribed
polygon of the elliptical ring and the circular ring. We assume one

focus of the elliptical ring and the the centre of the circular ring are

poles of polar coordinates in each system, respectively. And every

edge of the inscribed polygon have same polar angle. Because two

arms of AB rings in this paper are symmetrical, so we can assume

each arm of the ring is replaced by a M section polyline. Obviously

the inscribed polygon of the circular ring will be a regular polygon of

2M sides.



April 7, 2025 13:7 JSP Book - 9in x 6in 17-QWM-17

402 Spin Flip in a Quantum Ring

The contour maps of P as a function of the RSOI strength α

and half of the edges’ number of the inscribed polygon M in the

elliptical ring and the circular ring is shown in Fig. 17.4a and Fig.

17.4b, respectively. Here the energy of the electron ε = 5, and

be/ae = 0.2 in the elliptical ring. In Fig. 17.4a, we find that the

influence of the edges’ number on P is very small in the inscribed

polygon of the elliptical ring, and for every inscribed polygon, P
has nearly same curve followed the RSOI strength α. This result

shows that an AB ring similar to a elliptical ring in shape can replace

the elliptical ring, and work as a spin-inverter with a small α. The

result is different in the circular ring. Fig. 17.4b shows that the

curve of P as α changes has changed greatly when M increases.

If M is small, such as the inscribed polygon is square, hexagon, or

octagon, P oscillates between 1 and −1. When the α increases, P
can reach−1 at a low value of α (about 2∼3). If M is relatively large,

such as M > 8, P decreases monotonically and have a asymptotic

value −1 when the α increases, and to reduce P to the same value,
the required value of α increases when M increases. This result is

similar to the result in Fig. 17.3, and shows that as the limit case of

elliptical rings and of inscribed polygons, the circular ring has much

different spin transport character from elliptical rings and inscribed

polygons. In addition, Fig. 17.4 shows that there is a limit result of

spin transport in the inscribed polygon of the elliptical ring and the

circular ring when M becomes very large, so our method in which a

curve is divided into many segments is self-consistent.

The elliptical ring or the regular polygon with a small number

of edges( such as a regular hexagon) can work as a spin-inverter

with the normalized Rashba constant about 2 which corresponds

to RSOI strength α � 16 meV.nm. This value is in the range of

that obtained experimentally in InGaAs [27, 28], so these spin-

inverters are realizable. A spin-inverter of the circular ring requires

α > 40meV.nm, which is hard to achieve in traditional III-V

semiconductor. However, recently giant RSOI with α > 400meV.nm

has been obtained in the bulk Rashba semiconductor BiTeI [29].

Although the requirement is harsh, the value of RSOI strength

required in the circular ring will be possible to reach in more

common situation in the near future.
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Figure 17.4 Contour map of P as a function of the Rashba strength α and

half of the edges’ number of the inscribed polygon M: (a) in the AB elliptical
ring, (b) in the circular ring.
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17.3 Summary

We have studied spin transport, especially spin flip in single

quantum ring with RSOI to find suitable geometry and other

conditions for spin-inverter. The elliptical ring and the circular ring

are studied as typical AB rings. We found that if these two kinds

of ring work as spin-inverters, they have much different character.

The elliptical ring can realize spin flip with a relatively small RSOI

strength α, but the spin flip degree P will oscillate quickly and

the spin-inverter can only work in a small range of α. The circular

ring can not realize spin flip perfectly, but P in circular ring can

be very close to −1 with a relatively large α, and it is insensitive

to α at this time. In addition, we have investigated the influence of

the defect of the AB ring’s geometry on the spin transport. Results

shows that in an elliptical ring spin transport is insensitive to the

defect of the ring, but in a circular ring, the defect should be small

to give P closed to that of the ideal circular ring. These results show
that if RSOI strength is relatively small and can be controlled well,

the elliptical ring is a good choice for a spin-inverter, and we just

need a approximate ellipse. Another conclusion is that if large RSOI

strength is realized, a circular ring can work as a spin-inverter with

a high stability.
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Index

AB oscillation 5, 267, 350

AB rings 338, 344, 361, 365, 399,

401, 404

AB square ring 356, 358, 361–363

Adams method 101

Aharonov–Bohm effect 11, 317

Anderson model 169, 190–191

approximation 43–45, 47, 49, 71,

105, 118, 124, 126, 295, 370,

385

axial 295

hard wall 370, 385

relaxation time 43–47, 49, 118,

124, 126–127

backscattering 28, 163, 166

ballistic conductor 28, 138

ballistic electron injection 22, 276

ballistic transport 28, 47, 65, 277,

368, 380, 384, 392

two-dimensional 392

barrier

half infinite 10

infinite 10

quintuple 92–93

source-side 224

barrier region 81, 100–101, 142

bias 17–19, 28–29, 50–51, 53, 71,

73, 84, 89–90, 92, 96–97, 105,

109, 112, 119–120, 127, 129,

138–139, 159, 165, 180–181,

184, 191–192, 194, 201–203,

250, 253–254, 260–261,

273–274

backward 201–202

forward 201–203

reverse 89, 202–203

bias voltage 17–18, 89–90, 112,

119, 127, 159, 165, 180–181,

191–192, 194, 273–274

Bloch frequency 51, 53–54, 124,

129

Bloch function 131

Bloch oscillation 51, 75, 118,

123–127

Boltzmann distribution 10, 118

Boltzmann equation 3, 8–9, 39,

44–45, 60, 117

Boltzmann transport equation

(BTE) 66

boundary conditions 27, 77–78,

85, 101, 143, 286, 292–293,

297–298, 321, 325–326, 330,

332, 335–336, 338–339,

344–345, 347, 350, 352, 357,

359, 368, 370, 387, 396, 398

Griffith’s 357, 359, 396, 398

periodic 27, 368

boundary shape 388–389, 391

Brillouin function 105

Brillouin zone (BZ) 51, 62,

117–118, 123

Broglie wavelengths 10

BTE, see Boltzmann transport
equation



April 8, 2025 13:37 JSP Book - 9in x 6in 18-QWM-Index

408 Index

bulk Rashba semiconductor

BiTeI 402

Büttiker formula 14–15, 17,

153–155, 157, 270–271, 273,

282, 285, 317, 387

Büttiker resistance 312

BZ, see Brillouin zone

capacitance 32, 49, 76, 92, 94, 171,

176–177, 179–180, 183,

210–211, 215–218, 229, 237,

240, 246–247

gate-dot 210

source-dot 211

carriers 22–23, 35, 43, 110, 115,

145–146, 149, 152, 154, 157,

161–164, 235, 251, 276–278,

317

nonpolarized 110

cavity 278, 306–307

CB effect, see Coulomb blockade
effect

Coulomb blockade effect 14

Coulomb gap 239

Coulomb interaction energy 14,

269

Coulomb oscillations 176–177,

193–195, 197–198

Coulomb staircase 14, 180, 182,

269

coupled quantum dots 198, 204

coupling 30, 35, 43, 84, 86, 92,

97–98, 100, 102, 169,

186–188, 201, 204–205, 211,

231, 275, 281–282, 375, 380

spin-orbital 84, 86

current density 35, 91, 94–95,

105–106, 119–120, 124, 286,

297, 321–322, 335, 363–364,

369–370, 372, 381, 387

current density operator 286, 297,

322, 369

current staircase 232

DBRTD, see double-barrier
resonant tunneling diode

DBS, see double-barrier structure
DC bias voltage 127, 194

DC currents 50, 52–53

defects 4, 251, 266

dependence 7, 10, 28, 32, 44, 57,

59–61, 96, 110–111, 121–122,

152, 173, 186, 189, 193–195,

197, 199, 231, 253–255,

259–261, 355

exponential 259–260

monotonic 173

nonlinear 7

periodic 173, 355

superlinear 121

device

carbon-based 25–26, 31, 33, 35

charge-sensing 236–237

double-dot 201–202, 260–261

double quantum dot 198

dual-gate 170

electronic storage 21, 275

high-frequency 76, 115, 120

high-mobility 6, 25, 57, 367,

384

high-speed 54, 76, 241

hot-electron 59, 115

MESFET 12, 68–69

microelectronic 21

multi-terminal 18, 273, 302

multichannel 17, 273

nanoscale 32

on/off switch 227

quantum effect 115

quantum-interference 296

quantum wire 12

silicon-based 25–26

single-channel 17, 272

single-electron 14, 170–171,

173, 182, 189, 195, 197–199,

202, 209–212, 221–222,

226–228, 230, 235–237,

239–242, 246–258, 270



April 8, 2025 13:37 JSP Book - 9in x 6in 18-QWM-Index

Index 409
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three-terminal 18, 211, 236,
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differential conductance 50, 95,
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dilute magnetic semiconductor
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Dirac relativistic equation 27

Dirac relativistic wave

equation 281

distribution function 9–11, 17, 39,

41, 43, 71, 89, 105, 117, 139,

273
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collision 9, 41–42

drift Fermi–Dirac 71
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electro-optic 279
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mode-mixing 312
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phase-coherent 11, 13, 268,
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effective mass 4, 39, 51, 76, 94, 98,

100, 117, 119, 121, 127, 130,

132, 266, 280, 294–297, 299,

319, 356, 384, 396

effective mass Hamiltonian 98,
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effective mass parameter 295, 299
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352, 364, 373
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electro-optic modulator 23–24,
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221, 268, 281, 294, 325, 340,
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electron energy distribution 65,
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electron Fermi energy 144, 303

electron gas, two-dimensional 3,

24, 70, 141, 174, 265, 384

electron Hamiltonian 160

electron motion 48, 58, 76, 84–85,
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energy dissipation 21, 28, 65, 275
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erasable programmable read-only
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FEL, see free electron laser
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144–145, 152, 154, 177, 190,
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198, 225, 231–232
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Fermi velocity 4, 27, 145, 266

Fermi wavelength 3–4, 12, 140,

145, 265

Fermi–Dirac distribution

function 17, 71, 273

ferromagnetic contact 320,

325–326, 330–335, 375

FET, see field-effect transistor
field-effect transistor (FET) 246,
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floating gate

polysilicon 244

self-aligned 247

Fock–Darwin state 196, 199–200

Fourier transform 11, 52, 171

free electron laser (FEL) 50, 124
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59, 61, 68–69, 141–142,
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gate width 11–13, 159, 269

Gauss theorem 289

giant magnetoresistance (GMR)

21, 275

giant Zeeman splitting 22,

104–105, 107, 109–110,

276–277, 317–318

GMR, see giant magnetoresistance
GNRFET, see transistor, graphene

nano-ribbon field-effect

graphene 23, 26–27, 33, 35–36,

278

graphene honeycomb lattice 27

graphene nano-ribbon field-effect

transistor 26

graphene nano-ribbon field-effect

transistor (GNRFET) 26

graphene spin field-effect

transistor 23,

278

Hall bars 164

Hall conductivity 27

Hamiltonian 16, 98–100, 130, 160,

271, 280–281, 286, 295–296,

318–319, 339, 342, 356–358,

384, 395–397

dimensionless 356, 358

one-dimensional 295–297,

318–320, 356, 396–397

spin-dependent 384

transformed 99
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heavy hole resonance 104

heavy hole resonant peaks 97

heavy hole wave 298–299

Heavyside step function 9

HEMT, see high-electron-mobility
transistor

high-electron-mobility transistor

(HEMT) 57

hole tunneling 86, 96, 100

holes 27, 31–33, 96–98, 100–103,

105, 109, 146, 277, 295, 297

hopping conduction 129, 131, 133

hot-electron regime 8, 44

Hund’s rule 197, 204

hydrodynamic approximation 10

ideal conductor 15–16, 145, 165,

271–272

impurities 4, 57, 70, 117, 160,

162–163, 171, 173, 190, 266,

317

charged 173

ionized 70

localized spin 190

magnetic 160–163, 171–172,

190, 267, 317

injected waves 83, 345–346

injection 11, 22, 31, 35, 47, 58–60,

84, 110, 112, 129, 145, 201,

249–250, 276–277, 399

injection energies 58–60

interference effect 18, 292,

324–325, 327–328, 332, 334

Johnson spin switch 23, 278

junction 22, 25, 48, 109, 237,

275–277, 280–281, 313–314,

397

base-collector 48

emitter-base 48

magnetic tunnel 22, 275

Klein paradox 35

Koga’s experiment 351, 353

Kondo effect 169, 188–193

Kondo resonance 190–191, 193

Kondo temperature 189–192

Kondo valley 188, 192

Landau energy levels 98, 111

Landau levels (LLs) 107, 161, 166,

184, 186

Landauer formula 17, 145, 147,

272–273

Landauer–Büttiker formula

14–15, 17, 270–271, 273, 282,

285, 317, 387

large-scale integrated circuit

(LSIC) 25, 269

lateral confinement potential 16,

271

light holes 96, 100, 102–103, 277

LLs, see Landau levels
logic circuit 115, 227, 229, 231

low-pressure chemical vapor

deposition (LPCVD) 246

LPCVD, see low-pressure chemical
vapor deposition

LSIC, see large-scale integrated
circuit

magnetic field 5, 13, 16, 18, 22, 25,

84, 86, 98, 104–111, 160–163,

165–167, 169, 171–172,

183–187, 193, 195–200, 267,
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287–289, 318, 339, 341,
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269, 289, 291, 339, 346, 353,

356–357, 360–361, 363–364,

395

magnetic tunnel junction

(MTJ) 22, 275

memory 14, 22, 115, 182–183,

235–261, 270, 275–276

dynamic random access

(DRAM) 22, 235, 276

few-carriers 235

flash 235

large-capacity 183

magnetoresistive random access

(MRAM) 22, 275

nonvolatile 22, 276

silicon 235–260

single-dot 258–261

ultra-narrow-channel 254, 257

ultra-narrow silicon floating

gate 254

memory node 235–243, 252

mesoscopic effects 11, 14, 268,

270

mesoscopic systems 147, 263

metal-oxide semiconductor

field-effect transistor

(MOSFET) 171, 211, 237

metal-oxide-silicon spin

field-effect transistor 23, 278

miniband superlattices 50

miniband transport 51, 116–117,

119, 121, 123, 129

modes 15, 28, 137–140, 270–271,

285, 301, 303, 305–306,

312–313, 369, 373, 375,

386–387, 389–392

propagating 305–306

momentum 4–5, 9–10, 21, 27, 29,

39, 42–44, 46–47, 49, 58, 60,

68, 71, 89, 99, 105, 127,

130–131, 143, 190, 196, 201,

266–267, 274, 281, 295, 322

orbital angle 295

total angle 295

transverse 143

Monte Carlo simulation 40, 43, 55,

58, 61

MOSFET, seemetal-oxide
semiconductor field-effect

transistor

MRAM, seemagnetoresistive
random access memory

MTJ, seemagnetic tunnel junction

NDC, see negative differential
conductance

NDR, see negative differential
resistance

NDV, see negative differential
velocity

negative bias 159, 165, 184, 254

negative conductance 117–118,

122

negative differential conductance

(NDC) 50, 118, 221–222

negative differential resistance

(NDR) 75

negative differential velocity

(NDV) 120

negative effective mass (NEM) 121

negative voltage 95, 141, 174, 176,

240

neighboring quantum

wells 129–130

neighboring wells 92, 116, 129,

134

NEM, see negative effective mass
NMS, see non-magnetic

semiconductor

non-magnetic semiconductor

(NMS) 107

Nyquist relation 7–8

Ohm’s law 7

orbits 13, 58, 161–162, 269
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oscillations 94–95, 106–107, 145,

171, 173, 176–177, 185,

193–195, 197–199, 217,

221–223, 291, 293

output waves 329, 338

parasitic resistance 92, 94, 230

Pauli effect 201

Pauli exclusion principle 6, 201,

268

peak-valley current ratio

(PVCR) 224

peaks 29, 51, 53–54, 88, 92,

96–98, 102–103, 124, 126,

145, 176, 185–189, 193, 197,

199–200, 203–204, 215, 220,

222, 299–300

Coulomb 176, 185, 188–189,

193–194, 197–198, 203, 214

Coulomb oscillation 203

tunneling probability 97

perfect conductor 149, 162–163

phase 4–6, 11, 13, 19–20, 23, 25,

52, 54, 77, 87, 108, 147–148,

181–182, 266–269, 279–281,

287–288, 292, 321, 325, 329,

335, 338

phase difference 19, 25, 108, 181,

281

phase factor 5, 77, 287

phase relaxation 4–6, 266–268

phase shift 25, 267, 280

phonon 5–6, 28–29, 34–35, 56, 63,

65, 133–134, 267–268

acoustic 6, 28–29, 268

low-frequency 6, 268

optical 6, 28–29, 34–35, 56, 268

polarization 21–23, 25, 35,

105–113, 275–279, 326,

355–356, 358–365, 375, 380

probability 6, 14, 17, 41–42, 56,

79, 82–84, 87–88, 90, 92, 97,

105, 112, 134, 138, 145–146,

148–150, 154, 157–158, 163,

165, 201, 251, 258, 268, 270,

272–273, 298, 306–307,

324–325, 330, 373, 375, 380

reflection 79, 82–83, 148–150,

298, 325, 330

scattering 6, 14–15, 18, 41–42,

56, 81, 83–84, 133, 149, 154,

164, 267–268, 270, 273

self-scattering 42

PVCR, see peak-valley current ratio

QPC, see quantum point contact

quantum bite 169

quantum confinement effect 258,

401

quantum dot 14, 171, 174,

176–177, 181–196, 198, 200,

204–205, 209–216, 221–222,

247, 269, 317

harmonic 195–196

single-electron 14, 173–182,

189, 195, 197–199, 201,

204–205, 209–216, 221–222,

224, 233, 235, 247–248, 270

single-level 190–191

split-gate 174

ultra-small 215

quantum effect 4, 9, 11, 13, 72,

115, 141, 215, 265

quantum effect device 115

quantum interference 12, 14,

18–20, 35, 147, 270, 287, 291,

293, 296, 298–299, 317, 332,

364

quantum point contact (QPC) 174

quantum rings 356, 395, 399, 401,

403

quantum well 70, 75–76, 87–88,

102, 109, 111–112, 129, 131,

134, 277, 319
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112, 380
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quasi-Fermi energy 139, 145

radial breathing mode 28–29
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28–29

random fluctuation pattern 173

Rashba coefficient 24–25,

280–281, 318–319, 324–325,

327, 334, 340–341, 343–344,

356, 358, 369, 375, 380,

396–397

Rashba effect 319, 334

Rashba electron 317–336,
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362–364, 367–368, 370, 375,
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ballistic transport 368, 380,
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(RSOI) 278–279, 281, 319,

337, 352, 367, 383, 395
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403

Rashba wave function 321,

334–335
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relaxation time 4–6, 14, 43–47, 49,

51, 68, 118–119, 123–124,

126–127, 266–267, 270, 318

collision 123, 125

spin coherence 318

reservoir 10–11, 145, 147–149,

152, 154, 157–158, 163, 179,

198, 241

resistance 22, 28, 47, 75, 92,

94–95, 137–143, 147, 154,

156–159, 163–166, 189–190,

216, 230–231, 238, 312

resonance 50–51, 53–54, 104,

110–111, 122, 124, 145, 169,

190–191, 193, 314, 346, 377

resonant tunneling (RT) 11,

75–112, 115, 169, 186, 191,

224, 317–318

resonant tunneling diode (RTD)

11, 75, 109

retention time 241, 251, 254–258

RSOI, see Rashba spin-orbit
interaction

RT, see resonant tunneling
RTD, see resonant tunneling diode

scanning electron microscope

(SEM) 32–33, 174, 228

scanning tunneling microscopy

(STM) 276

scattering 4–6, 11, 14–15, 18, 20,

23, 28–30, 40–42, 47, 56,

58–59, 62–63, 65, 70–71,

80–81, 83–86, 115, 117–118,

127, 129, 133, 147, 149, 152,

154, 161–162, 164, 190,

266–268, 270–271, 273–274,

276, 282, 301–302, 305,

308–311, 313–315

carrier 6, 11, 14, 28–29, 31, 71,

154, 161–162, 268, 270

elastic 5, 28, 152, 266–267

electron–electron 6, 268

energy-dissipating 65

excitation exciton 29

inelastic 5, 11, 14, 28–29, 129,

133, 267–268, 270

intervalley 56, 59

static 4–5, 43, 61, 266–267

scattering matrix 15, 18, 20,

80–81, 83–86, 154, 270, 273,
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313–314, 384

scattering matrix method 80–81,

308–310, 384
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Schottky-gate-induced depletion

region 195

Schrödinger equation 76, 84–86,
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SEDs, see single-electron devices
SEM, see scanning electron

microscope

semiconductor 4, 21–23, 27, 30,

44, 54, 62, 66–67, 70, 104,

107, 111, 116–117, 170–171,

211, 235, 237, 266, 269,
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402
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276
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ferromagnetic 22, 276–277,

318

high-mobility 36

low-mobility 6

narrow-gap 367
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wide-gap 70
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275, 278, 281, 395

series resistance 95, 142, 159,

230–231

parasitic 230–231

SFET, see spin field-effect transistor
SHT, see single-hole transistor
single-electron devices

(SEDs) 235–236

single-electron field-effect

transistor 246

single-electron memory 235–260

single-hole transistor (SHT) 223

SOI, see spin-orbit interaction spin
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spin-down 21, 25, 106–110,

112–113, 190, 197, 274, 280,

320, 322, 324–326, 328–330,

332, 334, 338, 342, 344, 359,

370, 380

spin-down state 274, 322

spin effect 201
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spin injection 110, 276, 399

spin interference phenomena 395
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278–279, 281–282, 286,

318–319, 337, 352, 367–368,

383, 395

spin-orbital interaction 356, 396
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275, 320, 324, 342, 344, 351,
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105–108, 110–112, 275–278,

355–365, 375, 380
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spin transport 35, 337, 339, 344,
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STM, see scanning tunneling
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thermal energy 29, 68, 71, 127,
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thermal oxidation 219, 244
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hole 31, 151–152, 202, 225,
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very large scale integration (VLSI)
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VLSI, see very large scale
integration
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formula 131
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