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Quantum Algorithms

The 1994 discovery of Shor’s quantum algorithm for integer factorization—an impor-
tant practical problem in the area of cryptography—demonstrated quantum computing’s
potential for real-world impact. Since then, researchers have worked intensively to
expand the list of practical problems that quantum algorithms can solve effectively.

This book surveys the fruits of this effort, covering proposed quantum algorithms for
concrete problems in many application areas, including quantum chemistry, optimiza-
tion, finance, and machine learning. For each quantum algorithm considered, the book
clearly states the problem being solved and the full computational complexity of the
procedure, making sure to account for the contribution from all the underlying primi-
tive ingredients. Separately, the book provides a detailed, independent summary of the
most common algorithmic primitives. It has a modular, encyclopedic format to facilitate
navigation of the material and to provide a quick reference for designers of quantum
algorithms and quantum computing researchers.
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Preface

The first half of the twentieth century witnessed the foundation of three pil-

lars of modern science: quantum mechanics, information theory, and com-

puter science. In the latter half of the century, scientists began to connect these

fields, first by exploring the implications of information itself being quantum—

leading to the birth of quantum information theory. The nonclassical features

of quantum information, such as no-cloning and entanglement, were identified

as resources for novel applications, for instance, information theoretically se-

cure communication. Alongside these developments were the observations of

Benioff [120], Feynman [391], and Manin [737] that models of computation

and simulation could be formulated within quantum mechanics—and that in

some cases these models appeared exponentially challenging to simulate using

a classical computer.

In 1985, Deutsch [346] further developed these early models of quantum

computation and presented what was essentially the first quantum algorithm—

a simple procedure that, with just one black-box query, could accomplish a

task that classically requires two queries. Over the next decade, larger black-

box separations were discovered, such as the Deutsch–Jozsa [347], Bernstein–

Vazirani [129], and Simon’s [940] algorithms, and finally, in 1994, the first

truly end-to-end quantum algorithm was developed: Shor’s algorithm [937]

for factoring integers and computing discrete logarithms, bringing extensive

ramifications for cryptography. This breakthrough demonstrated that quantum

computers could not only speed up the solution of contrived black-box prob-

lems but, at least in theory, could provide faster solutions to important real-

world problems. The discovery of Shor’s algorithm transformed the field of

quantum algorithms from a relatively niche topic into a major research area.

During the three decades since Shor’s seminal discovery, the field of

quantum algorithms matured significantly. For example, our knowledge of

upper and lower bounds on the quantum query complexity of black-box

ix
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x Preface

problems—often deduced through sophisticated, nonconstructive mathe-

matical arguments—has been greatly expanded. Moreover, many additional

quantum algorithms and subroutines—for example, primitives for quantum

simulation and linear algebra—have been discovered, optimized, and subse-

quently generalized multiple times. Meanwhile, advances in hardware and

the theory of fault-tolerant quantum computation have reached the point

where it is conceivable that (some of) these algorithms might soon become

implementable at scales large enough to surpass what can be done classically.

Nevertheless, the magnitude of available quantum speedups for real-world

applications is often hard to assess and can be obscured by technical caveats,

assumptions, and limitations in the underlying quantum algorithmic primitives.

Despite being one of the oldest, Shor’s algorithm for factoring arguably re-

mains the cleanest example of a substantial quantum speedup with minimal

caveats that targets a problem of significant real-world relevance. This survey

aims to elucidate the true resource requirements of end-to-end quantum com-

puting applications, and thereby aid in identifying the most likely applications

for fault-tolerant quantum computers. Through this distinct perspective, the

survey is intended to complement the wealth of existing quantum algorithms

resources, including a number of review articles, lecture notes, textbooks, and

the quantum algorithm zoo [586].

We highlight both the opportunities and challenges of currently known quan-

tum algorithms. To truly understand the potential advantage of a quantum al-

gorithm, it is necessary to consider its resource requirements in an end-to-end

fashion. By this, we mean the cost of solving the full problem of interest to the

user, not only the cost of running a given quantum circuit that is a subroutine of

the full solution. One must consider all quantum and classical overheads: keep-

ing track of classical precomputation and postprocessing, explicitly instanti-

ating quantum oracles and data access structures, and ideally computing the

constant prefactors of all quantum subroutines (including those overheads as-

sociated with fault-tolerant protocols and quantum error correction). We note,

however, that this task is a major undertaking for complex quantum algorithms,

and so has only been achieved for a minority of quantum algorithms in the lit-

erature. In addition to studying end-to-end quantum complexities, it is also

necessary to compare any quantum results to the state-of-the-art classical solu-

tions of the same problem, as well as known complexity-theoretic limitations.

We summarize the end-to-end complexities of several leading quantum ap-

plication proposals (by which we mean quantum algorithms applied to a well-

defined, real-world problem). The complexities of these applications are de-

duced from the complexities of their underlying primitives, which we review

in detail. The modular structure of the book aids the high-level understanding
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Preface xi

of the costs and tradeoffs coming from the various choices one makes when

designing and compiling a quantum algorithm, as well as identifying the bot-

tlenecks for a given application. On the technical front, this book does not

attempt to advance the state of the art; rather, it aims to collect, synthesize, and

contextualize key results in the literature. We consider algorithms in the quan-

tum circuit model, which is arguably the best-studied model for quantum com-

putation and renders the presented complexities hardware agnostic (although

the overhead associated with executing these circuits in a fault-tolerant fashion

can, of course, depend on details of the hardware). In order to obtain concrete

bounds, we require oracles to be explicitly instantiated. We generally assume

that quantum error correction of some form will be necessary, due to unavoid-

able imperfections inherent to all known quantum hardware modalities. As

such, we typically consider the non-Clifford cost of quantum algorithms as

the dominant cost, in keeping with leading quantum fault-tolerance schemes.

Due to the general lack of application-scale experimental data, we focus on

elucidating provable speedups, and we only mention noisy, intermediate-scale

quantum (NISQ) algorithms in passing, where appropriate, since they are typ-

ically heuristic.

Throughout this book, we attempt to be thorough, but not exhaustive in pre-

sentation; we only aim to give a representative collection of references, rather

than providing a complete list. Generally, we try to explain how asymptotic

complexity statements arise from their underlying primitives, but technical re-

sults are typically presented without explicit derivation or proofs, for which we

refer the reader to the cited references. Additionally, we often quote resource

estimates from the literature without covering all of the application-specific

optimizations to the underlying primitives that are required to arrive at the re-

ported constant prefactors. We survey a number of quantum applications, prim-

itives, and fault-tolerance schemes; however, the omission of other approaches

does not indicate that they are unimportant. Also, the primary scope of this

work excludes substantial topics, such as quantum sensing or communications,

measurement-based quantum computing, adiabatic quantum computing and

quantum annealing, analog quantum simulators, quantum-inspired (“dequanti-

zation”) methods, and tensor network algorithms—comments on these topics

are provided in instances where they are relevant to our primary discussion.

An overarching takeaway of this survey is that the current literature gener-

ally lacks fully end-to-end analyses for concrete quantum applications. Con-

sequently, in several parts of this survey, a fully satisfactory end-to-end ac-

counting is not achieved. In part, this is due to certain technical aspects of the

relevant quantum algorithms being underexplored, and in some cases also due

to a lack of specific details on how the output of the quantum algorithm will
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xii Preface

integrate into concrete computational workflows for future quantum comput-

ing users. Quantum algorithms research often works upward from algorithmic

primitives to identify computational tasks with maximal quantum speedups,

but these may not align with the tasks most relevant to the user. On the other

hand, potential users themselves may not yet know exactly how they would

use a new capability to advance their high-level goals. Yet, we find ourselves

at a point in the history of quantum computing at which it behooves us to fill in

these details and adopt this end-to-end lens. As more end-to-end applications

are found, and with small fault-tolerant quantum computers now on the hori-

zon, we expect the story to continue to evolve—this survey provides a snapshot

of the state of play in roughly mid-2024. While improved quantum algorithms

and approaches to quantum error correction and fault tolerance are likely to be

discovered, classical computers continue to grow in scale and speed, and clas-

sical algorithms are also constantly refined and developed, thereby moving the

goalposts for end-to-end quantum speedups. We hope the reader will find this

book a valuable guide for navigating this complex and dynamic landscape.

How to use this book

This book does not need to be read from cover to cover. Instead, it has a mod-

ular structure, which enables readers to directly explore the applications and

primitives relevant for their use case. To the extent possible, each numbered

chapter and section has been written in a self-contained fashion and can be

read independently from the rest of the book. Readers looking for a quick

introduction to (or refresher on) the common notation, conventions, and back-

ground concepts that underlie the technical exposition in the main text are ad-

vised to begin with the Appendix, where we provide information on quantum

mechanics, bra-ket notation, quantum circuits (and quantum computing more

generally), big-O notation, and complexity theory.

Readers of the link-enabled online version are encouraged to navigate the

book using the hyperlinks embedded throughout, which connect interdepen-

dent material. Both print and online readers may also find utility in the in-

dex, which organizes mentions of the important topics discussed in the book,

including computational tasks and problems, quantum algorithmic tools and

primitives used to solve those tasks, and finally competing classical methods

for those tasks (in addition to other miscellaneous topics).
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PART I

AREAS OF APPLICATION
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Overview

To provide benefit, quantum computers must solve computational problems

where the solutions are simultaneously valuable to the user and also difficult

to obtain classically. Simply developing a quantum algorithm with a theoreti-

cal quantum speedup is not sufficient to meet these criteria; we must directly

compare the performance of classical and quantum algorithms for concrete

problems of interest.

In this part, we survey a number of specific computational problems where

quantum algorithms have been proposed, organized by application area. We

present an overview of these algorithms through an end-to-end lens, noting

clearly the actual end-to-end problem that is being solved and the dominant re-

source cost/complexity (derived from the algorithmic primitives that are being

used), and emphasizing noteworthy caveats. We list known resource estimates

for implementing these algorithms on fault-tolerant quantum computers (we

also comment in passing on NISQ implementations), and we compare to clas-

sical complexities for the same problem, both in a practical and asymptotic

sense. The list of applications presented is not exhaustive, but represents a

broad spectrum of the most well-studied applications proposed in the litera-

ture.

3
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1

Condensed matter physics

Condensed matter physics constructs and studies the behavior of simplified

models designed to capture the universal physics of material systems. Phe-

nomena of interest include magnetism, phase transitions, superconductivity,

frustrated systems, topological phases, and the interplay of thermalization and

many-body localization in closed systems. While many seminal models can

be studied analytically in certain limits (e.g., the 1D and 2D classical Ising

model), a number of seemingly innocuous models have proven exceedingly

difficult to solve. This has led to some models, such as the Fermi–Hubbard

model, becoming a proving ground for classical numerical methods. While

there has been significant progress in recent decades in understanding the

physics of these models through numerical simulation, it is still a challeng-

ing problem for many models and parameter regimes. As observed by Feyn-

man [391], quantum computers have a natural advantage over their classical

counterparts for simulating the simple Hamiltonians studied in condensed mat-

ter physics. While Feynman’s proposal was more focused on analog simula-

tion, digital quantum simulation of condensed matter systems has evolved into

a major research direction. In this chapter, we focus on models whose end-to-

end complexities have been well studied in the literature: the Fermi–Hubbard

model, spin models, and the Sachdev–Ye–Kitaev (SYK) model.

The authors are grateful to Ashley Montanaro and Nobuyuki Yoshioka for

reviewing this chapter.

4
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1.1 Fermi–Hubbard model 5

1.1 Fermi–Hubbard model

Overview

The Fermi–Hubbard model was originally introduced as a simplified model

of electrons in materials [546], closely related to the tight-binding model.

It displays a wide range of behaviors including metallic, insulating, and an-

tiferromagnetic phases. The model has more recently found applicability in

studying high-temperature superconductivity. The 2D Fermi–Hubbard model

has a complex phase diagram that appears to reproduce universal (rather than

chemical-specific) features of the phase diagram of cuprate high-temperature

superconductors.

General analytic solutions are not known beyond 1D chains or specific pa-

rameter regimes—see [59] for a discussion—which has motivated the use of

numerical methods to understand the physics of the Fermi–Hubbard model.

More recently, there has been increased interest in understanding the nonequi-

librium properties of the model such as its behavior following a quench.

Based on the current estimates, quantum simulation of Fermi–Hubbard

models requires considerably fewer resources than simulations of molecules

or solving optimization problems. This makes the Fermi–Hubbard model a

promising candidate for early demonstrations of quantum advantage.

A detailed case study on the Fermi–Hubbard model is presented in [101],

including descriptions of the parameters to probe open scientific questions and

estimates of the utility of these computational capabilities.

Actual end-to-end problem(s) solved

The Fermi–Hubbard Hamiltonian on M/2 lattice sites is given by

H = −t
∑

σ∈{↑,↓}

∑

⟨i, j⟩
(c†

iσ
c jσ + c

†
jσ

ciσ) + U
∑

i

ni↑ni↓ , (1.1)

where ciσ are fermionic operators and niσ ≡ c
†
iσ

ciσ is the number operator, with

t denoting the strength of the kinetic term, U the onsite interaction strength,

and ⟨i, j⟩ a sum over nearest-neighbor lattice sites, given a lattice geometry. It

is also possible to consider longer-range hopping terms, the inclusion of site-

dependent chemical potentials, or additional “orbitals” per site.

Quantum simulation provides insights into both equilibrium and nonequilib-

rium physics. With regards to equilibrium physics, the primary computational

task is to resolve and probe the properties of the phase diagram of the Fermi–

Hubbard model, as a function of lattice geometry, parameter values (t,U), dop-

ing (the expected number of fermions divided by the number of sites), and

temperature. This is achieved by preparing the thermal state ρ ∝ e−βH (with
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6 1. Condensed matter physics

β = 1/kBT , where kB is the Boltzmann constant and T the temperature) or at

zero temperature the ground state |E0⟩ for the Fermi–Hubbard Hamiltonian in-

stantiated by the given parameters, and measuring the expectation values of a

set of physical observables to error ϵ. A thorough discussion of this end-to-end

problem (at zero temperature) is provided in [1031], where it is shown how to

perform the following steps:

• Prepare mean-field states in a given phase, for example, a BCS supercon-

ducting ground state.

• Adiabatically evolve from the mean-field Hamiltonian to the final Fermi–

Hubbard Hamiltonian. The absence of a phase transition confirms the pre-

dicted phase.

• Measure observables, including density correlation functions (ni↑+ni↓)(n j↑+

n j↓), pair correlation functions c
†
iσ

c
†
jσ′ckσ′clσ, and dynamical correlation

functions ⟨E0|eiHtAe−iHtB|E0⟩ (for operators A, B and ground state |E0⟩).

The difficulty of this problem depends on the parameter regime under con-

sideration. The ground state in the weak coupling regime of U < 4t is well

understood, but questions remain in the intermediate (4t ≤ U ≤ 6t) and strong

(U > 6t) regimes [847]. Challenges include precisely determining the phase

boundaries and understanding the nature of the superconducting phase [399].

Progress has been made on this latter question in recent years, for example,

by showing the absence of a superconducting phase at the physically relevant

parameters of U ∼ 8t and 1/8th doping (see [847] for a more detailed discus-

sion). Calculations are made challenging by small energy differences between

competing phases, as well as the need to extrapolate from finite simulations to

the thermodynamic limit.

The simulation of nonequilibrium quantum dynamics is of interest for mod-

eling materials driven by an external field (e.g., an ultrafast laser pulse or an

applied voltage), or following a quench in the Hamiltonian. Classically simu-

lating nonequilibrium quantum dynamics has so far proven challenging and is

a less well-studied problem than probing the equilibrium physics of the model.

Example applications include modeling ultrafast spintronics (whereby lasers

are used to manipulate spin degrees of freedom to control and store informa-

tion) [1094], understanding photo-induced phase transitions [812], and clar-

ifying the nature of thermalization in isolated quantum systems following a

quench [837].

Dominant resource cost/complexity

Mapping the problem to qubits: Simulation of the Fermi–Hubbard model is

most naturally performed in the second-quantized representation, as the regime
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1.1 Fermi–Hubbard model 7

of interest is usually close to half-filling (for comparison, we refer to Chapter 2

on simulating molecules). The Jordan–Wigner mapping between fermions and

qubits is typically used. Locality-preserving mappings have also been devel-

oped, which map fermionic operators to qubit operators acting on a constant

number of qubits [1010, 344]. For an L × L lattice, we require M = 2L2 qubits

to simulate the spinful Fermi–Hubbard model using the Jordan–Wigner map-

ping.

Accessing the Hamiltonian: Quantum algorithms for simulating the Fermi–

Hubbard model require access to the Hamiltonian. This is typically provided

by block-encoding or Hamiltonian simulation.1 The structure in the Fermi–

Hubbard Hamiltonian reduces the costs of these subroutines. For example,

performing a block-encoding using the linear combinations of unitaries (LCU)

technique requires access to a PREPARE unitary and a SELECT unitary (we

refer to Section 10.2 for definitions). The PREPARE unitary requires prepar-

ing a quantum state from classical data. Because the Fermi–Hubbard Hamil-

tonian has a small number of unique coefficients, the cost of this unitary can

be reduced. Combining the results of [75, 1069, 225], one can implement an

(M(2t + U/8),O(log(M)), ϵ)-block-encoding (see Eq. (10.1) for definition) of

the Fermi–Hubbard Hamiltonian using

O (
M + log(M/ϵ)

)

non-Clifford gates.

As another example, the costs of product formula approaches for Hamil-

tonian simulation can exploit the fact that many terms in the Fermi–Hubbard

Hamiltonian commute, due to their locality. We will explicitly discuss these

costs below.

State preparation:

• Classical trial states: Approximate eigenstates obtained from a classical cal-

culation can be prepared as quantum trial states; examples include Slater de-

terminant states [1031], linear combinations of D Slater determinants (with

complexity Õ(D) [394]–O(MD) [998]), and matrix product states with bond

dimension χ (with complexity O(Mχ2) [394]).

• Quantum trial states: Parameterized quantum circuits, in conjunction with

variational quantum algorithms, have been proposed for preparing approxi-

1 Hamiltonian simulation is used to explicitly simulate dynamics but can also be used implicitly
to provide access to the Hamiltonian for use in static calculations, for example, in quantum
phase estimation.
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8 1. Condensed matter physics

mate energy eigenstates (see §NISQ implementations, below). Like classi-

cal trial states, the states prepared by these circuits can be used as inputs to

other quantum algorithms that further refine the initial state, such as eigen-

state filtering, or quantum phase estimation. Initial resource estimates for

the Fermi–Hubbard model can be found in [215].

• Eigenstate preparation: There exist quantum algorithms that can prepare en-

ergy eigenstates using QSVT-based eigenstate filtering [688], where the cost

scales as 1/γ with γ the overlap of the initial state with the desired eigen-

state. Alternatively, adiabatic state preparation can be used, with a cost that

depends on the gap between energy levels along the adiabatic path. Adia-

batic state preparation was proposed as a method of classifying the phase

diagram of the Fermi–Hubbard model [1031]. A discrete version of the adi-

abatic approach based on qubitization and quantum phase estimation (QPE)

was numerically investigated in the context of preparing ground states of the

Fermi–Hubbard model [673], and showed promising results for the small

system sizes considered (see also [998]).

• Thermal states: A number of algorithms have been developed for prepa-

ration of thermal states, also known as Gibbs states. The most promising

variants of these “Gibbs sampling” algorithms depend on the mixing time

of a Markov chain (similar to classical Monte Carlo approaches for prepar-

ing Gibbs states), which is currently undetermined for the Fermi–Hubbard

model.

Time evolution:

• As discussed above, Trotter approaches for Hamiltonian simulation can ex-

ploit beneficial features of the Fermi–Hubbard Hamiltonian, such as locality,

fixed particle number, and commutativity of the terms [280, 300, 963]. For a

Fermi–Hubbard model with η fermions on M lattice sites, pth-order Trotter

methods can simulate time evolution for time τ up to error ϵ using

O
(

5pMη1/pτ1+1/p

ϵ1/p

)

gates. Explicit gate counts for Trotterization can be obtained from [630, 300,

225, 909], which have focused on constant prefactors for low-order product

formulas, rather than the asymptotic scaling.

Post-Trotter methods, such as [479], using quantum signal processing as

a building block, can achieve similar scaling in M and τ. A suboptimal ap-

proach (i.e., not using the method of [479]), briefly discussed in [392], has
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1.1 Fermi–Hubbard model 9

a gate complexity of approximately

44M2(2t + 3U/8)τ

T gates to simulate time evolution for time τ using quantum signal process-

ing, neglecting logarithmic dependence on the error of the simulation.2

Measuring observables:

• Energies: QPE can be used to measure the energy eigenvalues of the Fermi–

Hubbard Hamiltonian. Given access to (i) an initial state |ψ⟩ that has suf-

ficient overlap γ = |⟨ψ|E j⟩| with the target eigenstate |E j⟩ and (ii) a uni-

tary U = f (H) that encodes the eigenspectrum of the Hamiltonian with a

known, classically invertible relationship f , we can use QPE to project into

the desired eigenstate and provide an estimate of the eigenphase ϕi of U—

which can then be converted into an estimate of the eigenenergy of H using

ϕi = f (Ei). QPE makes

O
(
γ−2∥ f ′(H)∥−1ϵ−1 log(θ−1)

)

calls to the unitary U encoding the spectrum of the Hamiltonian, where θ is

the failure probability, and ϵ is the desired precision in the eigenenergy of

H.3

A common choice for the unitary encoding the Hamiltonian is U ≈ eiHt

approximated via quantum algorithms for Hamiltonian simulation, where

the approximation error must be balanced against the error from QPE. Using

U ≈ eiHt implemented via a second-order product formula results in a T

gate count of O(M3/2/∆E3/2) to resolve the energy of the Fermi–Hubbard

model to precision ∆E, neglecting the cost of initial state preparation and

the dependence on the overlap and failure probability [630, 225]. Another

common choice is to perform QPE on a quantum walk operator W(H) which

acts like ei arccos (H/α), where α is the normalization of the block-encoding of

H. The operator W(H) can be implemented exactly via qubitization [841,

139]. This results in a T gate scaling of O(M2/∆E), also neglecting the cost

of initial state preparation and the dependence on the overlap and failure

probability [75].

2 Note that in [392], M is defined as the number of lattice sites, and so corresponds to M/2 here.
3 It is possible to improve the complexity to O(γ−1∥ f ′(H)∥−1ϵ−1 log(θ−1)) using amplitude

amplification if a sufficiently precise estimate of the eigenvalue is known, or to
O((γ−2∆−1 + ϵ−1)∥ f ′(H)∥−1 log(θ−1)) by exploiting knowledge of the gap ∆ between the
energy eigenstates to perform rejection sampling [139].
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10 1. Condensed matter physics

• Other observables: There have been few studies considering the costs of

measuring observables other than the ground state energy using fault-

tolerant quantum algorithms. In general, it is important to minimize the

number of calls to the unitary Uψ that prepares the desired state, as this is

typically considered the dominant cost. Reference [1031] discussed meth-

ods for measuring density correlation functions (ni↑ + ni↓)(n j↑ + n j↓), pair

correlation functions c
†
iσ

c
†
jσ′ckσ′clσ, and dynamical correlation functions

⟨E0|eiHtAe−iHtB|E0⟩ (for operators A, B and ground state |E0⟩), including

approaches for nondestructively measuring some of these observables.

Some of these approaches can now be reframed as performing amplitude

estimation [637] on UO, a unitary block-encoding of the observable O with

subnormalization factor αO [853]. The measurement of similar observables

using these modern algorithmic tools was studied in [9].

A recent approach [549, 49] based on the quantum gradient estimation

algorithm of [430] simultaneously computes the value of K (noncommuting)

observables O j. The algorithm makes Õ(K1/2/ϵ) calls to Uψ and U
†
ψ (or Rψ =

I − 2|ψ⟩⟨ψ|) and either Õ(K3/2/ϵ) calls to gates of the form eixO j [549] or

Õ(K/ϵ) calls to a block-encoding of the observables [49]. The algorithm also

requiresO(K log(1/ϵ)) additional qubits. This approach has been considered

in the context of measuring fermionic reduced density matrices and dynamic

correlation functions [549].

Existing resource estimates

There have been a number of logical resource estimates for algorithms tar-

geting both static and dynamic properties of the Fermi–Hubbard model. In

Table 1.1, we present approximate resource estimates for simulations of the

2D 10 × 10 spinful Fermi–Hubbard model. The table presents the number of

logical qubits and gates required to run the algorithm; these can be converted

into physical resource estimates via methods for fault-tolerant quantum com-

putation.

References [75, 1069] applied qubitization-based QPE to calculate the

ground state energy to constant additive error. For a lattice with M spin sites,

using the compilation of [75], the number of T gates scales as approximately

(neglecting the dependence on the overlap and failure probability) [75,

Eq. (61)]

#T ∝ (4t + U)M2

∆E
,
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1.1 Fermi–Hubbard model 11

and the number of logical qubits scales as approximately [75, Eq. (62)]

#Qubits ∼ M + log

(
(2t + 0.5U)M4

∆E

)
.

References [630, 225] applied second-order Trotter-based QPE to calculate

the ground state energy. In both references, rigorous but potentially loose up-

per bounds on the Trotter error are computed. For a lattice with M spin or-

bitals, using the compilation of [225], the number of T gates scales as approxi-

mately (neglecting the dependence on the overlap and failure probability) [225,

Eqs. (C3), (D6), (D10), (E17), (F10)]

#T ∝ t
√

t + U

(
M

∆E

)3/2

,

and the number of logical qubits scales as approximately [225, Table II]

#Qubits ∼ (1 + κ)M ,

where κ is a free parameter that controls the number of ancilla qubits used for a

compilation technique known as Hamming weight phasing (which reduces the

cost of applying identical arbitrary angle rotation gates in parallel) [421, 630],

set to κ = 0.25 in [225] and in our Table 1.1.

Problem and method # T gates
# Logical

qubits
Parameters

Ground state energy
via qubitized QPE [75, 1069]

∼ 108 ∼ 236 U/t = 4 and ∆E = 0.01t

Ground state energy
via Trotterized QPE [225, 630]

∼ 5 × 106 ∼ 250 U/t = 8 and ∆E = 0.005Etot

Dynamics
via fourth-order Trotter [392]

4.6 × 105 200 T = 10/t, U = t, and ϵ ≤ 1%

Table 1.1 Logical resource estimates for quantum phase estimation (QPE) and

dynamics simulation applied to a 2D 10 × 10 Fermi–Hubbard model. The QPE

circuits target an energy error of ∆E. In the second row, Etot denotes the ground

state energy. The dynamics simulation runs for time T , and targets an error of less

than 1% in a spatially averaged intensive observable, with Trotter errors bounded

numerically via extrapolated small-scale simulations. The presented gate counts

are for a single run of the circuit. For QPE, the number of required runs depends

on the overlap between the initial state and the ground state (inverse polynomial

dependence), as well as the desired failure probability of QPE. For dynamics sim-

ulations, the number of circuit repetitions depends on the precision to which one

wants to estimate a given observable. The parameters for each problem vary be-

tween different rows of the table, and so cannot be directly compared (although

the different methods for the same problem, e.g., ground state energy estimation,

could be compared by adjusting the analyses in the original papers to the desired

matching parameter values).
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12 1. Condensed matter physics

The methods described above for encoding the Hamiltonian spectra (qubiti-

zation and Trotter) can also be used to simulate the dynamics of the Fermi–

Hubbard model. Trotter methods can be applied directly, while qubitization can

be combined with quantum signal processing (QSP) to perform Hamiltonian

simulation. In [392], a comparison was made between fourth-order Trotteriza-

tion and qubitization+QSP for simulating time evolution of a 10 × 10 Fermi–

Hubbard model. Trotter was determined to be the more efficient method, al-

though this conclusion hinges on a Trotter decomposition with large steps (jus-

tified via numerical simulations). We note that the Trotter decompositions and

analyses in [225, 392] are different, which hampers an immediate comparison.

It may also be fruitful to compare with Hamiltonian simulation algorithms

designed explicitly for simulating local Hamiltonians [479] (see discussion

in [75]).

Caveats

In general, preparing the ground state of the Fermi–Hubbard model is known

to be a hard problem, even for a quantum computer. This task has been proven

QMA-hard for the Fermi–Hubbard model with a site-dependent magnetic

field [910] and for the Fermi–Hubbard model with a site-dependent kinetic

term strength (i.e., t → ti j in Eq. (1.1)) [808]. While the complexity class of

the canonical Fermi–Hubbard model is not yet known, when preparing the

ground state via QPE or eigenstate filtering methods, it is necessary to prepare

an initial state with an overlap that decays no worse than polynomially with

system size; otherwise, the overall complexity will be superpolynomial. While

numerical simulations on small system sizes have shown encouraging re-

sults [998, 673], it is still an open question as to whether this property holds for

sufficiently large system sizes to enable extrapolation to the thermodynamic

limit.

It is also important to note that this extrapolation of measured properties,

computed at a range of finite system sizes, to the thermodynamic limit, has

been observed to contribute a significant proportion of the uncertainty and er-

rors in classical methods [666], and will also afflict quantum simulations.

Finally, it will be necessary to repeat simulations a large number of times. In

order to measure a single observable to precision ϵ we requireO(1/ϵ2) incoher-

ent repetitions of the simulation, or O(1/ϵ) using methods based on amplitude

estimation. To map out and compute properties of the phase diagram or extract

the phase following a quench, we may need to measure a large number of ob-

servables. In some cases, it may be necessary to re-prepare the initial state for

each observable.
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1.1 Fermi–Hubbard model 13

Comparable classical complexity and challenging instance sizes

The Fermi–Hubbard model has been a fertile environment for the develop-

ment and testing of classical numerical methods for both static and dynamical

properties. To the best of our knowledge, the largest exact diagonalization cal-

culations performed to date are on systems with 17 fermions in 22 sites (44

spin sites), requiring 7.1 terabytes of memory [1063]. State-of-the-art approxi-

mate methods for computing the phase diagram include quantum Monte Carlo

methods (variational QMC, determinantal QMC, diagrammatic MC, auxiliary-

field QMC, diffusion MC), density matrix renormalization group (DMRG),

coupled cluster methods, and impurity methods (dynamical mean-field the-

ory, density matrix embedding theory), among others. These methods typi-

cally have an approximation parameter (e.g., the excitation degree in coupled

cluster or the bond dimension in DMRG) which influences the scaling of the

algorithm and the accuracy of the simulation. Modern numerical studies of the

Fermi–Hubbard model typically cross-validate using a number of simulation

methods [666, 900]. For example, [666] benchmarked a range of methods and

performed sufficiently large and accurate simulations for extrapolation to the

thermodynamic limit. That work concluded that “the ground-state properties

of a substantial part of the Hubbard model phase space are now under numer-

ical control,” but that some uncertainties still remain for 4t ≤ U ≤ 8t and

dopings near half-filling. For a recent review of numerical simulations of the

Fermi–Hubbard model, we refer the reader to [847]. We also refer to [1054],

which benchmarked a number of variational classical methods on a range of

condensed matter systems, including the Fermi–Hubbard model.

The simulation of dynamics of the Fermi–Hubbard model appears to be

more challenging for classical methods. For example, [326, 392] concluded

that simulating the dynamics of a 10× 10 lattice would be infeasible for tensor

network techniques. Other classical approaches for simulating time evolution

of the Fermi–Hubbard model include nonequilibrium extensions of dynamical

mean-field theory [43] or Floquet methods [812].

Speedup

The speedup of quantum algorithms for computing static properties of the

Fermi–Hubbard model, such as its ground state energy, is difficult to deter-

mine. In general, we know that closely related models are QMA-hard (see

§Caveats, above) and so should be exponentially difficult for both classical

and quantum computers. Assuming an initial state that has overlap with the

target eigenstate that decays no faster than polynomially, then QPE can be

used to efficiently measure the eigenenergy and project into the desired eigen-

state. It does so with cost poly(M/∆E), where the precise scaling depends on
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14 1. Condensed matter physics

the quantum algorithm used. Exact classical methods such as exact diagonal-

ization have a cost that scales exponentially with M or 1/∆E. Approximate

classical methods scale with an approximation parameter (e.g., bond dimen-

sion, number of excitations) which will depend on both M and ∆E. For exam-

ple, [670, Fig. 4] shows the convergence of a tensor network calculation for the

2D Fermi–Hubbard model as a function of bond dimension and system size.

For the small systems studied (up to 16 × 4 sites) the plots are consistent with

the bond dimension scaling polynomially in 1/∆E, with a weak dependence

on the system size. If this holds for larger system sizes and across a range of

system parameters, this would suggest that quantum algorithms provide only a

polynomial speedup for computing the ground state energy.

Simulating the dynamics of the Fermi–Hubbard Hamiltonian requires poly-

nomial resources using quantum algorithms, scaling almost linearly both in M

and in the evolution time τ. By using carefully engineered interactions (e.g.,

deviating significantly from a square lattice) it can be shown that simulating the

dynamics of the Fermi–Hubbard model on a planar graph is a BQP-complete

problem and so is expected to be hard for classical computers in the worst

case [93]. Supporting this observation, all known classical methods appear to

scale exponentially in system size and simulation accuracy. For example, [392]

used tensor network (matrix product state) approaches for simulating the dy-

namics of the Fermi–Hubbard model following a quench. When truncating

the bond dimension to facilitate efficient classical simulation, they found that

errors in the observables grew exponentially with time. While this supports

the conclusion of an exponential quantum speedup, we note that classical ap-

proaches will likely continue to improve and be applied to increasingly large

system sizes.

NISQ implementations

There have been a number of proposals (and experimental demonstrations)

for simulating the Fermi–Hubbard model on NISQ hardware. Ground state

calculations can be performed using the variational quantum eigensolver

(VQE) [576, 871, 872, 218, 215], and experimental demonstrations have been

carried out on lattices of size 1 × 8 and 2 × 4 using 16 superconducting qubits,

yielding qualitative agreement with theoretical expectation [951].

Dynamics can be simulated using Hamiltonian simulation (typically Trotter

methods) [300] and have been demonstrated for an 8 × 1 lattice on 16 super-

conducting qubits [64].

The simple Hamiltonian of the Fermi–Hubbard model makes it well suited

to realization in analog quantum simulators, including ultracold atoms in opti-

cal lattices, trapped ions, and neutral atom arrays. It has been argued that some
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1.2 Spin models 15

local observables can be robust to errors in the simulation [836, 392], enabling

analog simulations to already surpass classical methods for simulating dynam-

ics. Nevertheless, it can be challenging to cool the analog fermionic system to

its ground state. We refer the reader to [326, 461] for additional discussion on

analog simulation.

Reference [300] considered an approach with flavors of both digital and

analog simulation, moving to a cost model based on evolution time, rather than

number of gates. This reduces the cost of simulating Trotterized dynamics of

the Fermi–Hubbard model, compared to purely gate-based approaches.

Outlook

The Fermi–Hubbard model provides a long-standing and physically relevant

computational challenge. The low gate counts and modest number of logical

qubits required to compute ground state energies could make quantum algo-

rithms competitive with leading classical approaches in challenging regimes.

We note that further research is required to ascertain the costs for initial state

preparation for these calculations. For the less well-studied task of simulating

the dynamics of the Fermi–Hubbard model, quantum algorithms currently pro-

vide an exponential speedup over known classical algorithms. Nevertheless, as

the Fermi–Hubbard Hamiltonian is sufficiently simple to be realized in many

controlled physical systems, future fault-tolerant quantum computers will also

have to compete against analog quantum simulators.

1.2 Spin models

Overview

Classical and quantum spin systems are prototypical models for a wide range

of physical phenomena including magnetism, neuron activity, simplified mod-

els of materials and molecules, and networks. Studying the properties of spin

Hamiltonians can also provide useful insights in quantum information science.

A number of scientific and industrial problems can be mapped onto finding

the ground or thermal states of classical or quantum spin models, for exam-

ple, solving combinatorial optimization problems, training energy-based mod-

els in machine learning, and simulating low-energy models of quantum chem-

istry [983].

Simulating the dynamics of quantum spin models is primarily of interest for

quantum information science, as well as condensed matter physics or chem-

istry. For instance, such simulations are relevant for interpreting nuclear mag-
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16 1. Condensed matter physics

netic resonance (NMR) [920, 806] or related spectroscopy experiments [273,

749].

Because of the natural mapping between spin-1/2 systems and qubits, as

well as the fact that interactions in spin models are typically local, the re-

sources required to simulate simple spin models using quantum algorithms

can be much lower than for problems in areas like quantum chemistry or cryp-

tography.

While our discussion will focus on quantum algorithms designed to be run

on fault-tolerant quantum computers, the simple Hamiltonians of spin models

are naturally realized in many physical systems. This has led to the use of

analog simulators [157, 417], such as arrays of trapped ions or neutral atoms,

for simulating the static and dynamic properties of interesting spin models. We

will comment briefly on this below.

Actual end-to-end problem(s) solved

The most commonly studied spin models are those with pairwise interactions,

referred to as 2-local Hamiltonians. We note that the interactions are not nec-

essarily geometrically local, although this will be present in many models of

physical systems. Given a graph G with N vertices {i} and L edges {[i, j]}, we

associate a classical or quantum spin with each vertex, and an interaction be-

tween spins with each edge. We can also add one-body interactions acting on

individual spins. The Hamiltonian can then be written as

H =
∑

i

∑

α∈{x,y,z}
Bαi σ

i
α +

∑

[i, j]

∑

α,β∈{x,y,z}
J
αβ

i j
σi
ασ

j

β
, (1.2)

where {σi
x, σ

i
y, σ

i
z} denote the Pauli operators Xi,Yi,Zi acting on site i, and

{Bα
i
}, {Jαβ

i j
} are coefficients. For classical spin Hamiltonians, the sums are re-

stricted to Z operators. The Hamiltonian in Eq. (1.2) encompasses a wide range

of spin models, including the following:

• The classical Ising model

H =
∑

i

BiZi +
∑

i j

Ji jZiZ j , (1.3)

which also describes the Hamiltonians arising from quadratic unconstrained

binary optimization (QUBO) problems.

• The (quantum) transverse-field Ising model (TFIM)

H = B
∑

i

Xi + J
∑

i j

ZiZ j . (1.4)
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1.2 Spin models 17

• The Heisenberg model with a site-dependent magnetic field, defined in 1D

with nearest-neighbor interactions by

H =
∑

j

(
B jZ j + JxX jX j+1 + JyY jY j+1 + JzZ jZ j+1

)
. (1.5)

Across the different models, we can vary the dimension, locality of interactions

(e.g., nearest-neighbor vs. fully connected vs. power-law), and values of the

site-dependent coefficients in comparison to the interaction terms. The models

can be extended beyond 2-local by considering couplings of 3 or more spins—

see, for example, p-spin models, which are p-local [345]. The above definitions

can be extended from spin-1/2 systems to higher-dimensional spin operators

by generalizing the Pauli operators with their higher-dimensional counterparts.

For classical spin models, we seek to prepare the ground or thermal states

of the model, as these may encode, for example, the solution to a combina-

torial optimization problem, or a probability distribution that can be used for

generative modeling. For quantum spin models, we similarly seek to compute

ground or thermal states. However, because these are not classical states that

can be easily extracted, we typically wish to sample observables with respect to

these states. Examples include the energy, the magnetization of the system, and

correlations between sites. In dynamics simulations of quantum systems, we

seek to determine how observables of interest vary as a function of evolution

time. Examples include the magnetization (used to infer the Hamiltonian in

nuclear magnetic resonance [533] or related [172] experiments), or the growth

of correlations between sites to probe thermalization. Digital Hamiltonian sim-

ulation can additionally extract certain quantities that may be hard to directly

measure in experiments (e.g., time reversal) [402]. Since studies of quench

dynamics often require preparation of simple states, such as product states or

the ground states of classically solvable Hamiltonians, and the measurement of

local observables, propagation under the Hamiltonian typically dominates the

simulation cost. For lattice systems with N spins in D spatial dimensions, it is

conventional to consider evolution times that scale as Ω(N1/D), as the system

must evolve for at least this long in order for information to propagate across

the system due to the Lieb–Robinson bound [261].

Reference [101] details a number of applications of simulating quantum spin

models, with relevance to systems studied at Los Alamos National Laboratory,

including the parameters of end-to-end simulations. Reference [374] presents

an end-to-end assessment of using quantum computers to simulate quantum

spin Hamiltonians for applications in NMR spectroscopy.
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18 1. Condensed matter physics

Dominant resource cost/complexity

For a system of N spin- 1
2

particles, we require N qubits to represent the state

of the system. For N spin-S particles, the problem can be mapped to qubits in

different ways, for example, using N⌈log2(2S + 1)⌉ qubits [897] or using 2NS

qubits [749].

Quantum algorithms for preparing the ground or Gibbs states of classical

spin systems are discussed in detail in Chapter 4 (combinatorial optimization),

and Section 9.2 (energy-based machine learning models), respectively. We will

restrict our discussion to the resources required for performing time evolution

of quantum spin models. The reason for this is that quantum algorithms for

preparing ground or thermal states require similar primitives for Hamiltonian

access to algorithms for time evolution (e.g., block-encodings or Hamiltonian

simulation itself) and use these in conjunction with either (i) eigenstate fil-

tering approaches [689, 688] based on quantum singular value transformation,

(ii) adiabatic state preparation, (iii) quantum phase estimation from a trial state,

or (iv) quantum algorithms for thermal state preparation, that is, Gibbs sam-

pling. More detailed discussions of these algorithms and their caveats can be

found in the corresponding sections, as well as in the discussion of quantum

algorithms for simulating molecules and materials (Section 2.1) or the Fermi–

Hubbard model (Section 1.1), where preparing (approximate) eigenstates is the

primary topic of interest. All of these algorithms depend on either an overlap

between the trial state and the target state, the minimum gap along an adiabatic

path, or the mixing time of a Markov chain—all of which are difficult to bound

in the general case.

When simulating the time evolution of spin systems via Hamiltonian simu-

lation, the most efficient algorithms exploit the locality of interactions in the

Hamiltonian, and the resulting commutation structure. For 2-local spin-1/2

systems on a D-dimensional lattice with nearest-neighbor geometric locality,

algorithms with almost optimal gate complexity are known for performing time

evolution. Reference [280] showed that the gate complexity of the (2k)th-order

product formula scales as

O
(
(Nt)1+1/2k/ϵ1/2k

)

to simulate time evolution for time t to accuracy ϵ, using a Hamiltonian given

in the Pauli access model. Note that this expression suppresses the 52k constant

prefactor present in (2k)th-order Trotter (see Eq. (11.1)). Similarly, [479] gave

an algorithm with complexity O(Nt · polylog(Nt/ϵ)) for Hamiltonians given in

the sparse access model. In contrast, note that approaches that are asymptoti-

cally optimal in the black-box setting, such as quantum signal processing, have

a gate complexity of O(N2t+N log(1/ϵ)) using a block-encoding based on lin-
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1.2 Spin models 19

ear combinations of unitaries (LCU)—the normalization of the block-encoding

is α = O(N) and the gate complexity to implement the block-encoding is also

O(N).

Spin Hamiltonians with power-law interactions were studied in [993, 286],

that is, where the interaction strength between spins i and j depends inversely

on a power of the distance between the spins, denoted by ∥i− j∥2. (This implies

that the model is translationally invariant.) For a D-dimensional lattice with 2-

local interactions with interaction strengths scaling as 1/∥i − j∥α
2
, (2k)th-order

Trotter gives a gate complexity scaling as (as above, suppressing the 52k con-

stant prefactor present in (2k)th-order Trotter) [286]

Õ
(

N3− α
D

(1+1/2k)+1/kt1+1/2kϵ−1/2k if 0 ≤ α < D,

N2+1/2kt1+1/2kϵ−1/2k if α ≥ D

)
.

Further improvements are possible in cases where the Hamiltonian coefficients

are efficiently computable by an oracle, or if certain truncations can be per-

formed [721]. Focusing on the D = 1 case, if one were to directly apply quan-

tum signal processing based on a block-encoding via the linear combination of

unitaries approach, the scaling of the gate complexity would be

Õ
(
N2t + N log(1/ϵ)

)
.

These asymptotic complexities are complemented by the constant prefactor

analyses discussed in the following section.

For estimating expectation values of observables to precision ϵ, one can ei-

ther consider directly sampling and then re-preparing the state of interest (scal-

ing as O(1/ϵ2)), or coherent approaches based on amplitude estimation (scal-

ing as O(1/ϵ), but requiring a longer coherent circuit depth). Measurements

of simple observables, such as the magnetization, can be obtained through the

computational basis measurements on single qubits. For more complicated ob-

servables, one can consider the approaches in [853, 549, 49], discussed in more

detail in Chapter 2 (quantum chemistry).

Existing resource estimates

A number of logical resource estimates for simulating the dynamics of spin

systems and for finding their ground states via quantum phase estimation have

been reported in the literature. In such calculations, it is necessary to optimize

the constant prefactor contributions from implementing the algorithmic prim-

itives used. A detailed comparative study on simulating the dynamics of a 1D

nearest-neighbor Heisenberg model (Eq. (1.5)) was reported in [283], compar-

ing the logical qubit and T gate counts of product formulas, Taylor series, and
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20 1. Condensed matter physics

quantum signal processing. The two most efficient approaches are shown in

the first two rows of Table 1.2.

On a fault-tolerant quantum computer, arbitrary angle rotation gates must

be synthesized using a sequence of T and Clifford gates [625]. The number of

T gates to synthesize a group of parallel rotation gates can be reduced if they

share the same angle [421, 630, 225], a method known as Hamming weight

phasing. This technique can be exploited in fault-tolerant compilations of al-

gorithms simulating physical spin systems, which often exhibit features such

as translational invariance.

In addition to the entries given in Table 1.2, fault-tolerant approaches to

simulating NMR [806, 374] and muon spectroscopy [749] experiments, which

are effectively spin model simulations, have been considered.

Caveats

When formulated as a decision problem, determining the ground state energy

for 2-local classical and 2-local quantum spin models is NP-complete [94, 726]

and QMA-complete [607], respectively. As such, we do not expect quantum

algorithms to provide efficient solutions to these problems in the general case.

Nevertheless, given the success of classical heuristics for these problems, one

may hope to observe a similar benefit from quantum heuristic algorithms, such

as Monte Carlo–style Gibbs sampling algorithms.

In contrast, simulating the dynamics of spin models is a BQP-complete

problem [705]; it is likely one of the most simple beyond-classical calcula-

tions that could be performed on a future fault-tolerant quantum computer.

While such a computation would be of great scientific interest, providing new

insights in quantum information and many-body physics, it is currently un-

clear whether dynamics simulations of large systems will have a direct impact

on industrially relevant applications.

Comparable classical complexity and challenging instance sizes

Exact classical simulations of quantum spin models are exponentially costly in

system size. Exact simulations that consider a time evolution long enough for

information to propagate across the system (as per the Lieb–Robinson bound)

are limited to around 50 spins using the largest classical supercomputers [492,

283].

Approximate classical algorithms for studying quantum spin systems in-

clude tensor network approaches and quantum Monte Carlo (QMC) methods.

These methods provide empirically accurate results for computing the ground

states of physically motivated spin systems, in particular those with local inter-

actions, in low dimensions. For example, the ground states of local, gapped 1D
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Problem Method # Spins # T gates
# Logical

qubits
Parameters

1D Heisenberg dyn. QSP 50 2.4 × 109 67
B j ∈ [−1, 1], Jx = Jy = Jz = 1,

t = N, ϵ = 10−3 [283]

1D Heisenberg dyn. Trotter (sixth order) 50 1.8 × 108 50
B j ∈ [−1, 1], Jx = Jy = Jz = 1,

t = N, ϵ = 10−3 [283]

2D NN TFIMa dyn. Trotter (fourth order) 100 1.7 × 105 100 t = 10/J, B = J, ϵ = 10−2 [392, 147]

2D 1/r2 TFIM dyn. Trotter (fourth order) 100 1.5 × 107 100 t = 10/J, B = J, ϵ = 10−2 [392]
2D Heisenberg ground state

with nearest- and next-nearest-
neighbor interactions

Qubitized QPE 100 108 112 ϵ = 10−2, J1 = 1, J2 = 0.5, B j = 0 [1069]

Table 1.2 Logical resource estimates for quantum phase estimation (QPE) and dynamics simulation (dyn.) applied to different spin models.

The presented gate counts are for a single run of the circuit. The results presented in rows 1 and 2 can be compared to each other, and both

target an error of ϵ = 10−3 in the operator norm distance between the ideal and implemented time evolution unitary. While [283] presents both

analytic and empirical Trotter error bounds, the gate count presented in the table is that resulting from the empirical bound, though we remark

that more recent analytic bounds are close to matching the empirical bounds [286]. The results presented in rows 3 and 4 can be compared to

each other, and determine the number of Trotter steps used empirically by targeting an error of ϵ = 10−2 in a particular spatially averaged local

observable, and then extrapolating this behavior to larger system sizes.
a 2D nearest-neighbor transverse-field Ising model.
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Hamiltonians have area law entanglement [504]; thus, they can be efficiently

represented by matrix product states, a type of tensor network. The situation in

higher dimensions is less clear, as an area law for gapped 2D local Hamiltoni-

ans has not been proven, and such a relation does not imply efficient represen-

tation via classical tensor network approaches such as projected entangled pair

states (PEPS) [503]. Indeed, the 2D local Hamiltonian problem with the con-

straint that the ground state obeys area laws is QMA-complete [545]. Other ap-

proximate classical methods, including QMC approaches, can also be effective

for preparing low energy states of spin systems. For example, [1054] provides

benchmarks for both tensor network and QMC-based variational methods ap-

plied to spin systems in a range of lattice geometries.

In contrast, these methods are less accurate when performing simulations

of quantum spin dynamics [912, 907]. In many of these systems, the entan-

glement entropy grows linearly with time [219], resulting in a cost that grows

exponentially with time for tensor network approaches targeting fixed accu-

racy (see, e.g., [921, 501] for counterexamples). For example, it was claimed

in [392] that simulations of the dynamics of the 2D TFIM for N = 100 spins

would be far beyond the current capabilities of tensor network methods [392].

Many physical systems are subject to strong interactions with their en-

vironment, which limits their coherence times. In these cases, the behavior

of the system can often be reproduced by simulating a smaller number of

spins (e.g., N ≤ 30) and accounting for the interactions with the environment

through physically motivated heuristics [1045]. Such simulations (accessible

via open-source software libraries) are used to analyze NMR [533] and muon

spectroscopy experiments [172].

Speedup

The speedup for computing the ground states of quantum spin Hamiltonians

over classical approximate methods (such as tensor networks or QMC) is cur-

rently an open research question; it depends on the complexity of being able

to prepare good approximations of the ground state using quantum algorithms

for cases where classical trial states are unable to efficiently and accurately

represent the ground state [670].

The simulation of quantum spin dynamics appears to be exponentially costly

using all known classical methods. As such, quantum algorithms for Hamilto-

nian simulation would provide an exponential speedup for this task. This would

likely provide insights in quantum information and many-body physics. As an

example, such systems could study the competition and interplay between ther-

malization and many-body localization in quantum systems.
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NISQ implementations

Quantum spin models are commonly used as benchmark systems for

NISQ algorithms—for example, finding ground states [595], simulating

dynamics [880], and probing thermalization [762]. For instance, variational

algorithms have been applied to spin systems with up to 24 qubits, showing

rapid convergence to the ground state as the number of layers of the variational

circuit was increased [174, 604].

The Hamiltonians of spin models are also naturally realized in a wide range

of physical systems, including trapped ions or neutral atoms [157, 417]. For

example, recent experiments in neutral atom systems have studied the dynam-

ics of on the order of 200 spins, which went beyond the capabilities of classical

simulation via matrix product state approaches [371, 906]. Analog simulators

are already an important tool providing new scientific insights, and they set a

high bar for the future performance of fault-tolerant approaches to simulating

spin systems. Nevertheless, analog simulators are restricted in the complexity

of the models that they can simulate (e.g., it may be more challenging to study

site-dependent impurity models or composite spin–fermion systems), and they

are susceptible to errors from miscalibration and interactions with the environ-

ment.

Outlook

Simulating the behavior of spin systems is arguably one of the most natural

tasks for quantum computers, while being exponentially costly using all known

classical methods. Such simulations can provide important insights into ques-

tions in quantum information science and many-body physics. Spin system

simulations are also relevant to condensed matter physics and chemistry, since

spin systems can act as models for more complex systems in those fields.

Logical resource estimates for quantum algorithms simulating spin systems

are among the lowest known for beyond-classical tasks. Nevertheless, analog

quantum simulators are already able to natively simulate the dynamics of hun-

dreds of spins. In order to surpass these capabilities, digital approaches may

need to consider more complex observables or target better accuracies that are

only achievable using devices capable of quantum error correction.

In addition, for many systems of scientific interest in related fields, such

as chemistry or condensed matter physics, decoherence-inducing interactions

with the environment often limit the required simulation sizes. Identifying ap-

plications where accurate dynamics simulation of large spin models is required

would increase the impact and applicability of quantum algorithms in this area.
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1.3 SYK model

Overview

The Sachdev–Ye–Kitaev (SYK) model [889, 622] is a simplified model of

a quantum black hole that is strongly coupled and “maximally chaotic,” but

still analytically tractable. This remarkable and, to date, unique combination

of properties has led to great activity surrounding SYK. It has applications in

high-energy physics through its connections to black holes and quantum grav-

ity, and it has applications in condensed matter physics as a model of quantum

chaos and scrambling, which sheds light on phases of matter in strongly cou-

pled metals [882, 945]. While many interesting properties of the SYK model

can be computed analytically in certain limits, not all properties qualify, and

questions remain about the behavior of the model outside of these limits—

these questions can potentially be addressed numerically by a quantum com-

puter.

Actual end-to-end problem(s) solved

The SYK model has many variants; a common version to consider is the four-

body (q = 4) N-site Majorana fermion Hamiltonian with Gaussian coefficients

HSYK =
1

4 · 4!

N∑

i, j,k,ℓ=1

gi jkℓ χiχ jχkχℓ , (1.6)

where χi denote Majorana fermion mode operators obeying the anticommu-

tation relation χiχ j + χ jχi = 2δi jI (where I denotes the identity operator,

and δi j the Kronecker delta symbol), and gi jkℓ are coefficients drawn indepen-

dently at random from a Gaussian distribution with zero mean and variance

σ2 = 3!g2/N3 (with g the tunable coupling strength). The normalization of

Eq. (1.6) matches the convention of [78] and ensures that the ground state en-

ergy of HSYK is extensive (i.e., growing linearly in N).

In the limit of a large number of local degrees of freedom N → ∞ and at

strong coupling βg ≫ 1 (where β is the inverse of the temperature), analytic

predictions can be computed for the asymptotic behavior of some properties.

While these arguments are not mathematically rigorous, in practice they pro-

vide a consistent picture for the SYK model and provide insights into quantum

gravity and quantum chaos. However, questions remain about the wealth of

properties out of reach by taking limits or the nonasymptotic regime of pa-

rameters. For example, it has been challenging to rigorously calculate the den-

sity of states at arbitrary energies and the ground state energy in the large-N

limit [316, 78, 511]. These problems can potentially be probed numerically on

a quantum computer.
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Generally speaking, this often reduces to performing the following task

on the quantum computer: given as input an instance of HSYK (generated by

choosing the couplings gi jkℓ at random) and an observable O, estimate the ex-

pectation value tr(ρO), where ρ could be, for instance, (i) the ground state

of HSYK, (ii) the thermal state ρ ∝ e−βHSYK , or (iii) a time-evolved state ρ =

eiHSYKt |0⟩⟨0|e−iHSYKt from an easy-to-prepare initial state |0⟩, among other pos-

sibilities. The observable O could be a local operator or even HSYK itself. An-

other case is for O to be composed of t-dependent time-evolution unitaries

eiHSYKt.

For example, computing the ground state energy corresponds to taking ρ to

be the ground state of HSYK and O to be HSYK, and computing a 4-point out-

of-time-ordered correlation function corresponds to taking ρ to be the thermal

state at inverse temperature β and O to be AeiHSYKtBe−iHSYKtAeiHSYKtBe−iHSYKt,

where A and B are few-body operators [555]. In another example, [204, 799]

give a detailed proposal to “simulate quantum gravity in the lab” via computing

expectation values of observables and states formed via simulation of the SYK

model.

Depending on the ultimate end-to-end goal, one may need to repeat this

calculation for many different O or for many instances of HSYK, for example,

to compute an ensemble average.

Dominant resource cost/complexity

Mapping the problem to qubits: To simulate the SYK model on a quan-

tum computer, the Majorana operators are represented by strings of Pauli op-

erators according to the Jordan–Wigner representation (e.g., [407]). As a re-

sult, the Hamiltonian HSYK on N Majoranas becomes a linear combination of

multi-qubit Pauli operators over N/2 qubits. Methods for Hamiltonian sim-

ulation given a classical description of the Hamiltonian as a linear combi-

nation of Pauli strings (the Pauli access model) typically introduces into the

complexity a dependency on the number of terms, N4, and on the 1-norm of

Pauli coefficients, denoted by λ, which for typical SYK instances is seen to be

λ = O(gN5/2) (see [78, Eq. (16)]).

State preparation: To solve the problem of estimating tr(ρO), one must be

able to prepare the (N/2)-qubit state ρ. In some cases, ρ could simply be a

product state, which is trivial to prepare. If ρ is the thermal state at inverse

temperature β, then algorithms for Gibbs sampling would be used to prepare

the state. Due to the chaotic properties of SYK and the fact that the system is

expected to thermalize quickly in nature, one expects that Monte Carlo–style

Gibbs samplers (e.g., [984, 256, 939, 856, 260]) have a favorable poly(N) gate
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complexity, but the exact performance is unknown. If ρ is the ground state of

HSYK, there are several methods for preparing ρ, including projection onto ρ

by measuring (and postselecting) an ansatz state ϕ in the energy eigenbasis

using quantum phase estimation (QPE), or by adiabatic state preparation. The

cost of either of these methods depends on details such as which ansatz state is

used (in particular, its overlap with ρ), the adiabatic path, and the spectrum of

HSYK—in both cases, in the absence of evidence to the contrary, the scaling can

be exponential in N. In [511], a poly(N)-time quantum algorithm for preparing

states ρ achieving a constant-factor approximation to the ground state energy

of HSYK was given, which could be used as ρ to probe low-energy properties

of the system.

Time evolution: The calculation also requires simulating time evolution by

HSYK. This can be because O is a time-evolved operator, because the state ρ

corresponds to a time-evolved state, or simply as a subroutine for QPE or Gibbs

sampling, mentioned above. Reference [407] proposed a scheme for simulat-

ing time evolution using a first-order product formula approach to Hamilto-

nian simulation. That is, it implements the unitary eiHSYKt to precision ϵ, with

gate complexity O(N10g2t2/ϵ). However, this steep scaling with N suggests

that accessing large system sizes will be difficult with this method. Reference

[78] later gave a method with better N dependence, achieving gate complexity

O(N7/2gt + N5/2gt polylog(N/ϵ)), leveraging qubitization with quantum sig-

nal processing. This gate complexity grows more slowly than the number of

terms in HSYK (i.e., O(N4)), a feat that is only possible because the simula-

tion method generates the SYK coupling coefficients pseudorandomly: to con-

struct the block-encoding of HSYK, they perform the PREPARE step in the

linear combination of unitaries using a shallow quantum circuit composed of

polylog(N) random two-qubit gates, producing a state for which the N4 am-

plitudes are distributed approximately as independent Gaussians. Further re-

duction in the gate count would be bottlenecked by the 1-norm λ of the coeffi-

cients of HSYK; however, note that [1059] suggests gravitational features may

remain even if the Hamiltonian is substantially sparsified, which could reduce

the number of terms and the value of λ.

Measuring observables: Finally, given the ability to prepare a purification of

ρ and supposing O is unitary (if it is not, it could be decomposed into a sum of

unitaries and each constituent computed separately), estimating the expectation

value tr(ρO) to precision ϵ can be done by overlap estimation, costing O(1/ϵ)

calls to the routine that prepares ρ and to the routine that applies O. If the

purification of ρ cannot be prepared, the cost is O(1/ϵ2).
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Existing resource estimates

Reference [78] compiled the dominant contributions in their approach to

Hamiltonian simulation into Clifford + T gates, and they found that at

N = 100, implementing eiHt requires fewer than 107gt T gates, and at

N = 200, it requires fewer than 108gt T gates. Both of these figures are for a

single circuit; that is, they do not include the cost of averaging over many SYK

instances. The T -count can be turned into an estimate of the running time

and number of physical qubits; see the discussion in Part III on fault-tolerant

quantum computation.

Caveats

Existing resource estimates only focus on simulating the dynamics of SYK

models, but the proposed classically challenging problems involve static prop-

erties such as density of states and properties of thermal states. Probing these

static properties in an end-to-end fashion would likely require preparing ther-

mal states, ground states, or other kinds of low-energy states, in addition to be-

ing able to implement eiHt. The cost of preparing these states is unknown and

difficult to assess analytically. Another caveat is that the gate counts quoted

above do not take into account the O(1/ϵ) scaling of reading out an observable

to precision ϵ, or any repetitions for different instances of HSYK required for

making inferences about the physics of SYK.

Comparable classical complexity and challenging instance sizes

As mentioned above, one of the reasons that the SYK model is appealing is that

many properties can be computed analytically in certain limits. Other prop-

erties that would be of interest to numerically compute on a quantum com-

puter require poorly scaling classical methods. Exact diagonalization of sys-

tems consisting of more than roughly 50 Majoranas would be challenging due

to the exponential growth of the Hilbert space, which has dimension 2N/2. For

example, [316] and [408] gave a variety of numerical results based on exact

diagonalization up to N = 34 and N = 36, respectively.

Speedup

Hamiltonian simulation has poly(N) runtime, an exponential speedup over ex-

act diagonalization, which is the go-to method for classical simulation of SYK-

related problems. However, Hamiltonian simulation does not alone solve the

same end-to-end problem as exact diagonalization; the persistence of the ex-

ponential speedup requires identifying specific interesting properties where the

relevant initial states can also be prepared in poly(N) time, which is currently

less clear.
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NISQ implementations

Experimental realizations of the SYK model have been proposed on several

different experimental platforms [401, 851, 728]. However, even if these

demonstrations can be realized, we do not expect this approach to scale in the

absence of quantum error correction.

Outlook

Simulating time evolution of the SYK model on a quantum computer has rel-

atively mild gate cost, due to the model’s straightforward mapping to a qubit

Hamiltonian. At the same time, it is difficult to simulate the SYK model on a

classical computer, owing to its chaotic and strongly coupled nature. However,

further work is needed to understand the entire end-to-end pipeline. It has not

yet been identified which properties would be most valuable to compute on a

quantum computer and how costly they will be. Computing these properties

will likely involve far more than a single run of time evolution on a single in-

stance of the SYK model, so the overall cost is likely to be much larger than

what initial gate counts in the literature suggest.
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Quantum chemistry

Computational chemistry seeks to use computational methods to predict

the physical properties and behaviors of atoms, molecules, and materials,

and includes methods such as first-principles simulation, classical molecular

dynamics, and cheminformatics. We will restrict our focus to first-principles

simulations that treat chemical systems quantum mechanically (noting that

these methods may be used within a larger workflow incorporating other

techniques). Despite the apparent exponential cost of exact classical methods

for this task, scientists have made incredible progress over the last century

via increasingly sophisticated approximate methods. As a result, quantum

chemistry is now a core part of several applications, including the analyses

of chemistry experiments, the pharmaceutical drug discovery pipeline, and

the optimization of materials for catalysts and batteries. Given the inherently

quantum mechanical nature of these problems, it follows that several quantum

algorithms have been proposed for computational chemistry [66]. In this

chapter, we focus on simulating the electrons and vibrations of nuclei in

molecules and materials. For further reviews of quantum computing for

chemistry, we refer readers to [752, 229, 102, 783].

The authors are grateful to Ryan Babbush, Joshua Goings, and Ashley

Montanaro for reviewing this chapter.

2.1 Simulating electrons in molecules and materials

Overview

We seek the energy eigenstates, thermal states (i.e., statistical ensembles of

eigenstates at a given temperature), or dynamics corresponding to the Hamil-

29
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30 2. Quantum chemistry

tonian used to describe the electrons in molecules or material systems. The

electrons interact with each other, in addition to fields produced by the nu-

clei and any external applied fields. In many systems it is appropriate to use

the Born–Oppenheimer approximation, which treats the nuclei classically and

fixes their spatial positions, separating the nuclear and electronic degrees of

freedom.

Material systems can be described by a periodically repeating (i.e., transla-

tionally invariant) finite-size computational cell of interacting atoms. By simu-

lating increasingly large computational cells and mitigating finite-size effects,

we can extrapolate simulation results to the thermodynamic limit. This enables

the measurement of bulk properties, such as magnetization, tensile strength,

and thermal or electrical conductivity.

Actual end-to-end problem(s) solved

The Hamiltonian of a system consisting of K nuclei and η electrons interacting

via the Coulomb interaction is (in atomic units)

H = −
η∑

i=1

(∇i)
2

2
−

K∑

I=1

(∇I)
2

2MI

−
∑

i,I

ZI

|ri − RI |
+

∑

i, j

1

2|ri − r j|
+

∑

I,J

ZIZJ

2|RI − RJ |
,

where ∇ is the gradient operator, ri gives the position of the i-th electron,

and RI and ZI give the position and charge of the I-th nucleus. This Hamil-

tonian can be discretized using a basis set {ϕi(r)}N
i=1

of electron spin orbital

and {χi(r)}M
i=1 of nuclear orbital functions, or grid points, and can either be

used with the time-dependent Schrödinger equation to simulate dynamics, or

with the time-independent Schrödinger equation to obtain energy eigenstates.

When simulating dynamics, it is necessary to use a basis set that is sufficiently

flexible (or adaptive) to accurately describe the states at all times, as many

chemical basis sets are highly optimized for ground state calculations and so

are less suitable for dynamics calculations. It is often appropriate to make the

Born–Oppenheimer approximation, fixing the positions of the nuclei, which

are treated as classical point charges. The resulting electronic Hamiltonian at

a fixed nuclear configuration is given by

H({RI}) = −
∑

i

(∇i)
2

2
−

∑

i,I

ZI

|ri − RI |
+

1

2

∑

i, j

1

|ri − r j|
+ V({RI}) , (2.1)

where V({RI}) is the constant offset from the nuclear repulsion energy. In this

case, the Hamiltonian is discretized using a basis set {ϕi(r)}N
i=1

of electron spin

orbital functions or grid points. For many molecules at room temperature, the

ground state of the electronic structure Hamiltonian is a good approximation
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2.1 Simulating electrons in molecules and materials 31

for the thermal state ρ ∝ e−βH (with β = 1/kBT , where kB is the Boltzmann

constant and T the temperature), as the electronic energy levels are well sepa-

rated with respect to kBT . This can be contrasted with the vibrational structure

of molecules, where vibrational energies are on the order of kBT , and so ex-

cited states are also populated at room temperature.

The electronic eigenstates (or thermal states) often provide a good starting

description of a wide range of system properties, which then can be corrected

by, for example, vibrational, rotational, relativistic (e.g., spin-orbit coupling)

or entropic contributions. Preparing the desired electronic state for a given nu-

clear configuration is typically the first step in learning properties of the sys-

tem. We then measure the expectation values of observables with respect to

these states. Moreover, the electronic response to weak or slowly varying per-

turbations can often be described by a sequence of static calculations, for ex-

ample, linear response theory for radiation absorption, or Born–Oppenheimer

molecular dynamics [745] where one iteratively solves the electronic time-

independent Schrödinger equation to obtain the forces on the nuclei, whose

positions can then be updated using Newton’s laws. Static calculations can be

used to probe:

• Energy values (potentially across a range of nuclear configurations)—for

electronic excitation energies at a fixed nuclear geometry, for determining

molecular geometries by computing the electronic ground state energy at

different geometries, and for finding reaction pathways and rates by com-

puting energy differences between a sequence of geometries involved in a

reaction. To obtain accurate predictions, the electronic energy values must

be corrected by other contributions to the free energy.

• Determining transition probabilities between states—for reactions and opti-

cal properties.

• Differential changes in electronic energy in response to an applied field, for

example, electronic or magnetic dipole moments, polarizability.

• Calculating forces on the nuclei, for use in molecular dynamics

calculations—used in a range of applications, including protein fold-

ing and calculating drug molecule binding affinities.

• Orbital occupancies and correlation functions, as well as real- and

imaginary-time Green’s functions.

Properties of interest for materials include the following:

• Energy densities for given system parameters, to determine phase diagrams.

• Bulk properties, such as magnetization, thermal or electrical conductivity,

and tensile strength.
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32 2. Quantum chemistry

• Particle densities and correlation functions between sites, as well as real-

and imaginary-time Green’s functions.

In order to understand how these observables vary as the system parameters

(nuclear positions, atomic doping, temperature, applied field, etc.) are changed,

the desired state may need to be prepared and measured a number of times.

Simulations of dynamics may be used to explicitly probe many of the equi-

librium phenomena implicitly being probed above—for example, chemical re-

actions occurring at thermodynamic (quasi-)equilibrium—as well as additional

nonperturbative or nonequilibrium phenomena that are difficult to implicitly

describe as a sequence of static calculations, such as scattering from collisions,

absorption of UV and X-ray radiation, charge-transfer dynamics, and optimal

control. As a result, many of the same observables described above are still of

interest and can be monitored as a function of time, including the following:

• Changes in kinetic or potential energy.

• Changes in particle densities or orbital occupancies.

• Changes in charge or spin densities.

Dominant resource cost/complexity

Mapping the problem to qubits: We discretize the electron positions using

a basis of N spin orbital functions. For many basis sets, the discretization er-

ror decays as 1/N [488, 932] and is limited by the resolution of singularities

in the Coulomb interaction from charge coalescence. A variety of functional

forms have been considered for the electron orbitals (see Table 2.1 for a list

of orbitals commonly considered in quantum computing). The optimal choice

will be system dependent and must consider the following non-exhaustive list

of factors:

• The resolution of the orbital, improved by matching the character of local

vs. delocalized physics in the system to that of the orbital.

• The cost of computing the Hamiltonian, either in classical precomputation

or (if required) coherently on a quantum device (see §Accessing the Hamil-

tonian, below).

• The properties of the resulting Hamiltonian (number of terms, norm, locality

of terms, etc.) which determine the cost of accessing the Hamiltonian in

algorithms.

The commonly used “Galerkin discretization scheme” discretizes the

Hamiltonian via integrals over the basis functions, with one- and two-electron
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2.1 Simulating electrons in molecules and materials 33

Representation First-quantized Second-quantized

Gaussians [74]a [416] [1034]
Plane waves [962] [76]

Bloch/Wannier functions Not yet studied [561, 886]
Grids [628] [76, App. A]

Pseudo-spectral /
Discrete variable representations

[601, 253, 287] [76, 721]

Table 2.1 Representative references (chosen based on their discussion of their

choice of representation) showing the use of different basis functions in quantum

algorithms for the electronic structure problem.
a This reference is not technically a first-quantized representation, as antisymmetry is stored in

the operators rather than the wavefunction, but it stores states in an analogously compressed
way to first-quantized representations.

integrals

hi j =

∫
dr ϕ∗i (r)

−
(∇)2

2
−

∑

I

ZI

|r − RI |

 ϕ j(r)

hi jkl =

∫
dr1dr2

ϕ∗
i
(r1)ϕ∗

j
(r2)ϕk(r2)ϕl(r1)

|r1 − r2|
.

(2.2)

Hamiltonians defined using grids, pseudo-spectral representations, or discrete-

variable representations are not obtained from integrals over basis functions, as

specified in Eq. (2.2), and the values of hi j, hi jkl are instead defined using finite

difference formulas, and/or by their values at discrete grid points. An attractive

feature of the Galerkin discretization scheme is that the discretization error

is strictly positive. We refer readers to [287, 76, 244] for a more complete

discussion.

We can represent electronic states on a quantum computer using either first

or second quantized representations.

• For η electrons in N spin orbitals, first quantization uses η registers, which

each contain log2(N) qubits; each register enumerates which orbital its

corresponding electron is in, and the wavefunction must then be anti-

symmetrized to respect fermionic constraints [139]. The Hamiltonian of

Eq. (2.1) in first quantization can be written as

H =

η∑

α=1

N∑

i, j=1

hi j|i⟩⟨ j|α +
1

2

∑

α,β

N∑

i, j,k,l=1

hi jkl|i⟩⟨l|α ⊗ | j⟩⟨k|β ,

where α, β index which of the electron registers the operators act on.

• In second quantization, antisymmetry is stored in the operators, which obey

fermionic anticommutation relations: {ai, a
†
j
} = δi jI and {ai, a j} = {a†i , a

†
j
} =
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34 2. Quantum chemistry

0 (where δi j denotes the Kronecker delta symbol, I denotes the identity op-

erator, and {u, v} = uv + vu). The Hamiltonian of Eq. (2.1) in second quanti-

zation can be written as

H =

N∑

i, j=1

hi ja
†
i
a j +

1

2

N∑

i, j,k,l=1

hi jkla
†
i
a
†
j
akal.

A number of fermion-to-qubit mappings have been studied; see [752] for

discussion. Under the commonly used Jordan–Wigner mapping we require

N qubits, where each qubit stores the occupancy of the corresponding spin

orbital. These mappings induce a mapping of the Hamiltonian (and other

observables) to qubit operators.

Accessing the Hamiltonian: Quantum algorithms for both static and dynamic

simulations require access to the Hamiltonian. This is typically provided by

block-encoding or Hamiltonian simulation.1 A common block-encoding strat-

egy for chemistry Hamiltonians is the linear combinations of unitaries (LCU)

block-encoding, whereby the Hamiltonian is expressed as a linear combina-

tion of unitary operators
∑L−1

i=0 ciUi (e.g., Ui could be products of Pauli matri-

ces), and the block-encoding is then realized using the oracles PREPARE and

SELECT2 that act on the main register and a ⌈log2(L)⌉ ancilla system as

PREPARE|0⌈log2(L)⌉⟩ = 1√
λ

L−1∑

j=0

√
|c j|| j⟩

SELECT =

2⌈log2(L)⌉−1∑

j=0

| j⟩⟨ j| ⊗ sign(c j)U j ,

where λ =
∑L−1

i=0 |ci|. Then the sequence PREPARE† · SELECT · PREPARE is

a (λ, ⌈log2(L)⌉, 0)-block-encoding of the Hamiltonian written as an LCU. The

oracle SELECT can be implemented using the unary iteration method [75] or

the approach of [1011]. The oracle PREPARE can be implemented by coher-

ently loading coefficients stored in memory [75, 722, 140] or by computing

coefficients on-the-fly using quantum arithmetic [601, 74, 73, 962]. In many

cases, loading the coefficients for PREPARE is the bottleneck, with cost—in

terms of the number of non-Clifford gates—scaling linearly with L̃, the num-

ber of unique coefficients in the Hamiltonian (this scaling can be reduced to

1 Hamiltonian simulation is used to explicitly simulate dynamics, but can also be used
implicitly to provide access to the Hamiltonian for use in static calculations, for example, in
quantum phase estimation.

2 To be precise for j < {0, 1, . . . , L − 1} we define sign(c j)U j := I.

https://avxhm.se/blogs/hill0
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2.1 Simulating electrons in molecules and materials 35

O(L̃1/2) using O(L̃1/2) ancilla qubits [722]). As a result, a number of algo-

rithms have reduced the quantity of data to load by using compressed rep-

resentations of the Coulomb Hamiltonian, achieved through tensor factoriza-

tions [140, 212, 669, 886] (see [712] for a recent unifying perspective on these

approaches).

State preparation: Simulating the behavior of electrons in molecules and ma-

terials reduces to the task of preparing a desired state and measuring observ-

ables. The state to be prepared is typically an energy eigenstate, a thermal state,

or a time-evolved state.

• Energy eigenstates: In the following discussion, we refer to the overlap

γ = |⟨ψ|E j⟩| between a desired eigenstate |E j⟩ and a given initial state |ψ⟩,
and the minimum gap ∆ between the desired energy eigenvalue and other

energy eigenvalues. Below, we list several methods for preparing energy

eigenstates, or approximations to them.

– Classical trial states: Approximate eigenstates obtained from a classical

calculation can be prepared as quantum trial states, including Slater deter-

minant states [1031], linear combinations of D Slater determinants (with

complexity Õ(D) [394]−O(ND) [998]), and matrix product states (MPSs)

with bond dimension χ (with complexity O(Nχ2) [394, 144]). In [144]

it was observed that MPS with modest bond dimension could have large

overlaps with chemical systems of interest. Several of these methods have

been adapted to simulations performed in first quantization [81, 551].

– Quantum trial states: Parameterized quantum circuits, in conjunction with

variational quantum algorithms, have been proposed for preparing ap-

proximate energy eigenstates (see §NISQ implementations, below). Like

classical trial states, the states prepared by these circuits can be used as in-

puts to other quantum algorithms that further refine the initial state, such

as eigenstate filtering, or quantum phase estimation. Initial resource esti-

mates for models of materials systems can be found in [301].

– Eigenstate filtering: Methods such as those in [689, 688] filter out un-

desired eigenstates using spectral window functions applied via quantum

singular value transformation (QSVT) to a block-encoding of the Hamil-

tonian. The complexity to prepare the ground state (to infidelity ϵ, with

failure probability less than θ) using this approach scales as

Õ
(
α

γ∆
log

(
θ−1ϵ−1

))

calls to an (α,m, 0)-block-encoding of the Hamiltonian, where α ≥ ∥H∥ is

a normalization factor of the block-encoding. For comparison to related
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36 2. Quantum chemistry

methods, we refer the reader to [688, 412]. These algorithms can also

be adapted for the case where access to the Hamiltonian is provided by

Hamiltonian simulation [358].

– Adiabatic state preparation (ASP): ASP can be used to prepare a target

eigenstate (typically the ground state) by evolving from the correspond-

ing easy-to-prepare eigenstate of an initial Hamiltonian H(0) to the full

Hamiltonian H(1). Time evolution can be implemented using algorithms

for Hamiltonian simulation. The total evolution time is typically chosen

according to the heuristic

T ≫ max
0≤s≤1

∥ dH
ds
∥

∆(s)2
,

where s describes the adiabatic path H(s) and ∆(s) is the spectral gap of

H(s). It is difficult to analytically bound this (highly system-dependent)

complexity for molecular systems (see, e.g., [870]) motivating numerical

studies on small molecules [1006, 644, 670, 966].

– Quantum phase estimation (QPE): The above techniques all provide

methods of preparing approximate eigenstates, in some cases using

promises on the gap ∆, or by exploiting pre-existing knowledge of

the energy eigenvalue. Given an approximate eigenstate, and a unitary

U = f (H) that encodes the eigenspectrum of the Hamiltonian (with a

known, classically invertible relationship f ), we can use QPE to project

into the desired eigenstate and provide an estimate of the eigenphase ϕi

of U, which can then be converted into an estimate of the eigenenergy of

H using ϕi = f (Ei). QPE makes

O
(
γ−2∥ f ′(H)∥−1ϵ−1 log

(
θ−1

))

calls to the unitary U(H) encoding the spectrum of the Hamiltonian,

where γ = |⟨ψ|E j⟩| is the overlap between the state |ψ⟩ input to QPE and

the desired energy eigenstate |E j⟩, θ is the failure probability, and ϵ is the

desired precision in the eigenenergy of H. It is possible to improve the

complexity to

O
(
γ−1∥ f ′(H)∥−1ϵ−1 log

(
θ−1

))

using amplitude amplification if a sufficiently precise estimate of the

eigenvalue is known, or to

O
((
γ−2∆−1 + ϵ−1

)
∥ f ′(H)∥−1 log

(
θ−1

))

by exploiting knowledge of the gap ∆ between the energy eigenstates

to perform rejection sampling [139]. The unitary encoding the Hamil-

https://avxhm.se/blogs/hill0
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2.1 Simulating electrons in molecules and materials 37

tonian is often chosen to be U(H) ≈ eiHt approximated via quantum

algorithms for Hamiltonian simulation. In this case, the approximation

error in U must be balanced against the error from QPE. Alternatively,

it is common to encode the Hamiltonian using a quantum walk opera-

tor W(H) which acts like ei arccos (H/α) and can be implemented exactly via

qubitization [841, 139]. The costs to implement U(H) are inherited from

the method used, based on the properties (e.g., commutativity, locality,

number of terms, norm, cost of coherently calculating coefficients) of the

Hamiltonian in the chosen spin orbital basis and representation. As indi-

cated by the complexities presented above, QPE incurs an overhead from

imperfect overlap with the target eigenstate, as well as from needing to

suppress the failure probability of the method. We refer to Chapter 13 on

QPE for a more detailed discussion of the latter issue, which can either be

mitigated by repeating the calculation and using methods for probability

amplification [792, 222], or by using window functions [143, 829, 456]

to guarantee a desired confidence interval. The latter strategy appears to

require fewer resources in practice, especially when considering the im-

perfect overlap with the target state [144].

• Thermal states: Several quantum algorithms have been proposed for prepar-

ing thermal states, also known as Gibbs states. The most efficient algorithms

proceed by simulating the dissipative open system dynamics, and typically

make repeated calls to a block-encoding of the Hamiltonian. The complex-

ity of these methods for concrete electronic structure problems of interest

has not yet been determined and depends on the spectral gap of the Lind-

bladian considered, at the desired temperature. Thermal states could be used

as an approximation to the ground state, by choosing the temperature to be

sufficiently low compared to the gap between the ground and first excited

state [260]. Quantum algorithms for simulating open systems dynamics can

also be adapted to directly prepare approximations to the ground state [351].

• Time-evolved states: A time-evolved state can be prepared using Hamilto-

nian simulation algorithms, which approximate the propagator to error ϵ

(which provides an upper bound on the error in the resulting state). The

cost of Hamiltonian simulation depends both on the algorithm used and the

details of the Hamiltonian being simulated. Plane wave, grid, and pseudo-

spectral (DVR) basis sets are well suited to simulations of dynamics, as they

treat all points in space on an equal footing. For both the plane wave basis

and pseudo-spectral DVR in first quantization, the scaling is [77, 962]

Õ
(
η8/3N1/3t + η log(1/ϵ)

)
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38 2. Quantum chemistry

using Hamiltonian simulation in the interaction picture [718], or

Õ
(
(η8/3N1/3 + η4/3N2/3)t + η log(1/ϵ)

)

using qubitization with quantum signal processing [77, 962]. In the pseudo-

spectral DVR, the cost scales as

Õ
(
(η7/3N1/3 + η4/3N2/3)

t1+o(1)No(1)

ϵo(1)

)

using high-order product formulas [81].

Measuring observables: Many proposed algorithms consider the ground or

excited state energy of the chemical system as the observable of interest. This

can be calculated directly using QPE, as discussed above. QPE (and related

methods) can also be adapted for other application, for example, calculating

absorption spectra of molecules [395].

In other applications, it may be necessary to measure observables other than

the energy. In a fault-tolerant computation, it can be preferable to measure

these observables through phase-estimation-like approaches, rather than direct

measurement averaging, as the former is asymptotically more efficient and can

be made robust to logical errors through repetition and probability amplifi-

cation. Measurement schemes have been developed which achieve this using

overlap estimation [637] (see Section 14.2 on amplitude estimation) or the

approach of [549, 49] based on the quantum gradient estimation algorithm

of [430]. Both approaches require access to a state preparation unitary Uψ, and

its inverse.3 The algorithm based on overlap estimation can be formulated as

performing amplitude estimation on UO, a unitary block-encoding of the ob-

servable O with subnormalization factor αO. The complexity to compute the

expectation value to precision ϵ is O(αO/ϵ) calls to UO and Uψ (or the reflec-

tion Rψ = I − 2|ψ⟩⟨ψ|) and their inverses. This approach has been considered

in the context of measuring correlation functions, density of states, and linear

response properties (all in [853]), as well as energy gradients with respect to

various parameters, which can be used to compute forces or dipole moments,

and for which a range of estimation strategies are possible [805, 956].

The gradient-based algorithm simultaneously computes the value of M po-

tentially noncommuting observables O j by making Õ(M1/2/ϵ) calls to Uψ,U
†
ψ

(or Rψ) and either Õ(M3/2/ϵ) calls to gates of the form eixO j [549] or Õ(M/ϵ)

calls to a block-encoding of the observables [49]. The algorithm also requires

3 Note that it can be substantially cheaper to directly execute the reflection Rψ = I − 2|ψ⟩⟨ψ|
used in both methods, rather than through the use of Uψ, as the complexity of Rψ does not
depend on the overlap γ that appears in state preparation—see [688] for additional discussion.

https://avxhm.se/blogs/hill0

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


2.1 Simulating electrons in molecules and materials 39

O(M log(1/ϵ)) additional qubits. This approach has been considered in the

context of measuring nuclear forces [805], fermionic reduced density matri-

ces [549], and dynamic correlation functions [549].

Existing resource estimates

There are a large number of resource estimates for performing phase estima-

tion to learn the ground state energies of molecular or material systems, which

we list in Table 2.2 and Table 2.3. These resource estimates use compilation

methods described in Part III on fault-tolerant quantum computing. We also

note the existence of a software package that provides features for calculating

the non-Clifford costs of QPE for the electronic structure problem [238].

There have been comparatively few studies of the logical resources required

for the simulation of chemical dynamics. Recent work has computed the

resources required to calculate the energy loss of charged particles moving

through a medium (“stopping power”), as pertaining to nuclear fusion exper-

iments [887]. End-to-end resource estimates were determined, including the

costs of initial state preparation, measurement of observables, and repetitions

across a range of parameters. The resource estimates for the end-to-end task

ranged from roughly 2000 logical qubits and order-1013 Toffoli gates to

roughly 30,000 logical qubits and order-1017 Toffoli gates.

Caveats

Existing resource estimates typically consider only a single run of phase

estimation and assume that we have access to the desired energy eigenstate.

As outlined above, both phase estimation and eigenstate filtering scale as

Ω(γ−1∆−1) when we have a lower bound on the gap. The “orthogonality

catastrophe” suggests that the overlap of simple trial states with the desired

eigenstate will decay exponentially as a function of system size. Although

simulations will always be performed on finite-size systems, it is an open

question as to when asymptotic behavior becomes problematic and whether

initial states with sufficient overlaps can be prepared for systems of inter-

est [998, 670, 144]. This issue may become more pressing for materials

systems as we scale to the thermodynamic limit. In general, we know that

the problem of finding the ground state of electronic structure Hamiltonians

is QMA-hard [1035], but it is not yet known if these complexity-theoretic

statements provide intuition for physically realistic Hamiltonians.

As noted above, to accurately resolve the system, a large basis set must be

used, as the discretization error decays as 1/N where N is the number of spin

orbitals considered. In practice, one typically repeats the calculation using in-

creasingly accurate basis sets and then extrapolates to the continuum limit.
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Molecule(s)
& references

Algorithm Logical qubits
T /Toffoli gates

per sample
Number of

samples

FeMo-co (nitrogen fixation)
[870, 140, 212, 669, 1013, 238]

2nd Q, THC qubitization, Gaussians
2nd Q, randomized compilation, Gaussian

2196 [669]
∼193 [1013]

3.2 × 1010 [669]
∼3 × 1012 [1013]

7
∼600

Cytochrome P450
(biological drug metabolizing enzyme) [437]

2nd Q, THC qubitzation, Gaussians 1434 7.8 × 109 7

Lithium-ion battery molecules [617, 962]
2nd Q, DF qubitization, Gaussians

1st Q, qubitization, plane waves
104–105 [617]

2000–3000 [962]
1012–1014 [617]
1011–1012 [962]

7
7

Chromium dimer [375] 2nd Q, sparse qubitization, Gaussians ∼1300 ∼1010 7
Ruthenium catalyst (CO2 fixation) [212] 2nd Q, DF qubitization, Gaussians ∼4000 ∼3 × 1010 7

Ibrutinib (drug molecule) [158] 2nd Q, Sparse qubitization, Gaussians 2207 1.1 × 1010 7
Molybdenum catalysts (nitrogen fixation) [113] 2nd Q, DF qubitization, Gaussians 1000–8000 1011–1012 3–9a

Amyloid beta binding site fragment
(Alzheimer’s disease) [818]

2nd Q, DF qubitization, Gaussians 5000 1014 7

Fullerene-encapsulated cyclic ozone
(rocket fuel) [1029]

2nd Q, DF qubitization, Gaussians
2nd Q, sparse qubitization, plane wave dual

103

104
1012–1013

1015 7

Table 2.2 Logical resource estimates for quantum phase estimation (QPE) applied to a range of molecular systems to compute a single energy

eigenvalue. We list state-of-the-art resource estimates and refer to the references therein for prior estimates. The presented gate counts are for

a single run of the phase estimation circuit. The number of samples is determined by the desired maximum failure probability, taken here as

0.1. In most cases, the number of samples is calculated using [792, Lemma 1] which assumes that the median value is taken from a number of

incoherent repetitions of QPE. The success probability of a single run of QPE is 8/π2 [186]. QPE must be run a number of times if the overlap

γ ≤ 1, in general contributing a multiplicative cost of O(1/γ2) (though this may be reduced, as described in the main text). “Algorithm”

denotes the phase estimation unitary considered (e.g., Trotterization, Qubitization) as well as details about the quantization scheme (1st or

2nd), basis used, or factorization method used to compile the unitary (sparse [140], SF= single factorized [140], DF= double factorized [212],

THC= tensor hypercontraction [669]). The resource estimates presented can be for different numbers of electrons and orbitals, accuracies, and

can have differing classical simulation complexities. As such, the results may not be directly comparable, even within a single row of the table.
a This resource estimate assumed an overlap of γ < 1, and a lower failure probability of 0.01.
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Material(s)
& references

Algorithm Logical qubits
T /Toffoli gates

per sample

Electron gas (prototypical model)
[75, 630, 753, 962]

1st Q, qubitization, plane waves
2nd Q, qubitization [75]/Trotter [753], plane wave (dual)

1500–5000 [962]
100–1000 [75, 753]

109–1014 [962]
108–1011 [75, 753]

Lithium-ion battery materials
[341, 934, 886, 142]

2nd Q, sparse/SF/DF/THC qubitization, Bloch orbitals
1st Q, qubitization, plane waves (w. pseudopotential)

105–106 [886]
∼1000 [142]

1012–1014 [886]
∼1014 [142]

Transition metal catalysts
nickel/palladium oxide [561, 416]

2nd Q, sparse qubitization, Bloch/Wannier orbitals
1st Q, sparse qubitization, plane wave (dual)

104–105 [561]
17,505 [416]

1010–1013 [561]
1015 [416]

Magnesium/niobium alloys
(corrosion resistant) [800]

2nd Q, qubitization, plane wave (dual) 9000–500,000 1014–1019

Nitrogen vacancy center in diamond
(quantum sensing) [562]

2nd Q, DF qubitization, plane wave
(projector augmented-wave method)

5000–150,000 1012–1014

Table 2.3 Logical resource estimates for quantum phase estimation (QPE) applied to a range of material systems. We list state-of-the-art

resource estimates and refer to the references therein for prior estimates. The presented gate counts are for a single run of the phase estimation

circuit. The number of samples for all listed systems is 7, determined by the desired maximum failure probability, taken here as 0.1 (calculated

using [792, Lemma 1] which assumes that the median value is taken from a number of incoherent repetitions of QPE. The success probability

of a single run of QPE is 8/π2 [186]). QPE must be run a number of times if the overlap γ ≤ 1, in general contributing a multiplicative cost

of O(1/γ2) (though this may be reduced, as described in the main text). “Algorithm” denotes the phase estimation unitary considered (e.g.,

Trotterization, qubitization) as well as details about the quantization scheme (1st or 2nd), basis used, or factorization method used to compile

the unitary (sparse [140], SF= single factorized [140], DF= double factorized [212], THC= tensor hypercontraction [669]). The resource

estimates presented can be for different numbers of electrons and orbitals, and can have differing classical simulation complexities. As such,

the results may not be directly comparable, even within a single row of the table.
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42 2. Quantum chemistry

Many quantum resource estimates consider active spaces with a small number

of active orbitals, and so underestimate the resources required to achieve suf-

ficiently accurate results to be informative. It is an active area of research to

develop methods for increasing the resolution without increasing the basis set

size, such as perturbative approaches, downfolding techniques, and embedding

theories.

The end-to-end applications typically solved in the electronic structure prob-

lem can require between tens (e.g., structure determination, low temperature

properties) and millions (e.g., biologically relevant molecular dynamics) of

energy evaluations—each with different Hamiltonian parameters that may re-

quire preparing a new state to be measured. For example, a recent analysis

of quantum algorithms applied to pharmaceutical chemistry [896] highlighted

that to calculate the binding affinity between a drug molecule and its target

(free energy differences) requires sampling a range of thermodynamic config-

urations, resulting in millions to billions of single-point energy evaluations.

This introduces a large overhead when preparing a different state for each con-

figuration and measuring its energy [805], although alternative approaches may

provide more favorable scaling [941].

Comparable classical complexity and challenging instance sizes

The cost of exact diagonalization of the electronic structure Hamiltonian scales

exponentially with the number of electrons and basis set size. As such, classical

approaches to the electronic structure problem typically utilize a range of ap-

proximations that reduce their complexity to polynomial in the system size but

introduce a (potentially uncontrolled) deviation from the exact ground state,

leading to a bias in energy estimates and/or the expectation values of other ob-

servables. Approaches include Hartree–Fock (HF), density functional theory

(DFT), perturbation theory, configuration interaction (CI) methods, coupled

cluster (CC) methods, quantum Monte Carlo (QMC) techniques, and tensor

network approaches. The cheapest approaches can be applied to thousands of

orbitals but can be qualitatively inaccurate for strongly correlated systems. The

most expensive approaches are more effective for strongly correlated systems,

but their higher computational cost limits their applicability to roughly 100

spin orbitals. For example, [437] found that a density matrix renormalization

group (DMRG) calculation performed on an 86 spin orbital active space of the

cytochrome P450 enzyme molecule referenced in Table 2.2 required around

50 hours, using 32 threads, 48 gigabytes of RAM, and 235 gigabytes of disk

memory. We also refer to [1046] for a comparison of 20 first-principles many-

body electronic structure methods applied to a test set of seven transition metal

atoms and their ions and monoxides.
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2.1 Simulating electrons in molecules and materials 43

Due to their extended nature, material systems are most commonly targeted

with DFT. DFT can be applied to systems with thousands of electrons and or-

bitals but can lead to uncontrolled energy bias in strongly correlated systems.

QMC and tensor network methods have been successfully applied to proto-

typical models of material systems and are becoming increasingly practical

for more realistic models. We refer to [666, 784, 785, 900] for benchmarks of

classical electronic structure methods on hydrogen chains and Hubbard mod-

els scaling to the thermodynamic limit, which act as simplified models for real

materials.

Many of the techniques discussed above for computing ground and excited

states of chemical systems have been extended to explicitly simulate the time

dynamics of the electronic Hamiltonian. These include time-dependent HF,

real-time time-dependent DFT, and time-dependent CI & CC methods. In gen-

eral, the errors from the approximations made in these approaches are larger

than for their static counterparts. We refer readers to [682] for a more detailed

discussion of classical methods for real-time time-dependent electronic struc-

ture theory.

Speedup

It is nontrivial to determine the speedup of quantum algorithms for the elec-

tronic structure problem over their classical counterparts. If we consider the

subtask of determining energy eigenstates, then for speedup greater than poly-

nomial to be achieved, we require:

• The ability to prepare a trial state with nonexponentially vanishing overlap

with the ground state as the system size increases.

• Polynomially scaling (with system size) classical algorithms having an ex-

ponential growth in their approximation parameter (e.g., bond dimension,

number of excitations) as the system size increases.

Whether these two requirements can coexist in systems of interest is an active

area of research [670, 144]. Even if exponential speedups are not available, it

may be the case that quantum algorithms provide polynomial speedups over

exact classical algorithms—and potentially over approximate classical algo-

rithms [252].

From a complexity-theoretic viewpoint, we know that simulating the dy-

namics of a quantum system is a BQP-complete problem [705]. Combined

with the observed difficulty of classically simulating the time evolution of elec-

tronic structure Hamiltonians, this may be taken as evidence for the possibility

of an exponential speedup when simulating dynamics. In [81], quantum algo-

rithms for simulating the fully correlated dynamics of electrons in a pseudo-
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44 2. Quantum chemistry

spectral DVR or plane-wave basis [601, 77, 962] were compared against clas-

sical methods for mean-field dynamics. Large polynomial speedups were ob-

served, ranging from superquadratic to seventh power in the salient parameters,

depending on the relation between N and η.

NISQ implementations

Solving the electronic structure problem is one of the most widely studied

and promoted NISQ applications. The primary NISQ approach is the varia-

tional quantum eigensolver (VQE). There have been a number of experimental

demonstrations on small molecules, for example, [595, 442], as well as pro-

posals to simulate material systems [1068, 738, 301]. Related methods, such

as quantum computing–assisted QMC methods [550] have also been devel-

oped. Nevertheless, current device noise rates are too high to enable the run-

ning of circuits sufficiently deep that they can outperform classical electronic

structure methods, and the number of circuit repetitions required to measure

energy expectation values can be impractically large [440]. As such, there are

several challenges that must be overcome if heuristic NISQ approaches are to

scale to classically intractable system sizes and provide advantage over classi-

cal methods. There have also been proposals to simulate the electronic struc-

ture problem using analog quantum simulators [55], though to the best of our

knowledge, these have not yet been experimentally demonstrated and are lim-

ited by the high-precision requirements of the electronic structure problem.

Outlook

Simulating the behavior of electrons in molecules and materials has repeatedly

been identified as one of the most promising applications of quantum com-

puting. Nevertheless, the discussion above highlights several challenges for

current quantum approaches to become practical. Most notably, after incorpo-

rating the costs of initial state preparation and measuring observables, using

larger active spaces to capture dynamic correlation, and including algorithmic

repetitions to account for nonzero failure probabilities and sampling a range

of parameters, a large number of logical qubits and total T /Toffoli gates may

be required. The success of approximate classical methods for a wide range of

chemical problems sets a high bar for quantum simulations to achieve advan-

tage and encourages continued focus on resource estimations for end-to-end

applications.
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2.2 Simulating vibrations in molecules and materials 45

2.2 Simulating vibrations in molecules and materials

Overview

We seek the energy eigenstates, thermal states (i.e., statistical ensembles of

eigenstates at a given temperature), or dynamics corresponding to the Hamilto-

nian that describes the vibrations of the nuclei in a molecule or material around

their equilibrium positions. This Hamiltonian contains the kinetic energy of

the nuclei and the effective potential that they move on, which is determined

by the electronic potential energy surface (i.e., the electronic energy expressed

as a function of the nuclear coordinates). It is also possible to consider non-

adiabatic couplings between the vibrational degrees of freedom and electronic

(“vibronic”) or rotational (“ro-vibrational”) degrees of freedom.

Actual end-to-end problem(s) solved

Classically solving the Schrödinger equation while treating electrons and nu-

clei on an equal footing has prohibitively high computational cost for all but the

smallest systems. For systems where it is valid to separate the electronic and

nuclear motions (the Born–Oppenheimer approximation), we can imagine the

nuclei moving on the electronic potential energy surface (PES). For molecules

composed of light atoms (where relativistic effects can be neglected), the vi-

brations of the nuclei around their equilibrium positions provide a first-order

correction to the electronic energies and influence photo-emission/absorption

properties. For a system with K classical nuclei at equilibrium positions {RI},
the vibrational Hamiltonian can be written as

H = −
∑

I

∇2
I

2MI

+ Ve({RI}) ,

where Ve({RI}) denotes the nuclear potential determined by the electronic po-

tential energy surface, obtained by first solving the electronic Hamiltonian for

a range of nuclear positions. Computing vibrational eigenstates can be made

classically tractable by modeling Ve as a harmonic potential, which reduces

the problem to solving a number of coupled quantum harmonic oscillators.

The harmonic approximation can also be used when simulating vibronic tran-

sitions between vibrational energy levels on different PESs. However, due to

the coordinate change between the PESs—which acts as a squeezing and dis-

placement operation on the vibrational modes—exact simulation is #P-hard,

and therefore inefficient for both classical and quantum algorithms. Neverthe-

less, vibronic spectra can be efficiently approximated using classical [552, 811]

and quantum [553] algorithms in many regimes of interest.
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46 2. Quantum chemistry

To accurately describe nonrigid molecules or highly excited vibrational

states, additional anharmonic terms are required in the potential. These can

be obtained by performing higher-order fits of the potential, for example,

by expanding the potential Ve to degree d. Computing accurate solutions

of this Hamiltonian is prohibitively costly for many systems of interest.

Probing certain phenomena, such as vibronic spectra, internal conversion,

intersystem crossings, and conical intersections, additionally requires the

consideration of vibrations on multiple PESs and may require a description of

the nonadiabatic couplings between the different PESs (which must often be

explicitly determined [828]). We seek to prepare eigenstates or thermal states,

or simulate the dynamics of the anharmonic vibrational Hamiltonian, and then

measure the expectation values of observables with respect to these states.

Properties of interest include the following:

• The vibrational energy at the minimum of the PES, which provides a first-

order correction to the electronic energies—for calculating excitation ener-

gies, determining stable molecular structures, or finding reaction pathways

and rates.

• Determining transition probabilities between states and transition dipole

moments—for calculating infrared/Raman spectra between vibrational

levels of the same electronic state or vibronic spectra between vibrational

levels of different electronic states.

• Measuring the occupancy of vibrational modes as a function of time follow-

ing excitation, to understand vibrational energy transfer and relaxation in

chemical systems (i.e., internal conversion and intersystem crossings).

Thermal states ρ ∝ e−βH (with β = 1/kBT , where kB is the Boltzmann con-

stant and T the temperature) are often of greater interest in the vibrational case

than in the electronic case; vibrational energies are on the order of kBT and

so excited vibrational states are populated even at room temperature. This can

be contrasted with the electronic structure problem, where the larger electronic

energy gaps of many molecules mean that ground states are typically of pri-

mary interest at room temperature.

Dominant resource cost/complexity

A molecule with K atoms has M = 3K − 6 (M = 3K − 5 for linear molecules)

vibrational modes. Each vibrational mode excitation is treated as a distinguish-

able particle and so the wavefunction does not need to be explicitly sym-

metrized. The Hamiltonian is discretized using a basis set of vibrational modal

functions {χi}Ni=1
, for example, the truncated eigenfunctions of the quantum
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2.2 Simulating vibrations in molecules and materials 47

harmonic oscillator Hamiltonian, pseudo-spectral (Fourier) discrete variable

representations, or grids.

The vibrational wavefunction can be stored in a first-quantized represen-

tation using M log(N) qubits, where the basis function of each vibrational

mode is specified in binary (or an equivalent representation, such as the Gray

code [897]). Alternatively, one can use second-quantized representation using

MN qubits [813].

Preparing the desired eigenstate or thermal state, or simulating the dynamics

can be achieved using a range of quantum algorithms, including quantum phase

estimation, quantum singular value transformation, adiabatic state preparation,

variational quantum algorithms, Gibbs sampling, and Hamiltonian simulation.

These methods are discussed in more detail for the electronic Hamiltonian,

as the explicit costs of many of these methods have not yet been determined

for simulating vibrations. Nonetheless, many of the same high-level considera-

tions apply. The complexities of subroutines to prepare eigenstates and extract

observables are determined by the following observations:

(i) All methods scale as Ω(1/ϵ) to measure the desired observable to an er-

ror of ±ϵ. For the energy, we typically seek ϵ ∼ (1–10) cm−1 ≈ (4.56 ×
10−6)–(4.56 × 10−5) Hartree.4 For comparison, the largest matrix ele-

ments in the vibrational Hamiltonian (the harmonic couplings) are typi-

cally on the order of 1000 cm−1, and there areO(M) such terms [899]. As

such, the ratio ∥H∥1/ϵ that features multiplicatively in the complexity of

quantum phase estimation (at least, variants based on qubitization) can

be on the order of 104 (or larger) for modest system sizes with M ≈ 100.

(ii) To date, only product formula–based methods have been quantitatively

studied in the context of providing coherent access to the vibrational

Hamiltonian. If expanding the Hamiltonian as a linear combination of

Pauli operators, the number of terms grows as O(MdN2d) for a degree d

of anharmonic terms considered in the Hamiltonian (often at least 4th or-

der). An alternative approach is to consider the Hamiltonian discretized

by a real-space grid or Fourier pseudo-spectral basis, where the position

and momentum operators can be easily applied [732, 731].

Existing resource estimates

To date, there have been no end-to-end resource estimates for the vibrational

structure problem. In terms of initial steps in this direction, [897] considered

4 Due to the close historical ties with spectroscopy, in vibrational chemistry it is common to see
energies expressed as wavenumbers. Interconversion can be performed using the Planck
relation.
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48 2. Quantum chemistry

the resources required to map vibrational operators to qubit operators, [899]

compared the number and magnitude of terms in vibrational Hamiltonians to

those in electronic structure Hamiltonians, and [995] estimated the number

of terms and Trotter steps required to perform quantum phase estimation on

polyyne molecules.

Caveats

Quantum algorithms and many (but not all [1092]) classical algorithms for

simulating the vibrations of nuclei require the availability of an electronic

PES, from classical calculations. For a grid-based interpolation of the multi-

dimensional PES with h points per dimension, we require O(hM) PES eval-

uations. Nevertheless, several interpolation techniques and adaptive methods

have been developed to obtain high-accuracy PESs, at lower costs. Moreover, a

few molecules with classically challenging vibrational spectra have been iden-

tified with classically easy-to-compute electronic PESs [899].

There has been less work on the number of vibrational basis states required

to achieve a given accuracy than in the electronic case. While rigorous results

exist for more simple bosonic Hamiltonians [991], the truncation level N has

not yet been established for anharmonic potentials.

Comparable classical complexity and challenging instance sizes

A hierarchy of approximate classical methods has been developed for comput-

ing vibrational eigenstates, which trade increased accuracy for increased cost.

Vibrational states with a multireference nature—which are required to describe

vibrational resonances that arise due to near degeneracies between different

vibrational eigenstates, resulting from anharmonicities in the PES—require

more accurate (and thus costly) methods. Moreover, nonrigid molecules re-

quire a higher-degree approximation of the PES, leading to an increased cost

for classical methods—and potentially increasing the complexity of the result-

ing eigenstates. For such challenging systems, accurate classical results have

been obtained for molecules with G = 20–30 atoms [237, 84, 989, 99].

Recently, a number of quantum-inspired classical algorithms (see [811, 810]

and references therein) have been developed for classically approximating the

results of Gaussian boson sampling experiments. These experiments have been

proposed as analog simulators of harmonic vibrational phenomena, includ-

ing vibronic spectra and vibrational dynamics (see §NISQ implementations,

below). This reduces the regime where quantum advantage may be possible

and reinforces the necessity of considering anharmonicities in the vibrational

Hamiltonian [811].
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2.2 Simulating vibrations in molecules and materials 49

For a review of classical algorithms for simulating coupled vibrational and

electronic degrees of freedom, we refer to [1092, 597]. Commonly used al-

gorithms include multiconfigurational time-dependent Hartree (MCTDH) and

the ab initio multiple spawning method (AIMS).

Speedup

The speedup for quantum algorithms in computing vibrational eigenstates de-

pends on the overlap and error convergence of classical trial states to the true

eigenstate and energy. This has yet to be determined for systems of interest.

Nevertheless, in spectroscopic calculations that start from a classically easy-to-

prepare state, the overlap between the initial state and a desired excited state

becomes a quantity of interest—corresponding to the absorption intensity—

rather than a limiting factor on the calculation. For example, in [898] it was

proposed to use quantum phase estimation to project from the initial state into

other eigenstates with probability given by the squared overlap between the

states. However, while a single (exponentially costly) classical diagonalization

of the vibrational Hamiltonian would provide complete access to the entire

vibrational spectrum, a large number of repetitions of the quantum algorithm

would be required to reconstruct the spectrum.

As discussed above, the development of recent quantum-inspired algo-

rithms [811, 810] has reduced the prospect of achieving quantum advantage

for vibrations in harmonic potentials, motivating the need to include an-

harmonicities in the vibrational Hamiltonian, or to consider more complex

models that nonadiabatically couple vibrational and electronic degrees of

freedom. We refer to [597] for a discussion of the classical complexity of

simulating such models.

NISQ implementations

There have been proposals to apply variational algorithms to solve the vibra-

tional structure problem [750, 813, 897, 899], but additional developments are

required in order to implement sufficiently deep circuits to surpass classical

methods, and the number of circuit repetitions required to measure energy ob-

servables is likely a bottleneck [899].

There have also been several proposals and experimental demonstrations

for using analog quantum simulators to simulate molecular vibrations. Analog

simulations have been performed for zero and finite temperature vibronic spec-

tra [553, 1015] as well as vibrational dynamics [946]. We note that these ap-

proaches use harmonic approximations for the vibrational potential, and can be

approximated efficiently by classical algorithms in some regimes [811]. There

have also been analog quantum simulations of systems with coupled electronic
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50 2. Quantum chemistry

and vibrational degrees of freedom (typically via a linear vibronic coupling

model) including simulations of conical intersections [1016, 1036, 1001] and

vibrational assisted energy transfer [443].

Outlook

Further work is required to identify target systems that are challenging to sim-

ulate classically, but that may be amenable to quantum algorithms. In addition,

existing quantum algorithms need to be further optimized for the accuracy re-

quired in vibrational structure problems and the form of the vibrational Hamil-

tonian. This will enable resource estimates for end-to-end applications, such

as estimating vibrational spectra or simulating vibrational dynamics.
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Nuclear and particle physics

Simulating nuclear and particle physics is an inherently quantum problem.

There have been proposals to use quantum computers to accelerate simula-

tions of quantum field theories, nuclear physics, neutrino physics, and quan-

tum gravity [104]. In this chapter, we focus on the simulation of quantum

field theories and nuclear physics, as these have received the most attention

in the literature to date and are the closest to having end-to-end resource es-

timates available. While not covered explicitly in this chapter, the building

blocks of quantum algorithms for data analysis in high-energy physics [340]

can be found in Chapter 20 on variational quantum algorithms and Chapter 9

on machine learning. For existing reviews of quantum computing for nuclear

and particle physics, we direct the reader to [104, 844, 92, 404, 632, 105, 110].

The authors are grateful to Zohreh Davoudi and John Preskill for reviewing

this chapter.

3.1 Quantum field theories

Overview

We seek the static and dynamic properties of quantum field theories, specif-

ically gauge field theories and scalar field theories. Gauge field theories de-

scribe the interactions between matter and/or gauge degrees of freedom and

can be classified by their symmetry groups, such as U(1) (describing quantum

electrodynamics), SU(2) (the weak interaction), and SU(3) (quantum chro-

modynamics). Scalar field theories describe interactions between scalar fields,

such as the Higgs field or ϕ4 theory.
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Interacting quantum field theories are typically not analytically solvable, and

techniques such as perturbation theory are only accurate in some parameter

regimes. For example, low-energy quantum chromodynamics (QCD), relevant

to quark confinement and hadron formation, cannot be treated perturbatively.

As such, complex scattering processes at particle accelerators are currently

treated with a combination of first-principles calculations and approximate

phenomenological methods.

To tackle quantum field theories numerically from first principles, lattice

field theory is employed. The Lagrangians arising from lattice field theory can

be numerically solved on classical computers using Euclidean Monte Carlo

methods, which have proven highly efficient and accurate for a number of static

quantities, including hadron masses, static matrix elements of (primarily) time-

local operators between hadronic states, and even certain properties of light

nuclei [332, 333, 44]. However, these classical Monte Carlo methods become

intractable due to a sign problem in two regimes: (i) at high fermion density (of

considerable scientific interest for understanding the decomposition of neutron

stars and large atomic nuclei) and (ii) in simulations of real-time dynamics

(e.g., scattering problems). Hamiltonian formulations of these problems are

challenging due to the size of the required Hilbert space. As such, there have

been a number of proposals to use quantum computers for calculating the static

and dynamic properties of matter described by scalar and gauge field theories.

For further background, see [844, 104, 761] and references therein.

Actual end-to-end problem(s) solved

Classical computational methods for lattice field theories have produced a

number of insights, including high-precision computations of fundamental

quantities (such as the muon’s magnetic moment and quark masses), tests of

beyond-the-Standard-Model physics (such as charge conjugation and parity

(CP) violation and beyond-Higgs theories), and nuclear cross sections with

dark matter candidates or neutrinos. For a more complete and detailed list, we

refer the reader to [333, Page 6].

We primarily focus on the case of lattice field theories in the Hamiltonian

formulation, which explicitly separates temporal and spatial degrees of free-

dom [640] and discretizes the d-dimensional space using an Ld lattice (which

may be noncubic). Matter degrees of freedom (e.g., quarks, scalar fields) are

placed on the vertices of the lattice. Gauge degrees of freedom (e.g., the value

of the electromagnetic field) are placed on the links between lattice sites. Dy-

namical simulations proceed by initializing the system in a desired state [82],

performing time evolution under the Hamiltonian, and measuring relevant ob-

servables. See [588] for an example of simulating scalar field theories. Static
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simulations aim to prepare a state of interest, such as the ground state of a col-

lection of quarks representing a composite hadron, and then measure observ-

ables of interest, including binding energies, as well as structural and reaction

properties.

Quantum simulations of lattice field theories may be incorporated as part

of a larger (multiscale) computational workflow. For example, when studying

scattering processes (such as those that occur at particle accelerators), it is not

necessary to simulate the entire scattering process on a quantum (or classical)

computer. Instead, the scattering cross section can be separated into short- and

long-distance contributions, which can be computed using perturbative and

nonperturbative (e.g., quantum or classical simulation of lattice gauge theories)

methods, respectively [413, 103].

Dominant resource cost/complexity

In this section, we focus predominantly on the simulation of dynamics in lattice

gauge theories (LGTs), as the majority of studies to date have considered this

application. In the standard formulation, one allocates one qubit per fermion

(or antifermion) type per site of an N = Ld lattice. Each gauge degree of free-

dom (one in U(1), three in SU(2), eight in SU(3)) requires its own register

associated with each edge between lattice sites. The quantum numbers associ-

ated to the gauge degrees of freedom are encoded in binary, up to a maximum

cutoff value Λ, so the corresponding register requires log(Λ) qubits. It was

shown in [991] that for time evolution performed with fixed lattice spacing,

the cutoff can be set as Λ = Λ0 + Õ(T ) · polylog(N/ϵ), where Λ0 is the max-

imum initial value of the gauge fields, T is the time evolution duration, and

ϵ is the resulting error in the final state. Hence, the overall number of qubits

required to store the state of the system scales as

O
(
Ld log

(
Λ0 + T polylog

(
Ld

ϵ

)))
.

Algorithms for implementing time evolution under LGT Hamiltonians

are presented in [991, 927, 593, 852, 292, 334, 873]. It is necessary to

(approximately) maintain gauge invariance during the simulation, which

can be achieved either by the choice of formulation, by actively protecting

symmetries [487, 994], or by detecting and eliminating the gauge-violating

states [960, 864]. As an example of the first option, one can calculate the

desired Hamiltonian matrix elements on the fly using Clebsch–Gordon

coefficients [213], but this is expensive in terms of elementary quantum

operations [593]. An alternative approach described in [292] encodes only the
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physical transitions in the SU(3) gauge theory. This method requires many

controlled operations and a large classical precomputing overhead.

Existing resource estimates

The number of T gates required to simulate instances of the lattice Schwinger

model (U(1) LGT in d = 1 with both matter and gauge degrees of freedom)

was studied in [927]. That work considered the resources required to perform

Trotterized time evolution and estimate the electron-positron pair density. The

most complex simulations analyzed (64 lattice sites, cutoff of Λ = 8) required

5 × 1013 T gates per shot, and 333 logical qubits. Such a circuit would need

to be repeated O(1/ϵ2) times to estimate the pair density to accuracy ϵ; this

overhead could be improved to O(1/ϵ) using quantum amplitude estimation at

the expense of increased gate depth [927]. These estimates were later improved

in the small system-size, long-time, or low-error regime using algorithms based

on qubitization with quantum signal processing [892]. Note that a simulation

of the 64-site lattice Schwinger model with Λ = 8 is well within the range of

classical simulations [389, 734].

Reference [593] performed similar resource estimates for the simulation of

dynamics in U(1), SU(2), and SU(3) LGTs for d = 3. These resource estimates

were performed for synthesizing the time evolution operator, with choice of

simulation parameters inspired by the following tasks: computing transport

coefficients relevant to the study of quark-gluon plasmas, simulating heavy ion

collisions, and computing the hadronic tensor of the proton—although we note

that the costs of initial state preparation and observable measurements are not

included in these resource estimates. Logical qubit counts ranged from 104 to

108, while T gate counts ranged from 1017 to 1056. The large constant factors

present in these resource estimates stem partly from the use of quantum arith-

metic (e.g., constituting 99.998% of the gate count in the most expensive calcu-

lations [593]), and partly from the decomposition of the plaquette term, which

is exponential in the number of colors. The large gate counts also arise from

the value chosen for the error in the time evolution operators ϵ = 10−8, which

may be overly conservative when viewed in conjunction with other sources of

error.

These gate counts can be reduced significantly using the approach of [334],

which investigated alternative ways of representing the simulation, allowing

for an improved grouping of terms in the product formula. These ideas were

illustrated for SU(2) in 1+1D, but can likely be generalized to more complex,

higher-dimensional LGTs.

Nevertheless, we note that any implementation scaling as Ω(T L3) (i.e., lin-

early in spacetime volume) already faces a factor of 108 for T = L = 100,
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highlighting the potentially large resource counts of simulating quantum field

theories. Recent work presented an algorithm for simulating the time evolu-

tion of LGTs that achieves this optimal complexity, up to polylogarithmic

factors [873]. This work uses a number of subroutines for Hamiltonian sim-

ulation [479, 718, 615] and requires locality-preserving fermion- and boson-

to-qubit mappings. Resource estimates were carried out for U(1), SU(2), and

SU(3) LGTs. For simulating time evolution in an SU(3) LGT on a lattice with

T = L = 100, the algorithm required approximately 1021 T gates and 6 × 107

logical qubits. Despite the large improvements compared to [593], the signif-

icant discrepancy from the expected lower bound of 108 discussed above sug-

gests that there is further opportunity for optimization in the implementation

of algorithms for simulating LGTs.

Caveats

Additional investigation is required to better quantify the theoretical uncer-

tainties arising from discretization, finite-volume, and Hilbert space truncation

effects of quantum computing formulations, as well as the algorithmic errors

present in quantum simulation algorithms applied to lattice and scalar field

theories.

For example, discretization of the continuous field theory to the lattice set-

ting introduces a number of nuances (which are also present in classical ap-

proaches but must be considered afresh in quantum calculations). As discussed

in [970, 598], discretization of the fermion field breaks the Lorentz invariance

of the fermion kinetic term, which introduces unphysical additional flavors of

fermions (known as the fermion doubling problem). This issue can be miti-

gated in several established ways, each with their own merits and drawbacks

for quantum simulation [747]. It is also necessary to carefully track other er-

rors resulting from discretization and ensure that these vanish when scaling

and extrapolating to the continuum limit [588, 231].

As noted in [104, Section 6b] and [292, 105], there are a number of possible

representations/basis sets that can be used for the gauge degrees of freedom,

and it is currently unclear which choice is optimal for quantum simulation.

Comparable classical complexity and challenging instance sizes

The end-to-end scattering processes typically considered at particle accelera-

tors are too complex to be solved from first principles and are instead tackled

using a range of approximate techniques [413]. These computations often in-

clude parameters obtained from first-principles LGT calculations on simpler

systems, and they typically proceed through a Lagrangian formulation, rather

than a Hamiltonian formulation. This leads to Monte Carlo sampling of a path
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integral in Euclidean spacetime, the application of which to dynamical prob-

lems or static problems with high fermion density is limited by the fermionic

sign problem [793]. For example, the phase diagram of QCD and the exis-

tence of exotic phases at extreme densities, in and out of equilibrium, have

eluded classical methods. Nevertheless, classical approaches have been very

effective for static problems with low fermion density and for dynamical scat-

tering problems at low energy and low inelasticity; for a review of current

state-of-the-art computations and limitations, see [333, 585] and companion

whitepapers referenced therein.

Recent work has begun to investigate using tensor network methods to simu-

late the Hamiltonian formulation of LGTs; see, for example, [389] (d = 2, L =

16, U(1) LGT with gauge field cutoff Λ = 1) and [734] (d = 3, L = 8, U(1)

LGT with gauge field cutoff Λ = 1). Like quantum simulations, tensor net-

work approaches are sign-problem free and thus may be of interest in regimes

out of reach of conventional Monte Carlo–based approaches. However, ten-

sor network approaches are currently limited to small system sizes, and often

need to be verified by comparing to other methods, as they do not come with

provable guarantees on the bond dimension required for capturing the entan-

glement structure of the states present in LGTs. For recent reviews on the use

of tensor networks to simulate LGTs, we refer the reader to [91, 735].

Speedup

For simulations with a sign problem, classical Monte Carlo methods are expo-

nentially costly in system size [997]. In addition, it was observed that the bond

dimensions required for tensor network approaches increase rapidly with sys-

tem size [734], suggesting the potential for exponential quantum speedups for

dynamical problems. This suggestion is reinforced by the BQP-completeness

of the simulation of certain field-theoretic processes [589]. Nevertheless, the

constant prefactors for quantum simulations of LGTs are currently high, and

we require the (currently underexplored) ability to efficiently prepare initial

states of interest.

NISQ implementation

A number of works have investigated the simulation of scalar or gauge field

theories on noisy digital, or analog, quantum simulators. A common strategy

is to map the lattice field theory Hamiltonian to that of a bosonic system, such

as cold atoms or trapped ions; see, for example, [104, 105, 632, 92] and refer-

ences therein. While these techniques appear promising for simple Hamiltoni-

ans, such as the Schwinger model, it may be challenging to engineer the more

complicated interactions required in nonabelian gauge field theories. There
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have also been works applying variational algorithms to lattice field theories,

such as [641, 67, 699], as well as digital simulations of the time dynamics of

the lattice Schwinger model [631, 387].

Outlook

Investigations into how quantum computers can be used to complement clas-

sical methods for simulating lattice field theories are advancing rapidly. While

quantum computers can, in principle, efficiently simulate the complex scatter-

ing experiments performed in particle accelerators, the resources required to do

so would be impractical using currently known techniques. Future work must

determine the best targets for quantum simulations and reduce asymptotic scal-

ing as well as constant prefactors. In particular, the qubit encoding (currently

scaling as O(Ld) qubits for a lattice in d spatial dimensions with each dimen-

sion having L sites) means that a large number of logical qubits will likely be

required for computations of interest where, as illustrated by examples above,

we may consider L = 10–100 to challenge classical approaches.

3.2 Nuclear physics

Overview

Nuclear physics describes the behavior of individual nuclei, as well as that of

dense nucleonic matter, such as neutron stars. The structure of nuclei can be

approximately described using the shell model (see [337] for an overview),

a phenomenological model with parameters fitted to experimental observa-

tions. However, high-accuracy descriptions of nuclear structure, exotic nuclei,

accurate scattering cross sections, and nonequilibrium phenomena require a

first-principles treatment. Describing the properties of nuclei from first princi-

ples (e.g., lattice quantum chromodynamics simulations) is beyond the reach

of analytic and current computational capabilities for all but the simplest nu-

clei [369, 108, 332]. Nevertheless, one can often integrate out the short-range

physics to obtain effective field theories (EFTs) that describe the interactions

of nucleons. The prototypical example is chiral effective field theory, which

describes the interactions of nucleons and pions (pions, which have mass less

than 6× smaller than that of the proton, are mediators of the residual strong

interaction between pairs of nucleons). The parameters of the EFT can be

inferred from experiments or directly from lattice quantum chromodynamics

(QCD) calculations, resulting in a many-body Hamiltonian that describes the

formation, structure, and potential decay of nuclei.
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Actual end-to-end problem(s) solved

An EFT provides a many-body Hamiltonian describing how nucleons inter-

act. This quantum many-body problem can be tackled using a range of clas-

sical methods, which employ different mathematical approaches to approxi-

mately solve the nuclear many-body Schrödinger equation including quantum

Monte Carlo (QMC) methods [232], the no-core shell model (NCSM) [100],

the coupled cluster (CC) method [485], the self-consistent Green’s function

(SCGF) method [230], the in-medium similarity renormalization group (IM-

SRG) method [958], and nuclear lattice methods [658] (a related review article

discussing inputs to these calculations is given by [987]).

A common problem is to prepare the ground state of a collection of nucle-

ons, in order to compute nuclear binding energies and determine if a given

nucleus is stable (e.g., determining the long lifetime of 14C [740, 485]). Sim-

ulations can also be used for computing scattering cross sections, in order to

analyze experiments on nucleus-neutrino scattering [877], beta decay [472],

and nuclear reactions. Reactions, such as nuclear fission and nuclear fusion,

can also be studied using explicitly time-dependent approaches [115], although

these have higher computational costs than static computations and are often

based on semiclassical, mean-field, or other phenomenological models. Simu-

lating both fusion and fission reactions has a number of use cases, such as an

improved understanding of nuclear astrophysics, where reactions commonly

occur at energies too high or too low to be replicated in experiments [796].

Dominant resource cost/complexity

The prototypical EFT for nuclear interactions is chiral effective field theory.

At very low energies, the theory can be expressed as a convergent perturbative

expansion (chiral perturbation theory). However, for the larger energies rele-

vant to multi-nucleon systems, the theory becomes nonperturbative. Despite

several notable successes, developing EFTs that converge across a wider range

of scenarios remains an active area of research [987, 489].

At low energies (below the rest mass of the pion), it can be appropriate to

apply pionless EFTs, which integrate out the pions, leading to implicit inter-

actions between nucleons, including a 3-nucleon contact interaction required

at leading-order by renormalization. At higher energies, it is necessary to ex-

plicitly account for the effect of pions. Pionfull EFTs are typically studied nu-

merically, as it can be difficult to obtain analytic predictions [987]. In a formu-

lation known as the one-pion-exchange Hamiltonian, pions are integrated out,

leading to a long-range two-body interaction between nucleons, which decays

exponentially with distance. In an alternative formulation, known as dynam-
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ical pion EFT, the (relativistic) pions and their interaction with nucleons are

explicitly simulated.

A common formulation of EFT simulations is to project the problem onto

a lattice in position or momentum space [667]. For quantum simulations for-

mulated on a lattice, a typical second-quantized mapping uses 4 qubits per

lattice site for nucleons (two isospin degrees of freedom and two spin degrees

of freedom), although additional qubits may be required if using a fermion-to-

qubit mapping that maintains the locality of the fermionic Hamiltonian (e.g.,

6 qubits per site [1028]). If simulated explicitly (e.g., dynamical pion EFT),

the value of the spin-0 pion field at each lattice site can be stored using a num-

ber of qubits scaling logarithmically with the pion energy cutoff by storing its

quantum number in binary.

An alternative approach is to project the EFT Hamiltonian onto a single-

particle basis, commonly harmonic oscillator eigenfunctions [153]. In second

quantization, a qubit is required per single-particle (iso)spin mode. However,

this mapping can lead to long-range interactions between modes, and in the

most general case, up toO(N6) distinct terms for an N-mode system [104, 957].

Quantum algorithms that prepare energy eigenstates (or good approxima-

tions thereof) scale either as 1/γ (where γ is the overlap of the initial state with

the desired eigenstate) [688], or with the minimum gap size along an adia-

batic or thermalizing path. If we are only interested in measuring the energy of

the state, this can be obtained using the quantum phase estimation algorithm,

which also projects the system into the corresponding energy eigenstate. The

cost of this approach scales asO(1/γ2) in terms of the original overlap γ, which

can be improved to O(1/γ) using amplitude amplification at the expense of in-

creased circuit depths. Once the desired state has been prepared, observables

can be measured to precision ϵ with complexity O(1/ϵ2) (direct sampling) or

O(1/ϵ) (using amplitude estimation, also requiring coherent state preparation,

e.g., via amplitude amplification).

The above algorithms for preparing states (and related algorithms for per-

forming time evolution in dynamics simulations) require access to the Hamil-

tonian, typically implemented via block-encoding or Hamiltonian simulation.

Existing resource estimates

The gate costs of Hamiltonian simulation using product formulas for neutrino-

nucleus scattering in pionless EFT were studied in [877]. The T -gate costs of

Hamiltonian simulation using product formulas, as well as quantum phase es-

timation, were estimated in [1028] for pionless EFT, one-pion-exchange EFT,

and dynamical pion EFT (all formulated on a lattice). As an example, resources

to simulate the dynamics of 40 nucleon system ranged from 4 × 1012 T gates
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and 6000 logical qubits for pionless EFT, to 2.0×1024 T gates and 6000 logical

qubits for one-pion-exchange EFT, to 5.2 × 1049 T gates and 168,000 logical

qubits for dynamical pion EFT (all to an error ϵ = 0.1). The resources re-

quired for the latter EFT are considerably higher, due to the qubit overhead

and worse error dependence that stems from explicitly simulating the pions.

Resource estimates for other parameter regimes can also be found in [1028],

where it is noted that higher-order EFTs are required for the accurate simula-

tion of medium- and large-mass nuclei, which may further increase simulation

costs.

Caveats

Developing accurate nuclear EFT Hamiltonians describing heavier nuclei is an

active research direction. Most studies are currently based on phenomenologi-

cal models, which are limited in their predictive capabilities. In some systems,

some higher-order EFTs provide sufficient accuracy, but only after fitting the

EFT coefficients to experimental data. We refer the interested reader to [987]

for a more detailed discussion.

Comparable classical complexity and challenging instance sizes

Classical approaches use similar techniques to those developed for the elec-

tronic structure problem, such as perturbation theory, Monte Carlo methods,

or coupled cluster approaches. References [232, 100, 485, 230, 958, 658, 523]

provide excellent overviews of state-of-the-art approaches. Classical methods

can provide outstanding agreement with experiments for the binding ener-

gies of small nuclei with 20–50 nucleons [523]. As a further example, re-

cent high-accuracy simulations of the 100Sn nucleus have improved the agree-

ment between theory and experiment for observed β-decay rates [472]. Time-

dependent simulations of dynamics or nonequilibrium phenomena are more

challenging and are an active area of research [115, 796]. We refer readers

to [233] for a detailed analysis of the capabilities and requirements of exascale

supercomputers in nuclear physics simulations.

Speedup

The majority of classical approaches for the nuclear structure problem are de-

signed to run in polynomial time with respect to the system size but introduce

errors due to the use of approximations (e.g., truncating the expansion in cou-

pled cluster methods) [523]. For quantum computers to achieve exponential

speedups, one needs to identify systems where (i) classical methods require an

exponential increase in resources to obtain accurate results and (ii) it is effi-

cient to prepare an initial state for the quantum computation with at least in-
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verse polynomially large (in terms of the system size) overlap with the desired

state. Recent initial investigations have explored whether these requirements

coexist in chemical systems [670]. We are not aware of similar work in nu-

clear physics, although it has been noted that the states obtained from classical

methods could be used as initial states for quantum algorithms [110].

For simulating the dynamics of nuclear systems, classical methods typically

proceed via mean-field methods, and exact simulations are limited to small

system sizes due their exponential scaling. In contrast, quantum algorithms are

able to simulate the dynamics of nuclear systems with a cost scaling polyno-

mially with the system size and desired accuracy.

NISQ implementation

Almost all of the work to date on demonstrating near-term quantum comput-

ing approaches for the nuclear structure problem has focused on variational

algorithms, such as [366, 724, 955, 929], or small-scale simulations of dynam-

ics [877, 1000]. There is currently no evidence that near-term quantum devices

will be able to implement sufficiently deep circuits to achieve advantage over

their classical counterparts with these methods.

Outlook

Nuclear physics presents a classically challenging quantum many-body prob-

lem that appears well suited to simulation on quantum computers. While there

are similarities to the electronic structure problem in quantum chemistry, which

has led to a transfer of several ideas, nuclear Hamiltonians are typically more

complex, involving (depending on the formulation) long-range interactions,

3-body interactions, multiple species of nucleons and pions, and interactions

with nontrivial spin and isospin dependence. The simulation of nuclear reac-

tion dynamics appears a particularly interesting target, and future work should

determine the resources required for end-to-end simulations, including state

preparation and measurement of observables.
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Combinatorial optimization

Combinatorial optimization problems are tasks where one seeks an optimal

solution among a finite set of possible candidates. In industrial settings, com-

binatorial optimization arises via scheduling, routing, resource allocation, sup-

ply chain management, and other logistics problems, where it can be difficult

to find optimal solutions that obey various desired constraints. The field of op-

erations research—which came to prominence after its application to logistics

problems faced by World War II–era militaries—applies methods of combina-

torial optimization (as well as continuous optimization) to these problem areas

for improved decision-making and efficiency in real-world problems.

Combinatorial optimization problems are also at the heart of classical the-

oretical computer science, where they are used to characterize and delineate

complexity classes, such as P and NP. Typical combinatorial optimization

problems have limited structure to exploit, and therefore quantum computing

most often only provides polynomial speedups. In fact, it came as a surprise in

the early days of quantum computing research that for a wide variety of such

problems, quantum computers do offer up to quadratic speedups via Grover’s

search algorithm [464]. Subsequently, much effort was devoted to understand-

ing how Grover search and its generalization, amplitude amplification, offer

speedups for various combinatorial optimization problems.

In this chapter, we cover several distinct approaches to solving combina-

torial optimization problems. First, we look at combinatorial optimization

through its relation to search problems, where Grover’s algorithm, or its

generalizations, can be applied to give a quadratic or subquadratic speedup.

Then, we cover several proposals—variational algorithms (viewed as an

exact algorithm), the adiabatic algorithm, and the “short-path” algorithm

[505, 329]—that have the potential to surpass the quadratic speedup of

Grover’s algorithm. We discuss the (limited) evidence that these approaches

could generate significant advantages, as well as the associated caveats.
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We do not specifically cover the large body of work on quantum approaches

for approximate combinatorial optimization (typically variational quantum al-

gorithms or quantum annealing). These algorithms usually translate the opti-

mization problem to energy minimization of a spin system with a Hamiltonian

that encodes the classical objective function. They apply some physically moti-

vated heuristics to efficiently generate solutions that have low energy, and seek

a better objective value than could be generated classically in a comparable

amount of time. An advantage of these approaches is that they are often more

compatible with noisy near-term hardware. While approximate optimization

remains an interesting direction, these quantum algorithms are heuristic and

there is a general scarcity of concrete evidence that they will deliver practical

advantages.

We refer the reader to [6] for a comprehensive survey of quantum methods

for combinatorial and continuous optimization.

The authors are grateful to Ashley Montanaro for reviewing this chapter.

4.1 Search algorithms à la Grover

Overview

Grover’s search algorithm [464] and its generalizations, such as amplitude am-

plification, are essential sources of quantum speedups. A straightforward ap-

plication of Grover search in the spirit of optimization is quantum minimum

finding [367, 48], which provides a quadratic speedup for finding the mini-

mizer of a function on a given set of elements.

As search is a generic primitive, Grover’s algorithm is widely applicable,

and it can speed up many subroutines, especially in algorithms for combina-

torial optimization. We list a few representative applications that demonstrate

how Grover’s algorithm may be applied to speed up combinatorial optimiza-

tion.

Actual end-to-end problem(s) solved

The goal is to solve a search problem, that is, decide whether there is an ele-

ment among a set of objects that satisfies some criterion, and if there is such

an object, find one. Many combinatorial optimization problems are fundamen-

tally search problems; a notable class of examples are graph problems, such as

finding a maximal independent set, a k-coloring, a lowest weight Hamiltonian
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cycle1 (called the traveling salesperson problem), or the shortest path between

two vertices.

For conceptual clarity, here, we focus on the prototypical Boolean satisfia-

bility problem, that is, SAT solving: given a Boolean formula in the so-called

conjunctive normal form, decide whether it has a satisfying Boolean assign-

ment (and if so, find one). A formula in this form consists of some constraints

(called clauses) each containing the logical AND of some variables or their

negation (called literals). We denote the number of Boolean variables by n and

the total number of literals of the formula by ℓ (typically ℓ ≥ n since each

variable should appear at least once).

Dominant resource cost/complexity

If there are at least m marked elements among N possible ones, then the search

problem can be solved with high probability by using O(
√

N/m) Grover itera-

tions. Each Grover iteration requires generating a uniform superposition over

the N elements starting from the all |0⟩ state and checking whether an element

is marked (in superposition), which can be implemented with gate costO(ℓ+n).

If the formula is satisfiable, then there is at least one solution, thus O(
√

2n)

Grover iterations suffice, giving an overall complexity of O((ℓ + n)
√

2n).

In some applications, it is useful to consider a generalization of Grover

search, amplitude amplification, which enables working with an arbitrary prior

distribution on the elements, unlike Grover’s algorithm which effectively uses a

uniform prior. The relevance of this extension can be seen through the example

of 3-SAT, which is a restricted version of SAT where each clause has at most 3

literals. A clever application of amplitude amplification described by Ambai-

nis [24] for solving 3-SAT more efficiently uses Schöning’s algorithm [908]

and thus generates a nontrivial prior distribution on the solutions.

The complexity of amplitude amplification is similar to that of Grover search

in general. If |ψ⟩ is the quantum state representing the prior distribution, so that

measuring the state yields a marked element with probability at least p, then

O(
√

1/p) “Grover iterations” suffice to find a marked element with high prob-

ability. The algorithm requires preparing the initial state |ψ⟩, and then each

iteration consists of a reflection 2|ψ⟩⟨ψ| − I around |ψ⟩ and checking whether

an element is marked (in superposition). The former reflection can be imple-

mented with two uses of the circuit that prepares |ψ⟩ from the all |0⟩ state, and

a reflection about the all |0⟩ state.

1 A Hamiltonian cycle in a graph is a cycle that visits each vertex once, not to be confused with
a quantum Hamiltonian.
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Existing resource estimates

There are several studies on the resource estimation of Grover-type

(sub)quadratic speedups. Due to the wide range of these problems, we

do not focus on explicit gate counts on any particular problem/implementation

variant, but rather list some prominent articles and illustrate their findings at a

high level [223, 895, 79, 217, 216, 532]. Unfortunately, these recent studies

revealed that quadratic or smaller speedups alone are unlikely to be useful

for the foreseeable future, unless the large overheads of current fault-tolerant

quantum computing schemes can be greatly reduced. For example, [223]

concluded that even if there is some reasonable advantage in quantum gate

counts for solving the constraint satisfaction problems that they consider,

the classical computation supporting the fault-tolerant quantum computation

actually voids the speedup in practice. They state that “Even when considering

only problem instances that can be solved within one day, we find that there

are potentially large quantum speedups available. ... However, the number

of physical qubits used is extremely large, ... . In particular, the quantum

advantage disappears if one includes the cost of the classical processing power

required to perform decoding of the surface code using current techniques.”

The most recent of the references listed above [532] estimates that achieving

a quantum advantage via a quadratic speedup requires at least a month-long

computation already if each iteration contains at least one floating-point

operation. The situation looks more promising for cubic and quartic speedups,

but unfortunately such improvements seem to require techniques beyond

Grover search.

Caveats

Grover originally described his result as “A fast quantum mechanical algo-

rithm for database search” [464]. If we work in the circuit model of quan-

tum computation, then strictly speaking Grover search gives a slowdown for

database search, as every Grover iteration needs to “touch” every element in the

database. If we anyway need to touch all N elements in the database, then the

best we can do is to simply go over every element in linear timeO(N). Grover’s

search circuit, on the other hand, would have gate complexity Õ(N3/2), clearly

worse than sequentially going through the entire dataset.

In the database scenario, we can only recover the quadratic speedup if we

assume that we can use a quantum random access memory (QRAM), with con-

stant (or logarithmic) cost for each database query. The analogous assumption

regarding ordinary RAM is often made in classical computer science, simply

because RAM calls are cheap in practice. However, since a RAM call should

be able to touch every bit of the database, from a circuit complexity perspective
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a RAM call must have gate cost at least N. On the other hand, from a time com-

plexity perspective, one can view a RAM call as a massively parallel piece of

computation implementable in a binary tree structure with logarithmic depth.2

While QRAM can also be implemented with a quantum circuit of O(log(N))

depth, a similar accounting might not be fair in the quantum case, depending

on the eventual cost of hardware implementation—especially if error correc-

tion of the QRAM is necessary and the entire QRAM circuit is implemented

in a fault-tolerant fashion.

Nevertheless, Grover’s algorithm can provide a quadratic speedup without

extra hardware assumptions when the elements of the list that we search over

can be easily generated and checked “on the fly.” For example, in the case

of SAT, we search over the 2n possible truth assignments, yet we can easily

check whether an individual assignment is satisfactory by simply substituting

the assignment into the formula and evaluating the resulting Boolean expres-

sion. This is the defining feature of problems in the complexity class NP, whose

solutions are efficient to verify.

Comparable classical complexity

For the unstructured search problem, exhaustive search is essentially the best

that can be done, with a running time ∼ ℓ · 2n. Of course, SAT seems to be far

from unstructured, but under the Strong Exponential-Time Hypothesis [558,

220] the best classical algorithm for SAT has running time 2n−o(n).

A similar argument holds for the generalized problem considered in the set-

ting of amplitude amplification: if we have some prior distribution, we can

classically find a marked element by sampling from this distribution roughly

1/p times. Since unstructured search is a special case of this problem, we can-

not hope for a better classical algorithm in general.

Speedup

The speedup is quadratic in terms of the number of required iterations if we

compare to corresponding naive classical algorithms. It can be shown that this

speedup is optimal in the black-box query model [122]. Moreover, we do not

expect that there would be a bigger than quadratic speedup in gate complex-

ity [210] in the general (non-black-box) case.

2 Viewing RAM as a low-depth circuit disregards issues regarding signal transmission.
Considering that the speed of light is finite and we have only 3 dimensions to fit the memory

cells into, a RAM call should asymptotically cost at least
3√

N time. In fact, state-of-the-art
clock speeds are already in a regime where the speed of light may be a bottleneck, so we
might eventually need to reconsider how the time complexity of RAM is modeled.
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Outlook

We have discussed how Grover search provides a quadratic speedup for SAT,

and how amplitude amplification yields a quadratic speedup for Schöning’s

3-SAT algorithm [908]. Since the best known 3-SAT solvers [526, 497]

have complexity O(1.308n)—only slightly better than Schöning’s O(1.334n)

complexity—this implies a close-to-quadratic quantum speedup. However,

note that this relates to worst-case complexity, and on practical instances, the

scaling can be much better.

We now comment on some of the other combinatorial optimization problems

where Grover’s algorithm can be used as a subroutine. One class of exam-

ples is graph-related problems. In the literature, these problems are most often

studied in the query model, therefore, here we also only discuss their speedup

in terms of query complexity. (Since these are (sub)quadratic speedups, we

know that the fault-tolerant resource estimates will be unfavorable anyway,

as discussed above.) For instance, the problem of finding the shortest paths

from a single source s in graph G = (V, E) to all other vertices v ∈ V can be

solved classically using Dijkstra’s algorithm in time O(|E| + |V | log |V |) if the

graph is provided with its adjacency list (and with query complexity O(|E|)),
whereas the quantum query complexity of this problem is Θ̃(

√
|V ||E|) [368].

Reference [368] determines the query complexity of several other graph prob-

lems such as deciding graph connectivity and strong connectivity as well as

finding the minimum-weight spanning tree. For all of these problems, there is

a similar (sub)quadratic quantum speedup.

One graph problem that is often mentioned in connection to quantum com-

putation is the (in)famous traveling salesperson problem. However, for this

problem, the best provable speedup is only subquadratic. The naive classical al-

gorithm runs in time Õ(n!), and Grover’s algorithm offers a quadratic speedup

over it. The best classical algorithm uses dynamic programming and runs in

time Õ(2n). Ambainis et al. [28] showed how to obtain a speedup over this

algorithm by combining classical precalculation with recursive applications of

Grover’s search resulting in time complexity Õ(1.728n) assuming that QRAM

calls have unit costs. Considering the overheads coming from the implemen-

tation of QRAM and fault tolerance, the traveling salesperson problem seems

to be one of the least likely candidates to achieve a practical quantum speedup

when the nodes have large degree. For bounded degree graphs there is slightly

more hope as quantum algorithms with close-to-quadratic speedups have been

devised [789] that do not require QRAM.

Finally, let us mention quantum walk algorithms, which can also be viewed

as a generalization of Grover search. However, quantum walks are more dis-
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tant relatives of Grover search and can only be applied in more specific set-

tings. They can be used for proving many nontrivial speedups in query com-

plexity, however, the resulting algorithms are often not practical due to high

space and/or gate complexity overheads, as is the case for the prototypical el-

ement distinctness problem. The query reduction is moderate N → N2/3 in

the number of elements N, but the corresponding quantum algorithm [25] un-

fortunately uses a QRAM consisting of roughly N2/3 registers; moreover, the

QRAM must be able to store data in superposition.

There are nevertheless more practical quantum walk algorithms applicable,

for example, to speed up backtracking algorithms [775, 27, 569, 743], which

are among the most successful and widely used classical heuristics for solv-

ing SAT instances in practice. The quantum algorithm can achieve an essen-

tially quadratic speedup compared to its classical backtracking variant. This

approach is applicable to the traveling salesperson problem in the special case

that the graph has degree at most 4 [789]. For resource estimates, see the ear-

lier quoted reference [223]. A further extension of this algorithm is applica-

ble to branch-and-bound algorithms [776, 247], and in some cases yields run-

ning times that are substantially better than what we know can be achieved

by naively using Grover’s algorithm. For example, it can find exact ground

states for most instances of the Sherrington–Kirkpatrick model [933] in time

O(20.226n) [776], which means about a quadratic speedup compared to classi-

cal methods. Branch-and-bound-based speedups can also be applied to solve

mixed-integer programs, which include certain formulations of the portfolio

optimization problem [247].

There is a plethora of other applications of quantum search speedups,

ranging from machine learning [1040] to dynamic programming solutions

of other NP-hard problems [28], which we do not discuss here for length

constraints and due to discouraging resource estimates for (sub)quadratic

quantum speedups.

4.2 Beyond quadratic speedups in exact combinatorial

optimization

Overview

The discovery of Grover’s algorithm [464] (later generalized to amplitude am-

plification) has long been the source of enthusiasm that quantum algorithms

can be advantageous for combinatorial optimization, as it leads to quadratic

asymptotic speedups for many concrete end-to-end search problems in this

area. However, resource estimates indicate that early and intermediate-term
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4.2 Beyond quadratic speedups 69

fault-tolerant devices will fail to deliver practical advantages when the avail-

able speedup is only quadratic, due to intrinsic overheads of quantum computa-

tion compared to classical computation (see, e.g., [223, 79]). Thus, identifying

whether beyond-quadratic speedups are available is of principal importance for

identifying end-to-end practical advantages in combinatorial optimization. De-

spite the fact that Grover’s algorithm is optimal in the black-box (unstructured)

setting, superquadratic speedups could be possible when the combinatorial op-

timization problem has a certain structure that can be better exploited by a

quantum algorithm than a classical algorithm.

Unfortunately, many proposals that could conceivably deliver super-

quadratic speedups lack rigorous theoretical performance guarantees. This

includes the quantum adiabatic algorithm and variational quantum algorithms

such as the quantum approximate optimization algorithm (QAOA) [384],

which is typically formulated to give approximate solutions, but at higher cost

could also be used to find exact solutions. Limited analytic and numerical

work provides some evidence (e.g., [179, 928]) that QAOA could outper-

form a vanilla application of Grover’s algorithm to the k-SAT problem, but

provides no definitive conclusion on the matter. Alternatively, a line of work

in [505, 329] studies a different algorithm (related in certain aspects to the

quantum adiabatic algorithm) and provides rigorous running time guarantees

that slightly surpass Grover’s algorithm.

However, while these algorithms may have a speedup over Grover’s algo-

rithm, this does not entail a superquadratic speedup over the best classical al-

gorithm, which can often exploit structure in other ways to do much better

than exhaustive search. Overall, it remains an open question whether quantum

algorithms can provide superquadratic speedups for useful problems in exact

combinatorial optimization.

Actual end-to-end problem(s) solved

Combinatorial optimization problems ask to find which solution is optimal

among a finite set of possible candidates. Here, we stick to binary optimiza-

tion on n bits, where the universe of possible candidates are bit strings z =

(z1, z2, . . . , zn) ∈ {1,−1}n. The input to the problem is a compact description

of some cost function C : {1,−1}n → R, and the desired output is the string

z∗ for which C is minimized. Let E∗ = C(z∗) denote the optimal value of the

cost function. For simplicity we assume z∗ is unique and E∗ is known ahead of

time.3 This setting contrasts with that of approximate optimization, where the

3 This assumption can often be relaxed at the expense of at most poly(n) overhead, for example,
by iterating over all possible values E∗ might take, which fall within a poly(n)-size range
when the cost function consists of only poly(n) constant-size (integer-valued) terms.
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acceptable outputs include a much larger set of strings z that are not necessarily

optimal solutions, but are still good enough, for example, because they achieve

a nontrivial approximation ratio |C(z)|/|E∗| with the optimal cost value. Classi-

cal and quantum algorithms for approximate optimization are often heuristic,

making it more difficult to systematically study the complexity of the algo-

rithms and the possibility that quantum algorithms may provide a speedup.

Concrete examples can be formed by choosing the function C(z) to be a low-

degree polynomial in the bits of z. For example, if C is a degree-2 polynomial

in z, this is a quadratic unconstrained binary optimization (QUBO) problem,

which is also equivalent to the classical Ising spin model from Eq. (1.3). If,

furthermore, every term of C has degree exactly 2 (no degree-1 or constant

terms) and every coefficient is either 0 or 1, then the problem is equivalent to a

MAX-CUT problem. Finally, if C is a sum of degree-3 terms of the form

zazbzc + zazb + zazc + zbzc + za + zb + zc ,

where

za, zb, zc ∈ {z1,−z1, z2,−z2, . . . , zn,−zn} ,

then the problem is equivalent to a MAX-3-SAT instance in conjunctive normal

form. To see this, note that if za = zb = zc = 1, the term evaluates to 7, and

for any other setting, it evaluates to −1. Thus, the solution z∗ that optimizes

C represents the bit string that minimizes the number of “unsatisfied” clauses

for which za = zb = zc = 1. This is easily generalized from MAX-3-SAT to

MAX-k-SAT.

For a fixed instance C, the quantum algorithms must find z∗ with high proba-

bility over measurement outcomes. If it does so for every C chosen from some

class of problem, we say it succeeds in the worst case. Alternatively, we can

consider ensembles of instances chosen from some class of problem; if for a

large fraction of instances from the ensemble, the algorithm finds z∗ with high

probability, then we say the algorithm succeeds in the average case.4 A com-

monly considered average-case ensemble is the Sherrington–Kirkpatrick (SK)

model [933], defined as

C(z) =

n∑

i=1

n∑

j=i+1

Ji jziz j where Ji j ∼ N(0, 1), (4.1)

4 A more typical definition of the average-case complexity of an algorithm is the expected
runtime required for it to find the solution z∗, averaged over both choice of instance and
internal algorithmic randomness (i.e., classical coin flips or quantum measurement outcomes).
This definition is related to the convention we follow, but it is more coarse grained as it does
not distinguish between the two types of randomness, the latter of which can be boosted by
repetition.
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where the coefficients Ji j are drawn randomly from a standard Gaussian dis-

tribution N(0, 1). The SK model is relevant in spin glass theory, and can be

generalized to higher-degree interactions, where it is referred to as the p-spin

model [345]. Another ensemble is the random MAX-k-SAT ensemble, where

MAX-k-SAT instances are generated by choosing each clause uniformly at

random with some fixed clause-to-variable ratio (see, e.g., [307]).

Dominant resource cost/complexity

A vanilla application of Grover’s algorithm to binary optimization prob-

lems achieves O∗(20.5n) running time, where notation O∗(2an) is shorthand

for poly(n)2an. We cover three approaches to solving binary optimization

problems on a quantum computer that have some potential to improve upon

this running time. Note that all of these algorithms require polynomial (in

fact, linear O(n)) space. However, their running time is expected to scale

exponentially in n.

• First, we consider variational quantum algorithms, using the QAOA [384]

as a representative. These algorithms are typically studied as efficient

(polynomial-time) quantum algorithms that produce approximate solu-

tions, that is, strings z , z∗ for which C(z) is small, but not optimal.

However, they may also be viewed as exact algorithms, since, if repeated

a sufficient number of times, they eventually produce the exactly optimal

z∗. The QAOA fixes a depth parameter p and variational parameters

γ = (γ1, . . . , γp) and β = (β1, . . . , βp) (sometimes these are set to some

fixed instance-independent value, and sometimes they are variationally

updated on subsequent repetitions of the algorithm). The QAOA starts

in the n-qubit equal superposition state |+⟩⊗n and implements alternating

rounds of rotations about the diagonal cost function C and a “mixing”

operator X =
∑

i Xi, where Xi denotes the Pauli-X gate about qubit i. The

state produced by QAOA is thus given by

|ψγ,β⟩ = e−iβpXe−iγpC · · · e−iβ2Xe−iγ2Ce−iβ1Xe−iγ1C |+⟩⊗n .

If one makes a computational basis measurement of |ψγ,β⟩, one obtains z∗

with probability |⟨z∗|ψγ,β⟩|2. The expected number of repetitions required

to obtain z∗ is the inverse of this probability, and this running time can be

quadratically sped up by performing amplitude amplification on top of the

QAOA protocol; thus, the QAOA unitary is applied O(|⟨z∗|ψγ,β⟩|−1) times.

Implementing the QAOA unitary typically requires only p ·poly(n) gates, as

each of the rotations about X and C are efficient to implement. For hard com-

binatorial optimization problems such as typical MAX-k-SAT instances, the
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expectation is that the total running time required will be exponential. If the

depth p is chosen to be constant or even poly(n), the dominant cost will

come from the O(|⟨z∗|ψγ,β⟩|−1) repetitions required to amplify the |z∗⟩ state.

Alternatively, one can reduce the number of repetitions needed to O(1) at

the expense of taking p to be very large (at least exponentially large in n);

indeed, for sufficiently large p, the QAOA can be viewed as a Trotterized

simulation of the adiabatic algorithm [384].

There is some analytic evidence that the QAOA may outperform Grover’s

algorithm at finding the exact solution for constant p in certain cases. Ref-

erence [179] studied the QAOA applied to hard (i.e., near the satisfiability

threshold) k-SAT instances with instance-independent choice of γ, β for con-

stant p, and developed an analytic formula for the expected success proba-

bility |⟨z∗|ψγ,β⟩|2 averaged over random instance in the limit n → ∞. This

formula was evaluated numerically and suggested, for example, that the av-

erage success probability behaves as 2−0.33n for p = 10 on 8-SAT. One might

be tempted to declare that this implies an overall average running time of

O∗(20.33n/2), substantially better than Grover, but such a conclusion is not

analytically supported as the average of the inverse probability can be much

larger than the inverse of the average probability. Nevertheless, it provides

intriguing evidence in favor of such a conclusion. Further numerical evi-

dence that QAOA may be effective as an exact algorithm was provided in

[928], which numerically assessed the performance of QAOA on instances

of the low autocorrelation binary sequences (LABS) problem up to n = 40,

although compared to the best classical heuristic solver, the advantage ap-

peared to be subquadratic.

• Second, we consider the quantum adiabatic algorithm [382, 16]. The stan-

dard approach, as applied to binary optimization problems, is to start in the

state |+⟩⊗n and evolve by a Hamiltonian that interpolates along a path H(s)

parameterized by s ∈ [0, 1], given by

H(s) = (1 − s)(−X) + sC . (4.2)

It is important to note that the ground state of H(0) is |+⟩⊗n and the ground

state of H(1) is |z∗⟩. This evolution can be simulated on a fault-tolerant

gate-based quantum computer using Hamiltonian simulation, and its run-

ning time is dominated by the inverse of the minimum spectral gap ∆min

of H(s). That is, the gate complexity to run the algorithm and produce |z∗⟩
scales as at least ∆−1

min
and possibly a larger power of ∆−1

min
. Much numerical

work has been done on the performance of the adiabatic algorithm on small

instances of combinatorial optimization problems, but it generally lacks an-

alytical guarantees. The expectation is that ∆min will be exponentially small
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[638, 1071, 517] in n (or worse, see, e.g., [23, 1032]), meaning the running

time of the algorithm is exponentially large, but it remains possible that it

surpasses the O∗(20.5n) running time of Grover’s algorithm in some cases,

and could in principle deliver a superquadratic speedup.

• Third, we consider the short-path algorithm studied in [505, 506, 508] and a

dual version of the algorithm studied in [329]. The goal of these algorithms

was to be able to provide a rigorous guarantee that the algorithm can find

z∗ in time 2(0.5−c)n for some value of c > 0. Similar to the adiabatic algo-

rithm, the short-path algorithm also considers a single-parameter family of

Hamiltonians

H(s) = (1 − s) fX

(
−X

n

)
+ s fZ

(
C

|E∗|

)
, (4.3)

where fX , fZ : R→ R are monotonic filter functions, and each term X/n and

C/|E∗| are normalized to have minimum value −1. The idea of the short-path

algorithm is to, rather than evolve smoothly from s = 0 to s = 1, perform

a pair of discrete “jumps.” The first jump goes from the ground state |+⟩⊗n

at s = 0 to the ground state |ψb⟩ of an intermediate point with s = b. The

second jump goes from |ψb⟩ to the ground state |z∗⟩ at s = 1. The jumps are

accomplished with quantum phase estimation (or more advanced versions

utilizing the quantum singular value transformation) of the Hamiltonian Hb

combined with amplitude amplification. The running time of the algorithm

is [329, Theorem 1]

poly(n) · 1

∆
·
(

1

|⟨+|ψb⟩|
+

1

|⟨ψb|z∗⟩|

)
, (4.4)

where ∆ is the spectral gap of the Hamiltonian H(b). The ∆−1 factor comes

from the need to perform phase estimation atO(∆) resolution to successfully

prepare |ψb⟩, and the two additive inverse overlap terms represent the num-

ber of rounds of amplitude amplification for the first and second jumps, re-

spectively. In [505], filter functions fX(x) = xK for odd integers K (e.g., K =

3) and fZ(x) = x were chosen, and b was chosen close to 1, such that the

first term of Eq. (4.3) could be viewed as a small perturbation of the second

term. If C is an instance of MAX-Ek-LIN2, that is, if it is a polynomial for

which all monomials are degree exactly k, then it was shown that certain

conditions on the spectral density of C near the optimal cost value imply

sufficient analytic control of ∆ and the other parameters in Eq. (4.4) such

that the algorithm runs in time O∗(2(0.5−c)n) for c > 0. However, it remained

unclear when these conditions were met. Inspired by [505], [329] proposed

using the filter functions fX(x) = x and fZ(x) = min(0, (x + 1 − η)/η) for

a fixed choice of η ∈ [0, 1], and chose a value of s close to 0 (rather than
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close to 1). In this sense, the algorithm in [329] is dual to that of [505].

These modifications allowed additional statements to be proved. For exam-

ple, it was unconditionally shown that the algorithm solves k-SAT (whether

or not a formula has a fully satisfiable solution) in time upper bounded by

O∗(2(0.5−c)n) for a (extremely small) constant c > 0, and that the same is true

for typical instances of the SK model and its higher-body generalization

(p-spin model), a polynomial speedup over Grover’s algorithm and super-

quadratic advantage over classical exhaustive search.

Existing resource estimates

Reference [895] compiled resource estimates for various primitive tasks related

to combinatorial optimization. For example, it estimated that for an n = 512 in-

stance of the SK model, implementing a single QAOA step e−iβ jXe−iγ jC would

require 577 logical qubits and 5.0×105 Toffoli gates. A similar estimate would

hold for performing a single step of adiabatic evolution with a first-order prod-

uct formula. The total logical estimate for finding z∗ would be the product of

the depth of the circuit and any number of repetitions or rounds of amplitude

amplification. An estimate of the physical resource cost could then be com-

puted for a specific fault-tolerant architecture. Without knowing the number of

repetitions, it is hard to give precise estimates, but a rough attempt was made

in [79] for different speedup factors. There, under different possible assump-

tions on the amount of classical parallelism available, a breakeven point was

estimated for different possible polynomial speedups (quadratic, cubic, and

quartic). It was found that with a quartic speedup, the breakeven point could

be reasonable (on the order of seconds to hours) even assuming the availability

of classical parallelism.

Caveats

There are several caveats. The most salient one is that for most of the algo-

rithms above, there is no provable beyond-Grover advantage. Meanwhile, in

the case of [329], the size of the provable beyond-Grover advantage is minis-

cule. The prospect of these algorithms is thus left to extrapolations from nu-

merical simulations carried out at very small instance sizes and speculation

based on physical principles.

A second important caveat is that to deliver practical superquadratic

speedups, the performance of the quantum algorithm needs to be compared to

the best classical algorithm, which is often substantially better than the O∗(2n)

running time of exhaustive enumeration. For example, 3-SAT problems are

classically solvable in O∗(20.39n) time [497].
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Along these lines, a third caveat is the existence of classical “quantum Monte

Carlo” algorithms (see, e.g., [383, 188, 570, 322, 324]), which can, under cer-

tain conditions, classically simulate the quantum algorithms described above.

This is because the Hamiltonians in Eqs. (4.2) and (4.3) are stoquastic Hamilto-

nians, defined by the property that their off-diagonal matrix elements are non-

positive (when written in the computational basis). Stoquasticity implies that

the ground state of the Hamiltonian can be written such that all amplitudes are

non-negative real numbers [191], meaning that these Hamiltonians avoid the

so-called “sign problem” enabling the potential application of quantum Monte

Carlo techniques. To be clear, it remains possible that quantum algorithms for

these combinatorial optimization problems involving stoquastic Hamiltonians

can evade classical simulation—indeed, superpolynomial oracle separations

have been shown between classical computation and adiabatic quantum com-

putation restricted to stoquastic paths [510, 432]—but it is something to keep

in mind when designing algorithms based on stoquastic Hamiltonians.

A final caveat is that the quantum algorithms described here are typically not

amenable to parallelization, although in principle QAOA could be parallelized

if one opts not to use amplitude amplification (resulting in worse asymptotic

complexity). This lies in stark contrast to many classical optimization algo-

rithms for exact combinatorial optimization which are highly parallelizable, a

feature that can be exploited to significantly reduce the running time of these

classical algorithms on high-performance computers, making achieving prac-

tical quantum advantage more difficult [79].

Comparable classical complexity and challenging instance sizes

For many binary optimization problems, there exist classical algorithms that

exploit the structure of the problem to perform significantly better than ex-

haustive search. For example, the best 3-SAT algorithm runs in time O∗(20.39n)

and in general k-SAT can be solved in time 2(1−Ω(1/k))n [497]. This running

time suggests the solution will be impractical once n is on the order of 100.

The algorithm analyzed in [497] is designed for the worst case, and it is likely

not the best practical algorithm for typical instances. For random instances,

the hardness of k-SAT depends sensitively on the clause-to-variable ratio α.

Remarkably, heuristic algorithms can succeed at finding a satisfiable solution

for typical instances with thousands or even tens of thousands of variables even

very close to the satisfiability threshold αc where most instances become unsat-

isfiable (e.g., [739]). However, these algorithms are expected to fail sufficiently

close to the satisfiability threshold and in the worst case.

Similarly, the SK model admits a classical branch-and-bound algorithm

guaranteed to run in time 20.45n (for a large fraction of instances) and likely
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better than that in practice [776]. However, once the interaction degree

becomes larger than 2, the problem becomes significantly harder. The branch-

and-bound algorithm is not known to generalize to the p-spin model, and for

p ≥ 3 there is no known classical algorithm that provably achieves 2(1−c)n

for any constant c (although it has not garnered much attention, see [329]).

Similarly, in contrast to k-SAT, the MAX-k-SAT problem (i.e., the version of

the problem that asks for the optimal assignment even if it does not satisfy all

the clauses) only has a O∗(2(1−c)n) time algorithm for k = 2, and, notably, this

algorithm requires exponential space [1047].

Speedup

As there are generally no rigorous running time guarantees for the quantum

algorithms, the speedup cannot be estimated. However, it is worth emphasiz-

ing that for hard combinatorial optimization problems, the speedup could be

superquadratic, but it is not expected to be superpolynomial.

The rigorous results of [329] establish a beyond-Grover running time, but

the only case in which the speedup is beyond quadratic when compared with

the best known classical algorithm is the p-spin model with p ≥ 3 (here, the

comparison benefits from little work on classical algorithms for the problem).

We also mention the result of [904], which studies a quantum algorithm for

random instances of a QUBO-like combinatorial optimization problem with a

“planted” optimal solution—the goal is to exactly or approximately find the

planted solution, or alternatively to simply distinguish instances drawn from

the ensemble with planted solutions from instances drawn from the ensemble

without a planted solution. The algorithm generalizes the tensor PCA algo-

rithm of [511] and gives a quartic speedup over its closest classical counter-

part, although it is unclear if this speedup can extend to non-planted scenarios

as well.

NISQ implementation

The QAOA approach is amenable to NISQ implementation (assuming one opts

not to apply amplitude amplification on top of it), since the quantum circuit

one needs to implement is fairly shallow depth. In this case, the effect of un-

corrected errors in the NISQ device may degrade the performance (and require

more repetitions to extract the optimal bit string z∗). Similarly, on a NISQ quan-

tum annealer [591, 16], one could run a noisy version of the quantum adiabatic

algorithm and repeat until finding the optimal bit string z∗.
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Outlook

In contrast to algorithms for approximate optimization, which are often heuris-

tic but run in polynomial time, algorithms for exact optimization are often more

rigorous but run in exponential time. For quantum computers to be impactful

for exact combinatorial optimization, we require great advancements in the es-

timated clock speeds of quantum hardware and the overheads of fault-tolerant

quantum computing, or else the development of quantum algorithms that sig-

nificantly improve upon existing (sub)quadratic Grover-type speedups—either

quantitatively (bigger speedups) or qualitatively (e.g., requiring only shallow

circuits). Although ideas have been proposed that could potentially deliver

such improvements, they either come without provable guarantees, provide

only minor superquadratic improvement, or only apply to artificial problems.

Much more attention shall be devoted to studying these quantum algorithms

and developing new ones if we are to leverage them into actual practical ad-

vantages, especially considering the extensive amount of work devoted to de-

veloping sophisticated classical algorithms for these problems.
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Continuous optimization

Continuous optimization problems arise throughout science and industry. On

their face, continuous optimization problems rarely seem quantum mechanical;

nevertheless, quantum algorithms have been proposed for accelerating both

convex and nonconvex continuous optimization. Most of the research on these

algorithms thus far has been to develop and utilize the diverse set of primitive

ingredients that give rise to potential quantum advantage in this space, without

an eye toward the end-to-end practicality of the algorithms. Developing a bet-

ter understanding of the practicality of these approaches should be a focus of

future work.

We refer the reader to [6] for a comprehensive survey of quantum methods

for continuous and combinatorial optimization.

The authors are grateful to Sander Gribling for reviewing this chapter.

5.1 Zero-sum games: Computing Nash equilibria

Overview

In a two-player zero-sum game, each player independently chooses an action

and then receives a “payoff” (such that the sum of the payoffs is always zero)

that depends on which pair of actions was chosen. A Nash equilibrium is an

optimal way of (probabilistically) choosing an action that maximizes a player’s

worst-case payoff. The problem of computing a Nash equilibrium is, in a cer-

tain sense, equivalent to solving a linear program (LP): computing a Nash

equilibrium is a special case of LP, and conversely any LP can be reduced

to computing a Nash equilibrium at the expense of introducing dependencies

on a certain instance-specific “scale-invariant” precision parameter [46]. How-
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5.1 Zero-sum games: Computing Nash equilibria 79

ever, the quantum approach to solving LPs based on the multiplicative weights

update method [46] is more efficient in the special case of computing Nash

equilibria, and has fewer caveats—notably, it avoids the dependence on the

difficult-to-predict scale-invariant precision parameter. It gives a potentially

quadratic speedup over its classical counterpart.

Actual end-to-end problem(s) solved

A two-player zero-sum game is defined by an n×m matrix A called the “payoff

matrix,” which specifies how much player 1 wins from player 2 when player 1

chooses action i ∈ [n] and player 2 chooses action j ∈ [m]. A pure strategy is

one in which the players deterministically choose one fixed action i ∈ [n] (or

j ∈ [m]) in each game. By contrast, a mixed strategy is one in which players

randomly choose an action, according to some probability distribution. As-

sume the entries of A are between −1 and 1. A Nash equilibrium is an optimal

(generally mixed) strategy that maximizes a player’s worst-case payoff regard-

less of the other player’s choice. That is, a distribution y ∈ ∆m, where ∆m de-

notes the m-dimensional probability simplex, is an optimal strategy for player

2 if it is the argument that optimizes the equation

λ∗ = min
y∈∆m

max
i∈[n]

e
⊺

i
Ay,

where [n] denotes the set of actions available to player 1, and ei denotes a basis

state associated with action i. The quantity λ∗ is the value of the game. This

can be rewritten explicitly [46] as the following LP

min
y∈Rm

λ

subject to Ay ≤ λ1,
∑

j

y j = 1, y j ≥ 0 ∀ j,

where 1 is the all-ones vector. The dual LP for the above then corresponds to

computing the Nash equilibrium for player 1.

The end-to-end problem solved is to, given access to the entries of the matrix

A and an error parameter ϵ, compute a probability vector y such that

Ay ≤ (λ∗ + ϵ)1 .

Dominant resource cost/complexity

The quantum algorithm builds on a classical algorithm based on the multi-

plicative weights update method from [459]. With probability at least 1−δ, the

classical algorithm finds a solution y that approximates a Nash equilibrium to

error ϵ after ⌈16 ln(nm/δ)/ϵ2)⌉ iterations, where the cost per iteration is n + m

queries to the entries of the matrix A and O(n +m) other arithmetic operations
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80 5. Continuous optimization

[46, Lemma 3]. An important subroutine of each iteration is a Gibbs sampling

step for a diagonal matrix (a special case of the general quantum Gibbs sam-

pling problem in which any Hermitian matrix is allowable). When the matrix

A is sparse, the number of queries per iteration can be reduced to 2s, where s

is the maximum number of nonzero entries in a row or column of A, and the

total time per iteration can be reduced to Õ(s) [46, Lemma 4].

The quantum algorithm assumes coherent access to the matrix entries of

A. Through amplitude amplification and the related subroutines of amplitude

estimation and minimum finding, the quantum algorithm of [46] speeds up

the Gibbs sampling task and reduces the maximum cost of an iteration to

Õ(
√

n + m/ϵ) queries to the matrix elements of A and an equal amount of

time complexity, where Õ notation suppresses logarithmic factors. In the case

that the matrices are sparse, the maximum cost of an iteration is reduced to

Õ(
√

s/ϵ1.5). The work of [178] introduces a technique called dynamic Gibbs

sampling, which exploits the fact that the distribution to be sampled changes

slowly from iteration to iteration and further reduces the iteration cost to

Õ(
√

n + m/ϵ1/2 + 1/ϵ) in the dense case. This gives a total query and time

complexity roughly given by

dense:

(
16 ln(nm)

ϵ2
iters.

)
×

(
Õ

( √
n + m√
ϵ
+

1

ϵ

)
per iter.

)
= Õ

( √
n + m

ϵ2.5
+

1

ϵ3

)

sparse:

(
16 ln(nm)

ϵ2
iters.

)
×

(
Õ

( √
s

ϵ1.5

)
per iter.

)
= Õ

( √
s

ϵ3.5

)
.

This complexity assumes access to a quantum random access memory

(QRAM). Without a QRAM, the cost per iteration increases by a factor

Õ(1/ϵ2).

See also [680], which independently from [46] gave a quantum algorithm

that solves zero-sum games with slightly worse ϵ dependence, as well as [681],

which gave quantum algorithms for generalizations of zero-sum games to other

vector norms.

Existing resource estimates

There are no existing explicit resource estimates for this algorithm.

Caveats

• Due to poor dependence of the complexity on the error ϵ, this algorithm is

only likely to be useful in situations where it is not necessary to learn the

optimal strategy to high precision. It is unclear when such situations arise in

practice.
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5.1 Zero-sum games: Computing Nash equilibria 81

• As mentioned above, if no QRAM is available, the runtime suffers a Õ(1/ϵ2)

time slowdown.

• A fully end-to-end analysis should also consider the exact way that the

queries to the matrix entries of A are implemented. If they are given in a

classical database, a large O(nm)-size QRAM may also be required to im-

plement the queries in polylog(mn) time. Note that this would be separate

from the Õ(1/ϵ2)-size QRAM the algorithm uses to reduce the time com-

plexity. To avoid the QRAM requirement for implementing a query, it must

be the case that the matrix entries are efficiently computable in some other

way.

Comparable classical complexity and challenging instance sizes

The classical version of the quantum algorithm has time and query complexity

given by [46, Section 2]

dense:

(
16 ln(nm)

ϵ2
iters.

)
× (O (n + m) per iter.

)
= Õ

(
n + m

ϵ2

)

sparse:

(
16 ln(nm)

ϵ2
iters.

)
×

(
Õ (s) per iter.

)
= Õ

(
s

ϵ2

)
.

Alternatively, the problem could be solved using other approaches for solv-

ing the associated LP. Classical interior point methods for LPs can achieve

O(nω log(1/ϵ)) runtime in the common case that m = O(n) [304], where ω <

2.37 is the matrix multiplication exponent. This runtime exhibits better ϵ de-

pendence at the expense of worse n dependence. Note that quantum inte-

rior point methods have also been proposed for conic programs like LPs, but

whether they could yield a speedup over classical interior point methods would

depend on the scaling of certain instance-specific parameters.

Speedup

The quantum complexity has a quadratic improvement in complexity with re-

spect to the parameter n + m, and a polynomial slowdown with respect to the

parameter ϵ.

Outlook

It is difficult to assess whether a practical advantage could be obtained in the

setting of zero-sum games without further investigation of how queries to ma-

trix elements are accomplished, an assessment of constant prefactors involved

in the algorithm, and consideration of any additional overheads from fault-

tolerant quantum computation. The theoretical speedup available is quadratic
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82 5. Continuous optimization

and may require a medium- or large-scale QRAM. This speedup may not be

sufficiently large to overcome these overheads in practice.

It is perhaps instructive to compare the outlook of zero-sum games to conic

programming more generally. On the one hand, unlike the algorithm for gen-

eral SDPs and LPs, the algorithm for zero-sum games does not have a complex-

ity dependence on instance-specific parameters denoting the size of the primal

and dual solutions. This makes it easier to evaluate the runtime of the algo-

rithm and more likely that it can be an effective algorithm. On the other hand,

a core subroutine of the quantum algorithm is to perform classical Gibbs sam-

pling quadratically faster than a classical computer can using techniques like

amplitude amplification. However, it is not clear how the speedup could be

made greater than quadratic, even in special cases. A similar subroutine is re-

quired in the multiplicative weights approach to solving SDPs, but in that case,

the Gibbs state to be sampled is a truly quantum state (i.e., nondiagonal in the

computational basis), rather than a classical state. Using more advanced meth-

ods for Gibbs sampling, it is possible that in some special cases there could

be a superquadratic quantum speedup for SDPs that would not be available for

the simpler case of LPs and zero-sum games.

5.2 Conic programming: Solving LPs, SOCPs, and SDPs

Overview

Conic programs are a specific subclass of convex optimization problems,

where the objective function is linear and the convex constraints are re-

strictions to the intersection of affine spaces and certain cones within Rn.

Commonly considered cones are the positive orthant, the second-order cone

(“ice-cream cone”), and the semidefinite cone, which give rise to linear

programs (LPs), second-order cone programs (SOCPs), and semidefinite

programs (SDPs), respectively. This framework remains quite general, and

many real-world problems can be reduced to a conic program. However, the

additional structure of the program allows for more efficient classical and

quantum algorithms, compared to completely general convex problems.

Algorithms for LPs, SOCPs, and SDPs have long been a topic of study. To-

day, the best classical algorithms are based on interior point methods (IPMs)

[304, 778, 538] and cutting-plane methods [671, 575], but other algorithms

based on the multiplicative weights update (MWU) method [57, 56, 58] exist

and can be superior in a regime where high precision is not required. Both of

these approaches can be turned into quantum algorithms with potential to de-

liver asymptotic quantum speedup for general LPs, SOCPs, and SDPs. How-
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ever, the runtime of the quantum algorithm typically depends on additional

instance-specific parameters, which makes it difficult to produce a general

apples-to-apples comparison with classical algorithms.

Actual end-to-end problem(s) solved

• Linear programs (LPs) are the simplest convex program. An LP instance

is specified by an m × n matrix A, an n-dimensional vector c, and an m-

dimensional vector b. The problem can then be written as

min
x∈Rn
⟨c, x⟩

subject to Ax = b

xi ≥ 0 for i = 1, . . . , n ,

where notation ⟨u, v⟩ denotes the standard dot product of vectors u and v.

The function ⟨c, x⟩, which is linear in x, is called the objective function,

and a point x is called feasible if it satisfies the linear equality1 constraints

Ax = b as well as the positivity constraints xi ≥ 0 for all i. We denote the

feasible point that optimizes the objective function by x∗. Let ϵ be a preci-

sion parameter. The actual end-to-end problem solved is to take as input a

classical description of the problem instance (c, A, b, ϵ) and output a classi-

cal description of a feasible point x for which ⟨c, x⟩ ≤ ⟨c, x∗⟩ + ϵ. The set of

points that obey the positivity constraints xi ≥ 0 forms the positive orthant of

the vector space Rn. This set meets the mathematical definition of a convex

cone: for any points u and v in the set and any non-negative scalars α, β ≥ 0,

the point αu + βv is also in the set.

• Second-order cone programs (SOCPs) are formed by replacing the positivity

constraints in the definition of LPs with one or more second-order cone con-

straints, where the second-order cone of dimension k is defined to include

points (x0; x1; . . . ; xk−1) ∈ Rk for which x2
0 ≥ x2

1 + · · · + x2
k−1

.

• Semidefinite programs (SDPs) are formed by replacing the n-dimensional

vector x in the definition of LPs with an n × n symmetric matrix X and

replacing the positive orthant constraint with the conic constraint that X is

a positive semidefinite matrix. Denote the set of n × n symmetric matrices

by Sn, and for any pair of matrices U,V ∈ Sn, define the notation ⟨U,V⟩ =
tr(UV) (which generalizes the standard dot product). Then, an SDP instance

is specified by matrices C, A(1), A(2), . . . , A(m) ∈ Sn, as well as b ∈ Rm, and

1 Inequality constraints of the form Ax ≤ b can be converted to linear equality constraints and
positivity constraints by introducing a vector of slack variables s and imposing Ax + s = b and
si ≥ 0 for all i. An analogous trick is possible for SOCP and SDP.
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can be written as

min
X∈Sn
⟨C, X⟩

subject to ⟨A( j), X⟩ = b j for j = 1, . . . ,m

X ⪰ 0 ,

where X ⪰ 0 denotes the constraint that X is positive semidefinite.

In the LP or SDP case, we might also require as input parameters R and r,

where R is a known upper bound on the size of the solution in the sense that∑
i |xi| ≤ R (LP) or tr(X) ≤ R (SDP), and where r is an analogous upper bound

on the size of the solution to the dual program (not written explicitly here,

see [181, 48, 45]).

Dominant resource cost/complexity

Two separate approaches to solving conic programs with quantum algorithms

have been proposed in the literature. Both methods start with classical algo-

rithms and replace some of the subroutines with quantum algorithms.

(i) Quantum interior point methods (QIPMs) for LPs [610], SOCPs

[612, 68], and SDPs [610, 70, 537] have been proposed. In the standard

approach, these methods start with classical interior point methods,

for which the core step is solving a linear system, and simply replace

the classical linear system solver with a quantum linear system solver

(QLSS), combined with pure state quantum tomography. Given a linear

system Gu = v, the QLSS produces a quantum state |u⟩, and quantum

tomography is subsequently used to gain a classical estimate of the

amplitudes of |u⟩ in the computational basis. The QLSS ingredient

introduces complexity dependence on a parameter κ = ∥G∥ ∥G−1∥,
the condition number of G, where ∥·∥ denotes the spectral norm.

Additionally, the QLSS requires that the classical data defining G be

loaded in the form of a block-encoding, for which the standard con-

struction introduces a dependence on the factor ζ = ∥G∥F∥G∥−1, where

∥·∥F denotes the Frobenius norm. Finally, the tomography ingredient

introduces a complexity dependence on a parameter ξ, defined as the

precision to which the vector u must be classically learned, measured

in ℓ2 norm. Assuming m is on the order of the number of degrees of

freedom (i.e., O(n) in the case of LP and SOCP, and O(n2) in the case

of SDP), the number of queries the QIPM makes to block-encodings of
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the input matrices is

LP, SOCP [68]: Õ
(

n1.5ζκ

ξ
log(1/ϵ)

)

SDP [610, 70]: Õ
(

n2.5ζκ

ξ
log(1/ϵ)

)
,

where the Õ notation hides logarithmic factors. Note that depending on

how ξ is defined, extra factors of κ may be required. Moreover, note

that the complexity statements in [70] go further and analyze the worst-

case dependence of ξ on the overall error ϵ, and additionally make the

worst-case replacement ζ ≤ O(n)—this explains the deviation in our pre-

sentation from the bounds in [70]. We do not include these worst-case

assumptions on ζ and ξ because it is possible they are not achieved in

practice.2 Generally speaking, the numerical values of κ, ζ, and ξ are not

possible to determine in advance for a specific application; empirical in-

vestigations at small system sizes such as those of [611, 328] require an

assumption that trends observed accurately extrapolate to other untested

instances and to larger system sizes. The block-encoding queries can be

executed in circuit depth polylog(n+m, 1/ϵ), which can also be absorbed

into the Õ notation (although it is important to note that the circuit size is

generally O(n2))—this is equivalent to an assumption of log-depth quan-

tum random access memory (QRAM). If the input matrices are sparse

or given in a form other than as a list of matrix entries, there may be

other more efficient methods for block-encoding; in this case the param-

eter ζ might be replaced with another parameter α > 1, whose value

would depend on the block-encoding method. It should also be noted

that in addition to the quantum complexity quoted above, the QIPM can

require (depending on the precise formulation of the QIPM) purely clas-

sical complexity on the order of O(n2.5) for LP/SOCP and O(n4.5) for

SDP.

Alternatives to the standard approach above have been proposed. For

“tall” LPs (where m ≫ n), one can quantize interior point methods

in a distinct way that avoids the QLSS and dependence on any con-

dition numbers. Specifically, [51] gave an algorithm that runs in time

Õ(
√

m log(1/ϵ)) · poly(n). The algorithm leverages primitives for spec-

tral approximation (i.e., given a tall matrix B, finding a smaller matrix

2 For example, numerical results in [611] for small instances of an SOCP formulation of the
portfolio optimization problem suggested that the ζ parameter was upper bounded by a small
constant, and similar numerical investigations in [328] suggest that ξ can be independent of
the target error ϵ, at least for the instances that were simulated.
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B̃ for which B̃⊺B̃ ≈ B⊺B), and approximate matrix-vector multiplica-

tion, as well as multivariate mean estimation [310] (which is related to

quantum gradient estimation).

(ii) Quantum algorithms based on the multiplicative weights update (MWU)

method have been proposed for SDP [181, 182, 48, 45] and LP [48, 46].

The quantum algorithm closely follows the classical algorithm based on

MWU to iteratively update a candidate solution to the program. Each

iteration is carried out using quantum subroutines, including Gibbs sam-

pling, as well as Grover search and quantum minimum finding [367, 48]

(a direct application of Grover search). Let s denote the sparsity, that is,

the maximum number of nonzero entries in any row or column of the

matrices composing the problem input (thus, s ≤ max(m, n)). Then, the

number of queries the algorithm makes to the matrix entries (assuming

a sparse access input model) has been upper bounded by

LP [178]: Õ
(√

s

(
rR

ϵ

)3.5
)

SDP [45]: Õ
(
s
√

m

(
rR

ϵ

)4

+ s
√

n

(
rR

ϵ

)5
)
,

where r,R are the parameters related to the size of the primal and dual

solutions, defined above. The sparse access queries can be implemented

with quantum circuits of size polylog(m, n) if the matrix entries are

given by succinct formulas computable in polylog(n,m) time. Oth-

erwise, their implementation can be accomplished with circuits of

polylog(m, n) depth (but poly(m, n) size) assuming availability of log-

depth QRAM. In [45], the input model was generalized to a “quantum

operator input model,” based on block-encodings where s is replaced by

the block-encoding normalization factor α in the runtime expressions,

but here again the full end-to-end complexity must account for the

gate cost of implementing the block-encoding. Note that it is possible

the ϵ-dependence of the runtime for LP could be slightly improved by

applying the dynamic Gibbs sampling method of [178] together with

the reduction from LP to zero-sum games in [46].

The runtime expressions for the QIPM approach and the MWU approach are

not directly comparable, as the former depends on instance-specific parameters

κ, ζ, and ξ, while the latter depends on instance-specific parameters r and R.

However, note that the explicit n-dependence is better in the case of MWU

than QIPM, while the ϵ-dependence is worse.
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Existing resource estimates

Neither of the approaches for conic programs have garnered study at the level

of resource estimates for physical devices. Reference [328] performed a re-

source analysis for a QIPM at the logical level, but did not analyze additional

overheads due to error correction. The goal of that analysis was to completely

compile the QIPM for SOCP into Clifford gates and T gates, and then to nu-

merically estimate the parameters κ, ζ, and ξ for the particular use case of

financial portfolio optimization, which can be reduced to SOCP. A salient fea-

ture of the QIPM is that O(n + m) × O(n + m) matrices of classical data must

be repeatedly accessed by the QLSS via block-encoding, necessitating a large-

scale QRAM with O(n2) qubits. Accordingly, for SOCPs with n = 500 and

m = 400 (which are still easily solved on classical computers) it was estimated

that 8 million logical qubits would be needed. The total number of T gates

needed for the same instance size was on the order of 1029, which can be dis-

tributed over roughly 1024 layers. These estimates would likely be improved

by incorporating subsequent improvements to the underlying primitives of to-

mography [49] and QLSS [571, 327].

We are not aware of an analogous logical resource analysis for the MWU ap-

proach to conic programming. Such an analysis would be valuable and should

ideally choose a specific use case to be able to evaluate the size of all parame-

ters involved. A use case that may fit this criteria is solving the SDP relaxation

of binary quadratic optimization problems, where r and R can be bounded;

quantum algorithms for this task have been studied in [183, 71].

Caveats

• The QIPM approach requires a large-scale QRAM of size O(n2). This is a

necessary ingredient to retain any hope of a speedup, and for relevant choice

of n the associated hardware requirements could be prohibitively large. Note

that recent work of [69] gave a method for solving LPs that, like QIPMs,

follows the central path to the optimal point, but does so in a distinct, non-

iterative way, and has the potential for a small polynomial speedup without

the need for a QRAM.

• The standard QIPM approach has a weak case for a large asymptotic

speedup: even under optimal circumstances, the asymptotic speedup over

classical interior point methods is less than quadratic. See Chapter 22 on

the QIPM approach for more information.

• The MWU approach also requires a large-scale QRAM of size

O(min(ms, ns)) to implement the queries to the arbitrary entries of the

s-sparse input matrices. This could be avoided if the matrix elements are

efficiently computable.
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• Beyond the number of queries to the input data (and the cost to implement

those queries), the MWU approach for LP and SDP requires some additional

complexity deriving from a step in the algorithm where it prepares a state

with O(R2r2/ϵ2) nonzero amplitudes stored in a classical database. The cost

of state preparation from classical data is Õ(R2r2/ϵ2) total gates, which can

be parallelized to circuit depth polylog(R2r2/ϵ2). If the cost of state prepa-

ration is taken to be equal to the circuit depth (similar to the assumption of

access to a medium-scale QRAM), the additional complexity is on the same

order as the number of queries. If the cost is taken to be equal to the circuit

size, the additional complexity is a factor Õ(R2r2/ϵ2) larger than the query

complexity quoted above.

• The MWU approach has poor dependence on error ϵ; for SDPs it is ϵ−5.

Even at modest choices of ϵ, this may lead the algorithm to be impractical

pending significant improvements.

• A general caveat that applies to both approaches is that the appearance of

instance-specific parameters makes it difficult to predict the performance of

these algorithms for more specific applications.

Comparable classical complexity and challenging instance sizes

As in the quantum case, there are multiple distinct approaches in the classical

case.

(i) Classical interior point methods (CIPMs): There exist fast IPM-based

software implementations for solving conic programs, such as ECOS

[355], MOSEK [38], Gurobi [470], SCIP [164], and CPLEX.3 These

solvers can solve instances with thousands of variables in a matter of

seconds on a standard laptop (e.g., [355]). However, the runtime scal-

ing is poor and scaling too far beyond this regime leads the solvers to

be far less practical. Many variants of IPMs exist; the runtime of the

best provably correct classical IPMs for the regime where the number of

constraints is roughly equal to the number of degrees of freedom is

LP [304]: Õ (
nω log(1/ϵ)

)

SOCP [778]: Õ
(
nω+0.5 log(1/ϵ)

)

SDP [538]: Õ
(
n2ω log(1/ϵ)

)
,

3 In practice, these solvers are not solely based on IPMs and utilize many methods at once.
Additionally, they employ heuristic preprocessing methods to transform and simplify inputs
prior to applying an IPM. Note that they are useful also for nonconvex problems such as
mixed-integer programs, where LP-solving can often be an important subroutine.
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whereω < 2.37 is the matrix multiplication exponent. It is plausible that,

with some attention, the extra n0.5 factor for SOCP could be eliminated

with modern techniques. Additionally, the runtime can be somewhat re-

duced when the number of constraints is much less than the number of

degrees of freedom; for example, the n-dependence of the complexity of

the CIPM for SDP in [574] can be as low as Õ(n2.5) when there are few

constraints. On practical instances, employing techniques for fast ma-

trix multiplication is often not beneficial, and Gaussian elimination–like

methods are used, where nω is replaced with n3. Note that, alternatively,

by using iterative classical linear system solvers, such as the randomized

Kaczmarz method [959], each nω factor could be replaced by a factor of

n at the cost of a linear dependence on (κζ)2, which could be superior if

the matrices are well conditioned.

For tall LPs (m ≫ n), CIPMs can achieve scaling nearly linear in the

number of matrix entries: the algorithm of [185] runs in time O(mn+n3).

We refer the reader to [1053, 1052, 797, 438] for additional informa-

tion on CIPMs and their historical development.

(ii) Classical MWU methods: A classical complexity statement for LPs is

inferred from the reduction in [46] from LPs to zero-sum games and the

classical analysis that appears there. For the SDP case, references in the

classical literature appear only to examine specific subclasses of SDPs

(e.g., [57, 56]). A general statement of the classical complexity for SDPs

appears alongside the quantum algorithm in [48, Section 2.4]:

LP [46]: Õ
(
s

(
rR

ϵ

)3.5
)

SDP [48]: Õ
(
snm

(
rR

ϵ

)4

+ sn

(
rR

ϵ

)7
)
.

(iii) Cutting-plane methods: These classical methods are used for

SDPs and can outperform IPMs when the number of constraints

is small. The best algorithm, based on [671, 575], has runtime

O(m(mn2 + nω +m2) log(1/ϵ)), which can be as low as O(nω) when m is

small.

It is important to note that the algorithms with the best provable complexities

may not be the ones that are most useful in practice.

Speedup

For both the IPM approach and the MWU approach, there can be at most a

polynomial quantum speedup: upper and lower bounds scaling polynomially
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with n are known in both the classical and quantum cases [45]. The speedup of

the QIPM method depends on the scaling of κwith n, but the speedup cannot be

more than quadratic. For the MWU method, if m = O(n), s = O(1), and rR/ϵ =

O(1), existing bounds on the classical and quantum complexities leave open the

possibility of a quartic Õ(n2) → Õ(
√

n) speedup. However, it is unclear if the

classical complexity quoted in [48, Section 2.4] is optimal (e.g., if the classical

Õ(mn) scaling could be improved to Õ(m + n), the available quantum speedup

would be at most quadratic). There is a possibility that the speedup could be

larger in practice if the Gibbs sampling routine is faster on actual instances than

its worst-case upper bounds suggest, perhaps by utilizing Monte Carlo–style

approaches to Gibbs sampling.

Outlook

It is very plausible that an asymptotic polynomial speedup can be obtained

in problem size using the MWU method for solving LPs or SDPs, but the

speedup appears only quadratic, and an assessment of practicality depends on

the scaling of certain unspecified instance-specific parameters. Similarly, the

standard QIPM method could bring a subquadratic speedup but only under

certain assumptions about the condition number of certain matrices. The alter-

native QIPM method of [51] could deliver a nearly quadratic speedup without

assumptions on the condition number in the case the LP constraint matrix is

very tall. In any case, these quadratic and subquadratic speedups alone might

be regarded as unlikely to yield practical speedups after error correction over-

heads and slower quantum clock speeds are considered. Future work should

aim to find additional asymptotic speedups while focusing on specific practi-

cally relevant use cases that allow the unspecified parameters to be evaluated.

5.3 General convex optimization

Overview

A convex problem asks to minimize a convex function f over a convex set K,

where K is a subset of Rn. Here we examine the situation where the value of

f (x) and the membership of x in the set K can each be efficiently computed

classically. However, we do not exploit/assume any additional structure that

may be present in f or K. This situation contrasts with that of solving conic

programs, where f is linear and K is an intersection of convex cones and affine

spaces, features that can be exploited to yield more efficient classical and quan-

tum algorithms.
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A so-called “zeroth-order” solution to this problem solves it simply by adap-

tively evaluating f (x) and x ∈ K for different values of x. For the zeroth-order

approach, a quantum algorithm can obtain a quadratic speedup with respect to

the number of times these functions are evaluated, reducing it from Õ(n2) to

Õ(n), where Õ notation hides factors polylogarithmic in n and other parame-

ters. This could lead to a practical speedup only if the cost to evaluate f (x) and

x ∈ K is large, and lack of structure rules out other, possibly faster, approaches

to solving the problem.

Actual end-to-end problem(s) solved

Suppose we have classical algorithmsA f for computing f (x) andAK for com-

puting x ∈ K (“membership oracle”), which require C f and CK gates to per-

form with a reversible classical circuit, respectively. Suppose further we have

an initial point x0 ∈ K and that we have two numbers r and R for which we

know that B(x0, r) ⊂ K ⊂ B(x0,R), where B(y, t) = {z ∈ Rn : ∥z − y∥ ≤ t} de-

notes the ball of radius t centered at y. UsingA f ,AK , x0, r, R, and ϵ as input,

the output is a point x̃ ∈ K that is ϵ-optimal, that is, it satisfies

f (x̃) ≤ min
x∈K

f (x) + ϵ .

Dominant resource cost/complexity

The work of [245] and [47] independently establish that there is a quantum

algorithm that solves this problem with gate complexity upper bounded by
[
(C f +CK)n + n3

]
· polylog(nR/rϵ) ,

where the polylogarithmic factors were left unspecified. The rough idea be-

hind the algorithm is to leverage the quantum gradient estimation algorithm to

implement a separation oracle—a routine that determines membership x ∈ K

and when x < K outputs a hyperplane separating x from all points in K—using

only O(1) queries to algorithmAK andA f . It had been previously established

that Õ(n) queries to a separation oracle then suffice to perform optimization

[671], where Õ denotes that logarithmic factors have been suppressed.

Existing resource estimates

There have not been any explicit resource estimates for this algorithm. It may

not make sense to perform such an estimate without a more concrete scenario

in mind, as the estimate would highly depend on the complexity of performing

the circuits for A f and AK . The estimate would also require a more detailed

accounting of the hidden polylogarithmic factors in the complexity statements

above, and it would only be meaningful if the comparable classical complexity
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for solving the same problem using the best available algorithm were well

understood.

Caveats

One caveat is that the quantum algorithm must coherently perform reversible

implementations of the classical functions that compute f (x) and x ∈ K. Com-

pared to a nonreversible classical implementation, this may cost additional an-

cilla qubits and gates. Another caveat relates to the scenario where f (x) and

x ∈ K are determined by classical data stored in a classical database. Such

a situation may appear to be an appealing place to look for applications of

this algorithm because when f and K are determined empirically rather than

analytically, it becomes easier to argue that there is no structure that can be ex-

ploited. However, in such a situation, implementingA f andAK would require

a large gate complexity, so C f and CK would scale with the size of the classical

database. It would almost certainly be the case that a quantum random access

memory (QRAM) admitting log-depth queries would be needed in order for

the algorithm to remain competitive with classical implementations that have

access to classical RAM, and the practical feasibility of building a large-scale

log-depth QRAM has many additional caveats.

Another caveat is that there may not be many practical situations that

are compatible with a quantum speedup by this algorithm. The source of

the speedup in [245, 47] comes from a separation between the complexity

of computing the gradient of f classically vs. quantumly using calls to the

function f . Classically, this requires at least linear-in-n number of calls.

Quantumly, it can be done in O(1) calls using the quantum algorithm for

gradient estimation. In both the classical and the quantum case, the gradient

can subsequently be used to construct a “separation” oracle for the set K,

which is then used to solve the convex problem.

Thus, a speedup is only possible if there is no obvious way to classically

compute the gradient of f other than to evaluate f at many points. This cri-

terion is violated in many practical situations, which are often said to obey a

“cheap gradient principle” [457, 163] that asserts that the gradient of f can be

computed in time comparable to the time required to evaluate f . For exam-

ple, the fact that gradients are cheap is crucial for training modern machine

learning models with a large number of parameters. When this is the case, the

algorithms from [245, 47] do not offer a speedup. On the other hand, as ob-

served in [47, Footnote 19] a nontrivial example of a problem where the cheap

gradient principle may fail (enabling a possible advantage for these quantum

algorithms) is the moment polytope problem, which has connections to quan-

tum information [211].
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When both the function f and the gradient of f can be evaluated at unit cost,

this constitutes “first-order” optimization, which can be solved classically by

gradient descent. However, gradient descent does not generally offer a quantum

speedup, as general quantum lower bounds match classical upper bounds for

first-order optimization, although a quantum speedup could exist in specific

cases [410]. Indeed, for any p, there is no general quantum speedup for pth-

order optimization, that is, the setting where an oracle provides access to the

function and its first p derivatives [409]. For a comprehensive exposition of

classical methods for black-box optimization, see [798].

Comparable classical complexity

The best classical algorithm [672] in the same setting has complexity
[
(C′f +C′K)n2 + n3

]
· polylog(nR/rϵ) ,

where C′
f

and C′
K

denote the classical complexity of evaluating f and query-

ing membership in K, respectively, without the restriction that the circuit be

reversible.

Speedup

The speedup is greatest when quantities C f and CK are large compared to n and

roughly equal to C′
f

and C′
K

. In this case, the quantum algorithm can provide

an O(n) speedup, which is at best a polynomial speedup. The maximal power

of the polynomial would be obtained if C f + CK ≈ C′
f
+ C′

K
scales as n2,

corresponding to a subquadratic speedup from O(n4) to O(n3).

Outlook

The only analyses of this strategy are theoretical in nature, interested more so

in the query complexity of solving this problem than any specific applications

it might have. As such, the analysis is not sufficiently fine-grained to deter-

mine any impact from constant prefactors or logarithmic prefactors. While a

quadratic speedup in query complexity is possible, the maximal speedup in

gate complexity is smaller than quadratic. Moreover, there is a lack of con-

crete problems that fit into the paradigm of “structureless” quantum convex

optimization. Together, these factors make it unlikely that a practical quantum

advantage can be found in this instance.
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5.4 Nonconvex optimization: Escaping saddle points and

finding local minima

Overview

Finding the global minimum of nonconvex optimization problems is challeng-

ing because local algorithms get stuck in local minima. In analogy to physics

where the objective function is the energy of the system, these local minima

are stable configurations that locally optimize the energy but do not achieve the

globally minimal energy. Often, there are many local minima and they are each

separated by large energy barriers. Accordingly, instead of finding the global

minimum, one may settle for finding a local minimum: local minima can often

still be used effectively in situations such as training machine learning mod-

els. An effective approach to finding a local minimum is gradient descent, but

gradient descent can run into the problem of getting stuck near saddle points,

which are not local minima but nonetheless have a vanishing gradient. Effi-

ciently finding local minima thus requires methods for escaping saddle points.

Limited work in this area suggests a potential polynomial quantum speedup

[1081] in the dimension dependence for finding local minima, using subrou-

tines for Hamiltonian simulation and quantum gradient estimation.

Actual end-to-end problem(s) solved

Suppose we have a classical algorithm A f for (approximately) computing a

function f : Rn → R which requires C f gates to perform with a reversible

classical circuit. The amount of error tolerable is specified later. Following

[1081], suppose further that f is ℓ-smooth and ρ-Hessian Lipschitz, that is,

∥∇ f (x1) − ∇ f (x2)∥ ≤ ℓ∥x1 − x2∥ ∀x1, x2 ∈ Rn

∥∇2 f (x1) − ∇2 f (x2)∥ ≤ ρ∥x1 − x2∥ ∀x1, x2 ∈ Rn ,

where ∇ f denotes the gradient of f (a vector), ∇2 f denotes the Hessian of f

(a matrix), and the norm notation ∥·∥ denotes the standard Euclidean norm for

vector arguments and the spectral norm for matrix arguments.

The end-to-end problem solved is to take as input a specification of the

function f , an initial point x0, and an error parameter ϵ, and to output an ϵ-

approximate second-order stationary point (i.e., approximate local minimum)

x, defined as satisfying

∥∇ f (x)∥ ≤ ϵ λmin(∇2 f (x)) ≥ −√ρϵ ,

where λmin(·) denotes the minimum eigenvalue of its argument. In other

words, the gradient should be nearly zero, and the Hessian should be close to

a positive-semidefinite matrix.
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Dominant resource cost/complexity

The idea pursued in the quantum algorithm of [1081] is to run normal gradi-

ent descent, which has gradient query cost independent of n, until reaching an

approximate saddle point. Classical algorithms typically apply random pertur-

bations to detect a direction of negative curvature and continue the gradient

descent. Instead, the quantum algorithm constructs a Gaussian wavepacket lo-

calized at the saddle point, and evolves according to the Schrödinger equation

i
∂

∂t
Φ =

(
−1

2
∆ + f (x)

)
Φ , (5.1)

where ∆ denotes the Laplacian operator. The intuition is that, in the directions

of positive curvature, the particle stays localized (as in a harmonic potential),

while in the directions of negative curvature, the particle quickly disperses.

Thus, when the position of the particle is measured, it is likely to have escaped

the saddle point in a direction of negative curvature, and gradient descent can

be continued. The other technical ingredient is the quantum gradient estimation

algorithm, which uses a constant number of (coherent) queries to the function

f to estimate ∇ f .

The main finding of [1081] is that, to do the gradient descent and the Hamil-

tonian simulation, the algorithm need only query the circuit evaluating the

function f polylog(n) times. Specifically, the algorithm performs the C f -gate

quantum circuit for coherently computing f a number of times scaling as

Õ
(

log(n)( f (x0) − f ∗)

ϵ1.75

)
,

where x0 is the initial point and f ∗ is the global minimum of f . The evaluation

of f must be correct up to precision O(ϵ2/n4). Note that the work of [1081] ini-

tially showed a log2(n) dependence, which was later improved to log(n) using

the improved simulation method of [287, Corollary 8]. However, it is impor-

tant to emphasize that the method has additional cost beyond the queries to

the circuit for evaluating f , originating from the Hamiltonian simulation of

the kinetic term − 1
2
∆ in Eq. (5.1). Specifically, the number of additional gates

needed in the Hamiltonian simulation is seen from [287, Lemma 12 & Corol-

lary 8] to scale as Õ(n( f (x0)− f ∗)/ϵ1.75), although we remark that it is possible

that this gate complexity could be parallelized such that the circuit depth scales

polylogarithmically in n. Thus, the overall gate complexity is

Õ
(

(n +C f log(n))( f (x0) − f ∗)

ϵ1.75

)
.

The space complexity to represent the d-dimensional system on a grid with

grid spacing O(ϵ) is O(n log(1/ϵ)).
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In related work, [439] analyzes the complexity of escaping a saddle point

when one has access to noisy queries to the value of the function f . Addition-

ally, lower bounds on the ϵ-dependence of quantum algorithms for this problem

are given in [1080].

Existing resource estimates

This problem has received relatively little attention, and no resource estimates

have been performed.

Caveats

Reference [1081] gives the query complexity of the quantum algorithm but

does not perform a full end-to-end resource analysis. (However, it does numer-

ically study the performance of the quantum algorithm in a couple of toy ex-

amples.) Additionally, many practical scenarios are said to obey a “cheap gra-

dient principle” [457, 163], which says that computing the gradient is almost

as easy as computing the function itself, and in these scenarios, no significant

quantum speedup is available. Finally, in the setting of variational quantum al-

gorithms, this does not avoid the issue of barren plateaus, which refers to the

situation where a large portion of the parameter space has a gradient (and Hes-

sian) that vanishes exponentially with n. These regions would be characterized

as ϵ-approximate local minima unless ϵ is made exponentially small in n.

Comparable classical complexity and challenging instance sizes

The best classical algorithm [1079] for this problem makes

Õ
(

log(n)( f (x0) − f ∗)

ϵ1.75

)

queries to the gradient of f . Note that Ω(n) queries to the value of f would

be needed to construct a query to the gradient. (When the quantum algorithm

in [1081] was first discovered, the best classical algorithm required O(log(n)6)

gradient queries [577, Theorem 3], and this was later improved.) Although the

literature focuses mainly on the query complexity, examination of [1079, Algo-

rithm 1] indicates that an additional Õ(n( f (x0)− f ∗)/ϵ1.75) arithmetic operations

would be required to process the results of the gradient queries and compute

the next point to be queried (e.g., adding pairs of n-dimensional vectors).

Speedup

The quantum algorithm in [1081] has the same query complexity as the clas-

sical algorithm in [1079]; the difference is that the quantum algorithm makes
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(coherent) queries to an evaluation oracle, while the classical algorithm re-

quires access to a gradient oracle. Thus, if classical gradient queries are just

as cheap as evaluation queries (as is often the case), there is no speedup. If it

were the case that gradient queries are not directly available, then the speedup

in query complexity could be exponential. However, even in this case, the

speedup in gate complexity can be at most polynomial, since both the classical

and quantum algorithms have poly(n) gate complexity, and classical gradient

queries can be constructed from Õ(n) classical evaluation queries, which can

be accomplished with at most C f classical gates. Indeed, the largest polyno-

mial speedup in gate complexity occurs when C f = O(n)—in this case, the

quantum algorithm has Õ(n) gate complexity and the classical algorithm has

Õ(n) ·C f = O(n2) gate complexity, a quadratic speedup.

Outlook

It is unclear whether the algorithm for finding local minima could lead to a

practical speedup, as it depends highly on the (non)availability of an efficient

classical procedure for implementing gradient oracles; a quantum speedup is

possible only when such oracles are difficult to implement classically, and even

so, the speedup in gate complexity would be modest. However, the algorithm

represents a useful end-to-end problem where the quantum gradient estima-

tion primitive can be applied. It is also notable that the quantum algorithm em-

ploys Hamiltonian simulation, a primitive not used in most other approaches to

continuous optimization. Relatedly, [675, 674] propose a quantum subroutine

called “quantum Hamiltonian descent” which is a genuinely quantum counter-

part to classical gradient descent, via Hamiltonian simulation of an equation

similar to Eq. (5.1). Unlike classical gradient descent, it can exploit quantum

tunneling to avoid getting stuck in local minima; thus, it can potentially find

global minima of nonconvex functions. Establishing concrete end-to-end prob-

lems where quantum approaches based on Hamiltonian simulation yield an ad-

vantage in nonconvex optimization is an interesting direction for future work.
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Cryptanalysis

Computation and communication are secured by cryptography. For example, a

user’s data can be made private, along with messages that they send or receive,

from malicious agents who interfere to try to learn the sensitive information. A

set of algorithms collectively called a cryptosystem endows the security. The

attempt to break security is known as cryptanalysis, which has its own set

of algorithms. Historically, both cryptography and cryptanalysis considered

classical, polynomial-time algorithms as the only realistic ones. The advent of

quantum computation forces us to consider attacks via quantum algorithms.

Generally, we want to know what is the best algorithm for cryptanalysis, in

order to understand the effect on the cryptosystem in the worst case. Quantum

attacks can void the security of widely used cryptosystems (see Section 6.1 on

breaking cryptosystems). More broadly, quantum cryptanalysis can reduce a

cryptosystem’s security (see Section 6.2 on weakening cryptosystems), such

that it becomes more expensive to implement in a secure manner. While the

properties of quantum mechanics can also be used to devise more secure cryp-

tosystems (e.g., quantum key distribution) [121, 834, 1058], we consider this

area of cryptography to be outside the scope of the present discussion on quan-

tum algorithms.

The authors are grateful to Matthew Campagna and Samuel Jaques for

reviewing this chapter.
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6.1 Breaking cryptosystems

Overview

Much of modern cryptography relies on computational assumptions.1 A cryp-

tosystem is a protocol to achieve some security goal, such as hiding informa-

tion, ensuring integrity of information, or computing a function correctly. A

cryptosystem is secure if, assuming a particular mathematical problem is hard

to solve (or assuming the existence of certain functions, e.g., pseudorandom),

an adversary cannot compromise the security goal. The earliest such cryptosys-

tems used particular problems from number theory, and variants are widely

deployed to this day [605]. These cryptosystems are in the class of public-key

or asymmetric cryptography. Public-key cryptography uses key pairs: a private

key known only to one user, and a public key that can be widely distributed

to allow any user to perform tasks like encryption. In contrast, symmetric-key

cryptography uses a single secret key that must be preshared between commu-

nicating parties.

Quantum computers use quantum algorithms to solve computational prob-

lems, and in some cases they provide a speedup over the best known classical

techniques. When they are applied to the underlying computational task in

a cryptosystem, a large speedup over classical methods can break the cryp-

tosystem, in that an adversary efficiently learns the secret key or the encrypted

information to a non-negligible degree. One of the first discovered and most

famous applications of quantum computing is Shor’s algorithm [937], which

breaks or solves the integer factorization problem, and both the general dis-

crete logarithm problem and the elliptic curve discrete logarithm problem.

These problems are believed to be classically hard, and are the basis of se-

curity for the most common public-key cryptosystems, like Diffie–Hellman,

Rivest–Shamir–Adleman (RSA), and elliptic curve cryptography (ECC). The

applications of these public-key cryptosystems include encryption to hide the

contents of a message, signatures that prevent tampering and impersonation,

and key exchange to generate a key for symmetric-key cryptography [126]. In

this section, we restrict our focus to two of the most widely used cryptosys-

tems: RSA and ECC.

Actual end-to-end problem(s) solved

The RSA cryptosystem [875] relies on a user choosing a large number N that

is the product of two prime numbers; arithmetic is done modulo N. Denote by

n = ⌈log2(N)⌉ the number of bits specifying N. Along with the modulus N, two

integers e and d are used as exponents, such that (me)d = m mod N for all val-

1 An example of a cryptosystem not requiring computational assumptions is the one-time pad.
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ues 0 ≤ m < N. The pair (N, e) is the public key, and the value d is the private

key. A message m is encrypted as me mod N. Exponentiation with d performs

decryption, recovering m as specified in the relation above. Some applications

store the factors of N, which must also be kept private. The user generates e

and d using their knowledge of the prime factors of N. First, a suitable e is

generated, and then d is computed from the prime factors of N and e using

some number-theoretic facts together with the extended Euclidean algorithm.

However, if an adversary is able to find the factors of N after the construction

by the user, they can also solve for d and thereby decrypt messages. The secu-

rity of RSA is based on the observed difficulty of factoring large numbers like

N, that is, the integer factorization problem.

ECC is based on a different problem, the elliptic curve discrete logarithm

problem (ECDLP), which has the advantage of smaller key sizes for equiv-

alent security levels, compared to RSA. Consequently, fewer resources (e.g.,

communication, complexity of encryption and decryption) are required to im-

plement ECC. Elliptic curves are constructed over a finite field K, as the set of

solutions to the equation

y2 = x3 + ax + b , a, b ∈ K ,

which specify points on an elliptic curve [639, 763]. The set of solutions

P = (x, y) forms an abelian group under a specially defined addition opera-

tion. Collectively, the set of parameters K, a, b and a so-called base point G

(a solution to the equation of prime additive order N, i.e., NG is the additive

identity) specify the cryptosystem. A private key is a random integer k satis-

fying 1 ≤ k < N, and a public key is the value P = kG, the result of adding

G to itself k times. The assumption of hardness is in the following problem

(ECDLP): Given P and G, where P = kG for some secret value k, find k. ECC

is constructed from the observation that calculating P from k,G is efficient,

whereas it is computationally infeasible for an adversary to compute k from

points P and G.

Dominant resource cost/complexity

Shor’s algorithm [937] solves the number-theoretic problem of order finding:

given n-bit positive integer N and x coprime to N, find the smallest integer

r such that xr = 1 mod N. Factoring was shown to reduce to order finding.

In particular, there is an efficient, otherwise classical algorithm, of classical

complexity O(n3) [801], that uses order finding as a quantum subroutine. To

describe the quantum algorithm for order finding, let the function f denote

modular exponentiation, that is, f (e) = xe mod N, and note that f is periodic

with (unknown) period r. Also, let L be a large integer such that an interval of
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length L contains many periods, that is, L ≫ r. It can be shown that L ≥ N2 is

sufficient. There are three steps. First, an equal superposition over the numbers

{0, . . . , L − 1} is formed and the function f is computed into an ancilla register

yielding the state L−1/2 ∑L−1
e=0 |e⟩| f (e)⟩. Second, a measurement is performed on

the ancilla register, which, due to the periodicity of the function f , yields a state

(⌈L/r⌉)−1/2 ∑⌊L/r⌋
j=0
|r j + y⟩ for 0 ≤ y < r a random and unknown integer.2 Third,

a quantum Fourier transform is performed. In the case that L is a multiple of r,

the result is
√

r

L

L/r∑

j=0

L−1∑

z=0

e2πiz(r j+y)/L|z⟩ = 1√
r

r−1∑

ℓ=0

e2πiℓy/r |ℓL/r⟩ , (6.1)

where the equality follows since coefficients of |z⟩ for which z is not equal to

ℓL/r for some integer ℓ vanish due to destructive interference. Measurement of

this state then produces an outcome ℓL/r for a randomly sampled ℓ. The value

of r can be classically computed by dividing the measurement outcome by L

and determining the value of the denominator of the rational number that re-

sults; repetition may be required since ℓ and r could have common divisors. If

L/r is not an integer, the measurement outcome is (with high probability) an in-

teger close to ℓL/r for some integer ℓ. One can deduce the rational number ℓ/r

(which allows for the determination of r) from the estimate of ℓL/r by writing

it as a continued fractions expansion, with classical complexity O(n3) [801].

This entire procedure can alternatively be viewed as quantum phase estima-

tion applied to the unitary U that sends |y⟩ 7→ |xy mod N⟩ for all y relatively

prime to N, performed with at least 2n bits of precision.

The number of qubits for order finding—and hence for Shor’s factoring

algorithm—is O(n), which stems from the number of bits specifying the prob-

lem: the first register has size 2n, and the ancilla register holding the result f (e)

has size n. Naively, the number of gate operations is O(n2) for the quantum

Fourier transform and O(n3) for implementing the coherent modular exponen-

tiation |e⟩|0⟩ 7→ |e⟩|xe mod N⟩. The O(n3) arises from decomposing modular

exponentiation into O(n) modular multiplications, one for each bit of e—using

schoolbook multiplication, the gate cost per multiplication is O(n2). Imple-

menting this modular arithmetic with reversible circuits represents the bottle-

neck in the complexity. These circuits are closely related to those in classical

computing that have been optimized. Still, improvements can lead to better

resource counts [592]. The best scaling in theory is achieved with algorithms

that have large prefactors in their complexity, making them impractical to im-

plement except when n is large: total gate complexity of O(n2 log(n)) is possi-

2 If r⌊L/r⌋ + y ≥ L, then the j = ⌊L/r⌋ term does not appear in the expression.
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ble asymptotically, using integer multiplication with O(n log(n)) scaling [502],

although analyses optimized for n ≈ 2048 use methods for which the total

gate complexity scales as Õ(n3) [424]. Alternatively, optimization may be per-

formed to, for example, increase qubit count and decrease gate count or gate

depth. For example, an approximate version of the quantum Fourier transform

is implemented with O(n log(n)) gates and allows factoring with O(log(n))-

depth quantum circuits [298], at the cost of extra overhead in number of qubits

and gates; allowing for O(log2(n))-depth preserves the circuit size O(n3).

A related approach proposed by Regev [869] for quantum factoring has

quantum circuit size of only Õ(n3/2) gates (assuming fast integer multiplica-

tion at cost Õ(n)), but the circuit has to be run O(n1/2) times. Thus, it achieves

the same overall asymptotic gate complexity as Shor’s algorithm. The idea of

the algorithm is to extend period finding to higher dimensions and optimize

resource counts. Unlike Shor’s algorithm, which is proven to succeed, Regev’s

approach relies on a number-theoretic assumption, albeit a plausible one. The

reduction in quantum circuit depth and natural parallelism of the approach

may lead to more favorable resource counts in practice. In particular, a con-

stant fraction of the runs can fail [849], which may allow it to be implemented

fault tolerantly with less overhead. Initial work on optimizing the algorithm

has established a tradeoff between the number of qubits and the number of

gates. Linear qubit cost of O(n) is possible (although the constant prefactor is

larger than that of Shor’s algorithm) while still maintaining Õ(n2) total gate

complexity [849, 848].

Essentially the same quantum algorithm of Shor is readily applied to el-

liptic curves, as well as the discrete logarithm problem (i.e., find r such that

ar = b for a, b ∈ G where G is a group), which is also used as a computa-

tionally hard problem for cryptography. These applications are all instances of

the hidden subgroup problem: Find the generators for subgroup K of a finite

group G, given a quantum oracle performing U |g⟩|h⟩ = |g⟩|h ⊕ f (g)⟩, where

f : G → X (X is a finite set) is a function that is promised to be constant

on the cosets of K and take unique values on each coset. In the case of pe-

riod finding, G is the group Z/LZ under addition, and the hidden subgroup

is K = {0, r, 2r, . . . , L − r} (technically a subgroup only if r divides L); one

can verify that f (g) = xg mod N is constant on each coset of K. The proce-

dure outlined above for period finding can be applied to other groups, where it

is called “the standard method” [277], which requires generalizing the quan-

tum Fourier transform to arbitrary groups. A simple example is Simon’s prob-

lem [940]—indeed, historically speaking Simon’s algorithm inspired Shor’s

[938]—where G is the abelian group (Z/2Z)n of bit strings of length n under

addition, K = {0, c} for some hidden bit string c, and the generalized Fourier
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transform is simply the Hadamard transform H⊗n. For abelian groups, the hid-

den subgroup K can be determined with polylog(|G|) queries to f , but the

method does not work for nonabelian groups, such as the symmetric group

and the dihedral group.

Existing resource estimates

The minimum recommended key size for RSA is 2048 bits [96]. Optimizations

in the circuits [109, 493] and incorporation of hardware constraints [398] have

led to decreasing but also more realistic resource estimates. For key size n =

2048, an optimized resource estimate was performed in [424], geared toward

implementation on a device with nearest-neighbor connectivity in 2D, where

logical qubits are encoded with the surface code. Their implementation used

roughly 3n ≈ 6000 logical qubits and roughly 0.3n3 ≈ 3 × 109 non-Clifford

gates (a mixture of Toffoli and T gates). Accounting for magic state distillation

and routing in 2D, it was shown how the computation could be laid out on a

2D grid of 14,000 logical qubits.

For ECC, the minimum recommended key size to ensure 128-bit security

(quantifying the number of attacks needed to learn the encrypted information;

see Section 6.2 on weakening cryptosystems for details), is n = 256 bits [96]

(achieving the same level of security with RSA requires a key size of 3072

bits [175, 876]). For breaking 256-bit ECC, an early resource esimate con-

cluded that around three times fewer logical qubits, and 100 times fewer Toffoli

gates are required (compared to 3072-bit RSA) [876]. Similar to factoring, im-

provements have been made in logical circuit compilation [495] and how this

translates into hardware implementations [1030, 450, 695]. In [695], a method

was given requiring 1.1 × 108 Toffoli gates and 6000 logical qubits. Addition-

ally, by offloading some of the work to a brute-force classical computation and

exploiting a simplification that arises when computing multiple ECC keys in

parallel, the total Toffoli count per key was shown to approach 4.4× 107 [695].

As a conclusion, breaking elliptic curve cryptography is easier than factoring

for quantum computers in practice [846], relative to their practical difficulty on

classical computers.

The physical resources required to implement these logical circuits fault tol-

erantly depends on many details of the hardware, including the error rate, the

physical gate speed, and the available connectivity. In both cases (2048-bit

RSA [424, 476] and 256-bit ECC [1030, 450, 695]), given current hardware

schemes restricted to nearest-neighbor 2D connectivity with logical qubits en-

coded into surface codes, the number of physical qubits is estimated to be on

the order of 10 million and the computation runs for at least 3–10 hours (sig-

nificantly longer than this for platforms with relatively slower physical gate
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speeds). For a discussion on how to convert between logical and physical

resources, see Part III on fault-tolerant quantum computation. Optimization

based on the particular architecture can give improvements to these estimates.

For example, if one assumes a logarithmic number of nonlocal links, as could

be envisaged in photonic implementations, the estimated runtime can be re-

duced to less than one minute per 256-bit ECC key [695]. The algorithms con-

sidered in the resource estimates above do not achieve the best known asymp-

totic scaling, which comes at the cost of large constant prefactors.

Caveats

While the popular cryptosystems based on number-theoretic problems are ren-

dered insecure for public-key cryptography, there exist alternatives that are

believed to be secure against quantum computers: for example, based on error

correcting codes or lattices [126]. These alternative computational problems

are believed to be hard for both classical and quantum computers. The National

Institute of Standards and Technology (NIST) of the United States has pro-

vided standards and encouraged implementation [15]. The class of symmetric-

key cryptography (see a standard text [605] for details) involves computations

that do not have much structure, and also is not broken by quantum comput-

ers.3 Instead, the number of bits of security is reduced.

Prior experimental demonstrations of Shor’s algorithm have used knowledge

of the answer in order to optimize the circuit and thus lead to sizes that are

experimentally feasible on non-error-corrected devices. Meaningful demon-

stration should avoid such shortcuts [943], which are not available in realistic

cryptographic scenarios.

Comparable classical complexity and challenging instance sizes

The best known classical algorithm for factoring is the number field sieve,

which has time complexity superpolynomial in number of bits n: namely, it

scales as O(exp(p · n1/3 log2/3(n))), where p > 1.9. With a hybrid quantum-

classical algorithm applying amplitude amplification on the number field

sieve, p = 1.387 can be achieved using a number of qubits scaling only as

O(n2/3) [128]. Classically, problems of size 795 bits have been factored, taking

76 computer core-years, which distributed in parallel over a cluster took 12

days; the same team then extended the record to 829 bits [175].

Several algorithms attacking elliptic curve cryptography have complexity

O(2n/2) [1026], leading to the recommended doubling of key size compared to

3 If the adversary can query the cryptosystem’s algorithms in superposition, some
symmetric-key cryptography can be broken using period finding to extract the key [599].
However, this capability of the adversary is not considered realistic.
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bits of security. In practice, a problem of size 117 bits was solved [127]. The

corresponding security is estimated [676] to be about 60 bits, compared to 70

bits for the RSA record above.

Speedup

The number of gates to implement Shor’s algorithm is Õ(n2) asymptotically

using fast multiplication on large numbers [111]. More practically, without in-

curring the time overhead and additional storage space of fast multiplication,

the scaling is O(n3). Assuming classical and quantum gates are polynomially

related in time complexity, the speedup for solving the factoring problem is su-

perpolynomial, and the speedup for solving the ECDLP is exponential. How-

ever, there are no tight lower bounds on the classical complexity of factoring

or ECDLP; it remains possible that more efficient classical algorithms could

be discovered.

NISQ implementations

The large circuit depth, complicated operations, and high number of qubits

needed to implement Shor’s algorithm make faithful NISQ implementation

challenging. However, there have been several attempts to ease implementation

at the expense of losing the guarantees of Shor’s algorithm, in the hope that the

output is still correct with some nonzero probability, which could be vanishing.

One approach [885] is to simplify several operations and make them approx-

imate. The outcome is that the circuit depth is O(n2), saving a factor of n [493].

The depth is then about 108 to factor a 1024-bit instance of RSA, so for rele-

vant sizes, error correction is still required. Implementation of the approximate

algorithm, including experimentally, allowed for the successful factorization of

larger problem instances than had been possible before. This approximate ver-

sion is not NISQ in the usual sense of involving noisy circuits, but rather intro-

duces some uncontrolled approximation error in return for reducing the depth,

for the possibility of a useful result. Another approach is to encode the fac-

toring problem in a variational optimization circuit. Again, performance is not

guaranteed; moreover, variational optimization applied to generic problems is

expected to have, at best, a quadratic improvement compared to classical meth-

ods, leaving no hope for breaking cryptography. Classical simulation on small

problem sizes shows that the algorithm can succeed [39], as does experimental

implementation on a superconducting quantum processor [600]. We empha-

size that, generally, these NISQ approaches have no evidence or arguments for

scaling to cryptographically relevant system sizes.
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Outlook

The existence of Shor’s algorithm implies common RSA and elliptic curve

schemes are theoretically not secure, and resource estimates have made clear

what scale of quantum hardware would break them. While such hardware does

not exist currently, progress toward such a device can be used to inform the

speed of transitioning to quantum-resistant encryption [263]. Currently, from a

hardware perspective, the field of quantum computing is far from implement-

ing algorithms that would break encryption schemes used in practice. The esti-

mates above suggest that the resources required would be millions of physical

qubits performing billions of Toffoli gates running on the timescale of hours

or days. In contrast, the current state of the art is on the order of one hundred

noisy physical qubits, with progress toward demonstration of a single logical

qubit. Running fault-tolerant quantum computation requires extra overhead,

such as magic state factories (see Chapter 26 on quantum error correction and

Chapter 27 on lattice surgery). Thus, the gap between state-of-the-art hardware

and the requirements for breaking cryptosystems is formidable. Moreover, a

linear increase in key size will increase, for example, the number of Toffoli

gates by a power of three, which can be substantial. Therefore, considering

the experimental challenges, likely only the most sensitive data will be at risk

first, rather than common transactions. Consequently, these highly confidential

communications will likely adopt post-quantum cryptography first to avoid be-

ing broken. However, insecure protocols often linger in practice, so quantum

computers can exploit any vulnerabilities in deployed systems that have not

been addressed. For example, RSA keys of size 768 bits have been found in

commercial devices (note that such key sizes can already be broken classi-

cally [175]). In addition, intercepted messages, encrypted with RSA or elliptic

curves, can be stored now and decrypted later, once large-scale quantum com-

puters become available.

The resilience of candidates for post-quantum cryptography is under ac-

tive investigation. In particular, specialized quantum attacks [274, 831] can

reduce the number of bits of security, weakening the cryptosystem. Relax-

ing to toy variants of relevant cryptosystems in order to find new attacks,

quantum algorithms can provide polynomial-time solutions [318]. Classical

algorithms have even broken certain candidate cryptosystems [145, 239]. Note

that these attacks affect the feasibility of particular proposals, but there ex-

ist other post-quantum candidates that have no known weaknesses. With the

completion of NIST’s standardization process, approved post-quantum cryp-

tography is being rapidly deployed. For example, several popular messaging

platforms [645, 378] recently adopted post-quantum key derivation hybridized
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with ECC, so that the scheme is secure as long as at least one of the underlying

cryptosystems is secure.

A sensitive area that warrants additional discussion is cryptocurrency,

since much of it relies on the compromised public-key cryptography based

on abelian groups. Moreover, changing the cryptographic protocol of the

currency requires that most of the users reach a consensus to do so, which

can be challenging to coordinate, even if the technical hurdles of adopting

post-quantum encryption are overcome. Cryptocurrency wallets that have

revealed their public key (e.g., via a transaction reusing a public key assigned

to that wallet previously) can be broken using Shor’s algorithm. An attack

is also possible during the short time window in which the key is revealed

during a single transaction [8]. Different cryptocurrencies have different levels

of susceptibility to these types of attacks [97, 98]. Nevertheless, the mining of

cryptocurrency is not broken, but only weakened by quantum computers.

6.2 Weakening cryptosystems

Overview

The discovery of Shor’s algorithm (see Section 6.1 on breaking cryptosys-

tems) prompted interest in post-quantum cryptography, the study of cryptosys-

tems assuming the presence of large-scale, working quantum computers [126].

While some existing systems retained confidence in their security, others that

were broken by quantum algorithms were superseded by those that accomplish

the same task, but are believed to maintain a high level of security against quan-

tum attacks.

Even if a cryptosystem is not broken altogether, its degree of security can be

weakened by quantum algorithms. The strength of a cryptosystem is typically

quantified by the number of bits of security (also called the security parameter),

that is, n bits corresponds to guessing the desired information with probability

1/2n and accessing what is being protected. When considering computational

assumptions, a simplified definition of the security parameter n is that crypt-

analysis requires a computational cost of 2n operations, captured by the best

known attack. Breaking a cryptosystem means only an efficient number of op-

erations (i.e., poly(n)) are needed, while an attack that weakens a cryptosystem

still takes 2m > poly(n) operations, for some m < n.

In contrast to public-key cryptosystems, symmetric-key cryptography was

discovered earlier and has fewer capabilities. However, it relies less on the

presumed hardness of underlying mathematical problems, and correspondingly
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has only been weakened by quantum cryptanalysis, as discussed in more detail

below.

Actual end-to-end problem(s) solved

In symmetric-key cryptography, two communicating parties share the same

key K, which is used both in encryption EncK and decryption DecK . As usual,

the cryptographic algorithm (EncK ,DecK) is known to everyone, including ad-

versaries. The most significant break of a symmetric-key algorithm is an ad-

versary learning the key, given r pairs of plaintext (the message m) and cor-

responding ciphertext c (its encryption).4 Such a pair can be accessed by, for

example, forcing a certain test message to be transmitted. Precisely, an input

K is sought for which the following function outputs 1:

f (K) = ((EncK(m1) = c1) ∧ · · · ∧ (EncK(mr) = cr)) ,

that is, find a key such that all the messages encrypt correctly. A straightfor-

ward attack is to use brute force and test every key; in practice, sophisticated

classical attacks do not perform better than this approach in asymptotic scaling.

Dominant resource cost/complexity

The main, generic quantum attack is to use amplitude amplification: given a

classical algorithm with success probability O(2−n) of finding a solution, the

probability is increased quadratically to O(2−n/2). Thus, applying amplitude

amplification to the task of solving for the key, the security of cryptosystems

goes from n bits to n/2.

The function queried in superposition must be efficient to evaluate with a

quantum circuit, which is often the case in cryptography [126]. However, the

operations are typically long sequences of Boolean arithmetic. As such, a uni-

versal gate set and fault-tolerant quantum computation are still required. To

store the key, O(n) register qubits are needed, and many more ancilla qubits

are used for the reversible arithmetic.

Existing resource estimates

Consider the Advanced Encryption Standard (AES) [559], a symmetric en-

cryption algorithm that is widely used in cryptosystems, for example, for en-

crypting web traffic. At a high level, it mixes the plaintext and adds it to the

key to obtain the ciphertext. An attack based on amplitude amplification needs

4 There are more sophisticated attack models: for example, many communicating adversaries
may have the goal of compromising one of multiple keys [89]. Correspondingly, there are
other definitions of security, but this simple and powerful one generally is considered for
quantum attacks.
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around 3000–7000 logical qubits [453] for AES-k, where k denotes key size in

bits, and k ∈ {128, 192, 256}. For these sizes, the number of necessary problem

instances r is three to five. While the number of logical qubits roughly doubles

going from AES-128 to AES-256, the number of T gates goes from 286 ≈ 1025

to 2151 ≈ 1045. More recent work [566] allows for higher qubit counts (by

about 70%) in exchange for much lower Toffoli depth, such that their product

is reduced. Such optimization resulted in about 99% reduction in this metric.

Caveats

Since the quantum attack only halves the exponent in the complexity, a simple

fix is to double the key length, for example, by adopting AES-256 instead of

AES-128. This modification results in increased, but usually tolerable, cost in

implementation (i.e., complexity of encryption and communication resources).

In addition, there exist cryptosystems with an information-theoretic security

guarantee, assuming adversaries with unlimited computational power, which

covers against quantum attacks [126].

Furthermore, it is important to note that to realize the full quadratic benefit

of amplitude amplification, the O(2n/2) function queries must be performed

in series. In contrast, classical brute-force attacks can exploit the parallelism

available in high-performance classical computers, potentially increasing the

value of n for which a quantum approach would be advantageous over classical

methods.

Comparable classical complexity and challenging instance sizes

Classical algorithmic attacks on AES have reduced the security by only a few

bits [160]. More practical are side-channel attacks, which make use of phys-

ical byproducts, such as energy consumption. For example, when comparing

bits between a key and another string, a flipped value can result in logic that

increases energy consumption, compared to the same value where nothing

happens. The two cases are distinguished and information about the key is

learned. Currently, 128 bits of security is roughly the minimum recommended

amount [95]. The use of parallelization forces the adoption of relatively large

key sizes, compared to what is necessary for a single processor (∼ 60 bits).

Speedup

The basic speedup is quadratic:O(
√

N) function evaluations compared toO(N)

classically, where N denotes the number of possibilities for the key; that is,

n = ⌈log2(N)⌉. However, the function queries in amplitude amplification can-

not be parallelized. Then, the evaluation time of the function sets a bottle-

neck [126]. That is, the problem size is limited by the number of function
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evaluations T that can be run in an acceptable period of time. For
√

N > T ,

employing p parallel quantum processors, each executes T =
√

N/p evalua-

tions. Then, p = O(N/T 2) and the total number of evaluations is pT = O(N/T ),

whereas classically, the number of processors is O(N/T ) and total evaluations

is O(N). The advantage is a factor of T , which is the bottleneck, rather than the

larger
√

N. However, the advantage can be overshadowed by faster or cheaper

classical processing. That is, if classical computers evaluate the function T

times faster than quantum processors, there is no advantage in runtime with

using the quantum device. Furthermore, this argument assumes the same cost

of parallelization for classical and quantum, which is optimistic for quantum

devices. An example of this effect is in mining cryptocurrency [8]: while a

quantum computer needs quadratically fewer attempts to succeed, the devel-

opment of fast, specialized, classical hardware negates the advantage. Essen-

tially, for brute-force attacks, parallelization has the most significant impact in

cryptanalysis.

NISQ implementations

The key can be encoded as the ground state of a Hamiltonian, and then vari-

ational methods can be applied to solve for it. The scaling is expected to be

the same as amplitude amplification. However, since the variational algorithm

does not have a set time complexity, the solution may be found much slower

or faster [1023]. If the fluctuations are large enough, they can potentially pose

a challenge to cryptography, which makes worst-case guarantees. However,

there is no reason to expect that the success probability will scale favorably

with key size and compromise security in practice. Another approach is to use

amplitude amplification, but adapt it to near-term devices, so that the NISQ-

optimized versions perform better in real experiments [1083].

Outlook

Here, we focused on the example of symmetric-key encryption. Nonetheless,

the effect of amplitude amplification to halve the effective bits of security is

generic for computational problems, assuming efficient construction of the or-

acle. From the cryptographic standpoint, this attack is mild and can be coun-

teracted by doubling the number of bits of security in the scheme. In practice,

the increase in key size can be unwieldy in certain applications, such as cryp-

tocurrencies, but fundamental security is not threatened.
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Solving differential equations

The authors are grateful to Dong An, Di Fang, and Ashley Montanaro for

reviewing this chapter.

Overview

Many applications in engineering and science rely on solving differential

equations. Accordingly, this constitutes a large fraction of research-and-

development high-performance computing (HPC) workloads across a wide

variety of industries. There have been many proposals to speed up differential

equation solving using a quantum computer. At this point, the consensus

is that we lack compelling evidence for practical quantum speedup on

industry-relevant problems. However, the field is progressing rapidly, and this

conclusion is subject to change.

Some of the main application areas that have been considered are:

• Computational fluid dynamics (CFD), usually involving simulation of the

Navier–Stokes equation. The main industries relying on CFD simulations

are automotive, aerospace, civil engineering, wind energy, weather/climate

modeling, and defense. While most simulations focus on air or fluid flow on

solid objects, other processes, such as foaming, are also important to model.

Large CFD calculations are routinely in the petaflop regime and are run on

millions of CPU cores. Specific quantum proposals include [683, 965, 560,

584, 821, 406, 405, 268, 661].

• Geophysical modeling, involving simulation of the wave equation. The

main industries are oil and gas, hydroelectric, geophysics. Large seismic

imaging simulations can easily be in the petaflop regime. Quantum propos-

als for simulating the wave equation include [779, 518, 365].
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• A wide variety of engineering problems involving the finite element

method (FEM) for studying structural properties of solid objects. The main

industries are civil engineering, manufacturing (including automotive),

aerospace, and defense. The simulations are typically slightly smaller in

scale than CFD, though still often requiring large HPC clusters. Quantum

FEM proposals include [580, 777, 1002, 1082].

• Maxwell’s equations and the heat equation have applications in chip de-

sign and other electronic component design, as well as for navigation and

radar technology. Specific quantum proposals include [295, 580, 692].

• Plasma physics simulations, involving the simulation of the Vlasov equa-

tion, are widespread in nuclear fusion research. Quantum approaches in-

clude [803, 377, 354].

• Risk modeling, involving the simulation of stochastic differential equations,

is extensively used in finance (especially derivatives pricing), insurance, and

energy markets. Specific quantum proposals include [865, 33, 857, 393,

685].

Differential equations can be categorized according to a number of proper-

ties: (i) ordinary vs. partial depending on the number of differential variables,

(ii) stochastic vs. deterministic depending on whether the function is a random

variable or not, (iii) linear vs. nonlinear. We will focus mainly on linear ordi-

nary and partial differential equations, which have received the most attention

in the quantum computing literature, and only comment briefly on stochastic

and nonlinear differential equations.

In order to solve a differential equation numerically, one typically speci-

fies a discretization scheme. Two important classes of discretization schemes

are: (i) grid-based schemes, including finite difference methods (FDMs), as

well as the finite volume method (FVM) and the FEM combined with various

choices of support grids and preconditioning (see [665, 996] for an introduc-

tion). For example, in the finite difference framework, the continuous space is

discretized on a uniform grid and the continuous operators are replaced by fi-

nite difference operations on neighboring grid points. Alternatively, (ii) one can

discretize space by expansion in a functional basis (Fourier, Hermite, etc.), and

solve the discrete problem in this basis. This second class of methods is often

referred to as spectral methods [930]. There is often a tradeoff between error

convergence and regularity requirements, with higher-order grid-based meth-

ods and spectral methods offering faster error convergence with the number

of grid points or basis functions utilized, but requiring more stringent assump-

tions on the smoothness of the solution of the differential equation, which are

not always satisfied in the applications listed above.
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Given a discretization scheme, solving linear differential equations can be

accomplished by solving linear systems of equations. In cases where one is

interested in very high precision, requiring very fine discretization, the linear

system of equations can be too large for straightforward numerical solutions

on a classical computer. In particular, if one wants high-precision results in-

tegrated over time, and/or systems with many continuous variables, then the

simulations can be challenging both in time and memory. Quantum algorithms

aim to offer a speedup over classical methods by leveraging the existence of

quantum linear system solvers, or more generally, primitives in quantum linear

algebra, which enable quantum algorithms to perform efficient manipulations

of vectors that are exponentially large in the number of qubits and elementary

operations involved. However, at a technical level, various complications arise,

including the difficulty of reading out useful information at the end of the algo-

rithm, and assumptions about the differential equation that must be true for the

methods to work. Ultimately, polynomial speedups for end-to-end problems

appear to be possible, but for differential equations in a fixed number of spatial

dimensions, exponential speedups for real-world applications are not generally

attainable.

Actual end-to-end problem(s) solved

We are interested in solving a general linear partial differential equation (PDE)

of the form

L(u(x)) = f (x) for x ∈ Cd , (7.1)

where L is a linear differential operator acting on the function u(x), and f (x) ∈
C is the inhomogeneous term (which is 0 for homogeneous PDEs). In addi-

tion to Eq. (7.1), we are given boundary conditions on u(x) and its derivatives,

which ideally are sufficient to ensure a unique solution—for example, Dirichlet

boundary conditions refer to a specification of a function b(x) and a require-

ment that u(x) = b(x) for x contained in some subset Ω ∈ Cd. As a canonical

example of a linear PDE, consider the Poisson equation in d dimensions, given

by

∂2u

∂x2
1

+ · · · + ∂
2u

∂x2
d

= f (x) . (7.2)

As another example, we consider a linear ordinary differential equation

(ODE) of the form

dū(t)

dt
= A(t)ū(t) + b̄(t) , (7.3)
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114 7. Solving differential equations

where we refer to the variable t ∈ R as time (although it could represent a

different quantity), ū(t) and b̄(t) are N-dimensional vectors, and A(t) is an N×N

matrix. Boundary conditions on ū(t) are also specified, often in the form of an

initial condition at t = 0, with one seeking the solution at some final time T ;

this is known as an initial value problem. Higher-order linear ODEs can always

be transformed into first-order linear ODEs. Note that if A(t) is anti-Hermitian

and b̄(t) = 0, then Eq. (7.3) becomes the time-dependent Schrödinger equation,

which is solved directly with Hamiltonian simulation. Equation (7.3) could be

viewed within the framework of Eq. (7.1) with d = 1 and u a vector-valued

rather than scalar-valued function. We separate these cases because the existing

literature typically uses either Eq. (7.1) or Eq. (7.3) as its starting point, and

the methods pursued in each case are distinct.

For nonlinear PDEs, the linear equations in Eq. (7.1) and Eq. (7.3) are re-

placed by nonlinear ones. For example, one can extend Eq. (7.3) to consider

an ODE with a polynomial nonlinearity of the form

dū(t)

dt
= FM(t)ū(t)⊗M + A(t)ū(t) + b̄(t) , (7.4)

where FM(t) is a tensor encoding the nonlinearity, although note that existing

quantum algorithms have focused on the case where FM(t) and A(t) are time

independent. This class of differential equations includes important potential

applications such as CFD, since the Navier–Stokes equation is nonlinear with

a quadratic nonlinearity (M = 2).

What does it mean to “solve” the differential equation? In the most general

sense, this refers to obtaining an expression for the solution u(x) (for Eq. (7.1))

or ū(t) (for Eq. (7.3)). While closed-form solutions can be derived for some

simple differential equations, this is not possible in general, and the solution

typically must be computed numerically. However, in specific applications, we

often do not need complete information about the solution function u(x) or ū(t)

to accomplish a certain goal. An end-to-end problem involving the solution of

a differential equation boils down to estimating the value of some property of

the solution, denoted by P[u] ∈ R, up to specified additive error parameter ϵ.

For linear PDEs, a straightforward example is when the property P is simply

the value of u at a specific point x∗, that is, P[u] = u(x∗). More generally,

we restrict to the case where P[u] is a linear functional of u, that is, P[u] =

⟨r, u⟩ :=
∫

x∈Ω dx r(x)u(x) for some subset Ω ⊂ Rd and function r : Ω → R
for which ⟨r, r⟩ = 1 [777]. For example, in [295], a quantum algorithm for

solving Maxwell’s equations based on the FEM was given, where the quantity

of interest was not the electric field itself at any specific point, but rather the

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


7. Solving differential equations 115

electromagnetic scattering cross section. In this case, the cross section was

given by the square of a linear functional of u.

Properties of ODEs can be treated in the same framework, where we are

interested in computing quantities of the form P[u] =
∫

t∈Ω dt r̄⊺(t)ū(t), which

are linear functionals of the entries of ū(t) over some subset Ω of the interval

[0,T ]. However, we note that for initial value problems, often of primary in-

terest are properties at the final time T , in which case P[u] would reduce to

an inner product r̄⊺ū(T ). For example, in [832], the drag force on a ship hull

was expressed as a linear functional of the solution to the lattice Boltzmann

equation evolved forward in time.

Dominant resource cost/complexity

There are many distinct approaches to constructing a quantum algorithm for

solving the end-to-end problem above. The exact complexity will of course

depend on the method, but it will also depend on specific details related to

how the differential equation and its boundary conditions are specified to the

quantum algorithm (input model), as well as instance-specific factors such as

how smooth the solution to the differential equation is. Here we overview some

of the available choices and complexity considerations, focusing the bulk of the

discussion on methods that leverage the quantum linear system solver (QLSS)

as a primitive, as these have received the most attention in the literature.

Discretization of linear PDEs: Any numerical method must perform some

form of discretization. First, we focus on linear PDEs such as Eq. (7.2) where

there is no time variable. The choice of discretization will depend sensitively

on the problem at hand. In the case of the Poisson equation in Eq. (7.2) with

Dirichlet boundary conditions, quantum algorithms leveraging discretization

schemes based on FDM, FEM, and spectral methods were discussed in [228],

[777], and [285], respectively. The key goal is to minimize the number N of

grid points or basis functions while achieving discretization error O(ϵ). Us-

ing low-order grid-based methods, a problem in d spatial dimensions requires

taking N = (1/ϵ)Ω(d) grid points, with some caveats on solution norm and reg-

ularity [777]. Alternative sparse-grid or spectral methods can improve the 1/ϵ

dependence to logarithmic, but still scale exponentially with d [285]; however,

these generally require stricter regularity requirements on the solution to the

differential equation, which may not be satisfied in applications.

After appropriate discretization, the linear differential equation in Eq. (7.1)

(along with its boundary conditions) reduces to a matrix equation:

L|u⟩ = | f ⟩ . (7.5)
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This is the same linear equation that would be obtained for a classical method

using the same discretization scheme. Information about the solution function

u(x) is encoded into the N components of the vector |u⟩.1 Classical methods

typically manipulate a full description of all components of the vector |u⟩,
whereas quantum methods can create the normalized quantum state |u⟩/∥ |u⟩ ∥
encoding these N components into its amplitudes with O(log(N)) qubits.

If the linear PDE has a time variable, one option is to treat it equally as the

other d − 1 variables (see, e.g., [692]), but it is often treated separately. First,

discretization of the other d−1 variables using N total grid points or basis func-

tions is performed as above, which reduces the linear PDE in Eq. (7.1) to an

ODE with N variables as in Eq. (7.3). Time is then discretized and propagated

as discussed for ODEs below.

Discretization of time in linear ODEs: To solve the linear ODE on N

variables in Eq. (7.3)—whether it came about via discretization of a PDE

or otherwise—the time interval [0,T ] is discretized into grid points, and the

solution at one grid point is related to the solution at the prior grid point by

a time-ordered exponential of the matrix A. If A is time independent, this

exponential can be approximated by a truncated Taylor series [138, 646, 571],

and if A is time dependent, it can be approximated by a truncated Dyson

series [132]. The number of grid points needed scales linearly with T , and the

series is truncated at order polylog(T/ϵ). An alternative approach when ū(t) is

sufficiently smooth in time uses spectral methods, which approximate ū(t) as

a truncated series over a complete set of basis functions [279]. In any case, the

relation between the solution at different time grid points or basis functions

leads to a linear system of equations, now of size roughly N′ = O(NT ), but

again of the form L|u⟩ = | f ⟩ as in Eq. (7.5).

Here the solution |u⟩ is a “history state” meaning that it is given by a su-

perposition of states |t⟩|ū(t)⟩ for different discrete values of t across the entire

interval [0,T ]. Since one is often interested only in ū(T ), additional trivial time

steps can be included at the end to boost the portion of the history state ampli-

tude on the t = T branch [131].

It is important to emphasize that classical methods for solving ODEs do

not solve the same linear equation L|u⟩ = | f ⟩ arrived at by these methods.

Rather, they typically handle time in a time-marching fashion where the value

of ū(t) at one time step is directly computed from its value at one or more

previous time steps. In [379], a quantum time-marching strategy was proposed

1 In this chapter, we adopt a convention where quantum states like |u⟩ need not be normalized
states. In fact, the norm, denoted by ∥ |u⟩ ∥ will be important for reasoning about the
complexity.
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for time-dependent homogeneous linear ODEs, which generates a sequence

of quantum states |ū(0)⟩, |ū(t1)⟩, |ū(t2)⟩, . . . , |ū(T )⟩ (rather than a superposition

of these states). This method avoids the need to solve a linear system, but it

does utilize primitives from quantum linear algebra. Similarly, the methods of

[312, 579, 80, 581, 36, 37] avoid the need to solve linear systems by mapping

ODEs to equations that can be simulated with Hamiltonian simulation [312,

579, 80, 581], or linear combination of Hamiltonian simulation [36, 37].

Solving the linear system: Once the linear PDE or ODE has been reduced to

a linear system L|u⟩ = | f ⟩, it can be solved on a quantum computer by applying

the QLSS. The QLSS subroutine prepares a quantum state approximating the

normalized solution vector |u⟩/∥ |u⟩ ∥ up to some specified precision ξ in ℓ2

norm, where ∥ |u⟩ ∥ =
√
⟨u|u⟩ is the norm of the quantum state encoding the

solution to the linear system. To do so, the QLSS assumes access to oracles

that (coherently) query the matrix elements of L and prepare the normalized

state | f ⟩/∥ | f ⟩ ∥. Optimal QLSSs [313, 327] (see also alternative near-optimal

methods in [26, 282, 248, 964, 31, 571]) make O(sκ log(1/ξ)) queries to these

oracles, where κ is the condition number of the matrix L (i.e., the ratio of

the largest and smallest singular values), and s is the maximum number of

nonzero elements in any row or column of L (“sparsity”). Additionally, one

can compute an estimate for the norm ∥ |u⟩ ∥ up to relative error ξ using Õ(sκ/ξ)

queries (note the worse ξ-dependence) [327, 248]. For simplicity, we assume

that to achieve ϵ overall error on the end-to-end problem, it will suffice to take

ξ = O(ϵ), although there can also be factors that depend on the choice of

discretization and norms of the solution u (see, e.g., [777]).

Henceforth, let N′ refer to the size of the linear system being solved, so

N′ = N for the PDE example described above, and N′ = O(NT ) for the ODE

example (with N reserved for the size of the matrix A).

The oracles for querying the matrix elements of the s-sparse N′ × N′ matrix

L and for preparing the N′-dimensional state | f ⟩/∥ | f ⟩ ∥ are assumed to have

cost polylog(N′). This is valid if the matrix elements of L can be efficiently

computed “on the fly,” which is plausible when they are given by succinct ex-

pressions, for example, based on a simple finite difference formula. However,

if entries of L and | f ⟩/∥ | f ⟩ ∥ depend on arbitrary, classically stored data re-

lated to, for instance, object geometries, boundary conditions, or grid point

locations, then the assumption of polylog(N′) cost per query requires access

to a log-depth quantum random access memory (QRAM). This requirement

is necessary in many practical applications of PDEs involving highly complex

geometries in three spatial dimensions, such as CFD and seismic modeling.

The assumption of log-depth QRAM brings significant caveats—for example,
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while the quantum circuits for implementing the QRAM operation can be par-

allelized to have depth polylog(N), they cannot avoid having size poly(N) for

accessing a database with poly(N) entries; see Chapter 17 on loading classical

data for more information.

With these assumptions, the QLSS portion of the quantum algorithm can be

performed exponentially faster in the parameter N, and with exponential saving

in memory, compared to any classical method that manipulates vectors of size

N, which includes Gaussian elimination and iterative methods like conjugate

gradient. Specifically, the quantum complexity to obtain the state |u⟩/∥ |u⟩ ∥ is

given by

sκ · polylog(N′, 1/ϵ)

and the cost to obtain ∥ |u⟩ ∥ is sκϵ−1 · polylog(N′, 1/ϵ). The number of qubits

is O(log(N′)), although if a log-depth QRAM is necessary, this may require

poly(N′) ancilla qubits.

Reading out estimates for properties of the solution to the differential

equation: Preparing the log(N′)-qubit state |u⟩/∥ |u⟩ ∥ does not immediately

yield an estimate for the property P[u]. Indeed, reading out useful informa-

tion from |u⟩/∥ |u⟩ ∥ represents a major bottleneck of the algorithm. Consider

the case that P[u] corresponds to the value u(x∗) at a specific point x∗ (for

PDEs), or the amplitude ⟨x∗|ū(T )⟩ on one of the basis states (for ODEs). Then,

the estimation of P[u] to precision ϵ is performed with amplitude estimation,

which introduces multiplicative overhead O(∥ |u⟩ ∥/ϵ) into the complexity. To

read out all N amplitudes of the state |u⟩ in this fashion, a linear factor of

N would be reintroduced, although more advanced methods of pure state to-

mography can reduce this to
√

N [49]. In the more general case that P[u] is a

linear functional, the value of P[u] can be expressed (up to discretization er-

ror) as an overlap P[u] = ⟨r|u⟩ between some preparable normalized state |r⟩
and the solution vector |u⟩ that solves L|u⟩ = | f ⟩. Thus, to compute P[u], one

computes the overlap between |r⟩ and |u⟩/∥ |u⟩ ∥, and then multiplies by ∥ |u⟩ ∥.
Overlap estimation [637] is a straightforward application of amplitude esti-

mation, and achieving precision ϵ/∥ |u⟩ ∥ introduces O(∥ |u⟩ ∥/ϵ) multiplicative

overhead. Thus, the overall scaling of the complexity is

sκ ∥ |u⟩ ∥
ϵ

· polylog(N′, 1/ϵ) . (7.6)

For initial value problems governed by the ODE in Eq. (7.3), one is often

interested in properties P[u] that depend only on the solution ū(T ) at the final

time T . When |u⟩ = ∑
i|ti⟩|ū(ti)⟩ is a history state encoding of the solution ū(t)
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over the whole interval, the complexity of computing useful information will

grow with the ratio

q =
supt∈[0,1]∥ |ū(t)⟩ ∥
∥ |ū(T )⟩ ∥ ≈ O

( ∥ |u⟩ ∥
∥ |ū(T )⟩ ∥

)
,

that is, the factor by which the norm of the solution has decayed compared

to its maximum on the interval [0,T ] (the approximation is correct assuming

supt∈[0,T ]∥ |ū(t)⟩ ∥ accounts for a constant fraction of the total norm ∥ |u⟩ ∥ ). This

arises from the fact that |T ⟩|ū(T )⟩ contributes at most ∥ |ū(T )⟩ ∥ ≈ O( ∥ |u⟩ ∥/q)

amplitude to the history state |u⟩ and thus the additive precision ϵ will need to

be on the order of ∥ |u⟩ ∥/q, or smaller, to learn something useful about ū(T ).

Since the complexity scales linearly with ∥ |u⟩ ∥/ϵ, the complexity grows with

q. Unfortunately, q can be large and growing with T if the solution to the ODE

is decaying. Furthermore, the dependence of the complexity on q is necessary

since otherwise the algorithm would be able to perform postselection on low-

probability events, a power ruled out by widely believed complexity-theoretic

conjectures; see [138, 35].

The persisting polylog(N) dependence in Eq. (7.6) suggests an exponential

speedup in the parameter N compared to classical methods, but this conclusion

depends on the scaling of the parameters s, κ, and ∥ |u⟩ ∥/ϵ with N.

Condition number: The sparsity s and condition number κ depend on the dif-

ferential equation and the choice of discretization, but can often be controlled.

For example, for PDEs discretized by the FEM, in many instances we have

s = O(1) and κ ≤ O(N2/d) (see, e.g., [198, Theorem 9.7.1]). Additionally, pre-

conditioning of linear systems to reduce κ is an effective technique in classical

iterative approaches to solving linear systems such as the conjugate gradient

method, and several studies have examined the possibility of integrating these

into the QLSS in some circumstances [295, 925, 990, 83]. In the best case

scenario, these could reduce κ to O(1).

In the setting of ODEs like Eq. (7.3), upper bounds on κ can be derived.

These bounds can have the form κ ≤ CT , where C is a factor that depends on

the spectral properties of A.2 The upper bounds on κ also require an assump-

tion that the ODE is “dissipative” [131, 138, 646, 132]; otherwise, the value

of C in the bound can grow exponentially with T [646], consistent with the

observation that the norm of the history state |u⟩ can be exponentially larger

than the norm of the initial state |ū(0)⟩. A sufficient condition for the ODE to

be dissipative is that A is diagonalizable and the real parts of its eigenvalues

2 Generally, the bound on κ scales with the number of grid points in time. The linear-in-T bound
is achieved when using the Dyson series method with high-order truncation [132].

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


120 7. Solving differential equations

are non-positive [138] so that the solutions are stable and do not grow with

time, although this technical definition was relaxed slightly in [646] and now

includes nondiagonalizable A. The requirement of dissipation is not as relevant

for classical solvers based on time-marching strategies, which can renormal-

ize growing solutions at each step and do not generally require solving linear

systems.

The linear dependence on T in the complexity cannot be improved in general

since this factor appears in the complexity of optimal Hamiltonian simulation,

which corresponds to the special case that A is anti-Hermitian and b̄ = 0 [134].

However, it has been shown that many ODEs admit “fast forwarding” and the

dependence on T can be reduced. For example, for stable ODEs (when all

eigenvalues of A have a negative real part), a bound of the form κ ≤ Õ(
√

T )

was derived in [571]; see also [35].

Final complexity: For dissipative ODEs on N variables, propagated to time T ,

the final complexity inherits a linear dependence on CT via the condition num-

ber, and existing literature typically includes the factor q defined above directly

in the complexity statements. These statements are phrased to say that the state

|ū(T )⟩ can be obtained to error ξ in complexity roughly T sqC · polylog(N, 1/ξ)

[138, 646, 571, 132], which accounts for postselecting the time register to

t = T but not yet the complexity to read out a property of interest.3 Defin-

ing ϵ′ = ϵq/∥ |u⟩ ∥ to be the normalized precision parameter that should be

small in order to learn something interesting, and taking ξ = O(ϵ′), the total

end-to-end complexity including readout could then be expressed as

T sqC

ϵ′
· polylog(N, q/∥ |u⟩ ∥ϵ′) . (7.7)

For PDEs in d dimensions, we recall that N and ϵ are not independent pa-

rameters: in general, we are interested in simulating the PDE to a fixed preci-

sion, and adapt N to reach the desired precision. As discussed, depending on

the discretization method, N scales either as (1/ϵ)O(d) or (polylog(1/ϵ))d, but

either way, we have that polylog(N) ≤ dO(1) · polylog(1/ϵ). For PDEs with a

time variable and initial conditions specified at t = 0, where d − 1 dimensions

are discretized and time is integrated via mapping to an ODE, we substitute

3 We briefly mention the complexity of alternative approaches to ODEs that avoid solving linear
systems. The quantum time-marching method of [379] has a different complexity form, but
has similar features, growing with time (in this case, as T 2) and depending on an
“amplification ratio” Q > q, but offering other potential benefits, such as minimal regularity
requirements (even allowing A(t) to have jump discontinuities) and needing fewer queries to
the initial condition ū(0). Meanwhile, the linear combination of Hamiltonian simulation
method [37] shares the feature of needing minimal queries to ū(0) while matching the
complexity stated above.
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this value of N into Eq. (7.7). This gives a total complexity of

dO (1) · Õ (
TCq/ϵ′

)

for reading out a property of the (renormalized) solution to the PDE at time T

to precision ϵ′.

For static PDEs where all d dimensions are discretized by a grid-based

method like the FEM, we instead substitute κ = O(N2/d), s = O(1), and

N = (1/ϵ)O(d) into Eq. (7.6), yielding overall end-to-end complexity

∥ |u⟩ ∥ dO (1)

ϵ1+O (1)

to compute a global property of the PDE, given conditions on the boundary.

If preconditioning improves κ to O(1), the ϵ dependence is improved to essen-

tially linear in 1/ϵ—see [777] for a more careful analysis specific to the FEM

that arrives at similar expressions, but better accounts for impact of solution

norm and smoothness.

Generally, the main conclusion is that—irrespective of the discretization

scheme—the quantum complexity is polynomial in the desired preci-

sion 1/ϵ, although for d-dimensional PDEs the complexity may scale as

poly(d) · poly(1/ϵ) rather than poly((1/ϵ)d). Thus, for fixed dimension d

there is potentially room for a polynomial-in-1/ϵ quantum speedup, the size

of which grows exponentially in the dimension d. Ultimately, the necessity

of the O(1/ϵ) scaling is traced back to the fact that the quantum solver

produces a quantum state encoding the normalized solution to the differential

equation, potentially exponentially faster than leading classical methods such

as conjugate gradient, but the exponential speedup is lost in the readout step,

where one must learn an observable of interest to error ϵ. Moreover, this

conclusion holds not just for “bad” observables (like full state tomography),

but for any observable, due to the Ω(1/ϵ) cost of quantum readout.

Nonlinear differential equations: The immediate issue with applying the

above methods to nonlinear differential equations such as the nonlinear ODE

of Eq. (7.4) is that discretization no longer leads to a system of linear equa-

tions. Early work on quantum algorithms for nonlinear ODEs handled this

issue by dividing time into short time steps and preparing the quantum state

encoding the solution at one time step using multiple copies of the solution at

the previous time step [679]. Since quantum states cannot be cloned, the com-

plexity of this strategy necessarily grows exponentially in the number of time

steps. More recent quantum algorithms for nonlinear differential equations in-

stead proceed by first linearizing the differential equation and then applying
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the methods sketched above [710, 702, 1061, 703, 646, 315]. Specifically, the

most heavily studied approach has been Carleman linearization, where one ex-

actly maps a nonlinear ODE with polynomial nonlinearity such as Eq. (7.4)

to a linear ODE on an infinite-dimensional variable (ū, ū⊗2, ū⊗3, . . .), and then

truncates to form an approximate finite-dimensional linear ODE. Quantum al-

gorithms based on this method were first studied in [702] and further developed

in [703, 646, 315, 207], and it has also been analyzed in the context of specific

differential equations such as reaction-diffusion equations [703, 315, 32], the

Navier–Stokes equation (via the lattice Boltzmann equation) [683, 832], and

differential equations related to training classical neural networks [701]. The

complexity of the quantum algorithm has a similar scaling as that for linear

ODEs quoted in Eq. (7.7), growing linearly in T , q, and 1/ϵ′. However, this

complexity scaling requires an additional assumption: a quantity R capturing

the nonlinearity-to-dissipation ratio of the differential equation must satisfy

R < 1 for the errors to be controlled (see [702, 703, 315, 1055]), and it is not

always clear when this condition holds.

For example, in the case of the Navier–Stokes equation, the size of the

nonlinearity—and hence the value of R—grows with the “Reynolds number”

of the fluid, and the condition R < 1 would be violated when simulating high-

Reynolds-number turbulent flows. Turbulent flows are potentially handled by

applying the Carleman linearization method to the lattice Boltzmann equation

rather than the Navier–Stokes equation directly [683, 832], in which case the

size of the nonlinearity does not scale with the Reynolds number. Indeed, gen-

erally speaking, for this approach to nonlinear differential equations, there is a

delicate interplay between the size of the input state at time t = 0, the form of

the nonlinearity, and the amount of dissipation in the linear term; see [315] for

a discussion.

Separate from these approaches, methods have been proposed that map non-

linear classical dynamics to linear phase-space dynamics that can be simulated

with Hamiltonian simulation [590, 354, 580, 578, 581].

Comments on the complexity of alternative methods and problems: We

briefly comment on two further classes of applications involving PDEs, but

which typically have very different characteristics. The first is stochastic dif-

ferential equations (SDEs), which are simulated extensively in computational

finance and more generally in risk modeling. There, one typically samples tra-

jectories of the SDE (via Monte Carlo methods), and evaluates observables

stochastically. Quantum-accelerated Monte Carlo has been worked on exten-

sively (see Section 8.2 on pricing financial options). Where classical methods

require sampling O(1/ϵ2) trajectories to obtain an ϵ-estimate of a certain quan-
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tity, the quantum method can create a superposition of trajectories and read

out the relevant amplitude at O(1/ϵ) cost—a quadratic quantum advantage. On

the classical side, a key advantage of these methods is that they avoid an ex-

ponential scaling in the number of continuous dimensions d (i.e., the “curse

of dimensionality”), unlike the “Eulerian” approaches discussed above that

discretize the d-dimensional space into N ≥ exp(Ω(d)) grid points or basis

functions. Thus, they are relatively effective when d is large, and less preferred

when d is small due the fact that their ϵ dependence cannot be better than

O(1/ϵ2). In fact, in some cases, classical and quantum trajectory-based meth-

ods can be applied not only to SDEs but also to (deterministic) PDEs, and

thus they compete against QLSS-based PDE and ODE methods we have dis-

cussed. For example, the quantum and classical complexity of a Monte Carlo

approach for the heat equation was studied in [692] and compared against

alternative approaches—for the end-to-end problem considered, the classical

Monte Carlo approach outperformed all classical alternatives when d > 4, and

the quantum-accelerated Monte Carlo approach outperformed all (quantum or

classical) alternatives when d > 2. For SDEs, an alternative to Monte Carlo

is to map the SDE to a Fokker–Planck equation via the Itô calculus and solve

the Fokker–Planck PDE. This has been proposed in [441]. However, for most

SDEs of interest in risk analysis, Monte Carlo simulation converges in a num-

ber of samples scaling linearly in the number of variables, leaving very little

room for a quantum speedup in these applications given our current under-

standing.

The last class of problems to be mentioned are multi-particle Schrödinger

equations. They are (i) high dimensional, (ii) complex, and (iii) require

high-precision solutions for practical applications. Hence, they match all

of the criteria under which a quantum advantage might be expected. The

second-quantized approach to solving the full configuration interaction

molecular Schrödinger equation is a specific case of the spectral method,

although here one must solve an eigenvalue equation rather than a linear

system. Unsurprisingly, this case has already gathered a lot of attention (see

Chapter 2 on quantum chemistry).

Existing resource estimates

An explicit resource estimate for linear PDEs was reported in [902] for solving

Maxwell’s equations to estimate an electromagnetic scattering cross section in

2D. Following the asymptotic analysis of [295], it employed an FEM-based

discretization scheme to form a linear system of size N = 3 × 108, targeting

accuracy ϵ = 0.01. The estimates did not incorporate preconditioning methods

and assumed a value for the condition number κ ≈ 104, ultimately finding
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that 1029 T gates would be needed to complete the computation. However,

this work predated asymptotic and practical advancements to the complexity

of the QLSS [313, 327], and modern estimates for the same problem would

likely lead to more reasonable resource counts. Note also that much of the

art in classical PDE solvers is to find appropriate preconditioning schemes to

control the condition number. In [295], it was shown that one common class of

preconditioners works within the framework of the quantum algorithm, but it

is as yet unclear if this is the case more generally.

For ODEs, [571] gave a detailed performance analysis of the Taylor

series truncation approach developed in [138, 646] applied to general time-

independent dissipative ODEs. They gave explicit upper bounds on the

condition number κ of the linear system in terms of the total evolution time

T and the “log-norm” of the matrix A. They considered the task of outputting

the history state |u⟩ or the final-time state |ū(T )⟩. By combining the bound

on κ with explicit upper bounds from [572] on the query complexity of the

QLSS, they determined an upper bound on the number of times the algorithm

needs to query a block-encoding of the ODE matrix A to accomplish this task.

The estimated number of queries per unit time varied from 10 to 105 over

the parameter regime considered, and these figures would be reduced with

subsequent improvements to the QLSS complexity, such as those reported in

[327].

In [832], the query bounds of [571] were applied to the specific end-to-end

CFD problem of computing the drag force on a ship hull in the incompressible

(and potentially turbulent) parameter regime, by solving the nonlinear lattice

Boltzmann equation (linearized via Carleman linearization). They considered

a simplified version of the problem where the ship hull is modeled as a sphere.

They estimated that the quantum algorithm would need 1020–1024 T gates and

roughly 103–105 logical qubits (depending on the value of the Reynolds num-

ber) to compute the drag force on the sphere. Classically, the lattice Boltzmann

method is a high-accuracy method and would be computationally intractable

for this instance in the high-Reynolds-number regime. In practice, classical

methods resort to lower accuracy methods, which for this instance can be com-

pleted within several minutes on a laptop. Computing the drag force on actual

ship hulls with the quantum method is expected to be significantly more re-

source intensive compared to the flow-past-a-sphere instance due to the need

to coherently load the boundary conditions describing the ship hull each time

the block-encoding is queried.
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Caveats

A key caveat is that many analyses in the literature do not consider the full end-

to-end problem that needs to be solved for applications. Often, these works

only consider the cost of preparing the quantum state |u⟩ that encodes the so-

lution to the differential equation into its amplitudes, and they report this cost

in terms of the number of queries to oracles of the input data. Thus, these

works study the task of solving differential equations as a primitive—similar to

Hamiltonian simulation, that is, simulation of the time-dependent Schrödinger

ODE—rather than as an end-to-end application. As discussed above, reading

out useful information to precision ϵ introduces a Ω(1/ϵ) multiplicative over-

head and dramatically changes the complexity scaling, precluding exponential

end-to-end speedups. Furthermore, whereas a full classical description of the

solution could be computed just once, and subsequently many properties read

out from that description, the state |u⟩ is consumed during readout, and the

number of times |u⟩ needs to be prepared grows with the number of properties

one wants to learn. In some cases, one may only seek to learn a few observ-

ables, but in other cases, extracting the desired information might require near

full tomography of the quantum state |u⟩, which in certain situations removes

all quantum advantage [692].

The readout caveat can potentially be avoided if a small number of samples

from the state |u⟩ measured in the computational basis, as opposed to prop-

erties P[u] as defined above, would be useful for the end-to-end application.

However, in such cases one must also be careful to compare against classical

methods for the same task, where quantum-inspired methods can be competi-

tive [977]. In [80], it was shown that BQP-hard problems can be encoded into

an ODE describing coupled oscillators and solved by sampling from |u⟩, but

this situation would be unlikely to arise naturally in applications. In [701], it

was suggested that samples from |u⟩ encoding the solution to certain nonlinear

differential equations could be useful for training neural networks.

Another caveat is that complexity statements often report only the number

of times the algorithm queries oracles for the input data. In applications where

the input data encoding complex boundary conditions or object geometries is

not efficiently computable but rather stored in a large classical database, one

must assume access to a log-depth QRAM in order to implement these oracles

efficiently, an assumption that has its own caveats.

For simulating time evolution of ODEs, it is important to emphasize the

dependence of the complexity in Eq. (7.7) on the parameter q, which for dis-

sipative systems grows with time, potentially exponentially, as the size of the

solution decays. Furthermore, for nonlinear differential equations, we reiterate
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that existing quantum algorithms are often based on the assumption that the

nonlinearity-to-dissipation ratio is sufficiently small, which may not be satis-

fied in practical instances. Generally speaking, strong nonlinearities can cause

the solution to develop discontinuities, and linearization schemes might break

down for problems of interest if the solutions lack sufficient regularity, as can

be the case for simulations of turbulence in CFD.

Finally, we note that due to the large number of methods available to clas-

sical solvers of differential equations, an important caveat is that any claim of

quantum advantage must be sure to compare against the best possible classical

method, and consider the possibility that this classical method might benefit

from parallelization.

Comparable classical complexity and challenging instance sizes

Classical algorithms for linear PDEs can compute a classical description of the

solution u by solving the same linear equation L|u⟩ = | f ⟩ solved by the quan-

tum algorithm. For an s-sparse N×N linear system, the complexity of an exact

Gaussian elimination approach is O(Nω), where ω < 2.37 is the matrix multi-

plication exponent. However, in practice, approximate iterative methods such

as the conjugate gradient method are more common. The complexity of conju-

gate gradient scales as Õ(Ns
√
κ log(1/ϵ)) when L is positive semidefinite [481,

Chapter 10.2]. For a discretization scheme like the FEM where N = (1/ϵ)Ω(d),

and using the aforementioned bound κ ≤ O(N2/d), the complexity of the conju-

gate gradient approach is s(1/ϵ)Ω(d), which has exponential dependence on the

spatial dimension d but for fixed d scales as poly(1/ϵ). Additionally, in prac-

tice, the conjugate gradient method benefits from preconditioning techniques

to reduce κ, and from parallel implementation on graphics processing units

(GPUs). For a sense of scale, [713] used the preconditioned conjugate gradient

method within a finite element analysis to compute the thermal conductivity

and elasticity of certain 3D cast iron samples imaged with micro-computed

tomography (a task chosen mainly to benchmark their method). Among other

reported results, their implementation solved the end-to-end problem, which

required solving several linear systems, with N ≥ 106 in less than 1 second,

and N ≥ 4 × 108 in less than 30 minutes using a single GPU with 8 gigabytes

of RAM.

For linear and nonlinear initial value problems, classical methods could ap-

ply conjugate gradient or other linear system solvers to the same linear equa-

tion L|u⟩ = | f ⟩ that the quantum algorithm constructs to solve the ODE. The

complexity of this approach would have a linear-in-N dependence, but since

the solution would be a full classical description of the history state, it would

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


7. Solving differential equations 127

not need to also pay the factor of q arising from postselecting on the t = T

branch of the history state, and it would avoid the O(1/ϵ) readout cost.

However, most classical methods do not follow this route and instead in-

tegrate the ODE with a time-marching method, where a description of the

length-N vector is propagated forward in time, for which there are many op-

tions [1024, 1025]. Similar to the quantum complexity, nearly linear-in-T scal-

ing is achieved by high-order methods, so long as A(t) is smooth up to cor-

responding order, or by spectral methods [930]. In the time-independent or

smooth case, one would achieve NTC′ · polylog(T, 1/ϵ) complexity, where C′

is some constant depending on the spectral properties of A, similar to C. As in

the quantum case, care must be taken to choose ϵ appropriately when solutions

are exponentially growing or decaying.

We also mention that there has recently been work on using machine learn-

ing methods to classically simulate nonlinear PDEs, especially for CFD [1019,

730]. These methods are generally very fast, but they are heuristic, so they

are suitable in some instances but not when high-confidence, high-accuracy

solutions are required.

Speedup

For linear PDEs in d dimensions, solved via discretization with N = (1/ϵ)Ω(d)

grid points and inverting the corresponding linear system, the speedup is a re-

duction from time roughly ϵ−Ω(d) classically to dO(1)ϵ−1ϵ−O(1) quantumly, here

omitting dependencies on ∥ |u⟩ ∥ and log(ϵ−1). The O(1) powers depend on the

details of the discretization and the efficacy of preconditioning. Other dis-

cretization schemes may give rise to slightly distinct complexity forms, but

in any case, the conclusion is that for fixed dimension d, the speedup is at

best polynomial, a point that has been made in more detail in, for example,

[777, 692].

The speedup can be exponential in the parameter d. However, in many engi-

neering applications, the number of dimensions is fixed to be fewer than four

(three for space, one for time), limiting the advantage quantum methods can

obtain. Furthermore, for PDEs with large d, trajectory-based classical strate-

gies can avoid the exponential-in-d complexity scaling, and in cases where

these methods apply, the best possible speedup is typically a quadratic reduc-

tion from O(1/ϵ2) to O(1/ϵ); see, for example, [692] and Section 8.2 on option

pricing.

For integrating ODEs of N variables forward in time, there can be an ex-

ponential speedup in the parameter N. However, since N and ϵ are typically

related by N ≤ (1/ϵ)Ω(d) (e.g., when the ODE arises via discretization of a

PDE), the O(1/ϵ) cost of readout will contribute a much larger factor than the
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polylog(N) cost of the QLSS, and the best possible speedup is again poly-

nomial. An exponential speedup could be possible if N ≥ exp(Ω(1/ϵ)), or if

samples from the state |u⟩ were directly useful within the end-to-end applica-

tion, but this assessment would also require that the solution-decay-factor q

appearing in the quantum complexity does not cancel the speedup.

In general, these methods do offer the possibility of an exponential saving in

space, since the quantum methods can represent the vector using a logarithmic

number of qubits. Nevertheless, the overall take-home message is that quantum

algorithms can potentially outperform classical algorithms, but major gains are

only to be expected when the number of spatial dimensions is large, or if there

is otherwise a reason that the linear systems involved are much larger than the

precision demanded in the output. This intuition is corroborated by the analysis

of quantum computing algorithms for ab initio chemistry, where the number

of dimensions scales with the number of electrons.

NISQ implementations

Various proposals at NISQ implementations of PDE solvers have been made;

see [677] and references therein. The idea is to start from some discretization

of the PDE L|ψ(θ)⟩ = |b⟩, where |ψ(θ)⟩ is an appropriately chosen variational

circuit, and to optimize the parameters θ of the circuit. This is an example of

a variational quantum algorithm. Another proposal applies a variational ap-

proach to nonlinear PDEs [725]. Note that even if these methods find param-

eters to generate a good approximation of the solution, they would still pay

the O(1/ϵ) cost to read out properties. Thus, they offer at best a polynomial

speedup over classical methods. It is difficult to imagine that sufficient size

and precision can be reached in the NISQ regime to be competitive with the

best classical solvers.

Outlook

While the simulation of differential equations is one of the most important

large-scale computational tasks, constituting a sizable fraction of HPC work-

loads in industry, at present the benefit of quantum solvers for real-world

problems appears limited to relatively modest polynomial speedups. Extensive

work on quantum algorithms for solving differential equations has developed

methods with rigorous analyses and likely close-to-optimal complexities; the

challenge that remains is how these methods can integrate into an end-to-end

application pipeline, in such a way as to reduce the cost. To find a high-value

application related to solving differential equations (beyond potentially ab ini-

tio chemistry), one would likely need to find a situation that meets some or all

of the following criteria: (i) involves a very large number of spatial dimensions,
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(ii) has simple geometry or initial conditions in order to avoid the need for a

QRAM input model, (iii) requires high precision, ruling out heuristic classi-

cal approximate methods, (iv) requires learning a relatively small number of

properties of (or ideally requires only samples from) the solution vector. There

remains the possibility for substantial improvements in memory usage, but this

is not currently a bottleneck in classical PDE solving.
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Finance

The financial services industry is among those beginning to explore the po-

tential future benefits of quantum computing. Finance has the distinct feature

that more powerful and more accurate simulations can lead to direct compet-

itive advantage, in a way that is harder to identify in other industries. In this

application area, researchers strive to find quantum speedups for use cases of

interest to financial services. A number of use cases have been proposed as

candidates for quantum solutions, such as:

• Derivative pricing (such as options [949, 867], and collateralized debt obli-

gations (CDOs) [981]): Derivatives are financial instruments that are built

upon an underlying asset (or assets) that can depend on the value of the as-

set in potentially complicated ways. In the derivative pricing problem, one

needs to determine a fair price of the financial instrument, which is the price

that would be received by the seller or paid by the purchaser when an asset or

liability is transferred between market participants in an orderly transaction.

Typically, one needs to compute the expected value of the fair purchase price

of underlying assets at some later date when pricing a derivative. A similar

and related problem is known as computing the Greeks [950]. The Greeks

of a financial derivative are quantities that determine the sensitivity of the

derivative to various parameters in the problem. For example, the Greeks of

an option are given by the derivative of the price of the option with respect

to some parameter, for example, ∆ := ∂V/∂X, where V is the price of the

option and X is the price of the underlying asset.

• Credit valuation adjustments (CVAs) [491]: CVA is the problem of deter-

mining the fair price of a derivative, portfolio, or other financial instrument

while taking into account the purchaser’s (potentially poor) credit rating,

and the risk of default. CVA is typically given by the difference between the
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default risk-free portfolio and the value of the portfolio taking into account

the possibility of default.

• Value at risk (VaR) [1049]: Many forms of risk analysis can be considered,

with VaR being a common example. VaR measures the total value a financial

instrument (such as a portfolio) might lose over a predefined time interval

within a fixed confidence interval. For example, the VaR of a portfolio might

indicate that, with 95% probability, the portfolio will not lose more than $Y .

A similar technique works as well for the related conditional value at risk

(CVaR) problem.

• Portfolio optimization [865]: The goal of portfolio optimization is to deter-

mine the optimal allocation of funds into a universe of investable assets such

that the resulting portfolio maximizes returns and minimizes risk, while also

respecting other constraints.

While there are are many more use cases and several approaches for gener-

ating quantum speedups, broadly speaking, many use cases stem from one of

two paths to quantum improvements: quantum enhancements to Monte Carlo

methods (for simulating stochastic processes), and constrained optimization.

In the first case, the approach generally involves encoding a relevant, problem-

specific function into a quantum state, and then using quantum amplitude esti-

mation to sample from the distribution quadratically fewer times than classical

Monte Carlo methods [773]. In the second case, a financial use case is reduced

to a constrained optimization problem, and a quantum algorithm for optimiza-

tion is used to solve the problem.

Among the use cases studied in these two areas, option pricing and portfo-

lio optimization often serve as archetypal examples of Monte Carlo and con-

strained optimization problems, respectively, and their associated quantum al-

gorithms have the most follow-up work. Moreover, these two classes of prob-

lems comprise a considerable fraction of the classical compute used in the

financial services industry. For these reasons, we will focus on these two use

cases in this chapter, though the approaches, caveats, and complexities typi-

cally translate to other relevant use cases.

In addition to the use cases described above, other areas of interest to the

financial services industry include post-quantum cryptography, as well as

quantum-secure networking and quantum key distribution. However, many

of these topics or their proposed quantum implementations are outside the

scope of this discussion. Quantum machine learning is yet another popular use

case within quantum approaches to finance, but oftentimes these results are

quantum approaches to standard machine learning problems, which are then

applied to a financial application. As such, we will also not study machine
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learning in this finance-specific chapter and instead refer interested readers to

any of the excellent review articles on quantum finance (e.g., [525, 176]) for

more details.

The authors are grateful to Nikitas Stamatopoulos for reviewing this section

of the survey, to Patrick Rebentrost for reviewing Section 8.1, and to Ashley

Montanaro for reviewing Section 8.2.

8.1 Portfolio optimization

Overview

Given a set of possible assets into which one can invest, the problem of port-

folio optimization (PO) involves finding the optimal allocation of funds in

these assets so as to maximize returns while minimizing risk. The Markowitz

model, as it is commonly called, is widely used in the financial industry, owing

to its simplicity and broad applicability. Sophisticated constraints, transaction

cost functions, and modifications to the problem can be used to model real-

istic, modern PO problems. Numerically solving these optimization problems

is a routine part of existing workflows in financial services operations. Several

quantum approaches to solving the PO problem have been proposed, each with

their own advantages and drawbacks.

Actual end-to-end problem(s) solved

Consider a set of n investable assets with a fixed total budget. Define wi ∈ R
to be the fraction of the total budget that is invested into asset i. Thus, the

n-dimensional vector w defines a portfolio. Let r be a known n-dimensional

vector denoting the expected return for each of the available assets, that is, the

percentage by which the value of each asset is expected to grow over some de-

fined time period. Let Σ ∈ Rn×n be the covariance matrix governing the random

(and possibly correlated) fluctuations in the asset returns away from their mean

r. In practice, the input parameters Σ and r can be inferred from historical stock

price data, or through more sophisticated analyses. The covariance matrix can

be used to define a portfolio’s “risk” w⊺Σw, which is precisely the variance in

the returns it generates, assuming the underlying model is accurate. Denote the

all-ones vector by 1, and for any pair of vectors u, v let ⟨u, v⟩ denote the stan-

dard inner product between u and v. The goal of the Markowitz formulation of

PO is to find the optimal portfolio (i.e., vector of weights w) that either:
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• maximizes the expected return subject to a fixed risk parameter σ2
0

max
w
⟨w, r⟩

s.t. w⊺Σw = σ2
0

⟨1,w⟩ = 1

(8.1)

• minimizes risk subject to a fixed return parameter r0

min
w

w⊺Σw

s.t. ⟨w, r⟩ = r0

⟨1,w⟩ = 1

(8.2)

• maximizes return and minimizes risk with a tradeoff determined by a pa-

rameter known as the “risk aversion parameter” λ:

max
w
⟨w, r⟩ − λw⊺Σw

s.t. ⟨1,w⟩ = 1
(8.3)

or the alternative for the square root of risk (standard deviation rather than

variance)

max
w
⟨w, r⟩ − q

√
w⊺Σw

s.t. ⟨1,w⟩ = 1,
(8.4)

where q plays the same role as λ.

Typically, it is satisfactory to find a vector that optimizes the objective function

up to additive error ϵ, for some prespecified value of ϵ.

When solving the above Markowitz model formulations of PO, the absence

of inequality constraints leads to simpler optimization problems that can be

solved with efficient classical approaches. For example, the optimization prob-

lem in Eq. (8.2) is a simple quadratic program without complicated constraints,

for which one can derive a closed-form expression for w using Lagrange mul-

tipliers [760]. More general PO problems that include practically relevant con-

straints (such as the simple “long-only” constraint wi ≥ 0, which prohibits

“short” positions in which wi can be less than zero) cannot generically be

solved analytically, and one needs to employ more sophisticated numerical

solvers. Real-world PO problems include a number of possible constraints (see

[781] for a discussion), including, but not limited to:

• Long only—w j ≥ 0 for all j.

• Investment bands—w j ∈ [wmin
j
,wmax

j
].
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• Turnover constraints—|∆w j| ≤ U j for some fixed fraction U j, where ∆w j

represents the change in holdings of asset w j from one portfolio to the next.

• Cardinality constraints—minimum, maximum, or exact number of nonzero

assets in the portfolio.

• Sector constraints—specified minimum and/or maximum allocations to

groups of assets (e.g., the energy or healthcare sectors).

• Transaction costs—typically represented as a function of |∆w j|, and often

added as a term in the objective function rather than as a constraint.

• Market impact—the effect on the price of an asset that a market participant

has when buying or selling the asset. Related to liquidity, market impact can

be seen as a type of transaction cost that arises when a transaction causes

the price of the asset to move.

The PO can also be formulated in an “online” manner, where, for example,

asset performance data arrives one day at a time, and one has the opportunity

to update the portfolio at the end of each day [686].

As is often the case with optimization problems, the problem formulation

strongly affects the solution strategy and the problem “hardness.” If the PO

problem is unconstrained and continuous (i.e., each wi is a real number), then

the problem is relatively easy. If convex inequality constraints, such as the

long-only or turnover constraints, are imposed, then the problem is harder but

can still be tackled by relatively efficient methods for convex optimization. By

contrast, if one discretizes the problem (so that w now represents an integer

number of asset shares or lots being traded), or if one applies some of the

constraints above (such as integer-valued constraints like cardinality), then the

problem becomes nonconvex and considerably harder to solve. In general, with

discrete constraints, the problem can be formulated as an instance of an integer

program (IP) (if all variables are discrete) or a mixed-integer program (MIP)

(if some variables are discrete and others are continuous), which are NP-hard

and therefore intractable to solve in polynomial-time (in n) under widely be-

lieved assumptions. Alternatively, given the IP formulation of the problem as a

starting point, one can encode the integer variables in a binary representation,

thereby allowing the problem to be formulated as a quadratic unconstrained bi-

nary optimization (QUBO) instance [881]. These formulations allow quantum

algorithms for combinatorial optimization to be employed; for example, the

MIP formulation can be solved with a branch-and-bound approach [247], and

the QUBO formulation can be solved via Grover-type methods, or heuristically

through (NISQ-friendly) quantum annealing approaches (e.g., [790]).
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Dominant resource cost/complexity

An early approach to solving this optimization problem using a quantum al-

gorithm was presented in [865], in which the Markowitz problem is written

as minimizing risk with fixed return (Eq. (8.2)), and without other compli-

cated constraints. This simple optimization problem boils down to an equality

constrained convex program; it can be solved by introducing Lagrange mul-

tipliers and solving a linear system (represented by a matrix G) involving the

input data r and Σ [865]. The approach of [865] is to use a quantum linear

system solver (QLSS) and prepare the quantum state |w⟩ whose amplitudes

are proportional to the optimal weights wi. The complexity to do so to error ϵ

is Õ(κζ log(1/ϵ)), where κ is the condition number of the matrix G being in-

verted and ζ = ∥G∥F/∥G∥ is the ratio of its Frobenius norm to its spectral norm.

The Õ suppresses logarithmic factors, including a factor coming from apply-

ing unitaries that block-encode the matrix G in polylog(n) depth, essentially

equivalent to the assumption that log-depth quantum random access memory

(QRAM) is available. It is a priori unclear what the value of κ and ζ would be

for actual PO instances and whether they depend on n, but the explicit logarith-

mic dependence of this complexity on n is appealing. However, a drawback of

this approach is that it produces the quantum state |w⟩ rather than an estimate

for the optimal portfolio w. Learning the n entries of w to precision ϵ in 2-norm

incurs multiplicative overhead of Õ(n/ϵ) using quantum pure state tomography

[49] for total time complexity Õ(nκζ/ϵ).1

When convex linear inequality constraints, such as long-only or turnover

constraints, are included, the above approach will not work. However, a more

sophisticated method can be applied, which first maps the PO instance to a

convex program (specifically, a second-order cone program (SOCP)) and then

makes use of interior point methods to solve the program. These interior point

methods can be quantized, forming quantum interior point methods (QIPMs)

[612, 68]. The QIPM is an iterative method, where each iteration involves solv-

ing a linear equation with a QLSS and classically reading out the solution with

tomography. Thus, the procedure within each iteration is similar to the proce-

dure above for solving the unconstrained PO problem, but the linear system to

be solved is different (and changes with each iteration). A preliminary study

of the effectiveness of this approach for PO was given by [611], followed by a

1 Reference [865] suggests several possible nonstandard problems that can be solved with |w⟩
without actually learning the entries of w, such as sampling values of i with large |wi |, and
estimating overlaps ⟨w̃,w⟩ with hypothesized portfolios w̃. In general, inner products ⟨u,w⟩ of
arbitrary normalized vectors u with w can be learned to precision ϵ using overlap estimation
[637] (an application of amplitude estimation), incurring multiplicative overhead of O(1/ϵ),
but no explicit linear-in-n dependence. However, the practical utility of such tasks within the
existing workflows of financial institutions is unclear.
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more extensive study in [328]. The QIPM produces an ϵ-optimal classical es-

timate for w, and has time complexity Õ(n1.5ζκξ−1 log(1/ϵ)), where κ and ζ are

the maximum condition number and Frobenius-to-spectral-norm ratio for the

matrices that must be inverted over the course of the algorithm, respectively,

and ξ is the precision to which tomography must be performed. Note that in

principle ξ can stay constant even as the overall precision estimate ϵ → 0

[328].

With the addition of discrete constraints, PO is instead formulated as a non-

convex MIP. MIPs are typically solved with a branch-and-bound approach (for

a summary in a financial context, see, e.g., [311, Chapter 11]). Key to this ap-

proach is the ability to solve convex relaxations of the MIP (where the discrete

constraints are dropped) in poly(n) time (perhaps via classical or quantum in-

terior point methods for SOCPs, as above). To impose the discrete constraints,

a tree is constructed and explored, where generating the children of a given

node in the tree requires solving one of these relaxations. Thus, the number

of convex relaxations that must be solved is proportional to the tree size T ,

which is generally exponentially large in n. Reference [247] (extending prior

work of [776]) showed that a quantum algorithm can produce the same out-

put while exploring quadratically fewer nodes, solving roughly Õ(
√

T ) convex

relaxations (but doing so coherently, which could introduce overheads), for a

total complexity of Õ(
√

T ) · poly(n). The value of T is instance dependent and

requires empirical estimation: a preliminary numerical analysis of the value of

T for a certain ensemble of PO instances up to n = 56 found that T ∼ 20.14n to

20.20n [247].

The algorithm for online PO of [686], which leverages the multiplicative

weights update method, has time complexity scaling as Õ(
√

n), a potentially

quadratic speedup compared to the analogous classical algorithm. However,

the quantum algorithm has worse dependence on the number of time steps.

The assessment of the number of qubits used by these algorithms requires

a nuanced discussion of loading classical data. A key feature of all of the ap-

proaches above is that they require (repeatedly) accessing the classical data

representing the historical stock information (i.e., the returns r and the co-

variance matrix Σ) in the quantum algorithm. The size of this data is typi-

cally O(n2). Loading can be performed using block-encoding dense matrices

of classical data and QRAM, which achieves O(log(n)) depth (time), at the

expense of O(n2) space. Here, several caveats are inherited from the QRAM

primitive. Moreover, for practical values of n, this O(n2) space cost could be

prohibitively large, although it is possible this space cost could manifest as a

dedicated QRAM hardware element of the device, rather than as part of the

main processor. If log-depth QRAM of sufficient size is not desired or not
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available, the data could instead be loaded with only O(log(n)) space and in

O(n2) time, but this overhead in time would likely preclude the possibility of

quantum speedup at least in the first two cases, where the formulation is convex

and classical poly(n)-time algorithms exist.

Existing resource estimates

A detailed, end-to-end resource analysis of the PO problem using QIPMs was

performed in [328]. The authors followed the approach of [611] and performed

a careful accounting of all quantum resources, including constant prefactors.

The authors found that one needs 800n2 logical qubits, a T -depth of

(2 × 108)κζn1.5ξ−2 log2(n) log2(ϵ−1) log2(κζn14/27ξ−1),

and a T -count of

(7 × 1011)κζn3.5ξ−2 log2(n) log2(ϵ−1) log2(κζξ−1),

where κ is the maximum condition number encountered in the algorithm, ζ

is the maximum Frobenius-to-spectral-norm ratio, and ξ is the minimum to-

mographic precision required. The ξ−2 dependence can asymptotically be im-

proved to ξ−1 at the expense of a more sophisticated protocol for tomography

[49]. Furthermore, these estimates used explicit bounds on the complexity of

the QLSS from [313] which have since been improved upon in [572, 327]. Us-

ing the updated bounds from [327] would immediately reduce the T -count and

T -depth estimates by at least three orders of magnitude. Note also that this cal-

culation incorporated optimized circuits for block-encoding dense matrices of

classical data with O(log(n)) T -depth but O(n2) T -count [296], leading to the

large discrepancy between those two quantities. The authors performed numer-

ical simulations of PO instances to determine the instance-specific quantities.

Using numerically determined values for κζ and ξ, and using realistic values of

ϵ = 10−7 and n = 100, these resource counts imply that one would need 8×106

logical qubits, 2× 1024 T -depth, and 8× 1029 T -count. These logical estimates

for the number of non-Clifford gates could in principle be turned into esti-

mates for the number of physical qubits and runtime on actual hardware, using

the methods discussed in the section on fault-tolerant quantum computation.

However, the authors of [328] did not do so, in part because the logical costs

were sufficiently high that the qualitative conclusion about the practicality of

the algorithm was already clear.

Caveats

The quantum algorithms for PO discussed above inherit many of the caveats

of their underlying primitives, namely, QLSS, tomography, and classical data
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loading. One salient caveat is that the QLSS-based approaches depend on a

number of instance-specific parameters κ, ζ, ξ, which are difficult to predict

without running numerical simulations. The asymptotic speedup is subject to

assumptions about the scaling of these parameters. Additionally, for a speedup

to be possible, log-depth QRAM must be available on large datasets, which,

while theoretically possible, presents practical challenges.

The branch-and-bound approach does not require log-depth QRAM to

achieve its nearly quadratic speedup since the runtime will be dominated by

the exponential tree-size factor (although it would help to have fast QRAM to

reduce by poly(n) factors the time needed to solve the convex relaxations at

each step). However, a caveat to that approach is that to obtain the quadratic

speedup, the convex relaxations of the MIP (which would be SOCPs), would

need to be solved coherently. In principle, this is always possible, but it

would likely require a substantial amount of coherent classical arithmetic and

additional poly(n) overheads in time and space.

Comparable classical complexity and challenging instance sizes

Convex formulations of the PO problem are typically solved classically via

mapping to SOCPs. Optimized software packages can solve these SOCPs ef-

ficiently, and many are based on interior point methods. These interior point

methods have theoretical runtime complexity of roughly Õ(nω+0.5 log(1/ϵ)),

where ω ≈ 2.373 is the matrix multiplication exponent, although for practical

instance sizes, the effective value of ω is typically closer to 3. Note that the

example PO problem with 100 assets solved in [328] and described above can

typically be solved within seconds on a laptop using traditional classical meth-

ods. Problem sizes found in the financial services industry can include as many

as tens of thousands of assets.

In the IP or MIP formulation of PO, classical solutions will have complexity

exponential in n. As a point of reference, the numerical experiments reported

in [247] classically solved hundreds of PO instances up to size n = 56 (and

likely could have gone significantly higher).

Speedup

Recall that the QIPMs used to solve the SOCP for constrained PO are virtu-

ally identical to their classical counterpart; they differ by their use of a quantum

subroutine to solve linear systems. Thus, any speedup obtained by the quantum

approach to solving the SOCP will necessarily come from speedups from the

QLSS plus tomography approach to solving a linear system. The approach for

unconstrained PO was also based on the same primitives. The performance of

the quantum method is often compared against classical Gaussian elimination.
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However, since the quantum approach necessarily produces an approximate

solver (due to tomography), another valid comparison to make is against ap-

proximate classical solvers, such as the conjugate gradient method [527] or

the randomized Kaczmarz method [959]. In the case of the randomized Kacz-

marz method, the classical complexity for solving an L × L linear system to

precision ξ scales as O(Lκ2ζ2 log(ξ−1)) (where κ is the condition number and

ζ the Frobenius-to-spectral-norm ratio) compared to O(L3) for Gaussian elim-

ination (asymptotically O(Lω)). Thus, the quantum method provides the great-

est speedup when κζ ∝ L and ξ = O(1), in which case the QIPM for con-

strained PO runtime scales as Õ(n2.5), whereas the classical runtime scales as

Õ(n3.5), where n is the number of stocks in the portfolio (see [328, Table XI]

for a more complete discussion). For unconstrained PO, which only requires

solving one linear system, the comparison would be Õ(n2) vs. Õ(n3). In ei-

ther case, the speedup is subquadratic. Moreover, the numerical simulations

in [328] were not consistent with these optimistic assumptions on κζ and ξ,

suggesting, rather, that the QIPM would have minimal if any speedup over

classical IPMs, albeit based on small instance sizes up to n = 120.

The speedup for the branch-and-bound approach to the MIP formulation of

PO is quadratic (up to log factors), although, as mentioned, in contrast to the

convex formulations, both the quantum and classical algorithms generally have

runtime exponential in n.

NISQ implementations

Several alternative approaches to PO using quantum solutions have been pro-

posed.

• Hybrid-HHL [1062]. This work generalizes the algorithm of [865], de-

scribed above, by employing midcircuit measurements and conditional

logic to obtain a NISQ version of the QLSS that readily solves the PO

problem.

• Variational approaches based on the quantum approximate optimization

algorithm (QAOA) [184, 524, 85] . These approaches typically use the

quadratic objective function from Eq. (8.3), but instead consider wi ∈ {0, 1}
as binary variables indicating whether or not an asset is part of the portfolio

(a substantial deviation from the normal formulation). Constraints are dealt

with by adding penalties to the objective function. Alternatively, constraints

can be enforced by choosing clever versions of the ansatz [802] or by

making measurements to project into the feasible space [524].

• Quantum annealing approaches: [881, 825, 824, 452, 790]. As in the previ-

ous case, these approaches require the problem to be formulated as a binary
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optimization problem. However, in this case, they typically start with the IP

formulation and encode integers in binary through one of several possible

encodings [881] (thus, the number of binary variables will be greater than

n). Constraints in the PO problem can also be included in the objective func-

tion using a variety of tricks, resulting in the desired QUBO, which can then

be solved using a quantum annealer.

Outlook

The QIPM approach (and QLSS-based techniques more generally) for con-

tinuous formulations of PO have the potential to offer polynomial (but sub-

quadratic) speedups for the PO problem. However, these speedups are subject

to conjectures about the scaling of certain instance-specific parameters and

preliminary empirical estimates are not suggestive of a maximal speedup. In

any regard, the resource estimates of [328] illustrate that the non-Clifford re-

sources required to implement the QIPM for this use case are prohibitive, even

at problem sizes that are trivial to solve with classical computers. An asymp-

totic quantum advantage for this problem could exist for sufficiently large sets

of assets, but without drastic improvements to the quantum algorithm and the

underlying primitives (e.g., QRAM, QLSS), it is unlikely this approach will

be fruitful. Even if such improvements are made, the algorithm only provides

a polynomial speedup that is subquadratic, at best, greatly limiting the upside

potential of this approach.

The branch-and-bound approach for discrete formulations has the possibility

of a larger quadratic speedup, but, as has been observed (see, e.g., [223, 79])

in the context of Grover-like quadratic speedups in combinatorial optimiza-

tion, it is unclear whether the quadratic speedup is sufficient to overcome the

inherently slower quantum clock speeds and overheads due to fault-tolerant

quantum computation for practical instance sizes.

8.2 Monte Carlo methods: Option pricing

Overview

Many financial instruments require an estimate of the average of some func-

tion of a stochastic variable within a window of time. To compute this average,

one can use Monte Carlo methods to perform many simulations of the stochas-

tic process over the time window, evaluate the function (which can potentially

depend on the path taken by the stochastic variable during the entire window),

and numerically estimate the average. While the setup and details of the prob-

lems may vary from one use case to another, the underlying methods are often
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quite similar. As an archetypal example of this problem, we will focus on the

problem of pricing derivatives, such as options, but we remark that many of

these results can be carried over to other use cases, such as computing the

Greeks, credit valuation adjustments, and value at risk.

Derivatives are financial instruments that, roughly speaking, allow the par-

ties involved to benefit when an asset (such as a stock) increases or decreases

in value, but without having to hold the asset itself. One type of derivative—

called an “option”—is a contract that permits the holder to either purchase

(“call option”) or sell (“put option”) an underlying asset at a fixed, predeter-

mined price (the “strike price”) at or prior to some predetermined time in the

future (“the exercise window”). The seller of the option is obligated to either

sell or buy the asset, should the holder choose to exercise the option.

How, then, should one decide on a price for the option (i.e., the amount the

holder must pay for the contract, not the strike price)? The well-known Black–

Scholes (or Black–Scholes–Merton) model provides one approach to pricing

options, making a few assumptions about the underlying assets and the rules

of the contract. More complicated options can be considered that include, for

example, multiple assets in the contract (e.g., basket options), multiple possible

exercise windows (e.g., Bermudan or American options), etc.

Typically, options are priced by running Monte Carlo sampling on the value

of the underlying asset(s) and determining the expected profit or loss from a

given position, which can be translated into a price that the purchaser must

pay. Options with a larger potential downside for the seller should cost a larger

amount to purchase. For more information on options and Monte Carlo meth-

ods in the context of computational finance, see [554, 435].

Actual end-to-end problem(s) solved

The task is to price an option based on an underlying asset. The price of the as-

set is a random variable X that follows a known (or assumed) stochastic process

that models the market for the underlying asset. The option has a known payoff

function f (X) (e.g., the difference between the price of the asset at each time

step minus the strike price over the trajectory, or zero, whichever is larger).

For options that depend on more than one underlying asset or on asset prices

at multiple distinct points in time, the random variable X would represent a

vector of data containing all information needed to compute the payoff. Given

these inputs, the end-to-end problem is to compute an estimate of the expected

payoff EX( f (X)) that lies within a certain error tolerance ϵ with high probabil-

ity. This quantity is then used to determine the fair price of the option, which

we take to be the expected value of the derivative at the contract’s expiration

date, discounted to the pricing date.
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Using the assumed stochastic model for the price of the asset, one can de-

velop a stochastic differential equation for the average payoff of the option. In

limited cases, one can compute the average payoff analytically, as in the case of

the famous Black–Scholes formula for the price of European call options, for

which the 1997 Nobel Prize in Economics was awarded. The Black–Scholes

differential equation for the price of an asset at time t can be derived by assum-

ing the price of the underlying stock follows a geometric Brownian motion

dXt = Xtαdt + XtσdWt ,

where Xt is the price of the underlying asset at time t, α is a parameter known

as the “drift” of the asset, σ is the volatility (the standard deviation of the

underlying returns), and dWt is an increment of an accompanying Brownian

motion Wt. Using Itô’s lemma, one can derive a differential equation for the

price of the option at time t and, in limited cases (with several assumptions),

one can solve the differential equation analytically. In practice, however, dif-

ferent types of contract have more complex definitions and fewer assumptions

and, as a consequence, the differential equation cannot be solved analytically.

Quantum approaches to numerically solving the stochastic differential equa-

tion have been proposed, including finite difference methods [767], Hamilto-

nian simulation [441], and quantum random walks [692]. For more detail on

quantum approaches to solving differential equations, see Chapter 7 on solv-

ing differential equations. In many real-world derivative pricing use cases, the

underlying differential equation becomes intractable. Thus, the most common

classical method of computing the average payoff of an option is not through

solving the stochastic differential equation, but rather through Monte Carlo

sampling the random process X directly. To do so, one generates a large num-

ber of price trajectories over the chosen time range, and the average payoff is

computed numerically. In what follows, we will focus on quantum approaches

to Monte Carlo estimation—also known as quantum-accelerated2 Monte Carlo

methods—which was pioneered in [773] and subsequently applied to several

problems in finance (e.g., [867, 1049, 949, 596, 950, 491]). However, we re-

mark that other approaches to solving this problem that do not make use of

Monte Carlo methods have also been proposed (e.g., [868]), and that this is an

area of active research.

To compute different quantities, such as value at risk or credit valuation

adjustments, similar approaches are often employed: simulate the underlying

stochastic evolution several times and estimate the desired quantity numeri-

2 Not to be confused with quantum Monte Carlo methods, which are classical algorithms for
simulating certain quantum systems.
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cally. The function to be computed may be quite different, but the approach is

often the same.

Dominant resource cost/complexity

In [867, 949], the quantum speedup of Monte Carlo estimation from [773] is

applied to solve the option pricing problem. We briefly explain the method and

its dominant cost. First of all, this requires discretizing the set of values the

random variable X can take, which we index by the label x. Let N denote the

number of values and n = ⌈log2(N)⌉ denote the number of qubits needed to

hold the state |x⟩. The first step is to load the probabilities for the future prices

of the asset into the amplitudes of a quantum state, that is, the state
∑

x

√
px|x⟩ ,

where px is the probability that x is observed in the corresponding classical

Monte Carlo simulation.

Second, a subroutine is employed that computes information about the pay-

off function into an ancilla register using coherent arithmetic. More precisely,

the angle θx is computed (rounded to some finite number of bits of precision),

where sin(θx) =
√

f (x). (For simplicity, here we assume 0 ≤ f (x) ≤ 1 for all

x, but we revisit this point later.) This yields
∑

x

√
px|x⟩|θx⟩ .

Third, the amplitude
√

f (x) is loaded into the amplitude of an ancilla register

by applying the map |θ⟩|0⟩ 7→ |θ⟩(sin(θ)|0⟩ + cos(θ)|1⟩). This gives

∑

x

√
px f (x)|x⟩|θx⟩

|0⟩ +

∑

x

√
px(1 − f (x))|x⟩|θx⟩

|1⟩ .

The probability of measuring the final ancilla in |0⟩ is precisely EX( f (X)).

Thus, the final step is to apply quantum amplitude estimation, which requires

O(ϵ−1) calls to the unitary that produces the state above to obtain an estimate

to error ϵ.

If 0 ≤ f (x) ≤ 1 does not hold, the above approach needs to be modified, for

example, by shifting and rescaling f over a sequence of intervals of increasing

length, as discussed in [773, 867]. Roughly speaking, to make sure that f (x)

falls within the interval [0, 1], at least for a large fraction of the randomly cho-

sen values of x, we should expect the function f will need to be scaled down by

a factor on the order of the standard deviation σ =
√
EX( f (X)2) − (EX f (x))2.

Thus, to achieve error ϵ, quantum amplitude estimation must be performed to

precision ϵ/σ instead of ϵ.
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There are three components to the algorithm that each contribute to the re-

source cost:

• Loading the distribution with amplitudes
√

px. The gate complexity of this

step is roughly the same as the time complexity of classically drawing a

Monte Carlo sample, although for certain distributions it could be faster

(e.g., a quadratic quantum speedup can be obtained if px is the stationary

distribution of a Markov process [974]). Alternatively, if a functional form

for px is known, the methods of [754] could be used to approximately pre-

pare the state—note that the Grover–Rudolph approach to state preparation

[463] is incompatible with a quantum speedup in the context of Monte Carlo

estimation [521]. Finally, [949] proposes using a quantum generative ad-

versarial network (qGAN), a variational quantum algorithm, which could

reduce the resources but requires a training phase.

• Coherent arithmetic to compute the rotation angle θx. This depends on the

complexity of the function f , but can generally be accomplished in compa-

rable gate complexity as classical arithmetic, that is, poly(n). In [948], it was

shown how the payoff can instead be put directly into the amplitude, without

ever computing θx, using quantum signal processing methods [754].

• Quantum amplitude estimation to precision ϵ/σ, which requiresO(σ/ϵ) rep-

etitions of the above two costs to achieve an ϵ-estimate on the quantity

EX f (X).

Overall, from [642, Theorem 1.1] the complexity is

σ

ϵ
· poly(n) , (8.5)

with the poly(n) factor generally on the same order as the time required to draw

and process a single classical Monte Carlo sample. This complexity does not

require one to have an upper bound on σ, and it improves over the original

work of [773] (which in turn is based on the algorithm of [515] for the uniform

distribution) and follow-up work [490] by removing additional log(σ/ε) fac-

tors originating from the need to rescale the (potentially unbounded) random

variable, to account for the contribution of its tails. In fact, the method can

also work even for random variables with infinite variance [156]. However, in

practice, the more advanced techniques and analyses of [642, 156] may not

be necessary, as the underlying assets are typically modeled with distributions

such as Gaussians where the tails are well behaved and the variance of the

relevant random variable is controlled.

The general approach to Monte Carlo estimation sketched above has been

extended and optimized in various ways; see, for example, [768, 309, 522,
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361, 14]. For instance, in [361], the authors study a quantum algorithm for the

optimal stopping problem by developing a quantum version of least-squares

Monte Carlo. The algorithm finds a quadratic speedup over related classical

methods, thereby demonstrating that American-style options—which are more

complex than European-style options because they allow the holder to exercise

the option and buy/sell the underlying asset at any point in the exercise win-

dow, rather than just the end—also maintain a quadratic speedup over classical

Monte Carlo.

Existing resource estimates

Detailed resource estimations for benchmark option pricing problems (known

as autocallable and target accrual redemption forward, or TARF) were studied

in [246]. The authors studied real-world use cases and problem sizes that are

simple enough to analyze, yet complex enough to capture desirable features

(such as path dependence and multiple underlyings), making them relevant

to current financial institutions. For a basket autocallable with 3 underlying

assets, 5 payment days, and a knock-in put option with 20 barrier dates, the

authors found that one would need about 8000 logical qubits, a T -depth of

5.4 × 107, and a T -count of about 1.2 × 1010, using the most efficient methods

they studied. For a TARF with 1 underlying and 26 payment dates, one needs

about 1.2 × 104 logical qubits, a T -depth of about 8.2 × 107, and a T -count

of about 9.8 × 109. A follow-up analysis [948] involving a quantum signal

processing approach subsequently reduced these estimates to 4.7× 103 logical

qubits, 4.5 × 107 T -depth, and 2.4 × 109 T -count. For comparison, classical

Monte Carlo methods are roughly estimated to require 1–10 seconds for 4×104

samples to achieve the same accuracy on these examples.

Similar analyses were performed in [950] for the computation of the Greeks,

which are quantities that measure the sensitivity of a derivative to various

parameters. To compute the Greeks of an option, one needs to compute the

derivative of the payoff function with respect to, for example, the price of the

underlying. To to do this on a quantum computer, one needs to be able to esti-

mate both the expectation of the payoff function and have a way of computing

gradients. The authors apply several quantum methods of computing gradi-

ents in order to calculate the Greeks, in addition to the quantum approaches

to Monte Carlo methods used. Using a quantum gradient method to compute

Greeks of an option, the authors estimate that one would need about 1.2 × 104

logical qubits and a T -depth of around 108.
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Caveats

There are many types of options and derivatives that may not be accurately

captured by these simple models. Some payoff functions are path dependent,

and hence one cannot simply use the asset value at some fixed time to compute

the cost, but rather the cost depends on the trajectory the random variable takes

in each Monte Carlo sample.

Moreover, classical approaches to Monte Carlo sampling often allow for

massive parallelization, as each simulation of the underlying asset can be done

independently. By contrast, quantum algorithms for this problem require a se-

rial approach, as the subroutines in the quantum algorithm must be run one af-

ter another without measurement and restart if the quadratic advantage is to be

realized. When the slower clock speed found in quantum devices is also taken

into account, the requirements for a quantum speedup over classical methods

become more stringent, as much larger problem sizes are required to achieve

practical advantage. For further reading, see [176, Section 2.3], for example.

It is worth noting that in certain cases the number of classical samples

needed to achieve error ϵ can be reduced from the naive O(σ2/ϵ2), cutting

into the quadratic quantum speedup. In particular, quasi–Monte Carlo meth-

ods, which sample possible trajectories of the underlying assets nonrandomly,

can achieve a nearly quadratic speedup compared to traditional classical Monte

Carlo methods, but gain an exponential dependence on the number of underly-

ing assets (“curse of dimensionality”) which limits their use; see [435, Chap-

ter 5]. The number of samples can also potentially be reduced classically via

multilevel Monte Carlo methods [426], although a quantum algorithm for mul-

tilevel Monte Carlo also exists [33]. In general, when and how these various

methods work is delicate and must be evaluated on a case-by-case basis.

Comparable classical complexity and challenging instance sizes

Classical approaches to option pricing comprise some of the largest compu-

tational costs incurred by financial institutions. In the traditional approach to

solving the option pricing problem, Monte Carlo sampling is required to sim-

ulate the evolution of the underlying asset over the time horizon of the option,

and it can be slow to converge. In particular, denote the expectation value of

f (X) by V := EX( f (X)), and the variance of f (X) by σ2. Classical Monte Carlo

methods compute an estimate V̂ for V formed by averaging f (X) for M inde-

pendent samples of X. By Chebyshev’s inequality,

Pr(|V − V̂ | ≥ ϵ) ≤ σ2

Mϵ2
.
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Thus, classically one needs M ∼ O(σ2/ϵ2) samples to find an estimate V̂ within

a 99% confidence interval [773].

In typical industrial scenarios, options can be priced to sufficient operational

precision after roughly a few seconds of runtime, sampling as many as tens of

thousands of Monte Carlo trajectories.

Alternatively, a tensor network–based classical approach to option pricing

was proposed by [602] that could lead to significant advantages over traditional

classical methods in some cases.

Speedup

The classical algorithm requires M = O(σ2/ϵ2) samples whereas the quan-

tum algorithm requires only Õ(
√

M) = Õ(σ/ϵ) samples. The gate cost of a

sample is roughly the same classically and quantumly, and thus the speedup is

(nearly) quadratic, inherited from the quadratic speedup of quantum amplitude

estimation.

Outlook

In [246], the authors place an upper bound on the resources required for pric-

ing options on quantum computers, and they provide a goalpost for quantum

hardware development to be able to outperform classical Monte Carlo meth-

ods. In particular, the authors estimate that a quantum device would need to be

able to execute about 107 layers of T gates per second. Moreover, the code dis-

tance for fault-tolerant implementation would need to be chosen large enough

to support 1010 total error-free logical operations. These requirements translate

to a logical clock rate of about 50 MHz that would be needed in order to com-

pete with current classical Monte Carlo methods. This clock speed is orders of

magnitude faster than what is foreseeably possible given the current status of

physical hardware and currently known methods for performing logical gates

in the surface code.

While the resource requirements for pricing of derivatives are quite strin-

gent, this is nevertheless an area of active research. For example, a new “ana-

log” quantum representation of stochastic processes was developed in [177]

that can compute ϵ-accurate estimates of time averages (over T time steps)

of certain functions of stochastic processes in time polylog(T ) · ϵ−c, where

3/2 < c < 2, an exponential speedup over classical methods in the parameter

T . The analog nature of their method leads to additional caveats, and finding

concrete applications of this method remains an interesting open question.
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Machine learning with classical data

There has been significant recent interest in exploring the interplay between

quantum computing and machine learning. Quantum resources and quantum

algorithms have been studied in all major parts of the traditional machine learn-

ing pipeline: (i) the dataset, (ii) data processing and analysis, (iii) the machine

learning model leading to a hypothesis family, and (iv) the learning algorithm

(see [151, 242, 293] for reviews). In this chapter, we predominantly focus on

quantum approaches for the latter three categories—that is, here we mostly

consider quantum algorithms applied to classical data. These approaches in-

clude algorithms hinging on the quantum linear system solver (or quantum lin-

ear algebra more generally) as the source for possible quantum speedup over

classical learning algorithms. These also include quantum neural networks (us-

ing the framework of variational quantum algorithms) and quantum kernels,

where the classical machine learning model is replaced with a quantum model.

Additionally, in this chapter, we discuss quantum algorithms that aim to speed

up data analysis tasks, namely, tensor principal component analysis (TPCA)

and topological data analysis.

Quantum machine learning is an active area of research. As such, we ex-

pect the conclusions made in this chapter to evolve over time, as new results

are discovered. At present, our evaluation suggests that few of the considered

quantum machine learning algorithms show any promise of quantum advan-

tage in the immediate future. This conclusion stems from a number of factors,

including issues of loading classical data into the quantum device and extract-

ing classical data via tomography, and the success of classical “dequantized”

algorithms [976]. More specialized tasks such as tensor PCA and topolog-

ical data analysis may provide larger polynomial speedups (i.e., better than

quadratic) in some regimes, but their application scope is less broad. Finally,

other techniques such as quantum neural networks and quantum kernel meth-

148
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ods contain heuristic elements which make it challenging to perform concrete

analytic end-to-end resource estimates [915].

The authors are grateful to Ewin Tang for reviewing Section 9.1, to Eric An-

schuetz for reviewing Section 9.2, to Matthew Hastings and Robin Kothari for

reviewing Section 9.3, to Vedran Dunjko for reviewing Sections 9.4 and 9.5,

and to Marco Cerezo for reviewing Section 9.5.

9.1 Quantum machine learning via quantum linear algebra

Overview

Linear algebra in high-dimensional spaces with tensor product structure is the

workhorse of quantum computation as well as of much of machine learning

(ML). It is therefore unsurprising that efforts have been made to find quantum

algorithms for various learning tasks, including but not restricted to cluster-

finding [707], principal component analysis [708], least-squares fitting [917,

609], recommendation systems [608], binary classification [866], and Gaus-

sian process regression [1089]. One of the main computational bottlenecks in

all of these tasks is the manipulation of large matrices. Significant speedup

for this class of problems has been argued for via quantum linear algebra, as

exemplified by the quantum linear system solver (QLSS). The main question

marks for viability are (i) can quantum linear algebra be fully dequantized

[977] for ML tasks, (ii) can the classical training data be loaded efficiently

into a quantum random access memory (QRAM), and (iii) do the quantum ML

algorithms that avoid the above-mentioned pitfalls address relevant machine

learning problems? Our current understanding suggests that significant quan-

tum advantage would require an exceptional confluence of (i)–(iii) that has not

yet been found in the specific applications analyzed to date, though modest

speedups are plausible.

ML applications

The structure of this section differs from other sections in Part I, due to the

disparate nature of many of the quantum machine learning proposals and the

fact that they are often heuristic. Rather than cover every proposal, we explore

three specific applications. Each example explains which end-to-end problem

is being solved and roughly how the proposed quantum algorithm solves that

problem, arriving at its dominant complexity. In each case, the quantum al-

gorithm assumes access to fast coherent data access (log-depth QRAM) and

leverages quantum primitives for solving linear systems (and linear algebra
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more generally). Under certain conditions, these primitives can be exponen-

tially faster than classical methods that manipulate all the entries of vectors in

the exponentially large vector space. However, for these examples, it is crucial

to carefully define the end-to-end problem, as exponential advantages can be

lost at the readout step, where the answer to a machine learning question must

be retrieved from the quantum state encoding the solution to the linear algebra

problem. In the three examples below, this is accomplished with some form of

amplitude or overlap estimation, a primitive that brings a multiplicative O(1/ϵ)

factor into the overall complexity when seeking precision ϵ. This O(1/ϵ) read-

out cost could be avoided if it were the case that O(1) samples from the output

state prepared by quantum linear algebra were sufficient for solving the end-

to-end problem—situations where this may arise include training large neural

networks by solving nonlinear differential equations [701] and determining an

optimal set of random features in kernel-based supervised learning [1064]—

but we do not cover these examples in detail here.

Furthermore, even if these quantum algorithms are exponentially faster than

classical algorithms that manipulate the full state vector, in some cases this

speedup has been “dequantized” via classical algorithms that merely sample

from the entries of the vector. Specifically, for some end-to-end problems, there

exist classical “quantum-inspired” algorithms [977, 271, 924] that solve the

problem in time only polynomially slower than the quantum algorithm assum-

ing an analogous data-input model. Namely, the assumption that the quantum

algorithm has fast QRAM access to the classical data is analogous to the as-

sumption that the classical algorithm has fast “sample-and-query” (SQ) access

to the data—SQ access allows the classical algorithm to sample an entry from

the database with probability proportional to its value squared, or to compute

the value of any specific entry of the database. The reason that it is fair to com-

pare quantum algorithms relying on QRAM access with classical algorithms

relying on SQ access is that both utilize a certain tree-like data structure to

enable fast implementation at the circuit level. A large, one-time cost (scal-

ing linearly in the total size of the classical dataset) may be required to “load”

the data structure with the classical data, but the data structure is dynamic in

the sense that if a single entry in the database is added or changed, updating

the data structure has low cost (scaling logarithmically in the total size of the

classical dataset). Once the data structure has been set up, one can implement

QRAM access (resp. SQ access) using a quantum (resp. classical) circuit with

depth only logarithmic in the size of the database. We will not cover the par-

ticulars of the quantum-inspired algorithms in more detail, but we note that

most of the machine learning tasks based on linear algebra for which quantum
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algorithms have been proposed have also been dequantized in some capacity

[271].

However, it is worth emphasizing that in some cases it remains possible that

there could be an exponential quantum advantage if the quantum algorithm is

able to exploit additional structure in the matrices involved, such as sparsity,

that the classical algorithm cannot. The three examples below roughly illustrate

the spectrum of possibilities: some tasks are fully dequantized, whereas others,

to the best of our current knowledge, could still support exponential advantages

if certain conditions are met.

Example 1: Gaussian process regression

Actual end-to-end problem: Gaussian process regression (GPR) is a non-

parametric, Bayesian method for regression. GPR is closely related to kernel

methods [594], as well as to other regression models, including linear regres-

sion [858]. Our presentation of the problem follows that of [858, Chapter 2]

and [1088]. Given training data {x j, y j}Mj=1, with inputs x j ∈ RN and noisy out-

puts y j ∈ R, the goal is to model the underlying function f (x) generating the

output y

y = f (x) + ϵnoise,

where ϵnoise is drawn from i.i.d. Gaussian noise with variance σ2. Modeling

f (x) as a Gaussian process means that for inputs {x j}Mj=1, the outputs { f (x j)}Mj=1

are treated as random variables with a joint multivariate Gaussian distribution,

in such a way that any subset of these values are jointly normally distributed in

a manner consistent with the global distribution. While this multivariate Gaus-

sian distribution governing { f (x j)}Mj=1 will generally be correlated for different

j, the additional additive error ϵnoise on our observations y j is independent from

the choice of f (x j) and uncorrelated from point to point. The Gaussian process

is specified by the distribution N(m,K) where m is the length-M vector ob-

tained by evaluating a “mean function” m(x) at the points {x j}Mj=1, and K is an

M × M covariance kernel matrix obtained by evaluating a covariance kernel

function k(x, x′) at x, x′ ∈ {x j}Mj=1—N then denotes the multivariate Gaussian

distribution with the corresponding mean and covariance. The functional form

of the mean and covariance kernel are specified by the user and determine the

properties of the Gaussian process, such as its smoothness.1 These functions

typically contain a small number of hyperparameters which can be optimized

using the training data. A commonly used covariance kernel function is the

squared exponential covariance function k(x, x′) = exp
(
− 1

2ℓ2 ∥x − x′∥2
)

where

1 This can be visualized by sampling a function from the distribution, which means sampling a
value of f (x j) from the distribution for each x j, and plotting the values of f (x j) as a curve.

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


152 9. Machine learning with classical data

ℓ is a hyperparameter controlling the length scale of the Gaussian process, and

∥·∥ denotes the standard Euclidean norm in the case of vector arguments and

the spectral norm in the case of matrix arguments.

Given choices for m(x) and k(x, x′) and the observed data {x j, y j}Mj=1, our

task is to predict the value f (x∗) of a new test point x∗. Because the Gaus-

sian process assumes that all M + 1 values { f (x1), . . . , f (xM), f (x∗)} have a

jointly Gaussian distribution, it is possible to condition upon the observed data

to obtain the distribution for f (x∗) which is p( f∗|x∗, {x j, y j}) ∼ N( f̄∗,V[ f∗]).

Our goal is to compute f̄∗, the mean (linear predictor) of the distribution for

f (x∗), as well as the variance V[ f∗], which gives uncertainty on the prediction.

Computing the underlying multivariate Gaussian distribution can be bypassed

by exploiting the closure of Gaussians under linear operations, in particular,

conditioning. This re-expresses the problem as linear algebra with the kernel

matrix. Assuming the common choice of m(x) = 0 and defining the length-M

vector k∗ ∈ RM to have its j-th entry given by k(x∗, x j), we obtain

f̄∗ = k
⊺

∗ [K + σ2I]−1y

V[ f∗] = k(x∗, x∗) − k
⊺

∗ [K + σ2I]−1k∗

which characterize the prediction for the test point. The advantages of GPR are

a small number of hyperparameters, model interpretability, and that it naturally

returns uncertainty estimates for the predictions. Its main disadvantage is the

computational cost.

Dominant resource cost/complexity: In classical implementations, the cost

is dominated by performing the inversion [K+σ2I]−1, typically via a Cholesky

decomposition, resulting in a complexity of O(M3) (see [858, Chapter 8] and

[698] for approximations used to reduce the classical cost). In [1089], a quan-

tum algorithm was proposed that leverages the QLSS to perform this inver-

sion more efficiently. The quantum computer uses the classical data to infer

the linear predictor and variance for a test point x∗, and this process must be

repeated for the computation of each new test point output. We analyze the

complexity of computing f̄∗, with a simple extension for V[ f∗]. Given classi-

cally observed/precomputed values of y and k∗, the quantum algorithm uses

state preparation from classical data (based on QRAM) to prepare quantum

states representing |y⟩ and |k∗⟩,2 each with a gate depth of O(log(M)) (though

using O(M) gates overall). The algorithm also uses a block-encoding of clas-

sical data (also using QRAM) for A := [K + σ2I], with a normalization factor

2 For any vector v, the notation |v⟩ denotes the normalized quantum state whose amplitudes in
the computational basis are proportional to the entries of v, for example, |y⟩ = 1

∥y∥
∑

j y j | j⟩.
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of α = ∥K + σ2I∥F , where ∥·∥F denotes the Frobenius norm.3 The state-of-the-

art QLSS has complexity O(ακ∥A∥−1 log(1/ϵ)) calls to an α-normalized block-

encoding of matrix A with condition number κ (see Eq. (18.2)). In this case,

the minimum singular value of A is at least σ2, so κ/∥A∥ ≤ σ−2. The QLSS

produces the normalized state |A−1y⟩, and a similar approach yields an esti-

mate for the norm ∥A−1y∥ to relative error ϵ at cost Õ(ακ∥A∥−1ϵ−1) [248, 327].

Given unitary circuits performing these tasks, we can estimate the quantity

f̄∗ = ⟨k∗|A−1y⟩ · ∥k∗∥ · ∥A−1y∥ to precision ϵ using overlap estimation with gate

depth upper bounded by

Õ
log(M) · ∥K + σ2I∥Fσ−2 ·

∥k∗∥
∥∥∥[K + σ2I]−1y

∥∥∥
ϵ

 ,

where the three factors come from state preparation (i.e., QRAM), QLSS, and

overlap estimation, respectively. Using QRAM for state preparation as de-

scribed above would use O(M2) ancilla qubits. Note that classical “quantum-

inspired” methods for solving linear systems, based on SQ access, also have

poly(∥A∥F , κ, ϵ−1, log(M)) complexity [271, 433, 924], and thus the quantum

algorithm as stated above offers at most a polynomial speedup in the case of

dense matrices.

On the other hand, [1089] considers the case where the vectors and kernels

are sparse4 and uses this to reduce the cost of the quantum algorithm and of

QRAM. In this case, using block-encodings of sparse matrices, the factor ∥A∥F
in the complexity expression is replaced by a factor s∥A∥max, where s is the

sparsity of the matrix A and ∥A∥max is the maximum magnitude of any entry

of A—log-depth QRAM with Ω(M) ancilla qubits would still be necessary to

implement the sparse access oracle to the sM arbitrary nonzero entries of A in

depth O(log(M)). The upshot is that in the sparse case, because the algorithm

assumes the kernel is not low rank, this algorithm is not dequantized by SQ

access [271] and may still offer an exponential speedup over quantum-inspired

methods. However, we note that the assumption of sparsity in [K + σ2I] may

also enable the use of more efficient classical algorithms for computing the

inverse (see Chapter 18 on QLSSs). Moreover, we must include the classical

precomputation of evaluating the entries of this matrix. A related, and sim-

ilarly efficient, quantum algorithm is proposed in [1088] for optimizing the

3 It may be more efficient to load in the {x j} values and then coherently evaluate the kernel
entries using quantum arithmetic. Some ideas in this direction are explored in [264]. One
might also consider block-encoding K and σ2I separately and combining them with linear
combination of unitaries.

4 For the squared exponential covariance function mentioned above, the kernel matrix will not
be sparse, but [1089] notes several applications of GPR where sparsity is well justified.
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hyperparameters of the GPR kernel by maximizing the marginal likelihood of

the observed data given the model.

Example 2: Support vector machines

Actual end-to-end problem: The task for the support vector machine (SVM)

is to classify an N-dimensional vector x∗ into one of two classes (y∗ = ±1),

given M labeled data points of the form {(x j, y j) : x j ∈ RN , y j = ±1} j=1,...,M used

for training. The training phase solves a continuous optimization problem to

find a maximum-margin hyperplane, described by normal vector w ∈ RM and

offset b ∈ R, which separates the training data. That is, data points with y j = 1

lie on one side of the plane, and data points with y j = −1 lie on the other side.

Once trained, the classification of x∗ is inferred via the formula

y∗ = sign(b + ⟨w, x∗⟩) , (9.1)

where ⟨·, ·⟩ denotes the standard inner product between vectors.

In the “hard-margin” version of the problem where all training points must

be classified correctly (assuming it is possible to do so, i.e., the data is linearly

separable), the solution (w, b) is given by

argmin
(w,b)

∥w∥2, subject to: (⟨w, x j⟩ + b)y j ≥ 1 ∀ j . (9.2)

In the “soft-margin” version of the problem, the hyperplane need not cor-

rectly classify all training points. The relation (⟨w, x j⟩ + b)y j ≥ 1 is relaxed to

(⟨w, x j⟩ + b)y j ≥ 1 − ξ j, with ξ j ≥ 0. Now, (w, b) are determined by

argmin
(w,b,ξ)

∥w∥2 + γ∥ξ∥1, subject to: (⟨w, x j⟩ + b)y j ≥ 1 − ξ j ∀ j , (9.3)

where ∥·∥1 denotes the vector 1-norm, and γ is a user-specified hyperparam-

eter related to how much to penalize points that lie within the margin. Both

Eqs. (9.2) and (9.3) are convex programs, in particular, quadratic programs,

which can also be rewritten as second-order cone programs [612]. Another

feature of these formulations is that the solution vectors w and ξ are usually

sparse; the j-th entry is only nonzero for values of j where x j lies on or within

the margin near the hyperplane—these x j are called the “support vectors.”

In [972], a “least-squares” version of the SVM problem was proposed,

which has no inequality constraints:5

argmin
(w,b,ξ)

∥w∥2 + γ

M
∥ξ∥2, subject to: (⟨w, x j⟩ + b)y j = 1 − ξ j ∀ j . (9.4)

5 Our definition of the least-squares SVM is equivalent to the normal presentation found in
[972, 866]; however, we choose slightly different conventions for normalization of certain
parameters, such as γ, with respect to M. The goal of our choices is to make the final
complexity expression free of any explicit M dependence.
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This is an equality-constrained least-squares problem, which is simpler than a

quadratic program and can be solved using Lagrange multipliers and inverting

a linear system. Specifically, one introduces a vector β ∈ RM and solves the

(M + 1) × (M + 1) linear system Au = v, where

A =

(
0 1⊺/

√
M

1/
√

M K/M + γ−1I

)
, u =

(
b

β

)
, v =

1√
M

(
0

y

)
, (9.5)

with K the kernel matrix for which Ki j = ⟨xi, x j⟩, 1 the all-ones vector, and

I the identity matrix. The vector w is inferred from β via the formula w =∑
j β jx j/

√
M.

However, unlike the first two formulations, the least-squares formulation

does not generally have sparse solution vectors (w, b) (see [971]). Additionally,

its solution can be qualitatively different, due to the fact that correctly classified

data points can lead to negative ξ j that apply penalties to the objective function

through the appearance of ∥ξ∥2.

Dominant resource cost/complexity: The hard-margin and soft-margin

formulations of SVM are quadratic programs, which can be mapped to

second-order cone programs and solved with quantum interior point methods

(QIPMs). This solution was proposed in [612], and, assuming access to

log-depth QRAM it can find ϵ-accurate estimates for the solution (w, b)

in time scaling as Õ(M0.5(M + N)κIPMζ log(1/ϵ)/ξ′), where κIPM, ζ, and

ξ′ are instance-specific parameters related to the QIPM. This compares to

O(M0.5(M + N)3 log(1/ϵ)) for naively implemented classical interior point

methods. In [612], numerical simulations on random SVM instances were

performed to compute these instance-specific parameters, and the results were

consistent with a small polynomial speedup. However, the resource estimate

of [328] for a related problem suggests a practical advantage may be difficult

to realize with this approach.

The least-squares formulation can be solved directly with the QLSS, as pur-

sued in [866]. This can be compared to classically solving the linear system

via Gaussian elimination, with cost O(M3). The QLSS requires the ability to

prepare the state |v⟩, which can be accomplished in O(log(M)) depth through

methods for preparation of states from classical data, although requiring O(M)

total gates and ancilla qubits. One also needs a block-encoding of the ma-

trix A. One method is through block-encodings from classical data, which

requires classical precomputation of the O(M2) entries of K (incurring clas-

sical cost O(M2N)) and producing a block-encoding with normalization factor

α = ∥A∥F (Frobenius norm). Henceforth, we assume that ∥x j∥ ≤ 1 for all j,

which can always be achieved by scaling down the training data (inducing a
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scaling up of w and
√
γ by an equal factor). This implies ∥K/M∥F ≤ 1 and

hence ∥A∥F ≤
√

2 + 1 +
√

Mγ−1. A better block-encoding can be obtained

by block-encoding K/M via the method for Gram matrices6 and γ−1I via the

trivial method, and then combining these with the rest of A via linear combina-

tion of block-encodings. This avoids the need to classically calculate the inner

products ⟨xi, x j⟩, and has a better normalization α ≤
√

2 + 1 + γ−1.

Given these constructions, the QLSS outputs the state |u⟩ = (b|0⟩ +∑M
j=1 β j| j⟩)/

√
b2 + ∥β∥2; the cost is Õ(ακA/∥A∥) queries to the block-encoding

of A, where κA is the condition number of A. We may assert that ∥A∥ ≥ 1. This

follows by noting that the lower-right block of A (as defined in Eq. (9.5)) is

positive semidefinite, and that 1 is an eigenvalue of A when the lower-right

block is set to zero. The condition number should be upper bounded by an

M-independent function of γ due to the appearance of the regularizing γ−1I.

Reading out all M + 1 entries of |u⟩ via tomography would multiply the

cost by Ω(M). However, in [866], it was observed that to classify a test point

x∗ via Eq. (9.1), one can use overlap estimation rather than classically learning

the solution vector. In our notation and normalization, this can be carried out as

follows. Let |x j⟩ =
∑M

i=1 x ji|i⟩/∥x j∥, with x ji denoting the i-th entry of the vector

x j. Starting with |u⟩, we prepare |x j⟩ into an ancilla register, using methods for

controlled state preparation from classical data, forming

|ũ⟩ =
b|0⟩|0⟩ +∑M

j=1 β j| j⟩
(
∥x j∥|x j⟩ +

√
1 − ∥x j∥2|M + 1⟩

)

√
b2 + ∥β∥2

.

One also creates a reference state |x̃∗⟩ encoding x∗, defined as

|x̃∗⟩ =
1√
2
|0⟩|0⟩ + 1√

2M

M∑

j=1

| j⟩
(
∥x∗∥|x∗⟩ +

√
1 − ∥x∗∥2|M + 2⟩

)
.

The right-hand side of Eq. (9.1) is then given by
√

2
√

b2 + ∥β∥2⟨ũ|x̃∗⟩. Thus,

the overlap ⟨ũ|x̃∗⟩must be estimated to precision ϵ = 1/
√

2(b2 + ∥β∥2) in order

to distinguish ±1 and classify x∗. Additionally, the norm ∥u∥ =
√

b2 + ∥β∥2
must be calculated; this can separately be done to relative error ϵ′ at cost

6 We sketch a possible instantiation of this method here. Define |xi⟩ = ∥xi∥−1 ∑M
k=1 xik |k⟩ where

xik is the k-th entry of xi. Suppose M = 2m is a power of 2. Following the setup in
block-encodings and [431, Lemma 47], we must define sets of M orthonormal states {|ψi⟩} and

{|ϕ j⟩}. We choose |ψi⟩ = (∥xi∥|xi⟩ +
√

1 − ∥xi∥2 |M + 1⟩)(H⊗m |i⟩)|0m⟩, where H denotes the

Hadamard transform. We choose |ϕ j⟩ = (∥x j∥|x j⟩ +
√

1 − ∥x j∥2 |M + 2⟩)|0m⟩(H⊗m | j⟩). These

states can be prepared in O(log(M)) depth using O(M) total gates and ancilla qubits with
methods for controlled state preparation from classical data. It can be verified that these sets
are orthonormal, and that ⟨ψi |ϕ j⟩ = ⟨xi, x j⟩/M. Hence, the Gram matrix construction yields a
block-encoding of K/M with normalization factor 1.
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Õ(ακA/ϵ
′) (see Chapter 18 on QLSSs). We may also note that as u = A−1v

and ∥v∥ = 1, we have ∥u∥ ≤ κA/∥A∥. Thus, the overall circuit depth required to

classify x∗ is

Õ

ακ2

A

∥A∥2

 .

There is no explicit poly(N,M) dependence. However, for certain datasets and

parameter choices, such dependence could be hidden in κA or α, making an

apples-to-apples comparison with Gaussian elimination less clear.

Furthermore, this task has been dequantized under the assumption of SQ

access [350, 271, 924]. In time scaling as poly(∥A∥F , ϵ−1, log(NM)), one can

classically sample from the solution vector |u⟩ to error ϵ, and furthermore, one

can estimate inner products ⟨ũ|ṽ⟩ in time O(1/ϵ2) [976].7 However, the cost

can be reduced through a trick that is analogous to how the quantum algorithm

can block-encode the γ−1I part of A separately to avoid the dependence on

a large ∥A∥F . In particular, [271, Corollary 6.18] gives a classical complexity

that would be polynomially related to the quantum complexity above under

appropriate matching of parameters, but the power of this polynomial speedup

could still be significant. In any case, such a speedup crucially requires log-

depth QRAM access to the training data, which requires total gate complexity

Ω(NM) and O(NM) ancilla qubits.

Example 3: Supervised cluster assignment

Actual end-to-end problem: Suppose we are given access to a vector x ∈ CN

and a set of M samples {y j ∈ CN} j=1,...,M . We want to estimate the distance

between x and the centroid of the set {y j} to judge whether x was drawn from

the same set as {y j}. If we have multiple sets {y j}, we can infer that x belongs

to the one for which the distance is shortest; as a result, this is also called the

“nearest-centroid problem.” Specifically, the computational task is to estimate

∥x− 1
M

Y1∥ to additive constant error ϵ with probability 1− δ, where Y ∈ CN×M

is the matrix whose columns are y j, and 1 is the vector of M ones—the vector

Y1/M is the centroid of the set.

Dominant resource cost/complexity: Naively computing the centroid incurs

classical cost O(NM). In [707], a quantum solution to this problem was pro-

posed. Let x̄ = x/∥x∥ and let Ȳ be normalized so that all columns have unit

7 The method of doing so is succinct to describe (see, e.g., [978]). First, one uses sample access
to the vector ũ to generate an index i at random, with probability |ũi |2/∥ũ∥2. Then, one uses
query access to ũ and ṽ to compute the quantity R = (ṽi∥ũ∥)/(ũi∥ṽ∥). The expectation value of
R is precisely ⟨ũ|ṽ⟩, and the variance is upper bounded by 1. Thus, an estimate of ⟨ũ|ṽ⟩ to ϵ
precision is obtained by averaging O(1/ϵ2) samples of the random variable R.
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norm. Define the N × (M+1) matrix R and length-(M+1) vector w as follows:

R =
(
x̄ Ȳ/

√
M

)
, w =

(
∥x∥

−1Y/
√

M

)
,

where 1Y is the length-M vector containing the norms of the columns of

Y , defined such that Ȳ1Y = Y1. Then, Rw = x − 1
M

Y1. Using methods for

block-encoding and state preparation from classical data, one constructs

O(log(NM))-depth circuits that block-encode R (with normalization factor

∥R∥F = 2) and prepare the state |w⟩. If we apply the block-encoding of R to |w⟩
and measure the block-encoding ancillas, the probability that we obtain |0⟩ is

precisely (∥Rw∥/2∥w∥)2. Thus, using amplitude estimation, one learns ∥Rw∥ to

precision ϵ with probability at least 1 − δ at cost O(∥w∥ log(1/δ)/ϵ) calls to the

log-depth block-encoding and state preparation routines.

The advantage over naive classical methods essentially boils down to the as-

sumption of efficient classical data loading for a specific dataset. Subsequently,

this quantum algorithm was dequantized, and it was understood that a simi-

lar feat is possible classically in the SQ access model [977]. Specifically, the

classical algorithm runs in time Õ(∥w∥2 log(1/δ)/ϵ2), reducing the exponential

speedup to merely quadratic.

Caveats

The overwhelming caveat in these and other proposals is access to the clas-

sical data in quantum superposition. These quantum machine learning algo-

rithms assume that we can load a vector of N entries or a matrix of N2 entries

in polylog(N) time. While efficient quantum data structures, that is, QRAM,

have been proposed for this task, they introduce a number of caveats. In or-

der to coherently load N pieces of data in log(N) time, QRAM uses a num-

ber of ancilla qubits, arranged in a tree structure. To load data of size N, the

QRAM data structure requires O(N) qubits, which is exponentially larger than

the O(log(N)) data qubits used in the algorithms above. This spatial complex-

ity does not yet include the overheads of quantum error correction and fault-

tolerant computation, in particular the large spatial resources required to distill

magic states in parallel. As such, we do not yet know if it is possible to build a

QRAM that can load the data sufficiently quickly, while maintaining moderate

spatial resources.

In addition, achieving speedups by efficiently representing the data as a

quantum state may suggest that classical methods based on tensor networks

could achieve similar performance, in some settings. Taking this line of rea-

soning to the extreme, a number of efficient classical algorithms have been

developed by “dequantizing” the quantum algorithms. That is, by assuming an
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analogous access model (the SQ access model) to the training data, as well as

some assumptions on sparsity and/or rank of the inputs, there exist approxi-

mate classical sampling algorithms with polynomial overhead as compared to

the quantum algorithms [977, 976]. This means that any apparent exponential

speedup must be an artifact of the data loading/data access assumptions.

A further caveat is inherited from the QLSS subroutine, which is that the

complexity is large when the matrices involved are ill conditioned. This caveat

is somewhat mitigated in the Gaussian process regression and support vector

machine examples above, where the matrix to be inverted is regularized by

adding the identity matrix.

End-to-end resource analysis

To the best of our knowledge, full end-to-end resource estimation has not been

performed for any specific quantum machine learning tasks.

Outlook

Much of the promise of quantum speedup for classical machine learning based

on linear algebra hinges on the extent to which quantum algorithms can be

dequantized. At present, the results of [977] seem to prohibit an exponential

speedup for many of the problems proposed, but there is still the possibility of

a large polynomial speedup. The most recent asymptotic scaling analysis [271]

for dequantization methods still allows for a power 4 speedup in the Frobenius

norm of the “data matrix” and a power 11 speedup in the polynomial approx-

imation degree (see [86] for more details). However, the classical algorithms

are steadily improving, and their scaling might be further reduced.

It is also worth noting that the classical probabilistic algorithms based on

the SQ access model are not currently used in practice. This could be due to

a number of reasons, including the poor polynomial scaling, the fact that the

access model might not be well suited to many practical scenarios, or simply

because the method is new and has not been tested in practice (see [61, 270]

for some work in this direction).

On the other hand, some machine learning tasks based on quantum linear

algebra are not known to be dequantized, such as Gaussian process regression

under the assumption that the kernel matrix is sparse. In particular, avoiding de-

quantization and achieving an exponential quantum speedup appears to require

that the matrices involved are simultaneously sparse, high rank, and well con-

ditioned.8 In this situation, quantum algorithm can leverage block-encodings

8 Dequantization can also be avoided even when the matrices involved are dense, provided that
they are given by a product of a small number of sparse matrices. For example, it was
described in [1064] how an exponential speedup may be possible for a certain ML task, where
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for which the normalization factor is equal to the sparsity, rather than gen-

eral block-encodings of classical data for which the normalization factor is

the Frobenius norm. The complexity of quantum-inspired classical algorithms

based on SQ access will still grow polynomially with the Frobenius norm even

when the matrices are sparse,9 although other classical algorithms may be able

to exploit the sparsity more directly. Perhaps unsurprisingly, the prototypical

matrices that satisfy these criteria are sparse unitary matrices, such as those

naturally implemented by a local quantum gate. For unitary matrices, the con-

dition number is 1, and the Frobenius norm is equal to the square root of the

Hilbert space dimension—exponentially large in the system size. (As a sim-

ple example, consider the identity matrix on n qubits.) A central question is

whether situations like this occur in interesting end-to-end machine learning

problems. Even if they do, an exponential speedup is not guaranteed. An addi-

tional hurdle arises in the quantum readout step, which incurs a cost scaling as

the inverse in the precision target. To avoid exponential overhead, the end-to-

end problem must not require exponentially small precision.

Further reading

For further reading on specific machine learning tasks where quantum algo-

rithms have been proposed, we refer the reader to [151, 293, 916]. We have not

covered dequantization techniques in great detail; for an accessible summary

and perspective, see [978], and for a more detailed overview, see [979].

9.2 Quantum machine learning via energy-based models

Overview

An important class of models in machine learning is energy-based models,

which are heavily inspired by statistical mechanics. The goal of energy-based

the matrix to be inverted is neither sparse nor low rank; rather, it is related to a sparse matrix
via the discrete Fourier transform (a dense unitary matrix). A block-encoding for the relevant
matrix is constructed by leveraging the quantum Fourier transform (QFT). Note that the QFT
can be decomposed into a product of sparse matrices corresponding to the local unitary gates
in the quantum circuit for QFT.

9 For example, consider the complexity of algorithms for pseudoinversion of an s-sparse matrix
A. Let the rank of A be r, which may be as large as the matrix dimension, and suppose all
nonzero singular values of the matrix lie in the interval [1/κ, 1]. This implies that√

r/κ ≤ ∥A∥F ≤
√

r, and thus κ∥A∥F ≥
√

r. As a consequence, the complexity of
quantum-inspired algorithms with SQ access in [271, 433, 924]—scaling as
poly(∥A∥F , κ, 1/ϵ)—will necessarily grow as a polynomial of the matrix rank, even for fixed
sparsity. On the other hand, the complexity of the quantum algorithm with QRAM that applies
the QLSS and amplitude estimation—scaling as poly(s∥A∥max, κ, 1/ϵ)—is independent of the
matrix rank for well-conditioned A (i.e., κ = O(1)).
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9.2 Quantum machine learning via energy-based models 161

models is to train a physical model (i.e., tune the interaction strengths between

a set of particles) such that the model closely matches the training set when

the model is in thermal equilibrium (made more precise below). Energy-based

models are an example of generative models since, once they are trained, they

can then be used to form new examples that are similar to the training set by

sampling from the model’s thermal distribution.

Due to their deep connection to physics, energy-based models are prime

candidates for various forms of quantization. However, one challenge faced

by quantum approaches is that the statistical mechanical nature of the learning

problem also often lends itself to efficient, approximate classical methods. As a

result, the best quantum algorithms may also be heuristic in nature, which pre-

vents an end-to-end complexity analysis. While energy-based models are less

widely used than deep neural networks today, they were an important concep-

tual development in machine learning [893] and continue to foster interest due

to their sound theoretical basis, and their connection to statistical mechanics.

There are a number of proposals for generalizing energy-based models to

quantum machine learning. The starting point is a graph where the vertices

are divided into visible {v} and hidden {h} nodes. When each node is assigned

a value in some discrete or continuous set, this constitutes a “configuration”

(h, v) of the model. A training set D is provided as input, containing a list

of configurations of the visible vertices. The hidden nodes are not part of the

training set, but including them is essential for the model to be able to capture

latent variables in the data.

A graphical model is then built on the vertices—each vertex is a physi-

cal system (such as a spin-1/2 particle) and edges between vertices represent

physical interactions. The model is described by an energy functional H(h, v),

which assigns an energy value to each possible configuration (h, v) of the ver-

tices. For example, in Boltzmann machines (BMs), the vertices are assigned

binary variables, and the interactions are Ising interactions. The model can be

used to generate samples (e.g., via Markov chain Monte Carlo methods) from

the thermal distribution (also known as the Boltzmann distribution or the Gibbs

distribution) at unit temperature, that is, the distribution where each configura-

tion (h, v) is sampled with probability proportional to e−H(h,v). In unsupervised

learning tasks, provided a set of training samples of configurations of the vis-

ible units v, the goal is to tune the interaction weights of the model such that

the model’s thermal distribution best matches the distribution that generated

the training set.

Quantum algorithms can potentially be helpful for training classical graphi-

cal models. One can also generalize the model itself by allowing the physical
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162 9. Machine learning with classical data

systems on each vertex to be quantum, and interactions between systems to be

noncommuting.

Actual end-to-end problem(s) solved

Classical graphical models: Let G = (V, E) denote a graph with vertices V

and edges E. For classical models, each vertex j is assigned a binary variable

z j = ±1. The variables are split into visible and hidden nodes, z ∈ {v} ∪ {h}.
For classical BMs, the energy functional is often taken to be quadratic10 with

weights {bi,wi j}:
H(z) =

∑

i∈V
bizi +

∑

(i, j)∈E

wi jziz j. (9.6)

Note that interactions can occur between any pair of nodes (hidden or visible).

In the special case of a restricted Boltzmann machine (RBM), each edge must

pair up a hidden node with a visible node (i.e., the graph is bipartite). This

restriction makes the model less expressive than graphs with edges between

hidden nodes, but it leads to simplifications for certain training approaches.

The thermal distribution corresponding to the energy functional (at unit tem-

perature) associates each configuration v of visible nodes with a probability

p(v) such that

p(v) =
∑

h

p(h, v), p(h, v) =
e−H(h,v)

Z , Z =
∑

h,v

e−H(h,v) ,

where Z, the partition function, is the normalization to ensure probabilities

sum to 1. Even though hidden nodes are integrated out in the calculation of

p(v), they impact the distribution of p(v) through their interactions with the

visible nodes.

Given a training set D = {v1, v2, . . . , v|D|} of sample configurations of the

visible nodes, the goal of the training phase is to modify the weights θ ∈ {bi} ∪
{wi j} such that samples from the thermal distribution of the model most closely

match the training samples. Ideally, this is done by finding the set of weights

that maximizes the likelihood of observing the samples, that is,
∏

v∈D p(v), or,

equivalently, minimizing the (normalized) log-likelihood loss function, defined

as

L(b,w) = − 1

|D|
∑

v∈D
log(p(v)) . (9.7)

10 This quadratic energy functional is related to the Sherrington–Kirkpatrick (SK) model [933]
with an external field, which is a model for spin glasses in the statistical mechanics literature.
For the SK model, the couplings wi j are chosen randomly for each pair of nodes, and it is
typically computationally hard to find configurations with optimal energy (see Section 4.2 on
beyond quadratic speedups in combinatorial optimization for additional information).
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9.2 Quantum machine learning via energy-based models 163

The loss function can be minimized using some variant of gradient descent,

which requires the evaluation of the derivatives ∂θL for θ ∈ {bi} ∪ {wi j}. For

the energy functional above, these derivatives can be readily calculated from

ensemble averages (see, e.g., [1041]). For example,

∂L

∂wi j

= ⟨ziz j⟩v∈D − ⟨ziz j⟩ , (9.8)

where ⟨·⟩ denotes an average over samples from the thermal distribution

p(h, v), while ⟨·⟩v∈D denotes an average where v is drawn at random from the

training set D, and h is sampled from the thermal distribution conditioned on

that choice of v. Without any further restrictions, the gradients will typically

be difficult to evaluate (or even to estimate accurately). An exact computation

requires computing a sum over the exponential number of configurations of

the vertices.

In some cases, good estimates of the gradients can be obtained by repeat-

edly drawing samples from the thermal distribution and computing averages.

Samples can be generated with Markov chain Monte Carlo (MCMC) methods

such as the Metropolis–Hastings algorithm or simulated annealing; however,

the time required to sample from a distribution close to the thermal distribution

depends on the mixing time of the Markov chain, which is generally unknown

and can also be exponential in the graph size. Additionally, many samples need

to be generated to produce a robust average, with precision ϵ requiring O(1/ϵ2)

samples. Approximate classical methods, such as contrastive divergence [531],

avoid this issue by initializing the Markov chain at one of the training samples

and deliberately taking a small number of steps—this does not exactly corre-

spond to optimizing the log-likelihood but in some cases has empirical suc-

cess [916]. Indeed, here we see the benefit of restricting to bipartite graphs in

RBMs: since there are no edges between hidden nodes, the Gibbs distribution

over the hidden nodes is independent from node to node, conditioned on a fixed

setting of the visible nodes. This enables a simple exact calculation for the first

term of Eq. (9.8), and it is also key to the success of estimating the second term

with contrastive divergence, where the hidden layer and the visible layer are

conditionally sampled in alternating fashion.

Once the model has been trained, new samples can also be generated via

the same MCMC methods. The end-to-end tasks are (i) training the model,

and then, (ii) generating samples from the trained model to accomplish some

larger machine learning goal.

Quantum graphical models: A separate end-to-end problem is found by gen-

eralizing the model itself to be quantum. For example, one can start with a clas-
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sical BM and promote the binary variables to qubits. The energy functional is

promoted to a quantum Hamiltonian and augmented with a transverse field,

which does not commute with the Ising interactions. The result is a quantum

Boltzmann machine (QBM), described by a transverse-field Ising (TFI) Hamil-

tonian [30] (cf. Eq. (1.4)):

HQBM = −
∑

i∈V
(κiXi + biZi) −

∑

(i, j)∈E

wi jZiZ j , (9.9)

where Xi and Zi are the Pauli-X and Pauli-Z operators on qubit i, and bi, κi,wi j

are real variational parameters of the model. The ground or Gibbs state of

HQBM can be prepared in a variety of ways, including the adiabatic algorithm,

Gibbs sampling, or as a variational quantum algorithm. These states can be

measured (in the Z basis or in the X basis), yielding samples of the variables

v, h drawn from different distributions than the thermal distribution for the clas-

sical BM. Alternatively, one can trace out the hidden nodes, viewing the left-

over quantum state on the visible nodes as the output of the QBM; this may

be suitable if the input data is also quantum. As in the classical case, the train-

ing phase for a QBM consists of varying the weights via gradient descent to

maximize a likelihood function. However, the noncommutativity of the Hamil-

tonian leads to complications: the gradients of the loss function are no longer

directly given by sample expectation values as was the case in Eq. (9.8), al-

though workarounds have been proposed [30, 614, 1037, 40, 1093]. For exam-

ple, in the case of classical input data, sample expectation values can be used

to optimize function that is not equal to the loss function, but can be shown

to be an upper bound on it using the Golden–Thompson inequality [30]. Al-

ternatively, in the case of quantum input data, and assuming the QBM has no

hidden nodes, the relevant loss metric is the relative entropy and its gradients

can again be related to sample averages [614]—this scenario is closely related

to the Hamiltonian learning problem. In any case, the end-to-end problem is to

train these models and generate samples.

Dominant resource cost/complexity

Complexity of classical graphical models: Recall that for classical BMs, one

wishes to produce samples from the thermal distribution corresponding to the

energy functional in Eq. (9.6), that is, Gibbs sampling (of diagonal Hamiltoni-

ans), either to assist in training the model or, if it has already been trained, to

make inferences or generate new data. Specifically, given H(h, v), one wishes

to draw samples of (h, v) with probability proportional to e−H(h,v), either with v

free or with v fixed (sometimes referred to as “clamped”) to a particular value

from the training set D. Classically, one approach is simulated annealing or
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9.2 Quantum machine learning via energy-based models 165

other MCMC algorithms. Quantumly, one can take one of several analogous

approaches, including “quantum simulated annealing” [944] and quantum an-

nealing, discussed as follows.

For quantum simulated annealing, one prepares the coherent Gibbs state∑
v,h

√
p(h, v)|v, h⟩, and a quadratic speedup is obtained over classical simu-

lated annealing. The method is to construct a Hamiltonian whose ground state

is the coherent Gibbs state at temperature T (i.e., for which probabilities p(h, v)

are proportional to e−H(h,v)/T ), and follow an adiabatic path from T = ∞ to

T = 1. Following the path is accomplished by repeatedly performing quantum

phase estimation (QPE) to project onto the ground state of the Hamiltonian at

a given temperature. As is typical for the adiabatic algorithm, the cost of this

procedure is dominated by the inverse of the spectral gap—this is the precision

required for QPE to succeed. Specifically, for a graphical model with |V | ver-

tices, the runtime will be poly(|V |)/∆, where ∆ is the minimum spectral gap.

Importantly, ∆ can be related to the maximum mixing time tmix of the simu-

lated annealing Markov chain, as 1/∆ = O(
√

tmix), which leads to the quadratic

speedup, although it is possible that ∆ is exponentially small in |V |.
An alternative method for preparing (and sampling from) the coherent Gibbs

state was proposed in [1041]. There, one begins in an easy-to-prepare co-

herent mean-field state approximating the coherent Gibbs state. Then, one

performs rejection sampling with amplitude amplification to gain a quadratic

speedup over the analogous classical method. Additionally, it was proposed

to use amplitude estimation to gain a quadratic improvement in the number

of samples needed to achieve precision ϵ, from O(1/ϵ2) to O(1/ϵ), mirroring

later analyses that work for general quantum-accelerated Monte Carlo methods

[773]. If these O(1/ϵ) quantum samples are each for the same training sample

v ∈ D, this is straightforward; however, if the samples are drawn randomly

from v ∈ D, achieving the quadratic speedup from amplitude estimation re-

quires accessing the data inD coherently and quickly. Such data access is pro-

vided by the quantum random access memory (QRAM) primitive, for which

the circuit depth can be logarithmic in the size of the training data, at the ex-

pense of a number of ancilla qubits (and total gates) that is linear in the size of

the training data.

For quantum annealing, the idea is to add a uniform transverse field, as in

the QBM of Eq. (9.9) with κi = κ j for all i, j. The transverse field is initially

strong, and slowly turned off. This is similar to the adiabatic algorithm, but

differs in that it is specifically carried out at finite ambient temperature. Thus,

the system-bath interaction of the device naturally drives the state to the Gibbs

state, which coincides with the classical thermal distribution once the trans-

verse field is turned off. This is a heuristic method; it is efficient but there are
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166 9. Machine learning with classical data

few success guarantees. The hope is that the inclusion of an initial transverse

field induces nonclassical fluctuations that help the system avoid becoming

trapped in local minima as the transverse field is turned off.

Overall, computing the gradient of the loss function with respect to one pa-

rameter, up to precision ϵ, will require complexity O(S/ϵ), where S is the

complexity of sampling from the Gibbs state. The above assumes log-depth

QRAM to be able to estimate the ⟨ziz j⟩v∈D term of Eq. (9.8). The complexity

of S will be poly(|V |)√tmix if a quantum simulated annealing approach is used,

or some hard-to-analyze quantity if the quantum annealing approach is used.

If the number of training samples is small, one can also sequentially compute

the sum over v ∈ D and avoid the assumption of log-depth QRAM, leading to

complexityO(S |D|/ϵ′) (where ϵ′ ≥ ϵ may be order-1). This must be carried out

for all |E| + |V | weights in the model, although these could be simultaneously

estimated to precision ϵ at cost Õ(
√
|E| + |V |/ϵ) samples, using methods from

[549], which leverage the quantum gradient estimation primitive. It is not clear

what value of ϵ is required in practice. Reference [1041] takes ϵ ∼ 1/
√
|D|, to

match the natural uncertainty coming from a finite number of training samples.

In this case, the overall complexity is dominated by

Õ
(
S ·

√
|V | + |E| ·

√
|D|

)
(9.10)

assuming log-depth QRAM, and

Õ
(
S ·

√
|V | + |E| · |D|

)
(9.11)

without log-depth QRAM (the precision for each training sample can be taken

as ϵ′ = O(1)). The linear dependence on |D| could potentially be mitigated

by first classically computing a “core set” D′ satisfying the requirements that

|D′| ≪ |D| and that replacing D with D′ causes minimal change to the loss

function in Eq. (9.7) [498].

Complexity of quantum graphical models: For QBMs, the dominant cost

comes from producing samples from the quantum Gibbs state for the sys-

tem in Eq. (9.9), that is, the state ρ ∝ e−HQBM , which can be accomplished

through methods for Gibbs sampling. Rigorous methods for Gibbs sampling

may scale exponentially in the size of the graph, without further assumptions.

Such scaling would likely not be tolerable in practice. However, Monte Carlo–

style methods for Gibbs sampling, which follow a similar approach as MCMC,

but in an inherently quantum way, may be more effective in this case. These

could have poly(|V |) scaling for some parameter settings, but must also have

exponential scaling in the worst case, as sampling low-energy Ising-model con-

figurations is known to be NP-hard.
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One can also heuristically apply quantum annealing, beginning from a large

transverse field and reducing its strength slowly to some final nonzero value.

However, some hardware platforms may only admit global control over the

transverse field, preventing one from tuning the transverse-field strengths κi

individually. In any of these approaches, it is difficult to make any rigorous

statements about the Gibbs sampling complexity.

Existing resource estimates

There are no logical resource estimates for quantum annealing. However, [7,

116] discuss in detail how to embed the fully connected architecture of a RBM

into the 2D lattice architecture available on planar quantum annealers. Refer-

ence [116] reports an embedding ratio scaling which is roughly quadratic—that

is, a graphical model with |V | vertices requires O(|V |2) qubits to accommodate

the architectural limitations of the device. A proper resource estimation has not

been performed for the fault-tolerant algorithm of [1041].

Caveats

There are two main caveats to quantum approaches to training classical mod-

els, which apply to both the annealing and to the fault-tolerant setting. First,

classical heuristic algorithms, such as greedy methods or contrastive diver-

gence, often perform well in practice and are the method of choice for existing

classical analyses. These methods are also often highly parallelizable. If the

quantum algorithm offers a speedup over a slower, exact classical method, this

may not be relevant if the faster approximate classical methods are already

sufficient. Second, the situations where one might hope for the heuristic quan-

tum annealing approach to perform better might not be relevant problems, for

instance, in highly regular lattice-based problems.

A caveat of the QBM is that the gradients of the loss function are not exactly

related to sample averages, and imperfect workarounds, such as those proposed

in [30], must be pursued. Like many other situations in machine learning, the

resulting end-to-end solution is heuristic and evidence of its efficacy requires

empirical demonstration.

Comparable classical complexity and challenging instance sizes

For classical models, an exact computation of the gradients would scale expo-

nentially in the size of the graph, as O(|D|2|V |) for the gradient of a single pa-

rameter. Approximate methods based on simulated annealing or other MCMC

methods would scale as O(S c/ϵ
2), where S c is the classical sample time, scal-

ing as S c = poly(|V |)tmix. On the other hand, these methods can also be im-

plemented heuristically at reduced cost (e.g., contrastive divergence, where
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one does not wait for the chain to mix), and they can also be implemented

on parallel architectures. For instance, in [618], an architecture was proposed

to train deep BMs efficiently. Experiments demonstrated that heuristic train-

ing methods could be carried out for graphs of size 1 million in 100 seconds

on field-programmable gate arrays available in 2010. Much larger sizes would

be accessible to a scaled-up version of the same architecture on modern hard-

ware. It is unlikely that any exact method, quantum or classical, could match

this efficiency.

For the quantum models, the classical complexity of sampling from the

Gibbs state of the model would be exponential in the graph size |V |. Thus,

training these models would likely not be pursued classically.

Speedup

For the classical models, the speedup can be quadratic in most of the param-

eters: producing a sample can in some cases be sped up quadratically, and

the number of samples required to achieve a certain precision also enjoys a

quadratic speedup (e.g., tmix to
√

tmix and O(1/ϵ2) to O(1/ϵ)). The methods

that give these provable quadratic speedups are based on primitives such as

amplitude amplification, where superquadratic speedups are not possible with-

out exploiting additional structure. Larger superpolynomial speedups are only

possible under optimistic assumptions about the success of heuristic quantum

annealing approaches at producing samples faster than classical approaches.

For the quantum models, the speedup is technically exponential, assuming

that for the models considered, quantum algorithms for Gibbs sampling scale

efficiently while approximate classical methods (e.g., tensor networks) scale

exponentially. Indeed, it was shown in [1042] that certain QBMs are BQP-

complete, in the sense that its ground state can be efficiently prepared on a

quantum computer, and any quantum computation (including those with ex-

ponential speedup) can be encoded into its ground state. However, this con-

struction is artificial, and it has yet to be demonstrated that there are specific

real-world machine learning tasks where these models offer a speedup over the

best available classical machine learning model for the same task.

Outlook

While energy-based models are naturally in a form that can readily be ex-

tended to the quantum domain, there still lacks decisive evidence of quantum

advantage for a specific end-to-end classical machine learning problem. There

remains some uncertainty on the outlook of these approaches due to the cen-

trality of heuristic quantum approaches. One may hold out hope that these

heuristics could outperform classical heuristics in some specific settings, but
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the success of classical heuristics and effectiveness of approximate classical

approaches present a formidable barrier to achieving any quantum advantage

in this area.

Further reading

We refer the reader to [916] for more information on quantum approaches to

energy-based models.

9.3 Tensor PCA

Overview

Inference problems play an important role in machine learning. One of the

most widespread methods is principal component analysis (PCA), a technique

that extracts the most significant information from a stream of potentially noisy

data. In the special case where the data is generated from a rank-1 vector plus

Gaussian noise—the spiked matrix model—it is known that there is a phase

transition in the signal-to-noise ratio [536]: above the transition point, the

principal component can be recovered efficiently, while below the transition

point, the principal component cannot be recovered at all. In the tensor ex-

tension of the problem, there are two transitions. One information theoretical,

below which the principal component cannot be recovered, and another com-

putational, below which the principal component can be recovered, but only

inefficiently, and above which it can be recovered efficiently. Thus, the tensor

PCA problem offers a much richer mathematical setting, which has connec-

tions to optimization and spin glass theory; however, it is yet unclear if the ten-

sor PCA framework has natural practical applications. A quantum algorithm

[509] for tensor PCA was proposed which has provable runtime guarantees for

the spiked tensor model; it offers a potentially quartic speedup over its clas-

sical counterpart and also efficiently recovers the signal from the noise at a

smaller signal-to-noise ratio than other classical methods. This algorithm was

further developed in [904] and extended to also give a quartic speedup for a

related discrete optimization problem called “planted noisy kXOR,” which is

argued to have possible relevance in cryptography.

Actual end-to-end problem(s) solved

Consider the spiked tensor problem. Let v ∈ RN (or ∈ CN)11 be an unknown

signal vector, and let p ∈ N be a positive integer. Construct the tensor

T = λv⊗p + V,

11 Reference [509] provides reductions between real and complex cases.

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


170 9. Machine learning with classical data

where V is a random tensor in RN p

(or CN p

), with each entry drawn from a

normal distribution with mean 0 and variance 1. The vector v is assumed to

have norm
∑

j v∗
j
v j =

√
N and can be identified with a quantum state. The

quantity λ is the signal-to-noise ratio.

The main question we are interested in is for what values of λ can we de-

tect or reconstruct v from (full) access to T , and how efficiently can this be

done? In [874], it was shown that the maximum likelihood solution wML to the

objective function

wML = argmax
w∈Cn

⟨T,w⊗p⟩

will have high correlation with v as long as λ ≫ N(1−p)/2, where ⟨·, ·⟩ de-

notes the standard dot product after writing the N p entries of the tensor as a

vector. However, the best known efficient classical algorithm [1033] requires

λ ≫ N−p/4 to recover an approximation of v. Using the spectral method, that

is, mapping the tensor T to a N p/2 × N p/2 matrix and extracting the maximal

eigenvalue, recovery can be done in time complexity O(N p), ignoring logarith-

mic prefactors.

Hastings [509] proposes classical and quantum algorithms to solve the

spiked tensor model by first mapping T to a bosonic quantum Hamiltonian

with N modes, nbos bosons, and p-body interactions, where nbos is a tunable

integer parameter satisfying nbos > p/2

HPCA(T ) =
1

2


N∑

µ1,...,µp=1

Tµ1,...,µp


p/2∏

i=1

a†µi




p∏

j=1+p/2

aµ j

 + h.c.

 , (9.12)

where h.c. stands for Hermitian conjugate. Here, the operators aµ and a
†
µ are

annihilation and creation operators of a boson in mode µ, and we restrict to

the sector for which
∑
µ a
†
µaµ = nbos. As nbos increases, the number of particles

increases and the complexity of the algorithm grows, but the threshold for λ

above which recovery is possible also decreases.

Hastings shows that the vector v can be efficiently recovered from a vector in

the large energy subspace of HPCA(T ) when the largest eigenvalue of HPCA(T )

is at least a constant factor larger than Emax, where Emax corresponds to the

case where there is no signal. It is shown that, roughly,

Emax ∼ n
p/4+1/2

bos
N p/4 ,

E0 ≈ λ(p/2)!

(
nbos

p/2

)
N p/2 ≈ λn

p/2

bos
N p/2 ,

where E0 is the maximum eigenvalue of HPCA(T ). Thus, if λ ≫ N−p/4, there

will be a gap between E0 and Emax, and this gap grows as nbos increases. This
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enables the quantum algorithm to recover the signal even for signal strength as

weak as λ ≫ N−p/4.

Hastings considers the case where p is constant and N grows, and assumes

that nbos = O(Nθ) for some p-dependent constant θ > 0 chosen sufficiently

small. In fact, ultimately, it is determined that in the recovery regime λ ≫
N−p/4, the parameter nbos need only scale as polylog(N)(N−p/4/λ)4/(p−2). In

any case, terms in the complexity O(N p) are dominated by terms O(Nnbos ).

The idea of mapping the order-p tensor T to an order-2 tensor (i.e., a ma-

trix) HPCA, and then solving the planted inference problem by (classically)

extracting spectral information from HPCA, was also independently discovered

in [1033], where it is called the “Kikuchi method.” There, a tunable parameter

ℓ plays the role of nbos, although the two formulations offer different intuitions

to motivate the method; their relationship is discussed in detail in [904].

Dominant resource cost/complexity

Hastings shows that the dominant eigenvector of HPCA can be classically ex-

tracted in Õ(Nnbos ) time via the power method, where the tilde indicates that we

ignore polylogarithmic factors.

He proposes three quantum algorithms for the same problem. The first runs

quantum phase estimation on a random state. Since the random state will

have squared overlap Ω(N−nbos ) with the high-energy subspace, the expected

number of repetitions of phase estimation is O(Nnbos ). The second algorithm

proposes to further use amplitude amplification, reducing the complexity to

O(Nnbos/2). The third algorithm further improves the complexity by choosing a

specific initial high-energy state, and showing that the overlap with the state

scales as Ω(N−nbos/2), which combined with amplitude amplification, leads to

a O(Nnbos/4) complexity. As discussed above, the estimates assume that factors

of O(N p) can be ignored, since they are negligible with respect to the query

complexity of NO(nbos).

This constitutes a quartic speedup over the classical spectral algorithm act-

ing on HPCA for the same choice of nbos that is also presented in [509]. Since

the ansatz state is a product state, it can be prepared efficiently.

Hastings further argues that the Hamiltonian simulation of HPCA within the

phase estimation subroutine can be accomplished by viewing HPCA as a sparse

or local matrix. Specifically, we can view HPCA as a second-quantized Hamil-

tonian with N registers storing a O(log(nbos)))-bit number representing the oc-

cupancy of each mode. The total number of qubits needed is O(N log(nbos)).

Each of the O(N p) terms in Eq. (9.12) corresponds to a single nonzero entry of

one row of HPCA in this basis, so the O(nN
bos

) × O(nN
bos

) matrix HPCA is O(N p)-

sparse. Alternatively, a more compact representation would be to view HPCA in
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a first-quantized picture, allocating nbos registers each storing a O(log(N)) bit

number corresponding to which mode each of the nbos bosons are in—the total

number of qubits needed is O(nbos log(N)). In order to enforce permutational

symmetry, each term in Eq. (9.12) would decompose into (p/2)!
(

nbos

p/2

)
separate

terms that act locally on p/2 of the registers. This is closer to the approach

taken in the quantum algorithm of [904].

Either way, we can efficiently perform Hamiltonian simulation (e.g., by first

constructing a block-encoding of the sparse or local Hamiltonian) to perform

quantum phase estimation at total gate complexity poly(N, nbos) (here inter-

preting p = O(1)), which is negligible compared to Nnbos .

Caveats

The spiked tensor model does not immediately appear to be related to any

practical problems. Additionally, efficient recovery requires that the signal-to-

noise ratio be rather high, which may not occur in real-world settings, and

when it does, it is not clear that formulating the problem as a tensor PCA

problem will be the most efficient path forward. Relatedly, while the runtime

of the algorithm scales subexponentially in N, for large values of nbos, its N

dependence of O(Nnbos ) may still lead to a practically intractable algorithm.

Comparable classical complexity and challenging instance sizes

The algorithms proposed in [509] (see also [1033, 904]) improve on other spec-

tral methods for the spiked tensor model, whenever nbos > p/2 for sufficiently

large p. The threshold for which the new algorithms beat the older ones de-

creases as nbos increases, although the complexity of the algorithm increases

with nbos.

Speedup

The quartic speedup over the classical power method is achieved by combining

a quadratic speedup from amplitude amplification with a quadratic speedup

related to choosing a clever initial state for phase estimation. The existence of

the clever initial state is essential for the beyond-quadratic speedup, and it has

been related [904] to the BQP-hardness of the guided local/sparse Hamiltonian

problem [419].

As discussed above, there is no readout issue, as the vector v can be

efficiently recovered from the single particle density matrix obtained from

the eigenvector of HPCA(T ). The quantum algorithm has O(N log(nbos)) space

complexity, which is an exponential improvement over the classical spectral

algorithm presented in [509] for the same problem. Furthermore, the quartic

speedup in time and exponential speedup in space is possible even in the
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absence of a large-scale quantum random access memory (QRAM), since

the overall runtime of the algorithm is much larger than the size of the

input dataset (O(N p)), and linear (rather than logarithmic) data access cost is

tolerable.

In [904], the quartic speedup was extended to apply generally to instances

where the “Kikuchi method” is used; improvements to the classical algorithm

within this framework would imply commensurate improvements to the quan-

tum algorithm to maintain the quartic relationship.

Outlook

The quartic speedup is very compelling, as beyond-quadratic speedups are rare

in quantum algorithms. It is also appealing that the speedup also does not nec-

essarily rely upon an assumption of large-scale QRAM. However, it is cur-

rently unclear how applicable this quartic speedup can be in real-world situa-

tions.

Further reading

We refer the reader to [904] for a discussion on the intuition and scope of

the quartic speedup and additional technical details. We also note that [1091]

has studied the quantum approximate optimization algorithm (QAOA) applied

to the spiked tensor model, although the result is not directly comparable as

it is only shown to succeed for larger values of λ, where additional classical

algorithms are also successful.

9.4 Topological data analysis

Overview

In topological data analysis (TDA), we aim to compute the dominant topolog-

ical features (connected components and k-dimensional holes), known as Betti

numbers, of N data points sampled from an underlying topological manifold or

of a graph with N vertices. These features may be of independent interest (e.g.,

the number of connected components in the matter distribution in the universe)

or can be used as generic features to compare datasets. We refer to [519] for a

recent survey of applications of TDA.

Quantum algorithms for TDA leverage the ability of a register of qubits to

efficiently represent a quantum state that stores all cliques in the clique com-

plex built on the topological manifold. The textbook classical algorithm ex-

actly computes the Betti numbers, but its complexity scales polynomially with

the number of cliques in the complex, which may grow combinatorially with
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(N, k). In contrast, quantum algorithms naturally estimate Betti numbers nor-

malized by the number of cliques in the complex, and their complexity scales

polynomially in (N, k) for clique-dense complexes. If the error is rescaled so as

to be a constant additive error estimate for the Betti number, currently known

quantum algorithms provide a quadratic speedup over the best classical al-

gorithms for the equivalent problem. For relative-error estimates of the Betti

number, quartic and superpolynomial speedups have been shown for certain

families of graphs. In addition, a number of complexity-theoretic results have

been shown that provide evidence that estimating normalized Betti numbers

is efficient for quantum computers, but classically hard. Nevertheless, find-

ing practical applications for relative error estimates of high-dimensional Betti

numbers is an open research question.

Actual end-to-end problem(s) solved

We construct a simplicial complex built from N data points sampled from an

underlying manifold. The simplicial complex is a higher-dimensional general-

ization of a graph, constructed by connecting data points within a given dis-

tance of each other. A simplicial complex constructed in this way is known

as a clique complex or a Vietoris–Rips complex. We can consider a sequence,

known as a filtration, of complexes constructed by connecting points at in-

creasingly large distances (the distance is referred to as the length scale of the

clique complex). We denote the number of k-simplices in the complex at length

scale i as |S i
k
|.

We then compute the Betti numbers βi
k

(the number of k-dimensional holes

at a given length scale i) or the persistent Betti numbers β
i, j

k
(the number of k-

dimensional holes present at both scale i and scale j) of the simplicial complex.

The persistent Betti numbers β
i, j

k
are used to infer the dominant topological fea-

tures, considered to be those with the longest persistence as the length scale is

increased. The births and deaths of features are typically plotted on a “persis-

tence diagram.” Different datasets can be compared by using stable distance

measures between their diagrams, or by vectorizing the diagrams and using

kernel methods or neural networks. For graphs, there is only a single length

scale i, and so βi
k

is the quantity of interest. For statements common to both β
i, j

k

and βi
k
, we will use the notation β∗

k
. Typical classical applications consider low

values of k, motivated primarily by computational cost and interpretability of

the resulting topological features.

Dominant resource cost/complexity

Quantum algorithms naturally estimate β∗
k
/|S i

k
| to additive error ϵ [709, 469,

514, 755, 143]. For a complex built from N data points, we can either use N
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qubits to encode the simplicial complex, or O(k log(N)) qubits when k ≪ N.

Quantum algorithms have two subroutines:

(i) Preparing a state that encodes the simplices present in the simplicial

complex. This reduces to finding k-simplices present in the complex

at the given length scale (using either classical rejection sampling or

Grover’s algorithm / amplitude amplification). Using Grover’s algorithm

this scales as
((

N

k+1

)
/|S i

k
|
)1/2

. More efficient clique-finding methods can

be used for special classes of graphs [474].

(ii) Projecting onto the eigenspace of an operator that encodes the topologi-

cal features of the complex in the amplitude of the quantum state (using

either quantum phase estimation or quantum singular value transforma-

tion). This introduces a dependence on the gap(s) Λ of the operator(s)

used to encode the topology.

The most efficient approaches use amplitude estimation to compute the nor-

malized (persistent) Betti number. The most expensive subroutines within the

quantum algorithms are the membership oracles that determine if a given sim-

plex is present in the complex, the cost of which we denote by mk. In the clas-

sically challenging clique-dense regime, the overall cost of the most efficient

known quantum algorithms for computing β∗
k
/|S i

k
| to error ϵ is approximately

Õ


mk

ϵ

√
β∗

k

|S i
k
|



√√(
N

k+1

)

|S i
k
|
+

poly(N, k)

Λ



 .

When we choose ϵ = ∆/|S i
k
| (i.e., computing β∗

k
to constant additive error ∆)

the complexity is

Õ


mk

√
β∗

k

∆



√(
N

k + 1

)
+

√
|S i

k
| · poly(N, k)

Λ




.

It is clear that regardless of how |S i
k
| and β∗

k
scale, the runtime is polynomial in(

N

k+1

)
.

When we choose ϵ = rβ∗
k
/|S i

k
| (i.e., computing β∗

k
to relative error r) the

complexity is

Õ


mk

r



√√(
N

k+1

)

β∗
k

+

√
|S i

k
|

β∗
k

· poly(N, k)

Λ



.

For clique-dense complexes with large Betti numbers, where β∗
k

and |S i
k
| are

only polynomially smaller than
(

N

k+1

)
, the runtime is polynomial in N and k.
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Existing resource estimates

In [755], the gate depth (and non-Clifford gate depth) of all subroutines (in-

cluding explicit implementations of the membership oracles) was established

for computing β
i, j

k
and βi

k
. However, that reference did not consider a final com-

pilation to T /Toffoli gates for concrete problems of interest.

In [143], the Toffoli complexity of estimating βi
k

was determined. The Toffoli

complexity for estimating βi
k

to relative error for a family of graphs with large

βi
k

was determined for k = 4, 8, 16, 32 and N ≤ 104. The resulting Toffoli

counts ranged from 108 (N = 100, k = 4) to 1017 (N = 104, k = 32), using

O(N) logical qubits.

Caveats

Quantum algorithms naturally solve a different problem than the textbook clas-

sical algorithm solves. Namely, the quantum algorithm estimates β∗
k
/|S i

k
| to er-

ror ϵ, with runtime poly(ϵ−1), for a single length scale (pair of length scales).

The algorithm must be repeated for all length scales to compute the persis-

tence diagram. In contrast, the textbook classical algorithm for dimension k

and length scale j exactly computes the full persistence diagram for all β
i, j′≤ j

k′≤k
.

Quantum algorithms (and classical algorithms based on the power method

discussed below) depend on the eigenvalue gap(s) Λ of the operator(s) that

encode the topology. The scaling of these gaps has not been studied for typical

applications.

Finally, typical classical applications consider dimension k ≤ 3, and appli-

cations of high-dimensional Betti numbers are not yet known.

Comparable classical complexity and challenging instance sizes

While classical algorithms are technically efficient for constant dimension k,

they are limited in practice. For a number of benchmark calculations on sys-

tems with up to 109 simplices, we refer to [819].

The textbook classical algorithm, which for dimension k and length scale j

exactly computes the full persistence diagram for all β
i, j′≤ j

k′≤k
(rather than a sin-

gle Betti number), has a worst-case scaling of O(|S j

k,k+1
|ω) where ω ≤ 2.37 is

the exponent of matrix multiplication, and we have defined a shorthand nota-

tion |S j

k,k+1
| := |S j

k
| + |S j

k+1
| [764]. In practice, the textbook classical algorithm

is observed to scale as O(|S j

k,k+1
|) due to sparsity in the complex [764]. More-

over, for problems that do not naturally have this sparse structure, well-studied

classical heuristics can be applied to sparsify the complex [765].

Classical algorithms based on the power method [403] can achieve worst-

case scaling of O(|S i
k
|) for computing individual Betti numbers βi

k
(an improve-
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ment over the worst-case scaling of the textbook algorithm above). The classi-

cal power method scales approximately as

Õ

|S i

k
|(Nkβi

k
+ (βi

k
)2)λmax

Λ
log

(
1

ϵ

)

to compute βi
k

to additive error ϵ, where λmax is a bound on the largest eigen-

value of the operator encoding the topology. The power method has recently

been extended to compute persistent Betti numbers, with a similar complex-

ity [755]. Although the power method for persistent Betti numbers is more

efficient than the worst-case performance of the textbook classical algorithm

described above, it must be repeated for each pair of length scales to compute

the persistence diagram, which is a disadvantage in practice.

Recently, randomized classical algorithms have been proposed for estimat-

ing βi
k
/|S i

k
| to additive error [143, 53]. The algorithm of [53] scales as

(
N

λmax

)O
(

1√
Λ

log( 1
ϵ )

)

· poly(n)

assuming that we can efficiently sample and check k-simplices. When k =

Ω(N), the algorithm runs in polynomial time for clique complexes with con-

stant gapΛ and error ϵ = Ω(1/poly(N)) (or ϵ constant andΛ = Ω(1/ log2(N))).

Speedup

As discussed above, quantum algorithms naturally compute β∗
k
/|S i

k
| to additive

error ϵ, with runtime poly(ϵ−1). A number of complexity-theoretic results

have been shown for this problem. Reference [474] showed that estimating

the kernel dimension of general Hamiltonians is DQC1-hard.12 In [214], it

was shown that estimating normalized quasi-Betti numbers (which accounts

for miscounting low-lying but nonzero singular values) of general coho-

mology groups is also DQC1-hard. The hardness of estimating normalized

(persistent) Betti numbers of a clique complex, subject to a gap assumption

of Λ = Ω(1/poly(N))—which is the problem solved by existing quantum

algorithms—has not been established (see [214, Section 1.1]).

Reference [903] showed that determining if the Betti number of a (clique-

dense) clique complex is nonzero is NP-hard in general. This was superseded

by the results of [319, 620] which showed that this problem is QMA1-hard.

We can consider the speedup of quantum algorithms for TDA in two

regimes, constant additive error and relative error:

12 DQC1 is a complexity class that is physically motivated by the “one clean qubit model” [635].
This model has a single pure state qubit which can be initialized, manipulated, and measured
freely, as well as N − 1 maximally mixed qubits.
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• For constant additive error, the most natural comparison is between the

quantum algorithm and classical algorithms based on the power method.

Quantum algorithms are able to achieve a quadratic speedup over the clas-

sical power method in the clique-dense regime [403, 755]. An exponential

speedup is not possible for general graphs, due to the aforementioned NP-

and QMA-hardness results [903, 319, 620].

• For the task of computing βi
k

to relative error, graph families have been iden-

tified for which the quantum algorithm provides superpolynomial [143] or

quartic [143, 903] speedups over the classical power method. Recently in-

troduced randomized classical algorithms [143, 53] may scale efficiently

for this same task of estimating βi
k

to relative error. For example, when

k = Ω(N) the algorithm of [53] runs in polynomial time for clique com-

plexes with constant gap Λ and error ϵ = Ω(1/poly(N)) or ϵ constant and

Λ = Ω(1/ log2(N)). These are more restrictive conditions than quantum al-

gorithms (which can simultaneously have bothΛ, ϵ = Ω(1/poly(N))). These

features will not occur for all graphs.

NISQ implementations

In [13], a NISQ-amenable compilation of the quantum algorithm described

above was proposed, trading deep quantum circuits for many repetitions of

shallower circuits, which comes at the cost of worsening the asymptotic scal-

ing of the algorithm (see the table in [755] for a quantitative comparison). A

proof-of-principle experiment was performed demonstrating this method [13].

In [214], it was shown that the TDA problem can be mapped to a fermionic

Hamiltonian, and it was proposed to use the variational quantum eigensolver

to find the ground states of this Hamiltonian (the degeneracy of which gives

βi
k
). It is unclear what ansatz circuits one should use to make this approach

advantageous compared to classical algorithms, as naive (e.g., random) trial

states would have exponentially small overlap with the target states.

Outlook

The complexity-theoretic results that provide evidence for the classical hard-

ness and quantum tractability of estimating normalized (persistent) Betti num-

bers suggest that quantum algorithms for TDA may be an interesting area to

search for new quantum speedups.

Nevertheless, it is important to emphasize that current quantum algorithms

do not provide more than quadratic speedups for the practical problem solved

in current TDA applications, and complexity-theoretic results suggest that ex-

ponential speedups will not be possible for general graphs for this task.
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As such, an important open problem is to identify applications for the task

naturally solved by quantum computers (providing relative error estimates for

clique-dense graphs with large Betti numbers). If new applications can be iden-

tified for datasets that are both clique-dense and have large high-dimensional

(persistent) Betti numbers (that are practically interesting to compute to rela-

tive error), then quantum algorithms may be of practical relevance.

9.5 Quantum neural networks and quantum kernel methods

Overview

In this section, we discuss two collections of proposals to use a quantum com-

puter as a platform to execute machine learning models, often known as quan-

tum neural networks and quantum kernel methods. Some early ideas in this

space were motivated by the constraints of near-term, “NISQ” [843] devices.

Despite this, not all subsequent proposals are necessarily implementable on

NISQ devices. Moreover, the proposals need not be restricted to running on

NISQ devices, but could also be run on devices with explicit quantum error

correction. For simplicity, we present concrete examples based on supervised

machine learning tasks. However, outside of these examples, we keep our dis-

cussion more general and note that the techniques are also applicable to other

settings, such as unsupervised learning and generative modeling.

Given access to some data, our goal is to obtain a function or distribution

that emulates certain properties of the data, which we will call a hypothesis.

This is obtained by first defining a hypothesis set or model family, and using a

learning algorithm to output a hypothesis from this set. For example, in super-

vised learning, we have data xi ∈ X that have respective labels yi ∈ Y . The goal

is then to find a hypothesis function h : X → Y that approximates the “true”

unknown underlying labeling function, such that it correctly labels previously

unseen data with high probability. Note that we have left the exact descriptions

of the sets X and Y ambiguous. They could, for instance, correspond to sets

of numbers or vectors. More generally, this description encompasses the pos-

sibility of operating on quantum data such that each xi or yi corresponds to a

quantum state.

Quantum neural networks and quantum kernel methods use a quantum com-

puter to assist in constructing the model family, in place of a classical model

such as a neural network. Specifically, here we prepare some quantum state(s)

encoding the data and measure some observable(s) to ultimately construct

model predictions. We first elaborate on both quantum neural networks and

quantum kernel methods.
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Quantum neural networks

Actual end-to-end problem(s) solved: Given data x, we consider a model

constructed from a parameterized quantum circuit:

hθ(x) = f
(
tr
[
ρ(x, θ)O

])
, (9.13)

where ρ(x, θ) is a quantum state (output of some parameterized quantum cir-

cuit) that encodes both the data x as well as a set of adjustable parameters θ,

O is some chosen measurement observable, and f is some function that can be

enacted as classical postprocessing on the measurement result (we remark that

O itself can also be trainable [475], but we do not explicitly indicate this in

the notation for simplicity of exposition). As a basic example, if x corresponds

to a classical vector, ρ(x, θ) could correspond to initializing in the |0⟩⟨0| state

and applying some data-encoding gates U(x) followed by parameterized gates

V(θ). Alternatively, the data itself could be a quantum state, and a more general

operation in the form of a parameterized channelV(θ) could be applied. There

is also no a priori reason why data encoding and trainable gates need to be

applied each once in separate steps rather than in a mixed or repeated fashion.

The model is optimized via a learning algorithm which aims to find the op-

timal parameters θ∗ by minimizing a loss function. For instance, in supervised

learning, given some labeled training dataset T = {(xi, yi)}, a suitable choice of

loss should compare how close each hθ(xi) is to the true label yi for all data in

T . The quality of the model can then be assessed on a set of previously unseen

data outside of T . It is important to pause here and reflect that an optimized loss

does not guarantee good performance on unseen data. This is referred to in the

literature as the gap between empirical and total risk, or simply the generaliza-

tion gap/error. Conversely, a small generalization error alone is not sufficient

to guarantee good performance (one should then also ask for a good loss on

training data).

We remark that the setting we presented has substantial overlap with the

setting of variational quantum algorithms (VQAs)—indeed, a quantum neural

network can be thought of as a VQA that incorporates data—thus, the same

challenges and considerations that apply to VQAs also apply here. There will

additionally be extra considerations due to the role of the data.

Dominant resource cost/complexity: The encoding of data x and parame-

ters θ in Eq. (9.13) should be sufficiently expressive that it (i) leads to good

performance on data and (ii) is (at minimum) not efficiently simulable classi-

cally [243], if one is to seek quantum advantage. These requirements set some

criteria for minimum circuit complexity.
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The learning algorithm to find optimal parameters is usually performed by

classical heuristics, such as gradient descent, and can have significant time

overhead, requiring evaluation of Eq. (9.13) at many parameter values (see

Chapter 20 on VQAs for more details).

The size of the training dataset required can also have direct implications for

runtime, with a larger amount of training data typically taking a longer time

to process. Reference [235] proves that good generalization can be achieved

with the size of the training data |T | growing in tandem with the number of

adjustable parameters M. Specifically, it is shown that the generalization error

with high probability scales as O(
√

M log(M)/|T |). Thus, only a mild amount

of data is required for good generalization. We stress again that this alone does

not say anything about the ability for quantum neural networks to obtain low

training error.

Scope for advantage: Quantum neural networks could achieve advantage in

a number of ways, for example, by improving on runtime or by using less

training data. In supervised learning settings, generalization performance is a

separate consideration and an additional domain for possible advantage. Ma-

chine learning with quantum neural networks has yielded some promising per-

formance empirically and encouraging theoretical guarantees exist for certain

stages of the full pipeline in restricted settings [901, 234, 235, 700, 1070] (loss

minimization can remain a challenge [663, 243], see Chapter 20 on VQAs

again for more details). Nevertheless, there are currently no practical use cases

with full end-to-end performance guarantees in the same way that we have

for other quantum algorithms. However, due to the heuristic nature of classi-

cal machine learning, one may debate whether such a guarantee is possible,

or even if seeking theoretical quantum advantage in the traditional algorithmic

sense is the most appropriate goal [915].

Quantum kernel methods

Actual end-to-end problem(s) solved: Quantum kernel methods are a quan-

tum instance of a class of techniques known as kernel methods, of which sup-

port vector machines are a prominent example. We first briefly review the gen-

eral framework. Given a dataset T = {xi} ⊂ X, the model can be written as

hα(x) =
∑

i : xi∈T
αik(x, xi) , (9.14)

where α = (α1, α2, . . .) is a vector of parameters to be optimized, and

k(x, x′) : X × X → R is a measure of similarity known as the kernel function.

This model has several theoretical motivations:
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182 9. Machine learning with classical data

• The matrix with entries Ki j = k(xi, x j) is usually defined to be symmetric

positive semidefinite for any choice of {x1, . . . , xm} ⊆ X and k(xi, x j). By

Mercer’s theorem, it is thus an inner product of feature vectors ϕ(xi), ϕ(x j)

which embed the data xi and x j in a (potentially high-dimensional) Hilbert

space. Linear statistical methods can be used to learn a linear function in this

high-dimensional space, only using the information of the inner products

k(xi, x j) and never having to explicitly evaluate ϕ(xi) and ϕ(x j), which can

be much harder to compute.

• The Representer Theorem [905] states that the optimal model over the

dataset T (optimal for T , though not necessarily for expanded datasets)

can be expressed as a linear combination of kernel values evaluated over

T—that is, the optimal model exactly takes the form in Eq. (9.14). This is

known as the kernel trick.

• Further, if the loss function is convex, then the dual optimization program to

find the optimal parameters α∗ is also convex [913].

A key question that remains is then how to choose a kernel function. Quantum

kernel methods embed data in quantum states, and thus evaluate k(xi, x j) on a

quantum computer. Similar to quantum neural networks or any other quantum

model, the quantum kernel should be hard to simulate classically [243]. As an

example, we present two common choices of quantum kernel (see [425] for a

more general discussion).

• The fidelity quantum kernel

kF(x, x′) = tr[ρ(x)ρ(x′)] , (9.15)

which can be evaluated either with a SWAP test or, given classical data

with unitary embeddings, it can be evaluated with the overlap circuit

|⟨0|U(x′)†U(x)|0⟩|2.

• The fidelity kernel can run into issues for high-dimensional systems (in-

creasing qubit count), as the inner product in Eq. (9.15) can be very small

for x , x′. This motivated the proposal of a family of projected quantum

kernels [542], of which one example is the Gaussian projected quantum ker-

nel

kP(x, x′) = exp

−γ
n∑

ℓ=1

∥∥∥ρℓ(x) − ρℓ
(
x′
)∥∥∥2

2

 , (9.16)

where ρℓ(x) is the reduced density matrix of the n-qubit state ρ(x) on qubit

ℓ, and γ is a hyperparameter.

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


9.5 Quantum neural networks and quantum kernel methods 183

Dominant resource cost/complexity: During the optimization of the dual

program to find the optimal parameters α∗, O(|T |2) expectation values cor-

responding to the kernel values in Eq. (9.14) need to be accurately evalu-

ated, as well as when computing hα∗ (x) for a new data point x with the opti-

mized model. This can lead to a significant overhead in applications with large

datasets. Alternatively, the primal optimization problem has reduced complex-

ity in the dataset size, but greatly exacerbated dependence on the error [415].

The gate complexity is wholly dependent on the choice of data encoding lead-

ing to the kernel function. As the kernel function should be classically nonsim-

ulable, this sets some minimum requirements in terms of circuit complexity.

However, in the absence of standardized techniques for data encoding, it is

hard to make more precise statements.

Scope for advantage: In [704], the authors demonstrate that using a particu-

lar constructed dataset and data embedding, concrete quantum advantage can

be obtained for a constructed machine learning problem based on the discrete

logarithm problem. The original work was based on the fidelity kernel, but a

similar advantage can also be more simply obtained for the projected quantum

kernel [542] and adapted beyond kernel methods to the reinforcement learning

setting [573]. Beyond this, concrete advantage (up to similar computational as-

sumptions) can be shown more generally for any learning problem where the

underlying (unknown, to be learned) labeling function constitutes a BQP-hard

family [473]. While great strides have been made in understanding the com-

plexity of quantum kernel methods [88, 542], at present there do not yet exist

examples of explicit end-to-end theoretical guarantees of advantage for classi-

cal data relevant for a real-world problem. As with quantum neural networks,

it may be debated whether or not this is a reasonable question for theoretical

research efforts.

Caveats

One consideration we have not discussed so far is how to encode classical data

into a quantum circuit, which is a significant aspect of constructing the quan-

tum model. There are many possibilities, such as amplitude encoding or en-

coding data into rotation angles of single-qubit rotations (see, e.g., [711, 513,

547, 664]). While certain strategies are popular, there is no universal strategy.

In general, it is unclear what is the best choice for a given problem at hand, and

thus selecting the data-encoding strategy can itself be a heuristic process. The

same question extends to the choice of quantum neural network or quantum

kernel. While certain choices may perform well in specific problem instances,
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184 9. Machine learning with classical data

there is at present a lack of strong evidence why such approaches may be ad-

vantageous over their classical counterparts in general.

While optimization of parameterized quantum circuits is predominantly a

concern for quantum neural networks, the search for good quantum kernels

has also motivated proposals of trainable kernels [547, 414, 436] where a pa-

rameterized quantum circuit is used to construct the quantum kernel (note that

this is distinct from the “classical” optimization of α in Eq. (9.14)). In the

case that the parameter optimization process is performed using heuristics, it

is subject to the same challenges and considerations that arise with VQAs (see

Chapter 20 for more details).

Finite statistics is an important consideration for both settings. Where there

is optimization of parameterized quantum circuits, one must take care to avoid

the barren plateau phenomenon [663] (again, see Chapter 20 for more details

and further references). Analogous effects can also occur in the kernel setting

[655], which can arise even purely due to the data-encoding circuit [542, 988].

Outlook

The use of classical machine learning models is generally heuristic, guided

by empirical evidence or sometimes physical intuition. Despite this, classi-

cal machine learning has found remarkable success in solving many practi-

cal problems of interest. The quantum techniques outlined in this section also

broadly follow this approach (although theoretical progress has also been sub-

stantial in certain areas), and there is no a priori reason why they cannot also

be useful. Nevertheless, it can be challenging to make concrete predictions

for quantum advantage, particularly for learning problems with classical data

(see [704, 473] as some exceptions). For practical problems this is exacerbated

by our limited analytic understanding for end-to-end applications, even in the

fully classical setting. Indeed, it may ultimately be challenging to have the

same complete end-to-end theoretical analysis that other quantum algorithms

enjoy, aside from a few select examples [915]. Within the realm of quan-

tum data, there appears to be ripe potential for concrete provable advantage

[543, 265, 236], however, this is beyond the scope of this section.

Further reading

We refer the reader to [913, 547] for pedagogical expositions of quantum ker-

nel methods, to [118, 241] for comprehensive reviews of quantum neural net-

works, and to [242] for a review of quantum machine learning models at large,

including an exposition of machine learning with quantum data.
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Overview

To deliver an advantage over classical approaches, end-to-end quantum solu-

tions must exploit known quantum phenomena capable of providing a quantum

speedup. The disparate collection of known quantum applications is built from

a common group of quantum algorithmic primitives, which are the source of

quantum advantage. Algorithmic primitives are typically not suited for directly

solving an end-to-end problem, due to their reliance on unspecified oracles or

because their input and/or output does not exactly match that of the end-to-

end problem (e.g., some primitives output a quantum state rather than classical

data, and thus they have no direct classical analog). Nevertheless, it can be very

fruitful to think of algorithms as compositions of different algorithmic primi-

tives, both for higher-level intuitive overview and for independently studying

and optimizing the primitives themselves.

This part surveys a variety of quantum algorithmic primitives. For each,

we sketch the basic idea of what they do and how they work, as well as dis-

cussing example use cases and important caveats. We generally assume that

these primitives will need to be implemented in fault-tolerant fashion when

they are used within an end-to-end solution for a given application, but we

comment on NISQ implementations in passing.
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Quantum linear algebra

At a high level of abstraction, quantum computers compose unitary matri-

ces, and do so with classically unparalleled efficiency. This hints at quantum

speedups for linear algebra tasks. However, often one needs to work with large

non-unitary matrices; thus, for performing general linear algebra tasks we often

wish to embed certain non-unitary matrices into unitary matrices represented

by efficient quantum circuits, and then apply them to quantum states, take their

sums or products, or implement more general matrix functions. These tasks

are collectively referred to as “quantum linear algebra,” the building blocks of

which are discussed in this chapter.

The techniques described in this chapter evolved over the past decades and

converged to the presented unified framework within several distinct research

threads. Block-encodings emerged as a natural approach for embedding non-

unitary matrices into quantum circuits, inspired by approaches based on purifi-

cation, dilation (e.g., Stinespring representation [1050] or Stinespring dilation

[1044]), and postselection. Quantum signal processing (QSP) was discovered

as a byproduct of the characterization of simple single-qubit pulse sequences

used in nuclear magnetic resonance [719], for synthesizing polynomial trans-

formations applicable to a “signal parameter” encoded as a matrix element

of a single-qubit rotation matrix. Meanwhile, it was extensively studied how

matrix functions could be synthesized using the linear combinations of uni-

taries technique on matrix exponentials implemented by Hamiltonian simu-

lation [281, 48, 248], or Chebyshev polynomials of operators implemented

via quantum walk techniques [135, 136, 282]. Such matrix exponentials or

Chebyshev polynomials can be implemented, for example, via qubitization of

a block-encoded operator. In parallel to progress on advanced amplitude am-

plification [466, 1067] techniques, it was recognized [716, 717] that QSP can

be “lifted” for applying polynomial transformations to the eigenvalues of quan-

tum walk operators (such as those implemented by qubitization), and thus for
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10.1 Block-encodings 189

implementing a rich family of matrix functions, immediately yielding an opti-

mal algorithm for time-independent Hamiltonian simulation. The concepts of

qubitization and QSP were later generalized and unified into the framework

of quantum singular value transformation [431], providing generalizations and

more efficient implementations of a number of existing quantum algorithms

and leading to the discovery of several new algorithms.

The authors are grateful to Lin Lin for reviewing this chapter.

10.1 Block-encodings

Rough overview (in words)

In a quantum algorithm, the quantum gates that are applied to quantum states

are necessarily unitary operators. However, one often needs to apply a linear

transformation to some encoded data that is not represented by a unitary opera-

tor, and furthermore, one generally needs coherent access to these non-unitary

transformations. How can we encode such a non-unitary transformation within

a unitary operator? Block-encoding is one method of providing exactly this

kind of coherent access to generic linear operators. Block-encoding works by

embedding the desired linear operator as a suitably normalized block within

a larger unitary matrix, such that the full encoding is a unitary operator, and

the desired linear operator is given by restricting the unitary to an easily rec-

ognizable subspace. To be useful for quantum algorithms, this block-encoding

unitary must also be realized by some specific quantum circuit acting on the

main register and additional ancilla qubits.

Block-encodings are ubiquitous within quantum algorithms, but they have

both benefits and drawbacks. They are easy to work with, since one can ef-

ficiently perform manipulations of block-encodings, such as taking products

or convex combinations. On the other hand, this improved working efficiency

comes at the cost of having more limited access. For example, if a matrix is

stored in classical random access memory, the matrix entries can be explicitly

accessed with a single query to the memory, whereas if one only has access

to a block-encoding of the matrix, estimating a matrix entry to precision ε re-

quires O(1/ε) uses of the block-encoding unitary in general (by utilizing an

amplitude estimation subroutine).

Block-encodings also provide a layer of abstraction that assists in the design

and analysis of quantum algorithms. One can simply assume access to a block-

encoding and count the number times it is applied. To run the algorithm, it is
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190 10. Quantum linear algebra

necessary to choose a method for implementing the block-encoding. There

are many ways of constructing block-encodings that could be suited to the

structure of the input. For instance, there are efficient block-encoding strate-

gies for density matrices, positive operator-valued measures (POVMs), Gram

matrices, sparse matrices, matrices that are stored in quantum data structures,

structured matrices, and operators given as a linear combination of unitaries

(with a known implementation). We discuss these constructions below. For un-

structured, dense matrices, the strategy for Gram matrices can be instantiated

using state preparation and quantum random access memory (QRAM) as sub-

routines. For more details on a particular block-encoding scheme for loading

matrices of classical data, see Section 17.3 on block-encoding dense matrices

of classical data.

Rough overview (in math)

Our goal is to build a unitary operator that gives coherent access to an M × M

matrix A (we will later relax the assumption that A is square), with normaliza-

tion α ≥ ∥A∥, where ∥A∥ denotes the spectral norm of A. As the name suggests,

block-encoding is a way of encoding the matrix A as a block in a larger unitary

matrix

UA =

|0a⟩ |0a⟩⊥( )
|0a⟩ A/α ·
|0a⟩⊥ · ·

,

where the labels |0a⟩ and |0a⟩⊥ indicate which portion of the vector space each

block corresponds to—specifically, whether the first a qubits are equal to or

orthogonal to the state |0a⟩, respectively. Three of the four blocks are unspeci-

fied and can take on any values such that UA is unitary. More precisely, we say

that the unitary UA is an (α, a, ϵ)-block-encoding of the matrix A ∈ CM×M if

∥A − α(⟨0a| ⊗ I)UA(|0a⟩ ⊗ I)∥ ≤ ϵ, (10.1)

where a ∈ N is the number of ancilla qubits used for embedding the block-

encoded operator, and α, ϵ ∈ R+ define the normalization and error, respec-

tively. Note that α ≥ ∥A∥ − ϵ is necessary for UA to be unitary. The definition

above can be extended for general matrices, though additional embedding or

padding may be needed (e.g., to make the matrix square).

Once a block-encoding is constructed, it can be used in a quantum algorithm

to apply the matrix A to a quantum state by applying the unitary UA to the larger

quantum system. The application of the block-encoding can be thought of as a

probabilistic application of A—applying UA to |0a⟩|ψ⟩ and postselecting on the
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10.1 Block-encodings 191

first register being in the state |0a⟩ gives an output state proportional to A|ψ⟩ in

the second register.

There are several ways of implementing block-encodings based on the

choice of matrix A [431, Section 4.2].1

• Unitary matrices are (1, 0, 0)-block-encodings of themselves. Controlled

unitaries (e.g., CNOT) are essentially (1, 1, 0)-block-encodings of the

controlled operation.

• Given an s-qubit density matrix ρ and an (a+s)-qubit unitary G that prepares

a purification of ρ as G|0a⟩|0s⟩ = |ρ⟩ (s.t. tra|ρ⟩⟨ρ| = ρ, where tra denotes trace

over the first register), then the operator [717]

(G† ⊗ Is)(Ia ⊗ SWAPs)(G ⊗ Is)

is a (1, a + s, 0)-block-encoding of the density matrix ρ, where Ix denotes

the identity operator on a register with x qubits, and SWAPs denotes the

operation that swaps two s-qubit registers [431, Lemma 45].

• Similarly, one can construct block-encodings of POVM operators, given ac-

cess to a unitary that implements the POVM [45]. Specifically, if U is a uni-

tary that implements the POVM M to precision ϵ, such that for all s-qubit

density operators ρ we have
∣∣∣∣tr(ρM) − tr

[
U(|0⟩⟨0|⊗a ⊗ ρ)U†(|0⟩⟨0| ⊗ Ia+s−1))

]∣∣∣∣ ≤ ϵ,

then (I1 ⊗ U†)(CNOT ⊗ Ia+s−1)(I1 ⊗ U) is a (1, 1 + a, ϵ)-block-encoding of

M [431, Lemma 46].

• One can also implement a block-encoding of a Gram matrix using a pair of

state preparation unitaries UL and UR. In particular, the product

UA = U
†
L
UR

is a (1, a, 0)-block-encoding of the Gram matrix A whose entries are Ai j =

⟨ψi|ϕ j⟩, where [431, Lemma 47]

UL|0a⟩|i⟩ = |ψi⟩, UR|0a⟩| j⟩ = |ϕ j⟩.

• One can generalize the above strategy from Gram matrices to arbitrary

matrices to produce (α, a, ϵ)-block-encodings of general matrices A, where

again α ≥ ∥A∥. See Section 17.3 on block-encoding dense matrices of

classical data for details.

• Sparse matrices: Given a matrix A ∈ C2w×2w

that is sr-row sparse and sc-

column sparse (meaning each row and column has at most sr and sc nonzero

1 References to locations in [431] typically refer to the longer arXiv version, rather than the
STOC version.
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192 10. Quantum linear algebra

entries, respectively), then, defining ∥A∥max = maxi, j |Ai j|, one can create a

(
√

sr sc∥A∥max,w + 3, ϵ)-block-encoding of A using oracles Or, Oc, and OA,

defined as follows [431, Lemma 48]

Or : |i⟩|k⟩ 7→ |i⟩|rik⟩, ∀i ∈ [2w] − 1, k ∈ [sr],

Oc : |ℓ⟩| j⟩ 7→ |cℓ j⟩| j⟩, ∀ℓ ∈ [sc], j ∈ [2w] − 1,

OA : |i⟩| j⟩|0b⟩ 7→ |i⟩| j⟩|Ai j⟩, ∀i, j ∈ [2w] − 1.

In the above, ri j is the index of the j-th nonzero entry in the i-th row of

A (or j + 2w if there are less than i nonzero entries), ci j is the index of

the i-th nonzero entry in the j-th column of A (or i + 2w if there are less

than j nonzero entries), and |Ai j⟩ is a b-bit binary encoding of the matrix

element Ai j. To build the block-encoding, one needs one query to each

of Or and Oc, and two queries of OA. This input model is known as the

sparse access model. If, in addition to being sparse, the matrix also enjoys

some additional structure, for example, there are only a few distinct val-

ues that the matrix elements can take, the complexity can be further im-

proved [969, 227]. Finally, note that the sparsity dependence can be essen-

tially quadratically improved—reducing the block-encoding normalization

factor from
√

sr sc∥A∥max to (max(sr, sc))(1+o(1))/2∥A∥1→2, where ∥A∥1→2 =

maxv∥Av∥2/∥v∥1—using advanced Hamiltonian simulation techniques [714,

Theorem 2] combined with taking the logarithm of unitaries [431, Corollary

71], however, the resulting subroutine may be impractical and comes with a

worse precision dependence.

• For matrices given as a linear combination of unitary operators (LCU), we

can block-encode the matrix using the LCU technique [281]. We provide

a full description in §Linear combinations of Section 10.2, and only give

a brief outline here. For A =
∑L

i=1 ciVi with Vi unitary, we define the or-

acles PREPARE (acting on ⌈log2(L)⌉ ancilla qubits) and SELECT (acting

on the ancilla and register qubits), and implement a (
∑

i |ci|, ⌈log2(L)⌉, 0)-

block-encoding of A, using U := PREPARE† · SELECT · PREPARE. The

Hamiltonians of physical systems can often be written as a linear combi-

nation of a moderate number of Pauli operators, leading to a prevalence of

this technique in quantum algorithms for chemistry [75, 140] and condensed

matter physics [75, 283, 1011].

In addition to the definition of block-encoding in Eq. (10.1), one can also

define an asymmetric version as follows
∥∥∥A − α(⟨0a| ⊗ I)UA(|0b⟩ ⊗ I)

∥∥∥ ≤ ϵ,
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where a may not equal b. In this case, UA can be considered to be an

(α, (a, b), ϵ)- or an (α,max(a, b), ϵ)-block-encoding of A. This can be useful

for block-encoding a non-square matrix.

Dominant resource cost (gates/qubits)

The complexity of block-encoding an operator depends on the type of data

or operator being encoded and any underlying assumptions. For instance, uni-

taries are naturally block-encodings of themselves, and hence their resource

requirements depend entirely on their circuit-level implementation without any

additional overhead for being a “block-encoding.” By contrast, approaches that

make use of state preparation and QRAM to implement the block-encoding

tend to have larger complexities, as those two subroutines typically dominate

the resource requirements. For example, the best known circuits that imple-

ment block-encodings of matrices of classical data for general, dense N × N

matrices use O(N log(1/ϵ)) qubits to achieve minimum T -gate count (which

also scales as O(N log(1/ϵ))), or a larger O(N2) number of qubits to achieve

minimum T -gate depth (which scales as O(log(N) + log(1/ϵ)) [296]. In the

sparse access model, one can use O(w + log2.5(sr sc/ϵ)) one- and two-qubit

gates, and O(b + log2.5(sr sc/ϵ)) ancilla qubits [431], in addition to the calls

to the matrix entry OA and sparse access oracles Or and Oc, which must be

implemented either by computing matrix entries “on-the-fly” or by using a

primitive (see [1084] for asymptotic resource statements for general sparse

matrices with varying ancilla availability). Assuming appropriate binary rep-

resentations of the numbers Ai j, the exponents of the above logarithms can be

reduced to 1 using the techniques of [894] (see also [75, Section III.D] and

[212, Supplementary Material VII.A.2]).

The value of block-encodings is not that it is always cheap to implement

them (as it depends on the relevant cost metric and the data access model);

rather, the concept of block-encodings is powerful because it allows a practi-

tioner of quantum algorithms to study and optimize the block-encoding con-

struction independently of how it is used within the larger algorithm.

Caveats

The definition of block-encoding requires ∥A∥/α ≤ 1. If ∥A∥/α = 1, then the

block-encoding achieves an optimal normalization factor α. However, note that

often the above constructions lead to suboptimal normalization factors in the

sense that α ≫ ∥A∥. In practical applications, this suboptimality usually leads

to a corresponding increase in the overall complexity.

For a given desired block-encoding, there can be several independent, yet

equally valid implementations, and one can sometimes optimize for various re-
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sources when building the block-encoding. For example, many block-encoding

strategies require a step in which some classical data is loaded into QRAM, but

there are several ways of performing this data-loading step.

When using a block-encoding as part of a larger quantum algorithm,

it is important to ensure that the overhead introduced by implementing

a block-encoding will not outweigh any potential quantum speedups, as

block-encoding can be very resource intensive.

The use of |0⟩⊗a as the “signal” state is just one convention—we can use any

“signal” state, given a unitary to prepare it [717]. One can also consider a more

general definition known as “projected unitary encodings” which allows using

an arbitrary subspace, rather than just a state-indexed block [431].

Example use cases

Block-encodings are ubiquitous in quantum algorithms, and they prevail in

quantum algorithms that need coherent access to some linear operator or a

method of implementing a non-unitary transformation on quantum data. Some

specific examples:

• We can manipulate block-encoded operators—for example, take convex or

linear combinations, products, tensor products, and other transformations of

an input operator.

• The combination of qubitization with quantum signal processing, or quan-

tum singular value transformation can be used to realize algorithms by ap-

plying polynomial transformations to block-encoded matrices. Prominent

examples are Hamiltonian simulation via qubitization, and matrix (pseudo)

inversion [431, Theorem 41] that can be used for solving large linear sys-

tems of equations [500] or more generally least-squares regression prob-

lems [248].

• Block-encoding can be used to provide coherent access to classical data in

a quantum algorithm; for example, loading classical data into a quantum

interior point method for portfolio optimization [328].

Further reading

Reference [248] provides an instructive overview of the concept of block-

encoding and showcases its power in several applications related to (gener-

alized) regression problems. Meanwhile, [431] is a comprehensive collection

of technical results about block-encodings and quantum linear algebra more

generally.
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10.2 Manipulating block-encodings

Rough overview (in words)

Given one or more block-encodings, we often want to form a single block-

encoding of a product, tensor product, or linear combination of the individual

block-encoded operators. This can be achieved as outlined below, using addi-

tional ancilla qubits.

Rough overview (in math) and resource cost

We will consider the case of two operators A and B, with straightforward

generalizations to additional operators [431]. We are given an (α, a, ϵa)-block-

encoding UA of A, and a (β, b, ϵb)-block-encoding UB of B. Operators A and B

act on system qubits s.

Products: The operation UAB := (Ib⊗UA)(UB⊗ Ia) is an (αβ, a+b, αϵb+βϵa)-

block-encoding of AB [431, Lemma 53], where Ix denotes the identity operator

on x qubits (see Fig. 10.1). For example, if a = b, this construction uses twice

as many ancilla qubits for block-encoding the product compared to the block-

encoding of the individual matrices. In fact, we can assume without loss of

generality that a = b (by taking the maximum of the two) and improve the

construction using the circuit in Fig. 10.2, which uses a + 1 ancilla qubits in-

stead of 2a. This idea has been generalized to encompass products of L block-

encodings using only a + ⌈log2(L)⌉ + 1 ancillas (rather than aL), where it is

known as the “compression gadget”; see [718, Lemma 13] and [379, Lemma

3].

|0b⟩
UAB

UB
=

|0a⟩
UA

Figure 10.1 Implementing the block-encoding UAB of AB that acts on s qubits.

The cost is a + b ancilla qubits, and one call to each of UA, UB.

Tensor products: The operation UA⊗B := (UA⊗UB) is an (αβ, a+b, αϵb+βϵa)-

block-encoding of the operator A ⊗ B, as depicted in Fig. 10.3.

Linear combinations: Linear combinations of block-encodings can be

viewed as a generalization of the linear combination of unitaries (LCU)

trick [281]. We wish to implement a block-encoding of
∑L−1

i=0 ciAi, where
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|0⟩
UAB

X

|0a⟩ =
UB UA

Figure 10.2 Implementing the block-encoding UAB of AB for the case where both

UA and UB act on a ancilla qubits. The controlled gate is an a-controlled general-

ized Toffoli gate.

|0a⟩

UA⊗B

UA

=
|0b⟩

UB

Figure 10.3 Implementing the block-encoding UA⊗B of A ⊗ B that acts on 2s

qubits. The cost is a + b ancilla qubits, and one call to each of UA, UB.

ci ∈ R (the LCU trick can also be extended to complex coefficients) and

define λ :=
∑L−1

i=0 |ci|. We consider L block-encodings Ui that are (1,m, ϵi)-

block-encodings of Ai. We note that in cases where the block-encodings have

different αi or mi values, the former can be absorbed into the ci values and the

latter can be taken as m = maxi mi.

We first define an operator PREPARE by the following action on |0⌈log2(L)⌉⟩

PREPARE|0⌈log2(L)⌉⟩ = 1√
λ

∑

j

√
|c j|| j⟩

that prepares a weighted superposition on an ancilla register, such that the am-

plitudes are proportional to the square roots of the absolute values of the de-

sired coefficients. We also define2

SELECT =

L−1∑

j=0

| j⟩⟨ j| ⊗ sign(c j)U j.

We then have the following result
(
⟨0⌈log2(L)⌉| ⊗ I

)
PREPARE† · SELECT · PREPARE

(
|0⌈log2(L)⌉⟩ ⊗ I

)

=
1

λ

L−1∑

i=0

ciUi ,
(10.2)

2 To be precise, for j < {0, 1, . . . , L − 1} we define sign(c j)U j := I.
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that is, ULC := PREPARE† · SELECT · PREPARE is a (λ, ⌈log2(L)⌉, 0)-block-

encoding of the LCU
∑

i ciUi, as depicted in Fig. 10.4. This is the standard

LCU trick [281], and it does not require Ui to be block-encodings (or we can

view them as (1, 0, 0)-block-encodings of themselves). This technique can be

used in Hamiltonian simulation, or to instantiate a block-encoding.

If, as specified above, Ui are block-encodings of Ãi (which approximate Ai),

we also have the following result
∥∥∥∥∥∥∥


L−1∑

i=0

ciAi

 − λ
(
⟨0m+⌈log2(L)⌉| ⊗ I

)
ULC

(
|0m+⌈log2(L)⌉⟩ ⊗ I

)
∥∥∥∥∥∥∥
≤

L−1∑

i=0

|ci|ϵi.

Hence, ULC is a (λ, ⌈log2(L)⌉ + m, λmaxi ϵi)-block-encoding of
∑L−1

i=0 ciAi.

|0⌈log2(L)⌉⟩
ULC

PREPARE

SELECT

PREPARE†

|0m⟩ =

Figure 10.4 Implementing the block-encoding ULC of
∑

i ciAi that acts on s

qubits. We require ⌈log2(L)⌉ + m ancilla qubits. The regular LCU circuit is

obtained by omitting the register |0m⟩ and the requirement that Ui are block-

encodings. The gate complexity of PREPARE depends on the coefficients ci

but is Θ(L) in the worst case (using no additional ancilla qubits) [835]. We

can also define PREPARE that leads to entanglement with a garbage register

PREPARE|0⌈log2(L)⌉⟩|0g⟩ = λ−0.5 ∑
i

√
|ci||i⟩|Gi⟩, which can be seen to satisfy the

relations required to implement the linear combination, Eq. (10.2). It can some-

times (e.g., [75]) be cheaper to implement this garbage-entangled PREPARE; see

Section 17.2 on preparing states from classical data. The cost of SELECT depends

on the form of Ui, but in the worst case requires Θ(L) primitive gates and Θ(L)

calls to |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗Ui [283, 75], although this can be improved in some rel-

evant special cases (e.g., [1011]). When Ui are multiqubit Pauli operators, [1084]

provides a depth-optimized implementation of SELECT that achieves O(log(Ln))

depth using Θ(Ln) total gates and total ancilla qubits.

Caveats

Performing linear algebraic manipulations of block-encodings using these

primitives can quickly increase the ancilla count of the algorithm and worsen

the normalization factor of the block-encoding. Amplifying a subnormalized

block-encoding is possible, but costly, requiring an amount of time scaling

roughly linearly in the amplification factor; see [715, 431]. Given a single

block-encoded operator A, the above primitives can be used to implement a

block-encoding of a polynomial in A. However, this can be achieved with

much lower overhead using quantum singular value transformation (QSVT).
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Example use cases

• Linear combination of block-encodings are used to obtain mixed-parity

functions in QSVT required for Hamiltonian simulation.

• LCU trick is used for Hamiltonian simulation via Taylor series and to in-

stantiate block-encodings of chemistry or condensed matter physics Hamil-

tonians (see, e.g., [75, 1011]).

Further reading

• References [428, Section 3.3] and [687, Section 7.3] contain a comprehen-

sive discussion of manipulating block-encodings, including proofs of many

of the results stated above.

10.3 Quantum signal processing

Rough overview (in words)

Quantum signal processing (QSP) [719] describes a method for nonlinear

transformations of a signal parameter encoded in a single-qubit gate, using a

structured sequence that interleaves the “signal gate” with fixed parameterized

“modulation” gates. The technique was originally motivated by the desire

to characterize pulse sequences used in nuclear magnetic resonance [719].

Remarkably, it has been shown [719, 477] that there is a rich family of

polynomial transformations that are in one-to-one correspondence with

appropriate modulation sequences; moreover, given such a polynomial, one

can efficiently compute the corresponding modulation parameters.

Even more remarkably, this analysis holds not just for single-qubit “signal

gates” but can be extended for multiqubit operators that act like single-qubit

rotations when restricted to appropriate 2D subspaces [716]. This insight en-

ables the implementation of block-encodings of polynomials of Hermitian or

normal matrices when used in conjunction with qubitization. The two-step pro-

cess of qubitization and QSP can be unified and generalized through quantum

singular value transformation (QSVT).

Rough overview (in math)

We follow the “Wx convention” of QSP [431, 744]. We define the single-qubit

signal operator

W(x) :=


x i

√
1 − x2

i
√

1 − x2 x

 = ei arccos(x)X
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which is a single-qubit X rotation. We can verify that

W(x)2 =

(
2x2 − 1 ·
· ·

)

W(x)3 =

(
4x3 − 3x ·
· ·

)

...

W(x)n =

(
Tn(x) ·
· ·

)
,

where Tn(x) is the n-th Chebyshev polynomial of the first kind, showcasing

that even a simple sequence of the signal unitaries can implement a rich family

of polynomials of the signal x.

More complex behavior is obtained by interleaving W(x) with parameterized

single-qubit Z rotations eiϕ jZ . We define a QSP sequence as

UQSP(Φ) := eiϕ0Z

d∏

j=1

W(x)eiϕ jZ ,

where Φ denotes the vector of angles (ϕ0, ϕ1, . . . , ϕd). The QSP sequence im-

plements the following unitary

UQSP(Φ) =


P(x) iQ(x)

√
1 − x2

iQ∗(x)
√

1 − x2 P∗(x)

, (10.3)

where P(x),Q(x) are complex polynomials obeying a number of constraints

(see below), and P∗(x), Q∗(x) denote their complex conjugates. Note also that

the relationship between the sequence Φ and the corresponding polynomial

P(x) can be understood through nonlinear Fourier analysis [19].

Dominant resource cost (gates/qubits)

A QSP circuit that implements a degree-d polynomial in the signal parame-

ter requires d uses of W(x) and d + 1 fixed-angle Z rotations. There are ef-

ficient classical algorithms to determine the angles for a given target poly-

nomial, either using high-precision arithmetic with ∼ d log(d) bits of preci-

sion [477] (or more [431]—though this can be mitigated using heuristic tech-

niques [255, 1065]) or in some regimes using more efficient optimization-

based or iterative algorithms [356, 1018, 359, 360, 19, 18]. In particular, this

line of work has culminated in [18] with an algorithm for finding the angles that

is provably numerically stable, that is, it requires only polylog(d/ϵ) bits of pre-

cision to achieve ϵ error. An alternative method computes the angles directly
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if both P(x) and Q(x) are known, and offers a way to compute Q(x) if only

P(x) is known [782, 130]. Although these procedures are efficient in theory, in

practice it may still be nontrivial to find the angles. Nevertheless, researchers

reportedly computed angle sequences corresponding to various degree d ≈ 107

polynomials [782, 130].

Caveats

As discussed above, not all polynomials can be implemented by a QSP se-

quence. Implementable polynomials must obey a number of constraints, which

can be somewhat restrictive. For the standard QSP circuit UQSP(Φ) given

above, the achievable polynomials pairs P(x),Q(x) ∈ C can be characterized

by the following three conditions

• Deg(P) ≤ d and Deg(Q) ≤ d − 1,

• Parity(P) = Parity(d) and Parity(Q) = Parity(d − 1),

• ∀ x ∈ [−1, 1] : |P(x)|2 + (1 − x2)|Q(x)|2 = 1 (required for Eq. (10.3) to be

unitary).

This last requirement can be particularly limiting. A useful way to circum-

vent this for real functions is to encode the polynomial in the matrix element

⟨+|UQSP(Φ)|+⟩ rather than in ⟨0|UQSP(Φ)|0⟩, where |+⟩ = (|0⟩ + |1⟩)/
√

2. This

matrix element evaluates to

⟨+|UQSP(Φ)|+⟩ = Re[P(x)] + i
√

1 − x2 Re[Q(x)] .

Given a real target polynomial f (x) with parity equal to Parity(d), we can guar-

antee that the matrix element evaluates to f (x) by choosing Re[P(x)] = f (x)

and Re[Q(x)] = 0. The third condition above then reduces to 1 − f (x)2 =

|Im[P(x)]|2 + (1 − x2)|Im[Q(x)]|2. By [431, Lemma 6], there exist choices for

Im[P(x)] and Im[Q(x)] that satisfy this identity as well as the first two condi-

tions above, provided | f (x)| ≤ 1 ∀ x ∈ [−1, 1]. In summary, we may implement

any real polynomial f (x) satisfying the requirements [431, Corollary 10]:

• Deg( f ) = d,

• Parity( f ) = Parity(d),

• ∀ x ∈ [−1, 1] : | f (x)| ≤ 1.

There are several related conventions considered in the literature for the ex-

plicit form of the single-qubit operators used in QSP; a thorough discussion

is given in [744, Appendix A]. One common form that links closely to qubiti-

zation and QSVT is the reflection convention, which replaces W(x) by the
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reflection

R(x) =


x

√
1 − x2

√
1 − x2 −x

 , (10.4)

and adjusts the parameters {ϕ j} accordingly [431].

Example use cases

• Functions of Hermitian or normal matrices, in conjunction with qubitization,

including for Hamiltonian simulation.

• Functions of general matrices via QSVT.

• Reference [357] applied QSP to beyond-Heisenberg-limit calibration of

two-qubit gates in a superconducting system.

Further reading

• A pedagogical discussion of QSP [744].

• Detailed proofs of the key results of QSP [719, 431].

• Lecture notes on QSP [687, Section 7.6].

10.4 Qubitization

Rough overview (in words)

Qubitization is a method for using a block-encoding UA of a Hermitian oper-

ator A to manipulate A, for example, implement A2, or, more generally, some

function f (A) [717]. However, the eigenvalues of UA are typically unrelated

to those of A, and plain repeated applications of UA do not in general produce

the desired behavior. Qubitization converts the block-encoding UA into a uni-

tary operator W (sometimes called a qubiterate or a qubitized quantum walk

operator) having the following guaranteed advantageous properties:

• W is a block-encoding of the operator A.

• The spectrum of W is directly related to the spectrum of A.

• Repeated application of W leads to structured behavior that can be cleanly

analyzed.

This combination of features means that qubitization can be used for applying

polynomial transformations to the spectrum of A. For example, repeated appli-

cation of W implements Chebyshev polynomials of A, while other polynomials

can also be implemented by using quantum signal processing [716, 717, 431].

The key observation is that a qubitization unitary W has eigenvalues and

eigenvectors that relate in a nice way to those of A. Thus, one can also perform
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quantum phase estimation on W to learn these quantities [841, 139], providing

a potentially cheaper alternative to such tasks compared to approaches based

on explicit Hamiltonian simulation for implementing U = eiAt.

Rough overview (in math)

We are given a (1,m, 0)-block-encoding UA of Hermitian A, such that

A = (⟨0m| ⊗ I)UA(|0m⟩ ⊗ I)⇐⇒ UA =

(
A ·
· ·

)
.

First, we will assume UA is also Hermitian (implying U2
A
= I, where I is

the identity matrix). Let A have spectral decomposition A =
∑
λ λ|λ⟩⟨λ|. An

application of UA to an eigenstate |λ⟩ of A gives

UA|0m⟩|λ⟩ = λ|0m⟩|λ⟩ +
√

1 − λ2|⊥0m,λ⟩,

where |⊥0m,λ⟩ is a state perpendicular to |0m⟩.3 Noting U2
A
= I reveals that the

2D subspace S λ spanned by {|0m⟩|λ⟩, |⊥0m,λ⟩} is invariant under the action of

UA. UA restricted onto S λ can be described by the matrix

|0m⟩|λ⟩ |⊥0m,λ⟩( )
|0m⟩|λ⟩ λ

√
1 − λ2

|⊥0m,λ⟩
√

1 − λ2 −λ
,

which is a 2D reflection with eigenvalues ±1. Clearly, repeated application of

(self-inverse) UA can have limited effect on any input state. Qubitization uses

a reflection Z|0m⟩ = (2|0m⟩⟨0m| − I) to transform UA into a Grover-like operator

W = Z|0m⟩UA which has the following matrix when restricted onto the invariant

subspace S λ in the {|0m⟩|λ⟩, |⊥0m,λ⟩} basis

[W]{|0m⟩|λ⟩,|⊥0m ,λ⟩} =

(
1 0

0 −1

)
λ

√
1 − λ2

√
1 − λ2 −λ



=


λ

√
1 − λ2

−
√

1 − λ2 λ

 ,

showing that W is still a (1,m, 0)-block-encoding of A. This has the form of a

Y-axis rotation

[W]{|0m⟩|λ⟩,|⊥0m ,λ⟩} =

(
cos(θλ) sin(θλ)

− sin(θλ) cos(θλ)

)
,

3 If λ = ±1, then there is no need for |⊥0m ,λ⟩, and the subspace S λ becomes 1D.

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


10.4 Qubitization 203

where θλ = arccos(λ). Therefore, W has eigenvalues e±i arccos(λ) with respec-

tive eigenvectors
(|0m⟩|λ⟩ ± i|⊥0m,λ⟩

)
/
√

2, which can be accessed using quan-

tum phase estimation.

Furthermore, we can see that on the span of the subspaces S λ repeated ap-

plication of W acts as

Wd =
⊕

λ

(
cos(dθλ) sin(dθλ)

− sin(dθλ) cos(dθλ)

)

=
⊕

λ


Td(λ)

√
1 − λ2Ud−1(λ)

−
√

1 − λ2Ud−1(λ) Td(λ)



=

(
Td(A) ·
· ·

)
,

where Td(·) and Ud(·) are degree-d Chebyshev polynomials of the first and

second kind, respectively. Therefore, Wd applies the polynomial transforma-

tion Td to each eigenvalue of A, thereby implementing Td(A).

Dominant resource cost (gates/qubits)

The resource cost of qubitization is inherited from the cost of the block-

encoding. Given a Hermitian (α,m, 0)-block-encoding UA, the qubitization

operator W is a (non-Hermitian) (α,m, 0)-block-encoding, and it uses no

additional qubits. The operation Z|0m⟩ = (2|0m⟩⟨0m| − I) can be implemented

(up to a global phase) with an m-qubit (anti)controlled −Z gate, equivalent to

an m-qubit Toffoli up to single-qubit gates. An example qubitization circuit

is shown below in Fig. 10.5 for m = 3. Implementing a block-encoding of a

degree-d Chebyshev polynomial applied to A requires d calls to UA and Z|0m⟩.

UA

−Z

Figure 10.5 An example qubitization circuit using the Hermitian (1, 3, 0)-block-

encoding UA.

If the block-encoding UA is not Hermitian, qubitization can be achieved

using the construction of [717, Lemma 10] that uses one additional qubit, one

call to controlled UA, and one call to controlled U
†
A

to implement the Hermitian
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block-encoding

U′A := ((HX) ⊗ I)(|0⟩⟨0| ⊗ UA + |1⟩⟨1| ⊗ U
†
A
)(H ⊗ I) . (10.5)

An alternative to qubitization is based on quantum singular value transfor-

mation (QSVT) that uses the sequence Z|0m⟩U
†
A
Z|0m⟩UA, analogous to the earlier

W2, acting as


λ
√

1 − λ2

−
√

1 − λ2 λ


2

on a 2D subspace analogous to S λ. The approach can be extended to odd-

degree polynomials with a single additional application of Z|0m⟩UA [431]. The

advantage of this approach is that it does not require UA to be Hermitian, thus

there is no need for an additional qubit or calls to controlled U±1
A

. This ap-

proach may be referred to as “quantum eigenvalue transformation” [687, 356]

as this is a special case of QSVT applied to Hermitian A.

Caveats

The original formulation of qubitization [717] discussed above requires a Her-

mitian or normal block-encoded matrix A. The concept can be extended to

general (non-square) matrices via QSVT, providing a significant generaliza-

tion, however, in some cases quantum signal processing and its generalized

versions [477, 255] can exploit additional structure that comes, for example,

from the extra symmetries of Hermitian block-encodings, leading to potential

constant-factor savings. Consider, for example, Hamiltonian simulation, where

QSVT separately implements sin(tH) and cos(tH) using a block-encoding UH

of the Hamiltonian H, and applies a three-step oblivious amplification proce-

dure on top of linear combination of unitaries to implement exp(itH) [431].

Meanwhile, quantum signal processing implements exp(itH) directly but re-

quires an additional ancilla qubit and controlled access to a Hermitian block-

encoding U′
H

, which, when implemented via Eq. (10.5), uses both controlled

UH and U
†
H

, resulting in a factor of ∼ 4 overhead. Altogether these consid-

erations suggest that the QSVT-based approach might have a slightly bet-

ter constant-factor overhead, particularly when controlled UH is significantly

more costly to implement than UH . If UH is already Hermitian, then quantum

signal processing can have an improved complexity.

Example use cases

• Some quantum algorithms in quantum chemistry that compute energies per-

form phase estimation on a qubitization operator W implemented via calls

to a block-encoding of the electronic structure Hamiltonian. This avoids the
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10.5 Quantum singular value transformation 205

approximation error incurred when performing phase estimation on eiHt, im-

plemented via Hamiltonian simulation [841, 139].

• Qubitization acts as a precursor to QSVT, which extends the concept to

general matrices and unifies it with quantum signal processing.

Further reading

• Original introduction of qubitization [717] and QSVT [431].

• A pedagogical overview of quantum signal processing, its lifting to QSVT,

and their applications [744].

• Reference [687, Chapters 7 & 8] provides an accessible derivation of qubiti-

zation and QSVT.

10.5 Quantum singular value transformation

Rough overview (in words)

Quantum singular value transformation (QSVT) can be viewed as both a unifi-

cation and generalization of qubitization and quantum signal processing. Given

a block-encoding UA of a general matrix A, QSVT enables the transformation

of the singular values of A by a polynomial f (·). In QSVT, there is a one-

to-one correspondence between the desired polynomial transformation and its

quantum circuit implementation whose parameters can be found by efficient

classical algorithms.

It transpires that a number of existing quantum algorithms have simple and

optimal (or near-optimal) implementations via the QSVT framework, includ-

ing Hamiltonian simulation [716, 717, 431], amplitude amplification and esti-

mation [431, 855], quantum linear systems solving [431, 744], Gibbs sampling

[431], algorithms for topological data analysis [514, 755, 143], and quantum

phase estimation [744, 854].

Rough overview (in math)

We are given a (1,m, 0)-block-encoding UA of operator A (for simplicity, we

will restrict our presentation to square matrices A, noting there is a straightfor-

ward generalization to non-square A [431]), such that

A = (⟨0m| ⊗ I)UA(|0m⟩ ⊗ I),

where |0m⟩ denotes |0⟩⊗m. The matrix A has a singular value decomposition

(SVD)

A =
∑

i

σi|wi⟩⟨vi|.
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206 10. Quantum linear algebra

QSVT provides a method for implementing

f (S V)(A) :=

{ ∑
i f (σi)|wi⟩⟨vi| if f is odd, and∑
i f (σi)|vi⟩⟨vi| if f is even,

for certain definite-parity polynomials f : [−1, 1] → C, such that | f (x)| ≤
1 ∀ x ∈ [−1, 1]. Crucially, QSVT does not require us to know the SVD in

advance; the transformation is carried out automatically by following an SVD-

agnostic procedure outlined below. Note that f (S V)(A) only coincides with the

matrix function f (A) for Hermitian A (see §Caveats, below). In the Hermitian

case, we can also obtain block-encodings of mixed-parity or complex functions

by taking linear combinations of block-encodings—see [356] for examples.

By considering UA|0m⟩|vi⟩ and U
†
A
|0m⟩|wi⟩ one can show that (see [687] for

a step-by-step derivation) UA and U
†
A

act as linear maps between the 2D sub-

spaces S i := Span{|0m⟩|vi⟩, |⊥i⟩} and S ′
i

:= Span{|0m⟩|wi⟩, |⊥′i⟩}, with UA being

a transition matrix between these bases given by

|0m⟩|vi⟩ |⊥i⟩


|0m⟩|wi⟩ σi

√
1 − σ2

i

|⊥′
i
⟩

√
1 − σ2

i
−σi

, (10.6)

where both |⊥i⟩, |⊥′i⟩ are orthogonal to |0m⟩ (but not necessarily to each other).4

The 2D subspace S i is invariant under the operation W := Z|0m⟩U
†
A
Z|0m⟩UA

(where Z|0m⟩ = (2|0m⟩⟨0m| − I)). The operation W, restricted onto the 2D sub-

space S i, is written as


σi

√
1 − σ2

i

−
√

1 − σ2
i

σi



2

.

An additional application of Z|0m⟩UA maps back into the S ′
i

subspace. By anal-

ogy with qubitization, repeated application of W applies a Chebyshev poly-

nomial to each of the singular values of A. In analogy with quantum signal

processing, by lifting the Z|0m⟩ reflection operation to a (controlled) rotation

eiϕ jZ|0m⟩ we can impose polynomial transformations of the singular values of A,

which then induce the claimed polynomial transformation of A. It is typically

convenient to use an additional ancilla qubit to implement eiϕ jZ|0m⟩ .

4 If σi = 1, then there is no need for |⊥i⟩, |⊥′i ⟩, and the subspaces S i, S ′
i

become 1D.
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We define a QSVT circuit as the unitary sequence

UΦ :=


eiϕ1Z|0m⟩UA

∏(d−1)/2
j=1

(
eiϕ2 jZ|0m⟩U

†
A
eiϕ2 j+1Z|0m⟩UA

)
if d is odd, and

∏d/2
j=1

(
eiϕ2 j−1Z|0m⟩U

†
A
eiϕ2 jZ|0m⟩UA

)
if d is even ,

where Φ = (ϕ1, ϕ2, . . . , ϕd). We have that

(⟨0m| ⊗ I)UΦ(|0m⟩ ⊗ I) = P(S V)(A) =

{ ∑
i P(σi)|wi⟩⟨vi|, for odd d, and∑
i P(σi)|vi⟩⟨vi|, for even d ,

that is, the unitary UΦ is a block-encoding of P(S V)(A), were P is the same

polynomial that appears in quantum signal processing because the 2D matrix

of Eq. (10.6) has the same form as the analogous 2D matrix in Eq. (10.4).

We note that the constraints on the polynomials typically preclude direct im-

plementation of the desired function as outlined above. By exploiting that −Φ
implements P∗, we can use the circuit shown in Fig. 10.6 to implement a block-

encoding of

Pℜ(A) = (⟨+| ⊗ ⟨0m| ⊗ I)(|0⟩⟨0| ⊗ UΦ + |1⟩⟨1| ⊗ U−Φ)(|+⟩ ⊗ |0m⟩ ⊗ I)

for any definite-parity polynomial Pℜ : [−1, 1] → [−1, 1] by appropriately

choosing Φ to implement a complex polynomial that fulfills the QSP condi-

tions and then taking linear combinations of UΦ,U−Φ to give a block-encoding

of Pℜ(A) [431, 744, 356].

H eiϕdZ eiϕd−1Z · · · eiϕ1Z H

UA U
†
A

· · ·
· · ·
· · ·
· · ·
· · ·


|0⟩⊗m

Figure 10.6 The QSVT circuit UΦ which transforms a block-encoding UA of A

into a block-encoding of f (A) for definite-parity f : [−1, 1]→ [−1, 1] polynomial

of degree d. As discussed in the main text, the angles {ϕi} can be calculated using

efficient classical algorithms.

Dominant resource cost (gates/qubits)

Given a degree-d even-parity polynomial f : [−1, 1] → [−1, 1] and a (1,m, 0)-

block-encoding UA of A, one can implement a block-encoding of f (A) using
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208 10. Quantum linear algebra

d/2 calls to UA, d/2 calls to U
†
A
, 2d m-controlled Toffoli gates, and d single-

qubit Z rotations (as shown in Fig. 10.6). Implementing a degree d + 1 odd

polynomial additionally requires another call to UA, another two m-controlled

Toffoli gates, and another single-qubit Z rotation. The QSVT circuit imple-

ments a (1,m + 1, 0)-block-encoding of f (A).

If UA is imperfect (i.e., it is a (1,m, ϵ)-block-encoding of A), then [431,

Lemma 22] shows that the error in f (A) is bounded by 4d
√
ϵ; that is, QSVT

implements a (1,m+ 1, 4d
√
ϵ)-block-encoding of f (A). Moreover, if the norm

of A is bounded away from 1, for example, ∥A∥ ≤ 1/2, then the perturbation

bound can be improved to O(dϵ) [431, Lemma 23].

Given an initial state |ψ⟩, the success probability of implementing f (A)|ψ⟩ is

given by |⟨ψ| f (A)† f (A)|ψ⟩|2.

Caveats

Since the output must be subnormalized to ensure the existence of a unitary

block-encoding of f (A), f must satisfy | f (x)| ≤ 1 ∀ x ∈ [−1, 1].

As noted above, f (S V)(A) is only guaranteed to coincide with the matrix

function f (A) for Hermitian A. As an example, choosing f (x) = x2 we have

f (S V)(A) =
∑

i σ
2
i
|vi⟩⟨vi| = A†A whereas A2 =

∑
i, j σiσ j|wi⟩⟨vi|w j⟩⟨v j|. As dis-

cussed above, for the Hermitian case we can implement a block-encoding of

a mixed-parity function f by taking linear combinations of block-encodings

of its even and odd parts. However, in the general case when |wi⟩ and |vi⟩ do

not coincide, it does not seem to be possible to remove the parity constraint, as

the odd
∑

i fodd(σi)|wi⟩⟨vi| and even
∑

i feven(σi)|vi⟩⟨vi| singular value transforms

potentially map to different subspaces.

As discussed in Section 10.3 on quantum signal processing, computing the

angle sequence Φ can be a nontrivial classical task. Several approaches for

accomplishing this task have been studied [477, 431, 255, 1065, 356, 1018,

359, 360, 19, 18, 782, 130], and researchers have reported computing angle

sequences for polynomials up to d ≈ 107 [782, 130].

As noted above, if f (A) has small singular values, then preparing a quantum

state f (A)|ψ⟩ might require many repeated uses of its block-encoding, thus the

normalization factor of f plays a crucial role in efficiency.

In many applications, one seeks to apply a function that is not a polynomial

(e.g., ex, eix, erf(x)). In such cases, one needs to first approximate the desired

function by a polynomial (incurring an approximation error ϵ) in order to apply

QSVT.
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Example use cases

• Linear equation solving: Apply a polynomial approximation of 1/x to a

block-encoding of A† to get an approximate block-encoding of the pseu-

doinverse A+.

• Hamiltonian simulation: Apply polynomial approximations of sin(x) and

cos(x) to a block-encoding of a Hamiltonian H and combine them with lin-

ear combination of unitaries and amplitude amplification to obtain a block-

encoding of eiHt.

• Fixed-point amplitude amplification [1067]: Construct a polynomial that

maps values in the domain [amin, 1] to the range [1 − δ, 1], and apply this

polynomial to a state-preparation unitary that prepares the desired state with

amplitude a. The result is amplification of the amplitude to at least 1 − δ as

long as a > amin.

• For additional applications, see [431, 854, 744, 689, 688].

Further reading

• The QSVT framework was introduced in [431] and is also discussed in detail

in [428].

• A pedagogical tutorial of the QSVT framework is given in [744, 687].

• A streamlined derivation of QSVT is presented in [980].
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Hamiltonian simulation

The task of Hamiltonian simulation is to approximately compile the evolu-

tion under a Hamiltonian H(t), for time t, into a sequence of quantum gates.

For a time-independent Hamiltonian, solving the Schrödinger equation (set-

ting ℏ = 1) yields a time evolution operator U(t) = e−iHt. In this chapter, we

will discuss the equivalent operator U(t) = eiHt, which is the more common

definition in an algorithmic setting. We will assume t ≥ 0, without loss of

generality. The Hamiltonian of interest can arise from physical systems (e.g.,

quantum chemistry, condensed matter systems, or quantum field theories) but

may also be constructed for other applications, such as differential equation

simulation. Quantum simulation does not give full access to the amplitudes

of the wavefunction during the simulation, unlike classical approaches based

on exact diagonalization (or similar methods). Instead, we are only able to

measure observables with respect to the time-evolved state, or use the state

as an input to other quantum subroutines. Nevertheless, there are no known

efficient classical methods that achieve this for general local or sparse Hamil-

tonians, suggesting an exponential quantum speedup. In fact, as a quantum

computation can be expressed as a time evolution under a sequence of local

(time-dependent) Hamiltonians, quantum simulation (i.e., time evolution and

measurement of a given observable) is a BQP-complete problem.

Hamiltonian simulation algorithms require access to the Hamiltonian. There

are three commonly used input models. The Pauli input model assumes that

the Hamiltonian is given classically as a sum of products of Pauli operators,

for example, H =
∑

l hlHl, where hl are coefficients and Hl are multiqubit

Pauli products. The d-sparse access model assumes that the Hamiltonian is

a sparse matrix with at most d nonzero elements per row or column. We re-

quire that the locations of the nonzero elements and their values are efficient to

compute classically. The density matrix access model assumes that the Hamil-

tonian corresponds to a density matrix, which we are either provided access to
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11.1 Product formulas 211

copies of [708], or given a unitary that prepares a purification of the density

matrix [717]. All of these input models can be used to prepare block-encodings

of the Hamiltonian, which provides a standard-form access model that general-

izes the above input models. Block-encodings are the input model of choice for

some algorithms for Hamiltonian simulation (e.g., qubitization with quantum

signal processing) [717].

Hamiltonian simulation can be used as a subroutine in a range of algorithms,

including quantum phase estimation, quantum linear system solvers, Gibbs

state preparation, and the quantum adiabatic algorithm. We remark that some

of these algorithms are implicitly using Hamiltonian simulation to provide co-

herent, unitary access to the Hamiltonian. This can be particularly useful if few

ancilla qubits are available, which may inhibit the use of some approaches to

coherently access the Hamiltonian (e.g., block-encodings based on linear com-

binations of unitaries) but does not prevent the use of Hamiltonian simulation

based on product formulas.

Each algorithm has its own advantages and disadvantages, as described at

a high level in Table 11.1. Specific optimizations of each algorithm may be

available for a given Hamiltonian. One can also consider hybridized methods

combining two or more of the algorithms [718, 720, 820, 484, 852, 1027].

There are also other methods for Hamiltonian simulation, such as quantum

walks [275, 133, 136] or density matrix–based Hamiltonian simulation [708,

619], which we do not discuss due to their less widespread use as algorithmic

primitives for the applications discussed elsewhere in this book.

The authors are grateful to Yuan Su for reviewing this chapter.

11.1 Product formulas

Rough overview (in words)

Product formulas (or Trotter–Suzuki formulas/Trotterization) [705] are the

most commonly used approach for Hamiltonian simulation, and are applicable

to Hamiltonians in the Pauli access model and the sparse access model (see

below for definitions of these models). Product formulas divide the evolution

into a repeating sequence of short unitary evolutions under subterms of the

Hamiltonian. These subterm evolutions have a known decomposition into

elementary quantum gates. The error in product formulas depends on the

commutators between different terms in the decomposition; if all of the terms

in the Hamiltonian commute, product formulas are exact.
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Product formula (order k) qDRIFT Taylor and Dyson series QSP/QSVT

# Qubits O (n) O (n) O (
n + log(L)

) O (
n + log(L)

)

Access
model

Pauli
Sparse

Pauli
Sparse

Pauli
Sparse

Block-encoding
Block-encoding

Scaling O
(
52knL∥H∥1t

(
∥H∥1tϵ−1

) 1
2k

)
a O

(
n∥H∥21t2ϵ−1

)
Õ

(
∥H∥1tnL log(ϵ−1)

)
O

(
nL(∥H∥1t + log(ϵ−1))

)
b

Pros

Commutator scaling.
Simple implementation.
Empirical performance.
Minimal ancilla qubits.

L-independent scaling.
No ancilla qubits.

log(1/ϵ) scaling.
Time-dependent simulations.

Optimal scaling with t, ϵ.
Few ancilla qubits for algorithm.

Cons
Scaling with t, ϵ at low orders.

Exponential prefactor (in order k).
Scaling with t, ϵ.

Many ancilla qubits if
using noncompressed variant [718].

Time-dependent simulation.
Ancilla/gate cost of block-encoding.

Table 11.1 High-level comparison of Hamiltonian simulation techniques. Quantitative comparisons assume a Pauli input model (which can

easily be used to prepare a block-encoding of the Hamiltonian). For the stated complexity, we consider evolution U(t) = eiHt for time t

under a time-independent Hamiltonian H on n qubits, given as a sum of L Pauli products H =
∑L

j=1 h jP j. The evolution is approximate to

error ϵ in the spectral norm (diamond norm for qDRIFT). We define ∥H∥1 =
∑L

j=1 |h j|. The qubit requirement for the Taylor and Dyson series

method omits additional additive factors that scale logarithmically with the norm and/or derivative of the Hamiltonian. In specific applications

it may be possible to reduce the number of qubits and/or gate complexity further by exploiting knowledge of the system, such as symmetries,

commutation structure, or energy scales. For example, the factor of n present in the above complexities may be reduced by exploiting locality

in the Pauli product terms of the Hamiltonian.

a The factor of n can be reduced to w when each Pauli term P j acts nontrivially on at most w sites. The factor ∥H∥1+1/2k

1
can be reduced by exploiting commutativity

of the various P j.
b The factor nL derives from an upper bound on the gate complexity of block-encoding, and it can often be significantly improved by exploiting structure in h j

and H j.

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


11.1 Product formulas 213

Product formula approaches have also been extended to treat time-

dependent Hamiltonians [556, 1038, 1031, 34, 839]. In the following

discussion, we will restrict our focus to the time-independent case, noting

that the time-dependent approaches are executed in the same way, but have a

slightly more complex error analysis.

Rough overview (in math)

Given a Hamiltonian H, desired evolution time t, and error ϵ, return a circuit

U(t) made of elementary gates such that

∥U(t) − eiHt∥ ≤ ϵ.

In the above, we use the operator norm ∥·∥ (the maximal singular value) to

quantify the quality of approximation, which controls the error for arbitrary

input states (in trace distance) and for observables. This worst-case metric is

mathematically convenient, but, as discussed below, tighter bounds may be

obtained by using error metrics more closely aligned with the specification of

the problem.

A product formula generates U(t) through a product of easy-to-implement

evolutions under terms in the Hamiltonian. For a Hamiltonian decomposition

H =
∑L

j=1 H j with L terms, the first-order product formula with r steps is

S 1(t) =
(∏L

j=1
eiH jt/r

)r

.

The error in the first-order product formula is upper bounded as [286]

∥S 1(t) − eiHt∥ ≤ t2

2r

L∑

i=1

∥∥∥∥∥∥∥∥

L∑

j=i+1

[Hi,H j]

∥∥∥∥∥∥∥∥
≤
∥H∥21t2

2r
,

where ∥H∥1 =
∑L

j=1∥H j∥. Higher-order formulas can be defined recursively,

and are referred to as (2k)th-order product formulas. The error in a recursively

defined (2k)th-order product formula is bounded by [286]

∥S 2k(t) − eiHt∥ = O

∥H∥2k+1

1
t2k+1

r2k

 .

Product formulas can be applied to d-sparse Hamiltonians (at most d

nonzero elements per row/column) with efficiently row computable nonzero

elements [11]. Access to the nonzero elements of the Hamiltonian is provided

via oracles O f and OH . The oracle O f returns the column index ( j) of the

k ∈ {1, . . . , d}th nonzero element in row i. The oracle OH returns the value of
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214 11. Hamiltonian simulation

the matrix element Hi j.

O f : O f |k⟩|i⟩|0⟩ = |k⟩|i⟩| j⟩
OH : OH |i⟩| j⟩|0⟩ = |i⟩| j⟩|Hi j⟩.

Using graph-coloring algorithms, a d-sparse Hamiltonian H can be efficiently

decomposed into a sum of efficiently simulable sparser Hamiltonians [134,

278]. Illustrating this idea with the approach of [134], we can decompose H =∑6d2

j=1 H j, where each H j is 1-sparse. The nonzero elements of a given H j can

be computed coherently using O (
log∗(n)

)
queries to O f ,OH , where log∗ is

the iterated logarithm.1 Time evolution under a 1-sparse Hamiltonian can be

implemented efficiently using the approach of [11]. To simulate eiHt using, for

example, a first-order product formula, we sequentially apply each eiH jt using

the methods outlined above.

As a special case of the d-sparse access model, one can consider Hamiltoni-

ans given as a linear combination of L Pauli terms H =
∑L

j=1 H j =
∑L

j=1 α jP j,

as each Pauli tensor product is already a 1-sparse matrix (so in this case, d ≤ L).

Time evolution under each Pauli term (or in some cases, groups of Pauli terms)

can be simulated efficiently (see, e.g., [705, 801]), considerably simplifying the

d-sparse construction by removing the need for oracles O f and OH .

Dominant resource cost (gates/qubits)

For an n-qubit Hamiltonian, product formulas act on n qubits. In the Pauli

access model, no additional ancilla qubits are required. In the sparse access

model, ancilla qubits may be required to implement the oracles O f and OH

and to implement time evolution under 1-sparse Hamiltonians H j.

The gate complexity is obtained by choosing the number of Trotter steps r

sufficiently large to obtain an error ϵ and multiplying by the complexity of im-

plementing each step of the product formula. It is necessary to balance the im-

proved asymptotic scaling with t and ϵ of higher-order Trotter formulas against

the exponentially growing prefactor of the higher-order formulas. In practical

simulations of chemistry, condensed matter systems, or quantum field theories,

a low-order formula (2nd–6th) typically minimizes the gate count.

A recursively defined (2k)th-order product formula (i.e., the first-order for-

mula is given by k = 1/2, and is the base case) for simulating a d-sparse

Hamiltonian for time t to accuracy ϵ requires [278]

O
52kd2(d + log∗ n)∥H∥t

(
d∥H∥t
ϵ

)1/2k


1 For practical purposes, the iterated logarithm is essentially constant, since log∗(n) ≤ 5 for all
n ≤ 265536.
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calls to the oracles O f and OH .

A recursively defined (2k)th-order product formula for simulating an L-term

Hamiltonian in the Pauli access model for time t to accuracy ϵ requires [286]

O
(
52knLt

(
tαcomm,k

ϵ

)1/2k
)

(11.1)

elementary single- and two-qubit gates, where

αcomm,k =
∑

i1,i2,...,i2k+1

∥[Hi2k+1
, . . . [Hi2 ,Hi1 ]]∥ .

The dependence on αcomm,k can be tightened and calculated for lower-order

formulas (see [286] for full calculations). The dependence on n can be reduced

to w for local Hamiltonians with Pauli terms that each act on at most w qubits.

Caveats

The error bounds of product formulas in the Pauli access model have been the

object of significant investigation. Evaluating the tightest spectral norm bounds

requires computing a large number of commutators between the terms in the

Hamiltonian, which can be computationally intensive. Numerical simulations

have shown that the commutator bounds can be loose by several orders of

magnitude for chemical [72, 840] or spin [283] systems.

The spectral norm is the worst-case metric; it is an active area of research

to find error metrics better suited to the problem at hand. For example, one

may consider the average-case error over random input states [257, 1087] by

the normalized Frobenius norm ∥U(t) − eiHt∥F/
√

2n. Recently, in [257] it was

shown that the average-case error can be much smaller than the worst-case

error for systems with large connectivity. More directly, one can also compute

the Trotter error associated with input states from the low-energy [891, 516] or

low-particle-number subspace [991, 963].

The gate counts of product formula approaches can also be reduced by

grouping together mutually commuting terms such that they can be imple-

mented using fewer gates than would be required to implement all the terms

individually [124, 630, 225]. One can also reduce the number of Trotter steps

required by randomizing the ordering of the terms [284, 288, 839] (although

this must be balanced against any compilation benefits that may be obtained

from a fixed ordering).

Example use cases

• Physical systems simulation: quantum chemistry, condensed matter sys-

tems, quantum field theories.
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• Algorithms: quantum phase estimation, quantum linear system solvers,

Gibbs state preparation, quantum adiabatic algorithm.

Further reading

• A rigorous derivation of the error in product formulas [286].

• A comparison of product formula methods with other approaches to Hamil-

tonian simulation for a concrete problem of interest [283].

11.2 qDRIFT

Rough overview (in words)

The quantum stochastic drift protocol [222], abbreviated as qDRIFT, oper-

ates in the Pauli access model2 and approximates the Hamiltonian simulation

channel (as opposed to the unitary) by randomly sampling a term from the

Hamiltonian (according to the coefficient magnitudes), and then evolving un-

der the chosen term. This process is repeated for a number of steps. Because it

approximates the channel, rather than the unitary, it can be more difficult to use

qDRIFT as a coherent subroutine in other algorithms (see §Caveats below).

The error in qDRIFT depends on the 1-norm of Hamiltonian coefficients.

One main advantage of qDRIFT is that it does not explicitly depend on the

number of terms in the Hamiltonian and has small constant overheads, making

it well suited to systems with rapidly decaying interaction strengths, domi-

nated by a few large terms. However, qDRIFT’s time and error dependence are

asymptotically worse than other methods, which seems to originate from the

algorithm’s randomized nature [258]. qDRIFT can also be extended to time-

dependent Hamiltonian simulation with a Hamiltonian H(t), where the gate

count of the algorithm scales as
∫ t

0
∥H(t′)∥dt′, rather than as t maxt′∥H(t′)∥ like

other Hamiltonian simulation algorithms [141]. We will restrict our discussion

below to the time-independent case.

Rough overview (in math)

Given a Hamiltonian in the Pauli decomposition H =
∑

i hiHi (with ∥Hi∥ =
1), qDRIFT provides a stochastic channel N that, when applied for N steps,

approximates the Hamiltonian simulation channel

∥NN − eiHt(·)e−iHt∥⋄ ≤ ϵ
2 qDRIFT was originally formulated, and is typically presented, for the Pauli access

model [222], but the algorithm appears compatible with the d-sparse access model by
applying it to the d-sparse decompositions in [134, 278] [961].
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to within diamond-norm error ϵ.

qDRIFT proceeds by randomly sampling terms according to their relative

importance

Xk
i.i.d.∼ hiHi

pi

, where pi =
|hi|
∥H∥1

and ∥H∥1 :=
∑

i |hi| is the sum of the strengths. Each step of qDRIFT then

evolves the randomly sampled term Xk for a short period of time t/N, where N

is a free parameter determining the number of qDRIFT steps, which controls

the error in the simulation. The result is the following quantum channel:

N[ρ] = E[ei(t/N)Xkρe−i(t/N)Xk ] .

As discussed above, this channel is repeated for N steps, in order to approxi-

mate the Hamiltonian simulation channel.

Dominant resource cost (gates/qubits)

For an n-qubit Hamiltonian, qDRIFT acts on n register qubits, and no addi-

tional ancilla qubits are required.

In order to simulate the Hamiltonian evolution channel to within diamond-

norm error ϵ, we require

N = O

∥H∥21t2

ϵ



steps of qDRIFT [222, 258]. While the diamond-norm is a different error met-

ric to the spectral norm used in other articles in this section, both metrics pro-

vide upper bounds on the error in an observable measured with respect to the

time-evolved state [222]. For unitary channels, the diamond norm is effectively

equal to the spectral norm (see, e.g., discussion in [480], up to constant factors).

The gate complexity is the number of steps multiplied by the individual costs

of the elementary evolution ei(t/N)Xk , which scales linearly with the locality of

the Pauli operator Xk. When using qDRIFT to time evolve a state (e.g., for the

purpose of measuring an observable), it is important to average the results over

a sufficient number of independently sampled qDRIFT circuits [222].

Caveats

The qDRIFT algorithm has a quadratic dependence on time and a linear depen-

dence on the inverse error 1/ϵ, while other Hamiltonian simulation methods

can achieve linear time dependence and logarithmic inverse error dependence.

A higher-order variant of qDRIFT was recently developed that improves the

error dependence, but it is only suitable for estimating the expectation value of
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observables with respect to the time-evolved state, rather than approximating

the unitary channel itself [794]. It is currently unclear how to design higher-

order variants of qDRIFT that improve the time dependence, which appears to

result from the randomized nature of the algorithm [258].

As discussed above, qDRIFT approximates the time evolution channel,

rather than the unitary eiHt. As a result, it can be difficult to incorporate as

a subroutine in algorithms that seek to manipulate the unitary directly—for

example, measuring Tr(U(t)ρ). Tasks of this form feature in some approaches

for phase estimation [690], motivating alternate, qDRIFT-inspired approaches,

in order to exploit qDRIFT-like benefits [1013].

Example use cases

• Physical systems simulation: quantum chemistry, condensed matter sys-

tems, quantum field theories.

• Algorithms: quantum phase estimation, quantum linear system solvers,

Gibbs state preparation, quantum adiabatic algorithm.

• Hybridization with other quantum simulation methods [820, 852, 484].

• Using importance sampling to incorporate variable gate costs for simulating

different terms Xk [621].

11.3 Taylor and Dyson series (linear combination of

unitaries)

Rough overview (in words)

Taylor and Dyson series approaches for Hamiltonian simulation expand the

time evolution operator as a Taylor series (time independent) [137] or Dyson

series (time dependent) [615, 141] and use the linear combination of unitaries

(LCU) primitive to apply the terms in the expansion, followed by (robust,

oblivious) amplitude amplification to boost the success probability close to

unity. These methods are close to being asymptotically optimal, achieving lin-

ear scaling in time and logarithmic dependence on the error. However, they use

a large number of ancilla qubits, compared to other Hamiltonian simulation al-

gorithms.

Rough overview (in math)

We focus on the time-independent case and follow the presentation in [137].

Given a Hamiltonian H, desired evolution time t, and error ϵ, return a circuit
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U(t) made of elementary gates such that

∥U(t) − eiHt∥ ≤ ϵ.

In the above, we use the operator norm (the maximal singular value) to quantify

the worst-case error in the simulation.

The total evolution time t is divided into r segments. In each segment, we

evolve under an approximation of eiHt/r. The Hamiltonian is decomposed into

a linear combination of unitary operations H =
∑L

l=1 αlHl, where we choose αl

real and positive by shifting phases into Hl, and ∥Hl∥ = 1. This decomposition

appears naturally when the Hamiltonian is given as a linear combination of

Pauli products. We approximate eiHt/r using a Taylor expansion truncated to

degree K

eiHt/r ≈ U(t/r) :=

K∑

k=0

1

k!
(iHt/r)k

=

K∑

k=0

L∑

l1,...,lk=1

(it/r)k

k!
αl1 . . . αlk Hl1 . . .Hlk .

Each segment U(t/r) is implemented using robust oblivious amplitude ampli-

fication. Amplitude amplification is necessary because truncating the Taylor

series at degree K makes U(t/r) non-unitary. However, textbook amplitude am-

plification necessitates reflecting around the initial state (as well as the “good”

state), which would be problematic since Hamiltonian simulation requires syn-

thesizing a unitary that works simultaneously for all input states. This issue can

be circumvented using oblivious amplitude amplification: we are given a uni-

tary V such that for any state |ψ⟩, we have V |0m⟩|ψ⟩ = a|0m⟩U |ψ⟩+b|0m
⊥ϕ⟩, for a

unitary operator U, and the goal is to amplify the state |0m⟩U |ψ⟩ to be obtained

with probability 1 (we can recognize V as an (a,m, 0) unitary block-encoding

of U). A further problem is that the above operator U(t/r) is non-unitary, and

so deviates from the formulation of oblivious amplitude amplification [135].

The proven “robustness” property of oblivious amplitude amplification [137]

ensures that the error induced by treating U(t/r) as a probabilistically imple-

mented unitary does not accumulate.

The value of K controls the error in the simulation and can be chosen as

K = O
(

log(∥H∥1t/ϵ)

log log(∥H∥1t/ϵ)

)
,

where we define ∥H∥1 :=
∑L

l=1 αl. The total time evolution is divided into

r = ⌈∥H∥1t/ ln(2)⌉ segments, each of duration ln(2)/∥H∥1, which ensures that a
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single application of robust oblivious amplitude amplification boosts the suc-

cess probability of the segment to unity.

Within each segment, we apply U(t/r) using the LCU primitive. This tech-

nique can be applied to Hamiltonians given in both the Pauli and d-sparse

access models. For the Pauli access model, the Hamiltonian is already in the

form of a linear combination of unitary operators. For the d-sparse case, we can

use graph coloring algorithms [134, 278] to decompose the d-sparse Hamilto-

nian into a linear combination of unitaries, where each unitary is 1-sparse and

self-inverse.

Dominant resource cost (gates/qubits)

In addition to the n-qubit data register, the Taylor series approach requires a

number of ancilla registers to implement the LCU technique. In the original

formulation [137], a register with K qubits is used to control the degree of the

Taylor expansion, storing the value as |k⟩ = |1⊗k0⊗(K−k)⟩. An additional K reg-

isters, each containing ⌈log2(L)⌉ qubits, are used to index the possible values

of each of the possible Hlk . Hence, the overall space complexity of the original

formulation [137] is O (
n + K log(L)

)
= O (

n + log(∥H∥1t/ϵ) log(L)
)
. In [718]

it was shown how to reduce the space complexity to O (
n + log(K) + log(L)

)

using quantum counter circuits.

Additional ancilla qubits may be required to implement the LCU gadget

(e.g., in the sparse access model) or for the reflections used in robust oblivious

amplitude amplification.

As discussed above, implementing each segment requires one use of ro-

bust oblivious amplitude amplification, which makes two calls to the LCU cir-

cuit and one call to its inverse. The method incurs approximation errors from

truncating the Taylor series at degree K and from the use of robust oblivi-

ous amplitude amplification. The resulting error per segment is bounded by

(e ln(2)/(K + 1))K+1.

The cost of the LCU circuit depends on the Hamiltonian access model. For

the case of the Pauli access model, the LCU circuit requires two calls to a PRE-

PARE operation that prepares the ancilla registers with the correct coefficients.

In the compressed formulation [718], this requires O (L + K) gates (compared

to O (LK) gates in the original formulation [137]). The LCU circuit also re-

quires one call to a SELECT oracle, which can be implemented using K con-

trolled select(H) operations. Each of these K operations can be implemented

using O (Ln) elementary gates [283, 75] (using quantum read-only memory).
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The overall gate complexity in the Pauli access model is thus

O
(∥H∥1tLn log(∥H∥1t/ϵ)

log log(∥H∥1t/ϵ)

)
= Õ

(
∥H∥1tLn log

(
1

ϵ

))
.

Using the LCU approach applied to a 1-sparse decomposition of a d-sparse

Hamiltonian, the overall complexity is [137]

O
(

d2∥H∥maxtn log2(d2|H|maxt/ϵ)

log log(d2∥H∥maxt/ϵ)

)
= Õ

(
d2∥H∥maxtn log2

(
1

ϵ

))
,

where ∥H∥max = maxi, j|⟨i|H| j⟩|. Using the amplification technique of [715],

which utilizes quantum singular value transformation (QSVT), the dependence

on d and ∥H∥max can be improved in some cases.

The extension to time-dependent Hamiltonians, through the use of a Dyson

series, requires an additional “clock” register to store the time value and intro-

duces a logarithmic dependence on the time derivative of the Hamiltonian [615,

141, 718].

Caveats

Concrete resource estimates for physical systems of interest have observed

that the Taylor series approach may require more ancilla qubits and gates than

product formulas or quantum signal processing approaches for Hamiltonian

simulation [283], although these qubit counts would be improved by the sub-

sequent compression approach to the algorithm [718]. The gate complexity of

the algorithm can be reduced by exploiting anticommutativity in the Hamilto-

nian [1086], adding a corrective operation [804], or pruning terms with small

magnitudes from the expansion [759].

Example use cases

• Physical systems simulation: quantum chemistry (see [73, 74, 962, 718]),

condensed matter systems, quantum field theories.

• Algorithms: quantum phase estimation, quantum linear system solvers,

Gibbs state preparation, quantum adiabatic algorithm.

• Hamiltonian simulation in the interaction picture [718].

Further reading

• A comparison of several Hamiltonian simulation algorithms, including Tay-

lor series [283].

• Derivations of the compressed variants of Hamiltonian simulation via Tay-

lor/Dyson series [718, Appendices B & D].
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11.4 Quantum signal processing / quantum singular value

transformation

Rough overview (in words)

Quantum signal processing (QSP) and quantum singular value transforma-

tion (QSVT) are techniques for applying polynomial transformations to block-

encoded operators. These techniques can be used to implement Hamiltonian

simulation, given a block-encoding of the Hamiltonian. Both approaches have

optimal scaling with t and ϵ for time-independent Hamiltonians.

QSP was initially developed for the d-sparse access model [716]. Through

the introduction of block-encodings and qubitization, it was made applicable

in a standard form to Hamiltonians in a Pauli access model, d-sparse access

model, or given as density matrices (where we are given access to a unitary that

prepares a purification of the density matrix) [717]. QSVT was later developed

as a more general and direct route to the results of QSP [429].

Hamiltonian simulation via QSP or QSVT is less well suited to time-

dependent Hamiltonians, as the need to Trotterize the time-dependent

evolution breaks the optimal dependence on the parameters.

Rough overview (in math)

Access to the Hamiltonian H is provided by an (α,m, 0)-block-encoding UH

(the case of approximate block-encodings can be treated using [429, Lemma

22]) such that

(⟨0m| ⊗ I)UH(|0m⟩ ⊗ I) = H/α.

The Hamiltonian has a spectral decomposition of
∑
λ λ|λ⟩⟨λ|. We seek to use

UH to implement an operator U(t) approximating

∥U(t) −
∑

λ

eiλt |λ⟩⟨λ|∥ ≤ ϵ.

Qubitization converts UH into a more structured unitary W (which is also

a block-encoding of the Hamiltonian). The eigenvalues of W are e±i arccos(λ/α),

directly related to those of H. QSP then enables polynomial transformations

to be applied to these eigenvalues, which defines the application of the poly-

nomial to W. This concept can be generalized via QSVT, which effectively

unifies the qubitization and QSP step.

In both cases, our goal is to implement a block-encoding of U(t) ≈∑
λ eiλt |λ⟩⟨λ|, which defines Hamiltonian simulation. In QSVT we separately

implement polynomials approximating cos(λt) and i sin(λt), combine them

using a linear combination of block-encodings, and boost the success prob-

ability using three-step oblivious amplitude amplification. Further details
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can be found in [429, 744]. Meanwhile, QSP implements exp(itH) directly

but requires an additional ancilla qubit and controlled access to a Hermitian

block-encoding U′
H

, which, when implemented via Eq. (10.5), uses both

controlled UH and U
†
H

resulting in a factor of ∼ 4 overhead [717]. Altogether,

these considerations suggest that the QSVT-based approach might have a

slightly better complexity, particularly when controlled UH is significantly

more costly to implement than UH . If UH is already Hermitian, then QSP can

have a lower complexity.

Dominant resource cost (gates/qubits)

Using either QSP or QSVT, block-encoding a degree-k polynomial f (H) is

performed using O (k) calls to the block-encoding UH [717, 429]. Hence, the

degree of the polynomial approximating eiHt determines the complexity of

Hamiltonian simulation using these techniques. As noted in [429, Corollary

60], we can rigorously bound the resources for Hamiltonian simulation via

QSVT for all values of t as using

O
(
αt +

log(1/ϵ)

log(e + log(1/ϵ)/αt)

)

calls to the (α,m, 0)-block-encoding UH . This query complexity is opti-

mal [134, 429], although the block-encoding can hide additional complexities,

in practice. In some cases, the dependence on norm parameters can be

improved by exploiting details of the simulated system; see [715, 714].

For a Pauli access model, the block-encoding is implemented using the lin-

ear combination of unitaries (LCU) primitives PREPARE and SELECT. For

a Hamiltonian with L terms α = ∥H∥1, m = O (
log(L)

)
, and two additional

qubits are required for QSVT. The overall gate complexity depends on the ex-

act implementation of PREPARE and SELECT, which can often be tailored to

the Hamiltonian of interest. In the worst case, PREPARE uses Θ(L) gates, and

SELECT uses Θ(nL) gates (although these can be significantly improved by

exploiting structure in the Hamiltonian; see, e.g., [75, 1011]). Thus, the overall

worst-case gate complexity is

O
(
nL

(
∥H∥1t +

log(1/ϵ)

log(e + log(1/ϵ)/∥H∥1t)

))
.

For a d-sparse access model, α = d∥H∥max, where ∥H∥max = maxi, j|⟨i|H| j⟩|,
m = O (

log(d)
)
, and two additional qubits are required for QSVT. The overall

gate complexity depends on the cost of sparse access to elements of H. As-

suming a circuit for sparse access with constant gate complexity, the overall
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gate complexity is

O
(
d∥H∥maxt +

log(1/ϵ)

log(e + log(1/ϵ)/d∥H∥maxt)

)
.

Using the QSVT-based amplification technique of [715], the dependence on

d∥H∥max can be improved in some cases.

The density matrix access model seeks to perform time evolution under eiρt,

given access to either multiple copies of ρ or a unitary Uρ that prepares a

purification of ρ. Given Uρ, we can prepare a block-encoding of ρ [717] (see

Section 10.1 on block-encodings for details) with α = 1. If the gate complexity

of Uρ is C(Uρ), then the overall gate complexity is

O
(
C(Uρ)

(
t +

log(1/ϵ)

log(e + log(1/ϵ)/t)

))
.

Caveats

The method was found to perform competitively with Trotterization (and bet-

ter than Taylor series) in concrete resource estimates for simulating spin-chain

Hamiltonians [283]. While that work had difficulty calculating the QSP phase

factors, this issue has since been addressed with the development of classi-

cal algorithms for finding the phase factors (e.g., [431, 477, 356, 255], and

successors). Nevertheless, this contributes a classical preprocessing cost to the

algorithm.

It is currently unclear how to perform optimal time-dependent Hamiltonian

simulation with these methods, without resorting to Trotterization. Some ini-

tial investigations have shown promising results using clock Hamiltonian con-

structions [1027] or for time-periodic Hamiltonians [770, 769].

Example use cases

• Physical systems simulation: quantum chemistry, condensed matter systems

(see [283]), quantum field theories, differential equations in plasma physics

(see [803]).

• Algorithms: quantum phase estimation, quantum linear system solvers,

Gibbs state preparation.

Further reading

• Pedagogical overviews [744, 687].

• Comparison of several Hamiltonian simulation algorithms [283].
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Quantum Fourier transform

The authors are grateful to Ronald de Wolf for reviewing this chapter.

Rough overview (in words)

The quantum Fourier transform (QFT) is a quantum version of the discrete

Fourier transform (DFT) and takes quantum states to their Fourier-transformed

version.

Rough overview (in math)

The QFT is a quantum circuit that takes pure N-dimensional quantum states

|x⟩ = ∑N−1
i=0 xi|i⟩ to pure quantum states |y⟩ = ∑N−1

i=0 yi|i⟩ with the Fourier-

transformed amplitudes

yk =
1√
N

N−1∑

l=0

xl exp(2πikl/N) for k = 0, . . . ,N − 1. (12.1)

Dominant resource cost (gates/qubits)

The space cost is O(log(N)) qubits and the quantum complexity of the text-

book algorithm is O(log2(N)). In terms of Hadamard gates, swap gates, and

controlled phase shift gates |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Rℓ with

Rℓ =


1 0

0 exp
(
2πi2−ℓ

)
 ,

the quantum circuit is given in Fig. 12.1 (see also [801, Fig. 5.1]), where N =

2n. The swap gates at the end of the circuit are required to reverse the order of

the output qubits. The complexity can be improved to

O
(
log(N) log

(
log(N)ϵ−1

)
+ log2

(
ϵ−1

))
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H R2 · · · Rn−1 Rn · · · · · · × · · ·

• · · · H · · · Rn−2 Rn−1 · · · × · · ·
. . .

. . .
. . .

· · · • · · · • · · · H R2 × · · ·

· · · • · · · • · · · • H × · · ·

Figure 12.1 Quantum circuit implementation of QFT.

when only asking for ϵ-approximate solutions [486]. Finite constants and

compilation cost for fault-tolerant quantum architectures are also dis-

cussed in the literature. For example, [795] gives an implementation with

O(log(N) log log(N)) T gates and estimates finite T -gate costs for different

instance sizes.

Caveats

• The QFT does not achieve the same task as the classical DFT that takes

vectors (x0, . . . , xN−1) ∈ CN to vectors (y0, . . . , yN−1) ∈ CN with yk defined as

in Eq. (12.1). The DFT can be implemented via the fast Fourier transform in

classical complexity O(N log(N)), which is exponentially more costly than

the quantum complexity O(log2(N)) of the QFT. However, for the QFT to

achieve the same task as the DFT, pure state quantum tomography would

be required to read out and learn the Fourier-transformed amplitudes, which

destroys any quantum speedup for the DFT.

• When QFT is employed in use cases, for example, for factoring, one has to

be careful in finite-size instances when counting resources [943], and for this

a semiclassical version of the QFT can be more quantum resource efficient

[458].

• The QFT admits an efficient representation as a matrix product operator (a

type of tensor network), meaning that the approximation improves exponen-

tially in the bond dimension [262]. This suggests that quantum algorithms

relying on the QFT for speedup must involve highly entangled input or in-

termediate states, in order to beat state-of-the-art tensor network methods.

Example use cases

• Even though the QFT does not speedup the DFT, QFT is used as a subrou-

tine in more involved quantum routines with large quantum speedup. Ex-

amples include quantum algorithms for the discrete logarithm problem, the
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hidden subgroup problem, the factoring problem, to name a few. The QFT

can be seen as the crucial quantum ingredient that allows for a superpoly-

nomial end-to-end quantum speedup for these problems. We discuss this in

the context of quantum cryptanalysis in Chapter 6.

• The QFT appears in the standard circuit for quantum phase estimation,

where it is used to convert accrued phase estimation into a binary value that

can be read out.

• The QFT is used for switching between the position and momentum bases

in grid-based simulations of quantum chemistry [601] or quantum field the-

ories [588].

Further reading

• Textbook reference [801, Section 5.1].

• The quantum Fourier transform can be generalized to other groups. The ver-

sion presented above is for the group Z/(2n
Z). Its implementation for other

abelian groups as well as nonabelian groups is discussed in [277] and the

references therein.
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Quantum phase estimation

The authors are grateful to Patrick Rall and Ronald de Wolf for reviewing this

chapter.

Rough overview (in words)

The quantum phase estimation (QPE) subroutine produces an estimate of an

eigenvalue of a unitary operator. It is a cornerstone of quantum algorithms

primitives and has numerous applications. For example, Shor’s algorithm for

factoring can be viewed as an application of QPE together with modular expo-

nentiation. Similarly, when combined with Hamiltonian simulation, QPE can

produce an estimate for an eigenvalue of a Hamiltonian (given an appropriate

initial state), an important problem in areas such as quantum chemistry. Gen-

erally, since quantum computations enact unitary operators, quantum phase es-

timation is an essential algorithmic tool for accessing information about these

operators, specifically, information about their periodicities, and the properties

of their eigenstates.

As one of the oldest quantum primitives discovered [624, 299], QPE has

played a significant historical role in the development of quantum algorithms.

In a typical use case, QPE is used as a first step to compute an estimate of the

eigenvalue of the unitary into an ancilla register. Then, the ancilla register is

used as a control for subsequent operations. However, in some applications,

such as Gibbs sampling and solving the quantum linear system problem, this

procedure must be applied coherently to a superposition of eigenstates with

different eigenvalues, and the estimate of the eigenvalue must be uncomputed

at the end. As discussed below, coherent usage of the QPE primitive in this

manner must be handled with care, due to several identified caveats. While

QPE still provides essential intuition for how these applications work, in some

228
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13. Quantum phase estimation 229

cases, modern techniques leveraging quantum signal processing and the quan-

tum singular value transformation [431] lead to a cleaner and more direct anal-

ysis than QPE.

In the discussion below, we begin with the textbook presentation of QPE

[299, 801], and expound on the aforementioned caveats. We also present exam-

ple use cases, noting the instances where QPE was originally a key ingredient

but no longer features directly in state-of-the-art solutions.

Rough overview (in math)

Let U be a unitary with eigendecomposition U =
∑

j ei2πϕ j |ψ j⟩⟨ψ j|. Given as

input the state |ψ j⟩, the QPE subroutine produces an estimate ϕ̂ j for ϕ j. The

algorithm requires the ability to apply controlled U2p

for non-negative integers

p. If ϕ j is an exact multiple of 2−P, then an exact estimate of ϕ j can be learned

with certainty using only p ∈ {0, 1, . . . , P − 1}. In general, an estimate ϕ̂ j of ϕ j

satisfying |ϕ j − ϕ̂ j| ≤ ϵ can be learned with high probability by taking the max-

imum value of 2p on the order of 1/ϵ. The algorithm also requires application

of an inverse quantum Fourier transform to orchestrate the constructive inter-

ference near the estimate for ϕ j. The quantum circuit for the standard approach

to QPE is shown in Fig. 13.1.

Phase estimation can also be applied coherently onto a superposition of

eigenstates. Suppose that the input state is |ψ⟩ = ∑
j α j|ψ j⟩. By linearity, if

each phase ϕ j is a multiple of 2−P and phase estimation is run with sufficient

resolution, then QPE enacts the following unitary

|ψ⟩|0⟩ 7→
∑

j

α j|ψ j⟩|ϕ j⟩, (13.1)

where |ϕ j⟩ holds a P-bit binary representation of ϕ j. If the auxiliary register

is measured—here assuming for simplicity that the eigenvalues ϕ j are

nondegenerate—then with probability |α j|2 (consistent with the Born rule) the

estimate ϕ j is obtained and the state collapses to the corresponding eigenstate

|ψ j⟩.1 If the phases ϕ j are not multiples of 2−P, an approximate version of

this operation can still be accomplished as long as the precision is sufficiently

small to resolve the eigenvalues, subject to some caveats (discussed below).

1 Alternatively, if ϕ j is known ahead of time (to sufficient precision), QPE can be wrapped

inside of amplitude amplification and the state |ψ j⟩ can be prepared using O(|α j |−1)

applications of the QPE circuit, rather than O(|α j |−2). Note that amplitude amplification can be
understood through the QSVT [431] formalism, and in many applications, such as projecting
onto the ground state of a Hamiltonian [688], one can achieve this sort of scaling directly
without explicitly relying on QPE.
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|ψ⟩ / U U2 U4 · · · U2P−1

|0⟩ H • · · ·

QFT−1

|0⟩ H • · · ·

|0⟩ H • · · ·
...

...
. . .

...

|0⟩ H · · · •

Figure 13.1 Quantum circuit implementation of QPE. The measurement out-

comes on the P ancilla qubits give a P-bit estimate of the phase ϕ j (correct up

to error O(2−P)) with high probability.

Dominant resource cost (gates/qubits)

The QPE subroutine is typically dominated by calls to the controlled unitary

U. If resolution ϵ is desired, one must perform controlled U2p

operations for

p ∈ {0, 1, . . . , ⌈log2(1/ϵ)⌉ + O(1)}; thus, the number of calls to a controlled U

oracle will be O(1/ϵ). This dependence on ϵ is optimal; the O(1/ϵ) scaling is

known as the Heisenberg limit.

In the context of estimating the eigenenergy of a Hamiltonian H, one can

choose U = eiH , and then implement controlled U t, that is, controlled eiHt, with

Hamiltonian simulation. In this case, given the ability to prepare an eigenstate

of H, an ϵ-approximation of the eigenvalue requires values of t up to O(1/ϵ).2

However, one must also factor in the error in the Hamiltonian simulation. In a

typical setting, access to the n-qubit Hamiltonian is given through a linear com-

bination of L unitaries, for instance, Pauli matrices. Let ∥H∥1 denote the sum of

the coefficients in the combination. Then, methods for Hamiltonian simulation

based on quantum signal processing can approximate eiHt to error O(ϵ) with

O(nL(∥H∥1t + log(1/ϵ))) gate complexity, whereas methods based on product

formulas incur cost O(nL(∥H∥1t)1+1/2kϵ−1/2k) for (2k)th-order product formu-

las, although the actual cost can be lower after accounting for structure in the

Hamiltonian terms. Balancing the error from phase estimation against the error

from Hamiltonian simulation can cause sub-Heisenberg-limited performance,

such as in the case of the product formula approach. The overhead associated

with imperfect Hamiltonian simulation can be avoided by applying QPE to

different functions of H; for example, a promising choice is the qubitization

2 The fact that learning energies to greater precision requires a proportionally greater amount of
time t is a manifestation of the energy-time Heisenberg uncertainty principle, and forms the
origin of the term “Heisenberg limit.”
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13. Quantum phase estimation 231

operator, which acts in a similar way to U = ei arccos(H/α), where α is the nor-

malization factor of the qubitization operator. The reason this is advantageous

is that the qubitization operator can be implemented exactly given access to

a block-encoding of H [717, 841, 139]. In general, we require the unitary U

on which phase estimation is performed to be a known, classically invertible

function of the Hamiltonian U = f (H). The complexity of QPE depends on

the desired uncertainty in the energy eigenvalue, which can be related to the

uncertainty in the measured eigenphase via the magnitude of the derivative of

the function, ∥ f ′(·)∥.
The number of qubits for QPE is simply the size of the register needed to

hold the input state |ψ j⟩ plus the size of the register needed to hold the estimate

ϕ̂ j (i.e., roughly ⌈log2(1/ϵ)⌉ bits). Additionally, QPE requires an inverse quan-

tum Fourier transform (QFT), which (using the textbook QFT implementation)

adds only O(log2(1/ϵ)) additional gates to the protocol.

Another version of QPE [627] achieves the same task with only a single

ancilla qubit, but, as a result, learns only one bit of the output at a time. Ad-

ditionally, it requires an exact eigenstate as input. The latter problem can be

avoided using a statistical approach [690, 1013].

Caveats

The main caveats of QPE are related to the fact that eigenphases are not always

exact integer multiples of 2−P, resulting in noncertain outcomes of QPE, which

can lead to complications in certain applications.

• Fat tails and boosting of success probability: Whenever the phases ϕ j are

not exact integer multiples of 2−P for some integer P, phase estimation

will not return the answer ϕ j with certainty. Rather, there will be a dis-

tribution of possible estimates ϕ̂ j that is peaked near ϕ j. If one chooses

P = ⌈log2(1/ϵ)⌉ + O(1), then most of the probability mass of this distribu-

tion lies within ϵ of ϕ j. As P is increased further, the distribution becomes

more sharply peaked near ϕ j, and if an ϵ-accurate estimate with 1 − δ prob-

ability is desired, one must take P = ⌈log2(1/ϵ)⌉ +O(log(1/δ)), correspond-

ing to a multiplicative O(1/δ) overhead in the query complexity to U and

O(log(1/δ)) additional ancilla qubits. This poor δ dependence is due to “fat

tails” on the distribution of estimates of ϕ̂ j. One way to avoid this overhead

is to take the median of estimates obtained from O(log(1/δ)) repetitions of

QPE [792, Lemma 1]. A downside of this approach is that it may be diffi-

cult to implement coherently on a superposition of eigenstates, in the sense

of Eq. (13.1), since computing the median would require a coherent quan-

tum sorting network. An alternative way to circumvent the fat tails problem
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is to modify the QPE protocol to have a nonuniform superposition in the

register that controls applications of U; a judicious choice of superposition

leads the distribution over estimates ϕ̂ j to be a Kaiser window (see [143, Ap-

pendix D] and [144]) or discrete prolate spheroidal sequence (DPSS) func-

tion [829], which minimizes the probability of deviating from ϕ j by more

than ϵ. See also [260], where a Gaussian profile is used to suppress the tails.

Boosting the success probability to 1 − δ in this fashion incurs multiplica-

tive O(log(1/δ)) cost, rather than O(1/δ). The overall cost in queries to U by

these methods matches a lower bound of Ω(ϵ−1 log(1/δ)) shown in [736].

• Performing coherent QPE: When ϕ j are noninteger multiples of 2−P, the co-

herent operation in Eq. (13.1) cannot be straightforwardly performed with

exact fidelity. This is because for each value of j, the second register will

be in a superposition of many values of ϕ̂ j (most but not all of the ampli-

tude will lie on estimates close to ϕ j). To restore coherence, one might try

coherently rounding the estimate ϕ̂ j onto a coarser net of grid points (and

then uncomputing the original estimate ϕ̂ j); however, there will always be

edge cases where ϕ j falls very near the midpoint between two grid points

and rounding destroys some of the coherence in the input. This is true even

as the precision of QPE is taken to zero (ϵ → 0). See [854] for a discussion.

One possible way to mitigate this issue is presented in the “consistent phase

estimation” protocol of [975, Section 5.2], where a random shift is applied to

the grid points to avoid this situation for any particular eigenphase with high

probability. However, this does not generically work simultaneously for all

eigenphases. In [854], it is shown that performing the map of Eq. (13.1) is

impossible without a “rounding promise” on the set of eigenphases {ϕ j}.
• Biased estimator: A further consequence of the noncertainty of the QPE

output is that the estimate ϕ̂ j is biased; that is, its expectation value is not

exactly equal to ϕ j. This issue can also be fixed with a random shift idea,

yielding an unbiased (and symmetrically distributed) version of QPE [691,

49].

Example use cases

• In quantum chemistry and condensed matter physics, QPE can be used to

measure the eigenvalues (and especially the ground state energy) of the

Hamiltonian H, which gives knowledge about reaction mechanisms, stable

configurations, and other equilibrium properties. For QPE to succeed, a trial

state |ψ⟩ with substantial overlap with the eigenstate of interest must be in-

put to QPE, which is challenging in the general case. The problem of ground

state preparation has garnered intense study, and state-of-the-art techniques

do not always follow the textbook method that relies on the QFT, presented
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above. For example, quantum signal processing can be leveraged directly

to filter out unwanted eigenstates [689, 688], effecting a similar outcome as

QPE.

• In Shor’s algorithm, given a composite integer N and a (randomly chosen)

base x < N, QPE is used to determine the order of x, that is, the minimum

integer r for which xr ≡ 1 mod N, which is in turn used to infer the prime

factors of N. Here, the unitary U is the modular multiplication unitary that

sends |y⟩ 7→ |xy mod N⟩.
• In amplitude estimation [186], given a unitary U that prepares a state

U |ψ0⟩ = a|ψg⟩ + b|ψb⟩, QPE is used to estimate |a| or |a|2. More advanced

approaches to amplitude estimation not relying on QPE have since been

developed. These leverage Grover’s algorithm, or more generally quantum

signal processing, without using the QFT. While these do not surpass the

QPE-based method in asymptotic complexity, they potentially offer other

benefits, such as improved practical performance and versatility. See [855]

and references therein.

• In the Monte Carlo–style quantum algorithms for Gibbs sampling of quan-

tum (i.e., nondiagonal in the computational basis) Hamiltonians, roughly

speaking, the quantum state undergoes a random walk on the eigenbasis

of the Hamiltonian. Steps of this random walk are accepted or rejected ac-

cording to how much the energy changes at each step. The QPE subrou-

tine is used to simultaneously (approximately) project onto the eigenba-

sis of the Hamiltonian and to produce an estimate of the energy, used to

determine whether the step should be accepted or rejected. Early studies

[984, 1076, 1048] of this approach were hampered by the caveats related to

rejecting quantum states and imperfect energy estimates, but recent works

[856, 260, 259] circumvent these problems (by randomizing the grid points

or completely abandoning phase estimation).

• To follow the ground state |ψ0(s)⟩ of a Hamiltonian H(s) as some param-

eter s is varied from 0 to 1, one can run the adiabatic algorithm. Alterna-

tively, one can consider a discretization of steps st ∈ {s0, . . . , sT }, where

0 = s0 < s1 < s2 < · · · < sT−1 < sT = 1, and run QPE on H(st) in succes-

sion, each time causing a measurement in the eigenbasis of H(st). Due to the

quantum Zeno effect, as long as sufficiently small steps are taken, each pro-

jection will be onto the ground space with high probability (see, e.g., [944]).

Larger steps can be tolerated if one boosts the probability that each step suc-

ceeds with amplitude amplification [162]. This approach is similar to the

idea in Hastings’ short-path algorithm [505, 329], which solves combina-

torial optimization problems. However, note that modern implementations

along these lines would likely elect to perform the ground state projection
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via eigenstate filtering [689] or related QSVT-based methods, rather than

QPE.

• While state-of-the-art quantum linear system solvers (QLSSs) do not explic-

itly use QPE, the original QLSS by Harrow, Hassidim, and Lloyd [500] uses

QPE to coherently measure the eigenvalues of a matrix A into an auxiliary

register. These eigenvalue estimates are subsequently inverted with coherent

arithmetic in order to produce the state A−1|b⟩ corresponding to the solution

to the system Ax = b. Achieving optimal asymptotic performance requires

additional ingredients beyond QPE, and is best understood through the lan-

guage of block-encodings and quantum linear algebra. This framework al-

lows for manipulation of eigenvalues without explicitly reading them into

an ancilla register with QPE.

• In certain machine learning tasks related to linear algebra, such as principal

component analysis [708] and recommendation systems [608], quantum al-

gorithms have been proposed that leverage QPE to access the information

about the eigenvectors and eigenvalues. As explained in [854], these have

not always fully accounted for the caveat related to coherent QPE, although

typically these caveats can be circumvented using the framework of quan-

tum linear algebra [248, 431].

Further reading

• The standard circuit and analysis of QPE appears in Nielsen and Chuang

[801]. See also [299].

• Many variants of the QPE algorithm have been explored, which can be supe-

rior to the standard version in certain settings. See, for example, [854, 690]

for additional references and informative overviews of various methods,

along with their advantages and drawbacks.

• Reference [687] contains a pedagogical overview of QPE including some of

its variants and applications.
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Amplitude amplification and estimation

Quantum amplitude amplification and estimation provide means to boost or

extract the amplitude of a marked quantum state that is produced in superpo-

sition with orthogonal states by a unitary matrix. They are among the most

widely used quantum primitives, providing quadratic speedups over classical

algorithms in many settings.

The authors are grateful to Patrick Rall for reviewing this chapter.

14.1 Amplitude amplification

Rough overview (in words)

Given a quantum subroutine that succeeds with a probability less than one,

amplitude amplification can be used to boost the success probability to 1 by

making repeated calls to the subroutine and to a unitary that determines if the

subroutine has succeeded. Amplitude amplification can be viewed as a gen-

eralization of Grover’s search algorithm [464] and offers a quadratic speedup

compared to classical methods in many instances.

Rough overview (in math)

We are given an initial state |ψ0⟩, a target (“good”) state |ψg⟩ that we can mark

(i.e., the ability to reflect about the state), and a unitary U (and its inverse U†)

such that

U |ψ0⟩ = |ψ⟩ = a|ψg⟩ + b|ψb⟩ ,

where |ψb⟩ is a (“bad”) state orthogonal to the target state. In other words, |a|2
is the probability of success of applying U and measuring |ψg⟩. In addition,

235
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236 14. Amplitude amplification and estimation

we are given the ability to implement the reflection operator around the initial

state Rψ0
= I − 2|ψ0⟩⟨ψ0| and an operation that, when restricted to the subspace

spanned by {|ψg⟩, |ψb⟩}, acts as the reflection around the target state Rψg
=

I − 2|ψg⟩⟨ψg|.
Then, amplitude amplification allows us to boost the success probability to

1 through repeated calls to an operator W = −URψ0
U†Rψg

, from the initial

state U |ψ0⟩ = |ψ⟩. The standard analysis [186] proceeds by letting a = sin(θ)

and b = cos(θ), and showing that the 2D subspace spanned by |ψg⟩, |ψb⟩ is

invariant under W, which acts as a rotation operator such that |ψg⟩⟨ψg|Wm|ψ⟩ =
sin((2m + 1)θ)|ψg⟩.

The algorithm can also be viewed through the lens of quantum singular

value transformation (QSVT) whereby U provides a generalized block-

encoding (known as a projected unitary encoding) of the amplitude a. We can

see this from |ψg⟩⟨ψg|U |ψ0⟩⟨ψ0| = a|ψg⟩⟨ψ0|. We choose to apply a polynomial

f (·) satisfying the quantum signal processing conditions and f (a) = 1 to

the block-encoded amplitude [429, Theorem 27 & 28]. For example, the

textbook version of amplitude amplification is recovered by setting the

QSVT rotation angles to ± π/2.1 This QSVT circuit applies a degree 2m + 1

Chebyshev polynomial of the first kind T2m+1 to the amplitude a, such that

|ψg⟩⟨ψg|Wm|ψ⟩ = T2m+1(a)|ψg⟩ = (−1)m sin((2m + 1)θ)|ψg⟩ for a = sin(θ).

Dominant resource cost (gates/qubits)

The number of calls to W is

m =
π

4 arcsin(a)
− 1

2
= O

(
a−1

)

for small a. Each call to W requires a call to each of U,U†,Rψ0
,Rψg

. Often we

have |ψ0⟩ = |0n+k⟩, and U acts on n register qubits and k ancilla qubits such

that U |0n+k⟩ = a|ψg⟩n|0k⟩k + b|⊥⟩n,k, where |⊥⟩n,k denotes a state orthogonal to

|0k⟩ on the ancilla register. In this case the reflection operators are simple to

implement using multicontrolled Toffoli gates.

Caveats

The textbook version of amplitude amplification assumes that the success am-

plitude a exactly equals sin(π/(4m + 2)) for an integer m. If this is not the case

(e.g., when a = 1/
√

2), we can introduce a new qubit in |0⟩ and apply an

Ry(2ϕ) gate (i.e., a rotation about Y by angle 2ϕ) to reduce the success proba-

bility (now defined by measuring |ψg⟩|0⟩) to a cos(ϕ) = sin(π/(4m′ + 2)) for an

integer m′.

1 These rotation angles enable a gate compilation that removes the need for the QSVT ancilla
qubit.
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14.1 Amplitude amplification 237

In cases where we can only lower bound the success amplitude a ≥ a0, it

is common to use fixed-point amplitude amplification [1067]. This is best un-

derstood through QSVT [429, Theorem 27], where the reflection operators are

replaced by parameterized phase operators eiθ|ψg⟩⟨ψg | and eiϕ|ψ0⟩⟨ψ0 |.2 The QSVT

rotation angles are chosen to implement a polynomial that maps all ampli-

tudes taking value at least a0 to at least (1 − ϵ). The fixed-point amplitude

amplification circuit uses a QSVT circuit that makes O(a−1
0 log(ϵ−1)) calls to

U,U†, eiθ|ψg⟩⟨ψg |, and eiϕ|ψ0⟩⟨ψ0 |.

Example use cases

• Combinatorial optimization.

• Convex optimization via “minimum finding” subroutine (see [48, Appendix

C]).

• Weakening cryptosystems.

• Tensor principal component analysis.

• Hamiltonian simulation using linear combinations of unitaries.

Further reading

• Both amplitude amplification and Grover search can be viewed through the

lens of quantum walks on suitably constructed graphs. The quantum walks

also take the form of a product of two reflections and more generally can

be understood as quantizing a Markov chain describing a classical random

walk [974]. We refer the interested reader to [276, 733, 52, 427].

• Oblivious amplitude amplification: Amplitude amplification can be ex-

tended to the case of oblivious amplitude amplification (OAA) [135]. The

original formulation considered a setting where one is given unitary U such

that for any state |ψ⟩, we have

U |0m⟩|ψ⟩ = a|0m⟩V |ψ⟩ + b|0m
⊥ϕ⟩

for a unitary operator V . The goal is to amplify the probability for the state

|0m⟩V |ψ⟩ to 1. This is achieved through O(a−1) applications of an operator

W = U(I − 2|0m⟩⟨0m|)U†(I − 2|0m⟩⟨0m|) applied to U |0m⟩|ψ⟩. We see that W

does not require reflections around the initial state |ψ⟩. We can recognize U

as an m-qubit block-encoding of the operator aV , which can be transformed

to a block-encoding of V using QSVT.3 The OAA subroutine is used in

2 It is shown in [687, Section 8.5] how these phase operators can be constructed using the
corresponding controlled reflection operator. If only the uncontrolled reflection is available, a
control can be added using, for example, [744, Fig. 5].

3 We note that in this interpretation, one may be concerned that the phase information of the
unitary V is lost by transforming the singular values. This turns out not to be problematic, as
the phase information of V can be considered stored in the basis transformation matrices
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the context of Hamiltonian simulation via Taylor series, where it would be

problematic to have to reflect around the initial state during amplification.4

It is also used in [297] (applied to isometries) for simulation of open quan-

tum systems. OAA requires the block-encoded operator being amplified to

preserve state norms (i.e., it must be an isometry), as this ensures that the

success probability of the operation is independent of the state to which it

is applied, which in turn enables amplification without reflection around the

initial state.

It is also possible to amplify a block-encoding of a non-isometric operator

A using QSVT; see [429, Theorem 30] and [715]. Assume ∥A∥ = 1; given

the ability to implement a block-encoding U of
√

pA, we can use oblivious

amplitude amplification to implement a block-encoding of A usingO(1/
√

p)

calls to U,U†. Note that for a general normalized state |ψ⟩, it holds that

∥A|ψ⟩∥ ≤ 1, with equality only achieved when |ψ⟩ is the singular vector

corresponding to the largest singular value of A. As a result, to boost the

success probability of outputting A|ψ⟩/∥A|ψ⟩∥ to unity for a general input

state requires using regular amplitude amplification, involving reflections

around the initial state.

• While we are unaware of a standard reference for the use of an additional an-

cilla qubit to account for cases where the success amplitude a , sin(π/(4m+

2)) for integer m, discussed above in §Caveats, it is explained more fully

in [754, Appendix B].

14.2 Amplitude estimation

Rough overview (in words)

Given a quantum subroutine that succeeds with unknown success probability,

amplitude estimation provides quadratic speedup over classical methods for

estimating the success probability. Because many quantities of interest can be

encoded in an amplitude or probability, amplitude estimation can be used as

a widely applicable tool for obtaining Monte Carlo estimates with complexity

O(1/ϵ), instead of the O(1/ϵ2) achieved by classical estimation.

present in the singular value decomposition, rather than in the diagonal singular values matrix.
This is taken care of automatically using QSVT. Phases are preserved when using an odd
polynomial.

4 More precisely, a robust version of OAA is used which is applicable to an operator that is ϵ
close to being unitary [137, 136].
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Rough overview (in math)

We are given an initial state |ψ0⟩, a target (“good”) state |ψg⟩, and a unitary U

and its inverse U† such that

U |ψ0⟩ = |ψ⟩ = a|ψg⟩ + b|ψb⟩ ,

where |ψb⟩ is a (“bad”) state orthogonal to the target state. We assume that

we can mark the target state |ψg⟩ (i.e., the ability to reflect about the state).

Thus, p = |a|2 is the success probability of applying U and measuring |ψg⟩.5
We are given the ability to implement the reflection operator around the ini-

tial state Rψ0
= I − 2|ψ0⟩⟨ψ0| and an operation that, when restricted to the

subspace spanned by {|ψg⟩, |ψb⟩}, acts as the reflection around the target state

Rψg
= I−2|ψg⟩⟨ψg|. We can then estimate the success probability by performing

quantum phase estimation on an operator W = −URψ0
U†Rψg

, from the initial

state U |ψ0⟩ = |ψ⟩. The standard analysis [186] proceeds by letting |a| = sin(θ)

and |b| = cos(θ) (thus, the phases of a and b are absorbed into |ψg⟩ and |ψb⟩ and

are not determined by the following procedure) and showing that the 2D sub-

space spanned by {|ψg⟩, |ψb⟩} is invariant under W, where it acts as a rotation

operator

W =

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)
.

This operator has eigenvalues e±2iθ, and we can estimate θ to additive error ϵ

through quantum phase estimation. The estimate for θ can be converted into

an estimate for |a|, or for the success probability p = |a|2, which is often the

quantity of interest.

Dominant resource cost (gates/qubits)

The classical approach for learning the probability p to precision ϵ has com-

plexity scaling as M = O(1/ϵ2), where the basic idea is to perform M in-

coherent repetitions of applying U and measuring in the |ψg⟩, |ψb⟩ basis, and

then tally the measurement outcomes and construct the frequentist (or max-

imum likelihood) estimate of p. Amplitude estimation provides a quadratic

speedup, learning the probability (and amplitude) with complexity scaling as

M = O(1/ϵ). The textbook variant has a constant success probability, which

can be boosted to 1 − δ with O(log(1/δ)) overhead through standard methods

(e.g., probability amplification by majority voting).

5 Note that the original paper introducing amplitude estimation [186] uses the variable a to
denote the success probability. While the algorithm is referred to as amplitude estimation, it is
often the success probability that we wish to compute, and the complexity of the algorithm is
often presented accordingly.
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240 14. Amplitude amplification and estimation

More precisely, following the analysis of [186] one can see that to learn |a|
to error ϵ it suffices to utilize M controlled applications of the walk operator W

where M satisfies6

ϵ ≥ π
√

1 − |a|2
M

+
|a|π2

2M2
. (14.1)

The algorithm succeeds with probability at least 8/π2. For |a| ≈ 1 − O(ϵ), a

further quadratic improvement is obtained (i.e., M = O(1/
√
ϵ) suffices).

To learn the success probability p = |a|2 to error ϵ it suffices to utilize M

controlled applications of the walk operator W where M satisfies [186]

ϵ ≥
2π

√
p(1 − p)

M
+
π2

M2
. (14.2)

The algorithm once again succeeds with probability at least 8/π2. Similar to

above, if p ≈ O(ϵ) or p ≈ 1 − O(ϵ), then it suffices to take M = O(1/
√
ϵ).7

The overall gate complexity of an application involving amplitude estima-

tion is given by M times the gate complexity of implementing a controlled

application of W.

A common setting is the case where |ψ0⟩ = |0n+k⟩, and U acts on n regis-

ter qubits and k ancilla qubits such that U |0n+k⟩ = a|ψg⟩|0k⟩k + b|ψb⟩|0k
⊥⟩k. In

this case, the reflection operators are simple to implement, and W can be con-

trolled by making these reflections controlled (adding another control qubit to a

multicontrolled Z gate). We require log(M) ancilla qubits for phase estimation

(which can be reduced using modern variants, see below and [855]).

Caveats

The textbook version of amplitude estimation described above produces biased

estimates of |a| and p. This is partly inherited from the biased nature of text-

book quantum phase estimation. However, even if unbiased variants of phase

estimation are used, the amplitude and probability estimates are not imme-

diately unbiased, as they are obtained by applying nonlinear functions to the

6 Specifically, Lemma 7 of [186] shows that if θ = arcsin(|a|) and θ̃ = arcsin(|ã|), then |θ − θ̃| ≤ η
implies |a2 − ã2 | ≤ 2η

√
a2(1 − a2) + η2. This is easily adapted to show that it also implies

|a − ã| ≤ η
√

1 − a2 + aη2/2. They show that with probability at least 8/π2, θ is learned up to
additive error at most η = π/M with M calls to W, which together with the above expressions
implies Eqs. (14.1) and (14.2).

7 We can compare to the classical approach of estimating p by flipping a p-biased coin M times.
Letting p̃ denote the estimate, which has mean p and variance p(1 − p)/M, Chebyshev’s
inequality implies that |p − p̃| ≤ ϵ with probability at least 8/π2 as long as M ≥ Cp(1 − p)/ϵ2

where C = 1/(1 − 8/π2). Thus, when p ≈ O(ϵ) or p ≈ 1 − O(ϵ), the classical approach
achieves M ∼ 1/ϵ, and the quantum speedup is never more than quadratic.
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estimate of the phase. Unbiased variants of amplitude [855]8 and probability

estimation [49, 308] have been developed to address this.

The variant of amplitude estimation described above is also “destructive”

in the sense that the output state is collapsed into a state 1√
2
(|ψg⟩ ± i|ψb⟩) ,

|ψ0⟩, |ψ⟩. A nondestructive variant may be desired if the initial state is expen-

sive to prepare and we require coherent or incoherent repetitions of amplitude

estimation. Nondestructive variants have been developed in [499, 308, 855].

Example use cases

• Approximate counting of solutions marked by an oracle (e.g., topological

data analysis, combinatorial optimization).

• Amplitude estimation provides a quadratic speedup for Monte Carlo

estimation [773, 642] with uses in pricing financial assets. The gen-

eral idea is to prepare a state |ψ⟩ = ∑
x

√
p(x) f (x)|x⟩|0⟩ + |ϕ0⊥⟩ where

E[ f (x)] =
∑

x p(x) f (x) represents the expectation value we wish to evaluate

using Monte Carlo sampling and corresponds to the probability that we

measure the second register in state |0⟩. Hence, amplitude estimation

provides a quadratic speedup for estimating this quantity.

• A special case of amplitude estimation is overlap estimation [637], where

given two states |ψ⟩, |ψ0⟩ and a unitary such that |ψ⟩ = U |ψ0⟩, the goal is

to measure ⟨ψ0|U |ψ0⟩ = ⟨ψ0|ψ⟩. This can be viewed as an application of

amplitude amplification, where |ψg⟩ = |ψ0⟩. As a result, we only require the

ability to implement Rψ0
= I − 2|ψ0⟩⟨ψ0|, U,U† (or equivalently Rψ0

and

Rψ). Note that in overlap estimation, one additionally wants to determine

the phase of a, which can be obtained by applying amplitude estimation on

a controlled variant of U, as outlined in [637]. Overlap estimation can be

used for estimating observables, for example, in quantum chemistry.

• A generalization of amplitude estimation, via the quantum gradient algo-

rithm, forms a core subroutine in some approaches for quantum state to-

mography [49]. Pure state tomography can be thought of as a generalization

of amplitude estimation, in which we seek to learn all amplitudes individ-

ually, rather than only a single aggregate quantity. Closely related work on

multivariate amplitude estimation [310] has broad applicability, including in

convex optimization [51] and finance [361].

8 In order to achieve bias ≤ ϵη, the algorithm of [855] pays a multiplicative cost overhead ∼ 1
η

which, up to logarithmic factors, could also be achieved by merely improving the precision
to ϵη. The additive ∼ log( 1

ϵη
) cost overhead of [49, 308] is much more satisfactory.
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242 14. Amplitude amplification and estimation

Further reading

• Variants of amplitude estimation using fewer ancilla qubits (including

ancilla-free approaches), or with depth-repetition tradeoffs have been

proposed [460], including work to make these methods nonadaptive [1007].

For a summary of these approaches and their unification within the QSVT

framework, see [855].

• There has been some work on computing, optimizing, and comparing the

constant prefactor of the M = O(1/ϵ) relation using different approaches to

amplitude estimation, relevant for concrete resource estimates. For example,

building on the analysis of [460], the method from [855] was estimated to

scale roughly as M ≈ 4.7/ϵ based on numerical experiments on a range of

choices for ϵ and with fixed a = 0.5. This was observed to be about an order

of magnitude better than the textbook method from [186] described above.9

The method from [657] furthermore showed that a comparable total query

complexity could be obtained while parallelizing across multiple processors,

with maximum query depth roughly 0.4/ϵ.

9 Asymptotically speaking, the complexity of the methods from [855, 460] scales suboptimally,
as O(log log(1/ϵ)/ϵ), but the extra log log(1/ϵ) factor grows sufficiently slowly that for
practical values of ϵ it can be bounded by a small constant.
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Gibbs sampling

The authors are grateful to Rolando Somma for reviewing this chapter.

Rough overview (in words)

Gibbs sampling is the task of preparing a quantum state in thermal equilibrium.

This task is interesting in its own right as a means of testing the thermodynamic

properties of quantum systems in a controlled way, but it is also a subroutine

that is surprisingly useful within other quantum algorithms. Formally, given

a Hamiltonian and a temperature, the task is to prepare the Gibbs state (also

known as the thermal state) of that Hamiltonian at the associated temperature,

or equivalently, to sample eigenstates of the Hamiltonian with probability pro-

portional to their Boltzmann weights (motivating the name Gibbs sampling).

Physically, Gibbs sampling is routinely achieved in experiments via cool-

ing as a manifestation of open-system thermodynamics, although theoreti-

cal understanding of such processes has been largely heuristic. Computation-

ally, quantum Gibbs sampling is the quantum analog of the same classical

task in the computational basis, often achieved by Markov chain Monte Carlo

(MCMC) methods. As a representative example, the Metropolis–Hastings al-

gorithm [512] performs local accept-reject steps to construct a Markov chain

whose stationary state is the classical Gibbs distribution; the Gibbs distribu-

tion can be efficiently sampled if the Markov chain mixes rapidly. Nowadays,

Monte Carlo methods have already outgrown their original intent and found

ubiquitous applications in optimization and machine learning due to their sim-

plicity and versatility. It is natural to wonder if the same features will be present

for quantum Gibbs sampling.

The most direct quantum algorithms for Gibbs sampling (for noncommuting

Hamiltonians) suffer from an explicit cost exponential in the size of the sys-
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244 15. Gibbs sampling

tem. Another approach is to quantize classical Monte Carlo algorithms [984],

but this approach has faced serious technical challenges rooted in quantum

mechanics: the energy-time uncertainty principle (for imposing the Boltzmann

weights) and the no-cloning theorem (for “rejecting” a quantum state). Re-

cently, a new wave [256, 939, 856, 260, 259] of proposals revisits the issue

from the angle of open-system thermodynamics and gives nature-inspired al-

gorithms for Gibbs sampling. These more directly resemble the dynamical pro-

cess of thermalization and have the potential to achieve better runtimes for

specific systems where thermalization is expected to be fast.

Rough overview (in math)

Given a Hamiltonian H =
∑

i Ei|ψi⟩⟨ψi| over n qubits, a desired inverse tem-

perature β, and an error parameter ϵ, the Gibbs sampling task is to prepare an

n-qubit quantum state ρ such that

∥ρ − σβ∥tr ≤ ϵ ,

where

σβ :=
e−βH

Z ∝
∑

i

e−βEi |ψi⟩⟨ψi| and Z := tr[e−βH].

The quantity Z is known as the partition function. The above uses the con-

venient error metric given by the trace norm ∥·∥tr, which controls the error

for arbitrary bounded (possibly nonlocal) observables. In some applications, it

could be sufficient to give a state ρ that approximates all local observables up

to high precision, even if the global distance between ρ and σβ is large. Note

that σβ corresponds to an ensemble of eigenstates of H, where an eigenstate

with energy Ei occurs with probability proportional to the Boltzmann weight

e−βEi (β has units of inverse energy so that βEi is dimensionless).

To solve this problem, the quantum algorithm requires access to H, for

example, through a block-encoding of H. Block-encodings can often be ef-

ficiently constructed, for instance, when H is a sparse matrix or when H is

given as a sum of poly(n) local interaction terms. Henceforth, assume that H

is offset such that it is guaranteed to be a non-negative operator (no negative

energies).

An early approach [838] for Gibbs sampling relied on quantum phase es-

timation (QPE) and amplitude amplification. In particular, one starts with a

2n-qubit maximally entangled state (for which the reduced density matrix on

the first n qubits is the maximally mixed state) and applies QPE to the first

n qubits, reading an estimate of the energy into an ancilla register. Under the
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simplification that QPE has perfect resolution, one now has the state

1√
2n

∑

i

|ψi⟩|ϕi⟩|Ei⟩ ,

where |ψi⟩ is the i-th eigenstate of H, Ei is the associated energy, and the states

|ϕi⟩ form an arbitrary (unimportant) orthonormal basis. Next, one coherently

rotates an ancilla qubit to put the correct Boltzmann weight into the amplitude:

1√
2n

∑

i

|ψi⟩|ϕi⟩|Ei⟩
(
e−βEi/2|0⟩ +

√
1 − e−βEi |1⟩

)
.

Note that the probability of measuring the final qubit in |0⟩ is precisely Z/2n.

Rather than measure and postselect, one now performs amplitude amplification

on the ancilla being |0⟩ to produce

1√
Z

∑

i

e−βEi/2|ψi⟩|ϕi⟩|Ei⟩

up to small error, which is a purification of the Gibbs state σβ =

Z−1 ∑
i e−βEi |ψi⟩⟨ψi|. While QPE does not exactly produce the operation

described above, a more complete analysis in [838, 272] shows the idea still

works. This approach is akin to classical rejection sampling (see also [822]),

where a state is chosen at random and accepted with probability e−βEi , such

that repeating until acceptance yields a sample from the correct distribution.

Due to amplitude amplification, the quantum algorithm enjoys a quadratic

speedup.

More advanced methods that have exponentially better ϵ dependence have

since been developed. Reference [289] used a linear combination of unitaries

approach to perform the imaginary-time evolution operator e−βH , again

followed by amplitude amplification. Technically, that work assumed access

to an operator similar to
√

H, but this requirement was removed in Gibbs

samplers appearing in [48, 45], which employ a method for implementing

smooth Hamiltonian functions. Alternatively, one can use the quantum

singular value transformation along with a polynomial approximation to the

function e−β(1−x)/2 on the interval x ∈ [−1, 1] [431, Section 5.3] and combine

this with (fixed-point) amplitude amplification [1067].

Another family of quantum algorithms is closer in spirit to classical Monte

Carlo methods. They quantize the Metropolis–Hastings algorithm (quantum

Metropolis sampling [984]) or simulate the dynamics arising from a system-

bath interaction [256, 939, 856, 260, 259]. These algorithms make fundamental

usage of QPE (or the quantum operator Fourier transform [260, 259]) for prob-

ing the energy, but most importantly (and most nontrivially), they construct
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a detailed-balance “quantum Markov chain” via either discretely or continu-

ously “rejecting” the quantum state. Intuitively, the algorithm implements the

following rule:

“Apply a jump. If the energy increases, reject with some probability.”

Care must be taken to perform the rejection step coherently and to handle the

fact that the energies cannot be learned to infinite precision. Abstractly, Monte

Carlo–style quantum algorithms emulate a continuous-time quantum Markov

chain (i.e., a Lindbladian L)1 that converges to the Gibbs state after evolution

time tmix (often called the mixing time)

L[σβ] ≈ 0 and ∥eLtmix [ρ0] − σβ∥tr ≤ ϵ

for some initial state ρ0. Like the classical Metropolis–Hastings algorithm, for

some systems, tmix can be exponentially large (or worse) in the system size n,

while for other systems, it can be much smaller (polynomial or logarithmic).

It is a generally difficult problem to determine tmix. As a consequence, clas-

sical Monte Carlo algorithms rarely have convergence guarantees in practice.

Rather, they are employed in conjunction with a variety of heuristic conver-

gence tests.

Note that such a process can be further quantized to gain quadratic

speedup [1048, 260].

Dominant resource cost (gates/qubits)

Assuming one has access to a block-encoding of the Hamiltonian H, that is, a

unitary whose upper left block is the operator H/α, where α is a normalization

constant at least as large as the spectral norm of H, one can accomplish the

Gibbs sampling task using [48, Lemma 44] (see also [45, Corollary 16])

αβ

√
2n

Z · poly(log(1/ϵ), n) (15.1)

calls to the block-encoding and a similar number of other gates. Note that since

we have assumed H is non-negative, we have Z ≤ 2n. In the case that H is d-

sparse, we can take α = d∥H∥max, where ∥H∥max is the maximum absolute value

of any entry of the matrix H. In the case one has access to
√

H, the β depen-

dence can be reduced from β to
√
β [289]. This complexity statement might be

regarded as a quadratic speedup compared to the classical method of rejection

sampling, which requires 2n/Z samples on average; however, note that this

classical method only directly applies to diagonal (classical) Hamiltonians H.

1 Most constructions are continuous-time quantum Markov chains as they are mathematically
easier to work with than discrete-time quantum channels [984].
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Otherwise, a classical approach may need to resort to exact diagonalization of

H, which has O (2n) space complexity and even worse time complexity.

Monte Carlo–style quantum Gibbs sampling algorithms have complexity de-

termined by

(mixing time) · (cost per unit evolution time eL). (15.2)

The mixing time is expected to vary significantly for different systems of in-

terest (based on classical Monte Carlo intuition), but for systems appearing

in nature, one may be optimistic based on the observed fast thermalization of

physically relevant observables. In fact, in many cases, rapidly thermalizing

metastable states will have physically relevant characteristics; in analogy with

classical ferromagnetic systems below the critical temperature. The cost per

unit evolution time is dominated by the QPE subroutine, which then scales with

a certain energy resolution. Typically, we may work in a convention where H

is given by poly(n) Hamiltonian terms each of strength O (1), enabling a block-

encoding of H with normalization α = poly(n) to be implemented in gate com-

plexity poly(n), or alternatively, the ability to perform black-box Hamiltonian

simulation for time t at gate cost t · poly(n).2 In this case, an overall gate com-

plexity for a rapidly mixing system (i.e., tmix ≤ poly(n)) can be poly(n, β, 1/ϵ);

see [260, Table I] for a catalog of existing constructions. A recent construc-

tion [259] improved the asymptotic cost per unit Lindbladian evolution time to

Õ(β) Hamiltonian simulation time assuming black-box access to Hamiltonian

simulation; for lattice Hamiltonians, this further simplifies as one merely needs

to simulate lattice patches of diameter Õ(β). To put together a practically rele-

vant end-to-end resource estimate, one needs to design better algorithms (see,

e.g., [351] for a single-ancilla variant for ground states) to reduce the per unit

time cost, as well as to estimate the mixing time (e.g., by exact diagonalization

of the map for small system sizes). Of course, if Gibbs sampling is employed

as a heuristic (as in many classical applications of Monte Carlo methods), the

cost will be empirical.

Caveats

On the one hand, the superpolynomial O(
√

2n) complexity for Gibbs sampling

that appears explicitly in Eq. (15.1) is necessary in general (for sufficiently

large β it allows one to solve NP-hard or even QMA-hard problems in the gen-

eral case). On the other hand, most physical Hamiltonians (if they appear to

2 In the model of black-box Hamiltonian simulation, one can apply the unitary Ui = eiHti for
user-specified choices of ti, and the goal is to minimize the cumulative total

∑
i ti over the

course of the algorithm. In this model, it is sensible for t and β to have the same units
(interpreted as time), as βH and iHt are both unitless.
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thermalize in nature) should be simulable without exponential hidden prefac-

tors. The Monte Carlo–style approach to Gibbs sampling attempts to mimic

nature more closely than the other algorithms with guaranteed complexities

mentioned above; hence, it looks more promising for obtaining polynomial

runtimes, but this must be verified through system-specific analysis or hard-

ware demonstrations.

Finally, if the Hamiltonian comes from classical problems (such as solving

semidefinite programs), loading the instance may have exponential cost

(eΩ(n)), which in the above presentation is hidden in the assumption of a block-

encoding of classical data. Additionally, it is unclear whether Hamiltonians

arising from classical data—which would likely lack the local interaction

structure that one sees in chemical and physical systems—should be expected

to “thermalize” quickly (i.e., whether Monte Carlo–style algorithms converge

in a small number of iterations).

Example use cases

• Multiplicative weights update (MWU) method and conic programming:

Gibbs sampling is the main source of quantum speedup in the MWU

method, which is used to solve semidefinite programs and other conic

programs [181, 182, 48, 45, 46]. Existing analyses in this direction have

employed Gibbs samplers with a guaranteed quadratic (but no larger)

speedup, rather than the more heuristic and recent Monte Carlo–style

algorithms.

• Quantum chemistry: An important step of estimating the ground state en-

ergy of electronic structure Hamiltonians is generating an ansatz state that

has a large overlap with the ground state. This might be done via Gibbs sam-

pling at sufficiently low temperatures; the overlap with the ground state is

e−βE0/Z, which can be large when 1/β is sufficiently small compared to the

spectral gap between the ground and excited space of the Hamiltonian.

• Condensed matter physics: Similar to quantum chemistry, Gibbs sampling

provides a method for producing ansatz states for ground state energy calcu-

lations, which often capture the relevant physics. However, condensed mat-

ter physicists are also interested in material properties at finite temperatures

so that the Gibbs state itself might equally be of interest.

• Computing partition functions: One of the early references to develop quan-

tum Gibbs samplers [838] applied it to the problem of estimating the parti-

tion functionZ up to small relative error. The partition function contains all

the relevant thermodynamic information of the system.

• Combinatorial optimization: Many combinatorial optimization problems

can be viewed as finding the ground state of classical Hamiltonians (i.e.,
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Hamiltonians that are diagonal in the computational basis), or finding a

low-energy state that achieves a high approximation ratio with the ground

state. Classical Monte Carlo algorithms are a key technique in this area,

and quantization of these methods can sample the same classical thermal

distribution with a quadratic speedup in the mixing time [944]. The full

power of Gibbs sampling for general nondiagonal Hamiltonians could be

useful in situations where one adds a noncommuting transverse field to the

classical Hamiltonian and wishes to prepare a low-energy state, such as in

quantum annealing or for training quantum Boltzmann machines [30].

Further reading

Gibbs sampling has been studied in several specific cases. For example, [152]

studied Gibbs sampling of local Hamiltonians in 1D. Moreover, [603] studied

commuting spatially local Hamiltonians and showed conditions under which

they thermalize in polynomial time, suggesting efficient Gibbs sampling via

Monte Carlo–style methods. These conditions hold for any 1D system at any

temperature, and in any higher-spatial dimension above a certain threshold

temperature.
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Quantum adiabatic algorithm

The authors are grateful to Dong An for reviewing this chapter.

Rough overview (in words)

The quantum adiabatic algorithm (QAA) [382], sometimes referred to as adi-

abatic state preparation, is a continuous-time procedure for (approximately)

preparing an eigenstate (typically the ground state) of a particular Hamiltonian

of interest on a quantum device. The QAA also forms the basis for a model of

quantum computation called adiabatic quantum computation which acts as an

alternative to the standard quantum circuit model.

The main idea of the QAA is to begin in an eigenstate of a simpler Hamil-

tonian that is easy to prepare, and then slowly change the Hamiltonian to be

equal to the more complex Hamiltonian of interest. The adiabatic theorem (see

[16] and references therein), a celebrated concept from physics, dictates that if

the evolution is sufficiently slow, the system will evolve to (approximately) re-

main in the instantaneous eigenstate of the continuously varying Hamiltonian

and thus finish in the desired state. The length of time required for the evolution

to succeed depends on the spectral properties of the Hamiltonian path and in

particular on the minimum spectral gap. The adiabatic algorithm can be sim-

ulated on a gate-based quantum computer with time-dependent Hamiltonian

simulation.

Rough overview (in math)

Let H(s), where s varies as 0 ≤ s ≤ 1, denote a single-parameter path through

the space of Hamiltonians, and let |ϕ j(s)⟩ and E j(s) denote the eigenstates and

eigenvalues of H(s), indexed by j in increasing order. The goal of the QAA

is to prepare a certain eigenstate |ϕ j(1)⟩ of H(1). Let |ψ(t)⟩ denote the state of
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our system at time t and let T be the total evolution time. The procedure calls

for beginning in the state |ψ(0)⟩ = |ϕ j(0)⟩ and allowing |ψ(t)⟩ to evolve by the

Schrödinger equation according to the Hamiltonian H(t/T ), that is, i d
dt
|ψ(t)⟩ =

H(t/T )|ψ(t)⟩ from t = 0 to t = T . Thus, as T is made larger, the path from H(0)

to H(1) is traversed increasingly slowly.

Dominant resource cost (gates/qubits)

The main resource for the continuous-time QAA is the total evolution time T .

The adiabatic theorem suggests that if T is chosen sufficiently large, and as

long as eigenvalue E j is nondegenerate along the entire path, then |ψ(T )⟩ ≈
|ϕ j(1)⟩ will hold. The often-quoted heuristic condition [16] for success is that

T ≫ max
0≤s≤1

∥∥∥ dH
ds

∥∥∥
∆(s)2

, (16.1)

where ∆(s) is the spectral gap, that is, mini, j |Ei(s) − E j(s)|, and ∥·∥ denotes

the spectral norm. Thus, the runtime needed for the QAA to have small error is

primarily governed by the minimum size of the spectral gap along the adiabatic

path. This aspect of the QAA is a common sticking point as it is often difficult

to produce lower bounds on ∆(s) that would suffice for proving upper bounds

on T . In practice, the value of T can be chosen heuristically, or by trial-and-

error, but a more detailed understanding of ∆(s) would inform smarter choices

of Hamiltonian path H(s).

While Eq. (16.1) is nonrigorous and potentially loose in specific scenarios,

the polynomial dependence of T on the inverse spectral gap is an essential

feature of the QAA. For example, it was shown in [161] that in general, any

rigorous bound on the QAA runtime must scale at least linearly in the inverse

spectral gap.

The QAA is typically formulated as a continuous-time procedure, but a gate-

based quantum computer can simulate the QAA by discretizing the path and

approximately implementing the evolution from time t to t + δt with prod-

uct formulas or with more advanced techniques for time-dependent Hamil-

tonian simulation. This incurs error in addition to the adiabatic error of the

continuous-time QAA. The number of gates needed to do this can be made

proportional to T (up to logarithmic corrections), polynomial in the number

of qubits needed to hold the state |ψ(t)⟩, and logarithmic in the approximation

error incurred (e.g., [615]).

Caveats

A technical caveat of the QAA is that rigorous formulations of sufficient con-

ditions for success (e.g., [567, 376]) are more complex than Eq. (16.1) and
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likely looser than what is necessary in practice. Also, in most cases, the depen-

dence of the runtime T on the final approximation error ϵ = ∥|ψ(T )⟩ − |ϕ j(1)⟩∥
goes as T = poly(1/ϵ), rather than T = polylog(1/ϵ). To circumvent this and

achieve polylog(1/ϵ) dependence, one can choose more sophisticated Hamil-

tonian paths H(s) for which all time derivatives vanish at s = 0 and s = 1

[411, 16].

A practical caveat of the QAA is that the spectral gap—the main determiner

of the resource cost—is difficult to study theoretically. Numerically, it can of-

ten be computed only for small system sizes, and it is unclear whether extrap-

olations to larger system sizes would be accurate.

Furthermore, in many end-to-end applications the spectral gap is not only

unknown, but also expected to be extremely small, implying that the QAA

requires a large runtime (see §Example use cases, below). For the QAA to be

efficient, the spectral gap must decay only like an inverse polynomial of the

system size, but such scaling requires the problem instance to have a special

structure. Such structure should not be assumed to exist without justification.

NISQ implementations

The QAA is closely related to the concept of quantum annealing [591], a

term used especially in the context of near-term implementations on existing

quantum hardware. In quantum annealing, the system is exposed to a time-

dependent Hamiltonian, typically a transverse-field Ising model. The strength

of the transverse field is slowly reduced, eventually to zero, where the Hamil-

tonian is equal to a classical Ising model encoding a hard combinatorial opti-

mization problem. If implemented perfectly and sufficiently slowly, this would

be a manifestation of the QAA, and one would obtain the solution to the prob-

lem. However, the typical setting of quantum annealing is to consider faster

implementations, and to possibly allow for some amount of control noise and

finite-temperature effects (rather than evolving under a closed system at zero

temperature), which induce transitions from the ground state to excited states.

The goal is relaxed from ending in the exact ground state of the final Hamilto-

nian to ending in a low-energy state that can be considered an approximately

optimal solution to the problem. The success metric is often the quality of the

solution produced rather than the runtime required to find the best solution. As

such, it is a heuristic algorithm and must be compared with classical heuristic

algorithms, where evidence of a scalable advantage is mixed. See, for exam-

ple, [323] for a perspective on quantum annealing and the most promising

related directions.

Separately, the QAA can be related to variational quantum algorithms,

which are NISQ friendly. In particular, by applying product formulas to the
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QAA, one obtains alternating time evolutions by H(0) and by H(1); in the

case that H(0) is a transverse field and H(1) is a classical cost function, this

is precisely an instance of the quantum approximate optimization algorithm

(QAOA) [384], a leading NISQ algorithm. In the limit of large depth, the

QAOA can fully simulate the QAA to arbitrarily small precision. However, in

a NISQ setting, the depth of the QAOA would need to be restricted, and the

QAOA would not exactly follow the QAA.

Example use cases

• Combinatorial optimization: The QAA was first invented [382] as a way

to solve hard classical combinatorial optimization problems on a quantum

computer. An example is constraint satisfaction problems, where one is

given a Hamiltonian H(1) that is diagonal in the computational basis

(i.e., “classical”) and equal to the sum of various constraints on n bits. The

ground state of H(1) is the bit string that violates the fewest constraints.

One typically chooses the initial Hamiltonian to be H(0) = −∑n
i=1 Xi,

where Xi denotes the Pauli-X operator on qubit i, whose ground state is an

easy-to-prepare product state. The QAA is guaranteed to find the ground

state of H(1) if it is run with sufficiently large evolution time. However,

in general, it is expected that the spectral gaps along the adiabatic path

become exponentially small in n [638, 1071, 517, 23, 1032], indicating that

the QAA requires exponentially long runtime.

• Quantum chemistry and condensed matter physics: A central problem of

quantum chemistry and computational condensed matter physics is the prob-

lem of finding the ground state energy of a molecule, material, or lattice

model. This can be solved efficiently with quantum phase estimation (QPE)

so long as one can prepare a state that has substantial overlap with the ground

state of the Hamiltonian. Adiabatic state preparation has been proposed as

a method for producing such a state (see, e.g., [1056, 870, 1006, 644, 966,

1031, 1072]). This initial state preparation is often the bottleneck in the end-

to-end quantum solution, as it can require exponential time for systems of

interest (see, e.g., [670]).

• Quantum linear system solvers: The state-of-the-art quantum linear system

solvers [313] leverage the QAA to produce a quantum state |x⟩ correspond-

ing to the solution of a linear system Ax = b (see also [964, 31, 689, 572]). In

particular, this method allows the runtime to scale linearly in the condition

number of the matrix A.
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Further reading

• See [16] for a comprehensive 2018 review of the QAA and adiabatic quan-

tum computation more generally.

• See [162] for a digital version of the QAA for a gate-based quantum com-

puter, but distinct from a direct simulation of the QAA. The idea is to choose

a sequence of s values 0 = s0 < s1 < s2 < · · · < sT = 1 and perform mea-

surements of H(st) for t = 0, . . . ,T in sequence using QPE. As long as the

difference between consecutive values of s is sufficiently small, the quan-

tum Zeno effect guarantees that each measurement will project onto the cor-

rect eigenstate |ϕ j(st)⟩ with high probability (see also [944, 673]). One can

also take larger jumps, and amplify their success probability with fixed-point

amplitude amplification. The resource cost has a similar dependence on the

spectral gap as the continuous-time QAA: if the “path length” traced by the

eigenstate |ϕ j(s)⟩ is L, the minimum gap is ∆, and the target error is ϵ, then

the gate cost of the algorithm is O (
L log(L/ϵ)/∆

)
. The path length L can be

upper bounded by ∥dH/ds∥/∆, which roughly recovers Eq. (16.1).

• Along the lines of the previous bullet, [1012] gives an alternative way to ef-

fect adiabatic state preparation on a gate-based computer with polylog(1/ϵ)

overall error dependence, via quasi-adiabatic continuation.
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Loading classical data

The end-to-end quantum applications covered in this book have classical in-

puts and classical outputs, in the sense that the problem is specified by some

set of classical data, and the solution to the problem should be a different set of

classical data. In some cases, the input data is relatively small, and loading it

into the algorithm does not contribute significantly to the cost of the algorithm.

In other cases—for example, “big data” problems within the areas of machine

learning and finance—the dominant costs, both for classical and quantum al-

gorithms, can be related to how the algorithms load and manipulate this large

quantity of input data. Consequently, the availability of quantum speedups for

these problems is often dependent on the ability to quickly and coherently ac-

cess this data. The true cost of this access is the source of significant subtlety

in many end-to-end quantum algorithms.

The authors are grateful to Thomas Häner, Damian Steiger, and Xiao Yuan for

reviewing this chapter.

17.1 Quantum random access memory

Rough overview (in words)

Quantum random access memory (QRAM) is a construction that enables co-

herent access to a database, such that multiple different elements can be read in

superposition. The ability to rapidly access large, unstructured datasets in this

way is crucial to the speedups of certain quantum algorithms, for example in

quantum machine learning based on quantum linear algebra. QRAM is com-

monly invoked to circumvent data-input bottlenecks [1] in situations where

loading input data could dominate the end-to-end runtime of an algorithm. It
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remains an open question, however, whether a large-scale dedicated QRAM

device will ever be practical, casting doubt on quantum speedups that rely on

QRAM. Note that, while here we focus on the more common use case of load-

ing classical data with QRAM, certain QRAM architectures can be adapted to

also load quantum data [427].

Rough overview (in math)

Consider a length-N, unstructured classical data vector x, and denote the i-th

entry as xi. Let the number of bits of xi be denoted by d. Given an input quan-

tum state |ψ⟩ = ∑N−1
i=0

∑
b∈{0,1}d αib|i⟩|b⟩, QRAM is defined [434] as a unitary

operation Q with the action

Q|ψ⟩ = Q

N−1∑

i=0

∑

b∈{0,1}d
αib|i⟩|b⟩ =

N−1∑

i=0

∑

b∈{0,1}d
αib|i⟩|b ⊕ xi⟩. (17.1)

Here, the first log2(N)-qubit register stores the “address” (assuming for sim-

plicity that N is a power of 2), while the second d-qubit register stores the

corresponding “data.” Note that the unitary Q can also be understood as an

oracle (or black box) providing access to x, as Q(
∑

i αi|i⟩|0⟩) =
∑

i αi|i⟩|xi⟩.
Let TQ denote the “cost” of implementing the operation Q, where TQ can be

measured in wall time, circuit depth, total number of gates, total circuit space-

time occupancy, total number of T gates, etc., depending on the context. Algo-

rithms that rely on QRAM to claim exponential speedups over their classical

counterparts frequently assume that TQ = polylog(N). However, as discussed

in §Caveats, below, it is crucial to emphasize that this assumption can only

hold when TQ is interpreted as the circuit depth or wall time (or something

similar) to implement Q; whereas, if TQ is taken to be the total gate cost or

the spacetime occupied by the computation, simple gate counting arguments

imply a lower bound of TQ ≥ Ω(dN). In a discrete gate set, each unit of space-

time can be occupied with only a finite number of unique gates; since there

are 2dN different possible data vectors x, the circuit must have at least Ω(dN)

spacetime to be able to implement all possibilities (see also [568, Section V]

for a more detailed discussion).

Dominant resource cost (gates/qubits)

Let us consider for simplicity the d = 1 case, that is, when each data entry

is a single bit. The QRAM operation Q can be implemented as a quantum

circuit that uses O(N) gates. Assuming gates acting on disjoint qubits can be

parallelized, a circuit depth of TQ = O(log(N)) can be achieved at the expense

of using O(N) ancillary qubits; explicit circuits can be found in, for exam-

ple, [349, 496]. The number of ancillary qubits can be traded off for increased
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circuit depth; circuits implementing Q can be constructed using O(N/M) an-

cillary qubits and depth O(M log(N)), where M ∈ [1,N]; see examples in

[722, 140, 349, 496] (the setting of M = N/ log(N) is sometimes referred

to as “QROM”—see terminology caveats below—and its fault-tolerant cost of

implementation is well established [75]).

If the data vector x is sparse—that is, only s of its N entries are

nonzero—then there exist circuit implementations with depth as shallow as

TQ = O(log(s log(N))), using O(s log(s) log(N)) ancillary qubits, both of

which for s = O(1) are exponentially better than the general case of a dense

vector x [1085].

Each of the above constructions can be generalized to the d > 1 case with

various space-time tradeoffs. For example, the d bits of a data entry can be

queried in series, requiring O(N) ancillary qubits with depth TQ = O(d log(N))

(improvement to TQ = O(d + log(N)) is possible for certain QRAM architec-

tures [269]). Alternatively, the d bits can be accessed in parallel, with depth

TQ = O(log(N)), but at the price of O(Nd) ancillary qubits.

Caveats

The main concern for QRAM’s practicality is the large hardware overhead

that is necessary to realize fast queries with depth TQ = O(log(N)). This cost

is likely to be prohibitive for big-data applications where N can be millions or

billions. The cost will also be magnified by additional overhead associated with

error correction and fault tolerance [349], especially considering that circuits

implementing Q are composed of O(N) non-Clifford gates. Indeed, this obser-

vation together with the assumption that magic state distillation is expensive to

run in a massively parallel fashion, has led some to argue that TQ = O(log(N))

is not realistic in a fault-tolerant setting (see, e.g., [568]). However, it is possi-

ble that alternative approaches to fault tolerance tailored to QRAM could help

alleviate this large hardware overhead.

The fault-tolerance overhead may be reduced for the so-called bucket-

brigade QRAM (BBQRAM) [434, 62, 496], which is a family of circuits

implementing Q that are intrinsically resilient to noise. More precisely, [496]

shows that if ϵ is the per-gate error rate, BBQRAM circuits can implement

Q with leading-order fidelity F ∼ 1 − ϵ polylog(N), while generic circuits

implementing Q have leading-order fidelity F ∼ 1 − ϵ O(N). Nevertheless, at

the scale necessary for useful end-to-end applications, some amount of error

correction will almost certainly be required even for BBQRAM circuits.

Even if depth TQ = polylog(N) is practically achievable, some have ar-

gued that any fair comparison with state-of-the-art classical methods should

then allow for classical parallel computation. After all, the parallel classical
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hardware necessary to operate the circuit Q (including the quantum error cor-

rection) could in principle be repurposed directly toward solving the end-to-

end computational problem. For example, many linear algebra tasks such as

matrix-matrix and matrix-vector multiplication of size-N objects are amenable

to parallelization, and can also have cost scaling as polylog(N) in some parallel

classical models of computation [954, 568]. Under such a comparison, it be-

comes difficult to identify conditions where QRAM-based quantum algorithms

can give rise to a significant scaling advantage [568].

Some terminology caveats:

• The unitary Q in Eq. (17.1) is referred to by some as quantum read-only

memory (QROM) [75], reflecting the fact that Q corresponds only to reading

data. Some algorithms also require the ability to write to the vector x during

computation, but the writing of classical (i.e., not in superposition) data need

not be implemented via a quantum circuit.

• The term QRAM is used by different authors to refer to the unitary Q, fam-

ilies of circuits that implement Q, or quantum hardware that runs said cir-

cuits.

• The terms QRAM and QROM are sometimes used for distinguishing the

cases of TQ = polylog(N) and TQ = poly(N), respectively, even though

TQ is unrelated to the distinction between reading and writing. The term

QROAM has also been used to describe intermediate circuits that trade off

depth and width [140].

• Some use the term QRAM to refer exclusively to the case N ≫ 1 and TQ =

polylog(N) depth, where the implementation challenges for QRAM are most

pronounced.

Elsewhere in this book, we follow the convention described in the final bullet

point above: usage of the term QRAM, unless specified otherwise, refers to the

ability to implement Q at cost polylog(N).

Example use cases

• Quantum linear algebra: QRAM can be used as an oracle for implement-

ing linear algebra algorithms operating on unstructured data (e.g., by acting

as a subroutine in a block-encoding), with applications in machine learn-

ing, finance, etc. For example, the quantum recommendation systems algo-

rithm [608] (now dequantized [976]) uses QRAM as a subroutine to effi-

ciently encode rows of an input data matrix in the amplitudes of quantum

states (see Appendix A of [608] for details).

• Hamiltonian simulation, quantum chemistry, condensed matter physics: In

the linear combination of unitaries input model, QRAM can be used as a
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subroutine for “PREPARE” oracles that encode coefficients of the simulated

Hamiltonian into the amplitudes of quantum states [75]. These use cases typ-

ically consider the hybrid QROM/QRAM constructions with O(K log(N))

ancillary qubits and depth O(N/K) (with the parameter K to be optimized),

because the amount of data (and thus the size of N) scales only polynomially

with the system size.

• Grover search: QRAM can be used as an implementation for Grover’s or-

acle in the context of an unstructured database search; see Chapter 4 of

[801]. This appears for example in quantum algorithms that utilize dynamic

programming to give polynomial speedups for combinatorial optimization

problems like the traveling salesperson problem [28]. However, it has been

argued that a quantum computer running Grover’s algorithm with a QRAM-

based oracle would not provide a speedup over a classical computer with

comparable hardware resources [954].

• Topological data analysis (TDA): A small QRAM (i.e., not exponentially

larger than the main quantum data register) is used in some quantum algo-

rithms for TDA [709, 755] in order to load the positions of the data points for

computing whether simplices are present in the complex at a given length

scale.

Further reading

• Reference [568] focuses on various fundamental and practical concerns for

large-scale QRAM, while also providing a comprehensive survey.

• Reference [293] provides an overview of practical concerns facing QRAM

in the context of big-data applications (though the discussions of noise re-

silience there and in [62] are somewhat outdated, cf. [496]).

17.2 Preparing quantum states from classical data

Rough overview (in words)

An important subroutine in many quantum algorithms is preparing a quantum

state given a list of its amplitudes stored, for example, in a classical database.1

The upshot is that N amplitudes, which require O(N) classical bits to write

down, can be encoded in a quantum state with only log2(N) qubits, an ex-

ponential compression in memory. However, there are caveats; for example,

simple information-theoretic bounds [835] dictate that the quantum circuit that

1 When the amplitudes are given by some well-behaved function, rather than being arbitrarily
chosen, different (related) protocols are used; see §Further reading, below.
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prepares the log2(N)-qubit state must still have at least O(N) gates, so no ex-

ponential advantage in gate complexity is possible. Additionally, reading out

the N amplitudes from the encoded quantum state generally requires full quan-

tum state tomography, requiring Ω(N) preparations of the state. Depending on

which resource is being optimized, the best protocol for state preparation will

look different, and optimal state preparation methods are known for several

natural choices of metric.

Rough overview (in math)

Let x = (x0, . . . , xN−1) ∈ CN be a vector of N complex numbers, where N is a

power of 2, and let

|ψ⟩ = 1

∥x∥

N−1∑

i=0

xi|i⟩ (17.2)

be the associated normalized quantum state, where ∥x∥ denotes the standard

Euclidean vector norm. Let n = log2(N) denote the number of qubits of |ψ⟩.
The goal is to prepare the state |ψ⟩ by applying a quantum circuit to the initial

state |0⟩⊗n. This problem has been extensively studied in the literature; a com-

mon approach, originating in [463], is to iterate through each of the n qubits

and perform a single-qubit rotation, with the angle of rotation depending on

the setting of the previous qubits. The rotation on the first qubit creates the

1-qubit state


√∑N/2−1

i=0
|xi|2

|0⟩ +

√∑N−1

i=N/2
|xi|2

|1⟩

by performing a single-qubit rotation (about the Y axis) on the state |0⟩ by an

appropriate angle. Next, a similar kind of single-qubit rotation is performed on

the second qubit, where the angle of rotation depends on whether the first qubit

is |0⟩ or |1⟩. The (m + 1)st rotation is by one of 2m angles, depending on the

setting of the first m qubits. Thus, in total there are 1 + 2 + · · · + 2n−1 = N − 1

total angles that might be used for single-qubit rotations. This sequence of

operations prepares the state ∥x∥−1 ∑N−1
i=0 |xi||i⟩. To apply the phases, a single-

(or zero-) qubit phase gate with the appropriate phase “angle” is performed—

the angle depends on the setting of all n qubits, corresponding to the N = 2n

different phases that might be needed. Thus, the total number of angles that

define the protocol is 2N − 1, exactly corresponding to the number of real

parameters needed to describe the general state in Eq. (17.2).

It remains to describe how the controlled single-qubit rotations are per-

formed when there are many control bits and different angles for each setting

of the control. Here, one has many choices and the exact method will depend
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|0⟩ Ry(θ0,0) • • •

|0⟩ Ry(θ1,0) Ry(θ1,1) • •

|0⟩ Ry(θ2,0) Ry(θ2,1) Ry(θ2,2) Ry(θ2,3)

Figure 17.1 A simple quantum circuit to prepare an arbitrary state |ψ⟩ with non-

negative real amplitudes on n = 3 qubits. The gate Ry(θ) denotes a single-

qubit rotation by angle θ about the Y axis. The 2n − 1 angles θs,p indexed by

s ∈ {0, 1, . . . , n − 1} and p ∈ {0, 1, . . . , 2s − 1} can be calculated from the ampli-

tudes xi. To account for negative or complex amplitudes, 2n additional controlled

phase gates would be needed. More sophisticated proposals can reduce the depth

for ancilla-free constructions from O(2n) to O(2n/n) [968].

on how one has access to the data in x and what resource is being optimized.

The most straightforward way is to iterate through each possible setting of the

control bits and perform a multiply controlled rotation by a fixed angle for each

in sequence. This approach requires O(N) n-qubit gates applied sequentially,

as depicted in Fig. 17.1. Assuming one can perform arbitrary single-qubit gates

to exact precision, it is possible to prepare the state |ψ⟩ exactly. However, it is

often useful to work with finite precision angles stored in binary, moreover one

often needs to design circuits from a discrete gate set, such as the Clifford +

T gate set, when compiling into a gate sequence that can be implemented fault

tolerantly. When this is the case, single-qubit rotations must be performed ap-

proximately: to approximate a single-qubit rotation to error ϵ, a Clifford + T

sequence of length O(log(1/ϵ)) can be applied [884].

When ancilla qubits are available, one can design protocols that have shal-

lower depth (but about the same total number of gates). For example, one can

store the 2N − 1 angles in a quantum random access memory (QRAM) data

structure. In this case, for m = 1, . . . , n, to perform the required controlled ro-

tations on the mth qubit in superposition, one can (i) read in the (approximate)

binary value of the rotation angle (depending on the setting of the first m − 1

qubits) into an ancilla register using a single query to the QRAM, and then

(ii) perform fixed-angle single-qubit rotations on the mth qubit, controlled by

the qubits of the ancilla register storing the binary representation of the rota-

tion angle, and finally (iii) reset (uncompute) the ancilla register with another

query to the QRAM. This way, one applies the correct angle in parallel, rather

than iterating through all possible 2m−1 angles.
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Dominant resource cost (gates/qubits)

In Table 17.1, we collect several state preparation results in the model where

any single-qubit gate can be performed exactly and the only multiqubit gates

allowed are CNOTs. The circuit size (i.e., the total number of single-qubit and

CNOT gates) and depth (i.e., the number of parallel-acting layers of gates), as

well as the number of ancilla qubits (i.e., the number of qubits beyond the n

qubits needed to hold the state |ψ⟩) are listed.

Ref. Circuit size Circuit depth Ancilla qubits

[968, 1073] O (2n) O (2n/n) none

[968, 1073] O (2n) O (2n/(m + n)) m ∈ [0,O (2n/n)]

[968, 1085, 468] O (2n) O (n) O (2n)

Table 17.1 Asymptotic resource cost (and tradeoffs therein) of exact state prepa-

ration of abitrary states in a gate set with CNOT gates and arbitrary single-qubit

gates.

Note that the result of [1073], which shows depth O(2n/(m + n)) using m

ancilla qubits for m ≤ O(2n/n), encompasses all other results in the table (and

is superior to the third row as it uses O(2n/n) ancilla qubits instead of O(2n)).

We include the other results for completeness, as they are distinct constructions

and can have other potential upsides.

A lower bound of Ω(2n) is known for circuit size [835], so all of the results

above are size optimal up to constant factors. Moreover, for any m ancillas, a

lower bound of Ω(max(n, 2n/(n + m))) is known for the circuit depth [968], so

all of the results above are also optimal in circuit depth, up to constant factors.

For approximate state preparation using a discrete gate set such as Clifford

+ T , the state |ψ⟩ is prepared up to ϵ error in ℓ2-norm, so that the circuit size

and depth depends on ϵ. Results in this model are collected in Table 17.2.

Ref. Circuit size Circuit depth Ancilla qubits

[968] O (
2n log(2n/ϵ)

) O
(

2n

n
log(2n/ϵ)

)
none

[968] O (
2n log(2n/ϵ)

) O
(

2n

m+n
log(2n/ϵ)

)
m ∈ [0,O

(
2n

n log(n)

)
]

[1084] O (
2n log(1/ϵ)

) O
(

2n

m
log(m) log(log(m)/ϵ)

)
m ∈ [0,O (2n)]

[468] O (
2n log(n/ϵ)

) O (
n + log(1/ϵ)

) O (2n)

Table 17.2 Asymptotic resource cost (and tradeoffs therein) of approximate state

preparation using the Clifford + T gate set.

If the state |ψ⟩ is sparse, meaning that only s of the N amplitudes are

nonzero, then more efficient state preparation methods are known. In par-

ticular, [1085, 968, 727] have studied shallow-depth circuits for sparse state
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preparation, achieving circuit depth O(log(ns)) using only O(ns/ log(s))

ancilla qubits [727], a great improvement over the general case when s ≪ N.

In some fault-tolerant implementation schemes, such as lattice surgery using

surface codes, Clifford gates can be performed cheaply, while T gates require

the expensive process of magic state distillation. While Ω(2n log(1/ϵ)/ log(n))

total gates are necessary [801, Eq. 4.85] to approximately create |ψ⟩, [722]

noted that it is possible to reduce the number of T gates to
√

2n log(2n/ϵ) using√
2n log(1/ϵ) ancillas (in fact, there is a smooth tradeoff between the T count

and the number of ancillas). Furthermore, these ancillas can be dirty, meaning

that they can be initialized into any quantum state and they are returned to their

(potentially unknown) initial state at the end of the procedure.

All of the above constructions are “garbage-free” state preparation proto-

cols, because they prepare the state |ψ⟩ exactly and all ancilla qubits are re-

turned to their initial state. However, in some applications, it is allowed to

leave an ancilla register entangled with the data as long as the amplitudes are

correct. That is, one might prepare the state

1

∥x∥

N−1∑

i=0

xi|i⟩ ⊗ |garbagei⟩ .

In this setting, en route to giving better algorithms for the electronic struc-

ture problem, [75, Section IIID] gave a construction that approximately pre-

pares the above state using only O(N + log(1/ϵ)) T gates, albeit still requiring

O(N log(1/ϵ)) Clifford gates and O(log(N/ϵ)) ancillas. In [75], the construc-

tion is presented with O(N) depth, but it could be improved to O(log(N)) depth

at the expense of additional ancillas, using log-depth constructions for QRAM,

and it could also be combined with the space-time tradeoffs mentioned above,

as discussed in [722, 140].

Caveats

• Classical preprocessing: Computing the circuits for preparing |ψ⟩ given the

list of N coefficients x can be a non-negligible classical cost. For example,

computing each of the O(N) single-qubit rotation angles requires comput-

ing sums and evaluating trigonometric functions, which can be done to pre-

cision ϵ in polylog(1/ϵ) classical time. Moreover, computing Clifford + T

gate sequences that approximate given rotation angles to error ϵ likewise re-

quires polylog(1/ϵ) classical time [884]. The total classical work scales as

O(N polylog(1/ϵ)), although this cost can be parallelized.

• Coherent arithmetic: To avoid some of the classical preprocessing, one

might try to perform the arithmetic coherently. This might be unavoidable

if the entries of x arrive in an online fashion and rotation angles and other

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


264 17. Loading classical data

quantities need to be computed after superpositions have been created.

Formally, the scaling of coherent arithmetic is mild, generally requiring

just polylog(N, 1/ϵ) number of gates and ancilla qubits, but in practice

this is likely to be expensive. For example, known methods for coherently

computing arcsin(·) to nine bits of precision use order-104 Toffoli gates

and more than 100 ancilla qubits [494]. See [894] for a general black-box

approach that avoids coherent arithmetic.

• Too many ancilla qubits: Achieving depths that scale logarithmically with

N requires O(N) ancilla qubits, which limits the size of N that might be

practical. This could be mitigated if it is possible to develop a large-scale

hardware element specialized for performing the sort of circuits that arise in

these protocols, similar to a QRAM.

• Long-range gates: Achieving polylog(N) depth for state preparation requires

O(N) ancilla qubits andO(N) gates, many of which act in parallel and on far-

separated qubits. If spatial locality were imposed, it would likely be difficult

to avoid O(N) overhead in depth.

• Dequantization: Consider the task of drawing samples from the same prob-

ability distribution induced by measuring |ψ⟩ in the computational basis in

time polylog(N) time. Preparing |ψ⟩ as described is a quantum method of

doing so, but the same can be done classically by first constructing a cer-

tain classical data structure and assuming access to classical RAM [248]. In

some machine learning applications, this idea leads to classical algorithms

that effectively dequantize quantum algorithms that utilize the state prepara-

tion primitive [976, 977].

Example use cases

• Hamiltonian simulation via linear combination of unitaries (LCU) requires

a PREPARE step where a state is prepared with certain classically com-

puted coefficients. Relatedly, the same PREPARE gadget is used to con-

struct block-encodings of such Hamiltonians. However, in this application,

state preparation with garbage is generally allowable.

• In certain quantum machine learning protocols, classical data (e.g., image

pixel values) are encoded into a quantum state via the so-called “ampli-

tude encoding,” where N classical features are stored in a quantum state of

log2(N) qubits [916]. Following the preparation of the amplitude-encoded

data, the state is processed with the goal of, for example, classifying the

image.

• Creating a block-encoding of a matrix of classical data is performed using

state preparation as a subroutine (more precisely, block-encoding classical

data requires controlled state preparation). The block-encoding is then use-
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ful in a variety of contexts, for example in quantum interior point methods,

and certain quantum machine learning algorithms.

Further reading

• When the amplitudes xi correspond to an efficiently computable function

f (i), the complexity of state preparation can be reduced. In this case, the or-

acle access to xi can be replaced by a reversible computation of f (i), up to t

bits of precision, using coherent arithmetic |i⟩|0t⟩ → |i⟩| f (i)⟩ [494, 149, 791].

The value of f (i) can be transduced into the amplitude using the methods

of [465, 894, 1020, 106], and the success probability boosted to unity us-

ing quantum amplitude amplification. There is an alternative method [754],

based on quantum singular value transformation (QSVT) that circumvents

the need for the coherent evaluation of f (i) by implementing a low-cost

block-encoding of sin(i), and then using QSVT to apply f (arcsin(·)) to this

block-encoding. The complexity of both of these approaches depends on an

“ℓ2-norm filling-fraction” F [N]
f

:= ∥ f (i)∥2/(
√

N| f (i)|max) as O(1/F [N]
f

) (see

[754] for more detail). There is also an approach [859] based on the adia-

batic algorithm which has a worse dependence on F [N]
f

. For efficiently in-

tegrable probability distributions, one can use the approach of [463], which

has complexity independent of F [N]
f

. However, this approach requires co-

herent arithmetic to reversibly evaluate the integral of the desired function

(when applied to functions for which an analytic expression for the inte-

gral is not available, this can nullify the quadratic speedup in quantum-

accelerated Monte Carlo estimation [521]). There also exist methods spe-

cialized for certain target states, such as Gaussians [623, 860].

• A related problem asks to synthesize an arbitrary 2n × 2n unitary. Without

ancillas, this requires depth and size O(4n), for which there are upper [787]

and lower [931] bounds that match up to constant factors. With ancillas, it is

an open question whether or not the depth can be reduced to poly(n); this is

related to the “unitary synthesis problem” from the list of open problems in

[3], and it has been studied in several works, for example, [968, 883, 1073].

A depth lower bound of Ω(n + 4n/(m + n)) is known for m ancilla qubits

[968], but the shallowest upper bound is depth O(n2n/2), using m = O(4n/n)

ancilla qubits [1073].
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17.3 Block-encoding dense matrices of classical data

Rough overview (in words)

Many potential applications of quantum algorithms, especially in the area of

machine learning, require access to large amounts of classical data, and in or-

der to process this data on quantum devices, one needs coherent query access

to the data. Block-encoding is a technique for importing classical data into

quantum computers that provides exactly this type of coherent query access.

Block-encodings work by encoding the matrices of classical data as blocks

within larger matrices, which are defined such that the full encoding is a uni-

tary operator. One way of thinking of this process is by “brute-force” com-

piling a unitary with the right structure, and then postselecting measurement

outcomes to ensure the desired block of the unitary was applied. In general,

block-encoding a dense matrix is not an efficient process, as both the normal-

ization factor of the block-encoding and the circuit complexity to implement

it can scale with the size of the matrix (e.g., poly(N) for an N × N matrix).

Nonetheless, end-to-end applications often assign polylogarithmic cost to the

block-encoding, which is achievable if the relevant cost metric is the circuit

depth (rather than the circuit size)—this is similar to the assumption that one

has access to large-scale log-depth quantum random access memory (QRAM).

For a general treatment not restricted to dense classical data, see Section 10.1

on block-encoding.

Rough overview (in math)

Given an N × N matrix A, a block-encoding is a way of encoding the matrix A

as a block in a larger unitary matrix:

UA =

(
A/α ·
· ·

)
.

If A is not square, one can pad it with zeros such that it becomes square. Let

n = ⌈log2(N)⌉. We say that the (n + a)-qubit unitary UA is an (α, a, ϵ)-block-

encoding of the matrix A ∈ CN×N if
∥∥∥A − α(⟨0|⊗a ⊗ I)UA(|0⟩⊗a ⊗ I)

∥∥∥ ≤ ϵ,

where a ∈ N represents the number of ancilla qubits needed, α ∈ R+ is a

normalization constant, and ϵ ∈ R+ is an error parameter. The fact that UA is

unitary implies that the normalization constant α must satisfy α ≥ ∥A∥, where

∥·∥ denotes the spectral norm.

In this section, we consider the case where the N2 entries of A are arbitrary

values provided to us in a classical database. In general, all of these entries
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can be nonzero; that is, A is a dense matrix. The goal is to provide a quantum

circuit implementing a unitary UA as above while minimizing quantities such

as the circuit depth and circuit size, as well as the number of ancilla qubits a

and the normalization constant α. The block-encoding construction we focus

on performs UA using a pair of state preparation unitaries [429, 608, 248],

following the more general method of block-encoding Gram matrices [429,

Lemma 47]. In particular, the product

UA = U
†
R
UL

is an exact (α, a, 0)-block-encoding of A, where UL and UR are unitaries that

perform (controlled) state preparation. Specifically, the (n + a)-qubit unitaries

UL and UR prepare a different 2n-qubit state for each of 2n possible settings of

the final n-qubit register, with the assistance of a − n additional ancilla qubits,

as follows:

UL|0⟩⊗(a−n)|0⟩⊗n|i⟩ = |0⟩⊗(a−n)|ψi⟩
UR|0⟩⊗(a−n)|0⟩⊗n| j⟩ = |0⟩⊗(a−n)|ϕ j⟩ ,

(17.3)

where the 2n-qubit states |ψi⟩ and |ϕ j⟩ are chosen such that ⟨ψi|ϕ j⟩ = Ai j/α,

where Ai j is the matrix entry of A in row i and column j—the states |ψi⟩ and

|ϕ j⟩ encode the (normalized) rows of A and norms of those rows, respectively.

For this construction, the normalization constant α satisfies

α = ∥A∥F ,

where ∥·∥F is the Frobenius norm. Note that for an N ×N matrix the Frobenius

norm satisfies ∥A∥ ≤ ∥A∥F ≤
√

N∥A∥—thus, the value of α achieved by this

method can be larger than its minimal possible value (∥A∥) by a factor as large

as
√

2n.2

There are several methods of implementing the (controlled) state preparation

unitaries UL and UR, offering tradeoffs between various metrics, as discussed

in Section 17.2 on state preparation. Of particular relevance is the T -count and

T -depth of the circuit when it is decomposed into a Clifford + T gate set, as

the T gate is the most difficult to implement in many fault-tolerant schemes.

A general strategy for implementing UL and UR involves constructing binary

trees representing the amplitudes in the states |ψi⟩ and |ϕ j⟩ in Eq. (17.3), and

building the state preparation unitaries out of controlled Y rotations by angles

2 See [429, Lemma 50] for a variant of this method yielding normalization factor

α =

√
nq(A)n2−q(A†) for q ∈ [0, 2], where nq(A) = maxi∥Ai,·∥qq, with ∥·∥q the vector q-norm

and Ai,· the i-th row of A.
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Optimized for min depth Optimized for min count

# Qubits 4N2 N log(1/ϵ)

T -Depth 10 log(N) + 24 log(1/ϵ) 8N + 12 log(N)(log(1/ϵ))2

T -Count 12N2 log(1/ϵ) 16N log(1/ϵ) + 12 log(N)(log(1/ϵ))2

Table 17.3 Explicit resource counts for block-encoding circuits of arbitrary ma-

trices of classical data. These expressions omit subleading terms; the full expres-

sions can be found in [296].

defined in those binary trees (the controlled Y rotations are performed approx-

imately in a discrete gate set like Clifford + T , leading to a nonexact block-

encoding). Tradeoffs involving the T -depth, T -count, and number of ancilla

qubits are established based on the manner in which these controlled Y gates

are performed. For example, the shallowest implementation [296] requires a

large number of ancilla qubits, which are used to perform all the controlled Y

rotations in one parallel layer, before “injecting” a subset of these ancillas into

the main data qubits using a controlled SWAP network and then uncomputing

the ancillas.

Dominant resource cost (gates/qubits)

The shallowest implementations are able to achieve polylog(N) depth for UL

and UR (and hence for UA), at the expense of a = O(N2) ancilla qubits. On

the other hand, the fewest number of ancillas needed by this family of methods

would be a = n, in which case the circuit depth would scale as O(N2). While

the total circuit size must be at least Ω(N2), the number of gates in the circuit

that are T gates can be as small as O(N) using the techniques in [722].

Detailed resource counts (including the constant prefactors for key metrics)

and implementations of block-encodings were studied in [296]. We reproduce

their resource counts optimized for minimum T -depth and for T -count in Ta-

ble 17.3.

Caveats

An important caveat is that the total gate complexity of UA must be at least

Ω(N2), reflecting the N2 degrees of freedom in the arbitrary N × N matrix A.

Thus, while A operates on a quantum system of only log2(N) qubits, achieving

depth polylog(N) requires parallel-acting gates across at least Ω(N2) ancilla

qubits. In many algorithms, it is assumed that the cost of implementing UA is

polylog(N), in order to preserve an end-to-end runtime that is polylog(N) and

claims of exponential speedup. This is only defensible if the key metric is the

circuit depth and if many ancilla qubits are available. Furthermore, the normal-
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ization constant α can introduce poly(N) factors into an end-to-end analysis,

owing to the fact that ∥A∥F can be larger than ∥A∥ by a
√

N factor.

Another caveat to note is that if the matrix being block-encoded is sparse and

if the values and locations of its nonzero entries can be computed efficiently,

or if the matrix enjoys some structure in the data in addition to sparsity, then

more efficient block-encoding methods can be employed—see Section 10.1 on

block-encoding for details. In those cases, the results stated here may not be

applicable.

Example use cases

In financial portfolio optimization, classical data representing average histori-

cal returns and covariance matrices for a universe of assets is needed in a quan-

tum algorithm for optimizing a portfolio. See, for example, [328]. Similarly, in

quantum machine learning based on quantum linear algebra, the algorithm of-

ten requires fast coherent access to large matrices of classically stored data.

Further reading

• An excellent overview of block-encodings and quantum linear algebra:

[431].

• A detailed resource count of block-encoding with explicit circuits: [296].

• Select-SWAP QRAM and a tradeoff between qubit count and T gates: [722].

• For sparse matrices of classical data, or matrices expressed as a linear com-

bination of Pauli matrices, more efficient methods for block-encoding exist.

Asymptotic resource expressions for varying number of ancilla qubits are

reported in [1084].

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


18

Quantum linear system solvers

The authors are grateful to Dong An for reviewing this chapter.

Rough overview (in words)

The goal is to solve linear systems of equations with quantum subroutines.

More precisely, a quantum linear system solver (QLSS) takes as input an N×N

complex matrix A together with a complex vector b of size N, and outputs a

pure quantum state |x̃⟩ that is an ε-approximation of the normalized solution

vector of the linear system of equations Ax = b. In basic versions, QLSSs do

so by loading the normalized entries of the matrix A and the normalized entries

of the vector b into a unitary quantum circuit, either from a quantum random

access memory (QRAM) data structure, or—if the structure of A and b allows

for this—by efficiently computing the corresponding entries on the fly.

Crucially, the number of algorithmic qubits of the linear system solver itself

is only roughly log2(N), which is exponentially smaller than the matrix size.

While for general systems the number of QRAM qubits still scales with the

matrix/vector size, QRAM encodings can be made more space efficient for

sparse systems or can even be avoided when the corresponding entries are

efficiently computable. The complexity of QLSSs depends on the condition

number κ(A) =
∥∥∥A−1

∥∥∥ · ∥A∥ of the matrix A, and one then aims to give circuits

with minimal quantum resource costs—such as ancilla qubits, total gate count,

circuit depth, etc.—in terms of κ(A) and the desired accuracy ε ∈ (0, 1).

Rough overview (in math)

There are different standard input models on how the classical data from (A, b)

is loaded into the quantum processing unit, which are equivalent up to small

polylogarithmic overhead for general matrices. We state the complexities in
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terms of query access of a unitary Ub preparing the n = ⌈log2(N)⌉-qubit pure

quantum state |b⟩ = ∥b∥−1 · ∑N
i=1 bi|i⟩ for b = (b1, . . . , bN), where ∥·∥ for vec-

tor arguments denotes the standard Euclidean norm, together with an (α, a, 0)-

block-encoding UA of the matrix A. The QLSS problem is then stated as fol-

lows: for a triple (UA,Ub, ε) as above, the goal is to create an n-qubit pure

quantum state |x̃⟩ such that ∥∥∥∥|x̃⟩ − |x⟩
∥∥∥∥ ≤ ε

with

|x⟩ =
∑N

i=1 xi|i⟩∥∥∥∑N
i=1 xi|i⟩

∥∥∥
defined by Ax = b with x = (x1, . . . , xN), (18.1)

by employing as few times as possible the unitary operators UA,Ub,U
†
A
,U
†
b
,

controlled versions of UA,Ub,U
†
A
,U
†
b
, and additional quantum gates on poten-

tially additional ancilla qubits. An alternative (and closely related) error metric

studied in some works is based on the trace norm, requiring 1
2
∥|x⟩⟨x|− |x̃⟩⟨x̃|∥1 ≤

ε.

One way to think of the QLSS problem is that we seek the matrix inverse

A−1, and that this can be implemented by, for example, quantum singular value

transformation (QSVT) acting on A (via its block-encoding) with a polyno-

mial approximation of the inverse function on the interval [∥A∥/κ(A), ∥A∥]. The

complexity of the corresponding scheme thereby depends on the degree of the

polynomial needed for a good approximation of the inverse function on the

relevant interval, and as such on the condition number κ(A), the normalization

factor α, and the approximation error ε of the resulting QLSS. In fact, it turns

out that the complexity of most quantum algorithms depends on the following

combined quantity

κ′(A) := κ(A) · α

∥A∥ = α · ∥A
−1∥,

which is no smaller than κ(A), because α ≥ ∥A∥ due to the unitarity of the

block-encoding. Note that in QRAM-based implementations for dense matri-

ces A, one naturally gets α = ∥A∥F , which then leads to linear complexity

dependence on the Frobenius norm ∥A∥F .

As noted in [1039, 248], in general, we need not assume that A is invertible

nor that it is a square matrix, but can instead use the Moore–Penrose pseu-

doinverse A+ of the matrix to solve the regression problem Eq. (18.1) in a

least-squares sense, in which case one needs to appropriately change the defi-

nition of κ(A) to ∥A+∥ · ∥A∥. In fact, the above QSVT-based approach directly

solves this more general version of the problem [431].
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Dominant resource cost (gates/qubits)

The performance of different QLSSs is typically compared based on how their

query complexity (to UA and Ub) grows with the condition number, where a

lower bound of Ω(κ(A)) is known; see [500, 814]. Methods achieving O(κ′(A))

dependence are termed “optimal” and methods achieving κ′(A) polylog(κ′(A))

are termed “near-optimal.”1

The first optimal method was given in [313] (for invertible matrices), which

does not directly employ the QSVT for the inverse function. Instead, it is based

on discrete adiabatic methods together with quantum eigenstate filtering based

on the QSVT for a minimax polynomial [689]. In particular, the adiabatic por-

tion prepares an “ansatz” state |xans⟩ for which |⟨xans|x⟩|2 ≥ 1/2, using at most

O(κ′(A)) (controlled) queries to UA and Ub. Then, the eigenstate filtering step

refines this state by approximately projecting it onto |x⟩: one obtains the state

|x̃⟩ that is ε-far from |x⟩ at additional query cost O(κ′(A) log(1/ε)). The pro-

jection succeeds with probability p ≥ 1/2, so the whole procedure must be re-

peated no more than twice on average. Overall, the expected number of queries

made by the algorithm is Q controlled queries to each of UA and U
†
A

and 2Q

queries to each of Ub and U
†
b
, where

Q = κ′(A)
(
C + D ln(2ε−1)

)
+ o(κ′(A)) = O

(
κ′(A) log(ε−1)

)
. (18.2)

Here, o(κ′(A)) denotes terms growing sublinearly in κ′(A), and C,D are con-

stants. The algorithm operates on n + O(1) qubits (n + 5 in the case of [313]),

plus the additional qubits used for the block-encoding, discussed in more de-

tail below. There is an additional constant quantum gate complexity for each

query to UA and Ub. For the discrete adiabatic method in [313], the constant C

can be rigorously bounded as C ≤ 117,2352 and the constant D is at most 2.

Note that when C is this large, the corresponding term will actually dominate

the Dκ′(A) log(ε−1) term for practical scenarios.

Subsequent work has given alternative methods that achieve optimal asymp-

totic complexity [325, 327]. Reference [325] achieves this by a small modifica-

tion to and improved analysis of the adiabatic path-following method of [964].

Meanwhile, [327] replaces the step of ansatz state preparation via adiabatic

methods with a simpler norm-estimation step, where one seeks a constant-

1 Regarding the optimal ε dependence, it has additionally been claimed [313] that a complexity
of O(κ log(1/ε)) is jointly optimal in both κ and ε, based on forthcoming work by Harrow and
Kothari; see also [314, Appendix A].

2 This number is derived from applying [313, Theorem 9] with

√
2 −
√

2 × 44,864 × κ steps,
each of which incurs one call to the block-encoding, such that the output is guaranteed to have

overlap at least 1/
√

2 with the ideal state. Eigenstate filtering then succeeds with probability at
least 1/2; accounting for the need to repeat twice on average, one arrives at a constant
117,235, matching [572, Eq. (L2)].

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


18. Quantum linear system solvers 273

factor approximation of the Euclidean norm ∥x∥, following that with an eigen-

state filtering–like step. An optimized version of this approach was reported to

have complexity following Eq. (18.2) with C = 56 and D = 1.05. Additionally,

this method does not require A to be invertible, but does require b to be in the

column space of A [327].

Other known QLSSs with suboptimal asymptotic complexities are based

on other versions of adiabatic ansatz state preparation [964, 31, 689], QSVT

[431, 744], linear combination of unitaries (LCU) [282], or variable-time am-

plitude amplification (VTAA) [26, 29, 248]. While the known bounds on the

asymptotic complexities of these methods are slightly worse, it remains open

if finite-size performance could be competitive (see, e.g., [572, 327]). More-

over, to date, the VTAA-based algorithms are the only variants that are proven

to solve the generic least-squares (pseudoinverse) problem while achieving a

near-optimal asymptotic scaling [248].

Note that if the matrix A is given in a classical data structure in the compu-

tational basis, then standard ways to create the block-encoding UA make use

of a QRAM structure. For general (dense) matrices A, the requirement is then

size O(N2) (number of qubits) with circuit depth O(n) for each query—or al-

ternatively, as few as O(n) ancilla qubits could suffice, but at the expense of us-

ing O(N2) circuit depth [496, 296]. Initializing the depth-efficient QRAM data

structure will in general also take O(N2) time. However, if A is sparse, either

in the computational basis [349], Pauli basis [1011], or any orthonormal basis

with efficiently implementable basis transformation, there are more efficient

direct constructions for block-encoding A. Moreover, for Pauli basis access,

there exist randomized QLSSs with complexity scaling as the ℓ1-norm of the

Pauli coefficients [1022], completely avoiding the use of block-encodings (and

as such QRAM and ancilla qubits).

Caveats

QLSSs are an important subroutine for a variety of application areas of quan-

tum algorithms. However, it is crucial to keep track of all the quantum and

classical resources required and to compare these to state-of-the-art classical

methods. In particular, the following factors should be taken into account:

• The classical precomputation complexities for the eigenstate filtering rou-

tine are neglected, but can be kept efficient in practice [356].

• The rigorous upper bound on the size of the complexity constant C has been

reduced by several orders of magnitude [327] since the first optimal QLSS

was given in [313], but nevertheless remains larger than ideal for usage in

applications where QLSS plays a heavy role. However, numerical investiga-
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tions of two adiabatic methods on small random matrices gave evidence that

the empirical performance of those methods is significantly better than the

rigorous upper bounds [314].

• When needed, the QRAM cost can be prohibitive, if it requires the full over-

head of quantum error correction and fault tolerance [496], especially for

QRAMs of maximum size O(N2) qubits, required for general (dense) matri-

ces.

• In the formulation of the QLSS problem, the pure quantum state |x⟩ corre-

sponds to the normalized solution vector of the linear system Ax = b. While

the normalization factor ∥x∥ can be obtained as well, this comes at the price

of added query complexity scaling as O(κ′(A)ε−1 log(ε−1)) [327] (see also

[248, Corollary 32]). This nearly achieves the lower bound of Ω(κ(A)ε−1)

[327] (note that norm estimation necessarily has worse ε dependence than

the QLSS itself).

• QLSSs do not produce a classical description of the solution vector x

or an approximation thereof, but rather the pure quantum state |x̃⟩. In

order to obtain a classical approximation of the vector x, one needs to

combine QLSSs with pure state quantum tomography, which can be

performed using O(Nε−2) samples. If poly(n) query-cost QRAM is also

available, then the complexity can be quadratically improved in terms of the

precision using optimized pure state tomography [49], or alternatively the

overall complexity may be further improved using iterative refinement to

O(Ns2 + Nsκ2(A)/∥A∥) · polylog(N/ε), as described in [772], where s is the

maximum number of nonzero elements of A in any row or column. In the

special case of Laplacian, or more generally symmetric, weakly diagonally

dominant (SDD) matrices, [50] gives a quantum algorithm with complexity

Õ(
√

Ns/ε) that outputs an ε-approximate solution x̃ with respect to the

A-induced norm. (Measuring error in this norm enables their algorithm

not to have a condition number dependence.) The algorithm uses QRAM

and provides a subquadratic speedup compared to the classical complexity

O(N log(1/ε)), but uses rather different techniques compared to standard

QLSS algorithms [500].

• The overall complexities Õ(Nκ′(A)ε−1) and O(Ns2 + Nsκ2(A)/∥A∥) ·
polylog(N/ε) (where we generously allow poly(n) query-cost QRAM) to

obtain a classical description of the solution can be compared to classical

textbook Gaussian elimination–based computation, which leads to complex-

ity O(N3) or more precisely O(Nω) with ω ∈ [2, 2.372) denoting the matrix

multiplication exponent. Further, QLSSs should also be compared with

state-of-the-art randomized solvers. For example, the randomized Kaczmarz

method [959] with standard classical access to the matrix elements returns
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an ε-approximation of the vector x, while scaling as O(sκ2
F

(A) log(ε−1)) for

s row-sparse matrices and κF(A) =
∥∥∥A−1

∥∥∥ · ∥A∥F . Moreover, if A is s-sparse

and positive semidefinite (PSD), then using the conjugate gradient method

one can obtain a solution in time Õ(Ns
√
κ(A) log(ε−1)) [481, Chapter

10.2], which can be generalized to the least-squares problem (and thus

non-Hermitian matrices) at the cost of a quadratically worse condition

number dependence O(Nsκ log(κ(A)/ε)) by considering the modified

equation A†Ax = A†b. As such, it seems that the QLSS may not provide

a superquadratic speedup when a full classical solution is to be extracted,

and even subquadratic speedups seem to be limited to a narrow parameter

regime.

• Quantum-inspired methods [271, 433] that start from a classical data struc-

ture intended to mimic QRAM—allowing one to sample from probability

distributions with probabilities proportional to the squared magnitudes of

elements in a given row of A—give samples from an ε-approximation to

the solution vector in (N-independent) complexity O(κ4
F

(A)κ2(A)ε−2) [924,

433], and can be used to compute an approximate solution by repeated sam-

pling. Note that while the required data structure is classical, it might still

be prohibitively expensive to build when the matrix A is huge.

• When it comes to classical methods, solvers that depend on the condition

number are useful in practice whenever combined with preconditioners

[888]. However, the performance of preconditioners in the quantum setting

(see, e.g., [295, 925, 990, 83]) is often only heuristic, or applies only to

restricted situations. This topic would benefit from further exploration.

Example use cases

• Quantum interior point methods in convex optimization and corresponding

applications [610, 771].

• Quantum machine learning applications [1039, 866].

• Solving differential equations and corresponding applications, for example,

for the finite element method that does not require a tomography step [777].

Further reading

• Original QLSS (termed HHL) [500].

• For an overview discussion of QLSS, see [31].

• Optimal-in-κ QLSSs are given in [313, 327, 325].

• There are also known (polynomial) speedups in case one needs a full clas-

sical description of the output vector in linear equation solving and in some

regression variants [772, 266].
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Quantum gradient estimation

The authors are grateful to Nikitas Stamatopoulos for reviewing this chapter.

Rough overview (in words)

Estimating the gradient of a high-dimensional function is a widely useful sub-

routine of classical and quantum algorithms. The function’s gradient at a cer-

tain point can be classically estimated by querying the value of the function

at many nearby points. However, the number of evaluations will scale with the

number of dimensions in the function, which can be very large. By contrast, the

quantum gradient estimation algorithm evaluates the function a constant num-

ber of times (in superposition over many nearby points) and uses interference

effects to produce the estimate of the gradient. While there are caveats related

to the precise access model and the classical complexity of gradient estima-

tion in specific applications, this procedure can potentially lead to significant

quantum speedups.

Rough overview (in math)

Let f : Rd → R be a real function on d-dimensional inputs, and assume that

it is differentiable at a specific input of interest, taken to be the origin 0 =

(0, 0, . . . , 0) for simplicity (the algorithm works equally well elsewhere). Let

g = (g1, . . . , gd) denote the gradient of f at 0, that is, g = ∇ f (0). We wish to

produce a classical estimate g̃ of g that satisfies |g j− g̃ j| < ε for all j = 1, . . . , d.

Ignoring higher-order terms, the function may be approximated near the ori-

gin as f (x) ≈ f (0) + ⟨g, x⟩, where ⟨·, ·⟩ denotes the normal inner product.

The original gradient estimation algorithm by Jordan [587] then considers a

d-dimensional grid of points near the origin denoted by G. For simplicity, sup-

pose on each of the d dimensions, the grid has N evenly spaced points on the

276

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


19. Quantum gradient estimation 277

interval [−ℓ/2, ℓ/2], for a certain parameter ℓ related to the precision require-

ments of the algorithm, where N is assumed to be a power of 2. Let m be an

upper bound on the magnitude of the components of g. Define g′ = Ng/2m to

have components between −N/2 and N/2. Similarly, let g̃′ = Ng̃/2m be the

desired normalized-and-shifted output.

The quantum algorithm prepares a superposition of the grid points x ∈ G and

computes function f (x) (times a constant πN/mℓ) into the phase, producing the

state

1√
Nd

∑

x∈G
eiπN f (x)/mℓ |x⟩ ≈ eiπN f (0)/mℓ

√
Nd

∑

x∈G
eiπN⟨g,x⟩/mℓ |x⟩ ,

where |x⟩ denotes the product state |l1⟩|l2⟩ · · · |ld⟩, where l j is a binary string

of length log2(N) containing a representation of the j-th component x j of the

vector x, with the identification x j = −ℓ/2+ ℓl j/N. With this in mind, the latter

state is rewritten as the product state, up to a global phase and normalization

constant
e
−πig′1

N−1∑

l1=0

e2πil1g′1/N |l1⟩


e
−πig′2

N−1∑

l2=0

e2πil2g′2/N |l2⟩
 · · ·

e
−πiNg′

d

N−1∑

ld=0

e2πildg′
d
/N |ld⟩

 .

Due to the approximated linearity of f , each of the product state constituents

is observed to be close to a basis state in the Fourier basis (see Eq. (12.1)). By

performing an inverse quantum Fourier transform (QFT) in parallel for each of

the d dimensions and measuring in the computational basis, a computational

basis state

|g̃′⟩ = |g̃′1⟩|g̃′2⟩ · · · |g̃′d⟩

is retrieved (up to an unimportant global phase), where with high probability

g̃′
j

approximates g′
j

to log2(N) bits of precision. The coordinate g̃ j is then re-

covered as g̃ j = 2mg̃′
j
/N. Assuming m = O(1), taking N = O(1/ε) suffices to

solve the problem. In a full analysis, one must make sure not to choose ℓ too

large (else the linearity approximation breaks down).

In [587], the unitary U f sending |x⟩ 7→ eiπN f (x)/mℓ |x⟩ was performed using

a constant number of calls to the evaluation oracle that computes an approxi-

mation to f (x)/m to precision O(ε2/
√

d) into an ancilla register. In [430], the

precision required was improved to O(ε/
√

d) using finite difference formu-

las to put the gradient into the phase. Additionally, it was shown how U f can

be implemented using O(
√

d/ε) calls to a “probability oracle” that (assuming

0 ≤ f (x) ≤ 1) performs the map |x⟩|0⟩ 7→
√

f (x)|x⟩|1⟩ +
√

1 − f (x)|x⟩|0⟩.
The gradient estimation algorithm can be viewed as a generalization of

the Bernstein–Vazirani algorithm [129], which considers binary functions f :
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{0, 1}n → {0, 1}, and promised that f (x) = ⟨g, x⟩ mod 2 for some unknown

vector g, determines g with one query to f .

Dominant resource cost (gates/qubits)

The superposition over grid points can be easily accomplished with Hadamard

gates. Likewise, the inverse QFT operation is relatively cheap. The number

of qubits is O(d log(N)), and the number of elementary operations for each

of the d parallel QFTs is polylog(N)—thus, the gate depth is independent of

d, while the total gate complexity is linear in d. Additionally, an important

component of the complexity comes from performing the unitary U f , which

requires implementing either an evaluation oracle or a probability oracle for

the function f . If one has access to an evaluation oracle, the function must

be evaluated to precision O(ε/
√

d). Thus, if function evaluations can be made

to precision δ in circuit depth polylog(d, 1/δ), the overall circuit depth of the

quantum gradient estimation algorithm will be polylog(d, 1/ε), a potentially

exponential speedup over the at least Ω(d) classical query complexity to learn

the gradient. In the case that one has access to a probability oracle, a number

of oracle calls scaling as O(
√

d/ε) must be made.

For some functions, it is possible to classically compute f (x) to precision

δ with gate complexity poly(d, log(1/δ)). This can be turned into a quantum

circuit U f with a comparable gate complexity. For other functions, computing

f (x) may be much harder. For example, if f (x) is defined as the output prob-

ability of a quantum circuit described by d parameters, then computing f (x)

to precision δ might be difficult for a classical computer, and even on a quan-

tum computer, it generally requires O (1/δ) complexity. However, in this case,

implementing a probability oracle is simple, leading to the motivation for the

work of [430].

Caveats

Jordan’s formulation of the algorithm [587] appears to offer a large quantum

speedup by accomplishing in a single quantum query what requires Ω(d) clas-

sical queries. However, this requires a fairly strong access model where one

has access to an oracle for computing the value of the function f to high preci-

sion. For an exponential speedup to be possible, precision εmust be achievable

at cost polylog(d, 1/ε). Unfortunately, for actual functions f that show up in

applications where this is possible, it is often the case that one can classically

compute the gradient much more efficiently than simply querying the value

of f at many nearby points. Indeed, the “cheap gradient principle” [457, 163]

asserts that (in many practical situations) computing the gradient has roughly
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the same cost as computing the function itself. This principle limits the scope

of application of the large speedup of Jordan’s algorithm.

By contrast, [430] shows how the gradient can alternatively be computed

using a probability oracle rather than an evaluation oracle, which makes the

algorithm compatible with computing gradients in the setting of variational

quantum algorithms. However, O(
√

d/ε) calls to the oracle are required, which

represents a (much less dramatic) quadratic speedup compared to the strategy

of using the probability oracle to estimate f (x) at many nearby points and

subsequently estimating the gradient classically.

Example use cases

• Convex optimization: In convex optimization, local optima are also global

optima, and thus a global optimum can be found by greedy methods such

as gradient descent. When one can efficiently compute the function f much

more cheaply than computing its gradient, the quantum gradient estimation

algorithm can give rise to a speedup over classical optimization procedures

[47, 245].

• Pure state tomography: Given access to a unitary U that prepares the pure

state |ψ⟩, [49] utilizes the gradient estimation algorithm to estimate the am-

plitudes of |ψ⟩ in the computational basis using an optimal number of queries

to U.

• Estimating multiple expectation values: Amplitude estimation can be used

to estimate an expectation value to precision ϵ at cost O (1/ϵ). In [549, 49],

it is shown how the gradient estimation algorithm further allows M expecta-

tion values to be simultaneously estimated at cost Õ(
√

M/ϵ) calls to a state

preparation unitary, considered the most expensive part of the circuit.

• Computing molecular forces: While ground state energies are the object

most often studied in algorithms for quantum chemistry, other interesting

quantities such as molecular forces can be related to gradients of molecular

energies. Reference [805] studies how the gradient estimation algorithm can

be leveraged into a quantum algorithm for computing such quantities.

• Escaping saddle points: Although not the essential ingredient, the gradient

estimation algorithm was used in the algorithm of [1081] for escaping saddle

points.

• Variational quantum algorithms: Variational quantum algorithms involve op-

timizing the parameters of a quantum circuit under some cost function. The

ability to estimate the gradient of the cost function with respect to the pa-

rameters might allow acceleration of this loop.
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• Financial market risk analysis: In [950], the quantum gradient estimation

subroutine was utilized to compute the Greeks, parameters associated with

financial market sensitivity.

Further reading

See [430] for a full discussion of the state of the art with respect to the quantum

gradient estimation algorithm.
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Variational quantum algorithms

The authors are grateful to Marco Cerezo and Xiao Yuan for reviewing this

chapter.

Rough overview (in words)

The so-called noisy intermediate-scale quantum (NISQ) era is a term used to

describe the regime in which the best quantum processors have fifty to a few

hundred noisy qubits [843]. In this regime, one does not have enough qubits or

low enough error rates to carry out fault-tolerant quantum computation, and so

one is constrained to run low-depth quantum circuits. Under these constraints,

structured quantum algorithms with prescribed circuits and provable guaran-

tees are unknown. In light of this, variational quantum algorithms (VQAs) have

been proposed. We remark that, despite this original setting, it would also be

possible to run VQAs on fault-tolerant devices. While many VQAs have been

proposed for a wide range of applications, they all share the same core primi-

tive, which we describe below.

The main idea is to encode the target problem into an optimization task of

minimizing the expectation value of some parameterized quantum circuit, or

a function thereof. In each optimization step, a quantum computer is used to

evaluate expectation values at chosen parameter values, which are read by a

classical optimizer that updates the parameters for the next step. The motiva-

tion for this framework is to offload some of the computational complexity onto

the classical optimization algorithm, with an aim for the quantum subroutines

to perform classically intractable calculations.
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Rough overview (in math)

Given some parameterized unitary U(θ) with adjustable parameters θ,

input state ρ, measurement operator O, and function f (·), one evaluates

C(θ) = f
(
Tr

[
OU(θ)ρU†(θ)

])
on a quantum computer, which is known as

a cost function. A classical optimizer is then tasked to solve the problem

θ∗ = argminθ f
(
Tr[OU(θ)ρU†(θ)]

)
. By careful choice of f (·), ρ, and O, one

can encode a problem of interest such that U(θ∗) enables an (approximate)

solution to the problem. For instance, the solution could correspond to the

computational basis state with which the output state U(θ∗)ρU(θ∗)† has the

largest overlap, or to the value of f (Tr[OU(θ∗)ρU(θ∗)†]) itself. In general,

one can also construct a more elaborate cost function comprising a sum of

observable-dependent functions with different input states and measurement

operators.

The parameterized circuit U(θ) is commonly referred to as the “ansatz cir-

cuit.” The choice of cost function and ansatz are key components in designing

a VQA. Namely, they should ideally satisfy the following properties:

(i) Smaller values of the cost function should correspond to better quality

of solution.

(ii) The ansatz should be sufficiently expressive to contain a unitary U(θ∗),

which yields an acceptable solution.

(iii) The ansatz should lead to a trainable cost landscape in parameter space,

such that a sufficiently good solution can be found efficiently by the

classical optimizer.

(iv) The cost function should be classically hard to simulate, given the choice

of ansatz.

It should be noted that while one would expect any VQA to satisfy the first

point by design, in general, it can be hard to satisfy all of the above require-

ments simultaneously via theoretical guarantees or even heuristically in prac-

tice. These caveats are discussed in more detail below.

Dominant resource cost (gates/qubits)

The gate complexity is wholly dependent on the choice of ansatz. Satisfy-

ing properties ((ii)) and ((iv)) may place lower bounds on the required circuit

depth. In addition, the connectivity of the device may also significantly affect

the depth of the circuit. For instance, compilation of a generic two-qubit gate

acting on an n-qubit state on hardware with 1D nearest-neighbor connectivity

incurs O(n) circuit depth.

Throughout the optimization, the cost function is evaluated at different pa-

rameter settings θ, chosen adaptively based on the outcome of prior evalua-
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tions. (In the case of gradient-based optimization, one can use the parameter

shift rule [766, 918, 321, 1043] or finite difference methods.) Each evaluation

of the cost function corresponds to approximating an expectation value to some

additive error ε using finite measurement shots, where ε should be chosen to

be sufficiently small for accurate optimization over the landscape. Specifically,

it should be expected that ε is at most O(
√
Vθ[C(θ)]) in order to accurately

distinguish arbitrarily chosen points on the parameter landscape, where Vθ de-

notes the variance over uniformly distributed parameter settings.

Caveats

The optimization of certain parameterized quantum circuits is known to be

subject to the detrimental phenomena of “barren plateaus,” in which devi-

ations between different cost values with high probability (or deterministi-

cally, depending on the setting) vanish exponentially with increasing number

of qubits [663, 756, 240, 534, 742, 926, 662, 396, 850]. This is often char-

acterized by observing that Vθ[C(θ)] = O(2−βn) for some β > 0 [60]. This

mandates an exponential shot complexity for each evaluation of a cost value in

order to reliably navigate the cost landscape (when probabilistic, this should be

considered an average-case phenomenon). Note that this affects both gradient-

based and gradient-free optimization strategies. Moreover, it has been found

that many standard techniques to avoid vanishing gradients render the VQA

classically simulable [243].

If VQAs are run on noisy devices, the effects of noise are known to severely

restrict the scope for computation [12, 114, 1021, 400, 336]. This effect is

amplified on devices with limited hardware connectivity, where one has to use

additional circuit depth to compile generic gates [400, 1021].

Finally, in general, there is a lack of end-to-end theoretical guarantees for

variational quantum algorithms. In order to show advantage over classical al-

gorithms, at minimum one has to satisfy all of the properties laid out above. In

particular, the classical parameter optimization is generally left as a heuristic

subroutine. This optimization task is in general NP-hard, and can be burdened

by many local minima of poor quality [154, 41]. This leads to a slow optimiza-

tion process and many cost values may need to be evaluated.

Example use cases

• Quantum chemistry and condensed matter physics (ground state energy):

The ground state and ground state energy of a given Hamiltonian H can be

found by minimizing the cost ⟨ψ(θ)|H|ψ(θ)⟩, where |ψ(θ)⟩ = U(θ)|ψ0⟩ for

some input state |ψ0⟩ [833]. This is known as the variational quantum eigen-

solver (VQE) algorithm. A widely used ansatz for fermionic Hamiltonians
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is the unitary coupled cluster (UCC) ansatz [982, 833, 197, 668, 786, 748,

629, 922]. Beyond direct variational optimization on a quantum computer,

alternative hybrid classical-quantum algorithms have been proposed to use a

variational circuit as trial states for quantum Monte Carlo [550, 539] or com-

bining the use of VQE with density matrix embedding theory [557, 923].

• Combinatorial optimization: In the quantum approximate optimization

algorithm (QAOA), combinatorial problems on bit-strings can be encoded

in the Pauli-Z basis with Hamiltonian HP [384]. By finding the state that

minimizes ⟨ϕ(θ)|HP|ϕ(θ)⟩, where |ϕ(θ)⟩ = U(θ)|0⟩, the optimal bit-string

can be extracted by sampling the optimized state in the computational

basis. A widely studied ansatz for this problem is the quantum alternat-

ing operator ansatz (which bears the same acronym as the algorithm),

inspired by Trotterized adiabatic evolution [482]. The ansatz takes the

form U(γ,β) =
∏p

l=1
e−iβlHM e−iγlHP where HM is a specific “mixing”

Hamiltonian. This ansatz is known to be computationally universal (when

p → ∞) for certain classes of Hamiltonians [706, 780]. Moreover, under

reasonable complexity-theoretic assumptions, it is known that sampling

from the output of the QAOA at p = 1 is classically hard [380]. On the other

hand, there is evidence that shallow (small p) QAOA does not perform

well [194, 507, 385, 386], leading to intuition that p may need to grow

with problem size to produce better approximate solutions than what can

be easily found classically. Alternatively, there is some evidence that an

exponential number of samples from shallow QAOA circuits may yield

polynomial speedups over classical methods for finding exactly optimal

solutions [179, 928]; see Section 4.2 on beyond-quadratic speedups for

combinatorial optimization.

• Linear system solvers: Given matrix A and vector b encoded in a quantum

state |b⟩, the goal is to variationally prepare a quantum state |x⟩ with ampli-

tudes proportional to elements of the vector x = A−1b [187, 1060, 541]. The

strategy employed is to minimize the cost ⟨x̃(θ)|HL|x̃(θ)⟩, where |x̃(θ)⟩ =
U(θ)|0⟩ and HL = A†(I − |b⟩⟨b|)A. These approaches require the assumption

that A has a decomposition into a sum of a small number of efficiently im-

plementable unitaries. Here the absolute value of the cost function bounds

the approximation error. A numerical study up to 30 qubits showed favor-

able scaling in the time to solution with respect to the matrix size, condition

number, and precision [187].

• Compiling: An interesting near-term application could be to approximate a

given unitary V with native gate sequence U(θ). This can lead to a com-

pressed approximate implementation of the unitary. One option is to con-

struct a cost function via the Hilbert–Schmidt test circuit to evaluate 1 −
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|⟨Φ|V∗ ⊗ U(θ)|Φ⟩|2 = 1 −
∣∣∣2−n tr[V†U(θ)]

∣∣∣2, where |Φ⟩ is the maximally en-

tangled state [613].

• Quantum dynamics: VQAs can also be constructed to simulate real-time

and imaginary-time evolution. We discuss two examples. First, by using

the compiling primitives as outlined above, compressed gate sequences

for short-time evolution can be found [119, 757, 967, 983, 159]. This in

turn can also be used to fast forward and simulate evolution at long times

[294, 305, 420]. Second, a line of work has considered simulating open and

closed dynamics, as well as imaginary-time evolution, via McLachlan’s

variational principle [758], which gives a linear equation for parameter

dynamics
∑

j Mi, jθ̇ j = Vi describing the evolution of a parameterized

state |ψ(θ)⟩ [684, 1074, 751]. Here, Mi, j and Vi can both be found on

a quantum computer with basic circuit primitives, leading to a hybrid

classical-quantum algorithm. While a full review of variational quantum

algorithms for dynamics is beyond the scope of this section, we refer the

reader to more complete reviews in [1074, 241].

• Factoring: Variational methods for factoring have been proposed that exploit

a mapping between the factoring problem and that of finding the ground

state of an Ising Hamiltonian [39]. The authors use the QAOA ansatz and

heuristically find that p = O(n) rounds of the ansatz can lead to a good

solution overlap for small system sizes.

• Machine learning: Here one employs a parameterized quantum circuit to

construct a hypothesis family. Variational methods have been proposed for

both classical and quantum data for classification [919, 766, 914, 513, 306],

generative models [1008, 117, 362], autoencoders [879, 1014, 1009], and

beyond [878, 547]. Specific ansatzes have been proposed in these contexts,

sometimes referred to as quantum neural networks, in analogy with their

classical counterparts. “Classically inspired” quantum neural networks have

been proposed, such as perceptron-based QNNs [22, 1014, 381, 112] and a

quantum analog to the convolutional neural network [306], as well as ap-

proaches based on tensor networks [451, 548].

Further reading

• See [241, 148] for extensive reviews of VQAs, including a summary of dif-

ferent widely studied ansatzes, applications, and challenges.
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Quantum tomography

The authors are grateful to Richard Kueng for reviewing this chapter.

Rough overview (in words)

In quantum tomography, often also termed quantum state estimation, we are

given repeated copies of an unknown quantum state (or quantum channel)

and the goal is to obtain a full classical description of the quantum state (or

quantum channel) by extracting information by means of performing measure-

ments. Here, we focus on quantum state tomography, with multiple indepen-

dent and identical copies of an unknown quantum state ρ provided—that is

of fixed and of known dimension—and the task is to find an estimate of the

density matrix of the quantum state up to an approximation error in some dis-

tance measure (and up to some failure probability). We are then typically in-

terested in the optimal sample complexity in terms of the number of copies

n, the quantum state dimension d, the approximation error ε, and the overall

failure probability δ. Additionally, algorithmic complexity aspects of the used

schemes might be of importance as well.

Rough overview (in math)

Given (many copies of) an unknown quantum state ρ of known dimension d,

the goal is to give a description of ρ̃ with the statistical estimate ρ̃ ≈ε ρ, up

to some distance measure with corresponding approximation parameter ε ≥ 0.

This is achieved by extracting classical information by applying measurements

Mn(·) via ρ⊗n. To start with, one has to distinguish tomography schemes based

on different types of measurements used. This includes in particular:

(i) Independent and identical (IID) measurements, where the choice of mea-

surementMn =M⊗n is fixed and the same for each copy.
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(ii) Adaptive measurements, where the choice of measurement M2 on the

second copy can depend on the outcomes of measurement M1 on the

first copy, and so on.

(iii) Entangled measurements, where one measurementMk with 1 < k ≤ n

is performed on k copies at once.

Further, if one has some information about the type of quantum state provided,

then tomography schemes can become more efficient. This includes, for exam-

ple, pure state tomography, low-rank-k state tomography, matrix product state

tomography, or ground/thermal state tomography of Hamiltonians (some ref-

erences on tight schemes are given later on). For some schemes, one a priori

has certain information about the state in question and under this assumption

the scheme is then promised to work (e.g., low-rank tomography [462]). Other

schemes work generally, but are only a posteriori guaranteed to be more effi-

cient if the unknown state happens to be approximately of the type sought after

(e.g., matrix product state tomography [317]). Finally, for maximum likelihood

estimates or Bayesian statistical estimates and alike, priors could be added as

well.

Note that the best understood case of pure state tomography can also be

used for general quantum states, if one has access to the relevant purification.

Specifically for pure state tomography, one then also needs to specify in what

form access is given to the quantum state. Possible access models for pure state

tomography include:

• Via samples of computational basis measurements p(x) = ⟨x|ρ|x⟩ for esti-

mating the probabilities in the computational basis (not yet the pure state

amplitudes).

• Via copies of the state that can be processed before measurement.

• Via the state preparation unitary U |0n⟩⟨0n|U† = ρ (with ρ pure).

• Via the controlled version of aforementioned state preparation unitary U.

• Via aforementioned state preparation unitary U and its inverse U†.

Typically studied distance metrics to measure closeness of the statistical es-

timate to the true quantum state are the trace distance T (ρ, σ) = 1
2
tr
[|ρ − σ|],

the quantum fidelity F(ρ, σ) =
(
tr
[∣∣∣√ρ√σ

∣∣∣
])2

, and for pure quantum states

also the ℓ2-norm of the difference ∥ |ψ⟩ − |ϕ⟩ ∥ of the pure states |ψ⟩, |ϕ⟩ corre-

sponding (up to global phase) to ρ and σ, respectively.

Dominant resource cost (gates/qubits)

Besides some potential ancilla qubits (few for typical tomographic schemes),

the number of qubits is fixed by the dimension of the quantum state (of course,
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whenever entangled measurements are used, the corresponding number of

copies is needed). As such, the sample complexity is typically the relevant

figure of merit. In the following, the notation Θ(·) stands for simultaneous

upper O(·) and lower Ω(·) bounds on the asymptotic sample complexity, and

the variant Θ̃(·) denotes the same up to factors that scale polylogarithmically in

the relevant parameters. Tight sample and query complexity characterizations,

in terms of an approximation error ε ∈ [0, 1], then include the following

noteworthy results:

• Θ̃(dε−2) sample complexity for pure state tomography in ℓ2-norm up to

global phase [49] ([610] gave an algorithm with similar complexity, but re-

quiring a state preparation unitary). The main idea is to use computational

basis measurements to recover the absolute values of the amplitudes and

then create some interference pattern for learning the phases.

• Θ̃(dε−1) query complexity for pure state tomography in ℓ2-norm with ac-

cess to controlled state preparation unitary and its inverse [49], featuring a

quadratic speedup in 1/ε reminiscent of amplitude estimation. The achiev-

ability results are based on the subroutine of quantum gradient estimation

via an unbiased version of quantum phase estimation. Note that [267] used

an alternative simpler algorithm based on iterative refinement and ampli-

tude amplification that achieves the same query complexity but comes with

improved gate complexity.

• Θ(dk2ε−2) sample complexity for rank-k state tomography in trace distance

with IID measurements [656, 478, 471]. The achievability results are based

on low-rank matrix recovery techniques, where semidefinite programs have

to be solved for reconstructing the quantum state from the collected mea-

surement statistics. Note that the special case k = 1 corresponds to pure

state tomography as in the setting of the first bullet point.

• Θ̃(dkε−2) sample complexity for rank-k state tomography in trace distance

with entangled measurements [807, 478, 1075]. The achievability results are

based on representation-theoretic techniques around the Schur transform.

• Θ̃(dkε−1) query complexity for rank-k state tomography in trace distance

with access to controlled state preparation unitary of a purification and its

inverse [49], featuring a quadratic speedup in 1/ε reminiscent of amplitude

estimation.

For variations of the above, additional results in terms of lower and upper

bounds are known. The derivations of the sample complexity lower bounds

are often based on information-theoretic methods, exploiting the monotonic-

ity of quantum-entropy-based measures. For sample complexity upper bounds,

it is in practice additionally important that the algorithmic complexities of
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the underlying schemes become efficient (in particular for entangled measure-

ments performed on all n copies at once). Relevant metrics for the algorithmic

complexity include quantum gate depth and number of measurement outcomes

needed, as well as runtime and memory requirements of the classical postpro-

cessing stage. We refer to [723] for a recent discussion on these computational

aspects.

Caveats

As shown by the presented information-theoretic lower bounds, the sample

complexity for general quantum state tomography grows exponentially in the

number of qubits. As such, whenever quantum tomography is invoked as a

subroutine in quantum algorithms, one has to carefully analyze if this step does

not eliminate any claimed speedups of the quantum algorithm compared to

state-of-the-art classical methods. One also has the inverse polynomial scaling

in terms of the approximation parameter from the finite statistics, which is

often prohibitively expensive for certain applications.

Additionally, on top of sample complexity for tomography schemes, the ac-

companying gate complexity should be considered as well. We refer to [49] for

a discussion.

An alternative is to resort to only revealing partial classical information

about quantum states, which might still be informative for the (algorithmic)

task at hand. One such example with favorable scaling is shadow tomogra-

phy, where the task is to not estimate the density matrix itself, but (very)

many observables thereof. Shadow tomography—also known as quantum data

analysis—can achieve exponential sample complexity improvements in terms

of Hilbert space dimension compared to full state tomography and is guaran-

teed to yield exponential improvements in the number of target observables

(compared to directly measuring all of them sequentially). The strongest re-

sult of this kind [2, 5, 209] requires entangled measurements across many state

copies, as well as prohibitively large gate counts. More hardware-friendly pro-

tocols have been derived, known as classical shadow tomography [540, 823,

373]. In more detail, there exist algorithmically efficient and universal schemes

that can simultaneously ε-approximate M linear functions tr[Oiρ] of an un-

known quantum state ρ by only using O(log(M) ·maxi ∥Oi∥2sε−2) IID measure-

ments. Note the scaling with log(M) instead of the standard M scaling. The

shadow norm term ∥Oi∥2s scales in general as d, leading to the worst-case query

complexity O(d log(M)ε−2). However, for observables with bounded Hilbert–

Schmidt norm or for local observables, the overall dimension-free query com-

plexity O(log(M)ε−2) is achievable.
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Example use cases

Quantum tomographic or related data collection schemes are omnipresent in

quantum algorithms. Some applications include:

• Quantum linear system solvers that output the full classical solution vector,

where such solvers are, for example, employed for quantum interior point

methods or for solving differential equations.

• Classical data about quantum states for variational quantum algorithms.

• Characterizing the performance of physical devices.

• Probing entanglement dynamics throughout a quantum simulation.

• Characterizing quantum processes.

Further reading

• Short perspective article, entitled “Focus on quantum tomography” [87].

• Recent overview on query complexity aspects [49].

• Recent overview on computational complexity aspects [723].

• Shadow tomography of quantum states [2].

• Review article on classical shadows and randomized measurements [373].
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Quantum interior point methods

The authors are grateful to Sander Gribling for reviewing this chapter.

Rough overview (in words)

Interior point methods (IPMs) are a type of efficient classical algorithm for

solving convex optimization problems such as linear programs (LPs), second-

order cone programs (SOCPs), and semidefinite programs (SDPs). IPMs are

the basis for effective optimization software tools (e.g., [355, 38]), which are

widely used for solving convex optimization problems that arise in industry.

They are called interior point methods because, in contrast to the simplex

method, they iteratively generate a sequence of points that lie in the interior

of the convex region; this sequence of points is guaranteed to rapidly approach

the optimal point (which, when it exists and the objective function is convex,

is guaranteed to lie at the boundary of the convex region). At each iteration,

the next point is produced by solving a system of linear equations. See, for

example, [1053, 1052, 797, 438] for context on how IPMs fit into the history

of methods for optimization.

Quantum interior point methods (QIPMs) are quantum algorithms that

leverage a similar approach as classical IPMs, but perform certain aspects of

the algorithm in a quantum manner. For example, QIPMs were first introduced

in [610], where the quantum algorithm is identical to classical IPMs, except

that it determines the next point using a quantum linear system solver (QLSS)

combined with quantum state tomography, rather than a classical linear system

solver. Subsequent work has explored other forms of quantizing classical

IPMs that do not rely on the QLSS [51, 69].

Classical IPMs are generally efficient in the sense that they can solve convex

optimization problems in time scaling as a polynomial in the number of vari-
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ables. The exact degree of the polynomial depends on which kind of convex

optimization problem is being solved, as well as certain choices about the IPM.

Since QIPMs often rely on state tomography, they are generally expected to

require time that scales at least linearly in the number of variables, and lower

bounds along these lines are known [48]; thus, the best one can hope for is

a polynomial speedup over classical IPMs. The exact runtime of the quantum

algorithm depends on instance-specific parameters, such as the condition num-

ber of matrices that appear during the course of the algorithm, which makes it

difficult to determine whether a speedup exists in practice.

Rough overview (in math)

For simplicity, we focus on LPs, the simplest kind of optimization problem

where QIPMs can be applied. An LP is specified by an m × n matrix A, an

n-dimensional vector c, and an m-dimensional vector b, and it is given by

min
x∈Rn
⟨c, x⟩

subject to Ax = b

xi ≥ 0 for i = 1, . . . , n

, (22.1)

where ⟨u, v⟩ denotes the standard dot product between vectors u and v.

The function ⟨c, x⟩ is called the objective function, and a point x is called

feasible if it satisfies Ax = b and xi ≥ 0 for all i. Inequality constraints of the

form Ax ≤ b can be handled by introducing slack variables. We denote the

feasible point that optimizes the objective function by x∗.

An important concept in mathematical optimization is duality, where given

one optimization problem, an equivalent “dual” optimization problem can be

generated through the method of Lagrange multipliers (see [180, Section 5]).

The dual of the LP in Eq. (22.1) is given by

max
y∈Rm
⟨b, y⟩

subject to A⊺y + s = c

si ≥ 0 for i = 1, . . . , n

. (22.2)

Alternatively, one can drop the s variable and constraints that si are positive,

and simply write A⊺y ≤ c. Denote the optimal feasible points for the dual by

(y∗, s∗).

It can be shown that the optimal point lies at the boundary of the feasible

region and satisfies the relationship xisi = 0 for all i. A key concept in IPMs

is the central path, a set of points parameterized by µ > 0. The central point

with parameter µ is the feasible point for which xisi = µ for all i. In general,
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this point will be in the interior of the feasible region, but as µ→ 0, the central

path approaches the optimal point on the boundary.

The most effective classical IPMs are “primal-dual path-following

methods,” which generate a length-T sequence of primal-dual point pairs

(x(t), y(t), s(t)) ∈ Rn × Rm × Rn for t = 0, . . . ,T − 1 that approximately

follows the central path toward the optimum. Given (x(t), y(t), s(t)), the point

(x(t+1), y(t+1), s(t+1)) = (x(t) + ∆x, y(t) + ∆y, s(t) + ∆s) is formed by solving the

following linear system of equations, which is called the Newton system, as it

corresponds to one iteration of Newton’s method.


A 0 0

0 A⊺ I

S 0 X





∆x

∆y

∆s

 =



b − Ax(t)

c − A⊺y(t) − s(t)

σ x(t)⊺ s(t)

n
1 − Xs(t)

 , (22.3)

where σ < 1, 1 denotes the all 1s vector, and S = diag(s(t)), X = diag(x(t))

are diagonal n × n matrices formed from the entries of s(t) and x(t). Note that

there are alternative ways to formulate the Newton system (see, e.g., [70, 68]).

To understand Eq. (22.3), note that if the point (x(t), y(t), s(t)) is feasible, then

the first two entries on the right-hand side are zero. Furthermore, if it is on

the central path, then Xs(t) = x(t)⊺ s(t)

n
1, so if we were to choose σ = 1, then

the entire right-hand side would be zero, and the solution to the system would

be ∆x = ∆y = ∆s = 0. If instead we set σ = 1 − δ for sufficiently small δ,

the solution will correspond to taking a small step along the central path in

the direction of decreasing µ. Technically, we do not exactly follow the central

path, but it can be guaranteed that the sequence of points stays within a small

neighborhood of it. As µ → 0, the central path approaches the optimal point

(x∗, y∗, s∗), so by following the path toward µ = 0, a classical or quantum IPM

can guarantee success.

The classical IPM can solve the Newton system exactly using Gaussian

elimination in O(n3) operations, or it can solve the system approximately using

a variety of iterative solvers such as the conjugate gradient method. In contrast,

the standard approach for a QIPM is to solve the Newton system by using a

QLSS to repeatedly prepare the O(log(n))-qubit state |∆x,∆y,∆s⟩ whose am-

plitudes encode the solution to the Newton system. By preparing many copies,

the algorithm can perform (pure state) quantum state tomography to yield an

estimate (∆x,∆y,∆s) for the amplitudes (∆x,∆y,∆s) to some desired precision

ξ (in 2-norm), that is,

∥(∆x,∆y,∆s) − (∆x,∆y,∆s)∥ ≤ ξ∥(∆x,∆y,∆s)∥ .

Due to the tomography step, the QIPM is only able to generate solutions to

the Newton system that are inexact. There has been some question in the liter-
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ature whether the (classical or quantum) IPMs with the fastest guaranteed con-

vergence rate (i.e., the number of iterations needed to reduce µ to ϵ) are appli-

cable even when inexact solutions are used, as this causes intermediate points

to be (slightly) infeasible [70]. However, if ξ is sufficiently small, the method

appears to work empirically even using the inexact solutions that would be out-

put by a quantum solver [328]. Alternatively, there exist workarounds [70] that

ensure feasibility is maintained even when linear systems are solved inexactly,

at the expense of some additional classical cost.

The IPMs and QIPMs for SOCPs [612, 68] are quite similar to those for LPs

described above: the main difference is that the matrices X and S are no longer

strictly diagonal matrices. QIPMs have also been proposed for SDPs [610, 70,

537], which are more complex but have more expressive power; here, addi-

tional considerations must be taken to guarantee that the intermediate solutions

continue to be symmetric even after experiencing errors due to tomography.

The above exposition represents the original approach to quantizing the clas-

sical IPM, which has so far garnered the most study. An alternative to this ap-

proach was proposed in [51], which focuses on the case that the LP constraint

matrix A is “tall,” that is, m ≫ n. As above, they follow the central path to the

optimal point; however, they adopt a primal-only approach, where the Newton

linear system takes on the form (B⊺B)g = h, with g and h length-n vectors and

B an m × n matrix. Rather than using the QLSS and quantum state tomogra-

phy, their quantum algorithm performs a Grover search–like step to identify

the “important” rows of B and thus produce an O(n) × n matrix B̃ for which

B̃⊺B̃ ≈ B⊺B. This enables a quadratic speedup in the large parameter m. To

obtain the right-hand side vector h, which is the gradient of the objective func-

tion, they require the multivariate mean-estimation algorithm of [310], which is

related to the quantum gradient estimation primitive developed in [587, 430]—

this is key for avoiding a dependence on the condition number of B⊺B. Matrix

inversion is then performed classically at cost polynomial in n, independent of

m and not depending on the condition number of any matrix.

Meanwhile, another quantum algorithm inspired by IPMs was proposed in

[69]. Where the standard QIPM encodes the variable x into the amplitudes

of the quantum state, requiring readout with quantum state tomography, the

method of [70] encodes the components of x into separate binary registers,

truncated to some finite number of bits of precision. It constructs a Hamilto-

nian, parameterized by µ, whose ground state is a wavefunction localized near

the associated point on the central path. By slowly decreasing µ and invoking

the adiabatic theorem, the wavepacket follows the central path to µ = 0, where

the optimal point can be recovered by a measurement. Thus, the main primitive

required is time-dependent Hamiltonian simulation.
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Dominant resource cost (gates/qubits)

The outer loop of QLSS-based QIPMs is purely classical; at each iteration a

small step is taken to form the next point in the sequence. For LPs, SOCPs,

and SDPs, the number of iterations T required to yield a point for which the

objective function is within ϵ of optimal is O(
√

n log(1/ϵ)). The main cost of

each iteration is solving the Newton system. In the complexity statements that

follow, we assume the number of constraints m is on the order of the number

of degrees of freedom (i.e., m = O(n) in the case of LPs and SOCPs, and

m = O(n2) in the case of SDPs).

The QIPM solves the Newton system by preparing many copies of the state

corresponding to the solution to the linear system. This state can be prepared in

time polylog(n) ·ζκ, where κ is the condition number of the matrix in Eq. (22.3)

and ζ is the ratio ∥·∥F/∥·∥ of the Frobenius and spectral norms of the ma-

trix, assuming that one can perform a block-encoding of the Newton matrix

in polylog(n) time, a task that requires access to large-scale quantum random

access memory (QRAM).1 For LPs and SOCPs, the number of copies that must

be prepared scales as O(n/ξ2) when using the basic version (see [610, Section

4] and [328, Section IVD]) of pure state tomography that simply measures

each copy in the computational basis. A more recent and complex version of

tomography [49] can achieve this task using O(n/ξ) copies along with addi-

tional gates. For SDPs, since the variables are matrices rather than vectors, the

number of copies is O(n2/ξ2) or O(n2/ξ). Overall, using the more efficient ver-

sion of tomography and ignoring the additional gates, the runtime of the QIPM

is expected to scale as

LP, SOCP: Õ
(

n1.5ζκ

ξ
log(1/ϵ)

)

SDP: Õ
(

n2.5ζκ

ξ
log(1/ϵ)

)
,

(22.4)

where κ denotes the maximum condition number, ζ the maximum ratio of

Frobenius to spectral norm, and ξ the minimum tomographic precision re-

quired across all iterations. There may be an additional purely classical cost of

O(n2.5) for LPs/SOCPs and O(n4.5) for SDPs, deriving from classical matrix-

vector multiplications necessary for setting up the Newton system at each iter-

ation.

1 It is worth emphasizing that the origin of the dependence on the Frobenius norm of the
Newton matrix here is the normalization factor that arises when block-encoding a dense
classical matrix. If the matrix were sparse or had some compact representation, this
normalization factor could potentially be improved—but for Newton matrices in QIPMs we
do not expect this to be the case.
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In the worst case, it may be necessary to take ξ as small as O(1/κ), and ζ

can be as large as
√

n (SOCP/LP) or n (SDP)—complexity statements in the

literature, such as [70], often assume these worst-case values for those param-

eters, but we refrain from doing so as these worst-case values may be overly

pessimistic in practice. The hidden constant prefactors are dependent primarily

on the implementation of the QLSS and tomography. It is clear that the viabil-

ity of the QIPM is highly dependent on the value and scaling of the parameters

κ and ξ. Unfortunately, it is believed that for some LP/SOCP/SDP instances,

the value of κ will diverge as the target precision ϵ is made smaller, perhaps as

O(1/ϵ) [612, 70], although this may not be the case in every instance (see, e.g.,

the numerical results of [328]).

The QIPM only requires a register of O(log(n)) qubits to hold the solution of

the linear system; however, achieving the runtimes quoted requires queries to

QRAM. In this case, the explicit QRAM circuits that achieve shallow depths

of O(log(n)) necessarily require O(n2) total gates across O(n2) total qubits.

The alternative approach of [51] is best suited for the case where m ≫ n,

and requires
√

m · poly(n, log(1/ϵ)) queries to the entries of the matrix A,

where the
√

m-dependence fundamentally comes from Grover-like primitives

with quadratic speedup. Like the standard QIPM formulation, this approach re-

quires a QRAM to implement the queries in polylog(m) time. However, since

it does not use QLSS or tomography, it avoids polynomial dependence on the

instance-specific parameters κ and 1/ξ.

Caveats

There are several important caveats that must be considered when evaluating a

speedup claimed by QIPM.

• Even in a best case scenario, the quantum speedup is at most polynomial

(and even subquadratic). Since quantum computation requires significant

constant-factor overheads due to slower clock speeds and error correction,

the value of n for which a QIPM would be faster than a classical IPM on

actual hardware is likely to be large (see [328] for further discussion).

• Since n must be large for a quantum speedup to be obtained, a very large

QRAM, corresponding to millions or billions of (logical) qubits, would be

needed for any speedup to be realized.

• QIPMs are most effective when the matrices that need to be inverted over

the course of the algorithm are well conditioned, due to their reliance on

the QLSS. However, when the condition number κ is small, iterative clas-

sical methods may also be effective, limiting the advantage of the quantum

algorithm. In particular, a linear system with O(n) dense constraints on n
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variables can be solved to error ξ in time O(nζ2κ2 log(1/ξ)) using the ran-

domized Kaczmarz method [959]. In comparison, the QIPM utilizes QLSS

and tomography to solve the same task (once per iteration) in timeO(nζκ/ξ).

Even if ξ = Ω(1), this limits the magnitude of the quantum speedup to a

factor of O(ζκ). Thus, for the quantum speedup to be maximized, κ can be

neither too small nor too large. While we are not aware of any IPM imple-

mentations based on the Kaczmarz method, its complexity allows for clean

comparison with quantum algorithms involving the QLSS for dense matri-

ces, since both depend directly on the quantity ζκ. Here it is also worth men-

tioning that there exist other approximate classical linear system solvers for

which the complexity depends on κ, but not on ζ. One example is the conju-

gate gradient method [713]. Another straightforward example is to solve the

system Gu = v by finding a degree-O(κ log(1/ξ)) polynomial approxima-

tion p(x) ≈ 1/x, and then computing p(G)v ≈ G−1v = u via a sequence of

O(κ log(1/ξ)) matrix-vector products—this is a classical analog of the quan-

tum approach based on the quantum singular value transformation [431].

Classically, each matrix-vector product costs O(n2) when G is dense and

O(ns) for when G is s-sparse.

• If the matrices that define the convex problem have a certain structure

(e.g., sparsity), this could be exploited to potentially reduce the overhead

from block-encoding—in particular, the value of ζ and the size of the

QRAM required. However, this can help the quantum algorithm only to a

limited extent, as the vectors (∆x,∆y,∆s) will still be dense and reading

out estimates for all O(n) amplitudes with quantum tomography will be

necessary.

Example use cases

• Portfolio optimization, the canonical optimization problem that appears in

finance, can be formulated as an SOCP and solved with a QIPM; a study

of the condition number of the matrices that appear in this application was

consistent with a small quantum speedup [611]; however, a follow-up study

did not replicate this finding [328] and also pointed out that in any case

large constant-factor overheads would make achieving practical advantage

challenging.

• Support vector machines, a common task in machine learning, can be re-

duced to SOCPs and solved with a QIPM; a study of the condition number

of the matrices that appear in this application was consistent with a small

quantum speedup [612].

• Sample-efficient protocols for mixed-state tomography reduce the problem

of reconstructing an estimate of the quantum state to solving an SDP. This
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SDP could be solved with a QIPM (note that the tomography needed within

the QIPM is always on pure states and does not require solving an SDP, thus

avoiding an issue of circular logic).

• Nonconvex optimization is often solved approximately by relaxing the

problem into a convex problem like an SDP. For example, the MAX-CUT

problem is a combinatorial optimization problem over the nonconvex space

{+1,−1}n, but by solving the associated SDP relaxation and rounding, an

approximate solution can be obtained.

Further reading

• See Boyd and Vandenberghe [180] for an accessible book on convex opti-

mization including (classical) IPMs.

• QIPMs are an active area of research. A QIPM for LPs and SDPs was orig-

inally proposed by Kerenidis and Prakash in [610]. This was followed up

by a QIPM for SOCPs in [612], along with numerical simulations for spe-

cific applications [612, 611]. Later, [70] pointed out a potential error in the

convergence analysis of previous works, and they presented two possible

workarounds called the “inexact-infeasible” and “inexact-feasible” IPMs.

Note also the work in [537] for another way to avoid this issue, giving a

QIPM for SDP.

• See [51, 69] for quantum methods related to IPMs that do not rely on the

QLSS.
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Multiplicative weights update method

The authors are grateful to Sander Gribling for reviewing this chapter.

Rough overview (in words)

The multiplicative weights update (MWU) method is an algorithmic strategy,

sometimes referred to as a “meta-algorithm,” with varying applications in clas-

sical and quantum algorithms. Reference [58] gives an overview of the MWU

strategy. The introductory example problem where the MWU method is used

is the problem of making predictions for a binary outcome given advice from

a panel of n “experts.” The MWU approach assigns a weight to each of the n

experts, and the weight is reduced by a multiplicative factor whenever the ex-

pert makes an incorrect prediction. The outcome of the process can be shown

to give an approximately optimal strategy.

This general approach can be applied to convex programs including linear

programs (LPs) and semidefinite programs (SDPs). The SDP version general-

izes the MWU method to allow for matrix-valued weights and matrix-valued

costs. These weight matrices are positive semidefinite operators with trace

equal to one, that is, density matrices. In fact, the states that arise in the SDP-

solving algorithm are Gibbs states. Thus, they can be naturally represented as

quantum states on a logarithmic number of qubits and generated through the

process of Gibbs sampling. The existence of fast Gibbs samplers can lead to a

quantum speedup in certain circumstances.
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Rough overview (in math)

We present an example problem. Let 1 denote the all-ones vector. Consider the

following set of linear constraints on the vector x = (x1, . . . , xn) ∈ Rn

⟨a( j), x⟩ ≥ 0 j = 1, . . . ,m

⟨1, x⟩ = 1

xi ≥ 0 i = 1, . . . , n

for m fixed vectors a( j) ∈ Rn with entries in [−1, 1], for j = 1, . . . ,m, where

⟨·, ·⟩ denotes the standard dot product between vectors. Suppose we are given

a value of ϵ and promised either that there is no choice of x that satisfies all

the constraints or that there exists an x∗ such that ⟨a( j), x∗⟩ ≥ ϵ for all j, with

⟨1, x∗⟩ = 1 and x∗
i
≥ 0 for all i. We wish to determine which is the case and find

a vector x∗ in the second case. This problem is equivalent to the machine learn-

ing problem of finding a linear classifier for a set of m labeled n-dimensional

training points, similar to a support vector machine [58, 697]. The problem is

also similar to the form of an LP and to the problem of solving for the optimal

point of a zero-sum game [58, 46], and the MWU meta-algorithm can also be

straightforwardly applied to solve these problems.

A classical solution to this problem is given by the multiplicative weights

method [58]. The algorithm iteratively updates the vector x, with initializa-

tion x = 1/n. At each iteration, the algorithm finds a constraint j for which

⟨a( j), x⟩ < 0 (or if no such j exists, it terminates and outputs x). Let η = O(ϵ)

be a fixed constant. Once j is found, the entries of the vector x are updated

according to

xi ←
xie

ηai j

∑
ℓ xℓeηaℓ j

, (23.1)

where ai j denotes entry i of vector a( j), and the denominator works to enforce

⟨1, x⟩ = 1. By upweighting x in the direction of the violated constraint a( j), this

update rule brings the x closer to satisfying the constraint. The magic of the

multiplicative weights method is that the promise problem described above can

be solved after only O(log(n)/ϵ2) iterations [58]. By searching for a violated

constraint using a Grover search, the runtime of each iteration can be sped up

quantumly, giving rise to polynomial speedups for solving zero-sum games

and LPs more generally [46].

In the analogy to a panel of experts, we may view the above problem as

follows. Each expert i ∈ [n] produces a prediction for each of j ∈ [m] data

points, denoted by ai j. We wish to produce a weighting x over the n experts

such that the weighted majority of the n experts yields a positive value for all

m data points. The multiplicative weights method solves this iteratively by be-
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ginning with a uniform weighting over the n experts, and repeatedly observing

an index j where the weighted majority misclassifies (i.e., predicts a negative

value for) data point j, assessing a multiplicative penalty of eηai j to the weight

of expert i. In a machine learning context, the weighting of experts produced

by the algorithm can then be used as a classifier that allows us to predict a label

for a new data point, by following the opinion of the weighted majority of the

experts.

The matrix MWU method generalizes the n-dimensional vector x to an n×n

symmetric matrix X. An example problem generalizing the above is

⟨A( j), X⟩ ≥ 0 j = 1, . . . ,m

⟨I, X⟩ = 1

X ⪰ 0 ,

where A( j) are fixed symmetric constraint matrices and the notation ⟨U,V⟩ :=

Tr(UV) generalizes the dot product from vectors to matrices. Here I denotes

the identity matrix, and X ⪰ 0 denotes that X is positive semidefinite. The

problem above is related to the general form of an SDP, and the matrix MWU

approach can be applied to solve SDPs. Note that we recover the vector ex-

ample if we specify that the matrices A( j) and X are diagonal. The final two

constraints indicate that X is a density matrix and is associated with a quan-

tum state on log2(n) qubits. When X is updated by a generalization of the rule

in Eq. (23.1), then at every iteration of the MWU method, X will be a Gibbs

state for a certain Hamiltonian that is a weighted sum of the symmetric con-

straint matrices A( j). Thus, the quantum state X can be prepared on a quantum

computer using algorithms for Gibbs sampling. Taking this approach, quan-

tum algorithms can achieve guaranteed polynomial speedups for performing

an iteration of the MWU method compared to classical approaches, and it is

conceivable that larger speedups could be available if the associated quantum

systems admit faster-than-worst-case Gibbs sampling.

Dominant resource cost (gates/qubits)

The MWU method, both in the classical and quantum setting, consists of some

number T of iterations, where each iteration updates a classical data structure.

In typical applications, T = poly(log(n)/ϵ), where n is the problem size and

ϵ is a precision parameter related to how close to optimal the solution has

to be. This contrasts with other approaches to solving optimization problems,

such as interior point methods, for which the number of iterations can scale as

O(poly(n) log(1/ϵ)).
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Each iteration typically takes poly(n,m, 1/ϵ) time and is carried out with

subroutines that can often be sped up with quantum algorithms. These sub-

routines can include Grover search / amplitude amplification and, in the case

of the matrix MWU method, Gibbs sampling, which end up dominating the

quantum cost of the algorithm.

Here it is important to point out that, especially in the quantum case, the

MWU method can benefit from keeping an implicit representation of the n-

dimensional vector x (or in the case of matrix MWU, the n × n matrix X). For

instance, in the example problem above, we need not explicitly write down the

vector x; rather, we can keep track of the indices j1, j2, . . . , jt corresponding

to the penalties assessed at iterations 1, 2, . . . , t. These indices can be orga-

nized into a t-sparse vector y ∈ Rm from which x is defined implicitly by

xi ∝ eη
∑m

j=1 ai jy j . In the context of optimization problems like LPs and SDPs, the

vector y can often be related to the dual version of the optimization problem

(see, e.g., [45]), where the goal is to find an optimal y, and each value y j may be

interpreted as the weight assigned to decision j ∈ [m]. Given y, the Gibbs sam-

pling primitive can then produce a quantum state on O(log(n)) qubits encoding

the vector x. At iteration t + 1, this quantum state is used to find an index jt+1

corresponding to a violated constraint without ever explicitly writing down the

vector x. This implicit representation is essential if the quantum algorithm is

to achieve complexity sublinear in n. The same situation arises in algorithms

for SDP based on matrix MWU, where Gibbs sampling is used to produce a

O(log(n))-qubit mixed quantum state ρ = e−H/tr(e−H), where on iteration t+1,

the Hamiltonian H =
∑

j y jA
( j) is given by a weighted sum of at most t distinct

input matrices. By keeping track only of the sparse vector y ∈ [m], one avoids

needing to write down the n2 entries of ρ. In fact, ignoring dependence on ϵ,

the Gibbs state ρ can typically be prepared using only Õ(s
√

n) queries to the

input data, where s ≤ n is the sparsity of the n × n input matrices A( j) (see,

e.g., [48, 45]). This represents a polynomial speedup in the per-iteration cost

compared to classical methods.

Additionally, there is also an appealing possibility that, for specific cases,

the Gibbs sampling step for the log2(n)-qubit system could be accomplished

in polylog(n) time if the system thermalizes rapidly, allowing quantum al-

gorithms based on the matrix MWU method to have faster runtime, perhaps

as fast as poly(log(n), 1/ϵ), representing an exponential speedup over their

poly(n, 1/ϵ)-time classical counterparts.

Caveats

One caveat is that the best outlook for quantum advantage occurs when the

constraint matrices A( j) that appear in applications are sparse matrices (and
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especially if they correspond to physical local Hamiltonians). However, this

sparsity constraint may not be satisfied often in practice. There can in principle

still be a speedup for dense matrices, but in this case, access to a large quantum

random access memory might be required, which has its own caveats.

Another caveat to achieving a practically useful algorithm with either the

classical or the quantum version of the MWU method is that the theoretical

dependence of the runtime on the error parameter ϵ may lead to poor practi-

cal runtimes. The original quantum SDP solver based on MWU had O(ϵ−18)

dependence [181], and this was later improved to O(ϵ−5) [45]. While this is

technically poly(1/ϵ) scaling, the large power would likely lead the algorithm

to be worse than alternatives, such as classical or quantum interior point meth-

ods which have polylog(1/ϵ) scaling, unless it is tolerable for ϵ to be essentially

constant. In the case of zero-sum games, the quantum algorithm based on the

MWU method has a slightly more tolerable O(ϵ−3) dependence.

Example use cases

• The MWU method can be used to gain an asymptotic quantum speedup in

solving zero-sum games, and relatedly, solving LPs [46, 178]. This speedup

is generated by Grover-like methods and does not require Gibbs sampling

of quantum states. Many interesting optimization problems can be reduced

to an LP.

• The MWU method was used in [686] to give an algorithm for online portfo-

lio optimization, relevant to applications in finance.

• The matrix MWU method can be used to gain an asymptotic speedup for

solving SDPs in the regime where the precision parameter ϵ to which the

program should be optimized is large. Many interesting optimization prob-

lems can be reduced to an SDP. One notable example is that approximate

solutions to (discrete) binary optimization problems can be found by solving

the (continuous) SDP relaxation of the problem and performing a rounding

procedure on the solution (see, e.g., [183, 71]).

Further reading

• See Arora, Hazan, and Kale [58] for an overview of the MWU method from

a classical perspective, including its matrix generalization.

• The quantum algorithm for SDP based on the MWU method was introduced

by Brandão and Svore [181]. This was improved in subsequent works [182,

48, 45]. The method was applied to the specific application of solving SDP

relaxations of binary optimization problems in [183, 71], and to the specific

application of computing optimal strategies of zero-sum games in [46].
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• In [178], a “dynamic Gibbs sampling” method is proposed to improve the

complexity of the MWU algorithm for zero-sum games. It would be inter-

esting if this method can be extended to other applications of the MWU

method.

• For an overview of multiplicative weights methods within quantum algo-

rithms, see [520].
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Approximate tensor network contraction

The authors are grateful to Glen Evenbly, Johnnie Gray, Daniel Malz, and

Ashley Milsted for reviewing this chapter.

Rough overview (in words)

Tensor network algorithms are a versatile tool that is playing an increasingly

important role in problems both within and outside of physics and quantum

computation [150], whenever the size of the underlying linear space is expo-

nentially large in some appropriately defined dimension (i.e., tensor decompo-

sition of the space). Their application to exponentially large linear systems is

ultimately limited by the ability to contract (i.e., sum over repeated indices)

large networks of tensors, in particular when the network forms a graph with

many loops. Quantum approximate contraction of tensor networks [54] is a

quantum algorithm for contracting arbitrary tensor networks up to a constant

additive error. Estimating partition functions up to an additive error is a spe-

cial case of the general problem, where all elements of the tensor network are

positive.

This quantum approach to approximate tensor network contraction is of par-

ticular interest since many commercially relevant problems do not care about

asymptotic speedups, but rather time-to-solution on smaller or medium prob-

lem sizes, and oftentimes approximate solutions found with heuristics are good

enough. Tensor network (sometimes called quantum-inspired) algorithms for

industrially relevant problems can be used heuristically, and the quantum ap-

proximate contraction backend might be used in cases where the classical al-

gorithms do not provide sufficient accuracy, speed, or scale. Quantum-inspired

classical algorithms based on tensor networks might allow for the identification

of promising heuristic applications of quantum computing.
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At this time, however, the only known problems where the quantum backend

provides substantial speedup is for problems originating from quantum com-

puting itself, such as quantum computational supremacy experiments based on

random quantum circuits [826].

Rough overview (in math)

We define a tensor network as an abstract object T (G,M) defined on a graph

G = (V, E), where to each vertex v ∈ V we associate a tensor M(v) with one

index for each adjacent edge. The tensor network T (G,M) is closed, in that

all edges are contracted. This means that for any specific set of tensors M

on G, T (G,M) maps to a scalar. Given the graph G, we define a contraction

pathway as a sequence of edges in G, where at each step the pair of vertices

adjacent to the edge are merged into one vertex, until, at the end of the se-

quence, only one vertex remains in the graph. When merging two vertices, it

can occur that edges that were previously distinct now coincide. It is impor-

tant to keep track of the multiplicity of such edges. The optimal contraction

pathway, in terms of cost scaling, is the merge sequence for which the maxi-

mum number of edges (counting multiplicity) incident to any vertex at any of

the steps—a quantity called the contraction width—is minimized. The optimal

contraction width is related to the tree width of the graph [741]. Classical exact

contraction algorithms typically scale exponentially in the contraction width

[330, 911, 483, 455]. For generic, loopy networks, the contraction width is ex-

pected to be polynomially related to |V |; thus, the exact contraction algorithm

will quickly become intractable with growing |V |. However, many approximate

contraction methods exist [816, 454].

Suppose we fix a contraction pathway for which the sequence of edges forms

a path in G, known as a “bubbling” because one can draw a bubble around con-

tracted vertices, which sequentially expands as the path is traversed. This may

not be the pathway with optimal contraction width (for which the sequence of

edges need not always form a path). Then, for any ϵ > 0, there exists a quantum

algorithm that runs in O(|V |ϵ−2poly(qd)) quantum time and outputs a complex

number r such that [54]

Pr(|T (G,M) − r| ≥ ϵ∆) ≤ 1

4
,

where d is the maximum degree of the graph and q is the dimension of the edge

Hilbert space (or bond dimension). The parameter ∆ is the sequential norm of

the operations in the contraction path: ∆ =
∏

v∈V∥Ov∥, where Ov are called

swallowing operators (see Definitions 3.1 and 3.2 in [54]), which control the

sequential contraction of the tensor network.
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Intuitively, one can think of contracting the network one edge at a time along

a connected path, such as a snake covering a 2D lattice. At each step of the way,

the contracted vertices—which form a potentially large tensor—are encoded as

a quantum state, and each new vertex is contracted by a local operator Ov (the

process is called bubbling in [54]). The dimension of the “state” can increase

or decrease with every operation. Each operator Ov in the contraction path-

way is approximately mapped onto a unitary operator on the linear space (qd

dimensional) connecting vertex v in the network plus one ancilla qubit. The

approximation comes from the Solovay–Kitaev theorem. This way, the exact

contraction of the tensor network is approximately mapped onto a quantum

circuit of volume roughly equal to the graph “volume.” The output state of the

quantum circuit encodes the result of the tensor network contraction into one

of its amplitudes. In [54], they show how to estimate this amplitude using the

Hadamard test, contributing the factor of ϵ−2 in the runtime. Alternatively, us-

ing the amplitude estimation subroutine, the ϵ-dependence could be reduced to

O(ϵ−1).

The algorithm can be thought of as the reverse process of mapping a quan-

tum circuit to a tensor network.

Dominant resource cost (gates/qubits)

The dominant cost of the algorithm is, on the one hand, the poly(qd) scal-

ing, which can be substantial for highly connected graphs. More importantly

though, for problems of interest is the value of ∆, which can grow exponen-

tially with |V | and require extremely high precision ϵ to give a meaningful

answer. In other words, ∆ sets the scale of the approximation.

The complexity of the quantum algorithm depends sensitively on the struc-

ture of the graph G(V, E), on the tensors {Mv}v∈V and on the choice of the

contraction pathway. A number of limiting cases are known [54]:

• There are tensor networks for which it is NP-hard to obtain a classical addi-

tive approximation of the full contraction, suggesting the classical hardness

of the problem.

• There exist families of tensor networks for which the additive approxima-

tion in Eq. (24.1) is BQP-hard, suggesting that there exists a complexity

separation between the classical and quantum problem.

• There are specific examples of tensor networks representing partition func-

tions, for which the quantum approximation scale ∆ is exponential in |V |,
but with a smaller exponent than the best known classical additive approxi-

mation scheme. There exist other examples where the converse is true [54].
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308 24. Approximate tensor network contraction

Furthermore, approximate contraction of a tensor network representing a

quantum partition function of a positive semidefinite Hamiltonian has been

shown to be complete for the one clean qubit (DQC1) model of quantum com-

putation [290], which suggests that approximate contraction is likely classi-

cally hard, at least for certain specific instances. Classical algorithms for this

problem that are not based on tensor networks have also been examined [565].

Caveats

The main caveat at present is that we do not have a good understanding of

the structure of the network that allows for significant speedup on a quantum

computer, due in part to the appearance of the complicated parameter ∆ in the

complexity statement. It is possible that the only situations where this is pos-

sible is when the tensor network can be mapped directly to a quantum circuit,

without significant overhead. For example, in [616], a specific kind of tensor

network called DMERA was shown to admit an exponential quantum speedup

for approximate contraction because it arises from a specific kind of quantum

circuit. The speedup is in the depth of the disentangling layer of the DMERA.

A more critical caveat is that we do not understand when classical contraction

algorithms are inefficient in practice. For instance, certain specific classes of

tensor networks can be contracted efficiently [90, 1077].

Even quantum computational supremacy experiments [63], which were de-

signed specifically to maximize the separation between quantum and classical

simulation, allow for tractable tensor network simulations up to large system

sizes (∼ 50) and circuit depths (∼ 30) [826], though these simulations become

much more challenging if we allow for nonlocal gates. Another subtle point

is that it is often, or even usually, not clear what magnitude to expect for the

value of a contracted tensor network from just looking at tensor norms. For

example, terms may have partially canceling phases. The additive error bound

for the quantum algorithm might not be very helpful in such cases.

Finally, it is likely difficult to make a proper comparison between classical

approximate methods (e.g., the corner transfer matrix) and the above quantum

approximation schemes, as the classical and quantum approximation errors

have very different origins, and the quantum algorithm cannot be simulated at

scale. The quantum algorithm might thus be regarded as a new heuristic to be

be tested on a case to case basis once sufficiently powerful quantum hardware

is available.

Example use cases

There is an obvious case where the quantum algorithm provides an advantage,

and that is if you prepare a quantum circuit, and map it onto a tensor net-

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core
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work. Less trivial examples involve estimating partition functions of classical

statistical mechanics models—although for this problem, good classical meth-

ods exist for the additive approximation [290]. Other applications involving

large-scale tensor network contractions include condensed matter physics and

molecular simulations. Inference problems [342] or differential equations sim-

ulation [449] might benefit from a quantum backend in some regimes, but a

careful analysis has not yet been performed.

Further reading

• Pedagogical introductions to tensor networks [201, 150, 815].

• Quantum-inspired tensor network algorithms [602, 830, 390, 817].

• Complexity analysis of the quantum partition function problem [195].
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Overview

Throughout this book, we predominantly restrict our attention to the circuit

model of quantum computation. Within this paradigm, any quantum algo-

rithm can be expressed as a sequence of basic operations, such as product

state preparation, unitary single- and two-qubit gates, and single-qubit Pauli

measurements. In order to accurately determine complete end-to-end resource

estimates for quantum algorithms it is essential to understand the costs of (i)

decomposing quantum algorithms into basic operations and (ii) realizing these

basic operations reliably with the physical hardware. In other parts of this sur-

vey we assume noiseless logical qubits and operations (unless otherwise noted)

and focus on item (i). In this part, we take into account that physical qubits

and operations are noisy and discuss item (ii). We first review the fundamental

ideas behind the theory of fault tolerance. We then illustrate them with concrete

realizations in the paradigm of the surface code and lattice surgery.
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Basics of fault tolerance

The authors are grateful to Earl Campbell, Andrew Cross, and John Preskill

for reviewing this chapter.

Rough overview (in words)

The error rates of all known realizations of physical qubits and basic operations

are too high to enable implementation of the majority of quantum algorithms

considered in this book. Even if the probability p for each basic operation

to malfunction was minute, we would nevertheless expect an error to occur

in any quantum circuit comprising more than O(1/p) operations. One may

optimistically assume that in the foreseeable future p = 10−6 might be achieved

by certain quantum architectures, such as trapped ions [125, 208]. This, in turn,

limits the size of any quantum circuit that one may hope to reliably execute to

roughly one million basic operations. Such a bound places a severe restriction

on the algorithms that could be run and is orders of magnitude smaller than the

resources needed to implement the quantum algorithms described in the other

parts of this survey.

The theory of quantum fault tolerance [936] and quantum error correc-

tion [935, 952, 444] provides a collection of techniques to deal with imperfect

operations and unavoidable noise afflicting the physical hardware, at the ex-

pense of moderately increased resource overheads. In the basic model for fault

tolerance, one assumes that each elementary component of a quantum circuit

(including the identity gate) may fail with some small but nonzero probabil-

ity, independently of the other components, and classical information process-

ing is noiseless. For concreteness and simplicity, one may choose to model

any noisy component as an ideal component followed by (or, in the case of

measurements, preceded by) some Pauli channel acting on the same subset of
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25. Basics of fault tolerance 315

qubits. Let C be a quantum circuit (possibly with classical input and output)

describing a desired quantum algorithm. Since each component of C may fail,

one should not implement C directly; rather, one needs to implement a differ-

ent quantum circuit F (C), which is a fault-tolerant (FT) version of C. This, in

turn, can be achieved by replacing each qubit in C with a logical qubit encoded

in some quantum error correcting (QEC) code and each elementary compo-

nent of C with a corresponding FT gadget; see Fig. 25.1. The desired quantum

computation will then be realized on the logical level of F (C) without leaving

the protective encoding guaranteed by the QEC code.

(a)
|+⟩ • MZ

|0⟩ • MX

|+⟩ T MX

(b)

|+⟩ QEC

CX

QEC I QEC MZ

|0⟩ QEC QEC

CX

QEC MX

|+⟩ QEC T QEC QEC MX

Figure 25.1 (a) A quantum circuit C consists of state preparation, unitary gates,

and measurements. (b) An FT realization of C is a quantum circuit F (C) obtained

by replacing each qubit in C with a logical qubit encoded in some QEC code and

using appropriate FT gadgets interspersed with QEC gadgets in place of each ba-

sic component of C. Note that some gadgets may require considerable resources

(not shown in the picture); see Chapter 26 on quantum error correction and Chap-

ter 27 on logical gates with the surface code for more details.

To realize universal FT quantum computation, it suffices to have state prepa-

ration gadgets (for at least one type of state), measurement gadgets (for at least

one type of measurement), gate gadgets (for a universal set of gates), and QEC

gadgets. One requires that all of these gadgets satisfy certain FT conditions;

see, for instance, [20, 446]. Although the asymptotic scaling of resource over-

heads associated with FT gadgets is manageable (e.g., polylogarithmic in the

inverse of the target logical error rate), the constant prefactors tend to be large,

resulting in the qubit and time overheads that currently constitute one of the

main bottlenecks to practical FT quantum computation. We will discuss this

point in more detail for the implementation of logical gates and quantum error

correction with the planar architecture based on the surface code [626, 343].

Rough overview (in math)

Designing FT gadgets is a challenging task for several reasons. First, FT gad-

gets are usually developed and optimized for a specific QEC code. Second,

even though they comprise imperfect basic components, they are required to

work reliably as long as the number of malfunctioning components is limited.
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316 25. Basics of fault tolerance

Third, FT gadgets may spread errors, however, they must not do so in an un-

controllable way.

Given a set of FT gadgets, one can reliably perform an arbitrarily long quan-

tum computation as long as the physical error rate of each basic component is

below some constant value, often referred to as the FT threshold. This result

is established by the celebrated threshold theorem [10, 625, 636, 20]. To be

more precise, consider the basic model for FT. The threshold theorem asserts

that there exists a constant pFT > 0, such that for any ϵ > 0 and any quantum

circuit C there exists a quantum circuit C̃ that produces an output with statisti-

cal distance at most ϵ from the output of C, provided the physical error rate p

is below pFT. Moreover, C̃ uses a number of qubits and time steps that are at

most polylog(|C|/ϵ) times bigger than the number of qubits and time steps in

C, where |C| denotes the number of basic components in C.

The basic idea behind the proof of the threshold theorem proceeds as fol-

lows. Consider a quantum circuit F (C), which is an FT implementation of C.

Assuming the basic model for fault tolerance described above, for sufficiently

small physical error rate p, the logical error rate for F (C) should be smaller

than p, since F (C) is an FT implementation of C. One can then consider a

quantum circuit F ◦ F (C), which is an FT implementation of F (C), reducing

the logical error rate even further. By repeating this process, one eventually

obtains a quantum circuit C̃ = F ◦ · · · ◦ F (C) with the logical error rate below

ϵ. The resulting FT protocol is based on concatenated QEC codes.

One may improve the scaling of the resource overheads from the threshold

theorem with concatenated QEC codes. In particular, in the asymptotic limit of

large quantum circuits, the ratio of qubits in C and C̃ can be a constant [447]. In

this construction, the FT protocol requires a family of QEC codes that satisfies

certain properties, including the desired scaling of code parameters, computa-

tionally efficient decoding algorithms, and constant-weight parity checks. Such

a family of QEC codes was first provided in [388].

Dominant resource cost (gates/qubits)

At the heart of FT quantum computation, there is usually some QEC code. The

choice of a QEC code affects the relationship between a quantum circuit C
and its FT realization C̃, and the subsequent scaling of the resource overheads.

Therefore, we would like to choose a QEC code for which the encoding rate

(defined as the ratio k/n, where k and n are the number of logical and phys-

ical qubits, respectively) as well as the relative code distance (defined as the

ratio d/n, where d is the minimum weight of any nontrivial logical operator)

are as high as possible. Although for concatenated QEC codes (that feature

in the threshold theorem), both k/n and d/n go to zero as n goes to infinity,
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we know that there exist QEC codes with good parameters, that is, for which

k/n and d/n are asymptotically constant [221]. Moreover, recent groundbreak-

ing results [199, 827, 352, 678] provided constructions of QEC codes that not

only have good parameters but also constant-weight parity checks (thus their

name—quantum low-density parity check codes). The latter property is par-

ticularly important from the perspective of fault tolerance. In fact, all quantum

low-density parity check codes with code distance d = O(log n) have a nonzero

FT threshold [643]. However, experimental realization of these constructions

(in contrast to the surface code) seems to become extremely challenging as

the number of physical qubits increases, at least within the realm of solid-state

qubits constrained by geometric locality of their physical entangling gates.

Another aspect of FT quantum computation that affects the resource over-

heads are the FT gadgets being used. One of the easiest ways to implement

FT gadgets for gates is via transversal gates. By definition, transversal gates

are implemented via a tensor product of single-qubit unitaries (or, more gener-

ally, via a depth-one quantum circuit) and therefore do not spread errors in an

uncontrollable way. Unfortunately, transversal gates are limited by the Eastin–

Knill theorem [370, 1078, 583, 650], which rules out the existence of a (finite-

dimensional) QEC code with a universal set of transversal logical gates. One

strategy to circumvent this limitation is to prepare certain magic states and use

them to realize FT gates [190]; see Chapter 27 on implementing logical gates

for more details and a discussion of other strategies.

To realize FT gadgets for state preparation, QEC, and measurement, one

typically chooses among three FT schemes: Shor’s [936], Steane’s [953], or

Knill’s [634]. Roughly speaking, Shor’s scheme uses simple states (verified

cat states) of the ancilla qubits at the expense of implementing many gates on

the data qubits, whereas Steane’s and Knill’s schemes trade highly complex

states of the ancilla qubits (logical states encoded in the underlying QEC code)

for minimizing the number of gates on the data qubits. To determine the best

choice, one needs to consider the underlying QEC code (e.g., Steane’s scheme

is applicable only to the subset of codes known as CSS codes [221, 952]) and

the quantum hardware restrictions (e.g., lack of extra ancilla qubits). For an

illuminating and detailed discussion of FT schemes, see [446]. There are FT

schemes that do not squarely fit in the aforementioned classification, for ex-

ample, [353, 254, 544]. Also, for QEC codes with additional structure, such as

quantum low-density parity check codes, one may pursue different approaches

toward FT quantum computation; see Chapter 26 on QEC with the surface

code.

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


318 25. Basics of fault tolerance

Caveats

Rigorous proofs provide lower bounds on the FT threshold pFT. For instance,

for an FT scheme based on the 7-qubit code, one finds pFT > 2.73× 10−5 [20].

For an FT scheme by Knill [634] that relies on complex ancilla preparation

techniques, one finds pFT > 1.04 × 10−3 [21]. However, these values can differ

by orders of magnitude from the values estimated in numerical simulations.

For instance, the FT scheme by Knill is estimated to have an FT threshold pFT

as high as 5 × 10−2, constituting one of the highest-known FT thresholds. We

remark that these values depend sensitively on the details of the FT schemes

and the assumptions about noise. In particular, to obtain the aforementioned

values we assume the ability to implement gates between any qubits. On the

other hand, if we arrange qubits on a geometric lattice and restrict gates to be

local, then while FT thresholds still exist, their values are significantly reduced.

One can expand the threshold theorem in many ways. Even using the basic

model for fault tolerance, one may choose the failure probabilities for each

elementary component of a quantum circuit differently, for example, the failure

probability of a measurement to be an order of magnitude higher than that of a

gate. One can consider more general noise (which includes systematic errors,

such as overrotations) arising due to a weak interaction between the system and

a non-Markovian environment [20, 986]. In general, although experimental

realizations of quantum computation may not satisfy exactly the assumptions

of the threshold theorem, we expect the main conclusions to hold as long as

the assumptions are not violated too much.

To simplify the analysis of FT schemes, we often assume unlimited clas-

sical computational power that one needs to, for example, process the error

syndrome and infer an appropriate recovery operator in a QEC gadget; a num-

ber of such decoding algorithms have been developed for QEC with the surface

code. It is important not to abuse this assumption by, for instance, solving the

initial problem with an inefficient classical algorithm. At some point, how-

ever, one needs to take into account the finite speed of classical information

processing. If the classical unit that processes the error syndrome is unable to

keep pace with the rate at which this syndrome is being produced, then the

error syndrome will start to accumulate and one will suffer from the so-called

backlog problem [985]. Subsequently, the speed of quantum computing will

be exponentially reduced and the computational advantage of quantum com-

puting will be annulled. This issue will be especially prominent for quantum

algorithms with only polynomial speedups.
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Further reading

• An accessible introduction to quantum error correction and the theory of

fault tolerance can be found in [861].

• A detailed introduction to quantum error correction and fault-tolerant quan-

tum computation can be found in [446].

• A perspective on roads toward fault-tolerant universal quantum computation

can be found in [226].

• The error correction zoo [17] provides a catalog of error correcting codes.
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Quantum error correction with the surface code

The authors are grateful to Earl Campbell, Andrew Cross, and John Preskill

for reviewing this chapter.

Rough overview (in words)

To protect quantum information from the detrimental effects of noise, we can

encode it into a code space of some quantum error correcting (QEC) code [935,

952]. Oftentimes, we choose to work with stabilizer codes [444]. By definition,

a code space of a stabilizer code is the simultaneous (+1)-eigenspace of a set

of commuting Pauli operators, commonly referred to as parity checks.

The surface code [626, 196, 343] is one of the most studied stabilizer codes.

It can be implemented with a planar layout of qubits and entangling gates only

between neighboring qubits. For that reason, the surface code is particularly

appealing for quantum hardware architectures with restricted qubit layout and

connectivity, such as superconducting circuits [348, 155]. The most common

realization of the surface code uses n = L2 data qubits to encode k = 1 logical

qubit and has code distance d = L, where L is the linear size of the L×L square

lattice with open boundary conditions. Additionally, nA = L2 − 1 ancilla qubits

are typically used to measure parity checks; see Fig. 26.1(a).

In order to perform QEC, we have to be able to detect errors without re-

vealing the encoded information. For stabilizer codes, we can achieve that by

measuring their parity checks to obtain the error syndrome (which comprises

the measurement outcomes returning −1). Then, the error syndrome is pro-

cessed by specialized classical algorithms, also known as “decoders,” to find

an appropriate recovery operator that attempts to remove errors afflicting the

encoded information. For generic stabilizer codes, the problem of optimal de-

coding is computationally hard, even for simple noise models [563]. However,
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(a) (b)

X X

X X

Z Z

Z Z

Figure 26.1 (a) A planar layout of data and ancilla qubits (empty and filled dots,

respectively) with entangling gates (thick edges) only between neighboring qubits.

This layout gives rise to the L × L square lattice with open boundary conditions,

where L = 5 here. (b) The surface code can be realized by measuring Pauli Z-

and X-type parity checks (light and dark faces, respectively). The error syndrome

(stars and pentagons) can be interpreted as the endpoints of string-like Pauli X and

Z errors (dashed and dotted lines, respectively).

for QEC codes with some underlying structure, such as the surface code, there

exist a variety of computationally efficient (albeit not optimal) decoding algo-

rithms. In particular, the three most popular classes of decoders for the surface

code are as follows:

• Matching decoders, including the minimum-weight perfect matching algo-

rithm [343] and its follow-up improvements, such as the belief-matching

algorithm [320, 530]. These decoders phrase the problem of surface code

decoding as a graph-theoretic problem of perfect matching, which can be

efficiently solved [372].

• Clustering decoders, such as the renormalization-group decoder [364, 42]

and the union-find decoder [338]. These decoders primarily exploit the

structure of the error syndrome in the surface code; see Fig. 26.1(b).

• Tensor network decoders [192, 331, 291]. These decoders phrase the prob-

lem of surface code decoding as a numerical problem of contracting tensor

networks.

In order to assess the usefulness of decoders, one usually considers two cri-

teria: runtime and accuracy. The first criterion, runtime, is defined as the time

needed for the decoder to process the error syndrome. It is crucial that any

practical decoder is able to operate at a rate compatible with the rate of parity

check measurements; otherwise, the error syndrome will start to accumulate,

leading to the backlog problem [985]. The second criterion, accuracy, is typ-

ically defined for a given noise model in terms of the logical error rate, that

is, the failure rate of the decoder to successfully undo the effects of noise on

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core
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the encoded information. From the perspective of reducing runtime and im-

proving accuracy, matching and clustering decoders stand out. Namely, they

can achieve almost-linear runtime [529, 338] and good accuracy. Combined

with the techniques of parallelizable real-time decoding [942, 170], these de-

coders will likely play a key role in scalable QEC with the surface code. To

achieve optimal accuracy, one can use tensor network decoders, however, they

are often not computationally efficient, with runtime that scales unfavorably.

Rough overview (in math)

In addition to being compatible with planar layouts of qubits and admitting

computationally efficient decoders with good accuracy, the surface code also

exhibits one of the highest QEC thresholds. Recall that a QEC threshold is

specified for the following triple: a QEC code family of growing distance d, a

decoder, and a noise model. It is defined as the highest value pth such that for

any error rate p < pth the probability that the decoder fails to undo the effects

of noise goes to zero as d goes to infinity. For example, the QEC threshold for

the surface code, using the minimum-weight perfect matching algorithm for

decoding, with a circuit noise model based on depolarizing noise, is around

1% [1017, 530].

Typically, if the error rate p describing noise is sufficiently low and below

the threshold pth, then the logical error rate pfail roughly scales as

pfail ∼
(

p

pth

)⌈ d
2 ⌉
. (26.1)

This implies that in order to achieve the target error rate ϵ, it suffices to imple-

ment the surface code with code distance d = O(log(1/ϵ)/ log(pth/p)) using

n + nA = O(d2) = O(log2(1/ϵ)/ log2(pth/p)) data and ancilla qubits. Subse-

quently, qubit overhead associated with QEC based on the surface code scales

polylogarithmically in the inverse target error rate 1/ϵ.

Dominant resource cost (gates/qubits)

Performing reliable QEC in the presence of measurement errors becomes chal-

lenging since the error syndrome can be corrupted. A straightforward solu-

tion to the problem of unreliable error syndrome is to repeatedly measure the

parity checks in order to gain enough confidence in their measurement out-

comes [936, 343]. If this approach is applied to the surface code with code

distance d, then one needs to perform O(d) rounds of parity check measure-

ments, incurring relatively large time overhead.

To reduce time overhead, one can pursue single-shot QEC [166], which does

not require repeated measurement rounds. It is possible to realize single-shot
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QEC with the surface code [224, 65, 339], however, in addition to the par-

ity checks in Fig. 26.1(b), one would need to measure nonlocal high-weight

parity checks, which is a serious limitation. A more streamlined approach is

to consider a different realization of the surface code, the 3D subsystem toric

code [652, 202], which can be implemented with qubits arranged on the cubic

lattice and local low-weight parity checks. Although this approach is natively

defined in three spatial dimensions, it can be emulated with planar layouts of

qubits and either a limited number of nonlocal gates or the ability to reshuffle

qubits (which is available with, e.g., Rydberg atoms [890, 203]). In order to

realize code distance d, one incurs qubit overhead of O(d3) (compared to qubit

overhead of O(d2) for the surface code). From that perspective, single-shot

QEC with the subsystem toric code can be viewed as trading time overhead for

qubit overhead.

Caveats

There have been efforts to improve surface code decoders by incorporating

various machine learning methods, including neural networks [992, 746, 251,

1003, 107] and reinforcement learning [973]. At the current stage, decoders

solely based on machine learning methods seem to be of limited applicability,

mostly due to high training costs and scalability issues. Nevertheless, these

approaches are likely to be immensely beneficial for QEC in the settings where

(possibly correlated) noise is unknown and may have to be learned first.

Typically, in QEC analysis one considers simple Pauli noise, such as de-

polarizing noise acting independently and identically on each qubit. If noise

exhibits bias between the X, Y , and Z components of Pauli noise, then this

structure can be exploited, leading to dramatically increased QEC thresholds,

as exemplified by variants of the surface code [999, 173, 363]. Similarly, noise

that is biased toward erasure errors can be beneficial from the perspective of

QEC [947, 1057, 654, 467]. On the other hand, realistic noise may be coherent

or correlated and thus not only difficult to correct, but also to numerically sim-

ulate. For instance, the logical error rates for coherent noise may be orders of

magnitude higher than the estimates of the logical error rates for simple Pauli

noise (assuming both types of noise have the same error rate) [564]. In certain

cases of coherent noise, however, QEC with the surface code may be efficiently

simulable [193].

In addition to the 3D subsystem toric code, one can also consider other

higher-dimensional versions of the surface code. With these codes, roughly

speaking, one improves the QEC capabilities at the expense of increased qubit

overhead. Moreover, for the higher-dimensional surface code, it may suffice to

use arguably the least complex decoders that are based on cellular automata
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(which, by definition, are parallelizable and only use local information about

the error syndrome) [343, 200, 651, 1005].

Example use cases

• Decoders for the surface code can be used for other QEC code families, such

as the color code [169, 168, 647]. In fact, due to a close connection between

the color codes and the surface codes [171, 653], any surface code decoder

can be used as a subroutine in the restriction decoder for any color code (in

two or more spatial dimensions) [649, 1004].

Further reading

• The seminal paper by Dennis et al. [343] is a thorough introduction to QEC

with the surface code.

• A recent perspective [205] discusses how to use matching decoders to de-

code stabilizer codes.

• Open-source software packages have been developed for implementing

QEC with the surface code, such as Stim [422] and PyMatching [528].
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Logical gates with the surface code

The authors are grateful to Earl Campbell, Andrew Cross, and John Preskill

for reviewing this chapter.

Rough overview (in words)

The ability to implement an arbitrary unitary operation, either exactly or ap-

proximately, is a prerequisite for performing quantum computation. It can be

achieved with unitary gates that form a universal gate set [625, 801]. A com-

monly considered gate set contains two Clifford gates, the Hadamard gate H

and the controlled X gate CX (also known as the controlled NOT gate), and

one non-Clifford gate, the T = Z1/4 gate. One can consider other non-Clifford

gates, such as the Toffoli gate CCX. Note that non-Clifford gates are essen-

tial for quantum computation, as any quantum circuit comprising only Clifford

gates, state preparation, and measurement in the computational basis can be

simulated in polynomial time on a probabilistic classical computer [445, 4].

Since we are interested in fault-tolerant quantum computation, we would

like to implement a universal set of logical gates H, CX, and T on informa-

tion encoded in some quantum error correcting (QEC) code, such as the sur-

face code. We can implement these gates with a planar layout of qubits and

nearest-neighbor entangling gates. To be more precise, we consider a simple

architecture [535] that comprises N surface code patches, each encoding a log-

ical qubit into the surface code with code distance d, and the routing space in

between; see Fig. 27.1(a). In such an architecture, the total number of data and

ancilla qubits is O(Nd2).
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(a) (b)

Figure 27.1 (a) A planar layout of qubits comprises surface code patches

(shaded), each using the layout depicted in Fig. 26.1(a) and encoding a logical

qubit, with routing space in between the patches. (b) The logical Pauli measure-

ment MXX is implemented by preparing the routing space qubits (filled dots) in

the state |0⟩ and repeatedly measuring parity checks (lightly shaded) in the rout-

ing space spanning between the two surface code patches. Other logical Pauli

measurements, for example, MZZ and MYZ , require connecting different bound-

aries of the two patches.

Rough overview (in math)

The logical H does not pose any challenges. From a practical standpoint, it is

transversal, since it can be realized by applying the Hadamard gate H to every

data qubit in the surface code patch, followed by swapping of the roles of

Pauli Z- and X-type parity checks in the subsequent QEC rounds. As such, the

logical H takes constant time and the surface code patch is effectively rotated

(which may alter how subsequent operations are implemented).

The logical CX is more challenging than the logical H, since it is impossi-

ble to implement it transversally with the planar layout of qubits and nearest-

neighbor entangling gates shown in Fig. 27.1(a). Instead, one can use the fol-

lowing quantum circuit, where the first qubit (top wire) is the control and the

third qubit (bottom wire) is the target of the logical CX gate:
a

MZZ

Z
b

|+⟩
MXX

MZ
c

X
a+c

b

(27.1)

It is straightforward to fault-tolerantly realize preparation of the logical state

|+⟩, logical Pauli measurement MZ , and logical Pauli operators Z and X. In

addition, the required logical Pauli measurements MZZ and MXX can be im-

plemented fault-tolerantly via “lattice surgery” techniques [535, 397, 693];

see Fig. 27.1(b) for an illustration of how to realize MXX . Unlike the logical
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H, logical Pauli measurements MZZ and MXX and, subsequently, the logical

CX cannot be realized in constant time; rather, due to the need to account for

measurement errors, they typically incur time overhead of O(d).

The logical T can be implemented using gate teleportation [448] via the

following quantum circuit:

CX
S

a

|T ⟩ MZ
a

(27.2)

Here, the logical resource state |T ⟩ is defined as
(
|0⟩ + eiπ/4|1⟩

)
/
√

2, the logical

gate S is defined as Z
1/2

, and the first qubit (top wire) is the control and the

second qubit (bottom wire) is the target of the logical CX gate. One can fault-

tolerantly implement the logical S with a planar layout of qubits [206, 423] (or

even in a transversal way given access to nonlocal entangling gates [653, 788]).

However, the need to apply the logical S conditioned on the measurement

outcome of MZ may slow down quantum computation, and, for this reason, it

may be beneficial to use the following quantum circuit from [693, Fig. 17(b)],

which is an alternative to the one in Eq. (27.2) that uses one additional logical

qubit but requires only logical Pauli corrections, rather than logical Clifford

corrections.
a

|0⟩
MYZ

H
b

MZ
c

|T ⟩
MZZ

MX d

Z
ab+c+d

b

(27.3)

In either case, given the logical resource state |T ⟩, the logical T typically incurs

time overhead ofO(d). We conclude that implementing the logical T reduces to

the problem of preparing the logical state |T ⟩, which, in turn, can be realized via

state distillation [633, 190]; see [146] for a brief overview of state distillation.

Dominant resource cost (gates/qubits)

State distillation provides a fault-tolerant method to prepare high-fidelity log-

ical resource states, such as the logical state |T ⟩. The basic idea is to convert

some number of noisy resource states into fewer but, crucially, less noisy re-

source states. Importantly, this task can be accomplished with quantum circuits

comprising only Clifford gates (together with state preparation and measure-

ment in the computational basis) and postselection. Typically, state distillation
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circuits are based on some QEC code, for example, the 15-qubit Reed–Muller

code.

State distillation is often described as a resource-intensive method that con-

tributes the most to the resource overhead of fault-tolerant quantum compu-

tation with the surface code [398] (assuming many state distillation circuits

working in parallel). For that reason, numerous efforts have been devoted to

finding possible alternatives [189, 582, 167, 249, 146]. However, recent results

indicate that state distillation may not be as costly as one may think [693, 694],

especially when one allows only a few state distillation circuits to run in paral-

lel and optimizes them for specific quantum hardware and noise that exhibits

some bias [696]. In the task of estimating the ground state energy density of

the Fermi–Hubbard model, state distillation of logical Toffoli resource states

injected one at a time uses less than 10% of the total resources and is never a

bottleneck on runtime of the quantum algorithm [250].

Often, a quantum algorithm is expressed as a quantum circuit C comprising

Clifford and T gates. Thus, by using the aforementioned logical gates H, CX,

and T , we can fault-tolerantly implement the logical quantum circuit Cwith the

surface code of code distance d and a planar layout of qubits in Fig. 27.1(a).

However, from the perspective of reducing the resource overheads, it may be

beneficial to consider a quantum circuit C′ equivalent to the circuit C, which is

obtained from C by commuting all Clifford gates to the end of C [693]. As a

result, the circuit C′ only comprises multiqubit Pauli π/8 rotations (which are

a generalization of the T gate and can be realized via, e.g., quantum circuits

analogous to the one in Eq. (27.3)). Consequently, fault-tolerant implementa-

tion of the logical circuit C′ incurs qubit overhead of O(Nd2) and time over-

head of O(Md), where N and M are the number of qubits and T gates in C,

respectively. We remark that the time overhead can be reduced at the expense

of increased qubit overhead—first, by distilling more resource states and being

able to use them faster, then, by implementing them in parallel [693].

Caveats

Lattice surgery is not necessary to realize fault-tolerant quantum computation

with a planar layout of qubits and nearest-neighbor gates. An alternative ap-

proach (which actually preceded the development of lattice surgery) relies on

the surface code with defects and braiding [862, 863, 398, 206]. However,

resource overhead estimates strongly suggest that this approach is not compet-

itive with lattice surgery [397].

The simple architecture depicted in Fig. 27.1(a) can be improved in a cou-

ple of ways to reduce the qubit overhead. First, it is possible to pack surface

code patches more densely, resulting in more logical qubits for the given total
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number of qubits and target code distance [660, 693]. Second, one can desig-

nate certain regions, commonly referred to as magic state factories, to solely

produce resource states, such as the logical state |T ⟩, and optimize their de-

sign [809, 693, 694].

To simplify implementation of logical gates, one can consider other QEC

codes, for example, the 3D color code [165, 648]. The gauge color code has

redundant degrees of freedom, commonly referred to as gauge qubits. For dif-

ferent states of its gauge qubits, the gauge color code admits transversal im-

plementation of different logical gates, which, combined, form a universal gate

set (thus circumventing the Eastin–Knill theorem [370, 1078]). Importantly,

changing the state of gauge qubits can be done fault tolerantly in constant time.

However, to realize this construction one needs, for instance, a 3D layout of

qubits with nearest-neighbor gates or a planar layout of qubits with a limited

number of nonlocal gates, which are more challenging to engineer compared

to the simple architecture in Fig. 27.1(a). To achieve code distance d with the

gauge color code, one incurs qubit overhead of O(d3) (compared to qubit over-

head of O(d2) for the surface code), so, similarly to single-shot QEC described

in Chapter 26 on QEC with the surface code, this approach trades time over-

head for qubit overhead.

Example use cases

• Lattice surgery techniques developed for the surface code can be straight-

forwardly adapted to, for example, the color code [659] or the surface code

with a twist [1066], leading to fault-tolerant quantum computation with po-

tentially reduced qubit overhead. Recent work [303] proposed a generaliza-

tion to the setting of quantum low-density parity check codes. In addition,

lattice surgery techniques can also be used for the fault-tolerant transfer of

encoded information between arbitrary topological quantum codes [842].

• Now, we are ready to present a rough, order-of-magnitude estimate of the

resource overheads needed to realize fault-tolerant quantum computation in

the architecture based on the surface code and lattice surgery. For concrete-

ness, we consider the circuit noise of strength p = 0.001, where each basic

operation, including state preparation, CNOT gate, and measurement, can

fail with probability p. Assume that we want to implement a quantum cir-

cuit C comprising N = 103 qubits and a certain number M = 1010 of T gates.

These resource counts are in the ballpark of estimates for various quantum

algorithms in the application areas of quantum chemistry, condensed matter

physics, and cryptanalysis. First, following the procedure from [693], we

compile C into a new circuit C′ of depth M that comprises N qubits and M

multiqubit Pauli π/8-rotations implemented one at a time. Since there are
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NM possible fault locations in the circuit C′, the error rate for each qubit of

C′ should not exceed

ϵ ≈ 1/(NM).

Since each qubit of C′ is realized as a logical qubit of the surface code with

distance d, then its logical error rate pfail can be approximated by

pfail ≈ α(p/pth)d/2,

where we can crudely set α = 0.05 and pth = 0.01; see Chapter 26 on QEC

with the surface code for more details. Note that these values are empirical

and depend heavily on the choice of the decoder, in our case, the belief-

matching algorithm [530]. Thus, in order for the logical error rate pfail to

reach the target error rate ϵ we need the surface code distance at least

d ≈ ⌈
2 log(αNM)/ log(pth/p)

⌉
.

Assuming that half of all required qubits are devoted to realizing N surface

code patches (each comprising 2d2 − 1 data and ancilla qubits), with the

other half used for resource state distillation and routing [693], we obtain

that the fault-tolerant implementation of C′ incurs qubit overhead of

nC′ ≈ 4Nd2

and time overhead of

tC′ ≈ Mdτ,

where we crudely set τ = 1µs to be the time needed to implement one syn-

drome measurement round with the superconducting circuits architecture.

Finally, our order-of-magnitude resource estimate gives 2.3 × 106 physical

qubits and 67 hours of runtime. This general approach to resource estima-

tion has been applied to a number of specific quantum algorithms in a vari-

ety of application areas; see, for example, [669, 424, 630, 147, 895]. These

references often go beyond a back-of-the-envelope calculation and provide

a more meticulous analysis that accounts for exact qubit layouts and the

physical footprint of resource state distillation factories. They also pursue

optimizations to how the circuit is implemented (e.g., exploiting space-time

tradeoffs) in light of these considerations.

Further reading

• An accessible overview of fault-tolerant quantum computation based on the

surface code and lattice surgery can be found in [693].
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• A convenient way to describe and optimize lattice surgery operations is via

the ZX calculus, which is a diagrammatic language for quantum comput-

ing [302, 335].

• A direct comparison of the resource overhead associated with preparation

of the logical resource state |T ⟩ using either state distillation or transversal

gates (with the 3D color code) can be found in [146].

• To read about a framework for estimating resources required to realize large-

scale fault-tolerant quantum computation, see [147].

• The recently introduced paradigm of algorithmic fault tolerance [1090] may

significantly reduce the space-time overhead of FT quantum computation

with the surface code.
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Appendix

Background, conventions, and notation

This book aims to be as modular as possible, where each numbered chapter

and section can be read on its own—as such, specific notational definitions,

technical terms, and acronyms are redefined the first time they appear in each

numbered section.

Nevertheless, the mathematical presentation throughout this book does as-

sume familiarity with certain concepts, techniques, and conventions that are

ubiquitous within the field of theoretical quantum information science. This

book is targeting an interdisciplinary community of researchers; thus, the as-

sumed conventions and understanding of “common knowledge” will vary from

reader to reader, depending on one’s background and experience. In order to

make the material as widely accessible as possible, here we collect some of the

concepts and notational choices that are commonly used throughout this book.

For readers interested in a more complete introduction to the field and its

standard conventions, we recommend the following resources:

• The definitive reference in the field of quantum computation is the book by

Nielsen and Chuang [801]. Other classic textbooks include those by Kitaev,

Shen, and Vyalyi [627] and Kaye, Laflamme, and Mosca [606]. A similarly

general set of topics is covered in the lecture notes of Preskill [845].

• Several sets of more recent lecture notes have a specific focus on quantum

algorithms, for example, by de Wolf [1051], Childs [276], and Lin [687].

See also the review article on quantum algorithms by Montanaro [774].

• Some online resources include a website containing lecture notes on quan-

tum algorithms for data analysis and quantum machine learning by Luongo

[729], the Pennylane codebook [123], and the quantum algorithm zoo [586].
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A.1 Quantum systems and bra-ket notation

Basic concepts from linear algebra are an essential prerequisite for understand-

ing quantum computation and thus for much of the technical discussion in this

book. We adopt bra-ket notation to denote quantum states and the linear al-

gebraic objects they correspond to. The state of a quantum system, such as a

collection of qubits, is labeled by a ket, such as |ψ⟩—this object corresponds

to a vector in a finite-dimensional vector space. For instance, the state of a

single qubit is an element of the 2D complex vector space C2, and can be rep-

resented by a length-2 column vector or by a superposition over orthonormal

basis states, denoted |0⟩ and |1⟩:

|ψ⟩ =
(
α0

α1

)
= α0|0⟩ + α1|1⟩, α0, α1 ∈ C .

The state of a system of n qubits is an element of the 2n-dimensional complex

vector space C2n

—the tensor product of the n individual 2D vector spaces—

and can be represented in any of the following equivalent ways:

|ψ⟩ =



α0

α1

...

α2n−1


=

2n−1∑

x=0

αx|x⟩ =
2n−1∑

x=0

αx|x0⟩ ⊗ |x1⟩ ⊗ · · · ⊗ |xn⟩, αx ∈ C ∀x ,

where xi ∈ {0, 1} denotes the i-th bit of the integer x when x is written in binary

(leading zeros are added such that x has n digits, and x0 corresponds to the

most significant bit). The orthonormal basis |0⟩, |1⟩, . . . , |2n − 1⟩ is called the

computational basis. An n-qubit quantum state is said to be a product state if

it can be written as a tensor product of 2D states on each of the n systems

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕn⟩, |ϕi⟩ ∈ C2 ∀i ,

and it is said to be entangled if it cannot be written as a product state.

For each quantum state |ψ⟩ corresponding to a column vector as above, we

denote its Hermitian adjoint (i.e., the complex conjugate of its transpose) by

the bra ⟨ψ|, which corresponds to the row vector

⟨ψ| =
(
α∗0 α∗1 · · · α∗2n−1

)
,

where α∗x denotes the complex conjugate of αx. A bra ⟨ϕ| = ∑
x β
∗
x⟨x| and ket

|ψ⟩ = ∑
x αx|x⟩ together form a braket

⟨ϕ|ψ⟩ =
2n−1∑

x=0

β∗xαx ∈ C ,
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which is simply the standard Hermitian inner product between vectors |ϕ⟩ and

|ψ⟩. The norm of the state |ψ⟩ = ∑
x αx|x⟩ refers to the standard Euclidean

vector norm, or 2-norm of the vector, given by

∥ |ψ⟩ ∥ =
√
⟨ψ|ψ⟩ =

√√√
2n−1∑

x=0

|αx|2 .

A state for which ∥ |ψ⟩ ∥ = 1 is said to be normalized; in this book, kets are

usually (but not always) normalized.

The above corresponds to the case for pure quantum states; in some in-

stances, we consider the more general case that the state of the quantum sys-

tem is mixed—that is, it is drawn from a probabilistic ensemble of multiple

pure quantum states. In this case, an n-qubit quantum state is represented by a

2n × 2n matrix called a density matrix, typically denoted by a lowercase Greek

letter such as ρ. A matrix ρ is a valid quantum state if it is Hermitian and pos-

itive semidefinite. Furthermore, it is a normalized quantum state if it satisfies

tr(ρ) = 1. In this language, a pure state |ψ⟩ corresponds to the rank-1 Hermitian

matrix |ψ⟩⟨ψ| given by the outer product of the vector with itself.

Linear transformations of an n-qubit quantum system correspond to 2n × 2n

matrices, called operators. Given an operator M, there is always a singular

value decomposition (SVD)

M =

2n−1∑

i=0

σi|wi⟩⟨vi| ,

where the singular values σi are non-negative real numbers, and each of the

sets {|wi⟩} and {|vi⟩} are orthonormal bases for the vector space. If M is Hermi-

tian, then we may call M an observable, and in this case, M is guaranteed to

have an eigenvalue decomposition

M =

2n−1∑

i=0

λi|ψi⟩⟨ψi|, M|ψi⟩ = λi|ψi⟩ ∀i

for which the eigenvalues λ0, λ1, . . . , λ2n−1 are real, and the eigenvectors (also

known as eigenstates) |ψ0⟩, |ψ1⟩, . . . , |ψ2n−1⟩ form an orthonormal set.

Many end-to-end problems solved by quantum algorithms boil down to esti-

mating the expectation value of an observable, which correspond to a physical

property of the system. Given an observable M and a mixed state ρ, the expec-

tation value of M is given by tr(Mρ). For a pure state ρ = |ψ⟩⟨ψ|, this reduces

to ⟨ψ|M|ψ⟩.
An important observable is the Hamiltonian, which corresponds to the en-

ergy of the physical system. The Hamiltonian generates time evolution of the
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state; that is, denoting the state at time t by |ψ(t)⟩ and the time-dependent

Hamiltonian by H(t), the state obeys the time-dependent Schrödinger equation

i
d|ψ(t)⟩

dt
= H(t)|ψ(t)⟩ .

Here we have set the physical constant ℏ to 1, which is the typical convention

in the literature that we cite. The specification of an initial state |ψ(0)⟩ uniquely

determines |ψ(t)⟩ for all other t. If H(t) = H is independent of t, this is given

exactly by the matrix exponential

|ψ(t)⟩ = e−iHt |ψ(0)⟩ , (A.1)

and if H(t) is time dependent, it is given by a time-ordered matrix exponential.

The eigenvalues of the Hamiltonian are often called the energies. The eigen-

state corresponding to the minimal eigenvalue is called the ground state, and its

eigenvalue is called the ground state energy; the eigenstates corresponding to

larger energies are called excited states. In actual quantum systems like atomic

nuclei, molecules, and materials, the system’s lower energies—and especially

its ground state and ground state energy—often determine its key properties;

the higher excited states are rarely populated due to energy exchange with

the environment favoring lower energy levels. As such, many of the relevant

end-to-end problems for which quantum computing may be helpful relate to

computing ground state energies and other properties of low-energy states.

One complication is that actual quantum systems in nature typically do not

directly correspond to a collection of two-level qubit systems. Instead, they

are modeled as discrete or continuous systems with a larger (possibly infinite)

number of levels. However, the states of these systems are still described by

vectors in a well-defined vector space. For example, the position of an elec-

tron in 3D space is given by an element of the vector space of square inte-

grable functions on R3—in this context, the state vector |ψ⟩ is often called the

wavefunction, a term that is sometimes also used in discrete situations as well.

The position of η particles in 3D space has 3η continuous degrees of freedom,

and states correspond to square integrable functions on R3η. However, particles

found in nature, such as electrons, are indistinguishable, and quantum mechan-

ics dictates that the corresponding wavefunctions must either be antisymmetric

(if the particles are fermions) or symmetric (if they are bosons) under particle

exchange, which restricts the accessible vector space. For generic multiqubit

systems, no such symmetry is naturally imposed. Fermionic and bosonic sys-

tems are the subjects of quantum algorithms for chemistry, condensed matter

physics, and nuclear and particle physics—to simulate these and other non-

qubit systems on a quantum computer, algorithmic choices must be made on
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how to embed the relevant vector space into a tensor product of qubit systems.

It may also be required to truncate the (possibly infinite-dimensional) vector

space, incurring errors in the calculation.

A.2 The quantum circuit model

We follow standard convention and work in the quantum circuit model of

quantum computation. In this paradigm, quantum computations process the

information in quantum states by applying a sequence of unitary operators to

the state, known as gates, which generalize classical Boolean logic gates—

unitarity ensures that the norm of the state is preserved by the operator being

applied. A single-qubit gate is given by a 2× 2 unitary matrix. There are a few

essential examples that occur throughout the book.

• The Pauli matrices (which are both unitary and Hermitian):

σx = X =

(
0 1

1 0

)
, σy = Y =

(
0 −i

i 0

)
, σz = Z =

(
1 0

0 −1

)
,

• The Hadamard gate H and the phase gate S :

H =
1√
2

(
1 1

1 −1

)
, S =

√
Z =

(
1 0

0 i

)
,

• The T gate:

T =
√

S =

(
1 0

0 eiπ/4

)
.

A k-qubit gate is given by a 2k × 2k unitary matrix, and some of the essential

multiqubit gates include the 2-qubit controlled NOT (CNOT) gate and the 3-

qubit Toffoli gate

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


TOFFOLI =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



.

Given as input a 2-qubit state |x0x1⟩ with x0, x1 ∈ {0, 1}, the CNOT gate flips

the value of x1 conditioned on (“controlled on”) x0 being 1; the first qubit is
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the control and the second is the target. The Toffoli gate is a doubly controlled

NOT gate in the sense that it flips the third qubit controlled on both the first

and second qubits being set to 1.

When a k-qubit gate described by the 2k × 2k matrix V acts on a subset

of qubits in an n-qubit system (with n > k), the gate enacted on the n-qubit

system is given by a tensor product of V with the identity matrix. For example,

if a single-qubit X gate acts on the second qubit of an n-qubit system, then the

full 2n × 2n unitary operator U for the gate may be decomposed as

U = I ⊗ X ⊗ I ⊗ I ⊗ · · · ⊗ I ,

where I is the 2 × 2 identity matrix.

Given a fixed discrete (i.e., finite) set of gates, we may consider the set of all

gates generated by the discrete gate set—that is, gates that can be formed by

multiplying a sequence of gates drawn from the discrete gate set. A gate set is

universal if it generates a dense subset of the set of all n-qubit unitary operators

on the system, or equivalently, if any n-qubit unitary may be approximated to

arbitrary precision by a product of gates drawn from the generating set.

For an n-qubit system, the discrete gate set formed from single-qubit gates

{X,Y,Z,H, S } on each of the n qubits combined with 2-qubit CNOT gates be-

tween any pair of qubits generates the Clifford group, which is a finite group

that is not universal. Importantly, quantum computations on n qubits involving

only Clifford gates can be efficiently simulated on a classical computer; thus,

significant quantum computational speedups cannot be achieved using only

Clifford gates. By adding either the T gate or the Toffoli gate to the generating

set, the gate set becomes universal. The Clifford + T gate set is the most com-

mon discrete gate set considered in compilations of quantum algorithms. The

Toffoli gate can be exactly decomposed into Clifford gates and T gates.

In this language, a quantum computation consists of the initialization of a

quantum state (typically an n-qubit product state such as |0⟩⊗n), the application

of a prespecified sequence of gates, and finally, a measurement of the n qubits

in the computational basis. If the normalized n-qubit initial state is |ψ0⟩ and the

sequence of gates is U1, . . . ,Uℓ, then the quantum state prior to the measure-

ment is given by |ϕ⟩ = UℓUℓ−1 · · ·U1|ψ0⟩. The measurement then produces an

outcome x with probability equal to |⟨x|ϕ⟩|2. This procedure can be depicted in

a quantum circuit diagram, such as Fig. A.1.

When performing a resource estimate of a quantum algorithm in the Clifford

+ T gate set, the key quantities are the total number of qubits and gates that

appear in the associated quantum circuit diagram. Occasionally, one is also

interested in the circuit depth. For example, the circuit in Fig. A.1 acts on 3

qubits and has a total gate count equal to 12. The circuit depth is 6 since the
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|0⟩ H • H T •

|0⟩ H T T

|0⟩ H T • H

Figure A.1 Example of a quantum circuit with gates drawn from the Clifford + T

gate set. Time flows from left to right. The two qubit gates are CNOT gates with

the control indicated by the symbol • and the target indicated by the symbol ⊕.

gates can be parallelized into 6 sequential layers. When working in the Clifford

+ T gate set, it is common to ignore the Clifford gates and only count the non-

Clifford gates, that is, the T gates (or the Toffoli gates). The main reason for

this is that non-Clifford gates are more difficult to implement than Clifford

gates in many (but not all) schemes for fault-tolerant quantum computing. The

circuit in Fig. A.1 has a T -count of 4 and a T -depth of 2, since only 2 of the 6

layers contain T gates.

A quantum algorithm for a certain computational problem is a procedure

that takes as input an instance of the computational problem and determines a

quantum circuit (or multiple quantum circuits), as well as a procedure to con-

vert the measurement result(s) into the answer to the computational problem.

Since measurement outcomes are random, the answer need only be correct

with high probability.

A.3 Noise in quantum gates and the NISQ era

The quantum circuit model is an idealized and abstract depiction of a quantum

computer. Actual quantum computers attempt to realize this model by using

physical 2-level quantum systems as qubits—several options can be consid-

ered including the electronic states of ions or neutral atoms, the spin states

of electrons, the polarization states of photons, and the number of excitations

in superconducting electrical circuits. Gates are applied by turning on and off

external fields. While experimental control of these quantum systems has im-

proved dramatically over time, one cannot expect gates to be performed per-

fectly. Much of the work in theoretical quantum information science deals with

how to characterize, detect, and correct the errors that occur in noisy quantum

computations.

Specifically, methods for fault-tolerant quantum computation have been de-

veloped, whereby a quantum computation can be accomplished correctly using
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faulty components, provided that the noise in the system meets certain condi-

tions. The ideal quantum circuit is referred to as the logical circuit, composed

of logical gates and logical qubits. Each logical qubit is realized using a larger

number of noisy physical qubits, and each logical gate requires the action of

multiple faulty physical gates. A resource estimate for the ideal logical cir-

cuit can be converted into a resource estimate for the actual physical quantum

computer, a calculation that depends on the specifics of the hardware and the

fault-tolerance scheme being utilized.

Due to the resource overhead required by fault-tolerant quantum computa-

tion, researchers have also investigated the question of whether noisy quan-

tum computers can solve interesting problems without correcting the errors.

The era of quantum computing where quantum devices of tens or hundreds

of qubits exist, but large-scale fault-tolerant quantum computation is not yet

possible, has been referred to as the noisy intermediate-scale quantum (NISQ)

era. Generally speaking, algorithms for NISQ-era quantum computers should

possess a certain resilience to the inevitable occurrence of errors in the compu-

tation, often by restricting to quantum circuits with a limited gate count or gate

depth. While the focus of this book is on quantum algorithms for fault-tolerant

quantum computers and logical resource estimates, we comment in passing on

NISQ algorithms for many of the tasks.

A.4 Big-O notation

Analyses of (classical or quantum) algorithms often focus on how the compu-

tational cost, also referred to as the complexity, scales with the size of the input.

Inputs to a computational problem are assigned an integer size n—for example,

the number of digits in a number one wishes to factor—and resource metrics

such as the qubit count, gate count, and circuit depth are expressed as functions

of n. Often, of primary interest is the asymptotic scaling of these complexities

with n. To facilitate this, we adopt big-O notation. Given two positive-valued

real functions f (n) and g(n), we use the following definitions:

• f (n) = O(g(n)) if there exist n0, c, such that f (n) ≤ cg(n) whenever n ≥ n0.

• f (n) = Ω(g(n)) if there exist n0, c, such that f (n) ≥ cg(n) whenever n ≥ n0.

• f (n) = Θ(g(n)) if f (n) = Ω(g(n)) and f (n) = O(g(n)).

• f (n) = Õ(g(n)) if there exists c such that f (n) = O(g(n) · logc(g(n))).

• f (n) = poly(n) if there exists c such that f (n) = O(nc).

• f (n) = polylog(n) if there exists c such that f (n) = O(log(n)c).
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Above, n0 and c are always constants, independent of n. Intuitively, O, Ω, and

Θ are used to indicate that the asymptotic growth rate of f (n) is upper bounded,

lower bounded, and exactly equal to that of g(n), respectively. Tildes are added

to suppress logarithmic factors and simplify the expressions.

We also occasionally utilize little-o notation, which has the following defi-

nitions:

• f (n) = o(g(n)) if for any constant c there exists n0 for which f (n) ≤ cg(n)

whenever n ≥ n0.

• f (n) = ω(g(n)) if for any constant c there exists n0 for which f (n) ≥ cg(n)

whenever n ≥ n0.

Thus, little-o and little-ω communicate instances where the growth rate of f (n)

is strictly smaller than g(n) and larger than g(n), respectively.

While big-O and little-o notation carries the formal mathematical definitions

above, in some contexts this notation is utilized in a less mathematically pre-

cise fashion. For example, big-O is occasionally used simply to indicate that

constant prefactors have been omitted or that a certain quantity is roughly of

the same order as another. The expression O(1) is often used as a placeholder

for an unspecified constant, even when there is not a well-defined growing

parameter n. Meanwhile, the expression o(1) is used for functions f (n) that

approach 0 as n → ∞. The usage of Ω is often chosen to add emphasis to the

fact that a certain quantity is a lower bound for another, even when Θ would

also have been mathematically appropriate.

We also employ big-O notation for functions of multiple independent param-

eters. For example, if the input is an m × n matrix, we might be interested in

the complexity dependence on both m and n. Another common scaling param-

eter is the target precision ϵ to which a certain quantity should be estimated by

the quantum algorithm. Smaller ϵ typically incurs greater resources, and thus

we wish to compute how the complexity scales with growing 1/ϵ. When two

multivariate functions f and g are monotonically nondecreasing in all of the

scaling parameters, there is little ambiguity about how to extend the definitions.

For example:

• f (n,m) = O(g(n,m)) if there exist n0, c, such that f (n,m) ≤ cg(n,m) when-

ever n,m ≥ n0.

• f (n,m) = poly(n,m) if there exists c such that f (n,m) = O((nm)c).

Ambiguity may arise if it is possible for the function to decrease when cer-

tain scaling parameters are increased; in this case, the limiting behavior of the

function can depend on the rates at which the parameters grow relative to one
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another. Additional context about the range or relationship of the scaling pa-

rameters may be required to understand what is being communicated by the

big-O notation.

Big-O notation enables a determination of the magnitude of a quantum

speedup. Suppose the complexity of the quantum algorithm is Q(n) and the

complexity of the classical algorithm is C(n).

• We say that the quantum algorithm has an exponential speedup if Q(n) =

O(log(C(n))).

• We say that the quantum algorithm has a polynomial speedup of degree d

if Q(n) = O(C(n)1/d). If Q(n) = Õ(C(n)1/d), we say that the speedup is

essentially (or nearly) degree-d, and often we drop these qualifiers for ease

of discussion.

• If Q(n) and C(n) meet the criterion for a polynomial speedup for all d ≥ 1

but not the criterion for an exponential speedup, then we say the speedup is

superpolynomial.

Here are some examples:

• If Q(n) = 3n and C(n) = 2n3, there is a degree-3, or cubic, polynomial

speedup.

• If Q(n) = n2n/4 and C(n) = 2n, there is a nearly degree-4, or quartic, poly-

nomial speedup.

• If Q(n) = n2 and C(n) = en1/3

, then there is a superpolynomial speedup.

• If Q(n) = 10n and C(n) = 2n/1000, then there is an exponential speedup.

End-to-end analyses should ideally also assess the constant prefactors that

are omitted when using big-O notation (and polylogarithmic prefactors when

using big-Õ), as these can still contribute significantly to the outlook of a cer-

tain application if they are especially large.

A.5 Complexity theory background

Occasionally, we make reference to concepts and results from complexity

theory. Complexity theory aims to classify different computational problems

based on the quantity of computational resources required to solve them. These

computational complexities are often categorized solely based on whether

they scale polynomially or superpolynomially with the size of the input. If the

complexity of an algorithm is polynomial in the relevant parameter, it is called

efficient.
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Let x be an instance of a computational problem, which is associated with

an integer length n. The desired output of the problem on input x is denoted by

M(x). If M(x) ∈ {0, 1} is a single bit, the problem is called a decision problem.

This enables a definition of the following important complexity classes:

• The set P contains decision problems where M(x) can be computed by a

deterministic classical algorithm with time complexity poly(n).

• The set BPP contains decision problems where M(x) can be computed with

high probability by a randomized classical algorithm (i.e., an algorithm that

can make coin flips) with time complexity poly(n).

• The set BQP contains decision problems where M(x) can be computed with

high probability by a quantum algorithm with gate complexity poly(n).

To arrive at a precise form for the time or gate complexity, one must specify a

particular computational model; in the case of the quantum circuit model, one

also needs to specify a gate set, such as Clifford + T . However, for the purpose

of these complexity classes, these details are generally unimportant, as they do

not change which problems are in P and BQP.

Complexity theory also defines classes of problems for which the solutions

are efficient to verify, even if they are not efficient to compute. Specifically, we

may fix a verification algorithm with time complexity poly(n) that computes

a function M′(x, y) of two inputs, where x has size n and y has size poly(n).

We say that y is a witness for x if M′(x, y) = 1. The verification algorithm can

also be a quantum algorithm, in which case y can be a quantum state |y⟩, which

acts as the initial state for a quantum circuit in the quantum circuit model. A

state |y⟩ is a witness for x if the quantum verification algorithm produces output

M′(x, |y⟩) = 1 with high probability.

• The set NP contains decision problems for which there exists a deterministic

classical verification algorithm where, on input x, there exists a witness y if

and only if M(x) = 1.

• The set QMA contains decision problems for which there exists a quantum

verification algorithm where, on input x, there exists a witness |y⟩ if and only

if M(x) = 1.

The most famous outstanding open question in complexity theory is whether

P = NP, that is, whether or not there exist problems that cannot be solved ef-

ficiently, but for which solutions can be verified efficiently given a witness. It

is widely believed that P , NP. The prototypical example of a problem in NP

that is believed not to be in P is the Boolean satisfiability problem. Here, the

input is a Boolean formula φ (referred to as x above, and specified by a de-

scription of length n). The formula φ maps an input string z consisting of m
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bits to an output bit φ(z) ∈ {0, 1}, where n = poly(m). Given z, the output bit

φ(z) can be evaluated in time complexity poly(n), and the question is whether

there exists a z for which φ(z) = 1, in which case we call φ satisfiable. This

problem is efficient to verify since whenever φ(z) = 1, the string z acts as a wit-

ness to the fact that φ is satisfiable. However, there are 2m possible inputs z, so

without a witness, it naively requires trying all possible inputs to determine if

φ is satisfiable, a procedure which has superpolynomial-in-n time complexity.

In fact, it has been shown that the Boolean satisfiability problem is NP-hard,

a term that means it is as hard as any other problem in NP. Specifically, we can

make the following (slightly informal) definitions:

• A problem is NP-hard if the existence of an efficient deterministic classical

algorithm for the problem would imply that P = NP.

• A problem is QMA-hard if the existence of an efficient quantum algorithm

for the problem would imply that BQP = QMA.

• A problem is BQP-hard if the existence of an efficient randomized classical

algorithm for the problem would imply that BPP = BQP.1

A problem that is both NP-hard and in NP is called NP-complete. The Boolean

satisfiability problem is one example of an NP-complete problem. Similar def-

initions follow for the terms QMA-complete and BQP-complete.

The conjecture that P , NP entails that all NP-hard problems do not admit

efficient classical algorithms. Thus, one way to give evidence that a problem

cannot be solved in polynomial time is to prove that it is NP-hard. Since it is

also widely believed that BQP , QMA and that NP 1 BQP, showing that a

problem is NP-hard or QMA-hard is strong evidence that it does not admit an

efficient quantum algorithm. In the search for good quantum algorithms, these

hardness results establish limits on what we expect to be possible.

On the other hand, if one can show that a problem is BQP-complete, then

this is evidence that the problem exhibits a superpolynomial quantum speedup

over the best possible classical algorithm. If it did not, then this would imply

that BPP = BQP, which is widely believed to be false.

These complexity-theoretic results are useful guides for navigating quantum

algorithms, but it is worth emphasizing that they typically deal with worst-case

hardness and may not always be relevant for real-world instances of a prob-

lem. For example, preparing the ground state of a Hamiltonian consisting of

local terms—which is in a sense a quantum analog of the Boolean satisfiability

problem—is well known to be QMA-complete; thus, it is not expected to admit

an efficient quantum algorithm in all instances. Nevertheless, for many specific

1 Technically, due to their probabilistic nature, BPP and BQP should be defined as classes of
promise problems to correctly formalize the notion of BQP-hard; see [418].
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Hamiltonians that arise in nature, we do expect efficient ground state prepara-

tion to be possible, and this forms the basis for many proposed applications of

quantum computing.

We conclude with a discussion of the concept of oracles. A (classical or

quantum) algorithm is said to have access to an oracle g if it can query the

oracle in a black-box fashion, by fixing an n-bit input string z and receiving the

corresponding m-bit output string g(z). The query complexity of an algorithm

is the number of times it requests an output from the oracle. In quantum al-

gorithms, one typically allows the oracle to be queried in superposition, in the

sense of performing the unitary map Ug, defined by

Ug


2n−1∑

z=0

2m−1∑

w=0

αz,w|z⟩|w⟩
 =

2n−1∑

z=0

2m−1∑

w=0

αz,w|z⟩|w ⊕ g(z)⟩ ,

where ⊕ denotes bitwise addition modulo 2, and the coefficients αz,w are ar-

bitrary complex numbers. The ability to query in superposition may give a

quantum algorithm an advantage over classical algorithms that cannot do so.

Oracles play multiple conceptual roles. For one, they enable modular ac-

counting of the costs of an algorithm. For example, in algorithms where oracle

calls represent the dominant computational burden, one may count the number

of oracle queries made by the algorithm and multiply this by the computational

cost (e.g., time complexity or gate complexity) required to implement a single

oracle query. In end-to-end analyses, it is important to instantiate all oracles

using elementary operations and account for the costs of implementing them

in final resource expressions.

In complexity theory, oracles also provide a mechanism for establishing

more definitive separations between different models of computation. Oracles

are black-box objects, and algorithms may only interact with oracles by query-

ing them on different inputs—this makes it easier to prove a lower bound on

the query complexity of an algorithm than to prove a lower bound on the time

complexity or gate complexity. For example, there exists an oracle g for which

it can be shown that P , NP relative to g, even though P = NP remains possi-

ble in the non-oracle setting (in fact, there also exist oracles relative to which

P = NP).

Similarly, there are specific computational problems involving oracles, such

as Simon’s problem, where one can show an unconditional exponential separa-

tion between the quantum and classical query complexity required to solve the

problem. Relative to this oracle, it holds that BPP , BQP. Such separations

do not alone constitute a definitive quantum advantage in end-to-end complex-
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ity, but they may capture the core mechanism by which an end-to-end analysis

aims to achieve an advantage.
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[101] Bärtschi, A., Caravelli, F., Coffrin, C., et al. (2024). Potential applications of

quantum computing at Los Alamos National Laboratory. arXiv:2406.06625.

[102] Bauer, B., Bravyi, S., Motta, M., and Chan, G. K.-L. (2020). Quantum algo-

rithms for quantum chemistry and quantum materials science. Chem. Rev., 120,

12685–12717. doi:10.1021/acs.chemrev.9b00829. arXiv:2001.03685.

[103] Bauer, C. W., Nachman, B., and Freytsis, M. (2021). Simulating collider

physics on quantum computers using effective field theories. Phys. Rev. Lett.,

127, 212001. doi:10.1103/PhysRevLett.127.212001. arXiv:2102.05044.

[104] Bauer, C. W., Davoudi, Z., Balantekin, A. B., et al. (2023). Quan-

tum simulation for high-energy physics. PRX Quantum, 4, 027001.

doi:10.1103/PRXQuantum.4.027001. arXiv:2204.03381.

[105] Bauer, C. W., Davoudi, Z., Klco, N., and Savage, M. J. (2023). Quantum

simulation of fundamental particles and forces. Nat. Rev. Phys., 5, 420–432.

doi:10.1038/s42254-023-00599-8.

[106] Bausch, J. (2022). Fast black-box quantum state preparation. Quantum, 6.

doi:10.22331/q-2022-08-04-773. arXiv:2009.10709.

[107] Bausch, J., Senior, A. W., Heras, F. J. H., et al. (2023). Learning to de-

code the surface code with a recurrent, transformer-based neural network.

arXiv:2310.05900.

[108] Beane, S., Detmold, W., Orginos, K., and Savage, M. (2011). Nu-

clear physics from lattice QCD. Prog. Part. Nuc. Phys., 66, 1–40.

doi:10.1016/j.ppnp.2010.08.002. arXiv:1004.2935.

https://url.avanan.click/v2/r02/___https://doi.org/10.1088/0305-4470/15/10/028___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NzlhNjoxMjEzOWI0NTBjMzYwNDYxYjgyMmU2ZTY1OTYwYjM5OGY4OWQ2OWQ2ODVkY2JhMzlkYjk1MzJjZmYzOTVkZjA3OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.6028/NIST.SP.800-57pt1r5___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTJhNzoyNDI2MjdmNTJhMTA3NDk2MjEzNjM2NWUwZjViYmI1ZDU5OTk5OGI5NmRkODRjNzlmNDQyZTc5ZDg5NDAyYmE1OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.6028/NIST.SP.800-57pt1r5___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTJhNzoyNDI2MjdmNTJhMTA3NDk2MjEzNjM2NWUwZjViYmI1ZDU5OTk5OGI5NmRkODRjNzlmNDQyZTc5ZDg5NDAyYmE1OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.6028/NIST.SP.800-57pt3r1___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZWRmOToyZDM3Yjc1ZjBkMTc1ZjFlNGVmOGYxMDIxZjNlMmRmZGJiM2ZkMjY0ODc0OTk4NjlhYmUyZDNmOTE3Y2EyNmMyOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.6028/NIST.SP.800-57pt3r1___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZWRmOToyZDM3Yjc1ZjBkMTc1ZjFlNGVmOGYxMDIxZjNlMmRmZGJiM2ZkMjY0ODc0OTk4NjlhYmUyZDNmOTE3Y2EyNmMyOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.6028/NIST.SP.800-57pt3r1___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZWRmOToyZDM3Yjc1ZjBkMTc1ZjFlNGVmOGYxMDIxZjNlMmRmZGJiM2ZkMjY0ODc0OTk4NjlhYmUyZDNmOTE3Y2EyNmMyOnA6VDpG
https://url.avanan.click/v2/r02/___https://deloitte.com/nl/nl/pages/innovatie/artikelen/quantum-computers-and-the-bitcoin-blockchain.html___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZDBkMDo5NzUzZjc2YWUzMzk1NDY3ZGRlNjVjZWY2MmE3OTBkNmQxMDVjMzBmYzc1ZTE2NWEwNjEyYjRiOGIzNmFkN2ZkOnA6VDpG
https://url.avanan.click/v2/r02/___https://deloitte.com/nl/nl/pages/innovatie/artikelen/quantum-computers-and-the-bitcoin-blockchain.html___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZDBkMDo5NzUzZjc2YWUzMzk1NDY3ZGRlNjVjZWY2MmE3OTBkNmQxMDVjMzBmYzc1ZTE2NWEwNjEyYjRiOGIzNmFkN2ZkOnA6VDpG
https://url.avanan.click/v2/r02/___https://deloitte.com/nl/nl/pages/innovatie/artikelen/quantum-computers-and-the-bitcoin-blockchain.html___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZDBkMDo5NzUzZjc2YWUzMzk1NDY3ZGRlNjVjZWY2MmE3OTBkNmQxMDVjMzBmYzc1ZTE2NWEwNjEyYjRiOGIzNmFkN2ZkOnA6VDpG
https://url.avanan.click/v2/r02/___https://deloitte.com/nl/nl/pages/risk/articles/quantum-risk-to-the-ethereum-blockchain.html___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MDEyMDpkMzczNDk5MDcxZjNlNDM2NWM2YjQyZDA4ODZmZmE5M2E3OWRmOGEyMjQ5OTgwMDU0NTNlZGRjOGMxN2Q1NzgxOnA6VDpG
https://url.avanan.click/v2/r02/___https://deloitte.com/nl/nl/pages/risk/articles/quantum-risk-to-the-ethereum-blockchain.html___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MDEyMDpkMzczNDk5MDcxZjNlNDM2NWM2YjQyZDA4ODZmZmE5M2E3OWRmOGEyMjQ5OTgwMDU0NTNlZGRjOGMxN2Q1NzgxOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1038/s43586-021-00034-1___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YzUyNTpmNzUzYzNkOGJmNzVkODUwYjA5ODA2NThjMDQ2ZGQwMjdkMTcxYjJhODYyMDA3M2UwNGMyZWRjY2YzZDM1MjBjOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1016/j.ppnp.2012.10.003___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YTE3MjowMzdjYzAyODliYTA2Y2MwNDJiNzZkYWViMDY5ZGU0MmNiNGJiNDU3ZmM0NDhiMTBhMDg0MGFlOWEyMDNmNTA0OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2406.06625___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZTU3ZTo3N2M5MzliMWRmMjE1ZTI2ZWZlNDYxODJlYTJmMjNkYjI1ZTUxYTJmOTEyOTFjMGY2N2M1Y2UwMjFlN2YzYzI0OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1021/acs.chemrev.9b00829___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTEwZDowNTM2YjEyMjRhOWYwOGQwNDVkMDk4ZGZhNzU0NTEwYzU1ZGFlNmIxZWMyMTU2ZTUzODUwMzAwMzY0MGM1NjYxOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2001.03685___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6Mjk4NDozOWYxOWI1NzYxN2Y5YTE3OTNiZDg1YjRiODEwZGU2NThjYzA0ODhmMjgxMDhlNDlhYjk4YmU4NDI1ODRkMjRlOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevLett.127.212001___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MzE4YzoxZGFlYjBlNDU0YzNiODliODE4NTMxMjFlMTdhZjllYTM1NzQwZDM2ZDZjYjg3M2E5Nzg4ZGEyNWE0MTBhMTQ0OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2102.05044___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NDU0MjpmMWVlOGUxZWYxMjUyNGQyZTdlNzQyMDk4ZjM0NWIwYThlMDk4YmE1ZWJmYzZkYjI4ZWIzODBmOTEwNDI4MjZmOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PRXQuantum.4.027001___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YzhkNzplOTk4ZjllN2I2YzViNDdiMzI1MTg5ZTllODg2M2VlZjQ3NTZhZTMwZDNmYTNmYzk5NDM0NzlmZTdkNDE5NDg5OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2204.03381___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZDA2ZDo0ZjY4NmJkZGU0ZTVmMzY5YTAwMWZiNTg4ZmYwMzQ2YTk4NWI4YmUzOTdkMDU2YmM0NjdlZDk1NGYxNWU0YmNhOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1038/s42254-023-00599-8___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZTA1YTo1OTMzMTM2YjYwOGYyYzEyYTc2ZWIwY2MwNWVjNWU2Y2EyMDRmNGM5ZDI0ZTM3M2U2N2NmMTM1ZTE0ODFlNWU1OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.22331/q-2022-08-04-773___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6Y2MyYTpmNDRmYTM5MWQ2NjgxYWEzNjI3MzMyZmMwZmNmMjI3YzRjMzFjZGU3ODk0MzMxZmM0NDUwOTFhMjNhMmUxODdiOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2009.10709___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NjA4ODpjYjcwYjNjOGFiNmUzZTkwZWZjZDVmMjlhZjY4YmQ2ZjdkYjMzZjlhNzI1MTAyNDk1ZmEyM2YxNzY0MTNmODNjOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2310.05900___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NmNjZjozMjgxYWJlZThjOWMwMTE0OTE4N2Q1NTZjOWRmZTlhY2Q4YjMyZGM3ZmMwNGU0NzM0YTdkNDE0MDVkNjBlMDE3OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1016/j.ppnp.2010.08.002___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTUwZTphOTc5MTA0N2I0ZjU0NDllODNjMmE0N2ZhMzE4OTI5NmZiZTRkZTE3ODhhNDYyZmNlZWFlNDk3MGU1ZWNmNmNiOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1004.2935___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NjQ3ODo5NzE2ZDM5NGEzODZjY2MzNjUyYjg0OWM5ODg5ZDExMWI4MWViMDU5YmU4ZjUzZDg1ODcyN2ZlYTE5NWI5Yjg2OnA6VDpG
https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


References 353

[109] Beauregard, S. (2003). Circuit for Shor’s algorithm using 2n+3

qubits. Quantum Inf. Comput., 3, 175–185. doi:10.26421/QIC3.2-8.

arXiv:quant-ph/0205095.

[110] Beck, D., Carlson, J., Davoudi, Z., et al. (2023). Quantum information science

and technology for nuclear physics: Input into U.S. long-range planning, 2023.

arXiv:2303.00113.

[111] Beckman, D., Chari, A. N., Devabhaktuni, S., and Preskill, J. (1996). Ef-

ficient networks for quantum factoring. Phys. Rev. A, 54, 1034–1063.

doi:10.1103/PhysRevA.54.1034. arXiv:quant-ph/9602016.

[112] Beer, K., Bondarenko, D., Farrelly, T., et al. (2020). Train-

ing deep quantum neural networks. Nat. Commun., 11, 808.

doi:10.1038/s41467-020-14454-2. arXiv:1902.10445.

[113] Bellonzi, N., Kunitsa, A., Cantin, J. T., et al. (2024). Feasibility of acceler-

ating homogeneous catalyst discovery with fault-tolerant quantum computers.

arXiv:2406.06335.

[114] Ben-Or, M., Gottesman, D., and Hassidim, A. (2013). Quantum refrigerator.

arXiv:1301.1995.

[115] Bender, M., Bernard, R., Bertsch, G., et al. (2020). Future of nuclear fis-

sion theory. J. Phys. G, 47, 113002. doi:10.1088/1361-6471/abab4f.

arXiv:2005.10216.
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[494] Häner, T., Roetteler, M., and Svore, K. M. (2018). Optimizing quantum circuits

for arithmetic. arXiv:1805.12445.
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[740] Maris, P., Vary, J. P., Navrátil, P., et al. (2011). Origin of the

anomalous long lifetime of 14C. Phys. Rev. Lett., 106, 202502.

doi:10.1103/PhysRevLett.106.202502. arXiv:1101.5124.

[741] Markov, I. L., and Shi, Y. (2008). Simulating quantum computation by contract-

ing tensor networks. SIAM J. Comp., 38, 963–981. doi:10.1137/050644756.

arXiv:quant-ph/0511069.

[742] Marrero, C. O., Kieferová, M., and Wiebe, N. (2021).
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[857] Ramos-Calderer, S., Pérez-Salinas, A., Garcı́a-Martı́n, D., et al. (2021).

Quantum unary approach to option pricing. Phys. Rev. A, 103, 032414.

doi:10.1103/PhysRevA.103.032414. arXiv:1912.01618.

[858] Rasmussen, C. E., and Williams, C. K. I. (2005). Gaussian processes for ma-

chine learning. The MIT Press. doi:10.7551/mitpress/3206.001.0001.

https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevLett.121.010501___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NjM3NDplZWYxZTE1NDI0ZDA1YmE3M2EzNDQyZmM3M2I2OWM0NDFkNmViYjU2ZjI5MDAzMTkzMjE2Yjg3YjcwMDhjYjljOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1711.11025___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YmNkNzpkNjJhOWZmNDA4NjllNzIzM2NhMDczY2I1Zjc4Nzk2N2E3MjlhMzExODkyNjA4MzRmNzQ1M2M1ODBmYWQ0ZTBiOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1038/s41467-017-01418-2___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6N2JiMzoyMjc5YzM3NzJkOWI5OTM0NDdkNDZhMjNjNDhlMTkwOGQzMzhjZjYxYjEyMGNjNTAxY2JmYmY0N2Q0ZmM3ZGZmOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1609.08062___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZGY1Zjo5ZDZiZDNhYjY0MGUxOTlmNzZkOGJlMjcwODRkN2E0YTA5ZmU1NTBhNWZjMDI0MmFjYjkzOWI2YzE2N2ZkMDYzOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.22331/q-2018-08-06-79___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YTRiNToyYmY5NDMzNzZlMTg0YjMzOTZlODkyMzAyZGY3ODEzMTBhY2RmZjFjN2VmMzdmYWMxMzBiMzY3MWU1MWMzMzk0OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1801.00862___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6Y2JmYzo3MmM4ODc0ODEwODQyNjRmNTc0NWQxYjkxYTMyNWJhMDY2NTQ2NTFiNzdhNmUyYjI2ZTI3MjM2ZjhiOGVjZmMxOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.22323/1.334.0024___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTJhMzo0Y2Q1MTAxOWZkZmVjYWRkZTdiYjMwM2Q2MTNiYTI4YWFkOWEyM2E3Y2RkN2ZlNWNjNWJmZTU4OGQ3OTllNDY1OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1811.10085___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MDU1ZDpjZjdlY2MwNjllN2E3NThlNzczZTc3ZmRiMmI2MjBhZTA2ZmVhZDUyMDgwNjkxYmZjMzg3MmYyNjJjOTAxOTVjOnA6VDpG
https://url.avanan.click/v2/r02/___http://theory.caltech.edu/~preskill/ph229/___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YzA2ZDplNzk3YWZiZWIzMDQ3NTcwMTUwNzhmZGZlYmVmMDExMTViOWRhNDE2MWRiZWZmZjBhMzdkMzg4YjQyNThiMjQ4OnA6VDpG
https://url.avanan.click/v2/r02/___http://theory.caltech.edu/~preskill/ph229/___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YzA2ZDplNzk3YWZiZWIzMDQ3NTcwMTUwNzhmZGZlYmVmMDExMTViOWRhNDE2MWRiZWZmZjBhMzdkMzg4YjQyNThiMjQ4OnA6VDpG
https://url.avanan.click/v2/r02/___https://dl.acm.org/doi/abs/10.5555/2011528.2011531___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MzczYzowMjIzY2JiMmQyODgxNDBjNDgxMTVkM2M4NDkyODA5ZWIyOTI2NGY4ZmIwNjhiNmJjY2U5ZjE3YTM4ZmJmM2ZlOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/0301141___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZDkxNjo5ZjE1OWY3Zjg1MTc3MjdjNDQwYzZiODdiYjQxYTczZDQ1ZTVjYmQ1NWNjODg3NDI1Njg4YzVlYjY4YTg1MWRmOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1146/annurev-conmatphys-090921-033948___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MGE0ZDo0OGM0YWZmYTFjMzQ3YjUwMjBjNzRiYWE2YTQwY2E3NjEzZWIyZmZkNDJkNGQxOTNkYjVhZDYxYzk4MGEzMWM2OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2104.00064___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YmQzZjo4MjgxNDNmY2I0NTI5MGViNmIwMjI5ZmZlZjlmMzdiZGY3OWY3OWMxODU0Njg3NTY0OWRlMTg5NTI1ZWMyZGNiOnA6VDpG
https://url.avanan.click/v2/r02/___https://eprint.iacr.org/2024/636___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NjUxYTphOGQ2NDQ5NzQ1ZWZiZWUwNTVlYmVkMzU1ZmNkZTQ3OWU5MWVkODc3ZTkyM2VkM2Q5M2ZiMTY0OGFmODg3NzU3OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2310.00899___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ODk2ZjoyYWMxNWI3MWJiMjRjZjk4NGY5NjNmN2E5OTc4NDczZjdhNjY5OThiNjBiYzc1YzNjMmIzODk5NDc1OTk5ZmUyOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2309.09342___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZTNjNjpjYzIxYThlNzMxZWNmNDVlYWQwYjVkMmIzNmM0MjU3YWUyMDAwM2NhMTI5NzA1OGRjMDJkZjMyZjUzMGFjZDIxOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1088/1361-6633/ab28ef___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MzMxNzoxYjE2OWE2NDhiZGM1NmJiMDFlNWU4NjlkMTY3YTYyOThjMmY3ZWUwOTFlMjY5ZWMxMmYyNzc1Nzc3ZDE4NzgyOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1811.02593___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6Yzk1NToxMmE3NmJkM2ZhMTIzYzliYTRlNmUzZmQwYWVlNzc4ZTQyNDQzNWMzMjk3MjkyNDUxYTVlNTQ0NDBmMzBmNTA4OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.22331/q-2022-08-17-780___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MzVkMzo4ODk1MGJlNDVjMzczODAxMjJkNmYxOTRlOTVkZmU3NTAyMDI4MWRjYjNmN2I0ZDRjNzI3NjY2MzY0MmJiN2QxOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2109.03308___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MjRmOToxNjFlNmVlZTFkMzM5NDAyNWZjZjg2YjY0ODcyODZkN2FmNDVkZDlmNWQyMmNmYTM4NzhhMzg3YjUyMGFiMTU0OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevA.102.022408___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YTI2MjozNzQ5NjI1YTg5ZmUyNDQ5ZWVhMmQ0YmM1ZTFkNzhmMjQ4NzM1ZDc4MjZkYTVkMWI5ZDdkYzAwNGY0Mzk4NjQ3OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2004.06832___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YjEyZjo5ZTRhODIzNTRlYjE1Y2JmNjcwYThlZjY2ZDlmMmExNDhkZDE2ZDc2YjBiOWYxMDkwODM0YzhjMTBjYWRkNDJlOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.22331/q-2021-10-19-566___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OGU1ZDo1ZjZhOThlOTg2YWFmZjdmMGJkZjJmN2EwOGViYWUzM2VmOGJhNzQ3YWU2MTdkMjg2YzZjZDFjYWE1ZWY1YjI0OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2103.09717___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZTExYjplOGNlZGUwNGRiYjJmNzc2MjA0OGUyZmU2NmE0NjAzZjFjNTJkMmZiODhhZTA3NWQ3Y2E2NjRlZTZhMTZiNWExOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.22331/q-2023-03-02-937___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6Y2QyODo3Yjg0ZTY4OGQyMjU1ZDEzMWRkMDBlY2Q0N2I5OTI1MDU1OTUzNDhkZjgzZTIxYzhkYTM0OTM1N2Y3N2Q3ODNjOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2207.08628___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OWY4NTo2ZTMwMjk1NDZlZjUyOGRiYzlkZGJiNjk5NTE1Y2RlN2NlODUzYjI2MzcxYTIzMWZjODZmMzhiZjFmZDA1MGUzOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.22331/q-2023-10-10-1132___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6Nzc0NTozOTk5OTc3MzkyNzk5YmM5YzljMTc0NzE1N2Y4MzA4YzZjMmJiMDBmOWUxZDRiYmI3NjNhZWM4MGJlZTc1YjZiOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2210.01670___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTQ3YjpjYzE2NWVhMzk0ZDBlOWE3ZGI2NjdmNTI3MzY4NjM4MmI3ZjQ3MDk4ZjNhMmY2NTcyZmYzZTIyMjFmNGNmZDFjOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevA.103.032414___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OWJhMTpiMTYwNTNjN2JlMmNlOWM0MWUyMDM0MTA1Mzc2ZWEyNmQzOTBiZWUyZWFlNDRkZTgzZDVjYjUzMGRjY2FiZmJiOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1912.01618___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTJiZTplYjk0ZDVjOTdmOTc2YzE5ZmI0MGY2MDQ1YjU4YTBhM2M1NWFkNzUzYmVjYzFhNzExOTZhYWUzNDY5NDUyOThlOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.7551/mitpress/3206.001.0001___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YjAxYjo0MWJlYmQzZmEwMGMzYTBkNGI4MjNiZmRhNjllN2I2ZGU0MmEyYjQyZTNmM2EyZDYwMDA5MmVkZjcyMjBkZWM3OnA6VDpG
https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


References 399

[859] Rattew, A. G., and Koczor, B. (2022). Preparing arbitrary continuous functions

in quantum registers with logarithmic complexity. arXiv:2205.00519.

[860] Rattew, A. G., Sun, Y., Minssen, P., and Pistoia, M. (2021). The efficient

preparation of normal distributions in quantum registers. Quantum, 5, 609.

doi:10.22331/q-2021-12-23-609. arXiv:2009.06601.

[861] Raussendorf, R. (2012). Key ideas in quantum error correction. Philos. Trans.

R. Soc. A, 370, 4541–4565. doi:10.1098/rsta.2011.0494.

[862] Raussendorf, R., and Harrington, J. (2007). Fault-tolerant quantum compu-

tation with high threshold in two dimensions. Phys. Rev. Lett., 98, 190504.

doi:10.1103/PhysRevLett.98.190504. arXiv:quant-ph/0610082.

[863] Raussendorf, R., Harrington, J., and Goyal, K. (2007). Topological fault-

tolerance in cluster state quantum computation. New J. Phys., 9, 199.

doi:10.1088/1367-2630/9/6/199. arXiv:quant-ph/0703143.

[864] Raychowdhury, I., and Stryker, J. R. (2020). Solving Gauss’s law on digital

quantum computers with loop-string-hadron digitization. Phys. Rev. Res., 2,

033039. doi:10.1103/PhysRevResearch.2.033039. arXiv:1812.07554.

[865] Rebentrost, P., and Lloyd, S. (2018). Quantum computational finance: Quantum

algorithm for portfolio optimization. arXiv:1811.03975.

[866] Rebentrost, P., Mohseni, M., and Lloyd, S. (2014). Quantum support vec-

tor machine for big data classification. Phys. Rev. Lett., 113, 130503.

doi:10.1103/PhysRevLett.113.130503. arXiv:1307.0471.

[867] Rebentrost, P., Gupt, B., and Bromley, T. R. (2018). Quantum computational

finance: Monte Carlo pricing of financial derivatives. Phys. Rev. A, 98, 022321.

doi:10.1103/PhysRevA.98.022321. arXiv:1805.00109.

[868] Rebentrost, P., Luongo, A., Bosch, S., and Lloyd, S. (2022). Quan-

tum computational finance: Martingale asset pricing for incomplete markets.

arXiv:2209.08867.

[869] Regev, O. (2023). An efficient quantum factoring algorithm.

arXiv:2308.06572.

[870] Reiher, M., Wiebe, N., Svore, K. M., et al. (2017). Elucidating reaction

mechanisms on quantum computers. Proc. Natl. Acad. Sci., 114, 7555–7560.

doi:10.1073/pnas.1619152114. arXiv:1605.03590.

[871] Reiner, J. M., Zanker, S., Schwenk, I., et al. (2018). Effects of gate errors in

digital quantum simulations of fermionic systems. Quantum Sci. Technol., 3.

doi:10.1088/2058-9565/aad5ba. arXiv:1804.06668.

[872] Reiner, J. M., Wilhelm-Mauch, F., Schön, G., and Marthaler, M. (2019).

Finding the ground state of the Hubbard model by variational methods

on a quantum computer with gate errors. Quantum Sci. Technol., 4.

doi:10.1088/2058-9565/ab1e85. arXiv:1811.04476.

[873] Rhodes, M., Kreshchuk, M., and Pathak, S. (2024). Exponential improve-

ments in the simulation of lattice gauge theories using near-optimal techniques.

arXiv:2405.10416.

[874] Richard, E., and Montanari, A. (2014). A statistical model for tensor PCA. In:

NeurIPS. arXiv:1411.1076.

[875] Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for obtaining

digital signatures and public-key cryptosystems. Commun. ACM, 21, 120–126.

doi:10.1145/359340.359342.

https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2205.00519___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OWUyMzphNjVmNTRjZjkzZjcyMGVmYjFkZGIzNTI2MDU0YjQ3MTFmZDBjNWZkYTVjNTVhYWNmNTA0YmRiNTNiMjAzNTQ3OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.22331/q-2021-12-23-609___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YmU3ODpiNzY2NTNlZmMxOGE4OWE0YTdlMzI4OWUzOGY4NTQ5NTIyM2EyZmRkM2UwNGQ3N2MzZWZiODJjZDJkNTM5Yjk0OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2009.06601___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MjIyMzoxOGFmMmI3MTE2NzllNzg2YzczOGJlNjFiZDgwYTZkMTRiZDU3MTgxNjU5NTQyY2Y3NmI5MTZmYjA0MzFjYzg2OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1098/rsta.2011.0494___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OThiMTo3NjI1NDQ2ZWE3YmZkZmY2NjEzODMzOGJhMmVjN2U3Y2Y0ODYwM2M4OTU0NGZmNTE2MDJlZmFlY2JmNzZlZmQ0OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevLett.98.190504___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ODZkYzo0ZTc2M2Q3NjJjM2MyYjc2NDNjY2QzYzU2ZWVjODVkYmNiYjQ5ZDFiOWY2NTVlOTk2NDdlNmQ3MjM4NjVlZTIwOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/quant-ph/0610082___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6M2RjYToyOWJkMDExYjU0ZDJhODFmMzBjOTQ3ZjhlNjEwYjFmYjI0YTA4YzNmMGU2ODIxMjMwMWJhMjMxYWJiN2Y5NjIzOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1088/1367-2630/9/6/199___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MDVmOTpkM2QwMGM3OTE1MDQ5YjM5OThlOTlmYTc5YWRmZjQ5OGI2NDk2MDZhYTcyNjM3YTgzMjVlNzQwMmNiNmVjOTljOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/quant-ph/0703143___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZTUyNTo0OGIyYmFkZGM2MjZjZTU2MjZkNWViNmVkMWM3NTczODFlZmQwNDA3ZGZkZmUwNDhhNTdmMTJmYWMwY2Y3NTMzOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevResearch.2.033039___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6N2Q1YzplYWM0ZjkwNTY3MDdkMjczMWFiMDMzMzM0NTNiMjQ3ZGY2MzhkNmE3ZGQ3ZWE2YWUxYjMwNDc5ZGM3Njg1MWQ1OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1812.07554___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6Mzk2MjpjYWNmM2E4YmRiMTgxNDJkMjkzZGE2N2ViODNkYmJlMmM4ZjNkN2ZjYWJiYjQ4MGMwOWMxYTY1NzQzZWY2MWIxOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1811.03975___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MzhhMjozNWVjYmQ5MmYwODQ3ZTUzYzc4YjcwMWYyMzgxYjBkODczNWVkYjY5OWE2ZDc2ZjAyYTcyNzFhMDMxMTM4YjliOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevLett.113.130503___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MTc0OTpkZDdlOWZhYTBhNjVjY2U4YzIwYmE1OTM4M2Y4YjQxYjBkZDZmM2QzZDVlNWEyYTY2OGEwY2RmODFlMDU3ZGNjOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1307.0471___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTU5NjplM2I5ZTIzOGJiODZmMjU3YTU2ZjUzOGVmZGVmOWQ4Njg5Zjg1YzlkZGE2OGZhOTJiYTQ5OWQ0MGQ2YTBiNjk1OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevA.98.022321___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OWJmNjplYzBlZTdlZDc2MmRkYzNlZTVkY2U3MjdlMDY2OTQ5NWE1MjU3ZjViNTE2YTg2NzQyNDI4MTA3OTU0MzhiMDUxOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1805.00109___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YWFiMjo3MTcwZWE1NzFkYzkzMDk3M2IyOTYwYTVkM2U1N2Y1MTM0NjViMWUyMDJlYTc5ZmI4NjE2ZDU0YzlmN2VlZTMzOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2209.08867___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YzY5YTo1MDg1M2E0MTQ0YjI1NjcwYjhiNDlmZjRmZjM3M2Q1M2JlMDA4NDNiMzg0YmFhMzE5MjNiMzcxMjFlOTFkNjlhOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2308.06572___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MmRlZTplZjM5YzVkYWYzYjE0YmVmMjdmYmM5ZjkxMjI3YWM3ZWZiZjMxYzFkNTAzNzViNGJkNDU2ZDJhODZhNjE1NGNjOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1073/pnas.1619152114___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MDY3NjpmMDZiNGNlYjhmOWI2NTI3M2E0ZjY4NDlkNDNmYTU2ODNhM2NiZDVjNDNhMGU0NTk0Y2EzMDgzNzk0ZGIwMGJjOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1605.03590___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YmM2ZToyNDk1NDE3NzRiOTQ1MzQ4Njc5NWQ3ZjkxZmUzZDA1Njc3OWY3ODcwNzczODEyZjFhNmE2N2VlN2MxMGYzNzNjOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1088/2058-9565/aad5ba___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ODUzOTo2MTQzNTc1ZTc1OTYyZGNlMGFiYzM4NDQxN2JiMjliOGJlODQ3NTRmN2Q1NDJmNGM3NGEyMTI4MjVlMTVhYmVjOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1804.06668___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MmRiOTowZWMyZTZmNmMyY2I0ODVkZTBiNzFmMmYzYTEyODdiODIyMDg2ZjBjZmFhNWNmNjRlNGY2Njg5MWJhZjYwZDU3OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1088/2058-9565/ab1e85___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MzUyNjpmNzQ3OGZjNGNkOGZiNTMyYjlkMTg3Yjg5NmRhM2NiYmM4YjE0NTg0OThjZDZkZmVmZWQyNTNmZDQ5OTg2NjRjOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1811.04476___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MTJjNToxYTE5OWFhZTMyNjNlNDk1ZTBlZjZiNDZhMzRmMTRkZmU4ZDA0NWU5NDVjMjYyZjY3YWE4YmIxOGIyNmEzNDdlOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2405.10416___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YzJkMjpiYjRlYmNiMWE4MGNjYzhiYWVlMDQyYjcwYmFmNTA4NTA1YmVjYmZhODNjNzUxOWQ4NGEwZGRmZWE5YzVlNmE0OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1411.1076___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MjY4NDpkMmZkMTg2MmZlYmI2NDE3NDBhYzE2YjZkMGNhZTExMTEwYTYzMDVlNGFiODM5ZDljNTRmNTgzMTM3MDE1OWRjOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1145/359340.359342___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YmM4NTo2OGVjNDY3ZGM1NWNiNGVmNDQzMTYyYjFlYWNjNjZlNDk1YjhlOWE2MTgwMjMwMzYyMjYwNmExODFiN2ZlYzAyOnA6VDpG
https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


400 References

[876] Roetteler, M., Naehrig, M., Svore, K. M., and Lauter, K. (2017). Quan-

tum resource estimates for computing elliptic curve discrete logarithms.

Pages 241–270 of: ASIACRYPT. doi:10.1007/978-3-319-70697-9_9.

arXiv:1706.06752.

[877] Roggero, A., Li, A. C. Y., Carlson, J., et al. (2020). Quantum com-

puting for neutrino-nucleus scattering. Phys. Rev. D, 101, 074038.

doi:10.1103/PhysRevD.101.074038. arXiv:1911.06368.

[878] Romero, J., and Aspuru-Guzik, A. (2021). Variational quantum generators:

Generative adversarial quantum machine learning for continuous distribu-

tions. Adv. Quantum Technol., 4, 2000003. doi:10.1002/qute.202000003.

arXiv:1901.00848.

[879] Romero, J., Olson, J. P., and Aspuru-Guzik, A. (2017). Quantum autoencoders

for efficient compression of quantum data. Quantum Sci. Technol., 2, 045001.

doi:10.1088/2058-9565/aa8072. arXiv:1612.02806.

[880] Rosenberg, E., Andersen, T. I., Samajdar, R., et al. (2024). Dynamics of magne-

tization at infinite temperature in a Heisenberg spin chain. Science, 384, 48–53.

doi:10.1126/science.adi7877. arXiv:2306.09333.

[881] Rosenberg, G., Haghnegahdar, P., Goddard, P., et al. (2016). Solv-

ing the optimal trading trajectory problem using a quantum annealer.

IEEE Journal of Selected Topics in Signal Processing, 10, 1053–1060.

doi:10.1109/JSTSP.2016.2574703. Earlier version in WHPCF’15.

arXiv:1508.06182.

[882] Rosenhaus, V. (2019). An introduction to the SYK model. J. Phys. A, 52,

323001. doi:10.1088/1751-8121/ab2ce1. arXiv:1807.03334.

[883] Rosenthal, G. (2021). Query and depth upper bounds for quantum unitaries via

Grover search. arXiv:2111.07992.

[884] Ross, N. J., and Selinger, P. (2016). Optimal ancilla-free Clifford+T

approximation of z-rotations. Quantum Inf. Comput., 16, 901–953.

doi:10.26421/QIC16.11-12-1. arXiv:1403.2975.

[885] Rossi, M., Asproni, L., Caputo, D., et al. (2022). Using Shor’s algorithm on

near term quantum computers: A reduced version. Quantum Mach. Intell., 4,

18. doi:10.1007/s42484-022-00072-2. arXiv:2112.12647.

[886] Rubin, N. C., Berry, D. W., Malone, F. D., et al. (2023). Fault-tolerant quan-

tum simulation of materials using Bloch orbitals. PRX Quantum, 4, 040303.

doi:10.1103/PRXQuantum.4.040303. arXiv:2302.05531.

[887] Rubin, N. C., Berry, D. W., Kononov, A., et al. (2024). Quantum computation

of stopping power for inertial fusion target design. Proc. Natl. Acad. Sci., 121,

e2317772121. doi:10.1073/pnas.2317772121. arXiv:2308.12352.

[888] Saad, Y. (2003). Iterative methods for sparse linear systems. 2nd edn. Society

for Industrial and Applied Mathematics. doi:10.1137/1.9780898718003.

[889] Sachdev, S., and Ye, J. (1993). Gapless spin-fluid ground state in a

random quantum Heisenberg magnet. Phys. Rev. Lett., 70, 3339–3342.

doi:10.1103/PhysRevLett.70.3339. arXiv:cond-mat/9212030.

[890] Saffman, M., Walker, T. G., and Mølmer, K. (2010). Quantum in-

formation with Rydberg atoms. Rev. Mod. Phys., 82, 2313–2363.

doi:10.1103/RevModPhys.82.2313. arXiv:0909.4777.

https://url.avanan.click/v2/r02/___https://doi.org/10.1007/978-3-319-70697-9_9___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OGI3MTo5NGFkNWVmYzIzYzBiNDlkZDYwODZjYmYyOTAwOWYzZDYyODJhMDc4NjE1NzdmYWJjOGU4NjQ2MzNkMWRlYzQxOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1706.06752___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6Y2MxZTpiNmEyYzEyMDY0M2ZlNjg2NjYwMzFmNmYxMWZkMTMxNTgzMjM2NTViYzFkZmViN2FiZTRmOTEzYTViNGZlNWY5OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevD.101.074038___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZTI2YTpmNDQwNWJhODFjYmRlY2M3YWZkY2M1NmFlMTBhZDE4YWNlNmRkZjFiNjJhNmZhM2MyMDI0NzViZTk0YWY2ZWFjOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1911.06368___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NWRhMzo1Y2VjNDI3MmM2YmE0N2ZhNjQ0ZTQ4NGZiZGVjMWY0YmE3NDZiOWZmZjA3YTQ4MDljMmFkNWI4MmMyYWQyZTJjOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1002/qute.202000003___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ODcwNjpjYmY4NzVjZTBjMDc4Yjk5ZDVjNjE4ZTRkMTEyOTFiMGUzNmM2NmY5MjI0MGM0MzViYzA1ODY1MjRkNDU1ZWFlOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1901.00848___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YWM3ODoyMGIyYzlmMzAxNTEyNjEzYTY5OWJkMThjOTEyYzJmZTE4NjQwOTk0ZjQyM2QwNDI3YWIwMzE0NzYxNzg0ZjRjOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1088/2058-9565/aa8072___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTEzZDpiODA2MzFhNGQ3NWQxY2ExZDAwYjI4NGQyNWY2MmVhMzZkMmJjMGNjOTA0YzIzYmUzYTU2MTQ3NzVkN2RjNmQ1OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1612.02806___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZGQxNDpkY2VhOWIyNWUxYTQ5NjM5YjEwYjRiYzY2YTYwM2YyNWRlODgzZjIwNWI2M2VlMjVlMjIwZTdlOGY4ZjY0N2Q0OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1126/science.adi7877___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MmY1MDplOTI3YTk5YmI3NWQ2ZTMwMzM4NDY0MmY1OWEzODBjNWEzOTY1MGU1OGMzZWU1Yzc4MGIwMTZkNDE4ZWJjOTkyOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2306.09333___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ODY4YzoyMmNlMGU1NzU3YTNmNGMzNTI4MjYwNjJkM2M1NjI5ZDZjMWIwZjg1ZDdjYTc0MjlhMmNiY2YxYWFhMmEyNDA4OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1109/JSTSP.2016.2574703___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MzIwYzpmNTNmNTgxN2I0ZWY3MTc5YjVjODcxMDE2NDc3YzE5MWJjMmYyZDZhNjIxMzY1OWU4ZDFkYjQ0MmU2MTcyYzBiOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1145/2830556.2830563___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NjJhOToyZGIxYzMwYzlmZDAxNWQ0YzJkOWFhZjkxZDJjNWQ5MmRlNjg2YWQ2MTI4NjE1YzA2OGYxYzZiMDRjYjJkMGI5OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1508.06182___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YzU0Njo2Nzc1OTFhODk1MWJhMDhlZWI5OWIzNTEyZTgyMWQ1ODdjNjg5MGRjYjEzMjYxNzlhY2ZiMTFkZDRiMjE5YjVjOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1088/1751-8121/ab2ce1___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6M2ZlNTo3MTUyYzMxNWJiYjFiMzQyOTc5ODVmNjljMTBhOTE0MWVjZThlNjgzMDAyYmQwYTJlODM0N2U4ZDVlNDcxZDE5OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1807.03334___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YTFhODozMjQyOTRjMWIwZjkzMTJjNDVjOTc5NDZkNDAyNTZlMjlmYjkxMmI4ZGY3YmExN2Y1MjBjMTQzMTk4YWNmNzQ2OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2111.07992___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZmUyNDpkYmRjYWQ5OWE5ZGVlZjIxNmZjM2FiYTg5ZmUzZmMyNjAwYzA1YjYxOWE4Mjg5ZmQ0ZmZlY2Y5YTFiNjlkMmVjOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.26421/QIC16.11-12-1___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZDc3ODplNzQxY2IxMzE3YzU0MjMxOGFkN2RiYTJmY2Y0ZmI3YTI3YzMyMWRiZjBkNGU2ZGNjMmJhMDM5YWY1MDU4YTgwOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1403.2975___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MDc0MDpjYmM0NTA0MTkxN2Y4MTA1ZGFiMjk2ZDdkMGFhZmFmZjdkNWRiZWQ2ZDRiNmZjMjhmYmM3ZWI2NTBiMTY1NDVmOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1007/s42484-022-00072-2___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OTc4ZDo1ZmVhOTk1NjZiMjEyNWM4ZDM2YTZlYTMzYzRlMjhjY2Q0YmU1ZWNmNTJmZWRlNmY0M2FlZDUxZmFhOGIzYTZhOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2112.12647___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZmQ0YzozNzNjNmJjZWU2ZTBlMTJiZjdlOTM2ZWZkNTkyNGY4MjUyY2E2NmVjOTI3MzQ2NDdjYjE0YWU2NWE1N2I3YmJlOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PRXQuantum.4.040303___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YzU3Nzo2NmM3ZWNhMzIxYmU4NjNjN2NlMTFkZDAwMmY0YWVlMWEwNzRjMWJlNjcyMjdmZTJhOTNiNjJiYzBiZGE1MjI4OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2302.05531___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YWZiNDpkMjc3MzkzZmVlM2QxYzgzZjU0N2M1ZTI4YWQ2Y2JlZDkwZjNhMjY1MTdlYzExZDlkMTFjMTJhZWU1MDQxYzZiOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1073/pnas.2317772121___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NDIyODoxZWUzYzA3MGUyZDQ1MDhkZjJjYWVkMjM1NDZhOTA0NGE5NWRlMmMzZTkxNzI4MzI5ZWI4YWRkYjE5YmE0ODY5OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2308.12352___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZDA3MTo0MzI5ZTEzNDU5MTY5MGJkMmU2M2Y0NzhhYWVlNDMyNTc1YjBkOGU4NDVhNTE3NjczODBiN2FhNDlhNzEwZDRiOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1137/1.9780898718003___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6Mjg0NDoyYmYyMmUzYzFiOGYxNjcxOWJhMWE5OWUwYTNiODhiNDRiMDhjYjMwYjQzZWU3MWYxZTAwNTAxMmJlNmRiMmJiOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevLett.70.3339___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MThiZDpjNjFiNGNjMTBlZWMwZDk0ZmYzMzQ5ZmJmMmQ2NDk3ZTlmNzA3NGIyZTVkY2I5MjVlMWE2YzU5NDBmNDczNmFhOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/cond-mat/9212030___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZmU0MTpiNDJhNTg3ZGFmNTFkYmM0N2IwNDA0ZTMwOTc5Y2U3N2FlNTEyYzgyM2RlNjU0YmRlMGQyMjAyOTlmMzNkNTg4OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/RevModPhys.82.2313___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MmI1MzoyMDgwOThhMmQzYWU4ZmRhN2EyZWJjN2U0NjJkOTNjMzEyNjBmMDgwNDIzY2MwYTRjZGRhZjAzMzNkNzkwNTllOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/0909.4777___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NjY1MDpjNDEwN2VjOWJiZDMzMzYxYTZkMjVmMDYyZTU3NmRiMDQ2YTgyNWFkYWZlMDVjZDVkM2YwNTlmNWMxYzI4NDc1OnA6VDpG
https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


References 401
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[907] Schollwöck, U. (2011). The density-matrix renormalization group

in the age of matrix product states. Ann. Phys., 326, 96–192.

doi:10.1016/j.aop.2010.09.012. arXiv:1008.3477.

[908] Schöning, U. (1999). A probabilistic algorithm for k-SAT and

constraint satisfaction problems. Pages 410–414 of: FOCS.

doi:10.1109/SFFCS.1999.814612.

[909] Schubert, A., and Mendl, C. B. (2023). Trotter error with commuta-

tor scaling for the Fermi–Hubbard model. Phys. Rev. B, 108, 195105.

doi:10.1103/PhysRevB.108.195105. arXiv:2306.10603.

[910] Schuch, N., and Verstraete, F. (2009). Computational complexity of interacting

electrons and fundamental limitations of density functional theory. Nat. Phys.,

5, 732–735. doi:10.1038/nphys1370. arXiv:0712.0483.

[911] Schuch, N., Wolf, M. M., Verstraete, F., and Cirac, J. I. (2007). Computational

complexity of projected entangled pair states. Phys. Rev. Lett., 98, 140506.

doi:10.1103/PhysRevLett.98.140506. arXiv:quant-ph/0611050.

[912] Schuch, N., Wolf, M. M., Verstraete, F., and Cirac, J. I. (2008). Entropy scal-

ing and simulability by matrix product states. Phys. Rev. Lett., 100, 030504.

doi:10.1103/PhysRevLett.100.030504. arXiv:0705.0292.

[913] Schuld, M. (2021). Supervised quantum machine learning models are kernel

methods. arXiv:2101.11020.

[914] Schuld, M., and Killoran, N. (2019). Quantum machine learn-

ing in feature Hilbert spaces. Phys. Rev. Lett., 122, 040504.

doi:10.1103/PhysRevLett.122.040504. arXiv:1803.07128.

[915] Schuld, M., and Killoran, N. (2022). Is quantum advantage the

right goal for quantum machine learning? PRX Quantum, 3, 030101.

doi:10.1103/PRXQuantum.3.030101. arXiv:2203.01340.

[916] Schuld, M., and Petruccione, F. (2021). Machine learning with quantum com-

puters. Springer. doi:10.1007/978-3-030-83098-4.

[917] Schuld, M., Sinayskiy, I., and Petruccione, F. (2016). Prediction by

linear regression on a quantum computer. Phys. Rev. A, 94, 022342.

doi:10.1103/PhysRevA.94.022342. arXiv:1601.07823.

[918] Schuld, M., Bergholm, V., Gogolin, C., et al. (2019). Evaluating an-

alytic gradients on quantum hardware. Phys. Rev. A, 99, 032331.

doi:10.1103/PhysRevA.99.032331. arXiv:1811.11184.

[919] Schuld, M., Bocharov, A., Svore, K. M., and Wiebe, N. (2020).

Circuit-centric quantum classifiers. Phys. Rev. A, 101, 032308.

doi:10.1103/PhysRevA.101.032308. arXiv:1804.00633.

[920] Sels, D., Dashti, H., Mora, S., et al. (2020). Quantum approximate Bayesian

computation for NMR model inference. Nat. Mach. Intell., 2, 396–402.

doi:10.1038/s42256-020-0198-x. arXiv:1910.14221.
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[946] Sparrow, C., Martı́n-López, E., Maraviglia, N., et al. (2018). Simulating the

vibrational quantum dynamics of molecules using photonics. Nature, 557, 660–

667. doi:10.1038/s41586-018-0152-9.

[947] Stace, T. M., Barrett, S. D., and Doherty, A. C. (2009). Thresholds for

topological codes in the presence of loss. Phys. Rev. Lett., 102, 200501.

doi:10.1103/PhysRevLett.102.200501. arXiv:0904.3556.

[948] Stamatopoulos, N., and Zeng, W. J. (2023). Derivative pricing using quantum

signal processing. arXiv:2307.14310.

[949] Stamatopoulos, N., Egger, D. J., Sun, Y., et al. (2020). Option pricing using

quantum computers. Quantum, 4, 291. doi:10.22331/q-2020-07-06-291.

arXiv:1905.02666.

[950] Stamatopoulos, N., Mazzola, G., Woerner, S., and Zeng, W. J. (2022). Towards

quantum advantage in financial market risk using quantum gradient algorithms.

Quantum, 6, 770. doi:10.22331/q-2022-07-20-770. arXiv:2111.12509.

[951] Stanisic, S., Bosse, J. L., Gambetta, F. M., et al. (2022). Observ-

ing ground-state properties of the Fermi–Hubbard model using a scal-

able algorithm on a quantum computer. Nat. Commun., 13, 5743.

doi:10.1038/s41467-022-33335-4. arXiv:2112.02025.

[952] Steane, A. M. (1996). Error correcting codes in quantum theory. Phys. Rev.

Lett., 77, 793–797. doi:10.1103/PhysRevLett.77.793.

[953] Steane, A. M. (1997). Active stabilization, quantum computa-

tion, and quantum state synthesis. Phys. Rev. Lett., 78, 2252–2255.

doi:10.1103/physrevlett.78.2252. arXiv:quant-ph/9611027.

https://url.avanan.click/v2/r02/___https://doi.org/10.1137/S0097539795293172___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YzVlNzo4MjQzZDYwMzRhNjUxMTk3YmQ0NmU0ZmQwODM1ZmFlNTBkM2YzNWE1MDBiNGRmYmVhNTczZjNmNTE2MTcxMTRjOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1109/SFCS.1994.365700___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YThkNDphYjJiMWRlYzQ5MWZlOWM0M2YzM2NhZTZkNjgyZmZlODk2ZTU0OTAyM2FhNTYxZjQxOWMyY2UzNzhiMmI0Y2Y4OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/quant-ph/9508027___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MTQ2ODo4YjBlOWFhYTk2ZjBhMmUxYzE3NDY1NWE1NDZiYWJiNTJmYmNmNWI1ZmQzYzE5NmMyYTg0MzA0ZTI0ZjNjYjc2OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2208.09964___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YjkxYToxNWIyNDI1NDYzNmUwYzRjMjA2NzE2ZDZjZTg2MTQwOGIwNDAwZmRhNjk3YTk3OTAxODU2MWIzZjgxNjk5ZDRmOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2112.14688___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NWZjOTo4Y2YwZTFmNzliMjY2NmUxY2Y1MTFkODY0YTkyMDNhODA4YmIwYjA5MTFkNjQyZTUwNTYxMWUzNzEwNjIwN2Q5OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1137/S0097539796298637___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTUzYjplODZjNzM2NTE2YTg3MmRhMDhiYmIwZjFiZWY2ZDk3YjI5NzRmMzc4Y2VhNjFhZDc3NjhmZTdhM2I4MGYwYmZlOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1109/SFCS.1994.365701___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NmZiOToyNGZjOGYwMjQ3OWY3NDNmM2ZiYWUxZWVmNjc5YWFhYTk4NmRlMjhmNTllNzZhOThmMDc5NThlYzkxYmM5ZWU3OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2307.13033___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MWM5NzoyYWZkYmE1MDFmMmE3NGZmN2I5NTcwNWZhNzJkZDg3ZjhiODU2MmQ2YzU2NGViMzJlMjMwMDM4YTJhODBlYjAzOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1038/s41467-023-42482-1___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NmQyNjplZmNiMDUyZjM1MDM2ZDEzMGFlN2NmYmU4MDcyNmZhMGRhZTQxZTZiZjhmMjZjZjQ0NGYxNzFmMTdhY2EzZDczOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1038/nature12290___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OGEyYzpiMDE1ODNhM2MwNjUzNjBlYzZlZmI4MWQ5M2QzYjQzMzQyZjA3NWQ0NWJjZGMyZGZlODE3NGFkYmZiMWNiZDE4OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/0712.1008___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZjZiYjo3ZGFlMDlkNTBhYWZhNGY1MTEyMmE0ODc4MDc3MDlkOWU3NzdkYjI2NTNkNTUxNmFkZWM0YTlkNTMwMzJkZTE4OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevLett.119.216601___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MzJjNDpiNGE3MTFlNzBjNmEyMjNiNDRkODRjNDMwMzM5MDk3ZTFmZmI0ZGJlMjRhYzJmNWUyYjk4NzcwNWYwOWEyNzMxOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1705.00117___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NTBmMDpiZWM1N2ZiYTQzN2I2YjYzMDQyNWIyMmU1ODBhNGVmMGRiNWY5YTE5ZjMyMGE0ODIyMzFhZjRiOTc4MGUzMjZiOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1038/s41586-018-0152-9___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MmIwNjo4OWI5ZjcwNDZkMDY2NzM2MTgyNThhYzQzZGQ2OWQ5YWNhODhkYzEzYmYxYzg4YzJiNmZlY2ZlYmNjMjY0Zjg3OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevLett.102.200501___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OTI1YTpkODRmYzI5YThlYmJiYmY2ZTllNTE5NWM2MTY4YzQ0ZDM4ZWU4YWQ3MjM5YzYzMmU3OTRmOTEwYTU5MzIzZWZmOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/0904.3556___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NzNhYzowYzA4MTYzODg3YTA5MTY3OGZkMWVkZDU4ZDY3ZTIwZDJlNmRmNmVmODU3NjNiMzg3ZTBmYTUzZmEyYWJkNTdiOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2307.14310___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YTVlYTpiYzI3NTY2NTdiMmI0ODk4Nzc2ZDJjZjkwZWNkZDljODY0MDNiZWE2OGEzYzc4ZjY5YjlkYTk5N2M5YTBlNjk1OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.22331/q-2020-07-06-291___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6Njk2MTpjNDQ4MTJiMGI1NGFhOTlkNjhiNTZiOTc0OTQzZTgzMzIyMGQ5MzQwN2Y0NjI1YjVlYTk3NWJhZTA3ZGM2NzNjOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/1905.02666___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MzFkODphYTg3YzI4NTViYWQzNTA2MjlmMTE0MDM0MzBmYjBhNDdjYTQzOWJlM2E0NjIyMTQ2ZjYxNGM3YTNjOTkyZWY2OnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.22331/q-2022-07-20-770___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6NjE4YTplNTg2ZWI5YWE2MWRjY2IxNWExNmM5ZGI1OWU2M2JmZTllNjEwNTRlMmZhMDlhOTViZTcxZjZkMjE1OTlkZjc5OnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2111.12509___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6ZDU5MzozZGI3NWE1YTQ2YWQ2YTAyYWQ0MTMwZWVhZTU2OTNhOWU0ZDM3N2EwMTZhOTRmM2MzNjk4NGYxN2E3OTg3MWFiOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1038/s41467-022-33335-4___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6MDZhNTozOTE5ZDE2YzNkNTVmYmQ5MzIxMjIzYWYzYjdlNmYxZGE2Y2E4NmQwMWUyMWI3YjJjYzc4ZGRhZTk4ZTE4ZWJlOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/2112.02025___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OTQ2ZDo5MTc0ODRlMmM1MGVlNjdkMWE3ODcyYmM3YTY1NzQ3ZmUwZjliY2NlNWI2MjVmOTZjZmU1ZTAyYTliYWVhMzAzOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/PhysRevLett.77.793___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6M2YyYzoxMDNlNTUzNmYwMjdlYmRhMDdjZDllMWZjZTExOTZmNjZmOTQ0MTMzOWE2NjkzNjA0YWEwNmY2NzA0NjJjNDdhOnA6VDpG
https://url.avanan.click/v2/r02/___https://doi.org/10.1103/physrevlett.78.2252___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6YTMyMzo3Y2Q0MTRjMjRjZTBlNzE2YjVkOTcyNjg5ZDhkYWY1ZWE5MzBhYjkwODkxMjlkMTAyMzI3NDBjY2FiZmMyNjhjOnA6VDpG
https://url.avanan.click/v2/r02/___https://arxiv.org/abs/quant-ph/9611027___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOmFiZTBhYWRhOTNjZjE3NmM3ZGQ2ZGU1ODEyODE2Zjk1Ojc6OTg4ODpkYmJiNDQ2MmE5MTAwNTkwMWNkMzkxNzVkZmI1NDcyODQwMDkwMDE0MjkwMWMyODU4OWI2MTgxM2EyZTBjMWY2OnA6VDpG
https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/EF7A52B88199BC0DA5A2CC99794A8C39
https://www.cambridge.org/core


References 405

[954] Steiger, D. S., and Troyer, M. (2016). Racing in parallel: Quantum ver-

sus classical. Pages H44–010 of: APS March Meeting Abstracts, vol. 2016.

doi:10.48660/16080019.

[955] Stetcu, I., Baroni, A., and Carlson, J. (2022). Variational approaches

to constructing the many-body nuclear ground state for quantum comput-

ing. Phys. Rev. C, 105, 064308. doi:10.1103/PhysRevC.105.064308.

arXiv:2110.06098.

[956] Steudtner, M., Morley-Short, S., Pol, W., et al. (2023). Fault-tolerant quantum

computation of molecular observables. arXiv:2303.14118.

[957] Stevenson, P. D. (2023). Comments on quantum computing in nuclear physics.

Int. J. Unconv. Comput., 18, 10.

[958] Stroberg, S. R., Bogner, S. K., Hergert, H., and Holt, J. D. (2019). Nonempirical

interactions for the nuclear shell model: An update. Ann. Rev. Nucl. Part. Sci.,

69, 307–362. doi:10.1146/annurev-nucl-101917-021120.

[959] Strohmer, T., and Vershynin, R. (2009). A randomized Kaczmarz algo-

rithm with exponential convergence. J. Fourier Anal. Appl., 15, 262–278.

doi:10.1007/s00041-008-9030-4. arXiv:math/0702226.

[960] Stryker, J. R. (2019). Oracles for Gauss’s law on digital quantum com-

puters. Phys. Rev. A, 99, 042301. doi:10.1103/PhysRevA.99.042301.

arXiv:1812.01617.

[961] Su, Y. (2024). Private communication.

[962] Su, Y., Berry, D. W., Wiebe, N., et al. (2021). Fault-tolerant quantum

simulations of chemistry in first quantization. PRX Quantum, 2, 040332.

doi:10.1103/PRXQuantum.2.040332. arXiv:2105.12767.

[963] Su, Y., Huang, H. Y., and Campbell, E. T. (2021). Nearly tight Trotterization of

interacting electrons. Quantum, 5, 1–58. doi:10.22331/Q-2021-07-05-495.

arXiv:2012.09194.
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#P-hard, 45

adiabatic state preparation, see quantum

adiabatic algorithm

AES (Advanced Encryption Standard), 108

amplitude amplification, 205, 235–238, see

also Grover search

applications of, 64, 104, 108, 165, 175, 265,

288, 302

fixed-point, 209, 237, 245, 254

oblivious, 204, 219, 222, 237

on top of phase estimation, 9, 36, 59, 73,

171, 229

on top of QAOA, 71

variable-time, 273

with Gibbs sampling, 80, 244

amplitude estimation, 205, 233, 238–242, 279,

see also overlap estimation

applications of, 19, 59, 80, 118, 131, 143,

150, 158, 165, 175, 307

nondestructive, 241

unbiased, 241

analog quantum simulator, 14, 23, 44, 49, 56

approximate counting, see amplitude

estimation

backlog problem, 318, 321

backtracking algorithms, 68

barren plateau, 96, 184, 283

Bernstein–Vazirani algorithm, ix, 277

Betti number, 173–179

block-encoding, 189–198

for Hamiltonian access, 7, 18, 34, 59, 211,

244

of an LCU, 7, 19, 26, 34, 156, 192, 197,

223, 264

of classical data, 84, 135, 152, 155, 158,

191, 193, 248, 266–269, 273, 295

of Gram matrices, 156, 191, 267

of observables, 10, 38

of sparse matrices, 85, 153, 160, 172, 191,

269, 273, 297

Boltzmann machine (BM), 161

quantum (QBM), 164, 249

restricted (RBM), 162

Born–Oppenheimer approximation, 30, 45

BQP, 342

BQP-complete, 20, 43, 56, 168, 210, 343

BQP-hard, 125, 172, 183, 307, 343

branch-and-bound method, 68, 75, 134, 136

Carleman linearization, 122, 124

cheap gradient principle, 92, 96, 278

coherent arithmetic, 34, 54, 92, 101, 108, 143,

144, 234, 263, 265

collateralized debt obligations (CDOs), 130

color code, 324, 329

computational fluid dynamics (CFD), 111,

114, 124

configuration interaction (CI) methods, 42, 43

conjugate gradient method, 118, 126, 139,

275, 293, 297

constraint satisfaction problems, 65, 253, see

also satisfiability problem

contrastive divergence, 163, 167

convex optimization, 90–93, 134, 154, 279,

291, 299

coupled cluster (CC) methods, 13, 42, 43, 60,

see also unitary coupled cluster (UCC)

ansatz

credit valuation adjustments (CVAs), 130, 142

cryptocurrency, 107, 110

cryptography, 98, 169

elliptic curve, see ECC

post-quantum, 104, 106, 107, 131

415
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public-key, 99

symmetric-key, 99, 108

curse of dimensionality, 123, 146

cutting-plane methods, 89

decoding (in QEC), 65, 316, 318, 321–324,

330

density functional theory (DFT), 42

dequantization, see quantum-inspired

algorithms

derivative pricing, see option pricing

differential equations, 111–129

nonlinear, 114, 150

ordinary (ODEs), 113

partial (PDEs), 113

stochastic (SDEs), 122, 142

Diffie–Hellman, 99

Dijkstra’s algorithm, 67

discrete logarithm problem, 102, 183, 226

elliptic curve, see ECDLP

distance (of a QEC code), 316

formula for, 330

of the surface code, 320

DMRG (density matrix renormalization

group), 13, 42, see also tensor networks

DQC1-complete, 308

DQC1-hard, 177

duality (in optimization), 79, 84, 182, 183,

292, 302

dynamic programming, 67, 68, 259

Eastin–Knill theorem, 317, 329

ECC (elliptic curve cryptography), 99, 103,

106

ECDLP (elliptic curve discrete logarithm

problem), 100, 105

effective field theory (EFT), 58

eigenstate filtering, 8, 18, 35, 233, 234, 272

electronic structure problem, 29–44, 61, 204,

248

element distinctness problem, 68

elliptic curve cryptography, see ECC

energy-based models, 160–169, see also

Boltzmann machine

exact diagonalization, 13, 27, 42, 247

factoring, 100, 103, 227, 233, 285

Fermi–Hubbard model, 5–15, 328

finite difference methods (FDMs), 33, 112,

142, 277, 283

finite element method (FEM), 112, 121, 123,

126

finite volume method (FVM), 112

Fokker–Planck equation, 123

Gaussian elimination, 89, 118, 126, 138, 155,

157, 274, 293

Gaussian process regression, 151–154, 159

Gibbs sampling, 205, 228, 233, 243–249

applications of, 8, 18, 25, 37, 47, 86, 166,

302

dynamic, 80, 86, 304

of classical systems, 80, 82, 164, see also

Monte Carlo methods, Markov chain

gradient descent, 93, 94, 97, 163, 164, 181,

279, 283

Greeks (in finance), 130, 141, 145, 280

Grover search, 62–68, 71, 86, 175, 259, 294,

300, see also amplitude amplification

Hamiltonian simulation, 202, 205, 209–224,

228, 264

applications of, 8, 18, 26, 37, 47, 53, 59, 95,

117, 122, 171, 192

as access model, 7, 34, 36, 59, 247

of adiabatic evolution, 72, 251, 294

Hamming weight phasing, 11, 20

Hartree–Fock, 42

heat equation, 112, 123

Heisenberg model, 17, 19, 21

hidden subgroup problem, 102, 227

high-performance computing (HPC), 60, 75,

109, 111, see also parallelism in classical

implementations

initial value problem, 114

integer factorization problem, see factoring

integer program (IP), 134

mixed- (MIP), 68, 134, 136

interior point methods (IPMs), 81, 88, 138,

291, 301, see also quantum interior point

methods

software implementation, 88

Ising model, 16, 21, 70, 161, 164, 252

iterative refinement, 274, 288

Jordan–Wigner transformation, 7, 25, 34

Kaczmarz method, 89, 139, 274, 297

Kaiser window, 37, 232

kernel methods, 151, 174, 181, see also

quantum kernel methods

Kikuchi method, 171, 173

LABS (low autocorrelation binary sequence)

problem, 72

Lagrange multipliers, 133, 135, 155, 292

lattice Boltzmann equation, 115, 122, 124

lattice gauge theories (LGTs), 53–56
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lattice Schwinger model, 54, 56

lattice surgery, 263, 326

resource estimate, 329–330

linear combination of unitaries (LCU),

195–197, see also block-encoding of an

LCU

applications of, 117, 245, 273

method of Hamiltonian simulation,

218–221, 264

linear program (LP), 78, 83, 292, 299, 303

low-density parity check codes, 317, 329

magic state distillation, see state distillation

matrix product state (MPS), 7, 14, 22, 23, 35,

see also tensor network methods

tomography, 287

MAX-CUT, 70, 298

Maxwell’s equations, 112, 114, 123

Metropolis–Hastings algorithm, 163, 243, 245

Monte Carlo methods

estimating expectation values, 141, 241

Markov chain (MCMC), 161, 163, 167, 243

multilevel, 146

quantum, see quantum Monte Carlo

quantum-accelerated, 122, 131, 143–146,

165, 265

quasi–, 146

style of Gibbs sampling, 8, 20, 25, 90, 166,

233, 245–247

multiplicative weights update (MWU) method,

248, 299–304

applications of, 79, 86, 136

Navier–Stokes equation, 111, 114, 122

neural networks, 122, 125, 150, 161, 174, 179,

323, see also quantum neural networks

nonconvex optimization, 94–97, 134, 136, 298

NP, 62, 66, 342

NP-complete, 20, 343

NP-hard, 68, 134, 166, 177, 247, 283, 307, 343

nuclear magnetic resonance (NMR), 16, 17,

188, 198

option pricing, 130, 140–147, 241

order finding, 100

overlap estimation, 241

applications of, 26, 38, 118, 153, 156

parallelism

in classical implementations, 104, 126, see

also high-performance computing

in decoding, 322

in QRAM, 66, 256

of classical methods, 74, 109, 110, 126,

146, 167, 258

of quantum methods, 75, 95, 102, 103, 137,

242, 262, 268, 338

of state distillation, 257, 328

parameterized quantum circuit, see variational

quantum algorithms

partition function, 162, 244, 248, 309

phase estimation, see quantum phase

estimation

Poisson equation, 113, 115

portfolio optimization, 68, 87, 131–140, 269,

297, 303

power method, 171, 176, 178

preconditioning (linear system), 119, 124,

126, 275

principal component analysis (PCA), 149,

169, 234, see also tensor PCA

product formulas, 211–216, 230, 252

applications of, 7, 18, 26, 38, 47

resource estimate for, 11, 12, 21, 40, 41, 54,

60, 74

projected entangled pair state (PEPS), 22, see

also tensor network methods

QAOA (quantum approximate optimization

algorithm), 69, 71, 75, 139, 173, 253, 284

qDRIFT, 216–218

QMA, 342

QMA-complete, 20, 22, 343

QMA-hard, 12, 13, 39, 177, 247, 343

QRAM (quantum random access memory),

65, 85, 150, 255–259, 303

applications of, 67, 68, 80, 81, 86, 92, 117,

135, 136, 149, 155, 165, 193, 261, 273,

295

QROM (quantum read-only memory), 258

QSVT (quantum singular value

transformation), 205–209, 229, 236, 242

applications of, 73, 175, 221, 237, 245, 265,

271, see also eigenstate filtering

method of Hamiltonian simulation, 222–224

quadratic program, 133, 154

quantum adiabatic algorithm (QAA), 69, 72,

76, 233, 250–254, 284

applications of, 6, 18, 26, 36, 47, 72, 164,

165, 265, 272, 294

quantum annealing, 76, 134, 139, 165–168,

249, 252

quantum arithmetic, see coherent arithmetic

quantum eigenvalue transformation, 204, see

also QSVT
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quantum field theories, 51–57, 210, 214, 227

quantum Fourier transform (QFT), 225–227

applications of, 101, 231, 277

approximate, 102, 226

generalized, 102, 227

operator, 245

quantum gradient estimation, 241, 276–280,

288

applications of, 10, 38, 86, 91, 95, 145, 166,

294

quantum interior point methods (QIPMs),

290–298

applications of, 84, 135, 155

quantum kernel methods, 181–183

quantum key distribution, 98, 131

quantum linear system solver (QLSS), 205,

209, 228, 234, 253, 270–275, 284

applications of, 84, 117, 135, 149, 152, 155,

293

quantum minimum finding, 63, 80, 86, 237

quantum Monte Carlo (QMC), 13, 20, 42, 44,

52, 55, 58, 75, 284

quantum neural networks, 180–181, 285

quantum phase estimation (QPE), 203, 205,

218, 227–234, 253

applications of, 9, 18, 26, 36, 47, 59, 73,

101, 165, 171, 175, 239, 244

consistent, 232

unbiased, 232, 288

quantum random access memory, see QRAM

quantum signal processing (QSP), 198–201,

229, 236, see also QSVT

applications of, 144, 233

method of Hamiltonian simulation, 8, 18,

26, 38, 222–224, 230

resource estimate for, 12, 21, 145

quantum simulated annealing, 165

quantum singular value transformation, see

QSVT

quantum tomography, 148, 226, 241, 260, 274,

279, 286–290, see also shadow

tomography

applications of, 84, 118, 135, 291

quantum walks, 67–68, 211, 237

quantum-inspired algorithms, 48, 150, 153,

157, 158, 275, 305

qubitization, 201–205

for Hamiltonian simulation, 12, 26, 38, 54,

222

for QPE, 8, 9, 37, 231

resource estimate for, with QPE, 11, 40, 41

QUBO (quadratic unconstrained binary

optimization), 16, 70, 134, 140

rate (of a QEC code), 316

reaction-diffusion equations, 122

recommendation systems, 149, 234, 258

rejection sampling, 36, 165, 175, 233, 245,

246

reversible arithmetic, see coherent arithmetic

RSA (Rivest–Shamir–Adleman), 99, 103, 106

SAT, see satisfiability problem

satisfiability problem, 64, 69, 70, 74, 342

Schöning’s algorithm, 64, 67

Schrödinger equation, 30, 45, 58, 95, 114,

123, 210, 251, 335

second-order cone program (SOCP), 83, 135,

154, 294, 297

semidefinite program (SDP), 83, 248, 288,

294, 297, 299, 303

shadow tomography, 289, 290

Sherrington–Kirkpatrick model, 68, 70, 74,

162, see also spin glass

Shor’s algorithm, ix, 99–103, 228, 233

short-path algorithm, 73, 233

sign problem, 52, 56, 75

Simon’s algorithm, ix, 102, 344

simplex method, 291

simulated annealing, 163, 167, see also

quantum simulated annealing

single-shot QEC, 322, 329

spectral methods, 112, 115, 116, 123, 127

spin glass, 71, 162, 169

spin models, 15–23, 70, 161, 224

stabilizer code, 320

state distillation, 103, 257, 263, 327–330

state preparation

adiabatic, see quantum adiabatic algorithm

from classical data, 7, 88, 152, 155, 156,

158, 197, 259–265

garbage-free, 263

of ground states, 6, 12, 17, 26, 30, 53, 58,

164, 178, 229, 250

of thermal states, see Gibbs sampling

of trial/ansatz states, 7, 26, 35, 272

stoquastic, 75

supercomputer, see high-performance

computing

superconductor, 5, 6

support vector machine, 154–157, 181, 297,

300

surface code, 103, 147, 263, 320–331

resource estimate for, 65, 103, 329–330
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SYK model, 24–28

tensor network methods, 13, 14, 20, 42, 56,

147, 158, 168, 226, 285, 305–309, 321

tensor PCA, 76, 169–173

threshold (in QEC), 316–318, 322

tomography, see quantum tomography

topological data analysis (TDA), 173–179,

205, 259

traveling salesperson problem, 64, 67, 68, 259

Trotterization, see product formula

turbulence (fluids), 122, 124

unitary coupled cluster (UCC) ansatz, 284

value at risk (VaR), 131, 142

conditional (CVaR), 131

variational quantum algorithms (VQAs), 63,

96, 180, 252, 279, 281–285

fault-tolerant applications of, 7, 35, 47, 71,

144, 164

NISQ applications of, 14, 23, 44, 49, 57, 61,

105, 110, 128, 139

variational quantum eigensolver (VQE), 14,

44, 178, 283

Vlasov equation, 112

wave equation, 111

zero-sum game, 78–82, 300, 303
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