

Streamlit for Web
Development

Build and Scale Secure
Python-Powered Apps

with Streamlit

Second Edition

Mohammad Khorasani
Mohamed Abdou
Javier Hernández Fernández

Streamlit for Web Development: Build and Scale Secure

Python-Powered Apps with Streamlit, Second Edition

ISBN-13 (pbk): 979-8-8688-1825-7 ISBN-13 (electronic): 979-8-8688-1826-4

https://doi.org/10.1007/979-8-8688-1826-4

Copyright © 2025 by Mohammad Khorasani, Mohamed Abdou,

Javier Hernández Fernández

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting, reuse of

illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,

and transmission or information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark

symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,

and images only in an editorial fashion and to the benefit of the trademark owner, with no

intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if

they are not identified as such, is not to be taken as an expression of opinion as to whether or not

they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal

responsibility for any errors or omissions that may be made. The publisher makes no warranty,

express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: James Robinson-Prior

Editorial Project Manager: Jacob Shmulewitz

Cover image by padrinan on pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New

York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@

springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and

the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).

SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,

paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook

versions and licenses are also available for most titles. For more information, reference our Print

and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is

available to readers on GitHub (https://github.com/Apress). For more detailed information,

please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Mohammad Khorasani

Melbourne, VIC, Australia

Mohamed Abdou

Cambridge, UK

Javier Hernández Fernández

Madrid, Spain

https://doi.org/10.1007/979-8-8688-1826-4

To my parents and my departed grandparents.

—Mohammad Khorasani

To my family, friends, and the open source community.

—Mohamed Abdou

To my family and friends for their support.

—Javier Hernández Fernández

v

Table of Contents

About the Authors ..xiii

About the Technical Reviewer ..xv

Acknowledgments ..xvii

Preface ..xix

Acronyms ..xxi

Intended Audience ...xxiii

Additional Material ... xxv

Chapter 1: Introducing Streamlit ..1

1.1. Why Streamlit? ...1

1.1.1. Local vs. the Cloud ..2

1.1.2. A Trend Toward Cloud Computing ..3

1.1.3. History of Web Frameworks in Python ..4

1.1.4. Flask ..5

1.1.5. Django ...6

1.1.6. Dash ..6

1.1.7. Web2Py ..7

1.1.8. The Need for a Pure Python Web Framework ..7

1.1.9. Academic Significance ..8

1.2. Firing It Up..8

1.2.1. Technical Recommendations ...8

1.2.2. Environment Installation with Anaconda ...10

https://doi.org/10.1007/979-8-8688-1826-4_1
https://doi.org/10.1007/979-8-8688-1826-4_1
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec13

vi

1.2.3. Downloading and Installing Streamlit ..15

1.2.4. Streamlit Console Commands ...16

1.2.5. Running Demo Apps ..19

1.2.6. Writing and Testing Code with PyCharm ..20

1.3. How Streamlit Works..25

1.3.1. The Streamlit Architecture ...27

1.3.2. ReactJS in Streamlit ..28

1.4. Summary..30

Chapter 2: Streamlit Basics ..31

2.1. Creating a Basic Application ..31

2.1.1. Generating User Input Forms ...32

2.1.2. Introducing Conditional Flow ...35

2.1.3. Managing and Debugging Errors ...37

2.2. Mutating Dataframes ...41

2.2.1. Filter ..42

2.2.2. Select ..43

2.2.3. Arrange ..45

2.2.4. Mutate ...47

2.2.5. Group By ..49

2.2.6. Merge ..51

2.2.7. Data Editor ...53

2.3. Rendering Static and Interactive Charts ..53

2.3.1. Static Bar Chart ...54

2.3.2. Static Line Chart ..56

2.3.3. Interactive Line Chart ..57

2.3.4. Interactive Map ..60

2.4. Developing the User Interface ..62

2.5. Summary..66

TABLE OF CONTENTS

https://doi.org/10.1007/979-8-8688-1826-4_1#Sec16
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec20
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec22
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec23
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec24
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec25
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec26
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec27
https://doi.org/10.1007/979-8-8688-1826-4_2
https://doi.org/10.1007/979-8-8688-1826-4_2
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec13
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec14
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec15
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec16
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec17
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec18
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec19
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec20
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec21
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec22
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec23

vii

Chapter 3: Developing the User Interface ...67

3.1. Designing the Application ..68

3.1.1. Configuring the Page ...68

3.1.2. Developing Themes and Color Schemes ...79

3.1.3. Organizing the Page ..83

3.2. Displaying Dynamic Content ..89

3.2.1. Creating a Real-Time Progress Bar ...92

3.3. Implementing Multipage Applications ..93

3.3.1. Creating Pages ..94

3.3.2. Grouping Subpages ...95

3.3.3. Enabling Sub URL Paths ..97

Modularizing Application Development ...98

3.3.4. Example: Developing a Social Network Application99

3.3.5. Fragmenting Parts of the Application ..105

3.3.6. Best Practices for Folder Structuring ..106

3.4. Summary..108

Chapter 4: Managing and Visualizing Data.......................................109

4.1. Data Management ..110

4.1.1. Processing Bytes Data ...110

4.1.2. Caching Big Data ...112

4.1.3. Mutating Data in Real Time ...114

4.1.4. Advanced and Interactive Data Mutation ...117

4.2. Exploring Plotly Data Visualizations ...124

4.2.1. Rendering Plotly in Streamlit ...124

4.2.2. Basic Charts ..125

4.2.3. Statistical Charts ...129

4.2.4. Time-Series Charts ..130

TABLE OF CONTENTS

https://doi.org/10.1007/979-8-8688-1826-4_3
https://doi.org/10.1007/979-8-8688-1826-4_3
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec20
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec21
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec22
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec23
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec24
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec25
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec26
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec27
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec28
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec29
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec30
https://doi.org/10.1007/979-8-8688-1826-4_4
https://doi.org/10.1007/979-8-8688-1826-4_4
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec18
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec21

viii

4.2.5. Geospatial Charts ..131

4.2.6. Animated Visualizations ...132

4.3. Summary..133

Chapter 5: Integrating Databases ...135

5.1. Relational Databases ...135

5.1.1. Introduction to SQL ..136

5.1.2. Connecting a PostgreSQL Database to Streamlit138

5.1.3. Displaying Tables in Streamlit ...144

5.2. Nonrelational Databases ..146

5.2.1. Introduction to MongoDB ...146

5.2.2. Provisioning a Cloud Database ..147

5.2.3. Full-Text Indexing ..151

5.2.4. Querying the Database ..153

5.2.5. Displaying Tables in Streamlit ...158

5.3. Summary..161

Chapter 6: Leveraging Backend Servers ..163

6.1. The Need for Backend Servers ..163

6.2. Frontend–Backend Communication ...164

6.2.1. HTTP Methods ...165

6.3. Working with JSON Files ..166

6.4. Provisioning a Backend Server ..167

6.4.1. API Building ...168

6.4.2. API Testing ...172

6.5. Multithreading and Multiprocessing Requests ..174

6.6. Connecting Streamlit to a Backend Server ..176

6.7. Summary..178

TABLE OF CONTENTS

https://doi.org/10.1007/979-8-8688-1826-4_4#Sec22
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec23
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec26
https://doi.org/10.1007/979-8-8688-1826-4_5
https://doi.org/10.1007/979-8-8688-1826-4_5
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_6
https://doi.org/10.1007/979-8-8688-1826-4_6
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec10

ix

Chapter 7: Implementing Session State ...179

7.1. Implementing Session State Natively ..179

7.1.1. Building an Application with Session State181

7.2. Introducing Session IDs ...183

7.3. User Insights ..185

7.3.1. Visualizing User Insights ..189

7.4. Cookie Management ..191

7.5. Summary..195

Chapter 8: Authenticating Users and Securing Applications197

8.1. Developing User Accounts ...197

8.1.1. Hashing ...198

8.1.2. Salting ...199

8.2. Verifying User Credentials ..201

8.3. Secrets Management ...219

8.4. Anti-SQL Injection Measures with SQLAlchemy ...220

8.5. Configuring Gitignore Variables ..220

8.6. Summary..222

Chapter 9: Deploying Locally and to the Cloud223

9.1. Exposing Streamlit to the World Wide Web ..224

9.1.1. Port Forwarding over a Network Gateway ...224

9.1.2. HTTP Tunneling Using NGROK ..226

9.2. Deployment to Streamlit Community Cloud ...228

9.2.1. One-Click Deployment ...229

9.2.2. Streamlit Secrets ...231

9.3. Deployment to Linux ..233

9.3.1. Native Deployment on a Linux Machine ..233

9.3.2. Deployment with Linux Docker Containers ..235

TABLE OF CONTENTS

https://doi.org/10.1007/979-8-8688-1826-4_7
https://doi.org/10.1007/979-8-8688-1826-4_7
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_8
https://doi.org/10.1007/979-8-8688-1826-4_8
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_9
https://doi.org/10.1007/979-8-8688-1826-4_9
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec9

x

9.4. Deployment to Windows Server ...239

9.4.1. Establishing a Remote Desktop Connection240

9.4.2. Opening TCP/IP Ports ...242

9.4.3. Anaconda Offline Package Installation ..246

9.4.4. Adding Anaconda to System Path ..247

9.4.5. Running Application As an Executable Batch File..............................249

9.4.6. Running Application As a Persistent Windows Service250

9.5. Summary..254

Chapter 10: Building Streamlit Components255

10.1. Introduction to Streamlit Custom Components ..255

10.2. Using ReactJS to Create Streamlit Custom Components256

10.2.1. Making a ReactJS Component ..257

10.2.2. Using a ReactJS Component in Streamlit ..260

10.2.3. Sending Data to the Custom Component ...262

10.2.4. Receiving Data from the Custom Component264

10.3. Publishing Components As Pip Packages ..267

10.4. Component in Focus: Extra-Streamlit- Components272

10.4.1. Stepper Bar ...272

10.4.2. Bouncing Image ...278

10.4.3. Tab Bar ...282

10.4.4. Cookie Manager...287

10.5. Summary..293

Chapter 11: Streamlit Use Cases ..295

11.1. Dashboards and Real-Time Applications ...295

11.1.1. Temperature Data Recorder Application ..296

11.1.2. Motor Command and Control Application ..301

11.2. Time-Series Applications ...307

TABLE OF CONTENTS

https://doi.org/10.1007/979-8-8688-1826-4_9#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec13
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec14
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec15
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec16
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec17
https://doi.org/10.1007/979-8-8688-1826-4_10
https://doi.org/10.1007/979-8-8688-1826-4_10
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec13
https://doi.org/10.1007/979-8-8688-1826-4_11
https://doi.org/10.1007/979-8-8688-1826-4_11
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec4

xi

11.2.1. Date-Time Filter Application ..307

11.2.2. Time-Series Heatmap Application ...310

11.2.3. Time Synchronization Application ..313

11.3. Data Management and Machine Learning Applications317

11.3.1. Data Warehouse Application ..317

11.3.2. Advanced Application Development: Machine Learning
As a Service ...328

11.4. Summary..347

Chapter 12: Testing in Streamlit ...349

12.1. Principles of Testing ...349

12.1.1. What Is Testing?...350

12.1.2. Benefits of Testing ...350

12.1.3. Types of Testing ...351

12.2. Why Test in Streamlit?..352

12.2.1. Behavioral and Logical Testing ..353

12.2.2. User Interface Testing ..353

12.3. Testing Streamlit Applications ..354

12.3.1. Setting Up Testing Environment ..354

12.3.2. Writing Tests ..356

12.4. Automated Testing with GitHub Actions ...360

12.4.1. Setting Up the Workflow ..360

12.4.2. Creating the Test Script ...361

12.5. Summary..363

Chapter 13: Streamlit for AI ..365

13.1. What Are LLMs and How Are They Useful?...365

13.1.1. Summarization ..366

13.1.2. Content Generation ..369

13.1.3. Retrieval Augmented Generation ...369

TABLE OF CONTENTS

https://doi.org/10.1007/979-8-8688-1826-4_11#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec16
https://doi.org/10.1007/979-8-8688-1826-4_12
https://doi.org/10.1007/979-8-8688-1826-4_12
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec13
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec14
https://doi.org/10.1007/979-8-8688-1826-4_13
https://doi.org/10.1007/979-8-8688-1826-4_13
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec4

xii

13.2. Different Ways to Interact with LLMs ...370

13.2.1. Official Web Pages ...370

13.2.2. Application Program Interfaces ...371

13.2.3. Self-Hosting and Deployment ..372

13.3. Integrating LLMs with Streamlit ...375

13.3.1. Building an Input User Interface ..375

13.3.2. Setting Up an HTTP Connection ...376

13.3.3. Creating the Stream Effect ..378

13.3.4. Building an LLM Application with Streamlit379

13.4. Summary..387

Chapter 14: Streamlit at Work ..389

14.1. Streamlit in Clean Energy: Iberdrola ..389

14.1.1. Visualizing Operational Performance of Solar Farms390

14.1.2. Wind and Solar Production ..391

14.1.3. Heat Maps ...393

14.1.4. Closing Remarks..394

14.2. Streamlit in Industry: maxon Group ...395

14.2.1. Developing a Novel Surgical Scope Adapter System for Minimally
Invasive Laparoscopy ..397

14.2.2. Streamlit Command and Control Dashboard399

14.2.3. Closing Remarks..401

14.3. Summary..401

 Bibliography ...403

 Index ...407

TABLE OF CONTENTS

https://doi.org/10.1007/979-8-8688-1826-4_13#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec13
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec14
https://doi.org/10.1007/979-8-8688-1826-4_14
https://doi.org/10.1007/979-8-8688-1826-4_14
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec10

xiii

Mohammad Khorasani is a hybrid of an

engineer and a computer scientist with a

bachelor of science in Mechanical Engineering

from Texas A&M University and a master’s

degree in Computer Science from the

University of Illinois at Urbana-Champaign.

Mohammad specializes in developing and

implementing software solutions for the

advancement of renewable energy systems and services at Iberdrola. In

addition, he develops robotic devices using embedded systems and rapid

prototyping technologies. He is also an avid blogger of STEM-related topics

on Towards Data Science—a Medium publication.

linkedin.com/in/mkhorasani/

Mohamed Abdou is a software engineer with

diverse academic and industrial exposure,

a graduate of Computer Engineering from

Qatar University, and currently a Software

Development Engineer at Amazon. Mohamed

has built a variety of open source tools used by

tens of thousands in the Streamlit community.

He led the first Google Developer Student Club

in Qatar and represented Qatar University in national and international

programming contests. He is a cyber security enthusiast and was ranked

second nationwide in bug bounty hunting in Qatar in 2020 among under

25-year-olds.

 linkedin.com/in/mohamed- ashraf- abdou/

About the Authors

xiv

Javier Hernández Fernández specializes in

the area of technology innovation and brings

over twenty years of practical experience

in overseeing the design and delivery of

R&D initiatives on behalf of multinational

companies in the field of IT, telecom, and

utilities. He currently manages research and

technical consulting projects as part of the

Innovation team of Iberdrola, working in the smart grid, renewables, and

energy efficiency domains. In addition to a B.Sc. in Computer Science

from the University of Ottawa (Canada), Javier holds two master’s degrees

in Energy Management from the University of Zaragoza and Project

Management from the University San Pablo CEU/IEP (Spain) and a

Ph.D. in Computer Science & Engineering from HBKU.

linkedin.com/in/javier-hernandezf/

ABOUT THE AUTHORS

xv

Vladyslav Haina is an AI infrastructure

and MLOps engineer who specializes in

building scalable, production-grade artificial

intelligence systems. His primary focus is

on designing and automating end-to-end

machine learning workflows. Leveraging

deep expertise in DevOps, DataOps,

and Site Reliability Engineering (SRE),

Vladyslav skillfully integrates real-time data streaming using Kafka

and Flink, orchestrates complex pipelines with tools like Matillion and

ArgoCD, and implements robust monitoring solutions with Grafana

and OpenTelemetry. His key areas of proficiency include MLOps and

AI Platforming, Cloud-Native Architecture across GCP and AWS with

Kubernetes and Terraform, and establishing comprehensive Observability

for ML systems. Vladyslav is also an active contributor to the tech and

research community, with articles published in All Tech Magazine and The

American Journal of Engineering and Technology.

About the Technical Reviewer

xvii

This undertaking would not have been possible without the support and

efforts of a selfless few. Individuals and entities who, in one way or another,

have made a contribution to the contents of this book are named as follows

in no particular order:

• Streamlit: The visionaries who created the framework

itself, empowering countless developers

• Iberdrola Renewables: The folks who served as a

test bed for our very first Streamlit ventures and had

to put up with our constant pitching of Streamlit’s

resourcefulness—Daniel Paredes, Nuria Sanchez

Sanchez, and Brenno Teixeira Martins

• Iberdrola Innovation Middle East: Our beloved

coworkers who were Streamlitized, whether they liked

it or not—Ayman Al-Kababji, Mohd Alomar, Fawaz

Kserawi, Mohamed Elwaleed, and Mohamed Elbiba

• Dr. Nikhil Navkar: For being another trailblazing

Streamlit user

In addition, a tangible part of our careers and personal endeavors

would have simply been inconceivable without the spirit of the open

source community. It is therefore in order to give a special tribute to

Python and its respective developers, in addition to the multitude of other

online forums that are silent heroes. Without their efforts, all-nighters

would be every other night, and our works not nearly as neat as they are.

Acknowledgments

xix

Preface

It was a typical night when, just as I was about to fall asleep, my phone

buzzed. Being a millennial, I couldn’t resist checking it, only to find

another annoying email advertisement for something called “Streamlit.”

Normally, I’d ignore it, but for some reason, the sleek Streamlit logo

caught my eye. In hindsight, I’m glad I clicked on the ad. Since then,

my programming life has been closely linked to a framework I had been

hoping someone would create—the powerful Streamlit.

Early in my career, I noticed that many skilled Python developers,

including myself, excelled in backend and server-side programming

but struggled with frontend user interfaces and client-side software.

While Flask and Django made efforts to address this, both required

significant knowledge of HTML, CSS, and HTTP, making them tough to

use. I often turned to Tkinter and PyQt for local desktop applications,

but I couldn’t deploy anything to the cloud. What we needed was a pure

Python web framework with an intuitive API that allowed easy creation

and deployment of web applications, focusing primarily on the backend.

Essentially, something like ReactJS but for Python. And when I clicked that

ad, I found exactly what I was looking for. It was a eureka moment!

This happened in the summer of 2020, and Streamlit had only been

publicly released in the fall of 2019. In less than a year, the development

team had crafted a framework and API that matched my needs perfectly.

Since then, Streamlit has only grown in popularity, and for me, it came

at the perfect time. I had just joined Iberdrola and was tasked with

developing a Python-based web application. Before Streamlit, I would

have hesitated to even consider deploying applications to the web,

xx

but now, I was advocating for web applications, proudly showcasing

Streamlit’s capabilities. In no time, I became a trailblazer within my

development team.

As with all great discoveries, it felt wrong to keep it to myself. I decided

to share Streamlit’s potential with the world, and this book is the result.

It’s written for developers who, like me, have struggled with creating and

deploying web applications. This book offers a comprehensive guide

to Streamlit, from simple use cases to building complex, cloud-based

applications.

By the end of this book, readers will not only understand how to use

Streamlit, but also how to integrate their web applications with powerful

server-side infrastructures like MongoDB, PostgreSQL, Linux, Windows

Server, and Streamlit’s deployment platform. The goal is to empower

readers to take their ideas and bring them to the web, possibly even

kickstarting their own ventures.

—Mohammad Khorasani

PREFACE

xxi

Acronyms

aaS As a Service

API Application Programming Interface

BLOB Binary Large Object

CLI Command-Line Interface

CPU Central Processing Unit

CRUD Create, Read, Update, and Delete

CSP Cloud Service Provider

CSRF Cross-Site Request Forgery

CSS Cascading Style Sheets

DI Dependency Injection, a coding pattern

DG Delta Generator, a core module in Streamlit

DOM Document Object Model

DTW Dynamic Time Warping

GPU Graphics Processing Unit

HTML Hypertext Markup Language

IDE Integrated Development Environment

ISP Internet Service Provider

JSON JavaScript Object Notation

JWT JSON Web Token

LLM Large Language Model

MLaaS Machine Learning as a Service

MVC Model-View-Controller

NAT Network Address Translation

ORM Object-Relational Mapping

OS Operating System

PID Process Identifier

xxii

PV Photovoltaic

RAG Retrieval Augmented Generation

RCE Remote Code Execution

RDP Remote Desktop Protocol

REST Representational State Transfer

SaaS Software as a Service

SCADA Supervisory Control and Data Acquisition

SQL Structured Query Language

SQLI SQL Injection

SSH Secure Shell

TPU Tensor Processing Unit

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

UX User Experience

VPN Virtual Private Network

WSL Windows Subsystem for Linux

XSS Cross-Site Scripting

ACRONYMS

xxiii

Intended Audience

This book assumes that you have at least a basic understanding of the

following topics:

• Object-oriented programming

• Data structures and algorithms

• Python and the following bindings:

• Pandas

• Numpy

• Plotly

• SQL (both relational and nonrelational databases)

• Git version control frameworks

• Cloud computing

To fully benefit from the content in this book, it's important that

you have some experience in programming. If you're unfamiliar with

the areas mentioned, it's recommended to take an introductory course

before diving in. That said, you don’t need to be an expert to benefit from

the book. Even if you’re already able to build applications with more

advanced frameworks, you may still appreciate how much time and

effort Streamlit saves. It enables you to create a robust web application in

hours, something that might have taken weeks with frameworks like Flask

or Django.

xxiv

However, if you're looking for highly customized and intricate frontend

user interfaces, Streamlit might not be the right choice at this moment.

While it is continuously improving, there may be more flexibility in

frameworks like Django for now. But, as mentioned, Django requires more

advanced programming skills to develop web applications.

By the end of this book, you should be capable of building and

deploying scalable web applications to the cloud, with the ability to handle

both backend and frontend requirements. You'll be able to integrate your

applications with databases like PostgreSQL and MongoDB and deploy

them using cloud services such as Microsoft Server, Linux containers, and

Streamlit’s own cloud platform.

While this book will go into significant detail on the required concepts,

some level of self-learning and research will be necessary. There may be

gaps in the tutorials, or some tools might become outdated as you read.

You'll need to apply your own intuition and judgment to fill in those gaps.

This book will also focus on the practical application of Streamlit and other

tools rather than explaining the inner workings of their source code. Each

tutorial will present a specific use case or application, with accompanying

code. All the code provided in this book is open source, released under the

MIT License. You are encouraged to adapt and apply the methodologies

shared here to meet your own technical needs.

INTENDED AUDIENCE

xxv

Additional Material

This book is supported by a wealth of online resources, including

repositories, datasets, libraries, APIs, and their corresponding

documentation. Where applicable, URLs to these materials will be

provided throughout the book. All tutorials and source code featured in

this book can be accessed through the following repository: https://

github.com/Apress/Streamlit-for-Web-Development. Additionally,

any references to the Streamlit API can be found on their official

documentation site at https://docs.streamlit.io/library/api-

reference.

https://github.com/Apress/Streamlit-for-Web-Development
https://github.com/Apress/Streamlit-for-Web-Development
https://docs.streamlit.io/library/api-reference
https://docs.streamlit.io/library/api-reference

1© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_1

CHAPTER 1

Introducing Streamlit
With the overwhelming influx of data and the speed at which it is

generated, traditional computing methods are increasingly unable

to deliver results efficiently. In contrast, cloud computing serves as a

powerful enabler, helping to overcome these limitations. Offering greater

scalability, lower costs, and improved flexibility, cloud migration benefits

service providers, developers, and users alike.

As Python remains the scripting language of choice for much of the

software development community, it becomes crucial to offer a web

framework that bridges the skills gap for developers. While traditional

frameworks like Flask and Django require a solid understanding of HTML

and CSS, Streamlit stands out as the first major framework to rely entirely

on Python, drastically reducing development time from weeks to hours.

1.1. Why Streamlit?

Restricting oneself to local computing is now a relic of the past, as the

cloud unlocks a wide array of advantages, empowering developers to make

a significantly greater impact on the world. This is precisely why a new

generation of developers is wholeheartedly embracing the cloud, and the

swift shift toward this computing paradigm underscores its transformative

potential. In this context, a pure Python web framework like Streamlit

becomes invaluable, offering developers an accessible bridge to make the

transition while serving as a powerful enabler for those seeking to harness

the full potential of cloud computing.

https://doi.org/10.1007/979-8-8688-1826-4_1#DOI

2

1.1.1. Local vs. the Cloud

The cloud is increasingly becoming synonymous with data. Wherever

there is an abundance of data, cloud computing is often intricately linked.

Simply put, harnessing the value of big data without leveraging the cloud is

nearly impossible. Gone are the days of relying on Microsoft Excel to create

outdated dashboards for datasets. With the sheer scale of data available

today, local computing alone is no longer sufficient.

That said, local computing does have its merits. Prototyping an idea

is often faster, and latency between nodes and servers is significantly

lower. This is why edge computing maintains a key advantage in specific

scenarios. For applications where security is critical or regulations are

restrictive, local computing may be the better option. However, beyond

these cases, the drawbacks of local computing outweigh its benefits. High

overhead costs for maintaining infrastructure and limited adaptability to

traffic spikes, such as the surge during the Super Bowl halftime, make local

computing impractical for many modern applications.

In contrast, cloud computing offers cost-effective provisioning,

exceptional scalability, high reliability, and resilience against failure.

It allows scaling in two ways: horizontally, with multiple instances of

the same resources, and vertically, with bespoke resources like GPUs,

TPUs, and advanced database systems. Most notably, the cloud expands

possibilities, enabling products to be offered as services on the web. This

shift toward the as-a-service (aaS) model—spanning software (SaaS),

machine learning (MLaaS), and beyond—has redefined how value is

delivered online.

This is where a framework like Streamlit becomes invaluable. It serves

as a cloud enabler, addressing the skills gap that has kept many developers

from deploying their work online. Streamlit empowers developers at all

levels, making it easier to bring value to the web and participate in the

cloud-driven future of software development.

Chapter 1 IntroduCIng StreamlIt

3

1.1.2. A Trend Toward Cloud Computing

Cloud computing has become the compass of modern technology,

guiding academia, corporations, governments, and even intelligence

agencies as they rapidly transition from local systems to the cloud. With

legacy software struggling to provide growth and returns on investment,

organizations are increasingly turning to cloud service providers (CSPs) for

agility, cost efficiency, and access to advanced computing resources. Even

CSPs are reimagining their offerings, with Google and Microsoft migrating

their legacy applications to the cloud through platforms like Google G

Suite and Microsoft Office 365.

From a business perspective, the rationale for embracing the cloud is

stronger than ever. Disruptive businesses have fully adopted what many

had previously hesitated to accept, making cloud adoption less a choice

and more a necessity for survival. Reduced lead times, scalability, lower

capital expenditures, and heightened innovation are just a few benefits

driving this shift. For CSPs, the advantages are equally compelling:

resource pooling, enhanced elasticity, and decreased maintenance costs

create a compelling value proposition. Most notably, for consumers, the

cloud has become a transformative force, akin to the Internet itself. SaaS

models deliver unmatched flexibility, granular pricing, and exceptional

value, creating a win-win-win scenario where everyone benefits.

The trajectory toward cloud computing was already strong, but the

global pandemic acted as an accelerant, breaking down long-standing

barriers to remote learning, online exams, remote work, and more.

Decades of effort by the tech community could not achieve what this

singular event accomplished in normalizing cloud-based solutions.

Moving forward, the growth of cloud adoption is likely to surpass even

the most optimistic forecasts. If trends and data serve as indicators, the

direction is clear, as illustrated in Figure 1-1.

Chapter 1 IntroduCIng StreamlIt

4

Figure 1-1. Growth of the public cloud computing market from 2008
to 2020. [13]

1.1.3. History of Web Frameworks in Python

Web development often requires a multidisciplinary team with expertise

in frontend, backend, and server-side development. This demand has

led to the rise of full-stack developers, who possess knowledge across the

entire development process and are highly sought after, often enjoying

competitive compensation.

Historically, web applications were developed using languages like

JavaScript, PHP, or Perl, while Python was relegated to local scripting

tasks. This was primarily because Python was not natively designed for

web development and required a framework to interact with web servers

and browsers. Over time, however, the Python community has introduced

several frameworks that enable effective web development. Thanks

to Python’s focus on simplicity, readability, its rich library ecosystem,

Chapter 1 IntroduCIng StreamlIt

5

and open source nature, it has evolved into a popular choice for web

development. Major platforms like Google and Instagram have also

adopted Python, further cementing its reputation.

Web frameworks generally fall into two categories: full-stack and

microframeworks (non-full-stack). Both manage essential aspects of web

development, such as communication and infrastructure, but differ in

scope. Full-stack frameworks provide comprehensive, built-in solutions

for handling tasks like interpreting requests, managing data storage, and

rendering user interfaces, making them suitable for complex applications.

In contrast, microframeworks offer only basic functionalities, such as

routing HTTP requests, dispatching controllers, and returning responses.

Developers typically integrate them with additional APIs and tools to build

applications. Examples of popular frameworks from both categories are

outlined in the following sections.

1.1.4. Flask

Flask, developed in 2010 by Armin Ronacher, originally started as what was

reportedly an April Fool's joke. It is a microframework, or non-full-

stack framework, that provides an application server but offers minimal

additional components. Flask's core is built around two key tools:

Werkzeug, which supports HTTP routing, and Jinja, a template engine for

rendering basic HTML pages. Additionally, it incorporates MarkupSafe for

string handling and ItsDangerous for secure data serialization, enabling

session data to be stored as cookies.

Flask is a minimalist framework equipped with only the essentials

needed to create a web application. This design gives developers

significant flexibility and control but also places greater responsibility on

them to build and manage the application’s infrastructure. As such, Flask

is best suited for static websites or for experienced developers who are

comfortable designing their own infrastructure and interfaces.

Chapter 1 IntroduCIng StreamlIt

6

1.1.5. Django

Django was developed by a group of web programmers in 2003, using

Python to build web applications. It allows developers to create more

complex applications with less overhead compared to Flask. Specifically,

Django makes it easier to render dynamic content with greater scalability

and provides built-in capabilities for interacting with databases through

object-relational mapping (ORM).

In addition, Django includes a wide range of modules for various

functionalities, such as ecommerce, authentication, and caching. These

pre-built packages enable developers to quickly add extended services to

their applications. With the inclusion of numerous third-party packages,

Django allows developers to focus on the core idea of their project, without

needing to handle every detail of the implementation.

1.1.6. Dash

Dash is a web framework developed by Plotly for building enterprise-grade

web applications in Python, R, and even Julia. While Plotly is primarily

known for its data analytics and visualization tools, Dash is typically used

to create interactive dashboards. However, with its extensive customization

options, Dash can also be used for general-purpose applications.

Dash natively supports D3.js charts and provides default HTML and

CSS templates for developers to use. For more customized interfaces,

though, developers need to have proficiency in frontend programming.

Additionally, Dash offers an enterprise package that allows experienced

developers to deploy their applications on the cloud with production-

grade features such as authentication and database integrations.

Chapter 1 IntroduCIng StreamlIt

7

1.1.7. Web2Py

Web2Py is a full-stack web framework for Python that follows the Model-

View- Controller (MVC) architectural pattern, similar to Django. It

allows developers to create dynamic content with ease and offers native

integration with database systems. One of the unique features of Web2Py is

its built-in, web-based integrated development environment (IDE), which

includes a ticketing system for error tracking and management, simplifying

development and debugging.

However, a key drawback of Web2Py is that it executes objects and

controllers in a single global environment, which is reinitialized with each

HTTP request. While this setup can be beneficial in some cases, it can

also lead to performance issues and incompatibility with certain modules,

especially as the application scales.

1.1.8. The Need for a Pure Python Web
Framework

Previously, Python developers had to make do with deploying their

software locally as desktop applications unless they had proficient

knowledge of HTML, CSS, and JavaScript. With Tkinter and PyQt,

programmers could create complex, dynamic, and visually appealing

interfaces, but the drawback was that they couldn’t render these

applications on the web. This challenge was faced by many Python

enthusiasts, who until recently, had no straightforward way of migrating

their work to the cloud using only Python.

It was always frustrating to go through repository after repository of

amazing applications, developed by talented people, only to realize that

the only way to share their work was by providing the source code and

hoping others could replicate it locally. And let us not even consider non-

technical users who could not execute the code at all. Many of these efforts

Chapter 1 IntroduCIng StreamlIt

8

went largely unused. In short, there was a clear need for a framework that

did not require advanced knowledge of web technologies—something

that would allow developers to write their typical Python scripts and

deploy them directly to the cloud. Then came Streamlit, which liberated

developers from the need for HTML, CSS, and JavaScript. The rest, as they

say, is history.

1.1.9. Academic Significance

Being able to create web apps directly from Python easily has made

Streamlit a valuable tool for academia [1]. Despite its relatively recent

creation, with the first beta release in April 2019, research teams around

the world have started adopting the framework to showcase the outcomes

of their projects. Today, many publications already mention Streamlit

as their visualization framework, covering a wide range of fields. Some

of these areas include health [2, 3, 4, 5], computer science [6, 7, 8, 9],

economics [10, 11], and civil engineering [12], to name a few.

1.2. Firing It Up

Being the highly versatile and accommodating framework that it is,

Streamlit allows developers to utilize it with a variety of computing

resources and technical stacks. Even so, there are some recommended best

practices to follow for greater ease and usability.

1.2.1. Technical Recommendations

While there is no one-size-fits-all solution when it comes to running

Streamlit, the following computing and system requirements, or greater,

are recommended for developing and running applications smoothly.

Please refer to Tables 1-1, 1-2, 1-3, and 1-4 for a list of recommended

specifications.

Chapter 1 IntroduCIng StreamlIt

9

Table 1-1. Hardware recommendations

CPU RAM Storage Internet/Network access

4 x 64-bit 2.8 ghz 8 gB 1600 mhz ddr3 100 gB 10 mbps

Table 1-2. System recommendations

Operating System Database

ubuntu 16.04 or higher postgreSQl 17 or higher

Windows 7 to 11/Windows Server 2019

mac oS X 10.12 or higher pgadmin 4 v8.14 or higher

linux: rhel 6/7

Table 1-3. Software recommendations

Streamlit Anaconda

1.41.1 or higher With python 3.9 or higher

Table 1-4. Network recommendations

Inbound Ports Outbound Ports

http: tCp 8080, 8443 httpS: tCp 443

SSh: tCp 22 Smtp: tCp 25

ldap(s): tCp 389/636

Chapter 1 IntroduCIng StreamlIt

10

1.2.2. Environment Installation with Anaconda

To create a web application running on a local Streamlit server for

prototyping and testing, we first need to set up a Python runtime

environment with all the necessary dependencies. For this, we will

use Anaconda, one of the most widely used and supported Python

distributions. Begin by downloading and installing a compatible version of

Anaconda. After the installation is complete, create a virtual environment

to install the packages required for running your web application.

 Programmatic Installation

To create an Anaconda environment through the console, please follow

these steps:

 1. To create and install your environment

programmatically, enter the following commands in

Anaconda Prompt sequentially:

conda create -n <environment name>

python=<version number>

When conda asks you to proceed, select y.

proceed ([y]/n)?

Next, the new environment will be created in the

environments folder within the root directory of

Anaconda as C:/ProgramData/Anaconda3/envs/.

 2. Activate your environment by typing the following:

conda activate <environment name>

Chapter 1 IntroduCIng StreamlIt

11

 3. If you have a list of dependencies, dependencies.

yml, place it in your newly created environment’s

directory:

C:/ProgramData/Anaconda3/envs/environment name/

 4. Change your root directory to your environment’s

directory by typing the following:

cd C:/ProgramData/Anaconda3/envs/<environment name>/

 5. Ensure that the first line in the dependencies.yml is

written correctly as the name of your environment,

name: environment name; otherwise, the

environment may not be installed.

 6. Update your environment by installing all the

dependencies listed in the file dependencies.yml by

typing the following:

conda env update -f dependencies.yml

 7. If prompted by Anaconda, proceed with updating

your version of conda by typing the following:

conda update -n base -c defaults conda

 8. To check the list of environments, type the following:

conda info -envs

 9. To check the list of dependencies in your

environment, type the following:

conda list

 10. To install additional dependencies that may be

required later, please type the following:

conda install <dependency name>

Chapter 1 IntroduCIng StreamlIt

12

 11. Some dependencies may not be available for

download via conda install; in this case, download

pip and then use pip install as shown in the

following:

conda install pip

pip install <dependency name>

 12. To deactivate your environment, you may type the

following:

conda deactivate

 Graphical Installation

Alternatively, you may use Anaconda Navigator to create and maintain

your environments as follows:

 1. Launch Anaconda Navigator.

 2. Click the Environments tab. Please see Figure 1-2.

Figure 1-2. Opening the Environments tab in Anaconda

Chapter 1 IntroduCIng StreamlIt

13

 3. Click the Create button and enter the desired

name and Python version for your environment.

Please see Figure 1-3.

Figure 1-3. Creating an environment in Anaconda

 4. Next, follow steps 2–12 in the previous section

to install the dependencies. Next, as shown in

Figure 1-4, the test_environment environment will

appear activated with all the required packages

installed.

Chapter 1 IntroduCIng StreamlIt

14

Figure 1-4. Newly created environment in Anaconda

 5. Finally, you will be able to launch any of the

available IDEs in Anaconda in your newly created

environment in the Home tab. Please see Figure 1-5.

Figure 1-5. Selection of IDE’s in Anaconda

Chapter 1 IntroduCIng StreamlIt

15

1.2.3. Downloading and Installing Streamlit

There are multiple ways to download and install the Streamlit library,

and in this section, we will cover one of the most commonly used ways of

installation.

 Direct pip Installation

 1. To download and install Streamlit, first ensure that

you are in the correct environment by entering the

following command in Anaconda Prompt:

conda activate <environment name>

 2. Next, you may download and install Streamlit by

entering the following command:

pip install streamlit

 Manual Wheel File Installation

 1. Ensure that you are in the correct environment

by entering the following command in

Anaconda Prompt:

conda activate <environment name>

 2. Manually download the wheel installation file from

https://pypi.org/project/streamlit/

 3. Change the directory to where the wheel file is

located:

cd C:/Users/.../

Chapter 1 IntroduCIng StreamlIt

https://pypi.org/project/streamlit/

16

 4. Then install the downloaded wheel file by entering

the following command:

pip install streamlit-1.41.1-py2.py3-none-any.whl

If the installation is successful, you may proceed with creating your

script. For good measure, restart Anaconda before you do so.

 Importing Streamlit

To import Streamlit into your Python script, ensure that the following line

precedes the rest of your code:

import streamlit as st

Later, any Streamlit method can be invoked by appending st to it as

follows:

st.write('Hello world')

1.2.4. Streamlit Console Commands

When Streamlit is installed, the Streamlit command-line (CLI) tool is also

installed. The command line can help you run, operate, and diagnose

issues related to your Streamlit application.

To get additional help, enter the following command:

streamlit --help

To run your application, ensure that you have changed the directory to

where your script is located:

cd C:/Users/.../script directory/

Then enter the following to run your script:

streamlit run <script.py> [--script args]

Chapter 1 IntroduCIng StreamlIt

17

Then, your application’s local URL and network URL will be displayed.

Simultaneously, your application will automatically appear on your default

web browser. You may use the local URL to connect to your application

locally and the network URL to connect on any other device over the local

area network. In addition, you will be able to see the console for your

Streamlit application as shown in Figure 1-6.

Figure 1-6. Console while running the Streamlit application

To clear the cache, enter the following command:

streamlit cache clear

To open Streamlit’s documentation on a web browser, enter the

following command:

streamlit docs

To display Streamlit’s version, enter the following command:

streamlit --version

Chapter 1 IntroduCIng StreamlIt

18

 Configuring Streamlit Through the Console

You may pass config options to streamlit run to configure options such as

the port the application is being run on, disable run-on-save, and others.

For an exhaustive list of configuration options, enter the following

command:

streamlit run --help

You can view the list of configured options by entering the following

command:

streamlit config show

You may configure these options using one of the four following

methods:

 1. Using a global config file at .streamlit/config.toml:

[server]

port = 80

 2. Using a config file for each project in your project’s

directory:

C:/Users/.../.streamlit/config.toml

 3. Using STREAMLIT_* environment variables as shown

in the following:

export STREAMLIT_SERVER_PORT=80

 4. Using flags in the command line when running your

script as shown in the following:

streamlit run <script.py> --server.port 80

Chapter 1 IntroduCIng StreamlIt

19

1.2.5. Running Demo Apps

To run Streamlit’s demo applications, enter the following command:

streamlit hello

Then, the following application will be displayed on your default web

browser. You may use the menu on the sidebar to visit the four following

demo applications, as shown in Figures 1-7, 1-8, 1-9, 1-10, and 1-11.

Figure 1-7. Streamlit demo application home page

Chapter 1 IntroduCIng StreamlIt

20

Figure 1-8. Streamlit animation demo application

1.2.6. Writing and Testing Code with PyCharm

Generally speaking, code expands over time, either by adding new

modules to the original code base or by integrating it with third-party

services. To ensure the code performs flawlessly, testing can be employed.

Code testing is typically divided into two methods: unit testing and

integration testing. Unit testing is used to test individual modules, while

integration testing ensures the entire system works as expected. For

this example, we will focus on unit testing, but the same concept can be

applied to integration testing. In both cases, we need to provide inputs

and compare expected outputs with actual ones. For a simple Streamlit

application that allows the user to calculate the sum of two numbers,

we can test two main aspects: first, if the web application renders as

expected, and second, if the summation logic is correct. These represent

two separate unit tests, but the first one is common when developing any

frontend application. Listing 1-1 shows the sample application we will test,

with the output shown in Figure 1-12 when run with Streamlit. Listing 1-2

tests both the rendering and summation logic of the example.

Chapter 1 IntroduCIng StreamlIt

21

Figure 1-9. Streamlit plotting demo application

Figure 1-10. Streamlit mapping demo application

Chapter 1 IntroduCIng StreamlIt

22

Figure 1-11. Streamlit dataframe demo application

Listing 1-1. main.py

import streamlit as st

def calculate_sum(n1, n2):

 return n1 + n2

st.title('Add Numbers')

n1 = st.number_input('First Number', value=0)

n2 = st.number_input('Second Number', value=0)

if st.button('Calculate'):

 summation = calculate_sum(n1, n2)

 st.write(f'Summation is: {summation}')

Chapter 1 IntroduCIng StreamlIt

23

Listing 1-2. unit_test.py

from main import calculate_sum

from selenium import webdriver

from selenium.webdriver.chrome.options import Options

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected_

conditions as EC

from selenium.webdriver.chrome.service import Service

def test_user_interface():

 # Path to chromedriver. Ensure this is correct for your

environment

 driver_path = r'----------\chromedriver.exe'

 # Set up options

 options = Options()

 options.add_argument('--headless') # To not open a real

chrome window

 # Use Service to specify the driver path

 service = Service(driver_path)

 # Initialize the driver with options and driver path from

WebDriverManager

 with webdriver.Chrome(service=service, options=options)

as driver:

 url = 'http://127.0.0.1:8501'

 driver.get(url)

 # Wait for page elements to load

 try:

 WebDriverWait(driver, 10).until(

Chapter 1 IntroduCIng StreamlIt

24

 EC.presence_of_element_located((By.TAG_

NAME, 'h1'))

)

 html = driver.page_source

 except Exception as e:

 print(f'Error while waiting for page: {e}')

 html = driver.page_source

 # Perform assertions to check page content

 assert 'Add numbers' in html

 assert 'First Number' in html

 assert 'Second Number' in html

def test_logic():

 assert calculate_sum(1, 1) == 2

 assert calculate_sum(1, -1) == 0

 assert calculate_sum(1, 9) == 10

if __name__ == '__main__':

 test_logic()

 test_user_interface()

Figure 1-12. Output of Listing 1-1

Chapter 1 IntroduCIng StreamlIt

25

To test rendering, we first need the application to be running so it

can be accessed by Selenium’s driver, which is Chrome in this example.

To automate the process of launching the application before running

the tests, we may need an advanced IDE. PyCharm can handle this

task for us. First, we need to set up a running configuration to launch

Streamlit with a button click, as shown in Figure 1-13. Once we have this

configuration for running Streamlit, we can use it as a prerun command

in another configuration, which will be used to run the unit tests shown in

Figure 1-14.

While browser automation tools like Selenium are powerful for

end-to- end testing, it's important to note that Streamlit now offers its own

built-in testing framework, AppTest. Designed specifically for Streamlit

applications, AppTest allows for faster and more integrated testing without

the need to manage a browser. This framework simplifies the testing

process and ensures that developers can efficiently verify the functionality

of their Streamlit applications. By leveraging AppTest, developers can focus

on writing and deploying their applications, knowing that their tests are

seamlessly integrated into the Streamlit environment.

1.3. How Streamlit Works

Unlike other web frameworks, which send static files to the browser,

Streamlit modifies the real DOM and its state to render the final web

document server-side. Under normal user behavior, there should be no

security concerns. However, similar to PHP, Streamlit can be susceptible

to Remote Code Execution (RCE) if poorly coded, where user input is

not sanitized and can be exploited to execute OS-level code. A real-world

example of this vulnerability was recently found in the community

component, streamlit-geospatial [Ref: (https://securitylab.github.

com/advisories/GHSL-2024-100_GHSL-2024-108_streamlit-

geospatial/)].

Chapter 1 IntroduCIng StreamlIt

https://securitylab.github.com/advisories/GHSL-2024-100_GHSL-2024-108_streamlit-geospatial/
https://securitylab.github.com/advisories/GHSL-2024-100_GHSL-2024-108_streamlit-geospatial/
https://securitylab.github.com/advisories/GHSL-2024-100_GHSL-2024-108_streamlit-geospatial/

26

Running a Streamlit web application starts by executing the binary—

streamlit.exe on Windows or streamlit.sh on macOS or Linux—using the

default Python interpreter. This initializes the application configuration,

including secrets, settings, themes, and, most importantly, the Delta

Generator (DG), which acts as the intermediary between the Python script

and the ReactJS web application served by Streamlit.

Figure 1-13. Making a shell command to run once the current
configuration is chosen and ran

Chapter 1 IntroduCIng StreamlIt

27

1.3.1. The Streamlit Architecture

The DG is responsible for efficiently transferring HTML components to

be rendered on the client side and retrieving their state. The initial render

begins at the start of the Python document and continues to the last line.

Subsequent renders do not start from the beginning of the file; they begin

at the component that was interacted with by the user or had its state

changed. This will be covered in more detail in later chapters. Each new

render of a component is queued in the DG, where it will either replace

an existing HTML snippet or be inserted between other rendered HTML

components in the final DOM.

Streamlit components are queued and rendered individually to avoid

negatively impacting the user’s experience with a blank page if rendering

takes too long. Such delays can result from extensive computations,

waiting for API responses, or even sleep functions, as demonstrated in

Listing 1-3, and shown in Figures 1-15 and 1-16.

Listing 1-3. text_display.py

import streamlit as st

import time

User sees this first

st.title('My Title')

time.sleep(2)

User sees this second after 2 seconds

st.write('My *markdown* text in **Streamlit**')

Chapter 1 IntroduCIng StreamlIt

28

Figure 1-14. Choosing a Python interpreter to run the unit test file
but after running the configuration in Figure 1-13

The end user will notice the page updates to include the st.write

message within two seconds to what seems like a fully loaded page.

1.3.2. ReactJS in Streamlit

For simplicity, we have been referring to Streamlit as inserting HTML

into the client’s browser. In reality, it uses ReactJS’s virtual DOM to

insert elements and manage their state. This can be confirmed by using

Chrome’s React Developer Tools extension, as shown in Figure 1-17.

Chapter 1 IntroduCIng StreamlIt

29

Given this, and understanding Streamlit’s source code, we can

conclude that Streamlit uses built-in ReactJS components, grouped

together to create a fully functional JavaScript web application with

Python! Additionally, we can leverage Streamlit’s generic handling of

components to build custom and complex ones that are not provided out

of the box, which we will explore in later chapters.

Figure 1-15. End-to-end execution sequence for Listing 1-3

Figure 1-16. Streamlit output for Listing 1-3

Chapter 1 IntroduCIng StreamlIt

30

Figure 1-17. Streamlit output for Listing 1-3

1.4. Summary

This chapter highlighted the trend toward cloud computing and the

benefits it offers to developers, users, and cloud service providers. We

also discussed the four most commonly used Python web frameworks,

including one microframework—Flask—and three full-stack frameworks:

Django, Dash, and Web2Py. Streamlit was introduced as a pure Python

framework, showcasing its competitive advantage in bridging the skills

gap and reducing development time from weeks to hours. The reader

was then guided through the installation and use of Streamlit to create

basic applications on demand. In the next chapter, we will explore the

core components of Streamlit, provide a comprehensive overview of its

application programming interface, and demonstrate how it can be used

to develop customized applications.

Chapter 1 IntroduCIng StreamlIt

31© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_2

CHAPTER 2

Streamlit Basics

Streamlit simplifies the process of creating interfaces, displaying text,

visualizing data, rendering widgets, and managing web applications from

inception to deployment, thanks to its convenient and highly intuitive API,

as highlighted in the Appendix. This chapter covers techniques for creating

input forms, implementing conditional flows, handling errors, mutating

dataframes, and rendering basic charts. After mastering the basics,

developers will be equipped to produce, manage, and deploy a range of

simple web applications locally. These applications may include data

explorers, machine learning tools, multimedia handlers, data wrangling

utilities, and other general-purpose solutions. Once comfortable with

these fundamentals, developers can move on to creating more advanced

and complex applications, which will be explored in subsequent chapters.

2.1. Creating a Basic Application

By leveraging Streamlit’s powerful API, we can create a wide range of

applications—from simple microservices to complex systems integrated

with distributed architectures. Streamlit allows us to adapt to the diverse

needs of our users with ease. In this section, however, we will focus on

exploring simpler applications before advancing to more complex ones in

the sections that follow.

https://doi.org/10.1007/979-8-8688-1826-4_2#DOI

32

2.1.1. Generating User Input Forms

Creating forms in Streamlit is as simple as grouping multiple input widgets,

such as text and number fields, on a page along with a button to trigger

actions like saving entries to a database or storing them in the session

state. However, a key consideration with this approach is that Streamlit

automatically reruns the entire script from top to bottom whenever the

user interacts with any widget. While this ensures a logical and seamless

flow for the program, there are situations where it is more practical to

group input widgets and rerun the script only when explicitly prompted by

the user. This can be achieved using the st.form command.

Listing 2-1. input_form.py

import streamlit as st

from datetime import date # Import to use the current date

Create a feedback form

with st.form('feedback_form'):

 st.header('Feedback Form')

 # Organize form inputs into columns

 col1, col2 = st.columns(2)

 with col1:

 name = st.text_input('Please enter your name',

placeholder='Your full name')

 rating = st.slider('Rate this app (0 = Worst, 10 =

Best)', 0, 10, 5)

 with col2:

 dob = st.date_input('Enter your date of birth')

 recommend = st.radio('Would you recommend this app to

others?', ('Yes', 'No'))

 # Submit button

 submit_button = st.form_submit_button('Submit')

CHAPTER 2 STREAMLIT BASICS

http://form.py

33

Handle form submission

if submit_button:

 # Check for empty name

 if not name.strip():

 st.error('Name cannot be empty. Please provide

your name.')

 # Check for valid date of birth

 elif dob > date.today():

 st.error('Date of birth cannot be in the future.')

 else:

 st.success('Thank you for your feedback!')

 st.write('**Name:**', name)

 st.write('**Date of Birth:**', dob)

 st.write('**Rating:**', rating)

 st.write('**Would Recommend?:**', recommend)

A Streamlit form can be created using a with statement in combination

with the st.form command. In Listing 2-1, we first organize the widgets

within the form into two equal-width columns using the st.columns

command. In the first column, we include a text input and a slider widget,

implemented with the st.text_input and st.slider commands,

respectively. In the second column, we add a date input and a radio button

widget using the st.date_input and st.radio commands.

Within the same with statement, we include a form submit button

using the st.form_submit_button command. This button allows all

the form's widget entries to be submitted collectively with a single click,

regardless of how many items are included. It is important to note that st.

form_submit_button differs from st.button, and without it, Streamlit will

raise an error for forms created using st.form.

As demonstrated in Figure 2-1, all widgets are grouped into a single

form using the st.form command. Once the form submit button is clicked,

the widget entries are processed together, and the output is displayed as

shown in Figure 2-2.

CHAPTER 2 STREAMLIT BASICS

34

Figure 2-1. Streamlit input form (output of Listing 2-1)

Figure 2-2. Instantiated Streamlit input form (output of Listing 2-1)

CHAPTER 2 STREAMLIT BASICS

35

2.1.2. Introducing Conditional Flow

Introducing conditional flow in your Streamlit applications may be

necessary, where certain actions depend on prior actions or the state of

widgets. This is particularly useful for guiding users to correctly fill out

forms and use the application as intended. Without conditional flow, your

application may encounter errors if users interact with it incorrectly.

 Example 1

Listing 2-2. conditional_flow_1.py

import streamlit as st

Function to display the name

def display_name(name):

 st.info(f'**Name:** {name}')

Input for name

name = st.text_input('Please enter your name')

Validation: If name is entered, show info; else, show an

error message

if name:

 display_name(name)

else:

 st.error('No name entered')

In Listing 2-2, we use an if statement to check whether the name

field has been filled out. If the field is empty, the user will be shown an

error message (Figure 2-3). If the field is not empty, a function is called to

display the user's entry (Figure 2-4).

CHAPTER 2 STREAMLIT BASICS

36

 Example 2

Listing 2-3. conditional_flow_2.py

import streamlit as st

Function to display the name

def display_name(name):

 st.info(f'**Name:** {name}')

Input for name

name = st.text_input('Please enter your name')

Check if name is entered

if not name:

 st.error('No name entered')

else:

 display_name(name)

In Listing 2-3, we again use an if statement to check whether the

name field is not empty. The difference here is that we use the st.stop

command to halt the execution of the script if the field is empty. If the

field is not empty, the script continues, displaying the entered name. The

advantage of this approach is that it removes the need for an additional if

statement, simplifying the script. In terms of functionality, both methods

are essentially the same.

Figure 2-3. Implementing conditional flow (output of Listing 2-2)

CHAPTER 2 STREAMLIT BASICS

37

Conditional flow programming can be applied to both simple and

complex applications. This technique can be scaled up and implemented

with nested if statements, while loops, and other methods when needed.

Figure 2-4. Implementing conditional flow continued (output of
Listing 2-2)

2.1.3. Managing and Debugging Errors

If you are running Streamlit in development mode and have configured

showErrorDetails = True as shown in Table 3-1 in Section 3.1, Streamlit

will display runtime exceptions on the web page, similar to how an IDE

would show such messages in the console. This is not ideal, as users

may find it difficult to understand the error and could become confused.

More importantly, leaving exceptions unhandled can trigger a series of

fatal errors in later parts of your code, potentially affecting other systems.

Additionally, Streamlit will reveal the specific segment of your code that

caused the exception, which could pose a risk to intellectual property if

your source code is subject to such protections.

Listing 2-4. without_try_and_except.py

import streamlit as st

Create columns for inputs

col1, col2 = st.columns(2)

with col1:

CHAPTER 2 STREAMLIT BASICS

http://except.py

38

 number_1 = st.number_input('Please enter the first

number',value=0,step=1)

with col2:

 number_2 = st.number_input('Please enter the second

number',value=0,step=1)

st.info(f'**{number_1}/{number_2}=** {number_1/number_2}')

Running Listing 2-4, we can create a simple application where one

number is divided by another. If the user divides by any number other than

zero, the application will function correctly and display an output similar

to Figure 2-5. However, if the user tries to divide by zero, Python will raise

a zero division error, which will be displayed by Streamlit as shown in

Figure 2-6.

Figure 2-5. Running Streamlit without a try and except block
without an error (output of Listing 2-4)

CHAPTER 2 STREAMLIT BASICS

39

Figure 2-6. Running Streamlit without a try and except block with
an error (output of Listing 2-4)

 Example 1

You can limit the range of input values for the st.number_input widget,

but let us assume for a moment that you could not. In such a case, the

solution would be to use try and except blocks in your code, as shown in

Listing 2-5, wherever there is a potential for an unforeseen issue. In this

example, we attempt to execute the potentially problematic part of the

script with the try statement. If it fails due to a ZeroDivisionError, it is

handled with an except ZeroDivisionError statement, which displays a

customized error message to the user, as shown in Figure 2-7. If the error

is caused by any other issue, a general except statement can be used to

bypass this part of the code without executing it.

Listing 2-5. try_and_except_1.py

import streamlit as st

Create columns for inputs

col1, col2 = st.columns(2)

with col1:

CHAPTER 2 STREAMLIT BASICS

40

 number_1 = st.number_input('Please enter the first number',

value=0, step=1)

with col2:

 number_2 = st.number_input('Please enter the second

number', value=0, step=1)

try:

 st.info(f'**{number_1}/{number_2}=** {number_1/number_2}')

except ZeroDivisionError:

 st.error('Cannot divide by zero')

Figure 2-7. Running Streamlit with a try and except block with an
error (output of Listing 2-5)

 Example 2

Another way to manage exceptions is by using a general except

statement, which displays a curated message of the actual error, as shown

in Figure 2-8. This approach can be especially helpful for debugging

the script during development while still maintaining a positive user

experience by not revealing too much technical detail to the user.

Listing 2-6. try_and_except_2.py

import streamlit as st

Create columns for inputs

col1, col2 = st.columns(2)

CHAPTER 2 STREAMLIT BASICS

41

with col1:

 number_1 = st.number_input('Please enter the first number',

value=0, step=1)

with col2:

 number_2 = st.number_input('Please enter the second

number', value=0, step=1)

try:

 st.info(f'**{number_1}/{number_2}=** {number_1/number_2}')

except Exception as e:

 st.error(f'Error: {e}')

Figure 2-8. Running Streamlit with a try and except block with an
error (output of Listing 2-6)

2.2. Mutating Dataframes

Given Streamlit’s focus on developing machine learning and data science

applications, developers often need to mutate dataframes based on user

input or requirements. In this section, we will introduce a non-exhaustive

list of some of the most commonly used methods for mutating Pandas

dataframes.

CHAPTER 2 STREAMLIT BASICS

42

2.2.1. Filter

Dataframes can be filtered using the method shown in Listing 2-7. By

specifying a condition for a column, whether numerical or string, such as

df[df['Column 1'] > -1], we can filter the rows based on that condition,

as shown in Figure 2-9.

Listing 2-7. mutate_dataframe_filter.py

import streamlit as st

import pandas as pd

import numpy as np

Set seed for reproducibility

np.random.seed(0)

Create DataFrame with random data

df = pd.DataFrame(

 np.random.randn(4, 3),

 columns=('Column 1', 'Column 2', 'Column 3')

)

Display the original DataFrame

st.subheader('Original DataFrame')

st.dataframe(df)

Filter the DataFrame (mutating it)

df = df[df['Column 1'] > -1]

Display the mutated DataFrame

st.subheader('Mutated DataFrame')

st.dataframe(df)

CHAPTER 2 STREAMLIT BASICS

http://filter.py

43

Figure 2-9. Filtering Pandas dataframes (output of Listing 2-7)

2.2.2. Select

Dataframe columns can be selected using the method shown in Listing 2-8.

We can specify which columns to keep by their names, for example,

df[['Column 1', 'Column 2']], and remove other columns, as shown in

CHAPTER 2 STREAMLIT BASICS

44

Figure 2-10. Alternatively, the same result can be achieved using the drop

command, like df.drop(columns=['Column 3']).

Listing 2-8. mutate_dataframe_select.py

import streamlit as st

import pandas as pd

import numpy as np

Set the seed for reproducibility

np.random.seed(0)

Create a DataFrame with random numbers

df = pd.DataFrame(

 np.random.randn(4, 3),

 columns=('Column 1', 'Column 2', 'Column 3')

)

Display the original DataFrame

st.subheader('Original DataFrame')

st.dataframe(df) # Use st.dataframe for interactivity

Mutate the DataFrame by selecting specific columns

df = df[['Column 1', 'Column 2']]

Display the mutated DataFrame

st.subheader('Mutated DataFrame')

st.dataframe(df) # Use st.dataframe for interactivity

CHAPTER 2 STREAMLIT BASICS

45

Figure 2-10. Selecting Pandas dataframe columns (output of
Listing 2-8)

2.2.3. Arrange

Dataframe columns can be arranged and sorted in ascending and/or

descending order based on the numerical or nominal value of a specified

column, as shown in Listing 2-9. We can specify which column to sort

CHAPTER 2 STREAMLIT BASICS

46

and in which order, for example, df.sort_values(by='Column 1',

ascending=True), as shown in Figure 2-11. Once the column is sorted,

the index will be adjusted to reflect the new order. If needed, you can reset

the index using the df.reset_index(drop=True) command to restart the

index from zero.

Listing 2-9. mutate_dataframe_arrange.py

import streamlit as st

import pandas as pd

import numpy as np

Set the seed for reproducibility

np.random.seed(0)

Create DataFrame with random numbers

df = pd.DataFrame(

 np.random.randn(4, 3),

 columns=('Column 1', 'Column 2', 'Column 3')

)

Display the original DataFrame

st.subheader('Original DataFrame')

st.dataframe(df) # Use st.dataframe for interactive display

Mutate the DataFrame by sorting by 'Column 1'

df = df.sort_values(by='Column 1', ascending=True)

Display the mutated DataFrame

st.subheader('Mutated DataFrame')

st.dataframe(df) # Use st.dataframe for interactive display

CHAPTER 2 STREAMLIT BASICS

http://arrange.py

47

Figure 2-11. Sorting Pandas dataframe columns (output of
Listing 2-9)

2.2.4. Mutate

Dataframe columns can be mutated by assigning new columns based on

the values of another column, as shown in Listing 2-10. We can specify a

CHAPTER 2 STREAMLIT BASICS

48

simple lambda function to apply to the values of an existing column, for

example, Column_4 = lambda x: df['Column 1']*2 , to compute the

output shown in Figure 2-12.

Listing 2-10. mutate_dataframe_lambda.py

import streamlit as st

import pandas as pd

import numpy as np

Set the seed for reproducibility

np.random.seed(0)

Create DataFrame with random numbers

df = pd.DataFrame(

 np.random.randn(4, 3),

 columns=('Column 1', 'Column 2', 'Column 3')

)

Display the original DataFrame

st.subheader('Original DataFrame')

st.dataframe(df)

Create a new column 'Column 4' based on 'Column 1'

df = df.assign(Column_4 = lambda x: x['Column 1'] * 2)

Display the mutated DataFrame

st.subheader('Mutated DataFrame')

st.dataframe(df)

CHAPTER 2 STREAMLIT BASICS

http://lambda.py

49

Figure 2-12. Mutating Pandas dataframes (output of Listing 2-10)

2.2.5. Group By

Sometimes, it may be necessary to group or aggregate the values in one

or more columns of a dataframe. This can be done in Pandas using the

method shown in Listing 2-11. We can specify which column or columns to

group by using the df.groupby(['Column 1', 'Column 2']) command.

CHAPTER 2 STREAMLIT BASICS

50

This will reindex the dataframe and group the relevant rows together, as

shown in Figure 2-13.

Listing 2-11. mutate_dataframe_groupby.py

import streamlit as st

import pandas as pd

import numpy as np

Create a DataFrame with random integers between 0 and 100

df = pd.DataFrame(

 np.random.randint(0, 101, size=(6, 3)),

 columns=('Exam 1', 'Exam 2', 'Exam 3')

)

Assign 'Name' and 'Category' columns directly

df['Name'] = ['John', 'Jessica', 'Jessica', 'John', 'John',

'Jessica']

df['Category'] = ['B', 'A', 'A', 'B', 'A', 'B']

Display the original DataFrame

st.subheader('Original DataFrame')

st.dataframe(df)

Group by 'Name' and 'Category' and get the first row of

each group

df_grouped = df.groupby(['Name', 'Category']).first()

Display the mutated DataFrame after grouping

st.subheader('Mutated DataFrame')

st.dataframe(df_grouped)

CHAPTER 2 STREAMLIT BASICS

http://groupby.py

51

2.2.6. Merge

Multiple dataframes can be merged together in Pandas using a common

column as a reference, as shown in Listing 2-12. We can specify which

column to merge on and whether the merge should be a union or

intersection of both dataframes using the df1.merge(df2, how='inner',

on='Name') command. This will create a combined dataframe, as shown in

Figure 2-14.

Listing 2-12. mutate_dataframe_merge.py

import streamlit as st

import pandas as pd

Create the first DataFrame (df1)

df1 = pd.DataFrame(data={'Name': ['Jessica', 'John'],

 'Exam 1': [77, 56]})

Create the second DataFrame (df2)

df2 = pd.DataFrame(data={'Name': ['Jessica', 'John'],

 'Exam 2': [76, 97]})

Create the third DataFrame (df3)

df3 = pd.DataFrame(data={'Name': ['Jessica', 'John'],

 'Exam 3': [87, 95]})

Display the original dataframes

st.subheader('Original DataFrames')

st.dataframe(df1)

st.dataframe(df2)

st.dataframe(df3)

Merge the dataframes on 'Name' column using inner join

df_merged = df2.merge(df3, how='inner', on='Name')

df_merged = df1.merge(df_merged, how='inner', on='Name')

CHAPTER 2 STREAMLIT BASICS

http://merge.py

52

Display the mutated dataframe after merging

st.subheader('Mutated DataFrame')

st.dataframe(df_merged)

Figure 2-13. Grouping Pandas dataframes (output of Listing 2-11)

CHAPTER 2 STREAMLIT BASICS

53

2.2.7. Data Editor

Streamlit's st.data_editor widget offers a powerful and interactive way to

edit data within a dataframe directly in the app. This feature is particularly

useful for developers working on machine learning and data science

applications, where the ability to make real-time adjustments to data

on the fly can save some valuable time. Users can update, add, or delete

data entries without needing to leave the application or manually edit the

source code. The changes made through the st.data_editor widget are

immediately reflected in the dataframe, making it easier to experiment

with different data configurations and see the results in real-time.

In addition to its interactive capabilities, the st.data_editor

widget also supports various customization options to tailor the editing

experience to specific needs. Developers can configure the widget to

allow or restrict certain types of edits, ensuring that the data integrity is

maintained.

2.3. Rendering Static and Interactive Charts

Data visualization is where Streamlit truly excels. The ease with which

a variety of static and interactive charts can be created and displayed is

impressive. Streamlit natively supports a wide range of charts, including

but not limited to bar, line, and area charts, as well as graphs, maps, and

other types of interactive and non-interactive visuals. Additionally, there

are numerous third-party plotting libraries that can be integrated with

Streamlit. In this section, we will create several examples of static and

interactive charts using data from a Pandas dataframe.

CHAPTER 2 STREAMLIT BASICS

54

2.3.1. Static Bar Chart

A static bar chart can be generated by inputting a Pandas dataframe into a

Matplotlib figure using the method shown in Listing 2-13. We can specify

the chart type by setting kind=‘bar’. Other Matplotlib parameters can be

found at https://matplotlib.org/stable/api/_as_gen/matplotlib.

pyplot.plot.html. The generated chart is shown in Figure 2-15.

Listing 2-13. static_bar_chart.py

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

Create a DataFrame

df = pd.DataFrame(data={'Name': ['Jessica', 'John'],

 'Exam 1': [77, 56],

 'Exam 2': [76, 97],

 'Exam 3': [87, 95]})

Set the 'Name' column as the index and plot the bar chart

df.set_index('Name').plot(kind='bar', stacked=False,

xlabel='Name', ylabel='Exam')

Display the plot using Streamlit

st.pyplot(plt)

CHAPTER 2 STREAMLIT BASICS

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

55

Figure 2-14. Merging Pandas dataframes (output of Listing 2-12)

CHAPTER 2 STREAMLIT BASICS

56

2.3.2. Static Line Chart

Similarly, a static line chart can be generated by inputting a Pandas

dataframe into a Matplotlib figure by using the method shown in

Listing 2-14. We can specify the chart type and the option of having

subplots by setting kind='line', subplots=True.

Other Matplotlib parameters can be found at https://matplotlib.

org/stable/api/_as_gen/matplotlib.pyplot.plot.html. The generated

chart is shown in Figure 2-16.

Listing 2-14. static_line_chart.py

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

Create a DataFrame

df = pd.DataFrame(data={'Exam': ['Exam 1', 'Exam 2', 'Exam 3'],

 'Jessica': [77, 76, 87],

 'John': [56, 97, 95]})

Set 'Exam' as the index and plot the line chart

df.set_index('Exam').plot(kind='line', xlabel='Exam',

ylabel='Score', subplots=True)

Display the plot using Streamlit

st.pyplot(plt)

CHAPTER 2 STREAMLIT BASICS

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
http://chart.py

57

Figure 2-15. Generating a static bar chart (output of Listing 2-13)

Figure 2-16. Generating a static line chart (output of Listing 2-14)

2.3.3. Interactive Line Chart

An interactive line chart can be generated by inputting a Pandas dataframe

into a Plotly figure by using the method shown in Listing 2-15. We can

declare the chart type and its associated properties by using the JSON

CHAPTER 2 STREAMLIT BASICS

58

notation used with all Plotly charts and figures. We can also interactively

return selected points on the chart using the on_select argument for

st.plotly_chart widget. Other Plotly parameters can be found at

https://plotly.com/python/line-charts/; we will cover Plotly line

charts in greater depth in Section 4.2. The generated chart is shown in

Figure 2-17.

Listing 2-15. interactive_line_chart.py

import streamlit as st

import pandas as pd

import plotly.graph_objects as go

Create a DataFrame

df = pd.DataFrame(data={

 'Exam': ['Exam 1', 'Exam 2', 'Exam 3'],

 'Jessica': [77, 76, 87],

 'John': [56, 97, 95]

})

Create the plotly figure with line plots

fig = go.Figure(data=[

 go.Scatter(name='Jessica', x=df['Exam'], y=df['Jessica'],

mode='lines+markers'),

 go.Scatter(name='John', x=df['Exam'], y=df['John'],

mode='lines+markers')

])

Update the layout

fig.update_layout(

 xaxis_title='Exam',

 yaxis_title='Score',

 legend_title='Name',

)

CHAPTER 2 STREAMLIT BASICS

https://plotly.com/python/line-charts/;
http://chart.py

59

Display the plot using Streamlit with selection enabled

event = st.plotly_chart(fig, on_select='rerun')

Access selected points

if event and event.selection:

 selected_data = []

 for point in event.selection.points:

 selected_data.append({

 'Exam': point['x'],

 'Student': point['curve_number'],

 'Score': point['y']

 })

 # Map curveNumber to student names

 for item in selected_data:

 item['Student'] = fig.data[item['Student']].name

 st.write('Selected Exam Scores:')

 st.dataframe(selected_data)

Figure 2-17. Generating an interactive line chart (output of
Listing 2-15)

CHAPTER 2 STREAMLIT BASICS

60

2.3.4. Interactive Map

Likewise, an interactive geospatial map can be generated by inputting a

Pandas dataframe containing the longitude and latitude of a set of points

into a Plotly figure using the method shown in Listing 2-16. Additionally,

we can specify the exact geospatial location to zoom into by setting geo_

scope='usa'. Other Plotly parameters can be found at https://plotly.

com/python/scatter-plots-on-maps/; we will cover Plotly geospatial

charts in greater depth in Section 4.2. The generated map is shown in

Figure 2-18.

Listing 2-16. interactive_map.py

import streamlit as st

import pandas as pd

import plotly.graph_objects as go

Data with university locations

df = pd.DataFrame(data={'university': ['Harvard University',

'Yale University', 'Princeton University',

 'Columbia University', 'Brown

University', 'Dartmouth University',

 'University of Pennsylvania', 'Cornell

University'],

 'latitude': [42.3770, 41.3163, 40.3573,

40.8075, 41.8268, 43.7044, 39.9522, 42.4534],

 'longitude': [-71.1167, -72.9223, -74.6672,

-73.9626, -71.4025, -72.2887, -75.1932,

-76.4735]

 })

Create the scattergeo plot

fig = go.Figure(data=go.Scattergeo(

 lon=df['longitude'],

CHAPTER 2 STREAMLIT BASICS

https://plotly.com/python/scatter-plots-on-maps/;
https://plotly.com/python/scatter-plots-on-maps/;
http://map.py

61

 lat=df['latitude'],

 text=df['university'],

 mode='markers',

 marker=dict(size=10, color='red', opacity=0.7)

))

Update the layout to focus on the USA and set additional map

properties

fig.update_layout(

 geo_scope='usa',

 geo=dict(

 projection_type='albers usa',

 showland=True,

 landcolor='lightgray',

 subunitwidth=1,

))

Display the map using Streamlit

st.plotly_chart(fig)

Figure 2-18. Generating an interactive map (output of Listing 2-16)

CHAPTER 2 STREAMLIT BASICS

62

2.4. Developing the User Interface

Typically, developing a user interface for a web application requires

a separate skill set related to graphical design and usability studies. A

frontend developer starts by conceptualizing their idea with a wireframe

diagram that lays out the elements of the page. This is then iteratively

refined and tested to create the final user interface. Streamlit has largely

simplified this process with its intuitive, responsive, and standardized

interface, allowing the developer to render a web page without worrying

about intricate design details.

In other words, Streamlit interfaces are plug-and-play, enabling

developers to focus on the logic of their program while leaving the visual

implementation to Streamlit. However, for those who need something

more customized, they can integrate their own HTML and/or JavaScript

components. Customizability and external components will be covered in

subsequent chapters.

In this section, we will develop an application similar to the dataframe

demo application from the previous chapter as an example of how to

create a basic user interface.

Listing 2-17. dataframe_demo.py

import streamlit as st

import pandas as pd

import plotly.express as px

Sidebar for program selection

program = st.sidebar.selectbox('Select program', ['Dataframe

Demo', 'Other Demo'])

code = st.sidebar.checkbox('Display code')

Program logic

if program == 'Dataframe Demo':

CHAPTER 2 STREAMLIT BASICS

http://demo.py

63

 df = px.data.stocks()

 st.title('DataFrame Demo')

 # Multiselect for stock selection

 stocks = st.multiselect('Select stocks', df.columns[1:],

default=df.columns[1:])

 # Displaying stock data as a DataFrame

 st.subheader('Stock value')

 st.write(df[['date'] + stocks].set_index('date'))

 # Plotting a Plotly line chart

 fig = px.line(df, x='date', y=stocks, hover_data={'date':

'|%Y %b %d'})

 st.write(fig)

 # Displaying the code when checkbox is selected

 if code:

 st.code(

 """

import streamlit as st

import pandas as pd

import plotly.express as px

df = px.data.stocks()

st.title('DataFrame Demo')

program = st.sidebar.selectbox('Select program', ['Dataframe

Demo', 'Other Demo'])

code = st.sidebar.checkbox('Display code')

if program == 'Dataframe Demo':

 df = px.data.stocks()

 st.title('DataFrame Demo')

CHAPTER 2 STREAMLIT BASICS

64

 stocks = st.multiselect('Select stocks', df.columns[1:],

default=df.columns[1:])

 st.subheader('Stock value')

 st.write(df[['date'] + stocks].set_index('date'))

 fig = px.line(df, x='date', y=stocks, hover_data={'date':

'|%Y %b %d'})

 st.write(fig)

"""

)

elif program == 'Other Demo':

 st.title('Other Demo')

As always, we begin by importing the stack of dependencies that

we will use for this application, namely Streamlit, Pandas for dataframe

handling, and Plotly Express to plot a simple time-series chart of the

value of several blue-chip stocks over time. We then download a dataset

from Plotly’s list of available open source datasets and initialize our user

interface by invoking a title with the st.title command.

Next, we add a st.sidebar.selectbox command to define a list of

programs/pages for this application. We follow this with a checkbox on the

sidebar to display our code using the st.sidebar.checkbox command.

Widgets can be added to the sidebar by appending the st.sidebar prefix if

applicable. We then use a st.multiselect command to select the list of stocks we

want to visualize. The selection will filter the dataframe containing the stock

values, and the filtered data will be displayed using the st.write command.

Afterward, we will use the filtered dataframe to create a time-series

line chart with Plotly, using the reference at https://plotly.com/python/

time-series/. Once the figure is generated, it can be displayed with

st.write, known as the pocket knife command due to its versatility in

rendering virtually anything. Finally, we will use a st.code command to

present our snippet of code if the checkbox is selected by the user. And

there you have it (Figures 2-19 and 2-20), a basic dataframe application in

just over 40 lines of code.

CHAPTER 2 STREAMLIT BASICS CHAPTER 2 STREAMLIT BASICS

https://plotly.com/python/time-series/
https://plotly.com/python/time-series/

65

Figure 2-19. Dataframe demo application (output of Listing 2-17)

Figure 2-20. Dataframe demo application continued (output of
Listing 2-17)

CHAPTER 2 STREAMLIT BASICS

66

2.5. Summary

This chapter has certainly been a thorough one. By now, you should be

well-acquainted with the core principles and capabilities of Streamlit. You

have explored the diverse set of commands in the Streamlit API, covering

everything from displaying text, tables, and charts to rendering interactive

widgets and multimedia objects, as well as commands that allow you to

organize the page and optimize Streamlit for efficient use with big data.

In the latter part of the chapter, we focused on the basics of creating a

simple web application. This included creating forms, implementing

conditional flow, managing exceptions, mutating data, rendering various

visualizations, and integrating all of these elements into a cohesive user

interface. In short, after reviewing this chapter, you should feel confident

in your ability to start developing your own basic web applications using

Streamlit.

CHAPTER 2 STREAMLIT BASICS

67© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_3

CHAPTER 3

Developing the
User Interface
With Streamlit, developers can focus on implementing backend logic

while relying on the framework to handle most of the frontend tasks.

Additionally, Streamlit allows you to create responsive interfaces for PC,

tablet, and mobile platforms effortlessly, with no extra overhead. However,

if more bespoke and tailored applications are required, Streamlit offers

a significant degree of frontend customization without requiring any

knowledge of HTML, CSS, or JavaScript. Developers can configure their

applications with various color schemes, fonts, and appearances, both

graphically and programmatically.

Streamlit also enables you to structure and organize web pages

effectively using a combination of a sidebar, columns, expanders, and

containers. These elements work together to enhance the user experience

while optimizing the use of page space. Additionally, placeholders and

progress bars allow you to render dynamic content on demand or in

response to events. Most importantly, Streamlit supports the creation

of multiple pages and nested subpages, enabling a highly modular and

scalable approach to application development.

https://doi.org/10.1007/979-8-8688-1826-4_3#DOI

68

3.1. Designing the Application

When designing a Streamlit application, we can utilize its wide array of

native methods to customize the page exactly as desired. From color

schemes and themes to columns, expanders, sidebars, and placeholders,

the design possibilities are virtually limitless.

3.1.1. Configuring the Page

With Streamlit, you can configure various attributes of a web page, such

as the page layout, initial sidebar state, page title (as displayed in the

browser), icon, hamburger menu state, footer, and more. While some of

these settings can be configured directly within your script, others must

be set in the global configuration file, / .streamlit/config.toml, as

discussed in Section 1.2.

Basic Page Configuration

Listing 3-1 can be used to configure the page title, icon, layout, initial

sidebar state, and menu items, as shown in Figure 3-1. Note that the page

icon supports .ico files, and you can use the Pillow package to import

and handle images. The page layout can be set to either centered or wide,

while the initial sidebar state can be configured as auto, expanded, or

collapsed. Additionally, you can customize one or more of the following

pages in the hamburger menu: Get help, Report a bug, or About. The

Get help and Report a bug pages can only be instantiated with a URL

to redirect users to another web page. The About page, however, can be

displayed as a modal window, as shown in Figure 3-2.

CHAPTER 3 DEVELOPING THE USER INTERFACE

69

Listing 3-1. page_config.py

import streamlit as st

from PIL import Image

icon = Image.open('favicon.ico')

Page configuration

st.set_page_config(

 page_title='Hello World',

 page_icon=icon,

 layout='centered',

 initial_sidebar_state='auto',

 menu_items={

 'Get Help': 'https://streamlit.io/',

 'Report a bug': 'https://github.com',

 'About': 'About your application: **Hello World**'

 }

)

Set up titles

title = 'Hello World'

st.sidebar.title(title)

st.title(title)

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://config.py

70

Figure 3-1. Streamlit page configured with Listing 3-1

Figure 3-2. Displaying the About modal window

CHAPTER 3 DEVELOPING THE USER INTERFACE

71

Removing Footer and Hamburger Menu

You can remove the default footer provided by Streamlit, as well as the

entire hamburger menu, by using the commands shown in Listing 3-2.

The resulting output is illustrated in Figure 3-3. However, please note that

while modifying the CSS may work in the current version of Streamlit,

this method is not guaranteed to function in future versions if the internal

implementation changes.

Listing 3-2. remove_footer_menu.py

Custom CSS to hide header and footer

hide_streamlit_style = """

 <style>

 /* Hide Streamlit header */

 header {

 visibility: hidden;

 }

 /* Hide Streamlit footer */

 footer {

 visibility: hidden;

 }

 </style>

"""

st.markdown(hide_streamlit_style, unsafe_allow_html=True)

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://menu.py

72

Figure 3-3. Removed footer and hamburger menu from the page

Adding a Customized Footer

Additionally, you can add a customized footer by using the markdown

command shown in Listing 3-3. The resulting output is displayed in

Figure 3-4.

Listing 3-3. footer.py

Add custom footer to the sidebar

custom_footer_style = """

 <div class="markdown-text-container stText" style="width:

698px;">

 <footer>

 <p></p>

 </footer>

 <div style="font-size: 12px;">Hello world v 0.1</div>

 <div style="font-size: 12px;">Hello world LLC.</div>

 </div>

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://footer.py

73

 """

st.sidebar.markdown(custom_footer_style, unsafe_allow_

html=True)

Advanced Page Configuration

In addition to the basic configurable settings of a Streamlit web page,

numerous other parameters can be adjusted by modifying the global

configuration file / .streamlit/config.toml, as discussed earlier in Section

1.2. These parameters include settings for global, logger, client, runner,

server, browser, mapbox, deprecation, AWS S3, and theme configurations,

as outlined in Tables 3-1, 3-2, and 3-3. For more details, refer to https://

docs.streamlit.io/library/advanced-features/configuration. An

example of configuring the web page theme is provided in Listing 3-4.

Table 3-1. config.toml file parameters

Configuration Options

[global]

 • disableWidgetStateDuplicationWarning = False

Streamlit watchdog will check for duplicate values being set to a widget through

session state and the widget key. If this parameter is disabled, Streamlit will not

display a warning message if duplicate values are found.

 • showWarningOnDirectExecution = True

Streamlit will display a warning when you try to run a script using python script.py

when this parameter is set to true.

(continued)

CHAPTER 3 DEVELOPING THE USER INTERFACE

https://docs.streamlit.io/library/advanced-features/configuration
https://docs.streamlit.io/library/advanced-features/configuration
http://script.py

74

Table 3-1. (continued)

Configuration Options

[logger]

 • level = ‘info’

Level of logging specified for Streamlit’s internal logger. Available options include

‘error’, ‘warning’, ‘info’, and ‘debug’.

 • messageFormat = ‘%(asctime)s %(message)s’.

 This parameter will specify the string format for logging messages.

[client]

 • showErrorDetails = ‘full’

Controls whether an uncaught exception and/or deprecation warning will be

displayed in the browser. Available options include ‘full’, ‘stacktrace’, ‘type’, ‘none’,

True, and False.

 • toolbarMode = ‘auto’

Controls the visibility of items located in the toolbar, options, and settings menu of

the application. Available options include ‘auto’, ‘developer’, ‘viewer’, and ‘minimal’.

 • showSidebarNavigation = True

Controls whether the sidebar page navigation will be displayed in a multipage

application.

[runner]

 • magicEnabled = True

Setting this parameter to true will allow you to write strings and variables outside of

a st.write command.

 • fastReruns = True

(continued)

CHAPTER 3 DEVELOPING THE USER INTERFACE

75

Configuration Options

Setting this parameter to true will handle script rerun requests immediately, making

applications far more responsive.

 • enforceSerializableSessionState = False

Setting this parameter to true will raise exceptions if unserializable data is added to

the session state.

 • enumCoercion = ‘nameOnly’

Controls how certain widgets such as the radio, selectbox, and multiselect

widgets coerce Enum numbers. Available options include ‘off’, ‘nameOnly’, and

‘nameAndValue’.

Table 3-1. (continued)

Table 3-2. config.toml file parameters (continued—1)

Configuration Options

[server]

 • folderWatchBlacklist = []

This parameter specifies the list of folders that should not be inspected by Streamlit

for any changes.

 • fileWatcherType = ‘auto’

Setting this parameter to auto will ensure Streamlit uses the watchdog module if it

is available, the watchdog will force Streamlit to use the watchdog module, the poll

forces Streamlit to use polling, and none will stop Streamlit from inspecting files.

 • cookieSecret = ‘key’

This parameter specifies the key to use to produce cookies; if not set, Streamlit will

randomly assign a value.

 • headless = False

(continued)

CHAPTER 3 DEVELOPING THE USER INTERFACE

76

(continued)

Table 3-2. (continued)

Configuration Options

Setting this parameter to false will force Streamlit to start the application on a

browser window.

 • runOnSave = False

Setting this parameter to true will force Streamlit to automatically run the script

upon resaving the script.

 • address =

This parameter will specify the address where the server will listen for client and/or

browser connections.

 • port = 8501

This parameter will specify the port where the server will listen to for browser

connections.

 • baseUrlPath = ‘URL’

This parameter will specify the base path for the URL from where the Streamlit

application will be served.

 • enableCORS = True

Setting this parameter to true will enable cross-origin request sharing protection.

 • enableXsrfProtection = True

Setting this parameter to true will enable cross-site request forgery protection.

 • maxUploadSize = 200

This parameter specifies the maximum uploadable file size in megabytes.

 • maxMessageSize = 200

CHAPTER 3 DEVELOPING THE USER INTERFACE

77

Table 3-2. (continued)

Configuration Options

This parameter specifies the maximum size of messages that can be sent through

the WebSocket connection.

 • enableWebsocketCompression = False

Setting this parameter to true will enable support for WebSocket compression.

 • enableStaticServing = False

Setting this parameter to true will enable serving files from a static directory in the

application’s directory.

 • disconnectionSessionTTL = 120

Specifies the time for sessions with disconnected WebSockets, after which the

server may clean the session state and uploaded files.

 • sslCertFile =

Specifies the certificate file for connecting through HTTPS.

 • sslKeyFile =

Specifies the cryptographic key file for connecting through HTTPS.

[browser]

 • serverAddress = ‘localhost’

This parameter specifies the URL which users should enter into their browsers to

connect to the Streamlit application; can be an IP address or DNS with path.

 • gatherUsageStats = True

Setting this parameter to true will enable sending usage statistics to Streamlit.

 • serverPort = 8501

This parameter sets the port at which users should point their browsers to, in order

to connect to the Streamlit application.

CHAPTER 3 DEVELOPING THE USER INTERFACE

78

Table 3-3. config.toml file parameters (continued—2)

Configuration Options

[mapbox]

 • token = ‘ ’

This parameter specifies the token for custom Mapbox elements; for further

information, please refer to www.mapbox.com/.

[theme]

 • base =

This parameter specifies the Streamlit theme to use with your custom theme; can

be one of ‘light’ or ‘dark’.

 • primaryColor =

This parameter specifies the color HEX to use for the interactive Streamlit elements.

 • backgroundColor =

This parameter specifies the color HEX to use for the main content of the Streamlit page.

 • secondaryBackgroundColor =

This parameter specifies the color HEX to use for the sidebar.

 • textColor =

This parameter specifies the color HEX to use for the text.

 • font =

This parameter specifies the font to use for the text; can be ‘sans serif’, ‘serif’, or

‘monospace’.

[secrets]

 • files =

Specifies the list of locations where secrets will be searched for. Can be a path to a

TOML file or a Kubernetes styles secret.

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://www.mapbox.com/

79

Figure 3-4. Adding a customized footer

3.1.2. Developing Themes and Color Schemes

Streamlit allows both developers and users to customize the application's

theme and color scheme, either graphically or programmatically.

Customizing the Theme Graphically

You can choose one of the available theme appearances, Light or

Dark, from the settings menu within the hamburger menu, as shown in

Figure 3-5. Additionally, you can select colors for the following areas:

Primary color, Background color, Text color, and Secondary

background color, and choose one of the available fonts—Sans serif,

Serif, or Monospace—as shown in Figure 3-6.

CHAPTER 3 DEVELOPING THE USER INTERFACE

80

Table 3-4 provides more details about each color setting and the

Streamlit elements they affect. Please note that interactive widgets, such as

st.slider, will use the Secondary background color when placed in the

main body of the application. However, when the widget is placed in the

sidebar, it will use the Background color instead, as shown in Figure 3-7.

Table 3-4. Theme color settings

Color Parameter Altered Elements

Primary color Interactive widgets such as st.slider.

Background color Main body of application.

Text color All text elements.

Secondary background color Sidebar background color.

Figure 3-5. Customizing the theme’s appearance from the
settings menu

CHAPTER 3 DEVELOPING THE USER INTERFACE

81

Figure 3-6. Customizing the theme’s colors from the settings menu

Customizing the Theme Programmatically

Alternatively, you can customize the theme's appearance and colors

programmatically by modifying the global config file /.streamlit/

config.toml, as discussed earlier in Section 1.2. To specify the theme

settings, modify the [theme] parameters, as shown in Listing 3-4. Please

note that the color convention used is color HEX. For more information

on this convention, please refer to www.w3schools.com/colors/colors_

hexadecimal.asp HEXadecimal.asp.

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://www.w3schools.com/colors/colors_hexadecimal.asp
http://www.w3schools.com/colors/colors_hexadecimal.asp

82

Figure 3-7. Customized theme’s colors

Listing 3-4. config.toml

[theme]

base = "light"

primaryColor = "#7792E3"

backgroundColor = "#273346"

secondaryBackgroundColor = "#B9F1C0"

textColor = "#FFFFFF"

font = "sans serif"

Using Themes with Custom Components

If you are developing custom Streamlit components, you may need to pass

the application's theme settings to your component. Make sure you have

installed the latest version of streamlit-component-lib by running the

following command:

npm install streamlit-component-lib

CHAPTER 3 DEVELOPING THE USER INTERFACE

83

This package will automatically update the colors of your custom

component to match the theme settings of your Streamlit application.

Additionally, it will enable you to read the theme settings in your JavaScript

and/or CSS scripts, as shown below.

The object settings can be exposed as CSS variables as follows:

--primary-color

--background-color

--secondary-background-color

--text-color

--font

Accordingly, these settings can be accessed as follows:

.mySelector {

 color: var(--primary-color);

}

Alternatively, you can expose the object settings as a ReactJS prop,

which can be accessed as follows:

{

 "primaryColor": ""

 "backgroundColor": "",

 "secondaryBackgroundColor": "",

 "textColor": "",

 "font": "",

}

3.1.3. Organizing the Page

Streamlit offers several methods to organize and customize the frontend

design of an application. As a developer, you can enable a sidebar, divide

the web page into columns, display expander boxes to hide content,

CHAPTER 3 DEVELOPING THE USER INTERFACE

84

and create containers to group multiple widgets together. When used

in combination, these features allow you to achieve a high level of

customization and provide a tailored experience for your users.

Sidebar

With Streamlit, you can elegantly subdivide your page using a sidebar

that can be expanded and contracted on demand with the st.sidebar

command. Additionally, as shown in Section 3.1, you can configure

Streamlit to keep the sidebar expanded, contracted, or automatically

adjusted at the start based on the screen size. Practically, every Streamlit

element and widget, except for st.echo and st.spinner, can be used

within the sidebar. You can even render other page organization features,

such as st.columns, st.expander, and st.container, within the sidebar,

as shown in Listing 3-5 and Figure 3-8.

Expanders

With Streamlit, you can collapse content into expanders to make more

efficient use of space in the main body or sidebar of your application.

Expanders can be expanded and contracted on demand, or set to either

state by default. Additionally, expanders can contain any element,

including columns and containers, but not nested expanders. An example

of using expanders is shown in Listing 3-5 and Figure 3-8.

Columns

Similarly, you can divide the main body and sidebar using Streamlit’s

columns feature, which can be called with the st.columns command. You

can specify the number of columns you need by writing st.columns(2), or

alternatively, use a list to set both the number and width of each column

arbitrarily, like st.columns([2, 1]). Columns can be invoked within a

CHAPTER 3 DEVELOPING THE USER INTERFACE

85

with statement and used concurrently with expanders and containers, but

they cannot be nested within one another. An example of using columns is

shown in Listing 3-5 and Figure 3-8.

Containers

If you need to bundle several widgets or elements together, you can

do so with Streamlit’s container feature, which can be called with the

st.container command in the main body or sidebar. Containers can

be invoked within a with statement and can be used with columns,

expanders, and even nested containers. They can also be altered out of

order; for instance, if you display some text outside the container and then

display more text within the container, the latter will be shown first. An

example of using containers is shown in Listing 3-5 and Figure 3-8.

Popovers

If you need to introduce a popover window in your application to render

another widget, this can be easily done so with the use of a st.popover

command in the main body or sidebar. Popovers can be invoked within a with

statement and can be rendered within columns, expanders, and containers.

The only limitation is that popovers cannot be nested within one another. An

example of using popovers is shown in Listing 3-5 and Figure 3-9.

Dialog Boxes

Similarly, if you need to display some information or render another

widget on demand in response to a user action, you may use the @

st.dialog() decorator. This decorator must precede the function that

will be used to define the dialog box and can be rendered upon invoking

that function. Please note that if you are using dialog boxes to collect

user input, such as rendering an st.selectbox widget, then you should

also include an st.button that upon press saves any entry to user made

CHAPTER 3 DEVELOPING THE USER INTERFACE

86

to st.session_state and subsequently rerun the page using an st.

rerun command. For further information please refer to Listing 3-5 and

Figure 3-10.

Listing 3-5. page_organization.py

import streamlit as st

from datetime import datetime

tab1, tab2 = st.tabs(['Tab 1', 'Tab 2'])

with tab1:

 st.subheader('_Tab 1_')

 # Expander in sidebar

 st.sidebar.subheader('Expander')

 with st.sidebar.expander('Time'):

 time = datetime.now().strftime('%H:%M:%S')

 st.write(f'**{time}**')

 # Columns in sidebar

 st.sidebar.subheader('Columns')

 col1, col2 = st.sidebar.columns(2)

 with col1:

 option_1 = st.selectbox('Please select option 1',

['A', 'B'])

 with col2:

 option_2 = st.radio('Please select option 2',

['A', 'B'])

 # Container in sidebar

 container = st.sidebar.container()

 container.subheader('Container')

 option_3 = container.slider('Please select option 3')

CHAPTER 3 DEVELOPING THE USER INTERFACE

87

 st.sidebar.warning('Elements outside of container will be

displayed externally')

 container.info(f'**Option 3:** {option_3}')

 # Expander in main body

 st.subheader('Expander')

 with st.expander('Time'):

 time = datetime.now().strftime('%H:%M:%S')

 st.write(f'**{time}**')

 # Columns in main body

 st.subheader('Columns')

 col1, col2 = st.columns(2)

 with col1:

 option_4 = st.selectbox('Please select option 4',

['A', 'B'])

 with col2:

 option_5 = st.radio('Please select option 5',

['A', 'B'])

 # Container in main body

 container = st.container()

 container.subheader('Container')

 option_6 = container.slider('Please select option 6')

 st.warning('Elements outside of container will be displayed

externally')

 container.info(f'**Option 6:** {option_6}')

with tab2:

 # Popover in main body

 st.subheader('Popover')

 with st.popover('Popover'):

 option_7 = st.radio('Please select option 7',

['A', 'B'])

CHAPTER 3 DEVELOPING THE USER INTERFACE

88

 st.write(f'**Option 7:** {option_7}')

 # Dialog box in main body

 st.subheader('Dialog box')

 @st.dialog('Option 8')

 def dialog_box():

 option_8 = st.selectbox('Please select option 8',

['A', 'B'])

 if st.button('Submit'):

 st.session_state['option_8'] = option_8

 st.rerun()

 if 'option_8' not in st.session_state:

 if st.button('Dialog box'):

 dialog_box()

 else:

 st.write(f'**Option 8:** {st.session_

state['option_8']}')

Placeholders

A placeholder is one of the most versatile and powerful features offered

by Streamlit. By using the st.empty or st.sidebar.empty command, you

can reserve space at any location on the main body or sidebar of your

application. This is particularly useful for displaying content out of order

or on demand after a specific event or trigger. A placeholder can be created

by writing placeholder = st.empty(), and any widget or element can

be attached to it as needed. For example, you can attach text by writing

placeholder.info('Hello world'), and later replace the placeholder

by assigning it a different element. Finally, when no longer needed, the

placeholder can be cleared using the placeholder.empty() command.

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://placeholder.info

89

Tabs

A tab, as the name suggests, allows you to organize your application into

separate containers within the same page using the st.tab command.

You can create as many tabs as needed by specifying their names, such as

tab1, tab2 = st.tabs(['Tab 1', 'Tab 2']). The tab names will appear

at the top of the page, and users can navigate freely between them. The

content for each tab can be defined using a with statement. It's important

to note that, unlike pages, Streamlit will by default invoke the logic in each

tab, but only render the tab which is selected. This means that navigating

to a page with tabs may be unexpectedly slow while Streamlit executes the

logic of each tab before the page loads. An example of using expanders is

shown in Listing 3-5 and Figure 3-8.

3.2. Displaying Dynamic Content

To display dynamic content such as a constantly updating map, chart, or

clock, you can place an element within a placeholder and invoke it within

a for loop or while loop to iterate over multiple instances of that element.

As a result, the element will appear dynamic, with its state constantly

changing with each iteration of the loop. An example of dynamic content is

the clock application built using a placeholder, as shown in Listing 3-6 and

Figures 3-11 and 3-12. In this case, a while loop is used to continuously

update the st.info element to display the current time until a predefined

point is reached, at which point the placeholder is cleared and the while

loop ends.

Listing 3-6. placeholder.py

import streamlit as st

from datetime import datetime

st.title('Clock')

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://st.info
http://placeholder.py

90

Create an empty placeholder for time display

clock = st.empty()

Infinite loop to continuously update the time

while True:

 time = datetime.now().strftime('%H:%M:%S')

 # Display the current time in the placeholder

 clock.info(f'**Current time:** {time}')

 if time > '21:19:15':

 # Clear the time display when the alarm condition is

met and display the alarm

 clock.empty()

 st.warning('Alarm!!')

 break

Figure 3-8. Organizing the page using Listing 3-5

CHAPTER 3 DEVELOPING THE USER INTERFACE

91

Figure 3-9. Displaying a popover widget using Listing 3-5

Figure 3-10. Displaying a dialog box widget using Listing 3-5

CHAPTER 3 DEVELOPING THE USER INTERFACE

92

Figure 3-11. Output of Listing 3-6

Figure 3-12. Output of Listing 3-6 (continued)

3.2.1. Creating a Real-Time Progress Bar

When working with big data, it can be helpful to visualize the progress of

downloading, uploading, or performing computations that take a long time.

Users need to clearly see how much progress has been made and how much

longer they can expect to wait for the process to complete. For this purpose,

we can use Streamlit’s st.progress widget, which renders a progress bar

that shows the value provided to it, either between 1 and 100 as an integer,

or 0.0 and 1.0 as a float. For example, in Listing 3-7, we visualize the progress

of downloading a file from a URL using the requests package. If you haven't

already, install it using pip install wget. From requests, we can read the

total file size in bytes and the current amount downloaded in bytes, which

we then feed to our progress bar for visualization, as shown in Figure 3-13.

Listing 3-7. progress_bar.py

import streamlit as st

import requests

Create an empty placeholder for progress text

progress_text = st.empty()

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://bar.py

93

Create a progress bar widget, initially at 0%

progress_bar = st.progress(0)

def download_file(url, filename):

 response = requests.get(url, stream=True)

 total_size = int(response.headers.get('content-length', 0))

 with open(filename, "wb") as f:

 downloaded = 0

 for chunk in response.iter_content(chunk_size=8192):

 if chunk:

 f.write(chunk)

 downloaded += len(chunk)

 percent = int(downloaded * 100 / total_size) if

total_size else 0

 # Update the progress text and progress bar

 progress_text.subheader(f'Progress: {percent}%')

 progress_bar.progress(percent)

 return f ilename

Download a file using requests, with the custom progress bar

download_file('file url', 'output.file')

Figure 3-13. Output of Listing 3-7

3.3. Implementing Multipage Applications

Pagination and scalability are essential for any web application, and

Streamlit offers both native and non-native ways to address the need to

scale. In simple terms, the only limit to the breadth of an application in

Streamlit is the limit of one’s imagination.

CHAPTER 3 DEVELOPING THE USER INTERFACE

94

3.3.1. Creating Pages

The need to create pages within any web application is inherent, and

with Streamlit, you can natively create additional pages to organize your

content accordingly. To start, you will need one main script that defines

the pages in your application, as shown in Listing 3-8. Next, you can add

as many other pages as you need as shown in Listings 3-9 and 3-10, each

as an independent script located in the same directory or a sub-directory.

You may also add an icon to the page title to display when rendered as

shown in Listing 3-8. When you run your application, each page will be

accessible as a button that will automatically appear in the sidebar in

order, as shown in Figure 3-14.

Listing 3-8. navigation.py

import streamlit as st

pg = st.navigation([st.Page('home.py', title=' Home'),

 st.Page('contact_us.py', title='

Contact us')])

pg.run()

Listing 3-9. pages/1_ _Home.py

import streamlit as st

st.title('Home')

Listing 3-10. pages/2_ _Contact_us.py

import streamlit as st

st.title('Contact us')

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://page.py

95

Figure 3-14. Multipage Streamlit application

3.3.2. Grouping Subpages

With Streamlit, you can also group pages together in one drop down menu.

For example, we will group two pages Message and Address within the

Contact us menu. For clarity, create a folder named contact_us inside the

rootfolder and place a script for each page in it. Then, call these scripts into

your main script as a dictionary where each key is the menu name, and

the values are the associated pages. Please refer to Figure 3-15 and Listings

3-11 to 3-13 for more details.

Listing 3-11. navigation_2.py

import streamlit as st

pages = {

 ' Home': [

 st.Page('home.py', title='Home')

],

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://subpage.py

96

 ' Contact us': [

 st.Page('contact_us/message.py', title='Message'),

 st.Page('contact_us/address.py', title='Address'),

],

}

pg = st.navigation(pages)

pg.run()

Listing 3-12. contact_us/message.py

import streamlit as st

st.title('Message')

Listing 3-13. contact_us/address.py

import streamlit as st

st.title('Address')

CHAPTER 3 DEVELOPING THE USER INTERFACE

97

Figure 3-15. Multipage Streamlit application with subpages

3.3.3. Enabling Sub URL Paths

While Streamlit does not directly support sub URL paths, you can

implement the appearance of unique URL paths in your single or

multipage Streamlit application by using the st.query_params command.

An example of implementing sub URL paths is shown in Listing 3-14 and

Figure 3-16.

Listing 3-14. sub_url_paths.py

import streamlit as st

Determine the current page

current_page = st.query_params.get('page', ['home'])

Display the correct content based on the page

if current_page == 'home':

 st.title('Home Page')

CHAPTER 3 DEVELOPING THE USER INTERFACE

98

elif current_page == 'contact':

 st.title('Contact Page')

Add links to navigate between sub URLs

st.sidebar.title('Pages')

if st.sidebar.button('Home'):

 st.query_params['page'] = 'home'

 st.rerun()

if st.sidebar.button('Contact'):

 st.query_params['page'] = 'contact'

 st.rerun()

Figure 3-16. Enabling sub URL paths for applications

3.4. Modularizing Application Development

In almost every web project, there is a need for visual components and code

that manage the overall experience, which is not directly seen by the end

user but is still experienced. This is often referred to as the business logic

CHAPTER 3 DEVELOPING THE USER INTERFACE

99

of the application, responsible for controlling and managing intermodule

communication, particularly when a reaction is required in response to user

actions or to initiate an action, such as prompting the user to sign in.

3.4.1. Example: Developing a Social Network
Application

For instance, a simple social network application, like the one shown in

Figure 3-17, will need components to create posts and read fields. These

two seemingly simple requirements can be broken down into three main

parts: views, action handling services, and a database connection or API

(Application Programming Interface) client for another backend service. In

this example, everything is post-centric, meaning it should be a reusable,

shared resource. A basic application like this would have an architecture

similar to the one shown in Figure 3-18.

Figure 3-17. Demo social network app

CHAPTER 3 DEVELOPING THE USER INTERFACE

100

Figure 3-18. Basic social network Streamlit architecture

To build the mentioned project, a bottom-up approach should be

followed, starting with the most dependent object in the design, which

is the Post class, and building upward to the user-visible views. The

post should be a class, as shown in Listings 3-15 and 3-16, because it

encapsulates related data in one structure. In Python, we can use the

dataclasses decorator to indicate that this is a class intended to hold data.

We can also provide a default initialization function to assign values to

the declared variables. This can be seen as the Pythonic alternative to C#’s

DTOs (Data Transfer Objects).

Listing 3-15. Models/Post.py

from dataclasses import dataclass

import datetime

@dataclass(init=True)

class Post:

 creator_name: str

 content: str

 posting_date: datetime.datetime

CHAPTER 3 DEVELOPING THE USER INTERFACE

101

Listing 3-16. Models/__init__.py

from .Post import Post

Next, there needs to be a data source access mechanism, whose

sole responsibility is to store and write new posts, whether directly in a

database or through an external service that can be accessed via HTTP

methods or a messaging service like Kafka, RabbitMQ, or AWS’s SQS. For

this example, we will assume that a backend service is already built,

exposing two methods: one to add posts and another to retrieve posts

between two timestamps, as shown in Listing 3-17.

Listing 3-17. API.py

from Models import Post

import datetime

class API:

 def __init__(self, config=None):

 self.config = config

 def add_post(self, post: Post):

 # POST HTTP request to backend to add the post

 # Returns true as if post has been added

 return True

 def get_posts(self, start_date: datetime.datetime, end_

data: datetime.datetime):

 # GET HTTP request to backend to posts within a

time period

 # Returns a list of posts

 return [

 Post(

 'Adam', 'Python is a snake',

 datetime.datetime(year=2021, month=5, day=1)

),

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://api.py

102

 Post(

 'Sara', 'Python is a programming language',

 datetime.datetime(year=2021, month=5, day=3)

)]

Once our API is ready, we can begin building an internal service to act

as the middleware between the visual components and the API. This is

typically referred to as a Service by experienced developers.

Listing 3-18. Services/AddPost.py

from API import api_instance

from Models import Post

def add_post(post: Post):

 # Check if the post is None or if any required fields

are empty

 # Returns the result of addition operation

 if post is None or len(post.creator_name) == 0 or len(post.

content) == 0:

 return None

 # Adding the post using the API instance

 did_add = api_instance.add_post(post)

 return did_add

Listing 3-19. Services/GetFeed.py

from API import api_instance

import datetime

def get_feed():

 # Returns the posts fed to the API instance

 to_date = datetime.datetime.now()

 from_date = to_date - datetime.timedelta(days=1)

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://addpost.py
http://getfeed.py

103

 posts = api_instance.get_posts(from_date, to_date)

 return posts

Listing 3-20. Services/__init__.py

from .AddPost import add_post

from .GetFeed import get_feed

Although the application is not yet complete due to the absence of the

key components that will make it interactive for users, it can still function

as a stand-alone service for any software, as it is structured end-to-end

to serve a clear purpose of adding and retrieving posts with filtering

applied to the data. To wrap things up, we will place our Streamlit visual

components within a class-like structure for consistency with the rest of

the code base.

Additionally, instead of directly using the service function by

importing it, we can introduce the concept of dependency injection. This

pattern, widely used in strongly typed languages like C# and Java, allows

different implementations of the same function to be provided to the class

if needed, such as when creating test cases where an actual post should

be avoided. In addition to improving testability, this pattern is preferred in

many frameworks due to its readability.

Listing 3-21. FeedView.py

import streamlit as st

from Models import Post

from typing import Callable

class FeedView:

 def __init__(self, get_feed_func: Callable[[], list]):

 posts = get_feed_func()

 for post in posts:

 _PostView(post)

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://feedview.py

104

class _PostView:

 def __init__(self, post: Post):

 # Renders the feed from the posts

 st.write(f'**{post.creator_name}**: {post.content} |

_{post.posting_date}_')

Listing 3-22. AddPostView.py

import datetime

import streamlit as st

from Models import Post

from typing import Callable

class AddPostView:

 def __init__(self, add_post_func: Callable[[Post], bool]):

 # Adds the required fields to the post

 user_name_text = st.text_input('Displayed name? ')

 post_text = st.text_input('What is in your mind? ')

 clicked = st.button('Post')

 if clicked:

 post = Post(

 creator_name=user_name_text,

 content=post_text,

 posting_date=datetime.datetime.now()

)

 did_add = add_post_func(post)

 if did_add:

 st.success('Post added! ')

 else:

 st.error('Error adding post')

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://addpostview.py

105

Listing 3-23. main.py

import streamlit as st

from Views import FeedView, AddPostView

from Services import get_feed, add_post

AddPostView(add_post)

st.write('___')

FeedView(get_feed)

3.4.2. Fragmenting Parts of the Application

Another useful practice that comes in handy when organizing your

Streamlit application is to fragment widgets into modular parts of code

using the @st.fragment decorator. Basically, instead of re-running the

entire script every time something changes, you can wrap parts of your

application inside a fragment. This creates an isolated container with

its own state that only re-executes when needed, making it especially

useful for applications with heavy computations or multiple independent

sections. As an example, please refer to Listing 3-24.

Listing 3-24. fragmenting.py

import streamlit as st

Define a fragment

@st.fragment

def my_fragment():

 name = st.text_input('Enter your name')

 if name:

 st.write(f'Hello, {name}!')

st.write('This runs every time. ')

my_fragment() # Only this part re-runs when the input changes

st.write('This also stays the same.')

CHAPTER 3 DEVELOPING THE USER INTERFACE

http://main.py

106

3.4.3. Best Practices for Folder Structuring

The example discussed in Section 3.4 can have all the files placed in the

project’s root folder. While this setup might result in a bug-free application

initially, it can lead to confusion for anyone reading or maintaining the

code as the application grows. To address this, we should structure the files

into folders and expose them as modules, making them easier to integrate

into other Python scripts in a clean and professional manner. A folder

structure like the one shown in Figure 3-19 groups similar files together.

The __init__.py script is included in every subfolder to export the files

within it as modules, as demonstrated in Listing 5. In the API/__init__.

py script, as shown in Listing 6, we expose an instance of the class rather

than the class itself. The underscore before the class instance name is a

naming convention to indicate that this property is intended to be private

to this script. This serves as a warning to developers when trying to access

it directly, particularly in IDEs that highlight such naming patterns.

Listing 3-25. Views/__init__.py

from .AddPostView import AddPostView

from .FeedView import FeedView

Listing 3-26. API/__init__.py

from .API import API as _API

api_instance = _API()

It is important to note that in Listing 3-25 and 3-26, the imports are

from a relative path to a file, not an absolute one. This is evident from the

presence of the “dot” in front of .AddPostView and .FeedView. The dot

indicates that the file being imported is located in the same folder as the

importing file, rather than searching for it in the project’s root folder.

CHAPTER 3 DEVELOPING THE USER INTERFACE

107

Figure 3-19. Organized folder structure for Figure 3-18

CHAPTER 3 DEVELOPING THE USER INTERFACE

108

3.5. Summary

In this chapter, we explored the various ways to design the frontend of a

Streamlit application. We covered methods for configuring color schemes

and themes, as well as organizing the page with features like columns,

expanders, sidebars, and containers, giving developers the tools to

create tailored user interfaces. Additionally, we discussed how to build

multipage and subpage applications with a modular and scalable system

architecture. Finally, we looked at ways to display dynamic content and

visualizations using Streamlit’s powerful placeholder feature. In the next

chapter, we will dive into the fundamentals of caching large datasets, data

mutation, and rendering both static and interactive data visualizations.

CHAPTER 3 DEVELOPING THE USER INTERFACE

109© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_4

CHAPTER 4

Managing and
Visualizing Data
As with any web application, data management is an integral part of

the process. With the rise of big data, there is a growing need to develop

techniques that can handle the sheer volume of data in an efficient and

robust manner. In this chapter, we will explore some of the key methods

used to manage big data. Specifically, we will cover how to encode large

multimedia files and dataframes into bytes, allowing for more robust

storage in database systems or memory. Next, we will demonstrate the

utility of Streamlit’s built-in caching capabilities, which can be used

to cache data, function executions, and objects to significantly reduce

execution time on subsequent runs of the application. Finally, we will look

at techniques for mutating dataframes and tables within our application

on demand.

In the second part of this chapter, we will delve into the depths of

data visualization, with a special focus on the Plotly visualization library

for Python. We will provide boilerplate scripts that can be used to render

basic, statistical, time-series, geospatial, and animated data visualizations

in Streamlit.

https://doi.org/10.1007/979-8-8688-1826-4_4#DOI

110

4.1. Data Management

The need to wrangle data is inherent in most, if not all, web applications.

While we will not dive into the depths of pre- and post-processing data

in this section, we will explore some of the most effective methods for

managing data, with a particular focus on big data.

4.1.1. Processing Bytes Data

Depending on your application, you may need to work with binary/

bytes data. For example, you might need to stream multimedia content or

store files in a database system. Fortunately, Streamlit handles much of

the overhead involved in dealing with such data. By using the st.image,

st.video, and st.audio commands, we can natively process not only

saved files on disk but also Numpy arrays, URLs, and, most importantly,

bytes data.

While structured databases will be covered in more detail in Section

5.1, it is worth noting here that almost any bytes data can be saved and

retrieved in a PostgreSQL table, provided the column data type is set to

bytea. This is especially useful when working with large objects, such as

image, video, and audio files, which need to be stored as blobs (binary

large objects). For these purposes, you will need to encode your data as

follows.

 Text

String and text can simply be encoded as follows for storage:

bytes_data = b'Hello world'

Or alternatively

text = 'Hello world'

bytes_data = text.encode()

CHAPTER 4 MANAGING AND VISUALIZING DATA

111

Subsequently, encoded string or text may be decoded as follows:

bytes_data.decode()

The default encoding used in the preceding method will be UTF-8

unless otherwise specified.

 Multimedia

To convert any uploaded image, video, or audio file to bytes data, simply

use the following:

uploaded_file = st.file_uploader('Please upload a

multimedia file')

if uploaded_file is not None:

 bytes_data = uploaded_file.read()

Then, you may render the bytes data as an image, video, or audio by

using the following commands:

Image

st.image(bytes_data)

st.video(bytes_data)

Audio

st.audio(bytes_data)

 Dataframes

To read and display dataframes, you may use the following method:

import pandas as pd

uploaded_file = st.file_uploader('Please upload a CSV file',

type='csv')

if uploaded_file is not None:

 df = pd.read_csv(uploaded_file)

 st.write(df)

CHAPTER 4 MANAGING AND VISUALIZING DATA

112

Alternatively, to encode dataframes (for storage as BLOB data in

databases, for example), you can use the Python module StringIO, which

stores content, such as CSV files, in memory as a file-like object, also

known as string-based I/O. These objects can then be accessed by other

functions and libraries, such as Pandas, as shown in the following:

from io import StringIO

import pandas as pd

uploaded_file = st.file_uploader('Please upload a CSV file',

type='csv')

if uploaded_file is not None:

 stringio = StringIO(uploaded_file.getvalue().decode())

 st.write(pd.read_csv(stringio))

Please note that while you can use the preceding method to store

Pandas dataframes as string-based I/O, you cannot store the StringIO

object directly in a database. To store a Pandas dataframe, it is better to

save it as a table using the Pandas command dataframe.to_sql, which

will be covered in detail in later sections.

4.1.2. Caching Big Data

Given the sheer magnitude of data available to us, it may sometimes

be necessary to cache data in volatile storage for quicker access later.

Streamlit offers native methods to cache both data you can store in a

database and data you cannot, using the @st.cache_data and @st.cache_

resource decorators, respectively. You simply write a function that returns

data or an object and precede it with the appropriate decorator to leverage

this feature. The first time you invoke the function, the returned data or

object is cached in memory. For every subsequent invocation, the return

will come from the cache, not the function itself, unless you change the

function's arguments.

CHAPTER 4 MANAGING AND VISUALIZING DATA

113

You can use Streamlit’s caching feature with Listing 4-1 to benchmark

the percentage of runtime saved by retrieving your dataframe from the

cache. As shown in Figure 4-1, there is a significant positive effect on

runtime, especially as the dataframe grows to over 100,000 rows. The

effect starts to level off at around 100,000,000 rows, with roughly 70% of

runtime saved.

Listing 4-1. cache.py

import streamlit as st

import pandas as pd

import numpy as np

import time

@st.cache_data

def dataframe(rows):

 df = pd.DataFrame(

 np.random.randn(rows, 5),

 columns=('col %d' % i for i in range(5)))

 return df

runtime = pd.DataFrame(data={'Number of rows':[10, 100,

1000, 10000, 100000, 1000000, 10000000, 100000000], 'First

runtime (s)':None, 'Second runtime (s)':None, 'Runtime saved

(%)':None})

for i in range(0,len(runtime)):

 start = time.time()

 dataframe(runtime.loc[i]['Number of rows'])

 stop = time.time()

 runtime.loc[i, 'First runtime (s)'] = stop – start

 start = time.time()

 dataframe(runtime.loc[i]['Number of rows'])

 stop = time.time()

 runtime.loc[i, 'Second runtime (s)'] = stop – start

CHAPTER 4 MANAGING AND VISUALIZING DATA

114

 runtime.loc[i, 'Runtime saved (%)'] = 100 -

int(100*(runtime.loc[i, 'Second runtime (s)']/runtime.loc[i,

'First runtime (s)']))

st.write(runtime)

Figure 4-1. Average percent runtime saved for six trials vs. number of
rows while using st.cache_data

4.1.3. Mutating Data in Real Time

You may need to mutate data, specifically dataframes, on demand within

your application. Whether it is filtering a time-series dataset based on a

given date-time range or appending data to an existing column, mutating

data is often necessary. To that end, Streamlit provides the option to

mutate data natively or by using third-party toolkits, as demonstrated in

the following sections.

CHAPTER 4 MANAGING AND VISUALIZING DATA

115

 Native Data Mutation

Streamlit offers an intuitive and native method to add data to existing

tables using the st.add_rows command. With this method, you can easily

append a dataframe to a previously created table and instantly regenerate

and view any associated charts in real time, as shown in Listing 4-2

and Figures 4-2 and 4-3.

Listing 4-2. mutate_data_real_time.py

import streamlit as st

import pandas as pd

import random

def random_data(n):

 y = [random.randint(1, n) for value in range(n)]

 return y

if __name__ == '__main__':

 df1 = pd.DataFrame(data={'y': [1, 2]})

 # Create columns for table and chart

 col1, col2 = st.columns([1, 3])

 with col1:

 # Use st.dataframe for dynamic updates

 table = st.dataframe(df1)

 with col2:

 # Display the initial chart

 chart = st.line_chart(df1)

 # User input for number of rows to add

 n = st.number_input('Number of rows to add', 0, 10, 1)

 # Update button

 if st.button('Update'):

 y = random_data(n)

 df2 = pd.DataFrame(data={'y': y})

CHAPTER 4 MANAGING AND VISUALIZING DATA

116

 # Append the new data to the existing dataframe

 table.add_rows(df2)

 chart.add_rows(df2)

Figure 4-3. Mutating data in real time using Listing 4-2 (continued)

Figure 4-2. Mutating data in real time using Listing 4-2

CHAPTER 4 MANAGING AND VISUALIZING DATA

117

4.1.4. Advanced and Interactive Data Mutation

While Streamlit’s native method of mutating data allows you to append

rows to existing dataframes and charts, it does not provide other advanced

data manipulation methods, such as modifying individual cells, removing

data, or filtering. Fortunately, a highly versatile third-party component

called streamlit-aggrid fills this gap. Built on top of the AG Grid library for

JavaScript frameworks, streamlit-aggrid displays data in an interactive grid

widget, allowing users to manipulate data with filtering, sorting, selecting,

updating, pivoting, aggregating, querying, and many other methods. For

more information on additional features, visit www.ag-grid.com.

To use streamlit-aggrid in your Streamlit application, you first need to

initiate the widget and configure the features you require. Then, you can

insert your Pandas dataframe using the AgGrid() command. The widget

will be rendered, and the return value, when invoked, will be provided as a

dictionary. To access the data within the widget, retrieve the data key from

the dictionary. Similarly, to access the selected rows, you must retrieve the

selected_rows key. The data will be returned as a table, while the selected

rows will be returned as a list of dictionaries.

Specifically, Listing 4-3 will enable you to perform create, read, update,

and delete operations on any provided dataset, as shown below:

• Create: To create a new record in the widget, you

can simply append an empty row to the end of the

dataframe as follows:

index = len(df)

df_new['data'].loc[index,:] = 'None'

df_new['data'].to_csv(path, index=False)

st.rerun()

CHAPTER 4 MANAGING AND VISUALIZING DATA

http://www.ag-grid.com/

118

• Read: You can read the data by rendering the dataframe

as a grid widget. Note that this step must be performed

before any other operation in your script, and the

widget should be invoked with a new name, different

from the original dataframe:

df = pd.read_csv(path)

df = df.fillna('None')

index = len(df)

gb = GridOptionsBuilder.from_dataframe(df)

gb.configure_side_bar()

gb.configure_default_column(groupable=True, value=True,

enableRowGroup=True, aggFunc='sum',editable=True)

gb.configure_selection(selection_mode='multiple', use_

checkbox=True)

gridOptions = gb.build()

df_new = AgGrid(df,gridOptions=gridOptions,enable_

enterprise_modules=True, update_mode=GridUpdateMode.

MODEL_CHANGED)

• Update: You can interactively update the value of each

individual cell in the widget and immediately save the

modified value to disk, as follows:

if not df.equals(df_new['data']):

 df_new['data'].to_csv(path, index=False)

 st.rerun()

• Delete: You can also delete any row whose checkbox

has been selected in the widget, as follows:

if len(df_new['selected_rows']) > 0:

 exclude = pd.DataFrame(df_new['selected_rows'])

CHAPTER 4 MANAGING AND VISUALIZING DATA

119

 pd.merge(df_new['data'], exclude, how='outer',

 indicator=True).query('_merge == "left_only"').

drop('_merge', 1).to_csv(path, index=False)

 st.rerun()

In addition, you can choose to delete duplicate rows by using the

following method:

df_new['data'] = df_new['data'].drop_duplicates()

df_new['data'].to_csv(path, index=False)

st.rerun()

Please note that for our create, update, and delete operations, we are

using the st. rerun() command to automatically rerun the script after

a modification is made. This is necessary to use it to render the modified

widget without requiring further input from the user. Alternatively, you

can add a dummy button to rerun the script and update the widget when

clicked by the user, as shown below:

if st.button('Update'):

 pass

CHAPTER 4 MANAGING AND VISUALIZING DATA

120

The final rendered widget can be seen in Figure 4-4.

Figure 4-4. Mutating data in real time using Listing 4-3

In addition to data mutation capabilities, the streamlit-aggrid widget

offers a range of filtering and aggregation options. On the right pane of

the widget, you can use the Filters tab to filter ordinal columns based on

entries and numerical columns using simple mathematical conditions, as

shown in Figure 4-5. Similarly, the Columns tab allows you to aggregate

numerical columns, as seen in Figure 4-6. Please note that both filtering

and aggregation are non-mutable features and are intended solely for

visual purposes.

CHAPTER 4 MANAGING AND VISUALIZING DATA

121

Listing 4-3. crud.py

import streamlit as st

import pandas as pd

from st_aggrid import AgGrid

from st_aggrid.shared import GridUpdateMode

from st_aggrid.grid_options_builder import GridOptionsBuilder

def crud(path):

 df = pd.read_csv(path)

 df = df.fillna('None')

 index = len(df)

 # Initiate the streamlit-aggrid widget

 gb = GridOptionsBuilder.from_dataframe(df)

 gb.configure_side_bar()

 gb.configure_default_column(groupable=True, value=True,

enableRowGroup=True, aggFunc='sum',editable=True)

 gb.configure_selection(selection_mode='multiple', use_

checkbox=True)

 gridOptions = gb.build()

 # Insert the dataframe into the widget

 df_new = AgGrid(df,gridOptions=gridOptions,enable_

enterprise_modules=True, update_mode=GridUpdateMode.MODEL_

CHANGED)

 # Add a new row to the widget

 if st.button('-----------Add a new row-----------'):

 df_new['data'].loc[index,:] = 'None'

 df_new['data'].to_csv(path, index=False)

 st.rerun()

 # Save the dataframe to disk if the widget has been

modified

 if df.equals(df_new['data']) is False:

 df_new['data'].to_csv(path, index=False)

CHAPTER 4 MANAGING AND VISUALIZING DATA

122

 st.rerun()

 # Remove selected rows from the widget

 if st.button('-----------Remove selected rows-----------'):

 if len(df_new['selected_rows']) > 0:

 exclude = pd.DataFrame(df_new['selected_rows'])

 pd.merge(df_new['data'], exclude, how='outer',

 indicator=True).query('_merge == "left_only"').

drop('_merge', 1).to_csv(path, index=False)

 st.rerun()

 else:

 st.warning('Please select at least one row')

 # Check for duplicate rows

 if df_new['data'].duplicated().sum() > 0:

 st.warning(f'**Number of duplicate rows:** { df_

new['data'].duplicated().sum()}')

 if st.button('-----------Delete duplicates-----------'):

 df_new['data'] = df_new['data'].drop_duplicates()

 df_new['data'].to_csv(path, index=False)

 st.rerun()

if __name__ == '__main__':

 st.title('Data')

 crud('data.csv')

CHAPTER 4 MANAGING AND VISUALIZING DATA

123

Figure 4-5. Filtering data with the streamlit-aggrid widget

Figure 4-6. Aggregating data with the streamlit-aggrid widget

CHAPTER 4 MANAGING AND VISUALIZING DATA

124

4.2. Exploring Plotly Data Visualizations

There is a plethora of data visualization libraries in Python, many of

which can be rendered easily in Streamlit. Whether you use a more native

command such as st.vega_lite_chart or resort to the Swiss Army knife

command, st.write, you have at your disposal the ability to visualize

data extensively. Among the many visualization libraries, one stands

out the most: Plotly. Arguably one of the most versatile, interactive, and

visually appealing visualization stacks available, Plotly offers a wealth

of possibilities. In this section, we will showcase some of the most

relevant types of charts for web development. However, the following

list is by no means exhaustive. For a complete list of charts, please refer

to Plotly's official documentation at https://plotly.com/python/ for a

complete list.

4.2.1. Rendering Plotly in Streamlit

As explained in Section 4.2, Streamlit offers two native options to display

Plotly and other types of charts. Specifically, you can use the st.write

command, often referred to as the Swiss Army knife of commands, to

render the chart by simply writing the Plotly chart object (hereafter

referred to as fig), as follows:

st.write(fig)

Alternatively, you can use the st.plotly_chart command, which

offers greater functionality when rendering Plotly charts:

st.plotly_chart(fig, use_container_width=True)

You can use the st.plotly_chart command with the additional

use_container_width argument to specify whether the chart width

should be restricted to the encapsulating column width.

CHAPTER 4 MANAGING AND VISUALIZING DATA

https://plotly.com/python/

125

4.2.2. Basic Charts

In this section, we will cover Plotly line, scatter, bar, and pie charts. Before

proceeding, we will first import all the necessary libraries for this section,

as listed below:

import streamlit as st

import numpy as np

import pandas as pd

import plotly.express as px

import plotly.graph_objects as go

For consistency, we will use the same randomly generated Pandas

dataframe (shown below) as our dataset to generate each of the charts:

data = np.random.randint(0, 10, size=(40,2))

df = pd.DataFrame(data, columns=['Column 1', 'Column 2'])

 Line Chart

fig = go.Figure()

fig.add_trace(go.Scatter(x=df.index, y=df['Column 1'],

 mode='lines',

 name='Column 1'))

fig.add_trace(go.Scatter(x=df.index, y=df['Column 2'],

 mode='lines',

 name='Column 2'))

CHAPTER 4 MANAGING AND VISUALIZING DATA

126

 Scatter Chart

fig = go.Figure(data=go.Scatter(

 y = df['Column 1'],

 mode='markers',

 marker=dict(

 size=10,

 color=df['Column 2'], # Set color equal to a variable

 colorscale='Viridis', # Select colorscale

 showscale=True

)

))

CHAPTER 4 MANAGING AND VISUALIZING DATA

127

 Bar Chart

fig = go.Figure(data=[

 go.Bar(name='Column 1', x=df.index, y=df['Column 1']),

 go.Bar(name='Column 2', x=df.index, y=df['Column 2'])

])

 Pie Chart

fig = px.pie(df, values=df.sum(), names=df.columns)

CHAPTER 4 MANAGING AND VISUALIZING DATA

128

 Chart Layout

To update the properties and layout of the chart, you can use the update_

layout method, as shown below:

fig = go.Figure(data=[

 go.Bar(name='Column 1', x=df.index, y=df['Column 1']),

 go.Bar(name='Column 2', x=df.index, y=df['Column 2'])

])

fig.update_layout(

 title='Column 1 vs. Index',

 xaxis_title='Index',

 yaxis_title='Value',

 legend_title='Columns',

 font=dict(

 family='Arial',

 size=10,

 color='black'

)

)

CHAPTER 4 MANAGING AND VISUALIZING DATA

129

4.2.3. Statistical Charts

In this section, we will generate a Plotly histogram and box plot. The

following randomly generated dataframe will be used for both charts:

data = np.random.randn(40, 2)

df = pd.DataFrame(data, columns=['Column 1', 'Column 2'])

 Histogram

fig = go.Figure()

fig.add_trace(go.Histogram(name='Column 1', x=df['Column 1']))

fig.add_trace(go.Histogram(name='Column 2', x=df['Column 2']))

fig.update_layout(barmode='overlay')

fig.update_traces(opacity=0.75)

 Box Plot

fig = go.Figure()

fig.add_trace(go.Box(

 y=df['Column 1'],

 name='Column 1',

 boxmean='sd' # Display mean, median and standard deviation

))

fig.add_trace(go.Box(

CHAPTER 4 MANAGING AND VISUALIZING DATA

130

 y=df['Column 2'],

 name='Column 2',

 boxmean='sd' # Display mean, median and standard deviation

))

4.2.4. Time-Series Charts

Time-series charts can be generated using the same line chart function

from Section 4.2; the only difference is that the index provided must be in

a date-time format. You can use the following function to create a Pandas

dataframe with randomly generated values, indexed between a specified

range of dates:

data = np.random.randn(40, 2)

df = pd.DataFrame(data, columns=['Column 1', 'Column 2'])

df.index = pd.date_range(start='1/1/2018', end='2/9/2018',

freq='D')

Then, the line chart function can be invoked as follows:

fig = px.line(df, x=df.index, y=df.columns)

CHAPTER 4 MANAGING AND VISUALIZING DATA

131

4.2.5. Geospatial Charts

Depending on your application, you may need to render interactive maps

with geospatial data. Fortunately, Plotly offers geospatial charts with a

wide range of features and attributes. In this section, we will focus on one

such chart, the choropleth map, using a dataset of world GDP per capita

from 1990 to 2023 [22]:

df = pd.read_csv('gdp-per-capita-worldbank.csv').sort_

values(by='Year', ascending=False)

fig = px.choropleth(df, locations=df['Code'],

 color=df['GDP per capita, PPP (constant 2021

international $)'],

 hover_name=df['Entity'])

CHAPTER 4 MANAGING AND VISUALIZING DATA

132

4.2.6. Animated Visualizations

With Plotly, you can incorporate simple animations into your charts. This

is especially useful when displaying time-varying values in a time-series

dataset. However, you are not limited to time-series data and can animate

other types of numeric data as well. In this section, we will animate the

same dataset of world GDP per capita from 1990 to 2023 [22], using both

an animated bubble map and a bar chart, as shown below.

 Animated Bubble Map

df = pd.read_csv('gdp-per-capita-worldbank.csv').sort_

values(by=['Year', 'Entity'])

fig = px.scatter_geo(df, locations=df['Code'],

 color=df['GDP per capita, PPP (constant 2017

international $)'],

 hover_name=df['Entity'],

 size=df['GDP per capita, PPP (constant 2017

international $)'],

 animation_frame=df['Year'])

CHAPTER 4 MANAGING AND VISUALIZING DATA

133

 Animated Bar Chart

df = pd.read_csv('gdp-per-capita-worldbank.csv').sort_

values(by=['Year', 'Entity'])

df = df[df['GDP per capita, PPP (constant 2021 international

$)'] > 50000]

fig = px.bar(df, x=df['Entity'],

 y=df['GDP per capita, PPP (constant 2021

international $)'],

 animation_frame=df['Year'])

4.3. Summary

In this chapter, we explored several techniques for managing big data.

Specifically, we learned how to encode multimedia files and dataframes

into byte data, enabling the robust storage of large quantities of data in

databases or memory. We also saw how Streamlit’s caching functions

can significantly reduce execution time when our application is rerun.

Additionally, we covered both a native technique and a third-party toolkit

CHAPTER 4 MANAGING AND VISUALIZING DATA

134

for mutating dataframes and tables within our application. In the latter

part of this chapter, we gained the knowledge to generate various types of

charts, including basic, statistical, time-series, geospatial, and animated

charts in Streamlit, using the Plotly data visualization library. By the end of

this chapter, we should have developed the ability to manage and visualize

data at varying scales efficiently and robustly within our web application.

CHAPTER 4 MANAGING AND VISUALIZING DATA

135© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_5

CHAPTER 5

Integrating Databases
Before we begin utilizing application data and user interaction insights,

we must first understand how to store and manage data of varying

schemas persistently using robust and distributed database systems in

an organized manner. This chapter will focus on two types of database

systems: relational and nonrelational. We will demonstrate use cases

for each by interfacing with PostgreSQL and MongoDB. Additionally,

advanced features such as fuzzy matching and full-text indexing will be

introduced, with boilerplate code provided as building blocks for your

own applications. Finally, you will learn how to seamlessly integrate

these databases with Streamlit to visualize data and perform create, read,

update, and delete (CRUD) operations. For full comprehension of this

chapter, the installation of PostgreSQL and pgAdmin is required.

5.1. Relational Databases

Since most apps built with Streamlit manipulate data in one way or

another, that data often needs to be stored on disk for later use. In many

cases, the data follows a specific format—i.e., it is structured. We can

leverage this characteristic by using a SQL database to store it. PostgreSQL

will be the tool of choice for demonstrating this use case, as it is both free

and open source.

https://doi.org/10.1007/979-8-8688-1826-4_5#DOI

136

5.1.1. Introduction to SQL

Structured Query Language (SQL) is used to perform CRUD operations on

data with a similar structure. Same structure data refers to different entries

(rows) that share the same features (columns). An example of a relational

SQL database is a company directory containing employee data, split into

two separate tables: one for employees’ personal information and another

for their pay grades. Both types of data can be represented as tables in

the database, as shown in Tables 5-1 and 5-2, where a one-to-one linkage

between the tables indicates that every employee has a corresponding

pay grade.

A one-to-one relationship exists when every row in one table

corresponds to a unique ID in another table, extending the information of

the first table with data from the second.

There are additional types of relationships between tables, such as

one-to-many and many-to-many, but we will not cover them here, as they

do not add further value to the purpose of this book. However, for the sake

of real-world scenario demonstration, we will proceed with one-to-one

relationships in some of the examples.

CRUD, which stands for Create, Read, Update, and Delete, refers to

the main operations that can be performed within a database using SQL

commands, as follows:

• Create: To make a new person entry with pay grade 3

INSERT INTO Persons VALUES ("Charlie",

"01/01/1995", 3);

• Read: To retrieve all pay grade data with a base salary

level equal to L3

SELECT * FROM INTO PayGradeLevels WHERE

BaseSalary = "L3";

CHAPTER 5 INTEGRATING DATABASES

137

• Update: To update the pay grade of Bob to pay grade 2

UPDATE Persons SET PayGradeId = 2 WHERE ID = 3;

• Delete: To remove pay grade 4 from existence

DELETE FROM PayGradeLevels WHERE id = 4;

Table 5-1. Persons table

ID Name DOB Pay Grade ID

1 Adam 01/01/1990 2

2 Sara 01/01/1980 1

3 Bob 01/01/1970 1

4 Alice 01/01/2000 3

Table 5-2. Pay grade levels table

ID Base Salary Reimbursements Bonuses

1 L3 L2 L0

2 L1 L1 L1

3 L3 L3 L3

4 L1 L3 L1

One of the most important concepts to understand when building a

database is the primary key. This refers to the ID in both Tables 5-1 and

5-2. A primary key is a unique, always valid (i.e., not null) identifier used

to refer to a single row in a table. It is also indexed, meaning it is internally

managed by the database in a way that significantly speeds up query

performance when filtering by this ID.

CHAPTER 5 INTEGRATING DATABASES

138

It is worth noting that indexing is a feature that can be applied to

any column—not just primary keys—but it is generally used with care.

Indexing a column can increase its storage footprint to as much as twice

its original size. However, indexing is highly beneficial when used on

columns that are frequently searched, especially those representing IDs, as

it enables faster data retrieval.

Another key term that backend developers often encounter is the

foreign key. A foreign key is an ID that refers to a row in a different table.

For example, the Pay Grade ID column in Table 5-1 acts as a foreign key

pointing to the ID column in Table 5-2.

5.1.2. Connecting a PostgreSQL Database
to Streamlit

First, we need to create the database and the tables described in Section

5.1 using pgAdmin 4, a graphical user interface (GUI) tool for managing

PostgreSQL databases. Assuming pgAdmin 4 is already installed and

configured on your system, we can proceed to create a new database by

following the steps illustrated in Figures 5-1 and 5-2 sequentially.

Figure 5-1. Creating a new PostgreSQL database

CHAPTER 5 INTEGRATING DATABASES

139

Figure 5-2. Creating a new PostgreSQL database (continued)

Once the database is ready, click the Query Tool in the top-left corner

to run raw SQL commands. As shown in Figure 5-3, we will create two

tables—each with a primary key, and one containing a foreign key. Some

additional features of the columns—commonly referred to as constraints

in database terminology—include setting columns as NOT NULL and

enabling auto-incrementation.

Setting a column as NOT NULL instructs the database to reject any

INSERT or UPDATE operation where that column is either missing or

explicitly set to NULL. PostgreSQL provides a special data type called

SERIAL, which automatically ensures the column is not null and enables

auto-incrementation of its integer value for each new row inserted.

CHAPTER 5 INTEGRATING DATABASES

140

Figure 5-3. Running SQL commands from create_tables.sql to create
the database tables

Before proceeding with the Streamlit integration, we will first insert

some data into the database using raw SQL, as demonstrated in Figure 5-4.

Notice that we did not need to manually set the ID values for either table—

these are automatically generated by the database thanks to the SERIAL

data type.

CHAPTER 5 INTEGRATING DATABASES

141

Next, we need to configure our database access credentials for

use within Streamlit. These credentials—including the username and

password—can be stored securely in various ways:

• As environment variables in a .env file

• In a secrets.yaml file (read and parsed by the app)

• Recommended: In a secrets.toml file located inside a

.streamlit folder, as shown in Listing 5-1.

This secrets.toml file is automatically parsed by Streamlit, making the

variables inside easily accessible to your application. For consistency and

proper parsing, the database connection details should be grouped under

a label like [db_postgres], which can then be referenced in your code.

⚠Security Tip Always use strong passwords, especially if your

database is publicly accessible. Weak passwords are susceptible to

brute-force attacks, potentially exposing sensitive data.

Listing 5-1. .streamlit/secrets.toml

[db_postgres]

host = "127.0.0.1"

port = "5432"

user = "postgres"

password = "82qeD\t_K7n~`7A&"

dbname = "CompanyData"

CHAPTER 5 INTEGRATING DATABASES

142

Figure 5-4. Inserting data using inserting_data.sql into the database

To interface Python with PostgreSQL, we need to use a capable library,

such as psycopg3. While psycopg3 is a great choice for this example, other

libraries like SQLAlchemy can also accomplish the same task, and we will

cover that in later chapters.

As mentioned in previous chapters, Streamlit automatically reruns the

Python script whenever the user interacts with the app. This is not usually

a concern, but in this case, it could lead to inefficiencies. For example,

every time the app reruns, a new database connection will be established.

To prevent this unnecessary overhead, we can cache the first established

connection. Streamlit provides an easy way to do this using its native @

st.cache_resource decorator. This decorator can accept additional

parameters, such as an expiration date for the cache. If the cache expires,

the function will re-execute when called again. In Listing 5-2, line 5

demonstrates how to save the established connection in the cache.

Once a connection is established, we will need a cursor to execute SQL

queries. It is important to properly dispose of the cursor after the query is

executed to avoid memory issues. If the cursor is not closed, it will remain

in memory, and as more queries are executed, this can lead to memory

CHAPTER 5 INTEGRATING DATABASES

143

leaks—a nightmare for any developer. There are two ways to manage

the cursor: manually closing it or using a context manager. The context

manager will automatically close the cursor once its scope is exited. In

Listing 5-2, lines 14 and 22 show examples of both methods, with their

outputs illustrated in Figure 5-5.

Listing 5-2. main.py

import streamlit as st

import psycopg2

@st.cache_resource

def init_connection():

 return psycopg2.connect(**st.secrets['db_postrgres'])

conn = init_connection()

def run_query(query_str):

 cur = conn.cursor()

 cur.execute(query_str)

 data = cur.fetchall()

 cur.close()

 return data

def run_query_with_context_manager(query_str):

 with conn.cursor() as cur:

 cur.execute(query_str)

 return cur.fetchall()

query = st.text_input('Query')

c1, c2 = st.columns(2)

output = None

with c1:

 if st.button('Run with context manager'):

 output = run_query_with_context_manager(query)

CHAPTER 5 INTEGRATING DATABASES

http://main.py

144

with c2:

 if st.button('Run without context manager'):

 output = run_query(query)

st.write(output)

5.1.3. Displaying Tables in Streamlit

After querying data from the database, we can display it in plain text or use

more visually engaging tools from Streamlit, which may require modifying

how the data is represented.

In the data science and development communities, it is common

to parse structured data, whether it is sensor readings, identification

information, or any repeating data organized into a structured format,

such as a Pandas dataframe. Dataframes are essentially Numpy arrays with

additional functionality, including column names and SQL-like querying

capabilities. Furthermore, they share the same efficient vectorization

features as Numpy arrays, enabling parallelized mathematical

computations on entire arrays rather than on individual elements.

Streamlit offers two ways to display dataframes. The first is with st.

table, which provides a non-interactive representation of the dataframe,

as shown in Figure 5-6. The second option is st.dataframe, which renders

an interactive version of the dataframe. In this interactive format, users

can sort any column by simply clicking its header, as demonstrated in

Figure 5-7. However, there is a trade-off: this interactive functionality

requires additional CPU and memory resources, which can slow down

the application. The sorting operation, for instance, has a time complexity

of O(n*log(n)), meaning that as the dataset grows, the application may

experience performance degradation.

CHAPTER 5 INTEGRATING DATABASES

145

Listing 5-3. df_demo.py

import streamlit as st

import pandas as pd

df = pd.DataFrame([['Adam', '01/01/1990', 2],

 ['Sara', '01/01/1980', 1],

 ['Bob', '01/01/1970', 1],

 ['Alice', '01/01/2000', 3]

], columns=['Name', 'DOB', 'Paygrade ID'])

st.table(df)

st.dataframe(df)

Figure 5-5. Running user SQL commands from Streamlit

Figure 5-6. st.table from Listing 5-3

CHAPTER 5 INTEGRATING DATABASES

http://demo.py

146

Figure 5-7. st.dataframe from Listing 5-3

5.2. Nonrelational Databases

While in most use cases you will be working with a structured dataset,

where the schema, attributes, data types, and metadata are known

beforehand, there are instances where this information is not available.

For example, consider building a search engine where users can upload

documents of varying lengths, with different numbers of headers, images,

and types of media. In such cases, it is nearly impossible to define a fixed

schema or table structure to accommodate the data. This is where the

utility of a NoSQL database, like MongoDB, becomes crucial. NoSQL

databases are designed to handle and store unstructured or semi-

structured data, offering flexibility in how the data is stored and queried.

5.2.1. Introduction to MongoDB

MongoDB allows you to store data as JSON documents, which can have

varying attributes and data types, all within a collection that can have

a dynamic schema. In this context, a document is similar to a row in a

relational database, and a collection is analogous to a table. Even if your

dataset starts off structured, using a NoSQL database like MongoDB can

be beneficial as your application scales, especially when you begin to deal

CHAPTER 5 INTEGRATING DATABASES

147

with unstructured data. Moreover, if you need advanced features such as

full-text indexing (which indexes every word in every document within

a collection) or fuzzy matching (which helps mitigate typos in queries),

MongoDB is an ideal choice.

In this section, we will explore MongoDB's capabilities and

demonstrate how it can be integrated with Streamlit by building a search

engine for restaurants using a publicly available unstructured dataset of

restaurant ratings. The goal of the application is to allow users to search

for restaurants based on the type of cuisine and address. For the cuisine,

we will use a simple one-to-one match with a predefined list of cuisine

types to filter the data. For the address, full-text indexing will be necessary

to match n-grams (continuous sequences of words or tokens) in borough

and street address fields, which may be stored in different objects or arrays

within the document, as shown in Figure 5-8. Additionally, fuzzy matching

will be implemented to ensure that search queries with minor typos (at

most two characters different) are still matched correctly with the relevant

records.

5.2.2. Provisioning a Cloud Database

MongoDB can be set up both locally and in the cloud. However, to take

advantage of the full-text indexing feature provided by MongoDB’s Atlas

Search service, you must host your database on the cloud. Below are the

steps to do so:

 1. Begin by setting up an account and project at www.

mongodb.com/atlas/database.

 2. Provision the free M0 Sandbox cluster, as shown in

Figures 5-9 and 5-10. If needed, modify the hosted

region to minimize latency between your database

and server.

CHAPTER 5 INTEGRATING DATABASES

http://www.mongodb.com/atlas/database
http://www.mongodb.com/atlas/database

148

 3. After provisioning the cluster, whitelist the IP

addresses that will access the database in the

Network Access menu. While not recommended, you

can whitelist all addresses (as shown in Figure 5-11)

to allow access from anywhere.

 4. Next, create user credentials for database access

from the Overview tab in the Databases menu, as

shown in Figure 5-12.

Figure 5-8. A sample document from the restaurants dataset

CHAPTER 5 INTEGRATING DATABASES

149

Figure 5-9. Setting up a MongoDB database

 5. Next, create a connection string by selecting the

Connect your application option in the Choose a

connection method tab. Then, choose the Python

driver that best suits your application, as shown in

Figures 5-13 and 5-14.

Figure 5-10. Provisioning a free M0 Sandbox cluster

CHAPTER 5 INTEGRATING DATABASES

150

Figure 5-11. Configuring network access to the database

 6. Finally, you can either upload your own dataset or

load a sample dataset provided by MongoDB in the

Collections tab under the Databases menu, as shown

in Figure 5-15. For this example, we will use the

sample restaurants collection from MongoDB’s own

datasets.

CHAPTER 5 INTEGRATING DATABASES

151

Figure 5-12. Creating user credentials for the database

5.2.3. Full-Text Indexing

Full-text indexing indexes every token in all objects across all documents

in a database. It is a highly powerful form of indexing that enables accurate

queries and the retrieval of all matching documents, much like how search

engines function. In MongoDB, you can create a full-text index on a cloud

database with the following steps:

 1. Open the Search tab located in the Databases

menu and click Create Search Index, as shown in

Figure 5-16.

CHAPTER 5 INTEGRATING DATABASES

152

 2. Next, select JSON Editor from the Configuration

Method tab.

 3. Choose the database and collection you want to

create the index for, name the index, and enter

the following index configuration, as shown in

Figure 5-17:

{

 "mappings": {

 "dynamic": true

 }

}

Figure 5-13. Creating a connection string for the database

CHAPTER 5 INTEGRATING DATABASES

153

5.2.4. Querying the Database

To query your indexed database in MongoDB, you should first connect

to your database using the connection string obtained in Figure 5-13.

This string will help you establish a client connection. To optimize

performance, it is recommended to invoke the client as a function and

cache it using the @st.cache_resource decorator. By doing so, Streamlit

will reuse the cached client on subsequent queries instead of establishing

a new client each time, which helps save runtime and resources. The

following example demonstrates this approach:

from pymongo import MongoClient

@st.cache_resource

def create_client():

 return MongoClient('<connection_string>')

Next, you will need to create an Aggregation, which is essentially a

multi-stage filtering pipeline written in JSON format. This pipeline allows

you to apply various filters and transformations to your data before

querying it. The structure of the aggregation will depend on the filters and

operations you want to perform, and it can be used to shape your query

results accordingly, as shown in the following example:

 1. Search using fuzzy matching

At this stage, we need to specify the name of the

index that we created previously for searching the

documents. Additionally, we need to input the

user’s query with string concatenation. We must also

specify the path, or in other words, the objects to

search through in the documents, such as borough

and street address (nested elements and/or objects

can be accessed with a period, i.e., address.street).

Most importantly, we need to enable fuzzy matching

CHAPTER 5 INTEGRATING DATABASES

154

and specify the number of single-character edits

needed to match the query with the token using

maxEdits, and we also need to determine the

number of characters at the start of each query that

must match the token using prefixLength.

"$search": {

 "index": "default",

 "text": {

 "query": f"{address}",

 "path": ["borough", "address.street"],

 "fuzzy": {

 "maxEdits": 2,

 "prefixLength": 2

 }

 }

}

CHAPTER 5 INTEGRATING DATABASES

155

Figure 5-14. Creating a connection string for the database
(continued)

 2. Project documents with search score

At this stage, we will pass only the objects we want

from the documents and compute the relevance

score using the searchScore tag:

"$project": {

 "Name": "$name",

 "Cuisine": "$cuisine",

CHAPTER 5 INTEGRATING DATABASES

156

 "Address": "$address.street",

 "Borough": "$borough",

 "Grade": "$grades.grade",

 "Score": {

 "$meta": "searchScore"

 }

}

Figure 5-15. Loading a dataset into the database

CHAPTER 5 INTEGRATING DATABASES

157

Figure 5-16. Creating a full-text index for the database

 3. Filter documents

Subsequently, we will filter the passed documents

based on the user’s entry for the type of cuisine.

Please note that unlike fuzzy matching, at this

stage, queries must exactly match the tokens in the

documents for successful filtering.

"$match": {

 "Cuisine": f"{cuisine}"

}

CHAPTER 5 INTEGRATING DATABASES

158

Figure 5-17. Creating a full-text index for the database (continued)

 4. Limit results

Finally, at this stage, we will limit the number of

results passed to the required amount:

"$limit": 5

For information regarding additional options for the

aggregation pipeline, please refer to https://docs.

mongodb.com/manual/reference/aggregation/.

5.2.5. Displaying Tables in Streamlit

Once the aggregation pipeline completes and returns the queried results,

post-processing is necessary before rendering the table in Streamlit.

Specifically, you need to convert the MongoDB query result into a Pandas

DataFrame and specify the columns to retain. Additionally, parse any

returned lists (such as restaurant grades) and convert them to plain text as

shown in the following:

CHAPTER 5 INTEGRATING DATABASES

https://docs.mongodb.com/manual/reference/aggregation/
https://docs.mongodb.com/manual/reference/aggregation/

159

df = pd.DataFrame(result)[['Name','Address','Grade','Score']]

df['Grade'] = [','.join(map(str, x)) for x in df['Grade']]

You can refer to Listing 5-4 for the complete code in this section.

Additionally, the associated Streamlit application is shown in Figure 5-18,

displaying an example of a fuzzy matched query and the returned table in

Streamlit.

Listing 5-4. mongodb.py

import streamlit as st

import pandas as pd

from pymongo import MongoClient

@st.cache_resource

def create_client():

 return MongoClient('<connection_string>')

def query(cuisine,address):

 result = create_client()['sample_restaurants']

['restaurants'].aggregate([

 {

 "$search": {

 "index": "default",

 "text": {

 "query": f"{address}",

 "path": ["borough", "address.street"],

 "fuzzy": {

 "maxEdits": 2,

 "prefixLength": 2

 }

 }

 }

CHAPTER 5 INTEGRATING DATABASES

http://mongodb.py

160

 }, {

 "$project": {

 "Name": "$name",

 "Cuisine": "$cuisine",

 "Address": "$address.street",

 "Borough": "$borough",

 "Grade": "$grades.grade",

 "Score": {

 "$meta": "searchScore"

 }

 }

 }, {

 "$match": {

 "Cuisine": f"{cuisine}"

 }

 }, {

 "$limit": 5

 }

])

 try:

 df = pd.DataFrame(result)[['Name','Address','Grade','S

core']]

 df['Grade'] = [','.join(map(str, x)) for x in

df['Grade']]

 return df

 except:

 return None

if __name__ == '__main__':

 st.title('Restaurants Explorer')

 cuisine = st.selectbox('Cuisine',['American','Chinese','Del

icatessen',

CHAPTER 5 INTEGRATING DATABASES

161

 'Hamburgers','Ice Cream, Gelato, Yogurt, Ices','Irish'])

 address = st.text_input('Address')

 if st.button('Search'):

 if address != ":

 st.write(query(cuisine,address))

 else:

 st.warning('Please enter an address')

Figure 5-18. Output of Listing 5-4

5.3. Summary

In this chapter, we explored relational and nonrelational databases for

storing and retrieving structured and unstructured data, respectively.

We learned how to provision a PostgreSQL database and integrate it

with a Streamlit application to manage and process structured datasets.

Similarly, we saw how to provision a MongoDB cloud database to handle

unstructured data, storing collections of documents with varying schemas,

objects, and elements. We also demonstrated how MongoDB can create

a full-text index, indexing every token in each document for improved

CHAPTER 5 INTEGRATING DATABASES

162

querying, and how to perform fuzzy matching of query terms with

document tokens to reduce the impact of typos. Finally, we wrapped up by

integrating all these operations—setting up a database client, writing an

aggregation pipeline, and postprocessing queried results—into a Streamlit

application.

CHAPTER 5 INTEGRATING DATABASES

163© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_6

CHAPTER 6

Leveraging Backend
Servers
In this chapter, we will introduce a more sophisticated and scalable

approach to designing web applications. Specifically, we will explore how

to offload the overhead of managing databases from the Streamlit server to

an independent backend server, as is typical in a full-stack environment.

The chapter will guide the developer through the process of provisioning

a backend server in Python, which will act as an intermediary between

the database and the frontend. Finally, the developer will be introduced to

a highly modular, versatile, and secure architecture, with added security

layers between the application and the database.

6.1. The Need for Backend Servers

As part of building a scalable and robust Streamlit application, certain

tasks that are executed within the Streamlit app are better handled in

an isolated environment that can be easily communicated with. This

environment is called a backend, which is responsible for managing

authentication, authorization, databases, and other gateway connections.

Additionally, it handles core business logic that should not be executed

on the frontend (i.e., Streamlit). Although Streamlit is a server-side

web framework, isolating it from other system components improves

https://doi.org/10.1007/979-8-8688-1826-4_6#DOI

164

modularity and security. Running everything, from authentication to

database management, directly within Streamlit can introduce multiple

security risks, such as XSS, SSRF, and potentially RCE, if not engineered

properly.

While a backend-frontend architecture is not invulnerable, it adds an

extra layer of protection through the use of APIs. This makes it harder for

malicious actors to bypass security measures and access protected system

components. Modern API design methodologies also ensure that every

request is routed through a consistent mechanism, reducing the likelihood

of vulnerabilities due to human error.

6.2. Frontend–Backend Communication

The backend is typically referred to as the server, while the frontend is

known as the client. In this setup, the client triggers a request for resources

or information based on user actions. The server then responds with

the requested data. This request-response communication model is the

foundation of the HTTP protocol, which consists of two main components:

headers and the body.

The request and response headers contain metadata about the request

and the payload in the body. This metadata includes, but is not limited

to, cookies, request identifiers, keys, tokens, the body’s content type,

the host or IP address of the server, and data encoding or compression

mechanisms. For the purposes of this book, we will focus on key aspects

like keys, tokens, cookies, and the content type of the body. As an example,

request body types are shown in Table 6-1. Since backends primarily

handle the sending and receiving of information, JSON is the most widely

used format for communication.

CHAPTER 6 LEVERAGING BACKEND SERVERS

165

Table 6-1. Common content-type header values

Content-Type

Value

Description

text/HTML Text format but is parseable to HTML to be rendered as a web page

application/JSON JSON format

application/xml XML format

image/png Image binary of type PNG

6.2.1. HTTP Methods

HTTP requests have methods, as discussed in Section 5.1. Unlike SQL, the

syntax of HTTP methods does not drastically change. The main methods

are GET, POST, PUT, and DELETE, which correspond to retrieving, adding,

modifying, and deleting a resource, respectively. Adding and modifying

resources can include a body to alter the resource, while GET and DELETE

typically use resource identifiers in the request URL. These are the core

functions of a RESTful API, which acts as an HTTP gateway to manage

resources or data on the server side.

Visiting a website is a GET request to the URL, which includes

request-specific data in its header, body, and response code. For example,

requesting a page with just its domain name will by default request its

HTTP version, but the backend server may redirect to the HTTPS version.

For instance, Google redirects from google.com to https://google.com.

You can check this by inspecting the page’s network traffic or using Curl.

Curl is a tool for making HTTP requests from the terminal or CMD,

allowing you to view the response body, headers, and status code. It also

helps in understanding backend commands, like following a redirect.

Figure 6-1 demonstrates this with the command curl -i -L google.com,

where -i displays response headers and -L follows redirects.

CHAPTER 6 LEVERAGING BACKEND SERVERS

https://google.com

166

Figure 6-1. Getting google.com and watching response headers and
redirection

6.3. Working with JSON Files

JSON documents can be used to represent and parse data. They can

contain lists/arrays or key/value pairs, similar to dictionaries in Python.

They can also include other primitive data types such as integers, floats,

strings, and booleans. With these simple data types, complex data

structures can be represented. A sample JSON representing one of the

previously introduced examples is shown in Listing 6-1.

Listing 6-1. sample_json.json

[

 {

 "Name": "Adam",

 "DOB": "01/01/1990",

 "Paygrade ID": "2"

 },

CHAPTER 6 LEVERAGING BACKEND SERVERS

http://google.com

167

 {

 "Name": "Sara",

 "DOB": "01/01/1980",

 "Paygrade ID": "1"

 },

 {

 "Name": "Bob",

 "DOB": "01/01/1970",

 "Paygrade ID": "1"

 },

 {

 "Name": "Alice",

 "DOB": "01/01/2000",

 "Paygrade ID": "3"

 }

]

6.4. Provisioning a Backend Server

To stay consistent with the Python theme of the book, we will build a

Pythonic backend server. Among the options available, Flask and Django

are both great choices for this task. While both can serve as frontend

application servers by delivering HTML for browsers to render, Django is

designed specifically for that purpose, thanks to its built-in web template

engine, Jinja. On the other hand, Flask is more flexible and configurable to

the developer's needs, and it is lighter in weight. To get started, install Flask

using pip.

CHAPTER 6 LEVERAGING BACKEND SERVERS

168

6.4.1. API Building

A backend will execute one or more methods or functions in response to

a request to the server. These methods and functions depend on the URL

and can be configured to take headers into consideration as well. A simple

example of this is shown in Listing 6-2, where requesting http://<SERVER-

HOST>/server_status will serve the page in Figure 6-2, while any other

request will return a 404 Not Found error.

Listing 6-2. flask_sample.py

from flask import Flask

app = Flask(__name__)

@app.route('/server_status')

def welcome_controller():

 return {

 'message': 'Welcome to your Flask Server',

 'status': 'up',

 'random': 1 + 1

 }

app.run()

Figure 6-2. Page returned when the /server_status route is requested
for the server with Listing 6-2

CHAPTER 6 LEVERAGING BACKEND SERVERS

169

To trigger a specific function call when a route is requested, a function

decorator needs to be added before it with the route name. Routes do not

have to be static; they can be dynamic by using a specific string format,

which Flask will map to that function. For example, /text/1 and /text/3

can map to /text/<id>. Additionally, the HTTP method can be specified

in the same function decorator by adding an extra parameter, like this:

@app.route('/text/<id>', methods=['GET', 'PUT'])

Following up on the Employee and Pay Grade example from before, we

will reuse the same database for this example but use SQLAlchemy instead

of psycopg2 to take advantage of the ORM, which maps SQL commands

to Python class objects. To begin, we need to represent our tables as

classes, along with a Base class that the other two classes will inherit SQL

properties from. These properties include SQL query parameterization to

prevent SQL injection (SQLI). The classes in Listings 6-4 and 6-5 will point

to already existing tables in the database, with the _tablename_ property

representing the table name.

Listing 6-3. DataBase/Base.py

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

Listing 6-4. DataBase/PayGrades.py

from sqlalchemy import Column, Integer, String

from DataBase.Base import Base

class PayGrades(Base):

 __tablename__ = 'paygrades'

 id = Column(Integer, primary_key=True)

 base_salary = Column(String)

 reimbursement = Column(String, default=True)

 bonuses = Column(String)

CHAPTER 6 LEVERAGING BACKEND SERVERS

170

 def to_dict(self):

 return {

 "id": self.id,

 "base_salary": self.base_salary,

 "reimbursement": self.reimbursement,

 "bonuses": self.bonuses

 }

Listing 6-5. DataBase/Employees.py

from sqlalchemy import Column, Integer, String

from DataBase.Base import Base

class Employees(Base):

 __tablename__ = 'persons'

 id = Column(Integer, primary_key=True)

 name = Column(String)

 date_of_birth = Column(String, default=True)

 paygrade_id = Column(Integer, unique=True, index=True)

 def to_dict(self):

 return {

 "id": self.id,

 "name": self.name,

 "date_of_birth": self.date_of_birth,

 "paygrade_id": self.paygrade_id

 }

Then, we can support adding and retrieving employee data through

HTTP requests using Flask, as shown in Listings 6-6, 6-7, and 6-8. This

backend server includes two routes: the first queries all employees using

the database connection established with SQLAlchemy, and the second

inserts or adds a new employee to the employees table using user-supplied

properties sent in the HTTP body as a JSON document.

CHAPTER 6 LEVERAGING BACKEND SERVERS

171

Listing 6-6. DataBase/__init__.py

from .Employees import Employees

from .PayGrades import PayGrades

Listing 6-7. DataBase/Connection.py

from contextlib import contextmanager

from sqlalchemy import create_engine

from sqlalchemy.orm import sessionmaker, Session

engine = create_engine("postgresql://

postgres:admin@127.0.0.1:5432/CompanyData")

DBSession = sessionmaker(bind=engine)

@contextmanager

def session_manager() -> Session:

 session = DBSession()

 try:

 yield session

 except Exception as e:

 session.rollback()

 raise e

 finally:

 session.close()

Listing 6-8. main.py

from flask import Flask, request

from DataBase import Employees

from DataBase.Connection import session_manager

app = Flask(__name__)

CHAPTER 6 LEVERAGING BACKEND SERVERS

172

@app.route('/employees')

def get_all_employees():

 with session_manager() as session:

 employees = session.query(Employees).all()

 employees = [employee.to_dict() for employee in

employees]

 return {"data": employees}

@app.route('/employee', methods=["POST"])

def add_employee():

 body = request.json

 with session_manager() as session:

 session.add(Employees(**body))

 session.commit()

 return {"message": "New employee added successfully"}

app.run()

6.4.2. API Testing

In this example, the user will interact with the backend using an API

testing platform like Postman, as shown in Figures 6-3 and 6-4. In a later

section, Streamlit will directly interface with this server without the need

for an API testing platform.

CHAPTER 6 LEVERAGING BACKEND SERVERS

173

Figure 6-3. Adding a new employee

To wrap up this section, it is important to note that we did not set any

headers, including the content type for the POST/employee route using a

JSON payload, because Postman handled that automatically. Flask also

took care of adding the JSON content type to the response, as Python's lists

and dictionaries can be easily parsed into JSON, as mentioned earlier.

Figure 6-4. Getting all employees

CHAPTER 6 LEVERAGING BACKEND SERVERS

174

6.5. Multithreading and Multiprocessing
Requests

Once an application scales, or when one of its initial requirements involves

heavy, independent computations or processes, a lot of power is wasted,

whether on the backend's Flask side or Streamlit's side. This is because

the full power of modern CPUs is not being utilized. Modern CPU strength

comes not from faster clock cycles, but from having more cores. By default,

both Streamlit and Flask are single-threaded, single-process applications.

To speed them up, we can leverage multiprocessing and multithreading,

which enable true parallelization. The developer can control the use

of both techniques to run a function multiple times, allowing it to be

executed in parallel by the CPU. An example of using both approaches in

Streamlit is shown in Listing 6-9 and shown in Figure 6-5.

Listing 6-9. streamlit_main.py

import streamlit as st

from multiprocessing import Pool, cpu_count

import threading

import time

def func(iterations, id):

 i = 0

 for i in range(iterations):

 i += 1

 print('Finished job id =', id)

if __name__ == '__main__':

 pool = Pool(cpu_count())

 st.title('Speed You Code! ')

 jobs_count = 5

 iterations = 10 ** 3

 c1, c2 = st.columns(2)

CHAPTER 6 LEVERAGING BACKEND SERVERS

175

 with c1:

 if st.button('multiprocess'):

 inputs = [(iterations, i) for i in

range(jobs_count)]

 t11 = time.time()

 pool.starmap(func, inputs)

 t21 = time.time()

 st.write(f'Finished after {t21 - t11} seconds')

 with c2:

 if st.button('multithread'):

 threads = [threading.Thread(target=func,

args=(iterations, i)) for i in range(10)]

 t12 = time.time()

 for thread in threads:

 thread.start()

 for thread in threads:

 thread.join()

 t22 = time.time()

 st.write(f'Finished after {t22 - t12} seconds')

Figure 6-5. Output of Listing 6-9

Notice that in Listing 6-9, the first code to be executed is after line 13,

which is essential for the entire example to work without errors. This

ensures that Streamlit knows the code block should be executed only once,

meaning the processing pool will not be initialized again during reruns. A

similar precaution should be taken in Flask applications.

CHAPTER 6 LEVERAGING BACKEND SERVERS

176

The main difference between multiprocessing and multithreading

is that multithreading reuses the existing memory space, spawning new

threads within the same process, which is faster than spawning entirely

new processes that add the overhead of CPU context switching. In contrast,

each new process in the multiprocessing pool requires a separate memory

space. Additionally, each process’s inputs need to be copied or cloned,

which increases memory consumption. Although multithreading may

seem like the better option, it is not always true. Multiprocessing is more

CPU-efficient when handling heavy tasks, as the CPU scheduler allocates

more time to those processes. Figure 6-6 shows the correlation between

execution time and the job iteration count in 10x from Listing 6-9.

Figure 6-6. Multiprocessing vs. multithreading for five jobs with
increasing iteration count

6.6. Connecting Streamlit to a Backend Server

Once we have optimized the backend server with multiprocessing and/or

multithreading, we are ready to connect our Streamlit application to it. For

this, we will need to use an HTTP client library to communicate with the

backend API. Listing 6-10 uses the popular requests library to achieve this,

with the output shown in Figure 6-7.

CHAPTER 6 LEVERAGING BACKEND SERVERS

177

Listing 6-10. streamlit_api.py

import streamlit as st

import requests

import datetime

url = 'http://127.0.0.1:5000'

def add_employee(name, dob, paygrade):

 data = {

 'name': name,

 'date_of_birth': dob,

 'paygrade_id': paygrade

 }

 response = requests.post(url + '/employee', json=data)

 if response.status_code == 200:

 return True

 return False

def get_employees():

 response = requests.get(url + '/employees')

 return response.json()['data']

form = st.form('new_employee')

name = form.text_input('Name')

dob = str(form.date_input('DOB', min_value=datetime.

datetime(year=1920, day=1, month=1)))

paygrade = form.number_input('paygrade', step=1)

if form.form_submit_button('Add new Employee'):

 if add_employee(name, dob, paygrade):

 st.success('Employee Added')

 else:

 st.error('Error adding employee')

st.write('___')

employees = get_employees()

st.table(employees)

CHAPTER 6 LEVERAGING BACKEND SERVERS

178

Figure 6-7. Output of Listing 6-10

6.7. Summary

In this chapter, we learned that backend servers are the backbone of every

expanding web application, adding layers of obscurity and security to the

frontend. We also explored HTTP communication, the language of APIs,

and its structure. To ensure efficient and organized API communication,

we introduced JSON, the most widely used data format in APIs. With

these building blocks in place, we then turned to Flask as a Python

backend framework to create a well-structured server that exposes specific

endpoints to serve data from a local database. Finally, we demonstrated

ways to speed up Python code execution, both in Streamlit and the

backend server, by leveraging multiprocessing and multithreading,

comparing the performance and use cases of each.

CHAPTER 6 LEVERAGING BACKEND SERVERS

179© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_7

CHAPTER 7

Implementing
Session State
In order to develop more advanced Streamlit applications, it is vital to

establish session-specific data that can be used to deliver an enhanced

user experience. Specifically, the application will need to preserve the

user’s data and inputs using what is referred to as session states. These

states can be set and accessed on demand whenever necessary, and they

will persist when the user triggers a rerun of the Streamlit application

or navigates between pages. In addition, we will establish a method to

store state across multiple sessions using cookies, which can save data in

the user’s browser for access when they restart the associated Streamlit

application. Finally, we will learn how to record and visualize rich insights

into how users interact with our application, providing analytics for both

the developer and product owner alike.

7.1. Implementing Session State Natively

Since Streamlit version 0.84.1, a native way to store and manage session-

specific data—including but not limited to variables, widgets, text, images,

and objects—has been introduced. The values of session states are stored

in a dictionary format, where each value is assigned to a unique key for

indexing. Previously, without this feature, all variables would be reset

https://doi.org/10.1007/979-8-8688-1826-4_7#DOI

180

whenever the user triggered a rerun of the Streamlit script by interacting

with the application. Similarly, widgets would also reset to their default

values when the user navigated from one page to another. However,

with session state, users can enjoy an enhanced and more personalized

experience by accessing variables or entries previously made on other

pages within the application. For instance, users can enter their username

and password once and continue navigating through the application

without being prompted to re-enter their credentials—until they log

out. In a nutshell, session states enable us to develop far more complex

applications, which will be discussed extensively in subsequent chapters.

The method to set and get session state data can be implemented as

shown in Listing 7-1, with the associated output in Figure 7-1. Please note

that the first two key-value entries (KeyInput1 and KeyInput2) are present

even though they have not been explicitly created by the user. These keys

exist to store the state of the user-modified components—in this case, the

defined text input components. This means that the developer also has the

ability to modify the values of any component, as long as it has a unique

key assigned during its definition. Another important point is that each

session state must be initialized before it can be read; otherwise, an error

will occur. To prevent this, always make sure to initialize the state with a

null or default value.

Listing 7-1. session_state.py

import streamlit as st

def get_state_value(key):

 return st.session_state.get(key)

def set_state_value(key, value):

 st.session_state[key] = value

st.title('Session State Management')

c1, c2, c3 = st.columns(3)

with c1:

CHAPTER 7 IMPLEMENTING SESSION STATE

181

 st.subheader('All')

 st.write(st.session_state)

with c2:

 st.subheader('Set Key')

 key = st.text_input('Key', key='KeyInput1')

 value = st.text_input('Value')

 if st.button('Set'):

 st.session_state[key] = value

 st.success('Success')

with c3:

 st.subheader('Get Key')

 key = st.text_input('Key', key='KeyInput2')

 if st.button('Get'):

 st.write(st.session_state.get(key))

Figure 7-1. Session state data display and manipulation

7.1.1. Building an Application with Session State

To demonstrate the utility of session states, in the following example we

will create a simple multipage application where the user can use states to

store the key of the selected page, an uploaded dataframe, and the value of

a slider widget. As shown in Listing 7-2, on our main page we first initialize

CHAPTER 7 IMPLEMENTING SESSION STATE

182

the state for page selection, and then use buttons to change the state to the

key of the requested page. Subsequently, the associated function of the

selected page is invoked directly from the session state to render the page.

In Page One of the application, shown in Listing 7-3, we use session

states to store an uploaded dataframe and the value of a slider that filters

the number of rows displayed in the dataframe. The user can navigate back

and forth between pages and still access a previously uploaded dataframe

with the same number of rows set by the slider, as shown in Figure 7-2.

Listing 7-2. main_page.py

import streamlit as st

st.title('Main Page')

Initializing session state for page selection

if 'page_state' not in st.session_state:

 st.session_state['page_state'] = 'Main Page'

Listing 7-3. page_1.py

import streamlit as st

import pandas as pd

st.title('Page One')

Initializing session states for dataframe and slider

if 'df' not in st.session_state:

 st.session_state['df'] = None

if 'rows' not in st.session_state:

 st.session_state['rows'] = None

file = st.file_uploader('Upload file')

Writing dataframe to session state

if file is not None:

 df = pd.read_csv(file)

 st.session_state['df'] = df

CHAPTER 7 IMPLEMENTING SESSION STATE

183

if st.session_state['df'] is not None:

 # Creating slider widget with default value from session state

 rows = st.slider('Rows to display',value=st.session_

state['rows'], min_value=1,max_value=len(st.session_

state['df']))

 # Writing slider value to session state

 st.session_state['rows'] = rows

 # Rendering dataframe from session state

 st.write(st.session_state['df'].iloc[:st.session_

state['rows']])

Figure 7-2. Output of Listings 7-2 and 7-3

7.2. Introducing Session IDs

Session IDs are unique identifiers for each new instance of a Streamlit

session. A new Session ID can be established whenever a new browser

page is opened, even if another connection is already active. However,

each session is treated independently by the server.

CHAPTER 7 IMPLEMENTING SESSION STATE

184

These unique IDs can be used to provide the end user with a

personalized experience. To achieve this, the server needs to map each

user’s progress and updates to their corresponding IDs. This mapping

can be done by generating unique session IDs in Streamlit. In Listing 7-4,

we demonstrate how to generate a session ID. The output is shown

in Figure 7-3, which displays two web pages both running at http://

localhost:8501/.

Listing 7-4. session_id_demo.py

import streamlit as st

import uuid

Check if session ID already exists, if not, create one

if 'session_id' not in st.session_state:

 st.session_state.session_id = str(uuid.uuid4())

Access and display the session ID

st.title('Your session ID is:')

st.subheader(st.session_state.session_id)

Figure 7-3. Two different browser windows with different session IDs

CHAPTER 7 IMPLEMENTING SESSION STATE

185

7.3. User Insights

The ability to record user interactions with a web application is often

critical. Developers and product owners need access to detailed and

accurate data—such as how many users are visiting the site, when they are

visiting, and how they are interacting with it—in order to better tailor and

improve their product or service.Consider an ecommerce web application

that has been meticulously developed but is failing to convert leads into

sales, and the reason is unclear. It could be a hidden bug in the interface or

backend that is blocking user actions, or perhaps the server is overloaded

and unable to handle incoming traffic. In either case, identifying exactly

where the issue lies in the pipeline is essential—and this is where user

insights become invaluable.

While Google Analytics offers robust insights at the server level—

including visit counts, user demographics, and time spent on various

pages—it cannot effectively capture interactions at the application level.

As a result, developers must implement their own methods to track in-app

user behavior.One simple approach, demonstrated in Listing 7-5, involves

logging a timestamp whenever the user interacts with a specific part of the

code—for example, by clicking a button or uploading a dataset, as shown

in Figure 7-4—and storing this data in a PostgreSQL database, as seen in

Figure 7-5. Similarly, the number of rows in the uploaded dataset can also

be recorded. Each data point is stored in a separate column within a table,

where the primary key is the session’s unique ID. When the application

restarts, a new row is created with a new session ID. By using the provided

update function, you can capture and record any value at any step of your

program.

update_row(column, new_value, session_id, mutable, engine)

CHAPTER 7 IMPLEMENTING SESSION STATE

186

Figure 7-4. Output of Listing 7-6

Figure 7-5. Associated PostgreSQL database for Listing 7-5

Please note that insights can be overwritten multiple times by setting

the mutable argument to True, or left as False if you want to record a value

only the first time it is generated.

CHAPTER 7 IMPLEMENTING SESSION STATE

187

Listing 7-5. record_user_insights.py

import streamlit as st

import uuid

from datetime import datetime

import pandas as pd

import psycopg2

from sqlalchemy import create_engine, text

def get_session_id():

 if 'session_id' not in st.session_state:

 session_id = str(uuid.uuid4()).replace('-', '_')

 st.session_state.session_id = '_id_' + session_id

 return st.session_state.session_id

def insert_row(session_id, engine):

 with engine.connect() as conn:

 result = conn.execute(text(f'SELECT session_id FROM

user_insights WHERE session_id = "{session_id}"')).

fetchone()

 if result is None:

 conn.execute(text(f'INSERT INTO user_insights

(session_id) VALUES ("{session_id}")'))

 conn.commit()

def update_row(column, new_value, session_id, mutable, engine):

 with engine.connect() as conn:

 if mutable:

 conn.execute(text(f'UPDATE user_insights SET

{column} = "{new_value}" WHERE session_id =

"{session_id}"'))

 conn.commit()

CHAPTER 7 IMPLEMENTING SESSION STATE

188

 else:

 result = conn.execute(text(f'SELECT {column} FROM

user_insights WHERE session_id = "{session_id}"')).

fetchone()

 if result and result[0] is None:

 conn.execute(text(f'UPDATE user_insights SET

{column} = "{new_value}" WHERE session_id =

"{session_id}"'))

 conn.commit()

if __name__ == '__main__':

 engine = create_engine('postgresql://<username>:<password>@

localhost:<port>/<database>')

 session_id = get_session_id()

 with engine.connect() as conn:

 conn.execute(text('CREATE TABLE IF NOT EXISTS user_

insights (session_id text, step_1 text, step_2 text,

no_rows bigint)'))

 conn.commit()

 insert_row(session_id, engine)

 st.title('Hello world')

 st.subheader('Step 1')

 if st.button('Click'):

 st.write('Some content')

 update_row('step_1', datetime.now().strftime('%H:%M:%S

%d/%m/%Y'), session_id, True, engine)

 st.subheader('Step 2')

 file = st.file_uploader('Upload data')

 if file is not None:

 df = pd.read_csv(file)

 st.write(df)

CHAPTER 7 IMPLEMENTING SESSION STATE

189

 update_row('step_2', datetime.now().strftime('%H:%M:%S

%d/%m/%Y'), session_id, False, engine)

 update_row('no_rows', len(df), session_id,

True, engine)

7.3.1. Visualizing User Insights

Now that we have established how to capture insights from a Streamlit

application and store them in a PostgreSQL database, the next step is to

visualize the data on demand. To begin, we can use Listing 7-6 to extract

the insights table into a Pandas dataframe and optionally save it locally

as an Excel spreadsheet if you wish to create your own custom charts.

Alternatively, we can use Listing 7-7 to visualize the data directly. In this

approach, we import the previously generated Excel spreadsheet into a

Pandas dataframe, convert the timestamps into hourly and daily values,

group and sum the number of rows that fall within the same hour or day,

and finally visualize them using Plotly charts, as shown in Figure 7-6.

Additionally, we can enable filtering by allowing the user to select a

column from the insights table using a st.selectbox widget.

Listing 7-6. read_user_insights.py

import pandas as pd

import psycopg2

from sqlalchemy import create_engine

def read_data(name,engine):

 try:

 return pd.read_sql_table(name,engine)

 except:

 return pd.DataFrame([])

if __name__ == '__main__':

 # Creating PostgreSQL engine

CHAPTER 7 IMPLEMENTING SESSION STATE

190

 engine = create_engine('postgresql://<username>:<password>@

localhost:'

 '<port>/<database>')

 df = read_data('user_insights',engine)

 df.to_excel('C:/Users/.../user_insights.xlsx',index=False)

Listing 7-7. plot_user_insights.py

import streamlit as st

import pandas as pd

import plotly.express as px

st.set_page_config(layout='wide')

st.title('User Insights')

df = pd.read_excel('C:/Users/.../user_insights.xlsx')

column_selection = st.selectbox('Select column', df.columns[1:-2])

df = df[column_selection]

df = pd.to_datetime(df,format='%H:%M:%S %d/%m/%Y')

df_1h = df.copy()

df_1d = df.copy()

col1, col2 = st.columns(2)

with col1:

 st.subheader('Hourly chart')

 df_1h = df_1h.dt.strftime('%Y-%m-%d %I%p')

 df_1h = pd.DataFrame(df_1h.value_counts())

 df_1h.index = pd.DatetimeIndex(df_1h.index)

 df_1h = df_1h.sort_index()

 fig = px.bar(df_1h, x=df_1h.index, y=df_1h[column_selection])

 st.write(fig)

with col2:

 st.subheader('Daily chart')

 df_1d = df_1d.dt.strftime('%Y-%m-%d')

 df_1d = pd.DataFrame(df_1d.value_counts())

CHAPTER 7 IMPLEMENTING SESSION STATE

191

 df_1d.index = pd.DatetimeIndex(df_1d.index)

 df_1d = df_1d.sort_index()

 fig = px.line(df_1d, x=df_1d.index, y=df_1d[column_selection])

 st.write(fig)

Figure 7-6. Output of Listing 7-7

7.4. Cookie Management

We have discussed how to store and manage data within a session using

both native and workaround approaches. However, what may be missing

is the ability to manage data across sessions. For example, storing a

counter to track how many times a button has been clicked or, more

usefully, preventing the user from having to log in every time they start

a new session. To achieve this, we need to leverage cookies. And while

Streamlit has implemented its own native cookie management and even

authentication commands (st.context and st.login), in this book we

will focus on third party components as they offer additional functionality

that are yet not covered natively.

CHAPTER 7 IMPLEMENTING SESSION STATE

192

Cookies can be used to track a user’s actions across multiple websites

or store personal information, such as authentication tokens. They are

stored and managed on the user’s end, specifically in their browser, which

means the server does not have direct access to their content by default. To

view the cookies on any web application, simply open the developer tools

in your browser and go to the console tab. Then, type document.cookie to

display the cookies, as shown in Figure 7-7.

Figure 7-7. A web page cookie

In a typical Streamlit application, there may be additional cookies—

beyond the one shown in Figure 7-7—that are used for purposes such as

advertisement tracking. These cookies may need to be removed depending

on the cookie policy the developer adopts. In other cases, the developer

may want to add additional cookies to enhance the application’s user

experience. Regardless, both actions require a method to manage cookies

in any web application.

To manipulate cookies within a Streamlit application, we need to use a

third-party module or library. For this example, we’ll use Extra-Streamlit-

Components, which can be installed via pip install extra-streamlit-

components and imported using the alias stx. The X in the alias represents

the extra capabilities that this library brings to a standard Streamlit app.

This library includes a module called Cookie Manager, which will be our

tool for managing cookies.Listing 7-8 demonstrates a simple Streamlit

application with the ability to set, get, and delete cookies. The controls are

customizable based on the developer's needs. For example, an expiration

date can be set for any new cookie, which will automatically delete the

cookie once the set date is reached. Figures 7-8 and 7-9 show examples of

adding and retrieving an authentication token, respectively.

CHAPTER 7 IMPLEMENTING SESSION STATE

193

Listing 7-8. cookie_management.py

import streamlit as st

import extra_streamlit_components as stx

st.title('Cookie Management Demo')

st.subheader('_Featuring Cookie Manager from Extra-Streamlit-

Components_')

cookie_manager = stx.CookieManager()

st.subheader('All Cookies:')

cookies = cookie_manager.get_all()

st.write(cookies)

c1, c2, c3 = st.columns(3)

with c1:

 st.subheader('Get Cookie:')

 cookie = st.text_input('Cookie', key='0')

 clicked = st.button('Get')

 if clicked:

 value = cookie_manager.get(cookie)

 st.write(value)

with c2:

 st.subheader('Set Cookie:')

 cookie = st.text_input('Cookie', key='1')

 val = st.text_input('Value')

 if st.button('Add'):

 cookie_manager.set(cookie, val)

with c3:

 st.subheader('Delete Cookie:')

 cookie = st.text_input('Cookie', key='2')

 if st.button('Delete'):

 cookie_manager.delete(cookie)

CHAPTER 7 IMPLEMENTING SESSION STATE

194

Figure 7-8. Adding an AuthToken cookie

Figure 7-9. Getting an AuthToken cookie

CHAPTER 7 IMPLEMENTING SESSION STATE

195

Please note that the All Cookies section in Figures 7-8 and 7-9 is

displayed in a well-structured JSON format, with some cookies redacted

for privacy reasons. It is also important to highlight that this Streamlit

application, using the newly introduced module, does not include a visual

component. This is because the module is categorized as a service—hence

the name Cookie Manager. However, this does not imply that all other

Streamlit-compatible libraries behave the same way; some may indeed

include visual elements as part of their functionality.

7.5. Summary

In this chapter, we explored how to store and access session states natively

with Streamlit. The use of session states is crucial in many cases and will

be extensively applied to develop advanced applications in the following

chapters. Additionally, the reader was introduced to session IDs—unique

identifiers associated with every new instance of a Streamlit application—

and shown how to record and visualize user insights. Finally, we covered

how to store and retrieve cookies in a browser, which is essential for

maintaining session states across multiple sessions of a Streamlit

application on the same browser. This is particularly useful for scenarios

where the user wants to automatically log in without re-entering their

credentials.

CHAPTER 7 IMPLEMENTING SESSION STATE

197© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_8

CHAPTER 8

Authenticating
Users and Securing
Applications
After familiarizing ourselves with the essential building blocks of a well-

structured Streamlit web application, we now require an additional feature

to deploy a production-ready app: a secure user authentication service.

Once all users requesting access to the application are authenticated,

we can ensure a secure user experience where private data remains safe

and any unwelcome or malicious requests are effectively denied. In this

chapter, we will learn how to establish user accounts, verify user actions,

and implement other housekeeping measures expected of any proficient

software engineer.

8.1. Developing User Accounts

In this chapter, we will build on the example from Chapters 5 and 6 by

introducing HR admins who can view and add employees along with their

pay grades. Assume there are designated admins responsible for these

actions, and the company frequently changes or assigns new admins. In

this case, our application needs to support the creation of multiple admin

accounts and authorize them accordingly.

https://doi.org/10.1007/979-8-8688-1826-4_8#DOI
https://doi.org/10.1007/979-8-8688-1826-4_5
https://doi.org/10.1007/979-8-8688-1826-4_6

198

Since these actions require authorized personnel, we need to

implement three main features: adding an admin table to our database,

enabling admin account creation, and authorizing users with admin

privileges to access the relevant parts of the service.

8.1.1. Hashing

To add a new table to the database, we will follow a process similar to what

was done previously, as shown in Figure 8-1. Notice that we are storing two

key pieces of information for each admin: the username and the password

hash. Instead of saving the password itself, we store a hash—a non-

guessable representation of the password. This approach helps protect

user privacy and credentials in the event of a data breach. If such a breach

occurs, the attacker would need to spend billions of years brute-forcing

the hashes to uncover even a single user's actual password. Hashing is

essentially a one-way transformation of data that cannot be reversed.

Figure 8-1. Creating a new table to store admin credentials, using the
contents of Flask/create_admins_table.sql

Chapter 8 authentiCating users and seCuring appliCations

199

After creating the new table, we will need to define a corresponding

Python class to create an ORM model for SQLAlchemy, as shown in

Listing 8-1. Password hashing can be performed using various algorithms,

such as MD5, SHA256, SHA512, and others. However, the most commonly

used algorithm in modern systems is Bcrypt. In fact, Bcrypt is the default

choice for securing user passwords in many Linux environments. Before

diving into how Bcrypt works, we first need to understand the methods

used to make a hash more secure.

As mentioned earlier, hashing transforms data. For example, the text

Password123

maps to

42f749ade7f9e195bf475f37a44cafcb

using MD5. However, even a slight modification to the original plain text

can result in a significantly different hashed output, as shown below:

MD5(Password1239) -> abd7fdbb048a611ea0a0937265765404

8.1.2. Salting

Including extra bytes in the password—also known as adding a salt—

results in a completely different hash. This is especially helpful in cases

where users reuse passwords across different websites and one of those

sites is breached. By salting the password, attackers will not be able to tell

whether the same password is used across multiple domains, making it

significantly harder to crack. However, this method becomes less effective

if the attacker knows the salt value and how it is applied. This is where

Bcrypt stands out—it introduces a cryptographic approach that stores

randomly generated salts within the hash itself. As a result, it becomes

possible to verify whether a Bcrypt hash was generated from a given

plaintext using an abstracted function from a Bcrypt library, as shown in

Listing 8-2.

Chapter 8 authentiCating users and seCuring appliCations

200

Listing 8-1. Flask/DataBase/Admins.py

from sqlalchemy import Column, Integer, String

from .Base import Base

class Admins(Base):

 __tablename__ = 'admins'

 id = Column(Integer, primary_key=True)

 username = Column(String)

 password_hash = Column(String, default=True)

 def to_dict(self):

 return {

 'id': self.id,

 'username': self.username,

 'password_hash': self.password_hash

 }

Listing 8-2. Flask/Services/HashingService.py

import bcrypt

class HashingService:

 def __init__(self, bcrypt_gen_salt: int = 12):

 self.gen_salt = bcrypt_gen_salt

 def hash_bcrypt(self, plain_text: bytes) -> bytes:

 return bcrypt.hashpw(plain_text, bcrypt.gensalt(self.

gen_salt))

 def check_bcrypt(self, plain_text: bytes, hashed_password:

bytes) -> bool:

 try:

 return bcrypt.checkpw(plain_text, hashed_password)

 except:

 return False

Chapter 8 authentiCating users and seCuring appliCations

201

8.2. Verifying User Credentials

Now that we have the necessary services and storage mechanisms to

manage passwords, we can proceed with refactoring the backend to

support authentication for every route. This means we need to intercept

each request to the server and determine whether it is authenticated.

In other words, we need an independent software component to sit

between the client’s request and the access controller. This component is

commonly referred to as middleware by backend developers.

The authentication process must check for a specific identifier

in the request that the server can trust. This identifier is known as an

authentication token, or simply token. The token should be issued by the

server and must be verifiable.

Tokens are generally one of two types: custom session IDs or JWTs. In

this example, we will use JWTs, as they do not require server-side storage,

making them stateless. A JWT consists of three parts, encoded in Base64

and separated by periods. The first part contains metadata about the

signing algorithm, the second holds the raw payload, and the third is a

password-protected signature of the payload, created using the hashing

algorithm specified in the first part. This structure is illustrated in more

detail in Figure 8-2 from jwt.io.

Chapter 8 authentiCating users and seCuring appliCations

202

Figure 8-2. JSON Web Token (JWT) content

When a new request is made, we will check the headers for a token.

The token’s payload will be signed, and the signature will be compared

against the signature in the passed token. If they match, we can confirm

that the token was issued by the server. For added security, to prevent

attackers from stealing legitimate tokens, we will set an expiration date

(defaulting to 30 days from issuance), which will require the user to log in

again once it expires. Since this process involves multiple logical steps, it

is best to isolate it as a dedicated service to manage tokens, as shown in

Listing 8-3.

Listing 8-3. Flask/Services/JWTService.py

from jwt import PyJWT

from time import time

from typing import Union

class JWTService:

 expires_in_seconds = 2592000

 signing_algorithm = 'HS256'

Chapter 8 authentiCating users and seCuring appliCations

203

 def __init__(self, signing_key: str, expires_in_seconds:

int = 2592000):

 self.signing_key = signing_key

 self.expires_in_seconds = expires_in_seconds

 def generate(self,

 data: dict,

 expires_in_seconds: int = expires_in_seconds) ->

Union[str, None]:

 try:

 instance = PyJWT()

 curr_unix_epoch = int(time())

 data['iat'] = curr_unix_epoch

 if isinstance(expires_in_seconds, int):

 data['exp'] = curr_unix_epoch + expires_

in_seconds

 token = instance.encode(

 payload=data,

 key=self.signing_key,

 algorithm=self.signing_algorithm)

 if type(token) == bytes:

 token = token.decode('utf8') # Needed for some

versions of PyJWT

 return token

 except BaseException as _:

 return None

 def is_valid(self, token: str, verify_time: bool = True)

-> bool:

 try:

 payload = self.get_payload(token)

 if payload is None:

 return False

Chapter 8 authentiCating users and seCuring appliCations

204

 if verify_time and 'exp' in payload and

payload['exp'] < int(time()):

 return False

 return True

 except:

 return False

 def get_payload(self, token: str):

 try:

 instance = PyJWT()

 payload = instance.decode(

 jwt=token,

 key=self.signing_key,

 algorithms=[self.signing_algorithm])

 return payload

 except Exception as e:

 return None

Now that we have a way to issue and validate tokens, we can integrate

this logic into our middleware class, as shown in Listing 8-4. This class

includes a function responsible for checking whether the requested route

requires authentication. If authentication is needed, the middleware

will verify whether the provided JWT is valid. If the token is invalid or

missing, it will return a standard 401 error, which indicates Not Authorized.

Otherwise, it will return None, signaling that the request can proceed to the

next step in the backend code—in our case, the controller.

As shown in line 8, we specify that the login and sign-up routes—both

of which will be introduced later—do not require authentication. This is

because, after a successful login, a token will be issued to the user. The

same applies to sign-up, although we will introduce an additional layer

of protection later to prevent abuse by external actors creating accounts

without oversight.

Chapter 8 authentiCating users and seCuring appliCations

205

Listing 8-4. Flask/Middleware/Middleware.py

from flask import Request

from Services.JWTService import JWTService

from werkzeug import exceptions

class Middleware:

 def __init__(self, jwt_service: JWTService):

 self.unauthenticated_route_names = {'/api/auth/login',

'/api/auth/sing_up'}

 self.jwt_service = jwt_service

 def auth(self, request: Request):

 is_route_unauthenticated = request.path in self.

unauthenticated_route_names

 if is_route_unauthenticated:

 return None

 if 'token' in request.headers:

 token = request.headers['token']

 is_valid = self.jwt_service.is_valid(token)

 if is_valid:

 return None

 else:

 return exceptions.Unauthorized()

 return exceptions.Unauthorized()

Finally, we need to initialize the previously created services and

define three additional routes for logging in, signing up, and checking

login status. The last route is necessary to allow the frontend to determine

whether it should display the login page. The server’s main file should look

like Listing 8-5.

As shown in the listing, secrets and keys are read from an external

YAML file and then parsed. One of these secrets is used to ensure that

only those who know it can create new accounts, as demonstrated in

Figures 8-3 and 8-4 using Postman.

Chapter 8 authentiCating users and seCuring appliCations

206

Listing 8-5. Flask/flask_main.py

from flask import Flask, request

from DataBase import Employees, Admins

from DataBase.Connection import session_manager

from Services import JWTService, HashingService

from Middleware import Middleware

from werkzeug import exceptions

import yaml

app = Flask(__name__)

with open(".streamlit/secrets.toml") as f:

 yaml_dict = yaml.safe_load(f)

 sing_up_key = yaml_dict['sing_up_key']

 jwt_secret = yaml_dict['jwt_secret']

jwt_service = JWTService(jwt_secret)

middleware = Middleware(jwt_service)

hashing_service = HashingService()

app.before_request(lambda: middleware.auth(request))

@app.route('/api/employees')

def get_all_employees():

 with session_manager() as session:

 employees = session.query(Employees).all()

 employees = [employee.to_dict() for employee in employees]

 return {"data": employees}

@app.route('/api/employee', methods=["POST"])

def add_employee():

 body = request.json

 with session_manager() as session:

 session.add(Employees(**body))

Chapter 8 authentiCating users and seCuring appliCations

207

 session.commit()

 return {"message": "New employee added successfully"}

@app.route('/api/auth/login', methods=["POST"])

def log_in():

 username, password = request.json['username'], request.

json['password']

 with session_manager() as session:

 admin_account = session.query(Admins).filter(

 Admins.username == username).first()

 print(1)

 if admin_account is None:

 # Username doesn't exist. But don't inform the

client with that as

 # they can use it to bruteforce valid usernames

 return exceptions.Unauthorized(

 description="Incorrect username/password

combination")

 print(2)

 # Checking if such hash can be generated from that

password

 is_password_correct = hashing_service.check_bcrypt(

 password.encode("utf8"), admin_account.password_

hash.encode("utf8"))

 print(3)

 if not is_password_correct:

 return exceptions.Unauthorized(

 description="Incorrect username/password

combination")

 print(4)

 token_payload = {"username": username}

Chapter 8 authentiCating users and seCuring appliCations

208

 token = jwt_service.generate(token_payload)

 print(5)

 if token is None:

 return exceptions.InternalServerError(description="

Login failed")

 print(6)

 return {"token": token}

@app.route('/api/auth/sing_up', methods=["POST"])

def sign_up():

 username, password = request.json['username'], request.

json['password']

 if request.headers.get("sing_up_key") != "sing_up_key":

 exceptions.Unauthorized(description="Incorrect Key")

 with session_manager() as session:

 password_hash = hashing_service.hash_bcrypt(

 password.encode("utf-8")).decode("utf-8")

 admin = Admins(username=username, password_

hash=password_hash)

 session.add(admin)

 session.commit()

 return {"message": "Admin account created successfully"}

@app.route('/api/auth/is_logged_in')

def is_logged_in():

 # If this controller is reached this means the

 # Auth middleware recognizes the passed token

 return {"message": "Token is valid"}

app.run()

Chapter 8 authentiCating users and seCuring appliCations

209

Figure 8-3. Creating an admin account, step 1: adding a sign-up key

Figure 8-4. Creating an admin account, step 2: setting the new
account’s credentials

After creating the account, we can manually check the database to

verify that the new credentials have been stored. This is demonstrated in

Figure 8-5, where the username matches the one provided, and the other

column contains a valid Bcrypt hash of the supplied password.

Chapter 8 authentiCating users and seCuring appliCations

210

Figure 8-5. Created account details in the database

Now that we have admin accounts set up, we can test the login process

using Postman before moving on to the next steps. By sending the same

username and password used during sign-up in JSON format via a POST

request to the appropriate route, we receive a token in response, as shown

in Figure 8-6.

Figure 8-6. Logging in with Postman using credentials from
Figure 8-4

Moving on to the next phase of development on the Streamlit side,

we will start by refactoring Listing 8-6 to support initialization with

an authentication token. This token will then be included in every

Chapter 8 authentiCating users and seCuring appliCations

211

request—except for the login request, where it is not yet available. It is also

worth noting that the is_logged_in function is implemented to quickly

check the validity of the current token, if one is provided.

Listing 8-6. Streamlit/API.py

import requests

class API:

 def __init__(self, base_url: str, token: str):

 self.base_url = base_url

 self.base_headers = {'token': token}

 def add_employee(self, name, dob, paygrade):

 try:

 data = {

 'name': name,

 'date_of_birth': dob,

 'paygrade_id': paygrade

 }

 response = requests.post(self.base_url + '/employee',

 json=data, headers=self.base_headers)

 if response.status_code == 200:

 return True

 except:

 return False

 def get_employees(self):

 try:

 response = requests.get(self.base_url + '/employees',

 headers=self.base_headers)

 return response.json()['data']

 except:

 return None

 def login(self, username, password):

Chapter 8 authentiCating users and seCuring appliCations

212

 try:

 response = requests.post(self.base_url + '/auth/

login', json={

 'username': username,

 'password': password

 })

 body = response.json()

 token = body.get('token') if type(body) == dict

else None

 return token

 except:

 return None

 def is_logged_in(self):

 return requests.get(self.base_url + '/auth/is_logged_

in', headers=self.base_headers).status_code == 200

With our API now adapted to use authentication tokens, as shown

in Listing 8-7, we can move on to the frontend by implementing cookie

support to store these tokens and use them as needed, as demonstrated in

Listing 8-8. Whenever Streamlit renders, it will check the local cookies for

an authentication token. If the token is valid, the application will display

the management portal, along with a customized welcome message, as

shown in Figure 8-8. Otherwise, it will prompt the user to log in, as shown

in Figure 8-7.

Listing 8-7. Streamlit/API.py

import requests

class API:

 def __init__(self, base_url: str, token: str):

 self.base_url = base_url

 self.base_headers = {'token': token}

 def add_employee(self, name, dob, paygrade):

Chapter 8 authentiCating users and seCuring appliCations

213

 try:

 data = {

 'name': name,

 'date_of_birth': dob,

 'paygrade_id': paygrade

 }

 response = requests.post(self.base_url + '/

employee', json=data, headers=self.base_headers)

 if response.status_code == 200:

 return True

 except:

 return False

 def get_employees(self):

 try:

 response = requests.get(self.base_url + '/

employees', headers=self.base_headers)

 return response.json()['data']

 except:

 return None

 def login(self, username, password):

 try:

 response = requests.post(self.base_url + '/auth/

login', json={

 'username': username,

 'password': password

 })

 body = response.json()

 token = body.get('token') if type(body) == dict

else None

 return token

Chapter 8 authentiCating users and seCuring appliCations

214

 except:

 return None

 def is_logged_in(self):

 return requests.get(self.base_url + '/auth/is_logged_

in', headers=self.base_headers).status_code == 200

Listing 8-8. Streamlit/streamlit_main.py

import streamlit as st

from Views import AddEmployee, DisplayEmployees, Login

from API import API

import extra_streamlit_components as stx

import base64, json

cookie_manager = stx.CookieManager()

cookies = cookie_manager.get_all()

authentication_token = cookies.get("token")\

 if type(cookies) == dict else cookies

api = API("http://127.0.0.1:5000/api", authentication_token)

def get_username_from_token(auth_token):

 b64 = str(auth_token).split(".")[1]

 b64 = b64 + "=" * (4 - (len(b64) % 4))

 data = base64.b64decode(b64).decode("utf8")

 username = json.loads(data)['username']

 return username

def manage_login(username, password):

 token = api.login(username, password)

 cookie_manager.set("token", token)

 return token is not None

Chapter 8 authentiCating users and seCuring appliCations

215

st.title("Company Management Portal")

if st.user.is_logged_in or api.is_logged_in():

 st.subheader(f"_Welcome "

 f"**{get_username_from_token(authentication_

token)}**_")

 if st.button("Log out"):

 cookie_manager.delete("token")

 st.write("_____")

 AddEmployee(api.add_employee)

 st.write("___")

 DisplayEmployees(api.get_employees)

else:

 Login(manage_login)

Figure 8-7. Login page

Chapter 8 authentiCating users and seCuring appliCations

216

Figure 8-8. Adding and viewing the list of authenticated employees

Chapter 8 authentiCating users and seCuring appliCations

217

Looking closely at the Streamlit-side code, we can see that it follows

a coding pattern similar to the backend—namely, dependency injection.

This approach helps maintain coherence across the entire codebase.

Essentially, the API actions are passed down to the views, which are

abstracted into a class, as demonstrated in Listings 8-9, 8-10, and 8-11.

Listing 8-9. Streamlit/Views/AddEmployee.py

import streamlit as st

from typing import Callable

import datetime

class AddEmployee:

 def __init__(self, on_submit: Callable[[str, str,

int], bool]):

 st.header('Add a new employee')

 form = st.form('new_employee')

 name = form.text_input('Name')

 dob = str(form.date_input('DOB',

 min_value=datetime.datetime(year=1920,

day=1, month=1)))

 paygrade = form.number_input('paygrade', step=1)

 if form.form_submit_button('Add new Employee'):

 success = on_submit(name, dob, paygrade)

 if success:

 st.success('New employee added')

 else:

 st.error('Employee not added')

Listing 8-10. Streamlit/Views/DisplayEmployees.py

import streamlit as st

from typing import Callable

class DisplayEmployees:

Chapter 8 authentiCating users and seCuring appliCations

218

 def __init__(self, get_employees: Callable[[], list]):

 st.header('Current Employees')

 employees = get_employees()

 if employees is None:

 st.error('Error getting employees')

 else:

 st.table(employees)

Listing 8-11. Streamlit/Views/Login.py

import streamlit as st

from typing import Callable

class Login:

 def __init__(self, on_login: Callable[[str, str], bool]):

 st.header("Login")

 username = st.text_input("Username")

 password = st.text_input("Password",type="password")

 if st.button("Login"):

 success = on_login(username, password)

 if success:

 st.success("Login successful")

 else:

 st.error("Incorrect username and password

combination")

 st.write("___")

 if st.button("Log in with Google"):

 st.login()

Chapter 8 authentiCating users and seCuring appliCations

219

8.3. Secrets Management

As we have already discussed how to keep a Streamlit application’s secret

credentials safe from external access, we will now introduce another

method—commonly used in Flask—that can also be applied in a Streamlit

context. Essentially, we need a file to store these secrets. This includes the

JWT signing key and the sign-up header key, which should be saved on

disk and then loaded into the application's memory during runtime. While

there are various ways to store secrets and keys, one of the most user-

friendly options is using YAML files, as shown in Listing 8-12. These files

can be easily parsed and converted into a Python dictionary.

To support signing in with other one-click methods like with Google

or Microsoft, you will need to add necessary credentials to the file below

to allow your application to utilize these methods of signing in. Extra

detail on how to set it up can be found in https://docs.streamlit.io/

develop/api-reference/user/st.login

Listing 8-12. Flask/secrets.yaml

jwt_secret: "A RANDOM TEXT HERE"

sign_up_key: "ANOTHER RANDOM TEXT HERE"

auth:

 redirect_uri: "http://localhost:8501/oauth2callback"

 cookie_secret: "xxx"

 client_id: "xxx"

 client_secret: "xxx"

 server_metadata_url: "https://accounts.google.com/.well-

known/openid-configuration"

Chapter 8 authentiCating users and seCuring appliCations

https://docs.streamlit.io/develop/api-reference/user/st.login
https://docs.streamlit.io/develop/api-reference/user/st.login

220

8.4. Anti-SQL Injection Measures
with SQLAlchemy

As a final code-implemented protection, we aim to protect the backend’s

SQL queries by preventing unintended actions from occurring. First, we

need to identify what SQL injection is. It typically happens when user-

controlled input changes the behavior of the SQL command. For example,

suppose we want to support searching for employees whose names start

with a string provided by the end user. This could result in a query like:

SELECT * FROM Employees WHERE name = 'input%'. However, this poses

a threat if the input is OR 1=1 --, which would change the final query

to:SELECT * FROM Employees WHERE name = '%' OR 1=1 --.

This causes the database to return all employees instead of treating the

input as the search string.

To prevent this problem, we use parameterization, a technique that

separates the SQL command from the changing variables. So, in the

example above, the query would look like: SELECT * FROM Employees

WHERE name = '@name%',where @name is a SQL variable initialized before

submitting the query. As a developer, this may seem like extra work to

ensure more secure SQL. However, libraries and packages can handle this

for us. For this purpose, we are using SQLAlchemy, which is a library that

connects to many types of databases and adapts SQL command formats

based on the database architecture, origin, and version. It follows an

intuitive API that is well-documented at docs.sqlalchemy.org.

8.5. Configuring Gitignore Variables

Tracking all files with a version control system like Git is essential for large

projects, as it simplifies managing important files and their modification

history. However, not all files should be tracked, especially those that could

pose security risks. If the codebase is public, or if a private repository is

Chapter 8 authentiCating users and seCuring appliCations

221

compromised, secrets stored in the tracked files become vulnerable. For

this reason, it is widely accepted among developers not to track secrets

files in version control. Instead, secrets should be stored in a secure vault

that can be accessed through various authentication methods.

While this approach adds an extra layer of security, it can negatively

impact code readability, especially if an unfamiliar developer starts

working on the project. To resolve this, we can add a file named Flask/

secrets.example.yaml that contains similar content to the actual secrets file,

but with the sensitive key values replaced by vague placeholders, as shown

in Listing 8-13. This provides an example for developers without exposing

real secrets.

Next, we can exclude the actual secrets file from Git by updating the

.gitignore file, as shown in Listing 8-14. If necessary, any file or folder in the

same directory as .gitignore can be ignored or excluded, depending on the

specified syntax.

Listing 8-13. Flask/secrets.example.toml

jwt_secret = "<INSERT TEXT>"

sing_up_key = "<INSERT TEXT HERE>"

[auth]

redirect_uri = "http://localhost:8501/oauth2callback"

cookie_secret = "xxx"

client_id = "xxx"

client_secret = "xxx"

server_metadata_url = "https://accounts.google.com/.well-known/

openid-configuration" # fmt: skip

Listing 8-14. Flask/.gitignore

Secrets.example.toml

Chapter 8 authentiCating users and seCuring appliCations

222

8.6. Summary

As part of making any web application public, it is essential to manage the

resources being served by verifying each user's authorization level. In this

chapter, we have explained how to create and manage user accounts and

use them for authentication. We introduced key security mechanisms,

such as generating JSON Web Tokens, hashing passwords, and embedding

secure signatures into cookies. Additionally, we covered techniques

to prevent SQL injection attacks, ensuring unauthorized users cannot

access the database. Finally, we explored how to secure application keys

and secrets during deployment and how to exclude them from being

committed to a version control system like Git.

Chapter 8 authentiCating users and seCuring appliCations

223© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_9

CHAPTER 9

Deploying Locally
and to the Cloud
As you approach the end of the development phase with your Streamlit

application, it is time for it to see the light for the first time. In other

words, you are ready to deploy the application and share your work with

the world. To do that, you will need a machine to serve your application

continuously, robustly, and resiliently. While it is possible to turn your

local machine into a makeshift server, you are better off deploying the

application to the mighty cloud—using platforms like Amazon Web

Services, Microsoft Azure, Google Cloud Platform, or, last but not least,

Streamlit itself.

In this chapter, we will walk through the steps required to forward your

local application to the web, and more importantly, how to deploy your

application on remote servers using Linux containers, Windows Server,

and Streamlit’s dedicated cloud service, Streamlit Cloud. By the end of this

chapter, you will have acquired the technical know-how to serve your users

both within a local network and across the World Wide Web.

https://doi.org/10.1007/979-8-8688-1826-4_9#DOI

224

9.1. Exposing Streamlit to the World
Wide Web

After building an application with Streamlit, you can see it in action by

visiting the loopback address in your browser at http://127.0.0.1:8501.

In addition, you can also share it locally with people and devices on

your local network, which typically assigns IP addresses starting with

192.168.*, 172.(16-31).*, or 10.*. To access the running Streamlit

application from any device on the same network, simply prepend your

IP address with http:// and append :8501 or whichever port Streamlit

is listening on. However, there is no straightforward way to temporarily

showcase your Streamlit application to anyone, anywhere, without leasing

a static public IP from your ISP or renting a cloud server from a major

provider. In this section, we will explore free, easy-to-configure methods to

present your application globally at no extra cost.

9.1.1. Port Forwarding over a Network Gateway

Almost every household has a broadband device, which serves as the

gateway to the Internet. However, the household’s network and devices

are not directly exposed to the Internet; instead, their Internet requests

are routed through the broadband device. This device uses NAT (Network

Address Translation) to map private IP addresses to a public one. However,

the reverse—accessing a device from the Internet—does not work by default

unless explicitly configured. With most broadband devices, a built-

in web server is available to control various network settings. Usually, the

first IP address on the network belongs to the broadband device. Entering

this IP into a browser typically brings up a configuration page, as shown in

Figure 9-1. While the interface may vary across devices, most offer options

to configure port forwarding or port mapping. On that page, we want to map

an internal IP and port to one of the broadband’s public-facing ports. Ideally,

we would map Streamlit’s default port 8501 to port 80, the default for HTTP.

Chapter 9 Deploying loCally anD to the ClouD

225

Figure 9-1. Broadband’s configuration website

The next step is to find out the gateway’s public IP address. An easy

way to do this is by simply googling it, as shown in Figure 9-2. Essentially,

any website you visit can detect your public IP and display it back to you.

Once you have this IP, you can paste it into your browser’s address bar,

and—if everything is configured correctly—you will be presented with

your Streamlit application.

Figure 9-2. Host’s public IP address

Chapter 9 Deploying loCally anD to the ClouD

226

It is worth noting that the public IP is assigned by your ISP, which

typically rotates through a pool of IP addresses for its clients. This means

your public IP will eventually change—possibly every hour or when

the network reconnects. This dynamic behavior continues unless you

specifically request a static IP from your ISP, which ensures that your

broadband device is always assigned the same IP address, even if your

network goes offline temporarily.

9.1.2. HTTP Tunneling Using NGROK

The concept of tunneling is similar to establishing a VPN connection

between two devices, even if they are far apart and not on the same

network. Ngrok uses tunneling to allow private network devices to be

accessed by the public network for a short period (usually two hours). It

does this by allocating a temporary subdomain on their servers, which

forwards requests to your service and exposes it on your behalf. In short, a

Streamlit application running at http://127.0.0.1:8501 can be accessed

via a specific ngrok URL, which follows this format:

http://<random-uuid-here>.ngrok-free.app

Once the tunnel command is initiated by the Ngrok user, the

connection is established, and the Ngrok URL is provided. The user can

then share this URL with anyone to access their local Streamlit application

for the next few hours. After installing Ngrok on your computer, you can

run it by typing the following command into the CMD or terminal:

ngrok http <port_to_tunnel_to>

where the <port_to_tunnel_to> block can be replaced with 8501 to tunnel

to the running Streamlit application. Listing 9-1 shows a simple Streamlit

application using an iframe to display the user’s public IP address. After

running ngrok on port 8501 in the CMD, the user is presented with the

allocated subdomain, as seen in Figure 9-3.

Chapter 9 Deploying loCally anD to the ClouD

http://127.0.0.1:8501

227

The subdomain’s location is listed as the United States, as mentioned by

ngrok. However, when visiting a public IP website, it does not show the

United States as the origin, as seen in Figure 9-4. Instead, the IP displayed

is the user's original ID from Qatar, even though ngrok tunneled through

the United States. This is because ngrok is not a VPN but a network, and

the request to the page is routed through the Streamlit host machine.

Listing 9-1. main.py

import streamlit as st

st.title('Welcome, WWW')

url = 'https://www.whatismyip-address.com'

script = f"""

<iframe src='{url}' height='500' width='500'></iframe>

"""

st.write(script, unsafe_allow_html=True)

st.write(f'Check out your [public IP]({url})')

Figure 9-3. Ngrok dashboard after tunneling to port 8501

Chapter 9 Deploying loCally anD to the ClouD

228

Figure 9-4. Two browser windows, one being served locally and the
other by ngrok, and both showing the same client IP

9.2. Deployment to Streamlit Community
Cloud

Deploying a web application on the cloud can be a demanding task,

depending on your cloud service provider. Some, like Heroku, have made

it as simple as connecting your GitHub repository, installing build packs,

configuring the application, and launching it. Others require you to handle the

entire process, including setting up the virtual machine, creating containers,

configuring port forwarding, load balancing, and routing requests yourself.

Regardless, deploying to the cloud requires at least a basic understanding of

cloud computing concepts—after all, that is why we have DevOps engineers.

Streamlit, however, is democratizing this last frontier and making

deployment almost a one-click process. With Streamlit Cloud, you can

simply connect your GitHub repository and click deploy. Streamlit will

automatically provision the application with all its required dependencies

and update it each time you push a new version of your source code. No

additional intervention is required from the developer. Furthermore, if you

Chapter 9 Deploying loCally anD to the ClouD

229

need more than one private application, additional computing resources,

or enterprise-grade features, you can upgrade to Streamlit's premium

packages.

9.2.1. One-Click Deployment

Before deploying your first application to Streamlit Cloud, you should

create a GitHub account and push your script to a repository. Once that is

done, you can follow these steps to deploy:

 1. Navigate to share.streamlit.io, log in with your

GitHub account, and click New app.

 2. Select the repository, branch, and file where your

source code is located. Then click Deploy! as shown

in Figure 9-5.

Figure 9-5. Deploying an application to Streamlit Cloud (1)

 3. Sit back and relax while Streamlit Cloud provisions

your application, as shown in Figure 9-6.

Chapter 9 Deploying loCally anD to the ClouD

230

Figure 9-6. Deploying an application to Streamlit Cloud (2)

 4. And there you have it, your first application

deployed to Streamlit Cloud, as shown in Figure 9-7.

Figure 9-7. Deploying an application to Streamlit Cloud (3)

Chapter 9 Deploying loCally anD to the ClouD

231

9.2.2. Streamlit Secrets

Another benefit of using Streamlit Cloud is that you can securely store

private data on Streamlit’s servers and easily access it in your application.

This feature is particularly useful for storing user credentials, database

connection strings, API keys, and other passwords—without the risk of

exposing them in plain text within your code (which you should never do

under any circumstances). Instead, you can follow these steps to store and

access private data using Streamlit’s Secrets Management.

 1. Navigate to share.streamlit.io and open the settings

for the application to which you want to add secrets,

as shown in Figure 9-8.

Figure 9-8. Adding secrets to Streamlit Cloud’s Secrets
Management (1)

 2. Add your secrets in the form of a TOML file, as

shown in Figure 9-9.

Chapter 9 Deploying loCally anD to the ClouD

232

Figure 9-9. Adding secrets to Streamlit Cloud’s Secrets
Management (2)

 3. Access your secrets in your script using the st.

secrets command, as shown in the following and in

Figure 9-10:

Figure 9-10. Using secrets in a Streamlit Cloud application

import streamlit as st

st.write('**Secret:**',st.secrets['secret'])

st.write('**Password:**',st.secrets['section']

['password'])

Chapter 9 Deploying loCally anD to the ClouD

233

 4. If you wish to replicate Secrets Management locally on

your own server, you can simply add the same TOML

file as secrets.toml in the .streamlit folder in your root

directory. Be sure to add this folder to your .gitignore

file to ensure that such files are not included in Git

commits.

9.3. Deployment to Linux

Most cloud providers specialize in offering virtual machine leases to

corporations and individuals for running services and apps in a Linux

environment. The strength of Linux lies in its ability to process at higher

speeds and make better use of computer resources due to its minimalistic

kernel layers. These factors make Linux the go-to choice for cloud

machines.

9.3.1. Native Deployment on a Linux Machine

With access to a Linux machine, such as Ubuntu WSL (Windows

Subsystem for Linux) run on Windows, you can run Streamlit through the

CLI as shown in Figure 9-11.

Chapter 9 Deploying loCally anD to the ClouD

234

Figure 9-11. Running Listing 9-2 in the terminal

The output of the Streamlit application in Listing 9-2 can be seen in

Figure 9-12.

Figure 9-12. Output of Listing 9-2, showing the operating system
being Linux

Chapter 9 Deploying loCally anD to the ClouD

235

To display the system platform running, you can run the script shown

in Listing 9-2.

Listing 9-2. main.py

import os

import platform

import streamlit as st

st.title(f'Deployed on {platform.system()} ({os.name})')

st.subheader('More details: ') st.write(f'_{platform.

platform()}_')

9.3.2. Deployment with Linux Docker Containers

To avoid the hassle of running your Streamlit application in a specific

way—and for added security—you can use a Docker container to run it.

Docker allows you to host an application in any OS environment with

its own variables, applications, and services, while giving you control

over the computer resources it can access. Moreover, if the application

is compromised by a malicious actor, they are unlikely to escape the

Docker container and further compromise the host machine, provided the

container is configured correctly.

Now that we understand the benefits of deploying services in a

containerized environment, we can proceed to create Docker’s main file,

as shown in Listing 9-3. Assuming Docker is already installed, this file

initiates a Linux environment with Python 3.8 pre-installed, then creates

a folder to hold your Streamlit/Python files. Next, it copies your existing

requirements.txt file (as shown in Listing 9-4) into Docker’s working

directory, where the dependencies will be installed. Once Streamlit is

installed, the Docker container is instructed to expose port 8501 to allow

access from outside the container—this is Streamlit’s default port. Finally,

your Streamlit files are copied into the working directory and executed.

Chapter 9 Deploying loCally anD to the ClouD

236

Listing 9-3. Dockerfile

FROM python:3.10

Set working directory

WORKDIR /app

Install dependencies

COPY requirements.txt ./requirements.txt

RUN pip install --no-cache-dir -r requirements.txt

Expose Streamlit port

EXPOSE 8501

Copy app files

COPY . /app

Add a simple healthcheck (tries to curl the Streamlit app

every 30s)

HEALTHCHECK --interval=30s --timeout=10s --start-period=

30s --retries=3 \

 CMD curl -f http://localhost:8501/_stcore/health || exit 1

Explicit entrypoint with host binding

ENTRYPOINT ["streamlit", "run", "main.py", "--server.

address=0.0.0.0"]

Listing 9-4. requirements.txt

streamlit==1.41.1 # Latest version as of writing this book

With our files ready, we need to build a custom Docker image

from our project—similar to what is shown in Figure 9-13—by running

the command in Listing 9-5 from the project’s root folder, where the

Dockerfile should reside.

Chapter 9 Deploying loCally anD to the ClouD

237

Listing 9-5. Building a Docker image

docker build -t <CUSTOM_IMAGE_NAME>:latest .

Figure 9-13. Building image and verifying its existence

Running the image is done by executing the code shown in Listing 9-6;

the -d option is to detach the process from the command line, similar to

the disown command in Linux. Figure 9-14 shows how the process is not

detached and therefore stops reusing the same command-line window.

Now we have a running container overriding the current machine’s port

8501 with its own, which means the Streamlit application can be visited

from localhost as seen in Figure 9-15.

You can run the image by executing the command shown in Listing 9-6.

The -d option detaches the process from the command line, similar to the

disown command in Linux. Figure 9-14 demonstrates what happens when

the process is not detached—it remains tied to the same command-line

window. Now, with a running container overriding the host machine’s port

8501 with its own, the Streamlit application can be accessed via localhost,

as shown in Figure 9-15.

Chapter 9 Deploying loCally anD to the ClouD

238

Listing 9-6. Making a container out of a Docker image

docker run -d -p 8501:8501 <CUSTOM_IMAGE_NAME>:latest

Figure 9-14. Running the Docker image

Figure 9-15. Streamlit application running from a Docker container

Chapter 9 Deploying loCally anD to the ClouD

239

Finally, we can destroy the container, without affecting the image, by

running Listing 9-8. First, we need to know the container ID by running

Listing 9-7, then apply the stopping action as seen in Figure 9-16.

Listing 9-7. Displaying all running Docker container metadata

docker ps

Listing 9-8. Stopping a specific Docker container

docker stop <CONTAINER_ID>

Figure 9-16. Checking active containers and closing a specific
container

9.4. Deployment to Windows Server

Given the corporate world's affinity for Microsoft, if you are deploying your

Streamlit application on a corporate server, chances are you will be using

Windows Server. Fortunately, the process to provision your application

is simple and straightforward. While this section focuses on Windows

Chapter 9 Deploying loCally anD to the ClouD

240

Server, the steps can also be followed for deploying on a standard Windows

operating system. Before we proceed, however, we will make a few

assumptions: your corporate server is located remotely, and you only have

local Intranet access with no Internet connectivity. As a result, additional

steps will be required to overcome these assumptions, and these will be

explained in the following sections.

9.4.1. Establishing a Remote
Desktop Connection

As mentioned earlier, your server may be located remotely, and the most

likely way to connect to it will be through the Remote Desktop Protocol

(RDP). RDP provides a graphical user interface to access the remote

server over a network connection. The Microsoft client for RDP is Remote

Desktop Connection, as shown in Figure 9-17. To connect, enter the IP

address of the remote server in the Computer field, and if required, append

the domain to the username in the User name field in the format domain/

username. Then, click Connect, and you will be prompted to enter your

password to log in to the server.

Chapter 9 Deploying loCally anD to the ClouD

241

Figure 9-17. Establishing a RDP connection to the remote server

Since your remote server might not have Internet access, you can use

RDP to transfer files from your local disk to the server by selecting the

Drives checkbox in the Local Resources tab, as shown in Figure 9-18. This

feature also allows you to provide access to other local resources, such as

I/O devices and peripherals, on the server if needed.

Chapter 9 Deploying loCally anD to the ClouD

242

Figure 9-18. Transferring local resources to the remote server

9.4.2. Opening TCP/IP Ports

Before proceeding, make sure that all relevant inbound and outbound

TCP/IP ports on the server are open, allowing the Streamlit application to

be forwarded across the local network:

 1. Open Windows Defender Firewall with Additional

Security.

 2. Select Inbound Rules or Outbound Rules in the

left pane.

 3. Click New Rule in the right pane to open the New

Rule Wizard window.

 4. Select the Port option and then click next as shown

in Figure 9-19.

Chapter 9 Deploying loCally anD to the ClouD

243

Figure 9-19. Opening TCP/IP ports (1)

 5. Select TCP and enter the port number that your

Streamlit application will be served on, for example,

8501, as shown in Figure 9-20.

Chapter 9 Deploying loCally anD to the ClouD

244

Figure 9-20. Opening TCP/IP ports (2)

 6. Select Allow the connection to serve the port to all

users, or alternatively select Allow the connection

if it is secure to serve the port to specific users, as

shown in Figure 9-21.

Chapter 9 Deploying loCally anD to the ClouD

245

Figure 9-21. Opening TCP/IP ports (3)

 7. Next, select Domain and Private to serve the port to

secure networks, as shown in Figure 9-22.

Chapter 9 Deploying loCally anD to the ClouD

246

Figure 9-22. Opening TCP/IP ports (4)

 8. Finally, enter a name for your rule and follow the

same steps to open the same port for both inbound

and outbound communication.

9.4.3. Anaconda Offline Package Installation

Since your server may not have Internet access, you will not be able

to install Python packages and their dependencies using Pip as usual.

Instead, you will need to perform an offline installation by following

these steps:

 1. Open Anaconda Prompt on a computer with access

to the Internet.

Chapter 9 Deploying loCally anD to the ClouD

247

 2. To download the required Python package with

all of its related dependencies, type the following

command, specifying the file path of where to save

the package:

pip download <package name> -d '<folder path>'

 3. Once the package has been downloaded, zip the

files and transfer them to the server using RDP or

any other available method.

 4. Unzip the files and type the following command into

Anaconda Prompt on the server to change the root

directory to the location where the package is stored:

cd <folder path>

 5. Enter the following command into Anaconda

Prompt to initiate an offline installation of the

required package:

pip install <package name> -f ./ --no-index

9.4.4. Adding Anaconda to System Path

To run your Streamlit application as an executable batch file (explained in

the following section), you first need to add Anaconda or any other Python

interpreter of your choice to the system path in Windows. Follow these steps:

 1. Determine the location of Anaconda.exe by typing

the following command into Anaconda Prompt:

where anaconda

 2. Open the Windows search bar and select Edit the

system environment variables.

Chapter 9 Deploying loCally anD to the ClouD

248

 3. Once the System Properties window opens, click the

Advanced tab and select Environment Variables.

 4. Next, highlight Path and click Edit to add the path

for Anaconda, as shown in Figure 9-23.

Figure 9-23. Adding Anaconda to the system path

 5. If the necessary paths do not already exist, add

the path that was found in step 1 by entering the

following two:

C:\...\Anaconda3\

and

C:\...\Anaconda3\Scripts\

Chapter 9 Deploying loCally anD to the ClouD

249

 6. To verify that Anaconda has been successfully

added to the system path, open Windows Command

Prompt and type anaconda. If Anaconda has not

been added, an error will appear. Otherwise, you

should be able to use any Anaconda command,

such as conda list.

9.4.5. Running Application As an Executable
Batch File

To run your Streamlit application as a Windows service (explained in the

following section), you first need to create an executable batch file. Batch

files are similar to .exe files and can be run by double-clicking, just like

any other application. Follow these steps to create a batch file for your

Streamlit application:

 1. Open notepad or any other text editor of

your choice.

 2. Type the following commands on separate lines:

call activate <environment name>

cd <folder path>

streamlit run <script name.py>

pause

 3. Save the file with a .bat extension to create the

batch file.

 4. Run the batch file to ensure that the application

launches as expected.

Chapter 9 Deploying loCally anD to the ClouD

250

9.4.6. Running Application As a Persistent
Windows Service

The final step in preparing for deployment on Windows Server is to run

your Streamlit application persistently as a Windows service. While you

can still serve it as you would normally with any Streamlit application,

running it as a Windows service offers several benefits, including the

following:

 1. Your application will be run in the background

without opening a console.

 2. The application will remain independent of the RDP

session, ensuring it continues to run even when the

RDP connection is terminated.

 3. You can schedule your application to run on

Windows startup or based on any other trigger.

For a robust setup, consider using a tool like NSSM (the Non-Sucking

Service Manager). NSSM allows you to run any executable, such as

python.exe running your Streamlit app, as a Windows service. It provides

better control over logging, process priority, and automatic restarts,

making your deployment more reliable and easier to manage.

Chapter 9 Deploying loCally anD to the ClouD

251

To configure your application as a persistent Windows service, please

follow these steps:

 1. Open Windows Task Scheduler and click Create Task

on the right pane, as shown in Figure 9-24.

Figure 9-24. Running application as a persistent Windows
service (1)

 2. Enter a name for the task, then select the Run

whether user is logged on or not and Run with highest

privileges options, as shown in Figure 9-25.

Chapter 9 Deploying loCally anD to the ClouD

252

Figure 9-25. Running application as a persistent Windows
service (2)

 3. Navigate to the Actions tab and select Start a

program from the action menu, then browse to

the location of the batch file you created for your

Streamlit application (explained in the previous

section), as shown in Figure 9-26.

Chapter 9 Deploying loCally anD to the ClouD

253

Figure 9-26. Running application as a persistent Windows service (3)

 4. Open the Task Scheduler Library on the left pane,

select your created task in the list, and select Run on

the right pane, as shown in Figure 9-27.

Figure 9-27. Running application as a persistent Windows service (4)

Chapter 9 Deploying loCally anD to the ClouD

254

 5. To verify that your Windows service task has been

configured successfully, terminate the RDP session.

Then, open a browser on another device on the local

network and navigate to the network URL of your

Streamlit application to check if it's running.

9.5. Summary

In this chapter, we explored how to expose our Streamlit application to

the Internet through port forwarding via a network gateway, as well as

leveraging HTTP tunneling with ngrok. We then introduced Streamlit's

cloud platform, Streamlit Cloud, which simplifies the deployment process.

With Streamlit Cloud, developers can deploy their applications with just a

click by connecting their GitHub repository. Additionally, we learned how

to securely integrate private data into our applications using Streamlit's

Secrets Management, both locally and in the cloud. Finally, we covered the

process of deploying our applications to Linux containers and Windows

Server, which are the foundation of most remote servers worldwide. With

that, we have completed the entire development-to-deployment life cycle

of a Streamlit application.

Chapter 9 Deploying loCally anD to the ClouD

255© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_10

CHAPTER 10

Building Streamlit
Components
Streamlit continuously expands its feature set to offer developers new

capabilities with just a few lines of code. However, there comes a time

when developers need to customize their applications to meet specific

user needs. Whether it is modifying the user interface or providing a

tailored user experience, Streamlit allows developers to create custom

components as needed. Moreover, Streamlit supports the use of ReactJS

to build components that can either function as a live web server or be

deployed with production-ready code. In this chapter, we will guide you

through the process of creating custom Streamlit components, integrating

them into a Pythonic context, and sharing them with the broader

community.

10.1. Introduction to Streamlit
Custom Components

Fundamentally, Streamlit acts as a backend server, delivering web

page updates to client browsers using DG. While HTML and JavaScript

can be generated by various web frameworks, Streamlit is capable of

serving components from any web application framework. For instance,

frameworks like ReactJS allow developers to code in JSX, which is then

https://doi.org/10.1007/979-8-8688-1826-4_10#DOI

256

compiled into a combination of static files that can be served from disk.

In a production environment, it is highly recommended to serve static

files from disk, as shown in Figure 10-1. However, Streamlit also allows

for components hosted locally. The trade-off here is that the component,

when imported into a Streamlit app, may behave differently. For example,

if you print the current URL from the custom component, it will not reflect

the same URL where the Streamlit application is hosted.

Figure 10-1. How custom components are served through Streamlit

10.2. Using ReactJS to Create Streamlit
Custom Components

In this section, we will demonstrate how to create a ReactJS-based

component for use in Streamlit. Additionally, we will showcase how to

facilitate bidirectional data sharing between Streamlit and the component.

This feature can be used to send initial values, trigger user actions, or even

pass styling themes and colors to the custom component.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

257

10.2.1. Making a ReactJS Component

To begin, you need to install Node.js and npm from NodeJS.org. After

that, we will use Streamlit’s official GitHub template to create custom

components. In this subsection, we will walk through the process of

building a ReactJS component. For this example, we will create a rating

stars widget, as shown in Figure 10-2, using ReactJS. The ReactJS developer

community is significantly larger than that of other frameworks, making it

a valuable investment to create components within this ecosystem.

Figure 10-2. Interactive rating star view from Material UI

By copying the content from component-template/template/my_

component into our working directory, we will set up a ReactJS application

with a single file module located at src/MyComponent.tsx. This is the file

we need to modify to create our rating star component. The changes made

to this file will result in the code shown in Listing 10-1.

Listing 10-1. stars_demo/rating_stars/frontend/src/

CleanedTemplate.tsx

import {

 Streamlit,

 StreamlitComponentBase,

 withStreamlitConnection,

} from 'streamlit-component-lib'

import React, { ReactNode } from 'react'

interface State {}

class MyComponent extends StreamlitComponentBase<State> {

 public state = {}

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

258

 public render = (): ReactNode => {

 return (

 <div></div>

)

 }

}

export default withStreamlitConnection(MyComponent)

Use the following command to install the Material UI library:

npm i @mui/material

Then run the following command to install other packages in the

package.json file:

npm i

After running both commands, make sure to change the name in

package.json to be your component’s reference name in Streamlit down

the road as shown in Listing 10-2.

Listing 10-2. Updated Package.json

{

 "name": "rating_star",

 "version": "0.1.0",

 "private": true,

 "dependencies": {

 "@mui/material": "ˆ5.0.6",

 ...

 },

 "scripts": ...,

 "eslintConfig": ...,

 "browserslist": ...,

 "homepage": ". "

}

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

259

With the necessary packages in place and a basic understanding of

JavaScript/TypeScript (or with a bit of googling), we can begin creating

our first ReactJS module to be used as a custom Streamlit component. We

will modify Listing 10-1 to display the rating stars, as documented on the

Material UI website. The final result will be the content shown in Listing 10-3,

which should reside in frontend/src/. Also, do not forget to update the

file to run in index.tsx.

Listing 10-3. Initial version of RatingStar.tsx

import {

 Streamlit,

 StreamlitComponentBase,

 withStreamlitConnection,

} from 'streamlit-component-lib'

import React, { ReactNode } from 'react'

import { Rating } from '@mui/material';

interface State {}

class RatingStar extends StreamlitComponentBase<State> {

 public state = {}

 public render = (): ReactNode => {

 return (

 <Rating size='large' defaultValue={3} />

)

 }

}

export default withStreamlitConnection(RatingStar)

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

260

10.2.2. Using a ReactJS Component in Streamlit

To prepare the React application, run the following command. If any errors

appear regarding missing packages, install them using the command

provided earlier.

npm start

Now, on Streamlit's side, we will integrate the running ReactJS

application as a component by using Streamlit’s API for including external

components. Before doing that, we need to populate the __init__.py file,

as shown in Listing 10-4.

Listing 10-4. Initial version of __init__.py

import os

import streamlit.components.v1 as components

IS_RELEASE = False

if IS_RELEASE:

 absolute_path = os.path.dirname(os.path.abspath(__file__))

 build_path = os.path.join(absolute_path, 'frontend/build')

 _component_func = components.declare_component('rating_

stars', path=build_path)

else:

 _component_func = components.declare_component('rating_

stars', url='http://localhost:3001')

def rating_stars():

 _component_func()

The previous code snippet uses a live component running locally on

port 3001, which, in this case, refers to the ReactJS app. It then exposes a

function to be used by any other Python source, allowing it to be run as a

Streamlit module. Running Listing 10-5 with Streamlit’s CLI tool will result

in the output shown in Figure 10-3.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

261

Listing 10-5. Initial version of main.py

import streamlit as st

from rating_stars import rating_stars

st.title('Rating stars demo! ')

rating_stars()

Figure 10-3. First custom component!

Having accomplished that, we successfully displayed a live ReactJS

application within the Streamlit context. However, as we become more

creative and develop additional custom components, it could become

cumbersome to navigate to each component’s folder and run it as a

ReactJS application before launching the Streamlit app. This approach

may also lead to running out of ports, as each custom component requires

its own unique local URL. To overcome this, we can build the ReactJS

application into static files after development by running

npm run build

Once you run the build command, a new folder named build will

appear inside the frontend folder. This folder will contain the necessary

JavaScript, CSS, and HTML files required by Streamlit to load the

component into an application. After building the static version of the

component, you need to set IS_RELEASE to True, which will instruct

Streamlit to load the custom component from the frontend/build/ folder.

This process is illustrated in Figure 10-1.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

262

10.2.3. Sending Data to the Custom Component

At this point, we can display ReactJS applications within a Streamlit

context, though without a communication mechanism between the

frontend and backend. In the next section, we will demonstrate how to

send dynamic data from Streamlit to ReactJS, enabling the transmission of

information with each rerender. This will allow Streamlit to send data to

the ReactJS application whenever the app is updated.

To enhance the functionality of our rating star custom component,

we will add support for setting the total star count and the number of

selected stars, all through Streamlit's Python code. First, it is important to

understand that Streamlit converts the parameters passed from Python

(via _component_func) into properties in ReactJS. Therefore, our goal is to

refactor the component's __init__.py file to accept these new parameters,

as shown in Listing 10-6, and then read them in RatingStar.tsx, where they

will be assigned to the view's properties, as demonstrated in Listing 10-7.

Listing 10-6. Second version of __init__.py

import os

import streamlit.components.v1 as components

IS_RELEASE = False

if IS_RELEASE:

 absolute_path = os.path.dirname(os.path.abspath(__file__))

 build_path = os.path.join(absolute_path, 'frontend/build')

 _component_func = components.declare_component('rating_

stars', path=build_path)

else:

 _component_func = components.declare_component('rating_

stars', url='http://localhost:3001')

def rating_stars(stars_count: int, selected: int):

 _component_func(stars_count=stars_count, selected=selected)

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

263

Listing 10-7. Second version of RatingStar.tsx

import {

 Streamlit,

 StreamlitComponentBase,

 withStreamlitConnection,

} from 'streamlit-component-lib'

import React, { ReactNode } from 'react'

import { Rating } from '@mui/material'

interface State {}

class RatingStar extends StreamlitComponentBase<State> {

 public state = {}

 public render = (): ReactNode => {

 const {selected, stars_count} = this.props.args

 return <Rating size='large' defaultValue={selected}

max={stars_count}/>

 }

}

export default withStreamlitConnection(RatingStar)

To put this update into action, we will create a Streamlit application

as shown in Listing 10-8, which demonstrates both native and custom

components side by side. Figure 10-4 illustrates the seamless integration

between our newly created configurable component and the default

components provided by Streamlit.

Listing 10-8. Second version of main.py

import streamlit as st

from rating_stars import rating_stars

st.title('Rating stars demo! ')

total_stars = st.slider(label='Total Stars', min_

value=0, max_value=20, value=10, step=1) selected_stars =

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

264

st.slider(label='Selected Stars', min_value=0, max_value=total_

stars, step=1) rating_stars(total_stars, selected_stars)

Figure 10-4. Using native and custom components

10.2.4. Receiving Data from the Custom
Component

After experimenting with the sliders to configure our custom rating

component, it becomes apparent that the Streamlit application's view

becomes cluttered with additional widgets solely used to control another

view’s behavior. Ideally, users should be able to set the number of selected

stars simply by hovering over and clicking them. To enable this, however,

the Streamlit application needs to be aware of the selected value—and this

is where data retrieval from custom components comes into play.

Streamlit not only provides an API to embed ReactJS applications but

also enables bidirectional communication between Streamlit and these

components. Sending data from ReactJS back to Streamlit can be achieved

using a library that is already included in the component template’s

package.json. While this library offers several ReactJS-specific actions, we

will focus on the Streamlit.setComponentValue function. This function

allows us to set the return value of a component in the Streamlit Python

context based on the parameter passed to it.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

265

To implement this, we will add the function call within the rating

component’s callback in ReactJS, as shown in Listing 10-9. Then, we will

update the __init__.py file accordingly to propagate the return value back

to the running Streamlit script, as shown in Listing 10-10.

Listing 10-9. Final version of RatingStar.tsx

import {

 Streamlit,

 StreamlitComponentBase,

 withStreamlitConnection,

} from 'streamlit-component-lib'

import React, { ReactNode } from 'react'

import { Rating } from '@mui/material'

interface State {}

class RatingStar extends StreamlitComponentBase<State> {

 public state = {}

 public render = (): ReactNode => {

 const { selected, stars_count } = this.props.args

 return (

 <Rating

 size='large'

 defaultValue={1}

 max={stars_count}

 onChange={(_, stars_count) => Streamlit.

setComponentValue(stars_count)}

 />

)

 }

}

export default withStreamlitConnection(RatingStar)

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

266

Listing 10-10. Final version of __init__.py

import os

import streamlit.components.v1 as components

IS_RELEASE = False

if IS_RELEASE:

 absolute_path = os.path.dirname(os.path.abspath(__file__))

 build_path = os.path.join(absolute_path, 'frontend/build')

 _component_func = components.declare_component('rating_

stars', path=build_path)

else:

 _component_func = components.declare_component('rating_

stars', url='http://localhost:3001')

def rating_stars(stars_count: int):

 stars_selected = _component_func(stars_count=stars_count)

 if stars_selected is None:

 stars_selected = 0

 return stars_selected

In our main Streamlit file, we remove the slider used to select the star

count and replace it with the output of our custom component. Finally,

we display the selected number of stars on the application, as shown in

Listing 10-11, with the output illustrated in Figure 10-5.

Listing 10-11. main.py, Streamlit file to be run

import streamlit as st

from rating_stars import rating_stars

st.title('Rating stars demo!')

total_stars = st.slider(label='Total Stars', min_value=0,

max_value=20, value=10, step=1) selected_stars = rating_

stars(total_stars)

st.write(str(selected_stars) + ' star(s) have been selected')

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

267

Figure 10-5. Result of communicating back and forth with a custom
Streamlit component

10.3. Publishing Components
As Pip Packages

Once you create your first custom component, you will likely want to share

it with friends or contribute it to the open source community, as many

developers do. Simply sending a zip file of the source code or uploading

the component to a version control service like GitHub may not be the

most scalable solution to reach a large number of developers. This method

can add unnecessary overhead for others to get it up and running.

A more developer-friendly and professional way to share Python

packages is by compressing them into a pip wheel format. This format can

be easily installed in the Python interpreter by running

pip install <PIP_PACKAGE_NAME>.whl

Continuing with the example in this chapter, we do not need to install

any additional packages to accomplish this, as Python natively supports

wheel building. The goal is to package the rating_stars/ folder into a file

that can then be installed and referenced from any script, just like a local

package.

Building a pip file is as simple as running the following command:

python setup.py sdist bdist_wheel

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

268

Before creating the pip wheel, ensure that the ReactJS part of the

custom component is built, as it won't be run live on the user's end.

Instead, it should offer a seamless plug-and-play experience with the

new component. To do this, navigate to the rating_stars/frontend/

directory and run

npm run build

However, the wheel builder requires additional information, such

as the exact folder to package and other metadata, including the version

number and description. There is no need to explicitly mention the folder

to be packaged, as Python automatically looks for all Python packages in

the current directory. For a folder to be recognized as a Python package,

it must contain an __init__.py file, which we already have. However, by

default, the wheel builder does not include non-Python files and folders

unless they contain at least one Python file. This becomes an issue in our

case because our component relies on the ReactJS build folder, which

contains the necessary static web files. To resolve this, we need to add a

new file, as shown in Listing 10-12, in the project’s root directory. This will

ensure the inclusion of the build folder and its contents.

Listing 10-12. MANIFEST.in

recursive-include rating_stars/frontend/build *

Now that we have half of the requirements for creating a pip wheel,

we can address the final part by creating a setup.py file with the content

shown in Listing 10-13. This file should be placed in the same folder as

the MANIFEST.in. The setup.py file will include the version number of

your custom component, a description, and other details, such as the pip

download name if the package is uploaded to pypi.org.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

269

Listing 10-13. setup.py

import setuptools

setuptools.setup(

 name='rating_stars',

 version='0.1',

 author='YOUR-NAME',

 author_email='YOU-EMAIL@DOMAIN.com',

 description='INSERT-DESCRIPTION-HERE',

 long_description='INSERT-LONGER-DESCRIPTION-HERE',

 packages=setuptools.find_packages(),

 include_package_data=True,

 classifiers=[

 'Programming Language :: Python :: 3',

 'License :: OSI Approved :: MIT License',

 'Operating System :: OS Independent',

],

 keywords=['Python', 'Streamlit', 'React', 'JavaScript',

'Custom'],

 python_requires='>=3.6',

 install_requires=[

 'streamlit >= 0.86',

],

)

And for better dependency management and Streamlit Cloud

integration we need to create a pyproject.toml file as shown in

Listing 10-14.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

http://setup.py

270

Listing 10-14. pyproject.toml

[build-system]

requires = ["setuptools", "wheel"]

build-backend = "setuptools.build_meta"

[project]

name = "rating_stars"

version = "0.1"

authors = [{name = "YOUR-NAME", email = "YOU-EMAIL@DOMAIN.com"}]

description = "INSERT-DESCRIPTION-HERE"

requires-python = ">=3.6"

dependencies = [

 "streamlit>=0.86",

]

classifiers = [

 "Programming Language :: Python :: 3",

 "License :: OSI Approved :: MIT License",

 "Operating System :: OS Independent",

]

keywords = ["Python", "Streamlit", "React", "JavaScript", "Custom"]

After running the Python package command, three new folders will

appear in the project's root directory, as shown in Figure 10-6. The file

of interest is the rating_stars-0.1-py3-none-any.whl in the second

folder. This file can be sent to others and easily installed, provided that the

package requirements are met. The other created folders also have their

benefits. For example, the dist/ folder can be used by twine, the tool for

uploading pip wheels to the global pip repository. If you wish to share your

package with the public, sign up at pypi.org and then run the following

command:

python -m twine upload dist/* --verbose

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

271

after building the wheel to upload it.

Figure 10-6. New folders after building the custom component

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

272

10.4. Component in Focus:
Extra-Streamlit- Components

Streamlit, as a framework, is continuously evolving. However, it may not

always provide certain bespoke features needed for a production-ready

web application. Features like application routing, custom URLs for multiple

views, or saving user-related data on the browser side may not be natively

supported. Additionally, you might want to offer a unique look and feel for

your application or add widgets that are not yet part of Streamlit’s

standard library. When it comes to components, the possibilities are

endless. In this chapter, we will introduce Extra-Streamlit-Components

(STX), an open source collection of sophisticated Streamlit components

and services. We will also dive into how each subcomponent is built from

both the Streamlit and ReactJS perspectives, hoping to inspire creative

developers to build their own unique components.

10.4.1. Stepper Bar

This component is inspired by Material UI's Stepper. As previously

mentioned, ReactJS's developer community offers a wide range of

useful components that can be seamlessly integrated into the Streamlit

ecosystem. The stepper bar, in particular, can be highly beneficial for most

Streamlit applications, especially those that involve sequential steps in

a data science workflow. It allows users to navigate through stages in a

specific order. The stepper is a simple component that returns the index

of the stage the user has reached, as demonstrated in Figures 10-7, 10-8,

and 10-9. As a developer, you are not limited to just three phases. You can

provide a list of tab names, and the component will return the index of the

selected item, as shown in Listing 10-15. The numbering and animations

are already handled for you.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

273

Figure 10-7. Stepper bar phase 3

Figure 10-8. Stepper bar phase 3

Figure 10-9. Stepper bar phase 3

On the ReactJS side, the stepper package needs to be installed via

npm and then imported into the source file, as shown in Listings 10-15

and 10-16. This file is responsible for detecting user clicks, returning the

corresponding index of the current step, and managing the theme of each

step based on the user's position within the sequence.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

274

Listing 10-15. StepperBar/frontend/src/StepperBar.jsx

import {

 Streamlit,

 StreamlitComponentBase,

 withStreamlitConnection,

} from 'streamlit-component-lib'

import React from 'react'

import { withStyles, createStyles } from '@material-ui/

core/styles'

import Stepper from '@material-ui/core/Stepper'

import Step from '@material-ui/core/Step'

import StepLabel from '@material-ui/core/StepLabel'

const styles = createStyles((theme) => ({

 root: {

 width: '100%',

 backgroundColor: 'transparent',

 },

 icon: {

 color: 'grey',

 cursor: 'pointer',

 '&$activeIcon': {

 color: '#f63366',

 },

 '&$completedIcon': {

 color: '#f63366',

 },

 },

 activeIcon: {},

 completedIcon: {},

}))

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

275

class StepperBar extends StreamlitComponentBase {

 state = { activeStep: 0, steps: [] }

 componentDidMount() {

 this.setState((prev, state) => ({

 steps: this.props.args.steps,

 activeStep: this.props.args.default,

 }))

 }

 onClick = (index) => {

 const { activeStep } = this.state

 if (index == activeStep + 1) {

 this.setState(

 (prev, state) => ({

 activeStep: activeStep + 1,

 }),

 () => Streamlit.setComponentValue(this.state.

activeStep)

)

 } else if (index < activeStep) {

 this.setState(

 (prev, state) => ({

 activeStep: index,

 }),

 () => Streamlit.setComponentValue(this.state.

activeStep)

)

 }

 }

 getLabelStyle = (index) => {

 const { activeStep } = this.state

 const style = {}

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

276

 if (index == activeStep) {

 style.color = '#f63366'

 style.fontStyle = 'italic'

 } else if (index < activeStep) {

 style.color = '#f63366'

 style.fontWeight = 'bold'

 } else {

 style.color = 'grey'

 }

 return style

 }

 render = () => {

 let { classes } = this.props

 const { activeStep } = this.state

 const steps = this.state.steps

 return (

 <div className={classes.root}>

 <Stepper

 activeStep={activeStep}

 alternativeLabel

 className={classes.root}

 >

 {steps.map((label, index) => (

 <Step key={label} onClick={() => this.

onClick(index)}>

 <StepLabel

 StepIconProps={{

 classes: {

 cursor: 'pointer',

 root: classes.icon,

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

277

 active: classes.activeIcon,

 completed: classes.completedIcon,

 },

 }}

 >

 <p style={this.getLabelStyle(index)}>{label}</p>

 </StepLabel>

 </Step>

))}

 </Stepper>

 </div>

)

 }

}

export default withStreamlitConnection(withStyles(styles)

(StepperBar))

Listing 10-16. StepperBar/__init__.py

import os

import streamlit.components.v1 as components

from streamlit.components.v1.components import CustomComponent

from typing import List

from extra_streamlit_components import IS_RELEASE

if IS_RELEASE:

 absolute_path = os.path.dirname(os.path.abspath(__file__))

 build_path = os.path.join(absolute_path, 'frontend/build')

 _component_func = components.declare_component('stepper_

bar', path=build_path)

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

278

else:

 _component_func = components.declare_component('stepper_

bar', url='http://localhost:3001')

def stepper_bar(steps: List[str]) -> CustomComponent:

 component_value = _component_func(steps=steps, default=0)

 return component_value

10.4.2. Bouncing Image

This component provides zooming animations for an image with a

bouncing effect. It can be useful during loading moments or as a splash

screen. While it may not be a frequently used component, when needed,

parameters like animation duration, control switches, and dimensions

are essential for its functionality, as seen in Listing 10-17. The ReactJS side

is slightly more complex than the Python side, as it manages animation

cycles and reports the widget's state back to Streamlit with each cycle.

Although JavaScript is not the primary focus of this book, Listing 10-18

should be relatively straightforward to understand. The final result will

resemble something like Figure 10-10.

Listing 10-17. BouncingImage/__init__.py

import os

import streamlit.components.v1 as components

from extra_streamlit_components import IS_RELEASE

if IS_RELEASE:

 absolute_path = os.path.dirname(os.path.abspath(__file__))

 build_path = os.path.join(absolute_path, 'frontend/build')

 _component_func = components.declare_component('bouncing_

image', path=build_path)

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

279

else:

 _component_func = components.declare_component('bouncing_

image', url='http://localhost:3001')

def bouncing_image(image_source: str, animate: bool, animation_

time: int, height: float, width: float):

 _component_func(image=image_source, animate=animate,

animation_time=animation_time, height=height, width=width)

Listing 10-18. BouncingImage/frontend/src/BouncingImage.jsx

import {

 Streamlit,

 StreamlitComponentBase,

 withStreamlitConnection,

} from 'streamlit-component-lib'

import React from 'react'

import { withStyles, createStyles } from '@material-ui/

core/styles'

import Grow from '@material-ui/core/Grow'

import CardMedia from '@material-ui/core/CardMedia'

const styles = createStyles((theme) => ({

 root: {

 height: 180,

 },

 container: {

 display: 'flex',

 },

 paper: {

 margin: 1,

 },

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

280

 svg: {

 width: 100,

 height: 100,

 },

 polygon: {

 fill: 'white',

 stroke: 'red',

 strokeWidth: 1,

 },

}))

class BouncingImage extends StreamlitComponentBase {

 state = {

 animationTimeRoundTrip: 1750,

 isAnimating: true,

 keepAnimating: false,

 }

 constructor(props) {

 super(props)

 }

 componentDidMount() {

 const { animation_time, animate } = this.props.args

 Streamlit.setComponentValue(animate)

 this.setState(

 () => ({

 animationTimeRoundTrip: animation_time,

 keepAnimating: animate,

 }),

 () =>

 setInterval(

 () =>

 this.state.keepAnimating &&

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

281

 this.setState(

 () => ({

 isAnimating:

 !this.state.isAnimating && this.state.

keepAnimating,

 }),

 () => Streamlit.setComponentValue(this.state.

keepAnimating)

),

 this.state.animationTimeRoundTrip / 2

)

)

 }

 render = () => {

 const isAnimating = this.state.isAnimating

 let {

 classes,

 args: { image, height, width },

 } = this.props

 return (

 <div className={classes.root}>

 <div className={classes.container}>

 <Grow

 in={isAnimating}

 style={{ transformOrigin: '0 0 0' }}

 {...(isAnimating

 ? { timeout: this.state.

animationTimeRoundTrip / 2 }

 : {})}

 >

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

282

 <CardMedia image={image} style={{ height, width }} />

 </Grow>

 </div>

 </div>

)

 }

 }

export default withStreamlitConnection(withStyles(styles)

(BouncingImage))

Figure 10-10. Bouncing image demo (a snapshot from the zoom
animation)

10.4.3. Tab Bar

Instead of using a Streamlit column widget to host multiple buttons that act

as a tab bar, you can leverage this custom component. It organizes the title,

description, and ID of each button in a clean and structured way. Additionally,

it provides a horizontal scroll view when the tabs exceed the window's width,

ensuring a seamless user experience. Figures 10-11 and 10-12 demonstrate

the behavior when a tab button is clicked and the resulting output in

Streamlit. To create the tabs, you need to pass a list of specific Python objects,

as shown in Listing 10-20. These objects will then be converted into JSON and

processed by the TypeScript ReactJS component in Listing 10-19.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

283

Listing 10-19. TabBar/frontend/src/TabBar.tsx

import {

 Streamlit,

 StreamlitComponentBase,

 withStreamlitConnection,

} from 'streamlit-component-lib'

import React, { ComponentProps, ReactNode } from 'react'

import ScrollMenu from 'react-horizontal-scrolling-menu'

interface State {

 numClicks: number

 selectedId: number

}

interface MenuItem {

 id: number

 title: string

 description: string

}

class TabBar extends StreamlitComponentBase<State> {

public state = { numClicks: 0, selectedId: 1, list: [] }

 constructor(props: ComponentProps<any>) {

 super(props)

 this.state.list = this.props.args['data']

 this.state.selectedId = this.props.args['selectedId']

 }

 MenuItem = ({ item, selectedId }: { item: MenuItem;

selectedId: number }) => {

 return (

 <div className={'menu-item ${selectedId == item.id ?

"active" : ""}'}>

 <div>{item.title}</div>

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

284

 <div style={{ fontWeight: 'normal', fontStyle:

'italic' }}>

 {item.description}

 </div>

 </div>

)

 }

 Menu(list: Array<MenuItem>, selectedId: number) {

 return list.map((item) => (

 <this.MenuItem item={item} selectedId={selectedId}

key={item.id} />

))

 }

 Arrow = ({ text, className }: { text: string; className:

string }) => {

 return <div className={className}>{text}</div>

 }

 ArrowLeft = this.Arrow({ text: '<', className:

'arrow-prev' })

 ArrowRight = this.Arrow({ text: '>', className:

'arrow-next' })

 public render = (): ReactNode => {

 return (

 <div>

 <ScrollMenu

 alignCenter={false}

 data={this.Menu(this.state.list, this.state.

selectedId)}

 wheel={true}

 scrollToSelected={true}

 selected={'${this.state.selectedId}'}

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

285

 onSelect={this.onSelect}

 />

 <hr

 style={{

 borderColor: 'var(--streamlit-primary-color) ',

 }}

 />

 </div>

)

 }

 onSelect = (id: any) => {

 this.setState(

 (state, props) => {

 return { selectedId: id }

 },

 () => Streamlit.setComponentValue(id)

)

 }

}

export default withStreamlitConnection(TabBar)

Listing 10-20. TabBar/__init__.py

import os

import streamlit.components.v1 as components

from dataclasses import dataclass

from typing import List

from extra_streamlit_components import IS_RELEASE

if IS_RELEASE:

 absolute_path = os.path.dirname(os.path.abspath(__file__))

 build_path = os.path.join(absolute_path, 'frontend/build')

 _component_func = components.declare_component('tab_bar',

path=build_path)

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

286

else:

 _component_func = components.declare_component('tab_bar',

url='http://localhost:3001')

@dataclass(frozen=True, order=True, unsafe_hash=True)

class TabBarItemData:

 id: int

 title: str

 description: str

 def to_dict(self):

 return {'id': self.id, 'title': self.title,

'description': self.description}

def tab_bar(data: List[TabBarItemData], default=None, return_

type=str, key=None):

 data = list(map(lambda item: item.to_dict(), data))

 component_value = _component_func(data=data,

selectedId=default, key=key, default=default)

 try:

 if return_type == str:

 return str(component_value)

 elif return_type == int:

 return int(component_value)

 elif return_type == float:

 return float(component_value)

 except:

 return component_value

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

287

Figure 10-11. Tab bar with first element selected

Figure 10-12. Tab bar with first element selected

10.4.4. Cookie Manager

This concept was introduced in the previous chapter as a black box

that simply stores data on the client browser side. However, the Cookie

Manager is more than just a custom component; it also serves as a Python

service. It handles data management in a Pythonic context, with CRUD

operations on a ReactJS-based component. If you are a web developer,

you are likely familiar with setting cookies on the client side, which is

straightforward. Fortunately, in Streamlit, we can write both server-side

and client-side code within the same script. By creating a React custom

component, we can execute it on the browser and set it up to control

cookies on the client’s side, as shown in Figure 10-13.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

288

Figure 10-13. Using Streamlit to control client-side data

By leveraging the knowledge introduced in this chapter, we can

establish bidirectional communication between Streamlit's server-side

and the custom ReactJS component running on the client's browser. This

enables us to instruct the component to gather, delete, or add cookies on

the browser and even listen for any return values. Starting with the ReactJS

side, as shown in Listing 10-21, we first read the expected arguments, such

as the required operation and the data to act on. Based on these inputs,

we perform the necessary actions on the cookies using the npm package

universal-cookie, and finally, we send back a response indicating the

status of the operation.

On the Python side, Listing 10-22 encapsulates the entire

communication method with the browser's component. It also stores all

cookies in memory for the user once initialized to reduce network traffic.

However, if the class's constructor is not cached after the initial run, it will

not provide any added value, as it will be executed each time Streamlit

reruns. Therefore, it is recommended to use the snippet in Listing 10-23

when implementing the Cookie Manager. Figure 10-14 demonstrates this

custom component in action.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

289

Listing 10-21. CookieManager/frontend/src/CookieManager.tsx

import {

 Streamlit,

 ComponentProps,

 withStreamlitConnection,

} from 'streamlit-component-lib'

import React, { useEffect, useState } from 'react'

import Cookies from 'universal-cookie'

let last_output = null

const cookies = new Cookies()

const CookieManager = (props: ComponentProps) => {

 const setCookie = (cookie, value, expires_at) => {

 cookies.set(cookie, value, {

 path: '/',

 samesite: 'strict',

 expires: new Date(expires_at),

 })

 return true

 }

 const getCookie = (cookie) => {

 const value = cookies.get(cookie)

 return value

 }

 const deleteCookie = (cookie) => {

 cookies.remove(cookie, { path: '/', samesite: 'strict' })

 return true

 }

 const getAllCookies = () => {

 return cookies.getAll()

 }

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

290

 const { args } = props

 const method = args['method']

 const cookie = args['cookie']

 const value = args['value']

 const expires_at = args['expires_at']

 let output = null

 switch (method) {

 case 'set':

 output = setCookie(cookie, value, expires_at)

 break

 case 'get':

 output = getCookie(cookie)

 break

 case 'getAll':

 output = getAllCookies()

 break

 case 'delete':

 output = deleteCookie(cookie)

 break

 default:

 break

 }

 if (output && JSON.stringify(last_output) != JSON.

stringify(output)) {

 last_output = output

 Streamlit.setComponentValue(output)

 Streamlit.setComponentReady()

 }

 useEffect(() => Streamlit.setFrameHeight())

 return <div></div>

}

export default withStreamlitConnection(CookieManager)

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

291

Listing 10-22. CookieManager/__init__.py

import os

import streamlit.components.v1 as components

import datetime

from extra_streamlit_components import IS_RELEASE

if IS_RELEASE:

 absolute_path = os.path.dirname(os.path.abspath(__file__))

 build_path = os.path.join(absolute_path, 'frontend/build')

 _component_func = components.declare_component('cookie_

manager', path=build_path)

else:

 _component_func = components.declare_component('cookie_

manager',

 url='http://localhost:3001')

class CookieManager:

 def __init__(self, key='init'):

 self.cookie_manager = _component_func

 self.cookies = self.cookie_manager(method='getAll',

key=key, default={})

 def get(self, cookie: str):

 return self.cookies.get(cookie)

 def set(self, cookie, val,

 expires_at=datetime.datetime.now() + datetime.

timedelta(days=1), key='set'):

 if cookie is None or cookie == '':

 return

 expires_at = expires_at.isoformat()

 did_add = self.cookie_manager(method='set',

cookie=cookie, value=val, expires_at=expires_at, key=key,

default=False)

 if did_add:

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

292

 self.cookies[cookie] = val

 def delete(self, cookie, key='delete'):

 if cookie is None or cookie == '':

 return

 did_add = self.cookie_manager(method='delete',

cookie=cookie, key=key, default=False)

 if did_add:

 del self.cookies[cookie]

 def get_all(self, key='get_all'):

 self.cookies = self.cookie_manager(method='getAll',

key=key, default={})

 return self.cookies

Listing 10-23. How to initialize and use Cookie Manager

@st.cache_resource

def get_manager():

 return stx.CookieManager()

cookie_manager = get_manager()

Figure 10-14. Cookie Manager demo from Extra-Streamlit-Components

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

293

10.5. Summary

As you reach the end of this chapter, you now possess the knowledge

needed to create innovative and exciting custom components for

Streamlit. By using a simplified version of the ReactJS template and

referring to online resources, you can not only replicate ReactJS’s Material

UI views in Streamlit but also control browser functionalities to integrate a

native web application UX into your app. This chapter also covered how to

customize various aspects of the Streamlit user interface, adding versatility

and uniqueness to your application. The techniques shared in building

this library can be scaled and adapted by any developer for a wide range of

purposes. Lastly, it is important to remember that no component reaches

its full potential without being shared with the open source community,

where it can be improved iteratively with feedback and suggestions from

fellow developers.

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

295© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_11

CHAPTER 11

Streamlit Use Cases

In this chapter, we will explore several real-world use cases of Streamlit,

including applications in data visualization, real-time dashboards, and

time-series analysis. We will also demonstrate how to interface Streamlit

applications with external subsystems such as Arduino microcontrollers,

infrared temperature sensors, and sonar modules. By integrating with

physical devices and peripherals, Streamlit can be extended beyond digital

dashboards to support embedded systems and IoT applications. For

example, we could develop an operations dashboard to remotely monitor

a building’s temperature or control a valve motor on a factory line. The

possibilities are virtually limitless. As the culmination of the concepts

covered throughout this book, the final section of this chapter will guide

readers through the development of an advanced machine learning

application that ties together many of the techniques discussed previously.

11.1. Dashboards and Real-Time
Applications

A small yet invaluable niche within web applications consists of

dashboards—whether or not they interface with real-time devices.

Examples include meteorological applications that report live weather

data, or control panels that allow users to operate motors with real-time

feedback. The possibilities are vast, and the utility, unmatched. Thanks

https://doi.org/10.1007/979-8-8688-1826-4_11#DOI

296

to Streamlit’s versatility—particularly in handling data visualizations and

dynamic placeholders—we are well-equipped to build such applications.

In the following sections, we will examine two representative examples

from this category.

11.1.1. Temperature Data Recorder Application

Given the need for real-time insights into physical parameters, numerous

entities—including energy firms, research institutions, and meteorological

departments—are rapidly adopting SCADA systems, often at exorbitant

costs, to enhance data accessibility. While large corporations can afford to

allocate significant budgets for such systems, smaller enterprises or private

individuals may lack the same financial resources. Fortunately, they

can develop cost-effective alternatives using Arduino microcontrollers,

hobbyist-grade peripherals, and, most importantly, Streamlit to create

intuitive dashboards and control systems.

In this section, we will demonstrate the implementation of a basic

temperature data recording system. Specifically, an MLX90614 infrared

thermometer will be connected to an Arduino UNO microcontroller

to sample ambient temperature, as illustrated in Figure 11-1. Before

uploading the measurement code to the microcontroller, you must install

the infrared thermometer's library Adafruit_MLX90614 within the Arduino

IDE, as shown in Figure 11-2. Once installed, you can upload the code

provided in Listing 11-1 to the microcontroller via a USB connection. The

corresponding COM port used for interfacing can also be determined

through the Arduino IDE.

CHAPTER 11 STREAMLIT USE CASES

297

Figure 11-1. Arduino microcontroller and infrared thermometer
wiring schematic [19]

Figure 11-2. Arduino IDE with library manager

CHAPTER 11 STREAMLIT USE CASES

298

Listing 11-1. Arduino_temperature_data_recorder.ino

#include <Wire.h>

#include <Adafruit_MLX90614.h> // Import thermometer library

Adafruit_MLX90614 mlx = Adafruit_MLX90614(); // Specify

thermometer type

void setup() {

 Serial.begin(9600);

 mlx.begin(); // Initialize temperature sensor

}

void loop() {

 Serial.println(mlx.readAmbientTempC()); // Read and

transfer temperature data

 delay(1000);

}

The microcontroller will transmit data to the Streamlit application

via a serial interface, using the Python library pySerial, as demonstrated

in Listing 11-2. Ensure that the correct COM port is specified when

initializing the serial client in your Python script. The Streamlit application

will function as a data logger, allowing the user to set an end date and time

up to which temperature readings should be recorded. Once initiated, the

application will continuously read and visualize the temperature data from

the microcontroller at a frequency of 1 Hz, controlled by the time.sleep

function. Upon reaching the specified recording end time, all collected

readings will be presented in a table and made available for download, as

illustrated in Figure 11-3.

Listing 11-2. temperature_data_recorder_app.py

import serial

import time

import streamlit as st

import plotly.graph_objects as go

CHAPTER 11 STREAMLIT USE CASES

299

import plotly.express as px

from datetime import datetime

import pandas as pd

Plotly temperature gauge visualization function

def temperature_gauge(temperature, previous_temperature, gauge_

placeholder):

 fig = go.Figure(go.Indicator(

 domain = {'x': [0, 1], 'y': [0, 1]},

 value = temperature,

 mode = 'gauge+number+delta',

 title = {'text': 'Temperature (C) '},

 delta = {'reference': previous_temperature},

 gauge = {'axis': {'range': [0, 40]}}))

 fig.update_layout(

 width=300,

)

 gauge_placeholder.write(fig)

Plotly time-series temperature visualization

def temperature_chart(df, chart_placeholder):

 fig = px.line(df, x='Time', y='Temperature (C)')

 chart_placeholder.write(fig)

if __name__ == '__main__':

 st.sidebar.title('Temperature Data Recorder')

 recording = False

 # End date and time form for temperature recording

 with st.sidebar.form('form_1'):

 col1, col2, = st.columns(2)

 with col1:

 end_date = st.date_input('Recording end date')

 with col2:

 end_time = st.time_input('Recording end time')

CHAPTER 11 STREAMLIT USE CASES

300

 if st.form_submit_button('Start recording'):

 recording = True

 arduino = serial.Serial(port='COM4', baudrate=9600)

 previous_temperature = 0

 temperature_record = pd.DataFrame(columns=['Time','Temperat

ure (C)'])

 gauge_placeholder = st.sidebar.empty()

 chart_placeholder = st.empty()

 # Recording data while current date and time is less than

specified end

 while recording and (datetime.now() < datetime.combine(end_

date, end_time)):

 current_time = datetime.now().strftime('%H:%M:%S')

 temperature = round(float(arduino.readline().decode().

strip('\r\n')),1)

 temperature_record.loc[len(temperature_record),

 ['Time','Temperature (C)']] = [current_time, temperature]

 temperature_gauge(temperature, previous_temperature,

gauge_placeholder)

 temperature_chart(temperature_record, chart_placeholder)

 time.sleep(1)

 previous_temperature = temperature

 # Display and download temperature date if end date and

time exceeded

 if recording and (datetime.now() > datetime.combine

(end_date, end_time)):

 arduino.close()

 if len(temperature_record) > 0:

 st.write(temperature_record)

 st.download_button(

 label='Download data',

CHAPTER 11 STREAMLIT USE CASES

301

 data=temperature_record.to_csv(index=False).

encode('utf-8'),

 file_name='temperature_record.csv',

 mime='text/csv',

)

 else:

 st.warning('Please select a future end date and time')

Figure 11-3. Output of Listing 11-2

11.1.2. Motor Command and Control Application

Electric motors play a critical role in a wide range of industrial and non-

industrial applications—from operating control valves on a factory floor

to adjusting flight surfaces on a remote-controlled aircraft. Given their

versatility, developers frequently require dashboards that enable both

motor control and performance visualization, often through the use

of gauges.

CHAPTER 11 STREAMLIT USE CASES

302

In this example, we will control the speed and direction of a motor

using a USB joystick and an Arduino UNO microcontroller. The motor

selected for this demonstration is the SM-S3317SR, a compact continuous

servo motor, connected as illustrated in Figure 11-4. Both the joystick

and the microcontroller will interface with the computer hosting the

Streamlit server via USB. To begin, upload the sketch in Listing 11-3 to the

microcontroller using the Arduino IDE. This script is designed to receive

speed and direction commands from the Streamlit application over a serial

interface and execute them accordingly.

Listing 11-3. Arduino_motor_control.ino

#include <Servo.h>

Servo motor;

String input;

int target_speed;

void setup() {

 motor.attach(3);

 Serial.begin(9600);

}

void loop()

{

 if(Serial.available()) // Check if data available in

serial port

 {

 input = Serial.readStringUntil('\n'); // Read data

until newline

 target_speed = input.toInt();

 motor.write(target_speed); // Move motor at target speed

 }

}

CHAPTER 11 STREAMLIT USE CASES

303

Figure 11-4. Arduino microcontroller and servo motor wiring
schematic [20]

To begin, you can use either the Arduino IDE or your computer’s

device manager to identify the serial COM port associated with the

microcontroller. Make sure to use the same port when creating the serial

client in your Streamlit application, utilizing the Python library pySerial

as shown in Listing 11-4. In this script, we will also integrate the Pygame

library to interface with the joystick controller. The forward axis values

of the joystick will control the speed and direction of the servo motor.

Additionally, one of the joystick buttons will function as a kill switch to

immediately stop the motor. To continuously update the motor’s target

speed, a Plotly gauge visualization will be displayed within a Streamlit

placeholder, as demonstrated in Figure 11-5. This approach can be easily

scaled to connect and simultaneously visualize and control other motors,

actuators, sensors, and peripherals, making it ideal for more complex

systems.

Please note that using Pygame to interface with a joystick is not

recommended for applications without a display, because Pygame requires

initializing a video system, which can lead to errors or unnecessary

overhead. For headless setups or applications running on devices without a

screen, it is better to use a modern, lightweight, and cross-platform library

like hidapi for direct controller input.

CHAPTER 11 STREAMLIT USE CASES

304

Listing 11-4. motor_control_app.py

import serial

import pygame as pg

import streamlit as st

import plotly.graph_objects as go

import time

Plotly speed gauge visualization function

def speed_gauge(target_speed, placeholder):

 fig = go.Figure(go.Indicator(

 domain = {'x': [0, 1], 'y': [0, 1]},

 value = int(target_speed)-90,

 mode = 'gauge+number+delta',

 title = {'text': 'Speed'},

 delta = {'reference': 0},

 gauge = {'axis': {'range': [-30, 30]}}))

 placeholder.write(fig)

if __name__ == '__main__':

 st.sidebar.title('Motor Command & Control')

 info_bar = st.empty()

 speedometer = st.empty()

 # Create Arduino serial client

 arduino = serial.Serial(port='COM5', baudrate=9600)

 # Create PyGame client

 pg.init()

 # Create a list of available joysticks to initialize

 joysticks = [pg.joystick.Joystick(x) for x in range(pg.

joystick.get_count())]

 for joystick in joysticks:

 joystick.init()

 if st.sidebar.button('Start motor'):

 info_bar.info('Motor started')

CHAPTER 11 STREAMLIT USE CASES

305

 # Connect to Arduino

 try:

 arduino.open()

 except Exception as e:

 print(e)

 if st.sidebar.button('Stop motor'):

 info_bar.warning('Motor stopped')

 arduino.write(bytes('90' +'\n', 'utf-8'))

 arduino.close()

 pg.quit()

 while True:

 # Report all joystick events

 for event in pg.event.get():

 print(event)

 for joystick in joysticks:

 if joystick.get_id() == 0: # Access the first

connected joystick

 axes = joystick.get_numaxes()

 for x in range(axes): # Check all inputs of

the joystick

 target_speed = str(int(((joystick.get_

axis(1)*-1)*30 + 90)))

 press = joystick.get_button(0)

 time.sleep(0.01)

 arduino.flushInput()

 arduino.flushOutput()

 arduino.flush()

 arduino.write(bytes(target_speed +'\n', 'utf-8')) #

Send speed to Arduino

 speed_gauge(target_speed, speedometer)

 # Disconnect Arduino if joystick button pressed

CHAPTER 11 STREAMLIT USE CASES

306

 if press == 1:

 try:

 arduino.write(bytes('90' +'\n', 'utf-8'))

 arduino.close()

 except Exception as e:

 print(e)

 break

 # Disconnect Arduino if 'Stop motor' button pressed

 info_bar.warning('Motor stopped')

 try:

 arduino.write(bytes('90' +'\n', 'utf-8'))

 arduino.close()

 except Exception as e:

 print(e)

 pg.quit()

Figure 11-5. Output of Listing 11-4

CHAPTER 11 STREAMLIT USE CASES

307

11.2. Time-Series Applications

Time-series data is one of the most commonly used forms of data, as it is

indexed by time, date, or both. Examples include temperature readings

from a thermostat or signals from a SCADA system. However, time-

series datasets come with their own set of challenges, such as filtering,

aggregating, and visualizing the data effectively. Fortunately, Streamlit

provides the tools to easily build applications that can address these needs,

enabling developers to create powerful solutions for handling time-series

data, as demonstrated in the following sections.

11.2.1. Date-Time Filter Application

Filtering data based on a time range is a common function in nearly every

data science application. Often, you may only need a subset of the data,

which can be easily achieved by selecting a leading or trailing date-time to

truncate the dataset. However, timestamps often come in various formats,

and sometimes the date and time are split into separate columns, making

it challenging to create a one-size-fits-all solution.

In this example, we will build a date-time filter for one of the most

widely used date-time formats: DD/MM/YYYY HH:MM, with the date in

the first column and arbitrary measurements in the second column.

Using Streamlit’s st.slider, we will allow users to truncate the leading

and trailing edges of the time-series data. The filtered data will then

be visualized using a Plotly line chart, as shown in Listing 11-5 and

Figure 11-6. This application can be adapted to other date-time formats by

simply adjusting the timestamp format in the code.

CHAPTER 11 STREAMLIT USE CASES

308

Listing 11-5. datetime_filter.py

import pandas as pd

import streamlit as st

from datetime import datetime

import plotly.express as px

Streamlit slider function used to truncate leading and

trailing edges of dataset

def datetime_filter(datetime_col, df, format):

 lead, trail = st.sidebar.slider('Date-time filter', 0,

len(df)-1, [0,len(df)-1], 1)

 df[datetime_col] = pd.to_datetime(df[datetime_col],

format=format)

 sd = df.loc[lead][datetime_col].strftime('%d %b %Y,

%I:%M%p')

 ed = df.loc[trail][datetime_col].strftime('%d %b %Y,

%I:%M%p')

 st.sidebar.info(f'Start: **{sd}**')

 st.sidebar.info(f'End: **{ed}**')

 filtered_df = df.iloc[lead:trail+1][:]

 return filtered_df

Plotly time-series visualization function

def timeseries_chart(df, datetime_col, value_col):

 df[datetime_col] = df[datetime_col].dt.strftime(' %H:%M on

%B %-d, %Y')

 df = df.sort_values(by=datetime_col)

 fig = px.line(df, x=datetime_col, y=value_col,

 hover_data={datetime_col: '|%d/%m/%Y %H:%M'})

 st.write(fig)

if __name__ == '__main__':

 st.sidebar.title('Date-time Filter')

CHAPTER 11 STREAMLIT USE CASES

309

 uploaded_file = st.sidebar.file_uploader('Upload a time-

series dataset')

 if uploaded_file is not None:

 df = pd.read_csv(uploaded_file)

 df_filtered = datetime_filter('datetime', df,

'%d/%m/%Y %H:%M')

 st.header('Filtered Chart')

 timeseries_chart(df_filtered, 'datetime', 'value')

 st.download_button(

 label='Download filtered data',

 data=df_filtered.to_csv(index=False).encode('utf-8'),

 file_name='filtered_data.csv',

 mime='text/csv',

)

Figure 11-6. Output of Listing 11-5

CHAPTER 11 STREAMLIT USE CASES

310

11.2.2. Time-Series Heatmap Application

Another commonly used form of time-series data visualization is the

monthly-hourly heatmap. These visualizations allow data points to be

grouped into averages for each hour of each month, providing valuable

insights for time-series analytics. For example, you might want to track the

average temperature over the course of a year or measure website traffic

within a one-year period.

In this application, we begin by parsing our date-time column

(formatted as DD/MM/YYYY HH:MM) into two separate columns: one for

the month (e.g., January) and another for the hour (e.g., 12AM). Using

Pandas’s groupby command, we aggregate the data into monthly and

hourly averages across the entire dataset. Finally, we visualize the

aggregated data using Plotly’s heatmap in our Streamlit application, as

shown in Listing 11-6 and Figure 11-7.

Listing 11-6. timeseries_heatmap.py

import pandas as pd

import streamlit as st

from datetime import datetime

import plotly.express as px

Month-hours dictionary generator

def month_hours_dict():

 month_hours = {}

 month_names = ['January','February','March','April','May',

 'June','July','August','September','October','November','D

ecember']

 for month_name in month_names:

 month = {month_name: {'12AM': None, '01AM': None,

'02AM': None,

CHAPTER 11 STREAMLIT USE CASES

311

 '03AM': None, '04AM': None, '05AM': None,

 06AM': None, '07AM': None, '08AM': None,

 '09AM': None, '10AM': None, '11AM': None,

 '12PM': None, '01PM': None, '02PM': None,

 '03PM': None, '04PM': None, '05PM': None,

 '06PM': None, '07PM': None, '08PM': None,

 '09PM': None, '10PM': None, '11PM': None}}

 month_hours.update(month)

 return month_hours

Aggregating data into monthly-hourly averages

def aggregate(df, datetime_col, format):

 df[datetime_col] = pd.to_datetime(df[datetime_col],

format='%d/%m/%Y %H:%M')

 for i in range(0,len(df)):

 df.loc[i,'Month'] = df.loc[i][datetime_col].

strftime('%B')

 df.loc[i,'Hour'] = df.loc[i][datetime_col].

strftime('%I%p')

 return df.groupby(['Month','Hour'],sort=False,as_

index=False).mean().round(4)

Plotly heatmap visualization

def heatmap(df, month_hours, value_col):

 for i in range(len(df)):

 month_hours[df.iloc[i][0]][df.iloc[i][1]] = df.loc[i]

[value_col]

 data_rows = list(month_hours.values())

 data = []

 for i in range(0,len(data_rows)):

 data.append(list(data_rows[i].values()))

 fig = px.imshow(data,

CHAPTER 11 STREAMLIT USE CASES

312

 labels=dict(x='Hour', y='Month',

color='Value'),

 x=['12AM','01AM','02AM','03AM'

,'04AM','05AM','06AM','07AM',

 '08AM','09AM','10AM','11AM',

 '12PM','01PM','02PM','03PM','0

4PM','05PM','06PM','07PM',

 '08PM','09PM','10PM','11PM'],

 y=['January','February','March'

,'April','May','June','July',

 'August','September','October',

'November','December']

)

 st.write(fig)

if __name__ == '__main__':

 st.sidebar.title('Time-series Heatmap')

 uploaded_file = st.sidebar.file_uploader('Upload a time-

series dataset')

 if uploaded_file is not None:

 month_hours = month_hours_dict()

 df = pd.read_csv(uploaded_file)

 df_aggregate = aggregate(df, 'datetime',

'%d/%m/%Y %H:%M')

 heatmap(df_aggregate, month_hours, 'value')

CHAPTER 11 STREAMLIT USE CASES

313

Figure 11-7. Output of Listing 11-6

11.2.3. Time Synchronization Application

One of the classical challenges when working with time-series data is the lack

of synchronization between datasets. Even if two datasets represent the same

information at the same moment, they might have different timestamps,

leading to a variety of unintended problems. These discrepancies can arise

from several factors, such as different time zones—where one zone observes

daylight savings while the other does not—or errors in the SCADA systems

during data recording. Regardless of the cause, it is essential to synchronize

time-series datasets to ensure accurate analysis and interpretation of the data.

To address this issue, a technique known as dynamic time warping (DTW)

can be employed. DTW synchronizes misaligned datasets by applying dynamic

time offsets wherever necessary to maximize the correlation between the two.

The advantage of this method is its ability to adjust time offsets as needed to

achieve the highest possible correlation at each timestamp. Moreover, DTW can

be applied to datasets of varying lengths. The only caveat is that missing values

must be filled in before DTW can be executed without errors.

CHAPTER 11 STREAMLIT USE CASES

314

In this example, we will create a Streamlit application to synchronize a

dataset of power vs. voltage readings, where the voltage data is misaligned

by two hours. As shown in Listing 11-7, we will define the power column

as the reference dataset, which will be used to synchronize the voltage

column, the target dataset. The synchronization function will take the

unsynchronized data (as shown in Figure 11-8) and apply time offsets to

the target's timestamps, resulting in the synchronized data displayed in

Figure 11-9.

Listing 11-7. timeseries_synchronization.py

import numpy as np

import pandas as pd

import streamlit as st

from fastdtw import *

import plotly.express as px

from sklearn.metrics import r2_score

from scipy.spatial.distance import *

Dynamic Time Warping synchronization function

def synchronize(df, datetime_col, reference, target):

 x = np.array(df[reference].fillna(0))

 y = np.array(df[target].fillna(0))

 distance, path = fastdtw(x, y)

 result = [

 [df[datetime_col].iloc[path[i][0]], df[reference].

iloc[path[i][0]], df[target].iloc[path[i][1]]]

 for i in range(len(path))

]

 df_synchronized = pd.DataFrame(result, columns=[datetime_

col, reference, target])

 df_synchronized = df_synchronized.drop_

duplicates(subset=[datetime_col])

CHAPTER 11 STREAMLIT USE CASES

315

 return df_synchronized

Plotly time-series visualization function

def timeseries_chart(df, datetime_col):

 df_columns = list(df)

 df[datetime_col] = pd.to_datetime(df[datetime_

col],format='%d-%m-%y %H:%M')

 df = df.sort_values(by=datetime_col)

 fig = px.line(df, x=datetime_col, y=df_columns,

 hover_data={datetime_col: '|%d-%m-%Y %H:%M'})

 st.write(fig)

if __name__ == '__main__':

 st.sidebar.title('Time-series Synchronization')

 uploaded_file = st.sidebar.file_uploader('Upload a time-

series dataset')

 if uploaded_file is not None:

 df = pd.read_csv(uploaded_file).

dropna(subset=['datetime'])

 df_synchronized = synchronize(df, 'datetime', 'power',

'voltage')

 timeseries_chart(df, 'datetime')

 st.subheader(f'Correlation: {round(r2_

score(df["power"], df["voltage"]), 3)}')

 timeseries_chart(df_synchronized, 'datetime')

 st.subheader(f'Correlation: {round(r2_

score(df_synchronized["power"], df_

synchronized["voltage"]), 3)}')

 st.download_button(

 label='Download synchronized data',

 data=df_synchronized.to_csv(index=False).encode('utf-8'),

 file_name='synchronized_data.csv',

 mime='text/csv')

CHAPTER 11 STREAMLIT USE CASES

316

Figure 11-8. Output of Listing 11-7 (unsynchronized dataset)

Figure 11-9. Output of Listing 11-7 (synchronized dataset)

CHAPTER 11 STREAMLIT USE CASES

317

11.3. Data Management and Machine
Learning Applications

Undoubtedly, one of the most popular use cases for Python-based web

applications is data management and machine learning. This is where

Streamlit truly excels. With its extensive library of widgets for data

wrangling and visualization, Streamlit empowers developers to effortlessly

create powerful data analytics applications.

11.3.1. Data Warehouse Application

In this section, we will outline the foundational components for building

a data warehousing application. While warehousing typically refers to the

structured storage of data, in this case, we will leverage Streamlit to provide

a rich graphical interface for managing databases and tables. Users will be

able to create, read, update, and delete data, and visualize stored data on

demand, all within a single application. With this tool, users can connect

to either a local or remote SQL database and manage their data without

needing to write SQL queries or any code.

For this example, we will use a local PostgreSQL database; however,

you can choose any local or remote SQL database by simply modifying

the database credentials and client configurations as shown in

Listings 11-8 and 11-10. To enhance security, it's recommended to store

your credentials in a local configuration file and ensure that this file is

added to your .gitignore file when pushing to remote repositories. Next,

use Listing 11-9 to define the functions for creating, reading, updating, and

deleting data within your databases and tables. This utility file will also

enable the interactive CRUD table widget, as discussed in Section 4.1, and

allow for data visualization through a line chart.

CHAPTER 11 STREAMLIT USE CASES

318

Listing 11-8. config.py

username = "<username>"

password = "<password>"

port = "<port>"

Listing 11-9. warehouse_utils.py

from sqlalchemy import create_engine, text

import psycopg2

from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT

import pandas as pd

import streamlit as st

from st_aggrid import AgGrid

from st_aggrid.shared import GridUpdateMode

from st_aggrid.grid_options_builder import GridOptionsBuilder

import plotly.express as px

Function to create a new database

def create_database(database_name, connection):

 connection.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)

 cursor = connection.cursor()

 try:

 cursor.execute(f"""CREATE DATABASE {'warehouse_db_' +

database_name} WITH OWNER = postgres ENCODING =

 'UTF8' CONNECTION LIMIT = -1;""")

 cursor.close()

 return True

 except:

 return False

Function to return a list of databases

def read_databases(engine):

 with engine.connect() as conn:

CHAPTER 11 STREAMLIT USE CASES

319

 result = conn.execute(text('SELECT datname FROM pg_

database'))

 result = [x[0].replace('warehouse_db_', '') for x

in result

 if 'warehouse_db_' in x[0]]

 return result

Function to rename a selected database

def update_database(database_name_old, database_name_new,

connection):

 connection.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)

 cursor = connection.cursor()

 try:

 cursor.execute(f"""SELECT pg_terminate_backend (pg_

stat_activity.pid)

 FROM pg_stat_activity WHERE pg_stat_activity.datname =

'{"warehouse_db_" + database_name_old}';""")

 cursor.execute(f"""ALTER DATABASE {'warehouse_db_'

+ database_name_old} RENAME TO {'warehouse_db_' +

database_name_new};""")

 cursor.close()

 return True

 except Exception as e:

 print(e)

Function to delete a selected database

def delete_database(database_name, connection):

 connection.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)

 cursor = connection.cursor()

 try:

 cursor.execute(f"""SELECT pg_terminate_backend (pg_

stat_activity.pid)

CHAPTER 11 STREAMLIT USE CASES

320

 FROM pg_stat_activity WHERE pg_stat_activity.datname =

'{"warehouse_db_" + database_name}';""")

 cursor.execute(f"""DROP DATABASE {'warehouse_db_' +

database_name};""")

 cursor.close()

 return True

 except Exception as e:

 print(e)

Function to create a table in the selected database

def create_table(table_name, table, engine):

 table.to_sql(table_name, engine, index=False, if_

exists='replace', chunksize=1000)

Function to return a list of tables in the selected database

def list_tables(engine):

 with engine.connect() as conn:

 tables = conn.execute(text("""SELECT table_name FROM

information_schema.tables

 WHERE table_schema = 'public' ORDER BY table_

name;""")).fetchall()

 return [x[0] for x in tables]

Function to read the selected table within the selected

database

def read_table(table_name, engine):

 try:

 return pd.read_sql_table(table_name,engine)

 except Exception as e:

 print(e)

Function to delete the selected table within the selected

database

def delete_table(table_name, engine):

 with engine.begin() as conn:

CHAPTER 11 STREAMLIT USE CASES

321

 conn.execute(text(f'DROP TABLE IF EXISTS "{table_name}"'))

Function to render an interactive 'create, read, update and

delete' table

def crud(table_name, engine):

 df = read_table(table_name, engine)

 df = df.fillna('None')

 index = len(df)

 # Initiate the streamlit-aggrid widget

 gb = GridOptionsBuilder.from_dataframe(df)

 gb.configure_side_bar()

 gb.configure_default_column(groupable=True, value=True,

enableRowGroup=True,

 aggFunc='sum', editable=True)

 gb.configure_selection(selection_mode='multiple', use_

checkbox=True)

 gridOptions = gb.build()

 # Insert the dataframe into the widget

 df_new = AgGrid(df,gridOptions=gridOptions,enable_

enterprise_modules=True,

 update_mode=GridUpdateMode.MODEL_CHANGED)

 # Add a new row to the widget

 if st.button('-----------Add a new row-----------'):

 df_new['data'].loc[index,:] = 'None'

 create_table(table_name, df_new['data'], engine)

 st.rerun()

 # Save the dataframe to disk if the widget has been

modified

 if df.equals(df_new['data']) is False:

 create_table(table_name, df_new['data'], engine)

 st.rerun()

 # Remove selected rows from the widget

 if st.button('-----------Remove selected rows-----------'):

CHAPTER 11 STREAMLIT USE CASES

322

 if len(df_new['selected_rows']) > 0:

 exclude = pd.DataFrame(df_new['selected_rows'])

 create_table(table_name, pd.merge(df_new['data'],

exclude, how='outer',

 indicator=True).query('_merge == "left_only"').

drop('_merge', 1), engine)

 st.rerun()

 else:

 st.warning('Please select at least one row')

 # Check for duplicate rows

 if df_new['data'].duplicated().sum() > 0:

 st.warning(f'**Number of duplicate rows:** { df_

new['data'].duplicated().sum()}')

 if st.button('---------Delete duplicates---------'):

 df_new['data'] = df_new['data'].drop_duplicates()

 create_table(table_name, df_new['data'], engine)

 st.rerun()

Function to render a line chart for the selected table

def chart(df, columns):

 if len(columns) > 0:

 fig = px.line(df.sort_index(), df.index, columns)

 st.write(fig)

Finally, you can use Listing 11-10 to render the frontend interface for

your data warehousing application. The output of this script, as shown in

Figures 11-10, 11-11, and 11-12, is divided into three sections:

 1. Database Manager: This section provides the user

with the ability to create, read, rename, and delete

databases.

 2. Table Manager: In this section, the user can upload

a table in CSV format, update it using the interactive

CRUD widget, and delete the table.

CHAPTER 11 STREAMLIT USE CASES

323

 3. Data Visualizer: This section allows the user to

visualize any numeric table by selecting one or

more columns and displaying them within a range-

indexed line chart.

Listing 11-10. warehouse_app.py

from warehouse_utils import *

import config # Credentials file

PostgreSQL credentials

username = config.username

password = config.password

port = config.port

if __name__ == '__main__':

 # Creating PostgreSQL client

 connection = psycopg2.connect(f"user={username}

password='{password}'")

 engine = create_engine(

 f'postgresql://{username}:{password}@

localhost:{port}/')

 st.title('Data Warehouse')

 st.write('___')

 st.subheader('Database Manager')

 col1, col2 = st.columns(2)

 with col1:

 st.write('**Create database**')

 database_name = st.text_input('Please enter

database name')

 if st.button('Create database'):

 status = create_database(database_name, connection)

 if status is True:

 st.success(f'Database **{database_name }**

created successfully')

CHAPTER 11 STREAMLIT USE CASES

324

 elif status is False:

 st.warning('Database with this name already exists')

 st.write('**Rename database**')

 database_name_old = st.selectbox('Please select a

database to rename',

 read_databases(engine))

 if database_name_old is not None:

 database_name_new = st.text_input('Please enter new

database name')

 if st.button('Rename database'):

 status = update_database(database_name_old,

database_name_new, connection)

 if status is True:

 st.success(f'Database renamed from

{database_name_old} to **{database_

name_new}**')

 with col2:

 st.write('**List databases**')

 database_selection = st.selectbox('Databases

list',read_databases(engine))

 st.write('**Delete database**')

 database_selection = st.selectbox('Please select a

database to delete',

 read_databases(engine))

 if database_selection is not None:

 if st.button('Delete database'):

 status = delete_database(database_selection,

connection)

 if status is True:

 st.success(f'Database **{database_

selection}** deleted successfully')

CHAPTER 11 STREAMLIT USE CASES

325

 st.write('___')

 st.subheader('Table Manager')

 st.write('**Select database**')

 database_selection = st.selectbox('Please select a

database',

 read_databases(engine))

 if database_selection is not None:

 engine_database = create_engine(f'postgresql://

{username}:{password}@localhost:{port}/{'warehouse_db_'

+ database_selection}')

 col1_2, col2_2 = st.columns(2)

 with col1_2:

 st.write('**Create table**')

 table = st.file_uploader('Please upload data')

 if table is not None:

 table = pd.read_csv(table)

 table_name = st.text_input('Please enter

table name')

 if st.button('Save table'):

 if len(table_name) > 0:

 create_table(table_name, table, engine_

database)

 st.success(f'**{table_name}** saved to

database')

 else:

 st.warning('Please enter table name')

 with col2_2:

 st.write('**Delete table**')

 table_selection = st.selectbox('Please select table

to delete',

 list_tables(engine_database))

CHAPTER 11 STREAMLIT USE CASES

326

 if table_selection is not None:

 if st.button('Delete table'):

 delete_table(table_selection, engine_

database)

 st.success(f'**{table_selection}** deleted

successfully')

 st.write('**Read and update table**')

 table_selection = st.selectbox('Please select table to

reade and update',

 list_tables(engine_database))

 if table_selection is not None:

 crud(table_selection, engine_database)

 st.write('___')

 st.subheader('Data Visualizer')

 st.write('**Select database**')

 database_selection = st.selectbox('Please select a database

to visualize',

 read_databases(engine))

 if database_selection is not None:

 engine_database = create_engine(f'postgresql://

{username}:{password}@localhost:{port}/{'warehouse_db_'

+ database_selection}')

 col1_3, col2_3 = st.columns(2)

 with col1_3:

 table_selection = st.selectbox('Please select table

to visualize',

 list_tables(engine_database))

 table = read_table(table_selection, engine_database)

 if table_selection is not None:

 with col2_3:

 columns = st.multiselect('Please select

columns', table.columns)

CHAPTER 11 STREAMLIT USE CASES

327

 table[columns] = table[columns].apply(pd.to_

numeric, errors='coerce')

 chart(table, columns)

Figure 11-10. Output of Listing 11-10

Figure 11-11. Output of Listing 11-10 continued (1)

CHAPTER 11 STREAMLIT USE CASES

328

Figure 11-12. Output of Listing 11-10 continued (2)

11.3.2. Advanced Application Development:
Machine Learning As a Service

The final use case for this chapter is a Machine Learning as a Service

(MLaaS) application. This example will integrate many of the key concepts

covered in this book, showcasing how to combine databases, caching,

session state, user authentication, traffic insights, data visualization,

subpages, modularity, and other features to build an advanced,

production-ready web application in Streamlit.

Before diving into the details, it is important to explain the

functionality of this application. In essence, it will allow users to train

a logistic regression model on an uploaded dataset and then use the

trained model to classify a test dataset. While the core utility might seem

simple, the implementation will leverage the full capabilities of Streamlit,

PostgreSQL, Pandas, Plotly, and other technologies. This use case is also

CHAPTER 11 STREAMLIT USE CASES

329

highly scalable, having been extended to support additional classifiers

such as decision trees, support vector machines, Naive Bayes, and

K-nearest neighbors.

 User Authentication Without a Backend Server

In Chapter 8, we discussed implementing user authentication with a

backend server. However, it is also possible to implement authentication

without a server using the Streamlit component Streamlit-Authenticator.

While Streamlit possesses its own native authentication command st.

login which provides OIDC authentication, the Streamlit-Authenticator

component provides a lightweight local authentication service, with a

whole host of additional features such as

• User registration

• Retrieving a forgotten username

• Resetting a forgotten password

• Authenticating with OAauth2

• Two-factor authorization

Therefore, we will use this component to demo authentication in this

chapter.

With Streamlit-Authenticator, the first step is to create a config.yaml

file that will store your users’ credentials as well as other configuration

parameters for authentication as shown in Listing 11-11. Please note

that plain text passwords will be hashed automatically unless specified

otherwise. Next, you will provide the credentials to the stauth.

Authenticate and create a login widget using the login command as

shown in Listing 11-12. Each time a user enters their plain-text password

(as shown in Figure 11-13), it is hashed and compared to the previously

stored hashed password to authenticate the user.

CHAPTER 11 STREAMLIT USE CASES

https://doi.org/10.1007/979-8-8688-1826-4_8

330

Additionally, you can enable passwordless reauthentication by

using the cookie_expiry_days argument in the stauth.Authenticate

command. This will store a secure JWT (JSON Web Token) on the user's

browser, allowing them to remain authenticated for the specified number

of days before the token expires. You can check the user's authentication

status at any point in your application by accessing st.session_

state['authentication_status']. For further information, please refer

to https://github.com/mkhorasani/Streamlit-Authenticator.

Listing 11-11. config.yaml

cookie:

 expiry_days: 30

 key: # To be filled with any string

 name: # To be filled with any string

credentials:

 usernames:

 jsmith:

 email: jsmith@gmail.com

 failed_login_attempts: 0 # Will be managed automatically

 first_name: John

 last_name: Smith

 logged_in: False # Will be managed automatically

 password: abc # Will be hashed automatically

 roles: # Optional

 - admin

 - editor

 - viewer

 rbriggs:

 email: rbriggs@gmail.com

 failed_login_attempts: 0 # Will be managed automatically

 first_name: Rebecca

 last_name: Briggs

CHAPTER 11 STREAMLIT USE CASES

https://github.com/mkhorasani/Streamlit-Authenticator

331

 logged_in: False # Will be managed automatically

 password: def # Will be hashed automatically

 roles: # Optional

 - viewer

Listing 11-12. Streamlit-Authenticator.py

import streamlit as st

import streamlit_authenticator as stauth

import yaml

from yaml.loader import SafeLoader

with open('../config.yaml') as file:

 config = yaml.load(file, Loader=SafeLoader)

authenticator = stauth.Authenticate(

 config['credentials'],

 config['cookie']['name'],

 config['cookie']['key'],

 config['cookie']['expiry_days']

)

try:

 authenticator.login()

except Exception as e:

 st.error(e)

if st.session_state.get('authentication_status'):

 authenticator.logout()

 st.write(f'Welcome *{st.session_state.get("name")}*')

 st.title('Some content')

elif st.session_state.get('authentication_status') is False:

 st.error('Username/password is incorrect')

elif st.session_state.get('authentication_status') is None:

 st.warning('Please enter your username and password')

CHAPTER 11 STREAMLIT USE CASES

332

Figure 11-13. Output of Listing 11-12

 Utilities Script

Modularizing application development is a good practice, as it helps

organize and streamline the codebase. Commonly used classes, functions,

database connections, and other objects should be relocated to a shared

file, often named Utils.py. In our case, we will place functions for querying

the user-insights table, generating a session ID, creating a file upload

widget, and establishing a PostgreSQL connection within this file, as

shown in Listing 11-13. Moreover, a valuable optimization technique is to

use the st.cache_resource command to cache the database connection

object. This will save a significant amount of time whenever a call is made

to the database, improving the overall performance of the application.

Listing 11-13. Utils.py

import pandas as pd

from sqlalchemy import create_engine, text

import streamlit as st

import uuid

Inserting new row in traffic insights table

CHAPTER 11 STREAMLIT USE CASES

333

def insert_row(session_id, engine):

 with engine.connect() as conn:

 if conn.execute(text(f"SELECT session_id FROM session_state

WHERE session_id = '{session_id}'")).fetchone() is None:

 conn.execute(text(f"INSERT INTO session_state

(session_id) VALUES ('{session_id}')"))

Updating row in insights table

def update_row(column, new_value, session_id, engine):

 with engine.connect() as conn:

 if conn.execute(text(f"SELECT {column} FROM session_

state WHERE session_id = '{session_id}'")).first()[0]

is None:

 conn.execute(text(f"UPDATE session_state SET {column}

= '{new_value}' WHERE session_id = '{session_id}'"))

Session state function

def get_session():

 if 'session_id' not in st.session_state:

 session_id = str(uuid.uuid4())

 session_id = session_id.replace('-', '_')

 session_id = '_id_' + session_id

 st.session_state.session_id = session_id

 return st.session_state.session_id

File uploader function

def file_upload(name):

 uploaded_file = st.sidebar.file_uploader(name, key=name,

 accept_multiple_files=False)

 status = False

 if uploaded_file is not None:

 try:

 uploaded_df = pd.read_csv(uploaded_file)

 status = True

 return status, uploaded_df

CHAPTER 11 STREAMLIT USE CASES

334

 except:

 try:

 uploaded_df = pd.read_excel(uploaded_file)

 status = True

 return status, uploaded_df

 except:

 st.error('Please ensure file is .csv or .xlsx

format and/or

 reupload file')

 return status, None

 else:

 return status, None

@st.cache_resource

def db_engine(username, password, port):

 return create_engine(f'postgresql://{username}:{password}@

localhost:{port}/')

 Config Script

As mentioned in earlier sections, another best practice is to store

credentials in dictionaries within a config.py file as shown in Listing 11-14,

which is then imported and used in your main code. To ensure security,

remember to add the config.py file to your .gitignore file, preventing it

from being pushed to any remote repositories.

Listing 11-14. config.py

Traffic insights database credentials dictionary

database_credentials = {

"username": "<username>",

"password": "<password>",

"port": "<port>"

}

CHAPTER 11 STREAMLIT USE CASES

335

 Main Script

Now that we have covered the logistics, we can start developing the main

script of our application. This script will act as the central hub, connecting

the various pages and handling some housekeeping tasks. As shown in

Listing 11-15, we start by importing the scripts for other pages, following

the approach discussed in Section 3.3. Next, we use the Streamlit-

Authenticator component to authenticate users based on the credentials

stored in a config.yaml file. After authentication, we enable navigation

between pages using the st.selectbox command, which selects the

function for the chosen page from a dictionary of key-value pairs, where

the key is the page's name and the value is the corresponding function.

Finally, we invoke the file upload widget from our Utils.py file and store the

uploaded Pandas dataframes in the session state, making them accessible

on demand.

Listing 11-15. main.py

import streamlit as st

from Utils import *

import streamlit_authenticator as stauth

import yaml

from yaml.loader import SafeLoader

import config # config.py not to be mixed with config.yaml

with open('../config.yaml') as file:

 config = yaml.load(file, Loader=SafeLoader)

authenticator = stauth.Authenticate(

 config['credentials'],

 config['cookie']['name'],

 config['cookie']['key'],

 config['cookie']['expiry_days']

)

CHAPTER 11 STREAMLIT USE CASES

336

Importing pages

from lr import lr_main

def main(engine):

 # Creating pages dictionary

 pages_ml_classifier = {

 'Logistic Regression Classifier': lr_main

 }

 # Creating pages menu

 st.sidebar.subheader('Menu')

 ml_module_selection = st.sidebar.selectbox('Select

Classifier',

 ['Logistic Regression Classifier'])

 # Creating dataset uploader widgets

 if 'df_train' not in st.session_state:

 st.session_state['df_train'] = None

 if 'df_real' not in st.session_state:

 st.session_state['df_real'] = None

 st.sidebar.subheader('Training Dataset')

 _, st.session_state['df_train'] = file_upload('Please

upload a training dataset')

 st.sidebar.subheader('Test Dataset')

 _, st.session_state['df_real'] = file_upload('Please upload

a test dataset')

 # Running selected page

 pages_ml_classifier[ml_module_selection](engine)

if __name__ == '__main__':

 # Creating PostgreSQL client for insights database

 username = config.database_credentials['username']

 password = config.database_credentials['password']

 port = config.database_credentials['port']

 engine = db_engine(username, password, port)

CHAPTER 11 STREAMLIT USE CASES

337

 # Creating user authentication object

 authenticator = stauth.Authenticate(config.user_

credentials['names'],

 config.user_credentials['usernames'], config.user_

credentials['passwords'],

 'some_cookie_name','some_signature_key', cookie_expiry_

days=30)

 # Displaying login bar

 try:

 authenticator.login()

 except Exception as e:

 st.error(e)

 if st.session_state['authentication_status']:

 authenticator.logout('Logout', 'main')

 st.write(f'Welcome *{st.session_state["name"]}*')

 main(engine)

 elif st.session_state['authentication_status'] == False:

 st.sidebar.error('Username/password is incorrect')

 elif st.session_state['authentication_status'] == None:

 st.sidebar.warning('Please enter your username and

password')

 Logistic Regression Classifier

The final and undoubtedly most impactful step is to create the script

for our logistic regression classifier page. As mentioned earlier, this

application will provide machine learning-as-a-service, enabling users

to train a logistic regression model on an uploaded training dataset and

then use the trained model to classify a test dataset. The beauty of such

an application lies in its plug-and-play nature, where users do not need

to install any libraries or manage a server. To enable this functionality,

we have a set of functions, as shown in Listing 11-16, that will provide the

following:

CHAPTER 11 STREAMLIT USE CASES

338

 1. Visualize a Confusion Matrix: Display the confusion

matrix to evaluate the performance of the model,

showing the true positive, false positive, true

negative, and false negative results.

 2. Visualize an ROC Curve: Generate and visualize

the Receiver Operating Characteristic (ROC) curve

to evaluate the model's classification performance

across different threshold values.

 3. Create an Expandable Entry Form for Model

Hyperparameters: Allow users to customize the

logistic regression model's hyperparameters via an

expandable form, making the model more flexible

and adaptable.

 4. Train the Logistic Regression Model: Train the

model using the uploaded training dataset and

cache the function using st.cache_resource to

optimize performance on subsequent runs.

 5. Classify Test Data Using the Trained Model: Use

the trained logistic regression model to classify the

provided test data.

 6. Visualize Accuracy Metrics of Classified Data:

Display various accuracy metrics (e.g., accuracy

score, precision, recall, F1 score) to assess the

model's performance on the test data.

In addition to the core machine learning functionality, we will

integrate a traffic insights feature to track and record user interactions at

each step of the application. Specifically, as users progress through various

stages of the application, the following actions will be logged:

CHAPTER 11 STREAMLIT USE CASES

339

 1. Tracking User Progress: At each step of the

application, traffic insight functions imported from

the Utils.py file will be invoked to record the exact

date and time when the user reaches a specific step.

This will help provide insights into user behavior

and engagement with the application.

 2. Data Size Recording: The size of the uploaded

datasets will be logged. This information can be

helpful for understanding the scale of data the user

is working with and optimizing future data handling

strategies.

 3. Saving Insights into PostgreSQL Database: All the

recorded insights (such as timestamps, dataset

sizes, and user actions) will be saved into a

PostgreSQL database. This information can later

be used for analytics or improving the application’s

performance.

 4. Download Hyperparameters and Predictions: After

completing the model training and prediction steps,

the user will have the option to download their

model hyperparameters and predicted data. This

will enable users to retain and further utilize their

machine learning models outside the platform.

The various steps of this process, from uploading the dataset to

viewing the results and downloading the predictions, are visualized in

Figure 11-14, providing an overview of the workflow.

CHAPTER 11 STREAMLIT USE CASES

340

Listing 11-16. lr.py

import streamlit as st

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn import metrics

import plotly.express as px

import plotly.graph_objects as go

import plotly.figure_factory as ff

from datetime import datetime

from Utils import *

Plotly confusion matrix visualization

def confusion_matrix_plot(y_test, y_pred):

 cnf_matrix = metrics.confusion_matrix(y_test, y_pred)

 z = cnf_matrix.tolist()[::-1]

 x = ['Negative', 'Positive']

 y = ['Positive', 'Negative']

 z_text = z

 fig = ff.create_annotated_heatmap(z, x, y, annotation_

text=z_text, text=z,

 hoverinfo='text', colorscale='Blackbody')

 st.write(fig)

Plotly receiver operating characteristic visualization

function

def roc_plot(X_test, logreg, y_test):

 y_pred_proba = logreg.predict_proba(X_test)[::,1]

 fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)

 roc_data = pd.DataFrame([])

 roc_data['True positive'] = tpr

 roc_data['False positive'] = fpr

 fig = px.line(roc_data, x='False positive', y='True positive')

CHAPTER 11 STREAMLIT USE CASES

341

 st.write(fig)

 auc = metrics.roc_auc_score(y_test, y_pred_proba)

 st.info(f'Area Under Curve: **{ round(auc,3)}**')

Hyperparameters expander function

def lr_hyperparameters():

 with st.expander('Advanced Parameters'):

 col2_1, col2_2 = st.columns(2)

 with col2_1:

 penalty = st.selectbox('Penalty', ['l2','l1','elast

icnet','none'])

 tol = st.number_input('Tolerance (1e-4)',

value=1)/10000

 fit_intercept = st.radio('Intercept', [True,False])

 class_weight = st.radio('Class weight',

[None,'balanced'])

 solver = st.selectbox('Solver', ['lbfgs','newton-

cg','liblinear','sag',

 'saga'])

 multi_class = st.selectbox('Multi class',

['auto','ovr','multinomial'])

 warm_start = st.radio('Warm start', [False,True])

 with col2_2:

 dual = st.radio('Dual or primal formulation',

[False,True])

 C = st.number_input('Inverse regularization

strength', 0.0, 99.0, 1.0, 0.1)

 intercept_scaling = st.number_input('Intercept

scaling', 0.0, 99.0, 1.0, 0.1)

 random_state = st.radio('Random state',

[None,'Custom'])

 if random_state == 'Custom':

CHAPTER 11 STREAMLIT USE CASES

342

 random_state = st.number_input('Custom random

state', 0, 99, 1, 1)

 max_iter = st.number_input('Maximum iterations', 0,

100, 100, 1)

 verbose = st.number_input('Verbose', 0, 99, 0, 1)

 l1_ratio = st.radio('L1 ratio', [None,'Custom'])

 if l1_ratio == 'Custom':

 l1_ratio = st.number_input('Custom l1 ratio',

0.0, 1.0, 1.0, 0.01)

 #Download hyperparameters feature

 hyperparameters = {'penalty':[penalty], 'dual':[dual],

'tol':[tol], 'C':[C],

 'fit_intercept':[fit_intercept], 'intercept_

scaling':[intercept_scaling],

 'class_weight':[class_weight],

 'random_state':[random_state],

 'solver':[solver], 'max_iter':[max_iter], 'multi_

class':[multi_class],

 'verbose':[verbose],'warm_start':[warm_start], 'l1_

ratio':[l1_ratio]}

 st.download_button(

 label='Download hyperparameters',

 data=pd.DataFrame(hyperparameters).to_

csv(index=False).encode('utf-8'),

 file_name='Hyperparameters.csv',

)

 return (penalty, tol, fit_intercept, class_weight, solver,

multi_class, warm_start, dual, C, intercept_scaling,

 random_state, max_iter, verbose, l1_ratio)

Logistic regression training function

@st.cache_resource

CHAPTER 11 STREAMLIT USE CASES

343

def log_train(df, feature_cols, label_col, test_size, penalty,

tol, fit_intercept, class_weight, solver, multi_class,

 warm_start, dual, C, intercept_scaling, random_state,

 max_iter, verbose, l1_ratio):

 x = df[feature_cols]

 y = df[label_col]

 x_train,x_test,y_train,y_test=train_test_split(x, y, test_

size=test_size, random_state=0)

 logreg = LogisticRegression(penalty=penalty, dual=dual,

tol=tol, C=C, fit_intercept=fit_intercept, intercept_

 scaling=intercept_scaling, class_weight=class_weight,

 random_state=random_state, solver=solver, max_

iter=max_iter,

 multi_class=multi_class, verbose=verbose, warm_start=

 warm_start, l1_ratio=l1_ratio)

 logreg.fit(x_train,y_train)

 y_pred = logreg.predict(x_test)

 return x_train, x_test, y_train, y_test, y_pred, logreg

Logisitic regression predictor function

def log_real(logreg, df_real, feature_cols, label_col):

 x_test_real = df_real[feature_cols]

 y_pred_real = logreg.predict(x_test_real)

 x_pred_real = df_real.copy()

 x_pred_real[label_col] = y_pred_real

 return x_pred_real.sort_index()

Prediction statistics function

def stats(y_test, y_pred):

 accuracy = metrics.accuracy_score(y_test, y_pred)

 precision = metrics.precision_score(y_test, y_pred)

 recall = metrics.recall_score(y_test, y_pred)

 f1 = metrics.f1_score(y_test, y_pred)

CHAPTER 11 STREAMLIT USE CASES

344

 col2_1, col2_2, col2_3, col2_4 = st.columns(4)

 with col2_1:

 st.info(f'Accuracy: **{round(accuracy,3)}**')

 with col2_2:

 st.info(f'Precision: **{round(precision,3)}**')

 with col2_3:

 st.info(f'Recall: **{round(recall,3)}**')

 with col2_4:

 st.info(f'F1 Score: **{round(f1,3)}**')

def lr_main(engine):

 _, session_id = get_session()

 insert_row(session_id, engine)

 update_row('lr1',datetime.now().strftime('%H:%M:%S

%d/%m/%Y'), session_id, engine)

 if st.session_state['df_train'] is not None:

 df = st.session_state['df_train']

 update_row('data1_rows',len(df),session_id,engine)

 update_row('lr2',datetime.now().strftime('%H:%M:%S

%d/%m/%Y'), session_id,

 engine)

 st.title('Training')

 st.subheader('Parameters')

 col1, col2, col3 = st.columns((3,3,2))

 with col1:

 feature_cols = st.multiselect('Please select

features', df.columns)

 with col2:

 label_col = st.selectbox('Please select label',

df.columns)

 with col3:

CHAPTER 11 STREAMLIT USE CASES

345

 test_size = st.number_input('Please enter test

size', 0.01, 0.99, 0.25, 0.05)

 (penalty, tol, fit_intercept, class_weight, solver,

multi_class,

 warm_start, dual, C, intercept_scaling, random_state,

max_iter, verbose,

 l1_ratio) = lr_hyperparameters()

 try:

 x_train, x_test, y_train, y_test, y_pred, logreg =

log_train(df, feature_cols, label_col, test_size,

 penalty, tol, fit_intercept, class_weight, solver,

 multi_class, warm_start, dual, C, intercept_scaling,

 random_state, max_iter, verbose, l1_ratio)

 st.subheader('Confusion Matrix')

 confusion_matrix_plot(y_test, y_pred)

 st.subheader('Metrics')

 stats(y_test, y_pred)

 st.subheader('ROC Curve')

 roc_plot(x_test, logreg, y_test)

 update_row('lr3',datetime.now().strftime('%H:%M:%S

%d/%m/%Y'),

 session_id, engine)

 if st.session_state['df_real'] is not None:

 try:

 df_real = st.session_state['df_real']

 st.title('Testing')

 update_row('data2_rows',len(df_real),

session_id, engine)

 st.subheader('Predicted Labels')

 x_pred_real = log_real(logreg, df_real,

feature_cols, label_col)

CHAPTER 11 STREAMLIT USE CASES

346

 st.write(x_pred_real)

 update_row('lr4',datetime.now().

strftime('%H:%M:%S %d/%m/%Y'),

 session_id, engine)

 st.download_button(

 label='Download predicted labels',

 data=pd.DataFrame(x_pred_real).to_

csv(index=False)

 .encode('utf-8'),

 file_name='Predicted labels.csv',

)

 except:

 st.warning('Please upload a test dataset with

the same feature

 set as the training dataset')

 elif st.session_state['df_real'] is None:

 st.sidebar.warning('Please upload a test dataset')

 except:

 st.warning('Please select at least one feature, a

suitable binary

 label and appropriate advanced parameters')

elif st.session_state['df_train'] is None:

 st.title('Welcome ')

 st.subheader('Please use the left pane to upload your dataset')

 st.sidebar.warning('Please upload a training dataset')

CHAPTER 11 STREAMLIT USE CASES

347

Figure 11-14. Output of Listing 11-16, with Pima Indians Diabetes
training dataset [21]

11.4. Summary

As you near the end of this chapter and approach the completion of

the entire book, it is becoming clear just how versatile and impactful

Streamlit can be in solving real-world problems. What started as a simple

Python tool for creating web applications has evolved into a powerful

framework capable of addressing a wide range of use cases. From data

visualization and time-series analysis to specialized applications like

SCADA data loggers and motor control dashboards, Streamlit has proven

its flexibility. Its ability to integrate with external systems, such as Arduino

microcontrollers, sensors, and other peripherals, shows its potential to

scale into embedded systems, bridging the gap between software and

hardware in practical, real-world applications. A key takeaway from this

chapter is the realization that Streamlit isn’t limited to just one type of

CHAPTER 11 STREAMLIT USE CASES

348

application or industry. It’s a highly adaptable tool, capable of serving

diverse needs—whether for data warehousing, machine learning as a

service, or more specialized areas like industrial automation and IoT

systems.

Ultimately, Streamlit is only as powerful as the developer’s creativity

and the tech stack they choose. As you continue exploring and building

with Streamlit, the possibilities are endless, and this chapter has only

scratched the surface of what you can accomplish. Congratulations on

reaching this point! You now have the tools and knowledge to tackle a

wide range of real-world challenges using Streamlit. Your journey toward

creating efficient, impactful Python web applications is just beginning.

CHAPTER 11 STREAMLIT USE CASES

349© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_12

CHAPTER 12

Testing in Streamlit
Testing is a vital quality assurance process that verifies software

functionality, detects issues early, and ensures reliability. By validating

requirements and promoting best practices, testing enhances stability,

maintainability, and user satisfaction—especially in dynamic platforms

like Streamlit.

12.1. Principles of Testing

Testing is the process of verifying and validating that software behaves as

intended, aiming to identify defects, errors, or missing requirements early

in the development cycle. It involves creating test cases that check the

code’s output against expected results, ensuring reliability and consistency

across scenarios. More than just finding bugs, testing also confirms that

software meets requirements and follows best practices, contributing

to its robustness and maintainability. In platforms like Streamlit, where

rapid prototyping and interactive features are common, thorough testing

is crucial to ensure accurate and dependable functionality. Ultimately,

testing is a key aspect of quality assurance that supports software stability

and user satisfaction.

https://doi.org/10.1007/979-8-8688-1826-4_12#DOI

350

12.1.1. What Is Testing?

Testing, at its core, is the process of verifying and validating that software

performs as intended. It is a systematic approach to identifying defects,

errors, or missing requirements in a piece of code. Rather than relying

solely on manual observation or user feedback after deployment, code

testing aims to uncover issues early in the development lifecycle. This

proactive strategy significantly reduces the risk of costly and disruptive

bugs in production environments.

From a theoretical perspective, code testing can be seen as an exercise

in building confidence in the correctness and reliability of software. It

involves creating a set of conditions, or test cases, that evaluate different

aspects of the code by comparing actual outputs with expected results.

The goal is to ensure the code behaves predictably and consistently across

various scenarios.

It is important to recognize that testing is not merely about finding

bugs. It also involves validating that the code meets specified requirements

and adheres to best practices. A well-tested application reflects robustness,

maintainability, and a higher degree of user satisfaction. In the context of

Streamlit, which supports rapid prototyping and deployment of data-

driven web applications, thorough testing helps ensure that analytical

insights and interactive elements remain accurate and dependable.

Ultimately, code testing is a key component of quality assurance,

offering tangible evidence of a software’s functionality and stability. It is an

essential part of the development process, regardless of the application’s

complexity.

12.1.2. Benefits of Testing

Incorporating code testing into your general development workflow—

not just in Streamlit projects—is essential and can significantly enhance

the quality and longevity of your applications. It helps detect bugs early,

Chapter 12 testing in streamlit

351

allowing you to identify and fix issues before they propagate through

the system and become more complex and difficult to resolve. This

reduces debugging time and effort, enabling faster development cycles.

Additionally, writing tests encourages developers to produce cleaner, more

modular, and maintainable code.

Creating test cases also promotes a deeper understanding of the code’s

functionality and potential edge cases, leading to better design decisions.

When collaborating with other developers, well-written tests allow fresh eyes to

quickly grasp the behavior of the code, making it easier to build upon existing

components. In this way, tests act as an additional form of documentation.

Testing also enhances reliability. Well-tested code is less likely to

fail in production, minimizing downtime and reducing user frustration.

This is particularly important for Streamlit applications, which often

involve critical data analysis and visualizations. Thorough testing ensures

that interactive elements and visual outputs behave as expected across

different browsers and user inputs—an essential factor when your

application is intended for a broad audience.

12.1.3. Types of Testing

There are numerous types of code testing, each serving a specific purpose

and targeting different aspects of a software system. For Streamlit

applications, two fundamental categories are especially relevant: unit

testing and integration testing.

Unit testing focuses on verifying individual components or units

of code in isolation. A unit is typically the smallest testable part of an

application, such as a function or method. The goal is to ensure that each

unit performs its intended task correctly, independent of other parts of the

system. In the context of Streamlit, this might involve testing functions that

process data, generate plots, or handle user inputs. Unit tests are usually

automated and run frequently during development, providing quick

feedback on the correctness of individual code units.

Chapter 12 testing in streamlit

352

Integration testing, on the other hand, examines how different units

or components interact with one another. It verifies that the interfaces

between these components function properly and that the application

behaves as expected when the parts are combined. For Streamlit

applications, integration testing might involve checking the interaction

between input widgets and output displays, or ensuring seamless

communication between the app and external data sources or APIs.

Integration tests help confirm that the application works as a cohesive

whole, not just as isolated pieces.

Beyond these two types, other testing methods exist—such as

system testing, which evaluates the entire application against specified

requirements, and acceptance testing, which confirms that the application

meets user expectations. However, for the scope of this chapter, a solid

understanding of unit and integration testing provides a strong foundation

for building robust and reliable Streamlit applications.

By understanding the principles, benefits, and various types of code

testing, developers can build Streamlit applications that are not only

functional, but also reliable, maintainable, and user-friendly. This chapter

will explore practical examples and techniques for implementing effective

testing strategies in your Streamlit projects.

12.2. Why Test in Streamlit?

Streamlit applications have evolved beyond demos to support real

production use cases, making thorough testing essential as they grow in

scope. A well-structured, modular codebase—with separate folders for

APIs, logic, and utilities—ensures a reliable user experience. Because

of this modularity, each component can and should be independently

verified using unit tests.

Chapter 12 testing in streamlit

353

12.2.1. Behavioral and Logical Testing

Streamlit applications are no longer limited to demo purposes—they

can now evolve to support real production use cases. As the scope of an

application grows, it becomes increasingly important to test its underlying

components to ensure a correct and seamless end user experience.

Since Streamlit applications are more than just UI components—as

discussed in previous chapters—a well-structured Streamlit project should

follow an extensible and modular folder organization. This typically

includes directories for API invocations, logical components, and utility

functions. These modules directly influence the application’s behavior and

user experience, making thorough testing essential.

Given the modular nature of these components, each file can—and

should—be tested individually using unit tests. This ensures that every

part of the system functions correctly in isolation, contributing to the

overall reliability and maintainability of the application.

12.2.2. User Interface Testing

Once the application is rendered and presented to the user, it is important

to ensure that the user interface behaves as expected. This includes

verifying that actions like button clicks are properly registered and that text

inputs correctly update their outputs to reflect user interactions.

This process is known as App Testing, a specific type of testing

focused on user interface components. It is especially useful for custom

components to ensure the UI behaves as intended. For example, this

can be applied to the Tab Bar from the Extra-Streamlit-Components

package. Since this component is built using React and wrapped for use in

Streamlit—rather than being a built-in feature—it’s a good candidate for

app testing to confirm its behavior aligns with user expectations.

Chapter 12 testing in streamlit

354

12.3. Testing Streamlit Applications

Streamlit facilitates testing, by providing its own native App Testing

framework streamlit.testing.v1. This enables developers to build and

conduct headless tests without rendering their applications on a browser.

It can even be used to simulate user input and examine rendered outputs.

This framework can be run using PyTest and can even be automated in a

CI environment such as GitHub Actions.

12.3.1. Setting Up Testing Environment

Firstly, we need an application to test. Listings 12-1 and 12-2 display

the code for a simple calculator app that supports basic mathematical

operations between two numbers. Figure 12-1 displays the associated

application for this test.

Listing 12-1. main.py

import streamlit as st

from utility import calculate

st.title('Simple Calculator')

num1 = st.number_input('Enter first number', value=0.0,

key='INPUT_1')

num2 = st.number_input('Enter second number', value=0.0,

key='INPUT_2')

operation = st.selectbox('Select operation', ['+', '-', '*',

'/'], key='OPERATION')

result = None

if st.button('Calculate', key='BUTTON'):

 result = calculate(operation, num1, num2)

 if result is None:

Chapter 12 testing in streamlit

355

 st.error('Error: Cannot divide by zero')

 else:

 st.write(f'Result: {result}')

Listing 12-2. utility.py

def calculate(operation: str, num1: float, num2: float):

 if operation == '+':

 return num1 + num2

 elif operation == '-':

 return num1 - num2

 elif operation == '*':

 return num1 * num2

 elif operation == '/':

 if num2 != 0:

 return num1 / num2

 return None

Figure 12-1. Simple Calculator app

Chapter 12 testing in streamlit

356

To test the application, we need to install a Python package called

PyTest, which will assist in constructing unit tests. You can install it using

the command pip install pytest.

12.3.2. Writing Tests

Tests such as the one shown in Listing 12-4 should typically be placed

in a separate folder at the root level of the project, such as my_project/

tests/. They should follow the naming convention with a test_ prefix, which

allows testing tools like PyTest to recognize and execute them. Below is

an example of a test file for a utility method. This is a unit test, as it targets

specific parts of the application’s code based on expected use cases.

Since the utility file is used as a module in the main application, we will

need to expose it in the test folder by adding Listing 12-3.

Listing 12-3. tests/__init__.py

import utility

Listing 12-4. tests/test_utility.py

import pytest

from utility import calculate

@pytest.mark.parametrize(

 'operation, num1, num2, expected',

 [

 ('+', -2, 7, 5),

 ('+', 5.5, 2.5, 8.0),

 ('-', 10, 4, 6),

 ('-', 0, 0, 0),

 ('*', 2, 6, 12),

 ('*', -3, 4, -12),

Chapter 12 testing in streamlit

357

 ('*', 2.5, 4, 10.0),

 ('/', 1, 2, 0.5),

 ('/', 10.0, 2.0, 5.0),

],

)

def test_calculate_basic_operations(operation, num1, num2,

expected):

 assert calculate(operation, num1, num2) == expected

@pytest.mark.parametrize(

 'operation, num1, num2',

 [

 ('/', 1, 0),

 ('/', 10.0, 0),

 ('/', 0, 0),

],

)

def test_division_by_zero(operation, num1, num2):

 assert calculate(operation, num1, num2) is None

Test invalid operations

@pytest.mark.parametrize(

 'operation, num1, num2',

 [

 ('%', 5, 3),

 ('abc', 5, 3),

],

)

def test_invalid_operations(operation, num1, num2):

 assert calculate(operation, num1, num2) is None

Chapter 12 testing in streamlit

358

Another type of test is App Testing, which verifies that the entire

application reacts to user interactions as expected. This testing package is

included by default with Streamlit, so no additional packages are required.

The app test should involve manipulating the number inputs, clicking

the button, and verifying that the output contains the expected result.

Listing 12-5 below is an example of the App Test.

Listing 12-5. tests/test_main.py

from streamlit.testing.v1 import AppTest

def test_main():

 at = AppTest.from_file('../main.py').run()

 at.number_input[0].set_value(10).run()

 at.number_input[1].set_value(4).run()

 at.selectbox[0].set_value('-').run()

 at.button[0].click().run()

 assert at.markdown[0].value == 'Result: 6.0'

 at.number_input[0].set_value(2).run()

 at.number_input[1].set_value(6).run()

 at.selectbox[0].set_value('*').run()

 at.button[0].click().run()

 assert at.markdown[0].value == 'Result: 12.0'

 at.number_input[0].set_value(10).run()

 at.number_input[1].set_value(2).run()

 at.selectbox[0].set_value('/').run()

 at.button[0].click().run()

 assert at.markdown[0].value == 'Result: 5.0'

 at.number_input[0].set_value(10).run()

 at.number_input[1].set_value(0).run()

 at.selectbox[0].set_value('/').run()

Chapter 12 testing in streamlit

359

 at.button[0].click().run()

 assert at.error

 at.number_input[0].set_value(-5).run()

 at.number_input[1].set_value(3).run()

 at.selectbox[0].set_value('+').run()

 at.button[0].click().run()

 assert at.markdown[0].value == 'Result: -2.0'

To run these tests, open a terminal session and type pytest. PyTest will

automatically begin by looking in the test folder, searching for files prefixed

with test_ while ignoring __init__.py files. It will then execute the methods

that are also prefixed with test_, ensuring that only actual tests are run and

not helper methods.

It is worth noting that AppTest as of Streamlit 1.47.x is limited in

controlling specific native components and not everything. Components

like st.data_editor and st.dialog are not supported in this type of test.

For unit tests, PyTest will use parameterized tests, which involve

invoking the test method multiple times with different inputs and

comparing the results. For the App Test, only one method will be run,

simulating interactions within a single session. These tests will also be

recognized by an IDE, allowing you to run them easily with a mouse

click on the green triangles. However, if you choose to run them from the

terminal, the output will be the same as shown in Figure 12-2.

Chapter 12 testing in streamlit

360

Figure 12-2. PyTest output

12.4. Automated Testing
with GitHub Actions

Testing Streamlit applications can be automated with GitHub Actions,

ensuring that whenever a push is made to a remote repository, automated

test is implemented and the result immediately displayed. This ensures

that all pushes comply with any testing requirements you have and also

eliminates the need for manually conducting such tests. You may also

use the same testing script created using PyTest and the Streamlit testing

framework detailed in Section 12.2. The steps to implement automated

testing with GitHub Actions is detailed in the following sections.

12.4.1. Setting Up the Workflow

To implement a GitHub Action through a repository, you must first create

a workflow. This can be done by creating the folder structure shown in

Figure 12-3. You must then create a test.yaml file that will tell GitHub how

Chapter 12 testing in streamlit

361

to execute the test explained in Section 12.4.2, and finally you must place

a requirements.txt file in your root directory listing all the dependencies

required for the Streamlit application.

Figure 12-3. GitHub Actions workflow folder structure

12.4.2. Creating the Test Script

To configure GitHub Actions, you will need to create a test.yaml script that

tells GitHub how to execute the test. This file must be placed in the folder

structure detailed in Section 12.4.1. Please note that in the test.yaml file,

you must include the path to two files, namely, the Streamlit application,

i.e., tests/app.py and the PyTest file, i.e., tests/test.py. You may use the test

script shown in Listing 12-6 as a sample.

Listing 12-6. test.yaml

name: Streamlit Testing

on:

 push:

 branches:

 - main

 pull_request:

 branches:

Chapter 12 testing in streamlit

362

 - main

jobs:

 test:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout repository

 uses: actions/checkout@v4

 - name: Set up Python

 uses: actions/setup-python@v5

 with:

 python-version: '3.9'

 - name: Install dependencies

 run: |

 python -m pip install --upgrade pip

 pip install -r requirements.txt

 pip install pytest

 - name: Run Streamlit app and tests

 run: |

 nohup streamlit run <path to applicaton> &

 pytest <path to PyTest script> --maxfail=1 --disable-

warnings -q

Subsequently, when you make a push to the main branch of your

repository, a test will be automatically conducted and the results displayed

in the Actions tab of your GitHub repository. Should the test fail, you can

access the logs as shown in Figure 12-4.

Chapter 12 testing in streamlit

363

Figure 12-4. GitHub Actions automated testing tab

12.5. Summary

This chapter emphasized the crucial role of testing in Streamlit

development, progressing from simple demos to robust applications. We

covered core testing principles, focusing on early bug detection, code

quality, and reliability. We specifically explored unit and integration

testing, which are particularly relevant for Streamlit. We highlighted

the importance of testing behavior, logic, and UI rendering in Streamlit

applications. Practical examples were provided to demonstrate how to

set up testing environments and write effective unit and App tests. PyTest

was used for unit testing, while streamlit.testing.v1 was introduced for

simulating user interactions, with parameterized tests for efficiency.

Test early and often is the key takeaway. Integrating testing into CI/

CD pipelines using GitHub Actions ensures that Streamlit applications

remain reliable and maintainable. We encourage further exploration of

testing tools and the refinement of strategies, especially for more complex

projects. This chapter serves as a foundation for building high-quality

Streamlit applications through consistent testing.

Chapter 12 testing in streamlit

365© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_13

CHAPTER 13

Streamlit for AI

Streamlit’s nature as a web framework opens doors for web developers

to use it with any type of business or technology. Artificial Intelligence,

particularly in the generative domain—including Large Language Models

(LLMs) and Retrieval-Augmented Generation (RAG) models—is now

more accessible than ever. Companies and corporations are competing

to deliver better, faster, and more accessible models by providing a

wide range of LLMs through APIs. This approach frees end users from

relying solely on official portals to harness the immense capabilities of

an LLM. In this chapter, we will explore LLMs, learn how to use them

programmatically, and build a demo application in Streamlit that

functions as a personal web information agent.

13.1. What Are LLMs and How Are
They Useful?

LLMs are large-scale deep learning models, typically consisting of billions

of parameters. Their purpose is not restricted to a single task; they can be

applied to a variety of use cases. LLMs are trained on massive amounts of

data from diverse domains, providing them with broad general intelligence

across numerous areas. Fundamentally, LLMs are predictive models,

meaning their outputs are shaped by the nature and quality of the data

they were trained on.

https://doi.org/10.1007/979-8-8688-1826-4_13#DOI

366

LLMs operate on the concept of tokens. Tokens are the building blocks

of sentences and can include words, numbers, or symbols. A sequence of

tokens is used as input to the LLM, which then produces a sequence of

output tokens. The input tokens establish a context about a specific topic

within the LLM. Based on the data it was trained on, the output tokens

are generated statistically, reflecting the model’s previously acquired

knowledge.

The architecture of an LLM typically begins with a transformer

layer, which processes the input text and converts it into a mathematical

representation of the context. This means that no matter how sophisticated

an LLM appears, its performance ultimately depends on the model’s size,

architecture, and the quality and quantity of the training data. Conversely,

poor-quality data—whether misleading, poorly written, or inaccurate—

can negatively affect the output, leading to grammatical errors, spelling

mistakes, or even factual inaccuracies in the final result.

Real-world use cases of LLMs range from using the models

independently to integrating them with other software to assist in

performing specific tasks. Some examples include the following.

13.1.1. Summarization

A vast number of parameters in LLMs fundamentally store the information

they were trained on in the form of statistical relationships and patterns.

This allows them to summarize the information they were exposed to

during training. Since the same topics can appear in various forms across

different sources within the training data, an LLM can serve as a data

summarizer when queried about these topics.

Chapter 13 Streamlit for ai

367

For example, we asked Gemini 1.5 Flash why the sky is blue, and it

provided the following output:

The sky is blue due to a phenomenon called Rayleigh scatter-
ing. Sunlight is made up of all the colors of the rainbow. When
sunlight enters the Earth's atmosphere, it collides with tiny air
molecules (mostly nitrogen and oxygen). These molecules are
much smaller than the wavelengths of visible light.

The output was likely influenced by the data the model was trained on,

as the input consisted only of a question without any additional details.

Additionally, a pre-trained LLM can accept varying input sizes depending

on its architecture. Generally, larger models have a greater capacity to

handle bigger inputs without losing significant context. This enables

LLMs to build a detailed understanding of the input, which can then be

used for tasks like rephrasing or summarization. For example, Chapter 3

was provided as an input prompt to Gemini 1.5 Flash, with a request to

summarize it in less than 80 words. The following is the summary:

Chapter 3 details Streamlit's UI architecture. It explains how
to customize the interface (themes, colors, layout) using both
code and configuration files. The chapter covers page organi-
zation with sidebars, columns, and expanders, and shows
how to create multi-page and sub-page applications. Dynamic
content display using placeholders and progress bars is also
demonstrated, along with best practices for modular applica-
tion development.

We can observe that the LLM’s summary primarily draws information

from the abstract and summary sections of the chapter. This is because

these sections typically contain the most relevant information related to

the input prompt. We can also experiment with a different type of input

to obtain the LLM’s summarized opinion on a specific aspect of the same

chapter. The following input prompt was provided to the same model:

Chapter 13 Streamlit for ai

https://doi.org/10.1007/979-8-8688-1826-4_3
https://doi.org/10.1007/979-8-8688-1826-4_3

368

The following is a chapter which is part of a book about
Streamlit. What UI component discussed in that chapter can
be useful to most applications and why:

[Chapter 3 content]

And the output was this:

Based on Chapter 3, the UI component most useful to most
Streamlit applications is the placeholder (st.empty or st.side-
bar.empty). The reason is its versatility and power in handling
dynamic content. The chapter highlights its use for: Displaying
content out of order or on demand: This is crucial for applica-
tions that need to update information asynchronously or
based on user interactions without a complete page reload.
This improves responsiveness and user experience signifi-
cantly. Creating dynamic elements: The example of a real-
time clock demonstrates how a placeholder can be used to
update content repeatedly within a loop, creating dynamic
visualizations. This extends to any dynamic element, such as
charts updating with new data or progress bars showing the
status of long-running tasks. While other components like
sidebars, columns, and expanders are important for page
organization and structure, the placeholder's ability to handle
dynamic updates makes it a uniquely valuable tool applicable
across a wide range of Streamlit applications, from simple
dashboards to complex interactive tools. The other compo-
nents enhance the presentation of data; placeholders handle
the dynamic updating of the data itself.

The model built a context around the entire chapter and offered an

opinion on a specific Streamlit component, highlighting it as the most

useful due to its versatility. It also provided examples to support this

viewpoint.

Chapter 13 Streamlit for ai

https://doi.org/10.1007/979-8-8688-1826-4_3
https://doi.org/10.1007/979-8-8688-1826-4_3

369

13.1.2. Content Generation

We have seen examples where large inputs are used to generate smaller

outputs, mostly in text form. This is because LLMs fundamentally operate

on tokens. However, with additional components and fine-tuning for

content types beyond text, a model can generate new content and earn the

label of a Generative LLM. The content that can be generated is not limited

to images; it also depends on the training data used for fine-tuning the

model. LLMs can be modified and fine-tuned to generate videos, audio, or

specific types of text, such as poetry or code.

The quality of the content it produces will align with the quality

of its input data. The well-known concept of garbage in, garbage out,

frequently cited in machine learning domains, applies to LLMs as well.

One reason LLMs are more widely used for image and video generation is

the abundance of high-quality visual content. Additionally, the standard

for generated images and videos is relatively low, and these outputs are

generally accepted by most.

LLMs can certainly speed up coding and save developers time by

generating repeated or well-known code snippets. However, they still lack

the ability to write sophisticated, high-quality code. This is partly because

much of the code available in the open source domain does not meet a

specific standard, and the quality tends to be skewed toward the lower end

due to the large amount of poorly written code used to train LLMs.

13.1.3. Retrieval Augmented Generation

LLMs, on their own, are highly capable. Allowing LLMs access to other

software and data stores to perform actions can significantly expand their

capabilities. This fundamentally enables LLMs to cross-check live data

from various sources, whether from the Internet or local data, both before

and during the output token generation process. This built-in power of

retrieving and augmenting information during content generation is

Chapter 13 Streamlit for ai

370

known as Retrieval-Augmented Generation (RAG). Not every LLM is a

RAG model, but those that are extended in this way possess enhanced and

more accurate capabilities than standard LLMs. Both LlamaIndex and

LangChain enable RAG systems. LlamaIndex streamlines search-and-

retrieval, while LangChain is a modular platform supporting many use

cases. Popular RAG platforms include Langchain with a Pinecone vector

database and LlamaIndex (which contains its own vector DB), which have

become essential tools for developers building knowledge-enhanced AI

applications. RAG represents an architectural model rather than a single

product , and it is indispensable and intricate in real-world applications

across industries from customer support to financial analysis.

13.2. Different Ways to Interact with LLMs

LLMs can be accessed in various ways, depending on your use case,

budget, and required level of privacy. Some of these methods include

interacting with the official web page of the model, calling APIs over the

Internet, or even self-hosting the model on a machine or a cluster of

machines for local access.

13.2.1. Official Web Pages

Creators of LLMs typically build web pages to allow people to use their

models. They tailor the user interface (UI) to the capabilities of the model

they provide, making it clear to users that they can input various content

types, not just text prompts. Figure 13-1 shows the prompt window of

Gemini, demonstrating the ability to attach voice, images, or videos as part

of the prompt. This additional content helps formulate the overall context

and can influence the final output.

Chapter 13 Streamlit for ai

371

Figure 13-1. Gemini prompt on Google AI Studio

13.2.2. Application Program Interfaces

The average user typically interacts with a final product, but LLMs

accessible through a web page might not suit the needs of some, such

as developers. Those who want to integrate the power of LLMs into their

software products, either on a pay-per-use basis or for free, can leverage

APIs that expose LLMs to developers.

The method of invocation for these models remains the same—by

tokens—regardless of the medium used. When APIs are utilized, they

can be scaled to handle billions of calls, making free usage of LLMs

unsustainable. This is where token monitoring and billing come into

play. LLM hosts track API calls by grouping usage according to the API

token used. The total input and output tokens processed by the LLM

can then be used to calculate the bill, if applicable. A new cost-efficiency

mechanism, tokens per dollar per watt, helps assess the financial feasibility

of processing a given token using a specific amount of electrical power.

Chapter 13 Streamlit for ai

372

APIs for LLMs can also be created by those who offer LLMs for use

over a web page. For instance, Google allows the creation of API keys at

https://aistudio.google.com/app/apikey, which can be used to invoke

Gemini models. The following figure shows how multiple API keys can be

created and used in a Curl command to make an HTTP call to Gemini 1.5

Flash with a sample input as shown in Figure 13-2 below.

Figure 13-2. Google API Studio API key generation

13.2.3. Self-Hosting and Deployment

Using APIs and web pages to interact with LLMs means submitting your

prompts to a server before invoking the LLM itself. For most use cases, this

is convenient, as it removes the hassle of managing and hosting an LLM

on your own. However, if privacy is a key requirement, the safest option is

to deploy the LLM on your own infrastructure. Self-hosting LLMs comes

with its own costs, such as the initial investment in hardware, ensuring

a reliable energy supply, and managing clusters of machines to support

heavy traffic to the model.

Chapter 13 Streamlit for ai

https://aistudio.google.com/app/apikey

373

Many LLMs are available for download and can be run on your

machine. One example is Llama, created by Meta. An easy way to get

started with Llama is by downloading it from https://ollama.com/

download, which installs a desktop application that, in turn, installs

command-line tools to manage different Llama models and run them

as shown in Figure 13-3.

The following Figures 13-4 and 13-5 show the process of installing

Llama 3.2 on a MacBook Pro i9. Performance may vary depending on the

machine, but smaller models with fewer than three billion parameters can

even run on mobile phones.

Figure 13-3. Installing Llama3.2

Chapter 13 Streamlit for ai

https://ollama.com/download
https://ollama.com/download

374

Figure 13-4. Running Llama3.2

Figure 13-5. Prompting Llama3.2

Chapter 13 Streamlit for ai

375

If you want to prompt the model programmatically, you can do so by

calling an endpoint on the local host, which is exposed when the model is

run through the terminal. For more information, visit https://github.

com/ollama/ollama/blob/main/docs/api.md.

13.3. Integrating LLMs with Streamlit

Streamlit is a web framework, and LLMs are typically deployed as

independent services to avoid tight coupling with other software. This

means LLMs can be used in Streamlit as if they were any other service, and

their method of invocation can be done via network calls. This setup works

whether the Streamlit server and LLM server are on the same machine or

different machines.

The following steps outline how to replicate the behavior of LLM

websites, where users supply prompts, call the LLM with the prompt, wait

for the response, and render the output in a stream UI format.

13.3.1. Building an Input User Interface

A basic LLM website typically requires three main UI components:

a text input, a send button, and an output area. Listing 13-1 takes in

an input and displays dummy text when the send button is clicked

as shown in Figure 13-6.

Listing 13-1. sample_text_input.py

import streamlit as st

st.title('LLMs in Streamlit')

text = st.text_area('Write prompt here')

sent = st.button('Send')

if sent:

 output = 'Dummy Output' # Replace with LLM call

 st.text(output)

Chapter 13 Streamlit for ai

https://github.com/ollama/ollama/blob/main/docs/api.md
https://github.com/ollama/ollama/blob/main/docs/api.md

376

Figure 13-6. LLM sample text input user interface (output of
Listing 13-1)

13.3.2. Setting Up an HTTP Connection

For demonstration purposes, we will use an LLM through an API. We can

build on top of Gemini’s API, for which we generated an API key earlier.

To start, let us generate the key using the steps mentioned in previous

sections of this chapter. Since API keys are sensitive data, they should not

be hardcoded into your application. Instead, we will add the key to our

environment variables. This can be done by adding Listing 13-2 to a file

named .env, located in the same directory as your Streamlit application’s

main file.

Listing 13-2. .env

API_KEY=<YOUR_API_KEY_HERE>

The API key can then be read in Python as shown in Listing 13-3. First,

you need to install the python-dotenv package by running pip install

Chapter 13 Streamlit for ai

377

python-dotenv to use a method called load_env. This method reads the

.env file and adds the key-value pairs to the system environment, making

them easily accessible from your code.

Listing 13-3. read_variables.py

import os

from dotenv import load_dotenv

load_dotenv()

API_KEY = os.getenv('API_KEY')

print(f'{API_KEY=}')

For this example, we are using Gemini’s API from Google AI Studio.

The curl command provided on the API key generation page is more suited

for usage in the terminal or CMD. To recreate it in Python, we can apply

the knowledge learned in previous chapters and use the requests package

in Python as shown in Listing 13-4 below.

Listing 13-4. gemini_input.py

import os

import requests

import json

API_KEY = os.getenv('API_KEY')

URL = 'https://generativelanguage.googleapis.com/v1beta/models/

gemini-1.5-flash-latest:generateContent'

def call_llm(text: str) -> str:

 body = {

 'contents': [{

 'parts': [{'text': text}]

 }]

 }

Chapter 13 Streamlit for ai

378

 response = requests.post(

 URL, params={'key': API_KEY}, headers={'Content-Type':

'application/json'},

 data=json.dumps(body)

)

 return response.json().get('candidates', [{}])[0].

get('content', {}).get('parts', [{}])[0].get('text')

13.3.3. Creating the Stream Effect

Now that we have a method for calling an LLM in code, we need a way to

present its output. For our API use case, there is only an HTTP method,

and no WebSocket method. A WebSocket could have streamed the

LLM’s output to our Streamlit app token by token, allowing us to render

the output word by word and create the famous LLM-streamed output

experience.

Since this is not the case, we can circumvent this limitation and

simulate our own stream effect. This is possible because Streamlit has

a method called write_stream, which takes in an iterable of strings and

renders the output in a stream-like fashion. Fortunately, we can not only

convert the LLM’s block output into an iterable of strings, but also adjust

the speed at which each string appears in the iterable.

To start, we need to create a method that takes in a string and returns

an iterable of strings. The iterable should introduce a delay between

each element to mimic the behavior of LLM stream output. This can

be achieved by pausing the Python interpreter for a few milliseconds.

The following method as shown in Listing 13-5 accomplishes this.

Chapter 13 Streamlit for ai

379

Listing 13-5. string_iterable_converter.py

import time

from typing import Iterable

def yield_text(text: str) -> Iterable:

 for word in text.split(' '):

 yield word + ' '

 time.sleep(0.01)

13.3.4. Building an LLM Application
with Streamlit

To bring everything together, this section combines the concepts from

previous sections to build a fully-fledged LLM Streamlit application. This

application takes text input from the user, invokes the Gemini 1.5 Flash

API, and displays the output in a streamed fashion. Listing 13-6 displays

the complete code for the application.

Listing 13-6. streamlit_llm_application.py

import os

import time

import requests

import json

import streamlit as st

from dotenv import load_dotenv

from typing import Iterable

def call_llm(text: str) -> str:

 """Call LLM using direct requests to Google API"""

 body = {

 'contents': [{

 'parts': [{'text': text}]

Chapter 13 Streamlit for ai

380

 }]

 }

 try:

 response = requests.post(

 URL,

 params={'key': API_KEY},

 headers={'Content-Type': 'application/json'},

 data=json.dumps(body),

 timeout=30

)

 response.raise_for_status() # Raise an exception for

bad status codes

 response_data = response.json()

 response_text = response_data.get('candidates',

[{}])[0].get('content', {}).get('parts', [{}])[0].

get('text', '')

 if not response_text:

 return "No response generated. Please try again."

 return response_text

 except requests.exceptions.RequestException as e:

 return f"Error calling API: {str(e)}"

 except (KeyError, IndexError) as e:

 return f"Error parsing response: {str(e)}"

def yield_text(text: str) -> Iterable[str]:

 """Yield text word by word for streaming effect"""

 for word in text.split(' '):

 yield word + ' '

Chapter 13 Streamlit for ai

381

 time.sleep(0.02) # Slightly slower for better

readability

def main():

 load_dotenv()

 st.title('LLM Chat with Streamlit')

 # Main interface

 st.write("Enter your prompt below and click Send to get a

response from Gemini.")

 text = st.text_area(

 'Your prompt:',

 height=120,

 placeholder="Ask me anything..."

)

 sent = st.button('Send', type="primary")

 # Handle submission

 if sent:

 response_text = call_llm(text)

 st.write_stream(yield_text(response_text))

if __name__ == '__main__':

 API_KEY = os.getenv('API_KEY')

 URL = 'https://generativelanguage.googleapis.com/v1beta/

models/gemini-1.5-flash-latest:generateContent'

 main()

The output is as expected: we can prompt the model with any text and

see the result displayed in a streamed effect. Check the difference between

Figures 13-7 and 13-8.

Chapter 13 Streamlit for ai

382

Figure 13-7. LLM stream response midway through rendering

Figure 13-8. LLM response after rendering

Chapter 13 Streamlit for ai

383

Another way to invoke hosted LLM models is via official pip packages

as shown in Listing 13-7. In our previous example, this can be done

by using genai module from the pip package google. This comes with

multiple benefits, like encapsulating the HTTP invocation in one line,

as well as support streaming of the response live, token by token—or

batch by batch—from Gemini directly instead of waiting for the whole

response to be ready before receiving it. Using it will give a more appealing

user experience as shown in Figure 13-9 below.

Figure 13-9. LLM response streaming

Listing 13-7. streamlit_llm_streaming_application.py

import os

import time

import requests

import json

import streamlit as st

from dotenv import load_dotenv

from typing import Iterable

Chapter 13 Streamlit for ai

384

from google import genai

def call_llm_requests(text: str) -> str:

 """Call LLM using direct requests to Google API"""

 body = {

 'contents': [{

 'parts': [{'text': text}]

 }]

 }

 response = requests.post(

 URL, params={'key': API_KEY}, headers={'Content-Type':

'application/json'},

 data=json.dumps(body)

)

 response_text = response.json().get('candidates', [{}])[0].

get('content', {}).get('parts', [{}])[0].get('text')

 return response_text

def call_llm_genai(text: str) -> str:

 """Call LLM using google-ai-generativelanguage library"""

 try:

 # Create client

 client = genai.Client(api_key=API_KEY)

 # Generate content

 response = client.models.generate_content(

 model='gemini-1.5-flash-latest',

 contents={'parts': [{'text': text}]}

)

 return response.candidates[0].content.parts[0].text

 except Exception as e:

Chapter 13 Streamlit for ai

385

 return f"Error calling LLM with google-ai-

generativelanguage: {str(e)}"

def call_llm_genai_stream(text: str) -> Iterable[str]:

 """Call LLM using google-ai-generativelanguage library with

streaming"""

 try:

 # Create client

 client = genai.Client(api_key=API_KEY)

 # Generate content with streaming

 response = client.models.generate_content_stream(

 model='gemini-1.5-flash-latest',

 contents={'parts': [{'text': text}]}

)

 for chunk in response:

 if chunk.candidates and chunk.candidates[0].

content.parts:

 text_chunk = chunk.candidates[0].content.

parts[0].text

 if text_chunk:

 yield text_chunk

 time.sleep(0.01) # Small delay for

visual effect

 except Exception as e:

 yield f"Error calling LLM with streaming: {str(e)}"

def yield_text(text: str) -> Iterable[str]:

 """Yield text word by word for streaming effect"""

 for word in text.split(' '):

 yield word + ' '

 time.sleep(0.01)

Chapter 13 Streamlit for ai

386

def main():

 load_dotenv()

 st.title('LLMs in Streamlit')

 # API method selection

 st.sidebar.title("Configuration")

 api_options = ["Direct Requests", "Google AI

GenerativeLanguage Library"]

 api_method = st.sidebar.selectbox(

 "Choose API Method:",

 api_options,

 help="Select how to call the Google Gemini API"

)

 # Streaming option for google-ai-generativelanguage

 use_streaming = False

 if api_method == "Google AI GenerativeLanguage Library":

 use_streaming = st.sidebar.checkbox(

 "Use Streaming",

 value=True,

 help="Stream the response in real-time (only

available with google-ai-generativelanguage library)"

)

 # Main interface

 text = st.text_area('Write prompt here', height=100)

 sent = st.button('Send', type="primary")

 if not sent or not text.strip():

 return

 if not API_KEY:

Chapter 13 Streamlit for ai

387

 st.error("API_KEY not found. Please set it in your

.env file.")

 return

 # Show which method is being used

 if api_method == "Direct Requests":

 st.info(" Using direct HTTP requests to Google API")

 with st.spinner("Generating response..."):

 response_text = call_llm_requests(text)

 st.write_stream(yield_text(response_text))

 elif api_method == "Google AI GenerativeLanguage Library":

 st.info(" Using google-ai-generativelanguage library

with streaming")

 st.write_stream(call_llm_genai_stream(text))

 else:

 st.error("Selected API method is not available. Please

install the required library or choose a different

method.")

if __name__ == '__main__':

 API_KEY = os.getenv('API_KEY')

 URL = 'https://generativelanguage.googleapis.com/v1beta/

models/gemini-1.5-flash-latest:generateContent'

 main()

13.4. Summary

LLMs have become the new focus of the technology community due to the

unique benefits they provide. Using an LLM can be the final solution, but

not always. Artificial intelligence can serve as a tool to create even greater

products, like Streamlit. Both LLMs and Streamlit can work together

Chapter 13 Streamlit for ai

388

to enhance a good product and make it even better. In this chapter, we

learned an overview of LLMs and how they operate, along with the various

ways they can be interacted with. We then used one of these interaction

methods to build clones of a generic AI assistant that takes text input and

provides text output. The beauty of the product we built in this chapter lies

in its modularity. As a developer, you can experiment with, or even run in

parallel, different types of models from various API providers, or opt for a

self-hosted solution.

Chapter 13 Streamlit for ai

389© Mohammad Khorasani, Mohamed Abdou, Javier Hernández Fernández 2025
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_14

CHAPTER 14

Streamlit at Work

This final chapter presents two real-world cases demonstrating the use

of Streamlit. The first example highlights an analysis tool developed

by Iberdrola, a renewable energy company, for solar farms. This tool

evaluates the operational conditions of photovoltaic (PV) power plants,

enhancing the understanding of current PV plants and informing future

development decisions. The second case examines the use of Streamlit in

industrial environments with maxon Group, a producer of high-precision

electronic motors. Streamlit is used to create a command & control

dashboard application, enabling both local and remote management of

maxon motors in a surgical scope adapter system.

14.1. Streamlit in Clean Energy: Iberdrola

Iberdrola is a global electric utility company operating in over 30 countries.

Since its founding, the company has prioritized a clean and reliable

business model through renewable energy investments, establishing itself

as one of the largest renewable energy operators worldwide by installed

capacity. Sustainable generation is a key business unit for Iberdrola,

alongside networks and retail solutions [Ref: The Iberdrola Group is today

a global energy leader—Iberdrola].

https://doi.org/10.1007/979-8-8688-1826-4_14#DOI
https://www.iberdrola.com/about-us
https://www.iberdrola.com/about-us

390

The company generates electrical energy from clean sources such as

wind (onshore and offshore), hydro, photovoltaic, and others. Over the

next three years, Iberdrola plans to invest €41 billion in renewable energy

and other projects [Ref: Iberdrola Strategic Plan 2024-2026—Iberdrola]. Of

this, €15.5 billion will be allocated to renewables, with a target capacity of

60 GW. By 2030, the company expects its installed renewable capacity to

reach 95 GW [Ref: Renewable Energies—Iberdrola]. To get a glimpse of the

numbers associated with one solar plant, please see Figure 14-1.

Figure 14-1. Francisco Pizarro Photovoltaic Plant [Ref: https://
www.iberdrola.com/about-us/what-we-do/solar-photovoltaic-
energy/francisco-pizarro-photovoltaic-plant].

14.1.1. Visualizing Operational Performance
of Solar Farms

Nuria Sanchez, Daniel Paredes, and Brenno Teixeira Martins from the

Energy Resource Department have spent years developing algorithms

and custom software to analyze Iberdrola’s solar and wind farms. The

specific use case highlighted here is a software tool designed to assess the

CHAPTER 14 STREAMLIT AT WORK

https://www.iberdrola.com/about-us/iberdrola-strategic-plan
https://www.iberdrola.com/about-us/our-company/renewable-energies
https://www.iberdrola.com/about-us/what-we-do/solar-photovoltaic-energy/francisco-pizarro-photovoltaic-plant
https://www.iberdrola.com/about-us/what-we-do/solar-photovoltaic-energy/francisco-pizarro-photovoltaic-plant
https://www.iberdrola.com/about-us/what-we-do/solar-photovoltaic-energy/francisco-pizarro-photovoltaic-plant

391

performance of PV (Photovoltaic) farms and identify operational losses.

The program collects data from field devices, various databases, and

models to calculate the efficiency and losses of the power plants. This

information is then used to study the plants and their components, as well

as to detect deviations.

To meet the needs of operational performance analysis, an innovative

in-house software solution was developed. This software automates and

streamlines computations that would otherwise be performed manually.

Initially created as a series of Python scripts, the tool effectively met

the operational analysis requirements but was limited in scalability,

accessibility, and interaction with other systems. As a result, transitioning

to a cloud-based deployment would enhance its potential and enable

additional features and integration for end-users. Since all algorithms were

already implemented in Python, a web framework was needed to interface

with the web browser. Streamlit was chosen for this purpose due to its pure

Pythonic nature, which required minimal learning and eliminated the

need for HTML or CSS knowledge.

In collaboration with Iberdrola Innovation Middle East, a research

center focused on smart grids and the integration of distributed renewable

energy, the solar analysis tool was redesigned, and its functionality

enhanced. The following sections will discuss some of the Streamlit-based

graphical representations used by Iberdrola’s solar engineers.

14.1.2. Wind and Solar Production

Hybrid farms, which combine wind and solar energy production, are a

popular approach to maximizing renewable energy output. These farms

capitalize on the complementary nature of wind and solar resources, as

wind tends to be stronger at night and during the winter months, while

solar energy is abundant during the day and in summer. By integrating

both energy sources, hybrid farms can offer a more stable and continuous

power supply, reducing reliance on fossil fuels and enhancing grid stability.

CHAPTER 14 STREAMLIT AT WORK

392

Figure 14-2 presents the hourly production profile of a hybrid farm,

generated using synthetic data to highlight the dynamic interaction

between wind and solar energy throughout the day. The Y-axis represents

hourly production in megawatts (MW), while the X-axis shows the hours of

the day.

In the graph, wind energy production is depicted in blue, showing how

wind power fluctuates throughout the day, typically peaking during the night

and early morning hours. Photovoltaic (PV) production is shown in green,

illustrating the increase in solar energy generation as the sun climbs higher

in the sky, reaching its peak at midday, and tapering off toward the evening.

PV loss, represented in red, indicates the amount of potential solar

energy that is not captured due to the Point of Interconnection (POI) limit.

The yellow curve represents the percentage of PV loss, providing a clear

visual of how these losses correlate with levels of PV production. Notably,

the PV loss percentage tends to increase with higher PV production,

mainly due to the POI limit, which restricts the amount of energy that can

be fed into the grid.

This detailed visualization effectively demonstrates the

complementary nature of wind and solar energy in a hybrid farm setup,

highlighting how these renewable sources can work together to provide a

more stable and continuous power supply throughout the day.

CHAPTER 14 STREAMLIT AT WORK

393

Figure 14-2. Hourly profile of a hybrid farm production

14.1.3. Heat Maps

A heat map (or heatmap) is a visual tool that uses colors to represent

data values, making it easier to identify patterns and trends. The heat

map in Figure 14-3 shows the percentage of PV loss and the probability

of exceeding the POI limit for simulated hybrid farm production,

broken down by month and hour. In this heat map, red cells indicate a

higher percentage of PV losses and a greater probability of exceeding

the POI limit, while blue cells represent periods of no production. This

visualization provides engineers with a comprehensive overview of energy

loss patterns, which is crucial for optimizing the sizing and dimensioning

of renewable energy systems.

Moreover, this data is invaluable for integrating battery storage into

hybrid farms. For instance, the heat map shows that February and March

experience higher PV losses. Additionally, the probability of exceeding

the POI limit is generally higher between 10 AM and 3 PM from February

CHAPTER 14 STREAMLIT AT WORK

394

to July. These insights can guide the strategic placement and capacity

planning of battery storage systems, helping mitigate energy losses and

enhance overall efficiency. By understanding these patterns, engineers

can make informed decisions about the mix of renewable energy sources

and the implementation of storage solutions, ultimately enhancing the

performance and reliability of hybrid farms.

Figure 14-3. Heatmap of the PV loss percentage for hybrid farm
production on a monthly and hourly basis

14.1.4. Closing Remarks

Beyond its visualization capabilities, Streamlit has shown remarkable

versatility for Iberdrola Renewables. One of its key advantages is the ability

to render multiple datasets on demand. Users can easily select the data

they wish to display through an interactive interface, eliminating the need

for manual programming in the source code. This feature greatly enhances

user experience and efficiency.

Another valuable aspect of Streamlit is its support for two-way

communication with charts using pure Python. This functionality enables

dynamic and interactive data visualizations, allowing users to engage

CHAPTER 14 STREAMLIT AT WORK

395

with the data more effectively. Additionally, Streamlit offers the ability to

render charts as HTML on a website. This means the charts can be made

interactive and integrated with other widgets, providing a seamless user

experience. This is a significant improvement over running the application

locally without third-party interactions, as it offers greater flexibility and

interactivity in data presentation. Overall, Streamlit’s features make it an

indispensable tool for Iberdrola Renewables, facilitating advanced data

visualization, user interaction, and integration with web-based platforms.

This publication is supported by Iberdrola S.A. as part of its
innovation department research studies. Its contents are solely
the responsibility of the authors and do not necessarily repre-
sent the official views of Iberdrola Group.

14.2. Streamlit in Industry: maxon Group

maxon Group, a Swiss company, manufactures and distributes industrial-

scale electronic motors for high-precision and advanced applications.

Their products are widely used in various industries, including healthcare,

aerospace, automotive, and packaging. The combination of versatile

products, exceptional build quality, and excellent customer service allows

developers to meet and exceed stringent performance requirements, both

on Earth and in space. maxon’s product range includes brushed, brushless,

AC, and DC motors, along with gearboxes, encoders, hall effect sensors,

and motor controllers that can be operated via RS232, USB, CANopen, and

EtherCAT communication protocols. Additionally, maxon offers extensive

customization options, enabling precise adjustments to dimensions,

mechanical interfaces, cables, bearings, and other drive features to meet

specific needs. Please see Figures 14-4 and 14-5 for examples of a brushless

motor and motor controller developed by maxon.

CHAPTER 14 STREAMLIT AT WORK

396

Figure 14-4. Disposition of a maxon GPX Speed 13 reduction
gearbox, ECX Speed 13M brushless motor, and ENX13 encoder

Figure 14-5. maxon EPOS4 Compact 24/1.5 CAN motor controller

CHAPTER 14 STREAMLIT AT WORK

397

14.2.1. Developing a Novel Surgical Scope
Adapter System for Minimally
Invasive Laparoscopy

Laparoscopy, a form of minimally invasive surgery, is increasingly

becoming the preferred method for abdominal procedures. This technique

involves making small incisions, leading to quicker recovery times and a

lower risk of complications for patients. Currently, these procedures are

performed manually, with a surgical assistant responsible for holding

and maneuvering the endoscope inserted into the abdomen to provide

real-time visuals of the surgical area Figure 14-6. This setup requires

the operator to have excellent dexterity and hand-eye coordination, as

even slight inaccuracies can lead to errors during surgery. [Ref: https://

onlinelibrary.wiley.com/doi/10.1002/rcs.2475]

Figure 14-6. Schematic of an endoscope inserted into the abdomen

CHAPTER 14 STREAMLIT AT WORK

https://onlinelibrary.wiley.com/doi/10.1002/rcs.2475
https://onlinelibrary.wiley.com/doi/10.1002/rcs.2475

398

To address the limitations of having a human operator in the feedback

loop, Dr. Nikhil Navkar and Mohammad Khorasani developed and

prototyped an innovative scope adapter (illustrated in Figures 14-7 and

14-9). In this design, the endoscope and its camera head are mounted and

controlled by a UR5 robotic arm, which provides six degrees of freedom.

Additionally, the adapter itself offers two more degrees of freedom,

allowing for the rotation of the scope and camera head around its axis and

the angulation of the scope tip.

The rotation mechanism is driven by a maxon ECX brushless motor,

while the angulation is powered by a maxon brushed DCX motor. Each

motor is paired with a reduction gearbox, achieving top speeds of 20 RPM

for rotation and 16 RPM for angulation. Furthermore, a three-channel

optical encoder is used, providing resolutions of 4,096 steps per revolution

for rotation and 2,048 steps per revolution for angulation.

Additional benefits of the surgical scope adapter include the following:

• Compatible with various endoscopes, camera heads,

and robotic arms.

• Operable through multiple input methods, such

as a joystick or by tracking optical markers on the

surgeon’s head.

• Programmable to minimize human error and prevent

unintended movements.

• Alleviates operator strain and fatigue by eliminating the

need to manually hold the scope.

CHAPTER 14 STREAMLIT AT WORK

399

Figure 14-7. Engineering drawing of the maxon-powered surgical
scope adapter

14.2.2. Streamlit Command and Control
Dashboard

After completing the mechanical prototype of the surgical scope adapter,

a Streamlit application was developed to display a real-time dashboard

showing the speed and position of the rotation and angulation motors

(as illustrated in Figure 14-8). This application was also integrated with

a three-axis joystick, allowing for precise control of each maxon motor

(as shown in Figure 14-9). Additionally, by port forwarding the Streamlit

application, remote control of the motors over the Internet became

possible. This feature is particularly valuable for tele-surgery, enabling

an operator to participate in a surgery without being physically present

at the hospital. However, it is important to note that remote control

over long distances can introduce latency, which may affect the device’s

performance.

CHAPTER 14 STREAMLIT AT WORK

400

Figure 14-8. Streamlit command & control dashboard for the
surgical scope adapter

Figure 14-9. Prototype of the surgical scope adapter with the
Streamlit command & control dashboard

CHAPTER 14 STREAMLIT AT WORK

401

14.2.3. Closing Remarks

While Streamlit is branded as a framework for machine learning and data

science applications, it offers enough versatility to be used for various

purposes. As demonstrated in this case, Streamlit was effectively used

to integrate several non-trivial subsystems into one contiguous system.

Specifically, Streamlit was used to interface the maxon motors with a

joystick, enable remote control over both the local area network and

the Internet, and provide a real-time dashboard displaying the motors’

position and speed, all in just a few lines of code.

This work was supported by National Priority Research
Program (NPRP) award (NPRP13S-0116-200084) from the
Qatar National Research Fund (a member of The Qatar
Foundation) and IRGC-04-JI-17-138 award from Medical
Research Center (MRC) at Hamad Medical Corporation
(HMC). All opinions, findings, conclusions or recommenda-
tions expressed in this work are those of the authors and do
not necessarily reflect the views of our sponsors.

14.3. Summary

In this final chapter, we have explored two real-world instances of Streamlit

being effectively utilized for commercial and industrial activities. The

first case demonstrates how Iberdrola, a renewable energy firm, is using

Streamlit to create a corporate data management application for their wind

farms to estimate electrical losses during production. The second case

expands on an industrial use case, where high-precision electronic motors

manufactured by maxon Group are controlled via a Streamlit application

for use within a surgical scope adapter system. Both examples highlight

the utility that Streamlit offers to the corporate world and beyond.

CHAPTER 14 STREAMLIT AT WORK

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	Acronyms
	Intended Audience
	Additional Material
	Chapter 1: Introducing Streamlit
	1.1. Why Streamlit?
	1.1.1. Local vs. the Cloud
	1.1.2. A Trend Toward Cloud Computing
	1.1.3. History of Web Frameworks in Python
	1.1.4. Flask
	1.1.5. Django
	1.1.6. Dash
	1.1.7. Web2Py
	1.1.8. The Need for a Pure Python Web Framework
	1.1.9. Academic Significance

	1.2. Firing It Up
	1.2.1. Technical Recommendations
	1.2.2. Environment Installation with Anaconda
	Programmatic Installation
	Graphical Installation

	1.2.3. Downloading and Installing Streamlit
	Direct pip Installation
	Manual Wheel File Installation
	Importing Streamlit

	1.2.4. Streamlit Console Commands
	Configuring Streamlit Through the Console

	1.2.5. Running Demo Apps
	1.2.6. Writing and Testing Code with PyCharm

	1.3. How Streamlit Works
	1.3.1. The Streamlit Architecture
	1.3.2. ReactJS in Streamlit

	1.4. Summary

	Chapter 2: Streamlit Basics
	2.1. Creating a Basic Application
	2.1.1. Generating User Input Forms
	2.1.2. Introducing Conditional Flow
	Example 1
	Example 2

	2.1.3. Managing and Debugging Errors
	Example 1
	Example 2

	2.2. Mutating Dataframes
	2.2.1. Filter
	2.2.2. Select
	2.2.3. Arrange
	2.2.4. Mutate
	2.2.5. Group By
	2.2.6. Merge
	2.2.7. Data Editor

	2.3. Rendering Static and Interactive Charts
	2.3.1. Static Bar Chart
	2.3.2. Static Line Chart
	2.3.3. Interactive Line Chart
	2.3.4. Interactive Map

	2.4. Developing the User Interface
	2.5. Summary

	Chapter 3: Developing the User Interface
	3.1. Designing the Application
	3.1.1. Configuring the Page
	Basic Page Configuration
	Removing Footer and Hamburger Menu
	Adding a Customized Footer
	Advanced Page Configuration

	3.1.2. Developing Themes and Color Schemes
	Customizing the Theme Graphically
	Customizing the Theme Programmatically
	Using Themes with Custom Components

	3.1.3. Organizing the Page
	Sidebar
	Expanders
	Columns
	Containers
	Popovers
	Dialog Boxes

	Placeholders
	Tabs

	3.2. Displaying Dynamic Content
	3.2.1. Creating a Real-Time Progress Bar

	3.3. Implementing Multipage Applications
	3.3.1. Creating Pages
	3.3.2. Grouping Subpages
	3.3.3. Enabling Sub URL Paths

	3.4. Modularizing Application Development
	3.4.1. Example: Developing a Social Network Application
	3.4.2. Fragmenting Parts of the Application
	3.4.3. Best Practices for Folder Structuring

	3.5. Summary

	Chapter 4: Managing and Visualizing Data
	4.1. Data Management
	4.1.1. Processing Bytes Data
	Text
	Multimedia
	Dataframes

	4.1.2. Caching Big Data
	4.1.3. Mutating Data in Real Time
	Native Data Mutation

	4.1.4. Advanced and Interactive Data Mutation

	4.2. Exploring Plotly Data Visualizations
	4.2.1. Rendering Plotly in Streamlit
	4.2.2. Basic Charts
	Line Chart
	Scatter Chart
	Bar Chart
	Pie Chart
	Chart Layout

	4.2.3. Statistical Charts
	Histogram
	Box Plot

	4.2.4. Time-Series Charts
	4.2.5. Geospatial Charts
	4.2.6. Animated Visualizations
	Animated Bubble Map
	Animated Bar Chart

	4.3. Summary

	Chapter 5: Integrating Databases
	5.1. Relational Databases
	5.1.1. Introduction to SQL
	5.1.2. Connecting a PostgreSQL Database to Streamlit
	5.1.3. Displaying Tables in Streamlit

	5.2. Nonrelational Databases
	5.2.1. Introduction to MongoDB
	5.2.2. Provisioning a Cloud Database
	5.2.3. Full-Text Indexing
	5.2.4. Querying the Database
	5.2.5. Displaying Tables in Streamlit

	5.3. Summary

	Chapter 6: Leveraging Backend Servers
	6.1. The Need for Backend Servers
	6.2. Frontend–Backend Communication
	6.2.1. HTTP Methods

	6.3. Working with JSON Files
	6.4. Provisioning a Backend Server
	6.4.1. API Building
	6.4.2. API Testing

	6.5. Multithreading and Multiprocessing Requests
	6.6. Connecting Streamlit to a Backend Server
	6.7. Summary

	Chapter 7: Implementing Session State
	7.1. Implementing Session State Natively
	7.1.1. Building an Application with Session State

	7.2. Introducing Session IDs
	7.3. User Insights
	7.3.1. Visualizing User Insights

	7.4. Cookie Management
	7.5. Summary

	Chapter 8: Authenticating Users and Securing Applications
	8.1. Developing User Accounts
	8.1.1. Hashing
	8.1.2. Salting

	8.2. Verifying User Credentials
	8.3. Secrets Management
	8.4. Anti-SQL Injection Measures with SQLAlchemy
	8.5. Configuring Gitignore Variables
	8.6. Summary

	Chapter 9: Deploying Locally and to the Cloud
	9.1. Exposing Streamlit to the World Wide Web
	9.1.1. Port Forwarding over a Network Gateway
	9.1.2. HTTP Tunneling Using NGROK

	9.2. Deployment to Streamlit Community Cloud
	9.2.1. One-Click Deployment
	9.2.2. Streamlit Secrets

	9.3. Deployment to Linux
	9.3.1. Native Deployment on a Linux Machine
	9.3.2. Deployment with Linux Docker Containers

	9.4. Deployment to Windows Server
	9.4.1. Establishing a Remote Desktop Connection
	9.4.2. Opening TCP/IP Ports
	9.4.3. Anaconda Offline Package Installation
	9.4.4. Adding Anaconda to System Path
	9.4.5. Running Application As an Executable Batch File
	9.4.6. Running Application As a Persistent Windows Service

	9.5. Summary

	Chapter 10: Building Streamlit Components
	10.1. Introduction to Streamlit Custom Components
	10.2. Using ReactJS to Create Streamlit Custom Components
	10.2.1. Making a ReactJS Component
	10.2.2. Using a ReactJS Component in Streamlit
	10.2.3. Sending Data to the Custom Component
	10.2.4. Receiving Data from the Custom Component

	10.3. Publishing Components As Pip Packages
	10.4. Component in Focus: Extra-Streamlit-Components
	10.4.1. Stepper Bar
	10.4.2. Bouncing Image
	10.4.3. Tab Bar
	10.4.4. Cookie Manager

	10.5. Summary

	Chapter 11: Streamlit Use Cases
	11.1. Dashboards and Real-Time Applications
	11.1.1. Temperature Data Recorder Application
	11.1.2. Motor Command and Control Application

	11.2. Time-Series Applications
	11.2.1. Date-Time Filter Application
	11.2.2. Time-Series Heatmap Application
	11.2.3. Time Synchronization Application

	11.3. Data Management and Machine Learning Applications
	11.3.1. Data Warehouse Application
	11.3.2. Advanced Application Development: Machine Learning As a Service
	User Authentication Without a Backend Server
	Utilities Script
	Config Script
	Main Script
	Logistic Regression Classifier

	11.4. Summary

	Chapter 12: Testing in Streamlit
	12.1. Principles of Testing
	12.1.1. What Is Testing?
	12.1.2. Benefits of Testing
	12.1.3. Types of Testing

	12.2. Why Test in Streamlit?
	12.2.1. Behavioral and Logical Testing
	12.2.2. User Interface Testing

	12.3. Testing Streamlit Applications
	12.3.1. Setting Up Testing Environment
	12.3.2. Writing Tests

	12.4. Automated Testing with GitHub Actions
	12.4.1. Setting Up the Workflow
	12.4.2. Creating the Test Script

	12.5. Summary

	Chapter 13: Streamlit for AI
	13.1. What Are LLMs and How Are They Useful?
	13.1.1. Summarization
	13.1.2. Content Generation
	13.1.3. Retrieval Augmented Generation

	13.2. Different Ways to Interact with LLMs
	13.2.1. Official Web Pages
	13.2.2. Application Program Interfaces
	13.2.3. Self-Hosting and Deployment

	13.3. Integrating LLMs with Streamlit
	13.3.1. Building an Input User Interface
	13.3.2. Setting Up an HTTP Connection
	13.3.3. Creating the Stream Effect
	13.3.4. Building an LLM Application with Streamlit

	13.4. Summary

	Chapter 14: Streamlit at Work
	14.1. Streamlit in Clean Energy: Iberdrola
	14.1.1. Visualizing Operational Performance of Solar Farms
	14.1.2. Wind and Solar Production
	14.1.3. Heat Maps
	14.1.4. Closing Remarks

	14.2. Streamlit in Industry: maxon Group
	14.2.1. Developing a Novel Surgical Scope Adapter System for Minimally Invasive Laparoscopy
	14.2.2. Streamlit Command and Control Dashboard
	14.2.3. Closing Remarks

	14.3. Summary

