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1. Hello and Welcome!

Performance has been my favorite topic in the last few years. Throughout my career as a
software developer, what I've enjoyed most is playing detective: investigating tricky bugs
or debugging some weird issues is my idea of fun. There is something incredibly
satisfying about pulling a thread, following a lead, getting sidetracked a few times, but
then discovering some hidden clue, and finally uncovering the treasure at the end.

Anything performance-related is like the ultimate investigation game. So many
variables, all tangled together in a beautiful mess! Some of them influence the
performance picture consistently, others only when other variables are present, under
certain conditions, when the moon is aligned with certain constellations. What's not to
love?

In this book, I want to show you how to play this game. Better yet, we will play it
together. This book is not something you can use as documentation. Or a step-by-step
guide for building React apps. Treat it as a journey of discovery.

I'm not going to tell you facts. At least not right away. Instead, we'll have an app that
we'll be poking and prodding from different angles, then see what happens and measure
the result. You won't need facts from me, you'll discover them all by yourself. I'll just be
there to guide you and help you stay focused.

At least, this is the intention. Let me know if it worked or not ࣥ.



Who This Book Is For
The primary target audience for this book is middle-to-senior React developers who
want to deepen their knowledge and are interested in learning about web performance.
This book assumes that you've written an app or two already and that I don't need to
explain such concepts as "state", "props", "components", or "conditional rendering".

If you're a seasoned frontend developer but completely new to React, you also might
gain a lot. About two-thirds of the book focuses on fundamental knowledge applicable to
any web app. However, be warned: all the code examples and the Study Project are
written in React, so you'll need to be able to navigate through them effectively. A few
chapters focus on React-specific APIs like Server Components or Suspense. And a few
chapters, even though the concept is universal, cover aspects specific to React apps.
Such as Server-Side Rendering (SSR) and how to implement it properly in React.



What the Book Is About
The book is about the fundamentals of web performance that are particularly relevant
for React developers. This is not a book about how to write React code. There are plenty
of books for that already. It's almost the opposite - it's about everything that is not React
code. Everything that surrounds it and contributes to what we know as Performance.

In this book, you won't learn different state management techniques or how to split
components. However, you will learn on a very deep level how to record and understand
Performance Flame Graphs, different types of server and client rendering, how different
data fetching strategies contribute to initial load performance, and so much more.

In the next chapter, "Let's Talk About Performance", we'll look into why bother
with performance in the first place, other than for personal entertainment. Plus, what
the CrUX report is, why it's useful, and a few other resources to get you started with
measuring performance.

In "Intro to Initial Load Performance," we'll take a first look at the Chrome
DevTools Performance and Lighthouse panels, understand what Initial Load is and how
to measure it via metrics like FCP and LCP, and make our first few discoveries. While
doing so, we'll investigate how different network conditions influence initial load, what a
CDN is for, and learn the basics of Cache Control.

In the "Client-Side Rendering and Flame Graphs" chapter, we'll become
proficient in recording and understanding the Performance Flame Graphs - you know,
those colorful monstrosities that confuse everyone who sees them for the first (or tenth)
time. While doing so, we'll understand what the Client-Side Rendering (CSR) pattern is
and why it's important.

In the "SPAs and Introducing INP" chapter, we'll continue with CSR and its natural
extension, the Single-Page Application (SPA). While doing so, we'll learn more about
DevTools, touch on the next performance metric, INP, and look more into the
Lighthouse report.



In the "Intro to Rendering on the Server (SSR)", we'll investigate, you've guessed
it, Server-Side Rendering. We'll implement our own pre-rendering strategy, understand
the cost of introducing SSR to a previously CSR app, how SSR affects initial load
metrics, what hydration is, and how to implement SSR properly in React code.

The "Bundle Size and What to Do About It" chapter focuses on the size of
JavaScript we're producing and why it matters (or doesn't matter). In the process of this
investigation, you'll learn about compression, which aspects of initial load the size of
JavaScript can affect, become a master of bundle size analysis, touch on the difference
between HTTP/1 and HTTP/2 & 3, learn about preloading, code splitting, tree shaking,
different module formats, transitive dependencies, and probably more. It's a huge
chapter!

In the "Intro to Lazy Loading and Suspense", we'll continue our investigation into
the bundle size and talk about, no surprise here, lazy loading and Suspense. How to
implement them properly, and as always, what the consequences are if you don't.

In the "Advanced Lazy Loading", we're still going to talk about lazy loading! You'd
be surprised at how complicated and nuanced the topic is. But as a result, we'll know the
most important concepts behind frontend frameworks like Next.js, React Router, or
Tanstack, why we need code splitting per route, why all frameworks give you a Link
component, how to do preloading, how SSR comes into play with preloading, and even
migrate our Study Project to the Tanstack framework and measure the results.

The "Data Fetching and React Server Components" chapter finally leads us away
from bundles. We're going to talk about data fetching: on the client, on the server, and
in between. How to implement and analyze client-side data fetching, including where
and how to perform data prefetching, what happens if data is fetched with Server-Side
Rendering (SSR) enabled, and the associated costs. This leads us to React Server
Components - what problem they solve, how they solve it, and how to make sense of
them generally. Plus, we'll throw Streaming into the mix and polish everything by trying
out Next.js in addition to Tanstack.

Tired of initial load performance? In the "Interaction Performance" chapter, we'll
finally move away from it and focus on interactions. How to navigate Chrome DevTools
when it comes to interactions, what a Long Task is and how to fight it by yielding to
main, how it's relevant to React developers, and what React DevTools have to offer here.



The "Getting Rid of Unnecessary Re-renders" chapter is the most React-y chapter
here and focuses entirely on the React API. We're going to improve interaction
performance here by fighting and winning the battle against sneaky unnecessary re-
renders. All the classics: moving state around, passing components as children, Context
and props drilling, and of course, memoization.

Does everything about React memoization make your blood boil? In the "React
Compiler" chapter, we'll explore what the new, still experimental at the time of writing
this book, tool has to offer for solving it. And is it worth it?

Hope that's enough content to keep you busy for a while! Now let's set up the
development environment and the Study Project, and let's get started.

Setting Up the Study Project
You need to ensure that you have Node[1], npm[2], and Git[3] installed on your computer.

Clone the Study Project from here: https://github.com/developerway/web-perf-
fundamentals[4] and install all dependencies via npm install .

Technically, you're good to go! The Study Project is structured the following way:

frontend  folder - this is where all the shareable code, like buttons, modals, and
common pages, lives.
src  folder - this is for the chapter-specific code.

Each chapter with code examples has its own folder inside src , with all the necessary
setup already done.

Every chapter-specific project is organized as a "workspace". Which in this case just
means that it has a package.json  file inside, and you can run all the scripts declared inside
that package.json  from the root via npm run [script-name] --workspace=[chapter-name] .

If you look inside the src/chapter5-spa-and-inp/simple-frontend/package.json  file, for example,
you'll see this:



{
  "name": "chapter5-simple-frontend",
  "scripts": {
    "dev": "vite",
    "build": "rm -rf dist && vite build",
    "start": "tsx watch server.ts"
  }
}

That means that from the root of the repository, you can run:

npm run dev --workspace=chapter5-simple-frontend

or:

npm run build --workspace=chapter5-simple-frontend

And so on, you get the idea.

You'll also need to install the Chrome browser[5]. We're going to use its DevTools to
measure everything throughout the book.

Also, at some point, you'll need the React DevTools[6] Chrome plugin. We'll use it when
we get to investigating interaction performance.

That's it, you're ready to put your Sherlock hat on!



2. Let's Talk About Performance

Before investigating anything, we first need to answer "why". It surely is fun, but no
business owner will approve months-long work just because developers want to have
some fun. Is there a practical reason for it?

Why Performance Matters
There is actually a lot of research into the topic of whether improving web performance
has a visible impact on business metrics.

There is, for example, research by Deloitte[7] where they analyzed over a period of 4
weeks mobile data from various brands across Europe and the US. The conclusion: even
a 100 ms improvement in site speed results in improved funnel progression, improved
page views, bounce rate, and conversion rate. The full report[8] has over 50 pages and
lots and lots of numbers.

There are also hundreds of case studies on Google's web performance website:
https://web.dev/case-studies. For example:

Vodafone case study[9] highlights that a 31% improvement in LCP led to an 8%
increase in total sales, a 15% improvement in lead-to-visit rate, and an 11%
improvement in the cart-to-visit rate.
QuintoAndar, the largest housing platform in Brazil, reduced the INP of their
website by 80% and saw an increase in conversions by 36%[10].
Disney+ Hotstar[11] reduced INP by 61% and managed to increase weekly card views
by 100% as a result.

Shopify invests a lot of time and energy into performance[12], and just last year
confirmed that performance[13] still matters, even in 2024.

Also, https://wpostats.com/[14] has a good collection of case studies, starting from 2016



up to 2023.

Hope it's convincing enough?

How to Start Measuring: CrUX
After you decide that performance should be your next focus, the next question is where
to start.

If you've never measured anything performance-related on real users, then the very first
stop should be the Chrome User Experience Report (CrUX)[15]. It's basically the
performance data of the entire internet gathered by Google. It's collected via Chrome
from all eligible users[16] that visit your public website and is used by Google Search to
inform how the website is ranked by the search.

The data is available in various formats: as a weekly visualization[17], as a dashboard[18],
BigQuery[19], and even a developer API[20].

This data and these tools are invaluable. They give you a quick overview of the most
important performance metrics for your website and the historical trends for each of the
Core Web Vitals metrics. With them, you can see the results of your performance
improvement initiatives at zero cost. Plus, since the data is public, it's always useful to
compare how your website is doing vs your competitors ࣥ.

However, this data is not perfect. First, it measures only Core Web Vitals - a set of
metrics defined by Google itself. While it's already useful as-is, at some point, you'd
want to have more nuanced measurements that are tied more to your product specifics.

The second big downside is that the data is extracted from Chrome only, and only from
eligible users. After all, it's the Chrome UX Report. That means some of your potential
users are excluded.

And lastly, it's only for public websites. If you're hiding your functionality behind
authentication, this report is useless to you.



Next Step: Real User Monitoring
If the CrUX report is not enough, the next step is Real User Monitoring (RUM). This
step is crucial. Measuring the real customers is the only way to identify whether you
actually have performance problems worth solving. And where they are, of course.

For this, you need two parts: something that extracts performance-related analytics
from your website when it's live and sends it somewhere. And then a system that
receives this data and transforms it into valuable insights and visually appealing
dashboards.

Which system you're going to use for receiving the data is up to you, your requirements,
and your budget. There are so many options, from Google Analytics[21] to Sentry[22] to
DataDog[23] to every possible analytics and monitoring solution out there. You probably
already have some form of monitoring or analytics solution anyway, so use that until you
need something more advanced.

For extracting the data part, it really depends on which data and in which format you
need. If you want to report the Core Web Vitals metrics, the same as the CrUX report, to
keep yourself aligned with what Google Search is using, then you'd need the web-
vitals[24] library maintained by Google itself.

If you need something more custom, then you're probably better off using the web client
of whichever tool you're using for dashboarding and combining it with the JavaScript
performance API to extract the times of events you want to monitor.

Investigating Locally
After you've monitored performance for some time and identified pain points you'd
want to solve, there is a final step: actually solving those pain points!

This is what the rest of the book is all about. How to identify what causes a pain point
you discovered, whether it's a very long initial load time or a very slow interaction in a
certain place. What can influence this particular pain point in each direction, and which
solutions can move the needle in the direction you want.



Ready to start investigating?



3. Intro to Initial Load Performance

When it comes to writing good React code, the actual code itself is just a small piece of
the puzzle these days. Before even writing the first component, we need to figure out
where and how to do it. And this is where we're bombarded with choices and opinions.

Should I start the project with Vite or Next.js? Or Remix, which mutated into React
Router now? Do I even need a framework at all? There are also different rendering
methods - should I go with CSR, or SSG, or SSR, or RSC, or ISR? What do those letters
even mean? Since when do I need a PhD to start writing simple React code? उ

But before even starting to talk about rendering methods and frameworks, we need to
do some pre-work. Because the most important aim of them, other than improving the
developer experience with fancy tooling, is to improve performance and SEO.

So, step zero in understanding them and being able to make an informed choice about
which rendering pattern to use is to understand how front-end performance works. And
what SEO is, of course - but that one in the next chapter.

Let's focus on performance first.

Introducing Initial Load Performance
Metrics
What happens when I open my browser and try to navigate to my favorite website? I
type "http://www.my-website.com[25]" into the address bar, the browser sends a GET
request to the server, and receives an HTML page in return.



The time it takes to do that is known as "Time To First Byte"[26] (TTFB): the time
between when the request is sent and when the result starts arriving. After the HTML is
received, the browser now has to convert this HTML into a usable website as soon as
possible.

It starts by rendering on the screen what is known as the "critical path"[27]: the minimal
and most important amount of content that can be shown to the user.

What exactly should be in the critical path is a complicated question. Ideally, everything,
so that the user sees the complete experience right away. But also - nothing, since it
needs to be as fast as possible, since it's a "critical" path. They are mutually exclusive, so
there needs to be a compromise.



The compromise looks like this. The browser assumes that to build the "critical path", it
absolutely needs at least these types of resources:

The initial HTML that it receives from the server, to construct the actual DOM
elements from which the experience is built.
The important CSS files that style those initial elements - otherwise, if it proceeded
without waiting for them, the user would see a weird "flash" of unstyled content at
the very beginning.
The critical JavaScript files that modify the layout synchronously.

The first one (HTML) is what the browser gets in the initial request from the server. It
starts parsing it, and while doing so, it extracts links to the CSS and JS files it needs to
complete the "critical path". It then sends requests to get them from the server, waits
until they are downloaded, processes them, combines all of this together, and at some
point at the end, paints the "critical path" pixels on the screen.

Since the browser can't complete the initial rendering without those critical resources,
they are known as "render-blocking resources". Not all CSS and JS resources are render-
blocking, of course. It's usually only:

Most of the CSS, inline or via the <link>  tag.
JavaScript resources in the <head>  tag that are not async  or deferred .

The overall process of rendering the "critical path" looks something like this (roughly):

The browser starts parsing the initial HTML.
While doing so, it extracts links to CSS and JS resources from the <head>  tag.
Then, it kicks off the downloading process and waits for the blocking resources to
finish downloading.
While waiting, it continues processing HTML if possible.
After all the critical resources are received, they are processed as well.
And finally, it finishes whatever needs to be done and paints the actual pixels of the
interface.

This point in time is what we know as First Paint (FP). It's the very first time the user
has an opportunity to see something on the screen. Whether it will happen or not
depends on the HTML the server sent. If there is something meaningful there, like text



or an image, then this point will also be when the First Contentful Paint[28] (FCP)
happens. If the HTML is just an empty div, then the FCP will happen later.

First Contentful Paint (FCP) is one of the most important performance metrics
since it measures perceived initial load. Basically, it is the user's first impression of how
fast your website is.

Until this moment, users are just biting their nails while staring at the blank screen.
According to Google[29], a good FCP number is below 1.8 seconds. After that, users
will start losing interest in what your website can offer and might start leaving.

However, FCP is not perfect. If the website starts its load with a spinner or some loading
screen, the FCP metric will represent that. But it's highly unlikely that the user navigated
to the website just to check out the fancy loading screen. Most of the time, they want to
access the content.

For this, the browser needs to finish the work it started. It waits for the rest of the non-
blocking JavaScript, executes it, applies changes that originated from it to the DOM on
the screen, downloads images, and otherwise polishes the user experience.



Somewhere during this process is when the Largest Contentful Paint[30] (LCP) time
happens. Instead of the very first element, like FCP, it represents the main content area
on the page - the largest text, image, or video visible in the viewport. According to
Google[31], this number should ideally be below 2.5 seconds. More than that, and the
users will think the website is slow.

All of these metrics are part of Google's Web Vitals[32] - a set of metrics that represent
user experience on a page. LCP is one of the three Core Web Vitals - three metrics that
represent different aspects of the user experience. LCP is responsible for the loading
performance.

These metrics can be measured by Lighthouse[33]. Lighthouse is a Google performance
tool integrated into the Chrome DevTools and can also be run via a shell script, web
interface, or a Node module. You can use it as a Node module to run it inside your build
and detect regressions before they hit production. Use the integrated DevTools version
for local debugging and testing. And the web version to check out the performance of
competitors ࣥ.

Overview of the Performance Tools
All of the above is a very brief and simplified explanation of the process. But it's already



a lot of abbreviations and theory to make a person's head spin. For me personally,
reading something like this is of no use. I instantly forget everything unless I can see it
in action and play around with it with my own hands.

For this particular topic, I find the easiest way to fully understand the concepts is to
simulate different scenarios on a semi-real page and see how they change the outcome.
So let's do exactly that before doing even more theory (and there is so much more!).

Setting Up the Project

You can do all of the simulations below on your own project if you wish - the results
should be more or less the same. For a more controlled and simplified environment,
however, I would recommend using the Study Project. You can access it here:
https://github.com/developerway/web-perf-fundamentals[34].

Start by installing all the dependencies:

npm install

Building the project:

npm run build --workspace=chapter3-simple-frontend

And starting the server for this chapter:

npm run start --workspace=chapter3-simple-frontend

You should see a nice dashboard page at http://localhost:3000[35].

Exploring the Necessary DevTools

Open the website you want to analyze in Chrome and open Chrome DevTools. Find the
"Performance" and "Lighthouse" panels there and move them closer together. We'll
need both of them.



Also, before doing anything else in this chapter, make sure you have the "Disable cache"
checkbox enabled. It should be in the Network panel at the very top.

This is so that we can emulate first-time visitors - people who've never been to our
website before and don't have any resources cached by the browser yet.

Exploring the Lighthouse Panel

Open the Lighthouse panel now. You should see a few settings there and the "Analyze
page load" button.



"Navigation" mode is the one we're interested in for this section - it will run a detailed
analysis of the page's initial load. The report will give you scores like this:

The local performance is perfect, no surprise there - everything always "works on my
machine".

There will also be metrics like this:

The FCP and LCP values described earlier are right at the top.

Below, you'll see a list of suggestions that can help you improve your scores.



Every suggestion can be expanded. You'll find more detailed information when you
expand a suggestion, and sometimes links that explain that particular topic. Not all of
them can be actioned, but it's an incredible tool to get started on performance and learn
more about different things that can improve it. It's possible to spend hours just reading
through those reports and the related links.

Lighthouse, however, only gives surface-level information and doesn't allow you to
simulate different scenarios, like a slow network or low CPU. It's just a great entry point
and an awesome tool to track performance changes over time. To dig deeper into what is
happening, we need the "Performance" panel.

Exploring the Performance Panel

When first loaded, the Performance panel should look something like this:



It shows the three Core Web Vitals[36] metrics, one of which is our LCP, gives you the
ability to simulate slow Network and CPU, and the ability to record performance details
over time.

Find and check the "Screenshots" checkbox at the very top of the panel, then click the
"Record and reload" button, and when the website reloads itself, stop the recording.
This will be your detailed report on what is happening on the page during the initial
load.

This report will have a few sections.

At the very top sits the general "timeline overview" section.



You'll be able to see here that something is happening on the website, but not much
more. When you hover over it, a screenshot of what was happening will appear, and
you'll be able to select and zoom in on a particular range to get a closer look.

Underneath, there is a Network section. When expanded, you'll see all the external
resources being downloaded and the exact time they appear on the timeline. When
hovering over a particular resource, you'll see detailed information on how much time
was spent on each stage of the download. The resources with red corners will indicate
the blocking resources.



If you're working on the Study Project, you'll see exactly the same picture, and this
picture matches what we went through in the previous section to the letter:

At the beginning, there is the blue block - a request to get the HTML for the website.
After it's finished loading, there is a brief pause (to parse the HTML), and two
requests for additional resources are sent out.
One of them (the yellow one) is for JavaScript, it's not blocking.
Another one (the purple one) is for CSS, and this one is blocking.

If you open this chapter's Study Project folder now ( src/chapter3-initial-load-

performance/simple-frontend ) and peek into the dist  folder, the source code matches this
behavior:

There will be an index.html  file, an assets  folder, and .css  and .js  files inside.



Inside the index.html  file in the <head>  section, there will be a <link>  tag that points to
the CSS file. As we know, CSS resources in the <head>  are render-blocking, so that
checks out.
Also, inside <head> , there is a <script>  tag that points to the JavaScript file inside the 
assets  folder. It's neither deferred nor async, but it has type="module" . Those are
deferred automatically[37], so this also checks out - the JavaScript file in the panel is
non-blocking.

Additional Challenge.
If you have a project you're working on, record the initial load performance for it
and look into the Network panel. You'll likely see many more resources
downloaded.

How many render-blocking resources do you have? Are all of them necessary?

Do you know where the "entry" point for your project is and how blocking
resources appear in the <head>  section? Try building the project with your
variation of npm build  and search for them. Hint:

If you have a purely webpack-based project, look for the webpack.config.js  file.
Paths to the HTML entry points should be inside.

If you're on Vite, look into the dist  folder - same as with the study project.

If you're on the Next.js App router - take a peek into the .next/server/app  folder.

Under the Network section, you can find the Frames section.



This one will show you what was rendered on the screen during your timeline. Pretty
cool when you start correlating this with the downloaded resources and the Main
section.

At the very bottom, you can see the metrics we discussed before (FCP, LCP). When
hovering over them, you can see their exact time. Clicking on them will update the
"summary" tab, where you'll find information on what this metric is and a link to learn
more. DevTools are all about educating people these days.

Then, finally, the Main section. This is what is happening in the main thread during the
timeline recorded.



We can see things here like "Parse HTML" or "Layout" and how long they took. The
yellow blocks are JavaScript-related, and they are a bit useless since we're using a
production build with compressed JavaScript. But even in this state, it gives us a rough
idea of how long the JavaScript execution takes compared to HTML parsing and
drawing the Layout, for example.

It's especially useful for performance analysis when both Network and Main are open
and zoomed in so they take up the full screen.



From here, I can see that I have an incredibly fast server, a very fast network, and small
bundles. None of the network tasks is a bottleneck. They don't take any significant time,
and between them, the browser is just chilling and doing its own thing. So, if I wanted to
speed up the initial load here, I need to look into why "Parse HTML" is so slow - it's the
longest task on the graph.

Or, if we look at the absolute numbers, I shouldn't do anything here, performance-wise.
The entire initial load takes less than 200 ms and is well below Google's recommended
threshold ड. But this is happening because I'm running this test locally (so no actual
network costs), on a very fast laptop, and with a very basic server.

Time to simulate real life.

Exploring Different Network Conditions
Very Slow Server

First of all, let's make the server more realistic. Right now, the very first "blue" step
takes about 50 ms, 40 ms of which is just waiting.



In real life, the server will do stuff, check permissions, generate stuff, check permissions
two more times (because it has lots of legacy code and that triple-checking got lost
during PR reviews), and otherwise will be busy.

Navigate to the server.ts in this chapter's Study Project. Find the commented-out // await 
sleep(500) , and uncomment it. This will give the server a 500 ms delay before it returns
the HTML - it seems reasonable enough for an old and complicated server.

Rebuild the project, restart it, and rerun the performance recording.

Nothing has changed on the timeline except for the initial blue line: it's now incredibly
long compared to the rest of the bars.



This situation highlights the importance of looking at the whole picture and looking for
bottlenecks before doing any performance optimizations. The LCP value is ~650 ms, out
of which ~ 560 ms is spent waiting for the initial HTML. The React portion of it is
around 50 ms.

Even if I somehow manage to halve it and reduce it to 25 ms, in the overall picture, it
will be just 4%. And reducing it by half will be a lot of effort here. A much more effective
strategy might be to focus on the server and figure out why it's so slow.

Emulating Different Bandwidth and Latency

Not everyone lives in the world of a 1-gigabit connection. In Australia, for example, 50
megabits per second is considered a high-speed internet connection, and it will cost you
around 90 Australian dollars a month. It's not 3G, of course, on which plenty of people
around the world are stuck. But still, I cry every time I hear people in Europe bragging
about their 1 gigabit per second internet plans for cheap.

So let's emulate the Australian internet and see what happens to the performance
metrics. To do that, clear the existing recording in the Performance tab (the button near
the reload and record). The panel with network settings should show up:



If it's not there in your version of Chrome, the same setting should be available in the
Network tab.

Add a new profile in the "Network" dropdown with the following numbers:

Profile Name: "Average Internet Bandwidth".
Download: 50000 (50 Mbps).
Upload: 15000 (15 Mbps).
Latency: 40 (about average for a general internet connection).



Now select that profile in the dropdown and rerun the performance recording again.

What do you see? For me, it looks like this.

The LCP value barely changed - a slight increase from 640 ms to 700 ms. Nothing
changed in the initial blue "server" part, which is explainable: it sends only the bare
minimum HTML, so it shouldn't take long to download it.

But the relationship between the downloadable resources and the main thread changed
drastically.



I can clearly see the impact of the render-blocking CSS file now. The Parse HTML
task has finished already, but the browser is chilling and waiting for the CSS - nothing
can be painted until it's downloaded. Compare it with the previous picture, where the
resources were downloaded almost instantly while the browser was parsing HTML.

After that, technically, the browser could've painted something. But there isn't anything,
we're sending only an empty div in the HTML file. So the browser continues to wait
patiently until the JavaScript file is downloaded and can be executed.

This approximately 60 ms gap of waiting is exactly the increase in the LCP that I'm
seeing.

Downgrade the speed even more just to see how it progresses. Create a new Network
Profile with 10 Mbps/1 Mbps for Download and Upload, keep the 40 latency, and name
it "Low Internet Bandwidth".



Run the test again.

The LCP value has increased to almost 500 ms now. The JavaScript download takes
almost 300 ms. The Parse HTML task and JavaScript execution tasks are shrinking in
importance, relatively speaking.

Additional Challenge.
If you have your own project, try to run this test on it.

How long does it take to download all the critical path resources?

How long does it take to download all the JavaScript files?

How much of a gap does this download cause after the Parse HTML task?

How large are the Parse HTML and JavaScript execution tasks in the main



thread relative to the resource downloading?

How does it affect the LCP metric?

What's happening inside the resources bar is also quite interesting. Hover over the
yellow JavaScript bar. You should see something like this there:

The most interesting part here is the "Request sent and waiting", which takes roughly 40
ms. Hover over the rest of the Network resources - all of them will have it. That's our
Latency[38], the network delay, that we set to 40 ms. Many things can influence the
latency numbers. The type of network connection is one of them. For example, an
average 3G connection has a bandwidth of 10/1 Mbps and a latency between 100 and
300 ms.

To emulate that, create a new Network Profile, call it "Average 3G", copy the
download/upload numbers from the "Low Internet bandwidth" profile, and set the
latency to 300 ms.

Run the profiling again. All the Network resources should have "Request sent and
waiting" increased to around 300 ms. This will push the LCP number even further: 1.2
seconds for me.

And now the fun part: what will happen if I revert the bandwidth to ultra-high speeds
but keep the low latency? Let's try this setting:



Download: 1000 Mbps
Upload: 100 Mbps
Latency: 300 ms

This can easily happen[39] if your servers are somewhere in Norway, but the clients are
rich Australians.

This is the result:

The LCP number is around 960 ms. It's worse than the slowest internet speed we tried
before! In this scenario, bundle size doesn't matter much, and the CSS size doesn't
matter at all. Even if you halve both of them, the LCP metric will barely move. High
latency trumps everything.

This brings me to the very first performance improvement everyone should implement if
they haven't yet. It's called "make sure that the static resources are always served via a
CDN".

The Importance of CDN

The CDN is basically step zero in anything frontend-performance related, before even
beginning to think about more fancy stuff like code splitting or Server Components.

The primary purpose of any CDN[40] (Content Delivery Network) is to reduce latency
and deliver content to the end user as quickly as possible. They implement multiple



strategies for this. The two most important ones for this chapter are "distributed
servers" and "caching".

A CDN provider will have several servers in various geographical locations. These
servers can store a copy of your static resources and send them to the user when the
browser requests them. The CDN is basically a soft layer around your origin server that
protects it from outside influence and minimizes its interaction with the outside world.
It's kind of like an AI assistant for an introvert, which can handle typical conversations
without the need to involve the real person.

In the example above, where we had servers in Norway and clients in Australia, we had
this picture:

With the CDN in between, the picture changes. The CDN will have a server somewhere
closer to the user, likely in Australia as well. At some point, the CDN will receive copies
of the static resources from the origin server. After it does that, any user from Australia
or anywhere nearby will receive those copies rather than the originals from the server in
Norway.

This achieves two important things. First, the load on the origin server is reduced since
users no longer need to access it directly anymore. Second, users will get those resources
much quicker now since they don't have to reach across oceans to download a few
JavaScript files.



And the LCP value in our simulation above drops from 960 ms back to 640 ms ͝.

Repeat Visit Performance
Up until now, we have only been talking about first-time visit performance -
performance for people who've never been to your website before. But hopefully, the
website is so good that most of those first-time visitors turn into regulars. Or at least
they don't leave after the first load, navigate through a few pages, and maybe buy
something. In this case, we usually expect browsers to cache static resources like CSS
and JS. I.e., to save a copy of them locally rather than having to download them each
time.

Let's take a look at how the performance graphs and numbers change in this scenario.

Open the Study Project again. In the DevTools, set the Network to the "Average 3G" we
created earlier. The one with high latency and low bandwidth, so that we can see the
difference right away. And make sure that the "disable network cache" checkbox is
unchecked.



First, refresh the browser to make sure that we're eliminating the first-time visitor
situation. Then reload and measure the performance.

If you're using the Study Project, the end result should be slightly surprising because it
will look like this:



The CSS and JavaScript files are still very prominent in the network tab, and I see ~300
ms for both of them in "Request sent and waiting" - the latency setting we have in the
"Average 3G" profile. As a result, the LCP is not as low as it could be, and I have a 300
ms gap when the browser just waits for the blocking CSS.

What happened? Wasn't the browser supposed to cache those things?

Controlling Browser Cache with Cache-Control Headers

We need to use the Network panel now to understand what's going on. Open it and find
the CSS file there. It should look something like this:

The most interesting things here are the "Status" column and the "Size" column. In
"Size", it's definitely not the size of the entire CSS file. It's too small. And in "Status", it's
not our normal 200 "all's okay" status, but something different - 304 status.



Two questions here - why 304 instead of 200, and why was the request sent at all? Why
didn't caching work?

First of all, the 304 response[41]. It's a response that a well-configured server sends for
conditional requests[42], where the response varies based on various rules. Requests like
this are quite often used to control browser cache.

For example, when the server receives a request for a CSS file, it could check when the
file was last modified. If this date is the same as in the cached file on the browser side, it
returns the 304 with an empty body (that's why it's just 223 B). This indicates to the
browser that it's safe just to re-use the file it already has. There is no need to waste the
bandwidth and re-download it.

That's why we see the large "request sent and waiting" number in the performance
picture - the browser asks the server to confirm whether the CSS file is still up-to-date.
And that's why the "content downloading" there is 0.33 ms - the server responded with
"304 Not Modified" and the browser just re-used the file it downloaded before.

Additional Challenge.

1. In the Study Project, go to the "dist/assets" folder and rename the CSS file.

2. Go to the dist/index.html file and update the path to the renamed CSS file.

3. Refresh the already opened page with the opened Network tab. You should see
the CSS file appear with the new name, 200 status, and the proper size - it was
downloaded again. It's known as "cache-busting" - a way to force the browser
to re-download resources it might have cached.

4. Refresh the page again - it's back to the 304 status and re-using the cached file.

Now, to the second question - why was this request sent at all?

This behavior is controlled by the Cache-Control[43] header that the server sets to the
response. Click on the CSS file in the Network panel to see the details of the
request/response. Find the "Cache-Control" value in the "Headers" tab in the "Response
Headers" block:



Inside this header can be multiple directives in different combinations, separated by a
comma. In our case, there are two:

max-age with a number - it controls for how long (in seconds) this particular
response is going to be stored.
must-revalidate - it directs the browser to always send a request to the server for
a fresh version if the response is stale. The response will turn stale if it lives in the
cache for longer than the max-age  value.

So basically, what this header tells the browser is:

It's okay to store this response in your cache, but double-check with me after some
time to make sure.
By the way, the time that you can keep that cache is exactly zero seconds. Good
luck.

As a result, the browser always checks with the server and never uses the cache right
away.

We can easily change that, though. All we need is to change that max-age  number to
something between 0 and 31536000 (one year, the maximum seconds allowed). To do
that, in your Study Project, go to the server.ts  file, find where max-age=0  is set, and change



it to 31536000 (one year). Refresh the page a few times, and you should see this for the
CSS file in the Network tab:

Notice how the Status  column is grayed out now, and for Size,  we see "(memory cache)".
The CSS file is now served from the browser's cache, and it will be so for the rest of the
year. Unless we enable the "disable cache" checkbox or clean it some other way, of
course. Refresh the page a few times to see that it doesn't change.

Now, to the whole point of messing with the cache headers: let's measure the
performance of the page again. Don't forget to set the "Average 3G" profile setting and
keep the "disable cache" setting unchecked.

The result should be something like this:

The "Request sent and waiting" part collapsed to almost zero despite the high latency,
the gap between "Parse HTML" and JavaScript evaluation almost disappeared, and
we're back to ~650 ms for the LCP value.

Additional Challenge.

1. Change the max-age  value to 10 now (10 seconds).

2. Refresh the page with the "disable cache" checkbox checked to drop the cache.



3. Uncheck the checkbox and refresh the page again - it should be served from the
memory cache this time.

4. Wait for 10 seconds, and refresh the page again. Because the max-age is only 10
seconds, the browser will double-check the resource, and the server will return a
304 response again.

5. Refresh the page immediately - it should be served from memory again.

Cache-Control and Modern Bundlers

Does the above information mean that the cache is our performance silver bullet and
that we should cache everything aggressively as much as possible? Absolutely not! Aside
from everything else, the chance to create a combination of "not tech-savvy customers "
and "need to explain over the phone how to clear browser cache" will cause panic attacks
for the most seasoned developers.

There are a million ways to optimize the cache, a million combinations of directives in
the Cache-Control header in combination with other headers that may or may not
influence how long the cache lives, which also may or may not depend on the server's
implementation. Probably a few books' worth of information can be written just on this
topic alone. If you want to become the Master of Cache, start with articles on
https://web.dev/[44] and MDN resources[45], and then follow the breadcrumbs.

Unfortunately, nobody can tell you, "This is the five best cache strategies for everything".
At best, the answer can be: "If you have this use case, in combination with this, this, and
this, then this cache settings combination is a good choice, but be mindful of those
hiccups". It all comes down to knowing your resources, your build system, how
frequently the resources change, how safe it is to cache them, and what the
consequences are if you do it wrong.

There is, however, one exception to this. An exception in a way that there is a clear "best
practice": JavaScript and CSS files for websites built with modern tooling. Modern
bundlers like Vite, Rollup, Webpack, etc., can create "immutable" JS and CSS files. They
are not truly "immutable", of course. But those tools generate file names with a hash
string that depends on the file's content. If the file's content changes, then the hash
changes, and the name of the file changes. As a result, when the website is deployed, the



browser will re-fetch a completely fresh copy of the file regardless of the cache settings.
The cache is "busted", exactly like in the exercise before when we manually renamed the
CSS file.

Take a look at the dist/assets  folder in the Study Project, for example. Both JS and CSS
files have index-[hash]  file names. Remember those names and run the build command a
few times. The names stay exactly the same since the content of those files hasn't
changed.

Now go to src/App.tsx  file and add something like a console.log('bla')  somewhere. Run the
build command again, and check the generated files. You should see that the CSS file
name stays exactly as it was before, but the JS file name changes. When this website is
deployed, the next time a repeat user visits it, the browser will request a completely
different JS file that never appeared in its cache before. The cache is busted.

Additional Challenge.
Find the equivalent of the dist  folder for your project and run your build
command.

What do the names of the files look like? Similar with hashes, or plain index.js , 
index.css , etc?

Do the names of the files change when you rerun the build command again?

How many file names change if you make a simple change somewhere in the
code?

If this is how your build system is configured, you're in luck. You can safely configure
your servers to set the maximum max-age  header for generated assets. If you similarly
version all your images, even better, you can include images in the list as well.

Depending on the website and its users and their behavior, this might give you a pretty
nice performance boost for the initial load for free.

Do I Really Need to Know All of This For My Simple Use
Case?



By this time, you might be thinking something like, "You're insane. I built a simple
website over the weekend with Next.js and deployed it to
Vercel/Netlify/HottestNewProvider in 2 minutes. Surely, those modern tools handle all
of this for me?". And fair enough. I also thought that. But then I actually checked, and
boy, was I surprised ࣡

Two of my projects had max-age=0  and must-revalidate  for CSS and JS files. Turned out it's
the default in my CDN provider ଷ ♀ . They, of course, have a reason for this default.
And luckily, it's easy to override, so no big deal. But still. Can't trust anyone or anything
these days ࣡.

What's Next?
Now that the initial load and how to find and measure it are clear, why CDN is step zero
when it comes to performance, and Cache Control is step one, it's time to talk more
about things that are actually related to React. It is the "React Performance" book after
all.

In the next chapter, we'll take a look at React's "default" render pattern. I.e., Client-Side
Rendering. And while doing so, as a nice consequence, we'll learn how to record and
read Performance Flame Graphs. You know, those giant flame-like structures that
everyone loves to show off when performance is involved, but confuse the hell out of
anyone who's trying to read them for the first (or tenth) time.



4. Client-Side Rendering and Flame
Graphs

In the previous chapter, we figured out how to start measuring performance and
measured Initial Loading and LCP for a few different scenarios. Armed with this
information, we can now start talking about different render patterns and what's the
point of them.

We're going to start with the most popular pattern in the React world: Client-Side
Rendering. We'll look into what it does and the cost of doing it. For that, we'll look into
what a Performance Flame Graph is, how to read it in a simple scenario, and how to
extract something useful from it for more real-life apps.

Client-Side Rendering
Let's start with a definition. What is Client-Side Rendering?

Actually, it's what we investigated in the previous chapter! There, we had a React project
that, when built, turned out to be just an index.html  file with an empty div, a JS file, and a
CSS file inside. Something like this:

<html lang="en">
  <head>
    <script type="module" crossorigin src="/assets/index-Cx2U5bbX.js"></script>
    <link rel="stylesheet" crossorigin href="/assets/index-BjPt9w-2.css" />
  </head>
  <body>
    <div id="root"></div>
  </body>
</html>

The entire beautiful Home page that we see when we start this project is generated



entirely by the JavaScript file and React inside of it.

React takes everything that we wrote, converts it into DOM nodes, finds the element
with the id root , and appends the newly created DOM elements to that element using
your regular JavaScript commands. It looks something like this:

// React grabs our App and does whatever it needs to do with it
const domElements = ReactDoYourThing(App);

// Get the "root" element with your regular JavaScript
const rootDomElement = document.getElementById('root');

// Append the elements to the root
rootDomElement.appendChild(domElements);

After the browser is done executing all this JavaScript, the user suddenly sees the entire
page appear out of the blue.

If you look inside the main.tsx  file, you'll see almost exactly the same code there:

import { StrictMode } from 'react';
import { createRoot } from 'react-dom/client';
import './index.css';
import App from './App';

createRoot(document.getElementById('root')!).render(
  <StrictMode>
    <App />
  </StrictMode>,
);

This is the entry point to any React app. This process of generating the full DOM with
JavaScript and then injecting it into an empty page is what we know as "Client-Side
Rendering".

What does it mean from a performance perspective?

To understand that truly, we need the Performance panel again, this time the "main"
section. Let's build and start this chapter's Study Project ( src/chapter4-client-side-

rendering/simple-frontend ):



npm run build --workspace=chapter4-simple-frontend
npm run start --workspace=chapter4-simple-frontend

Open the Chrome DevTools, go to the Performance panel, record the performance,
uncollapse the "main" section, and you should see a pretty obvious picture like this:

Okay, I'm joking, of course, about "pretty obvious". Unless you've been reading these
graphs every day for years for fun and profit, this picture will probably tell you nothing.
So, before continuing with React again, let's figure out what it means and how to extract
something useful from it.

Reading the Flame Graph
This picture is known as the "Flame Graph[46]" or sometimes a Flame Chart. Graphs like
this represent an application's call stack relative to the resources you want to investigate,
like memory or, in our case, time in milliseconds.

Imagine a function that describes the daily commute of a developer:



A Developer leaves home and starts walking while humming a tune and listening to
a podcast.
Then they stop to pet a cute dog.
After some more walking, they stop to grab a coffee, which consists of:

Waiting in line for a minute or two to order the coffee.
Waiting a few more minutes to actually get the coffee.

After that, they continue walking while drinking coffee.

The entire flow is the function goToWork . While executing, this function at some point
triggers the petADog  function and waits until it's finished. After that, the function 
getSomeCoffee  is triggered. This function also triggers another function - orderCoffee . After
its execution, the getSomeCoffee  function waits for the coffee and returns it after it's done.
After that, the core function goToWork  continues until the Developer arrives at their
destination.

const goToWork = async () => {
  await petADog();
  const coffee = await getSomeCoffee();
  await finishWalking(coffee);
};

This describes what is known as the Call stack[47]. In the flame graph, it will look like
this:



The most important thing about this graph right now is that it clearly shows us which
task originated from where:

The "Pet a dog" task was triggered by "Walk to the office," and it's completely
independent of the coffee situation.
The "Order coffee" task originated from the "Grab a coffee" task, which was also
triggered by the "Walk to the office" task.
The "Order coffee" task has nothing to do with the "Pet a dog" task - it's not within
its hierarchy. If the "Grab a coffee" task disappears one day, the "Order coffee" will
disappear with it since it's its "child," but the "Pet a dog" task will never notice it.

Another important thing here is that the graph shows the duration of all the tasks.

For example, the "Grab a coffee" task took 10 minutes, of which the developer spent 6
minutes waiting in line to place the order. These 10 minutes are known as "Total
Time" - the time it takes to execute a function, including the execution time of all its
children. The Total Time for the "Walk to the office" is 30 minutes, out of which it took 4



minutes to execute "Pet a dog" and 10 minutes for "Grab a coffee," during which 6
minutes were spent in line ordering the coffee.

The difference between the Total Time and the time it took for the children to execute is
known as "Self Time". In this example (30 - 4 - 10), it's 16 minutes for the "Walk to the
office" function. These 16 minutes are the time the developer spent actually walking. For
"Grab a coffee," it's 4 minutes.

This knowledge of Self Time, Total Time, and the structure of the children enables us to
make some performance optimizations. Most importantly, it allows us to calculate
trade-offs and the cost of optimizations.

Let's say I want to reduce the "Walk to the office" time to 20 minutes. What are my
options?

I could just get rid of the "coffee" task completely and accomplish the goal immediately.

The cost here would be a significant impact on the quality of life of the developer, plus
productivity for the rest of the day. It might not be the best option unless you really
need a quick win right now.

Instead, I could get rid of the "Order coffee" task by pre-ordering coffee through an app
while walking. The cost here is pretty minimal, just need to download an app and create
an account there.

The "Grab a coffee" task is still present - the developer still needs to walk to the counter,
find the coffee there, and squeeze through the crowds to get out. So, the function's Self



Time will remain.

Now I just need to find another 4 minutes. I could get rid of the "Pet a dog" task, but
similar to the "coffee" task, the cost here would be the impacted mood of the developer
and their productivity for the rest of the day.

Another option would be to reduce the Self Time of the "Walk to the office" task itself. I
could buy the developer a scooter or a bike, for example, to speed it up. Or arrange some
sort of transport that picks up employees and delivers them to work. Or work with the
government to organize more footpaths with no streetlights that slow down the walk. Or
just encourage the developer to run instead of walk somehow. Imagine that! ࣡

In any case, the performance goal is accomplished again, assisted by the Flame Graph.

Reading the Flame Graph in DevTools



Time to switch back to the real graph.

Start this chapter's Study Project again, navigate to http://localhost:3000/go-to-work,
and record the performance again. The graph for this page looks exactly like the
illustration above! Kinda.

Okay, it slightly resembles the illustration above. That's because the script is run in the
browser, and the profiler records everything that is happening, which is still a lot, even
for the simplest script. But at least now we can read it and see that:

1. At first, there was the blue bar of "Parse HTML" - we know that one already. It
happens when the HTML is received from the server. It triggered some JavaScript
for some reason, but we don't care since it has nothing to do with our "walk to
work" task. If you right-click on it and select "Hide children," we can even eliminate
that visual distraction.

2. Then, there was a loooong yellow line of JavaScript. This is the script that
implements the "go to work" functionality. That one triggers all of our functions,
and their sequence looks pretty much like the pic above.

3. Only after the long yellow JavaScript line is done, the FCP/LCP metrics are
triggered. This tells us that the metrics can happen only when both "Parse HTML"
and the JavaScript tasks are done.

To confirm the latest assumption, we can take a look at the actual script and HTML
page. You can find them in src/chapter4-client-side-rendering/simple-frontend/assets .

The HTML looks something like this:



<html>
  <head>
    <script async src="./main.js"></script>
  </head>
  <body>
    <div id="root"></div>
  </body>
</html>

Very typical Client-Side rendering HTML. And in the main.js  script, at the very end,
there is this:

const div = document.createElement('div');
div.innerText = 'Arrived!';
document.getElementById('root').appendChild(div);

After the synchronous function above is done, JavaScript creates a DOM element and
appends it to the existing <div>  on the page. This corresponds really nicely with what's
happening in the Flame Chart - until the JavaScript finished its work, there was no
content on the page, so the FCP/LCP metrics couldn't be triggered.

What else is interesting here before we go back to the Flame Chart of an actual app?

First of all, there is a tiny purple block on the same line as the yellow JavaScript line. If
you hover over it, you'll see that it's a "Layout"[48] task.



That one is quite important. This is where the browser calculates how the elements
should be positioned on the screen and their exact dimensions. In this case, it's tiny
since we're only adding one div to the page. But for large apps, it can be very visible.

Another important thing here is that all those lines are interactive. Clicking on any of
them will update the detailed information in the tabs at the very bottom. Click on one of
the "goToWork" bars, for example. In the "Summary" tab, there will be something like
this:

We found our "Total time" and "Self time". And more!

There is also the "Function" part here: this is what triggered this particular execution.



Clicking on it will open the exact code where it started.

Additional Challenge.

Click on the "goToWork" block that produced the "petADog" function. Notice
the Total and Self time.

Click on the "petADog" block. Its total time should roughly match the difference
between the Total and Self time in the block that produced it.

Now click on the link in the "Function" block. It should navigate you to the exact
file and the exact line where this function was called.

Click on the yellow JavaScript line that produced the functions. Instead of
"Function", it should have a "Script" there with a link to the script that produced
that line.

Different blocks will have different information in the Summary tab.

This actually allows us to solve another mini-mystery of this graph: where are all those
additional yellow JavaScript blocks coming from? The ones under the Parse HTML
block and after our main "goToWork" task?

If you click through them, you should see their origin in the "Summary" tab in the
"Script" part. All of them are various Chrome plugins! To see how much those plugins
are messing with the performance graph (and the page performance in general), open
the "Go to work" exercise in Chrome incognito mode or in Chrome "Guest" profile and
re-record the performance there.

For me, it looks like this now:



The "Parse HTML" task collapsed to oblivion. No more long-tail JavaScript tasks. The
graph is so much clearer.

So this is a big lesson here: before doing anything with this graph, like panicking about
the "Parse HTML" task being too long, make sure the outside influence, like third-party
plugins, is eliminated.

Client-Side Rendering of a Real App in the
Performance Panel
Now that we know how to read the Flame Chart, let's take a look at the chart of our
semi-real Home page again. This time, let's be smart right away and open it from the
"guest" profile to get rid of all visual distractions. If you're on a very fast computer, it
might be helpful to also enable "CPU slowdown" - that will make the bars longer and
easier to read. It's in the same place where we configured Network throttling, so it's easy
to find.

Can you read what's happening here now?



At first, there's "Parse HTML" again - the tiny blue bar at the very beginning. Then,
there are two long yellow bars of JavaScript. Clicking on them shows us where they
originated from - our index.js  file with all the React stuff and the app I wrote.

Only after the JavaScript is done, the FCP/LCP metrics appear. That also checks out -
the app uses Client-Side Rendering, so there is no content to trigger those metrics until
the JS is done.

The "Layout" block is now huge and takes up almost a third of the second yellow
JavaScript bar. That's because it's now the entire page, not just a tiny div like we had in
the previous exercise.

The fun part here comes from comparing this graph with a graph from a more
traditional, non-client-side rendered website. Let's run it on any of the MDN pages[49],
for example. The picture will be drastically different, almost in reverse:



As always, there's a blue "Parse HTML" at the beginning. But then, it's followed by a
purple block of Layout right away and a green block of Painting[50] (this is when the
browser actually paints all the pixels of the calculated Layout). We have the entire page
of the MDN docs visible on the screen by this time, so FCP/LCP is triggered.

Only after that do I see a yellow JavaScript bar that does something. And somewhere
far, far after the Holy Grail of initial loading, LCP, is triggered, we see the DCL metric
(DOMContentLoaded event) - this is when the browser is done parsing HTML and
waiting for the scripts to load and execute.

So, what exactly was the point of looking at all of this, you might ask?

Because reading those graphs demonstrates very clearly the cost of doing Client-Side
Rendering:

1. The initial load and LCP metric will always suffer, even when the scripts are
already downloaded and cached by the browser. We always need to wait for their
execution to see anything on a page.

2. Without JavaScript, there will be no website at all, the user will just get a blank
page. Try disabling JavaScript on the MDN page we used to measure performance
and on the Study Project to see the difference.

Wait, this feels terrible! Why would anyone want to do that??

First of all, because it's easy and cheap. Incredibly easy and cheap, to be precise. It's
possible to build something complex and fully functional, serve it to thousands of users



daily, and still pay zero dollars for hosting and not worry about scaling the system,
outages, memory leaks, and all the other "backend-y" stuff. The entire app is just a few
static files that can be deployed anywhere without the need for any supervision.

And second, and sometimes even more importantly, LCP and initial load are not the
only things that matter when it comes to users and perceived performance. Sometimes,
no one cares whether the app loads in 1 second, 1.2 seconds, or even 5 seconds,
especially if there's a cute animation while the loading happens. Maybe the users came
to the app not to look at it but to interact with it, and they are happy to wait a bit during
the initial loading time to get exceptional performance later.

Think of something like project management software. No one goes there just to admire
the view or read poems (I hope). People open those apps to do important daily tasks,
which almost always involve lots and lots of interactions with the app. After it's loaded!

What's Next?
Now that we know what Client-Side Rendering is and how to read Performance Flame
Graphs, we're well prepared for the next step: SPAs (Single-Page Applications) and why
they're so cool that they've captivated developers for a very long time.

SPAs are a natural extension of Client-Side Rendering, and they really shine when
smooth and very fast transitions between pages take priority over the initial load. To
measure those, we need to know metrics like INP (Interaction to Next Paint) and where
to find them, to start with.

That's exactly what we'll go through in the next chapter.



5. SPAs and Introducing INP

In the previous chapter, we figured out what Client-Side rendering is, how it affects the
initial load, and, as a nice consequence, learned how to read the Flame Graph in the
Performance panel.

In this chapter, let's talk a bit more about Client-Side rendering, more specifically, about
the part that makes it worth it from a performance perspective - SPAs. Here, we'll look
into what an SPA is, the difference between SPA transitions and the "traditional" ones,
and take a first look at the INP (Interaction to Next Paint) metric, what it means, and
how to measure it.

SPA (Single-Page Applications)
An SPA (Single-Page Application) is a client-side rendered app that has multiple pages
and handles routing between them without involving the server. To see why it's so cool,
we need the Study Project again ( src/chapter5-spa-and-inp/simple-frontend ). Build it and run it
in production mode, as usual:

npm run build --workspace=chapter5-simple-frontend
npm run start --workspace=chapter5-simple-frontend

You should be able to see a beautiful dashboard on the screen.

We're going to work with a few pages here. Click on the logo, and you'll be redirected to
the "Login" page. Click on the "Welcome to Product" title to return to the "Dashboards"
page. From there, click on "Settings" in the sidebar navigation. This will redirect you to
the "Settings" page. Click on the "Home" item to return to the "Dashboards" page.

Do you notice the difference? Even on the latest MacBook, the response should be,
"Yeah, something feels off about the navigation to the Settings page compared to the
Login page".



Let's downgrade ourselves to a slow device on an average 3G network to really feel it.
Open the Performance tab and set the CPU to 6x slowdown and the Network to the
"Average 3G" we configured in the previous chapter. Or just the default 3G if you
skipped that part.

Navigate back and forth again. This time, the difference should be obvious. Navigating
between "Dashboards" and "Settings" takes 1 second. Between the "Dashboards" and
"Login" pages, the transition is almost instantaneous.

This is because the navigation between the "Dashboards" and "Login" pages is
implemented as client-side routing, which makes them an SPA transition. Somewhere in
the code, there is a Link  component, inside of which there is this code:

<a
  onClick={(e) => {
    e.preventDefault();
    navigate(href);
  }}
>
  {children}
</a>



A normal <a>  tag, where the default behavior on click is prevented - i.e., the "normal"
link redirect won't happen. Instead, the navigation to the next page is triggered by
JavaScript via navigate(href) . Which is not a "navigation to the next page" per se, actually.
Inside this navigate  function, there will be something like this:

window.history.pushState({}, '', newPath);
dispatchEvent(new PopStateEvent('popstate', { state: {} }));

Where window.history.pushState  will simply update the URL part of the browser, and that's
it, no redirects. The dispatchEvent  part then dispatches a JavaScript event that can be
listened to via addEventListener .

Somewhere else entirely, there will be a part that listens to that event and sets the state
with the pathname  value:

window.addEventListener('popstate', () => {
  setPath(window.location.pathname);
});

And then somewhere in the third place, there will be code that renders different pages
based on that state value:

switch (path) {
  case "/login":
    return <LoginPage />;
  default:
    return <DashboardPage />;
}

That's what all the frameworks, like Next.js/Remix/Tanstack, etc, do for routing with
various degrees of abstraction. All of them will give you a Link  component that prevents
the default link behavior and some ways to render different pages for different routes
without reloading the page itself. From regex pattern matching to folder-based routing.

Additional Challenge.

Open App.tsx  file of the Study Project - it should look almost identical to the 



switch  above.

Trace down the implementation of the Logo in the sidebar navigation, the
"Welcome to Product" title on the login page, and the rest of the items in the
Sidebar.

Why are some of them SPA transitions, and why are some of them not?

What needs to be done here to create SPA transitions for all Sidebar items?

The end result is the same for them all: there is no more "traditional" page navigation,
which includes asking the server for a new HTML, parsing it, and so on, the full cycle
that we investigated before. Instead, the already initialized JavaScript just destroys the
entire page (or part of it) with something like:

const root = document.getElementById('root');

root.innerHTML = '';

And then generates a new page and injects it to the old place:

const newChildren = generateNewPage();
root.appendChild(newChildren);

This part is usually invisible to us and is handled entirely by React.

What SPA Transitions Look Like in the
Performance Panel
In the performance panel, those types of navigation look very different.

Build and run the Study Project if you haven't done it yet:

npm run build --workspace=chapter5-simple-frontend
npm run start --workspace=chapter5-simple-frontend



Open the website in a Chrome Guest Profile (or Incognito Mode). Always remember to
build the production version when investigating general performance, and open the
website in "guest" or "incognito" mode to eliminate outside influences.

Open the performance panel, slow down the CPU by 6x, and set the network to Average
3G. Start the recording without reloading (the top left button).

Click on the logo in the top left corner of the website to navigate to the Login page and
stop the recording. What should be the result?

First of all, the Network panel. It should be absolutely empty, with no requests for
external resources and no attempts to download anything.

Second, in the overall Timeline overview, you should see a spike in JavaScript
activity. Zoom in on the largest one. Hover over it back and forth to confirm that this
spike indeed caused the change in the UI. If you had the "screenshots" checkbox
enabled, you'll see the exact moment when the UI changed from the "Dashboards" page
to "Login".

In the Main section, you should see a more detailed picture of what was happening.



We can see that there was a "click" event here, which caused JavaScript to do something
(we don't really care what exactly right now). After it was done, the browser recalculated
styles (the first purple block), then did some Layouting (the second purple block), then
the green blocks of Painting/Committing, and then the new Login page appeared.

There are no FCP/LCP metrics anymore.

Overall, the entire navigation task took around 60 ms for me (with a slowed-down CPU
and Network).

Additional Challenge.
Record performance while navigating from the Login page to the Dashboards by
clicking on the "Welcome to Product" title.

Which tasks took longer? Why do you think it happened?

Now, return to the "Dashboards" screen and repeat the same exercise, this time
navigating to the "Settings" page (the one without the SPA transitions).



The LCP/FCP metrics are back again. There is also a new line that shows when the click
interaction happened and when the navigation started.

The "Network" section is not empty anymore. The request to the server is back, CSS
and JS files are back (although from the browser cache), and the Parse HTML task is
back.

Overall, this interaction looks almost like a normal "Initial Load". This makes sense
since this is exactly what happens when regular, non-SPA transitions via normal <a>
tags are made.

The entire transition took almost a second for me. A little bit faster than the initial load
for this page, but more than 10 times slower than an SPA transition.

Those super-fast "snappy" transitions between pages that are implemented so easily are
what make SPA so attractive compared to the "traditional" page load. And the fact that
we can make them as granular as we want, by the way. Who said that we should limit
ourselves to only pages?



Additional Challenge.
Take a look at the "tabs" row on the "Settings" page. Right now, switching between
tabs just changes the content, the URL doesn't change. As a result, when a tab is
selected and the page is refreshed, the selected tab falls back to the default value.
Can you make those tabs feel like "proper" navigation? So that:

When I select the "Personal Profile" tab, the URL changes to
"/settings/personal-profile".

If I refresh the page, the "Personal Profile" tab remains selected. Hint:

Find how the Link  component implements navigation.

Find how the current path value is extracted from the URL in the App.tsx  file.

Okay, those transitions are super fast. But if there is no FCP/LCP anymore, how do I
measure them then?

This is where the "Interaction to Next Paint"[51] (INP) metric comes in.

Measuring Interaction to Next Paint (INP)
"Interaction to Next Paint" (INP) is a relatively new metric (introduced in 2023[52]) that
measures how fast the app responds to users interacting with it. Basically, how "snappy"
the interactions feel.

It's the second of the three Core Web Vitals[53] metrics, which are used by Google to
measure the "quality" of a website. It's helpful to think of LCP (Largest Contentful Paint,
the first Core Web Vital) as the "first impression" of the website, and INP as building
continuous relationships with the users afterward.

It can be found in a few places in the Chrome DevTools.

Lighthouse Report

First, as a Lighthouse report. Similar to LCP, it will just give you a number to trace over



time, but not much detail. To generate it, open the Lighthouse panel and select the
"Timespan" there.

Start the recording and click through the website a few times to give the tool some
material to work with. For example, in the Study Project, navigate from "Dashboards" to
the Login page and then back a few times. Then stop the recording. Lighthouse will
generate a report similar to what we saw for the initial load: overall scores, more
detailed scores, and a bunch of optimizations you might want to consider.



This INP score represents the highest value of INP among all the interactions you
performed while the recording was active. So it will really depend on the interactions.
Try toggling the toggle button on and off at the top right corner, instead of navigating
back and forth. The result should be very different.

What is a "good" INP value is highly subjective, even more so than LCP. A 150 ms INP
for navigating to another page is very good from a user perspective. But the same value
in a complicated animation will cause it to look "junky" and definitely won't feel "good".
However, to measure and improve something, we need to have at least some baseline,
don't we?

We can use Google's guidelines[54] for this; they are pretty much the industry standard
these days. Google considers the INP value "good" if it's below 200 ms. Between 200 ms
and 500 ms, it's "meh, needs improvement". Over 500 ms is a terribly poor
performance.

Performance Panel - Overall View

This overall number from Lighthouse could be useful for monitoring the general
"health" of crucial interactions over time. However, it doesn't provide us with



information on what exactly went wrong and how. For that, we again need the
performance panel.

Open the panel, open the Study Project URL, clear everything, and refresh the page. In
the panel, you should see something like this:

The third block that is currently empty here is the INP value for the page. It's empty
because the page just loaded, I haven't interacted with it yet. Try to click on stuff, open
and close menus, and navigate back and forth to the SPA-backed pages.

The number will constantly update itself to the highest value recorded on a page. If you
start with the toggle and turn it on and off, it will record something like 20 ms there.
Opening/closing the menus might update it to something like 40 ms. Navigating back
and forth between Dashboards and the Login page will give you 140 ms. Your numbers
will be very different and highly depend on the computer you use and the CPU
slowdown you set.

Notice how navigating between the SPA pages (Dashboards and Login) keeps the score
between the pages, but navigating between non-SPA pages (Dashboards and Settings)
resets everything. This distinction is important to keep in mind when measuring and
tracking performance as an overall "score". Especially if this score is used for something
other than local debugging or detecting regressions in known scenarios.

In SPAs, navigation between pages is likely going to be the largest INP number. As a
result, other interactions might easily be overlooked, and the overall user experience
might not be as good as it could be just because of hyper-focusing on improving the



overall score.

Performance Panel - Interactions View

The total page score is useful, but again, only to track overall performance over time. For
debugging purposes, we need more information. We can find this in the "interactions"
block in the Performance panel. In my version of Chrome, it's just below the three
"total" blocks and looks like this:

Here, we can see what caused an interaction (pointer, i.e., mouse or keyboard), where it
originated, and how long it took. Hovering over the origin highlights the element on the
screen, and clicking on it directs you to the exact code.

The yellow "INP" badge highlights the value that is used for the overall page's score.
You'll see that value in the initial three blocks, and as you can see, it's the largest one
here.

For even more detail, when we need to deeply understand the interactions' performance
situation, we have the combination of "Main" and "Interactions" sections in the
Performance panel recording.

Performance Panel - Performance Recording



We need the recording of the performance of the SPA transition again to find it.
Navigate to the "Dashboards" page, start the recording, navigate to the "Login" page,
and stop the recording. Zoom in on the JavaScript spike in the overview timeline where
the screen changed to eliminate the distraction. And this time, pay attention to the new
section above the "Main" called "Interactions".

That's exactly the INP recording we looked at before. Hovering over it will give us the
exact value in milliseconds that we've seen before. But looking at it in this chart gives us
much more than just numbers: it's now very visible what exactly is happening between
the time the interaction was triggered and the time the browser recorded it as "done".

The dark yellow bar, which corresponds with the JavaScript execution time and
represents exactly that, takes only half of this particular interaction. The rest of it is
spent on the purple blocks of recalculating styles and layout, green blocks of
Painting/Committing, and the rest of the tasks the browser needs to do in order to
actually show the user the result of the interaction.

Additional Challenge.

1. Record the transition from Login to Dashboards. Which part of the interaction
takes longer this time, compared to the navigation between Dashboards and
Login?

2. Record transitions between Login and Dashboards with a 20x CPU slowdown.
Which part of the interaction takes longer now? How do those numbers and
graphs change if those transitions are "traditional" full-page reloads?

3. Navigate to the "Settings" page and record navigations between different tabs
there. Which tab takes longer, what is the longest part of the interaction, and
why?



What's Next?
Now that we know the basics of measuring and investigating performance locally and
have a good idea of two of the most important performance metrics, it's time to put that
knowledge to good use. Because SPAs and Client-Side rendering, while being very good
for interaction performance, as we already know, have two big downsides:

They don't work with disabled JavaScript.
They affect initial load performance.

It's time to investigate and understand why exactly these two can become a problem,
what can be done to fix them, and which problems the fixes introduce in return ࣡. As a
nice consequence, among other things, we'll learn about other rendering patterns, like
pre-rendering, SSR, SSG, and what hydration is.



6. Intro to Rendering on the Server (SSR)

In the previous chapters, we learned the basics of the most important performance
metrics these days (FP, FCP, LCP, INP), what CSR (Client-Side Rendering) and SPA
(Single-Page Application) are, and why they are so popular. We also learned about two
of the most significant downsides of CSR/SPA: it negatively affects the initial load and
doesn't work in environments without JavaScript.

In this and the following chapters, we're going to focus on how to fix those downsides,
what kind of problems those fixes bring, and how to fix those problems. Because
relatively cheap and easy fixes have already ended, unfortunately. ࣡ Everything else is
a delicate balance between the time and resources invested and the expected gain.

Let's start with no-JavaScript environments. Those might be the most puzzling
downside. Who disables JavaScript in their browser these days? It's enabled by default
everywhere, pretty much nothing will work without it, and most people won't even know
what JavaScript is to disable it anyway. Right?

Why No-JavaScript Environments Are So
Important
The answer here is in the word "people". Or, more precisely, in the fact that real people
are not the only ones who can access your website. Two major players in this area are:

Search engine robots (crawlers), especially the Google crawler.
Various social media and messengers' "preview" functionality.

All of them work in a similar manner. First, they somehow get the URL to your
website's page. This usually happens when a user tries to share a link to your page with
their social media friends. Or when a search bot mindlessly crawls through the millions
and millions of publicly available pages online. That's why they are called crawlers, by



the way.

Second, the bots send the request to the server and receive the HTML, just like the
browser does at the very beginning.

Third, from that HTML, they extract the information they came for and process it.
Search engines extract stuff like text, links, meta-tags, etc. Based on that, they form the
search index, and the page becomes "googleable". Social media previewers grab the
meta-tags and create the nice preview we all have seen, with a large picture, title, and
sometimes a short description.

And finally, fourth… Actually, there is no fourth sometimes. That's it. No JavaScript,
just pure HTML. Because rendering the page properly with JavaScript means the robots
need to spin up an actual browser, load JavaScript, and wait for it to finish generating
the page. Which is quite costly from a resource and time perspective.

You can see it in action in the Study Project for this chapter ( src/chapter6-intro-to-ssr/simple-

frontend ). Build and start it:

npm run build --workspace=chapter6-simple-frontend
npm run start --workspace=chapter6-simple-frontend

Navigate through the pages there. You should see that the title of the page changes with
navigation. "Study project: Home" for the home page, "Study project: Settings" for
settings, etc.

This title is injected with React using simple code like this:

useEffect(() => {
  updateTitle('Study project: Home');
}, []);



Where inside, it's just this:

export const updateTitle = (text: string) => {
  document.title = text;
};

However, you also might see that it briefly "flashes" when initially loaded. That's
because the default title is "Vite + React + TS". This is the title I have in index.html , and as
a result, this is the title I receive from the server.

Now, expose the website to the outside world with ngrok[55] (or a similar tool if you have
it):

ngrok http 3000

Try posting the URL it generates for you on the social media of your choice. In the
generated preview, you'll see the old "Vite + React + TS" title. No JavaScript was loaded.

Although this is not entirely true for some of the bots. Most of the popular search
engines wait for JavaScript. Google, for example, has a two-step process[56] where it
parses the "pure" HTML and also puts the page into a "render" queue, where it actually
spins up a headless browser, loads the website, waits for JavaScript rendering, and
extracts everything it can again.



However, this process means that the indexing of a website that relies heavily on
JavaScript might be slower and budgeted[57].

So if for your website it's:

Mission-critical to be discoverable by as many search engines as possible, as fast as
possible.
Crucial to be shareable on social media platforms and to look good in the process.

Then it's very important for the server to return the "proper" HTML with all the critical
information on the very first request. Typical examples of such websites are:

Read-first websites, i.e., various forms of blogs, documentation, knowledge bases,
forums, Q&A websites, news outlets, etc.
Various forms of e-commerce websites.
Landing pages.
And so on - pretty much everything that you can search for on the World Wide Web.

That means the "classic" client-side rendered SPA, with its empty div as the first HTML
response, is a bad idea here.



It doesn't mean, however, that we need to throw away React in anger. There are a few
solutions we can try first.

Server Pre-rendering
For this one, we'd need to introduce a server into the equation. Right now, in the Study
Project, the server implementation looks like this:

app.get('/*', async (c) => {
  const html = fs.readFileSync(path.join(dist, 'index.html')).toString();

  return c.html(html);
});

When the server receives any request, it reads the index.html  file that the build step
generated in advance, converts it into a string, and sends it back to whoever requested it.
It's basically what all hosting platforms that support SPA will do for you. It's just not
something we directly control or modify with platforms like this.

However, to fix the "no-JavaScript" problem, we need to modify the server now.
Fortunately, not much. The fact that we're only working with a string simplifies matters
a lot. Because nothing stops us from modifying that string before sending it back.

Let's find the existing title and replace it with "Study project", for example:

app.get('/*', async (c) => {
  const html = fs.readFileSync(path.join(dist, 'index.html')).toString();

  const modifiedHTML = html.replace('<title>Vite + React + TS</title>', `<title>Study 
project</title>`);

  return c.html(html);
});

That's slightly better, but in real life, the title should change for every page: there's no
point in keeping it static like this. Luckily, each server always knows exactly where the
request is coming from. For the framework that I'm using (Hono[58]), it's a matter of



asking for c.req.path  to extract it.

After that, we can generate different titles based on that path:

app.get('/*', async (c) => {
  const html = fs.readFileSync(path.join(dist, 'index.html')).toString();

  const title = getTitleFromPath(pathname);

  const modifiedHTML = html.replace('<title>Vite + React + TS</title>', `<title>${title}
</title>`);

  return c.html(html);
});

Where in getTitleFromPath  we can do something like this:

const getTitleFromPath = (pathname: string) => {
  let title = 'Study project';

  if (pathname.startsWith('/settings')) {
    title = 'Study project: Settings';
  } else if (pathname === '/login') {
    title = 'Study project: Login';
  }

  return title;
};

In real life, this likely needs to be co-located with the actual pages or even extracted
from the page code itself. Otherwise, it will go out of sync with them almost
immediately. But for the Study Project, this will do just fine.

One last thing to make it pretty: in the index.html  file, we can replace the original title 
<title>Vite + React + TS</title>  with something like <title>{{title}}</title>  and turn it into a
template.

<html lang="en">
  <head>
    <title>{{ title }}</title>
  </head>



  ...
</html>;

// on the server then do this instead:
const modifiedHTML = html.replace('{{ title }}', title);

In the future, we can convert it into any of the templating languages if there is a need.

And, of course, we're not limited to only the title tag - we can pre-render all the
information in the <head>  section like this. This gives us a relatively easy and cheap way
to solve the "no-JavaScript" problem for social media preview functionality. They
usually don't need more. Most of them rely on the Open Graph protocol[59], which is a
bunch of <meta>  tags with information.

We can even pre-render the entire page, not only meta-tags! But that one we'll cover in
the separate SSR block below, there are many more things to learn there.

Additional Challenge.

1. In src/chapter6-intro-to-ssr/simple-frontend/server  replace the contents of the index  file
with the content of src/chapter6-intro-to-ssr/simple-frontend/server/pre-rendering-index.ts

2. In src/chapter6-intro-to-ssr/simple-frontend/index.html  replace the contents of the <title>
tag with {{title}}

3. Refactor both the frontend and backend code to support the required meta-tags
for social media sharing (see the list here)[60]

4. Build the project, expose it via ngrok  again, and try to share each page (login,
home, settings) on your favorite social media. The preview should work properly
now and display the details of each page.

5. Bonus question: How would you refactor the project so that the meta-tag
information is not duplicated between the Client and the Server?

The Cost of Server Pre-rendering
I mentioned above that meta-tag prerendering is relatively cheap. What exactly does this



mean, though? How cheap, especially compared to the price and effort before
introducing it?

Unfortunately, there is no good news compared to the completely static SPA. By adding
a simple pre-rendering script, I introduced two problems other than the obvious
increase in complexity that I now have to deal with.

Where to Deploy?

The very first problem is, where should I deploy the app now? Before the change, I could
keep the hosting cost at zero for a very long time - hosting static resources is practically
free these days. Now, I need to have a server. And those usually ain't cheap.

There are two most common solutions here.

We can use the serverless functions of the hosting provider that serve the static
resources: Cloudflare Workers[61], Netlify Functions[62], Vercel Functions[63], Amazon
Lambdas[64], etc. Most of the static resource hosting providers probably have them in
some form or another.

The advantage here is that we still don't need to think about the server and its
maintenance. Those Cloud Functions are like mini-servers that the provider deals with
for us. Our job is to write code, and it magically Just Works. Everything else is their
concern. For study projects, some niche projects, projects at the very beginning of their
journey, and those that don't have a viral nature built in, cloud functions will be the
optimal choice.

Cloud functions are usually very easy to configure and deploy, they are priced per usage,
and the usage comes from actually hitting the endpoint. There is no chance of incurring
an unexpected bill here by accidentally leaving the container running over the weekend.

The downside is the "price per usage" part. The more popular the website is, the
greater the chances that the usage will exceed the limits. I read a few horror stories
where a project became popular on HackerNews or TikTok, suddenly got a few million
visitors instead of the regular hundred, and the owner woke up to a surprise $5000 bill.
Setting spending limits, monitoring spending closely, and having a plan for what to do
in this situation are crucial when it comes to serverless solutions.



If serverless functions are not your choice, you can simply keep it as a tiny node (or
anything else) server and deploy it to any cloud platform, from AWS[65] to Azure[66] to
Digital Ocean[67] to ...insert your favorite hosting provider....

This solution has its advantages. Everything is under your control. Migrating from one
solution to another won't require code changes, unlike serverless functions, which are
vendor-locking you a bit. Prices are usually much more predictable, much simpler, and
much lower when the usage increases. Also, you can use whatever tech stack you want,
whereas serverless functions are typically very limited.

The disadvantages are exactly the same as the advantages. Everything is up to you
now. You need to monitor CPU/memory usage. Worry about observability. Worry about
scaling. Memory leaks will keep you up at night.

And you'll have to worry about geographic regions. Which leads me to the second
problem that arises with introducing any kind of server to a previously pure SPA app.

Performance Impact of Having a Server

Remember the very first chapter and the impact of latency and CDN on initial load
performance? By introducing even a rudimentary server that only pre-renders meta-
tags, I'm introducing a mandatory, unavoidable round-trip to the server for every initial
load request, regardless of whether the user is new or repeating.

I just made the initial load performance of an SPA app, which was never great to begin
with, slightly worse. And how much worse will depend a lot on where exactly the server
is deployed.

If it's deployed as one of the Serverless Functions, then there is a chance that it's not that
bad. Some of the providers can run those functions "on Edge". I.e., those functions are
distributed to different servers that are closer to the end user. Pretty much the same as
CDN for static resources. In this case, the latency will be minimal, and the performance
degradation will be minimal.

If, however, I went with the self-managed server, I wouldn't have the advantages of a
distributed network. I'd have to deploy it to one particular region. So, users on the
opposite side of the planet from this region have a chance to really feel the impact of the



performance degradation.

If this performance impact is critical, you'd have to deal with it somehow. Prepare
yourself for complicated caching strategies, deployments to different regions, etc.
Basically, it's not a simple no-server frontend app anymore. It's a full-stack or even
backend-first app now.

Next.js on Vercel/Netlify

A question that immediately might pop into mind: "I'm just writing my frontend with
Next.js and deploying it to Vercel/Netlify. Do I really need to know any of this?"

The answer here is, "Unfortunately, yes, you can't escape it". Because that's exactly what
those Next.js-first hosting providers do by default: they convert your app into JavaScript
files and a bunch of small Serverless Functions. It's just happening without your control
or even knowing about it.

So, unless you've explicitly set up your Next.js project to export as "static", everything in
"The cost of server pre-rendering" applies.

Additional Challenge.

1. If you have a Next.js app that is "natively" deployed (i.e., 1-click deployment) to
some serverless platform like Vercel/Netlify, try to find how many functions



were created for it.

2. Are those "edge" functions or normal functions? Can you find out how usage is
calculated for them? How many visitors can your website handle before you're
over the limit?

3. If you have a combination of "normal" and "edge" functions, can you map out
which function is responsible for what, and what effect they have on your
deployed project?

Pre-rendering the Entire Page on the Server
(SSR)
Let's talk about pre-rendering some more. In the section above, we pre-rendered only
meta-tags because it was easy to replace an existing string with another string. But what
stops us from messing around beyond the <head>  tag? Let's take a look at the contents of
the <body>  tag of our HTML page that is sent by the server:

<body>
  <div id="root"></div>
  <script type="module" src="./main.tsx"></script>
</body>

Remember how Client-Side rendering works? When the scripts are downloaded and
processed, React takes the "root" element and appends the generated DOM elements to
it. So what will happen if, instead of the empty div, I return a div with some content
inside? Let's make it a big red block:

<div id="root">
  <div style="background:red;width:100px;height:100px;">Big Red Block</div>
</div>

Try adding it to the chapter's index.html , build the project, start it, and don't forget to
disable the cache and slow down the CPU and Network for better visibility.



When you refresh the page, you should see the momentary flash of the Big Red Block,
which is replaced by the normal dashboard page. The first great news is that the red
block didn't stick around - obviously, React clears the "root" div before inserting
anything inside. Or overrides the existing children, doesn't matter for this chapter.

The second great news comes from staring at the performance graph. Record it now.
The result should be something like this:

Pay special attention to the order of things and timing here.

In the beginning, it looks exactly like the graphs we've seen before. First, waiting for
HTML from the server, which results in a blue HTML parsing block in the "main"
section. That one triggered the download of CSS and JavaScript (yellow and purple
blocks in "Network") at some point.

But after the CSS was downloaded, different things started happening. First, we see a
somewhat longer block of purple "Layout" (same level as the blue HTML block). That



didn't happen before! Almost immediately after it was done, the FCP (First Contentful
Paint) was triggered. But the JavaScript bar at the top is still loading! After that, things
continue as usual - JavaScript finishes loading, it's processed, painted, and then LCP
(Large Contentful Paint) is triggered.

If you hover over the very top section, where the screenshots of the frames appear, you'll
see that the gap between FCP and LCP is exactly the period when our Big Red Block was
present on the page. The gap between the FCP and LCP is around 500 ms, with FCP
around 800 ms and LCP around 1.3 s.

Looks like this 500 ms is pretty much the cost of Client-Side rendering for the initial
load. This is huge! If I somehow manage to shave off those 500 ms from LCP, that's a
40% improvement! I might get a promotion for this.

Fortunately, everything is possible. React gives us a few methods[68] that can pre-render
the entire app, and which we can theoretically use here. For example, there is
"renderToString[69]". It can render our app into a string, according to the
documentation:

const App = () => <div>React app</div>;

// somewhere on the server
const html = renderToString(<App />); // the output will be <div>React app</div>

Since we're already dealing with strings on the server, this seems perfect. All that I'd
need to do is replace the empty "root" div with the output of this function. Exactly the
same as we did for meta-tags. Let's try?

Go to the src/chapter6-intro-to-ssr/simple-frontend/server/index.ts  and clean it up from any
modifications we made above. Find the commented-out code:

// return c.html(preRenderApp(html));

And uncomment it. Re-record the performance again. The end result should be
something like this:



The difference is immediately visible: FCP and LCP happened at the same time. Before
the main React-produced JavaScript was triggered, and even before JavaScript finished
loading. That means that content pre-rendering is working! ͝ Happy days ☀ ☺ . Hover
over the screenshots at the very top to verify that it is indeed the beautiful dashboard
that showed up then, not some random fluctuation.

There is, however, a tiny abnormality - the FCP is triggered later than I promised. I was
hoping to see it at 800 ms, but it is actually around 900 ms. The recurring lesson in
everything performance: never promise exact numbers in advance ࣡. But where did I
lose 100 ms?

First of all, look at the very top left corner, the "Network" section, where we have the
initial request to the server. Notice the solid blue line there appearing? This is our
HTML content downloading. We're sending many more elements now, not just a simple
empty <div> . Hover over that block to see the exact numbers - around a third of the
missing 100 ms is spent on downloading the content.



Also, pay attention to the purple "Layout" block after the "Parse HTML" task. It looks
much longer now, doesn't it? Hover over it again for the exact numbers - and here's your
missing two-thirds of the 100 ms. The browser needed not only to download some extra
HTML but also to calculate the positions of many more elements before painting them.

Hence the missing time. But still worth it, isn't it? I shredded 400 ms from the LCP
timing and improved initial load performance by 30%! And here's another cool part:
disable JavaScript now and refresh the page. The dashboard is still there! And even links
work, although they cause a full page reload.

This part is what makes SSR worthwhile. Now, every search engine and every other
robot that you want to give access to your page will see everything without loading any
JavaScript. Performance improvement is a nice bonus here. And an unstable one at that.

SSR can make LCP Worse
Unstable, because there are no silver bullets in performance. If someone tells you SSR
will a 100% increase the initial load of your SPA app, they are mistaken. Now that you
know how network conditions, Client-Side and Server-Side rendering work, can you
think of a scenario when SSR worsens LCP?

Here's how.

Disable the CPU throttling, let your machine be fast again. Set Networking to the slowest
possible simulation. For me, default Chrome 3G does the trick, but you might need to go
slower - it will depend on how fast your machine is. Uncheck the "disabled cache"
checkbox. I want those CSS and JS files to be served from the browser memory.

Now, measure the LCP with and without pre-rendering.

For me, the results are like this. Without pre-rendering, the "SPA" mode, the LCP is
around 2.13 seconds. With pre-rendering, in the "SSR" mode, it's around 2.62 seconds.
Almost 500 ms longer!

The performance charts are a fascinating read for this situation. The "SPA" mode looks
like this:



At first, there is a loooong block (2 seconds) of waiting for the server's response in the
Network section. That's the latency of the slow network connection. Then, almost
instantaneous access to JavaScript and CSS resources: they come from the browser
cache, no network. Plus, almost instantaneous download of the HTML content - it's just
an empty div. Then, the regular and quite fast, since the CPU is not slowed down,
JavaScript execution. That's our React generating the page. And finally, the page is
visible.

Now, the same Network/CPU conditions with the SSR mode enabled:



Same initial waiting time - latency never went away. Then, HTML starts downloading.
But since now we have a lot of it, the download takes a looooooong time - the bandwidth
is very reduced.

Then the most fascinating part: while the content is downloading, I see spikes of activity
in the Main section. Enlarge and hover over them - it will be mostly Layout tasks. The
browser already has CSS and JavaScript downloaded (from the cache), so it has all the
necessary information to paint the layout as soon as it gets small pieces of it. And it
does.

You should be able to actually see the gradual build-up of the interface on the page:
first, the sidebar shows up, then the top nav, then the top charts, then the table. All of
this is in the order of the HTML that is coming through slowly. If this is not cool, I don't
know what is.

While this example feels like a weird edge case, it's actually not. The combination of a
slow network + huge latency + fast laptop happens quite often for business travelers, for
example. Or wildlife photographers. Or travel bloggers. Or engineers who are sent to
remote locations. So if your app is targeting that specific niche primarily, and your app
is already SPA, trying to introduce SSR to it might make it worse.

Or it might not, of course. It will depend on the size of the HTML that is downloaded,
how fast the devices actually are, and how much JavaScript the app needs to render.
Essentially, it all comes down to two things: knowing your customers and measuring,
measuring, measuring everything.

SSR and Hydration
In all this excitement about showing the content sooner, we forgot to investigate what
happens after the content is loaded.

Remember the Big Red Block behavior? After React has loaded and generated its own
elements, it completely replaces the content of the "root" div and everything inside,
including the Big Red Block. But what happens when, instead of the weird red block, I
send the proper HTML of the future page?



Actually nothing. I haven't told React in any way that this content is important, so it will
behave in exactly the same way: clear the entire content of the "root" div and replace it
with its own. It just happens to be exactly the same content from the HTML perspective,
so we don't see the difference with the naked eye.

But we can see it in the performance profile. Slow down the CPU and Network to make
the behavior slightly more visible and re-record the performance for the SSR example.
Pay attention to what is happening after the CSS and JavaScript received:

On the top left, I have the network section, where the resources are finished
downloading. Almost immediately after the CSS is received, I see a large purple "Layout"
section below - that's when our SSR'd content shows up. After the JavaScript yellow
block on the top left finishes loading, React kicks in. The somewhat longer task (190 ms)
is when React builds the UI. At the very bottom right, I again see a small-ish Layout
block.

This is a typical picture of the Client-Side Rendering that we've seen many times
already. This is when React clears the "root" div and injects whatever it generates
instead. And also, it's completely unnecessary. React already has all the DOM elements



present, it could've just reused them instead. Surely, it should be faster.

This is when what is known as "hydration" comes in. "Hydration" does exactly what I
wished for above - it shows React that there is already HTML on the page that matches
exactly the HTML it will generate. So, React can just reuse the existing DOM nodes, add
event listeners to them, prepare whatever it needs internally for future functionality, and
call it a day. No unnecessary mounting components from scratch!

Hydration in React is actually very simple to implement, for once: it's just one
function[70] call. All we need to do is replace the createRoot  entry point with this:

hydrateRoot(
  document.getElementById('root')!,
  <StrictMode>
    <App />
  </StrictMode>,
);

You can find this code in src/chapter6-intro-to-ssr/simple-frontend/main.tsx  - comment out the 
createRoot  part and uncomment the hydration part. Then rebuild and restart the project:

npm run build --workspace=chapter6-simple-frontend
npm run start --workspace=chapter6-simple-frontend

Measure the performance again:



There is no more purple stuff in the React-related JavaScript execution. And it's slightly
faster now - 142 ms instead of 180. This might not seem like much now, especially
considering that LCP was triggered before. But it's not always going to stay like this.

Try, for example, unchecking the "disable network cache" and removing Network
throttling while keeping the CPU down. Emulating repeated visitors with fast internet
but slow devices. For me, without hydration, it separates FCP from LCP and pushes the
LCP beyond the JavaScript task at the very end. LCP, in this case, is around 550 ms.
With hydration enabled, LCP moves closer to FCP and hovers around 280 ms, right at
the beginning of the JavaScript task.

There is also the matter of blocking the main thread and reducing it as much as possible,
which Hydration helps with. But we'll cover it in more detail in the next chapters.

Finally, hydration can be not only about JavaScript listeners. It also allows fetching and
injecting some initial data into the app, so we can avoid loading spinners or flashes of
content. We'll cover this in more detail in a dedicated data-fetching chapter.



Should I Implement SSR Like This?
Now that it seems obvious that SSR might be very, very useful for certain cases, and
implementing it seems kinda trivial, the question might arise: can I just use the code
from the Study Project and implement my own SSR?

The answer will be very rare for this book: absolutely not! The solution is fine for study
purposes, to explore how pre-rendered content behaves from different perspectives
while turning on and off one thing.

But it's actually not trivial at all. I hid half of the things I had to do to make it work. And
half of the things have not been implemented yet. It's a very basic and almost deprecated
version of the backend that doesn't support the latest React features.

For example, there is no SSR for the dev server here. So, there is no way to debug the
SSR other than constantly rebuilding the project. That's half the reason you had to
rebuild it all the time to apply changes, by the way. (The other half is because
performance should always be measured on the production build, so I don't feel
particularly guilty about it).

If you want nice things like hot reload, then you have to implement it by yourself. There
is a whole large set of instructions[71] on how to integrate SSR with Vite properly. And
that's Vite, for Webpack it will be very different and likely not very well documented. For
something more exotic, I don't even know where to start.

Also, the pretty string const html = renderToString(<App />);  that I showed from the React docs
is a myth and is never actually going to work by default. The problem here is this part - 
<App /> . This is JSX, it's how we write React code most of the time, so it seems so normal
now. But the only reason why it works is because your build system has a
transformation step, which is likely (or maybe not, it always depends) powered by Babel.
"Pure" Node or any other server framework won't support it.

Look into src/chapter6-intro-to-ssr/simple-frontend/server/pre-render.ts  to see how it's actually
implemented.

First, I extracted the transformed App  code from Vite itself:



const { default: App } = await vite.ssrLoadModule(p.join(process.cwd(), 'App.tsx'));

If you're using Webpack, you'll likely need to manually configure and register Babel
plugins for that. So, even the very first step would mean you need to have an
understanding of what is happening here and how to implement it for your app.

The second step, the actual renderToString :

const reactHtml = renderToString(React.createElement(App, { ssrPath: path }));

Still doesn't look like the docs - JSX support for the backend file is not the same as
extracting it from Vite. I'm using native React syntax here.

Also, if you read the docs, you'll notice that renderToString  doesn't support streaming and
waiting for data[72].

So, to actually implement proper SSR, you'd need to understand whether you need those
new features in your app or not. And if yes, how to implement them on the backend.
There is some documentation[73] for the recommended method and also a few[74]

discussion threads[75] on GitHub on the topic, so at least it's a start.

But it's a lot of work. The things mentioned are just the beginning, and before you know
it, you're three months behind on the project and basically implementing your own
Next.js. Why do you think there aren't that many competitors to it?

So, unless there is a very valid business reason and a lot of support in terms of time,
resources, and expertise for this, it might be easier just to use an already existing SSR
framework. Especially considering that the backend part here is only one piece of the
puzzle. There is also a lot of complexity involved on the front side.

SSR and Frontend
Depending on the size of the app and how optimized it is for SSR, it might be even more
complicated than the backend part. Yep, you heard me right, that's another thing I hid
from you while implementing the SSR above: we need to make changes to our frontend



code as well.

Browser API and SSR

Remember how I extracted the HTML that is sent to the browser? I generated a string
with React's renderToString  and then injected that string into another string. There was no
browser in the vicinity of this process, and there never will be.

What do you think will happen to all the calls to the browser variables that we're so used
to on the frontend? All those window.location  and window.history  and document.getElementById ?
Nothing good. window , document , etc., will turn into undefined . There is no browser that can
inject them into the global scope.

So, the second React tries to call a function (i.e., render a component) that tries to access
them directly, it will fail with the window is not defined  error. The entire app will just
explode. Not just explode. The server part will explode, which is even worse - there won't
be any chance for the frontend part to catch the error and show some pretty screen with
"we're working on it, here's a cookie". Error handling would need to be handled on the
server, and you'd have to have a special "server" error screen.

Additional Challenge.

Try to add a simple console.info(window.location);  to any part of the frontend code,
for example, here: src/chapter6-intro-to-ssr/simple-frontend/App.tsx .

Rebuild the app and restart it.

You should see the Internal Server Error  string on the screen.

Can you come up with a way to fix it?

A typical way to fix it would be to check whether the window  and all other global variables
are declared before trying to access them:

if (typeof window !== 'undefined') {
  // do something when the global window API is available
}



If you look at the code in frontend/utils/use-client-router.tsx , this is exactly what I had to do.
And I would have to do this any time I need to access window , document , or anything else at
runtime.

useEffect and SSR

And speaking of the use-client-router  file. If you look closely, you'll see that I didn't have to
do that check for typeof window  inside useEffect :

useEffect(() => {
  const handlePopState = () => {
    setPath(window.location.pathname);
  };
  window.addEventListener('popstate', handlePopState);
  return () => window.removeEventListener('popstate', handlePopState);
}, []);

This is because when running on the server (i.e., via renderToString  and friends), React
doesn't trigger useEffect . And useLayoutEffect,  for that matter. Those hooks will run only on
the client after hydration happens. Take a look at this short explanation[76] and some
lengthy discussion[77] on the topic from the core React team members if you want more
details on the reasoning for this behavior.

So it's definitely something to keep in mind in case you're expecting some UI changes as
a result of useEffect  - they will cause a "flash" of content when the JavaScript is loaded.

Conditional SSR Rendering is a Big No

Some parts of your code might have so many dependencies on the browser API that you
might think it's easier just to skip rendering that part entirely while in SSR mode. The
natural temptation would be to do something like this:

const Component = () => {
  // don't render anything while in SSR mode
  if (typeof window === "undefined") return null;

  // render stuff when the Client mode kicks in
  return ...
}



Nope. That's not going to work. Or, more precisely, it will. But it will confuse React big
time. React expects that the HTML produced by the "server" code is exactly the same
as the HTML produced by the client code.

It will confuse it so much that it will just fall back to the Client-Side Rendering pattern.
I.e., it will erase the entire content of the "root" div and replace it with the freshly
generated elements. It will behave as if the hydration never happened, with all the
downsides that come with that.

Additional Challenge.

1. Somewhere in ./pages/dashboard.tsx  (or anywhere else you like), create a 
ClientOnlyButton  component with the code:

const ClientOnlyButton = () => {
  if (typeof window === 'undefined') return null;
  return <button>Button</button>;
};

1. Render it somewhere on the page.

2. Rebuild and restart the project as usual.

3. Record the performance profile. It should show the picture we saw when
hydration was not implemented yet, with Layout blocks inside the React
JavaScript task.

If you're lucky! Sometimes it can just introduce really weird layouting bugs[78] instead,
so the website will look completely broken.

The correct way to do this is to rely on React's lifecycle to "hide" the non-SSR compatible
blocks. For this, we need to introduce a state and track whether a component is
mounted or not:

const Component = () => {
  // initially, it's not mounted
  const [isMounted, setIsMounted] = useState(false);
};



Then flip this state to true  when the component has been mounted, i.e., inside a 
useEffect :

const Component = () => {
  // initially, it's not mounted
  const [isMounted, setIsMounted] = useState(false);

  useEffect(() => {
    setIsMounted(true);
  }, []);
};

Remember: useEffect  doesn't run on the server, so the state will turn true  only when the
client-side version of the website is fully initialized by React.

And finally, render what we wanted to render that is not SSR compatible:

const Component = () => {
  // initially, it's not mounted
  const [isMounted, setIsMounted] = useState(false);

  useEffect(() => {
    setIsMounted(true);
  }, []);

  // don't render anything while in SSR mode
  if (!isMounted) return null;

  // render stuff when the Client mode kicks in
  return ...
}

Additional Challenge.

Rewrite the ClientOnlyButton  from the previous exercise to work correctly with
SSR.

Rebuild and restart the project as usual.

Record the performance profile. It should revert to the SSRed look.



Third-party Libraries

Not all of your external dependencies will be supportive of SSR. It's always a gamble
with libraries. For some of them, you'll be able to opt out of SSR using the solution
above. Some of them will be rejected by the bundler, so you'll have to import them
dynamically after the client-side JavaScript is loaded. Some of them you'll need to
remove from the project and replace with a more SSR-friendly library.

This is going to be especially painful if the non-SSR-compatible library is something
fundamental to the entire project. Like a state-management solution or a CSS-in-JS
solution.

For example, try to use Material UI icons somewhere in the Study project:

// anywhere, for example, in src/chapter6-intro-to-ssr/simple-frontend/App.tsx
import { Star } from '@mui/icons-material';

function App() {
  // the rest of the code is the same
  return (
    <>
      ...
      <Star />
    </>
  );
}

Rebuild it and restart it - you should see that the SSR collapsed with:

[vite] (ssr) Error when evaluating SSR module ...: deepmerge is not a function

Have fun figuring out how to fix it ई

Static Site Generation (SSG)
Okay, let's assume that we absolutely have to have "proper" server-rendered pages and
we're ready to deal with the consequences on the frontend for this. For example, we're



implementing a fancy "promo" website. Those obviously need to be indexed by all
possible search engines as fast as possible and should be shareable via everything that
can share a link. That's the whole point of a website like this.

Let's also assume that all the info on the website is "static", i.e., there is no user-
generated content, no permissions to take into account, no complicated data generation
per request. The website is just a few pages that introduce the product, some standard
pages like "Terms and Conditions", and a blog that is updated once a week.

This situation is a rare use case where we can have our cake and eat it too. We already
know that pre-rendering the website on the server is relatively easy. It's simply a matter
of calling React.renderToString  on our app (more or less).

So, the big question here is: what stops us from running React.renderToString  during build
time, right after we run npm run build --workspace=chapter6-simple-frontend ? In theory, we're pre-
rendering and sending a proper HTML page to the browser anyway. And the pre-
rendered content is always the same. We can probably just do it in advance, save it as a
bunch of actual HTML  files, like in the good old days, and save ourselves the pain of having
a "proper" server. Right?

The answer: there is absolutely nothing that stops us from doing that. Try running this:

npm run build:ssg --workspace=chapter6-simple-frontend

It will first build our website the usual way with Vite, and then run a very primitive
script ( src/chapter6-intro-to-ssr/simple-frontend/server/generate-static-pages.ts ) that replaces the
empty <div id="root"></div>  with the content generated by renderToString . Exactly what the
server does. Only now, we no longer need the server.

Take a look at the built files in the dist  folder. You'll see two additional files: login.html
and settings.html . Open any of the HTML files - you'll see that <div id="root">  is filled with
content.

This is our "static" website, which we can start with absolutely any web server:

npx serve src/chapter6-intro-to-ssr/simple-frontend/dist



Or upload it pretty much anywhere, same as any Client-Side Rendered app. Only this
time it won't have CSR downsides, all search engines will be able to index it properly
right away, and social media shares will work beautifully.

Static websites are so good that they even have their own three-letter abbreviation: SSG
(Static Site Generation). And of course, there are plenty of frameworks that generate
them for you, no need for manual labour: Next.js supports SSG[79], Gatsby[80] is still
pretty popular, lots of people love Docusaurus[81], Astro[82] promises the best
performance, and probably many more.

What's Next?
The idea of generating parts of a React application during server time or even during
build time is pretty powerful. We'll be returning to those concepts in the next chapters
from time to time. Starting from the next chapter right away, where we'll take a look at
how the size of JavaScript affects performance with and without SSR.



7. Bundle Size and What to Do About It

Until this moment, we were just writing our React code without much concern for the
size of the JavaScript we're producing. But if you read any performance-related
discussions on the Internet, the issue of bundle size and how to reduce it dominates the
conversation. And even without participating in those discussions, having a few
megabytes of JavaScript on the page just feels wrong.

But why exactly is this the case? How much of an impact does it have? And most
importantly, if I decide to reduce the bundle size, how do I do that, and what
improvements can I expect?

Let's investigate!

Initial Setup
First of all, let's set up the Baseline Project. We're going to use it to compare the impact.
We can use the project from the previous chapter for this. First of all, build it with:

npm run build --workspace=chapter6-simple-frontend

Notice the size of the JavaScript it produces:

390.98 kB │ gzip: 141.43 kB

Run it like this:

npm run start --workspace=chapter6-simple-frontend -- port=1234

So that we can access it via http://localhost:1234  and run it with this chapter's Study



Project in parallel.

Now to this chapter's Study Project. Build it:

npm run build --workspace=chapter7-simple-frontend

Write down the JavaScript size:

5,321.89 kB │ gzip: 1,146.59 kB

Fall to the floor in disbelief. More than 5 megabytes! Good Lord ૿ What exactly did
you implement there, you might ask, and did it take more than a year? That surely took
some effort and talent! ૺ

The answer: just added one form and another simple page with not that much
functionality and less than an hour. It's actually incredibly easy to make a small mistake
here and there and explode your JavaScript beyond reason. You'll see how and why
while reading the chapter. For now, let's start the project and peek into the changes:

npm run start --workspace=chapter7-simple-frontend

First, open the Settings page and switch to the "Personal Profile" tab. There is a nice
form there now.

Second, click on "Inbox" in the navigation - it's another nice page with a list of
messages. Clicking on any of the messages will open a drawer with an editor. It's even
semi-functional, some of the buttons will work ࣥ. If you hover over messages in the
list, a row of buttons appears. Clicking on "Delete" or "Archive" opens the respective
modal dialogs.

That's it. The rest is exactly the same as before! Including the "Home" page, which is
identical to the Chapter 4 Study Project. This makes it ideal for measuring the impact of
these five megabytes of JavaScript.



Bundle Size and Network
The most intuitive and most noticeable impact of those 5 MB of JavaScript will be, of
course, the download time. Open both the baseline project and Chapter 5 project
together, open the Performance panel, check the "Disable network cache" to imitate the
first-time visitor, set the Network throttling to some reasonable speed, and refresh the
page.

Even with "Fast 4G", the difference will be drastic: 0.88 s vs 6 s LCP for me. On
Chrome's default 3G setting, you'll probably fall asleep before the website completely
loads. Seriously, I gave up after 80 seconds of loading. If a website seriously intends to
serve users 5 MB of uncompressed render-blocking JavaScript, it better pay them for
every visit.

Bundle Size and Compression

Speaking of uncompressed. Until now, we've been measuring the actual size of the files
produced by the production build. But in real life, when sending those files to the user,
we often would first compress them with something like gzip[83] or brotli[84].

In the src/chapter7-bundle-size/simple-frontend/server/index.ts  file, find the app.use(compress());  line
and uncomment it. This will enable gzip  compression for all of the assets in the app.
Open the network panel now and take a peek at the size of the files that are served to the
browser:

The JavaScript file is now 1.1 MB; the rest of them have also shrunk. At the bottom,



you'll see that we "only" have 1.2 MB transferred. The improvements to LCP are huge:
on fast 4G, it dropped from 6 seconds to just 1.73, which is actually in the "good"
category. On 3G, it's still sad, though - almost 30 seconds for me. So still needs
improvement.

Some (if not most) of the hosting providers have compression enabled by default, by the
way. Especially if you use a CDN. So, chances are, your website already has it enabled. If
it doesn't, for some reason, enable it immediately. As you can see, it can drastically boost
your performance numbers.

Compression is also very important to take into account for any efforts to reduce bundle
size. Reducing JavaScript size by 200 KB, while it seems impressive, could result in just
a 40 KB decrease in the transferred size. Which will have a much lesser impact (if any)
on the initial load than one might hope for when they hear the "200 KB" number.

As a downside, this makes the cost of adding yet another small library to the bundle
almost negligible. After all, if it solves a Huge Problem right now, and it's only 30 KB of
uncompressed JavaScript, where's the harm? It probably won't even move the LCP
metric. Left unchecked, and six months later, you wake up to 5 MB of uncompressed
JavaScript and the need to push for yet another "let's reduce our bundle sizes" initiative
for the entire organization.

Fortunately, there are two more arguments in favor of keeping the JavaScript size small
that can help with that. And sometimes, they can be even more important.

Bundle Size and JavaScript Evaluation Time
After the browser downloads the JavaScript, it needs to evaluate and execute it. My gut
feeling tells me that the more JavaScript it has, the harder and slower this process is
going to be. Let's check?

Open the tab with the Baseline Project we started earlier, get rid of all the Network
throttling, uncheck the "disable cache" checkbox, and instead set the CPU throttling to
6x slowdown. This will imitate repeated visitors on slow devices. Record the initial load
performance graph. It should look something like this:



There will be yellow JavaScript bars followed by the LCP metric - our usual Client-Side
rendering pattern. The first bar is the Evaluate[85] task - this is when the browser
processes all the downloaded JavaScript and prepares it to be executed. The second bar
is exactly that - the browser executes the JavaScript from the first task. If you click on it,
you'll see in the Summary tab that it originated from the index.js  file. The first one
didn't.

The first yellow task takes around 45 ms, the second around 270 ms for me. Your
numbers might be different.

Now open the tab with this chapter's Study Project (the one with 5 MB JavaScript), and
record the same profile on the same page with the same settings. The picture should
look something like this now:

Still the same two yellow bars of JavaScript followed by the LCP metric. Only this time,
the first task takes around 740 ms. Almost 16 times longer! The second task stays
unchanged and hovers around 270 ms.

This is the cost of too much JavaScript right there. The page is exactly the same, the



code for it is exactly the same, but all this JavaScript that is never even used on this page
is slowing it down.

In a way, this slowing down is even more important than the network cost, even though
it seems insignificant in comparison. The network costs users will pay only once, the
very first time they visit the website. After that, the static resources should be cached by
the browser. However, the slow Evaluate task will happen on every visit.

Bundle Size and SSR
The combined effect of slow Network and/or low CPU makes large bundle sizes very
problematic for SSR. Which is a bit counterintuitive - isn't SSR great for performance in
most cases, like we proved in the previous chapter? Let's see for ourselves.

Navigate to src/chapter7-bundle-size/simple-frontend/server/index.ts  and uncomment the row that
enables SSR:

return c.html(preRenderApp(html, c.req.path));

Now open the Performance panel again, enable CPU throttling, and set Network
throttling to slow 4G. Start the Performance recording, and as soon as the page shows
up, try to trigger the toggle at the top right or open a menu by clicking the three dots
button. It won't work for a while. Can you guess why?

The answer is in the Performance profile.



At first, as usual for SSR, we have the HTML downloading, then the CSS/JS download is
triggered, and then LCP happens. The page is visible now. Since the setting is 4G, all of
this happened relatively quickly, the LCP value is around 1.5 ms. But then, we have a
loooooooong yellow bar (almost 6 seconds) of JavaScript downloading. After that,
almost a second is spent processing and executing JavaScript. Only after the JavaScript
is executed is hydration done, and all the event listeners are attached.

During these 7 seconds, there is no JavaScript on the page. It's just pure pre-rendered
HTML. The only things that will work are links and native CSS things like focus selectors
and animations, if they are present. The page seems very fast, but in reality, it is broken
for 6 seconds. And that's a 4G setting! Set it to "3G", and you'll probably be able to take a
nap before the website becomes functional.

This time when the page becomes fully interactive is known as the Time To Interactive
(TTI)[86] metric. Unfortunately, it was removed from Lighthouse and Core Web Vitals,
but it's still a useful metric to measure and take into account when analyzing the
performance of an SSR-ed website.

Comment out the SSR part back - we'll be dealing with Client-Side rendering for the rest
of the chapter, for simplicity.

Reducing Bundle Size with Code Splitting



Now that we know the impact huge bundle sizes can have on our website's performance,
it's time to do something about those 5 MB of JavaScript. There are multiple tools and
techniques for that. We'll start with Code Splitting.

The idea behind Code Splitting is this. Let's say we have 5 MB of JavaScript we need to
send to the browser. If those 5 MB are packed into just one file, as it is now,
downloading it will take more than a minute. As we've seen. However, browsers can
send requests in parallel. What if we split that huge file into several files and request
them at the same time? In theory, the download time should shrink.

However, we can't just cut that file into 10 random pieces - that's not how JavaScript
works. We need to split it into isolated, independent modules, for starters, and then
make sure those modules can call functions from other modules.

Doing this manually would be a huge headache. But luckily, we don't have to: modern
bundlers can do it for us. They can trace all the dependencies and imports of all the code
we ask them to compile, build a huge dependency tree out of it, and then slice and dice
that graph in any way we want.

Those smaller pieces are known as "chunks". Some of the bundlers will create them
automatically without your control to simplify the configuration. Some of them, like
Vite, the bundler that the Study Project is using, have a simple configuration[87] that
gives you some way to control it. Some, like Webpack,[88] give you absolute freedom to
build as robust a Chunking Strategy as you want, and you can even configure it so that it
splits the JS into chunks automatically when it becomes too big.

Let's try the manual approach first. We need to understand what strategies and best
practices are possible, and why, before we can delegate that job to the advanced
frameworks.

"Vendor" Chunks

The very first thing to do when starting on the code splitting path is to separate the
"app" code - everything you write in your repo, from the "vendor" code - everything you
use as a dependency. There are two reasons for that. First, of course, is the code splitting
itself: the parallelization of the requests idea.



The second reason is the file names and caching. As you hopefully remember from the
previous chapters, modern tools will generate file names with hashes in them by default.
I.e., our index.js  file in reality will look like index.blabla.js , where the blabla  part is a hash
value[89] of the file content. It only changes when the file's content changes.

If the entire app's code, including libraries like React itself, is bundled together in just
one file, the file will change every time you change something in the app. This is terrible
for the initial load since we can't rely on browser caching in this case. Every time there is
a deployment, the large JavaScript file gets a new name, and all your users are
downgraded to first-time visitors from a performance perspective.

Additional Challenge.

1. Build the Study Project.

2. Navigate to the dist/client  folder. In the assets  folder, you should see a
JavaScript file with a hash in its name.

3. Remember the name of the file and delete the dist  folder.

4. Rebuild the project again.

5. The file's name should be the same since the content hasn't changed.

6. Try to add anything to the project, a simple console.log('bla')  in the App.tsx  file
would do.

7. Rebuild the project again.

8. The file's name will change.

If, however, we extract the dependencies part into vendor.ayayay.js , this file will change
only when you update your dependencies. Which happens much more rarely than
writing regular code. As a result, the browsers will be able to cache that file for much
longer.

Different bundlers will have different ways of configuring it with different granularities.
In Vite, the bundler we use for the Study project, we can do this by configuring manual
chunks via Rollup[90]. Open the vite.config.ts  file at the root of the Study Project and find
and uncomment this code:



manualChunks: (id) => {
  if (id.includes('node_modules')) {
    return 'vendor';
  }

  return null;
};

The id  here is the absolute path of all the files included in your project, including
everything installed in node_modules , our external dependencies. As you can see, we're
commanding Vite to group everything that includes node_modules  in their file path under
the vendor  name.

Now rebuild the project. For the fun of it, you can include console.log(id)  inside that
configuration and see for yourself all the files it needs to process to build our beautiful
app.

After rebuilding, peek into the dist/client  folder. In the assets , you should now see two
JavaScript files: vendor.smth.js  and index.bla.js . Remember the exact names the bundler
produced. Now, make some changes to the app's code and rebuild the project again.
Only the index.bla.js  file's name should change. The vendor.smth.js  stays the same.

Additional Challenge.

1. Launch the project.

2. Open DevTools, navigate to the Network panel, make sure that the "disable
cache" checkbox is turned off, and refresh the page.

3. Both index  and vendor  files should have (disk cache)  or (memory cache)  in the Size
column - they were cached.

4. Now keep the project launched, make some changes in the app, and rebuild it in
a separate terminal window.

5. Refresh the page.

6. Only the index  file should be downloaded. The vendor  file stays cached.

7. Slow down the Network and measure performance for both scenarios, and for
the same scenarios without the vendor chunk, to compare the difference.



Funnily enough, if you measure the JavaScript compile time with and without the vendor
chunk, you'll see that just adding the vendor  chunk reduces it by half. So we're improving
performance on two fronts here.

We can make those chunks as granular as we want. We could, for example, try to extract
everything that is considered "design systems", i.e., buttons, checkboxes, modal dialogs,
etc., into their own chunk.

manualChunks: (id) => {
  // everything that is inside this folder, will end up in its own chunk
  if (id.includes('frontend/components')) {
    return 'components';
  }

  return null;
};

Split the code per page or even per feature:

manualChunks: (id) => {
  // The code for the dashboard page will end up in its own chunk
  if (id.includes('/pages/dashboard')) {
    return 'dashboard';
  }

  return null;
};

Or even extract certain libraries into their own chunk if we know that some of them are
heavy:

manualChunks: (id) => {
  if (id.includes('node_modules')) {
    // All external dependencies will go into "vendor" except for Radix UI
    if (id.includes('@radix')) {
      return 'radix';
    }
    return 'vendor';
  }
  return null;
};



Additional Challenge.

1. Go to the frontend/components/button/index.tsx  file, it's a normal Button component
that is used everywhere in the code.

2. Add a console.log somewhere there with some unique string that you can search
for, for example, console.log('Some identifiable string');

3. Delete the dist  folder in the Study Project, remove all the chunks from the 
vite.config.ts , and rebuild the project. The build should produce only one 
index.bla.js  file.

4. Search for the string you put in the button component - it should be present in
this index  file.

5. Add the "vendor" chunk as described above, delete the dist  folder, and rebuild
the project.

6. The string (and the button itself) should still end up in the index  file, with the 
vendor  chunk containing the majority of JavaScript.

7. Add the "components" chunk as described above, delete the dist  folder, and
rebuild the project again. The button and your unique string should end up in
the components  chunk now.

8. Pay attention to the sizes of all the chunks and how they are changing depending
on the configuration.

Developing a good chunking strategy for your own application is going to be a lot of trial
and error and will largely depend on how many external dependencies you have and
how you write your code. There are, however, a few things to watch out for while
experimenting with chunks.

Chunks Preloading

All those "manual" chunks, regardless of the tool, will be preloaded as critical resources
in one way or another. If you implement some of the chunking strategies from above,
build the project, and sneak peek into the generated index.html  file. You'll see that every
one of those chunks, except for the default index , ends up inside the <head>  as <link 
rel="modulepreload" /> .



<script type="module" crossorigin src="/assets/index-pLa1GZqS.js"></script>
<link rel="modulepreload" crossorigin href="/assets/vendor-DIQ9qPEN.js" />

This allows the browser to fetch and compile[91] all this JavaScript in parallel, which is
good. However, we didn't indicate to the bundler which of those chunks are not really
critical for the initial render. So the browser has no choice but to wait for all of them to
render our Study Project.

If you start the project, check the "disable cache" checkbox, and record the initial load
performance, you'll see that the structure and order of the bars didn't change. There will
still be a long wait for JavaScript download, and then compile/execution bars. Only after
that will the UI show up, and the LCP value will be triggered. It's just that instead of one
very long yellow JavaScript bar, there will be a few shorter ones in parallel.

There are a few more things to pay attention to here.

HTTP/1 vs Others

First of all, the HTTP/1 vs HTTP/2 vs HTTP/3[92] protocol and concurrent connections.
If your website still uses the HTTP1 protocol[93], the browsers will impose limits on
concurrent connections per domain. In Chrome, for example, it's just six requests from
the same domain in parallel.

So if you try to preload too many resources like this, and your website uses an HTTP/1
server, the browser will have no choice but to delay the downloads of other resources.
Including critical CSS files!

You can see this effect for yourself if you introduce more than six chunks into the Study
Project. Try, for example, something like this:

manualChunks: (id) => {
  if (id.includes('node_modules')) {
    return 'vendor';
  }

  if (id.includes('frontend/components')) {
    return 'components';
  }



  if (id.includes('pages/inbox')) {
    return 'inbox';
  }

  if (id.includes('pages/dashboard')) {
    return 'dashboard';
  }

  if (id.includes('pages/login')) {
    return 'login';
  }

  if (id.includes('pages/settings')) {
    return 'settings';
  }

  if (id.includes('frontend/patterns')) {
    return 'patterns';
  }

  return null;
};

It will extract chunks for vendor, components, patterns, and every page in the app - 8
chunks in total. Build the project, start it, record the performance profile, and look at
what is happening in the Network section of it:

There are only six JavaScript chunks requested first. The download of the inbox  and 
settings  chunks is triggered only when one of the previous chunks stops downloading.



And what's worse, the CSS file is also delayed! So if the page was SSRed, splitting
JavaScript into chunks here would've delayed the initial load because of the CSS file, and
as a result, we'd make our performance numbers worse.

How much of a problem is it in real life, though?

Limits like this are only for the HTTP/1 protocol. HTTP/2 and HTTP/3 can handle
many more requests in parallel. According to Cloudflare statistics[94] from 2022-2023,
HTTP/1 is used in about 10% of the traffic that goes through them. I checked a few other
CDN providers, and all of them seemed to be either on HTTP/2 or HTTP/3 by default.
So chances are, your "production" website is fine if it uses a CDN.

Our local website, however, was using HTTP/1 by default. HTTP/2[95] needs to be
implemented separately if I want to see it locally. The same story with Express[96] (a
very popular Node framework) and even with everyone's favorite Next.js[97]. So, even if
your "production" website is fine, your local environment will likely not be.

This raises a very interesting problem. If you're not aware of this difference and start
experimenting with different chunking strategies and load orders locally, for the
purpose of improving initial load, you might see exactly zero gains from those
experiments in production. Or the opposite - locally it might seem like not a good idea
(like creating more chunks), but in production, you'll see a massive improvement.

Chunk Sizes

There is another downside to splitting our code into too many chunks. The compression
ratio actually decreases[98] as the chunks become smaller. So, the overall network
transfer of compressed JavaScript might increase, even if the initial load decreases. This
may be important for users with limited bandwidth, especially those using mobile
devices.

Unnecessary Code Is Still Loaded

There is another problem with over-relying on splitting code into chunks manually like
this. We're still loading a massive amount of unnecessary JavaScript on the user's
critical path. There is no way a simple dashboard like ours actually needs all those 5 MB.
There are also multiple pages on the website, like "Inbox" or "Login". We don't need to



load them to show the dashboard.

If we just delay loading those pages and all the libraries that are not necessary for the
dashboard page, surely the initial load would improve?

This is where the concept of "dynamic import"[99] comes in, which is the ability to do
exactly that - load JavaScript modules "on the fly".

However, it's not as simple as just loading everything that we can "dynamically".
Introducing dynamic imports comes with its own complexity and trade-offs. And more
importantly, we still need to know what exactly should be extracted into a "dynamic"
load.

If you implemented the "vendor" chunk, take a peek into the dist  folder and notice the
sizes of the produced chunks. You'll have a small-ish index  file and a 5 MB vendor  file. A
good chunk size[100] is around 50-100 KB, anything else needs to be split. So there is not
much point in splitting the index  file here, whether manually or dynamically, while we
still have 5 MB of dependencies left.

What I'm leading to here is that it's time to understand how we ended up with this
outrageous amount of JavaScript in the first place. Maybe we can just get rid of most of
it and won't need to do any more code splitting at all? We'll return to the dynamic
imports after we slim down the bundle a bit.

Analyzing Bundle Size
Okay, so how exactly did we end up with 5 MB of JavaScript in the Study Project? If you
implemented any of the chunking strategies from above, let's get rid of them and leave
only "vendor" and "index" chunks:

manualChunks: (id) => {
  if (id.includes('node_modules')) {
    return 'vendor';
  }

  return null;
};



This will produce two JavaScript files: one with all the external dependencies and one
with all the code we wrote. The "vendor" file is the biggest offender, with 5 MB of
minified JavaScript, so let's look into that one first.

By "look", I don't mean actually opening it in the IDE and staring at it. While we can
certainly do that, it will give us exactly zero information and might even cause a
headache.

This is the job of the tools known as "bundle analyzers". For our Study Project, we'll use
a "Rollup Plugin Visualizer"[101] library. If you're using a different bundler for your
project, just google "name-of-your-bundler + bundle analyzer" - there are lots of them
out there.

In your Study Project, open the vite.config.ts  file and find and uncomment this code:

visualizer({
  filename: 'stats.html',
  emitFile: true,
  template: 'treemap',
});

It will enable the analyzer. Rebuild the project and take a look inside the dist/client
folder. There should be a stats.html  file there. Open it in your browser and wait until it
fully loads (might take a while!). When it finishes loading, it should show a graph like
this:



It's a hierarchical visualization of every single JavaScript file in the project. It starts from
the "root" at the very top - this is the root of the project, i.e., our dist  folder. Inside,
there are two blocks:

The largest red-ish one is assets/vendor  - this is our vendor chunk.
The teal at the left is assets/index  - this is our own code.

The size of the blocks is relative to the size of the code, so it's pretty obvious from even a
brief glance at the picture that the "index" is tiny compared to the red "vendor". Inside
the vendor  block, there is a node_modules  block, different libraries, and so on, and every file
is grouped by the file path parts.

Hovering over every block will give you the exact path.

Clicking on any block allows you to "zoom in" and peek at what's inside.

Additional Challenge.

Click on the node_modules  block - it will eliminate the visual distraction of the teal
block on the left.

Click on the @mui  block - it will zoom in on what is bundled from the @mui  library.

Click on the material  block inside - those are components inside that library.



Click on any of the blocks inside to zoom in even further.

Click on the node_modules  block again to zoom out back to the content of the entire 
node_modules .

If you want to have more fun with it, you can generate different types of visualization.
For example, if you change the config to this:

visualizer({
  filename: 'stats.html',
  emitFile: true,
  // different types of visualizations
  template: 'flamegraph',
});

And rebuild the project, it will give you an already familiar Flame Graph instead of this
two-dimensional map.

After you have the visualization, it's a matter of putting your detective hat on and
starting the investigation. Usually, it just means staring at the map until your eyes are
watering, noticing unreasonably large areas, recognizing the library from it (or googling
it if you have no idea), then going through the code and trying to understand whether
you can remove the usages of this library and what it will cost.

Let's do it together to understand the process. We'll follow this process for every package
we're going to investigate.

Investigation Process

Step 1: Identify a Package to Eliminate

The very first huge block that I immediately notice here is everything under the @mui  title
inside the node_modules  block, which contains a number of npm packages installed as the
project dependencies. And we know naming convention[102] for npm packages - it's
either one word (with dashes), or two words separated by / , where the first word is a
namespace and starts with @ . So everything directly under the node_modules  title is either a
package or a namespace for multiple packages.



Since @mui  starts with @ , it's a namespace, and everything directly under it will be a
package. This gives us two packages: @mui/material  and @mui/icons-material .

Everything inside is the content of those packages.

Step 2: Understand the Package

Quick googling tells us what those packages are: the material  package is Google's
Material UI[103] components library, and icons-material  is a set of icons[104] for this library
that is installed separately.

If we zoom in on the "material" package, we'll see that it includes all of the possible
components. I can see Snap, Alert, Tooltip, etc - hundreds of them. The same story if I
zoom in on the "icons-material" block - looks like the entire set of 2000 icons is included
in the bundle.

No wonder the bundle is 5 MB!

Step 3: Understand the Usage of the Package

For this step, we need to read a lot of code - we need to understand where exactly those
packages are coming from. The very first thing we can confirm is whether we're using
those packages directly in our code or if something else is using them indirectly. Luckily,



for those two, it's easy: we just need to do a text search across the code inside the frontend
and src  folders for @mui  - those are the only places where we have our frontend code.

The search will give us two files: frontend/icons/index.tsx  has an import from "@mui/icons-
material" , and frontend/utils/ui-wrappers.tsx  imports from "@mui/material" .

The code that uses the icons looks like this:

import * as Material from "@mui/icons-material";

export const Icons = {
  ...Material,
  BellIcon,
  ... // other icons
};

Clearly, someone was trying to unify the usage of all the icons in the project. The intent
here likely was that all the icons would be grouped under the same Icons  namespace,
with the assumption that it would help reduce the chance of having icons with the same
name in the project and make it easier in the future to move icons to a new library if
there is a need. With a pattern like this, in the code you wouldn't import icons directly
from "@mui/icons-material" , but rather import them all from this file and use them like this: 
<Icons.BellIcon /> .

If you do the search through the project for Icons.  (the dot at the end allows us to narrow
it down), you'll see that this is exactly what is happening in three files: two dialogs and a
message-list component. Or you can search for "usages" if your IDE supports that, of
course.

In theory, it's quite a noble idea, and indeed would've made future refactoring much
easier - you'd need to refactor just one file if you want to replace the icons, and the rest
of the code wouldn't even know that something changed. Plus, it makes it super easy to
see which icons are available in the project via autocomplete (if your IDE supports it).

In practice, we ended up with two thousand icons in our bundle ई.

And exactly the same story with the "material" library usage:



import * as Material from '@mui/material';

export const StudyUi = {
  Library: Material,
  Button: Button,
};

Someone wanted to expose all the available components through a unified interface,
probably for exactly the same reason as the icons. That's one of the reasons why we're
investigating them together here ढ Search for StudyUi.Library  to confirm that this is
indeed what is used somewhere in the code.

Step 4: Confirm That This Is the Problem

Before attempting any refactorings, which in real life could be very costly, we first need
to confirm that we have identified the problem correctly.

For now, let's just comment out the import part for both of those libraries.

// Just comment out those imports everywhere

// import * as Material from "@mui/material";

// import * as Material from "@mui/icons-material";

And then rebuild the project. It won't start since we haven't fixed the usage of those
libraries yet. But it will be enough to see whether the bundle size has reduced or not, and
confirm whether those imports were the problem.

And indeed it works! The "vendor" file shrunk from 5 MB to 811 KB, and the
visualization now looks like this:



The teal "index" chunk is much more visible since we shrunk the vendor  so much. There
are no more @mui  packages, and other libraries like prosemirror-view  and lodash  have
become much more visible.

Now, all we need to do as a final step is to fix the problem properly. But first, we need to
identify what the actual problem here is. Surely not everyone who uses MUI components
and icons ends up with 5 MB bundles because of them? No one would use them in this
case. So, something is wrong in our code.

To understand this, we need to know a concept known as "tree-shaking".

Tree Shaking and Dead Code Elimination
Modern bundlers not only merge JavaScript modules together. They also try to identify
and remove "dead code", i.e., the code that is not used anywhere. And they are pretty
good at it.

Try, for example, adding this code somewhere:

export const MyButton = () => <button>Click me</button>;



Let's say in frontend/components/button/index.tsx , where we keep all our buttons.

And then rebuild the project.

You should notice that the index  chunk stays with exactly the same name and exactly the
same size with or without this code. That's because we're not using this button
anywhere, it just sits there.

Now, try to add a new MyDialog  component somewhere in frontend/components/dialog/index.tsx
that uses this button:

import { MyButton } from '@fe/components/button';

export const MyDialog = () => {
  return (
    <>
      <MyButton />
      <div>My dialog</div>
    </>
  );
};

Then rebuild the project. The result should be exactly the same! Same name for the
chunk, same size. We still haven't used this code - the MyDialog  component still sits there
and does nothing. The bundler was able to detect that and got rid of both MyDialog  and 
MyButton  in the production files. Crazy smart, right?

Only when the component is used in the code that forms the app for real will it be
included. Try to render the MyDialog  somewhere inside App.tsx , for example:

import { MyDialog } from '@fe/components/dialog';

export default function App() {
  // keep the rest of the code as is
  if (path.startsWith('/settings')) {
    return (
      <>
        <SettingsPage />
        <MyDialog />
      </>
    );



  }
  // keep the rest of the code as is
}

And rebuild the project. The index  chunk name changes, the size slightly increases. You
can even open the index  chunk and search for the "Click me" string to verify that the new
button is included.

This process of eliminating unused code is known as "tree-shaking"[105].

It's called this way because the bundler creates an abstract "tree" from all the files and
exports/imports within the files, tracks down "alive" and "dead" branches of that tree,
and then removes the "dead" ones. Before we included the MyDialog  in App.tsx , the "tree"
would look something like this (simplified):

The index.tsx  file inside the frontend/components/dialog  folder exports multiple components,
including a generic Dialog  that is used in a few places. Our MyDialog , which is not used
anywhere, is marked in gray (i.e., a "dead branch"). The gray branches will be excluded
from the final bundle.

When we explicitly included MyDialog  in the App.tsx , the tree changed into this:



The MyDialog  branch is not dead anymore, and as a result, it's included in the bundle.

Modern bundlers are getting smarter and smarter, and it becomes harder and harder to
fool them when it comes to tree-shaking. It's still possible, however, for a determined
person ࣡

One of the things they can't deal with yet is the *  import in combination with renaming. 
*  import is this:

import * as Buttons from '@fe/components/button';

It's basically a command to import everything from the module and alias it as Buttons .
Then, we can use the buttons we need via dot notation:

<Buttons.SmallButton />

This pattern is quite popular, especially when there are many exports from one module,
when you want to avoid importing them one by one:

import { Button, SmallButton, LargeButton } from '@fe/components/button';



And by itself, this *  import is actually not enough to confuse the bundler - told ya they
are smart! However, when it's used as a variable, not just the means to extract what's
inside… The bundlers can't handle it yet.

This scenario is a classic example:

import * as Buttons from "@fe/components/button";
import * as Dialogs from "@fe/components/dialog";
// the rest of the components

export const Ui = {
  Buttons,
  Dialogs,
  ...
};

Try to add this code to the App.tsx  file instead of the previous example and render a
"normal" button using the dot pattern:

import * as Buttons from '@fe/components/button';
import * as Dialogs from '@fe/components/dialog';

export const Ui = {
  Buttons,
  Dialogs,
};

export default function App() {
  // keep the rest of the code as is
  if (path.startsWith('/settings')) {
    return (
      <>
        <SettingsPage />
        <Ui.Buttons.SmallButton />
      </>
    );
  }
  // keep the rest of the code as is
}

Then, rebuild the project, open the index  chunk inside the assets  folder, and search for
the "Click me" string - the string we used in our MyButton  button. Although we didn't use



the MyButton  explicitly, its code is now included there.

If you've never seen this pattern before, it might look a bit ridiculous. Why would
anyone do that?

One of the reasons namespacing like that gained popularity is because it allows for much
simpler imports and much more explicit code. For example, try putting this code in the 
index.tsx  file in frontend/components  and add the rest of the components from @fe/components  to
the imports there.

import * as Buttons from "@fe/components/button";
import * as Dialogs from "@fe/components/dialog";
// all other frontend components

export const Ui = {
  Buttons,
  Dialogs,
  ...
  // all other components
};

Now, I can collapse individual imports of components everywhere to just this:

import { Ui } from '@fe/components';

Look at the frontend/patterns/confirm-archive-dialog.tsx  file, for example. All of those:

import { NormalToLargeButton } from '@fe/components/button';
import { Dialog, DialogBody, DialogClose, DialogDescription, DialogFooter, DialogTitle } 
from '@fe/components/dialog';
// one million other imports

Could've been just import { Ui } from "@fe/components";

And everything else would've been used via a namespace:

<Ui.Dialogs.Dialog />



Many people love the clarity this pattern gives. For every component I use, I see where it
originated from immediately within the context of the function. Plus, no name
collisions, which is always nice.

But as a result, this pattern confuses the bundler, tree-shaking on this code doesn't
work, and our final JavaScript size is larger than it should be.

For our own code, this might not be that big of a deal - after all, everything that we write,
we write with the intention of using it. And one or two forgotten functions won't make
much of a difference.

When it comes to external libraries, however, it's a completely different story. Because
this is exactly the pattern we used for our @mui  components:

import * as Material from '@mui/material';

export const StudyUi = {
  Library: Material,
};

And icons:

import * as Material from "@mui/icons-material";

export const Icons = {
  ...Material,
  BellIcon,
  ... // other icons
};

The quick fix here, if we want to preserve the pattern and namespaces and avoid global
refactoring, is to get rid of the *  import and import only the components and icons we
use. Get rid of all the changes that we made in the frontend part of the project, and
instead do this:

// frontend/utils/ui-wrappers.tsx file

import { Button } from '@fe/components/button';
import { Snackbar } from '@mui/material';



export const StudyUi = {
  Library: {
    // this is the only component we use from the Material library
    Snackbar: Snackbar,
  },
  Button: Button,
};

/// frontend/icons/index.tsx file

import { Star } from "@mui/icons-material";

// keep the rest of the imports

export const Icons = {
  Star: Star, // this is the only icon we use from the Material set
  ... // the rest of the icons
};

Rebuild the project again. The bundle is now 878 KB instead of 5 MB - we clearly got rid
of unnecessary icons and components from @mui . Open the stats.html  file - it now looks
like this:

We still have the @mui  block here since we do use it. But now it's much smaller and



overshadowed by other larger blocks. So let's consider our "mui" problem solved for now
and look at the other problems.

But before that, we need to make sure that the fix didn't break the app. Start the project
and navigate to the "Inbox" page: you should see the gold star at the beginning of each
message - that's the star icon we used from MUI. Click on the "delete" button that
appears when you hover over any message, and click the "Yep, do it!" button - a
notification should appear at the bottom left corner of the page. That's our Snackbar
component from MUI. Everything works as expected!

ES Modules and Non-tree-shakable
Libraries
Now that we fixed the @mui  dependencies and their block doesn't take the entire screen,
we can see other problematic inclusions into the bundle more clearly. For example,
there is this big lump of "lodash" on the bottom right. What's going on there? Why is it
so big?

We'll apply exactly the same process for the investigation. First, quick research into the
Lodash[106] library - it's a JavaScript library that implements quite a number of



utilities[107] for arrays, objects, lists, and so on, that are mostly not available as native
JavaScript functions.

Search for its usage throughout the project files gives us a single place - in the 
./pages/inbox.tsx  file. This is the code, a bit simplified:

// FILE: ./pages/inbox.tsx
import _ from "lodash";

export const InboxPage = () => {
  const onChange = (val: string) => {
    // This is the only place where we use the library
    const cleanValue = _.trim(_.lowerCase(val));

    // Send cleanValue to the server
    console.info(cleanValue);
  };
  return ...
};

We import the entire library via import _  and then use trim  and lowerCase  utils on a text
string before sending it to the backend. Since it's a search field, it's safe to assume it's
going to be used for async autocomplete, so the usage seems legit. Let's ignore for a
second that we probably didn't need the library at all here, since all modern browsers
support trim  and toLowerCase  already. The point of this exercise is to focus on bundle
investigation and what kind of gotchas we can expect.

Let's focus on the fact that we use just two simple utils from a huge library here. There is
no way those two simple functions need so much JavaScript. It's a clear indication that
the tree-shaking has failed, and we imported the entire library and all of its content.

To validate this assumption (as we should do with absolutely any assumption when it
comes to performance investigations), we can simply remove one of the utils:

// remove the lowerCase util, keep only trim
const cleanValue = _.trim(val);

If tree-shaking works correctly, the size of the vendor  chunk should decrease a little and
the name of the chunk should change since the unused lowerCase  util will be "shaken out".



Notice the name and size of the vendor  chunk, make the change from above, and rebuild
the project.

Nothing changes. The tree-shaking doesn't work. Maybe it's because we're importing the
entire library with import _ from  and it confuses the bundler somehow? Change it to be an
explicit import and try again:

import { trim } from 'lodash';

// inside onChange callback
const cleanValue = trim(val);

The bundle name changes, and the size changes by two bytes, which is clearly not
enough to eliminate an unused util. It's probably just because we changed the name in
the import. If you compare the resulting vendor  chunks "before" and "after" this change
in your IDE (if it supports this type of comparison), you'll see that this is indeed the case
- just a few minified variables were renamed, the rest is still the same.

Tree-shaking doesn't work at all, as we have just proven.

The problem here is that we have different module formats in JavaScript: ESM,
CJS, AMD, UMD. "Module" is a single reusable piece of code that can be loaded into
another piece of code. These formats define how this reuse happens.

The full history of those modules, the comprehensive differences, and how they are used
and distributed in modern tools would need another book. Fortunately, we only need to
know one thing for the bundle size investigations.

When you see import { bla } from "bla-bla"  or export const bla  or export { bla }  - it's ESM
format. Our entire project is ESM, and it's pretty much the standard these days, at least
when it comes to writing frontend code. Modern bundles can easily tree-shake ESM
format, as we've seen already while experimenting with tree-shaking in our own code.
Everything else that is not ESM is very hard to tree-shake.[108]

ESM is a relatively new format, and not all libraries have caught up with it yet. You can
check whether a library is ESM or not with a tiny is-esm[109] npm package. It's a CLI tool
that gives you a Yes/No answer. If Yes, it's ESM and it will be tree-shaken.



npx is-esm lodash

The answer here is No.

For comparison, run it on @mui/icons-material  and @mui/material  - the result will be Yes.

This answers the question of why the material packages were tree-shaken, but lodash
was not.

Now, what to do about it? Unfortunately, the answer for some libraries, especially really
old ones, will be "nothing". We either need to accept the consequences of the bundle size
or get rid of the library altogether.

Some libraries, however, especially if they are actively maintained, will provide a
workaround. While the "main" entry file is not ESM, they might provide additional
entries for smaller pieces of the library that allow importing only what you need.

@mui/icons-material  actually does that in addition to ESM format. You can import the icon
that you need directly from the package and rely on tree-shaking to work:

import { Star } from '@mui/icons-material';

Or you can import the icon directly from its own entry point and not live in fear of tree-
shaking failing for some obscure reason:

import Star from '@mui/icons-material/Star';

Whether a library provides this additional way to import is usually documented in some
way or form. Material icons,[110] for example, suggest the precise import as a default way
to use the icons.

If we look at Lodash documentation[111], they also mention those types of imports:

// Cherry-pick methods for smaller browserify/rollup/webpack bundles.
var at = require('lodash/at');



Let's try to use this in our project and see what it does to the bundle size.

The code we started with is this:

import _ from "lodash";

export const InboxPage = () => {
  const onChange = (val: string) => {
    // this is the only place were we use the library
    const cleanValue = _.trim(_.lowerCase(val));

    // Send cleanValue to the server
    console.info(cleanValue);
  };
  return ...
};

With the bundle size for the vendor  chunk being around 878 KB.

We need trim  and lowerCase  utils. If we use the precise imports, it will transform into this:

// change the imports to be precise
import trim from "lodash/trim";
import lowerCase from "lodash/lowerCase";

export const InboxPage = () => {
  const onChange = (val: string) => {

    // Get rid of the _ and use the utils names
    const cleanValue = trim(lowerCase(val));

    // Send cleanValue to the server
    console.info(cleanValue);
  };
  return ...
};

Rebuild the project, and the bundle size goes down to 812.95 KB! Looks like it worked.
Open the stats.html  file to see that the huge Lodash block is barely visible now.

Although, if we're being serious, in an actual non-study project, I'd just remove those
two: if I don't need IE9 support, trim  can be replaced with native JavaScript trim[112],



and lowerCase  can be replaced with native toLowerCase[113]. The code will then turn into
this:

export const InboxPage = () => {
  const onChange = (val: string) => {

    // Get rid of lodash completely
    const cleanValue = val.toLowerCase().trim();

    // Send cleanValue to the server
    console.info(cleanValue);
  };
  return ...
};

And after rebuilding, the bundle size goes down by another ~10 KB.

Common Sense and Repeating Libraries
I'm getting more and more excited as our bundles shrink! There is something satisfying
in removing code. Let's do more of this!

The next important thing to look at when investigating bundle sizes is common sense. I
know, it sounds ridiculous, but you'll see what I mean in a second ࣡.

The big advantage of using the modern open source ecosystem is that you can find a few
libraries for pretty much any use case. The big disadvantage is exactly the same - for
pretty much any use case, there will be a few libraries. And in big projects, especially
when there are multiple teams involved, there is a pretty high chance that someday a
few libraries that solve exactly the same use case will show up in the bundle.

This especially often happens with stuff like dates, animations, resizing, infinite
scrolling, forms, charts, and so on - pretty much everything that is too painful or too
complicated to implement from scratch and generic enough to be extracted into a
library.

Let's look at our already slightly cleaned-up bundle chart and squint really hard at the



highlighted areas.

We have three quite significant in size libraries: date-fns , moment , and luxon . Quick
googling reveals that:

date-fns[114] is a library for manipulating Dates in JavaScript.
moment[115] is also a library for manipulating Dates.
And luxon[116], you guessed it, also a library for manipulating Dates.

૩ ♀  Someone really didn't do any due diligence before introducing yet another Dates
library.

What to do in this situation really depends on how much code would need to be
refactored to get rid of some of them, how much effort it will take, and how many KB of
bundle size we're ready to tolerate for the functionality a library gives us.

It might happen, especially in old projects, that the Moment library is used pretty much
everywhere, and the newer Luxon and Date-fns are just in a few places. So, in this case,
it could make more sense to get rid of the newer ones as a quick win if the time
dedicated to the bundle size initiative is restricted, and focus on other areas. Or it could
be the opposite, and Moment could be a leftover of a large refactoring that someone
forgot to remove in a few places.



In our case, the project is very new, and each of the libraries is used only once. So the
refactoring to unify usage will be easy.

In this case, it all comes down to which library allows tree-shaking or specific imports,
which API I like the most, which one is maintained, and all the other things you usually
consider when choosing a library.

Running the tree-shaking check reveals that moment  is not tree-shakable, and a quick
scroll through its documentation doesn't show anything that allows targeted imports
like lodash  does. So this one is out.

Luxon seems to be tree-shakable, but looking at our bundle chart, it's still much bigger
than date-fns. So either tree-shaking is flawed there, or it's just naturally large. Doesn't
really matter here, since date-fns is an option, I like its API anyway, and it's much
smaller.

There is also the option of just removing all three of them - our use cases are pretty
simple. But personally, a proper dates library will be the last library I remove from any
project. I hate dealing with the native Date API in JavaScript. So I'll just refactor
everything to date-fns.

In frontend/patterns/message-editor.tsx  file, I have Luxon and this code that uses it:

// FILE: frontend/patterns/message-editor.tsx
import { DateTime } from 'luxon';

// inside MessageEditor component
const formattedDate = DateTime.fromMillis(timestampDate).toFormat('MMMM dd, yyyy');

It just converts a milliseconds value to a human-readable format, easy enough. In date-
fns  the alternative will be this:

import { format } from 'date-fns';

// inside MessageEditor component
const formattedDate = format(new Date(timestampDate), 'MMMM dd, yyyy');

In the frontend/patterns/messages-list.tsx  file, I have Moment and this code that uses it:



// FILE: frontend/patterns/messages-list.tsx
import moment from 'moment';

// inside MessageList component
moment(message.date).format('MMMM Do, YYYY');

Exactly the same use case as with Luxon - I have a date in milliseconds that I convert to
a human-readable format.

Refactoring it into date-fns:

import { format } from 'date-fns';

// inside MessageList component
format(new Date(message.date), 'MMMM do, yyyy');

Rebuilding the project, and boom! Bundle size drops by 20%, from 804.34 KB to
672.52 KB. Check the stats.html  to enjoy the lack of huge Moment and Luxon blocks
.лܫ

Let's remove something else while we're on a roll. The chart now looks like this:

There are lots of packages with prosemirror  and tiptap  in the name - we'll deal with them



in the next section.

There are visible @mui  and date-fns  blocks, which we have shrunk already.

There is a big chunk of @radix-ui . These are UI primitives that I use to build the "core"
components. I'm not going to touch them now, since I'm definitely not migrating away
from Radix in the scope of this project.

There is the @floating-ui  library - a quick google reveals that this is a library[117] used for
positioning dropdowns, tooltips, and other floating elements. Libraries like that are a
high risk for duplicates, as happened with Dates. A few more minutes staring at the
chart, and I don't see anything visible that could be a library with similar functionality.
So this one can stay.

There is also the tailwind-merge  library. The Study Project uses Tailwind[118] for styling,
and this library is essential[119] when dealing with Tailwind, so this one can also stay.

And finally, there is a block of @emotion .

While it's relatively small, especially compared to all the prosemirror-related blocks, its
presence here raises an eyebrow. Emotion[120] is a CSS-in-JS library, i.e., it's used to
style the website instead of dealing with pure CSS. However, we already have Tailwind



for this!

If not for the bundle concern, we should remove it just for the sake of reducing the
complexity of the project, if we can.

Searching for usages of @emotion  in the project reveals just one place where it's used:

// FILE: frontend/patterns/confirm-delete-dialog.tsx file
import styled from '@emotion/styled';

const Center = styled.div`
  text-align: center;
`;

// inside ConfirmDeleteDialog component
<DialogDescription className="px-8">
  <Center>Are you sure you want to delete this message? You won't be able to recover it.
</Center>
</DialogDescription>;

This is a typical case of refactoring going slightly wrong in a large project. Most likely,
someone refactored the project to Tailwind in one pull request, and at the same time,
someone added this div in another pull request in parallel, and they were merged at the
same time. Happens all the time. Now, removing it is our duty. No broken windows[121]

should be left broken.

Luckily, it's still easy. We just need to kill the import and the div and add a classname to
center the text instead of this component:

// FILE: frontend/patterns/confirm-delete-dialog.tsx file

// remove the import and the Center component

// inside ConfirmDeleteDialog component
// remove the Center element and add the new className
<DialogDescription className="px-8 text-center">
  Are you sure you want to delete this message? You won't be able to recover it.
</DialogDescription>

Rebuild the project, and…



The vendor  chunk stays exactly the same size ઇ What?.. The Emotion package is still
there for some reason. Open the stats.html  file to confirm that.

But why?

Transitive Dependencies
A library can't end up in the bundle by accident. If it's there, it was used somewhere. If
it's not used in our project code directly, that means that it was used by some library,
which in turn was used in the code. This happens quite often with "foundation" level
libraries, i.e., libraries people use to build something on top of them, like positioning
libraries and various utils libraries like lodash.

Dependencies like this are called "transitive" dependencies. To identify where a library
comes from, we can use npm-why[122] util:

npx npm-why @emotion/styled

It will give us the list of all the places where the package @emotion/styled  is used, either
directly or indirectly:

Who required @emotion/styled:

study-project > @emotion/styled@11.14.0
study-project > @mui/icons-material > @mui/material > @emotion/styled@11.14.0
study-project > @mui/icons-material > @mui/material > @mui/system > @emotion/styled@11.14.0
study-project > @mui/icons-material > @mui/material > @mui/system > @mui/styled-engine > 
@emotion/styled@11.14.0
study-project > @mui/material > @emotion/styled@11.14.0
study-project > @mui/material > @mui/system > @emotion/styled@11.14.0
study-project > @mui/material > @mui/system > @mui/styled-engine > @emotion/styled@11.14.0

The result, hopefully, is self-explanatory. We use @emotion/styled  directly in the Study
Project, which checks out - we indeed do have it in our package.json . And then both 
@mui/icons-material  and @mui/material  use it through a chain of other libraries.

That's a bummer - I thought we could forget about @mui  when we fixed its import. But it



looks like we need to make a hard decision.

Because the only solution here now, if we want to remove the @emotion  libraries from the
bundle, is to remove everything that uses them - our direct usage of @emotion  and usages
of both @mui  libraries.

This instantly escalated the solution from a "quick fix" to a potentially very time-
consuming refactoring, especially in real code.

In the Study Project, we can still do it, just to see how far we can push the bundle size
reduction. In the real code, it will always be a trade-off between the time spent on
refactoring and the potential benefits.

Removing @mui/material

First, find where it's used:

// FILE: frontend/utils/ui-wrappers.tsx file
import { Snackbar } from '@mui/material';

export const StudyUi = {
  Library: {
    Snackbar: Snackbar,
  },
  Button: Button,
};

And delete the import and the usage:

import { Button } from '@fe/components/button';

export const StudyUi = {
  Button: Button,
};

Then find where the Snackbar  component is used:

// FILE: frontend/patterns/messages-list.tsx file
import { StudyUi } from '@fe/utils/ui-wrappers';



// Inside MessageList component
<StudyUi.Library.Snackbar open={openSnackbar} onClose={() => setOpenSnackbar(false)} 
message="Message deleted!" />;

This is a notification[123] component shown when a message is deleted. Since we use
Radix for everything else, we can replace this component with Radix's Toast[124]

component, which does exactly the same thing. We haven't used this component before,
so it might increase our bundle size. However, I hope that the removal of @mui  and 
@emotion  will compensate for this increase. We'll measure the result when we're done with
refactoring.

For now, just replace the usage with this:

// FILE: frontend/patterns/messages-list.tsx file
import * as Toast from '@radix-ui/react-toast';

// Inside MessageList component
<Toast.Provider swipeDirection="left" duration={3000}>
  <Toast.Root
    className="grid grid-cols-[auto_max-content] bg-blinkNeutral50 items-center gap-x-4 
rounded-md bg-white p-4 shadow-
[hsl(206_22%_7%_/_35%)_0px_10px_38px_-10px,_hsl(206_22%_7%_/_20%)_0px_10px_20px_-15px] 
[grid-template-areas:_'title_action'_'description_action'] data-[state=open]:animate-slide-
in-left"
    open={openSnackbar}
    onOpenChange={() => {
      setOpenSnackbar(false);
    }}
  >
    <Toast.Title className="text-base font-medium p-2 [grid-area:_title]">Message deleted!
</Toast.Title>
  </Toast.Root>
  <Toast.Viewport className="fixed bottom-4 right-4 z-50 m-0 flex w-[390px] max-w-[100vw] 
list-none flex-col gap-2.5 outline-none" />
</Toast.Provider>;

Removing @mui/icons-material

Find where it's used:

// FILE: frontend/icons/index.tsx
import { Star } from "@mui/icons-material";



export const Icons = {
  Star: Star,
  ... // other icons
};

It's a generic "Star" icon that we use to highlight whether a message is in favorites or
not. We actually already have a "Star" icon in our collection of local icons, so we can just
reuse it instead:

// frontend/icons/index.tsx file
import { StarIcon } from "@fe/icons/star-icon";

export const Icons = {
  Star: StarIcon,
  ... // other icons
};

You don't even need to find its usage anywhere. That's the beauty of this namespacing
pattern in this case - it should just work.

Rebuild the project, start it, and navigate to "Inbox". All messages should now have an
"empty" Star icon, that's the new non-MUI one. In a real project, you'd want to replace
the old icon with exactly the same one as before, but in our case, it's useful that they are
different - at least we see that the changes work.

Hover over any message, click "delete", and click the "confirm" button. The toast
component should now appear at the bottom right and be white.

The size of the vendor  chunk is now 600.98 KB - it went down by ~70 KB! Looks like our
refactoring helped.

Finally, open the stats.html  file - everything related to @mui  and @emotion  should disappear,
and a new react-toast  block inside @radix  should appear.

What's Next?



I hope this was a fun investigation, and you'll now be able to go through your own
projects, identify, and quickly fix all the bundle size issues you have. But be sure to
return here after you're done with your investigation! We haven't finished talking about
bundle size yet - there is a whole issue of all the @tiptap and prosemirror -related
dependencies that need to be dealt with.

So this is what we're going to be looking at in the next chapter. And while doing so, we'll
learn about Lazy Loading and start our first look into Suspense and where it can be
useful.



8. Intro to Lazy Loading and Suspense

In the previous chapter, we did a lot of bundle-size-related stuff:

We extracted the "vendor" chunk.
We split the code into chunks per page and per feature.
We even investigated the content of the bundle, found a few very disturbing
dependencies that inflated it in size, and got rid of them.

There is, however, one aspect of the fight with an ever-increasing amount of JavaScript
that is still missing. Lazy Loading! Which is impossible to discuss without introducing
the concept of Suspense .

Knowing these two concepts will lead us to even more advanced topics, almost
reimplementing our own routing framework and starting a competitor to Next.js, and
eventually to understanding React Server Components.

But all in time. Let's focus on Suspense and Lazy Loading for this part.

Lazy Loading and Code Splitting
Let's continue the investigation where we left off in the previous chapter. We fixed pretty
much everything weird in the bundle, except for a bunch of prosemirror -related
dependencies. These are like half the vendor chunk now!

If you skipped the work in the previous chapter, you can pick it up from here: 
src/chapter8-lazy-loading-intro . This is the "fixed" code that should be the result of all the
manipulations with the dependencies we did.

Let's again build the project and produce its bundle analysis chart:

npm run build --workspace=chapter8-simple-frontend



The bundle stats file is going to be in ./dist/client/stats.html  and will look like this:

As you can see, prosemirror  stuff is all around it.

A quick search through the codebase shows that we're not using anything "prosemirror"
related directly, so it must be a transitive dependency.

Let's do npm-why  on any of them to see where they are coming from:

npx npm-why prosemirror-model

This should give you a huge list with one single origin: @tiptap/starter-kit . Searching
through the codebase gives us this file: frontend/patterns/message-editor.tsx , which
implements the MessageEditor  component.

This component, in turn, is rendered here:

// FILE: ./pages/patterns/messages-list.tsx
import { MessageEditor } from '@fe/patterns/message-editor';

// inside MessageList component
{
  clickedMessage ? (



    <MessageEditor
      onClose={() => {
        setClickedMessage(null);
      }}
    />
  ) : null;
}

This is our future WYSIWYG-style editor for a message that appears when a message is
clicked. Start the project, navigate to "Inbox" and click on any of the messages, if you
haven't done it yet - it will appear in a drawer. The editor even works (somewhat)!

So it's clearly something that we can't just remove - it's an essential feature by the look
of it.

On the other hand, this feature is not visible during the initial load, especially if we start
the initial load from a page other than "Inbox". This combination of "very heavy feature"
+ "invisible on the initial load" is a clear sign that we can benefit from the pattern known
as "lazy loading"[125].

The idea behind "lazy loading" is that we extract this huge feature and all of its
associated libraries into its own chunk, away from the vendor . Then, load it only after all
critical resources have been loaded.

To achieve this in React, we need to do four things:

1. Mark a part of the code as "unnecessary on the initial load".
2. Extract the marked code into its own chunk.
3. Control when exactly the downloading starts.
4. Control what happens when the download is in progress.

Unfortunately, the answer to how exactly to do all of this is slightly dependent on which
framework and bundlers you're using. In some cases, all you need to do is use the
framework's version of "lazy/dynamic import". Sometimes, React's default "lazy" import
will work. Sometimes, you'd need to combine it with the bundlers' configuration
changes. Sometimes, you'd need to install a plugin or a library for it to work.

But while the exact implementation might differ slightly, those four steps at their core



will remain the same. We'll implement them for the Study Project with a detailed
explanation of what's happening. As homework, try to implement it for your own
projects using your own tools.

Mark Code as "Lazy"

To mark some components as "not critical", typically we'd need React's lazy[126] utility.

In the case of the Study Project code, we have a heavy MessageEditor  component that we
render when a user clicks on a message:

// FILE: ./pages/patterns/messages-list.tsx
import { MessageEditor } from '@fe/patterns/message-editor';

// inside MessageList component
{
  clickedMessage ? (
    <MessageEditor
      onClose={() => {
        setClickedMessage(null);
      }}
    />
  ) : null;
}

To mark it as lazy, we'd need to get rid of the direct import  from the @fe/patterns/message-
editor  and use the lazy  in combination with a dynamic (i.e., async) import  instead:

// FILE: ./pages/patterns/messages-list.tsx
// Remove the direct import of the MessageEditor component and add a lazy import
import { lazy } from 'react';

// lazy import for a named component
const MessageEditorLazy = lazy(async () => {
  return {
    default: (await import('@fe/patterns/message-editor')).MessageEditor,
  };
});

lazy  returns us a component that can be rendered anywhere as any other component.
The difference is that the dynamic import (and the download of the code as a result) will



be triggered only when the "lazy" component is mounted.

Let's mount it and see how it works. First, find where the not-lazy component is used:

// inside MessageList component
{
  clickedMessage ? (
    <MessageEditor
      onClose={() => {
        setClickedMessage(null);
      }}
    />
  ) : null;
}

And replace the MessageEditor  with MessageEditorLazy . That's literally it.

Overall, these are all the changes we need to make now to turn a component into "lazy":

// FILE: ./pages/patterns/messages-list.tsx
// Remove the direct import of the MessageEditor component and add a lazy import
import { lazy } from 'react';

// lazy import for a named component
const MessageEditorLazy = lazy(async () => {
  return {
    default: (await import('@fe/patterns/message-editor')).MessageEditor,
  };
});

// inside MessageList component - replace MessageEditor with MessageEditorLazy
{
  clickedMessage ? (
    <MessageEditorLazy
      onClose={() => {
        setClickedMessage(null);
      }}
    />
  ) : null;
}

Although it's not going to work as expected yet, we haven't completed all the steps.



"Lazy" Chunk

In the second step, we need to extract the "lazy" component into its own chunk to free
our vendor  from all its weight. This step will heavily depend on the bundler or framework
you're using. Sometimes, you won't have to do anything. The splitting will happen
automatically.

The Study Project is on Vite[127], and by default, it supports "lazy" loading.

Let's see what will happen if we just build the project without any configuration
changes:

npm run build --workspace=chapter8-simple-frontend

It indeed produced one extra chunk named message-editor-bla.js . However, the size of this
chunk is tiny, and the vendor  chunk hasn't changed at all:

dist/client/assets/message-editor-DEpy3GEC.js    4.86 kB │ gzip:   1.23 kB
dist/client/assets/vendor-BbjbBVYU.js          600.97 kB │ gzip: 186.55 kB

If you open the stats.html  file, you'll see that this tiny file only has two files from our
project. Everything related to editor libraries is still in the vendor  chunk.

If we look at the vite.config.ts  configuration we implemented earlier, you'll see that we
still have this code:

manualChunks: (id) => {
  if (id.includes("node_modules")) {
    return "vendor";
  }

  return null;
},

Looks like this rule takes priority over the lazy loading patterns in Vite. So it's time we
get creative with those rules again. For example, we can do this:



manualChunks: (id) => {
  if (
    id.includes("node_modules/@tiptap") ||
    id.includes("node_modules/prosemirror")
  ) {
    return "editor-vendor";
  }
  if (id.includes("node_modules")) {
    return "vendor";
  }

  return null;
},

This will extract editor-related heavy libraries into their own editor-vendor  chunk. Rebuild
the project again, and the result will be this:

dist/assets/message-editor-wugmzKv-.js    4.90 kB │ gzip:  1.24 kB
dist/assets/editor-vendor--ExOB3X7.js   295.78 kB │ gzip: 89.41 kB
dist/assets/vendor-DiJDHLYi.js          304.56 kB │ gzip: 96.90 kB

This is more like it - the vendor  chunk has been halved in size, and the new editor-vendor
appeared. Open the stats.html  file to confirm that all those libraries indeed moved their
location. The vendor  chunk is now as clean as it can possibly be for this project, with only
the necessary libraries left there.

But remember that at the very beginning of the bundle size investigation in the previous
chapter, we discovered that all the chunks were injected into index.html  and, as a result,
preloaded during the initial render? I would assume this wouldn't happen for the "lazy"
chunks. Otherwise, what's the point of them? But it never hurts to check. Open 
./dist/client/index.html  and take a look at which JavaScript files are loaded there.

Only vendor  and index  files should be present. This is more great news: it looks like our
bundle is smart enough to realize that the editor-vendor  chunk, although declared
manually in the configuration, originated from a "lazy" chunk, and its loading can be
postponed.

This verification step is important to do if you're messing with any bundler
configuration manually.



Additional Challenge.
If the message-editor  and editor-vendor  chunks don't appear in index.html , how exactly
are they downloaded then?
How to investigate:

Disable minification in vite.config.ts  by adding minify: false  to the build  setting,
to make the produced code readable. Rebuild the project.

Search for message-editor  and editor-vendor  inside the built files - you'll see which
one is referenced where and how.

After following the breadcrumbs, you should see that the bundler injected a
piece of code into one of the files. This code creates a script  tag dynamically and
injects it into document.head  via appendChild .

Control the Start of Download

The next step in the lazy loading process is to control when the download starts exactly.
As we already know, with the use of lazy[128] util, it will happen when the "lazy"
component is mounted. So, essentially, this step is all about knowing when the "lazy"
component is mounted and what happens afterward.

To investigate this, let's peek into the "Network" section of the performance profile.

Build and start the project:

npm run build --workspace=chapter8-simple-frontend
npm run start --workspace=chapter8-simple-frontend

Navigate to the "Index" page and record the performance of the initial load with:

6x CPU throttling.
Slow 4G of the network throttling.
Checked the "disable network cache" checkbox.

If you disabled minification in the previous step, enable it again. In the "Network"
section, you should see only two JavaScript bars: index and vendor chunks being loaded



in parallel.

There are no "lazy" chunks.

Now open the "Network" tab instead of "Performance" and click on any of the messages.
The interface will fall apart, but that's okay - it's because we haven't completed the last
step yet. The important thing here is that only now did the editor-vendor  and the message-
editor  show up.

This is happening because we render our lazy component conditionally:

// FILE: ./pages/patterns/messages-list.tsx

// inside MessageList component
{
  clickedMessage ? (
    <MessageEditorLazy
      onClose={() => {
        setClickedMessage(null);
      }}
    />
  ) : null;
}

Where clickedMessage  is a state variable. By default, this variable was false . MessageEditorLazy
was never mounted during the initial load. As a result, the lazy code was never loaded.

After we clicked on a message, we moved that variable to a "truthy" value:

<div
  className="flex flex-col w-full cursor-pointer"
  tabIndex={1}



  onClick={() => setClickedMessage(message.id)}
>

The MessageEditorLazy  component was mounted for the first time, and the download of all
the files in the associated chunk was triggered.

// The chunk associated with this lazy load started downloading
// when the MessageEditorLazy was mounted
const MessageEditorLazy = lazy(async () => {
  return {
    default: (await import('@fe/patterns/message-editor')).MessageEditor,
  };
});

Now, what will happen if we remove the conditional rendering but keep the editor
"lazy"?

// FILE: ./pages/patterns/messages-list.tsx

// inside MessageList component
// remove the variable and the condition, make this component render as others
<MessageEditorLazy
  onClose={() => {
    setClickedMessage(null);
  }}
/>

Make the change, rebuild and restart the project, and record the initial load
performance again. The picture now should be this:



The browser first downloads the critical path JavaScript - our index  and vendor  chunks.
Then it processes them and triggers some React stuff - that's when we mount the
components, including the now non-conditional MessageEditorLazy . That triggers the
download of the "lazy" chunks. If you click on any of those yellow bars of the "lazy"
chunks, you'll see an arrow that shows the chunk of origin, which is the index  chunk. In
the "Summary" at the bottom, you'll also see the "Initiated by" field, which also points to
the index chunk.

While this download is happening, the browser simply waits and shows nothing. After
everything is downloaded, the browser finally finishes the JavaScript, calculates the
layout, and paints it on the screen, including the open drawer. Only after that is the LCP
metric triggered, with a value of around 1.8 s.

With this "semi-lazy" loading, we essentially made the initial loading slightly worse.
Instead of fetching all this JavaScript in parallel, we're doing it in sequence in the worst
possible way: while showing absolutely nothing to the users in the process.

We can actually measure how much worse it is. All we need is to change MessageEditorLazy
back to the direct import:

// FILE: ./pages/patterns/messages-list.tsx
import { MessageEditor } from '@fe/patterns/message-editor';

// comment out the lazy chunk
// const MessageEditorLazy = lazy(async () => {



//   return {
//     default: (await import("@fe/patterns/message-editor")).MessageEditor,
//   };
// });

// inside MessageList component
<MessageEditor
  onClose={() => {
    setClickedMessage(null);
  }}
/>;

As always, rebuild and restart the project, and measure the initial load.

We'll still have the editor-vendor  chunks since the vite.config.ts  stays the same. But this
time, you'll see that all three chunks are fetched in parallel at the very beginning,
JavaScript is no longer sequenced, and the LCP drops to 1.6 s.

Instead of improving performance, the incorrectly implemented lazy-loading cost us
200 milliseconds.

This is why there are four steps here. We need to control what happens when the "lazy"
download is in process. For that, we need to use Suspense[129]. But before that, we need
to understand what it is and how it works.

Intro to Suspense
Suspense is a special component provided to us by React itself. It can detect whether
some of the elements passed to it as children  are in the process of lazy-loading, and if yes
- it can "suspend" the entire tree. "Suspended" children will be marked by React as "not
critical, deal with them later". React then will skip the entire sub-tree, render a fallback
component passed to Suspense , and focus on rendering everything else that is not
"suspended". Lazy-loaded components will be rendered when they are fully downloaded.

For example, let's say you have a Button  component:

const Button = () => {
  return <button>Button</button>;



};

And then some Parent  component that renders that button:

const Parent = () => {
  return (
    <>
      <h1>Welcome!</h1>
      <Button />
    </>
  );
};

If you just render it like this on the screen, you'll see the "Welcome!" string followed by
the "Button" string. Just a regular React component hierarchy.

If you wrap the Button  in Suspense :

const Parent = () => {
  return (
    <>
      <h1>Welcome!</h1>
      <Suspense fallback={<div>Loading...</div>}>
        <Button />
      </Suspense>
    </>
  );
};

Nothing actually will change. The Button  here is not lazy-loaded. The Suspense  component
detects this and renders the Button  right away.

If, however, I wrap the Button  in lazy  like this:

const LazyButton = lazy(async () => {
  return {
    default: Button,
  };
});



And then render it in place of the normal button:

const Parent = () => {
  return (
    <>
      <h1>Welcome!</h1>
      <Suspense fallback={<div>Loading...</div>}>
        <LazyButton />
      </Suspense>
    </>
  );
};

The situation will change. The "Welcome!" string and the "Loading…" fallback will be
rendered first, and then "Loading…" will be replaced by the "Button". If you implement
this code and refresh the page, you'll see a momentary flash of content. Slow down the
CPU 20x, refresh the page again, and you'll clearly see the sequence.

By the way, look closely at how I used lazy :

const LazyButton = lazy(async () => {
  return {
    default: Button,
  };
});

And read the description[130]. Lazy accepts a "load" function as an argument, which
should be a Promise. When the Promise is resolved, React renders the default  part of the
returned value. That's why the code above looks slightly weird - it's just mimicking the
"load" function.

This knowledge, other than being a cool fact, gives us an opportunity to mimic actual
lazy loading even more. Since it's just a regular promise[131], nothing stops us from
introducing a small delay before the return:

const sleep = (ms) => new Promise((resolve) => setTimeout(resolve, ms));

const LazyButton = lazy(async () => {
  // let's wait a bit
  await sleep(3000);



  return {
    default: Button,
  };
});

Add this code, and you won't need to slow down the CPU anymore to see the Suspense
fallback while the button is "loading".

Everything that goes inside Suspense  will be "suspended" while the lazy code is loading.
I.e. while we're waiting for the promise to resolve. For example, try to introduce
something before the button like this:

const Parent = () => {
  return (
    <>
      <h1>Welcome!</h1>
      <Suspense fallback={<div>Loading...</div>}>
        <>
          <h3>This is suspended</h3>
          <LazyButton />
        </>
      </Suspense>
    </>
  );
};

Both the h3  tag and the button will be hidden under "Loading" until the promise inside 
lazy  resolves itself.

Applying Suspense in the Study Project
Now that we know how Suspense works, it's time to finish with the code-splitting task
and finally fix the bundles.

We already have the lazy-loaded MessageEditorLazy  component. All we need to do is wrap it
in Suspense :

// FILE: ./pages/patterns/messages-list.tsx
// remove the direct MessageEditor import



import { lazy, Suspense } from 'react';

// uncomment the lazy chunk
const MessageEditorLazy = lazy(async () => {
  return {
    default: (await import('@fe/patterns/message-editor')).MessageEditor,
  };
});

// inside MessageList component wrap lazy editor in Suspense
<Suspense>
  <MessageEditorLazy
    onClose={() => {
      setClickedMessage(null);
    }}
  />
</Suspense>;

Keep the MessageEditorLazy  as a permanently opened drawer again to compare the result in
the UI with and without Suspense. Rebuild the project and restart it.

This time, you should see how the UI is built in "stages". First, the list of messages will
appear: React renders the full page first since it's not "suspended" in any way. Only after
React finishes with the critical tasks will the "lazy" drawer appear. Compare it with the
rendering before introducing Suspense, where everything was considered "critical", and
the initial render of the page was slower since it was waiting for the downloading and
rendering of the drawer.

If you record the performance profile again with Suspense enabled, you should see this
picture now:



index  and vendor  JavaScript in the Network section first - they are downloading. Then,
they are processed, and React execution kicks in. In the middle of this, the "lazy" chunks
started downloading when the MessageEditorLazy  is mounted. But React does not wait for
them. It finishes rendering the critical path non-suspended components.

This is when the list of messages shows up on the screen, and the LCP is triggered.
Download of the "lazy" JavaScript above is still in progress. The LCP value is 1.2 s now,
400 milliseconds lower than what we had before. The page is perfectly interactive at this
point. If you slow down the Network to 3G, you can see for yourself - as soon as the list
of messages appears on the screen, you'll be able to open/close menus and turn the
toggle at the top on and off.

While all of this is happening, the "lazy" download continues slowly, and the
MessageEditorLazy component is still "suspended". Only after this download finishes
does React take over again, render the component that was "suspended", and inject it
into the page. This is when the open drawer finally appears.

Suspense with Fallback

With the permanently open drawer, we didn't really need the fallback and "loading"
state. However, with conditional rendering, it's pretty much mandatory.

Let's restore conditional rendering now:

// FILE: ./pages/patterns/messages-list.tsx



// remove the direct MessageEditor import
import { lazy, Suspense } from 'react';

// uncomment the lazy chunk
const MessageEditorLazy = lazy(async () => {
  return {
    default: (await import('@fe/patterns/message-editor')).MessageEditor,
  };
});

// restore the conditional rendering
{
  clickedMessage ? (
    <Suspense>
      <MessageEditorLazy
        onClose={() => {
          setClickedMessage(null);
        }}
      />
    </Suspense>
  ) : null;
}

Now, the "lazy" component is mounted only when the state variable is "truthy", i.e.,
when we click on a message. Which makes the user experience terrible the first time
they click.

The lazy code download will only kick in when the MessageEditorLazy  mounts. The drawer
will appear only after the download finishes. Until this moment, the user will just stare
in confusion at the screen, with no visible reaction to their action. For them, this would
look like the UI is broken.

This is why it's vitally important to do at least something right away. And this is where
the fallback  prop is crucial. If we were experimenting with some inline always-open
functionality, like a heavy "comments" section, we could show a spinner or some nice
shimmering animation where the content is supposed to be injected.

In our case, since the lazy component is a drawer, we can show an "overlay" div that
grays out the content.

<Suspense fallback={<div className="w-full h-full fixed top-0 left-0 opacity-50 bg-
blinkNeutral300 z-50"></div>}>



  <MessageEditorLazy
    onClose={() => {
      setClickedMessage(null);
    }}
  />
</Suspense>

Rebuild, restart the project, and click on any message now. You'll see that immediately
after the click, the overlay div shows up and blocks the page, preventing you from doing
anything, and also indicating that something is happening. Soon after, the drawer shows
up.

In the Network tab, you'll see that the "lazy" chunks behave properly now. During the
initial load, they are not visible and appear only after the first click.

All consecutive clicks on other messages will show the drawer immediately - we already
have all the associated JavaScript downloaded and cached by Suspense.

What's Next
There is more to lazy loading and Suspense, the above is just an introduction. We also
need to learn chunks preloading and why it's important, how Suspense works with SSR,
and how it's compatible with data fetching. We'll talk about all of this in the next
chapter.

For now, if you want to practice different combinations of lazy loading and see how it
affects user experience and performance, you can try to solve the challenges below.
Those will prepare you better for the next chapter as well.

Challenge 1: Heavy Hidden Widget

Start the Study Project and navigate to any of the pages. At the top right corner, you'll
see the "Add widget" button. Right now, it's just a button, but in the future, it will likely
open a modal dialog-like functionality, where people will be able to configure their own
widgets. This future modal dialog is a perfect candidate for lazy loading!

1. Find the "Add widget" button in the code and refactor it to open a modal dialog



when clicked. Use the Dialog from frontend/components/dialog  for this.
2. Pull some heavy component into this dialog to make it feel realistically "heavy".
3. Lazy-load the dialog with a fallback, the same way we lazy-loaded the drawer

before.
4. Refactor the code to make the button lazy-loaded with the dialog. So that during the

initial page load, the button is not rendered, but appears after the necessary code is
downloaded, and clicking on the modal doesn't trigger the fallback of Suspense.

What kind of pros and cons do those two patterns have?

Challenge 2: Router-Based Lazy Loading

Currently, in the Study Project, all the pages are bundled together in the index  chunk.
But do we really need to load all the JavaScript from the "Inbox" or "Settings" page if
we're loading the "Home" page? In real projects, there will be much more code in all of
them.

So let's split and lazy-load code per page! Modern frameworks like Next.js or React
Router do that kind of thing by default for us, but this exercise could be useful to
understand what exactly they are doing and what else is missing in our rudimentary
solution.

1. Navigate to the Study Project's App.tsx  file - this is our rudimentary "routing"
solution.

2. Make all pages "lazy-loaded" here with some fallback.
3. Measure the initial load performance - it should decline. Why do you think this

happened? What can be done to improve it? Are there situations that you can think
of in which this "naive" split per route could improve performance?

4. Try to navigate to a different page - you should see that the Sidebar disappears
when you do that. Why do you think this happens now? What can be done to
improve it?

Challenge 3: Going to the Real World

Let's take our new knowledge to the real world now. Open a few of your favorite websites
and record initial load performance for them. Analyze their JavaScript loading strategy:



1. What kind of chunking strategy are they using, if any?
2. Do they use lazy loading for some parts of the website? If yes, what is their lazy

loading strategy?
3. If you were hired as their performance expert tasked with improving their initial

load performance, what would you start investigating first in their JavaScript
situation? What seems to be a low-hanging fruit to fix on your first day?



9. Advanced Lazy Loading

In the previous chapter, we learned about Lazy Loading, how to enable and control it,
and where the Suspense component plays a role.

But Lazy Loading is not only about the delayed loading of modal dialogs and drawers.
It's a very powerful tool that allows us to control precisely what the user sees first and
squeeze every millisecond from the initial load performance. Or not. Or sometimes.

This chapter is when the performance talk gets real, truly fuzzy, and totally dependent
on the environments, users, and sometimes phases of the moon.

Initial Project Setup
As usual, we'll need a semi-real Study Project. You can find it in src/chapter9-advanced-lazy-
loading/simple-frontend  of the Study Project repository[132]. The code here is the same as the
"cleaned up" version in the previous chapter, with minor refactoring in the layout area
and a different Vite config.

As always, build and start it like this:

npm run build --workspace=chapter9-simple-frontend
npm run start --workspace=chapter9-simple-frontend

In the dist  folder, you'll see multiple JavaScript chunks: I split vendor  into a few more to
reduce the size even further. You can see how it's configured in vite.config.ts .

If you open the project in the browser, you'll see an already familiar app: Sidebar
navigation on the left with Home, Inbox, and Settings pages working. Plus, clicking on
the logo will navigate you to the Login page, and clicking on the title will navigate you
back.



For all measurements, unless otherwise specified, I'm going to use "Fast 4G" in the
Network setting, "CPU: 6x slowdown", and the "Disable cache" checkbox enabled.

The Home page performance should already be a familiar Client-Side Rendering
picture:

A few initial chunks are downloaded in parallel, then JavaScript is executed, followed by
FCP/LCP metrics at the same time. The LCP time is 915 ms.

Let's see what we can squeeze out of it.

Manual Code Splitting per Route
If you open the stats.html  file and peek into the content of all the chunks, you'll see that
literally everything that I coded in the project is bundled in the index  file. Everything
else is coming from node_modules , i.e., it's an external dependency.

On an intuitive level, that doesn't seem right. Why would I have the content of the
"Login" or "Inbox" page loaded when I open the Home page? Wouldn't it slow down the
initial render? We already did some serious code-splitting with those vendor chunks.



Why not continue on this path and slice that JavaScript even more?

We surely can, but this is when it gets really tricky and environment/people/phases of
the moon dependent.

The very first thing that comes to mind is to continue with slicing code in the build
config file. We already wrote plenty of code like:

if (id.includes('node_modules')) {
  return 'vendor';
}

We could also add conditions for every page like this:

if (id.includes('dashboard')) {
  return 'dashboard';
}
if (id.includes('inbox')) {
  return 'inbox';
}
if (id.includes('login')) {
  return 'login';
}
if (id.includes('settings')) {
  return 'settings';
}

It doesn't look too pretty, but it's easy to add, requires no code changes, easy to read,
understand, and modify. In the future, if the app grows even bigger, we could probably
just generate it.

Try adding exactly that to vite.config.ts  and rebuilding the project. You'll see that in
addition to the existing vendor chunks, it now produces a chunk for each page, and they
even seem reasonable sizes, and combined are roughly the size of the index  file before
the split (plus a bit of overhead), so it clearly worked as expected:

dist/assets/index-B22iro7S.js                   1.23 kB │ gzip:  0.66 kB
dist/assets/settings-CeoK36Hz.js               14.55 kB │ gzip:  3.99 kB
dist/assets/inbox-Dmdjy7Dv.js                  15.39 kB │ gzip:  5.14 kB
dist/assets/dashboard-Kb80EKUn.js              38.66 kB │ gzip:  8.14 kB



dist/assets/login-D2T_36Hu.js                  75.80 kB │ gzip: 44.79 kB
.. // the rest of the chunks

So it would be reasonable to expect some improvement in the LCP, since a large part of
it is the JavaScript download time.

Record the performance profile again to see that this change made the LCP worse. It's
992 ms now instead of 915 ms. That's slightly counterintuitive ई. What happened?
Can you investigate and find out before looking into the answer?

This is the picture that you should see in your recording:

Yep, there are more chunks in parallel. But also, there are chained chunks now! So,
overall, it takes longer.

If you remember, in Chapter 7, we covered why: in Chrome, there is a connection limit
for the HTTP/1 protocol. Everything that is outside the limit will have to wait for its
turn, as it happens here. So, in production, which is hopefully HTTP/2 or 3, those
requests should be parallel, and this won't be a problem.

However, it's unlikely that LCP will improve anyway, even if all of them were in parallel.
Take a closer look at which chunk is the longest one here - this one will determine the
overall wait time for all the JavaScript. This one is the bottleneck. And it's the vendor



chunk, which hasn't changed from our splitting efforts this time.

So we probably did all this work for nothing.

But did we? ઇ

What we're measuring here is just one quite specific use case: the website's first-time
visitors. So if the majority of the visitors open your website only once in the website's
lifetime, then the work was wasted indeed, and you'd need to come up with something
else to improve the LCP.

And although I say the use case is specific, it doesn't mean that it's not popular. Pretty
much every standalone landing page or promo page fits this description. You open it
once, and then either buy something from it ("convert" in marketing terms) or not.
Either way, you'll likely never return to this page again. In this case, all effort should be
focused on splitting and trimming the bottleneck chunk, the vendor .

However, on a website with a high return ratio, like any SaaS platform, returned
visitors might take priority, and the question of whether the website is updated
between visits plays a crucial role. Because now it's all about how many of those chunks
are stored in the browser's cache.

If the website is almost never updated, then all the chunks will be cached, the network
won't have any effect, and splitting any of them will be pretty much pointless. You can
simulate this scenario by unchecking the "Disable network cache" checkbox. Uncheck it,
refresh the page, and then record the LCP number. Then rebuild the project without the
code splitting (disable all of it in the config), refresh the page, and record the
performance again. The LCP number should be exactly the same since the JavaScript
download plays no part here.

However, in real life, it's highly unlikely that we'd care about the performance of a
website that is never updated. The website is probably under constant development,
with deployments at least a few times a week, maybe even a day.

To emulate this, keep the "Disable network cache" checkbox disabled and then do this:

1. Build the project without the manual chunks we introduced here.



2. Start the website and refresh the page to allow the browser to cache all the available
files.

3. Make some changes in ./pages/login.tsx , that's our Login page. Even adding a 
console.log  would do.

4. Rebuild the project without closing the browser tab with the open website.
5. Record performance (with the reload button).

The picture should be this:

All the "vendor" chunks haven't changed and were previously cached by the browser. In
the "Network" tab, the index  chunk that contains the entire project, including the Login
page, is the biggest contributor now. The LCP value is 640 ms.

In this case, splitting the index  chunk like we did before should, in theory, produce some
visible results. Restore per-page manual chunking, follow exactly the same steps, and
record the final performance. The picture now is this:



Most of the JavaScript chunks are cached, and their download is skipped. We're now
downloading only the tiny index  chunk that has a reference to the Login page, and the 
login  chunk itself - this is where we made the change.

The LCP value is 620 ms now. A 20 ms difference. Hmmm. It's not impressive at all,
but at least slightly visible. I'll take that, considering that we got it pretty much for free.
Although it's highly dependent on which code changes and which page we're loading.
Try to make changes to the "Settings" page instead of the "Login" - you probably won't
see any gains at all in this case. Try to figure out why, by the way, if you want a
challenge.

Surely, we can do better than that. Let's put all the numbers in a table for comparison
and try a different approach.

Simulation Home page
LCP

1 First-time visitors, non-split index  file (baseline) 915 ms
2 First-time visitors, manual chunks via config 992 ms/915 ms



3 Repeated visitors with changes in Login, non-split index  file 640 ms

4 Repeated visitors with changes in Login, manual chunks via
config 620 ms

Lazy-loading per Route
In the previous section, we investigated what would happen if we split that index chunk
into per-page chunks manually. If you did the exercises above, restore the project to its
initial state, with just one index  chunk that has everything and the LCP value at 915 ms.
In this section, we'll try to do exactly the same thing, only instead of manual chunks,
we'll lazy-load them.

To do that, we only need to change the code in App.tsx . If you remember the previous
chapter, we'd need to:

Replace direct imports with "lazy" imports.
Replace the components with "lazy" components.
Wrap the "lazy" components in Suspense .

For each page in the App.tsx  file, do this:

// replace direct import with lazy import
const DashboardPageLazy = lazy(async () => {
  return {
    default: (await import('./pages/dashboard')).DashboardPage,
  };
});

// inside App component, replace the previous usage with this:
<Suspense>
  <DashboardPageLazy />
</Suspense>;

You can grab the solution from App-lazy.tsx  if you get stuck at some point.

Build the project as usual, and you'll see that the build produced a bunch of new chunks
for our lazy pages. Start the project, enable the "Disable cache" checkbox again, and
record the performance profile. This time, it will be very different.



First, we're waiting for the download of the critical resources and the initial JavaScript,
i.e., index  and vendor  chunks. You can verify that those are the only two chunks that will
be initially downloaded if you open index.html  inside the dist  folder.

After they finish downloading, we see a tiny burst of JavaScript in the main section - this
is the browser initializing React and React rendering everything that is not lazy. In our
case, it's nothing - we're lazy-loading everything.

At some point during the previous step, the "lazy" page component is mounted, and the
download of all the lazy chunks is triggered. We see a burst of downloads in the Network
panel.

After that one is done, we see another burst of JavaScript in the main section - this is
React finally rendering the lazy page.

And after that, finally, we see the LCP/FCP metrics.

The LCP value this time is 1.07, which is… slightly more than the initial non-split
version with full code in the index  chunk. Ooops. In the effort to improve performance,
we actually managed to make it slightly worse.

If we compare those performance profile pictures, the answer to why should be obvious.



Before:

After:



While yes, technically we're downloading less code now, but we're also no longer
downloading it in parallel. Instead of a simple linear "download everything → render
everything", we now have a two-step process, which adds its own overhead. As a result,
the benefit we gained from reducing the bundle was mitigated by the overhead of the
additional step. And the picture will remain the same for repeat visitors.

So, why exactly would we do that then, if there is no visible benefit?

Two reasons. First, there are no visible benefits in this project. Mostly because it's just
not big enough. On a project with a few dozen different pages and complicated logic, the
result could be better. But this may or may not happen and will highly depend on the
project itself, so don't take it as a promise.

The second, and much more important, benefit, however, is very concrete. With lazy-
loading like this, we essentially defined the "critical path" from a React perspective in
the app. And now we can control it with great precision.

Loading Critical Elements First
By "controlling", I mean we can identify which React elements we absolutely have to
have as the top priority and render them first. Let's say we want to prioritize the LCP
element as much as possible. Everything else is a second-class citizen.

First, we need to find the element. Open the Home page, record its performance profile,
click on the LCP green label there, look in the Summary tab for the reference to the
DOM element (it should have "related node" there), and then trace down in the code
which React element rendered it. It should be the "My Dashboards" title.

In the code, it lives in the TopbarForSidebarContentLayout  component ( frontend/patterns/topbar-for-

sidebar-content-layout.tsx ), which is in turn used inside AppLayout  ( frontend/patterns/app-

layout.tsx ), which is used on all pages except Login.

The root "Dashboard" page, the one that we lazy-load, looks like this:

// FILE: frontend/pages/shared/dashboard-with-layout.tsx



export const DashboardPage = () => {
  return <AppLayout>... // all the dashboards code</AppLayout>;
};

And it's lazy-loaded code inside App.tsx :

<Suspense>
  <DashboardPageLazy />
</Suspense>

As we now know, everything that is not wrapped in Suspense  will be on the "critical" path
and will be prioritized. So, what if we move the AppLayout  component outside of the
dashboard page, lazy-loading, and suspense boundary?

Do this:

export default function App({ ssrPath }: { ssrPath?: string }) {
  // the rest of the code stays the same

  // wrap Suspense in AppLayout
  return (
    <AppLayout>
      <Suspense>
        <DashboardPageLazy />
      </Suspense>
    </AppLayout>
  );
}

And remove AppLayout  from the DashboardPage  component. Then, rebuild the project yet
again and record the performance profile of the Home page. This time, the picture
should be this:



Sidebar and the page title are on the "critical path" now, so they are rendered
immediately when the initial JavaScript is loaded. After that, the LCP marker is
triggered (because of the title), and the value is now 763 ms. Almost a 300 ms
improvement! The full page is not rendered at that time, but that's okay.

We can go even further and say that the Sidebar is not actually that important for our
users compared to the page title, and lazy-load the Sidebar as well!

// FILE: frontend/patterns/app-layout.tsx

// replace direct Sidebar import with lazy:
const FixedWidthPrimarySidebarSPALazy = lazy(async () => {
  return {
    default: (await import('@fe/patterns/fixed-width-primary-sidebar-
spa')).FixedWidthPrimarySidebarSPA,
  };
});

// in the AppLayout component, replace FixedWidthPrimarySidebarSPA with this
<Suspense fallback={<div className="sidebar-fallback"></div>}>
  <FixedWidthPrimarySidebarSPALazy />
</Suspense>;

Rerun the build and re-record the performance. The LCP value is around 695 ms now.
We squeezed another 65 ms out of it at almost no cost. If you refresh the page, you'll see



the order in which the elements appear now, with the title appearing much earlier. Slow
down the Network even more to get a clearer picture.

Record the repeated visitor's performance for the full picture. Disable the "cache"
checkbox, make some changes on the Login page, rebuild, and re-record. The LCP
number is now 545 ms!

Let's add them to our table and celebrate a little ͝. A 15-25% improvement in numbers
is not to be sneezed at.

Simulation Home page
LCP

1 First-time visitors, non-split index  file (baseline) 915 ms
2 First-time visitors, manual chunks via config 992 ms/915 ms

3 First-time visitors, lazy-loading, LCP element on the critical
path 695 ms

4 Repeated visitors with changes in Login, non-split index  file 640 ms

5 Repeated visitors with changes in Login, manual chunks via
config 620 ms

6 Repeated visitors, lazy-loading, LCP element on the critical
path 545 ms

Additional challenge

Find the LCP element on the "Settings" page and refactor the code to minimize
its value

Find the LCP element on the "Inbox" page and refactor the code to minimize its
value

Find the LCP element on the "Login" page and refactor the code to minimize its
value

However, there is another cost to those nice numbers, other than the delayed areas on
the page. Try to navigate between different pages. Even if you did the Challenge above, it
still doesn't look that great. There is a visible blank screen in the content area when you
navigate between Home and Settings, for example. And it's especially bad when
navigating from pages with the Sidebar to the Login page.



To improve this, we need preloading.

Preloading Lazy Chunks Manually
The idea is simple. When we load the Home page as a result of our chunking efforts, we
load only the code that is needed on this page. This means that when we navigate to
another page, we need to wait until all the new code is downloaded. Hence, the blank
screen - this is our Suspense boundary's fallback rendered until the code is fully loaded.

One way to improve it would be to introduce a nice "loading" fallback that imitates the
future layout. So that the page looks like a "skeleton" of the real page - you probably
have seen this pattern everywhere.

There is, however, another option. What if we just download all the needed JavaScript in
advance, but after all the critical resources are loaded and ideally rendered? That way,
we won't slow down the LCP metric, but also won't have to wait when navigating.

The correct way to do it might depend on the bundler. In Webpack, for example, there is
a chance you'd need to install a plugin for this. In Vite, however, we're in luck: all we
need to do is add an import  statement at the top of the file, and it will take over from
here.

Let's, for example, preload the "Settings" page for the Home page:

// Just add this at the top of ./dashboard.tsx
import('./settings');

Rebuild the project, and now navigation from Home to Settings is close to how it was
before. If you record the initial load performance of the Home page, you'll see the 
settings  chunk is somewhere at the end. And this chunk is not blocking anything. The
page content is rendered before its download has finished. This will be especially visible
on slower Network settings:



In theory, we could do this for every page easily. We could even be smart about it and
preload only those chunks that are needed on every page. For example, from the Login
page, we can navigate only to the "Home" page. So there is no need to preload
everything there, just the "Home" page chunk will be enough.

And as a quick and easy win in small projects, this solution is totally okay. However,
when a project grows, adding those imports manually everywhere will become tiresome
pretty quickly. Especially if you need to track which page or component is used where.
Surely there is a way to do it better?

Preloading Lazy Chunks With the Link
Component
There is, actually! If you look at the code, you'll see that all links are implemented using
the Link  component ( frontend/utils/link.tsx ) underneath. As it should be in an SPA. So in
theory, this Link  can be a bridge between all the URLs and all the dynamic chunks.

The simplest and "naive" way to achieve this is to introduce some sort of mapping
between the paths and the associated lazy imports needed for this path:

const preloadingMap = {
  '/': () => import('./pages/dashboard'),



  '/settings': () => import('./pages/settings'),
  '/inbox': () => import('./pages/inbox'),
  '/login': () => import('./pages/login'),
};

Then, in the Link  itself, we can trigger the "preloading" functions associated with the
path:

// inside Link component
useEffect(() => {
  if (href && preloadingMap[href]) {
    const preload = preloadingMap[href];
    preload();
  }
}, [href]);

Add this code, rebuild the project, and record the initial load of the Home page.

You'll see a bunch of new chunks being preloaded, including the login  chunk. All of them
are triggered only when the sidebar is rendered and the Link component is mounted,
which is even better than what we had with the manual import. Now we don't have the
problem of accidentally cluttering the Network with too many preloads and delaying the
downloading and rendering of the main content. Which, in theory, could happen with
too many preloads too early.

From the Home page, navigate to the Login page (by clicking on the logo) and enjoy the
instantaneous transition. The speed of transition is comparable to the baseline project,
where we had all the code bundled together in just one index  chunk. But now we have
the best of both worlds: improved initial load plus almost infinite scalability. New pages
that we'll inevitably add to the project won't slow down the existing pages.

This Link-based preloading is great, but its implementation is rudimentary here at
best. If you refresh the Login page and then try to navigate to the Home page (by
clicking on the title), you'll see that the Sidebar  component is still taking its time: it was
split into its own independent chunk by the bundler, and we haven't preloaded it. To
do this properly, we would need to extract this information from the bundler by
generating a manifest file that maps routes to all the chunks used on this route, and then
pass this information to the frontend somehow.



Also, preloading all Links on the page is excessive. It's fine on a small-ish project that we
have, but in the real world, there will be dozens of links on a page. Preloading all of them
at the same time is not only unnecessary but, yet again, can clog the network and
potentially delay the loading of something critical. In the ideal world, we'd want to have
more control over what's preloaded. Typical strategies that you'll see in the wild are
preloading only the links that are in the viewport (i.e., visible on the screen) or only
triggering preloading on hover.

At this point, if we continue down this path, we'll start implementing a full-blown
custom framework and start competing with the likes of Next.js and Remix/React
Router. However, this book is not about how to implement your own framework and
take over Vercel. It's more about customer-facing websites and different patterns that
affect their performance.

So, since we now know exactly what we want and why, there is no harm in using some
existing solution.

Bundles, Loading, and Frameworks
Choosing the right solution is a complex topic. Especially in the frontend world, where
best practices tend to change radically every two years, and frameworks are constantly
evolving, being deprecated, or replaced by the new shiny tool.

At the moment of writing this chapter (April 2025), the frameworks recommended by
the React[133] team are Next.js and React Router v7 (ex Remix), if we're talking about the
web, not native apps. These are the current major players that have been out there for a
while. There is also a list of up-and-coming frameworks[134], which includes a new kid
on the block: "TanStack Start[135]". Personally, I have lots of experience with Next.js and
React Router, but I've never used TanStack. So it's a good time to try it out now.

Because the actual framework doesn't really matter if you know exactly what you need
and what's possible. Learn the fundamentals first, and you'll be able to switch between
frameworks at a moment's notice, quickly understand their strengths and weaknesses,
take advantage of their features, compensate for their flaws, and adjust their default
behavior to your exact needs.



The fundamentals that are important to migrate our Study Project to any of the above-
mentioned frameworks are:

1. How to initialize a project? Typically, there will be either some command or some
repository to clone.

2. Is the framework SSR (server-side rendering) by default or CSR (client-side
rendering)?

3. How is routing implemented? Typically, it will be either file-based routing, where
each page has to be its own file, or code-based routing, where you declare routes in
code, or some combination of both.

4. How is navigation implemented? Typically, there will be a Link  component and a
few hooks for imperative control, like useNavigate , useLocation , useRouter , etc.

This is it. There will be, of course, many, many more features in each of them. It will be
very easy to get lost in the tons of documentation and start thinking that mastering it
would take months. Ignore all of it for now. You'll figure all of them out when/if you
need them, as long as you know the fundamentals.

Migrating Study Project to TanStack

So, let's migrate and see what it can give us and whether it's better than our custom
solution.

If you get stuck at some point or just want to skip to the end and start measuring
performance on a working app right away, the final version is in the src/chapter9-advanced-
lazy-loading/tanstack-router  folder. Build and start it as usual:

In dev mode with npm run dev --workspace=chapter9-tanstack-router .
Build the production version with npm run build --workspace=chapter9-tanstack-router .
Start the production version for performance measurements with npm run start --
workspace=chapter9-tanstack-router .

Considering that the framework is in "beta" mode at the moment of writing the chapter,
chances are that when you read it, half of the API and documentation links will change.
So I'll just describe the steps that you need to take and hope for the best.

However, I highly encourage you to stop reading right now and try to figure everything



out for yourself first. Only then, look at the steps I took and the changes I made, and
compare your solution to mine.

Step 1: Initialize the New Project

I used the "Quick start (file-based)"[136] example[137] from the list. Clone it and install all
dependencies in a fresh repository outside of the Study Project. Then navigate through
the files/folders and take a good read.

Even without reading the docs, just from the structure, we can already make certain
assumptions.

First, inside the "routes" folder, there are about  and index  files. Since I chose the "file-
based" example, it's reasonable to assume that the example project has two routes -
"About" and "Index". This is actually why I usually prefer file-based routing - it makes



the structure very clear. If you open any of those files, you'll see regular React
component code. This is where our pages like Home and Settings will go.

There is also a __root  file. Since it starts with __ , which is a naming convention for
internal/private methods, it's probably not actually a route, but a special "root" file.
Most likely, this is where stuff like meta-tags and shared layout will be. If you search the
documentation for "root", the assumption will be confirmed - this is indeed the entry
point[138] to the entire app. The code there is always rendered, according to the docs. So
this is obviously where our Study Project's AppLayout  will live.

There is also a main  file - this is pretty much the same as in the Study Project, where we
call React's render . It just has a bit more wiring for the TanStack router.

Then, there is the posts  file - that's a bunch of fetch calls, we don't fetch data yet, so we
can just delete it. Then, there is some sort of generated file .gen.ts  - don't care, it's
generated by the framework. And styles.css  - that one is obvious, our CSS goes here.

And finally, there is vite.config.js  - we already know that one, looks like they are also
using Vite underneath. Makes things easier.

You'll find the scripts for running the project in package.json . Should be dev  for dev mode, 
build  and start  for building and starting.

Step 2: Copy the Config and Study Project Files

Copy everything to your fresh repo!

Copy the entire frontend  folder.
Contents of index.css  to styles.css .
The entire tailwind.config.js  file.
From tsconfig.json , copy the paths  part - that's the @  aliases we use to reference code
in the frontend  folder.
From vite.config.ts , copy the resolve  part - that's again the @  aliases. Otherwise,
you'd have to change all the imports in the code, and that's a very boring job.
Also, from vite.config.ts , copy the preview  part - we need to make sure the
"production" config is the same in both projects, so that we can compare apples to
apples.



From package.json  - copy all dependencies. Some of them will be unused, but it
doesn't really matter here.

Don't forget to install all dependencies after you copy them with npm install  and then
double-check that the project still runs with all the config changes.

Step 3: Create Routes

Get rid of the about  file from the routes  - we don't need that one. Override the content of
our main.tsx  file with the content of the example main.tsx[139].

Then open our App.tsx  file, where we had our routes and their pages. All we need to do is
recreate that setup. Create login , settings , and inbox  files instead of the deleted about , and
render the required pages in each of them.

The code for each file, including the index , will be something like this:

import * as React from 'react';

// that will be different for each file
import { DashboardPage } from '../pages/dashboard';
import { createFileRoute } from '@tanstack/react-router';

// route as well
export const Route = createFileRoute('/')({
  component: HomeComponent,
});

// and render the component here
function HomeComponent() {
  return <DashboardPage />;
}

In the __root.tsx  file, change the RootComponent  to only render the Outlet  component - that's
the content of each route, i.e., our pages. And wrap it in our AppLayout , same as we did in
the previous section, for all pages to speed up the LCP.

function RootComponent() {
  return (
    <AppLayout>
      <Outlet />



    </AppLayout>
  );
}

If you skipped the previous section, then in addition, go through all pages and get rid of
the AppLayout  component there.

We also need to opt out of the layout for the Login page - that one doesn't have
navigation. So we need to detect which route we're on in this root component and render
only the Outlet  for those:

function RootComponent() {
  if (isLogin) return <Outlet />;

  return (
    <AppLayout>
      <Outlet />
    </AppLayout>
  );
}

For this, we need to read the docs of the actual router[140] - all of them will have
something like what we need in one way or another. For example, we can try the
useLocation[141] hook and extract the pathname  from it:

function RootComponent() {
  // Get current pathname
  const { pathname } = useLocation();

  // If it's the login route, don't use AppLayout
  if (pathname === '/login') {
    return <Outlet />;
  }

  // Otherwise, use AppLayout for all other routes
  return (
    <AppLayout>
      <Outlet />
    </AppLayout>
  );
}



At this point, the app should work and behave as expected. Except for one thing.

Step 4: Fix Navigation

We still have our rudimentary Link  component for navigating between pages. To take
advantage of the built-in framework features, we need to use the one that is provided to
us. Luckily, it's easy: we just need to trace where we use our custom Link  and replace it
with the router's Link[142].

A quick search through the project reveals that it's used in just three places:

SidebarLinkItem  component in frontend/components/sidebar/navigation-items.tsx  for the Sidebar
items.
LoginPage  component in ./pages/login.tsx  for the navigation from the title to the Home
page.
PrimarySidebarHeading  component in frontend/patterns/primary-sidebar-heading.tsx  for the
navigation between the logo and the Login page.

In all of the usages, replace the import with import { Link } from "@tanstack/react-router";  and
change the prop on the Link  from href  to to .

That's it, we're finally good to go!

Build and start the finished project, and let's see what we've got by default.

Exploring the Performance of the Study Project on
Tanstack

These are the simulations we recorded before:

Simulation Home page
LCP

1 First-time visitors, non-split index  file (baseline) 915 ms
2 First-time visitors, manual chunks via config 992 ms/915 ms

3 First-time visitors, lazy-loading, LCP element on the critical
path 695 ms

4 Repeated visitors with changes in Login, non-split index  file 640 ms

5 Repeated visitors with changes in Login, manual chunks via 620 ms



config

6 Repeated visitors, lazy-loading, LCP element on the critical
path 545 ms

Let's now add the "First-time and Repeated visitors" on Tanstack to the list. Not for the
sake of shaming or getting excited about the framework. But to see and understand what
the framework is doing.

First, record the performance profile of the Home page with the enabled "no cache"
checkbox, 6x CPU, and Fast 4G throttling - our "First-time visitors" simulation. The
picture should look like this:

Which is pretty much identical to our implementation of route-based lazy-loading. At
first, the must-have resources (index JS and CSS) are loaded, the JS file triggers the
download of all other JS files, and the LCP value is triggered way before the rest of them
finish downloading.

Only this time, we didn't have to do those manual lazy  elements everywhere. The
framework handled that for us. The LCP number is almost the same as well, just a little
bit higher (726 ms vs 695 ms), most likely because of the framework's overhead.

There are, however, a few differences. Now that we have implemented that thing from
scratch, we can tell exactly what, why, and how those differences will affect
performance.



Framework's Chunking Strategy

The first thing that immediately jumps to mind is that there are no "vendor" chunks as
we had. The framework does code splitting automatically. Which is good. We didn't have
to change any configurations for this. And it does it really well, since the end result
matches our very optimized LCP number.

But the libraries are sitting in the same bundles as our "own" code. As we already know,
this could potentially lead to a worsening of the repeated visitors' performance. And
indeed, when I measure it in exactly the same way as before, I get 628 ms. Our manual
solution got me 545 ms.

Simulation Home page
LCP

1 First-time visitors, non-split index  file (baseline) 915 ms
2 First-time visitors, manual chunks via config 992 ms/915 ms

3 First-time visitors, lazy-loading, LCP element on the critical
path 695 ms

4 First-time visitors with a framework, LCP element on the
critical path 726 ms

5 Repeated visitors with changes in Login, non-split index  file 640 ms

6 Repeated visitors with changes in Login, manual chunks via
config 620 ms

7 Repeated visitors, lazy-loading, LCP element on the critical
path 545 ms

8 Repeated visitors with a framework, LCP element on the
critical path 628 ms

If we're unhappy with that slight increase in numbers, we'd have to tinker with the
chunks' configs manually again. The default installation of the framework has Vite
underneath, so it shouldn't be a problem if there is a need.

Additional challenge
Speaking of Vite. Tanstack Router can be installed with other bundlers[143]. For
example, with Webpack[144]. Try to migrate the Study Project on Tanstack from
Vite to Webpack, and then measure the same scenarios.

Do the numbers go up or down?



What about other bundlers?

Framework's Preloading Strategy

One big thing for which we introduced quite a lot of complexity was preloading.
Remember - we had to create and maintain a map of all the paths and their
corresponding bundles, modify the Link  component, import chunks manually, and
implement their preloading manually.

Tanstack implemented all of this for us. If you open our default Tanstack Study Project
and look at what is happening in the Network panel, you'll see that initially, other pages'
chunks are not loaded. Neither settings  nor login  show up right away. However, when
you hover over the links that lead to those pages, the new chunks appear.

This is the "intent" preloading strategy[145], which is enabled by default. The framework
also supports "viewport" and "render" - two other most popular preloading strategies,
where preloading happens when a component appears on the screen or mounted.
Switching between them is just a matter of setting a different prop on a Link  or a setting
inside vite.config.ts  .

Experimenting with different preloading strategies and measuring the performance
impact of them can be a ton of fun! I highly recommend you spend some time here and
play around with all the settings.

Additional challenge
Now that you know all the steps needed to migrate the Study Project to Tanstack,
try to do exactly the same migration to the React Router[146] framework.

What will be different in the default configuration of Tanstack vs React Router?

How does React Router handle chunking compared to Tanstack? What about
preloading?

Which default configuration is better for which use case?

Are performance numbers the same or different between those frameworks?
After you're done with React Router, try to do exactly the same thing with
Next.js[147]. Pay attention to the fact that Next.js is SSR by default.



What changes in the performance profile because of SSR by default?

What are the pros and cons compared to the previous frameworks?
If you do this, you probably won't even need to read the next section, you'll learn
it by doing ࣪.

Lazy Loading + SSR
We have one last thing to verify before moving on from lazy loading. Until this moment,
the website was on CSR (Client-Side Rendering). But what about SSR (Server-Side
Rendering)? In the previous chapters, we proved that SSR could be really great for the
initial loading and LCP metrics, but that it can delay interactivity on a page. Does lazy
loading help with it, or make it worse?

It's really easy to find out now that we have all the knowledge and tools.

The LCP time of the baseline project is 915 ms. Since this is rendered on the client, this
value is also the value when everything becomes interactive.

Reset all the changes we've made so far to the baseline project. Don't remove them, just
stash or commit to a separate branch - we'll need to return to them in a moment.

Build both server and client:

npm run build --workspace=chapter9-simple-frontend
npm run build:server --workspace=chapter9-simple-frontend

Uncomment the following line in server/index.ts  - this will enable our rudimentary SSR
for the baseline project.

return c.html(preRenderApp(html, c.req.path));

Start the project and measure the initial performance. The picture should be a typical
SSR picture: the page becomes visible before JavaScript is downloaded and interactive



after it's executed.

The LCP value in this scenario is 600 ms. You'll have to manually extract the
"interactive" time from the timeline since there is no highlighted metric here. For me,
this value is around 850 ms. The gap between them is 250 ms. This is SSR's biggest
downside - when the page is visible, but nothing on it works except for links. And this is
on fast 4G, by the way! On something like slow 3G, this gap could be 3 seconds.

Now with lazy loading. Restore everything we did: code splitting per page, extracted
layout, and lazy-loaded sidebar. Record it now.

This time, the picture should be different. We'll have the same pattern as before with
CSR in the Network section - some initial JavaScript that, at some point, triggers more
JavaScript downloads. But this time, this pattern will be applied to the SSR "reverted"
pattern of the "main" section. Where first the page is rendered as pure HTML, becomes



visible, and only then the JavaScript is executed, which then "hydrates" the already
visible page - this is when it becomes interactive.

Considering that half of the JavaScript is lazy-loaded, we have this structure. The page
becomes visible at the same time as before, with the LCP 600 ms. This is because the
bottleneck here is the render-blocking CSS file, which hasn't changed with lazy-loading.

Then, the initial JavaScript, which processes our routing and layout, finishes
downloading and executing. This is when everything in our AppLayout becomes
interactive. This number is around 720 ms for me.

At the same time, the "lazy" JavaScript is triggered - this is when components inside our
routing, i.e., our lazy page and the Sidebar, are mounted. After they are downloaded,
they are also executed, and finally, those blocks become interactive too. This happens
around the 1 s timeline.

So, for SSR, the overall benefit of lazy-loading is pretty much the same as for CSR. It can
help you speed up the most crucial part of the page, in our case, the "top bar"
component, at the expense of the rest of the page. Which part is the most crucial is
always up to you. If we assume that the most crucial part of this page from an
interactivity point of view is the "search" functionality, then with lazy-loading, we
managed to speed up its time-to-interactive by 130 ms.



Additional challenge

Try to implement SSR with the Tanstack framework. Will the results be the
same?

Try to enable SSR in React Router - will the result change? Compare the output
code of the two of them.

What's Next?
I hope you can now explain how a page will behave in different conditions with different
rendering scenarios in your sleep. However, this is still not the end of it! There is also a
thing called "React Server Components", which adds even more on top of all of those
concepts. As if it's not complicated enough.

But at least we're fully technically and mentally prepared to deal with the most hyped
topic of recent years in the React community. So, finally, everything you want to know
about React Server Components, right in the next chapter!



10. Data Fetching and React Server
Components

Have you heard of React Server Components[148]? You probably have. It's one of the
most talked-about and controversial topics in the React world over the last few years.
And it's also the most "magical" and most misunderstood feature.

So it's time to make it understood. Luckily, we already have so many tools we can use:
we now know what initial load is, how to measure it, how to record performance graphs,
what SSR and CSR are, and how to find them on those graphs. We'll need all of it to
figure out that magic.

Although we still need more. We need to talk about data first: how to fetch data on the
client and on the server, how to pass data from the server to the client, and why existing
tools are not good enough.

This is probably why Server Components are so misunderstood: you need to have a PhD
in React development before touching them ࣡

Setting Up the Project
We're going to work with the same beautiful app that should be very familiar by now.
Only this time, we'll make it more "real" by fetching some data from remote sources.

This chapter probably has the most complicated setup. We're going to start with a
baseline project in src/chapter10-data-fetching/frontend/baseline . It's going to be useful for the
initial measurements. For this chapter, we'll focus entirely on the Home page.

Build, start, and open the project as usual:

npm run build --workspace=chapter10-baseline-frontend



npm run start --workspace=chapter10-baseline-frontend

The project has a Sidebar with menu links on the left, and a few dashboards and tables
in the content area. Right now, all of this data is "static" - i.e., it's hard-coded into the
components themselves.

Over the course of this chapter, we'll make the sidebar links and table data dynamic.
We're going to work only with those entities, but I highly encourage you to make other
charts dynamic as well on your own. It will be much more fun to play around with
different combinations when you have five dynamic entities on a page instead of just
two.

The backend API for those two endpoints lives in src/chapter10-data-fetching/backend-api . Start
it:

npm run start --workspace=chapter10-backend-api

Navigate to http://localhost:5432/api/sidebar  and http://localhost:5432/api/statistics . You should
see the JSON responses with all the necessary information.

The endpoints implementation is extremely complicated and looks like this:

// FILE: src/chapter10-data-fetching/backend-api/index.ts
app.get('/api/sidebar', async (c) => {
  await sleep(500);

  return c.json(sidebarData);
});

In real life, you'd need to connect to a remote resource like a database to extract this
data. Fortunately, we don't really need to go that far to investigate frontend
performance. We can just imitate the inevitable delay with the sleep  function.

That's it for the setup, let's do things now.



Data Fetching on the Client
Implementing Client-Side Fetching

Let's start with the "classic". We have some remote data. And a client-side rendered
SPA. The easiest way to get this data is to fetch it on the client.

To do this for the Sidebar, we need to find a component that renders the items:

// FILE: frontend/patterns/primary-sidebar-primary-group-spa.tsx

export const PrimarySidebarPrimaryGroupSPA = ({ ...props }) => {
  return (
    <NavigationGroup header="general" {...props}>
      <SidebarRegularLinkItem href="/" before={<HomeIcon className="w-8 h-8 sm:w-6 sm:h-6" 
/>}>
        Home
      </SidebarRegularLinkItem>
      ... // all other static items
    </NavigationGroup>
  );
};

Fetch the data from the API we have:

useEffect(() => {
  const fetchSidebarData = async () => {
    const response = await fetch('http://localhost:5432/api/sidebar');
    const data = await response.json();
  };

  fetchSidebarData();
}, []);

Introduce some state to store this data and the progress of fetching it:

const PrimarySidebarPrimaryGroupSPA = ({ ...props }) => {
  const [sidebarData, setSidebarData] = useState(undefined);
  const [isLoading, setIsLoading] = useState(true);

  useEffect(() => {



    const fetchSidebarData = async () => {
      const response = await fetch('http://localhost:5432/api/sidebar');
      const data = await response.json();

      setSidebarData(data);
      setIsLoading(false);
    };

    fetchSidebarData();
  }, []);
};

And then, instead of the static items, render the dynamic data when we have it, or some
nice Sidebar skeleton while we're loading.

const PrimarySidebarPrimaryGroupSPA = ({ ...props }) => {
  return (
    <NavigationGroup header="general" {...props}>
      {isLoading ? <SidebarSkeleton /> : renderSidebar(sidebarData)}
    </NavigationGroup>
  );
};

There will be a bit of coding to implement that rendering and skeleton. If you don't feel
like doing it yourself, use the renderSidebar  function and the SidebarSkeleton  component
from frontend/utils/sidebar.tsx . Then do exactly the same thing for the table data inside the
dashboard component inside frontend/pages/shared/dashboard-without-layout.tsx .

Alternatively, if you really don't want to bother with all the coding above, you can switch
to the src/chapter10-data-fetching/frontend/client-fetch . It has all of this implemented already.

Analyzing Client-Side Fetching

Build and start the project as usual, open it in the browser, record initial load
performance, and take a peek inside. By now, you should be able to read what's
happening there in your sleep.



First, we fetch and then render the "critical path" assets. The user can see the page's
title. Then, the "lazy" components are downloaded, and the "static" parts of those
components are rendered. This includes a few items in the Sidebar, like the "Create"
button, and the charts on the main page. After that, the fetch for the dynamic items
kicks in. Only after we have the fetch results can we render the dynamic Sidebar items
and the table data.

The LCP number here is around 730 ms. Which, technically speaking, is pretty good.
But the users will see the Sidebar items around the 1.4 s mark and the table around the
1.8 s mark. Between those times, for around 700 ms, they admire the loading
animation. Whether this situation is good or not depends entirely on you.

Let's say we're not happy with such long loading times and want to shorten them as
much as possible. In this case, there are only two things we can do. Either shorten the
fetch time, which would mean optimizing the backend logic, which is completely out of
scope here. Or move the beginning of the fetch to the left, so that it finishes sooner. This
means prefetching.



Prefetching Data via Promises

From the previous chapter, we already know about preloading the lazy bundles. With
data, it's the same concept, only we often refer to it as prefetching sometimes.

Currently, we're calling fetch  inside useEffect . I.e., only after the component that needs
the data is mounted. So, in theory, we could've applied the same solution as we had for
bundles - trigger the loading outside of the component. In the case of data, it would need
a bit more work since the bundler doesn't help us here, but it is still doable.

// Trigger the data fetch before the component
// And save the promise in a variable
const preloadPromise = fetch('http://localhost:5432/api/sidebar');

const PrimarySidebarPrimaryGroupSPA = ({ ...props }) => {
  // exactly the same code as before

  useEffect(() => {
    const fetchSidebarData = async () => {
      // await for the promise triggered above the component
      const response = await preloadPromise;

      // everything else is exactly the same
    };

    fetchSidebarData();
  }, []);

  return; // same stuff as before
};

As you know, fetch  is a Promise[149]. Nothing stops us from creating this promise before
mounting the component, saving it to a variable, and then awaiting it to resolve inside 
useEffect .

The implementation above, however, won't do you much good: both the Sidebar and
Table are lazy-loaded. So the fetch Promise will be triggered only when the lazy bundles
are downloaded. We're just saving the time it takes the browser to parse and execute the
lazy bundles. It's probably around 50 - 100 ms, depending on the computer and
complexity, but nothing ground-breaking.



However, now that we know that the fetch can be extracted and shared as a variable,
why not create it before loading the lazy bundles, somewhere at the very beginning of
the critical path?

For example, we could implement a prefetch  function:

// create file frontend/utils/prefetch-critical-resources.tsx

let sidebarCache = undefined;
let tableCache = undefined;

export const prefetch = () => {
  if (!sidebarCache) {
    sidebarCache = fetch('http://localhost:5432/api/sidebar');
  }
  if (!tableCache) {
    tableCache = fetch('http://localhost:5432/api/statistics');
  }

  return {



    sidebar: sidebarCache,
    table: tableCache,
  };
};

Here, we create the "fetch" promises when the function is called and cache them into
variables for further reuse.

Then call that function in useEffect  in App.tsx  - this is our "entry" to the entire app that is
on the critical path and therefore not lazy-loaded:

// FILE: src/chapter10-data-fetching/frontend/client-fetch

export default function App() {
  // everything else is the same

  useEffect(() => {
    prefetch();
  }, []);

And then use the cached promises in the Sidebar (and the Table in exactly the same
way):

// no more preloading here

const PrimarySidebarPrimaryGroupSPA = ({ ...props }) => {
  // exactly the same code as before

  useEffect(() => {
    const fetchSidebarData = async () => {
      // use critical prefetch promise here
      const response = await prefetch.sidebar;

      // everything else is exactly the same
    };

    fetchSidebarData();
  }, []);

  return; // same stuff as before
};



This will give us a much more interesting performance picture:

The beginning of both fetches moved even more to the left. Sidebar items now appear at
around 1.2 seconds. 200 ms improvement for "free". The statistics  endpoint also moved
to the left. Kinda.

If you remember, in one of the previous chapters, we discussed the difference between
HTTP 1 and 2/3 protocols. With the HTTP 1 protocol, Chrome has a limit of only six
parallel connections to the same domain.

With data-fetching, it's especially important to understand that difference. Because, in
the case of static resources deployed to a CDN, chances are, you're on the 2/3 version
already, so it doesn't matter that much. However, if you're building your own server,
you'd need to make sure that it supports HTTP 2/3. Or be very careful with data
prefetching. The more non-critical prefetching you add, the more chances you
unintentionally delay something important.

Okay, so let's assume that our servers are HTTP 2/3, and the parallel requests are not
much of a problem. The only other thing we can do to move the fetches a bit left while
staying within the React application is to move them outside of the App component. As
with moving them outside of the lazy component, it will win us the time it takes the
browser to parse and compile the downloaded JavaScript, but no more.

If we want to move even further left, we'd need to step away from the React environment
to the wild west of native JavaScript. We'd want to trigger fetches before or at least in
parallel with the rest of the JavaScript we're downloading. So they would have to be
injected into our index.html  file via a separate script  tag like this:



// FILE: src/chapter10-data-fetching/frontend/client-fetch/index.html
<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>Chapter 10</title>
    <script>
        window.__PREFETCH_PROMISES = {
            sidebar: fetch('http://localhost:5432/api/sidebar'),
            table: fetch('http://localhost:5432/api/statistics'),
        };
    </script>
  </head>
  <body class="bg-blinkGray100">
    <div id="root"><!--ssr--></div>
    <script type="module" src="main.tsx"></script>
  </body>
</html>

And then in React, you'd be able to pick them up from the window :

let sidebarCache = window.__PREFETCH_PROMISES?.sidebar;
let tableCache = window.__PREFETCH_PROMISES?.table;

// The rest of prefetching is exactly the same

If you want to try it out on the study project, make sure to either guard the use of the 
window  against SSR, like we did in the dedicated chapter. Or temporary switch to 
createRoot  from hydrateRoot  in the main.tsx  file. Otherwise, it will cause hydration errors.

The end result should look something like this:



sidebar  and statistics  fetch calls start at the very beginning now, as soon as HTML is
downloaded. When everything lazy is finally loaded, the data is already there. So, there
will be almost no loading state for either the Sidebar items or the Table. The data will be
rendered as soon as the JavaScript is ready. Best possible speed.

There is a cost to it, of course. The API calls are "stealing" a bit of the bandwidth now,
which results in LCP moving to the right and hovering over the 790 ms mark. Used to
be 730 ms. We made the table and the sidebar items faster, but slowed down the LCP.

There is also a matter of dealing with the window  in the app, which introduces complexity
to the SSR if you have SSR. Not to mention that we're again prefetching everything,
regardless of whether it's used on a page or not. And implementing more logic to
differentiate what should and shouldn't be prefetched will require more code, which
potentially can slow down the critical resources even more.

So I would treat this technique more like an exercise to understand the relationship
between when the data fetch is initiated and when the result is rendered. Not something
to bring to production, especially these days, when we have plenty of other options to try
out first.

Data Fetching with Libraries

Speaking of production. The code above is really not ready for real life.



In real life, you'd want to be able to prefetch only the data needed on a page, plus maybe
the data needed on pages you can navigate to from the current page if you're feeling
fancy. There is no reason to prefetch something for Settings from the Login page, for
example, as it happens now.

Plus, you'd want to be able to refetch the data manually if you suspect that it changed.
Plus, maybe refetch it automatically. Or support paginated requests. Or abort a fetch
from time to time. Not to mention, you'd want a cleaner loading and error state - there is
no reason to implement them manually all the time.

What I'm saying here, in real projects, if you're fetching on the client, you'd want to use
a library that handles all of this. The major player and the most popular option after the
simple fetch  is Tanstack Query[150]. The second most popular, if we ignore GraphQL
here, is SWR[151], according to the 2024 survey[152].

Both of them will give you a useLibraryFetch  hook (useQuery[153] in Tanstack and
useSWR[154] in SWR) to which you'll be able to pass the URL of the API in one way or
another. In return, the hook will give you data , loading , and error  state. So, converting
the existing code to any of those libraries will require very little change:

const PrimarySidebarPrimaryGroupSPA = ({ ...props }) => {
  // no more useEffect mess, just this little beauty
  const { data, loading } = useLibraryFetch('/my/url/in/some/form');

  return (
    <NavigationGroup header="general" {...props}>
      {loading ? <SidebarSkeleton /> : renderSidebar(sidebarData)}
    </NavigationGroup>
  );
};

However, regardless of the library, it's important to understand that all of them are still
JavaScript and React. So all of them will be bound by the same rules when it comes to
data fetching and prefetching.

"Regular" data fetching will be triggered when a component that requests the data is
mounted. This is pure React. Until the component is mounted, its function is never
called, and anything inside doesn't exist.



Switching between loading  states, setting data  or error , whether it's hidden behind a
library or not, is a state update, and as a result, a re-render. Again, this is pure React.
There is no other way here.

Everything related to prefetching will be subject to the same restrictions and downsides.
This is the nature of JavaScript and its relationship to the browser.

Additional challenge

1. Migrate the study project from custom fetch  to Tanstack[155].

2. Implement the different prefetching strategies we used for fetch : inside the lazy
component, outside the lazy component, inside the App  component, outside the 
App  component, outside of React.

3. Does the performance picture differ compared to normal fetch ?

4. Do the same migration and tests with SWR[156]. What about performance now?

Data Fetching and SSR
Okay, so it seems that we squeezed everything possible from the client-side data
fetching. But what about the server-side? Didn't we just discuss a few chapters ago that
SSR is very popular these days? Plus, isn't it common knowledge that fetching data on
the server is much faster? Can we also benefit here?

Fair questions. Let's take a look.

SSR and Client-Side Data Fetching

Let's start by introducing the simple SSR with no additional changes to our website. Get
rid of all the prefetching we did for a slightly more visible picture and uncomment it in
our backend implementation:

// FILE: src/chapter10-data-fetching/frontend/client-fetch/server/index.ts

app.get("/*", async (c) => {



 const html = ... // keep the same

  // uncomment this part
 return c.html(simpleSSR(c, html));
});

The performance profile for this situation barely changes:

The "critical path" pre-renders now, and the LCP number went down from 730 ms to
480 ms. We can see the page's title and the basic page placeholder a bit sooner. But we
still have requests for statistics  and sidebar  on the frontend, and the table and the
sidebar items show up only when those requests have finished.

This is happening because we fetch data inside the useEffect  hook, which is client-only.
So, for the dynamic data to show up, we still need to wait for the fetch requests to
complete on the client. The server didn't help us even a bit here.

However, now that we've added a server to the equation, we can experiment some more!



SSR and Server-Side Data Fetching

If you remember from the SSR chapter, our entire "server" implementation is just three
lines:

Read the initial HTML file.
Generate more HTML with React's renderToString .
Replace the <!-- ssr -->  comment with the generated HTML.

app.get("/*", async (c) => {
  const html = fs.readFileSync(`/dist/index.html`).toString();
  const reactHTML  = renderToString(<App />);
  const finalHTML = html.replace("<!--ssr-->", reactHTML);

  return c.html(finalHTML);
});

So nothing stops us from fetching the Sidebar and the statistics there as well.

app.get("/*", async (c) => {
 // I can just fetch all the data right here
 const sidebarPromise = fetch(`/api/sidebar`).then((res) => res.json());
 const statisticsPromise = fetch(`/api/statistics`).then((res) => res.json());

  // in parallel!
 const [sidebar, statistics] = await Promise.all([
   sidebarPromise,
   statisticsPromise,
 ]);

  ... // the rest is the same
});

The only question now is how to transfer this data to the React app? ઇ Normally, we'd
need to do that in two steps.

Step 1: Data as Props to renderToString

First, we'd need to introduce props to the App  component. Good regular props that are
passed in the good regular React way:



const [sidebar, statistics] = await Promise.all([
 sidebarPromise,
 statisticsPromise,
]);

// Yep, just your normal props here
const reactHTML = renderToString(<App sidebar={sidebar} statistics={statistics} />);

Then, we'd just need to pass that data to the relevant pages, then a bit of props drilling,
and then use this data to render whatever we need as any other prop. In our case, it will
go into the initial state:

const PrimarySidebarPrimaryGroupSPA = (props) => {
 // props as initial state
  const [sidebarData, setSidebarData] = useState(props.sidebar);

This would take care of the server part and the initial server HTML. It will be relevant
only for the bits that are not suspended, i.e., stuff that is on the critical path. Because
everything that is wrapped in Suspense will default to the fallback. So to see something
meaningful in the study project, you'd need to get rid of Suspense and all the lazy
loading for now. We'll discuss a bit further how it happens in real life.

If you do this and refresh the page, you'll see a very interesting picture. First, the page
loads with navigation items and the statistics table present. Then they disappear, the
loading skeleton shows, and after a while, they appear again.

You'll see this behavior much clearer if you record the performance profile with the
"Screenshots" checkbox enabled. It will be something like this:



That's garbage a really bad UX. We definitely need to fix it.

Step 2: Pass Data to the Client

As you hopefully remember from the previous chapter, when we're doing SSR, we need
to do "hydration" to initialize the client-side part of the app properly. It usually happens
inside the main.tsx  file and takes the form of using hydrateRoot  on the div with the root  id:

hydrateRoot(document.getElementById('root')!, <App />);

In this case, React will iterate over the preexisting DOM elements that we supplied with
the SSR and attach event listeners to the relevant elements to make the page interactive.
If hydration didn't happen or failed for some reason, React has no way of knowing that it
can reuse the elements. So it wipes them all out, re-creates the entire interface from
scratch, and injects it inside the "root" div again.

Which feels like exactly what is happening here. Except it's not on the DOM level, but on



the level of the app itself.

The reason for this behavior can be found in the main.tsx  file:

hydrateRoot(document.getElementById('root')!, <App />);

On the server, we passed the initial props to the <App /> . But not here! ૩ ♀  React has no
way of knowing that we actually already have the data. So it wipes out the interface,
reinitializes the app from scratch, kicks in yet another fetch on the client from useEffect ,
and shows us the loading skeleton while we wait. The already downloaded data from the
server disappeared into the void.

We need initial props on the client as well, the same as we had in renderToString . Except,
on the client, we don't have that information yet. We need to inject the data we fetched
from the server into the client somehow. The simplest way to do that is to inject it via a 
script  tag by attaching the data to the global window  variable.

<script>
  window.__SSR_DATA__ = {
    sidebar: '...', // sidebar data from the promise
    statistics: '...', // statistics data from the promise
  };
</script>

And then on the server side, when we're replacing the <!-- ssr -->  comment with HTML,
we'd add that mini-script to the body  tag:

app.get("/*", async (c) => {
  ... // same as before

 const reactHtml = renderToString(
   <App sidebar={sidebar} statistics={statistics} />,
 );

 const htmlWithData = `
   <div id="root">${reactHtml}</div>
  <script>window.__SSR_DATA__ = ${JSON.stringify({
     sidebar,
     statistics,
   })}</script>`;



  const finalHtml = html.replace(
    '<div id="root"><!--ssr--></div>',
    htmlWithData,
  );

  return c.html(finalHtml);
});

You can see the full working implementation if you uncomment the following lines in
the server/index.ts  file:

// FILE: src/chapter10-data-fetching/frontend/client-fetch/server/index.ts

// uncomment this line
return c.html(simpleSSRWithHydration(c, html));

This is also called "hydration", by the way. Only it's about hydrating the data, not
JavaScript event handlers.

Step 3: Read Data From the Client

And the final step: accessing the data. If you open the Elements panel in Chrome and
look at the <body>  tag, you should see at the very bottom our mini-script with the data
inside. So now it's just a matter of accessing it via window.__SSR_DATA__  somewhere in the
frontend code.

Something like this:

hydrateRoot(
  document.getElementById('root')!,
  <App ssrPath="" sidebar={window.__SSR_DATA__?.sidebar} statistics=
{window.__SSR_DATA__?.statistics} />,
);

We already introduced props to the App  component when we did SSR, so we're good to
go.

Now you should be able to see the prerendered page in all its glory: the dynamic table



and sidebar items show up with the rest of the page in one smooth motion. No more
beautiful but mildly annoying skeletons.

The Cost of SSR Data Fetching

At what cost, though? Setting aside the problem of incredibly fragile, unscalable, and
just ugly code ࣡ that should never hit production in its current form, there is a
performance issue here.

If you record the performance profile now, you should see that:

The blue HTML bar in the "network" section is very long.
The LCP value dropped from ~480 ms to 1.45 s.

Almost a second worse. That is quite the performance hit! You know the reason for this
by now, right?

app.get("/*", async (c) => {
 const sidebarPromise = fetch(`http://localhost:5432/api/sidebar`).then((res) => 
res.json());
 const statisticsPromise = fetch(`http://localhost:5432/api/statistics`).then((res) => 
res.json());

  // We await! For a whole ~700 ms
 const [sidebar, statistics] = await Promise.all([
   sidebarPromise,
   statisticsPromise,
 ]);

 const reactHtml = renderToString(
   <App sidebar={sidebar} statistics={statistics} />,
 );

  ... // the rest is the same
});

We moved the data fetching to the server, and we have no choice but to wait for it before
passing it to the renderToString , which is just a regular JavaScript function with simple
input and output. The data just happens to come from a slow data source and takes
~700 ms to load.



Oooops. There is always a price.

But it doesn't mean that data fetching on the server is necessarily bad. The 700 ms delay
is a bit extreme, and even with it, the full page load takes 1.45 s, which is still within the
"green" zone performance-wise. And if the data fetching is much faster, the 50 - 100 ms
delay might be completely unnoticeable and totally worth it for the fully prerendered
entire page with no loading states. Especially if SEO is your priority.

The question of the ugly code would need to be resolved, though ࣡

SSR Data Fetching for Real

All those naive implementations were to understand the core concepts that are usually
hidden inside frameworks. However, none of the above is really suited for "production"
use.

At the very least, you'd need to split your server code into pages, same as the client, and
fetch only the data that is needed per page. There is absolutely no reason to fetch the
statistics table and navigation items on the server with a 700 ms delay when you open a
Login page, for example.

You'd need to restore lazy loading and Suspense if you want to preserve the SPA
navigation while pre-rendering the initial load. And that is its own pain for the SSR -
you'd probably need to generate a single "server" bundle and modify lazy loading to
understand that.

I'm not even going to mention dev experience. Right now, it's non-existent. If you did all
the exercises above, you probably hate me by now for the constant rebuilding of stuff,
rather than a nice dev mode's hot reloading.

This manual renderToString  implementation is good for understanding the concept and
might be useful if you want to pre-render cheaply an existing one-page app. But for
anything more complicated, you'd end up building your own SSR framework.

So, unless you work for a company that explicitly builds an SSR framework as part of its
business strategy (which could happen, Shopify with React Router and Vercel with
Next.js are examples), you'd likely be much better off using an existing solution.



Tanstack[157] supports SSR out of the box and has a bunch of examples on how to set it
up. React Router[158] in the "Framework" mode supports SSR as well. And then, of
course, there is Next.js[159].

Next.js was an SSR framework from the beginning, and by now, it has evolved into two
"variants": App Router[160] and Pages router[161]. App Routers is the latest and greatest
bells and whistles, with Streaming and Server Components included. We're going to try
it out in the next section.

Pages Router is the "classic" SSR. So if you want a bit of a challenge, try to migrate the
Study Project to the Next.js Pages Router[162]. If nothing else, just to appreciate more
what a "proper" framework gives you out of the box from the dev experience perspective,
compared to our hacky solution.

If you've done the migration to Tanstack in the previous chapter, the steps are exactly
the same:

1. Figure out how to set up the framework.
2. Copy-paste all the relevant configs like TypeScript aliases and Tailwind.
3. Figure out routing and render existing pages for each route.
4. Figure out the "critical path" and layouts in the framework, and render the

AppLayout there.
5. Replace our custom Link  with the Link  component of the framework.

Plus, you'd need to figure out how to fetch[163] our data on the server side and pass it to
the client using the framework.

If you get stuck at some point or just want to explore the code without the pain of setting
it up yourself, you can find it in src/chapter10-data-fetching/frontend/next-pages . I only did the
dashboards page there, since the rest of them are irrelevant to the topic. And only the
table props, because pushing props to the sidebar would need a bit too much copy-
pasting of files with one single change, and the Study Project is way too big already. All
you'd need to do to make it work is to prop drill the sidebar  object to where it's needed.

If you look at the code, the most interesting part there is this:

// FILE: src/src/chapter10-data-fetching/frontend/next-pages/pages/index.tsx



export const getServerSideProps = async () => {
  const sidebarPromise = fetch(`http://localhost:5432/api/sidebar`).then((res) => 
res.json());
  const statisticsPromise = fetch(`http://localhost:5432/api/statistics`).then((res) => 
res.json());

  const [sidebar, statistics] = await Promise.all([sidebarPromise, statisticsPromise]);

  // Pass data to the page via props
  return { props: { statistics, sidebar } };
};

This is exactly what we did in our custom backend. I just copy-pasted the fetch logic.
Only this time, it works with dev mode, integrates with the router without weird hacks,
co-locates with the app's code, and hides the renderToString  part.

If you build and start the project, the performance profile picture will be pretty much
identical. There will be a loooong line of the blue HTML because we're waiting for the
fetch. Then the page will appear with the dynamic data already present. No skeletons.

And now the best part: open the Elements panel in Chrome, find a script  tag with 
id="__NEXT_DATA__" , and take a peek inside. It Should be something like this:

Again, exactly the same thing we implemented manually. No more magic! It's time to
form a React Mythbusters team. We're qualified enough now, I'd say.

But before doing that, it's time to finally talk about React Server Components.

Streaming and React Server Components



Server Components Intro

Finally! Server components, the most hyped feature of React in the last few years. So,
what's the point of them? What exactly do they solve? And why is streaming here?

One of the semi-obvious disadvantages of SSR is that it doesn't really affect the bundle
size in any way - everything that we write in React always ends up in the browser at one
point or another. As we know from the previous chapters, this could lead to a situation
where a page is already rendered and visible, but it's a pure static HTML page with no
interactivity. Leave this gap long enough, and the users will think that the website is
terribly broken.

This happens because we used to think of React as a "frontend" framework, with the
server part being an afterthought purely for pre-rendering purposes. With this mindset,
everything that you write in React needs to be in the browser. React doesn't understand
that some parts of the app are purely static and could be left alone after their HTML
from the server is received.

The introduction of Server Components makes this mindset do a full U-turn (as it may
or may not happen every two years in the React ecosystem). Now we can adopt a
mindset that nothing we write in React we actually need in the browser ࣡. Joking, of
course, it's more like - if there is something we really need, we'd mark it explicitly. By
default, assume server-only for everything.

Implementing proper support for this, however, is hard. In fact, it's so hard that even
today, the synonym for "Server Components" is "Next.js". Among the top three most
popular ones (Next, React Router, and Tanstack & Vite), Next is the only one that
implements them.

So, in order to try them out, apply them to the study project, and see whether they
improve anything, we kinda have to do that in Next.js. And not only Next.js, but its
latest "App Router"[164] feature. If you don't want to set up App Router from scratch, I've
already implemented it in the src/chapter10-data-fetching/frontend/next-app-router  Study Project.

Exploring Server Components



Let's explore now. We'll need a completely empty page to start with. So, regardless of
whether you set up your own or use the provided Study Project, get rid of everything in
the src/app/page.tsx  file and render a button component from frontend/components/button
instead:

import { Button } from '@fe/components/button';

export default function App() {
  return <Button>I'm a button</Button>;
}

Build and start the project, and you should see the button on the screen. If you're using
the provided Study Project, use the following commands:

npm run build --workspace=chapter10-next-app-router
npm run start --workspace=chapter10-next-app-router

By default, this button will be your very first Server Component.

Server Components Stay on the Server

The very first advantage of Server Components that you might hear is that they reduce
bundle size, which is usually good for performance. So let's first verify that this is indeed
the case.

The easiest way to do that is the "naive" way. Open the code of the Button  component
( frontend/components/button/index.tsx ), grab any of the Tailwind strings at the beginning to
reliably identify the Button's code, and search for those strings inside the .next  folder -
this is everything that Next.js builds for you.

You'll see that it's included three times in files inside the .next/server  folder, but that's it.
It's reasonable to assume that nothing from the server  folder is served to the client.

And it's easy to verify that this is indeed the case: just start the project and open the
Network panel in Chrome Dev Tools. You'll see a bunch of scripts downloaded, but all of
them are coming from _next/static/chunks  - this is our client app. And the Button is not
there.



Now we just need to verify that the Button appears in the client bundle if the app stops
being a "Server" component. To do that, add the use client  directive at the very top of the
page.tsx  file:

'use client';

import { Button } from '@fe/components/button';

export default function App() {
  return <Button>I'm a button</Button>;
}

Rebuild the app and again search for the Button's string. This time, it should appear
inside the .next/static/chunks/app/page-xxx.js  file. Yep, it's one of those that is sent to the
browser! You should be able to see this file in the Network panel in Chrome, and when
you look at its content there, you'll see the button's code.

Okay, that's some powerful magic right there. But how does it work, and are there any
downsides?

use client  vs Nothing

The first and most intuitive concept here is "client" components. These are our
"traditional" components, your basic React code that we've been writing until now,
which are interactive, bundled together, and sent to the browser. We turn code into a
"client" component by explicitly adding use client  at the top of the file.

After that, the terminology becomes really confusing. In the world of Server
Components, the "default" component is Server. We turn a component into a Server
component by... doing nothing. At the very beginning, our App with the Button was a
Server Component before we added a use client  directive.

That leads to a very interesting consequence. Look at the code for the Button itself here: 
frontend/components/button/index.tsx . There are no directives at the top, and we didn't change
anything there when we turned our app into the Client component. But the fact that we
introduced use client  to the parent component made all the difference.

So, components without the use client  directive can still be Client Components. Their



parents will decide. It's possible that in one case a component stays as a Server
Component, but in another case, it accidentally ends up in the browser. Exactly as it
happened with the Button.

To make things even more complicated, there is also the use server  directive[165]. Which
is used for server functions that can be called from the Client Components. Essentially,
it's a fancy way to create a REST API and slightly out of scope here.

How the Magic Works - the Theory

As you might know, a normal React Component is a function that returns a React
Element. Every time we "render" a component, in reality, we create an Element, which
will be picked up and converted into something useful by React when it reaches this
Element in the render tree.

const Component = () => ... // this is a component

<Component /> // this is an Element

The Element in this form is syntax sugar for an object, which has the type  of the element
and a bunch of other attributes like props, children, and key.

{
 type: Component,
 ... // bunch of other stuff
}

So our Button from the App above will be represented by an object like this:

{
  type: Button,
  props: {
   children: "I'm a button"
  },
  ... // other stuff
}

If this concept is completely new to you, you might need my other book called



"Advanced React"[166]- half of it is dedicated to understanding all of this on a very deep
level and why it matters for everyday life.

But for the purpose of this chapter, the thing that we need to know is that when we call
React's render  at the very root of the app, React goes through all the components on the
render path starting from the root and constructs that tree of objects. From that tree, it
can create the "real" DOM elements and inject them into the page.

Normally, this happens on the client, and this is the basis of Client-Side rendering. If we
add Server-Side rendering to the mix, we'll have the DOM elements prefilled already. In
this case, React still goes through the tree, constructs the objects, but instead of creating
new DOM elements and injecting them onto the page, it reuses the existing DOM nodes
and just attaches the needed event listeners to the interactive elements.

So if we look at the simplest App we had:

export default function App() {
  return <Button>I'm a button</Button>;
}

After all the processing and tree-reconstructing, it will be roughly represented by an
object like this:

{
 type: "button", // the Button component renders a "button" element
 props: {
  children: "I'm a button",
  className: "inline-flex gap-2 ..." // Button injects quite a lot of classes
 }
}

Now, let's add Server Components to the mix. With Server Components, we generate
that tree of objects in advance, on the server, saving some valuable client processing
time. If we do that and inject that object into the page for the client to pick up, all React
would need to do is construct the DOM elements from the already existing tree. All the
work of creating that tree first can be skipped.

We can inject that tree in the same way as we did with SSR data: via a script tag,



attached to a global variable.

<script>
  window.__SERVER_COMPONENTS = JSON.stringify(...) // add that tree here
</script>

Now React just needs to read an object from the window  and convert it into DOM nodes
without much thinking.

How the Magic Works - Verifying the Theory

The content of this book pretty much follows the "trust but verify" principle. No reason
for this part to be an exception - let's see whether the theory matches the practice.

It's a little tricky with Next.js, as it does a lot of under-the-hood magic that's quite hard,
if not impossible, to turn on and off. For example, it's SSR through and through, with no
way to opt out. Considering that Next.js is pretty much the only solution for Server
Components, this leads to a big confusion that Server Components are a synonym for
SSR, or at least can't exist without SSR.

But we know the theory now, and know how SSR works, so we can hack our way through
that.

First of all, let's check whether the theory matches the reality in the default state. Revert
the App to be just a button, without the use client :

import { Button } from '@fe/components/button';

export default function App() {
  return <Button>I'm a button</Button>;
}

Build it and take a look inside the .next/server/app  folder. By default, Next.js pre-renders
at build time everything, which is another issue we'll have to disable in the next step. But
for now, it serves us nicely.

Open index.html  now. Two interesting things to notice there. First, you should be able to
see the rendered button:



<button type="button" class="inline-flex ...">I'm a button</button>

That's our SSR at work. The button itself was pre-rendered and injected.

Underneath, you should see a bunch of <script>  tags with self.__next_f  code, with some
weird but slightly familiar data being pushed to it. That's our Server Components,
serialized in a specific React-understandable way! If you search for "I'm a button" in that
serialized mess, you'll see that it's indeed there, and it looks almost like the object from
the theory.

{\"type\":\"button\",\"className\":\"inline-flex ...\",\"children\":[\"$undefined\",\"I'm a 
button\",\"$undefined\"]}]

An object with the type  "button", lots of classNames, and the children  with "I'm a button"
inside.

Now, we just need to eliminate the influence of SSR. The theory states that if Server
Components were injected, React would be able to pick them up and recreate the DOM
nodes from those objects.

To do that, manually remove the pre-rendered button in the generated index.html  and
restart the server. The code should be the <body>  tag followed by some comments with $
inside (probably something Next.js injects), followed by all the <script>  tags.

Now, start the server and open the website. The button should be there! To prove 100%
that it's the correct file, disable JavaScript on the page and refresh the page. The button
will disappear, proving that it was created on the client.

For even more fun, go back to the generated index.html , restore the SSR'd button, but
change the text inside it to "I'm an SSR button with some very long text". Restart the
server and refresh the page with and without JavaScript. Without JavaScript, the button
stays with SSR text. With JavaScript, it changes after React is loaded. If you slow down
the CPU and Network and record a performance profile, you should even be able to trace
the exact moment it happens: after JavaScript is downloaded and executed.

Why Exactly Were We Doing It?



While all of the above is quite fancy, the point of going through such a paradigm shift
and so much complexity is still not exactly clear. What was the point of all of this,
exactly?

First, the most obvious, although the hardest to see any benefit, IMHO, is the bundle
size reduction. If the Button from the example above weighs ~1 MB, that's one MB that
would not be included in the client bundle.

Why is it hardest to see benefits? Because in reality, it's highly unlikely that your button
will weigh 1 MB. From the bundle size investigation chapter, you already know that most
of the time, it will be various small-ish duplicated or unnecessary libraries that just
compound. Plus, considering that any component may or may not end up in the client
bundle, depending on any of the parents in the entire render tree... For a large app with
more than one developer working on it, it will be almost impossible to control.

There is a bigger benefit, however. Since Server Components run on the server and only
their return matters, they can have access to stuff Client Components cannot dream of.
Like a file system, for example. We can totally do this, and it's completely valid React
now:

export default function App() {
  const json = JSON.parse(fs.readFileSync(path.resolve('test.json')).toString());

  return <Button>I'm a button of id: {json.id}</Button>;
}

Assuming that test.json  exists and has this content:

{
  "id": "1"
}

Although, wait a second. Didn't I just say that any component may or may not be a
Client Component depending on the parent? What will happen if this component ends
up in the client bundle?

Okay, the statement wasn't 100% accurate. That kind of shenanigans will just break your



build with Module not found: Can't resolve 'fs' . So, some components can't be Client
components. Access to the file system or other Node-specific APIs is one way to ensure
that the component is server-only.

Another way is to make it asynchronous. Asynchronous components can't be Client
Components (at least at the moment). You'll see errors in dev mode if you try to do that.
With asynchronous components, we can do pretty much anything that requires
asynchronous operations, including data fetching.

Remember how we fetched our sidebar and statistics data in the Data Fetching and SSR
section? It's pretty much the same, only now it's not limited to the page's entry and can
be inside any React component, as long as it's a Server Component:

export default async function App() {
  const sidebarPromise = fetch(`http://localhost:5432/api/sidebar`).then((res) => 
res.json());
  const statisticsPromise = fetch(`http://localhost:5432/api/statistics`).then((res) => 
res.json());

  const [sidebar, statistics] = await Promise.all([sidebarPromise, statisticsPromise]);

  return (
    <>
      <p>
        Sidebar data:
        {JSON.stringify(sidebar)}
      </p>
      <p>
        Statistics data:
        {JSON.stringify(statistics)}
      </p>
    </>
  );
}

No more props drilling, the data fetching is co-located with the React code that uses it. If
you load that page and open the Network panel, you'll see that there are no requests for
this data on the client. It just appears there.

You might've also noticed that the page loads instantly. But weren't those endpoints
somewhat slow? This is again where Next.js makes it harder (or easier, depending on



your point of view). Next.js is aggressively pre-building and pre-caching everything,
including data fetching in Server Components. If you attempt to build the project
without the backend API service running, you'd see the build fail. Next.js is trying to
download this data in advance. You can see what it looks like if you open the 
.next/server/app/index.html  again: everything is downloaded and injected in advance.

This could be great if the data is somewhat static or tightly coupled with the App itself:
downloading everything in advance makes you independent from those endpoints, and
the page will be super-fast. However, if this data is truly dynamic, like it's coming from
some sort of CMS and managed independently from the app's release cycle, this might
become problematic. Because, the only way to update that data is to rebuild and
redeploy the project.

Luckily, in this case, we can opt out of this behavior by adding export const dynamic = "force-
dynamic";  at the top of the file.

// Add this to opt out of pre-rendering
export const dynamic = "force-dynamic";

export default async function App() {
 ... // everything is the same
}

Rebuild the app and open the .next/server/app  folder. You'll see that the index.html  file is
gone: from now on, it will be generated only when you navigate to the website in the
browser.

Do that, and you'll see the delay of the endpoints: the page is blank until the data comes
through. Exactly the same behavior as we had with the SSR approach.

Which is confusing and infuriating, in a way. We went through all those troubles just to
co-locate data fetching with components? Where are the performance benefits? ࣽ A
slight reduction of bundle size and a JavaScript task that may or may not happen doesn't
seem like something that justifies the cost.

It's because there is another piece of the puzzle that actually unlocks those benefits.
Streaming!



Exploring Streaming

Until this moment, our "server" part of the app, even when it was in the Server
Components mode, resembled a simple waterfall. We trigger some data fetch on the
server, await  until the data is there, then feed this data to the components and send the
result to the client.

However, we already know that there is such a thing as a Critical Path: the content of the
page that the user absolutely must see as soon as possible. We don't really need to wait
for all the slow data to show it to the user. Plus, our endpoints are different - one is
slower than the other. Why exactly are we waiting for the slowest one to resolve to show
the data from the less slow endpoint?

We already know that we can co-locate data fetching with the components that use that
data, so waiting makes even less sense. If, for example, I refactor the mini-app to be this:

export default async function App() {
  return (
    <div>
      <h1>Welcome to the App!</h1>
      <Sidebar />
      <Statistics />
    </div>
  );
}

With the Sidebar  and Statistics  components being asynchronous Server Components:

// exactly the same code for Statistics
const Sidebar = async () => {
  const sidebarPromise = fetch(`http://localhost:5432/api/sidebar`).then((res) => 
res.json());

  const sidebar = await sidebarPromise;

  return <>sidebar: ${JSON.stringify(sidebar)}</>;
};

In this case, waiting for everything to finish fetching is even more unnecessary: in an



ideal world, I would expect the h1  part to be independent and show up immediately, and
for Sidebar  to be independent from Statistics  and vice versa.

However, this doesn't happen.

This is because we haven't commanded our server to do what I described yet. And
whether it's even possible or not depends on the server's implementation.

In the "traditional" SSR with renderToString , there would've been nothing I could've done,
even if I used Server Components for fetching (assuming they work there). renderToString
is just a JavaScript function: some data comes in, it processes it, async or otherwise, and
returns some data. All in one go.

Luckily, Next.js is not "traditional" here and supports what is known as Streaming[167].
Streaming allows Node, which is the engine underneath the Next.js server, to process
data gradually, in "chunks". Basically, your Netflix streaming vs downloading the entire
movie in advance. Only applied to React rendering.

By the way, implementing streaming by yourself is not an easy task, even a hacky
variation for study purposes. I swear, the amount of time I spent trying to do that is just
embarrassing. But in the end, I always end up with a half-working version of Next.js, the
necessity to include a dozen new concepts and a few new chapters just to cover "how".
None of which would be relevant to web performance or writing customer-facing
interfaces: the primary focus of this book.

This is why we're using Next.js here again. If the end result is going to be a not-very-
understandable black box full of magic anyway, I could just use an existing magic right
away and focus on how to use it rather than reimplementing it.

So, back to coding. Next.js is fancy and supports streaming. Streaming is the "ideal"
situation that I described above: when it works, it would render the h1  tag first, then the 
Sidebar  and Statistics  components independently, as soon as their data comes through.

// With streaming, we should see h1 first
// Then, Sidebar and Statistics independently
// When their data comes through
export default async function App() {
  return (



    <div>
      <h1>Welcome to the App!</h1>
      <Sidebar />
      <Statistics />
    </div>
  );
}

To make it work, however, it is not enough to just use Next.js (or any other framework).
The implementation above has one fatal flaw: React still thinks that everything is on the
critical path. We need to mark Sidebar  and Statistics  as "not that important, focus on
something else first until they are ready".

You guessed it - we need to wrap them in the already familiar Suspense .

export default async function App() {
  return (
    <div>
      <h1>Welcome to the App!</h1>
      <Suspense>
        <Sidebar />
      </Suspense>
      <Suspense>
        <Statistics />
      </Suspense>
    </div>
  );
}

Now you should be able to see exactly the "ideal" scenario I described! The "Welcome" 
h1  tag appears immediately, followed by the Sidebar  data (the faster endpoint), followed
by Statistics .

Where you put Suspense  boundaries will determine the Streaming "chunks". Basically,
one Suspense  - one chunk. In the implementation above, we have two independent ones. I
could also wrap both of the components in just one Suspense :

export default async function App() {
  return (
    <div>
      <h1>Welcome to the App!</h1>



      <Suspense>
        <Sidebar />
        <Statistics />
      </Suspense>
    </div>
  );
}

In this case, Suspense  will wait for both Sidebar  and Statistics  to resolve before rendering
them. So you'll see the "Welcome to the App!" text show up immediately, and then both
the Sidebar and Statistics data at the same time.

We can also render one inside another. Because why not? From a React perspective,
those are just components. But be mindful that since they are just components, they
would have to follow the components' lifecycle rules. I.e., data fetching inside a
component can't be triggered until the component ends up in the render tree. Which, in
the case of Suspense, will happen only when the "parent" Suspense resolves itself. I.e.,
the fetch requests will be chained, and we created a regular data fetching "waterfall",
only on the server.

// Nesting like this will create a data fetching waterfall
export default async function App() {
  return (
    <div>
      <h1>Welcome to the App!</h1>
      <Suspense>
        <Statistics />
      </Suspense>
    </div>
  );
}

const Statistics = async () => {
  const statisticsPromise = fetch(`http://localhost:5432/api/statistics`).then((res) => 
res.json());

  const statistics = await statisticsPromise;

  return (
    <>
      <Suspense>
        <Sidebar />
      </Suspense>



      statistics: ${JSON.stringify(statistics)}
    </>
  );
};

Final Measurements on the Real Page
That was quite a journey for the simple fetch requests! They started on the client inside 
useEffect , migrated to the server outside of React components, and finally ended up back
inside React components, but still on the server. Wild.

But was it really worth it? From the performance perspective, of course, assuming we're
willing to make the effort. There is only one way to answer that: measure and compare.
We already have apps for the three of them:

1. Client-side fetching: src/chapter10-data-fetching/frontend/client-fetch
2. "Classic" SSR: src/chapter10-data-fetching/frontend/next-pages
3. Server Components: src/chapter10-data-fetching/frontend/next-app-router

All are implemented the same way, with the "My Dashboards" title being the only thing
on the "critical path", and Sidebar items and the Statistics table data loaded
dynamically. So, let's measure the LCP (when the title shows up) and the time for
dynamic items to show up (which will be the same as the LCP for the classic SSR) for
each of those apps.

Critical Path Sidebar Items Statistics Table
Client-side Fetching 740 ms 1.4 s 1.8 s
"Classic" SSR 1.2 s 1.2 s 1.2 s
Server Components 410 ms 550 ms 1 s

Okay, even I must admit, this is pretty impressive. Server Components outperform
everything, some of them even twice over.

Whether it's worth the pain or not, I'll leave for you to decide. ☺ 



What's Next?
Okay, so now data fetching in React, new and old patterns, should be clear. We can fetch
anything now on the client, can optimize with smart prefetching, can move that data
fetching to the Server if there is a need, know how to pass that data from the server back
to the client, and even solved how Server Components work.

But all of this, and pretty much everything we talked about before, dealt with just one
aspect of performance: initial load. Frankly, I'm getting bored of it, so let's switch to
something else now. How about some Interactions performance? We briefly touched on
that one in the SPA section, so maybe it's time to talk about it in a bit more detail.



11. Interaction Performance

We're two-thirds into the book already, and we're still talking about the initial load
performance. Time to change that. The initial load is important, of course, sometimes
the most important part of performance, the very first impression of your website, in a
way. But ignoring second, third, and all other impressions after the first one is not
always the best strategy.

In this chapter, we'll talk about the second most important part of your website's
performance: interaction performance. We talked a little bit about it already when we
looked into the INP metric and how to measure it.

In this chapter, we'll learn a few of the most useful tools and techniques to improve it.

Chrome DevTools for Interactions
First things first. Before improving things, we first need to understand how to find and
debug things to improve.

Until this moment, we used Chrome's Performance panel to record the performance
profile of the initial load in the "production" build, even for debugging. We couldn't
really use "dev" mode with niceties like Hot Reload - dev mode usually doesn't bundle
the files in the same way and doesn't do tree shaking, which are essential for
understanding the effect of the code on the initial load.

However, we could extract a lot of useful information from the recorded profile, and we
didn't really need to install any additional tools other than the bundle size analyzer.

For interaction performance, the situation is reversed. We can't really extract anything
useful from the "production" build other than detecting where the interactions'
"bottlenecks" are. As soon as we can say that this particular interaction is slower than
we'd like, we kinda have to switch to the dev mode.



This is because, for the initial load, we were generally okay with treating the React part
as a giant blob of code of unknown quality. For the purpose of initial load debugging, the
only thing that usually matters is how large the blob is. With interactions, we need to
understand what exactly the blob does, and more importantly, why. A generic
performance profiler won't give you much other than "React does something weird, your
guess is as good as mine".

You'll see what I mean in a second. Let's start doing things now. Build and start the
Study Project for this chapter ( src/chapter11-interactions ):

npm run build --workspace=chapter11-baseline-frontend
npm run start --workspace=chapter11-baseline-frontend

For the rest of the chapter, we're going to investigate the performance of the search field
at the very top of the website. Try to type there, although you probably won't notice
anything yet.

Because the very first thing to do when investigating interactions is to set the CPU to
"low tier" mobile settings. Otherwise, especially if you're on a high-end developer laptop,
you likely won't see anything suspicious, regardless of how slow the interaction is in the
real world. Unless you're doing something really weird heavy, of course, like calculating
Pi on the frontend.

I usually set the CPU throttling to 20x to be sure. With the reasoning that if the
interaction is "green" on 20x, it's green for everyone.

The second thing is to open the Performance panel and perform the interaction you
want to assess while keeping an eye on the bottom of the panel (don't record anything
yet). There will be a list of every interaction, and its time will be recorded there. If it's
red or just larger than you expected, it's a reason to investigate further.



After that, the next natural step is to record the performance profile and examine where
those numbers come from. Press the "Record" button in the Performance panel, type in
the search field, and then press "Done".

The profile you'll get will be something like this:



There will be the usual "Main" section, where you'll see a flurry of typical and very
familiar, by now, yellow JavaScript bars. And then there will be an "Interactions" section
on top of it, where you'll see each interaction, i.e., key press, and how long the browser
thinks it took, starting from when you first pressed the button until the browser had a
chance to react to it with something on the screen (i.e., the symbol appears).

This picture is useful for seeing that, indeed, there is something wrong with how that
search field is implemented, judging by all those red diagonal lines on top of grey and
yellow bars. And from all we know about the Flame Graphs, we need to look into what's
happening inside those "Function call" and make those yellow bars shorter.

The production build is useless for this, as you can see - all the names of all the functions
are minified to a completely unreadable wall of symbols. So, the very first thing we need
to do after we identify the part of the app to fix is to disable all minification and
compression. And the easiest way to do this is to switch to "dev" mode.

npm run dev --workspace=chapter11-baseline-frontend

Finally, hot reloading is working! ࣡

Record the performance profile for the same interactions, and you'll finally see... that
nothing is clear still. ઇ



Although if you really zoom in on the graph, you'll see that a few named blocks popped
up. And those names look suspiciously familiar.

If you search the codebase, you'll find those functions - these are normal React
components! So, the DevTools at least give us a hint: when we type in the search, React
is doing something with those components.

Which just screams "lots of unnecessary re-renders", if you ask me. Because you'll see
lots of those function calls inside those blocks. And "re-render" is basically a synonym
for "React calls Component's function with some fresh update after a user interaction".



We'll prove that these are re-renders and fix them in a few sections below. Let's finish
with non-React stuff first, to wrap them up. Because dealing with re-renders will be
spread across several chapters.

The Long Tasks Problem
Let's talk a bit more about JavaScript tasks. Or, to be precise, the concept of "long tasks"
and why it's a problem.

As you may know, the browser performs everything JavaScript-related as a "task".
Simple synchronous JavaScript will be an uninterrupted task. This, for example:

const sleep = (ms: number) => {
  const start = Date.now();
  while (Date.now() - start < ms) {
    // busy wait
  }
};

sleep(10);

Will be a single task that takes 10 ms. You'll see it in the performance profile as such. If I
change it to sleep(5000);  nothing will change other than duration - it's still going to be one
long task that takes 5 seconds.

A first task originates when the JavaScript is loaded - the initial chunk of the
synchronous critical path JavaScript. This is what we've seen so many times already: the
large yellow line of JavaScript in one unbroken block. You can even see the "Task"
indication right on top of it.



Tasks can also originate from callbacks and other asynchronous operations. Like typing
in the search field, whether it's React or not, or from a Promise. In this case, the browser
will place these tasks in a queue and process them in due time after it's completed its
current task.

If you find that slow Search field we've been playing with, get rid of the state and instead
call the sleep  function in the onChange  callback:

// FILE: frontend/patterns/topbar-for-sidebar-content-layout.tsx

<InputWithIconsNormalToLarge
  // value={search}
  onChange={(e) => {
    // setSearch(e.target.value);
    sleep(100);
  }}
/>

You'll see that every keypress produces an unbroken 100-millisecond task.



You'll see that the duration of the task is controlled by the sleep  function. Which adds a
bit more usefulness to the Chrome profiler, by the way. If you see some meaningfully
named non-React function here, then the long task is caused by your own code, not
React re-renders.

While the browser is busy performing a task, it's unresponsive. Like, completely out of
it. If you change the sleep  value from 100  to 5000  in the onChange  callback and try to type
anything, you'll see that after the very first key press, the entire page freezes and nothing
is interactive anymore.

This is exactly what happens when we trigger a re-render of the entire page by typing in
the search field: the browser has too much React to do in one go.

When it comes to long tasks like that, solutions can be put into two broad categories:
split or shorten. We can split the task into smaller chunks, allowing the browser to
queue something in between. Or, we can reduce the task's execution time by making it
do less work. I.e., lots of refactoring most of the time.

Let's start with the first one. Because everything from the "shorten" category basically
means lots of refactoring to get rid of the unnecessary re-renders.

Dealing with Long Tasks: Yield to Main
The solution of breaking up long tasks is often referred to as "yield to main"[168]. The
idea is this. I used a sleep  function with a 5000  value to imitate a long task - one single
function call. However, in real life, it's highly unlikely to see a situation like this. More



likely, it will be a set of function calls, each of which won't take that long.

// it's probably going to be like this
doSomething();
thenSomethingElse();
andSomethingAfter();

Triggered in a chain like this, this code will produce a single task. We can imitate that
situation with the help of the sleep  function:

const sleep = (ms: number) => {
  const start = Date.now();
  while (Date.now() - start < ms) {
    // busy wait
  }
};

for (let i = 0; i < 10; i++) {
  sleep(10);
}

If we do something synchronous for 10 ms 10 times, it already gives us a 100 ms delay.
Put it in the search field:

// FILE: frontend/patterns/topbar-for-sidebar-content-layout.tsx
<InputWithIconsNormalToLarge
  // value={search}
  onChange={(e) => {
    for (let i = 0; i < 10; i++) {
      sleep(10);
    }
  }}
/>

Then start typing and record the performance:



You might see a few sleep  calls at the end of the flame graph, but it's just one single task
that blocks the browser.

However, now that we have multiple sleep  calls, we can tell the browser explicitly that
after each of them, it can pause for a bit, unblock itself, and check whether something
happened while it was busy. And if something happened, react to it.

scheduler.yield()

There are multiple ways to do that. The latest and greatest is the Scheduler API[169] with 
scheduler.yield() :

for (let i = 0; i < 10; i++) {
  sleep(10);
  // yield to main after each sleep
  await scheduler.yield();
}

Or in the search field right away:



<InputWithIconsNormalToLarge
  // value={search}
  onChange={async (e) => {
    for (let i = 0; i < 10; i++) {
      await scheduler.yield();
      sleep(10);
    }
  }}
/>

Don't forget to make the onChange  async!

If you record the performance again, you'll see a bunch of microtasks where one
unbroken task used to live:

And the best part - nothing is frozen anymore! No matter how fast you type, everything
is responsive. It's especially visible when you change the for  loop to perform a thousand
times instead of ten.

Clean up the Performance panel and pay attention to the "Interactions" block.
Everything is green regardless of how much the CPU is slowed down!

scheduler.yield() Fallback

Be mindful, however, that since scheduler.yield  is the latest and greatest, not every
browser supports it. Especially old browsers on mobile platforms, where you'd see the
greatest benefits from splitting up tasks, which is a bit ironic.

Not to worry, however, we can implement a perfectly valid fallback for this case that
works everywhere. It relies on the fact that functions like setTimeout  or requestAnimationFrame
naturally create their own task that is put into the browser queue.

Basically, we can implement the yieldToMain  function as simply as that:



const yeildToMainThread = () => {
  return new Promise((resolve) => {
    setTimeout(resolve, 0);
  });
};

And use it in place of scheduler.yield  in exactly the same way:

<InputWithIconsNormalToLarge
  // value={search}
  onChange={async (e) => {
    for (let i = 0; i < 10; i++) {
      await yeildToMainThread();
      sleep(10);
    }
  }}
/>

With exactly the same result!

When to use it in React?

After reading the pattern above, a question should immediately arise: is this really
applicable to our standard UI applications? Even in the search example from the very
beginning, we didn't have any loops or anything to yield from. Just an onChange  callback
with setState  inside.

The answer is probably "very, very rarely". To be completely honest with you, I don't
think I've ever used it explicitly in any of my React apps. Most of the heavy computation
in React is usually hidden behind state updates and delegated to React itself.

However, this trick might be useful when you have a lot of non-React calculations.
Especially if you need to iterate over DOM nodes for these. Think something like
implementing your own custom browser-based game or a fancy animation framework.
Or creating a competitor to React ࣥ.

React DevTools for Interactions



Okay, so back to the original problem of search, without any artificial sleep  tasks. We
already guessed that it's slow because of re-renders and looked at the code of the input
component:

<InputWithIconsNormalToLarge value={search} onChange={(e) => setSearch(e.target.value)} />

In the onChange  callback, I see a setSearch , which is not a local state but comes from props.
So I'd say it's a pretty safe bet that lots of unnecessary re-renders are responsible for the
slowness.

But to actually see the size of the disaster and confirm it's re-renders, we need
something visual. Well, technically speaking, you can just put console.log  in a few
strategic places, and this is what I do 98% of the time, but you don't have to be that old
school. Plus, having nice visuals always helps.

Chrome DevTools won't help us here much, as we've seen, so it's time to try something
else and switch to React DevTools. React DevTools[170] is a Chrome plugin that, when
downloaded and installed, gives you two additional tabs in Chrome DevTools: "Profiler"
and "Components", both with a tiny React icon. The plugin works only in "dev" mode, so
it's good that we switched to it already.

If you haven't installed the plugin yet, now is the time to do so. After that, run the
project in "dev" mode, open the new Profiler tab, click on the "cog wheel" icon to open
settings, and check the "Highlight updates when components render" checkbox in the
"General" tab.



This is the most useful tool when it comes to interactions and React. It does exactly what
it says: it highlights all components on the page that re-render on every interaction. Try
to type into the search box when this checkbox is "on". The entire page should light up
like a Christmas tree.

For contrast, try to open/close the "Tasks" collapsible items in the Sidebar - only the
items inside that panel will be highlighted. Slow down the CPU 20x, and you'll see that
the INP number is still in the "green" for this interaction. Compare it with typing in the
search:



That will be the difference between "only legitimately necessary re-renders" and
"something went wrong and the entire page re-renders unnecessarily".

Before investigating what happened and how to fix it, though, let's check out another
cool toy.

Similar to the default Chrome profiler, the React profiler allows you to record the
performance profile. The "Record" button is even in the same place - at the top left
corner of the panel. Click it to start the recording and interact with the search again.

After the recording is done, in the "Flamegraph" section, you'll see the same graph we've
been staring at for so long over the course of this book:



Only this time, it finally makes sense for the React-trained eye. All our components are
here, in their hierarchical order, so reading it should be pretty intuitive by now. We have
an App  component that triggers (i.e., renders) AppLayoutLazySidebar, then Suspense , 
DashboardPage , etc., etc. The entire tree of React components.

Now, record the same profile for the "Tasks" collapsible items in the Sidebar, and you'll
immediately see what the color coding is for:

The colored components are those that are re-rendered during the recorded interaction.
Which confirms what we've already seen by enabling the "highlight re-renders"
checkbox. Only this time, we can see how much time those re-renders took relative to
each other and potentially see if a component is a bottleneck.

So the picture is pretty clear here: when we're typing in the Search field, we trigger re-
renders of the entire tree of components. To speed up the typing and return to the



"green" numbers, we need to make sure that the re-renders picture is similar to the
collapsible items in the Sidebar.

What's Next
The re-renders discovery above means that we're deep in React territory now. As a
result, we need to deal with it in a React way. Which, of course, means that we have a
thousand and one possible solutions.

So in the next two chapters, we'll look into exactly that: possible solutions for the re-
renders problem. In the first one, we'll look into the most efficient manual solutions,
and in the chapter after that, how to automate them with React Compiler.



12. Getting Rid of Unnecessary Re-
renders

We discovered in the previous chapter that the search field causes the entire page to re-
render on every key press. Time to deal with it.

Although I must mention that the amount of content that touches on re-renders and
React components, their lifecycle-related behavior, and the reasons for those, could fill
another book. So this chapter is more of a "brief" refresher of the most important parts
of the full picture that could help us investigate and fix the search.

If any of the content in this chapter is a surprise, and you want to understand how it
works exactly, you'd need my other book called "Advanced React"[171]. Most of it is
dedicated to the behavior touched on in this chapter. I wasn't joking about filling an
entire book, you see. You can use the ADVREACT30 discount code to receive a 30%
discount during the checkout process on the website. Just don't share it publicly, let it be
our little secret ࣥ

And if you already know that book by heart, you'll find exactly zero new information in
this chapter. So treat it as a refresher to nod along, or just skip it altogether.

Re-renders Basics
As we've just seen, the unnecessary re-render of the entire page caused our search field
to be somewhat slow. In fact, probably 90% of all slow interactions in React are caused
by either too many re-renders in an interval or re-renders of too much at the same time.
Or both.

So, what exactly is a re-render?

When the app appears on the screen for the first time, it's mounted. This is when React



initializes every component for the first time, triggers its lifecycle for the first time,
creates or hydrates DOM nodes, and does all other important work for the app to
function properly.

After all this is done and the user interacts with the page, React needs to update
everything that needs to change after this interaction. This process of updating already
existing components is what we know as a re-render in React. A re-render is usually
much faster than mounting since React doesn't need to create anything from scratch; it
just updates already existing components with some new data.

The one and only way to initially trigger a re-render in React is to update the state. This
may take the form of many different APIs: setState  from the useState  hook, 
useSyncExternalStore  hook, useReducer  hook, or any of the external state management
libraries and their APIs. Underneath all of this, there is a state update.

After the component that triggers the state update is updated (i.e., re-rendered), React
then needs to distribute the changes to all other components that might possibly depend
on the changed data. So, a re-render of every component rendered inside is now
triggered. Re-renders of those trigger re-renders of components inside of those
components, and so on and so forth, until the end of this tree of components is reached.

Have you noticed how I didn't mention props even once here? Because props don't
matter for the "default" behavior! If a re-render of a component is triggered, all
components rendered inside will re-render regardless of whether their props change
or not.

The only time when whether the props change matters is when a component is
memoized, either manually via React.memo , or automatically via the Compiler. In this
case, when React encounters this component in the render tree, it will stop and check
whether the props have changed. If even a single prop changes, the entire component's
re-render is triggered. So, for a component to skip re-renders, both it and every single
prop should be memoized.

Re-renders are "hierarchical" and never go "up", unless explicitly "bubbled" up via some
callbacks. So, usually, anything that comes from props is "higher" in the hierarchy and is
not affected by re-renders.



Creating components inside other components is a very bad idea. If a re-render of such a
component is triggered, React will unmount this component first and then mount it
back. It's called re-mounting, and it usually causes performance problems (since
mounting is much slower than re-rendering), and various bugs like lost focus or reset
state.

There are, however, some cases when you explicitly want to trigger re-mounting or reuse
the existing instance of a sibling component. In this case, you need to use the key
property with some stable value between re-renders.

Re-renders Situation in the Search Field
Okay, so we found the problem with the search - the entire page re-renders. We now
know what re-renders are and how they behave by default. Now it's time to identify the
problem in the code.

First, we have the App  component that controls the search's state:

// FILE: src/chapter12-re-renders/simple-frontend/App.tsx
export default function App() {
 // state initialized here
  const [search, setSearch] = useState("");

  return (
   <!-- state passed down here -->
    <AppLayoutLazySidebar search={search} setSearch={setSearch}>
      <DashboardPage />

   <!-- state used here -->
      <div>Search results for {search}</div>
    </AppLayoutLazySidebar>
  );
}

This is the very "root" component, so it makes sense why the entire page lights up when
we're typing something. By the rules of re-renders, when the state changes, everything
that is rendered inside the component with the changed state will re-render. In our case,
the entire page.



This state is passed down through a few layers of components via AppLayoutLazySidebar ,
where eventually it ends up attached to the search field:

// FILE: frontend/patterns/topbar-for-sidebar-content-layout.tsx

export const TopbarForSidebarContentLayout = ({ search, setSearch }) => {
  return <InputWithIconsNormalToLarge value={search} onChange={(e) => 
setSearch(e.target.value)} placeholder="Search..." />;
};

Also, this state is used in the div with the future search results. It's probably going to be
some sort of drawer that expands over the entire page when implemented, so it makes
sense why it's at the very root of the app.

Now to fixing it. In React, there are, of course, one million ways to do that. Let's start
with the simplest and the most overlooked one.

Moving State Down
If the state update causes all components inside to re-render, the simplest solution is to
reduce the blast radius of the updates by moving the state away from the "root"
component down down down the render tree to the very last component that actually
needs it.



A very good indication of a situation where it's appropriate is a few layers of components
that just pass state around, rather than utilizing it. Which is exactly what happens in our
case: the state value passes through a few components until it reaches the search field.

In code, it would mean we need to move the state at the very least to the 
TopbarForSidebarContentLayout  inside frontend/patterns/topbar-for-sidebar-content-layout.tsx :

// FILE: frontend/patterns/topbar-for-sidebar-content-layout.tsx
export const TopbarForSidebarContentLayout = () => {
  const [search, setSearch] = useState('');

  return <InputWithIconsNormalToLarge value={search} onChange={(e) => 
setSearch(e.target.value)} placeholder="Search..." />;
};

The div/future drawer with the search results would also have to move there, of course:

// FILE: frontend/patterns/topbar-for-sidebar-content-layout.tsx
export const TopbarForSidebarContentLayout = () => {
  const [search, setSearch] = useState('');

  return (
    <>
      <InputWithIconsNormalToLarge value={search} onChange={(e) => 
setSearch(e.target.value)} placeholder="Search..." />
      <div>Search results for {search}</div>
    </>
  );
};

Do this simple thing and measure how long it takes to type in the search field now. For
me, it improved the interaction 10 times, from ~500 ms to ~50 ms, and moved it from
"insufferable and very red" to "sleek and always green". Just like that!

In reality, I'd want to introduce debouncing here as well: those search requests surely
will be sent to some form of backend to get results. And results would have to be
rendered in a Portal rather than directly like this, otherwise, you'll suffer from stacking
context issues.



Components as Children and Props
Let's assume that Moving State Down is not available for some reason, and the state has
to stay inside the App  component. Maybe we can't move the search results drawer down
with the state because it's tied to something else that is happening inside the App
component.

We can still reduce the state blast radius even in this situation, before resorting to some
drastic measures like memoization. If we look at the App  component again, we'll see that 
DashboardPage  is the component we want to avoid re-rendering: there is the entire page
underneath. The AppLayoutLazySidebar  component, although strictly speaking is not
necessary to re-render, is not that big of a deal - it's just the layout and the sidebar.

// FILE: src/chapter12-re-renders/simple-frontend/App.tsx
export default function App() {
  const [search, setSearch] = useState("");

  return (
    <AppLayoutLazySidebar search={search} setSearch={setSearch}>
     <!-- only this one is a problem -->
      <DashboardPage />

      <div>Search results for {search}</div>
    </AppLayoutLazySidebar>
  );
}

The second rule of re-renders: anything that is passed as props is not affected. So, what
will happen if I encapsulate everything that depends on the state in one component and
pass DashboardPage  as a prop? Like this:

const LayoutWithSearch = ({ content }) => {
  const [search, setSearch] = useState('');

  return (
    <AppLayoutLazySidebar search={search} setSearch={setSearch}>
      {content}
      <div>Search results for {search}</div>
    </AppLayoutLazySidebar>
  );
};



export default function App() {
  return <LayoutWithSearch content={<DashboardPage />} />;
}

There is no more state that can affect the DashboardPage  component inside the App ! Typing
in the search field is again green and sleek, although slightly slower than the first
solution (because of the Sidebar). But it's green with 20x CPU slowdown, so who cares?

And now the trick that blows the minds of people who see it for the first time. Rename
the content  prop to children :

export default function App() {
  return <LayoutWithSearch children={<DashboardPage />} />;
}

Everything still works, since it's just a prop. Then rewrite it like this:

export default function App() {
  return (
    <LayoutWithSearch>
      <DashboardPage />
    </LayoutWithSearch>
  );
}

Everything still works! Because it's exactly the same thing. This nice HTML-like syntax
is nothing more than syntax sugar for the children  prop. It's simply a cleaner look, plus it
will become important to know when we get down to memoization.

Avoid Props Drilling
What to do, however, if we want to avoid re-rendering the Sidebar as well, while keeping
the state at the "root"? In this case, we can leverage React Context or any external state
management solutions like Zustand[172] or Redux[173]. Basically, anything that allows us
to bypass layers of components and extract data from some semi-external "storage"
directly to the component that needs the data.



At the very root, we'll create the Data Provider that stores the search state in
Context[174]:

const Context = createContext({
  search: '',
  setSearch: () => {},
});

export const useSearch = () => useContext(Context);

const DataProvider = ({ children }) => {
  const [search, setSearch] = useState('');
  const value = useMemo(() => ({ search, setSearch }), [search, setSearch]);

  return <Context.Provider value={value}>{children}</Context.Provider>;
};

Wrap the contents of our App  in this provider, so that everything can have access to the
Context data:

export default function App() {
  return (
    <DataProvider>
      <AppLayoutLazySidebar>
        <DashboardPage />

        <div>Search results for ...</div>
      </AppLayoutLazySidebar>
    </DataProvider>
  );
}

We already know that the children  prop won't be affected by the state change, so
everything inside the App  is safe.

Then extract the Search results into their own component and use the useSearch  hook to
access the search data:

const SearchResults = () => {
  // useSearch from the Context provider
  const { search } = useSearch();
  return <div className="hidden">Search results for {search}</div>;



};

Get rid of all the props drilling on the AppLayoutLazySidebar  component, and use Context
directly inside the component that renders the search field:

// FILE: frontend/patterns/topbar-for-sidebar-content-layout.tsx
export const TopbarForSidebarContentLayout = () => {
  // useSearch from the Context provider
  const { setSearch, search } = useSearch();

  return (
    <>
      <InputWithIconsNormalToLarge value={search} onChange={(e) => 
setSearch(e.target.value)} placeholder="Search..." />
      <div>Search results for {search}</div>
    </>
  );
};

Run it, measure it, and enjoy yet again the sleek and green experience even on 20x CPU
delay. Plus, as a nice bonus, cleaner code, since you don't need to pass props around
anymore. If we visualize this pattern as a tree, it will look like this:

Memoization



The patterns above are impressive, right? However, in real life, it's not always that easy
to implement them. The real code is messy, and moving state around like that or
introducing state management or Context would require significant refactoring, which is
not always feasible.

For this case, we have memoization.

In React, memoization stands on three pillars: useMemo , useCallback , and memo . All three will
preserve a reference to whatever they memoize between re-renders.

We'll use useMemo  when we need to save the reference to arrays and objects:

const App = () => {
  const dataMemo = useMemo(() => [{ id: 1 }, { id: 2 }], []);
};

Although in real life, the value inside useMemo  will be derived from something inside the 
App  component itself. Otherwise, there is no point: the array/object can be moved
outside of the component, and useMemo  can be avoided altogether.

We'll use useCallback  when we need to preserve the reference to a function:

const App = () => {
  const onClickMemo = useCallback(() => {
    console.log('Button clicked');
  }, []);
};

And we'll use memo  when we need to memoize a component itself:

const App = () => <div>...</div>;
const AppMemo = memo(App);

How would this help us with our search problem? Simple.

As we know, if a component is wrapped in memo , React will stop and check its props. If no
props change, then re-renders will be skipped for this component. So in our initial case:



// FILE: src/chapter12-interactions/baseline/App.tsx
export default function App() {
  const [search, setSearch] = useState('');

  return (
    <AppLayoutLazySidebar search={search} setSearch={setSearch}>
      <DashboardPage />

      <div>Search results for {search}</div>
    </AppLayoutLazySidebar>
  );
}

If we want to avoid the re-rendering of the DashboardPage  component, we just need to wrap
it in memo :

// wrapped in memo to prevent re-renders
const DashboardPageMemo = memo(DashboardPage);

export default function App() {
  // state here

  return (
    <AppLayoutLazySidebar search={search} setSearch={setSearch}>
      {/* wrapped in memo to prevent re-renders */}
      <DashboardPageMemo />

      <div>Search results for {search}</div>
    </AppLayoutLazySidebar>
  );
}

If it had some props, we'd need to memoize the props as well:

// wrapped in memo to prevent re-renders
const DashboardPageMemo = memo(DashboardPage);

export default function App() {
  // state here

  // wrap objects and arrays in useMemo
  const dataMemo = useMemo(() => [{ id: 1 }, { id: 2 }], []);

  // wrap functions in useCallback



  const onClickMemo = useCallback(() => {
    console.log('Button clicked');
  }, []);

  return (
    <AppLayoutLazySidebar search={search} setSearch={setSearch}>
      {/* don't forget to memoize ALL the props! */}
      <DashboardPageMemo data={dataMemo} onClickMemo={onClickMemo} />

      <div>Search results for {search}</div>
    </AppLayoutLazySidebar>
  );
}

And the app is free from unnecessary re-renders once again.

But to do it right is complicated. Very complicated, in fact.

Over time, those simple memos turn into chains of useMemo  and useCallback , props start
being involved, and to maintain the purity of memoization, you have to track it down
through layers and layers of components and other hooks, and eventually, one of them
will slip. And that will be enough.

As soon as even a single prop is not memoized correctly, the entire construct falls apart,
and the memoized component starts behaving like it was not memoized at all. And I
haven't mentioned anything about children  yet ࣥ

What if the DashboardPage  component had children? The pattern from above, which looks
like HTML:

const DashboardPageMemo = memo(DashboardPage);

export default function App() {
  // state here

  return (
    <AppLayoutLazySidebar search={search} setSearch={setSearch}>
      {/* what if it had children like this? */}
      <DashboardPageMemo>
        <ChildComponent />
      </DashboardPageMemo>
    </AppLayoutLazySidebar>
  );



}

A lot of people don't realize that ChildComponent  in this scenario is just a prop (like we've
seen before). So, in order for the memoization on the DashboardPage  to work properly, we
need to memoize ChildComponent  as well.

If you didn't get caught by the fact that ChildComponent  is a prop in this scenario and are
ready to memoize it, I can bet almost anything that your first attempt at memoizing it
will be like this:

const DashboardPageMemo = memo(DashboardPage);
const ChildComponentMemo = memo(ChildComponent);

export default function App() {
  // state here
  return (
    <AppLayoutLazySidebar search={search} setSearch={setSearch}>
      <DashboardPageMemo>
        <ChildComponentMemo />
      </DashboardPageMemo>
    </AppLayoutLazySidebar>
  );
}

Wrap it in memo  and render the memoized version - exactly the same as the DashboardPage
component. This feels only natural. And it's entirely wrong.

Or, to be precise, ChildComponent  itself will be memoized, of course, and won't re-render on
state change in the App  component. Memoization of the DashboardPageMemo , however, is
broken here.

<ChildComponentMemo />  here is an Element, not a component. An Element is just an object
with the type  property that points to the component:

const child = <ChildComponentMemo />;
// the same!
const child = {
 "type": ChildComponentMemo,
 ... // bunch of other stuff
}



The object itself is not memoized, so the reference to it is not stable between re-renders.
Essentially, we have this situation:

<DashboardPageMemo
  children={{
    type: ChildComponentMemo,
  }}
/>

Memoized component with a single non-memoized prop. Memoization is broken. The 
DashboardPageMemo  component will re-render with every state change.

To memoize it properly, we need to do it in the same way as any other object. I.e., we
need useMemo :

export default function App() {
  // state here

  const memoChild = useMemo(() => {
    return <ChildComponentMemo />;
  }, []);

  return (
    <AppLayoutLazySidebar search={search} setSearch={setSearch}>
      <DashboardPageMemo>{memoChild}</DashboardPageMemo>
    </AppLayoutLazySidebar>
  );
}

This is probably React's most counterintuitive pattern by far, and I've seen even very
senior engineers get caught by it. So if you got caught by it, don't feel bad, you're in
really good company!

What's Next?
As we've seen, fighting re-renders can involve a significant amount of effort. You'd either
need to refactor your app in lots of ways or introduce memoization. And manual
memoization in React is probably the most fragile pattern in the history of fragile



patterns.

So, it's no surprise that a lot of smart people were not happy with it and worked on a way
to automate it. After a few years of effort, the React team produced the solution: React
Compiler[175], which does exactly that. We'll investigate it in the next chapter.



13. React Compiler

After React Server Components, the React Compiler[176], is probably the most talked-
about feature of React. And probably the most anticipated one. And for a good reason.

As we've seen in the previous chapter, implementing memoization manually is no fun
and has more chances to go wrong than right. If any of the content in the previous
chapter was a surprise, or if you've never given memoization much thought and were
memoizing things just because it kinda sounds like a good idea, I can bet almost
anything that half of it is broken in your app right now.

The Compiler[177] is supposed to help with it. So what exactly is it? How can it help? And
what are the consequences? This is what we're investigating here.

What Is React Compiler
Many people think that React Compiler is part of React for some reason. It's not! At least
it's not at the time of writing this book ࣡ Who knows what will happen two weeks after
its release.

In fact, it's actually a separate tool implemented as a Babel[178] plugin. I.e., it's part of
your build system that transforms the code from something we write daily in React to
something that the browser understands.

It was introduced as a concept in December 2021[179], was released as a beta version in
October 2024[180], and as a Release Candidate in April 2025[181]. So, technically
speaking, it's not ready for production yet. In Next.js, for example, this feature is still
(i.e., in June 2025) marked as "experimental"[182]. Use it at your own risk!

The fact that it's not part of React is both good and bad news. The bad news is that you
need to install it separately. Just updating React to the latest version won't be enough.
You'd also need to be on the build system that supports Babel plugins, which is not all of



them. You can find the list of all the build tools that support the Compiler on the official
React website[183].

The good news, however, is that since it's not part of React 19, you don't need to update
to the latest version in order to get the benefits. React 17 is the lowest version that the
Compiler supports, so even if you're stuck with this five-year-old "legacy", you're still
good to try the Compiler.

Setting it up is relatively straightforward if you're on the correct system. Just follow the
official guide[184], and it should be fine. Cleaning up the codebase to prepare for the
compiler will be more of a challenge. To help with that, the React team also released an
ESLint plugin, so make sure to install it and fix everything that it finds.

What the Compiler Does
Like any Babel plugin, it transforms the code you write into something else. Remember
all the manual memoization you need to do in order to memoize a component with
props? This code, for example:

const App = () => {
  return (
    <HeavyComponent
      arrayProp={[1, 2, 3]}
      callbackProp={() => {
        console.log('Callback happened');
      }}
    >
      <ChildComponent />
    </HeavyComponent>
  );
};

In order to make sure that HeavyComponent  doesn't re-render, we need to introduce manual
memoization in four different places: the component itself, two of its obvious props, and
the children. The end result will be this:

const App = () => {



  const memoArray = useMemo(() => [1, 2, 3], []);
  const memoCallback = useCallback(() => {
    console.log('Callback happened');
  }, []);
  const memoChild = useMemo(() => <ChildComponent />, []);

  return (
    <HeavyComponent arrayProp={memoArray} callbackProp={memoCallback}>
      {memoChild}
    </HeavyComponent>
  );
};

The compiler transforms the first, non-memoized code into code that behaves as the
second, memoized code.

However, it doesn't wrap things in memoization hooks that literally. It's much smarter
than that. It tries to predict things, leverages conditional renders, groups things
together, etc. So saying that it just wraps everything in memoization is not correct. But
the end result is the same, so it's a good enough mental model.

The "memoized" code of this simple App  component in reality will look like this:

const App = () => {
  const $ = _c(2);
  let t0;
  if ($[0] === Symbol.for('react.memo_cache_sentinel')) {
    t0 = [1, 2, 3];
    $[0] = t0;
  } else {
    t0 = $[0];
  }
  let t1;
  if ($[1] === Symbol.for('react.memo_cache_sentinel')) {
    t1 = (
      <HeavyComponent arrayProp={t0} callbackProp={_temp}>
        <ChildComponent />
      </HeavyComponent>
    );
    $[1] = t1;
  } else {
    t1 = $[1];
  }
  return t1;



};
function _temp() {
  console.log('Callback happened');
}

You can play around with it by yourself using the online React Compiler Playground[185]

Pay attention, for example, to how it transformed the inline callback into a _temp
function and moved it outside of the App  entirely. Or how, instead of memoizing 
ChildComponent  and HeavyComponent  separately, it grouped them together and stored them as 
t1 . Smart, right?

What does it mean for our app's performance, however?

The Performance Impact of the Compiler
Given all that we already know, it should be easy to predict and measure the impact of
the Compiler.

First, I would expect Interaction Performance to improve, sometimes by a lot. That
search problem we struggled with - I expect the Compiler to be able to deal with it. So,
INP in general should improve.

On the other hand, it generates more code than before and forces JavaScript to do more
work during the initial critical rendering pass. So it's possible that:

The bundle size might increase.
The size of the JavaScript tasks in the "main" thread might increase.

That means it's quite possible that the initial load will worsen, and LCP will suffer as a
consequence.

Now we just need to find out by how much.

If you want to try setting up the Compiler[186] by yourself, use the Study Project from the
previous chapter. If you'd rather avoid doing that, jump to this chapter's Study Project.
It's exactly the same as in the previous chapter, just with the Compiler enabled and



working.

We'll start with measuring the impact on the initial load. Start it in dev mode to verify
that the Compiler works:

npm run dev --workspace=chapter13-baseline-frontend

Open the project, open Chrome DevTools, and open the "Components" tab from React
DevTools. You should see a bunch of Components with a "memo" label next to them:

That means the code is indeed transpiled by the Compiler.

Now disable the Compiler so that we can create a baseline for our measurements. In 
vite.config.ts , find the react  plugin part and get rid of the object passed as an argument.
Should be just this:



plugins: [react()];

Start it in dev mode again, and you'll see that the "Memo" label is gone. Now build it:

npm run build --workspace=chapter13-baseline-frontend

And write down the sizes of the produced bundles:

index-rlydUjSN.js                              4.23 kB
message-editor-fixed-DwcLLQhh.js               4.96 kB
inbox-Di1yL7b8.js                              9.58 kB
settings-DAAUbXpO.js                          11.93 kB
dashboard-nayv72DD.js                         12.55 kB
index-DuGuEtcS.js                             13.78 kB
fixed-width-primary-sidebar-spa-Ch2Umc5-.js   18.35 kB
date-fns-CeO44d0t.js                          20.94 kB
login-DGm_5nF8.js                             75.89 kB
radix-BqRmCkXQ.js                             81.95 kB
vendor-DuAMwyl9.js                           205.12 kB
editor-fQknsaKD.js                           295.79 kB

Start it:

npm run start --workspace=chapter13-baseline-frontend

Slow down the CPU to 20x and the Network to Fast 4G. Then write down:

LCP for the "Home" page.
The time when the table with statistics shows up.
Average INP number if you type really fast in the Search field.
Average INP number if you open/close the "Tasks" section in the Sidebar.
Average INP number if you navigate from the Login page to the Home page (by
clicking on the title).
Average INP number if you navigate from the Settings page to the Home page.

They will fluctuate a bit, so measure a few times and take the median.

For me, the numbers are:



Baseline
"Home" page LCP 1.3 s
"Statistics" table 2.3 s
Search INP 650 ms
Home INP from Login 350 ms
Home INP from Settings 260 ms

Now, restore the Compiler, build and start the project, and measure exactly the same
things. Bundle sizes, with before and after values:

index-rlydUjSN.js                              4.23 kB --> 5.97 kB
message-editor-fixed-DwcLLQhh.js               4.96 kB --> 11.68 kB
inbox-Di1yL7b8.js                              9.58 kB --> 12.90 kB
settings-DAAUbXpO.js                          11.93 kB --> 16.55 kB
dashboard-nayv72DD.js                         12.55 kB --> 17.45 kB
index-DuGuEtcS.js                             13.78 kB --> 19.97 kB
fixed-width-primary-sidebar-spa-Ch2Umc5-.js   18.35 kB --> 20.94 kB
date-fns-CeO44d0t.js                          20.94 kB --> 26.92 kB
login-DGm_5nF8.js                             75.89 kB --> 77.71 kB
radix-BqRmCkXQ.js                             81.95 kB --> 81.95 kB
vendor-DuAMwyl9.js                           205.12 kB --> 211.00 kB
editor-fQknsaKD.js                           295.79 kB --> 295.79 kB

Exactly as predicted: the size of the JavaScript slightly increased. But the increase is not
that huge, and this is not a compressed one. So it's not something I'd worry about.

Now to the measurements:

Baseline Compiler
"Home" page LCP 1.3 s 1.4 s
"Statistics" table 2.3 s 2.5 s
Search INP 650 ms 50 ms
Home INP from Login 353 ms 355 ms
Home INP from Settings 263 ms 260 ms

Again, pretty much exactly as predicted.

The initial load went down a little. This one is due to increased load on JavaScript, and
it's only noticeable for me on a 20x CPU slowdown. If I reduce it to even 6x, the



difference stops being measurable.

The INP for the search field improved more than 10 times, exactly like it was with our
manual solutions. So the Compiler solved re-renders in this case completely. Great
news!

INP for transitions from the Login and Settings pages to the Home page hasn't changed.
Which is interesting. Because I included these transitions here with a secret hope that
there would be a difference.

You see, when you navigate from Login to the Home page, the entire page changes.
Everything on the Home page is mounted from scratch. However, when you navigate
from Settings to the Home page, the entire top bar and the Sidebar remain exactly the
same. So, in theory, they shouldn't even re-render, let alone re-mount, if they were
memoized. So, in theory, the INP number should've improved.

Not Everything Can Be Caught by the
Compiler
Sometimes It's Your Code

Does the lack of INP improvement when navigating to Home mean that something still
re-renders despite the Compiler? It's quite easy to verify. Open the project in dev mode,
turn on the "Highlight updates when components render" setting in the Profile tab, and
navigate back and forth.

If you do this, you should be able to see that the top bar is not highlighted, and the
Sidebar itself and some of its items are not highlighted. However, the "Home", "Inbox",
etc., navigation items do re-render! And those have SVG icons, so it's quite plausible
that re-rendering those items is the heaviest part, and that's why we didn't see any
improvement.

Now we need to figure out what happened.

The very first thing to double-check when working with the Compiler is whether the



Compiler managed to memoize those items. Maybe something went wrong on its side?
Open the Components tab in DevTools and select one of the items via the tab's select
tool. You should see that every single component that composes those items has a
"Memo" label next to it.

So memoization did happen. But it didn't help with re-renders.

The second thing is to always double-check that re-render actually happens and it's not
DevTools false-positively highlighting something.

For this, trace down the implementation of the items themselves and add a good old 
console.log  in useEffect :

// FILE: frontend/components/sidebar/navigation-items.tsx

export const SidebarRegularLinkItem = () => {
  useEffect(() => {
    console.log("SidebarRegularLinkItem renders");



  });

  ... // the rest of the code
};

useEffect  with no dependencies will be triggered on every re-render of a component,
which is exactly what we need.

After doing that, navigate back and forth between the Settings and Home screens. You
should see a bunch of logs in the Console tab. So, re-renders indeed happen.

The final step is to investigate why. How to do that is a big question, though. There are
no tools that can reliably determine the reason with 100% certainty, including the React
DevTools. Sometimes they can give you hints, like "hook changed" or "props change",
that may or may not be true. But that's it.

The only sure way to do that and find the actual reason, I found, is by turning things on
and off and by knowing how React works. For example, in this case, inside the 
SidebarRegularLinkItem , you'll find this line:

const path = usePath();

If you comment it out, you'll see that none of the items re-render anymore. So clearly,
this hook is the reason. If you navigate inside, you'll discover that this is our
rudimentary implementation of client-side routing, which sets state every time the URL
changes.

As we know, re-render happens on every state change. And since this hook is used in
every item component, each of them re-renders on every state change, which happens
on every URL change. This happens every time we navigate between pages.

The items re-render not because of some memoization issues or Compiler issues, but
because the code is not optimized to minimize re-renders, plain and simple. It's 100%
the developer's fault ग़.

It's not always a matter of state, though.



Compiler and External Libraries

The Compiler transforms your code and yours only. Everything external that you pull as
a dependency will be at the mercy of the people who support it. If they don't run their
code through the Compiler before distributing the library, it will not be automatically
memoized.

This will be especially important if you use UI component libraries, like MUI, Ant, or
any other new and shiny UI toy. You can see what it will look like in the Study Project as
well - it's built on the Radix UI library, and the version that the project is on wasn't
precompiled.

If you open the Settings page and select any of the tab components in the Component
tab, you'll see a picture like this:

Only the TabsList  and TabButton  components have the "Memo" label. This is because only
those two live in our code, and they are basically simple wrappers around Radix UI



primitives. Everything else in between is used under the hood of those primitives inside
the library itself. So, it's not going to be memoized by the Compiler on our side.

Sometimes It Just Doesn't Work

Another case of when memoization by the Compiler doesn't happen is when... it simply
doesn't happen. Sometimes the code is so complicated or unusual that the Compiler
tries its best but just fails. It's JavaScript it tries to parse, after all. And JavaScript is
notorious for being very flexible and full of behavior that is really weird hard to make
sense of.

Take a look, for example, at the Inbox page of the Study Project. If you hover over the
list items on that page with the "highlight renders" enabled, you'll see that the Star icon
and the Checkbox at the beginning of every item re-render.

The code for them lives in frontend/patterns/messages-list-fixed.tsx . The code is somewhat
messy and not something I'd push to production. But the icons and checkboxes part is
very straightforward:

export const MessageListFixed = () => {
 return (
  ... // bunch of code before and after
  <Checkbox />
  <Icons.Star className="text-blinkGold400 w-8 h-8" />
 )
}

And there is no state inside either of them that is tied to anything happening outside. So
the Compiler should've worked. But it didn't ଷ ♀ .



Have fun investigating why! It took me a while to figure it out, and I'm already used to
investigations like this.

The problem here is this line down below in the code:

hoveredMessage === message.id;

If you comment out the entire block that is guarded by this condition, the re-renders of
icons and checkboxes will stop.

The code, cleaned up from everything unnecessary, looks like this:

export const MessageListFixed = () => {
  const [hoveredMessage, setHoveredMessage] = useState(null);

  return messages.map((message) => (
    <div onMouseEnter={() => setHoveredMessage(message.id)} onMouseLeave={() => 
setHoveredMessage(null)}>
      <Checkbox />
      <Icons.Star />

      {hoveredMessage === message.id ? <div>content</div> : null}
    </div>
  ));
};

There is state that controls which message is hovered over. Then, there is a list of
messages that render divs with "on hover" logic. And finally, there is a div that shows up
with the additional buttons when a message is hovered over.

So my guess of what is happening here, based on what we know about how the Compiler
works, is that it tried to optimize the memoization here by grouping all components
inside the map  loop into one. Basically, Checkbox , Icons , and the conditional div have to be
assigned to a single variable all together. Then, this variable, from the Compiler's
perspective, would depend on the hoveredMessage  state. Which, as a result, means that
memoization will update itself on every state change, i.e., on every hover in our case,
and the entire thing would behave as if it's not memoized.

Copy-pasting that reduced example into the React Compiler Playground[187] produced



the following code:

export const MessageListFixed = () => {
  const $ = _c(2);
  const [hoveredMessage, setHoveredMessage] = useState(null);
  let t0;
  if ($[0] !== hoveredMessage) {
    t0 = messages.map((message) => (
      <div onMouseEnter={() => setHoveredMessage(message.id)} onMouseLeave={() => 
setHoveredMessage(null)}>
        <Checkbox />
        <Icon />

        {hoveredMessage === message.id ? <div>content</div> : null}
      </div>
    ));
    $[0] = hoveredMessage;
    $[1] = t0;
  } else {
    t0 = $[1];
  }
  return t0;
};

Which is very similar to what I guessed - the entire mapped messages  expression is
actually assigned to a single t0 variable. The if  statement above controls the
dependency. And in our code, it changes with every hover. Mystery solved.

To be fair, by the time you're reading this, this exact issue might already have been
solved. The React team constantly works on improving the Compiler, and numerous
issues like these have already been fixed since its release. However, it's still JavaScript,
so it's an uphill battle for them. So there will be something else.

Is It Worth It?
So, to summarize: the React Compiler, indeed, can improve interaction performance in
your app, sometimes by a little, sometimes by a lot. However, it can't catch every single
re-render: there will always be suboptimal usages of state somewhere, or external
libraries that are not compiled, or just unusual code that the Compiler can't deal with



yet.

I've tried it on a few apps over the last year, and it tends to catch between 40 and 80% of
re-renders on a page for me, with various degrees of improvement.

The simpler and cleaner the components, the easier it is for the Compiler to correctly
memoize them. We can see this even in the Study Project, where the incorrect
memoization in the messages list component was almost entirely due to the fact that the
component is too large and does too many things at the same time. And yes, I did it on
purpose, if you were wondering ࣡. So if you tend to write your code in a similar way,
chances are, the Compiler will be less effective for you.

The impact on the initial load seems to be minimal, if present at all. It tends to increase
bundle size, but not that significantly. In other projects where I tried the Compiler, the
result was the same.

Setting it up is pretty straightforward if you're on the correct system that supports it. For
the Study Project, I simply needed to install a plugin and include it in the configuration,
and it worked. In Next.js, it's a matter of turning a flag on and off. On other apps I tried,
it was a similar experience.

So, is it worth it or not? Up to you and your risk appetite and the health of the codebase,
of course. If it works, it could be a performance improvement "for free", which also
eliminates the need to do manual memoization as a nice bonus.

However, enabling it also means that you're introducing more "magic" into the way
React code works, and you won't ever be able to tell whether a component will re-render
or not by just looking at the code. It may or may not, depending on whether the
Compiler worked as expected. Debugging the code when something goes wrong in this
setup will be more challenging than ever.



14. Final Words

This is it! You're done with the book. Congratulations, this was not an easy achievement!
Hope you enjoyed the read, and your performance journey will be an easy and successful
one.

If you have any feedback, please don't hesitate to share it at
feedback@getwebperf.com[188]. If you bought this book on Amazon, a public review
there would always be appreciated. ࣥ

Feel free to connect with the author on LinkedIn[189], X/Twitter[190], or Bluesky[191] and
ask any questions if something is not clear.

Grab the "Advanced React"[192] book with a 30% discount (code: ADVREACT30) if you
feel like you want to learn about the intricacies of the framework in a similar
investigative style.

Read the author's blog for more investigations that were not included in this book:
https://www.developerway.com.

And teach everyone around you about web performance! You're qualified now.
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