

The Beginner’s Guide to CSS
Steven Mcananey

Published by Steven Mcananey, 2025.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

THE BEGINNER’S GUIDE TO CSS

First edition. June 28, 2025.

Copyright © 2025 Steven Mcananey.

ISBN: 979-8231263608

Written by Steven Mcananey.

TABLE OF CONTENTS
Title Page

Copyright Page

Chapter 1: What is CSS and Why It Matters

Chapter 2: CSS Syntax and Selectors

Chapter 3: Styling Text and Fonts

Chapter 4: Colors, Backgrounds, and Borders

Chapter 5: Layouts with Box Model, Flexbox, and Grid

Chapter 6: Responsive Design Basics

Chapter 7: Bringing It All Together

​CHAPTER 1: WHAT IS CSS AND WHY
IT MATTERS

​🧠 What is CSS?

CSS stands for Cascading Style Sheets. If HTML is the skeleton of a
webpage — providing structure like headings, paragraphs, and images —
then CSS is the clothing and makeup. It’s what makes your website look
good.

Without CSS, every website would look like a plain Word document: black
text, white background, unstyled links, and no layout. CSS brings the visual
magic — colors, fonts, spacing, alignment, layout, and animations.

​A Quick Example

Here’s a simple HTML page: html

<!DOCTYPE html> <html>

<head>

<title>My First Page</title> </head>

<body>

<h1>Hello, world!</h1> <p>This is my first website.</p> </body>

</html>

Now, let's style it with CSS: html

<head>

<style>

body {

background-color: #f0f0f0; font-family: Arial, sans-serif; color: #333;

text-align: center;

}

h1 {

color: #0066cc;

}

</style>

</head>

With just a few lines of CSS, we changed the entire feel of the page.

​🧩 How CSS Works with HTML
CSS and HTML work together — HTML describes the content, and CSS
styles it.

Let’s compare the two roles with a metaphor:

HTML CSS

A cake recipe The decorations on the cake

The structure of a house The paint, furniture, and wallpaper

The ingredients list The way the dish is plated

They’re both important — but they do different things.

​🗂️ Types of CSS: Inline, Internal, External
There are three main ways to write CSS. Let’s go over each one:

​1. Inline CSS

You can write CSS directly inside an HTML element using the style attribute:
html

CopyEdit

<p style="color: red;">This is red text.</p> Pros:

● Quick and easy for small changes Cons:

● Messy and hard to maintain for bigger projects

​2. Internal CSS

You can put CSS inside a <style> tag within the <head> of your HTML: html

CopyEdit

<head>

<style>

p {

color: blue;

}

</style>

</head>

Pros:

● Good for small pages or single files Cons:

● Not reusable across multiple pages

​3. External CSS (Most Common)

You write your CSS in a separate .css file and link it to your HTML: style.css
css

CopyEdit

p {

color: green;

}

index.html html

<head>

<link rel="stylesheet" href="style.css"> </head>

Pros:

● Clean, organized, and reusable Cons:

● Requires managing multiple files (but it’s worth it!)

​💡 What Does “Cascading” Mean?

The “Cascading” in CSS refers to how rules are applied in order of
importance.

Imagine three people giving instructions to style a button:

1. A default browser rule says: "Make all buttons gray."
2. Your external CSS says: "No, make buttons blue."
3. An inline style says: "Actually, make this button red."

The browser will use the most specific rule, so the button becomes red.

This “cascade” lets you override less specific rules with more targeted ones.

​🛠️ Setting Up Your First CSS File

Let’s build a real example. Follow these steps:

​1. Create a folder

Make a new folder called my-first-website.

​2. Create your HTML file

Create a file named index.html and add this code: html

CopyEdit

<!DOCTYPE html> <html>

<head>

<title>My First Styled Page</title> <link rel="stylesheet" href="style.css">
</head>

<body>

<h1>Welcome!</h1> <p>This page uses CSS.</p> </body>

</html>

​3. Create your CSS file

In the same folder, create a file named style.css and add: css

CopyEdit

body {

background-color: #e0f7fa; font-family: Georgia, serif; text-align: center;

}

h1 {

color: #00796b;

}

p {

color: #004d40;

}

​4. Open your HTML file in a browser

Double-click index.html. You’ll see your styled webpage!

​✅ Key Takeaways

● CSS controls how your webpage looks, while HTML controls
the content and structure.

● You can write CSS inline, internally, or externally.

● External CSS is the cleanest and most reusable method.

● CSS is called “Cascading” because it applies rules in a specific
order of priority.

● You can start using CSS with just a text editor and a web
browser!

​🚀 Quick Practice

Try changing the background color in your CSS file to something else (like
lightpink). Save and refresh the page. What changes?

​🎯 Coming Up Next...

In Chapter 2, we’ll break down the syntax of CSS and how to use selectors
to target specific parts of your webpage. You’ll learn how to apply styles to
elements, classes, and IDs — the building blocks of all CSS styling.

​CHAPTER 2: CSS SYNTAX AND
SELECTORS

​🎯 What You’ll Learn in This Chapter:

● How CSS is written (its basic grammar)

● How to target different elements using selectors

● The difference between element, class, and ID selectors

● Tips to write clean, readable, and scalable CSS

Let’s dive in!

​🧱 CSS Syntax: The Basic Building Block
CSS is written in rules. A CSS rule consists of a selector and a declaration
block.

css

CopyEdit

selector {

property: value;

}

Let’s break that down:

​Example:

css

CopyEdit

p {

color: blue;

font-size: 16px;

}

Part Description

p The selector (targets all <p> tags)

color and font-size The properties

blue and 16px The values

{} The declaration block

You can include multiple properties inside one block — just separate them
with a semicolon ;.

​🎯 What Are Selectors?
Selectors tell the browser what part of the page you want to style.

There are several kinds, but here are the three most important ones for
beginners:

​1. Element Selector

This targets all HTML elements of a specific type.

css

CopyEdit

h1 {

color: purple;

}

👉 This changes all <h1> headings on the page to purple.

​2. Class Selector

This targets any element with a class attribute. Use a dot (.) before the class
name.

HTML: html

CopyEdit

<p class="highlight">This is special text.</p> CSS: css

CopyEdit

.highlight {

background-color: yellow; }

👉 This styles only elements with class="highlight".

✅ You can reuse classes on multiple elements.

​3. ID Selector

This targets one unique element using its ID. Use a hash (#) before the ID
name.

HTML: html

CopyEdit

<p id="intro">Welcome to my website.</p> CSS: css

CopyEdit

#intro {

font-style: italic; }

⚠️ IDs should be unique — only used once per page.

​Comparing Element vs Class vs ID

Selector Type Syntax Target Scope

Element p All <p> tags

Class .my-class All elements with that class

ID #my-id One specific element

​🧠 Combining Selectors
You can make your CSS more powerful by combining selectors.

​Example 1: Target all <p> elements inside a <div>

css

CopyEdit

div p {

color: green;

}

👉 Affects only <p> tags that are inside a <div>.

​Example 2: Style multiple elements at once

css

CopyEdit

h1, h2, h3 {

font-family: "Verdana", sans-serif; }

👉 All three heading levels will have the same font.

​🧼 CSS Best Practices (Start Good Habits Early!)
1. Use classes for reusable styling (instead of inline or IDs).

2. Be descriptive with class names:

○ ❌ Bad: .a1, .blue

○ ✅ Good: .main-button, .error-message

3. Group similar styles together to stay organized.

4. Keep your CSS in a separate file if your project has more than
one page.

​🔍 Real-Life Practice
Here’s a small exercise to try out what you've just learned.

​Step 1: Create an HTML file:

html

CopyEdit

<!DOCTYPE html> <html>

<head>

<link rel="stylesheet" href="style.css"> <title>CSS Selectors Practice</title>
</head>

<body>

<h1 id="main-title">Welcome!</h1> <p class="highlight">This text is
highlighted.</p> <p>This text is normal.</p> </body>

</html>

​Step 2: Create a CSS file (style.css):

css

CopyEdit

/* Element selector */

p {

font-family: Arial; color: #333;

}

/* Class selector */

.highlight {

background-color: yellow; font-weight: bold;

}

/* ID selector */

#main-title {

color: navy;

font-size: 36px;

}

💡 Try adding another <p class="highlight"> to see how CSS reuses that class
style!

​✅ Key Takeaways
● CSS rules are made of selectors and declaration blocks.

● Use element selectors for general styling.

● Use class selectors for reusable styles across multiple elements.

● Use ID selectors for unique elements only.

● Combine selectors to target elements more specifically and
efficiently.

​🚀 Coming Up Next...
In Chapter 3, we’ll take a deep dive into styling text — fonts, colors,
alignment, spacing, and how to make your typography look amazing across

devices.

​CHAPTER 3: STYLING TEXT AND
FONTS

​🎯 What You’ll Learn in This Chapter:

● How to change fonts, sizes, and text color

● How to align, space, and decorate text

● How to style links

● How to use web fonts like Google Fonts

● Tips for creating readable, attractive typography

Let’s bring your text to life!

​🖋️ Why Typography Matters

Text is the heart of most websites. Whether it’s a blog, product page, or
portfolio, clear and attractive text makes your site look professional and
readable.

CSS gives you full control over how your text looks and feels.

​🧱 Basic Text Properties

Let’s look at the most commonly used CSS properties for text.

​1. color

Sets the color of the text.

css

CopyEdit

p {

color: darkslategray; }

✅ You can use:

● Color names (like red, blue)

● HEX codes (like #ff6600)

● RGB values (like rgb(0, 128, 255))

● HSL (like hsl(200, 100%, 40%))

​2. font-family

Sets the typeface (font) for your text.

css

CopyEdit

body {

font-family: Arial, sans-serif; }

👀 Always use a fallback font like this: css

CopyEdit

font-family: 'Georgia', serif; There are five basic font families:

● Serif (e.g. Times New Roman)

● Sans-serif (e.g. Arial)

● Monospace (e.g. Courier New)

● Cursive (e.g. Comic Sans MS)

● Fantasy (rarely used)

​3. font-size

Changes the size of text.

css

CopyEdit

h1 {

font-size: 32px;

}

✅ Units you can use:

● px (pixels – fixed size)

● em (relative to parent size)

● rem (relative to root <html> size)

● % (relative to parent)

Example:

css

CopyEdit

p {

font-size: 1.2rem;

}

​4. font-weight

Controls how bold the text is.

css

CopyEdit

h1 {

font-weight: bold; }

p {

font-weight: 300; /* Lighter */

}

Common values:

● normal

● bold

● Numerical: 100 (thin) to 900 (thick)

​5. text-align

Controls horizontal alignment of text.

css

CopyEdit

p {

text-align: center; }

Other values:

● left (default)

● right

● justify (aligns to both sides)

​6. line-height

Controls spacing between lines.

css

CopyEdit

p {

line-height: 1.6;

}

📝 Use this to make text easier to read, especially for long paragraphs.

​✨ Styling Links

Links are styled with pseudo-classes — these let you style based on
interaction.

css

CopyEdit

a {

color: blue;

text-decoration: none; }

a:hover {

color: orange;

text-decoration: underline; }

Pseudo-Class Description

:hover When mouse is over the link

:visited After the link has been clicked

:active When the link is clicked (mouse held down)

​🆕 Using Google Fonts

Default fonts can be boring. Google Fonts offers hundreds of free, stylish
fonts you can add easily.

​Step-by-step:

1. Go to:https://fonts.google.com
2. Choose a font (e.g., Roboto)
3. Click "Get embed code"
4. Copy the link and paste it in your <head>:

https://fonts.google.com/

html

CopyEdit

<link href="https://fonts.googleapis.com/css2?
family=Roboto&display=swap" rel="stylesheet">

1. Then apply the font in CSS:

css

CopyEdit

body {

font-family: 'Roboto', sans-serif; }

​🛠️ Real-Life Practice: Style a Paragraph

HTML:

html

CopyEdit

<p class="lead">Welcome to my stylish website!</p> CSS: css

CopyEdit

.lead {

color: #2c3e50;

font-family: 'Georgia', serif; font-size: 20px;

line-height: 1.6;

text-align: justify; }

🎨 You just combined multiple properties to make the text more attractive and
readable!

​✅ Key Takeaways

● Use color, font-family, font-size, and line-height to shape your
typography.

● Use text-align to center or justify your content.

● Style links with a:hover for nice interactions.

● Google Fonts is a great way to upgrade your website’s look.

● Always test your font choices for readability on different devices.

​🚀 Coming Up Next...

In Chapter 4, we’ll dive into colors, backgrounds, and borders — and start
making your site feel like a real design, not just styled text. Get ready for
gradients, images, and box decoration!

​CHAPTER 4: COLORS,
BACKGROUNDS, AND BORDERS

​🎯 What You’ll Learn in This Chapter:

● How to apply colors using different formats (name, HEX, RGB,
HSL)

● How to set background colors, images, and gradients

● How to add borders and customize them

● How to use rounded corners and shadows to add depth

Let’s transform your site from flat to fabulous!

​🎨 Applying Colors in CSS
Color is one of the most powerful tools in design. CSS gives you four main
ways to apply colors to text, backgrounds, borders, and more:

​1. Color Names

Simple and intuitive — great for basic styling.

css

CopyEdit

h1 {

color: red;

}

There are over 140 standard color names like blue, gray, darkgreen, coral, and
more.

🔗 Tip: Try exploring w3schools color names to see them all.

​2. HEX Codes

The most common method — great for precise colors.

css

CopyEdit

p {

color: #3498db;

}

● A HEX code begins with # followed by 6 characters (0–9, A–F).

● Example: #ffffff is white, #000000 is black.

📌 Shortcut: If all 6 characters are repeated (e.g., #ffcc00), you can write it as
#fc0.

​3. RGB Values

Defines color by mixing Red, Green, Blue values (0–255).

css

CopyEdit

div {

color: rgb(255, 99, 71); /* Tomato */

}

● rgb(0, 0, 0) = black

● rgb(255, 255, 255) = white

● You can also add transparency using rgba():

css

CopyEdit

background-color: rgba(0, 0, 0, 0.5); /* Semi-transparent black */

​4. HSL Values

HSL = Hue, Saturation, Lightness. It’s more human-friendly!

css

CopyEdit

body {

color: hsl(200, 100%, 40%); }

● Hue: 0–360 (color on the color wheel)

● Saturation: 0–100% (intensity)

● Lightness: 0–100% (brightness)

You can also use hsla() for transparency.

​🖼️ Setting Backgrounds
​1. Background Color

css

CopyEdit

body {

background-color: #f9f9f9; }

This sets the page’s background to a light gray tone.

​2. Background Image

css

CopyEdit

body {

background-image: url('images/background.jpg'); background-size: cover;
background-repeat: no-repeat; background-position: center; }

Property What it does

background-size: cover; Makes the image fill the screen

background-repeat: no-repeat; Prevents tiling

background-position: center; Centers the image

⚠️ Always test background images on mobile screens — they can shrink or
crop unexpectedly.

​3. Background Gradient

Gradients let you fade between two or more colors — without using an
image.

css

CopyEdit

header {

background: linear-gradient(to right, #00c6ff, #0072ff); }

Other directions:

● to bottom

● to left

● to top right, etc.

You can also do radial gradients: css

CopyEdit

div {

background: radial-gradient(circle, #f06, white); }

​📦 Adding Borders

Borders help define sections and highlight content.

css

CopyEdit

.box {

border: 2px solid black; }

The border shorthand format is: css

CopyEdit

border: [width] [style] [color]; Examples:

css

CopyEdit

border: 1px dashed gray; border: 3px double #ff6600;

​Border Styles:

● solid

● dashed

● dotted

● double

● groove, ridge, inset, outset

​Border Sides

You can apply borders to specific sides: css

CopyEdit

border-top: 2px solid red; border-bottom: 1px dotted #ccc; This gives you
more control over layout and design.

​🎯 Rounded Corners with border-radius

Smooth out boxy edges and make your design look more modern.

css

CopyEdit

.card {

border-radius: 10px; }

You can apply it to just one corner: css

CopyEdit

border-top-left-radius: 10px; 💡 Want a perfect circle? Make the radius 50%
on a square element: css

CopyEdit

.profile-pic {

border-radius: 50%; }

​💡 Adding Depth with Shadows
​1. Box Shadow

Gives a shadow around a box or element.

css

CopyEdit

.container {

box-shadow: 2px 2px 8px rgba(0,0,0,0.2); }

Format: box-shadow: x-offset y-offset blur color; More advanced:

css

CopyEdit

box-shadow: 0 4px 12px rgba(0,0,0,0.15);

​2. Text Shadow

Adds a shadow to text: css

CopyEdit

h1 {

text-shadow: 1px 1px 3px rgba(0,0,0,0.3); }

Use shadows carefully — too many can make your design look heavy or
blurry.

​🛠️ Real-Life Example: Styling a Card
HTML:

html

CopyEdit

<div class="card"> <h2>Welcome</h2> <p>This box uses colors, borders,
and shadows!</p> </div>

CSS: css

CopyEdit

.card {

background-color: #ffffff; border: 1px solid #ddd; border-radius: 8px; box-
shadow: 0 2px 6px rgba(0,0,0,0.1); padding: 20px;

width: 300px;

margin: 20px auto; text-align: center; }

.card h2 {

color: #2c3e50;

}

👁️ Result: A clean, modern-looking content box.

​✅ Key Takeaways
● CSS supports color with names, HEX, RGB, and HSL — use
what works for you

● Backgrounds can be solid colors, images, or gradients

● Borders can be fully customized on all or individual sides

● border-radius and box-shadow add softness and depth to your
layout

● Good use of these techniques can make your design look
polished and professional

​🚀 Coming Up Next...
In Chapter 5, we’ll tackle layouts using the CSS Box Model, Flexbox, and
Grid — powerful tools that let you control how your content is arranged on
the page.

​CHAPTER 5: LAYOUTS WITH BOX
MODEL, FLEXBOX, AND GRID

​🎯 What You’ll Learn in This Chapter:

● How the CSS Box Model works: content, padding, border,
margin

● What display types are and when to use block, inline, and inline-
block

● How to use Flexbox to align and distribute elements

● How to use CSS Grid to create advanced layouts easily

Web design isn’t just about colors and fonts — it’s also about how things are
arranged on the page. In this chapter, you'll learn how to control layout in
CSS so your content looks great on any screen.

​🧱 The CSS Box Model
Every HTML element is a box — even text! The box model describes how
space is structured around elements.

​📦 The 4 Layers of the Box Model

lua

CopyEdit

+——————————————-+

| margin |

| +———————————-+ |

| | border | |

| | +————————-+ | |

| | | padding | | |

| | | +——————-+ | | |

| | | | content | | | |

| | | +——————-+ | | |

| | +————————-+ | |

| +———————————-+ |

+——————————————-+

Part What it does

Content The actual text, image, or element

Padding Space inside the border, around the content

Border A line around the padding (and content)

Margin Space outside the border — separates elements

​Example:

css

CopyEdit

.box {

margin: 20px;

padding: 10px;

border: 2px solid black; }

This creates 10px of space inside the border (padding), and 20px of space
outside the border (margin).

​🧾 Display Types: block, inline, and inline-block

By default, HTML elements behave differently on the page. CSS lets you
control this using the display property.

​1. block

● Takes up the full width of the container

● Starts on a new line

Examples: <div>, <h1>, <p> css

CopyEdit

div {

display: block;

}

​2. inline

● Only takes up as much width as necessary

● Sits beside other elements

● You can’t set width/height/padding/margin (only horizontally)

Examples: , <a>, css

CopyEdit

span {

display: inline;

}

​3. inline-block

● Like inline (sits in line), but you can set width, height, padding,
etc.

● Great for buttons and nav links

css

CopyEdit

button {

display: inline-block; padding: 10px 20px;

}

​🎯 Flexbox: Layout Made Flexible
Flexbox is a modern CSS layout tool that makes it easy to align and space
elements in a row or column.

​How to Use Flexbox

First, turn a container into a flex container: css

CopyEdit

.container {

display: flex;

}

Then you can control the layout of the child elements (flex items).

​Common Flexbox Properties
​📌 On the Container:

css

CopyEdit

display: flex;

flex-direction: row | column; justify-content: flex-start | center | space-
between | space-around; align-items: stretch | center | flex-start | flex-end;

● flex-direction: row (default) — lays items horizontally

● flex-direction: column — stacks items vertically

● justify-content — controls horizontal alignment

● align-items — controls vertical alignment

​📌 On the Items:

css

CopyEdit

flex: 1;

align-self: center;

order: 2;

● flex — controls how much space the item takes

● order — changes the display order of items

​Example: Horizontal Card Layout

HTML:

html

CopyEdit

<div class="cards"> <div class="card">Card 1</div> <div
class="card">Card 2</div> <div class="card">Card 3</div> </div>

CSS: css

CopyEdit

.cards {

display: flex;

justify-content: space-between; gap: 20px;

}

.card {

background: #eee;

padding: 20px;

flex: 1;

}

👁️ This creates 3 equal cards spaced evenly across the row.

​🧮 CSS Grid: Layout by Rows and Columns

CSS Grid is the most powerful layout system in CSS. It lets you create two-
dimensional layouts — rows and columns.

​Step 1: Make a Grid Container

css

CopyEdit

.grid {

display: grid;

grid-template-columns: repeat(3, 1fr); gap: 20px;

}

● display: grid — activates Grid

● grid-template-columns — creates 3 equal columns

● 1fr means “one fraction of the space”

● gap adds space between items

​Step 2: Add Grid Items

HTML:

html

CopyEdit

<div class="grid"> <div class="item">1</div> <div class="item">2</div>
<div class="item">3</div> <div class="item">4</div> </div>

This will automatically fill the first row with 3 items, and place the 4th item
on the next row.

​Advanced Grid Options

You can control exact placement: css

CopyEdit

.item1 {

grid-column: 1 / 3; /* spans columns 1 and 2 */

grid-row: 1 / 2;

}

You can even make asymmetric layouts easily — like magazine pages or
dashboards.

​🛠️ Practice: Simple 2-Column Layout

HTML:

html

CopyEdit

<div class="grid"> <div class="sidebar">Sidebar</div> <div
class="content">Main Content</div> </div>

CSS: css

CopyEdit

.grid {

display: grid;

grid-template-columns: 1fr 3fr; gap: 20px;

}

.sidebar {

background: #ccc;

}

.content {

background: #eee;

}

🧠 1fr 3fr means the main content is 3x wider than the sidebar.

​✅ Key Takeaways

● The Box Model explains how every element has content,
padding, border, and margin

● Use display to control how elements behave (block vs inline)

● Flexbox is great for 1D layouts (rows or columns)

● Grid is perfect for complex 2D layouts with rows and columns

● Use gap, padding, and margin to space things cleanly

​🚀 Coming Up Next...

In Chapter 6, we’ll explore Responsive Design Basics — how to make your
site look amazing on phones, tablets, and desktops. You’ll learn about media
queries, relative units, and mobile-first design.

​CHAPTER 6: RESPONSIVE DESIGN
BASICS

​🎯 What You’ll Learn in This Chapter:

● What responsive design is and why it’s essential

● How to use media queries to adapt layouts for different screen
sizes

● How to use relative units like %, em, rem, vh, and vw

● Tips for making your website mobile-friendly

Your website shouldn’t just look good — it should look good everywhere.

​📱 What Is Responsive Design?
Responsive design means your website adapts to different screen sizes and
devices — desktop, tablet, mobile, even smart TVs.

​Without Responsive Design:

● Text is too small on phones

● Images go off-screen

● Users have to zoom and scroll awkwardly

​With Responsive Design:

● Content adjusts to screen width

● Font sizes scale naturally

● Layouts stack and reflow beautifully

🧠 In today’s world, where over 50% of web traffic comes from mobile
devices, responsive design is no longer optional — it's essential.

​🧪 How Responsive Design Works

Responsive websites use a mix of:

1. Flexible layouts (using relative units like %, rem, etc.)
2. Media queries (to apply different styles at different screen widths)
3. Mobile-first thinking (designing for small screens first, then scaling

up)

Let’s break this down.

​🧰 Relative Units in CSS
Instead of using fixed units like px (pixels), responsive design uses relative
units. These adjust based on screen size, user preferences, and parent
containers.

​🔹 % (Percentage)

Used for widths and heights based on the parent element.

css

CopyEdit

.container {

width: 100%;

}

This means: “Take up all available space.”

​🔹 em and rem

Used mostly for font sizing and spacing.

Unit Relative To

em The font-size of the parent element

rem The font-size of the root (<html>) element

Examples: css

CopyEdit

p {

font-size: 1.2rem; /* 120% of root font size */

padding: 2em; /* 2x the font size of the parent */

}

✅ rem is usually more predictable for consistent scaling.

​🔹 vw and vh

Unit What it means

vw 1% of the viewport’s width

vh 1% of the viewport’s height

css

CopyEdit

.hero {

height: 100vh; /* Full screen height */

font-size: 5vw; /* Scales based on screen width */

}

These units are great for full-screen sections and scalable text.

​📏 Media Queries: The Heart of Responsive Design
Media queries let you write CSS that only applies under certain conditions
— like screen size.

​Basic Syntax:

css

CopyEdit

@media (max-width: 768px) {

body {

background-color: lightblue; }

}

🔍 This code says:

“If the screen is 768 pixels wide or less, apply this style.”

​Common Breakpoints:

These are popular screen size cutoffs:

Device Type Breakpoint

Mobile max-width: 480px

Tablet max-width: 768px

Desktop min-width: 1024px

​Example: Responsive Layout

HTML:

html

CopyEdit

<div class="wrapper"> <div class="sidebar">Sidebar</div> <div
class="content">Main Content</div> </div>

CSS: css

CopyEdit

.wrapper {

display: flex;

}

.sidebar {

width: 25%;

}

.content {

width: 75%;

}

@media (max-width: 768px) {

.wrapper {

flex-direction: column; }

.sidebar,

.content {

width: 100%;

}

}

👁️ On larger screens, content is side-by-side.

📱 On smaller screens, it stacks vertically.

​📐 Responsive Images
Large images on small screens can cause layout issues.

Use the following:

css

CopyEdit

img {

max-width: 100%;

height: auto;

}

✅ This keeps images within their container and scales them appropriately.

​📱 Mobile-Friendly Design Tips
1. Use readable font sizes (1rem or larger for body text)
2. Avoid fixed widths (width: 300px) — use % or vw instead
3. Stack content vertically on small screens
4. Use media queries early and test on real devices
5. Leave room to tap! Make buttons at least 44px high

​🛠️ Real-World Example
Responsive Card Grid

HTML: html

CopyEdit

<div class="grid"> <div class="card">Card 1</div> <div class="card">Card
2</div> <div class="card">Card 3</div> </div>

CSS: css

CopyEdit

.grid {

display: grid;

grid-template-columns: repeat(3, 1fr); gap: 20px;

}

@media (max-width: 768px) {

.grid {

grid-template-columns: 1fr; }

}

.card {

background: #fff;

padding: 20px;

border: 1px solid #ddd; }

✅ On desktop: 3 cards side-by-side 📱 On mobile: 1 card per row

​✅ Key Takeaways
● Responsive design ensures your website works on all devices

● Use relative units (%, rem, vw) instead of fixed pixels

● Media queries allow CSS to adapt to screen sizes

● Start mobile-first — then scale up

● Test your site regularly on phones, tablets, and desktops

​🚀 Coming Up Next...
In Chapter 7, we’ll bring everything together in a final mini project:
building and styling your own responsive portfolio page using everything
you’ve learned — structure, color, layout, fonts, and media queries.

​CHAPTER 7: BRINGING IT ALL
TOGETHER

​🎯 What You’ll Learn in This Chapter:

● How to style a complete webpage step-by-step

● Common CSS mistakes beginners make and how to avoid them

● Handy tools and resources to keep learning

● A simple but powerful final project: your first responsive
portfolio page

Let’s wrap up everything you’ve learned and put it into practice!

​🧱 Step-by-Step: Styling a Complete Web Page
Let’s walk through the process of building and styling a real page from
scratch — combining HTML structure and CSS styling.

​1. Plan Your Page Structure

Before writing any code, sketch out your page layout. For a basic portfolio
page, you might have:

● A Header with your name

● A Navigation bar

● An About Me section

● A Projects section

● A Contact section

● A Footer

​2. Basic HTML Layout

html

CopyEdit

<!DOCTYPE html> <html lang="en"> <head>

<meta charset="UTF-8"> <meta name="viewport" content="width=device-
width, initial-scale=1.0"> <title>My Portfolio</title> <link rel="stylesheet"
href="style.css"> <link href="https://fonts.googleapis.com/css2?
family=Poppins&display=swap" rel="stylesheet"> </head>

<body>

<header>

<h1>Steven Mcananey</h1> <nav>

About Projects Contact </nav>

</header>

<section id="about"> <h2>About Me</h2> <p>I’m a beginner web
developer learning CSS!</p> </section>

<section id="projects"> <h2>My Projects</h2> <div class="project-grid">
<div class="project-card">Project 1</div> <div class="project-card">Project
2</div> <div class="project-card">Project 3</div> </div>

</section>

<section id="contact"> <h2>Contact Me</h2> <p>Email:
hello@example.com</p> </section>

<footer>

<p>© 2025 Steven Mcananey</p> </footer>

</body>

</html>

​3. Styling It with CSS

style.css

css

CopyEdit

/* Global Styles */

body {

font-family: 'Poppins', sans-serif; margin: 0;

padding: 0;

line-height: 1.6;

background-color: #f5f5f5; color: #333;

}

header {

background-color: #007acc; color: white;

padding: 20px;

text-align: center; }

nav a {

color: white;

text-decoration: none; margin: 0 15px;

font-weight: bold;

}

nav a:hover {

text-decoration: underline; }

/* Section Styling */

section {

padding: 40px 20px; max-width: 800px;

margin: auto;

}

h2 {

color: #007acc;

}

/* Projects Grid */

.project-grid {

display: grid;

grid-template-columns: repeat(auto-fit, minmax(220px, 1fr)); gap: 20px;

margin-top: 20px;

}

.project-card {

background: white;

padding: 20px;

border: 1px solid #ddd; border-radius: 8px; box-shadow: 0 2px 6px
rgba(0,0,0,0.05); text-align: center; }

/* Footer */

footer {

background-color: #222; color: #aaa;

text-align: center; padding: 20px;

font-size: 14px;

}

/* Responsive Styling */

@media (max-width: 600px) {

header, nav {

text-align: center; }

nav a {

display: block;

margin: 10px 0;

}

}

🎉 Done! You now have a responsive, styled personal portfolio page.

​❌ Common Mistakes Beginners Make (And How to
Avoid Them)

​1. Using Fixed Widths Everywhere

● ❌ width: 800px

● ✅ width: 80% or max-width: 800px

Why: Fixed widths break your layout on smaller screens.

​2. Forgetting to Set box-sizing: border-box

css

CopyEdit

* {

box-sizing: border-box; }

Why: This makes padding and borders easier to manage in layouts.

​3. Overusing IDs for Styling

● ❌ #main { ... }

● ✅ .main { ... }

Why: IDs are specific and hard to reuse; classes are flexible.

​4. Not Testing on Mobile Devices

Tip: Use Chrome DevTools (F12 → Toggle Device Toolbar) to test screen
sizes.

​5. Using Too Many Fonts or Colors

Keep it simple and consistent:

● Max 2 fonts

● A main color, accent color, and neutral base

​🧰 Helpful Tools and Resources
​🛠️ Code & Design Tools

● CodePen.io — Test and share live HTML/CSS

● Google Fonts — Free, web-safe fonts

● Color Hunt — Beautiful color palettes

● Coolors — Generate color schemes

https://codepen.io/
https://fonts.google.com/
https://colorhunt.co/
https://coolors.co/

​📘 Learn More

● MDN Web Docs — In-depth reference

● CSS Tricks — Articles and examples

● Flexbox Froggy — Learn Flexbox by playing a game!

● Grid Garden — Game to learn CSS Grid

​🚀 Final Project: Build Your Own Portfolio

Let’s put it all together.

✅ What to include:

● Your name, bio, and skills

● 2–3 project cards with brief descriptions

● A working navigation that scrolls to each section

● A responsive layout that adapts to phone screens

● Use Flexbox or Grid for layout and Google Fonts for style

📁 File structure:

bash

https://developer.mozilla.org/en-US/docs/Web/CSS
https://css-tricks.com/
https://flexboxfroggy.com/
https://cssgridgarden.com/

CopyEdit

/portfolio-project

│

├── index.html

├── style.css

└── /images (optional)

​✅ Key Takeaways from the Entire Book

● CSS gives you full control over how a website looks and
behaves

● Start with a clear HTML structure, then apply consistent
styling

● Learn to use the Box Model, Flexbox, and Grid for layout

● Write clean, mobile-friendly CSS using relative units and media
queries

● Use external resources and keep practicing small projects to
improve

​🏁 Congratulations!

You've reached the end of The Beginner’s Guide to CSS — and you’ve gained
the skills to build and style real websites.

This isn’t the end of your journey — it's the beginning. From here, you can
explore animations, transitions, SCSS, frameworks like Tailwind or
Bootstrap, and even JavaScript to add interactivity.

Keep learning, keep experimenting, and most of all — keep building.

	Title Page
	Copyright Page
	Chapter 1: What is CSS and Why It Matters
	Chapter 2: CSS Syntax and Selectors
	Chapter 3: Styling Text and Fonts
	Chapter 4: Colors, Backgrounds, and Borders
	Chapter 5: Layouts with Box Model, Flexbox, and Grid
	Chapter 6: Responsive Design Basics
	Chapter 7: Bringing It All Together

