
The Rust Program
m

ing
H

andbook
Francesco C

iulla

EXPERT INSIGHT

The Rust
Programming
Handbook
An end-to-end guide to mastering Rust fundamentals

• Thoroughly understand Rust’s unique programming model and its
advantages for software development.

• Implement advanced features like smart pointers, concurrency,
and error handling to write efficient and secure code.

• Seamlessly incorporate Rust into your projects, enhancing both
performance and scalability.

• Prepare for sophisticated development tasks in systems and web
programming using Rust.

• Navigate Rust’s ecosystem with the latest tools and frameworks to
stay ahead with the technology.

WHAT YOU WILL LEARN

The Rust Programming Handbook is a deeply engaging and meticulously crafted book designed to immerse
programmers in the intricate world of Rust’s core principles and sophisticated features. This book not only
enhances your coding skills but also prepares you to tackle complex challenges in software development,
optimizing your code for bett er performance and reliability.

You will explore Rust’s powerful concurrency models, rigorous memory safety guarantees, and its versatile
trait system. You will discover the foundational elements that make Rust a standout language for developing
safe and eff icient applications. The book will show you how these core principles can seamlessly transition
into real-world applications. You will learn how to apply Rust’s capabilities to systems programming and
web development, extending the reach of its safety and eff iciency benefi ts across diff erent programming
domains. Whether it’s creating low-level system components or high-performance web services, this book
provides practical examples to integrate Rust eff ectively into a variety of projects.

Elevate your coding skills and become a sought-after professional in the tech industry with this essential
guide. The Rust Programming Handbook is your defi nitive toolkit for mastering advanced Rust programming
techniques and writing high-quality code.

www.packtpub.com

The Rust Programming
Handbook

Get a free PDF of this book

packt.link/free-ebook/9781836208877

Francesco Ciulla

The Rust Programming
Handbook

An end-to-end guide to mastering Rust fundamentals

Francesco Ciulla

The Rust Programming Handbook
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Kunal Chaudhari
Relationship Lead: Dhruv J. Kataria
Project Manager: K. Loganathan
Content Engineer: Deepayan Bhattacharjee
Technical Editor: Irfa Ansari
Copy Editor: Safis Editing
Indexer: Manju Arasan
Proofreader: Deepayan Bhattacharjee
Production Designer: Shantanu Zagade
Growth Lead: Vinishka Kalra

First published: December 2025

Production reference: 1171225

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83620-887-7

www.packtpub.com

www.packtpub.com

To my parents, for their endless support

– Francesco Ciulla

Contributors

About the author
Francesco Ciulla is a Content Creator and a Docker Captain (since 2021) from Rome, Italy.

Starting his career as a computer scientist, he transformed his passion for technology into a

mission of teaching and sharing knowledge.

Francesco is a strong believer in the developer community, which he considers the best in the

world. He has been a highly active international public speaker since 2022 and was recognized

with the Microsoft Most Valuable Professional (MVP) award in 2024. Before dedicating himself

fully to content creation, he gained significant experience as a full stack developer working on

the Copernicus project for the European Space Agency (ESA).

Driven by the conviction that teaching is the highest form of understanding, Francesco shares his

expertise in Rust and DevOps with over 340,000 subscribers on YouTube (as of December 2025).

You can watch his latest tutorials at https://www.youtube.com/FrancescoCiulla.

I would like to extend a special thanks to my amazing girlfriend and future wife, Giulia, for her support,

encouragement, and patience throughout the entire writing process.

Thanks to Rahul Nair for giving me the opportunity to write this edition, which has been a very enriching

experience.

Special thanks to the entire content team, including Deepayan Bhattacharjee, K. Loganathan, Evgeni Pirianov,

and Ruby Rose, for their valuable input and time reviewing this book.

Finally, thank you to the entire Packt team for their continuous support during the course of writing this book.

https://www.youtube.com/FrancescoCiulla

About the reviewers
Evgeni Pirianov is a Senior Rust Software Engineer specializing in backend technologies, Web3,

and blockchain systems. A graduate of Imperial College London with a degree in Engineering,

Evgeni began his career developing non-linear solvers in C++ before transitioning to become

an architect and implementer of both centralized and decentralized applications across diverse

software domains.

As a technical auditor for programming books, Evgeni brings rigorous expertise to reviewing Rust

and lately Zig content, ensuring accuracy, clarity, and adherence to best practices. His deep un-

derstanding of systems programming, combined with hands-on experience building produc-

tion-grade applications, allows him to identify not just technical errors but also pedagogical

gaps that might hinder learners.

Evgeni’s passion for Rust is unmatched: he is a fervent advocate for the language’s bright future

and believes in its transformative potential across the entire software engineering landscape. His

commitment to the Rust ecosystem extends beyond writing code to creating courses and helping

others learn it correctly and effectively.

Evgeni has served as technical auditor for Asynchronous Programming in Rust by Carl Fredrik

Samson (ISBN: 978-1805128137) and Rust Web Programming by Maxwell Flitton (Packt Publish-

ing, ISBN: 978-1803234694).

Ruby Rose is a software engineer currently working in the field of databases. She has 10+ years of

software engineering experience, solving problems in the cloud, distributed systems, fintech, se-

curity, and privacy. She has contributed to and worked on several developer guides for cloud-man-

aged web services.

Join us on Discord!
Read this book alongside other users, developers, experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the authors via Ask Me Anything

sessions, and much more. Scan the QR or visit the link to join the community.

https://packt.link/deep-engineering-rust

https://packt.link/deep-engineering-rust

Table of Contents

Preface � xxxiii

Free Benefits with Your Book �� xxxix

Chapter 1: Getting Started with Rust � 1

Free Benefits with Your Book • 2

Technical requirements ��� 2

What is Rust? ��� 2

What is Rust good for? • 4

Key features of Rust • 4

The Rust ecosystem • 6

Why learn Rust? • 7

Installation and Hello World �� 8

Installing Rust • 8

Verifying the installation • 10

Setting up your development environment • 10

Setting up VS Code for Rust (recommended) • 10

Hello World • 11

Compiling and running your Hello World • 12

Using Cargo and Crates.io ��� 13

Verifying Cargo installation • 14

What is Cargo? • 15

Cargo’s main features • 15

Stable versus Nightly Rust • 16

Creating a new Rust project • 16

Managing dependencies with Cargo.toml • 16

Installing dependencies from Crates.io • 17

Table of Contentsviii

Cargo.lock: keeping dependencies consistent • 17

Building your project • 18

Running your project with Cargo • 18

Initializing a new Rust project with cargo init • 18

Creating a library with cargo init --lib • 19

Your first real Rust program: a CLI calculator ��� 20

Step 1: Setting up your project • 20

Step 2: Writing the calculator logic • 20

Step 3: Running the program • 23

What you learned • 24

Functions ��� 24

Functions example • 24

Summary ��� 26

Questions ��� 26

Chapter 2: Rust Syntax and Functions � 27

Variable declarations and mutability ��� 28

Immutable variables • 28

Mutable variables • 29

Shadowing • 29

Data types and structures ��� 31

Scalar types • 31

Integers • 31

Floating-point numbers • 31

Booleans • 32

Characters • 32

Compound types • 32

Tuples • 32

Arrays • 34

Slices • 34

Strings • 35

Table of Contents ix

Structs • 36

Classic structs • 36

Tuple structs • 37

Unit structs • 37

Struct initialization and update syntax • 37

Methods and associated functions • 38

Enums • 40

Defining enums • 40

Matching with enums • 41

Enum methods • 42

Functions in Rust ��� 44

Function syntax • 44

Parameter passing • 45

Passing by value • 45

Passing by reference • 45

Passing by mutable reference • 46

Return values • 46

Ownership and functions • 47

Control flow constructs ��� 48

if and else statements • 49

Loop constructs • 49

The loop keyword • 49

The while keyword • 50

The for keyword • 51

Using ranges with the for loop • 51

Nesting loops • 52

Pattern matching with match • 52

Matching literals • 52

Matching with variables • 53

Destructuring enums • 53

Combining patterns • 54

Table of Contentsx

Adding conditional logic with match guards • 54

Matching ranges • 56

Pattern matching with Option • 56

Understanding Rust’s approach to error handling ��� 57

Fundamentals of error handling • 57

The Result type • 58

The Option type • 59

Error destructuring • 61

The panic! macro • 61

Summary ��� 62

Questions and assignments ��� 63

Questions • 63

Variable declarations and mutability • 63

Data types and structures • 63

Control flow constructs • 63

Functions in Rust • 63

Assignments • 63

Assignment 2.1: Variable declarations and mutability • 63

Assignment 2.2: Data types and structures • 64

Chapter 3: Functions in Rust � 65

Importance of understanding functions ��� 66

Defining and calling functions • 66

Basic function syntax • 66

Parameters and return values • 67

Functions that don’t return a value • 68

Functions with no parameters and no return values • 69

Function syntax and best practices �� 70

Function ownership and borrowing ��� 71

Ownership in functions • 72

Borrowing in functions • 72

Table of Contents xi

Immutable borrowing • 73

Mutable borrowing • 73

Returning values and ownership • 74

Advanced function features ��� 75

Closures • 75

Capturing the environment • 76

The move keyword • 77

The closure traits: Fn, FnMut, and FnOnce • 78

Closures in action: Higher-order functions and iterators • 78

Anonymous functions and iterator methods • 80

Summary ��� 81

Questions and assignments ��� 81

Questions • 81

Defining functions • 81

Function ownership and borrowing • 82

Advanced function features • 82

Assignments • 82

Assignment 3.1: basic function implementation • 82

Assignment 3.2: ownership and borrowing in functions • 82

Assignment 3.3: using closures • 82

Chapter 4: Ownership, Borrowing, and References � 85

Objective �� 86

What is ownership? ��� 86

Understanding ownership • 87

Ways variables interact: Move, copy, and clone • 88

The default behavior: Moving ownership • 89

The exception: Automatic copying with the Copy trait • 90

Explicit duplication: The Clone trait • 92

Key rules of ownership in Rust • 93

Each value has a single owner • 93

Table of Contentsxii

Ownership can be transferred (moved) • 94

The owner is responsible for cleaning up the value • 94

Moving ownership ��� 95

Why move ownership? • 96

Moving in function calls • 97

Advantages of moving ownership • 98

Ownership and functions �� 98

Ownership transfer in function calls • 99

Returning ownership • 99

Borrowing and references �� 100

Immutable borrowing • 101

Mutable borrowing • 101

Borrowing rules • 102

Borrowing in functions • 103

Practical example: Managing a library • 104

Common patterns and idioms in Rust: Ownership, borrowing, and references ��������������� 105

Borrowing for read-only access • 106

Mutable borrowing for modification • 106

Example: Mutable borrowing in a function • 106

Returning references with borrowing • 107

Example: Returning a reference to the longest string • 107

Pitfalls and how to avoid them ��� 109

Forgetting ownership has moved • 109

Multiple mutable references • 110

Dangling references • 111

Unnecessary clones • 111

Summary �� 112

Questions and assignments �� 112

Questions • 113

Assignments • 113

Assignment 4.1: ownership in action • 113

Assignment 4.2: playing with borrowing • 113

Table of Contents xiii

Chapter 5: Composite Types in Rust and the Module System � 115

Structs: Named-field collections ��� 116

Defining structs • 116

Creating instances of structs • 117

Initializing structs • 117

Field initialization shorthand • 118

Accessing struct fields • 119

Reading field values • 119

Modifying struct fields • 119

Updating struct instances • 121

Struct update syntax • 121

Cloning struct instances • 122

Methods for structs • 124

Defining methods • 125

Calling methods • 126

Associated functions intro • 127

Unit-like structs • 128

Defining unit-like structs • 128

Use cases for unit-like structs • 129

Tuple structs • 130

Defining tuple structs • 130

Creating instances of tuple structs • 131

Accessing tuple struct fields • 131

Practical example: Using tuple structs in a function • 131

Empty tuples • 132

Structs and ownership • 132

Ownership of struct fields • 133

Borrowing struct fields • 134

Mutable borrowing • 134

Debugging with structs • 135

Table of Contentsxiv

Implementing the Debug trait • 135

Customizing debug output • 136

Practical example: User profile • 137

Defining the UserProfile struct • 137

Adding methods to UserProfile • 137

Using the UserProfile struct • 138

Structs: Exercises and assignments • 139

Structs: Summary • 139

Enums: One of several possibilities ��� 139

Defining and using enums • 140

Enum variants can hold data • 141

Enum methods/functions intro • 143

Enum methods example • 143

Using enums with structs • 145

Defining structs with enum fields • 145

Enums: exercises and assignments • 147

Enums: summary • 147

Tuples: simple ordered groups �� 147

Using tuples • 149

Accessing tuple elements • 150

Accessing elements by index • 150

Practical example: employee record • 151

Destructuring tuples • 151

Destructuring tuples • 152

Practical example: destructuring function return values • 152

Destructuring in a loop • 153

Returning tuples from functions • 153

Returning multiple values • 153

Destructuring function return values • 154

Practical example: splitting a full name • 154

Practical example: point in 3D space • 155

Table of Contents xv

Calculating the distance between points • 155

Practical usage • 156

Tuples: exercises and assignments • 156

Tuples: summary �� 156

Using structs, enums, and tuples together �� 157

Practical example: modeling a user profile • 157

Managing complexity with the module system ��� 158

Packages and crates • 158

The Package layout • 159

Binary crates vs. library crates • 159

Controlling scope and privacy with modules • 159

Defining the module tree • 160

The rules of privacy (the pub keyword) • 160

Referring to items via paths • 161

Absolute paths • 161

Relative paths and the super keyword • 161

Simplifying scope with the use keyword • 162

Idiomatic use paths • 163

Handling naming conflicts with “as” • 163

Physical organization: separating modules into files • 164

The module filesystem mapping • 164

Summary �� 165

Questions and assignments ��� 166

Questions • 166

Assignments • 166

Assignment 5.1: order system • 166

Assignment 5.2: geometric shapes enhanced • 167

Chapter 6: Introduction to Error Handling � 169

Why error handling matters ��� 169

Rust’s approach to errors ��� 170

Table of Contentsxvi

Core tools: Result and Option �� 170

Introduction to Result and Option �� 171

The Result type • 171

The Option type • 173

Option example • 173

When to use Result versus Option • 174

Handling Result and Option (unwrapping and alternatives) �� 175

Unrecoverable errors: Understanding panic! • 175

Introduction to unwrapping • 176

Using unwrap and expect • 176

Safe unwrapping with defaults • 178

Using combinators • 179

Propagating errors with ? �� 181

The problem of manual propagation • 181

The ? operator for Result • 182

Example: the ? operator for Result with Result • 182

The ? operator for Option • 185

When to use the ? operator • 186

Custom error types ��� 187

Defining custom error types with an enum • 187

Implementing standard error traits • 188

Using custom errors in functions • 190

Simplifying custom errors with thiserror and anyhow ��� 191

The thiserror crate • 192

The anyhow crate • 195

When to use thiserror versus anyhow • 197

Logging errors �� 198

Importance of logging • 198

The log crate and implementations • 198

Basic setup with env_logger • 198

Logging levels and configuration • 200

Table of Contents xvii

Logging errors with Context • 201

Practical examples and error handling best practices �� 202

Practical example: File data processing • 202

Summary ��� 206

Questions and assignments ��� 206

Questions • 206

Assignments • 207

Assignment 6.1: File reading with detailed error handling • 207

Assignment 6.2: Division function with custom errors (using thiserror) • 207

Assignment 6.3: Finding elements with Option and ? • 207

Chapter 7: Polymorphism and Lifetimes � 209

Ad hoc polymorphism: defining behavior with traits ��� 209

Defining a trait • 209

Method signatures versus default implementations • 210

Abstracting behavior • 211

Implementing traits • 212

Implementing custom types • 212

The orphan rule (where implementation is allowed) • 213

Trait objects • 214

Static versus dynamic dispatch • 216

Parametric polymorphism: abstracting with generics �� 217

The problem of duplication • 217

Writing the same function for different types • 217

The <T> type parameter • 218

Bounded parametric polymorphism (trait bounds) • 219

Limiting generics with traits (T: Trait) • 219

The where clause for complex constraints • 220

Returning types that implement traits • 220

Monomorphization • 221

How Rust optimizes polymorphism (zero-cost) • 222

Table of Contentsxviii

Lifetimes: polymorphism for scope �� 222

The necessity of lifetimes • 222

The dangling reference problem • 223

How the borrow checker validates scopes • 223

Generic lifetime annotations • 224

The <’a> syntax • 225

Annotating functions holding references • 225

The relationship between input and output lifetimes • 226

Lifetimes in data structures • 226

Structs with references • 226

The impl block for lifetime-bound structs • 227

Advanced lifetime concepts • 228

Lifetime elision rules • 228

The static lifetime (‘static) • 228

Applied polymorphism: a project ��� 229

Building a zero-copy configuration parser • 229

Defining the capability (the Parse trait) • 230

Abstracting the input (using generics) • 230

The safety guarantee • 231

Validating references (integrating lifetimes) • 231

Summary ��� 232

Questions and assignment ��� 233

Questions • 233

Assignment • 233

The universal media player • 233

Chapter 8: Object-Oriented Programming in Rust � 235

Understanding OOP principles �� 235

How Rust approaches OOP differently ��� 236

Encapsulation: structs, methods, and privacy • 237

Shared behavior with traits • 240

Table of Contents xix

Defining and implementing traits • 240

Traits for polymorphism: impl Trait • 243

Traits for polymorphism: trait bounds • 244

Understanding static dispatch (monomorphization) • 246

Dynamic polymorphism with trait objects • 248

Introduction to trait objects • 248

Creating trait objects: dyn Trait • 248

Dynamic versus static dispatch recap • 250

Object safety • 251

Simulating inheritance patterns • 253

Composition over inheritance • 253

Sharing behavior via traits • 254

Default implementations • 254

Trait bounds as “subclassing” constraints: supertraits • 255

Requiring multiple traits with + • 257

Associated types • 257

Object-oriented design patterns in Rust �� 259

Introduction to patterns in Rust • 259

Builder pattern • 260

State pattern/typed states • 262

Observer pattern • 265

Strategy pattern • 269

Summary �� 271

Questions and assignments ��� 272

Questions • 272

Assignments • 273

Assignment 8.1: The private bank account (encapsulation) • 273

Assignment 8.2: Animal sounds (basic traits) • 273

Table of Contentsxx

Chapter 9: Thinking Functionally in Rust � 275

Rust and functional programming ��� 275

Iterators: Processing sequences lazily �� 276

Creating and consuming iterators with next() • 276

Three ways to iterate • 277

Three ways to iterate: iter(), iter_mut(), and into_iter() • 277

The role of consumers • 279

Common consumers: collect(), sum(), and fold() • 280

Iterator adapters: Transforming sequences ��� 281

The map adapter • 281

The filter adapter • 282

Other useful adapters and consumers • 284

Closures: Capturing the environment �� 285

Defining closures • 285

Capturing the environment • 286

Closure traits: Fn, FnMut, and FnOnce • 289

Pattern matching �� 291

Pattern matching in functional style • 291

Destructuring structs and enums • 291

if let and while let • 294

Summary ��� 295

Questions and assignments ��� 296

Questions • 296

Assignments • 297

Assignment 9.1 (easy): Simple data filtering and transformation • 297

Assignment 9.2 (advanced): Implementing a custom Fibonacci iterator • 297

Chapter 10: Testing in Rust � 299

Why bother with testing? �� 299

Types of tests in Rust’s ecosystem �� 301

Unit tests: The building blocks ��� 301

Table of Contents xxi

What are unit tests? • 301

Writing your first unit test • 302

Running your tests with cargo test • 305

Common assertion macros • 306

Testing Result and Option types • 308

Testing for panics • 310

Controlling test execution • 312

Integration tests: Checking how parts fit together �� 314

Purpose of integration tests • 314

Setting up integration tests • 314

Our library code (src/lib.rs) • 315

Integration test file (tests/analyzer_integration.rs) • 317

Helper functions in integration tests • 318

Example shared helper (tests/common/mod.rs) • 318

Using shared helpers (tests/analyzer_integration.rs) • 319

Documentation tests: Keeping examples correct ��� 320

What are documentation tests? • 320

Writing documentation tests • 321

Controlling doc test behavior • 323

Hiding lines from documentation output but not from the test • 324

A brief look at Test-Driven Development (TDD) �� 324

TDD cycle • 325

TDD benefits and a micro example • 325

1. Red: Write a failing test • 326

2. Green: Write minimal code to make tests pass • 327

3. Refactor: Improve the code • 328

Next cycle: red (for case-insensitivity) • 329

TDD for an API handler • 329

1. Red: Write the failing test • 330

2. Green: Write minimal code to make the test pass • 331

3. Refactor • 332

Table of Contentsxxii

Isolating tests with test doubles (mocks and stubs) �� 332

The need for isolation • 332

What are test doubles? Stubs and mocks • 333

Manual stubbing (with traits) • 333

Mocking libraries • 337

Best practices for writing good tests �� 338

Summary ��� 338

Questions and assignment ��� 340

Questions • 340

Assignment • 340

Chapter 11: Smart Pointers and Memory Management � 343

What are smart pointers, anyway? ��� 344

The role of smart pointers in Rust’s memory model • 344

Enhancing safety beyond basic ownership • 344

Performance implications • 345

Enabling safe concurrency • 345

Key ideas behind smart pointers • 345

Ownership and borrowing still apply • 345

Automatic cleanup • 346

Reference counting for shared data • 346

Interior mutability: bending the rules safely • 347

A quick tour of Rust’s smart pointer toolkit • 347

Box<T>: pointing to heap-allocated data ��� 348

Why use Box<T>? • 348

Creating and using a Box<T> • 349

Key use case: enabling recursive data structures • 350

When to choose Box<T>: performance and ownership • 354

Sharing data safely: Rc<T> and Arc<T> �� 355

The concept of shared ownership • 355

Rc<T>: reference counting for single-threaded scenarios • 356

Table of Contents xxiii

Creating Rc<T> instances and cloning references • 356

Arc<T>: atomic reference counting for multithreading • 358

Using Arc<T> to share data across threads • 359

The “atomic” in Arc<T> • 361

Reference counting, Drop, and potential cycles • 361

How Weak<T> can break cycles • 362

Interior mutability: modifying data through shared references ��������������������������������������� 362

What is interior mutability and why is it needed? • 363

RefCell<T>: enforcing borrowing rules at runtime (single-threaded) • 363

Using borrow() and borrow_mut() • 364

Runtime panics on borrow rule violations • 366

Mutex<T>: ensuring exclusive access in concurrent code • 367

Locking and unlocking with lock() • 367

Combining Arc<T> and Mutex<T> for shared mutable state • 368

RwLock for read-mostly data • 370

Working effectively with smart pointers �� 372

Smart pointers and method calls (the Deref trait in action) • 372

Implementing methods on structs that own smart pointers • 375

Combining smart pointers for complex scenarios • 378

Smart pointers and ownership transfer • 379

Practical application: a simple graph with shared nodes (Rc<RefCell<Node>>) • 380

Important note on cycles and Weak • 384

Summary ��� 384

Questions and assignments ��� 385

Questions • 385

Assignment • 386

Chapter 12: Managing System Resources � 389

Working with files in Rust (file I/O) ��� 390

Core concepts of file operations • 391

Reading from files • 392

Table of Contentsxxiv

Reading an entire file into a string • 392

Reading a file line by line • 394

Writing to files • 396

Writing a string or bytes to a file • 396

Appending content to an existing file • 398

Manipulating files and directories • 400

Key takeaways for file I/O in Rust • 404

Network programming essentials in Rust �� 405

Fundamentals of network communication • 405

Building a basic TCP server • 406

Listening for connections with TcpListener • 406

Handling incoming client connections • 406

Reading requests and sending responses • 406

Creating a basic TCP client • 410

Connecting to a server with TcpStream::connect • 410

Sending data and receiving responses • 410

Ensuring robust and secure network applications �� 413

Graceful error handling in network code • 414

Handling Result from network operations • 414

Timeouts and non-blocking operations • 416

Implementing secure connections with TLS • 417

Introduction to TLS for secure communication • 417

How TLS works • 418

Using crates for TLS • 419

Example: Setting up a basic TLS client or server • 420

Best practices for system resource management �� 425

Efficient memory usage with I/O operations • 425

Optimizing file I/O performance • 428

Buffering strategies recap • 428

Processing large files in chunks • 428

Optimizing network I/O performance • 430

Table of Contents xxv

Understanding asynchronous I/O for networking • 430

Managing network buffers and packet sizes • 430

General security principles for resource handling • 431

Validating inputs from external sources • 431

Principle of least privilege • 431

Minimizing resource contention in concurrent scenarios • 432

Real-world scenarios and examples ��� 432

Example 1: Building a more robust HTTP server • 432

Important limitation: sequential handling • 437

Example 2: Command-line tool for file operations • 438

Next steps • 440

Summary ��� 440

Questions and assignments ��� 442

Questions • 442

Assignments • 442

Assignment 12.1: Simple file copy utility • 442

Assignment 12.2: Simple key-value TCP server • 443

Chapter 13: Concurrency and Parallelism � 445

What are concurrency and parallelism? • 445

Why write concurrent programs? • 446

The classic challenges: Race conditions and deadlocks • 447

Rust’s promise: Compile-time safety for concurrency • 448

Creating and managing threads ��� 448

Spawning new threads with std::thread::spawn • 449

Basic thread creation • 449

Moving data into threads with the move closure • 451

Waiting for threads to finish: JoinHandle and join() • 452

Handling thread panics gracefully • 453

Thread panics and their effect • 455

Sharing data safely between threads �� 455

Table of Contentsxxvi

The perils of unsafe shared state • 455

Arc<T>: Sharing ownership atomically across threads • 456

Recap: Why Rc<T> isn’t enough • 456

Using Arc::clone() for thread distribution • 456

Mutex<T>: Ensuring mutual exclusion for mutable data • 459

Acquiring the lock with lock() • 460

The role of MutexGuard • 460

Combining Arc<Mutex<T>> for shared mutable state • 460

Thinking about deadlocks • 463

RwLock<T>: Allowing multiple readers or one writer • 463

When to use RwLock<T> versus Mutex<T> • 464

Message passing: Communicating between threads �� 466

An alternative to shared state: Channels • 467

Introduction to std::sync::mpsc channels (multiple producer, single consumer) • 467

Creating a channel: channel() • 467

Sending data with Sender<T> • 468

Receiving data with Receiver<T> (recv(), try_recv()) • 470

Using channels for thread communication and synchronization • 473

A glimpse into asynchronous programming with async/await �� 476

When threads aren’t always the best fit (I/O-bound tasks versus CPU-bound tasks) • 476

Brief overview of the async and await keywords • 477

Async runtimes (such as tokio or async-std) • 480

Best practices for concurrent Rust ��� 482

Prefer message passing for simplicity where possible • 483

Keep critical sections (locks) short and sweet • 483

Be mindful of lock ordering to avoid deadlocks • 486

Trust the compiler: Leverage Rust’s safety guarantees • 486

Consider the granularity of your parallelism • 487

Summary �� 488

Questions and assignment ��� 489

Questions • 489

Assignment: Concurrent file word counter • 490

Table of Contents xxvii

Chapter 14: Rust for Web Development: Building Full-Stack Applications � 493

Core web concepts: a quick refresher ��� 493

The HTTP protocol: requests, responses, and methods • 494

Requests and responses • 494

Common HTTP methods • 494

Status codes • 495

Data formats: JSON and RESTful API design • 495

JSON for APIs • 495

Brief on RESTful API design principles • 495

Getting started with Axum ��� 496

Project setup and dependencies • 496

“Hello, Web!” – Your first Axum server (Getting started with Axum) • 497

Understanding handlers and the router • 499

Defining handler functions • 499

Registering routes with Router::route • 499

Building a RESTful API: an in-memory todo list • 501

Project setup for the API • 501

Managing shared state • 503

Handling requests and extracting data • 507

Implementing the CRUD API endpoints • 510

All the code for the RESTful API example • 515

Testing our RESTful application • 523

Step 1: Run your Axum server • 523

Step 2: Open a new terminal • 523

Step 3: Test your API endpoints with curl • 523

Adding persistence with PostgreSQL �� 526

Database setup • 527

Integrating sqlx into the Axum project • 528

Adding sqlx and dotenvy dependencies • 528

Configuring DATABASE_URL • 529

Table of Contentsxxviii

Installing and using sqlx-cli for migrations • 529

Schema management with sqlx migrations • 530

Creating and running migrations • 530

Mapping Rust structs and using a connection pool • 532

Using sqlx::PgPool for the connection pool • 532

Deriving FromRow for our Todo struct • 533

Sharing the pool in Axum’s AppState • 535

Refactoring handlers for async database persistence • 537

Writing raw SQL queries • 537

Refactoring the CRUD endpoints to be fully async • 538

Testing the application • 541

Verifying with psql • 543

A final backend step: enabling CORS • 544

Frontend: WebAssembly �� 547

Building and using a simple Wasm module • 547

Exposing Rust functions with #[wasm_bindgen] • 548

Building the .wasm and JavaScript glue • 551

Using the Wasm module from a simple web page • 553

Testing the frontend • 555

Summary ��� 558

Questions and assignment ��� 559

Questions • 559

Assignment • 559

Expanding the API and using basic extractors • 559

Chapter 15: System Programming in Rust: Concrete Examples � 561

What defines system programming? • 561

Why Rust is a strong candidate for systems work • 562

The core tension: control versus abstraction • 563

The systems programmer’s dilemma • 563

Rust’s solution: control without compromise • 563

The bridge to unsafe: when ZCAs aren’t enough • 565

Table of Contents xxix

Chapter roadmap: from low-level mechanics to practical builds • 565

Low-level programming foundations in Rust �� 566

Rust’s memory safety model: a systems perspective • 566

Ownership and borrowing recap for control and safety • 566

Stack versus heap: managing memory explicitly • 567

The role of smart pointers in memory management • 568

Venturing into unsafe Rust • 568

When and why unsafe is necessary • 568

The five superpowers of unsafe Rust • 569

Working with raw pointers (*const T and *mut T) • 570

Best practices for encapsulating unsafe code • 573

Building practical command-line utilities �� 577

Designing a useful CLI tool • 577

Parsing command-line arguments • 579

Using std::env::args() for basic arguments • 579

Introduction to argument parsing • 581

Interacting with the file system • 584

Reading and writing files in a CLI context • 584

Directory traversal and manipulation • 587

Handling standard input, output, and error streams • 591

Interfacing with C code: the Foreign Function Interface (FFI) ��� 594

The “why” of FFI: leveraging existing C libraries • 594

Declaring and linking external C functions • 595

Using extern “C” blocks • 595

The #[link] attribute and build scripts • 598

Passing data between Rust and C • 603

Primitive types and their equivalents • 603

Working with C strings • 605

Representing C structs in Rust • 610

Handling pointers and callbacks • 612

Creating safe Rust wrappers around unsafe C APIs • 615

Table of Contentsxxx

Practical example: using a simple custom C library from Rust • 621

Prerequisite: installing a C compiler • 621

A glimpse into kernel module development with Rust ��� 628

The unique environment of kernel space • 628

Essential setup for Rust kernel development • 629

no_std and target specifications • 629

Basic module structure (init/exit functions, logging) • 630

Building, loading, and further considerations • 634

Compilation and loading process • 634

Important caveats and next steps for exploration • 636

Summary ��� 637

Questions and assignments ��� 639

Questions • 639

Assignment • 640

Enhanced command-line file analyzer • 640

Chapter 16: Dockerization and Deployment of Rust Applications � 643

What is Docker? An overview • 643

Key benefits of using Docker • 644

Why Dockerize Rust applications specifically? • 645

Chapter objectives: What you’ll learn • 646

Getting started with Docker �� 647

Setting up your Docker environment • 647

Installing Docker Desktop (Windows, macOS, and Linux) • 647

Verifying your Docker installation • 648

Essential Docker concepts • 648

Images and containers: The core building blocks • 649

Docker Hub and container registries • 650

Basic Docker commands for interaction • 650

Running a container: docker run • 650

Listing containers: docker ps • 652

Table of Contents xxxi

Managing images: docker images, docker pull, and docker rmi • 653

Stopping and removing containers: docker stop and docker rm • 654

Dockerizing your Rust application ��� 655

Understanding the Dockerfile • 655

Core instructions: FROM, WORKDIR, COPY, RUN, CMD, and EXPOSE • 655

Creating a basic Dockerfile for a Rust application • 657

Choosing a base Rust image • 658

Copying your project and building • 658

Setting the CMD to run your compiled binary • 659

Final Dockerfile • 659

Building Your Docker Image • 661

Running your Rust application inside a Docker container • 663

Optimizing Docker images for Rust ��� 665

The importance of small and efficient images • 665

Using multi-stage builds • 666

Separating the build environment from the runtime environment • 666

Copying artifacts • 666

Choosing minimal base images for runtime • 669

Considerations for Alpine and musl versus glibc • 670

Leveraging Docker build cache and cargo’s build caching • 671

Structuring COPY and RUN commands effectively • 671

Stripping debug symbols and binary compression • 673

Using strip • 673

Using tools such as UPX • 674

Managing multi-container apps with Docker Compose �� 675

Introduction to Docker Compose: Why you need it • 676

Writing a compose.yml file • 677

Defining services • 677

Linking services and managing networks • 679

Using environment variables for configuration • 680

Managing persistent data with volumes • 681

Table of Contentsxxxii

Example: A Rust application with a PostgreSQL database • 683

Running and managing your application stack • 687

Deploying Dockerized Rust applications ��� 689

Overview of deployment strategies • 689

Using container registries • 691

Tagging your Docker images for versioning • 691

Pushing images to a registry • 692

Pulling images in a deployment environment • 693

Summary ��� 694

Congratulations! �� 695

Questions and assignments ��� 696

Questions • 696

Assignments • 696

Assignment 16.1: Dockerize an existing Rust CLI or web application • 696

Assignment 16.2: Create a multi-container application with Docker Compose • 698

Chapter 17: Unlock Your Exclusive Benefits � 701

Appendix A: Common Pitfalls in Rust Programming
(Online: https://packt.link/ndg4i)

Appendix B: Answers and Solutions (Online: https://packt.link/1YSwm)

Other Books You May Enjoy � 707

Index � 711

https://packt.link/ndg4i
https://packt.link/1YSwm

Preface

If you are holding this book, you are probably curious about Rust. Maybe you heard about it from

a colleague who wouldn’t stop talking about how great it is. Maybe you read an article about it

online. Or, perhaps you have been following my content for a while and finally decided to see

what all the excitement is about. Whatever brought you here, I am glad you made it.

This book has two main goals. We will master the fundamentals and examine real, practical

examples. In my extensive experience as a teacher, I have found that these two things work best

when combined. We will not just look at theory in a vacuum. We will use it to build things.

Rust has incredible potential for the future. I honestly believe it will become the best language

for the era of Artificial Intelligence (AI). When we code with AI, we need the final result to be

high-performance, but we also need something that is easy to read and modify. Rust hits that

perfect balance between speed and clarity.

You will also get very familiar with the famous Rust compiler. I like to describe the compiler as

an “annoying grandma.” She is grumpy, picky, moves a bit slowly, and is always complaining

about what you are doing. It can be frustrating at first! But you have to remember that, just like

a grandma, she only complains because she wants the best for you. She wants you to be safe.

Be prepared for some mind-blowing moments during this learning process. Rust does not just feel

different. It is different. This is especially true when discussing memory management. It requires

a shift in how you think, but I will save the details of that for the later chapters.

The journey ahead will be challenging at times, but it will also be rewarding. You are learning

about a tool that will make you a better developer, no matter what language you use in the future.

So, grab a coffee, open your laptop, and let’s get started. Let’s crush it!

Prefacexxxiv

Who this book is for
This book is designed for developers familiar with languages such as Java, JavaScript, or Python

who are interested in transitioning to Rust. If that describes you, you’ll appreciate the book’s

pace and level of detail.

Beginners are also welcome, but please note that the learning curve may be steeper. To keep the

book focused and manageable (and avoid creating a massive encyclopedia), I have assumed a

basic understanding of common programming concepts. If you come across topics, such as web

architecture, that aren’t explained in depth, I recommend pausing to research those concepts

before continuing.

What this book covers
Chapter 1, Getting Started with Rust, introduces the Rust programming language, details the in-

stallation process, and guides you through writing your first program using the Cargo toolchain.

Chapter 2, Rust Syntax and Functions, explores variable declarations, data types, and control struc-

tures, and demonstrates how Rust handles functions and ownership principles.

Chapter 3, Functions in Rust, focuses on structuring code effectively by defining functions and

organizing them into modules to manage visibility and reusability across your projects.

Chapter 4, Ownership, Borrowing, and References, dives into Rust’s revolutionary memory man-

agement approach, explaining how these interlinked concepts prevent common errors such as

dangling pointers and data races.

Chapter 5, Composite Types in Rust and the Module System, covers the use of structs and enums to

construct well-organized data structures, including how to handle variants with pattern match-

ing and apply traits.

Chapter 6, Introduction to Error Handling, dives into Rust’s error handling mechanisms, explaining

how to use Result, Option, and panic handling to build safe and reliable applications.

Chapter 7, Polymorphism and Lifetimes, introduces polymorphism in Rust, demonstrating how to

use generics for flexible data types, traits to define shared behavior, and validating references

with lifetimes.

Chapter 8, Object-Oriented Programming in Rust, examines how Rust supports object-oriented

principles such as encapsulation and polymorphism using the trait system and structs introduced

in the previous chapter.

Preface xxxv

Chapter 9, Thinking Functionally in Rust, emphasizes iterators and closures, exploring how these

features enable powerful, concise, and expressive code that leverages Rust’s performance.

Chapter 10, Testing in Rust, highlights how Rust makes it easy and enjoyable to write tests, helping

you ensure your code works correctly and the quality remains high over time.

Chapter 11, Smart Pointers and Memory Management, focuses on tools such as Box, Rc, and Arc,

explaining how they are used to manage memory for shared ownership and thread-safe access.

Chapter 12, Managing System Resources, details the efficient management of memory and processor

resources, discussing low-level handling without a garbage collector.

Chapter 13, Concurrency and Parallelism, covers powerful features for concurrent programming,

ensuring thread safety and preventing bugs such as data races and deadlocks.

Chapter 14, Rust for Web Development: Building Fullstack Applications, demonstrates how to build

fullstack applications, seamlessly integrating backend and frontend components using Rust’s

ecosystem.

Chapter 15, System Programming in Rust: Concrete Examples, provides practical examples of low-level

development, such as interacting with file I/O, networking, and hardware.

Chapter 16, Dockerization and Deployment of Rust Applications, focuses on the practical aspects of

containerizing Rust applications with Docker and implementing CI/CD strategies for reliable

deployment.

Appendix, Common Pitfalls in Rust Programming (online), addresses typical challenges and mis-

takes encountered by developers, offering community insights and best practices to avoid them.

To get the most out of this book
I have written this book assuming you have some prior coding experience. To smoothly follow

the examples and projects, you should be comfortable with the following:

•	 Programming fundamentals: You should be familiar with core programming concepts

such as variables, loops, conditional statements, and functions. Experience with at least

one other language (such as Python, JavaScript, Java, or C++) is highly recommended.

•	 Command-line basics: Rust relies heavily on the terminal. You should be comfortable

navigating folders and running basic commands in a shell (Bash, PowerShell, or Zsh).

Prefacexxxvi

•	 System requirements: You can run the code examples on Windows, macOS, or Linux.

•	 Rust toolchain: I will guide you through installing Rust using rustup in Chapter 1.

•	 Code editor: I recommend Visual Studio Code (VS Code) with the rust-analyzer

and Even Better TOML extensions for a lightweight, extensible experience. Alter-

natively, RustRover (by JetBrains) is an excellent dedicated IDE for Rust, offering

a more robust environment. But you can follow along with any IDE you want.

•	 Docker: For the deployment chapters (specifically, Chapter 16), you will need Dock-

er installed on your machine.

•	 Internet access: You will need an active internet connection to download Rust

crates (dependencies) via Cargo.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/FrancescoXX/

rustcrab/tree/main/book-compendium. We also have other code bundles from our rich cata-

log of books and videos available at https://github.com/PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781836208877.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example:

“The .clone() method on String creates a new allocation on the heap and copies the content

("hello") into it.”

A block of code is set as follows:

fn main() {

 {

 let espresso = String::from("Delicious");

 println!("{}", espresso);

 }

}

https://github.com/FrancescoXX/rustcrab/tree/main/book-compendium
https://github.com/FrancescoXX/rustcrab/tree/main/book-compendium
https://github.com/PacktPublishing
https://packt.link/gbp/9781836208877

Preface xxxvii

Any command-line input or output is written as follows:

docker --version

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “At its core, an HTTP

request consists of the following:”

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-

back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packt.com/submit-errata
http://authors.packt.com/

Prefacexxxviii

Share your thoughts
Once you’ve read The Rust Programming Handbook, we’d love to hear your thoughts! Please click

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1836208871
https://packt.link/r/1836208871

Preface xxxix

Free Benefits with Your Book
This book comes with free benefits to support your learning. Activate them now for instant access

(see the “How to Unlock” section for instructions).

Here’s a quick overview of what you can instantly unlock with your purchase:

PDF and ePub Copies Next-Gen Web-Based Reader

Access a DRM-free PDF copy of this book

to read anywhere, on any device.

Multi-device progress sync: Pick up

where you left off, on any device.

Use a DRM-free ePub version with your

favorite e-reader.
 Highlighting and notetaking: Capture

ideas and turn reading into lasting

knowledge.

 Bookmarking: Save and revisit key

sections whenever you need them.

Dark mode: Reduce eye strain by

switching to dark or sepia themes.

Prefacexl

How to Unlock
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require one.

http://packtpub.com/unlock

1
Getting Started with Rust

Welcome to the realm of Rust programming!

If you’ve found your way here, you’re probably intrigued by Rust’s reputation as a robust, contem-

porary language specialized in systems programming, focusing on safety, speed, and reliability.

This book is for anyone who wants to learn Rust, from experienced developers looking to expand

their skills to beginners exploring new technologies or those who are just curious. In the Stack

Overflow 2024 Developer Survey, Rust was voted the “most admired programming language” by

~83% of developers. This is because it offers a rare combination of performance, memory safety,

and a strong, welcoming community. It eliminates entire classes of bugs, such as null pointer

dereferences and data races, while delivering the speed of a systems language. Learning Rust is

a great way to write safer, more efficient code and future-proof your skills.

In this chapter, we start our journey by understanding the essence of Rust programming. We’ll

dive deep into the core principles defining Rust and explain why it shines among other pro-

gramming languages. Rust has some unique features that really make it “special” among other

languages. Following that, we’ll set up your development environment together, ensuring you’re

fully equipped to dive into Rust coding right away. Finally, we’ll start with the practical side of

Rust by walking you through creating your first Rust program. To make it accessible to everyone,

we will begin with a simple CLI tool, ensuring you grasp Rust’s fundamental concepts before

moving to more advanced projects such as a web server. This structured approach will help you

build confidence in Rust step by step.

Getting Started with Rust2

By the end of this chapter, you’ll have a solid understanding of what makes Rust unique and why

so many developers appreciate it. You’ll get familiar with its core principles and how it differs from

other programming languages. This foundation will give you the confidence to start exploring

Rust and writing your first programs.

Let’s get started!

Technical requirements
You can use any operating system you want, but it is highly recommended that you have Git, the

system versioning system. All the code examples are available in the `book-compendium` folder

of the GitHub repository.

You will also need an IDE. Any IDE works, but for this book, I will use VS Code, with a couple of

extensions.

•	 GitHub: https://github.com/FrancescoXX/rustcrab/tree/main/book-compendium

•	 Git: https://git-scm.com/downloads

•	 VS Code (or any other IDE): https://code.visualstudio.com/download

What is Rust?
According to Wikipedia, “Rust is a general-purpose programming language emphasizing performance,

type safety, and concurrency. It enforces memory safety, meaning that all references point to valid memory,

without a garbage collector. To simultaneously enforce memory safety and prevent data races, its ‘borrow

checker’ tracks the object lifetime of all references in a program during compiling.”

This definition sounds fascinating, but can also be quite confusing. This brief explanation alone

isn’t enough to fully grasp what Rust is and what makes it unique!

Free Benefits with Your Book
Your purchase includes a free PDF copy of this book along with other exclusive benefits. Check

the Free Benefits with Your Book section in the Preface to unlock them instantly and maximize

your learning experience.

https://github.com/FrancescoXX/rustcrab/tree/main/book-compendium
https://git-scm.com/downloads
https://code.visualstudio.com/download

Chapter 1 3

Let’s break down this definition and explain each part:

•	 General-purpose programming language: Rust is a versatile language that excels in

various domains, from system-level programming to modern web development. It’s used

in embedded systems, operating systems, backend engineering, and even high-frequency,

low-latency applications. Rust also plays a significant role in frontend development with

WebAssembly (Wasm) and is gaining traction in decentralized systems such as blockchain.

Its ability to adapt across different fields makes it truly unique.

•	 Emphasizing performance, type safety, and concurrency: Rust is designed with three

main goals in mind:

•	 Type safety: Rust ensures that your code adheres to strict type rules, reducing bugs

and making it easier for you and other developers to understand and maintain

•	 Performance: Rust allows you to write high-performance software that runs as

fast as programs written in C or C++

•	 Concurrency: Rust provides powerful tools for writing concurrent code, allowing

you to take full advantage of multi-core processors without the risk of data races

•	 Enforces memory safety without a garbage collector: Memory safety means that all

pointers (references) point to valid memory. Rust achieves this without a garbage col-

lector, which is typically used in other languages such as Java or Go to manage memory

automatically. Instead, Rust uses a system of ownership with rules that the compiler

checks at compile time.

•	 The borrow checker: To enforce memory safety and prevent data races, Rust employs a

mechanism known as the “borrow checker.” This system tracks the lifetime of all refer-

ences in a program during compilation, ensuring that references are always valid and that

multiple threads do not unexpectedly modify data.

 No worries!

If some of these concepts sound complex or unfamiliar right now, don’t worry!

Throughout this book, we’ll explore these topics in depth, providing clear explana-

tions and practical examples to help you understand and master Rust programming.

By the end of the book, any doubts you have now will be resolved, and you’ll be

confident in your ability to use Rust effectively.

Getting Started with Rust4

What is Rust good for?
So, what is Rust good for? Overall, Rust is versatile and excels in many areas, from system-level

programming to web development. It provides the tools and guarantees necessary to build robust

and efficient software, making it a valuable addition to any developer’s skill set.

Rust is valued for its high performance, security, and ability to handle concurrency. These qualities

matter more than ever, as software must be fast, scalable, and vulnerable to vulnerabilities. It’s

especially well-suited for systems programming, where speed and reliability are critical.

Rust is well-suited for developing low-level system components such as operating systems, device

drivers, and embedded systems. Its memory safety features help prevent crashes and security vul-

nerabilities, making it a dependable choice for critical software where stability and performance

are essential. But don’t worry! We will start with something much simpler to help you become

familiar with the syntax quickly.

Rust’s robust concurrency model and expressive type system make it exceptionally well-suited

for creating scalable and resilient network services, web servers, and concurrent applications. In

fact, many real-world applications, such as the Firefox browser engine, Dropbox’s file storage

backend, and Cloudflare’s performance-critical systems, currently use Rust.

In a recent communication from the US government, the White House recommended memory-safe

programming languages and security-by-design principles to prevent cyberattacks. Rust was

highlighted as a key example of such a language. While Rust doesn’t make your application secure

by default, it enforces strict rules that require developers to handle memory safely and efficiently.

The biggest challenge for developers learning Rust is adapting to its distinctive approach to

memory management. This requires a mindset different from that of many other programming

languages. The good news is that once you grasp these concepts, you’ll be able to write safer

and more efficient code with confidence. Unlike C and C++, where developers manually manage

memory or languages with garbage collection, Rust requires you to adopt a different mindset. Be

open-minded and ready to embrace this new way of thinking.

Key features of Rust
What makes Rust stand out compared to other programming languages is its unique features

and design principles:

•	 Expressiveness: Rust’s expressive syntax and powerful type system allow developers to

write clear, concise, and maintainable code, making it easier to reason about complex sys-

tems. For instance, Rust’s pattern matching makes decision-making elegant and enjoyable:

Chapter 1 5

fn developer_mood(caffeine_level: u8) -> &'static str {

 match caffeine_level {

 0 => "I can't work without coffee! ",

 1..=2 => "Alright, I can write a few functions.",

 3..=5 => "Productivity mode: ON! ",

 _ => "Too much coffee! I'm rewriting the entire project in
Rust! "

 }

}

fn main() {

 println!("{}", developer_mood(4));

 // Output: Productivity mode: ON!

}

•	 Memory safety: Rust guarantees memory safety while maintaining high performance

by implementing strict rules during compile time. These checks help prevent common

programming errors such as null pointer dereferencing and out-of-bounds array indexing

before the code is executed. As a result, many potential bugs are identified early on, reduc-

ing the likelihood of crashes and enhancing the reliability of Rust programs, all without

the necessity for garbage collection.

•	 Concurrency: Rust offers robust abstractions for writing concurrent code, enabling de-

velopers to fully utilize modern multi-core processors while minimizing concerns about

data races and deadlocks. Features such as ownership-based threading and the async/

await system ensure that concurrency is both safe and efficient. This allows developers

to create fast, parallel code without encountering the typical challenges associated with

concurrent programming.

•	 Performance: Rust provides performance that is comparable to low-level programming

languages such as C and C++ by eliminating runtime overhead. Its zero-cost abstractions

guarantee that high-level code compiles into efficient machine instructions without in-

curring additional performance penalties. Furthermore, Rust offers precise control over

memory management, enabling developers to write fast and predictable code without

compromising safety.

Getting Started with Rust6

The Rust ecosystem
Rust not only boasts essential language features but also has a dynamic ecosystem of libraries,

tools, and frameworks that enhance its functionality and simplify development. Notable crates

such as Serde for data serialization, Tokio for asynchronous programming, and Axum for web

development make Rust a strong option for various applications. This extensive ecosystem en-

ables developers to create efficient and reliable software while taking advantage of Rust’s safety

and performance guarantees.

Rust’s ecosystem caters to various industries and use cases, such as web development, system

programming, data analysis, and gaming. One of Rust’s most significant strengths lies in its abil-

ity to handle data processing tasks efficiently, which has become a cornerstone of its industrial

applications. Rust’s memory safety guarantees, combined with its performance comparable to C

and C++, make it an excellent choice for building data-intensive systems. Developers use Rust to

create high-performance data pipelines, process large-scale datasets, and implement real-time

analytics applications. Its growing library ecosystem, including crates such as Polars, is a fast,

multithreaded DataFrame library for Rust and Python, designed for efficient data manipulation

and analysis. It is optimized for performance, using Apache Arrow’s columnar memory format to

handle large datasets efficiently. Polars is often compared to pandas, but it is significantly faster,

especially for big data and parallel processing tasks.

You can check it out here: https://crates.io/crates/polars.

This versatility makes Rust a natural fit for demanding scenarios, such as optimizing database

query engines or building distributed systems capable of processing petabytes of data. Beyond

data processing, Rust excels in high-performance web servers and efficient system utilities, of-

fering developers a robust toolkit across a range of domains.

The Rust community is very welcoming and committed to being open source. The Rust language

itself is an open source project!

https://crates.io/crates/polars

Chapter 1 7

Figure 1.1: The official Rust repository

This is the perfect environment to grow a robust and solid language with a solid basis and a

bright future.

Why learn Rust?
As a developer, learning Rust offers several advantages:

•	 Enhanced productivity: Rust’s strict compiler checks and powerful tooling assist devel-

opers in catching bugs early and writing more reliable code, which reduces both devel-

opment time and debugging efforts. For instance, Rust prevents the use of uninitialized

variables at compile time:

fn main() {

 let x: i32;

 println!("{}", x); // Error: use of possibly-uninitialized
variable `x`

}

Getting Started with Rust8

•	 Career opportunities: Rust is gaining popularity in industries such as systems program-

ming, cloud computing, and cybersecurity, opening up exciting career opportunities for

developers. More and more companies are using Rust for performance-critical applications,

secure backend services, and infrastructure tooling. This creates demand for different

roles, such as systems engineers, backend developers, security engineers, and embedded

systems developers. If you’re looking for a language that’s both future-proof and in high

demand, Rust is a very strong choice for your career.

•	 Personal growth: Learning Rust goes beyond simply adding another language to your

skill set; it transforms your approach to memory management, safety, and concurrency.

It challenges your problem-solving abilities and enhances your understanding of how

computers operate. By mastering Rust, you become a more well-rounded developer, en-

abling you to write efficient and reliable software. And let’s face it, overcoming the borrow

checker feels like a great achievement!

Installation and Hello World
This chapter will cover the essential steps to install Rust on your system and write your first Rust

program.

We’ll start by guiding you through the installation process, followed by a demonstration of com-

piling and running a "Hello World" program in Rust.

Installing Rust
Before diving into Rust programming, you must set up your development environment by in-

stalling the Rust toolchain.

You can download and install Rust by visiting https://www.rust-lang.org/tools/install and

following the instructions for your operating system.

https://www.rust-lang.org/tools/install

Chapter 1 9

Figure 1.2: How to install Rust on different operating systems

Rust provides convenient installation options for different platforms, ensuring a smooth setup

process:

•	 Linux/Unix: The official installer or package manager can install Rust on Linux and Unix-

based systems

•	 macOS: Rust is well-supported on macOS, and you can install it using the official installer

or Homebrew package manager

•	 Windows: Rust offers a straightforward installation experience through the official in-

staller or Chocolatey package manager

Getting Started with Rust10

Verifying the installation
Once Rust is installed on your system, you can verify the installation by opening a terminal or

command prompt and running the following command:

rustc --version

This command should display the installed version of the Rust compiler, confirming that Rust is

successfully installed on your machine.

Setting up your development environment
In addition to the Rust compiler, you’ll need a text editor or integrated development environ-

ment (IDE) to write and edit Rust code.

A good IDE enhances productivity with features such as syntax highlighting, code completion,

and debugging support. The most popular options for Rust development include the following:

•	 Visual Studio Code (VS Code): A lightweight and highly customizable code editor with

excellent Rust support via extensions

•	 RustRover by IntelliJ IDEA: A powerful, full-featured IDE specifically designed for Rust de-

velopment, offering deep code analysis, refactoring tools, and seamless Cargo integration

•	 Neovim: A customizable, terminal-based editor with Rust support via plugins

Setting up VS Code for Rust (recommended)
VS Code is one of the most popular editors for Rust development due to its lightweight design,

extensibility, and excellent Rust support.

To get started, download and install VS Code from the official website at https://code.

visualstudio.com/:

1.	 Choose the version for your operating system (Windows, macOS, or Linux).

2.	 Follow the installation prompts.

3.	 Once installed, open VS Code.

https://code.visualstudio.com/
https://code.visualstudio.com/

Chapter 1 11

For a smooth Rust development experience, install the following essential extensions:

•	 Rust Analyzer (https://marketplace.visualstudio.com/items?itemName=rust-lang.

rust-analyzer): This provides intelligent code completion, error checking, go-to defini-

tions, and code formatting. To install it, follow these steps:

•	 Open VS Code.

•	 Press Ctrl + Shift + X (or Cmd + Shift + X on macOS) to open the Extensions Mar-

ketplace.

•	 Search for Rust Analyzer and click Install.

•	 Even Better TOML (https://marketplace.visualstudio.com/items?itemName=tamasfe.

even-better-toml): This adds syntax highlighting and validation for .toml files, which

are used in Cargo.toml.

•	 (Optional) Crates (h t t p s : / / m a r k e t p l a c e . v i s u a l s t u d i o . c o m /

items?itemName=serayuzgur.crates): This helps manage dependencies by showing

the latest versions of crates directly inside Cargo.toml.

Hello World
With Rust installed and your development environment set up, you can write your first Rust

program.

For our first program, we’ll use the Rust compiler (rustc) directly, even if this is not recommended

for creating a project. We will do this just once to understand how the Rust compiler works. For

all future projects, we will use a package manager that will compile all our project files for us.

Open your preferred text editor or IDE and create a new file named hello.rs. In this file, enter

the following code:

fn main() {

 println!("Hello, Rust!");

}

https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=tamasfe.even-better-toml
https://marketplace.visualstudio.com/items?itemName=tamasfe.even-better-toml
https://marketplace.visualstudio.com/items?itemName=serayuzgur.crates
https://marketplace.visualstudio.com/items?itemName=serayuzgur.crates

Getting Started with Rust12

The code is available here: https://github.com/FrancescoXX/rustcrab/blob/main/book-

compendium/chapter-1/hello_world.rs.

This simple Rust program consists of a single function named main, which prints the message

"Hello, Rust!" to the console using the println! macro. Similar to the main function in other

programming languages, the main function serves as the entry point for all Rust programs.

Compiling and running your Hello World
To compile and run your Rust program, open a terminal or command prompt, navigate to the

directory containing your hello.rs file, and execute the following command:

rustc hello.rs

This command compiles your Rust source code into an executable binary named hello (or hello.

exe on Windows). By default, Rust compiles your code in debug mode, which includes additional

debugging information and performs fewer optimizations to make development easier:

./hello # (or hello.exe on Windows)

You should see the message "Hello, Rust!" printed on the console, indicating that your Rust

program was executed successfully.

 Note

In Rust, a macro is a way of writing code that generates other code, this is known as

metaprogramming. The println! macro is used to print text to the console, similar

to how console.log works in JavaScript or print in Python.

Here is an example comparison:

•	 Rust: println!("Hello, Rust!");

•	 JavaScript: console.log("Hello, Rust!");

https://github.com/FrancescoXX/rustcrab/blob/main/book-compendium/chapter-1/hello_world.rs
https://github.com/FrancescoXX/rustcrab/blob/main/book-compendium/chapter-1/hello_world.rs

Chapter 1 13

In the next chapters, we’ll explore how Cargo makes Rust development easier and dive into its

powerful features for building, testing, and distributing Rust applications.

Using Cargo and Crates.io
Cargo is Rust’s package manager and build system, designed to streamline developing, building,

and managing Rust projects.

Crates.io is the official repository for Rust crates, where you can find and share libraries and tools

written in Rust.

 Note

While using rustc directly is useful for understanding how Rust compiles code,

this is not the standard way to build Rust projects. In real-world development, Rust

programmers use Cargo, Rust’s official package manager and build system.

Why use Cargo instead of rustc?

•	 Simplifies project management (automates builds, dependencies, and tests)

•	 Handles multiple source files efficiently (unlike rustc, which requires com-

piling each file manually)

•	 Supports optimized builds (cargo build --release) for production-ready

applications

Getting Started with Rust14

This is what the https://crates.io/ website looks like:

Figure 1.3: crates.io website

Verifying Cargo installation
Before we use Cargo and Crates.io, let’s ensure that your system has Rust and Cargo installed:

cargo --version

If you see something like this, you are good to go; otherwise, check the installation procedure:

Figure 1.4: Check cargo version on your machine

https://crates.io/

Chapter 1 15

What is Cargo?
Cargo is an essential tool for Rust development. It simplifies project management, from building

and running programs to managing dependencies and publishing packages.

Cargo automates many tasks that would otherwise require manual configuration, making devel-

opment more efficient. Instead of compiling each file individually, Cargo organizes and builds

entire projects with a single command. It also ensures that dependencies are downloaded and

used correctly.

Cargo’s main features
Cargo provides several built-in commands for common development tasks:

1.	 Creating a new project: Cargo can generate a project structure with the necessary files:

cargo new my_project

This creates a folder with Cargo.toml (which manages dependencies) and a src directory

for code.

2.	 Building and running code: Instead of compiling files manually, Cargo compiles the

entire project:

cargo build # Compiles the project (debug mode)

cargo run # Compiles and runs the project

For optimized performance, use the release mode:

cargo build --release

This produces a faster executable by applying optimizations.

3.	 Managing dependencies: Cargo makes it easy to add external libraries (called “crates”):

cargo add serde

This updates Cargo.toml and downloads the required dependencies automatically.

4.	 Running tests: Cargo includes a built-in testing framework:

cargo test

This runs all test functions in the project.

Getting Started with Rust16

5.	 Checking code without full compilation: For quick feedback on potential errors, use

the following:

cargo check

This is much faster than cargo build and helps catch issues early.

Stable versus Nightly Rust
Cargo also manages different versions of Rust. The default version is Stable Rust, which receives

updates every six weeks and is recommended for most projects.

For developers who need access to experimental features, Cargo supports Nightly Rust, which

can be installed with the following:

rustup install nightly

rustup default nightly

Nightly Rust includes features that may become part of future stable versions. However, it may

be less stable than the default version.

Creating a new Rust project
With Rust and Cargo installed, you can create a new Rust project using the cargo new command.

Open your terminal or command prompt and navigate to the directory where you want to create

your project. Then, run the following command:

cargo new my_project

Replace my_project with the desired name of your project. This command will create a new

directory named my_project containing the files and folders necessary for a basic Rust project.

Managing dependencies with Cargo.toml
When you create a new Rust project with Cargo, it generates a file named Cargo.toml. This file

serves as the manifest for your project and contains metadata about your project, including its

name, version, authors, and dependencies.

The .toml extension is used for configuration files in Rust projects because TOML (Tom’s Obvi-

ous, Minimal Language, https://toml.io/en/) provides a human-readable format that is easy

to write and understand. This makes it ideal for specifying project dependencies, build settings,

and other configuration details concisely and intuitively.

https://toml.io/en/

Chapter 1 17

Let’s take a look at an example Cargo.toml file:

[package]

name = "my_project"

version = "0.1.0"

authors = ["Your Name <your@email.com>"]

edition = "2024"

[dependencies]

In the [dependencies] section, you can specify the dependencies required by your project. You

can add dependencies manually by editing the Cargo.toml file, or you can use Cargo commands

to manage dependencies automatically.

Installing dependencies from Crates.io
To install the dependencies, you usually just modify the Cargo.toml file.

An alternative is to use the cargo add command. For example, to add the rand crate, which pro-

vides random number generation functionality, run the following command:

cargo add rand

This command will automatically update your Cargo.toml file to include the rand crate as a

dependency and fetch the latest version from Crates.io.

Cargo.lock: keeping dependencies consistent
When Cargo installs dependencies, it locks the exact versions in a file called Cargo.lock. This

ensures that all developers working on the project use the same dependency versions, avoiding

unexpected updates.

Cargo.lock is similar to package-lock.json in npm or Pipfile.lock in Python, as it records the

resolved versions of all dependencies and their subdependencies.

Cargo automatically updates Cargo.lock when dependencies change, so you don’t need to edit

it manually.

To update dependencies explicitly, use the following:

cargo update

This will fetch the latest compatible versions based on the constraints in Cargo.toml and update

Cargo.lock accordingly.

Getting Started with Rust18

Building your project
Once you’ve set up your project and added any necessary dependencies, you can build and run

your project using Cargo commands. By default, Cargo builds in debug mode, which includes

additional debugging information and fewer optimizations.

To build your project, navigate to your project directory in the terminal and run the following:

cargo build

This generates a debug binary inside the target/debug/ directory. Debug mode is useful for

development because it compiles faster and provides better error messages.

For an optimized build with full compiler optimizations, use the following:

cargo build --release

This produces a release binary inside target/release/, which is faster but takes longer to compile.

Running your project with Cargo
Instead of manually executing the compiled binary after using cargo build or cargo build

--release, Cargo provides a more efficient way to compile and run your project in a single step:

cargo run

This command automatically compiles the project if necessary and then runs the binary from

target/debug/. If no changes were made since the last build, Cargo skips recompilation and

executes the existing binary.

Initializing a new Rust project with cargo init
When starting a new Rust project, you have two main commands to choose from: cargo new and

cargo init. Both simplify the setup process by generating the necessary files and directories for

your project, but they serve slightly different purposes:

•	 cargo new: Used to create a brand-new project in a new directory. It’s ideal when starting

a project from scratch.

•	 cargo init: Used to initialize a Rust project in an existing directory. This is useful if you

already have a folder set up and want to turn it into a Rust project.

Chapter 1 19

For example, if you’re working in a pre-existing directory, navigate to it in your terminal and run

the following:

cargo init

This command generates two key components:

•	 Cargo.toml: The manifest file containing project metadata such as the name, version,

and dependencies

•	 The src/ directory: Contains your Rust source code, including a main.rs file for binary

(executable) projects

If you’re starting from scratch and want Cargo to create a new directory for you, use the following:

cargo new your_project_name

This creates a new folder named your_project_name with the same structure as cargo init,

which, by default, generates a binary (executable) project containing a main.rs file.

Choose the command that fits your workflow: cargo new for a fresh start, or cargo init for

existing directories. Either way, you can jump right into coding once the project is set up.

Creating a library with cargo init --lib
Alternatively, if you intend to create a Rust library (a reusable crate) instead of a binary project, you

can utilize the --lib option with the cargo init command. This option tells Cargo to generate

a library project structure instead of a binary project.

To create a new Rust library project, execute the following command:

cargo init --lib your_library_name

Cargo generates a project structure tailored for a library with the --lib option. This structure

includes a src/ directory with a file named lib.rs, which contains the initial code for your library.

This tells Cargo to generate a library project structure instead of a binary project. The key differ-

ences are as follows:

•	 Library (--lib) versus binary (cargo init default):

•	 A binary project (default) creates a src/main.rs file, which acts as the entry point

for execution

•	 A library project (--lib) creates a src/lib.rs file instead, which contains reusable

functions and modules but no main function

Getting Started with Rust20

•	 Purpose:

•	 Binary crates: Used for building applications that run as standalone programs

•	 Library crates: Used for writing reusable Rust code that can be imported into other

Rust projects via Cargo.toml

•	 How it’s used:

•	 A binary crate runs with cargo run

•	 A library crate is imported into other Rust projects with the following:

extern crate your_library_name;

Your first real Rust program: a CLI calculator
While a "Hello, World!" program is an excellent first step, it only touches the surface of what

Rust is capable of. Let’s take it a step further by building a simple command-line calculator that

can perform basic arithmetic operations based on user input.

This small project will introduce you to key concepts in Rust, including the following:

•	 Handling user input using std::io

•	 Using functions to organize code efficiently

•	 Error handling with match expressions

•	 Working with numbers and string parsing using the parse() method

Step 1: Setting up your project
First, create a new Rust project using Cargo:

cargo new cli_calculator

cd cli_calculator

Open src/main.rs in your favorite IDE and let’s start coding!

Step 2: Writing the calculator logic
We will build a simple calculator that does the following:

•	 Prompts the user for two numbers

•	 Asks for an operation (+, -, *, or /)

•	 Performs the calculation and displays the result

Chapter 1 21

Here’s the complete code, followed by a deeper explanation (Don’t worry if you don’t fully un-

derstand the code below. This is just to get used to the Rust code. We will get into all the concepts

and constructs used in the example below in the upcoming chapters. Take this as a trailer!):

// Import the standard input/output library to handle user input

use std::io;

fn main() {

 // Display a welcome message to introduce the program

 println!("Welcome to the Rust CLI Calculator!");

 // Prompt the user to enter the first number

 // We use a helper function `get_number` to handle input validation

 let num1 = get_number("Enter the first number: ");

 // Prompt the user to enter the second number

 let num2 = get_number("Enter the second number: ");

 // Prompt the user to enter an operation

 println!("Enter an operation (+, -, *, /):");

 // Create a mutable string to store the user's input

 let mut operation = String::new();

 // Read the user's input and store it in `operation`

 io::stdin().read_line(&mut operation).expect("Failed to read input");

 // Trim any whitespace (e.g., newline) from the input

 let operation = operation.trim();

 // Perform the calculation based on the chosen operation

 let result = match operation {

 "+" => Some(num1 + num2), // Addition

 "-" => Some(num1 - num2), // Subtraction

 "*" => Some(num1 * num2), // Multiplication

 "/" => {

 // Before dividing, check that the second number is not zero

 if num2 != 0.0 {

Getting Started with Rust22

 Some(num1 / num2) // Division

 } else {

 println!("Error: Division by zero is not allowed.");

 None // Return None if division by zero is attempted

 }

 }

 _ => {

 // If the user enters an invalid operation, print an error
message

 println!("Invalid operation. Please enter +, -, *, or /.");

 None // Return None to indicate an invalid operation

 }

 };

 // If the result is valid (not None), print the result

 if let Some(res) = result {

 println!("Result: {}", res);

 }

}

// This function prompts the user to enter a number and ensures valid
input

fn get_number(prompt: &str) -> f64 {

 loop { // Infinite loop until valid input is provided

 println!("{}", prompt); // Display the prompt message

 let mut input = String::new(); // Create a new mutable string for
user input

 io::stdin().read_line(&mut input).expect("Failed to read input");
// Read input

 // Try to convert the input string into a floating-point number
(f64)

 match input.trim().parse::<f64>() {

 Ok(num) => return num, // If parsing succeeds, return the
number

Chapter 1 23

 Err(_) => println!("Invalid number. Please enter a valid
numeric value."), // If parsing fails, prompt again

 }

 }

}

Let’s look at a detailed explanation:

•	 Handling user input (io::stdin().read_line()):

•	 Reads input as a string, which is then trimmed to remove extra spaces and newlines

•	 Used for both numbers and the operation selection

•	 Validating numeric input (the get_number() function):

•	 Uses a loop to repeatedly ask the user for input until a valid number is provided

•	 parse::<f64>() converts the input string into a floating-point number

•	 If the input is not a number, it prints an error message and retries

•	 Using match for decision-making:

•	 Determines which arithmetic operation to perform

•	 Prevents division by zero, an important safety check

•	 Returns None for invalid operations, preventing incorrect calculations

•	 Displaying the result (if let Some(res) = result):

•	 If a valid result exists (Some(value)), it prints it

•	 If an error occurred (e.g., invalid operation, division by zero), no incorrect result

is shown

Step 3: Running the program
Now, compile and run your calculator:

cargo run

Try entering different numbers and operations. If you enter invalid input, the program will prompt

you until a valid number is provided.

Getting Started with Rust24

What you learned
This simple CLI calculator introduced several fundamental Rust concepts:

•	 Handling user input using std::io::stdin()

•	 Using functions to keep the code modular and readable

•	 Error handling with match expressions and loops for input validation

•	 String parsing and working with numbers using .trim() and .parse()

This is just the beginning! Don’t worry if you don’t understand everything now; this was meant to

give you an idea of what Rust code looks like and to help you become familiar with the Rust syntax!

Functions
In this final section of the chapter, we’ll explore functions, a fundamental building block of Rust

programs. Functions allow you to encapsulate and reuse logic throughout your code, making

it more modular and easier to maintain. Defining and using functions is essential for writing

effective Rust programs.

Functions in Rust are defined using the fn keyword, followed by the function name, parameters,

and the function body. Let’s define a simple function to see how it works.

Functions example
In Rust, functions can be defined globally (outside main) or locally (inside another function). This

example shows both approaches:

// Global function (available everywhere)

fn add(a: i32, b: i32) -> i32 {

 a + b

}

fn main() {

 // Local function (only available inside main)

 fn greet(name: &str) {

 println!("Hello, {}!", name);

 }

Chapter 1 25

 // Call the local function

 greet("Alice");

 greet("Bob");

 // Call the global function

 let sum = add(1, 2);

 println!("The sum is: {}", sum);

}

In this example, we see both the function definition and the function invocation:

•	 Function definition:

•	 The greet function takes a single parameter name of the &str type (a string slice),

and prints a greeting message. This demonstrates how to define a function and

use parameters.

•	 The add function takes two parameters (a and b) of the i32 type (32-bit integers)

and returns their sum. This demonstrates how to define a function that returns

a value.

•	 Function invocation:

•	 We call the greet function twice with different arguments ("Alice" and "Bob"),

demonstrating how to pass arguments to functions.

•	 We call the add function with arguments of 5 and 7, store the result in the variable

sum, and print it.

These are just a few of the core syntax concepts in Rust. In this chapter, we’ve introduced the

basics of Rust programming, including variables and mutability, data types, control flow, and

functions. Each of these topics is crucial for building a solid foundation in Rust.

As we progress through the book, we’ll explore more advanced topics and dive deeper into Rust’s

syntax and features. Each chapter will provide detailed explanations, practical examples, ques-

tions, and assignments to help you master Rust programming. By the end of this book, you’ll have

a comprehensive understanding of Rust and be well equipped to tackle complex programming

challenges confidently.

Getting Started with Rust26

Summary
In this opening chapter, we took our first steps into Rust programming. We explored why Rust

has become such a hot topic among developers and how its unique features make it stand out in

various fields, such as system programming and web development.

Getting practical, we talked about setting up your Rust development environment. We ensured

that you’re all set to start writing code, from installing Rust to initializing your first project.

We also introduced you to Cargo, Rust’s trusty package manager and build system. We showed

you how to use it for project management, handling dependencies, and publishing your work.

As we wrap up this chapter, you now understand Rust’s basics and practical tools. Armed with

this knowledge, you can confidently start your Rust journey. So, let’s dive in and explore what

Rust has to offer!

Questions
Before we proceed to the next chapter, let’s take a moment to reflect on a few key questions.

Note that the answers to the questions can be found in Appendix B (Online).

These questions reinforce the concepts discussed in this chapter and ensure a solid understanding

as we move forward:

1.	 What key features of Rust make it stand out among other programming languages?

2.	 How does Rust ensure memory safety and prevent common programming errors?

3.	 What is Cargo, and what role does it play in Rust development?

4.	 Can you provide examples of projects or domains where Rust is commonly used?

5.	 Considering its unique features and syntax, how can beginners approach learning Rust

effectively?

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to https://packtpub.com/unlock).

Search for this book by name, confirm the edition, and then

follow the steps on the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require one.

https://packtpub.com/unlock

2
Rust Syntax and Functions

In this chapter, we will dive deep into the foundational aspects of Rust programming, focusing

on the language’s syntax and functions. Understanding these basics is crucial as they form the

building blocks for more advanced Rust programming concepts. This chapter aims to provide a

comprehensive overview of variable declarations, data types, functions, control flow constructs,

and error handling in Rust. By the end of this chapter, you will have a solid understanding of how

to write basic Rust programs, manipulate data, and handle errors effectively.

Rust is known for its strict and expressive syntax, which enforces safety and correctness in your

code. By learning Rust’s syntax, you will not only write more reliable programs but also gain a

deeper understanding of how Rust ensures memory safety and performance. We will start with

the fundamental concept of variable declarations and mutability, exploring how Rust handles

data storage and manipulation. This foundation will help you appreciate the language’s design

philosophy and how it guides you towards writing safe and efficient code.

Next, we will dive into Rust’s data types and structures, which are essential for organizing and

managing data. Rust provides a rich set of built-in data types, including integers, floating-point

numbers, booleans, and characters. Additionally, Rust’s compound types, such as tuples and

arrays, allow you to group multiple values together. Understanding these types and how to use

them effectively is crucial for building robust applications.

Functions are another critical aspect of Rust programming. We will explore how to define and

use functions in Rust, including how Rust’s ownership model affects data passing in and out of

functions. This section will cover the syntax for function definitions, parameter passing, and

return values, providing you with the tools to write modular and reusable code.

Rust Syntax and Functions28

Control flow constructs such as if, else, loops, and pattern matching are vital for writing dynamic

and responsive programs. We will examine how Rust implements these constructs and how you

can use them to control the flow of your programs effectively. Understanding control flow is key

to writing programs that can respond to different conditions and inputs.

Finally, we will discuss Rust’s approach to error handling. Rust’s robust error handling mecha-

nisms, including the Result and Option types, allow you to write programs that gracefully handle

unexpected conditions. We will also look at the panic! macro, which provides a way to handle

unrecoverable errors. Mastering Rust’s error handling strategies will enable you to build reliable

and resilient applications.

Throughout this chapter, we will provide detailed explanations, examples, and exercises to help

you grasp these concepts and apply them in your own Rust projects. By the end of this chapter,

you will have a strong foundation in Rust syntax and functions, preparing you for more advanced

topics in subsequent chapters.

Variable declarations and mutability
One of the first concepts you’ll encounter in Rust is how it handles variables, and this reveals a

core piece of its design philosophy. In Rust, variables are immutable by default. This might feel

different if you’re coming from languages such as Python, JavaScript, C++, or Java, where variables

are typically mutable unless you explicitly mark them as constant (e.g., with const or final).

Rust flips this convention on its head: you must explicitly opt in to mutability. This design choice

is intentional; it encourages a safer programming style by preventing accidental or unintended

changes to a variable’s value, which is a common source of bugs.

This emphasis on immutability makes your code easier to reason about, as you know that most

variables won’t change their value after being initialized. However, Rust is a practical language

and understands that mutability is often necessary. For those situations, it provides the mut

keyword, allowing you to declare a variable as mutable when you truly need its value to change.

This way, any mutation in your code is a deliberate, clearly marked action.

Immutable variables
In Rust, you declare an immutable variable using the let keyword. Immutable variables are a

cornerstone of Rust’s safety guarantees, ensuring that values do not change unexpectedly, which

can help avoid many common programming errors.

fn main() {

 let x = 5;

Chapter 2 29

 println!("The value of x is: {}", x);

 // x = 6; // This line would cause a compile-time error because x is
immutable

}

In the preceding example, x is declared as an immutable variable with a value of 5. Any attempt

to modify x will result in a compile-time error, enforcing the immutability guarantee.

Rust’s preference for immutability by default helps in maintaining a clear and predictable state

throughout your program. This makes it easier to track how data changes over time, reducing

the likelihood of bugs caused by unintended modifications.

Mutable variables
While immutability is the default, there are cases where you need to change a variable’s value.

Rust allows you to declare mutable variables using the mut keyword. Mutable variables provide

the flexibility to update and manage state as needed while maintaining control over when and

where changes can occur.

fn main() {

 let mut x = 5;

 println!("The value of x is: {}", x);

 x = 6; // This is allowed because x is mutable

 println!("The value of x is: {}", x);

}

In this example, x is declared as mutable, allowing its value to be changed from 5 to 6. Using mut

gives you the flexibility to modify variables while still adhering to Rust’s safety principles.

Shadowing
Rust also supports a feature known as shadowing, where you can declare a new variable with

the same name as a previous variable. The new variable shadows the previous one, effectively

creating a new variable while retaining the name.

A real-world analogy for understanding shadowing in Rust is the concept of “overwriting” a draft

on a whiteboard.

Rust Syntax and Functions30

Imagine you are a teacher writing on a whiteboard. You start by writing the number 5 on the board:

1.	 You write “5” on the whiteboard.

2.	 Then, you decide to update this number by adding 1 to it. Instead of erasing the original

number, you write a new number “6” on top of the old one, effectively “shadowing” the

original number.

In this analogy:

•	 The whiteboard represents the variable name

•	 The numbers you write represent the values assigned to the variable

•	 Each time you write a new number, you are creating a new value while keeping the same

name (the whiteboard)

This way, you can keep updating the value without changing the original number directly, sim-

ilar to how shadowing works in Rust. Each new value is a fresh start, but it uses the same name,

allowing you to transform the value step by step while maintaining immutability.

Let’s see an example:

fn main() {

 let x = 5;

 let x = x + 1; // This shadows the previous x

 println!("The value of x is: {}", x);

}

In this example, the second declaration of x shadows the first one. This allows you to reuse variable

names in a safe way, enabling transformations and updates without mutability.

Shadowing is useful in situations where you want to perform a transformation on a value and

maintain immutability. Each shadowed variable is a new variable, allowing you to apply trans-

formations step by step without modifying the original value.

Understanding variable declarations and mutability is the first step in mastering Rust’s syntax.

With these concepts, you can start to write more complex and expressive Rust code, building a

solid foundation for further exploration of the language’s features.

Chapter 2 31

Data types and structures
Rust provides a rich set of built-in data types that allow you to store and manipulate data effi-

ciently. Understanding these types is essential for effective Rust programming. Rust’s data types

can be broadly categorized into scalar types and compound types.

Scalar types
Scalar types represent a single value. Rust’s scalar types include integers, floating-point numbers,

Booleans, and characters.

Integers
Integers are whole numbers, and Rust provides a variety of types for them, giving you precise

control over memory and data representation. Each integer type is defined by its size (the

number of bits it uses, such as 8, 16, 32, 64, or 128) and whether it is signed (can be negative, starts

with i) or unsigned (only zero and positive, starts with u). For example, an i8 can hold numbers

from -128 to 127, while a u8 can hold numbers from 0 to 255. Choosing the appropriate type allows

you to optimize memory usage and ensure your variables can hold the range of values you expect.

The special types isize and usize have a size that matches the architecture of the target machine

(e.g., 64 bits on a 64-bit system) and are the idiomatic choice for indexing collections such as arrays.

These types differ in size and whether they can represent negative values.

fn main() {

 let signed_int: i32 = -42;

 let unsigned_int: u32 = 42;

 println!("Signed integer: {}, Unsigned integer: {}", signed_int,
unsigned_int);

}

Floating-point numbers
Rust provides two floating-point types, f32 and f64, for representing decimal numbers. The

default type is f64 because it is more precise.

fn main() {

 let float_num: f64 = 3.14;

 println!("Floating-point number: {}", float_num);

}

Rust Syntax and Functions32

Booleans
The boolean type bool represents a value that can be either true or false.

fn main() {

 let is_rust_fun: bool = true;

 println!("Is Rust fun? {}", is_rust_fun);

}

Characters
The character type char represents a single Unicode scalar value, which can be used to store a

wide range of characters, including letters, numbers, and symbols.

fn main() {

 let letter: char = 'R';

 let emoji: char = ' ';

 println!("Letter: {}, Emoji: {}", letter, emoji);

}

Compound types
Compound types can group multiple values into one type. The two primary compound types in

Rust are tuples and arrays.

Tuples
Tuples are a simple way to group together a fixed number of values with a variety of types into a

single compound type. Once declared, a tuple’s length cannot change. They are great for bundling

a few related pieces of data without the need to create a full struct.

There are two primary ways to access the elements inside a tuple: destructuring and direct

indexing.

fn main() {

 // A tuple holding an integer, a float, and a character.

 let my_tuple: (i32, f64, char) = (500, 6.4, 'R');

 // Method 1: Destructuring with a `let` binding.

 // This is a form of pattern matching that breaks the tuple into
separate variables.

 let (x, y, z) = my_tuple;

Chapter 2 33

 println!("Destructured values: x = {}, y = {}, z = {}", x, y, z);

 // Method 2: Direct access using dot notation and the element's index.

 // Indices start from 0.

 let first_element = my_tuple.0;

 let second_element = my_tuple.1;

 println!("Direct access: First element is {}, second is {}", first_
element, second_element);

}

One of the most common and idiomatic uses for tuples in Rust is to return multiple values from

a function. This is often cleaner and more lightweight than defining a new struct just for a single

function’s return type.

// This function calculates a sum and a product and returns both in a
tuple.

fn calculate_sum_and_product(a: i32, b: i32) -> (i32, i32) {

 (a + b, a * b) // The last expression in a function is its return
value

}

fn main() {

 let input1 = 10;

 let input2 = 5;

 // Call the function and destructure the returned tuple directly into
variables.

 let (sum_result, product_result) = calculate_sum_and_product(input1,
input2);

 println!("For {} and {}:", input1, input2);

 println!(" Sum: {}", sum_result); // Output: 15

 println!(" Product: {}", product_result); // Output: 50

}

As you can see, tuples provide a convenient way to handle small, fixed-size collections of het-

erogeneous data. While the let binding is a simple form of pattern matching, you’ll see later, in

the Control flow constructs section, how the match statement can be used for even more powerful

pattern matching on tuples.

Rust Syntax and Functions34

Arrays
Arrays are collections of multiple values that must all have the same type. In Rust, an array is an

owned type, which means the data it contains is stored directly as part of the array itself (usually

contiguously on the stack). A key characteristic of arrays is that they have a fixed length, which

is known at compile time and cannot be changed once declared.

fn main() {

 let array: [i32; 3] = [1, 2, 3];

 println!("Array values: {} {} {}", array[0], array[1], array[2]);

}

Arrays are beneficial when you need to store a fixed-size list of elements. However, their fixed

length can be a limitation in scenarios where you need a dynamically sized list.

Slices
Slices provide a way to reference a contiguous sequence of elements within a collection (such as

an array or a Vec) without needing to copy the data. A slice is a view or a borrowed reference

into a portion of that collection. Crucially, slices do not own the data they point to; the owner-

ship remains with the original collection. This makes them an incredibly safe and efficient way

to work with sub-sections of data.

To better visualize this, imagine an array in memory:

Array: [10, 20, 30, 40, 50]

Index: 0, 1, 2, 3, 4

If we create a slice that refers to the elements at index 1 and 2, the slice is simply a “view” pointing

to that specific portion of the original array’s data:

Slice: &[20, 30]

 ^ ^

 | |

Points to index 1 and 2 of the original array.

This is how you create a slice in code:

fn main() {

 let array = [10, 20, 30, 40, 50];

 // Create a slice that references elements from index 1 up to (but not
including) index 3.

Chapter 2 35

 // The type of `slice` is `&[i32]`.

 let slice = &array[1..3];

 println!("Original array: {:?}", array);

 println!("Slice (a view into the array): {:?}", slice); // Output:
[20, 30]

}

Slices are especially useful for working with parts of arrays or other collections without copying

data.

They provide a safe and efficient way to access sub-sections of data.

Strings
Strings in Rust are a bit more complex than simple scalar types. Rust has two main types of strings:

String and &str (string slice).

String
This is a growable, heap-allocated data structure. It is mutable and can store a dynamic number

of characters.

fn main() {

 let mut s = String::from("Hello");

 s.push_str(", world!");

 println!("{}", s);

}

&str
This is an immutable reference to a string slice. It can refer to a part of a String or a string literal.

fn main() {

 let s = "Hello, world!"; // string literal

 println!("{}", s);

}

Understanding and using these data types and structures effectively will enable you to organize

and manage your data efficiently in Rust. As you become more familiar with these types, you’ll

be able to write more complex and efficient Rust programs.

Rust Syntax and Functions36

With a solid understanding of Rust’s variable declarations, mutability, and data types, we can

now move on to exploring how Rust handles functions, including syntax, parameter passing, and

return values. This will include a look at how Rust’s ownership model applies to data passed into

and out of functions.

Structs
Structs are a fundamental feature in Rust that allow you to create custom data types. Structs

group together related data, allowing you to create complex data structures with named fields.

Rust has three types of structs: classic structs, tuple structs, and unit structs.

Classic structs
Classic structs are the most commonly used type of struct. They allow you to define a data struc-

ture with named fields. Each field in a struct can have a different type, and you can access these

fields using dot notation. We will see structs in more details in Chapter 5.

struct User {

 username: String,

 email: String,

 sign_in_count: u64,

 active: bool,

}

fn main() {

 let user1 = User {

 username: String::from("someusername123"),

 email: String::from("someone@example.com"),

 sign_in_count: 1,

 active: true,

 };

 println!("Username: {}", user1.username);

 println!("Email: {}", user1.email);

 println!("Sign in count: {}", user1.sign_in_count);

 println!("Active: {}", user1.active);

}

In this example, the User struct has four fields: username, email, sign_in_count, and active. The

main function creates an instance of User and prints the values of its fields.

Chapter 2 37

Tuple structs
Tuple structs are similar to classic structs but use unnamed fields. They are useful when you want

to group a few values together without needing named fields.

struct Color(i32, i32, i32);

fn main() {

 let black = Color(0, 0, 0);

 println!("Black: ({}, {}, {})", black.0, black.1, black.2);

}

In this example, the Color struct is defined with three unnamed fields. The fields are accessed

using dot notation with indices.

Unit structs
Unit structs are the simplest form of structs and do not have any fields. They are useful for creating

types that don’t need to store data but still need to implement certain traits.

struct AlwaysEqual;

fn main() {

 let _subject = AlwaysEqual;

}

In this example, the AlwaysEqual struct has no fields. It can be used to implement traits or mark

specific types in your code.

Struct initialization and update syntax
When creating instances of structs, you can use the struct update syntax to create a new instance

based on an existing one. This is especially useful when most of the fields in the new instance

have the same values as an existing instance.

struct User {

 username: String,

 Note

A struct can either hold its own data or borrowed data.

Rust Syntax and Functions38

 email: String,

 sign_in_count: u64,

 active: bool,

}

fn main() {

 let user1 = User {

 username: String::from("user1"),

 email: String::from("user1@example.com"),

 sign_in_count: 1,

 active: true,

 };

 let user2 = User {

 email: String::from("user2@example.com"),

 ..user1 // Copies the remaining fields from user1

 };

 println!("Username: {}", user2.username);

 println!("Email: {}", user2.email);

 println!("Sign in count: {}", user2.sign_in_count);

 println!("Active: {}", user2.active);

}

In this example, the user2 instance is created using the struct update syntax, copying the username,

sign_in_count, and active fields from user1 and providing a new value for the email field.

Methods and associated functions
Methods
You can define methods and associated functions for structs to provide behavior associated with

your data types. Methods are defined within an impl block.

struct Rectangle {

 width: u32,

 height: u32,

}

Chapter 2 39

impl Rectangle {

 fn area(&self) -> u32 {

 self.width * self.height

 }

 fn can_hold(&self, other: &Rectangle) -> bool {

 self.width > other.width && self.height > other.height

 }

}

fn main() {

 let rect1 = Rectangle {

 width: 30,

 height: 50,

 };

 let rect2 = Rectangle {

 width: 10,

 height: 40,

 };

 let rect3 = Rectangle {

 width: 60,

 height: 45,

 };

 println!("The area of rect1 is {} square pixels.", rect1.area());

 println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2));

 println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3));

}

In this example, the Rectangle struct has two methods: area and can_hold. The area method

calculates the area of the rectangle, and the can_hold method checks if the rectangle can contain

another rectangle.

Rust Syntax and Functions40

Associated functions
Associated functions are functions that are associated with a struct but do not take self as a

parameter. They are often used to define constructors or other functions that are related to the

struct but do not operate on a specific instance.

impl Rectangle {

 fn square(size: u32) -> Rectangle {

 Rectangle {

 width: size,

 height: size,

 }

 }

}

fn main() {

 let sq = Rectangle::square(3);

 println!("The area of the square is {} square pixels.", sq.area());

}

In this example, the square function is an associated function of the Rectangle struct. It creates

a new Rectangle instance with equal width and height.

Understanding and using structs effectively will allow you to define and manage complex data

structures in Rust, providing a solid foundation for building robust applications. With a com-

prehensive grasp of variable declarations, data types, and structs, you are now ready to explore

functions in Rust, including syntax, parameter passing, and how Rust’s ownership model affects

data passing.

Enums
Enums, short for enumerations, are a powerful feature in Rust that allow you to define a type by

enumerating its possible variants. Enums are particularly useful when you need to work with a

value that can be one of several distinct types. We will explore more enums in Chapter 5.

Enums can also hold data, making them extremely versatile for various programming scenarios.

Defining enums
Enums can hold different types of data. Each variant of an enum can have associated data of

different types and structures, much like a struct. This is one of the features that makes enums

in Rust so powerful.

Chapter 2 41

Let’s use a Color enum to see this in action. A color can be represented in multiple ways—for

example, as an RGB triplet or by a name. An enum is a perfect way to model this.

#[derive(Debug)]

enum Color {

 // A variant that holds a tuple of three 8-bit unsigned integers

 Rgb(u8, u8, u8),

 // A variant that holds a single String

 Named(String),

}

fn main() {

 let red = Color::Rgb(255, 0, 0);

 let custom_color = Color::Named(String::from("Forest Green"));

 println!("An RGB color: {:?}", red);

 println!("A named color: {:?}", custom_color);

}

In this example, the Color enum has two variants that each hold different types of data. The Rgb

variant holds a tuple of three u8 values, perfect for representing a standard RGB color, while the

Named variant holds a String to represent a color by its name. This demonstrates the versatility

of Rust enums: a single Color type can elegantly represent different ways of defining a color, each

with its own associated data.

Matching with enums
One of the most powerful features of enums is pattern matching. The match expression allows

you to execute code based on which variant of the enum you have.

We will see the match statement later in Chapter 5. For now, you can just consider it as a switch

statement on steroids.

enum Message {

 Quit,

 Move { x: i32, y: i32 },

 Write(String),

 ChangeColor(i32, i32, i32),

}

Rust Syntax and Functions42

fn main() {

 let msg = Message::Move { x: 10, y: 20 };

 match msg {

 Message::Quit => println!("Quit message"),

 Message::Move { x, y } => println!("Move to x: {}, y: {}", x, y),

 Message::Write(text) => println!("Write message: {}", text),

 Message::ChangeColor(r, g, b) => println!("Change color to red:
{}, green: {}, blue: {}", r, g, b),

 }

}

In this example, the Message enum has four variants, each capable of holding different types of data.

The match expression checks which variant is present and executes the corresponding code block.

Enum methods
Enums, like structs, can have methods associated with them. Methods are defined within an

impl block.

enum Message {

 Quit,

 Move { x: i32, y: i32 },

 Write(String),

 ChangeColor(i32, i32, i32),

}

impl Message {

 fn call(&self) {

 match self {

 Message::Quit => println!("Quit message"),

 Message::Move { x, y } => println!("Move to x: {}, y: {}", x,
y),

 Message::Write(text) => println!("Write message: {}", text),

 Message::ChangeColor(r, g, b) => println!("Change color to
red: {}, green: {}, blue: {}", r, g, b),

 }

 }

}

Chapter 2 43

In this example, we define a method call for the Message enum that matches on self and prints

a message based on the variant. This encapsulates the behavior associated with each variant

within the enum itself.

Enums provide a powerful way to define types that can be one of a few different variants. This

makes your code more expressive and type-safe, reducing the likelihood of errors and making

your intentions clear.

Beyond representing data such as colors, enums are also excellent for modeling different kinds

of actions or commands that a program might need to process.

This allows you to handle a variety of operations in a structured and type-safe way. For example,

you could define a Command enum to represent different user actions.

We can then use a match statement (which we’ll explore in detail in the control flow section) to

execute different code depending on which command is received.

enum Command {

 Start,

 Stop,

 Move(i32, i32),

}

fn process_command(command: Command) {

 match command {

 Command::Start => println!("Starting..."),

 Command::Stop => println!("Stopping..."),

 Command::Move(x, y) => println!("Moving to coordinates: x = {}, y
= {}", x, y),

 }

}

fn main() {

 process_command(Command::Start);

 process_command(Command::Move(10, 20));

 process_command(Command::Stop);

}

Rust Syntax and Functions44

Functions in Rust
Functions are a core component of Rust programming. They provide the means to organize your

code into reusable blocks. Functions encapsulate logic, making your code more modular, main-

tainable, and easier to understand. We will explore more function in Chapter 3, but I want to give

you a quick overview now.

This section will explore Rust’s function syntax, parameter passing, return values, and how Rust’s

ownership model impacts functions.

Function syntax
In Rust, functions are defined using the fn keyword, followed by the function name, a list of

parameters, and the function body enclosed in curly braces. Functions can take zero or more

parameters and return a value.

fn main() {

 println!("Hello, world!");

}

fn greet(name: &str) {

 println!("Hello, {}!", name);

}

fn add(a: i32, b: i32) -> i32 {

 a + b

}

Let’s break down the preceding example:

•	 main is the entry point of a Rust program and does not take any parameters

•	 greet takes a single parameter of type &str (a string slice) and prints a greeting message

•	 add takes two parameters of type i32 and returns their sum. The return type is specified

after the -> symbol

Chapter 2 45

Parameter passing
Rust supports passing parameters to functions by value, by reference, and by mutable reference.

Understanding how these different modes of parameter passing work is crucial for managing

data ownership and borrowing in Rust.

Passing by value
When you pass a parameter to a function “by value,” what happens depends on the type of data.

For simple, fixed-size types that are stored entirely on the stack (such as integers, booleans, and

floating-point numbers), Rust makes a full, bit-for-bit copy of the value. This means the function

gets its own independent copy, and the original variable in the calling scope remains valid and

unchanged.

fn takes_value_copy(mut some_integer: i32) {

 some_integer += 1;

 println!("Value inside function: {}", some_integer);

}

fn main() {

 let x = 5;

 takes_value_copy(x);

 println!("Original value of x after function call: {}", x); // x is
still 5

}

However, for more complex types that manage data on the heap (such as String or Vec<T>),

passing by value results in an ownership transfer, also known as a move. The function takes

ownership of the value, and the original variable in the calling scope is no longer valid and cannot

be used. This is a key part of Rust’s memory safety, as it prevents multiple owners from trying to

modify or deallocate the same data. We will discuss this in an upcoming chapter.

Passing by reference
Often, you want a function to use a value without taking ownership of it. This is called borrowing,

and you do it by passing a reference (&T). A reference allows a function to access the data without

owning it, which is highly efficient as it avoids copying large amounts of data. An immutable

reference (&T) allows the function to read the data but not modify it.

// This function borrows a String and calculates its length.

fn calculate_length(s: &String) -> usize {

Rust Syntax and Functions46

 s.len()

} // `s` goes out of scope here, but since it doesn't have ownership, the
data is not dropped.

fn main() {

 let s1 = String::from("hello");

 // We pass a reference to s1 using the `&` operator.

 // s1 is borrowed, not moved.

 let len = calculate_length(&s1);

 println!("The length of '{}' is {}.", s1, len);

 // `s1` is still valid here because its ownership was never
transferred.

}

Passing by mutable reference
Passing a parameter by mutable reference allows the function to borrow and modify the parameter.

This is useful for allowing functions to update data.

fn main() {

 let mut s = String::from("hello");

 takes_mutable_reference(&mut s);

 println!("s in main: {}", s); // s is modified by the function

}

fn takes_mutable_reference(some_string: &mut String) {

 some_string.push_str(", world");

}

In this example, takes_mutable_reference borrows s mutably, allowing it to modify the original

String.

Return values
Functions in Rust can return values, and the return type is specified after the -> symbol. The

return value can be any type, including custom types such as structs and enums.

fn main() {

 let sum = add(5, 3);

Chapter 2 47

 println!("The sum is: {}", sum);

}

fn add(a: i32, b: i32) -> i32 {

 a + b

}

In this example, the add function returns the sum of its two parameters. The return value is

specified as i32 after the -> symbol.

Ownership and functions
Rust’s ownership model, which we will explore in great detail in Chapter 4, plays a significant role

in how functions handle data. When you pass a parameter to a function, the ownership of that

parameter can change depending on how it’s passed. Understanding these rules is essential for

writing safe and efficient Rust code.

Let’s look at a simple example that illustrates the difference between moving ownership and

copying a value:

// This function takes ownership of the String passed to it.

fn takes_ownership(some_string: String) {

 println!("Inside takes_ownership: {}", some_string);

} // `some_string` is dropped here, and its memory is freed.

// This function takes a copy of the integer.

fn makes_copy(some_integer: i32) {

 println!("Inside makes_copy: {}", some_integer);

} // `some_integer` goes out of scope, but nothing special happens.

fn main() {

 let s = String::from("hello");

 // `s`'s value is moved into the function...

 takes_ownership(s);

 // ...so `s` is no longer valid here.

 // The next line would cause a compile-time error:

 // println!("Trying to use s after move: {}", s);

 let x = 5;

Rust Syntax and Functions48

 // `x`'s value is copied into the function...

 makes_copy(x);

 // ...so `x` is still valid and can be used here.

 println!("x is still valid after makes_copy: {}", x);

}

In this example, when we pass the String s to takes_ownership, ownership is moved. After the

function call, s is no longer valid in main. However, when we pass the i32 x to makes_copy, a copy

is made because i32 is a simple type with a known size that is stored on the stack.

This raises a common question: what if you want to give a function an owned value like a String

but still need to use the original variable afterward? For types that support it, you can create an

explicit “deep copy” using the .clone() method. This creates a brand-new instance of the data,

allowing you to move the clone into the function while retaining ownership of the original.

Be mindful that cloning can have a performance cost for large data structures.

fn takes_ownership(some_string: String) {

 println!("Function received ownership of: {}", some_string);

}

fn main() {

 let s1 = String::from("hello");

 // We pass a clone of `s1`. The function takes ownership of the clone,

 // not the original `s1`.

 takes_ownership(s1.clone());

 // Because we only moved a clone, `s1` is still valid and can be used
here.

 println!("We can still use s1 after cloning: {}", s1);

}

Control flow constructs
Control flow constructs are essential in any programming language, as they allow you to dictate

the flow of execution in your programs. Rust provides a variety of control flow mechanisms, in-

cluding conditional statements (if and else), loops (loop, while, and for), and pattern matching

(match). These constructs enable you to build dynamic and responsive applications by controlling

how and when different parts of your code are executed.

Chapter 2 49

if and else statements
Conditional statements in Rust allow you to execute code based on certain conditions. The most

common conditional statements are if and else.

fn main() {

 let number = 7;

 if number < 5 {

 println!("The number is less than 5");

 } else if number > 5 {

 println!("The number is greater than 5");

 } else {

 println!("The number is exactly 5");

 }

}

In this example, the if statement checks if number is less than 5, greater than 5, or exactly 5, and

executes the corresponding block of code.

Rust requires that the condition in an if statement be a boolean expression. This ensures clarity

and reduces potential errors that can arise from using non-boolean conditions.

Loop constructs
Rust provides several types of loops for repeating code: loop, while, and for. Each type of loop

is suited to different use cases.

The loop keyword
The loop keyword creates an infinite loop that will run forever until you explicitly tell it to stop.

You can exit the loop using the break statement.

fn main() {

 let mut counter = 0;

 loop {

 counter += 1;

 println!("Counter is now: {}", counter);

 if counter == 5 {

 break; // Exits the loop

Rust Syntax and Functions50

 }

 }

 println!("Loop finished.");

}

In this example, the loop runs until the break statement is executed when counter reaches 5.

In addition to break, Rust provides the continue keyword to control loop flow. While break exits

the loop entirely, continue skips over the rest of the current iteration and immediately starts

the next one. This is useful when you want to bypass processing for certain values but keep the

loop running.

Let’s look at an example using a for loop (which we’ll cover next) to see continue in action.

fn main() {

 for number in 1..=10 {

 // If the number is odd, skip the println! and go to the next
iteration.

 if number % 2 != 0 {

 continue;

 }

 // This line only runs for even numbers.

 println!("Found an even number: {}", number);

 }

}

In this example, the for loop iterates from 1 to 10. The if statement checks if a number is odd. If it

is, continue is called, and the loop immediately proceeds to the next number, skipping println!.

As a result, only the even numbers are printed.

In summary, break and continue give you fine-grained control over your loops: use break to stop

the loop entirely and continue to skip the current iteration and move to the next.

The while keyword
The while keyword creates a loop that runs as long as a condition is true.

fn main() {

 let mut number = 3;

 while number != 0 {

 println!("{}!", number);

Chapter 2 51

 number -= 1;

 }

 println!("Liftoff!");

}

In this example, the while loop runs until number is 0, printing each countdown number.

The for keyword
The for keyword creates a loop that iterates over a collection of items, such as an array or a range.

fn main() {

 let a = [10, 20, 30, 40, 50];

 for element in a.iter() {

 println!("The value is: {}", element);

 }

}

In this example, a.iter() creates an iterator over the elements of the array a. The for loop then

iterates over each element, printing its value.

Using ranges with the for loop
Rust’s range syntax is highly versatile, allowing you to define both inclusive and exclusive ranges.

This is particularly useful for looping a specific number of times without needing to manually

manage loop counters.

fn main() {

 for number in 1..5 {

 println!("Exclusive range value: {}", number);

 }

 for number in 1..=5 {

 println!("Inclusive range value: {}", number);

 }

}

In the first for loop, the range 1..5 is exclusive, meaning it includes numbers from 1 to 4. In the

second for loop, the range 1..=5 is inclusive, meaning it includes numbers from 1 to 5.

Rust Syntax and Functions52

Nesting loops
You can also nest for loops to iterate over multiple collections or ranges simultaneously. This is

useful for multidimensional data structures such as matrices or grids.

fn main() {

 let matrix = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9],

];

 for row in matrix.iter() {

 for element in row.iter() {

 print!("{} ", element);

 }

 println!();

 }

}

In this example, the outer for loop iterates over each row of the matrix, and the inner for loop

iterates over each element within the row, printing the matrix in a grid format.

Pattern matching with match
Pattern matching with the match statement is one of Rust’s most powerful features. It allows you

to handle complex control flow by matching values against patterns and executing code based

on which pattern is matched. The match statement can match literals, variables, and wildcards,

and can even destructure structs and enums.

Matching literals
You can match literals directly in a match statement. This is useful for handling specific values

differently.

fn main() {

 let number = 1;

 match number {

 1 => println!("One"),

 2 => println!("Two"),

Chapter 2 53

 3 => println!("Three"),

 _ => println!("Other"),

 }

}

In this example, the match statement matches the value of number against the literals 1, 2, and

3. The underscore _ serves as a catch-all pattern for any value that does not match the specified

literals.

Matching with variables
You can bind values to variables within a match statement, which is useful for extracting parts

of a complex value.

fn main() {

 let pair = (2, -2);

 match pair {

 (x, y) if x == y => println!("The numbers are equal"),

 (x, y) if x + y == 0 => println!("The numbers are opposites"),

 (x, y) => println!("Different numbers: ({}, {})", x, y),

 }

}

In this example, the match statement matches the tuple pair and binds its elements to x and y.

The additional if conditions (called guards) allow for more complex matching logic.

Destructuring enums
Pattern matching is particularly powerful with enums, allowing you to destructure and handle

each variant differently.

enum Message {

 Quit,

 Move { x: i32, y: i32 },

 Write(String),

 ChangeColor(i32, i32, i32),

}

fn main() {

 let msg = Message::Move { x: 10, y: 20 };

Rust Syntax and Functions54

 match msg {

 Message::Quit => println!("Quit message"),

 Message::Move { x, y } => println!("Move to x: {}, y: {}", x, y),

 Message::Write(text) => println!("Write message: {}", text),

 Message::ChangeColor(r, g, b) => println!("Change color to red:
{}, green: {}, blue: {}", r, g, b),

 }

}

In this example, the Message enum has four variants, each capable of holding different types

of data. The match expression checks which variant is present and executes the corresponding

block of code.

Combining patterns
Rust allows you to combine multiple patterns in a match arm using the | operator, which acts

like “or.” This lets you execute the same code for several possible values without duplicating logic.

fn main() {

 let x = 1;

 match x {

 1 | 2 => println!("The number is one or two"),

 3 => println!("The number is three"),

 _ => println!("It's some other number"),

 }

}

In this example, the pattern 1 | 2 will match if the value of x is either 1 or 2.

Adding conditional logic with match guards
Sometimes, a pattern alone isn’t specific enough. You might want to execute a match arm only

if an additional condition is met. For this, Rust provides match guards, which are if conditions

that can be added after a pattern. The code for that arm will only be executed if both the pattern

matches and the match guard’s condition evaluates to true.

Chapter 2 55

Let’s look at an example where we only want to match Point if it lies on one of the axes, but we

also want to check if its coordinates are within a certain range.

struct Point {

 x: i32,

 y: i32,

}

fn main() {

 let point = Point { x: 0, y: 10 };

 match point {

 // This arm matches only if x is 0 AND the guard `if y < 5` is
true.

 Point { x: 0, y } if y < 5 => {

 println!("On the y-axis, but close to the origin (y < 5).");

 }

 // This arm matches for any other point where x is 0.

 Point { x: 0, y } => {

 println!("On the y-axis at y = {}", y);

 }

 // This arm matches only if y is 0 AND the guard `if x > 5` is
true.

 Point { x, y: 0 } if x > 5 => {

 println!("On the x-axis, far from the origin (x > 5).");

 }

 // This arm matches for any other point where y is 0.

 Point { x, y: 0 } => {

 println!("On the x-axis at x = {}", x);

 }

 // This arm matches any other point.

 Point { x, y } => {

 println!("Point is at ({}, {})", x, y);

 }

 }

}

Rust Syntax and Functions56

In this example, the if y < 5 and if x > 5 expressions are match guards. They allow you to

add more complex conditional logic to your patterns, making match an even more expressive and

powerful tool for controlling your program’s flow.

Matching ranges
You can also match ranges of values using the ..= syntax.

fn main() {

 let x = 5;

 match x {

 1..=5 => println!("One through five"),

 _ => println!("Something else"),

 }

}

In this example, the pattern 1..=5 matches if x is any value from 1 to 5 inclusive.

Pattern matching with Option
The Option type is a commonly used enum in Rust, representing a value that can be either Some

(containing a value) or None (no value).

fn main() {

 let some_number = Some(5);

 let absent_number: Option<i32> = None;

 match some_number {

 Some(x) => println!("The number is: {}", x),

 None => println!("No number"),

 }

 match absent_number {

 Some(x) => println!("The number is: {}", x),

 None => println!("No number"),

 }

}

In this example, the match statements handle both Some and None variants of the Option type,

demonstrating how to work with optional values safely.

Chapter 2 57

Understanding and effectively using control flow constructs in Rust will enable you to write dy-

namic and responsive programs. With these tools, you can control how and when different parts

of your code are executed, making your programs more flexible and robust.

Next, we will explore Rust’s approach to error handling using the Result and Option types, as

well as the panic! macro. This will help you build reliable applications that gracefully handle

errors and unexpected conditions.

Understanding Rust’s approach to error handling
Before we wrap up this chapter, I want to dedicate some time to understanding a very important

aspect and feature of Rust: error handling. We will dive deeper into error handling in Chapter 6,

but I want to give you an overview of it in this chapter.

Error handling is crucial to building robust and reliable applications. Rust provides a powerful

and flexible approach to error handling that ensures your programs can gracefully manage un-

expected conditions and recover from errors. In this section, we’ll explore Rust’s primary error

handling tools: the Result and Option types and the panic! macro.

This short section will give you a basic understanding of these concepts, but error handling in

Rust is rich and multifaceted.

We will dedicate an entire chapter to diving deeper into these topics later in the book.

For now, let’s scratch the surface and get acquainted with Rust’s fundamental error handling

mechanisms.

Fundamentals of error handling
In Rust, some operations are not guaranteed to succeed. For example, trying to convert a piece of

text such as “hello” into a number will fail. When faced with an operation that might fail, you have

a choice. For now, we’ll look at the simplest, most direct approach: deciding that if an operation

fails, it’s an unrecoverable error and the program should stop immediately. This is called a panic.

Rust provides a couple of helper methods that are shortcuts for this “succeed or panic” logic.

You’ll often see these in examples and simple programs:

•	 .unwrap(): This method is called on the result of an operation. If the operation was suc-

cessful, .unwrap() gives you the successful value. If the operation failed, it will cause

your program to panic and crash.

Rust Syntax and Functions58

•	 .expect("error message"): This works exactly like .unwrap(), but it lets you provide

a custom error message that will be displayed when the program panics. This is more

helpful for debugging.

These methods are useful when you are confident that an operation will not fail, and a failure

would indicate a bug in your program.

fn main() {

 // This string can be successfully parsed into a number.

 let number_str = "42";

 // .parse() attempts the conversion. .unwrap() gets the successful
value.

 let number = number_str.parse::<i32>().unwrap();

 println!("Successfully parsed number: {}", number);

 // This string CANNOT be parsed into a number.

 let invalid_str = "hello world";

 // The line below would cause the program to panic and crash.

 // We use .expect() to provide a clear message upon failure.

 // let invalid_number = invalid_str.parse::<i32>()

 // .expect("Failed to parse the string into a number!");

 // Because the line above is commented out, this program will run
without error.

 // If you uncomment it, the program will panic and this line will not
be reached.

 println!("This line will not be reached if the expect() call
panics.");

}

While unwrap() and expect() are convenient, they should be used with care because they can

make your program crash. In the chapter dedicated to error handling, we will explore much more

robust ways to handle operations that can fail without panicking.

The Result type
The Result type is a powerful tool for error handling in Rust. It is an enum that can be either

Ok or Err, representing success and failure, respectively. The Result type is commonly used for

functions that can return an error.

Chapter 2 59

fn divide(dividend: f64, divisor: f64) -> Result<f64, String> {

 if divisor == 0.0 {

 Err(String::from("Cannot divide by zero"))

 } else {

 Ok(dividend / divisor)

 }

}

fn main() {

 match divide(10.0, 2.0) {

 Ok(result) => println!("Result: {}", result),

 Err(e) => println!("Error: {}", e),

 }

 match divide(10.0, 0.0) {

 Ok(result) => println!("Result: {}", result),

 Err(e) => println!("Error: {}", e),

 }

}

In this example, the divide function returns Result<f64, String>. If the division is successful,

it returns Ok with the result. If the divisor is zero, it returns Err with an error message. The match

statement in main handles both cases, ensuring the program responds appropriately.

The Option type
The Option type is used when a value can be either something or nothing. It is an enum with two

variants: Some (containing a value) and None (no value). The Option type is useful for functions that

might not return a value, providing a safe way to handle absence without resorting to null values.

The most exhaustive way to handle Option is with a match statement, which forces you to handle

both the Some and None cases.

fn find_element(arr: &[i32], target: i32) -> Option<usize> {

 for (index, &element) in arr.iter().enumerate() {

 if element == target {

 return Some(index); // Found it, return Some(index)

 }

 }

Rust Syntax and Functions60

 None // Didn't find it, return None

}

fn main() {

 let numbers = [1, 2, 3, 4, 5];

 // Case 1: The element is found

 match find_element(&numbers, 3) {

 Some(index) => println!("Using match: Found element at index: {}",
index),

 None => println!("Using match: Element not found"),

 }

 // Case 2: The element is not found

 match find_element(&numbers, 6) {

 Some(index) => println!("Using match: Found element at index: {}",
index),

 None => println!("Using match: Element not found"),

 }

}

In this example, the find_element function returns Option<usize>. If the target element is found

in the array, it returns Some with the index. If the target is not found, it returns None. The match

statement in main handles both cases.

In this example, the find_element function returns Option<usize>. The match statement in main

safely handles both the Some and None outcomes.

For common scenarios where you want to get the value inside Some or use a default value if it’s

None, Rust provides a convenient method called unwrap_or(). This can make your code more

concise than a full match block.

fn main() {

 let maybe_number: Option<i32> = Some(5);

 // If maybe_number is Some(5), `number` becomes 5.

 // If it were None, `number` would become 0.

 let number = maybe_number.unwrap_or(0);

 println!("Using unwrap_or: The number is: {}", number);

Chapter 2 61

 let nothing: Option<i32> = None;

 // Since `nothing` is None, `default_number` becomes 10.

 let default_number = nothing.unwrap_or(10);

 println!("Using unwrap_or: The default number is: {}", default_
number);

}

Error destructuring
Error destructuring is the process of extracting the specific error information contained within

the Err variant of a Result type. When an operation fails, the Err variant holds a value that de-

scribes the error. By using pattern matching with match or if let, you can “destructure” the Err

to bind this inner value to a variable, allowing you to inspect it, log it, or handle it in a specific way.

For example, in the following code, Err(e) is the pattern that destructures Result. It matches the

Err variant and binds the error value inside it to the variable e, which we can then print.

let failed_parse: Result<i32, _> = "hello".parse();

match failed_parse {

 Ok(number) => println!("Success: {}", number),

 Err(e) => println!("Failed to parse. The error was: {}", e), // Here,
'e' is the destructured error.

}

The panic! macro
The panic! macro is used to indicate a program failure and immediately terminate execution. It

is typically used in scenarios where the program cannot continue due to an unrecoverable error.

fn main() {

 let result = divide(10.0, 0.0);

 if let Err(e) = result {

 panic!("Application error: {}", e);

 }

}

fn divide(dividend: f64, divisor: f64) -> Result<f64, String> {

Rust Syntax and Functions62

 if divisor == 0.0 {

 Err(String::from("Cannot divide by zero"))

 } else {

 Ok(dividend / divisor)

 }

}

In this example, if the divide function returns an error, the program will panic and terminate.

While panic! is useful for handling unrecoverable errors, it should be used sparingly and only

when absolutely necessary.

Understanding these basic error handling mechanisms is essential for writing robust Rust pro-

grams. While this section provides an introduction, we will dive deeper into Rust’s error handling

capabilities in a dedicated chapter later in this book. There, we will explore more advanced tech-

niques and best practices for managing errors in Rust.

Summary
In this chapter, we covered the fundamental aspects of Rust syntax and functions, focusing on

variable declarations, data types, structs, enums, control flow constructs, and error handling.

Here’s a quick recap:

•	 Variable declarations and mutability: Understanding the importance of immutability by

default and the use of the mut keyword for mutable variables. The concept of shadowing

to safely reuse variable names.

•	 Data types and structures: A comprehensive look at Rust’s scalar and compound types,

including integers, floating-point numbers, booleans, characters, tuples, arrays, and slices.

•	 Structs and enums: Defining and using custom data types with structs and enums, in-

cluding methods and associated functions.

•	 Control flow constructs: Utilizing if and else statements, loops (loop, while, and for),

and pattern matching with match to manage the flow of your programs.

•	 Error handling: An introduction to Rust’s approach to error handling with the Result

and Option types, and the panic! macro.

By understanding these foundational elements, you are now well-equipped to write basic Rust

programs that are both robust and efficient. These concepts form the building blocks for more

advanced Rust programming techniques, which we will explore in subsequent chapters. In the

next chapter, we will examine functions and modules.

Chapter 2 63

Questions and assignments
Note that the answers to the questions and assignment solutions can be found in Appendix B

(Online).

Questions
Variable declarations and mutability

1.	 How do you declare a variable in Rust?

2.	 What is the difference between immutable and mutable variables?

3.	 What is shadowing, and how does it differ from mutability?

Data types and structures
1.	 What are the basic scalar types in Rust?

2.	 How do you define and use a tuple in Rust?

3.	 What is the difference between arrays and slices in Rust?

4.	 How do you define a struct in Rust, and what are the methods and associated functions

for structs?

5.	 What is an enum, and how can you use it to define different types of values?

Control flow constructs
1.	 How do you use if and else statements in Rust?

2.	 What are the different types of loops in Rust, and how do you use them?

3.	 How does pattern matching with match work in Rust?

4.	 What is the purpose of the if let and while let constructs?

Functions in Rust
1.	 What is the basic syntax for defining a function in Rust?

2.	 How do you handle parameters and return values in functions?

3.	 How do ownership and borrowing affect function parameters and return values?

Assignments
Assignment 2.1: Variable declarations and mutability
Write a Rust program that declares an immutable variable and then shadows it with a new value.

Also, declare a mutable variable and change its value.

Rust Syntax and Functions64

Assignment 2.2: Data types and structures
Create a struct to represent a rectangle with width and height. Implement a method to calculate

the area of the rectangle.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

3
Functions in Rust

Welcome to Chapter 3! Now that we’ve covered Rust’s basic data types, let’s explore how to make

them do things. In this chapter, we’ll focus on functions, the primary way to organize code and

behavior in Rust. Think of them as the named recipes of your program: they bundle up logic into

reusable blocks that you can call whenever you need them, which is fundamental to writing clean

and maintainable software. By breaking down a complex problem into smaller, named pieces,

your code becomes much easier to read, debug, and update.

While the basic idea of a function might be familiar if you’ve worked with other languages, its

behavior in Rust is deeply connected to its most unique feature: the ownership system. A very

important part of this chapter will be understanding how data is passed to and returned from

functions. We will look at the difference between moving ownership, making a copy of data, and

borrowing data with references. Getting a good handle on this is a huge step in your journey to

becoming a proficient Rust programmer.

We’ll start with the basic anatomy of a function, including its syntax and how it returns values.

Then we’ll spend a good amount of time on how functions interact with ownership. Finally, we’ll

get a quick preview of more advanced concepts, such as closures, to set the stage for later chapters.

Let’s get started!

Functions in Rust66

Importance of understanding functions
Understanding why functions are so important is key to appreciating how to structure good

software.

By breaking down a large, complex problem into smaller, named, and more manageable pieces,

your code immediately becomes easier to read and understand.

For example, when you suspect a bug, it’s much simpler to debug a small function with a clear

purpose than to hunt through hundreds of lines of tangled logic. Functions also allow you to write

a piece of code once and reuse it in many different places, which reduces repetition and makes

your programs easier to update.

This practice of encapsulating logic into well-defined units is fundamental to writing clean and

maintainable code in any language, and Rust is no exception.

With that in mind, let’s look at how you actually define and call a function in Rust.

Defining and calling functions
Functions are fundamental to programming in Rust, allowing you to encapsulate logic, promote

code reuse, and create modular programs.

Before we dive into the syntax, it’s worth mentioning a community convention: function and

variable names in Rust are written in snake_case, where all letters are lowercase and words are

separated by underscores (e.g., calculate_area).

While the compiler doesn’t enforce this, following this convention is strongly recommended as

it makes your code more readable and idiomatic, especially when working with others.

With that in mind, this section will cover the basics of defining and calling functions, including

their syntax, how they handle parameters, and how they return values.

Basic function syntax
A function in Rust is defined using the fn keyword, followed by the function name, a list of pa-

rameters enclosed in parentheses, and the function body enclosed in curly braces. Here’s a simple

example:

fn main() {

 let width = 10;

 let height = 5;

 let area = calculate_area(width, height);

Chapter 3 67

 println!("The area of the rectangle is: {}", area);

}

fn calculate_area(width: i32, height: i32) -> i32 {

 width * height

}

In this example, note the following:

•	 The main function is the entry point of the program. It calls the calculate_area function,

passing width and height as arguments.

•	 The calculate_area function takes two parameters of type i32 and returns an i32. The

return type is specified after the -> symbol.

•	 The function body contains the logic to calculate the area and returns the result.

Parameters and return values
In Rust, you must declare the type of each function parameter.

A function can also return a value, and if it does, you must declare the return type after an arrow, ->.

Let’s look at a function that takes two parameters and returns a string:

fn greet(name: &str, age: u32) -> String {

 format!("Hello, {}! You are {} years old.", name, age)

}

 Tip: How to run this example

Want to try this code on your own machine? It’s easy with Cargo!

2.	 Create a new project: Open your terminal and run cargo new functions_

example --bin. This command creates a new directory called functions_

example with all the necessary files for a Rust program.

3.	 Navigate into the project: Run cd functions_example.

4.	 Add the code: Open the src/main.rs file and replace its contents with the

code from the preceding example.

5.	 Run it! In your terminal, just run cargo run. Cargo will compile your code

and then execute it, and you should see the output printed directly to your

console.

Functions in Rust68

fn main() {

 let message = greet("Alice", 30);

 println!("{}", message);

}

Here is an explanation of the greet function:

•	 It takes two parameters: name (a string slice, &str) and age (a 32-bit unsigned integer, u32)

•	 It declares a return type of String after the -> character

•	 The format! macro builds a new string and, because it’s the last expression in the function,

it’s automatically returned

Functions that don’t return a value
What about functions that just perform an action and don’t return a meaningful value, such as

println!? In Rust, a function that doesn’t explicitly return a value is said to return the unit type,

which is written as ().

The unit type is an empty tuple and represents the absence of a value.

When you write a function without a -> return type, the compiler implicitly understands that

it returns ().

For clarity, especially when learning, you can also write this explicitly. Both of the following

functions are identical in behavior.

Let’s see an example:

// This function implicitly returns the unit type ().

fn log_message_implicit(message: &str) {

 println!("[LOG] {}", message);

 // No return value, so () is returned implicitly.

}

// This function explicitly returns the unit type ().

// It is functionally identical to the one above.

fn log_message_explicit(message: &str) -> () {

 println!("[LOG] {}", message);

 // We could write `return ();` here, but it's not necessary.

}

Chapter 3 69

fn main() {

 log_message_implicit("System online.");

 log_message_explicit("User logged in.");

 // You can see the unit type in action if you assign the result to a
variable.

 let result = log_message_implicit("Task finished.");

 // The type of `result` is `()`.

 // Printing it with debug formatting will show "()".

 println!("The result of a function returning the unit type is: {:?}",
result);

}

•	 log_message_implicit has no -> arrow, so its return type defaults to ().

•	 log_message_explicit explicitly states -> (), which does the exact same thing.

•	 As shown in main, the “return value” of such a function is (), the unit type. This is Rust’s

way of being explicit about functions that perform actions but don’t return data.

Functions with no parameters and no return values
Functions can also be defined without parameters and without return values. These functions

perform actions but do not produce a value to return to the caller:

fn main() {

 print_greeting();

}

fn print_greeting() {

 println!("Hello, world!");

}

In this example, the print_greeting function takes no parameters and returns no value. It simply

prints a greeting message to the console.

Functions in Rust70

Function syntax and best practices
Now that we’ve covered the basic syntax for defining functions, let’s discuss some common

practices and conventions that will help you write clear, maintainable, and idiomatic Rust code.

Adhering to these practices makes your code easier for others (and your future self!) to read and

understand:

•	 Use descriptive names in snake_case: As a strong convention in the Rust community,

function and variable names are written in snake_case, where all letters are lowercase and

words are separated by underscores. Choose names that clearly describe the function’s

purpose. For example, calculate_area is much clearer than calc_ar or area. Similarly,

parameter names should be descriptive, such as width: u32 instead of just w: u32.

•	 Keep functions small and focused: A function should ideally do one thing and do it well.

If you find a function is becoming very long or is handling multiple distinct tasks, it’s often

a good idea to break it down into smaller, more focused helper functions. This makes your

code more modular, easier to test, and easier to reason about.

•	 Prefer pure functions when possible: A “pure” function is one whose output depends

only on its inputs, and that has no observable side effects (such as printing to the console,

modifying a global variable, or writing to a file). While not all functions can be pure, fa-

voring them where possible makes your code more predictable and easier to test, as you

don’t have to worry about hidden state changes.

•	 Document functions with doc comments: Rust has excellent built-in support for docu-

mentation. You should document your public functions using documentation comments,

which start with ///. These comments support Markdown and have special sections for

describing parameters, return values, and even panics. This documentation can be auto-

matically converted into beautifully rendered HTML documentation by running cargo doc.

Here is an example of a well-documented function that follows these practices:

/// Calculates the area of a rectangle.

///

/// This function takes the width and height of a rectangle and returns
its area.

/// It demonstrates good naming conventions and clear documentation.

///

/// # Parameters

///

Chapter 3 71

/// * `width`: A `u32` representing the width of the rectangle. Must be
positive.

/// * `height`: A `u32` representing the height of the rectangle. Must be
positive.

///

/// # Returns

///

/// A `u32` representing the calculated area of the rectangle.

///

/// # Panics

///

/// This function will panic if either `width` or `height` is zero, as a
rectangle

/// with a zero dimension is considered invalid in this context.

pub fn calculate_rectangle_area(width: u32, height: u32) -> u32 {

 if width == 0 || height == 0 {

 panic!("Both width and height must be non-zero.");

 }

 width * height

}

fn main() {

 let area = calculate_rectangle_area(10, 20);

 println!("The calculated area is: {}", area);

}

In the preceding example, the doc comments clearly explain the function’s purpose, its parame-

ters (under # Parameters), what it returns (# Returns), and under what conditions it will panic

(# Panics).

This level of documentation, combined with descriptive naming and a focused purpose, makes

the function robust and easy to use correctly.

Function ownership and borrowing
In Rust, the concepts of ownership and borrowing are integral to understanding how data is

passed to and returned from functions. These concepts ensure memory safety without a garbage

collector, making Rust both efficient and reliable. This section will explain how ownership and

borrowing apply to function parameters and return values.

Functions in Rust72

Important: Ownership and Borrowing will be covered in detail in the next Chapter 4, so don’t

worry if you don’t understand everything below. After reading Chapter 4, feel free to come back

here and learn more about ownership specifically related to functions!

Ownership in functions
When you pass a parameter to a function, Rust’s ownership model determines whether the func-

tion takes ownership of the parameter or borrows it. By default, parameters passed by value

transfer ownership to the function:

fn main() {

 let s = String::from("hello");

 takes_ownership(s);

 // println!("{}", s); // This line would cause a compile-time error
because s is no longer valid

}

fn takes_ownership(some_string: String) {

 println!("{}", some_string);

}

In this example, note the following:

•	 The takes_ownership function takes ownership of the some_string parameter

•	 After the function call, s is no longer valid in the main function, and attempting to use it

results in a compile-time error

When a function takes ownership of a value, it is responsible for cleaning up the value when it

goes out of scope. This transfer of ownership helps prevent memory leaks and other common

issues in systems programming.

Borrowing in functions
To allow a function to use a value without taking ownership, you can pass a reference to the val-

ue. This is known as borrowing. Borrowing allows multiple parts of your code to access a value

without transferring ownership.

Chapter 3 73

Immutable borrowing
When you pass an immutable reference to a function, the function can read the value but cannot

modify it. Immutable references are created using the & symbol:

fn main() {

 let s = String::from("hello");

 takes_reference(&s);

 println!("{}", s); // s is still valid here

}

fn takes_reference(some_string: &String) {

 println!("{}", some_string);

}

In this example, note the following:

•	 The takes_reference function borrows the some_string parameter by taking an im-

mutable reference to it

•	 The original s variable remains valid in the main function after the function call

Mutable borrowing
When you pass a mutable reference to a function, the function can modify the value. Mutable

references are created using the &mut symbol:

fn main() {

 let mut s = String::from("hello");

 takes_mutable_reference(&mut s);

 println!("{}", s); // s has been modified

}

fn takes_mutable_reference(some_string: &mut String) {

 some_string.push_str(", world");

}

Functions in Rust74

In this example, note the following:

•	 The takes_mutable_reference function borrows the some_string parameter by taking

a mutable reference to it

•	 The original s variable can still be used in the main function and reflects the modifications

made by the function

Returning values and ownership
Functions can also return values, and the ownership of these values follows the same rules. If a

function returns a value, the caller takes ownership of that value:

fn main() {

 let s1 = gives_ownership();

 let s2 = String::from("hello");

 let s3 = takes_and_gives_back(s2);

 println!("s1: {}", s1);

 // println!("s2: {}", s2); // This line would cause a compile-time
error because s2 has moved

 println!("s3: {}", s3);

}

fn gives_ownership() -> String {

 let some_string = String::from("hello");

 some_string

}

fn takes_and_gives_back(a_string: String) -> String {

 a_string

}

 Rust enforces a strict rule to prevent data races: you can only have one mutable

reference to a particular piece of data in a particular scope at any given time. You

also cannot have any immutable references if a mutable reference exists. The com-

piler will stop you if you try to break this rule. This is one of Rust’s most important

safety guarantees.

Chapter 3 75

In this example, note the following:

•	 The gives_ownership function returns a string, and the caller (main) takes ownership of it

•	 The takes_and_gives_back function takes ownership of its parameter and then returns

it, transferring ownership back to the caller

Understanding ownership and borrowing in the context of functions is crucial for writing safe and

efficient Rust code. These concepts prevent common programming errors, such as null pointer

dereferences and data races, ensuring your programs are both reliable and performant.

In the next section, we will explore advanced function features, including closures, higher-order

functions, and anonymous functions, to write more flexible and expressive Rust code.

Advanced function features
Rust offers several advanced features that enhance function flexibility and expressiveness. These

include closures, higher-order functions, and anonymous functions.

These features allow you to write more concise and powerful code, capturing the surrounding

environment, passing functions as arguments, and returning functions from other functions.

Closures
In Rust, a closure is an anonymous function that you can define inline, store in a variable, pass

as an argument, or return from another function.

If you have experience with “lambda expressions” or “lambdas” from languages such as Python,

Java, or C++, or “arrow functions” in JavaScript, you’ll find that Rust’s closures serve a very similar

purpose. They are incredibly useful for short, one-off operations, especially when working with

higher-order functions such as iterator methods.

The key feature that makes closures powerful is their ability to capture variables from their sur-

rounding scope or “environment.” While lambdas in other languages also do this, in Rust, this

process is governed by the same strict ownership and borrowing rules that apply everywhere

else, giving you compile-time safety for this powerful functional feature.

The basic syntax uses vertical bars, | |, for parameters, followed by the closure body. Type

annotations are often optional, as the compiler is excellent at inferring them from the context.

Functions in Rust76

Here is an example:

fn main() {

 // The compiler infers that `x` is an i32 and the return type is i32.

 let add_one = |x| x + 1;

 println!("5 + 1 = {}", add_one(5));

 // You can also add explicit type annotations for clarity.

 let multiply = |a: i32, b: i32| -> i32 {

 a * b

 };

 println!("3 * 4 = {}", multiply(3, 4));

}

Capturing the environment
This is where closures truly shine. They can “capture” variables from the scope in which they are

defined. The compiler automatically determines how to capture each variable based on how it’s

used inside the closure. There are three ways a closure can capture a variable:

•	 By immutable reference (&T): If the closure only reads the variable

•	 By mutable reference (&mut T): If the closure modifies the variable

•	 By taking ownership (T): If the closure consumes the variable

fn main() {

 let my_name = String::from("Alice");

 let mut counter = 0;

 let data = vec![1, 2, 3];

 // 1. Captures `my_name` by immutable reference (&String)
because it only reads it.

 let greet = || println!("Hello, {}!", my_name);

 greet();

 // `my_name` is still valid here.

 println!("`my_name` can still be used: {}", my_name);

 // 2. Captures `counter` by mutable reference (&mut i32) because
it modifies it.

 let mut increment = || {

Chapter 3 77

 counter += 1;

 println!("Counter is now: {}", counter);

 };

 increment();

 increment();

 // `counter` has been modified.

 println!("Final counter value: {}", counter);

 // 3. Captures `data` by taking ownership (Vec<i32>) because of
the `move` keyword.

 // We'll discuss `move` next.

 let consume_data = move || {

 println!("Consumed data: {:?}", data);

 // `data` is dropped when this closure ends.

 };

 consume_data();

 // The line below would cause a compile error because `data` was
moved.

 // println!("Can we use data after move? No: {:?}", data);

}

The move keyword
Sometimes, you need to explicitly force a closure to take ownership of the variables it captures,

even if it could just borrow them. You do this with the move keyword. This is most often neces-

sary when a closure will outlive the scope of the captured variable, a common scenario when

spawning new threads.

The move keyword ensures the closure has its own copy of the data and won’t be left with a dan-

gling reference:

use std::thread;

fn main() {

 let message = String::from("Data for the new thread");

 // `thread::spawn` requires a closure that can live for the entire
program ('static).

 // If we didn't use `move`, the closure would try to borrow `message`,
but the compiler

Functions in Rust78

 // can't prove that `message` will live as long as the new thread.

 let handle = thread::spawn(move || {

 // The `move` keyword forces the closure to take ownership of
`message`.

 println!("Thread received: {}", message);

 });

 // `message` is no longer valid in the main thread.

 handle.join().unwrap();

}

The closure traits: Fn, FnMut, and FnOnce
The way a closure captures its environment determines which of three special traits it imple-

ments: FnOnce, FnMut, or Fn. These traits specify how the closure can be called. When you write a

higher-order function that accepts a closure, you use these traits as bounds to specify what kind

of closure you need:

•	 FnOnce: This trait is for closures that can be called at least once. All closures implement

FnOnce. A closure that consumes the variables it captures (by taking ownership) can

only be called once, so it will only implement FnOnce. The name signifies that the closure

consumes itself when called.

•	 FnMut: This trait is for closures that might mutate the variables they capture. These

closures can be called multiple times. Any closure that implements Fn also implements

FnMut, and any closure that implements FnMut also implements FnOnce.

•	 Fn: This trait is for closures that only immutably borrow values from their environment

(or don’t capture anything). These closures can also be called multiple times without

changing their environment.

The compiler will always infer the most permissive trait that a closure can implement. For ex-

ample, a closure that only reads a variable will implement all three traits (Fn, FnMut, and FnOnce),

allowing it to be used in the widest range of situations.

Closures in action: Higher-order functions and iterators
Closures are most powerful when used with higher-order functions, functions that take other

functions (or closures) as arguments. The most common place you’ll see this in Rust is with

iterators. Iterator methods such as map, filter, and fold are higher-order functions that take

closures to define their behavior.

Chapter 3 79

This pattern is very similar to chaining methods such as .map() and .filter() on arrays in

JavaScript:

fn main() {

 let numbers = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 // Let's find the sum of the squares of all even numbers greater than
3.

 let result: i32 = numbers

 .iter() // Create an iterator that yields references (&i32)

 // Use a closure with `filter` to keep only even numbers greater
than 3.

 // `n` here is `&&i32`, so we need to dereference it twice.

 .filter(|&&n| n > 3 && n % 2 == 0)

 // Use a closure with `map` to square each remaining number.

 // `n` here is `&i32`, so we dereference it once.

 .map(|&n| n * n)

 // Use `sum()` to consume the iterator and add up the results.

 .sum();

 // The chain of operations would be:

 // Original: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 // After filter: [4, 6, 8, 10]

 // After map: [16, 36, 64, 100]

 // After sum: 216

 println!("The sum of the squares of even numbers greater than 3 is:
{}", result);

}

•	 filter(|&&n| n > 3 && n % 2 == 0): The filter method takes a closure that must return

true or false. We pass it |&&n| n > 3 && n % 2 == 0, an anonymous function that

checks our condition.

•	 map(|&n| n * n): The map method takes a closure that transforms each element. We pass

it |&n| n * n to square each number.

Functions in Rust80

•	 Concise and expressive: This “iterator chain” style, powered by closures, allows you to

express complex data transformations in a very clear, readable, and efficient way, with-

out needing to write manual loops and if statements. This is a cornerstone of idiomatic,

functional-style Rust.

Anonymous functions and iterator methods
Rust supports anonymous functions, which are functions defined inline without a specific name.

If you’ve worked with other languages, you’ll recognize these as lambda expressions or, in Ja-

vaScript, often as arrow functions. They are most powerfully used with higher-order functions,

especially the methods found on Rust’s iterators.

For developers coming from a JavaScript background, this pattern will feel very familiar. Just as

you might chain methods such as .map(), .filter(), and .reduce() on an array in JavaScript,

you can do the same with iterators in Rust. Let’s look at a few common methods that take closures

(our anonymous functions) as arguments:

•	 map: Transforms each element

•	 filter: Keeps elements based on a condition

•	 fold: Accumulates a single value from all elements (similar to reduce in JavaScript)

•	 for_each: Executes an action for each element

Here’s an example showing map and fold in action:

fn main() {

 let numbers = vec![1, 2, 3, 4, 5];

 // Use an anonymous function `|x| x * 2` with the map method.

 let doubled: Vec<i32> = numbers.iter().map(|x| x * 2).collect();

 println!("Doubled numbers: {:?}", doubled); // Output: [2, 4, 6, 8,
10]

 // Use an anonymous function `|acc, &x| acc + x` with the fold method
to sum the values.

 // The first argument to fold (0) is the initial value for the
accumulator (`acc`).

 let sum = numbers.iter().fold(0, |acc, &x| acc + x);

 println!("Sum of numbers: {}", sum); // Output: 15

}

Chapter 3 81

In this example, |x| x * 2 is an anonymous function passed to map to transform each element.

Similarly, |acc, &x| acc + x is passed to fold to define the accumulation logic. Using these

inline, anonymous functions with iterator methods allows you to write data processing logic that

is highly expressive, concise, and often more efficient than writing manual loops.

Summary
In this chapter, we’ve taken a deep dive into functions, the fundamental building blocks for orga-

nizing logic and behavior in any Rust program. We started with the basics of defining functions us-

ing the fn keyword, specifying typed parameters, and understanding how Rust’s expression-based

nature allows for concise return values without an explicit return keyword. By mastering these

essentials, you’ve learned how to break down complex problems into smaller, reusable, and more

manageable pieces, which is a cornerstone of writing clean and maintainable code.

A central theme of this chapter was the critical interaction between functions and Rust’s own-

ership system. We explored the important distinction between passing simple types that are

copied (such as i32) and passing owned types (such as String), which results in a move, trans-

ferring ownership into the function. We also saw how to use references (&T and &mut T) to allow

functions to borrow data, either immutably for reading or mutably for modification, all without

taking ownership. Grasping these concepts of moving, copying, and borrowing is one of the most

significant steps in writing safe and efficient idiomatic Rust.

You are now well equipped with the knowledge to define and use functions effectively, managing

data flow and ownership with confidence.

These skills are essential, as nearly every Rust program you write will be built upon them. In

the next chapter, we will explore Rust’s ownership and borrowing system in even greater detail,

providing a comprehensive understanding of how Rust ensures memory safety and performance.

Questions and assignments
Questions
Defining functions

1.	 What is the syntax for defining a function in Rust?

2.	 How do you specify parameters and return types in a function?

3.	 What are the common practices for naming functions and parameters?

Functions in Rust82

Function ownership and borrowing
1.	 How does Rust handle ownership when passing parameters to a function?

2.	 What is the difference between passing a parameter by value and by reference?

3.	 How can you modify a value inside a function without taking ownership of it?

Advanced function features
1.	 What are closures in Rust, and how do they differ from regular functions?

2.	 How can you pass a function as an argument to another function?

3.	 What is a higher-order function, and how can it be used in Rust?

Assignments
These questions and assignments will help reinforce your understanding of functions and mod-

ules in Rust, providing practical experience with these essential concepts.

Assignment 3.1: basic function implementation
Write a function called calculate_triangle_area that takes the base and height of a triangle as

parameters and returns the area. Call this function from main and print the result.

Assignment 3.2: ownership and borrowing in functions
Modify the calculate_triangle_area function to take references to the base and height instead

of values. Ensure the function works without taking ownership of the arguments.

Assignment 3.3: using closures
Create a closure that takes two i32 parameters and returns their sum. Use this closure in a func-

tion that applies the closure to two numbers and prints the result.

Chapter 3 83

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to https://packtpub.com/unlock).

Search for this book by name, confirm the edition, and then

follow the steps on the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require one.

https://packtpub.com/unlock

4
Ownership, Borrowing, and
References

Welcome to Chapter 4. In this chapter, you’ll learn about some of Rust’s most important concepts:

ownership, borrowing, and references. These fundamental ideas are not just features; they form

the foundation of Rust’s commitment to memory safety and efficiency!

One of the things that makes Rust different from other programming languages, and one of the

reasons why I find it fascinating, is its unique approach to handling memory. Instead of relying

on a garbage collector or manual memory management, Rust enforces a set of rules at compile

time. This helps you avoid common issues such as null pointer dereferences, buffer overflows,

double-free memory issues, dangling references, and data races.

Initially, this model might feel unfamiliar, especially if you come from languages such as Java,

Python, or C++. However, this approach is what gives Rust its impressive combination of safety

and performance. While these concepts can take a little time to get used to, rest assured that

the effort is worthwhile, as mastering them is the key to writing the incredibly safe and efficient

code that Rust is famous for. In this chapter, we will explore these concepts thoughtfully through

practical, beginner-friendly examples.

You’ll see how they function in real code, giving you the confidence to apply them to your own

projects. Let’s embark on this exciting journey together!

Let’s get started!

Ownership, Borrowing, and References86

Objective
These principles govern memory management in Rust programs, guaranteeing that resources

are utilized safely and efficiently without the need for a garbage collector. Whether you come

from a background in languages with manual memory management, such as C or C++, or from

languages that use garbage collection, such as Java or Python, these concepts may initially seem

unfamiliar. However, grasping these ideas will unlock your full Rust developer potential.

This chapter aims to offer a comprehensive understanding of Rust’s unique ownership system.

We will explore the mechanics of borrowing and references; no worries, there will be practical

examples that illustrate how these concepts work together to ensure safe memory management.

By the end of this chapter, you will have a solid foundation in these critical Rust features, enabling

you to write more efficient and safe code as you continue your Rust journey.

Practical examples will demonstrate how these concepts ensure safe memory management. By

the end of the chapter, you will be equipped to write efficient and safe Rust code, thanks to a solid

understanding of these key features.

What is ownership?
Ownership is a defining feature of Rust and a fundamental aspect of its memory management

and safety approach. Unlike many traditional programming languages, Rust does not solely rely

on garbage collection or manual memory management. Instead, it uses a unique concept called

ownership to handle resource allocation and deallocation efficiently and safely.

At its core, ownership establishes clear rules about how and when memory is allocated, used,

and freed. Every value in Rust has a single owner responsible for its life cycle, from creation to

cleanup. This ownership model helps prevent common memory-related issues, such as memory

leaks, double-free errors, dangling pointers, and data races, by ensuring that each piece of data

has exactly one responsible owner at any given time.

Understanding ownership is essential for writing effective Rust code, as it significantly influences

data structure, function interactions, and system design. By clearly defining boundaries and re-

sponsibilities for data management, ownership equips developers with a powerful tool to create

robust, safe, and efficient software.

Chapter 4 87

Understanding ownership
Understanding ownership in Rust is fundamental to managing data effectively. A few key prin-

ciples govern ownership in Rust:

•	 Each value has a single owner: In Rust, every piece of data has exactly one owner at any

given moment. This owner is typically a variable (like a pet has a specific owner). Once

assigned to that variable, the variable has full control over that data until ownership is

transferred or the variable goes out of scope.

Take the following example:

let name = String::from("Mario");

// `name` is now the owner of the data "Mario"

•	 Only one owner at a time: Rust’s ownership model ensures that no two variables can own

the same data simultaneously. If you assign one variable to another (for types that man-

age memory, such as a string), Rust moves the ownership rather than creating a shallow

copy. This is a critical safety feature that prevents a dangerous bug called a “double free,”

where two variables might try to deallocate the same memory, leading to corruption. By

enforcing a single owner, Rust always knows exactly which variable is responsible for

cleaning up the data, eliminating this confusion and guaranteeing memory safety.

Here is an example:

let pasta = String::from("Carbonara");

let dinner = pasta; // ownership moves from `pasta` to `dinner`

// println!("{}", pasta); // Error! `pasta` no longer owns the
data

println!("{}", dinner); // "Carbonara"

After the ownership moves to dinner, the pasta variable can no longer access the data.

Ownership, Borrowing, and References88

•	 When the owner goes out of scope, the value is dropped: When the owner variable

reaches the end of its scope (such as the end of a function), Rust automatically cleans up

the associated data and frees the memory. You don’t have to manually call any kind of

free() or delete() function, Rust handles this automatically at compile time, ensuring

memory safety and reducing bugs.

The following is an example:

fn main() {

 {

 let espresso = String::from("Delicious");

 println!("{}", espresso); // "Delicious"

 } // `espresso` goes out of scope here; Rust automatically drops
its value

 // println!("{}", espresso); // Error! `espresso` doesn't
exist anymore

}

The automatic dropping of values helps prevent memory leaks and makes your programs safer

and easier to reason about.

These rules ensure that memory is managed automatically, avoiding common issues such as

double-free errors or dangling pointers and data races, which are often seen in languages such

as C and C++.

Ways variables interact: Move, copy, and clone
We’ve established that every value in Rust has a single owner. This naturally leads to an important

question: what happens when you assign one variable to another, such as let y = x;?

This would create a simple copy in many languages, but Rust is more precise.

Depending on the data type, Rust handles this interaction in one of three ways: move, copy, or

clone.

Chapter 4 89

The default behavior: Moving ownership
For complex types that manage resources on the heap, such as String (which owns its text data),

Vec<T> (which owns its elements), and Box<T> (which owns the data it points to), Rust’s default

behavior upon assignment is to move ownership.

A “move” is not a deep copy of the data. Instead, it’s a very fast, shallow copy of the pointer, length,

and capacity information that resides on the stack. The large block of data on the heap is not

touched at all. Crucially, after the move, Rust invalidates the original variable to ensure there is

still only one owner. This compile-time check is how Rust guarantees that only one variable is

responsible for freeing the memory, thus preventing “double-free” errors.

Let’s visualize this with a string:

fn main() {

 // s1 is on the stack and owns the "hello" data on the heap.

 let s1 = String::from("hello");

 // The `let s2 = s1;` line performs a move.

 // The pointer, length, and capacity from s1 are copied to s2.

 // Ownership of the heap data is transferred to s2.

 let s2 = s1;

 // After the move, s1 is no longer considered valid by the compiler.

 // Uncommenting the line below would cause a compile-time error.

 // println!("This will not compile: {}", s1);

 println!("s2 holds the value: {}", s2);

}

Ownership, Borrowing, and References90

Let’s visualize the move:

•	 Initial state: s1 owns the string data on the heap.

Figure 4.1: A String variable s1 on the stack, pointing to its heap-allocated data

•	 Final state (after let s2 = s1;): Ownership has moved to s2. The s1 is invalidated.

Figure 4.2: After let s2 = s1;, ownership of the heap data has moved to s2, and s1 is
invalidated

This move-by-default behavior for owned types is a cornerstone of Rust’s safety and performance.

The exception: Automatic copying with the Copy trait
You might have noticed that simple code such as let x = 5; let y = x; doesn’t invalidate x.

You can still use both x and y afterward. Why doesn’t ownership move here?

This is because simple scalar types such as integers (i32), floating-point numbers (f64), Booleans

(bool), and characters (char) implement a special trait called Copy. The Copy trait is a marker that

tells Rust that it’s okay to make a simple, bit-for-bit copy of a value instead of moving it.

Chapter 4 91

This exception exists for types that are stored entirely on the stack and have no special resource

management needs (such as a pointer to heap memory that needs to be freed). For these types,

making a cheap, full copy of the data is no different from the shallow copy that happens during

a move, so Rust allows the original variable to remain valid.

Types with the Copy trait include:

•	 All integer types (u8, i32, usize, etc.).

•	 All floating-point types (f32, f64).

•	 The Boolean type (bool).

•	 The character type (char).

•	 Tuples, if they only contain types that are also Copy. For example, (i32, bool) is Copy,

but (i32, String) is not.

Types that own resources, such as String, Vec<T>, and Box<T>, do not and cannot implement the

Copy trait, because that would lead to multiple owners of the same resource, breaking Rust’s

safety guarantees.

fn main() {

 // `x` is an i32, which implements the `Copy` trait.

 let x = 5;

 // Because `x`'s type is `Copy`, a bit-for-bit copy of the value 5

 // is made and assigned to `y`. `x` is not moved or invalidated.

 let y = x;

 println!("x = {}, y = {}", x, y); // Both x and y are valid and can be
used.

 // Let's look at a non-Copy type for contrast.

 let s1 = String::from("hello");

 // `String` does not implement `Copy`, so this is a move.

 let s2 = s1;

 // The line below would cause a compile-time error because s1 was
moved.

 // println!("s1 = {}, s2 = {}", s1, s2);

 // error[E0382]: borrow of moved value: `s1`

}

Ownership, Borrowing, and References92

In summary, for types that implement Copy, assignment creates a copy, and the original vari-

able remains valid. For all other types, assignment performs a move, and the original variable is

invalidated. This distinction is a key part of Rust’s predictable and safe memory management.

Explicit duplication: The Clone trait
So, what do you do when you have an owned type that isn’t Copy (such as String or Vec<T>), but

you genuinely need to create a duplicate of it? For this, Rust provides the Clone trait.

The Clone trait provides a method called .clone(), which is used to create an explicit, and often

“deep,” copy of a value. Unlike Copy, which is an implicit, bit-for-bit copy, clone() is a method

you must call yourself. This makes the act of duplicating potentially expensive data a very de-

liberate one.

For a type such as String, calling .clone() will allocate new memory on the heap and copy the

character data from the original string into the new allocation. This can be a relatively expensive

operation in terms of performance and memory, especially for large strings or vectors.

fn main() {

 // `s1` is a String, which does not implement the `Copy` trait.

 let s1 = String::from("hello");

 // To create an independent duplicate of `s1`, we must explicitly call
.clone().

 // This performs a deep copy of the string data on the heap.

 let s2 = s1.clone();

 // Because we cloned `s1`, the original variable `s1` is still valid
and retains ownership

 // of its own data. `s2` is a brand new String that owns its own copy
of the data.

 println!("s1 = {}, s2 = {}", s1, s2);

 // We can modify one without affecting the other.

 // let mut s3 = s1.clone();

 // s3.push_str(", world!");

 // println!("s1 = {}, s3 = {}", s1, s3);

}

Chapter 4 93

The following is an explanation of using .clone():

•	 Explicit call: We must call s1.clone() to create s2. A let s2 = s1; assignment would

have been a move.

•	 Deep copy: The .clone() method on String creates a new allocation on the heap and

copies the content ("hello") into it. s1 and s2 are now completely independent variables

pointing to different memory locations.

•	 Ownership: s1 retains ownership of its original data, and s2 becomes the owner of the

new, duplicated data. Both are valid and can be used after the clone.

•	 Performance: Remember that cloning can be costly. The idiomatic Rust approach is to

prefer moving or borrowing whenever possible and to use .clone() only when you truly

need a separate, owned copy of the data.

It’s also worth noting that any type that implements Copy must also implement Clone. For Copy

types, the implementation of .clone() is trivial and just performs the same cheap, bit-for-bit

copy that happens implicitly on assignment.

Key rules of ownership in Rust
Each value has a single owner
In Rust, each value has a unique owner responsible for the value’s life cycle, including its access

and cleanup. This exclusive ownership prevents ambiguous or conflicting references to the same

data, thus avoiding the memory errors found in other languages.

The following is an example:

fn main() {

 let book_title = String::from("The Rust Programming Guide");

 println!("{}", book_title); // book_title is valid here

 {

 let another_title = String::from("Rust and Beyond");

 println!("{}", another_title); // another_title is valid here

 } // another_title goes out of scope and is dropped here

} // book_title goes out of scope and is dropped here

In this example, both book_title and another_title have their own scope and owner. When

the scope ends, the values are dropped, and the memory is automatically freed.

Ownership, Borrowing, and References94

Ownership can be transferred (moved)
Ownership can be transferred from one variable to another. This process is called “moving.” When

a value is moved, the original owner no longer owns the value, and it becomes invalid. The new

owner now controls the value’s life cycle.

Take the following example:

fn main() {

 let original_owner = String::from("Rustacean");

 let new_owner = original_owner; // Ownership moves to new_owner

 // println!("{}", original_owner); // Error: original_owner is invalid

 println!("{}", new_owner); // new_owner is now the owner

}

In this example, the ownership of the "Rustacean" string is moved from original_owner to

new_owner. After the move, original_owner is no longer valid, and attempting to use it will result

in a compile-time error.

The owner is responsible for cleaning up the value
When the owner of a value goes out of scope, Rust automatically drops the value and frees the

memory. This rule eliminates common issues such as memory leaks and ensures that memory is

managed efficiently. The concept of “dropping” a value means that when a value’s owner goes

out of scope, the value is automatically cleaned up (similar to dealloc in C), preventing memory

from being wasted.

Here is an example:

fn main() {

 {

 let temp_owner = String::from("Temporary");

 println!("{}", temp_owner); // temp_owner is valid here

 } // temp_owner is dropped here, and the memory is freed

 // println!("{}", temp_owner); // Error: temp_owner is invalid

}

In this example, temp_owner is created and dropped within a block. Once the block ends, temp_

owner is no longer valid, and the memory is freed.

Chapter 4 95

These ownership rules form the core of Rust’s memory management strategy, ensuring that data

is always handled safely and predictably. By following these rules, Rust eliminates many common

programming errors, such as double frees, dangling pointers, and data races. Understanding and

applying these rules in your programs is key to mastering Rust and writing efficient, safe code.

Moving ownership
In Rust, the concept of ownership extends beyond just the initial creation and destruction of

variables; it also governs how values are transferred between different parts of a program. When

a value is assigned from one variable to another, Rust performs a “move,” which transfers own-

ership from the original variable to the new one. After a move, the original variable is no longer

valid, preventing any further use and ensuring that no two variables can inadvertently share

ownership of the same data.

Figure 4.3: A String’s memory layout: stack-allocated metadata (ptr, len, cap) pointing to its
heap-allocated data

Moving ownership occurs when you transfer the ownership of a value from one variable to an-

other. This happens in several scenarios, such as when you assign a value to another variable or

when you pass it as an argument to a function. Once ownership is moved, the original variable

becomes invalid, and attempting to use it results in a compile-time error. This is a key feature of

Rust’s safety guarantees.

The following is an example of a basic move:

fn main() {

 let first_owner = String::from("Hello, Rust!");

 let second_owner = first_owner;

 // The line below would cause a compile-time error

 // println!("{}", first_owner);

 println!("{}", second_owner); // This works because second_owner now
owns the value

}

Ownership, Borrowing, and References96

In this example, the "Hello, Rust!" string is initially owned by first_owner. When ownership

is moved to second_owner, the first_owner is no longer valid. If you try to use first_owner after

the move, Rust will throw a compile-time error, enforcing the ownership rules.

Why move ownership?
Rust’s move semantics ensure that data is not accidentally accessed or modified in unsafe ways.

By enforcing strict ownership rules, Rust prevents common programming errors such as use-

after-frees, double frees, and data races, which are prevalent in languages such as C and C++.

Moving ownership is particularly useful when dealing with large data structures that you don’t

want to copy. For instance, consider a function that processes a large collection of data, such as

a vector containing millions of numbers. If the function takes ownership of the vector, the op-

eration is extremely fast. Only the small amount of data on the stack (a pointer to the heap data,

its length, and capacity) is moved.

The large block of data on the heap is not touched at all.

// A function that takes ownership of a large vector (a "move").

// This is very fast because only the pointer, length, and capacity are
moved.

fn process_large_data_by_move(data: Vec<i32>) {

 // Imagine some processing happens here.

 println!("Processing data by move. First element: {}, Length: {}",
data[0], data.len());

 // `data` is dropped here, and its heap memory is freed.

}

// A function that takes a clone of a large vector.

// This is much slower because it must allocate new memory and copy all
elements.

fn process_large_data_by_clone(data: &Vec<i32>) {

 let data_clone = data.clone();

 println!("Processing data by clone. First element: {}, Length: {}",
data_clone[0], data_clone.len());

 // `data_clone` is dropped here, and its heap memory is freed.

}

fn main() {

Chapter 4 97

 // Create a large vector with one million integers.

 let large_vector: Vec<i32> = (0..1_000_000).collect();

 // Create another one for the clone example.

 let another_large_vector: Vec<i32> = (0..1_000_000).collect();

 println!("--- Demonstrating a move ---");

 // Ownership of `large_vector` is moved to the function. This is a
cheap operation.

 process_large_data_by_move(large_vector);

 // `large_vector` is no longer valid here and cannot be used.

 // println!("Can we use large_vector again? No."); // This would be a
compile error.

 println!("\n--- Demonstrating a clone ---");

 // We pass a reference and clone it inside the function.

 // This is an expensive operation, as it copies 1,000,000 integers.

 process_large_data_by_clone(&another_large_vector);

 // `another_large_vector` is still valid here because it was only
borrowed.

 println!("We can still use another_large_vector again. Length: {}",
another_large_vector.len());

}

In contrast, if we needed to keep the original vector and pass a copy to the function, we would have

to use .clone(), as shown in the process_large_data_by_clone example. This would trigger a

new heap allocation and a deep copy of all one million integers, a significantly more expensive

operation in both time and memory. By choosing to move the data when the original is no longer

needed, we transfer responsibility for it efficiently and safely, avoiding these costly duplications.

Moving in function calls
When you pass a value to a function, ownership of that value is typically moved to the function.

This means that the value is no longer accessible in the original scope once the function call is made.

The following is an example of moving in functions:

fn main() {

 let data = String::from("Important data");

 process_data(data);

Ownership, Borrowing, and References98

 // This line would cause a compile-time error

 // println!("{}", data);

}

fn process_data(input: String) {

 println!("Processing: {}", input);

}

In this example, the ownership of data is moved to the process_data function when it is called.

After the function call, data is no longer accessible in the main function.

Advantages of moving ownership
The concept of moving ownership is fundamental to how Rust achieves its guarantees of safety

and efficiency.

The primary safety advantage of a move is that it invalidates the original variable. Once ownership

of a value has been moved, the Rust compiler statically prevents the original variable from being

used again.

This compile-time check makes it impossible to accidentally access data through an old handle,

which is a direct and powerful prevention against “use-after-free” bugs. Furthermore, because

only one variable is considered the valid owner at any given time, only that variable will be re-

sponsible for cleaning up the data when it goes out of scope, which completely eliminates the

risk of “double-free” errors.

The efficiency advantage is most apparent with large data structures. A move operation for

heap-allocated data (such as a large Vec<T> or String) only involves copying a few bytes of stack

data (the pointer, length, and capacity), not the potentially megabytes or gigabytes of data on the

heap. This makes transferring ownership of large amounts of data an extremely fast operation,

avoiding the significant performance cost of deep copying.

Ownership and functions
Ownership in Rust extends to how values are passed to functions. When a value is passed to a

function, ownership of that value can be transferred (moved) to the function, or the function can

borrow the value, either immutably or mutably, depending on the function’s requirements. Un-

derstanding how ownership works with functions is crucial to writing safe and efficient Rust code.

Chapter 4 99

Ownership transfer in function calls
When you pass a value to a function by value, the function takes ownership of that value (this is the

default behavior). This means that the original variable in the calling function loses ownership and

becomes invalid. After the function finishes execution, the value is dropped unless it is returned.

The following is an example of ownership transfer:

fn main() {

 let my_string = String::from("Hello, world!");

 take_ownership(my_string);

 // This line would cause a compile-time error

 // println!("{}", my_string);

}

fn take_ownership(s: String) {

 println!("Taking ownership: {}", s);

}

In this example, the take_ownership function takes ownership of my_string. After the function

call, my_string is no longer valid in the main function because its ownership has been transferred

to the take_ownership function.

Returning ownership
Sometimes, you might want a function to take ownership of a value, do some processing, and

then return ownership to the caller. Rust allows you to return ownership from a function to the

calling context.

The following is an example of returning ownership:

fn main() {

 let my_string = String::from("Hello, Rust!");

 let my_string = return_ownership(my_string);

 println!("{}", my_string); // Now this is valid

}

Ownership, Borrowing, and References100

fn return_ownership(s: String) -> String {

 s

}

In this example, ownership of my_string is transferred to return_ownership, but then it is re-

turned to the caller. This way, my_string remains valid after the function call, because ownership

was returned to it.

Borrowing and references
Borrowing is one of Rust’s most powerful and unique features, enabling data management that is

both safe and highly efficient. While Rust’s ownership model guarantees each value has a single

owner, there are many cases where you need a function or another part of your program to tem-

porarily access data without permanently taking ownership. This is where borrowing becomes

crucial. It allows you to provide access to data without the performance cost of copying it, which

is especially important for large data structures such as vectors or strings.

When you borrow a value, you create a reference to it. A reference, indicated by the & symbol, is

a type that acts like a pointer, storing the memory address where the data resides, but with a

crucial difference: it is governed by Rust’s strict compile-time borrow checker. This means that

while a reference allows you to access data without taking full responsibility for it, the compiler

guarantees that the reference will always be valid and will not lead to dangerous situations such

as data races.

Rust has some clear borrowing rules: at any one time, you can have either one mutable reference

(&mut T) or many immutable references (&T), but not both. These guidelines are really important

because they help avoid a lot of common bugs, such as data races, dangling pointers, and unsafe

memory access, and all of this is checked during compilation to keep your code safe.

Borrowing, therefore, offers the best of both worlds: it guarantees memory safety through the

borrow checker’s rules and boosts performance by avoiding unnecessary data duplication and

movement. It enables different parts of your program to safely share access to the same data while

clearly indicating how that data is used throughout your code base. A thorough understanding

of borrowing and references will greatly affect your ability to write safe, concurrent, and efficient

Rust applications, making it a key concept in mastering Rust’s ownership model.

Chapter 4 101

Immutable borrowing
Immutable borrowing allows you to create read-only references to data. This means that while

you can access the data, you cannot modify it. Multiple immutable references to the same data

can exist simultaneously, allowing various parts of your code to read the data concurrently.

fn main() {

 let book = String::from("Rust Programming");

 let len = calculate_length(&book); // Borrow book immutably

 println!("The length of '{}' is {}.", book, len);

 // book is still valid here

}

fn calculate_length(s: &String) -> usize {

 s.len()

}

In this example, calculate_length borrows book immutably. The & symbol denotes that a refer-

ence is being passed. The original book variable remains valid and unchanged after the function

call, allowing it to be used elsewhere in the code.

Mutable borrowing
Mutable borrowing lets you create a single, read-write reference to data, enabling you to modify

the value it references.

However, this power comes with a critical rule that Rust’s compiler strictly enforces: you can have

exactly one mutable reference to a piece of data in any particular scope. This restriction is not

arbitrary; it is the fundamental mechanism by which Rust prevents data races at compile time.

A data race occurs when multiple references try to read and write to the same memory location

simultaneously, leading to unpredictable and often disastrous bugs!

fn main() {

 let mut article = String::from("Rust is awesome");

 update_article(&mut article); // Borrow article mutably

 println!("Updated article: {}", article);

 // article is still valid here

}

Ownership, Borrowing, and References102

fn update_article(s: &mut String) {

 s.push_str(" for system programming!");

}

Here, update_article borrows article mutably using &mut, allowing it to modify the original

string. After the modification, the article variable is still valid in the main function.

Borrowing rules
Rust enforces several rules for borrowing to ensure safety and prevent data races:

•	 You can have either one mutable reference or multiple immutable references, but not

both simultaneously.

•	 References must always be valid.

fn main() {

 let mut note = String::from("Rust is fast");

 let r1 = ¬e; // Immutable borrow

 let r2 = ¬e; // Immutable borrow

 // let r3 = &mut note; // Error: cannot borrow as mutable
because it is also borrowed as immutable

 println!("Note: {}, {}", r1, r2);

 let r3 = &mut note; // Mutable borrow is allowed here because no
immutable borrows are active

 r3.push_str(" and safe");

 println!("Updated note: {}", r3);

}

In this example, Rust prevents mutable borrowing while immutable references are active. The

compiler is smart enough to see where the last use of the immutable references (r1 and r2) oc-

curs. After that point, their “borrow” is considered over, and a new mutable borrow is allowed.

This leads us to the second fundamental rule of borrowing: all references must be valid. This means

that a reference must never point to memory that has been deallocated or has gone out of scope.

In other languages, this dangerous bug is known as a “dangling reference” or “dangling pointer”

and is a common source of crashes and security vulnerabilities.

Chapter 4 103

Rust’s compiler prevents this entire class of bugs at compile time through its analysis of lifetimes.

The compiler ensures that the data a reference points to will live at least as long as the reference

itself. If there’s any possibility that a reference could outlive its data, the program will simply

refuse to compile.

Consider this example, which Rust will correctly reject:

// This function attempts to return a reference to data that will be
deallocated.

// Rust's compiler will prevent this with a lifetime error.

fn get_dangling_reference() -> &String {

 let s = String::from("hello");

 &s // We are trying to return a reference to `s`.

} // But `s` goes out of scope and is dropped here, so the memory is
freed.

 // The returned reference would be "dangling" – pointing to invalid
memory.

fn main() {

 // let reference_to_nothing = get_dangling_reference();

 // If the code above were allowed to compile, `reference_to_nothing`

 // would be a dangling reference, and using it would be undefined
behavior.

}

Together, these two rules—(1) you can have either one mutable reference or any number of im-

mutable references, and (2) all references must always be valid—form the core of Rust’s borrow

checker. This is the static analysis tool that allows Rust to guarantee memory safety without

needing a garbage collector.

Borrowing in functions
In Rust, functions can borrow variables immutably or mutably depending on the required access.

This allows functions to use or modify data without taking ownership, preserving the original

variable’s validity outside the function:

fn main() {

 let framework = String::from("Actix");

Ownership, Borrowing, and References104

 display_framework(&framework); // Borrow framework immutably

 println!("Framework: {}", framework); // framework is still valid here

}

fn display_framework(s: &String) {

 println!("Using framework: {}", s);

}

In this example, display_framework borrows framework immutably, allowing it to be used else-

where in the main function after the function call.

fn main() {

 let mut title = String::from("Rust Basics");

 modify_title(&mut title); // Borrow title mutably

 println!("Modified title: {}", title); // title is still valid here

}

fn modify_title(s: &mut String) {

 s.push_str(" - Advanced Topics");

}

Here, modify_title borrows title mutably, allowing it to modify the original string.

Practical example: Managing a library
Let’s consider a more complex example of managing a library of books. We want to be able to add

new books and print the list of books without transferring ownership:

struct Library {

 books: Vec<String>,

}

impl Library {

 fn new() -> Library {

 Library { books: Vec::new() }

 }

 fn add_book(&mut self, book: String) {

 self.books.push(book);

Chapter 4 105

 }

 fn print_books(&self) {

 for book in &self.books {

 println!("{}", book);

 }

 }

}

fn main() {

 let mut library = Library::new();

 library.add_book(String::from("Rust Programming"));

 library.add_book(String::from("Advanced Rust"));

 library.print_books(); // Immutable borrow to print books

}

In this example, the Library struct has methods to add and print books. The add_book method

mutably borrows self to modify the list of books, while the print_books method immutably

borrows self to read the list of books.

In Rust, borrowing and references are key tools for safe and efficient data handling. Immutable

borrowing allows multiple read-only references to a value, keeping data unchanged across dif-

ferent parts of the program.

Mutable borrowing allows data modification but grants exclusive access, meaning no other ref-

erences, either mutable or immutable, can exist during a mutable borrow. This strict rule helps

Rust prevent data races before runtime.

Common patterns and idioms in Rust: Ownership,
borrowing, and references
Now that we have learned the basics, in this section, we will explore some practical examples

and common patterns related to ownership, borrowing, and references in Rust. These patterns

will help you to write safe and efficient code, taking advantage of all of Rust’s powerful memory

management features!

Ownership, Borrowing, and References106

Borrowing for read-only access
Immutable data borrowing enables different parts of your code to read the same data simulta-

neously without the risk of modification. Here is an example of borrowing a reference to a struct:

struct Book {

 title: String,

 author: String,

}

fn print_book_title(book: &Book) {

 println!("The book title is: {}", book.title);

}

fn main() {

 let my_book = Book {

 title: String::from("Rust Programming"),

 author: String::from("John Doe"),

 };

 print_book_title(&my_book); // Borrowing the struct immutably

 println!("The book author is: {}", my_book.author); // The original
data is still accessible

}

In this example, the print_book_title function borrows the Book struct immutably. This allows

the function to read the book’s title without taking ownership, ensuring that the original data

remains accessible in the main function.

The following are the key points:

•	 Multiple immutable references can coexist

•	 Data remains accessible and unmodified after borrowing

•	 There’s no risk of data races as no mutation occurs

Mutable borrowing for modification
Mutable borrowing allows functions to modify data while the caller retains ownership. Rust’s

strict rules ensure that only one mutable reference exists at a time, which prevents data races.

Example: Mutable borrowing in a function
struct Account {

 balance: f64,

Chapter 4 107

}

fn deposit(account: &mut Account, amount: f64) {

 account.balance += amount;

 println!("Deposited ${:.2}, new balance is ${:.2}", amount, account.
balance);

}

fn main() {

 let mut my_account = Account { balance: 1000.0 };

 deposit(&mut my_account, 200.0); // Mutably borrowing the struct

 println!("Final balance is ${:.2}", my_account.balance); // The
original data is modified

}

In this example, the deposit function mutably borrows the Account struct, allowing it to modify

the balance. The main function retains ownership of the struct, but the balance is updated.

The following are the key points:

•	 Only one mutable reference can exist at a time

•	 Mutable borrowing allows data modification while retaining ownership

•	 This pattern is crucial for functions that need to modify data

Returning references with borrowing
Returning references from functions while maintaining ownership of the caller is a powerful

pattern. This allows you to give controlled access to parts of your data without transferring

ownership or needing to copy data.

Example: Returning a reference to the longest string
fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {

// Lifetime annotation '<'a>' ensures that the returned reference

// lives at least as long as the shortest of the input references.

 if x.len() > y.len() {

 x

 } else {

 y

Ownership, Borrowing, and References108

 }

}

fn main() {

 let string1 = String::from("Rust");

 let result; // Declare 'result' outside the inner scope

 {

 let string2 = String::from("Programming");

 result = longest(&string1, &string2);

 println!("The longest string is {}", result); // 'result' is valid
here because

 // it borrows either 'string1' or 'string2',

 // and both are still in scope.

 } // 'string2' goes out of scope and is dropped here.

 println!("The longest string is {}", result); // This is fine because
'result' borrows from 'string1'

 // which is still valid.

 println!("String 1 is {}", string1); // 'string1' is still valid

}

Here, the longest function returns a reference to the longer of two strings. This approach allows

you to return data efficiently without transferring ownership or duplicating the data.

The following are the key points:

•	 References can be returned from functions while maintaining the original data ownership

•	 This is useful when you need to provide access to data without copying or transferring

ownership

In this section, we’ve explored several common patterns in Rust that involve ownership, borrowing,

and references. Here is a quick recap:

•	 Borrowing for read-only access: Safely share data across your program without modi-

fying it

•	 Mutable borrowing for modification: Modify data through a single mutable reference

while retaining ownership

•	 Returning references with borrowing: Efficiently return parts of data from functions

without transferring ownership

Chapter 4 109

Pitfalls and how to avoid them
As you start applying ownership, borrowing, and references in your Rust programs, you’ll likely

encounter some common pitfalls. These mistakes happen frequently when you’re learning, but

being aware of them can help you avoid frustration and write cleaner code.

Let’s see some of the most common pitfalls.

Forgetting ownership has moved
One frequent mistake is trying to access a value after its ownership has moved to another variable:

let pizza = String::from("Margherita");

let lunch = pizza;

// println!("{}", pizza); // Error: pizza no longer owns the data!

println!("{}", lunch); // Works fine!

The key to avoiding this pitfall is to internalize Rust’s “move by default” behavior for owned types.

Always remember that when you assign a variable that owns its data (such as String, Vec<T>, or

Box<T>) to another variable, you are not creating a copy; you are transferring ownership.

After this move, the original variable is no longer valid, and the compiler will prevent you from

using it.

If you find that you genuinely need two separate, independent copies of the data, you should use

the .clone() method explicitly. This creates a “deep copy” of the data, meaning it duplicates

the data on the heap. While this allows both the original and the new variable to be used, it’s

important to be mindful of performance. Calling .clone() on large data structures, such as a big

vector, can be an expensive operation in terms of both time and memory, as it requires allocating

new memory and copying all the elements.

Therefore, the idiomatic Rust approach is to prefer moving ownership or borrowing with references

whenever possible, and to use .clone() only when you have a clear reason to duplicate the data.

Ownership, Borrowing, and References110

Multiple mutable references
Rust does not allow more than one mutable reference at the same time:

let mut gelato = String::from("Pistachio");

let ref1 = &mut gelato;

// let ref2 = &mut gelato; // Error: cannot borrow `gelato` as mutable
more than once

ref1.push_str(" & Chocolate");

println!("{}", gelato);

fn main() {

 let mut greeting = String::from("Hello"); // `greeting` owns the
String

 {

 let read1 = &greeting; // Immutable borrow: Can read `greeting`

 let read2 = &greeting; // Another immutable borrow: OK to have
 many readers

 println!("Immutable read 1: {}", read1);

 println!("Immutable read 2: {}", read2);

 // `read1` and `read2` are no longer used after this block

 } // `read1` and `read2` go out of scope here, so they're no longer
 borrowing `greeting`

 let write1 = &mut greeting; // Mutable borrow: Can modify `greeting`

 write1.push_str(", Rust!"); // Modify the string

 println!("Mutable write: {}", write1);

 println!("Original greeting: {}", greeting); // `greeting` is still
valid

}

This is how to avoid this issue:

•	 Keep mutable references short-lived and scoped narrowly

•	 Only create mutable references when truly necessary

Chapter 4 111

Dangling references
Rust’s borrow checker protects you from dangling references (references to data that no longer

exists):

// This will NOT compile!

fn return_reference() -> &String {

 let s = String::from("Espresso");

 &s // Error: returning reference to local variable

}

This is how to avoid this issue:

•	 The fundamental rule is that you cannot return a reference to a value that was created

inside the function, as that value will be deallocated when the function ends. While it is

possible for functions to return references in Rust, those references must point to data

that was passed into the function, not data it owns locally. This involves a concept called

“lifetimes,” which ensures the data lives long enough.

•	 For now, the safest and most common approach is to return an owned value (such as String,

Vec<T>, etc.) from your function. This moves ownership of the value to the caller, guar-

anteeing it will remain valid.

Unnecessary clones
Beginners sometimes clone excessively to please the borrow checker:

fn print_pasta(pasta: &String) {

 println!("Pasta: {}", pasta);

}

let spaghetti = String::from("Carbonara");

print_pasta(&spaghetti.clone()); // Unnecessary clone!

The best way to avoid unnecessary clones is to think in terms of Rust’s preferred modes of data

access, which prioritize efficiency and safety.

Your first and most common choice should be to pass a reference (&T) to functions whenever

possible. If a function only needs to read data, an immutable reference is perfect. If it needs to

modify the data, a mutable reference (&mut T) is the right tool. Borrowing is always the most

efficient option as it avoids any data duplication.

Ownership, Borrowing, and References112

Only when a function truly needs to consume the data and take ownership should you move it. If,

after moving, you find you still need the original variable, that’s the signal to consider an explicit,

and potentially expensive, clone. Therefore, you should only call .clone() when you have a clear

and deliberate need for a separate, independent copy of the data and are willing to accept the

potential performance cost.

Summary
In this chapter, we’ve explored the core concepts of ownership, borrowing, and references in Rust.

These foundational principles are key to understanding how Rust ensures memory safety and

prevents common programming errors without the need for a garbage collector.

The following are the key takeaways from this chapter:

•	 Ownership: Understanding how Rust manages memory through ownership, where each

value has a single owner. We discussed how ownership can be transferred and the impli-

cations of this on memory management.

•	 Borrowing and references: We explained how Rust allows you to borrow data through

references, either immutably or mutably, enabling safe access to data without transfer-

ring ownership.

•	 Common patterns: We explored common Rust patterns, including borrowing for read-on-

ly access and mutable borrowing for modification, providing practical examples of how

to use these patterns effectively.

•	 Pitfalls and solutions: We identified common pitfalls related to ownership and borrowing,

such as dangling references and conflicting borrows, and provided strategies for avoiding

these issues.

Questions and assignments
Congratulations on completing this chapter!

Before we conclude this chapter, let’s solidify what you’ve learned with some review questions

and practical exercises.

These questions will help strengthen your understanding of ownership, borrowing, and references,

while the exercises offer hands-on practice to apply these concepts directly.

Spending some time on these activities is important, as they will significantly improve your grasp

of Rust’s memory management principles.

Chapter 4 113

Questions
1.	 What is the primary purpose of Rust’s ownership system, and how does it differ from

garbage collection in other languages?

2.	 How does borrowing allow you to use data without transferring ownership, and what

are the rules governing immutable and mutable borrowing?

3.	 Explain the concept of a dangling reference and how Rust prevents this issue.

4.	 In what scenarios would you use mutable borrowing, and why does Rust enforce the rule

of having only one mutable reference at a time?

5.	 What are some common patterns when using borrowing and references, and how do they

contribute to safe and efficient Rust code?

Assignments
Assignment 4.1: ownership in action
Write a Rust program that creates a string and transfers ownership of it to another function. The

second function should print the string. Observe how the original function can no longer use the

string after the transfer.

Assignment 4.2: playing with borrowing
Create a Rust program that demonstrates both immutable and mutable borrowing. Set up a

scenario where both types of borrowing are attempted simultaneously. Observe the compiler’s

response, then adjust your code to satisfy Rust’s borrowing rules. This will help your understand-

ing of how Rust handles borrowing to ensure memory safety.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to https://packtpub.com/unlock).

Search for this book by name, confirm the edition, and then

follow the steps on the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require one.

https://packtpub.com/unlock

5
Composite Types in Rust and
the Module System

Welcome to Chapter 5! Having explored Rust’s powerful ownership and borrowing system in the

previous chapter, we now turn our attention to how Rust helps us structure and organize our

data. Primitive types such as integers and Booleans are useful, but real-world applications often

require grouping multiple values into a single, meaningful unit.

This is where Rust’s composite types come into play. They provide a robust way to manage more

complex data, forming the building blocks for sophisticated applications.

In this chapter, we’ll dive deep into Rust’s primary composite types. We will cover the following

topics:

•	 Structs: How to define custom types to group related data fields, and how to add behavior

using methods. We’ll also look at variations such as tuple structs and unit-like structs.

•	 Enums: Defining types that can represent one of several possible variants, which is crucial

for modeling different states or kinds of data, and how variants can hold data themselves.

•	 Tuples: A simple way to group a fixed number of potentially different types together. We’ll

explore these concepts with clear examples, connecting them back to Rust’s core principles,

such as ownership, and finish with practical exercises. By the end of this chapter, you’ll

be equipped to design and use custom data structures effectively in your Rust projects.

After discussing these types, we will explain the module system in Rust, which is essentially how

Rust manages multiple files in a project.

Let’s begin!

Composite Types in Rust and the Module System116

Structs: Named-field collections
Structs are one of Rust’s fundamental custom data types, allowing you to create blueprints for

grouping related values under a single type name.

If you’ve encountered classes in object-oriented languages, structs might feel somewhat familiar,

though Rust handles associated behavior (methods) distinctly using impl blocks, which we’ll

explore shortly.

Structs are incredibly useful for modeling real-world entities (such as User, Product, or BlogPost)

or abstract concepts by bundling different pieces of data into one logical unit.

Mastering structs is very important to write organized and meaningful Rust code.

Defining structs
Defining a struct in Rust is straightforward. You use the struct keyword, followed by the name

you choose for your custom type (using PascalCase by convention), and then curly braces {}

enclosing the fields.

Each field consists of a name (using snake_case by convention) and its data type. Structs are

highly versatile, enabling you to represent anything from simple configuration settings to com-

plex domain objects.

Let’s define a simple User struct to represent a user in a system:

// We use the `derive` attribute to give our struct useful default
functionality.

// - `Debug`: Allows us to print the struct for debugging purposes using
`{:?}`.

// - `PartialEq`: Allows us to compare two `User` instances for equality
using `==`.

#[derive(Debug, PartialEq)]

struct User {

 // Note: Unlike tuples, you access struct fields by name, so the order

 // in which you declare or instantiate them doesn't matter.

 active: bool,

 username: String,

 email: String,

 sign_in_count: u64,

}

Chapter 5 117

Here, our User struct logically groups four pieces of information: an active status (a Boolean, bool),

a username and email (both owned Strings), and sign_in_count (a 64-bit unsigned integer, u64).

Adhering to the PascalCase for struct names and snake_case for field names is standard Rust

practice and significantly improves code readability.

By adding #[derive(Debug, PartialEq)], we’ve equipped our User struct with two important

capabilities right from the start. Debug is essential for printing out instances of our struct while

we’re developing and debugging. PartialEq is incredibly useful for testing, as it allows us to

use assertion macros such as assert_eq!(user1, user2); to check whether two instances are

identical. For #[derive(PartialEq)] to work, all the fields within the struct must also support

equality comparison, which is true for most common types.

We’ll see more of these derive attributes throughout the book.

Creating instances of structs
Once you have defined a struct, you can create instances of it to store and manipulate data. Cre-

ating an instance of a struct involves specifying values for each of its fields.

Initializing structs
Once a struct is defined (the blueprint), you can create instances of it (actual objects built from

the blueprint). Creating an instance involves using the struct’s name, followed by curly braces,

{}, containing key: value pairs for each field. You must provide a value for every field defined

in the struct.

Let’s create an instance of our User struct:

// Assuming the User struct is defined as above

fn main() {

 let user1 = User {

 email: String::from("someone@example.com"),

 username: String::from("someusername123"),

 active: true,

 sign_in_count: 1,

 };

 // We'll see how to access these fields next

 println!("Created user with email: {}", user1.email);

}

Composite Types in Rust and the Module System118

In this code, the user1 variable holds an instance of our User struct. To create this instance, we

provide concrete values for each field. It’s important to notice that for the username and email

fields, we use String::from("..."). This is a crucial detail related to Rust’s ownership system.

Our User struct is defined to hold owned String types, not borrowed string slices (&str). This is

a common and important design choice. For an instance of User to be a self-contained, indepen-

dent piece of data, it needs to own all of its data. If it held &str references instead, the validity of

the User instance would be tied to the lifetime of whatever data those references were borrowing.

By using String, the User instance manages its own string data on the heap, and this data will

live exactly as long as the User instance does. String::from() is the standard way to create a new,

owned String from a string literal (&str), which is why it’s used here to provide the necessary

owned data for the struct’s fields.

Field initialization shorthand
Rust offers a convenient field init shorthand syntax. If you have variables in scope with the exact

same names as the struct fields you want to initialize, you can simply write the variable name

instead of field_name: variable_name.

This reduces repetition and makes initialization cleaner, especially when creating structs from

function parameters.

Consider this example where variable names match field names:

// Assuming the User struct is defined

fn build_user(email: String, username: String) -> User {

 User {

 email, // Shorthand for email: email

 username, // Shorthand for username: username

 active: true,

 sign_in_count: 1,

 }

}

fn main() {

 let user_email = String::from("shorthand@example.com");

 let user_name = String::from("shorthand_user");

 let user2 = build_user(user_email, user_name);

Chapter 5 119

 println!("User 2 active status: {}", user2.active);

}

Inside build_user, because the email and username parameters match the field names, we can

use the shorthand.

Rust understands that this means email: email and username: username. Next, we’ll discuss

how to access and modify the fields of a struct instance.

Accessing struct fields
Once you have a struct instance, you’ll often need to read the values stored in its fields. Rust

uses the familiar dot notation (.) for this purpose. To read a field’s value, use the instance name

followed by a dot and the field name.

Reading field values
To read the value of a field in a struct, you use dot notation. Here’s an example:

// Assuming the user1 instance from earlier

fn main() {

 let user1 = User {

 email: String::from("someone@example.com"),

 username: String::from("someusername123"),

 active: true,

 sign_in_count: 1,

 };

 // Accessing fields using dot notation

 println!("The username is: {}", user1.username);

 println!("Is the user active? {}", user1.active);

}

As shown, user1.username accesses the username field, and user1.active accesses the active

field, providing direct read access to the data within the instance.

Modifying struct fields
What if you need to change a field’s value after creating an instance? Remember Rust’s default

immutability! To allow modification, you must declare the struct instance variable as mutable

using the mut keyword when you create it.

Composite Types in Rust and the Module System120

// This will NOT compile:

let user = User { active: true, ... };

user.active = false; // Error: cannot assign to field `active` of
immutable binding

// This is the correct way:

let mut user = User { active: true, ... };

user.active = false; // This is allowed!

Then, you can use dot notation with the assignment operator (=) to change a field’s value.

// ... assuming the `User` struct is defined ...

fn main() {

 // Declare user1 as mutable to allow its fields to be changed.

 let mut user1 = User {

 email: String::from("someone@example.com"),

 username: String::from("someusername123"),

 active: true,

 sign_in_count: 1,

 };

 println!("Original Email: {}", user1.email);

 // Modify fields of the mutable struct instance.

 user1.email = String::from("new.email@example.com");

 user1.sign_in_count += 1;

 println!("Updated Email: {}", user1.email);

 println!("Updated sign_in_count: {}", user1.sign_in_count);

}

 Tip: A common pitfall: forgetting let mut

A very common error for newcomers is trying to modify a field on a struct instance

that was declared with just let. Remember, immutability in Rust applies to the en-

tire binding. If you need to change any field on a struct instance, the instance itself

must be declared as mutable when you create it.

Chapter 5 121

Here, let mut user1 is crucial. It allows us to later assign a new string to user1.email and in-

crement user1.sign_in_count.

Without mut, the compiler would issue an error preventing these modifications.

Updating struct instances
Often, you might want to create a new struct instance that is mostly the same as an existing one,

but with a few different values. Instead of manually specifying all the unchanged fields again,

Rust provides the convenient struct update syntax.

This syntax lets you specify only the fields you want to change and tells Rust to either copy (for

types that implement the Copy trait) or move (for owned types like String) the rest of the values

from another instance.

Struct update syntax
The struct update syntax uses .. to indicate that the remaining fields should be copied from

another instance. Here’s an example:

#[derive(Debug)]

struct User {

 username: String,

 email: String,

 sign_in_count: u64,

 active: bool,

}

fn main() {

 let user1 = User {

 username: String::from("original_user"),

 email: String::from("original@example.com"),

 sign_in_count: 50,

 active: true,

 };

 // Create user2 based on user1, but with a new email.

 let user2 = User {

 email: String::from("new_user@example.com"),

 ..user1 // Handle remaining fields

Composite Types in Rust and the Module System122

 };

 // The line below would now fail to compile because `user1.username`
(a String)

 // was *moved* to `user2`. The rest of `user1`'s fields (`sign_in_
count` and `active`)

 // were copied because they implement the `Copy` trait, but since part
of `user1`

 // was moved, the whole instance cannot be used like this anymore.

 // println!("Original User 1 after move: {:?}", user1);

 println!("New User 2 Details:");

 println!(" - username: '{}' (Moved from user1)", user2.username);

 println!(" - email: '{}' (Newly specified)", user2.email);

 println!(" - sign_in_count: {} (Copied from user1, as u64 is Copy)",
user2.sign_in_count);

 println!(" - active: {} (Copied from user1, as bool is Copy)", user2.
active);

}

In this example, when we create user2 using ..user1, Rust checks each field we didn’t explicitly

set. For sign_in_count (u64) and active (bool), which implement the Copy trait, the values are

simply copied.

However, for username (String), which does not implement Copy, ownership is moved from

user1 to user2.

Because user1 has had one of its fields moved away, the user1 variable as a whole is no longer

considered fully valid and cannot be used afterward, as shown by the commented-out line that

would cause a compile error.

Cloning struct instances
When using the struct update syntax, it’s important to remember that Rust’s ownership rules

apply to each field individually. The behavior depends on whether a type implements the Copy trait.

The Copy trait is a special marker for types whose values can be duplicated with a simple bit-for-

bit copy without any special handling. This is true for simple types that are stored entirely on

the stack, such as integers (i32), Booleans (bool), and tuples containing only other Copy types.

Chapter 5 123

Types that manage resources, such as String, which owns data on the heap, do not implement

Copy. A simple bitwise copy of String would result in two variables pointing to and believing they

own the same heap memory, which would lead to a “double-free” error when both are dropped.

For these non-Copy fields, the struct update syntax performs a move, transferring ownership.

If you need to keep the original struct valid after the update, you must explicitly clone its non-Copy

fields to create a deep copy for the new instance.

Here is an example:

fn main() {

 let user1 = User {

 username: String::from("someusername123"),

 email: String::from("someone@example.com"),

 sign_in_count: 1,

 active: true,

 };

 let user2 = User {

 email: String::from("newemail@example.com"),

 username: user1.username.clone(),

 ..user1

 };

 println!("Username: {}", user2.username);

 println!("Email: {}", user2.email);

 println!("Sign-in Count: {}", user2.sign_in_count);

 println!("Active: {}", user2.active);

}

We explicitly set email and active for user2.

The ..user1 syntax instructs Rust to use the values from user1 for any fields not explicitly set in

user2 (in this case, username and sign_in_count).

 Important note on ownership: Remember Rust’s ownership rules from

Chapter 4!

Composite Types in Rust and the Module System124

The ..other_instance struct update syntax behaves like assignment for the fields it copies. If

a field’s type implements the Copy trait (such as u64 or bool), the value is copied. But if a field’s

type does not implement Copy (such as String), ownership of that field’s data is moved from

other_instance to the new instance. In our User example, using ..user1 moves ownership of

user1.username (a string) to user2. Consequently, user1 becomes partially moved, and you can

no longer access user1.username after user2 is created this way.

// Continuing from the previous example...

 // If username was moved via ..user1:

 // println!("User 1 Username after move: {}", user1.username); //
Compile Error! Value moved

 // If you need user1 to remain fully usable, you must explicitly
.clone()

 // the non-Copy fields before the update syntax moves them:

 let user3 = User {

 email: String::from("user3@example.com"),

 username: user1.username.clone(), // Explicitly clone the String

 ..user1 // Copies 'active' and 'sign_in_count' (as they are Copy)

 };

 // Now user1 is still fully usable because its username was cloned,
not moved.

 println!("User 1 Username after clone: {}", user1.username); // OK!

 println!("User 3 Username: {}", user3.username); // OK!

In this example, we create user2 by providing new, explicit values for the email and sign_in_

count fields. The ..user1 syntax then handles the remaining fields. It’s important to remember

that this syntax performs a move for any fields that do not implement the Copy trait (such as

username: String), while it performs a copy for fields that do implement Copy (such as active:

bool).

Because user1.username was moved to user2, the user1 variable as a whole can no longer be

used after user2 is created.

Methods for structs
Structs are great for organizing data, but often you’ll want to associate behavior or actions directly

with that data. In Rust, you achieve this by defining methods within an impl (implementation)

block specifically tied to your struct type.

Chapter 5 125

This keeps data and the operations on that data closely related, which is great.

Defining methods
An impl block allows you to define functions associated with your struct. Functions defined

within an impl block are called methods if their first parameter is named self, which can appear

in three forms:

•	 &self: Borrows the instance immutably (read-only access)

•	 &mut self: Borrows the instance mutably (read-write access)

•	 self: Takes ownership of the instance (consumes it)

Let’s define a Rectangle struct and implement methods for it:

#[derive(Debug)] // Added for printing later

struct Rectangle {

 width: u32,

 height: u32,

}

// Implementation block for Rectangle

impl Rectangle {

 // Method to calculate the area (needs read-only access)

 fn area(&self) -> u32 {

 // Access fields using self.field_name

 self.width * self.height

 }

 // Method to check if width is greater than 0 (read-only)

 fn has_valid_width(&self) -> bool {

 self.width > 0

 }

 // Method that modifies the instance (needs read-write access)

 fn double_width(&mut self) {

 self.width *= 2;

 }

}

Composite Types in Rust and the Module System126

Here, inside impl Rectangle, we defined the following:

•	 area() and has_valid_width(): These take &self, borrowing the Rectangle immutably

to read data

•	 double_width(): This takes &mut self, borrowing the Rectangle mutably, allowing it

to change self.width

Calling methods
Once methods are defined, you call them on an instance of the struct using dot notation, just like

accessing fields: instance.method_name(arguments).

Rust handles the borrowing (&self or &mut self) automatically through a feature called auto-

matic referencing and dereferencing:

// Assuming Rectangle struct and its impl block are defined as above

fn main() {

 let mut rect1 = Rectangle { width: 30, height: 50 }; // 'mut' needed
for double_width

 // Call methods using dot notation

 println!("The area of rect1 is {}.", rect1.area()); // Calls
area(&rect1)

 println!("Does rect1 have valid width? {}", rect1.has_valid_width());
// Calls has_valid_width(&rect1)

 println!("Original width: {}", rect1.width);

 rect1.double_width(); // Calls double_width(&mut rect1)

 println!("Width after doubling: {}", rect1.width);

 println!("New area: {}", rect1.area()); // Call area() again on
modified rect1

}

Notice how cleanly methods are called. When you write rect1.area(), Rust automatically passes

&rect1 as the &self parameter.

Similarly, rect1.double_width() automatically passes &mut rect1 as &mut self.

Chapter 5 127

Associated functions intro
Besides methods that operate on an instance (taking &self or &mut self), impl blocks can also

contain associated functions. These are functions that are associated with the struct type itself

but do not take self as their first parameter. They are often used as constructors or “factory

functions” to create new instances of the struct.

Associated functions are called using the struct’s name followed by ::, such as

Rectangle::square(3):

// To print our struct with `{:?}`, we need to derive the Debug trait.

#[derive(Debug)]

struct Rectangle {

 width: u32,

 height: u32,

}

impl Rectangle {

 // An associated function, often called `new`, used as a constructor.

 // It returns `Self`, which is an alias for the type `Rectangle`
inside this impl block.

 fn new(width: u32, height: u32) -> Self {

 Rectangle { width, height }

 }

 // Another associated function to create a square.

 fn square(size: u32) -> Self {

 Rectangle { width: size, height: size }

 }

 // A method to calculate the area, for use in main.

 fn area(&self) -> u32 {

 self.width * self.height

 }

}

fn main() {

 // Call associated functions using the `StructName::function_name()`
syntax.

Composite Types in Rust and the Module System128

 let rect_from_new = Rectangle::new(10, 20);

 let square_rect = Rectangle::square(15);

 // We use `{:?}` to print `rect_from_new` because we derived the Debug
trait.

 println!("Rectangle from new: {:?}", rect_from_new);

 println!("Area of square: {}", square_rect.area());

}

•	 Associated functions versus methods: Notice that new and square do not take self as

their first parameter. This is what makes them associated functions, not methods. They

are associated with the Rectangle type, but not a specific instance of it.

•	 The self keyword: Inside an impl block, the Self keyword (with a capital S) is an alias

for the type the block is implementing. So, -> Self is the idiomatic way of saying ->

Rectangle. This makes the code more concise and easier to refactor if you ever rename

the struct.

•	 A note on {:?} and #[derive(Debug)]: In the println! macro, the {} formatter uses a trait

called Display, which is for user-facing output. To print a struct for debugging purposes,

we use the {:?} formatter, which uses a trait called Debug. To automatically provide a

Debug implementation for our Rectangle struct, we add the #[derive(Debug)] attribute

directly above its definition. This is a common and very useful practice for easily inspecting

your custom types during development.

Unit-like structs
Rust also allows defining unit-like structs, which are structs with no fields at all. They are declared

using the struct keyword, a name, and an immediate semicolon, ;.

They are useful when you need a type simply for its identity or to implement a trait, without

needing to store any data.

Defining unit-like structs
Unit-like structs are defined using the struct keyword followed by the struct name without any

fields. Here’s an example:

struct Marker; // A unit-like struct

trait MyTrait {

 fn description(&self) -> &'static str;

Chapter 5 129

}

// We can implement traits for unit-like structs

impl MyTrait for Marker {

 fn description(&self) -> &'static str {

 "This is a marker instance."

 }

}

fn main() {

 let m = Marker; // Create an instance (it holds no data)

 println!("{}", m.description()); // Call method from the implemented
trait

}

Here, Marker serves primarily to implement MyTrait. Instances such as m occupy no memory at

runtime beyond their type information. They are often used with marker traits or in advanced

generic programming.

Use cases for unit-like structs
Unit-like structs are typically used in situations where the existence of a type is more important

than the data it holds. Some common use cases include the following:

•	 Marker traits: Sometimes you want to mark types with a specific trait to indicate that

they conform to a particular behavior. Unit-like structs can be used to implement such

traits without storing any data.

•	 Type-level programming: In more advanced Rust programming, unit-like structs can

be used in type-level computations and generic programming scenarios where the type

itself carries meaning.

Here’s an example of using a unit-like struct with a marker trait:

struct MyStruct;

trait MyMarker {}

impl MyMarker for MyStruct {}

fn main() {

Composite Types in Rust and the Module System130

 let instance = MyStruct;

 // Now instance has the MyMarker trait

}

In this example, MyStruct is a unit-like struct, and MyMarker is a marker trait. We implement the

MyMarker trait for MyStruct, and now any instance of MyStruct is marked with MyMarker.

Tuple structs
Tuple structs are another struct variant, blending features of tuples and regular structs. They get

a unique type name like a struct, but their fields are unnamed and accessed by index like a tuple.

Define them with struct Name(Type1, Type2, ...);. They are useful when naming the whole

structure is important but naming individual fields feels redundant, such as for simple Color or

Point types.

Defining tuple structs
Here’s how you can define a tuple struct:

// Define tuple structs

struct Color(u8, u8, u8); // RGB

struct Point(i32, i32); // 2D coordinates

fn main() {

 // Instantiate like tuples, but with the type name

 let red = Color(255, 0, 0);

 let origin = Point(0, 0);

 // Access fields using dot notation and index

 println!("Red's green component: {}", red.1); // Accesses the second
field (index 1)

 // They define distinct types

 // let point_tuple: (i32, i32) = origin; // Error: mismatched types
Point != (i32, i32)

 // Can be destructured

 let Point(x, y) = origin;

 println!("Origin coordinates: x={}, y={}", x, y);

}

Chapter 5 131

Key points to note are that they create a new named type, fields are unnamed, and access is via

instance.index. They offer a concise way to create simple, distinct types. In this example, note

the following:

•	 Dimensions is a tuple struct with three f64 fields representing length, width, and height

•	 Coordinates is a tuple struct with two i32 fields representing x and y coordinates

Creating instances of tuple structs
You can create instances of tuple structs just like you create instances of tuples:

fn main() {

 let box_dimensions = Dimensions(30.5, 20.0, 15.0);

 let point = Coordinates(10, 20);

 println!("Box dimensions: {:?}", box_dimensions);

 println!("Point coordinates: {:?}", point);

}

Accessing tuple struct fields
Tuple struct fields are accessed using dot notation and their index:

fn main() {

 let box_dimensions = Dimensions(30.5, 20.0, 15.0);

 let point = Coordinates(10, 20);

 println!("Box dimensions - Length: {}, Width: {}, Height: {}", box_
dimensions.0, box_dimensions.1, box_dimensions.2);

 println!("Point coordinates - x: {}, y: {}", point.0, point.1);

}

Practical example: Using tuple structs in a function
Let’s use tuple structs to represent the dimensions of a package and calculate its volume:

struct Dimensions(f64, f64, f64); // Represents length, width, and height

fn calculate_volume(dimensions: Dimensions) -> f64 {

 dimensions.0 * dimensions.1 * dimensions.2

}

Composite Types in Rust and the Module System132

fn main() {

 let package = Dimensions(30.5, 20.0, 15.0);

 println!("Package dimensions: Length: {}, Width: {}, Height: {}",
package.0, package.1, package.2);

 println!("Package volume: {} cubic units", calculate_volume(package));

}

In this example, note the following:

•	 We define a Dimensions tuple struct with three f64 fields

•	 We create a calculate_volume function that calculates the volume of a package

•	 We create an instance of Dimensions and use the calculate_volume function to calculate

its volume

Tuple structs provide a way to name and work with tuples in a more structured manner without

needing to name each field.

They are useful for creating simple, lightweight data structures that benefit from having a named

type.

Empty tuples
It’s also important to understand the unit type, written as (), which is essentially an empty tuple.

In Rust, functions that don’t explicitly return a value are said to return the unit type. This is how

Rust represents the concept of “no return value” in its type system.

You’ll see this frequently in error handling, particularly with the Result<(), Error> type. This

signature signifies a function that can fail (returning an Err), but on success, it simply signals

completion without providing any data (Ok(())).

Think of Ok(()) as a way of saying, “The operation succeeded, and there’s no value to give back.”

Structs and ownership
Ownership is a central concept in Rust that ensures memory safety without needing a garbage

collector. Understanding how ownership works with structs is very important for managing

data in Rust programs.

This section will briefly cover how ownership affects struct fields and how to work with borrowed

and owned data.

Chapter 5 133

Ownership of struct fields
When you create an instance of a struct, each field of the struct takes ownership of the data

assigned to it.

This means that the struct instance owns its fields, and the ownership rules apply to these fields

just as they do to any other data in Rust.

Here is an example:

struct User {

 username: String,

 email: String,

 sign_in_count: u64,

 active: bool,

}

fn main() {

 let user1 = User {

 username: String::from("someusername123"),

 email: String::from("someone@example.com"),

 sign_in_count: 1,

 active: true,

 };

 let user2 = user1; // Moves ownership of user1 to user2

 // println!("Username: {}", user1.username); // This would cause a
compile-time error

 println!("Username: {}", user2.username); // Accessing user2 is fine

}

In this example, the ownership of user1 is moved to user2. After the move, user1 can no longer

be used, as it no longer owns its data. Attempting to use user1 after the move results in a com-

pile-time error.

Composite Types in Rust and the Module System134

Borrowing struct fields
Borrowing allows you to reference data without taking ownership of it. This is useful when you

want to read or modify the data of a struct without transferring ownership.

Here’s how you can borrow struct fields:

fn main() {

 let user1 = User {

 username: String::from("someusername123"),

 email: String::from("someone@example.com"),

 sign_in_count: 1,

 active: true,

 };

 let user_ref = &user1; // Borrowing user1

 println!("Username: {}", user_ref.username); // Reading borrowed data

 // user1 can still be used because user_ref is just a reference

 println!("Email: {}", user1.email);

}

In this example, user_ref is a reference to user1. Borrowing user1 with &user1 allows you to

access the fields of user1 without transferring ownership. This means user1 can still be used

after being borrowed.

Mutable borrowing
If you need to modify the fields of a struct, you can use mutable borrowing. Mutable borrowing

allows you to borrow a mutable reference to the data, enabling you to make changes.

Here’s an example of mutable borrowing:

fn main() {

 let mut user1 = User {

 username: String::from("someusername123"),

 email: String::from("someone@example.com"),

 sign_in_count: 1,

 active: true,

 };

 let user_ref = &mut user1; // Mutable borrowing of user1

Chapter 5 135

 user_ref.email = String::from("newemail@example.com"); // Modifying
borrowed data

 println!("Updated Email: {}", user1.email);

}

In this example, user_ref is a mutable reference to user1. Borrowing user1 with &mut user1

allows you to modify the email field of user1.

Debugging with structs
Debugging is an essential part of software development, and Rust provides tools to make de-

bugging easier. One of these tools is the Debug trait, which allows you to print your structs in a

readable format.

By default, Rust’s standard library includes a Debug implementation for most types, but you need

to explicitly opt into it for your custom types.

Implementing the Debug trait
To enable the Debug trait for your struct, you use the #[derive(Debug)] attribute. This automat-

ically provides a basic implementation of the Debug trait for your struct, allowing you to print it

using the println! macro with the {:?} format specifier.

The following is an example:

#[derive(Debug)]

struct User {

 username: String,

 email: String,

 sign_in_count: u64,

 active: bool,

}

fn main() {

 let user1 = User {

 username: String::from("someusername123"),

 email: String::from("someone@example.com"),

 sign_in_count: 1,

 active: true,

 };

Composite Types in Rust and the Module System136

 println!("{:?}", user1);

}

In this example, we add #[derive(Debug)] above the User struct definition. This enables the

Debug trait for User, allowing us to print user1 using println!("{:?}", user1).

Customizing debug output
While #[derive(Debug)] is often all you need, Rust gives you the power to completely customize

the debug output for your structs. This is done by manually implementing the Debug trait.

This process involves syntax for implementing traits (impl Trait for Struct), a powerful

feature we will cover in great detail in a dedicated chapter later on.

However, for those who are curious or have a specific need for custom formatting now, here’s a

quick look at how it works:

use std::fmt;

struct User {

 username: String,

 email: String,

 sign_in_count: u64,

 active: bool,

}

impl fmt::Debug for User {

 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

 write!(

 f,

 "User {{ username: {}, email: {}, sign_in_count: {}, active:
{} }}",

 self.username, self.email, self.sign_in_count, self.active

)

 }

}

fn main() {

 let user1 = User {

Chapter 5 137

 username: String::from("someusername123"),

 email: String::from("someone@example.com"),

 sign_in_count: 1,

 active: true,

 };

 println!("{:?}", user1);

}

In this example, we manually implement the Debug trait for the User struct. This allows us to

customize the output format when printing the struct.

Practical example: User profile
To bring together the concepts we’ve covered so far, let’s create a practical example. We’ll define

a UserProfile struct, add methods to it, and implement the Debug trait.

Defining the UserProfile struct
We’ll start by defining a UserProfile struct with fields for the username, email, age, and active

status. We’ll also derive the Debug trait so we can print the struct:

#[derive(Debug)]

struct UserProfile {

 username: String,

 email: String,

 age: u32,

 active: bool,

}

Adding methods to UserProfile
Next, we’ll add methods to the UserProfile struct. These methods will include a constructor to

create new user profiles and methods to deactivate and reactivate a user profile:

impl UserProfile {

 fn new(username: String, email: String, age: u32) -> UserProfile {

 UserProfile {

 username,

 email,

 age,

Composite Types in Rust and the Module System138

 active: true,

 }

 }

 fn deactivate(&mut self) {

 self.active = false;

 }

 fn reactivate(&mut self) {

 self.active = true;

 }

}

In this impl block, note the following:

•	 The new function is an associated function that creates a new UserProfile instance

•	 The deactivate method sets the active field to false

•	 The reactivate method sets the active field to true

Using the UserProfile struct
Let’s use the UserProfile struct in the main function to create a new user, deactivate and reac-

tivate the user, and print the user profile at each step:

fn main() {

 let mut user = UserProfile::new(

 String::from("johndoe"),

 String::from("johndoe@example.com"),

 30,

);

 println!("{:?}", user);

 user.deactivate();

 println!("After deactivation: {:?}", user);

 user.reactivate();

 println!("After reactivation: {:?}", user);

}

Chapter 5 139

In the main function, note the following:

•	 We create a new user profile using the UserProfile::new function

•	 We print the user profile using println!("{:?}", user)

•	 We deactivate the user profile using the deactivate method and print the updated profile

•	 We reactivate the user profile using the reactivate method and print the updated profile

again

This example demonstrates how to define a struct, add methods, and use the Debug trait to print

the struct.

Structs: Exercises and assignments
To reinforce your understanding, try the following exercises:

1.	 Extend the UserProfile struct: Add additional fields such as phone_number and address.

Implement methods to update these fields.

2.	 Implement more methods: Add methods to update the email and age of the user profile.

3.	 Debug output customization: Manually implement the Debug trait for UserProfile to

customize the debug output.

Structs: Summary
In this section, explored Rust’s composite types, focusing primarily on structs. We’ve covered

how to define structs, create instances, access and modify fields, update instances, add methods,

and implement the Debug trait. We’ve also worked through a practical example to apply these

concepts in a real-world scenario, reinforcing our understanding of how to manage complex data

in Rust programs effectively.

Next, we’ll explore another crucial composite type in Rust: enums. Enums allow you to define a

type by enumerating its possible variants, providing a way to represent different kinds of data with

the same type. We’ll cover how to define and use enums, as well as pattern matching, providing

practical examples to illustrate their usage.

Enums: One of several possibilities
Now, let’s explore Rust’s second major composite type: enums (enumerations). While structs

group related fields together, enums define a type that can be one of several possible variants. Think

of modeling states (e.g., Loading, Success, Error) or choices (Red, Green, Blue).

Composite Types in Rust and the Module System140

Enums allow you to encode these possibilities into the type system, ensuring a value can only be

one of the defined variants, making your code safer and more expressive.

Defining and using enums
Define an enum using the enum keyword, a PascalCase name, and curly braces, {}, containing the

PascalCase names of the possible variants. Instances are created using the EnumName::VariantName

syntax.

The match expression is ideal for handling different enum variants exhaustively.

Let’s see an example:

// Define an enum for different kinds of web events

enum WebEvent {

 PageLoad, // Simple variant with no data

 PageUnload, // Simple variant with no data

 KeyPress(char), // Tuple-like variant holding a char

 Click { x: i64, y: i64 }, // Struct-like variant holding named
data

}

// A function to process different web events

fn inspect(event: WebEvent) {

 match event {

 WebEvent::PageLoad => println!("Page loaded"),

 WebEvent::PageUnload => println!("Page unloaded"),

 // Destructure the data from the variant

 WebEvent::KeyPress(c) => println!("Key pressed: '{}'.", c),

 WebEvent::Click { x, y } => println!("Clicked at coordinates:
x={}, y={}.", x, y),

 }

}

fn main() {

 let load_event = WebEvent::PageLoad;

 let click_event = WebEvent::Click { x: 20, y: 80 };

 let key_event = WebEvent::KeyPress('x');

 inspect(load_event);

Chapter 5 141

 inspect(click_event);

 inspect(key_event);

}

Here, WebEvent can be one of four distinct kinds, and some of these variants hold data. This

example demonstrates two different styles for including data, and the choice between them is

a matter of clarity:

•	 Tuple-like variants (KeyPress(char)): This style is concise and works well when the

meaning of the data is clear from the type alone or when there’s only one data value. Since

KeyPress holds a single character, its purpose is obvious.

•	 Struct-like variants (Click { x: i64, y: i64 }): This style is preferred when a variant holds

multiple pieces of data and giving them names improves readability. By naming the fields

x and y, the code becomes more self-documenting; it’s immediately clear that these are

coordinates, which is more explicit than Click(i64, i64).

The match statement elegantly handles each case, destructuring and extracting the data where

present.

This ability for enum variants to hold different types and structures of data is what makes them

incredibly powerful and flexible.

Enum variants can hold data
One of the most powerful features of Rust enums is that their variants can store data directly.

This goes beyond simply listing possibilities; it allows each variant to carry specific information

relevant to that particular case.

This makes enums incredibly versatile for modeling complex states or messages where the kind

of information differs depending on the situation. Each variant can hold different types and

amounts of data.

Let’s illustrate this with a classic example: defining an enum to represent different kinds of mes-

sages or events that might occur in an application. Some events might be simple signals, while

others need to carry associated values:

enum Message {

 Quit, // Variant with no associated data

 ChangeColor(u8, u8, u8), // Variant holding three u8 values (like a
tuple)

Composite Types in Rust and the Module System142

 Move { x: i32, y: i32 }, // Variant holding named fields (like a
struct)

 Write(String), // Variant holding a single String

}

fn process_message(msg: Message) {

 match msg {

 Message::Quit => {

 println!("Received Quit message: The program should
terminate.");

 }

 // Destructure the tuple-like data directly in the pattern

 Message::ChangeColor(r, g, b) => {

 println!("Received ChangeColor: Changing color to RGB({}, {},
{}).", r, g, b);

 }

 // Destructure the struct-like data directly in the pattern

 Message::Move { x, y } => {

 println!("Received Move: Moving to coordinates ({}, {}).", x,
y);

 }

 // Bind the contained String to the variable 'text'

 Message::Write(text) => {

 println!("Received Write: Message content is '{}'.", text);

 }

 }

}

fn main() {

 // Create instances of different variants, providing data where needed

 let msg1 = Message::Quit;

 let msg2 = Message::ChangeColor(255, 0, 0); // Red

 let msg3 = Message::Move { x: 100, y: 50 };

 let msg4 = Message::Write(String::from("Rust enums are powerful!"));

 // Process each message using our function

 process_message(msg1);

 process_message(msg2);

Chapter 5 143

 process_message(msg3);

 process_message(msg4);

}

In this Message enum, note the following:

•	 Quit is a simple variant, holding no data

•	 ChangeColor bundles three u8 values, similar to a tuple struct

•	 Move uses named x and y fields, just like a regular struct definition

•	 Write contains a single string

The real magic happens in the process_message function. The match expression doesn’t just

identify the variant; it simultaneously destructures the associated data.

Notice how Message::ChangeColor(r, g, b) binds the three u8 values to r, g, and b, and

Message::Move { x, y } binds the field values to the x and y variables. This combination of

enumeration, data storage, and pattern matching is central to writing idiomatic and safe Rust code.

Enum methods/functions intro
Enum methods example
Just like structs, you can define behavior associated with your enums using impl blocks. This

allows you to add methods that operate on enum instances or associated functions that relate

to the enum type itself. Associated functions don’t take self as a parameter and are often used

as constructors, providing a controlled way to create instances.

Let’s create a TrafficLight enum with an associated from_str function that attempts to create

an instance from a string. Since the input string might not be a valid color, this operation can

fail. In Rust, the idiomatic way to handle operations that might return a value or nothing at all

is with the Option<T> enum.

An enum is one of the most important types in Rust for handling the potential absence of a value.

It has two variants:

•	 Some(T): Represents the presence of a value of type T

•	 None: Represents the absence of a value

Composite Types in Rust and the Module System144

By returning Option<TrafficLight>, our from_str function makes it explicit that the conversion

might not succeed, forcing the caller to handle the None case:

#[derive(Debug)] // Add derive for printing

enum TrafficLight {

 Red,

 Yellow,

 Green,

}

impl TrafficLight {

 // Associated function (like a constructor) that can fail.

 // It returns an Option<TrafficLight>.

 fn from_str(color: &str) -> Option<TrafficLight> {

 match color.to_lowercase().as_str() {

 "red" => Some(TrafficLight::Red),

 "yellow" => Some(TrafficLight::Yellow),

 "green" => Some(TrafficLight::Green),

 _ => None, // Return None for any invalid input string

 }

 }

}

fn main() {

 let green_light = TrafficLight::from_str("green");

 let invalid_light = TrafficLight::from_str("purple");

 println!("'green' -> {:?}", green_light); // Output: Some(Green)

 println!("'purple' -> {:?}", invalid_light); // Output: None

 // Using 'if let' is a concise way to handle the Some case.

 if let Some(light) = TrafficLight::from_str("Red") {

 println!("Successfully created from 'Red': {:?}", light);

 } else {

 // This part would run if from_str returned None.

 println!("Could not create light from 'Red'.");

 }

}

Chapter 5 145

In this example, we define a method, is_safe_to_go, for the TrafficLight enum. This method

checks whether the traffic light is green, returning true if it is and false otherwise.

The is_safe_to_go method takes an immutable reference, &self, and uses match to check the

current variant. It returns true only if the light is Green. Encapsulating this logic within the impl

block makes the enum more self-contained and easier to use correctly.

Using enums with structs
Structs and enums often work together beautifully. A common pattern is to include an enum as

a field within a struct.

This allows you to represent an object that has some fixed data (the other struct fields) but also

exists in one of several possible states or configurations (represented by the enum field).

Defining structs with enum fields
You can define a struct that includes an enum as one of its fields. This allows you to model more

intricate relationships between data.

Let’s model a network device that has an ID and name, but can be in various operational states:

#[derive(Debug)] // For printing Status

enum Status {

 Online,

 Offline,

 Connecting { attempts: u32 }, // Status with data

 Maintenance,

}

#[derive(Debug)] // For printing Device

struct Device {

 id: u32,

 name: String,

 status: Status, // Enum used as a field

}

impl Device {

 fn new(id: u32, name: String) -> Device {

 Device {

Composite Types in Rust and the Module System146

 id,

 name,

 status: Status::Offline, // Default status

 }

 }

 // Method to update the device status

 fn set_status(&mut self, new_status: Status) {

 self.status = new_status;

 }

 // Method to get a descriptive status message

 fn get_status_message(&self) -> String {

 match &self.status { // Match on a reference to the status field

 Status::Online => format!("Device '{}' (ID {}) is online.",
self.name, self.id),

 Status::Offline => format!("Device '{}' (ID {}) is offline.",
self.name, self.id),

 Status::Connecting { attempts } => format!("Device '{}' is
connecting (attempt {})...", self.name, attempts),

 Status::Maintenance => format!("Device '{}' ({}) is under
maintenance.", // <--- Added '{}' for the ID self.name, self.id),

 }

 }

}

fn main() {

 let mut router = Device::new(101, String::from("Main Router"));

 println!("{}", router.get_status_message());

 router.set_status(Status::Connecting { attempts: 1 });

 println!("{}", router.get_status_message());

 router.set_status(Status::Online);

 println!("{}", router.get_status_message());

Chapter 5 147

 println!("Current device state: {:?}", router); // Debug print the
whole struct

}

Here, the Device struct holds id, name, and a status field of type Status (our enum). The set_

status method allows changing the device’s state, and get_status_message uses match on the

status field (note the &self.status borrow) to provide a user-friendly description, handling the

data within the Connecting variant correctly. This combination allows for flexible and type-safe

state management within our Device objects.

Enums: exercises and assignments
To reinforce your understanding, try the following exercises:

1.	 Extend the Device struct: Add additional fields such as ip_address and location. Im-

plement methods to update these fields.

2.	 Implement more methods for enums: Add methods to the Status enum that return

different messages or perform different actions based on the current status.

3.	 (Advanced) Create a network management system: Combine structs and enums to

create a simple network management system that can track devices and their statuses

and perform operations such as bringing devices online or offline.

Enums: summary
In this section, we’ve explored Rust’s enums and their powerful capabilities.

We covered how to define and use enums, how to handle data within enums, and how to combine

enums with structs to create complex data structures.

We also looked at adding associated functions and methods to enums and using pattern matching

to handle different enum variants.

Tuples: simple ordered groups
Beyond structs and enums, Rust provides a simpler composite type: the tuple. Tuples offer a

lightweight way to group a fixed number of values, potentially of different types, into a single

compound value.

Define them using parentheses, (), containing comma-separated values. Unlike structs, tuple

elements lack names, identified only by their zero-based index.

Composite Types in Rust and the Module System148

Let’s see an example, so everything will look easier to understand:

fn main() {

 // Define a tuple with type annotation

 let basic_tuple: (i32, f64, bool) = (100, 3.14, true);

 // Define a tuple with type inference

 let mix_tuple = ("Rust", 2015, ' '); // Type: (&str, i32, char)

 // Print tuples (Debug is usually available)

 println!("Basic tuple: {:?}", basic_tuple);

 println!("Mixed tuple: {:?}", mix_tuple);

}

Tuples are handy for quick, temporary groupings or returning multiple values from functions

efficiently. There are two main ways to access their elements:

1.	 Direct indexing: Use dot notation followed by the zero-based index (e.g., basic_tuple.0,

mix_tuple.1):

// Continuing main...

let first_val = basic_tuple.0; // 100 (i32)

let second_val = basic_tuple.1; // 3.14 (f64)

println!("First: {}, Second: {}", first_val, second_val);

2.	 Destructuring: Break the tuple into individual variables using a pattern in a let statement.

This is often more readable:

// Continuing main...

let (language, year, mascot) = mix_tuple; // Destructure mix_tuple

println!("Language: {}, Year: {}, Mascot: {}", language, year,
mascot);

// Ownership: If mix_tuple contained non-Copy types (like String),

// destructuring would move ownership into 'language', 'year',
'mascot'.

// The original tuple might become unusable.

Chapter 5 149

A common use case is returning multiple results from a function:

// Function returning (String, u32) tuple

fn get_server_info() -> (String, u32) {

 (String::from("192.168.1.100"), 8080)

}

fn main() { // Separate main for this example

 // Call function and destructure the returned tuple

 let (ip_address, port) = get_server_info();

 println!("Connect to server {}:{}", ip_address, port);

 // 'ip_address' now owns the String returned by the function.

}

Tuples provide fixed-size, ordered collections, which are great when the element positions pro-

vide enough meaning.

Using tuples
Tuples can be used to group related data items, making them easier to pass around and manage

in your code. Here’s an example where we use a tuple to return multiple values from a function:

fn get_person_info() -> (String, u32, bool) {

 let name = String::from("Alice");

 let age = 30;

 let is_active = true;

 (name, age, is_active)

}

fn main() {

 let person_info = get_person_info();

 println!("Name: {}, Age: {}, Active: {}", person_info.0, person_
info.1, person_info.2);

}

Composite Types in Rust and the Module System150

In this example, note the following:

•	 The get_person_info function returns a tuple containing a String, u32, and bool

•	 We call get_person_info in the main function and print each element of the returned

tuple using positional indexing

Tuples are particularly useful for the following:

•	 Returning multiple values from a function without the need to define a struct

•	 Grouping related values for iteration or other operations where the context makes their

meaning clear

•	 Passing multiple values as a single parameter to a function

Accessing tuple elements
Once you have defined a tuple, you can access its elements using positional indexing. Each el-

ement in a tuple is accessed using a zero-based index, which indicates its position in the tuple.

Accessing elements by index
Here’s how to access the elements of a tuple using their indices:

fn main() {

 let tuple: (i32, f64, bool) = (42, 6.7, true);

 let int_value = tuple.0;

 let float_value = tuple.1;

 let bool_value = tuple.2;

 println!("Integer value: {}", int_value);

 println!("Float value: {}", float_value);

 println!("Boolean value: {}", bool_value);

}

In this example, note the following:

•	 tuple.0 accesses the first element (i32)

•	 tuple.1 accesses the second element (f64)

•	 tuple.2 accesses the third element (bool)

Using positional indexing, we can extract and use the values stored in a tuple.

Chapter 5 151

Practical example: employee record
Let’s consider a practical example where we use a tuple to store an employee’s record:

fn main() {

 let employee: (u32, String, f64) = (1001, String::from("John Doe"),
75000.0);

 let id = employee.0;

 // We take a reference (&) to the String because String is not a
`Copy` type.

 // This borrows the value without moving it, so `employee` can still
be used.

 let name = &employee.1;

 let salary = employee.2;

 println!("Employee ID: {}", id);

 println!("Employee Name: {}", name);

 println!("Employee Salary: ${}", salary);

}

In this example, note the following:

•	 We define an employee tuple with an ID (u32), name (String), and salary (f64)

•	 We access each element of the tuple using positional indexing and print the values

This demonstrates how to work with tuples effectively in a real-world scenario.

Next, we’ll explore how to destructure tuples to extract multiple values simultaneously.

Destructuring tuples
Destructuring tuples allows you to extract multiple values simultaneously in a concise and read-

able way. This technique can be particularly useful when you need to work with multiple elements

of a tuple at once.

Composite Types in Rust and the Module System152

Destructuring tuples
Here’s how to destructure a tuple into individual variables:

fn main() {

 let tuple: (i32, f64, bool) = (42, 6.7, true);

 let (int_value, float_value, bool_value) = tuple;

 println!("Integer value: {}", int_value);

 println!("Float value: {}", float_value);

 println!("Boolean value: {}", bool_value);

}

In this example, note the following:

•	 We destructure the tuple into three separate variables: int_value, float_value, and
bool_value

•	 Each variable corresponds to an element in the tuple, in order

Practical example: destructuring function return values
Let’s use destructuring to handle multiple return values from a function:

fn calculate(a: i32, b: i32) -> (i32, i32, i32) {

 let sum = a + b;

 let difference = a - b;

 let product = a * b;

 (sum, difference, product)

}

fn main() {

 let (sum, difference, product) = calculate(10, 5);

 println!("Sum: {}", sum);

 println!("Difference: {}", difference);

 println!("Product: {}", product);

}

Chapter 5 153

In this example, note the following:

•	 The calculate function returns a tuple containing the sum, difference, and product of

two integers

•	 In the main function, we destructure the returned tuple into three separate variables: sum,

difference, and product

Destructuring helps keep the code concise and readable when working with multiple values.

Destructuring in a loop
Destructuring can also be used in a loop to iterate over a collection of tuples:

fn main() {

 let points = vec![(0, 0), (1, 2), (3, 4)];

 for (x, y) in points {

 println!("Point at ({}, {})", x, y);

 }

}

In this example, note the following:

•	 We have a vector of tuples representing points

•	 We use a for loop to destructure each tuple into x and y coordinates and print them

Returning tuples from functions
Tuples are particularly useful for returning multiple values from functions without needing to

define a more complex struct. This can simplify your code and make functions more flexible.

Returning multiple values
Here’s an example of a function that returns a tuple with multiple values:

fn calculate(a: i32, b: i32) -> (i32, i32, i32) {

 let sum = a + b;

 let difference = a - b;

 let product = a * b;

 (sum, difference, product)

}

Composite Types in Rust and the Module System154

fn main() {

 let result = calculate(10, 5);

 println!("Sum: {}", result.0);

 println!("Difference: {}", result.1);

 println!("Product: {}", result.2);

}

In this example, note the following:

•	 The calculate function returns a tuple containing the sum, difference, and product of

two integers

•	 In the main function, we call calculate and access each element of the returned tuple

using positional indexing

Destructuring function return values
You can also destructure the returned tuple directly into individual variables:

fn main() {

 let (sum, difference, product) = calculate(10, 5);

 println!("Sum: {}", sum);

 println!("Difference: {}", difference);

 println!("Product: {}", product);

}

In this example, we destructure the tuple returned by calculate into sum, difference, and

product. This makes the code more readable and easier to work with.

Practical example: splitting a full name
Let’s create a practical example where we use a function to split a full name into first and last

names:

fn split_name(full_name: &str) -> (&str, &str) {

 let parts: Vec<&str> = full_name.splitn(2, ' ').collect();

 (parts[0], parts[1])

}

fn main() {

Chapter 5 155

 let full_name = "John Doe";

 let (first_name, last_name) = split_name(full_name);

 println!("First Name: {}", first_name);

 println!("Last Name: {}", last_name);

}

In this example, note the following:

•	 The split_name function takes a full name as a string slice and returns a tuple containing

the first and last names

•	 We destructure the returned tuple in the main function to access and print the first and

last names

Using tuples to return multiple values from functions makes your code more flexible and reduces

the need for complex data structures.

Practical example: point in 3D space
To demonstrate the versatility and practical use of tuples, let’s create a function that calculates

the distance between two points in 3D space. Each point will be represented as a tuple containing

three f64 values for the x, y, and z coordinates.

Calculating the distance between points
The formula for the distance between two points, (x1​,y1​,z1​) and (x2​,y2​,z2​), in 3D space is as follows:𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

Here’s how you can implement this in Rust:

fn distance(point1: (f64, f64, f64), point2: (f64, f64, f64)) -> f64 {

 let (x1, y1, z1) = point1;

 let (x2, y2, z2) = point2;

 ((x2 - x1).powi(2) + (y2 - y1).powi(2) + (z2 - z1).powi(2)).sqrt()

}

fn main() {

 let point1 = (0.0, 0.0, 0.0);

 let point2 = (3.0, 4.0, 0.0);

Composite Types in Rust and the Module System156

 println!("The distance between points is: {}", distance(point1,
point2));

}

In this example, note the following:

•	 We define a function, distance, that takes two tuples as parameters, each representing

a point in 3D space

•	 We destructure the tuples into their respective coordinates

•	 We calculate the distance using the Euclidean distance formula and return the result

Practical usage
This example showcases how tuples can be used to represent complex data structures in a simple

and efficient manner. By using tuples, we avoid the need for more complex structs, keeping the

code concise and readable.

Tuples: exercises and assignments
To further solidify your understanding of tuples, try the following exercises:

1.	 Extend the distance function: Modify the distance function to handle points in 2D space

(x, y) as well as 3D space.

2.	 Create a color tuple: Define a tuple to represent a color with red, green, blue (RGB) values,

and write a function that converts it to a hexadecimal string.

3.	 Employee information: Write a function that returns an employee’s ID, name, and salary

as a tuple, and then destructure the tuple in the main function to print the employee’s

details.

4.	 Point transformation: Write a function that takes a 3D point (x, y, z) and a tuple repre-

senting a translation vector (dx, dy, dz). The function should return a new point that is

the result of applying the translation vector to the original point.

Tuples: summary
We’ve explored tuples in Rust, including their definition, element access, destructuring, and use

as function return types. A practical example showed calculating distances between 3D points

using tuples.

Understanding tuples allows for the efficient grouping of values without complex structs. This

concludes our discussion on Rust’s composite types: structs, enums, and tuples.

Chapter 5 157

Using structs, enums, and tuples together
The real power often comes from combining these different composite types. You can have structs

containing enums, enums containing structs or tuples, structs containing other structs, and so on.

This allows you to model complex real-world data relationships accurately and safely within

Rust’s type system.

Practical example: modeling a user profile
Let’s revisit the vehicle fleet idea, showing structs and enums working together:

#[derive(Debug)]

struct Point(i32, i32); // Tuple struct for coordinates

#[derive(Debug)]

enum VehicleKind {

 Car { passengers: u8 },

 Truck { capacity_tons: f32 },

 Bicycle { gears: u8 },

}

#[derive(Debug)]

struct Vehicle {

 id: u32,

 kind: VehicleKind, // Enum field

 location: Point, // Tuple struct field

}

fn main() {

 let delivery_truck = Vehicle {

 id: 101,

 kind: VehicleKind::Truck { capacity_tons: 2.5 },

 location: Point(50, -30),

 };

 let commuter_bike = Vehicle {

 id: 205,

 kind: VehicleKind::Bicycle { gears: 18 },

Composite Types in Rust and the Module System158

 location: Point(10, 15),

 };

 println!("Vehicle 1: {:?}", delivery_truck);

 println!("Vehicle 2: {:?}", commuter_bike);

 // We can match on the kind field

 match &delivery_truck.kind {

 VehicleKind::Truck { capacity_tons } => {

 println!("Truck {} has capacity: {} tons", delivery_truck.id,
capacity_tons);

 }

 _ => { // Handle other kinds if necessary

 println!("Vehicle {} is not a truck.", delivery_truck.id);

 }

 }

}

This example uses a tuple struct, Point, an enum, VehicleKind (where variants hold specific data),

and a main struct, Vehicle, that contains both a VehicleKind enum and a Point tuple struct.

This demonstrates how you can layer these types to build expressive data models representing

complex entities and their varying attributes or states.

Managing complexity with the module system
Packages and crates
To get a good grasp on organizing a project, let’s start by looking at the physical artifacts Cargo

creates.

When you run ‘cargo new', you’re creating a Package, basically, a directory with a Cargo.toml

file that explains how to build your code. Think of it as the main container for everything. Inside

this package, your actual code lives in Crates.

What is a crate? A crate is just the smallest piece of code that the Rust compiler works on at a

time. Usually, you’ll be dealing with binary crates (which turn into a program you can run) or

library crates (which hold code shared across projects). A package can have many binaries, but

it will only have one library.

Chapter 5 159

The Package layout
A Package essentially functions as a project bundle. When you run ‘cargo new my_project' in

your terminal, you’re creating a package. The key element of a package is the Cargo.toml file, serv-

ing as a manifest. This file offers Cargo the necessary instructions to compile your code, oversee

dependencies, and manage software versioning.

Inside this package, you include your actual code in the form of crates. The package enforces spe-

cific rules about what it can contain. It must include at least one crate, whether that is a library

or a binary. While a package can include as many binary crates as you want, it can only contain

at most one library crate.

Binary crates vs. library crates
A Crate is the smallest amount of code that the Rust compiler considers at one time. Crates come

in two distinct forms.

Binary crates Programs that you can compile into an executable and run, such as a command-line

tool or a server, are often called crates. These crates need to include a function called main, which

tells the program where to start. Usually, if your package has a file named src/main.rs, that file is

considered the main entry point of a binary crate.

Library crates Most of these files usually don’t include a main function, and they don’t compile

directly into an executable. Instead, they serve as a way to share functionality with other projects.

When folks in the Rust community mention “crate,” they’re often talking about a library crate.

Typically, if your package has a src/lib.rs file, Cargo recognizes this as the main part of your library

crate. A package can have several binary crates, but it can only have one library crate.

my-project/

├── Cargo.toml

├── src/

│ ├── main.rs <-- Root of the binary crate

│ └── lib.rs <-- Root of the library crate

│ └── bin/

│ └── another.rs <-- Root of another binary crate

Controlling scope and privacy with modules
Modules allow us to organize the code inside a crate into groups for readability and easy reuse.

Modules also control the privacy of items, which is how we decide whether an item can be used

by outside code (public) or is an internal implementation detail (private).

Composite Types in Rust and the Module System160

Defining the module tree
We define a module by starting with the mod keyword and then giving it a name. Inside the curly

brackets, we can define other modules, as well as structs, enums, constants, traits, and functions.

By nesting modules inside other modules, we create a structure called the module tree.

Here is an example of how we might organize a library that models a restaurant:

mod front_of_house {

 mod hosting {

 fn add_to_waitlist() {}

 fn seat_at_table() {}

 }

 mod serving {

 fn take_order() {}

 fn serve_order() {}

 }

}

In this example, the crate root is the parent of the front_of_house module. The front_of_house

module is the parent of hosting and serving. This tree structure allows you to keep related func-

tionality together rather than having everything in a single flat list.

The rules of privacy (the pub keyword)
Rust carefully manages who can see and use different parts of your code, making sure everything

stays secure and well-structured. By default, everything inside a module is private, so only the

code within that module can access it. This helps keep your inner workings safe from accidental

misuse. It’s interesting to note that while child modules can reach into their parent modules, the

reverse isn’t automatically allowed: parents can’t access items in their children without explicit

permission.

To help external code access an item, you simply use the pub keyword. Think of it as opening a

door to that module or function. In the example below, we’ve added pub to both the module and

the function, allowing eat_at_restaurant to reach them easily.

mod front_of_house {

 // We add 'pub' to the module so the parent can see it

 pub mod hosting {

Chapter 5 161

 // We add 'pub' to the function so it can be called

 pub fn add_to_waitlist() {}

 }

}

pub fn eat_at_restaurant() {

 // This works because 'hosting' and 'add_to_waitlist' are now public

 crate::front_of_house::hosting::add_to_waitlist();

}

Referring to items via paths
To show Rust where to find an item in the module tree, we use a path, similar to navigating a

filesystem.

To call a function, specify its path with double colons :: as separators.

A path can be absolute or relative, like in a file system.

Absolute paths
An absolute path starts from the crate root or, if from an external crate, with that crate’s name.

For code within the current crate, it begins with the keyword crate. This approach is preferred as

item definitions are less likely to move than calling code.

pub fn eat_at_restaurant() {

 // Absolute path starting with 'crate'

 crate::front_of_house::hosting::add_to_waitlist();

}

Relative paths and the super keyword
A relative path starts from the current module instead of the crate root. It uses self, super, or an

identifier available in the current scope. This is often useful when the definition of the item and

the code calling it are likely to be moved around the project together.

Composite Types in Rust and the Module System162

The super keyword allows you to reference the parent module. This is exactly like using .. in a

filesystem path to go up one directory level. In the example below, the fix_incorrect_order

function is inside the back_of_house module. To call serve_order, which is defined in the parent

crate root, we use super.

fn serve_order() {}

mod back_of_house {

 fn fix_incorrect_order() {

 cook_order();

 // We use super to go up one level to the parent module

 super::serve_order();

 }

 fn cook_order() {}

}

Simplifying scope with the use keyword
Writing out a full path to a function repeatedly can be tedious and makes code harder to read.

Rust allows you to bring a path into scope once with the use keyword, enabling you to call the

item as if it were local.

Think of this similar to creating a symbolic link or shortcut in your filesystem. By including a line

with use at the beginning of your file, you create a shortcut to that particular module or item. In

the example below, we bring the hosting module into scope. Now, whenever we want to access

add_to_waitlist, we only need to specify hosting:: instead of the full path from the crate root.

mod front_of_house {

 pub mod hosting {

 pub fn add_to_waitlist() {}

 }

}

// Bring the module into scope

use crate::front_of_house::hosting;

Chapter 5 163

pub fn eat_at_restaurant() {

 // Now we can use the shorter path

 hosting::add_to_waitlist();

}

Idiomatic use paths
You might wonder why we included the hosting module earlier instead of directly using add_to_

waitlist. The reason is Rust convention: it’s more idiomatic to bring the parent module into scope

for functions. This makes your code clearer, showing that the function isn’t in the current file.

However, when it comes to working with structs, enums, and other items, the usual convention

is a bit different. Typically, we like to bring the entire item into scope so we can use it directly,

which helps keep our code clean and concise. For instance, instead of just bringing in collections,

we bring HashMap directly into scope.

// Idiomatic: Bring the function's parent module into scope

use crate::front_of_house::hosting;

// Idiomatic: Bring the full struct into scope

use std::collections::HashMap;

fn main() {

 // It is clear this function comes from the hosting module

 hosting::add_to_waitlist();

 // We can use the struct directly

 let mut map = HashMap::new();

}

Handling naming conflicts with “as”
Sometimes, you need to use items with identical names from different modules. If you attempt

to bring both into scope with use, Rust won’t know which one you’re referencing and will fail to

compile. To fix this, you can use the as keyword to create an alias, giving a new local name to the

type and avoiding conflicts.

Composite Types in Rust and the Module System164

In the example below, we use the Result type from both the fmt module and the io module. By

renaming io::Result to IoResult, we avoid confusion and can use both in the same file.

use std::fmt::Result;

use std::io::Result as IoResult;

fn function1() -> Result {

 // Returns std::fmt::Result

 Ok(())

}

fn function2() -> IoResult<()> {

 // Returns std::io::Result

 Ok(())

}

Physical organization: separating modules into files
As modules grow, managing all definitions in src/lib.rs becomes challenging. Moving definitions

into separate files improves navigation. Rust enables extracting modules into different files with-

out altering your crate’s external API; the code structure changes, but the module tree remains

logically consistent.

The module filesystem mapping
To move a module to its own file, we change how we declare it in the parent file. Instead of using

a block with curly brackets, we declare the module with a semicolon. This tells Rust that the

module exists but its definition is located in another file with the same name.

For example, to move the front_of_house module out of src/lib.rs:

1.	 In src/lib.rs, we replace the full module block with pub mod front_of_house;.

2.	 We create a new file named src/front_of_house.rs.

3.	 We paste the content of the module into the new file. Note that we do not need to wrap the

code in a mod block inside the new file because the file itself acts as the module container.

File: src/lib.rs

// Rust looks for src/front_of_house.rs

pub mod front_of_house;

Chapter 5 165

pub fn eat_at_restaurant() {

 crate::front_of_house::hosting::add_to_waitlist();

}

File: src/front_of_house.rs

pub mod hosting {

 pub fn add_to_waitlist() {}

}

Summary
Well done!

We’ve journeyed through Rust’s essential composite data types, learning how to structure data

beyond simple primitives. We started with structs, understanding how to define custom types

with named fields, create instances, access and modify data, and add behavior using methods

and associated functions within impl blocks. We also touched upon variations such as concise

tuple structs and field-less unit-like structs.

Next, we explored enums, discovering how they allow us to define a type that can be one of

several distinct variants. Crucially, we saw how these variants can hold associated data, making

enums incredibly powerful for modeling different states, choices, or message types, often paired

elegantly with Rust’s exhaustive match expression for safe handling. Finally, we looked at tuples

as a simple, lightweight way to group a fixed number of values together, which is particularly

useful for returning multiple values from functions or for temporary data bundling.

Mastering structs, enums, and tuples is crucial for organizing data effectively in Rust. By combin-

ing these types and understanding how they interact with core concepts such as ownership and

borrowing (which we covered in Chapter 4), you gain the tools to build complex, expressive, and

safe data models for your applications. Keep practicing, and these fundamental building blocks

will become second nature.

We also addressed the structural side of Rust programming by introducing the module system.

We explored how to organize code into logical groups using packages, crates, and modules, and

how to control the privacy of that code using the pub keyword. We also covered how to navigate

the module tree using paths, which is essential for splitting code across multiple files and man-

aging complexity as your projects grow.

Composite Types in Rust and the Module System166

In the next chapter, we’ll explore another of Rust’s most important safety features: a powerful

and explicit system for handling errors.

Questions and assignments
Congratulations on completing this exploration of Rust’s composite types! To ensure these

concepts stick, let’s reinforce your learning with some review questions and hands-on coding

assignments. Tackling these will significantly strengthen your grasp of how to structure data

effectively in Rust.

Questions
1.	 In your own words, what is the core difference between a struct and an enum? Provide

a scenario where a struct is clearly more appropriate, and another where an enum is the

better choice.

2.	 What are the three forms of self that a method’s first parameter can take, and what does

each signify in terms of ownership and mutability for the instance the method is called on?

3.	 Explain the purpose and syntax of an associated function (such as ::new()) within an

impl block. How does calling it differ from calling a method?

4.	 When defining an enum variant that holds data, what are the different ways you can

structure that data (e.g., a tuple, a struct)?

5.	 What is the struct update syntax (..), and why is it important to consider ownership

(and the Copy trait) when using it?

6.	 Why might you choose to use a tuple struct, such as struct Color(u8, u8, u8);, instead

of a regular tuple (u8, u8, u8) or a regular struct, such as struct Color { red: u8,

green: u8, blue: u8 }?

7.	 How can you make your custom struct or enum printable for debugging using println!?

Assignments
Assignment 5.1: order system

1.	 Define a Product struct with the id (u32), name (String), and price (f32) fields.

2.	 Define an OrderStatus enum with Pending, Processing, Shipped, Delivered, and

Cancelled variants.

3.	 Define an Order struct with the order_id (u32), product (Product), quantity (u32), and

status (OrderStatus) fields.

4.	 Implement #[derive(Debug)] for all structs and the enum.

Chapter 5 167

5.	 Create an associated function, Order::new(order_id: u32, product: Product,

quantity: u32) -> Order, that creates a new order with the Pending status.

6.	 Implement an update_status(&mut self, new_status: OrderStatus) method for the

Order struct.

7.	 In main, create a Product, create a new order using Order::new, print the order, update

its status to Shipped, and print it again.

Assignment 5.2: geometric shapes enhanced
1.	 Define a tuple struct, Point(f64, f64), representing a 2D point.

2.	 Define a Shape enum with the following variants:

•	 Circle { center: Point, radius: f64 }

•	 Rectangle { top_left: Point, width: f64, height: f64 }

3.	 Implement #[derive(Debug)] for Point and Shape.

4.	 Implement an impl block for Shape. Add an area(&self) -> f64 method that calculates

and returns the area based on the shape variant (Area of circle = π * radius²; Area of rect-

angle = width * height). Use std::f64::consts::PI for π.

5.	 In main, create a Circle and a Rectangle. Store them in a Vec<Shape>. Iterate through

the vector and print both the debug representation ({:?}) and the calculated area for

each shape.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to https://packtpub.com/unlock).

Search for this book by name, confirm the edition, and then

follow the steps on the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require one.

https://packtpub.com/unlock

6
Introduction to Error Handling

Welcome to Chapter 6!

After exploring composite types in the previous chapter, we now turn to a very important aspect

of building robust and reliable software: error handling. In Rust, effectively handling errors isn’t

just good practice; it’s a core part of mastering the language.

It ensures our programs can gracefully manage unexpected situations, maintaining stability and

predictability.

Why error handling matters
But why dedicate an entire chapter to error handling? There are several fundamental reasons:

•	 Robustness: Programs must handle unexpected inputs, system issues (such as missing

files or denied permissions), and other anomalies without crashing. Good error handling

makes software more resilient.

•	 User experience: Clearly reporting errors helps users (and fellow developers!) understand

what went wrong and potentially how to fix it.

•	 Maintainability: A consistent approach to error handling makes code easier to read, un-

derstand, and modify over time.

Introduction to Error Handling170

Rust’s approach to errors
Rust takes a distinctive approach to error handling, heavily focused on safety and clarity, avoiding

many common pitfalls found in other languages (such as unchecked exceptions or unhandled

null/nil values). In Rust, errors primarily fall into two categories:

•	 Recoverable errors: These are problematic situations the program can anticipate and

potentially handle or recover from, such as trying to open a file that doesn’t exist. Rust

encourages explicit handling of these, usually via the Result<T, E> type.

•	 Unrecoverable errors (panic): These indicate serious, unexpected problems, typically

bugs in the program (such as accessing an array index out of bounds), from which recovery

isn’t expected. In these cases, Rust enters a panic state (using the panic! macro), which,

by default, unwinds the stack and quits the current thread.

Core tools: Result and Option
To manage these categories, Rust provides two fundamental enum types, which we’ve had a

glimpse of before and will now explore thoroughly:

•	 Result<T, E>: Used for operations that might succeed (returning a value of type T in the

Ok variant) or fail (returning an error of type E in the Err variant). It’s the primary tool

for recoverable errors.

•	 Option<T>: Used when a value might be present (the Some(T) variant) or absent (the

None variant). It doesn’t necessarily signify an error, but rather the absence of an expected

value, such as when a search yields no results.

These types make the possibility of failure or absence an explicit part of a function’s signature,

forcing callers to consider these cases and dramatically improving code reliability.

In this chapter, we’ll explore Rust’s error-handling mechanisms in detail.

We will cover the following:

•	 The Result and Option types: How to use these enums effectively

•	 Handling Result and Option: Safe ways to extract values or handle Err and None cases

(e.g., match, unwrap_or)

•	 Propagating errors with ?: Simplifying error handling in call chains

•	 Custom error types: Creating specific error types for your application.

Chapter 6 171

•	 Useful crates: Introducing thiserror and anyhow for further simplification

•	 Logging errors: Techniques for recording useful information during execution

•	 Practical examples and best practices: Applying what we learn in realistic scenarios

Mastering error handling is essential for writing robust Rust software. This chapter will equip

you with the tools and knowledge to do so effectively. Let’s get started!

Introduction to Result and Option
As mentioned, Result and Option are the cornerstones of handling errors and potentially missing

values in Rust. They are both enum types defined in the standard library.

Understanding their operation deeply is the first step toward writing safe and clear Rust code.

Let’s start with Result.

The Result type
The Result type is Rust’s primary tool for handling operations that can fail. It is an enum defined

in the standard library with two variants: Ok, which represents success and contains a value, and

Err, which represents failure and contains an error value.

The definition is as follows:

enum Result<T, E> {

 Ok(T), // Success: contains a value of type T

 Err(E), // Failure: contains an error value of type E

}

Here, T is the type of the value in the success case (Ok), and E is the type of the error in the failure

case (Err).

It’s important to note that T and E are generic type parameters.

This means you can use Result with any combination of success and error types, making it in-

credibly flexible. T stands for the type of the value that will be returned in a success case, and E

stands for the type of the error that will be returned in a failure case.

For example, a function that parses a string into a number might return Result<i32,

ParseIntError>, while a function that opens a file might return Result<File, std::io::Error>.

Introduction to Error Handling172

Let’s look at a classic example – a division function that must handle division by 0:

// Function returning a Result: Ok with an f64 result, or Err with a
String error message.

fn divide(numerator: f64, denominator: f64) -> Result<f64, String> {

 if denominator == 0.0 {

 // If denominator is zero, return an error (Err)

 Err(String::from("Error: division by zero!"))

 } else {

 // Otherwise, return the result successfully (Ok)

 Ok(numerator / denominator)

 }

}

fn main() {

 let result1 = divide(10.0, 2.0); // Successful call

 let result2 = divide(5.0, 0.0); // Failing call

 // Use 'match' to handle both cases of the Result

 match result1 {

 Ok(value) => println!("Division 10/2 succeeded: {}", value), //
Output: 5.0

 Err(message) => println!("Error in division 10/2: {}", message),

 }

 match result2 {

 Ok(value) => println!("Division 5/0 succeeded: {}", value),

 Err(message) => println!("Error in division 5/0: {}", message), //
Output: Error: division by zero!

 }

}

In this example, the divide function declares that it returns Result<f64, String>. If the oper-

ation is valid, it wraps the f64 result in Ok.

If division by 0 is attempted, it wraps a String error message in Err.

Chapter 6 173

The calling code (in main) uses match to inspect the Result and act differently depending on

whether it’s Ok or Err, extracting the value or the error message accordingly.

The Option type
The Option<T> type is used when a value might be present or absent.

It’s defined as follows:

enum Option<T> {

 Some(T), // Value is present: contains a value of type T

 None, // Value is absent

}

Here, T is the type of the potentially present value. Option is very useful for functions that might

not find what they’re looking for, or for representing optional fields in structs.

Option example
Let’s see an example involving searching for a substring:

// This function searches for a word in a sentence.

// It returns Option<usize>: Some(index) if the word is found, or None
otherwise.

fn find_word_index(haystack: &str, needle: &str) -> Option<usize> {

 // The built-in .find() method on string slices already returns
Option<usize>,

 // which is very convenient.

 haystack.find(needle)

}

fn main() {

 let famous_phrase = "The quick brown fox jumps over the lazy dog.";

 let word_to_find = "fox";

 let word_not_present = "cat";

 // --- Test Case 1: Word is found ---

 println!("Searching for '{}'...", word_to_find);

 match find_word_index(famous_phrase, word_to_find) {

Introduction to Error Handling174

 Some(index) => println!("Success! Found at index {}.", index),

 None => println!("Failure: Word not found."),

 }

 println!("---");

 // --- Test Case 2: Word is NOT found ---

 println!("Searching for '{}'...", word_not_present);

 match find_word_index(famous_phrase, word_not_present) {

 Some(index) => println!("Success! Found at index {}.", index),

 None => println!("Correctly determined that the word was not
found."),

 }

}

The find_word_index function uses the string slice’s built-in .find() method, which perfectly

illustrates the use of Option<usize> by returning Some(index) if the substring is found, or None

otherwise.

Our single main function then demonstrates how to call this function and use a match statement

to safely handle both the success (Some) and failure (None) cases, printing an appropriate message

for each outcome.

When to use Result versus Option
Choosing between Result and Option depends on the meaning you want to convey about the

absence of a value:

•	 Use Result<T, E> when an operation can fail for a specific reason you want to commu-

nicate to the caller via the error type, E. It’s for recoverable errors.

•	 Use Option<T> when the absence of a value is a possible and normal outcome (e.g., search

failed or optional data not provided), and the reason for absence isn’t important or is

implicit.

It’s also worth noting that from a programming perspective, Rust makes it very easy to convert

between Option and Result, allowing you to adapt a function’s return type to the specific needs

of your error-handling logic.

Chapter 6 175

Getting a good handle on Result and Option is really important. They encourage you to think

about failure or missing values, which helps make Rust code clearer and much safer compared

to languages that depend on unchecked exceptions or nulls.

In the next section, we will start exploring how to implement error handling in Rust. We will

gradually move from the simplest methods to the most advanced ones. There is no single way

to do this, but of course, using the most advanced techniques makes your code more robust and

less prone to errors.

It also helps you better understand what went wrong and why, instead of just failing.

Handling Result and Option (unwrapping and
alternatives)
Unrecoverable errors: Understanding panic!
Before we look at the different ways to handle Result and Option, it’s important to understand

Rust’s mechanism for dealing with unrecoverable errors. These are errors that indicate a bug or

a state from which your program cannot safely continue. The primary tool for this is the panic!

macro.

When panic! is called, your program will, by default, stop execution immediately, unwind the

stack (cleaning up memory as it goes), and print an error message. A panic signifies that some-

thing has gone so wrong that it’s impossible to proceed. This is Rust’s way of failing “loudly and

early” rather than continuing with potentially corrupt data.

You can call panic! directly in your code to signal an unrecoverable error state:

fn check_critical_value(value: i32) {

 if value < 0 {

 // If the value is negative, it's an unrecoverable state for this
function.

 panic!("Critical value cannot be negative! Received: {}", value);

 }

 println!("Value {} is valid.", value);

}

fn main() {

 check_critical_value(10); // This will run fine.

Introduction to Error Handling176

 // The line below will cause the program to panic and terminate.

 // check_critical_value(-5);

 // This line will not be reached if the panic occurs.

 println!("Program finished successfully.");

}

While you can trigger a panic yourself, you’ll more often encounter panics when using methods

that are shortcuts for this behavior, such as unwrap() and expect().

It’s helpful to remember that these methods are purposely designed to trigger a panic upon failure,

which is an important aspect to keep in mind when using them effectively.

Introduction to unwrapping
We’ve seen that match is a powerful and safe way of handling Result and Option. However,

sometimes you might know with certainty (or near certainty) that a value is present (Ok or Some)

and want to access that value directly.

Rust provides methods for this, but it’s important to use them cautiously.

Using unwrap and expect
The most direct methods for extracting the value are unwrap and expect:

•	 unwrap(): If Result is Ok(value) or Option is Some(value), it returns value. If it’s Err

or None, the program will panic (crashing the current thread):

// A simple function that returns a Result, for context.

fn divide(a: f64, b: f64) -> Result<f64, String> {

 if b == 0.0 {

 Err("Division by zero".to_string())

 } else {

 Ok(a / b)

 }

}

Chapter 6 177

fn main() {

 // --- Success Case ---

 let ok_result = divide(10.0, 5.0);

 // Print the Result before unwrapping to show its Ok(value)
state.

 println!("The Result before unwrap: {:?}", ok_result); //
Prints: Ok(2.0)

 // .unwrap() extracts the value from the Ok variant.

 let value = ok_result.unwrap();

 println!("The value after unwrap: {}", value); // Prints: 2.0

 // --- Panic Case ---

 // let err_result = divide(10.0, 0.0); // This would be
Err("Division by zero")

 // println!("The Result before panic: {:?}", err_result);

 //

 // // Calling .unwrap() on an Err variant will cause the program
to panic.

 // let value_panic = err_result.unwrap(); // This line would
PANIC!

}

•	 expect(“error message”): Works like unwrap, but if it panics, it will use the provided

message as part of the panic output. It’s slightly better than unwrap as it lets you specify

why you expected a value:

let non_existent_file: Result<String, std::io::Error> =
std::fs::read_to_string("file_no_exist.txt");

// This will panic with the specified message

// non_existent_file.expect("Expected the file to definitely
exist!");

Introduction to Error Handling178

If you were to run a program with the .expect() call on a failing operation, the output

would look something like this, clearly showing your custom message:

thread 'main' panicked at 'Expected the file to definitely exist!:
Os { code: 2, kind: NotFound, message: "No such file or directory"
}', src/main.rs:4:5

note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

Safe unwrapping with defaults
To access the value or provide a safe alternative without risking panic, Rust offers unwrap_or and

unwrap_or_else:

•	 unwrap_or(default_value): Returns the contained value if Ok/Some. If Err/None, it returns

the provided default_value (which must be of the same type as the Ok/Some value):

let err_result = divide(10.0, 0.0); // This is Err(...)

let value_or_default = err_result.unwrap_or(0.0); // Doesn't panic,
returns 0.0

println!("Value or default: {}", value_or_default);

let none_option: Option<i32> = None;

let option_value = none_option.unwrap_or(100); // Returns 100

println!("Option or default: {}", option_value);

•	 unwrap_or_else(closure): Similar to unwrap_or, but if the value is Err/None, it executes

the provided closure (anonymous function) and returns the result of that closure. This is

useful if the default value requires computation:

let err_result = divide(10.0, 0.0); // Err(...)

 Caution: unwrap and expect turn a potentially recoverable error (Err or

None) into an unrecoverable one (panic). Use them only when there is a

logic bug in your program from which there’s no sensible recovery path, or

in prototypes/examples where a crash is acceptable. In most production

code, prefer safer methods.

Chapter 6 179

let value_or_computed = err_result.unwrap_or_else(|err_msg| {

 println!("Error during division: {}. Using fallback value.",
err_msg);

 -1.0 // Value computed/returned by the closure

});

println!("Value or computed: {}", value_or_computed);

These methods are much safer and more common alternatives to unwrap/expect in robust code.

Using combinators
While match is powerful, Rust provides several convenient methods on Result and Option called

combinators that allow you to chain operations together in a more concise, functional style.

These methods can often replace a match statement for common patterns. Let’s look at a few of

the most common ones for Result:

•	 map(): This applies a function to the contained Ok value. The map method takes a closure

and applies it to the value inside an Ok, leaving an Err value untouched. The closure takes

the success value (T) and returns a new value (U), and map returns Result<U, E>:

fn main() {

 let successful_parse: Result<i32, _> = "10".parse();

// If successful_parse is Ok(10), the closure |x| x * 2 is called
with 10.

// The result is Ok(20).

let doubled_result = successful_parse.map(|x| x * 2);

println!("Doubled result: {:?}", doubled_result); // Prints: Ok(20)

 }

•	 and_then: This chains another operation that might fail. The and_then method is used

when you want to perform a subsequent operation that also returns a Result. If the initial

Result is Ok, and_then calls the closure with the success value. The closure itself must

return a new Result. If the initial Result is Err, the closure is not called, and the error

is propagated:

 // A function that only succeeds for even numbers.

 fn check_if_even(n: i32) -> Result<i32, String> {

Introduction to Error Handling180

 if n % 2 == 0 {

 Ok(n)

 } else {

 Err("Number is not even".to_string())

 }

 }

 fn main() {

 let successful_parse: Result<i32, _> = "10".parse();

 let failed_parse: Result<i32, _> = "7".parse();

 // Chain the parsing with the even check.

 let even_result = successful_parse.and_then(check_if_even);

 println!("Result for '10': {:?}", even_result); // Prints:
Ok(10)

 let odd_result = failed_parse.and_then(check_if_even);

 println!("Result for '7': {:?}", odd_result); // Prints:
Err("Number is not even")

 }

•	 or_else: This provides a fallback operation that might also fail. The or_else method is

used to handle an Err case by trying an alternative operation. If the initial Result is Ok,

or_else does nothing and returns the Ok value. If it’s Err, it calls the closure with the

error value. Crucially, the closure passed to or_else must itself return a Result<T, E> of the same

type. This allows you to provide a fallback that could either succeed (Ok) or produce a

different error (Err):

 fn main() {

 // First attempt fails to parse.

 let first_attempt: Result<i32, _> = "hello".parse();

 // Second attempt will succeed.

 let second_attempt: Result<i32, _> = "42".parse();

 // Use or_else to try the second attempt if the first one
fails.

 // The closure `|_| second_attempt` is called because first_
attempt is Err.

 // It returns the second_attempt Result.

Chapter 6 181

 let final_result = first_attempt.or_else(|_| second_
attempt);

 println!("Final result after fallback: {:?}", final_result);
// Prints: Ok(42)

 }

These combinators allow for more expressive and concise error handling, enabling you to chain

operations and handle errors inline.

By mastering these techniques for unwrapping and handling Result and Option types, you’ll

make your Rust code more reliable and easier to read. It helps ensure that errors are managed in

a smooth and proper way, making your coding experience more confident and stress-free.

While combinator methods are excellent for handling a single Result or Option, a common

challenge in Rust is managing errors within a function that calls multiple other functions that

might fail.

Propagating errors with ?
To solve this problem and avoid deeply nested match statements, Rust provides a powerful and

concise piece of syntactic sugar for error propagation: the question mark (?) operator.

The problem of manual propagation
Often, a function might call other functions that return Result or Option. If one of these inner

calls fails (returns Err or None), we might want our outer function to also fail immediately, re-

turning that specific error or None to its caller. Handling this manually with match at every step

can become verbose:

// Verbose example without '?'

fn read_then_divide(file_path: &str, divisor: f64) -> Result<f64, String>
{

 let content_result = std::fs::read_to_string(file_path);

 let content = match content_result {

 Ok(c) => c,

 Err(e) => return Err(format!("File read error: {}", e)), // Manual
propagation

 };

Introduction to Error Handling182

 let number_result = content.trim().parse::<f64>();

 let number = match number_result {

 Ok(n) => n,

 Err(e) => return Err(format!("Number parse error: {}", e)), //
Manual propagation

 };

 match divide(number, divisor) { // Using our previous 'divide'
function

 Ok(result) => Ok(result),

 Err(e) => Err(e), // Manual propagation (simpler here)

 }

}

This code works, but the match blocks used solely for error propagation add noise.

The ? operator for Result
Rust offers an elegant solution: the ? (question mark) operator. Placed at the end of an expression

that returns a Result, it does exactly what the propagation match blocks did:

•	 If the Result is Ok(value), it unwraps value from the Ok, and execution continues

•	 If the Result is Err(error), the ? operator immediately halts the execution of the current

function and returns that Err(error) to the function’s caller

Example: the ? operator for Result with Result
Let’s rewrite the previous example using ?:

use std::fs;

use std::num::ParseFloatError; // Specific error type for parse::<f64>

use std::io; // For io::Error

Important: The ? operator can only be used inside functions that themselves return

a compatible Result (the error type, E, of the inner Result must be convertible

into the error type, E, of the Result returned by the current function, typically via

the From trait).

Chapter 6 183

// Define a custom error type for our function

#[derive(Debug)] // Implement Debug for printing

enum ReadDivideError {

 Io(io::Error),

 Format(ParseFloatError),

 Math(String), // For the error from our 'divide' function

}

// Implement `From` trait to allow '?' to automatically convert errors

impl From<io::Error> for ReadDivideError {

 fn from(err: io::Error) -> ReadDivideError {

 ReadDivideError::Io(err)

 }

}

impl From<ParseFloatError> for ReadDivideError {

 fn from(err: ParseFloatError) -> ReadDivideError {

 ReadDivideError::Format(err)

 }

}

// We also need a way to convert the String error from 'divide'

impl From<String> for ReadDivideError {

 fn from(err: String) -> ReadDivideError {

 ReadDivideError::Math(err)

 }

}

// Our original 'divide' function (could also return ReadDivideError
directly)

fn divide(numerator: f64, denominator: f64) -> Result<f64, String> {

 if denominator == 0.0 { Err(String::from("Division by zero!")) } else
{ Ok(numerator / denominator) }

}

Introduction to Error Handling184

// Function using '?' - Note it now returns our custom error type

fn read_then_divide_with_qmark(file_path: &str, divisor: f64) ->
Result<f64, ReadDivideError> {

 // '?' handles io::Error, converting it via From into
ReadDivideError::Io

 let content = fs::read_to_string(file_path)?;

 // '?' handles ParseFloatError, converting it via From into
ReadDivideError::Format

 let number = content.trim().parse::<f64>()?;

 // '?' handles the String error from divide, converting via From into
ReadDivideError::Math

 let result = divide(number, divisor)?;

 Ok(result) // If all OK, return Ok(...)

}

fn main() {

 // Create a dummy file for testing

 fs::write("number.txt", "100.5").expect("Cannot write file");

 match read_then_divide_with_qmark("number.txt", 2.0) {

 Ok(r) => println!("Result with '?': {}", r), // Output: 50.25

 Err(e) => println!("Error with '?': {:?}", e),

 }

 match read_then_divide_with_qmark("number.txt", 0.0) { // Test
division by zero

 Ok(r) => println!("Result with '?': {}", r),

 Err(e) => println!("Error with '?': {:?}", e), // Output:
Math("Division by zero!")

 }

 match read_then_divide_with_qmark("non_existent_file.txt", 2.0) { //
Test missing file

 Ok(r) => println!("Result with '?': {}", r),

Chapter 6 185

 Err(e) => println!("Error with '?': {:?}", e), // Output: Io(Os {
code: 2, kind: NotFound, message: "No such file or directory" })

 }

 fs::remove_file("number.txt").ok(); // Clean up dummy file

}

The code is now significantly cleaner and more readable! The ? operator hides the repetitive error

propagation logic.

The ? operator for Option
The ? operator works analogously with Option<T>:

•	 If the Option is Some(value), it unwraps value, and execution continues

•	 If the Option is None, the ? operator immediately halts the execution of the current function

and returns None to the function’s caller

It can only be used in functions that return Option.

Let’s see an example:

// Function that finds the first number in a slice satisfying a condition

// and possibly performs an operation on it.

fn find_and_operate(slice: &[i32], operation: fn(i32) -> Option<i32>) ->
Option<i32> {

 // Find the first element > 10. '?' propagates None if not found.

 let found_element = slice.iter().find(|&&x| x > 10)?; // find returns
Option<&i32>

 // Perform the operation on the found element.

 // The operation itself might return None. '?' propagates this None
too.

Note: We implemented the From trait manually here. Later, we’ll see how the

thiserror crate can generate these implementations automatically.

Introduction to Error Handling186

 let operation_result = operation(*found_element)?; // Dereference
found_element (*...)

 Some(operation_result) // If all OK, return Some(...)

}

// Example operation: double if even, otherwise None

fn double_if_even(n: i32) -> Option<i32> {

 if n % 2 == 0 {

 Some(n * 2)

 } else {

 None

 }

}

fn main() {

 let numbers1 = [5, 12, 8, 15, 6]; // First > 10 is 12 (even)

 let numbers2 = [5, 8, 13, 9]; // First > 10 is 13 (odd)

 let numbers3 = [1, 2, 3]; // No number > 10

 println!("Operation result on {:?}: {:?}", numbers1, find_and_
operate(&numbers1, double_if_even)); // Output: Some(24)

 println!("Operation result on {:?}: {:?}", numbers2, find_and_
operate(&numbers2, double_if_even)); // Output: None (because 13 is odd)

 println!("Operation result on {:?}: {:?}", numbers3, find_and_
operate(&numbers3, double_if_even)); // Output: None (no number > 10
found)

}

This example demonstrates how ? can chain Option-returning operations, short-circuiting the

chain as soon as None is encountered.

When to use the ? operator
The ? operator is a fantastic tool for reducing boilerplate when working with Result and Option.

It’s the idiomatic choice when you want to quickly propagate an error or a None up the call stack.

Chapter 6 187

However, it’s not always the right choice: if a function needs to handle a specific error differently

(e.g., log a special message or try an alternative operation), then match or other methods such as

map_err might be more appropriate for that local error-handling logic.

The ? operator is incredibly effective for propagating errors, but its power is fully realized when

the errors being propagated are more descriptive than just a simple string.

Custom error types
While Result<T, String> or generic errors such as std::io::Error suffice for simple cases,

more complex applications greatly benefit from defining custom error types. This allows you

to do the following:

•	 Distinguish between different application-specific failure modes

•	 Encapsulate additional information relevant to the error

•	 Implement more structured and meaningful error-handling logic

Defining custom error types with an enum
The most common and flexible way to create custom error types in Rust is using an enum. Each

variant of the enum can represent a distinct class of error.

Here is an example:

use std::num::ParseIntError; // Error from parsing integers

// Our custom enum for data processing errors

#[derive(Debug)] // Allows printing the error with :?

enum DataProcessingError {

 FileNotFound(String), // Contains the name of the missing file

 InvalidFormat(ParseIntError), // Contains the original parsing error

 NegativeValue(i32), // Contains the negative value found

 IoError(std::io::Error), // Contains a generic I/O error

}

// We can implement methods or traits for our error enum

impl DataProcessingError {

 fn user_message(&self) -> String {

 match self {

Introduction to Error Handling188

 DataProcessingError::FileNotFound(name) => format!("Error:
Could not find file '{}'", name),

 DataProcessingError::InvalidFormat(_) => String::from("Error:
Invalid data format, expected an integer."),

 DataProcessingError::NegativeValue(val) => format!("Error:
Found negative value {}, expected positive.", val),

 DataProcessingError::IoError(_) => String::from("Error:
Problem during reading/writing."),

 }

 }

}

Here, DataProcessingError defines four possible failure causes, some carrying specific data

(such as FileNotFound or NegativeValue). We also added a user_message method for more

user-friendly descriptions.

Implementing standard error traits
To best integrate custom error types with the Rust ecosystem (e.g., to work smoothly with ? and

third-party libraries), it’s good practice to implement two standard traits: std::fmt::Display

(for user-friendly string representation) and std::error::Error (for advanced features such as

error “sourcing”):

use std::{fmt, error}; // Import the traits

// ---- Enum defined as before ----

#[derive(Debug)]

enum DataProcessingError {

 FileNotFound(String),

 InvalidFormat(ParseIntError),

 NegativeValue(i32),

 IoError(std::io::Error),

}

// Implement Display for user-friendly output (e.g., with {})

impl fmt::Display for DataProcessingError {

 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

Chapter 6 189

 match self {

 DataProcessingError::FileNotFound(name) => write!(f, "Could
not find file '{}'", name),

 DataProcessingError::InvalidFormat(e) => write!(f, "Invalid
data format: {}", e),

 DataProcessingError::NegativeValue(val) => write!(f, "Found
negative value {}, expected positive.", val),

 DataProcessingError::IoError(e) => write!(f, "I/O error: {}",
e),

 }

 }

}

// Implement the Error trait

impl error::Error for DataProcessingError {

 // The 'source()' method is optional but useful. It returns the
underlying

 // error that caused this error, if any.

 fn source(&self) -> Option<&(dyn error::Error + 'static)> {

 match self {

 // If our error is InvalidFormat, the source is ParseIntError

 DataProcessingError::InvalidFormat(ref e) => Some(e),

 // If our error is IoError, the source is std::io::Error

 DataProcessingError::IoError(ref e) => Some(e),

 // Our other errors don't have a standard underlying cause

 _ => None,

 }

 }

}

 In the DataProcessingError::IoError(ref e) pattern, the ref keyword is used to

create a reference to the io::Error value inside the enum variant, rather than moving

it. Because the source method only has a reference to itself (&DataProcessingError),

Rust’s ownership rules prevent us from moving io::Error out of it. Using ref e

solves this by borrowing the error, which is exactly what we need to return a refer-

ence from the function.

Introduction to Error Handling190

Implementing Display allows printing the error with println!("{}", err). Implementing Error

(especially source) enables features such as printing an error’s cause chain.

Using custom errors in functions
Now we can use our DataProcessingError as the E type in Result<T, E> within our functions:

use std::fs;

// Function that reads a number from a file, validates it's positive

fn read_positive_number(path: &str) -> Result<i32, DataProcessingError> {

 let content = fs::read_to_string(path)

 // Manual error mapping needed here (for now)

 .map_err(|e| DataProcessingError::IoError(e))?;

 let number = content.trim().parse::<i32>()

 // Manual error mapping needed here (for now)

 .map_err(|e| DataProcessingError::InvalidFormat(e))?;

 if number < 0 {

 Err(DataProcessingError::NegativeValue(number))

 } else {

 Ok(number)

 }

}

fn main() {

 // Test with non-existent file (simulated)

 match read_positive_number("non_existent_data.txt") {

 Ok(n) => println!("Number read: {}", n),

 Err(e) => println!("Error: {}", e), // Uses Display impl

 // Output: Error: I/O error: No such file or
directory ...

 }

 // Test with invalid format

 fs::write("invalid_data.txt", "abc").unwrap();

 match read_positive_number("invalid_data.txt") {

Chapter 6 191

 Ok(n) => println!("Number read: {}", n),

 Err(e) => println!("Error: {}", e), // Output: Error: Invalid data
format: invalid digit found in string

 }

 fs::remove_file("invalid_data.txt").ok();

 // Test with negative value

 fs::write("negative_data.txt", "-10").unwrap();

 match read_positive_number("negative_data.txt") {

 Ok(n) => println!("Number read: {}", n),

 Err(e) => println!("Error: {}", e), // Output: Error: Found
negative value -10, expected positive.

 }

 fs::remove_file("negative_data.txt").ok();

 // Test success

 fs::write("valid_data.txt", "123").unwrap();

 match read_positive_number("valid_data.txt") {

 Ok(n) => println!("Number read: {}", n), // Output: Number read:
123

 Err(e) => println!("Error: {}", e),

 }

 fs::remove_file("valid_data.txt").ok();

}

Using custom error types makes the code clearer about potential failures and allows for more

targeted error handling by the calling code.

Simplifying custom errors with thiserror and anyhow
Manually implementing the Display and Error traits for every custom error type can become

repetitive. Fortunately, the Rust community has created excellent crates (libraries) to streamline

this process. The two most popular crates for error handling are thiserror and anyhow.

 Note: Error conversion using map_err is still manual here. We’ll simplify this next.

Introduction to Error Handling192

The thiserror crate
The thiserror crate drastically reduces the boilerplate code needed for custom errors. By using

the #[derive(Error)] macro and attributes such as #[error("...")] and #[from], you can

automatically generate Display and Error trait implementations, making your error types both

ergonomic and powerful.

The #[from] attribute is particularly useful as it generates From trait implementations, allowing

the ? operator to automatically convert source errors (such as io::Error or ParseIntError) into

the appropriate variant of your custom error enum.

Let’s see a practical example with a main function that handles the various errors our function

can produce.

First, add thiserror to your Cargo.toml:

[dependencies]

thiserror = "2.0"

Then, redefine your error using the #[derive(Error, Debug)] macro and the #[error(...)] and #[from]

attributes:

use thiserror::Error;

use std::num::ParseIntError;

use std::io;

use std::fs;

use std::path::Path;

#[derive(Error, Debug)]

pub enum DataProcessingError {

 #[error("Invalid data format in file")]

 InvalidFormat(#[from] ParseIntError),

 #[error("Value '{0}' is negative and cannot be processed")]

 NegativeValue(i32),

 #[error("I/O error when accessing file")]

 Io(#[from] io::Error),

Chapter 6 193

}

/// Reads a number from a file and ensures it's not negative.

fn read_positive_number(path: &Path) -> Result<i32, DataProcessingError> {

 // The '?' operator automatically converts io::Error into

 // DataProcessingError::Io thanks to the #[from] attribute.

 let content = fs::read_to_string(path)?;

 // The '?' operator automatically converts ParseIntError into

 // DataProcessingError::InvalidFormat thanks to the #[from] attribute.

 let number = content.trim().parse::<i32>()?;

 if number < 0 {

 // We create this error variant manually.

 Err(DataProcessingError::NegativeValue(number))

 } else {

 Ok(number)

 }

}

fn main() {

 // --- Setup dummy files for demonstration ---

 fs::write("valid_number.txt", "123").unwrap();

 fs::write("invalid_format.txt", "abc").unwrap();

 fs::write("negative_number.txt", "-42").unwrap();

 // --- Test different scenarios ---

 println!("--- Test Case 1: Success ---");

 let path_valid = Path::new("valid_number.txt");

 match read_positive_number(path_valid) {

 Ok(n) => println!("Successfully read positive number: {}", n),

 Err(e) => eprintln!("An unexpected error occurred: {}", e),

 }

 println!("\n--- Test Case 2: File Not Found ---");

 let path_nonexistent = Path::new("no_such_file.txt");

 match read_positive_number(path_nonexistent) {

Introduction to Error Handling194

 Ok(n) => println!("Read number: {}", n),

 Err(e) => eprintln!("Error: {}", e), // Will print "I/O error when
accessing file"

 }

 println!("\n--- Test Case 3: Invalid Format ---");

 let path_invalid_format = Path::new("invalid_format.txt");

 match read_positive_number(path_invalid_format) {

 Ok(n) => println!("Read number: {}", n),

 Err(e) => eprintln!("Error: {}", e), // Will print "Invalid data
format in file"

 }

 println!("\n--- Test Case 4: Negative Value ---");

 let path_negative = Path::new("negative_number.txt");

 match read_positive_number(path_negative) {

 Ok(n) => println!("Read number: {}", n),

 Err(e) => eprintln!("Error: {}", e), // Will print "Value '-42' is
negative..."

 }

 // --- Cleanup ---

 fs::remove_file("valid_number.txt").ok();

 fs::remove_file("invalid_format.txt").ok();

 fs::remove_file("negative_number.txt").ok();

}

This example demonstrates a more realistic use case. The main function acts as the entry point of

an application that calls our read_positive_number function and handles its potential failures.

•	 Error enum: DataProcessingError defines the specific ways our operation can fail.

The #[from] attribute on the Io and InvalidFormat variants allows the ? operator in

read_positive_number to automatically convert io::Error and ParseIntError into

our custom error type.

•	 main function logic: The main function sets up several test files to simulate different sce-

narios (success, file not found, bad data, and invalid value). It then calls read_positive_

number for each case and uses a match statement to handle the Result.

Chapter 6 195

•	 Error output: When an Err is returned, eprintln!("Error: {}" e) prints the user-friend-

ly message defined by the #[error("...")] attribute in our enum, demonstrating how

thiserror automatically implements the Display trait.

The anyhow crate
anyhow takes a different approach, primarily aimed at applications (or binaries). It provides a

single, generic error type, anyhow::Error, designed to wrap any other error type that implements

std::error::Error.

Its goal is to simplify application-level error handling, where you often don’t need to distinguish

between dozens of different error types programmatically, but just want to know that something

went wrong and get a good error report (with context and a cause chain).

Add anyhow to Cargo.toml:

[dependencies]

anyhow = "1.0"

Then, you can use anyhow::Result<T> (which is an alias for Result<T, anyhow::Error>) as

your return type and use ? freely. anyhow::Error implements From for most common error types:

use anyhow::{Context, Result, bail}; // Import Result, Context, bail

use std::fs;

// The function now returns anyhow::Result

fn read_positive_number_anyhow(path: &str) -> Result<i32> {

 let content = fs::read_to_string(path)

 // context() adds contextual information to the original error

 .context(format!("Failed to read file '{}'", path))?;

 let number = content.trim().parse::<i32>()

 .context("File content is not a valid integer")?;

 if number < 0 {

 // bail! is an easy way to create and return an anyhow::Error

 bail!("The number read ({}) must be positive.", number);

 }

Introduction to Error Handling196

 Ok(number)

}

// main can also return anyhow::Result<()> for easy error propagation

fn main() -> Result<()> {

 fs::write("valid_data_ah.txt", "789").unwrap();

 let number = read_positive_number_anyhow("valid_data_ah.txt")?;

 println!("Success with anyhow: {}", number);

 fs::remove_file("valid_data_ah.txt").ok();

 // Test with error (negative value)

 fs::write("negative_data_ah.txt", "-5").unwrap();

 match read_positive_number_anyhow("negative_data_ah.txt") {

 Ok(_) => println!("This shouldn't happen"),

 Err(e) => {

 // anyhow formats the error including context and cause chain

 println!("Error with anyhow: {:?}", e);

 // Output (approx): Error: The number read (-5) must be
positive.

 }

 }

 fs::remove_file("negative_data_ah.txt").ok();

 // Test with error (file not found)

 match read_positive_number_anyhow("nonexistent_ah.txt") {

 Ok(_) => println!("This shouldn't happen"),

 Err(e) => {

 println!("Error with anyhow: {:?}", e);

 // Output (approx):

 // Error: Failed to read file 'nonexistent_ah.txt'

 //

 // Caused by:

Chapter 6 197

 // No such file or directory (os error 2)

 }

 }

 Ok(()) // main returns Ok if everything succeeded

}

The following are key features of anyhow:

•	 Use anyhow::Result<T> (or Result<T, anyhow::Error>)

•	 The ? operator automatically converts most errors into anyhow::Error

•	 The .context("...") method easily adds context to errors as they propagate

•	 The bail!("...") macro is a convenient way to create and return an anyhow::Error

from a specific point

•	 anyhow::Error provides excellent formatting for display ({:?}), including context and

the full cause chain

anyhow is great for application code (such as main, web handlers, and CLI tools) where you want

simple error handling and good reporting, without needing to define dozens of custom error

enums or manage complex conversions.

When to use thiserror versus anyhow
•	 Use thiserror in libraries to define a stable, specific set of errors that library consumers

can handle programmatically (e.g., with match)

•	 Use anyhow in applications to simplify error handling and reporting, especially when you

don’t need to programmatically distinguish between specific error types but just want to

log/display a detailed error

Both crates are extremely useful and often used together: a library might use thiserror to define

its errors, and an application using that library might use anyhow to handle those errors alongside

others from various sources.

Handling errors with Result is crucial for program correctness, but for debugging and monitoring,

it’s equally important to record when and why these errors occur using a structured logging system.

Introduction to Error Handling198

Logging errors
Importance of logging
Error handling often doesn’t stop at just returning a Result.

Especially in complex applications or long-running services, having a logging system is important

for tracking important events, warnings, and, critically, errors. Logging helps us do the following:

•	 Diagnose problems after they occur (post-mortem debugging)

•	 Monitor the application’s health in production

•	 Understand execution flow and identify bottlenecks or unexpected behavior

The log crate and implementations
The Rust ecosystem has a de facto standard logging facade crate called log. This crate defines a

common logging API (macros such as info!, warn!, and error!) that libraries and applications

can use to emit log messages.

However, the log crate itself doesn’t do anything with the messages; it doesn’t write them any-

where. It needs a logging implementation backend that actually filters the messages and writes

them to the console or a file, or sends them to an external service.

One of the simplest and most common implementations to get started with is env_logger, which

configures logging based on environment variables.

Basic setup with env_logger
To use log and env_logger, add them to your Cargo.toml:

[dependencies]

log = "0.11"

env_logger = "0.9" # Or latest version

anyhow = "1.0" # Often useful alongside logging

Then, initialize the logger at the start of your application (usually in main):

use log::{info, warn, error, debug, trace, LevelFilter}; // Import macros
and LevelFilter

use env_logger::{Builder, Env};

Chapter 6 199

use anyhow::Result; // Using anyhow for simplicity in examples

fn main() -> Result<()> {

 // Initialize env_logger. By default, reads RUST_LOG env var.

 // We can set a default level if RUST_LOG is not defined.

 Builder::from_env(Env::default().default_filter_or("info")) // Default
to 'info' if RUST_LOG isn't set

 .init();

 info!("Application started."); // Logged at INFO level

 match risky_operation(10) {

 Ok(_) => info!("Operation successful."),

 Err(e) => {

 // Log the error at ERROR level. {:?} with anyhow shows the
cause chain.

 error!("Operation failed: {:?}", e);

 }

 }

 match risky_operation(-5) {

 Ok(_) => info!("Operation (negative) successful."),

 Err(e) => {

 error!("Operation (negative) failed: {:?}", e);

 }

 }

 debug!("This is detailed debug information."); // Only visible if
RUST_LOG=debug or trace

 trace!("This message is very verbose."); // Only visible if RUST_
LOG=trace

 info!("Application finished.");

 Ok(())

}

fn risky_operation(value: i32) -> Result<()> {

 if value < 0 {

Introduction to Error Handling200

 // Log a warning before returning the error

 warn!("Attempting operation on negative value: {}", value);

 anyhow::bail!("Value cannot be negative: {}", value);

 }

 debug!("Performing operation on value: {}", value);

 // ... operation logic ...

 Ok(())

}

Logging levels and configuration
With env_logger, you don’t control log levels directly in your Rust code; instead, you control them

from your terminal by setting the RUST_LOG environment variable before running your program.

This is a powerful feature because it allows you or users of your application to change the log

verbosity for debugging without needing to recompile the code.

The general pattern in your terminal is VARIABLE=value command. For a Rust project managed

with Cargo, the command is typically cargo run. Let’s look at some examples:

In your terminal, in your project's root directory:

Run your program, showing only INFO, WARN, and ERROR messages (a good
default).

RUST_LOG=info cargo run

Show more detailed DEBUG messages and everything above (info, warn,
error).

RUST_LOG=debug cargo run

Show only WARNING and ERROR messages.

RUST_LOG=warn cargo run

Show DEBUG messages only for your own crate's code, keeping libraries
quieter.

Replace 'your_crate_name' with the actual name of your package from
Cargo.toml.

Chapter 6 201

RUST_LOG=your_crate_name=debug cargo run

Show everything (can be very verbose, useful for deep debugging).

RUST_LOG=trace cargo run

The most useful feature here is the ability to set log levels on a per-crate basis. For instance,

RUST_LOG=my_web_app=debug (where my_web_app is the name of your crate from Cargo.toml) is

incredibly helpful for seeing detailed logs from your application code while keeping the output

from libraries you’re using (such as Actix Web or Diesel) at a less verbose level. This helps you

focus on the logs that matter most for your immediate debugging task.

Logging errors with Context
When logging an error (especially using error!), it’s crucial to include as much context as pos-

sible. If you’re using anyhow, the {:?} format specifier on anyhow::Error is excellent because it

automatically includes context added via .context() and the chain of causes:

use anyhow::{Context, Result};

use log::error;

// ... (other imports and logger init) ...

fn read_config(path: &str) -> Result<String> {

 std::fs::read_to_string(path)

 .context(format!("Unable to read configuration file from '{}'",
path))

}

fn main() -> Result<()> {

 // ... init logger ...

 match read_config("config.toml") {

 Ok(config) => log::info!("Configuration read: {} bytes", config.
len()),

 Err(e) => {

 // Log the error using anyhow's detailed formatting

 error!("Failed to read configuration: {:?}", e);

 // Example log output:

Introduction to Error Handling202

 // ERROR [my_app] Failed to read configuration: Unable to read
configuration file from 'config.toml'

 // Caused by:

 // No such file or directory (os error 2)

 }

 }

 Ok(())

}

Good error logging is indispensable for maintaining and diagnosing complex Rust applications.

Practical examples and error handling best practices
We’ve covered the fundamental mechanisms (Result, Option, ?, match, custom errors, and log-

ging). Now, let’s consolidate this with a more integrated example and summarize key best prac-

tices for error handling in Rust.

Practical example: File data processing
Imagine a program that reads numbers from a file (one per line), validates them (must be positive),

and calculates their sum. It needs to handle I/O errors, number format errors, and validation errors:

use std::fs::File;

use std::io::{self, BufRead, BufReader};

use thiserror::Error; // Using thiserror for specific processing errors

use anyhow::{Context, Result}; // Using anyhow for app level and context

use log::{info, warn, error};

// Specific error for this processing logic

#[derive(Error, Debug)]

enum ProcessingError {

 #[error("Invalid number format on line {line_num}: '{content}'")]

 InvalidFormat {

 line_num: usize,

 content: String,

 #[source] // Original source error

 source: std::num::ParseIntError,

 },

Chapter 6 203

 #[error("Negative number {number} not allowed on line {line_num}")]

 NegativeNumber {

 line_num: usize,

 number: i32,

 },

 // Could add other specific errors here

}

// Function to process a single line

fn process_line(line_content: &str, line_num: usize) -> Result<i32,
ProcessingError> {

 let number = line_content.trim().parse::<i32>()

 .map_err(|e| ProcessingError::InvalidFormat {

 line_num,

 content: line_content.to_string(),

 source: e, // Include original parse error

 })?;

 if number < 0 {

 Err(ProcessingError::NegativeNumber { line_num, number })

 } else {

 Ok(number)

 }

}

// Main file processing function

fn process_file_and_sum(filename: &str) -> anyhow::Result<i32> {

 info!("Starting file processing: {}", filename);

 let file = File::open(filename)

 .context(format!("Failed to open file '{}'", filename))?; //
Anyhow context

 let reader = BufReader::new(file);

 let mut total_sum = 0;

 let mut lines_processed = 0;

 for (index, line_result) in reader.lines().enumerate() {

 let line_num = index + 1;

Introduction to Error Handling204

 let line = line_result.context(format!("Failed reading line {}",
line_num))?; // Anyhow context for I/O

 match process_line(&line, line_num) {

 Ok(number) => {

 total_sum += number;

 lines_processed += 1;

 }

 Err(e) => {

 // Log the specific error but continue with other lines

 warn!("Error processing line {}: {} - Skipping line.",
line_num, e);

 // Could also choose to stop here by returning Err(e.
into())

 // which works if ProcessingError impls Error, as
anyhow::Error impls From<E: Error>

 }

 }

 }

 info!("File processing complete. Lines processed: {}. Total sum: {}",
lines_processed, total_sum);

 Ok(total_sum)

}

fn main() -> anyhow::Result<()> {

 env_logger::Builder::from_env(env_logger::Env::default().default_
filter_or("info")).init();

 // Create a test file

 use std::io::Write;

 let mut file = File::create("test_data.txt")?;

 writeln!(file, "10")?;

 writeln!(file, "25")?;

 writeln!(file, "-5")?; // Error: negative

Chapter 6 205

 writeln!(file, "abc")?; // Error: format

 writeln!(file, "15")?;

 drop(file); // Ensure file is closed

 match process_file_and_sum("test_data.txt") {

 Ok(sum) => {

 info!("Final sum calculated: {}", sum); // Should be 10 + 25 +
15 = 50

 assert_eq!(sum, 50); // Add a check

 println!("Sum calculated successfully: {}", sum);

 }

 Err(e) => {

 // Errors here would likely be I/O errors opening the file,

 // as internal errors are logged but not propagated by
process_file_and_sum

 error!("Critical error during file processing: {:?}", e);

 }

 }

 std::fs::remove_file("test_data.txt")?; // Clean up test file

 Ok(())

}

This example combines several concepts:

•	 Defining a custom error (ProcessingError) with thiserror for specific processing failures.

•	 Using anyhow::Result and .context() for the main process_file_and_sum function,

handling I/O errors, and adding context.

•	 The process_line function returns the specific ProcessingError.

•	 In the loop within process_file_and_sum, specific errors from process_line are caught

using match. Here, we choose to log them as warn! and continue processing subsequent

lines, rather than halting everything (a common design choice).

•	 Logging (info!, warn!, and error!) tracks progress and reports issues.

Introduction to Error Handling206

Summary
Great job getting through Chapter 6!

Error handling can seem intimidating, but as you’ve seen, Rust gives you a clear and powerful

toolkit to manage it with confidence.

In this chapter, we learned that Rust thinks about errors in two main ways: recoverable errors

(such as a file not being found) and unrecoverable errors (bugs that would crash the program).

Here’s a quick recap of the main tools we added to our belt:

•	 Result<T, E>: Our go-to for any operation that might fail, letting us handle both the

Ok(value) and Err(error) cases

•	 Option<T>: The perfect tool for values that might be absent, safely handling Some(value)

and None

•	 panic!: The big red button for unrecoverable errors, which we saw is what methods such

as .unwrap() and .expect() use under the hood

We then explored the most common patterns for working with these types. We started with the

exhaustive match statement and then saw how to make our code more concise with the ? operator,

which is a fantastic way of propagating errors cleanly. Finally, we saw how to make our errors

even better by creating custom error types (especially with awesome crates such as thiserror

and anyhow) and the importance of logging to keep an eye on our application’s health.

Questions and assignments
Now that we’ve covered the concepts and best practices for error handling in Rust, it’s time to

test your knowledge with some exercises and assignments.

Questions
1.	 What is the fundamental difference in meaning between returning Result<T, E> versus

Option<T> from a function? Describe a scenario where each would be the more appro-

priate choice.

2.	 Explain what a “panic” is in Rust. When is it appropriate to let a program panic (e.g., by

using .unwrap() or .expect()) instead of returning a Result?

3.	 What does the ? operator do when used on a Result? What is the main requirement for

the function in which you use the ? operator?

Chapter 6 207

4.	 Why would you create a custom error enum instead of just returning Result<T, String>

with a descriptive error message?

5.	 What is the primary difference in use cases between the thiserror and anyhow crates?

When would you choose one over the other?

6.	 What does the .unwrap_or(default_value) method on an Option do, and how does it

help prevent a panic?

7.	 Why is structured logging (using a crate such as log) considered an important part of a

robust error-handling strategy?

Assignments
Assignment 6.1: File reading with detailed error handling

1.	 Write a read_content(path: &str) -> Result<String, std::io::Error> function.

2.	 Use std::fs::read_to_string.

3.	 In main, call read_content for both an existing and a non-existent file.

4.	 Use match in main to print the content on Ok, or a specific error message (e.g., “File not

found” or “Permission denied”) on Err. (Hint: Inspect the err.kind() of the io::Error.)

Assignment 6.2: Division function with custom errors (using
thiserror)

1.	 Define a DivisionError enum using thiserror. It should have at least a DivisionByZero

variant.

2.	 Implement a safe_divide(a: f64, b: f64) -> Result<f64, DivisionError> function.

3.	 In main, call safe_divide with valid cases and a division-by-zero case.

4.	 Use match to handle the Result and print appropriate messages using the Display im-

plementation generated by thiserror.

Assignment 6.3: Finding elements with Option and ?
1.	 Write a find_first_greater_than_ten(slice: &[i32]) -> Option<i32> function.

2.	 Use iterator methods (iter(), find(), and copied()) to find the value of the first element

greater than 10.

3.	 (Optional advanced): Write a second function, sum_first_and_last_even(slice:

&[i32]) -> Option<i32>, that uses ? to find the first even number and the last even

number, returning their sum, or None if either is not found.

Introduction to Error Handling208

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for

this book by name, confirm the edition, and then follow the

steps on the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require one.

http://packtpub.com/unlock

7
Polymorphism and Lifetimes

We have spent the previous chapters defining concrete types such as structs and enums. These

are excellent for modeling specific data, but real-world software often requires more flexibility!

In real-world scenarios, we often need functions that can accept different types of data as long

as they behave in a certain way.

In computer science, this concept is known as polymorphism. In Rust, we achieve this primarily

through traits and generics. We will also cover lifetimes, which are a special form of generics

that ensures references remain valid while our code becomes more abstract.

Ad hoc polymorphism: defining behavior with traits
The first step toward writing flexible code is changing how we view our data. Instead of focusing

on the concrete details of what a type is, we focus on what it can do.

In Rust, traits are used to define shared behaviors for different types, functioning as a contract

between the programmer and the compiler. When a struct indicates that it implements a trait,

it commits to providing the specific functions outlined by that trait. While similar to “interfaces”

in other languages, Rust traits offer distinctive capabilities and flexibility, which we will examine

in this section.

Defining a trait
To define a trait, we use the trait keyword followed by the name we want to give it. Inside the

curly brackets, we list the method signatures that describe how the types that implement this

trait will behave. Imagine we are creating software for a classic Italian coffee bar.

Polymorphism and Lifetimes210

We have a variety of machines, such as a simple Moka pot and a professional espresso machine.

Although they are physically very different, they share one fundamental function: they both brew

coffee. To represent this shared ability, we can define a trait called Brew:

pub trait Brew {

 // We only define the signature here, followed by a semicolon.

 // We do not define the body implementation yet.

 fn extract(&self) -> String;

}

Leaving the body empty and ending with a semicolon clearly indicates to the compiler that any

type meant to be a Brew type needs to provide its own implementation of the extract method.

The compiler diligently enforces this rule to help ensure you remember to implement the method

properly.

Method signatures versus default implementations
A trait does not always require the user to write new code from scratch. Sometimes, a behavior is

so typical that we can provide a default implementation directly within the trait definition itself.

This is incredibly useful for keeping your code DRY (which stands for Don’t Repeat Yourself).

If a type implements the trait, it automatically gets this default behavior without needing to write

a single line of code for it. However, if a specific type requires a unique approach, it can simply

override the default.

For example, let’s add a clean method to our Brew trait.

For most simple coffee makers (such as the Moka pot), cleaning is just a matter of rinsing them

with water. We can make this the default. However, a professional espresso machine has a com-

plex self-cleaning cycle that requires a specific implementation:

// src/lib.rs

pub trait Brew {

 fn extract(&self) -> String;

 // This is a default implementation.

 In the definition, we return a String type. While this requires memory allocation, we

choose it here to allow flexibility for formatting dynamic messages (such as specific

temperatures) without complicating the code with lifetimes yet.

Chapter 7 211

 // If a type doesn't define this method, it gets this version
automatically.

 fn clean(&self) -> String {

 String::from("Cleaning with a simple hot water rinse.")

 }

}

pub struct Moka;

pub struct EspressoMachine;

impl Brew for Moka {

 fn extract(&self) -> String {

 String::from("Bubbling up some coffee...")

 }

 // We don't implement clean() here.

 // Moka automatically uses the default "hot water rinse".

}

impl Brew for EspressoMachine {

 fn extract(&self) -> String {

 String::from("Pressurizing water...")

 }

 // We override the default because this machine is complex.

 fn clean(&self) -> String {

 String::from("Running automatic descaling program.")

 }

}

Abstracting behavior
Designing with traits encourages a fresh perspective. Instead of focusing on what specific data a

type contains, think about the actions it can perform. This approach is really empowering because

it separates your functions from the nitty-gritty details of the types they work with. Imagine a

computer sending a document to a peripheral: what it truly needs is a device that can print.

Polymorphism and Lifetimes212

It doesn’t matter whether it’s a laser printer, an inkjet, or a thermal receipt printer, as long as the

device can handle the Print action, the computer can send the job effortlessly. By focusing on

these capabilities rather than specific structs, your code becomes more adaptable, making it easy

to support new types in the future without having to overhaul your existing logic.

Implementing traits
Defining a trait is just the beginning! To really make it work for us, we need to apply it to our

specific data types. This step is known as “implementing” the trait. We do this using the impl

TraitName syntax for TypeName, which clearly signals to the compiler that our particular struct

has the behaviors outlined by the trait.

Implementing custom types
Now, let’s return to our coffee example. We start by defining a simple Moka struct:

// src/lib.rs

pub struct Moka {

 pub size: u8, // Capacity in cups

}

At this stage, our Moka struct is just a container for data. It doesn’t know how to behave like a

coffee maker yet. If we try to call the extract method immediately, the Rust compiler will stop us:

// src/main.rs

fn main() {

 let pot = Moka { size: 3 };

 // This causes an error!

 let coffee = pot.extract();

}

The compiler will produce an error similar to this: no method named 'extract' found for

struct 'Moka' in the current scope.

To fix this and make the Moka usable as a coffee maker, we must explicitly implement the Brew

trait we defined earlier. Notice how the following implementation logic is specific to the Moka

pot. It mentions bubbling on a stove, whereas an espresso machine implementation would likely

involve high pressure:

// src/lib.rs

impl Brew for Moka {

Chapter 7 213

 fn extract(&self) -> String {

 format!("Bubbling on the stove... ready to serve {} cups of rich
coffee!", self.size)

 }

}

Now that the trait is implemented, the compiler knows exactly what to do when we call .extract().

The orphan rule (where implementation is allowed)
One important restriction to keep in mind is the orphan rule. We already mentioned it in the

previous chapter, but let’s look at the details.

Rust has a helpful rule: you cannot implement an external trait on an external type. This keeps things

orderly. Think of it like renovation laws: you’re free to renovate your own house (a local type) or

build a new structure if you have the blueprints (a local trait). But, just like you can’t walk up to

a public monument and repaint it, you can’t add an external trait to an external type. This rule

is in place to prevent chaos and ensure that different crates don’t conflict by adding the same

method to a standard type, such as Vec.

There is a workaround: the Newtype pattern. If you encounter this restriction, there is a stan-

dard way to circumvent it: use a wrapper type (often called the Newtype pattern). By wrap-

ping the external type (such as Vec<i32>) inside a struct defined in your crate (such as struct

MyVec(Vec<i32>)), Rust treats the wrapper as a local type, allowing you to implement any trait

you want:

// src/lib.rs

use std::fmt;

// --- ALLOWED SCENARIOS ---

// 1. Implementing a LOCAL trait (Brew) on an EXTERNAL type (String).

// This is allowed because we own the trait "Brew".

impl Brew for String {

 fn extract(&self) -> String {

 String::from("Pour-over coffee")

 }

}

Polymorphism and Lifetimes214

// 2. Implementing an EXTERNAL trait (Display) on a LOCAL type (Moka).

// This is allowed because we own the type "Moka".

impl fmt::Display for Moka {

 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

 write!(f, "Moka pot size {}", self.size)

 }

}

// --- FORBIDDEN SCENARIO (The Orphan Rule) ---

/*

// ERROR: Implementing an EXTERNAL trait on an EXTERNAL type.

// You cannot implement Display for Vec<i32> because you own neither!

impl fmt::Display for Vec<i32> {

 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

 write!(f, "Vector content...")

 }

}

*/

// --- THE SOLUTION (Newtype Pattern) ---

// We wrap the external type in a local struct.

pub struct MyIntList(pub Vec<i32>);

// Now MyIntList is LOCAL, so we can implement Display!

impl fmt::Display for MyIntList {

 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

 // We access the wrapped Vec using .0

 write!(f, "List: {:?}", self.0)

 }

}

Trait objects
Sometimes we need to work with multiple different types at the same time, treating them all as

a single abstract concept. Imagine a waiter holding a tray. The tray might contain a cappuccino,

an espresso, and a latte.

Chapter 7 215

These are all different physical drinks, but they all share the property of being a “beverage.” In

Rust, a standard collection such as a Vec is restricted to holding only one specific type. You cannot

mix a Moka struct and an EspressoMachine struct in the same list because they have different

sizes in memory. To solve this, Rust provides trait objects.

Using the dyn keyword allows us to instruct the compiler to ignore the specific concrete type

(such as Moka) and treat the item merely as “something that implements this trait.” This is called

a trait object.

Because the compiler cannot know the size of a trait object in advance (it could be a tiny Moka

pot or a massive espresso machine), we must access it through a pointer:

•	 Box<dyn Brew>: We use Box when we want to own the data. Box puts the specific struct

on the heap and gives us a predictable pointer size on the stack.

•	 &dyn Brew: We can also use a simple reference if we only need to borrow the trait object

without taking ownership.

In the following example, we use Box so we can store mixed types inside a single vector:

// src/main.rs

// 1. Setup: Let's define the types and implementations first.

// (Moka was defined previously, but we define EspressoMachine here).

pub struct Moka { pub size: u8 }

impl Brew for Moka {

 fn extract(&self) -> String {

 format!("Bubbling up {} cups.", self.size)

 }

}

Note

We will cover Smart Pointers such as 'Box' in detail in Chapter 11. For now, just know

that 'Box' allows us to store these different types in the same list by putting them

behind a pointer of a fixed size.

Polymorphism and Lifetimes216

pub struct EspressoMachine { pub pressure: u8 }

impl Brew for EspressoMachine {

 fn extract(&self) -> String {

 format!("Extracting at {} bars of pressure.", self.pressure)

 }

}

// 2. The Main Event: Storing mixed types using Trait Objects.

fn main() {

 // We can store mixed types because they both satisfy 'dyn Brew'.

 // 'Box' puts the data on the heap, so the vector just stores pointers

 // of the same size.

 let machines: Vec<Box<dyn Brew>> = vec![

 Box::new(Moka { size: 6 }),

 Box::new(EspressoMachine { pressure: 9 }),

];

 for machine in machines {

 println!("Coffee shop says: {}", machine.extract());

 }

}

Static versus dynamic dispatch
When you use trait objects with dyn, you are choosing to use what is called dynamic dispatch.

This means the compiler does not know exactly which method to call at compile time. Instead,

it creates code that finds the correct function at runtime using a specialized table of function

pointers called a vtable (which stands for virtual method table).

This flexibility comes with a performance cost. In standard generics (static dispatch), the com-

piler generates a specific version of the function for each concrete type, often “inlining” the code

directly to maximize speed.

With dynamic dispatch, the compiler cannot do this. Every time you call a method on a trait ob-

ject, the program must perform a pointer dereference to look up the address in the vtable before

it can execute the code.

Chapter 7 217

This extra layer of indirection not only adds a small runtime overhead but, more importantly,

prevents the compiler from performing aggressive optimizations such as inlining.

However, despite the overhead, dynamic dispatch is the only way to achieve true polymorphism,

allowing you to store different types (such as Moka and EspressoMachine) in the same container.

Parametric polymorphism: abstracting with generics
Now that we’ve explored how traits set shared behaviors, let’s move on to the next exciting con-

cept: generics. Think of generics as a way to make your code adaptable, regardless of the types

you’re working with, much like having a versatile tool that fits many jobs.

In computer science, this idea is known as parametric polymorphism, and you may have encoun-

tered it in action with collections such as Vec<i32> and Vec<String>. These collections employ the

same logic for adding, removing, or accessing items, regardless of the data type contained within.

Thanks to generics, we can create functions and structs with placeholders for types, which means

we write the code once and it’s ready to handle any data type you need. Isn’t that wonderful?

The problem of duplication
Let’s consider why generics can be so helpful. Imagine you’re working on a function that finds

the biggest number in a list of integers. You name it largest_i32. Later, you realize you also

need the same function for a list of characters. So, you copy the code, change the signature, and

rename it largest_char. The core of the function remains the same, iterating through the list

and comparing values, but now you have two separate pieces of code just because the input types

are different. This kind of repetition can be tedious and prone to mistakes. Plus, if you find a bug

in your logic later, you’ll need to fix it in every version you’ve copied, which can be a real hassle.

Writing the same function for different types
To see why generics are important, consider the alternative. Imagine you need to write a function

that finds the largest number in a list of integers. You create a function called largest_i32. Later,

you realize you need the same functionality for a list of characters. You copy and paste the code,

change the signature, and rename it largest_char.

The core of the function remains the same. It goes through the list and compares values.

Polymorphism and Lifetimes218

But you’re forced to duplicate the code just because the input types are different. This method is

tedious and prone to errors. If you find a bug later, you have to remember to fix it in every copy.

// We are forced to write two functions with identical logic

fn largest_i32(list: &[i32]) -> i32 {

 let mut largest = list[0];

 for &item in list {

 if item > largest {

 largest = item;

 }

 }

 largest

}

fn largest_char(list: &[char]) -> char {

 let mut largest = list[0];

 for &item in list {

 if item > largest {

 largest = item;

 }

 }

 largest

}

The <T> type parameter
To avoid this duplication, we use a placeholder instead of a specific type. In Rust, this is declared

using angle brackets containing a type parameter, usually named T. Think of T as a variable, but

for types rather than values. When defining the function, we specify that it works for any T type

rather than just integers or characters. We add <T> immediately after the function name, which

signals to the compiler that T is a generic type.

It will be replaced with a specific type, such as i32 or String, later when the function is called:

// We read this as: "largest is a function generic over some type T"

fn largest<T>(list: &[T]) -> T {

 let mut largest = list[0];

 for &item in list {

 // NOTE: This specific line will cause a compiler error right now!

 // We will explain why and fix it in the next section.

Chapter 7 219

 if item > largest {

 largest = item;

 }

 }

 largest

}

Bounded parametric polymorphism (trait bounds)
This idea serves as a welcoming bridge, linking traits and generics seamlessly. While generics

give us the freedom to accept any type, we sometimes want to make sure that the type we choose

has specific abilities.

Limiting generics with traits (T: Trait)
If you tried to compile the largest function from the previous section, you would encounter an

error. The compiler complains because the greater-than operator, >, is not available for every

possible type in the universe. For example, it makes no sense to ask whether one generic file handle

is mathematically larger than another.

To fix this, we need to restrict the generic T type. We must tell the compiler that we only accept

types that know how to be compared. We do this using trait bounds.

By changing the signature to fn largest<T: PartialOrd + Copy>(...), we indicate that T can

be any type that implements the PartialOrd trait for comparison and the Copy trait, so we can

move the value out of the slice:

// src/main.rs

// We restrict T: It must be comparable (PartialOrd) and copyable (Copy)

// We return Option<T> to handle the case where the list is empty.

fn largest<T: PartialOrd + Copy>(list: &[T]) -> Option<T> {

 if list.is_empty() {

 return None;

 }

 let mut largest = list[0];

 for &item in list {

 if item > largest {

 largest = item;

 }

Polymorphism and Lifetimes220

 }

 Some(largest)

}

The where clause for complex constraints
Sometimes, a single function requires several generic types, each with its own set of traits. Writing

all of this within the angle brackets can make the function signature quite lengthy and difficult

to follow. It starts to resemble a crowded legal disclaimer rather than a neat and clear function

definition. Luckily, Rust offers a helpful solution with the where clause.

This enables you to place constraints at the end of the signature, separating the function name

and arguments from the specific type requirements. As a result, the code becomes easier to scan

and understand:

use std::fmt::{Debug, Display};

// Hard to read: The bounds clutter the function name

fn compare_prints<T: Display + Clone, U: Clone + Debug>(t: &T, u: &U) { }

// Easier to read: The bounds are moved to the 'where' clause

fn compare_prints<T, U>(t: &T, u: &U)

where

 T: Display + Clone,

 U: Clone + Debug,

{

 // Function body...

}

Returning types that implement traits
We can also use traits in return positions. Instead of returning a concrete type such as i32 or

String, we can declare that a function returns impl Trait. This indicates to the caller that they

will receive some type that implements the specified trait, but they don’t need to know exactly

which one.

This is especially useful when working with complex types such as iterators or closures, where

writing out the full type signature can be difficult or impossible. It’s similar to a vending machine:

you press a button for soda, and you get a can.

Chapter 7 221

You don’t need to know the specific brand or manufacturing details, only that it satisfies the

Drinkable interface:

use std::fmt::Display;

// The caller doesn't know this is a String, only that it can be
displayed.

fn get_status() -> impl Display {

 "System All Green"

}

// NOTE: This feature has a limit!

// You cannot return distinct types conditionally.

// This will NOT compile because the compiler needs one concrete type
hidden behind the trait.

fn invalid_return(flag: bool) -> impl Display {

 if flag {

 "Success" // This is a &str

 } else {

 100 // This is an i32

 }

}

Monomorphization
Performance can sometimes be a worry when working with high-level abstractions. In many

programming languages, generic code may lead to some runtime overhead because the program

needs to frequently verify the type of data it handles.

Rust avoids this entirely through a process called monomorphization.

This term originates from Greek, meaning “single form.” It refers to the process the compiler uses

to transform your versatile, generic code into specific machine instructions. Instead of relying on

one generic function that attempts to manage everything at runtime, the compiler decomposes

it into specialized functions during compilation.

Polymorphism and Lifetimes222

How Rust optimizes polymorphism (zero-cost)
The result of this process is what we call a zero-cost abstraction. When you compile your code,

Rust examines every instance where you used a generic function and generates a separate version

of that function for the specific types you actually used.

If you call a generic function with an integer and later with a float, the compiler silently creates

two separate copies of that function in the binary. This means your generic code runs exactly as

fast as if you had manually copied and pasted the function for each type. You get the benefits of

clean, abstract code without any performance cost during execution.

And now we have finally arrived at the topic that keeps many new Rustaceans up at night: lifetimes.

Often cited as the single hardest concept to grasp in the language, lifetimes are the secret sauce

that allows Rust to manage memory safely without a garbage collector. If you’ve heard horror

stories about fighting the borrow checker, this is usually the battlefield, but rest assured: the logic

behind it is more straightforward than it seems.

Lifetimes: polymorphism for scope
Let’s explore the third fascinating feature of Rust’s polymorphism: lifetimes. While traits help us

manage behavior and generics handle different types, lifetimes are all about scope. Every reference

in Rust has a lifetime, which is simply how long that reference remains valid.

Usually, these are implicit and inferred, so you might not notice them. But when we write functions

that work with references from different sources, it’s important to explicitly tell the compiler how

those lifetimes relate. This helps us ensure that we never accidentally use data that has already

been cleaned up.

The necessity of lifetimes
Lifetimes are more than just a syntax rule; they are a key part of how Rust keeps your memory

safe without needing a garbage collector. Their primary role is to prevent dangling references,

which occur when a program attempts to use data that has already been deleted or modified. In

languages such as C or C++, this can often lead to crashes and security vulnerabilities because

the compiler may allow you to access memory that’s no longer valid. Rust helps prevent these

problems by ensuring that every reference remains valid for as long as it’s needed.

Chapter 7 223

The dangling reference problem
Lifetimes avoid a bug known as a dangling reference, which occurs when a program references

data that has been deleted or reassigned. In C++, this can lead to crashes or security vulnerabilities

because pointers direct to invalid memory locations. Rust prevents this by disallowing references

to variables that no longer exist after a function finishes, thereby ensuring that references remain

valid and do not point to invalid data:

fn main() {

 let reference_to_nothing;

 {

 let x = 5;

 // Error: 'x' only lives inside this block

 reference_to_nothing = &x;

 } // 'x' is dropped here

 // This would crash if Rust allowed it!

 println!("r: {}", reference_to_nothing);

}

In this example, the x variable is created inside the inner set of curly brackets. This specific area

where the variable is valid is known as its scope.

In Rust, memory management is tied strictly to these scopes. As soon as the code execution

reaches the closing bracket, }, of the inner block, x goes out of scope. When this happens, Rust

automatically performs a cleanup process called dropping.

Dropping means that the value of 5 is removed from memory, and the resources it occupied are

returned to the system. Consequently, reference_to_nothing is left holding a reference to a

memory address that no longer contains valid data. If Rust allowed us to run the final println!,

we would be trying to read garbage memory, which leads to crashes or unpredictable bugs. The

compiler catches this lifetime mismatch immediately.

How the borrow checker validates scopes
To ensure that references are valid, the Rust compiler uses a component called the borrow checker.

Polymorphism and Lifetimes224

This acts like a strict auditor that runs during compilation. It compares the scope of a variable

(how long it lives) with the scope of any references to it. If the borrow checker sees that a refer-

ence tries to outlive the data it points to, it stops the compilation immediately. This prevents the

program from ever running with invalid pointers:

// src/main.rs

fn main() {

 let r; // ---------+-- 'a (Outer scope: Long duration)

 { // |

 let x = 5; // -+-- 'b | (Inner scope: Short duration)

 r = &x; // | |

 } // -+ | <--- 'b ends here (x is dropped)

 println!("r: {}", r); // |

} // ---------+ <--- 'a ends here

// Error: The reference 'r' has lifetime 'a, but refers to 'x' which has
lifetime 'b.

// Because the scope 'b is shorter (ends earlier) than 'a, 'r' is left
pointing to invalid memory.

In this diagram, the vertical lines represent the duration, or scope, of each variable. We label the

outer scope 'a and the inner scope 'b.

Visually, you can see that 'b is strictly shorter than 'a. This creates a conflict because r (which

lives for the long duration, 'a) tries to hold a reference to x (which only exists for the short dura-

tion, 'b). When the inner scope, 'b, ends, x is dropped, but r is still alive and trying to look at it.

Rust forbids this: the data being referenced must always live at least as long as the reference itself.

Generic lifetime annotations
In most cases, Rust manages lifetimes automatically, so you don’t need to worry about them.

However, the compiler sometimes cannot infer reference lifetimes automatically. This often occurs

when a function takes multiple references and returns one. In such cases, the compiler is unsure

whether the returned reference borrows from the first or second argument. Because it checks

function signatures rather than implementation, we need to assist it by explicitly specifying the

lifetimes.

Chapter 7 225

The <’a> syntax
Lifetime annotations differ slightly from the generic types we saw earlier. They always begin with

an apostrophe ('). The names are arbitrary, so you could call a lifetime 'pizza if you wanted to.

However, the Rust community prefers very short, lowercase names such as 'a, 'b, and 'c.

These declarations are enclosed in angle brackets, just like generic types. It’s very important to

understand that adding these annotations doesn’t change how your code runs. It doesn’t make

a variable live longer. Instead, it labels the relationships between the lifetimes of different refer-

ences so the compiler can verify them:

&i32 // a reference

&'a i32 // a reference with an explicit lifetime 'a

&'a mut i32 // a mutable reference with an explicit lifetime 'a

Annotating functions holding references
Let’s examine a practical example where this is necessary.

Imagine a function that takes in two string slices and gives back the longer one. If you try to

compile this without annotations, Rust will gently remind you with an error.

The compiler notices that the function returns a reference, but it’s not quite sure whether that

reference belongs to the first or second argument. This can be a bit confusing because the two

inputs might have different lifespans. To clarify, we introduce a generic lifetime, 'a, and specify

it for both the input parameters and the return type.

This signature tells Rust: “There is some lifetime, 'a, that both x and y satisfy.” In practice, when

you call this function, Rust determines 'a to be the overlap of the two input scopes.

This means the returned reference is guaranteed to be valid only as long as the shorter of the

two inputs:

// We declare 'a and say that x, y, and the return value all share this
lifetime. // Crucially, this means the return value is valid only as long
as the // SHORTER of the two input lifetimes.

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {

 if x.len() > y.len() {

 x

 } else {

 y

 }

}

Polymorphism and Lifetimes226

The relationship between input and output lifetimes
When we specify the same lifetime, 'a, for multiple parameters, we’re basically setting a shared

constraint based on where those references live. Think of 'a as representing the overlap (or in-

tersection) of all the input lifetimes. So, if you pass in a reference that lasts the whole program

and another that only exists briefly in a small part of the code, the return value will be limited

to that small part.

This is the contract we sign with the compiler. We promise that the returned reference will not

outlive the shortest-lived input, making sure we never accidentally access data that has been

cleaned up.

Lifetimes in data structures
Until now, we have only defined structs that own their data. For example, a struct containing a

String or Vec<i32> type is straightforward because the struct and its data are created and de-

stroyed together. However, in some cases, it is more efficient for a struct to store a reference to

data managed by another entity.

This situation is common when creating parsers or views, where copying large text blocks is

undesirable. Since the struct does not own the data, the compiler requires assurance that the

struct won’t outlive the referenced data. We ensure this safety by including lifetime annotations

in the struct definition.

Structs with references
To define a struct that contains a reference, we need to add a lifetime annotation in two places:

•	 First, we declare the lifetime parameter inside angle brackets immediately after the struct

name

•	 Second, we assign that lifetime to the specific field that holds the reference

This creates a binding contract. It informs the compiler that an instance of this struct cannot

outlive the data it points to. If the original data is dropped (cleaned up from memory) while this

struct is still trying to use it, the compiler will instantly flag an error.

This guarantees you never accidentally access “dead” data or dangling pointers:

// src/main.rs

// This struct holds a reference, so it needs a lifetime 'a

struct ImportantExcerpt<'a> {

 part: &'a str,

Chapter 7 227

}

fn main() {

 let novel = String::from("Call me Ishmael. Some years ago...");

 // The instance 'first_sentence' cannot outlive 'novel'

 let first_sentence = ImportantExcerpt {

 part: &novel[0..15],

 };

 // If 'novel' were dropped here, 'first_sentence' would become
invalid.

}

The impl block for lifetime-bound structs
When you decide to add methods to a struct that holds references, the syntax might seem a bit

repetitive initially because you see the lifetime annotation twice. However, this is necessary be-

cause we are separating declaration from usage.

First, we must write impl<'a> to declare the lifetime parameter. This tells the compiler, “I am about

to use a generic lifetime symbol named 'a inside this block.” Second, we write Highlight<'a> to

use that specific lifetime, applying it to the struct we are targeting. Since the lifetime is part of

the struct’s type identity, we cannot implement methods for just Highlight; we must implement

them for Highlight<'a>:

struct Highlight<'a> {

 part: &'a str,

}

// 1. impl<'a>: We DECLARE the lifetime parameter here so the compiler
knows it exists.

// 2. Highlight<'a>: We USE it here to select the specific struct type.

impl<'a> Highlight<'a> {

 fn announce(&self) {

 println!("Attention to: {}", self.part);

 }

}

Polymorphism and Lifetimes228

Advanced lifetime concepts
We have discussed the strict syntax where we manually label every reference. However, if this

were always necessary for every function, writing Rust would become extremely tedious. Luckily,

the language includes smart features to automatically handle the most common patterns.

Now, we will explore how the compiler can often determine lifetimes on its own without help.

We will also look at a special reserved lifetime for data that remains valid for the entire duration

of the program.

Lifetime elision rules
In early versions of Rust, every function that used a reference needed explicit lifetime annotations.

This made the code cluttered and repetitive. The Rust team saw that developers kept writing the

same lifetime patterns repeatedly. To fix this, they embedded these common patterns directly

into the compiler as elision rules. This isn’t magic; it’s just a set of predictable assumptions.

 For example, if your function takes exactly one reference as input, the compiler automatically

assigns that same lifetime to the output reference. You only need to add annotations manually

when there is ambiguity, such as when a function accepts multiple references and the compiler

can’t determine which one is being returned:

// What you write (Elided):

// This works automatically ONLY because there is exactly one input
reference.

// If there were multiple inputs, elision would fail.

fn get_part(s: &str) -> &str { ... }

// What the compiler actually understands (Explicit):

fn get_part<'a>(s: &'a str) -> &'a str { ... }

The static lifetime (‘static)
The language reserves a special lifetime name called 'static, which means the data stays acces-

sible throughout the whole program run. Interestingly, you’ve been using this lifetime quite often

without realizing it. For example, every string literal, such as "Hello World", is stored right in

the program’s binary. Since this binary is loaded into memory whenever the program runs, those

strings are always available for you to use.

Chapter 7 229

Therefore, they have the 'static lifetime. While this can be helpful, it’s important not to overuse

it. Many new Rust programmers try to fix lifetime errors by making everything 'static, but this

is usually not the right approach. It tends to hide the real problem by keeping data in memory

longer than necessary instead of properly managing how references are used.

// This string data is baked into the executable.

// It is valid from the moment the program starts until it exits.

let s: &'static str = "I have a static lifetime.";

We have analyzed the tools individually; now it is time to see them in action.

Applied polymorphism: a project
In this chapter, we’ve explored the three main pillars of Rust’s flexible architecture: traits, gener-

ics, and lifetimes. While it’s helpful to understand each one on its own, their true strength really

shines when you see them working together. In everyday Rust development, you’ll find these

concepts usually mixing and matching rather than standing alone.

In this final section, we’ll bring together everything we’ve learned into a single, clear example.

This will demonstrate how these features work together to enable us to write code that is safe,

fast, and easy to reuse. You’ll often come across generic structs constrained by traits that hold

references with specific lifetimes, and understanding how they fit into this bigger picture will

make your coding journey even more rewarding.

Building a zero-copy configuration parser
To illustrate these abstract ideas clearly, we will create a “zero-copy configuration loader.”

The aim is to develop a system that accepts input from any source, such as custom text formats or

JSON, without requiring the core logic to be rewritten. This involves traits to define the common

behavior. Additionally, we want it to be highly efficient. Rather than creating new strings for

each configuration key, which consumes extra memory, the configuration struct should directly

reference the original input data.

This particular requirement necessitates using lifetimes to guarantee safety. Additionally, we

aim for the system to be adaptable to any type of configuration structure, which calls for generics.

Polymorphism and Lifetimes230

Defining the capability (the Parse trait)
Let’s start by setting up the interface in a clear and straightforward way. We want a simple method

to turn raw text into a structured Rust object, no matter the format. To achieve this, we’ll define a

trait called Parse. Think of this trait as a kind of agreement: any type that adopts it must include

a parse method. This method takes in a string slice with the raw data and produces an instance

of that type.

It’s also important that we specify a lifetime, 'a, on the trait itself. This detail is essential for our

zero-copy approach, as it informs the compiler that the created object might hold references

directly to the input string, sharing their lifecycles:

// We define a lifetime 'a so the returned Self can hold references to
'input'

trait Parse<'a> {

 fn parse(input: &'a str) -> Self;

}

Abstracting the input (using generics)
Now that we have this trait, we can build a function around it that’s really versatile. We’re aiming

for a single loader function that can handle any kind of configuration, whether it’s for a database,

a web server, or something else. That’s where generics really come in handy.

So, we’ll create a function called load_configuration, but instead of tying it to a specific struct,

we’ll make it work with any T type. Of course, we can’t just accept any type; we need to set some

rules. We do this by adding a trait bound, making sure T implements our Parse trait.

This way, we know that every type passing through this function will have the parse method we

need to turn a string into a struct:

// This function works for ANY type T that implements Parse

// The <'a> ensures that the returned T cannot outlive the input string.

fn load_configuration<'a, T>(input: &'a str) -> T

where

 T: Parse<'a>,

{

 println!("Loading configuration...");

 T::parse(input)

}

Chapter 7 231

The safety guarantee
Because we linked the 'a lifetime of the input string to the T: Parse<'a> trait bound, Rust en-

forces a strict safety contract. If we try to drop the original input string while holding onto the

configuration struct, the compiler will stop us:

// This function works for ANY type T that implements Parse

// The <'a> ensures that the returned T cannot outlive the input string.

fn load_configuration<'a, T>(input: &'a str) -> T

where

 T: Parse<'a>,

{

 println!("Loading configuration...");

 T::parse(input)

}

Validating references (integrating lifetimes)
Finally, we put the logic into a concrete struct. We create a ServerConfig struct that keeps refer-

ences to the input string, so we avoid copying the data into new String objects.

This is where the lifetimes do their essential work. We need to declare 'a on the struct and incor-

porate it into the implementation block. This links the input of the parse function to the fields of

the struct. By doing this, we achieve zero-copy parsing.

Instead of allocating new memory on the heap for the address and port, our struct simply holds

“views” (slices) into the original configuration string.

If the original configuration string is released from memory, the compiler will ensure that our

ServerConfig struct is immediately invalidated, ensuring that we never accidentally read a port

number from memory after it has been cleared:

// src/lib.rs

struct ServerConfig<'a> {

 address: &'a str,

 port: &'a str,

}

impl<'a> Parse<'a> for ServerConfig<'a> {

 fn parse(input: &'a str) -> Self {

Polymorphism and Lifetimes232

 // We look for a space to separate the address and port.

 // Example Input: "localhost 8080"

 let index = input.find(' ').unwrap_or(input.len());

 // ZERO-COPY MAGIC:

 // We use slicing syntax to create references that point directly

 // into the original 'input' memory buffer.

 // No new strings are allocated here!

 ServerConfig {

 address: &input[..index], // Borrow the first part

 port: &input[index + 1..], // Borrow the second part

 }

 }

}

Summary
In this chapter, we moved beyond defining concrete types and explored how to write code that

is flexible, reusable, and safe. We started by examining traits, which allow us to define shared

behavior across different types. We learned that by focusing on what a type can do rather than

what it is, we can write functions that accept any data capable of performing a specific action,

similar to interfaces in other languages. We also covered the orphan rule for implementations

and the trade-offs between static dispatch and dynamic dispatch using trait objects.

Next, we introduced generics as the primary tool for reducing code duplication. By using type

parameters such as <T>, we saw how to write a single function or struct that works with any data

type. We discussed how trait bounds allow us to restrict these generics to ensure they support

the operations we need. Crucially, we learned about monomorphization, the compiler process

that generates specific code for each concrete type, ensuring that our high-level abstractions act

as “zero-cost” features that do not slow down our program at runtime.

Finally, we tackled lifetimes, which act as a form of polymorphism for scope. We saw that life-

times are the mechanism the borrow checker uses to prevent dangling references and ensure

memory safety. While the compiler often infers these for us through elision rules, we learned

how to manually annotate functions and structs using syntax such as <'a> when relationships

are ambiguous. By combining traits, generics, and lifetimes, we built a zero-copy configuration

parser, demonstrating how these three pillars work together to create efficient and robust software.

Chapter 7 233

With the powerful combination of traits and generics in our toolkit, we’re ready to tackle a ques-

tion that puzzles many developers transitioning from languages such as Java or C++: Does Rust

actually support object-oriented programming? The short answer is: yes.

Questions and assignment
Questions

1.	 In Rust, what is the primary purpose of a trait?

2.	 What is the process called where the Rust compiler generates specific code for each con-

crete type used in a generic function?

3.	 Explain the orphan rule regarding trait implementations.

4.	 When defining a fn largest<T>(list: &[T]) generic function, why might you need to

add a bound such as T: PartialOrd?

5.	 What is the specific problem that Rust’s lifetimes are designed to prevent?

6.	 What is the correct syntax to declare a Highlight struct that holds a string slice reference

with a lifetime, 'a?

7.	 What does the keyword dyn indicate in Rust, for example, in Box<dyn Brew>?

8.	 What is the 'static lifetime?

9.	 Why do we sometimes need to specify lifetimes such as <'a> in function signatures?

10.	 What is the purpose of the where clause in a generic function definition?

Assignment
The universal media player
Your task is to build a simple system for a media application that can handle different types of

content using the polymorphic tools we learned in this chapter:

1.	 Define a trait: Create a trait named Playable. It should have one method signature:

play(&self).

2.	 Create types: Define two distinct structs: AudioBook (with fields such as title and author)

and VideoGame (with fields such as name and platform).

3.	 Implement behavior: Implement the Playable trait for both structs. The AudioBook

implementation should print "Now playing book: [Title]...", and the VideoGame

implementation should print "Launching game: [Name]...".

Polymorphism and Lifetimes234

4.	 Write a generic function: Write a generic function named consume_media. It should accept

any T type that implements Playable and call the .play() method on it.

5.	 Lifetimes (bonus): Create a struct named Metadata<'a> that holds a reference to a string

slice (e.g., a description). Instantiate this struct in your main function, pointing to a string

literal, ensuring that the lifetime logic is valid.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

8
Object-Oriented Programming
in Rust

Welcome to Chapter 8!

In previous chapters, we’ve enjoyed exploring Rust’s core features like ownership and error han-

dling together. Now, let’s warmly dive into how concepts from Object-Oriented Programming

(OOP) connect with Rust.

Although Rust isn’t a traditional OOP language like Java or C++, you’ll discover that it thoughtfully

includes many of the same principles, all woven into its own unique, safety-focused approach to

achieving object-oriented goals.

This distinctive approach isn’t by chance; it’s a natural result of Rust’s motivations: ensuring

memory safety without a garbage collector, enabling fearless concurrency by preventing data

races, and delivering performance comparable to C.

These foundational goals have guided specific design decisions, such as choosing traits for shared

behavior instead of traditional inheritance.

Understanding OOP principles
Rust isn’t a traditional object-oriented language, but it offers features that let you write code in

an object-oriented style, crafted around its core values of safety and performance.

•	 Encapsulation: Instead of using classes, Rust employs structs and enums to hold data,

and you can add behavior with impl blocks. Access control is managed through Rust’s

module system and the pub keyword, which keeps things private by default.

Object-Oriented Programming in Rust236

•	 Polymorphism: Rust mainly uses traits for polymorphism. Traits let you define shared

behavior that different structs and enums can implement. This allows you to write versatile

code that works with any type implementing a specific trait (static dispatch), or you can

use trait objects (dyn Trait) for runtime polymorphism (dynamic dispatch).

•	 No class inheritance: Rust intentionally skips implementation inheritance, where a struct

would inherit fields and methods from a parent struct. Instead, it prefers composition

over inheritance, sharing behavior through traits or building complex types from simpler

ones. This design avoids common issues with deep inheritance hierarchies in tradition-

al OOP, such as the “fragile base class problem,” and encourages more flexible, loosely

connected designs.

How Rust approaches OOP differently
Rust implements OOP concepts differently, prioritizing memory safety and performance, often

without direct equivalents to traditional OOP features:

•	 Data encapsulation: Rust uses structs and enums (as seen in Chapter 5) to define custom

data structures. Encapsulation (controlling access) is achieved through Rust’s module

system and privacy rules (pub, private by default), which we’ll explore.

•	 Behavior encapsulation: Methods are associated with structs/enums using impl blocks,

bundling data and behavior.

•	 Abstraction and polymorphism (via traits): Instead of classes and inheritance, Rust uses

traits. Traits define shared interfaces (a set of method signatures) that different types

can implement. This allows for polymorphism (treating different types implementing

the same trait uniformly) through generics (static dispatch) and trait objects (dynamic

dispatch).

•	 No class inheritance: Rust deliberately omits implementation inheritance (inheriting

fields and method implementations directly from a superclass). It favors composition

and trait-based code reuse, which often leads to more flexible and maintainable designs.

Rust’s approach provides many benefits of OOP while avoiding common pitfalls such as com-

plex inheritance hierarchies, null pointer issues, and data races, thanks to its ownership and

borrowing system.

Chapter 8 237

Encapsulation: structs, methods, and privacy
As we learned in Chapter 5, structs allow us to define custom data types by grouping related fields.

Associating behavior with this data is done using impl blocks, where we define methods.

This combination of data (struct fields) and behavior (impl methods) is Rust’s primary way of

achieving the OOP principle of encapsulation: bundling data and the operations that act upon

it into a cohesive unit.

A key part of encapsulation is controlling access. By default in Rust, struct fields are private to

the module they are defined in. This prevents external code from directly accessing or modifying

the internal state of a struct, promoting data integrity. Methods defined in an impl block are also

private by default. To allow external access, we use the pub keyword.

Let’s illustrate with an AveragedCollection that maintains a list of numbers and their average,

ensuring the average is always correct.

// Define the struct in its own scope (like a module would provide)

pub mod math_utils { // Using a module to demonstrate privacy

 #[derive(Debug)] // Allow printing the struct

 pub struct AveragedCollection {

 list: Vec<i32>, // Private: External code cannot directly modify
the list

 average: f64, // Private: External code cannot directly set the
average

 }

 A deeper look at privacy: pub(crate) and pub(super)

While pub makes an item fully public, Rust offers more control over visibility, useful

in larger projects.

•	 pub(crate): Visible within the same crate but private outside, ideal for inter-

nal helpers shared across your library.

•	 pub(super): Visible to the parent module, suitable for encapsulating imple-

mentation details. These features, which we’ll explore later, highlight Rust’s

precise control over code visibility.

Object-Oriented Programming in Rust238

 impl AveragedCollection {

 // Public constructor (associated function)

 pub fn new() -> AveragedCollection {

 AveragedCollection {

 list: Vec::new(),

 average: 0.0,

 }

 }

 // Public method to add an element, updating the average correctly

 pub fn add(&mut self, value: i32) {

 self.list.push(value);

 self.update_average(); // Call private helper method

 }

 // Public method to remove an element (if present)

 pub fn remove(&mut self) -> Option<i32> {

 let result = self.list.pop(); // pop() returns Option<i32>

 match result {

 Some(_) => {

 self.update_average(); // Update average if removal
happened

 result

 }

 None => None, // List was empty

 }

 }

 // Public method to get the current average (read-only access)

 pub fn average(&self) -> f64 {

 self.average

 }

 // Private helper method to recalculate the average

 // Not marked 'pub', so only usable within this module/impl block

 fn update_average(&mut self) {

 let total: i32 = self.list.iter().sum();

Chapter 8 239

 self.average = if self.list.is_empty() {

 0.0

 } else {

 total as f64 / self.list.len() as f64

 };

 }

 }

} // end module math_utils

fn main() {

 // We need 'use' to bring the public items into scope

 use math_utils::AveragedCollection;

 let mut collection = AveragedCollection::new();

 // We can only interact via public methods

 collection.add(10);

 collection.add(20);

 collection.add(30);

 println!("Average after adds: {}", collection.average()); // Output:
20.0

 // Cannot do this - fields are private:

 // collection.list.push(100); // Compile Error!

 // collection.average = 50.0; // Compile Error!

 collection.remove();

 println!("Average after remove: {}", collection.average()); // Output:
15.0

 // Cannot call private methods:

 // collection.update_average(); // Compile Error!

 println!("Final collection state: {:?}", collection);

}

Object-Oriented Programming in Rust240

In this AveragedCollection example, the following happens:

•	 The list and average fields are private because they lack the pub keyword. Code outside

the math_utils module cannot access them directly. This isn’t just a convention; it’s a strict

rule enforced by the Rust compiler. By catching these invalid access attempts at compile

time, Rust prevents common bugs, such as accidental data corruption, which might only

appear as hard-to-debug runtime errors in less encapsulated languages.

•	 Methods such as add, remove, average, and the new constructor are explicitly marked pub,

forming the public API of the struct.

•	 The update_average method is private (no pub), serving as an internal implementation

detail. It can only be called by other methods within the same impl block (such as add and

remove). This enforces encapsulation: the internal state (list, average) is protected, and

modifications can only happen through the public methods, ensuring the average remains

consistent with the list’s contents. This is a common and recommended pattern in Rust.

Shared behavior with traits
While structs encapsulate data and specific behavior, how do we define shared behavior across

different types? In traditional OOP, this is often done via inheritance or interfaces. Rust’s answer

is traits. In the previous chapter, we already introduced traits, but we will discuss them again

here with more examples.

A trait defines a collection of method signatures (and sometimes associated types or constants)

that declare a set of capabilities needed to perform some task. Think of them as defining an “in-

terface” or a “contract” that types can agree to implement.

Defining and implementing traits
You define a trait using the trait keyword, followed by the trait name and the method signatures

within curly braces. To make a specific type adhere to the trait’s contract, you implement the trait

for that type using an impl TraitName for Type block, providing concrete implementations for

the required methods.

// Define a trait for things that can provide a summary

pub trait Summarizable {

 fn summary(&self) -> String; // Method signature: takes &self, returns
String

Chapter 8 241

 // Traits can also have default method implementations

 fn default_summary(&self) -> String {

 String::from("(Read more...)") // Default implementation

 }

}

// Define some structs

pub struct NewsArticle {

 pub headline: String,

 pub location: String,

 pub author: String,

 pub content: String,

}

pub struct Tweet {

 pub username: String,

 pub content: String,

 pub reply: bool,

 pub retweet: bool,

}

// Implement the trait for NewsArticle

impl Summarizable for NewsArticle {

 fn summary(&self) -> String {

 format!("{}, by {} ({})", self.headline, self.author, self.
location)

 }

 // We don't need to implement default_summary, we can use the default

}

// Implement the trait for Tweet

impl Summarizable for Tweet {

 fn summary(&self) -> String {

 format!("{}: {}", self.username, self.content)

 }

Object-Oriented Programming in Rust242

 // We can override the default implementation if we want

 fn default_summary(&self) -> String {

 if self.retweet {

 format!("Retweeted: {}", self.summary())

 } else {

 self.summary() // Or just call the required method

 }

 }

}

fn main() {

 let tweet = Tweet {

 username: String::from("rustacean"),

 content: String::from("Traits are cool!"),

 reply: false,

 retweet: false,

 };

 let article = NewsArticle {

 headline: String::from("Rust 1.XX Released!"),

 location: String::from("Online"),

 author: String::from("The Rust Team"),

 content: String::from("A new version of Rust brings many
improvements..."),

 };

 println!("Tweet summary: {}", tweet.summary());

 println!("Article summary: {}", article.summary());

 println!("Tweet default summary: {}", tweet.default_summary());

 println!("Article default summary: {}", article.default_summary());

}

Chapter 8 243

Traits for polymorphism: impl Trait
One of the main benefits of traits is enabling polymorphism. We can write functions that accept

any type implementing a specific trait. The simplest way is to use impl Trait syntax in the param-

eter type. This uses static dispatch (monomorphization) – the compiler generates specialized

code for each concrete type used.

// This function accepts any type that implements Summarizable

pub fn notify(item: &impl Summarizable) {

 // Using `impl Trait` syntax

 println!("Breaking news! {}", item.summary());

}

// Main function calling notify with different types

fn main() {

 // ... (tweet and article definitions from previous example) ...

 let tweet = Tweet {

 username: String::from("rustacean"),

 content: String::from("Traits are cool!"),

 reply: false,

 retweet: false,

 };

 let article = NewsArticle {

 headline: String::from("Rust 1.XX Released!"),

 location: String::from("Online"),

 author: String::from("The Rust Team"),

 content: String::from(

 "A new version of Rust brings many improvements..."

),

 };

 notify(&tweet);

 notify(&article);

}

Object-Oriented Programming in Rust244

Traits for polymorphism: trait bounds
An alternative, more verbose syntax for the same static dispatch is using trait bounds with ge-

neric type parameters.

This is necessary in more complex scenarios, such as when multiple parameters need the same

generic type or when implementing traits for generic types.

Let’s see an example:

// Equivalent to the previous notify function, using trait bounds

pub fn notify_generic<T: Summarizable>(item: &T) { // Using generic T with
trait bound

 println!("Breaking news (generic)! {}", item.summary());

}

// Can also use the 'where' clause for more complex bounds

pub fn notify_complex<T>(item1: &T, item2: &T)

 where T: Summarizable + std::fmt::Debug // Requires T to implement
both traits

{

 println!("Item 1: {} ({:?})", item1.summary(), item1);

 println!("Item 2: {} ({:?})", item2.summary(), item2);

}

// main function would call notify_generic similarly to notify

// (Need to add #[derive(Debug)] to Tweet and NewsArticle for notify_
complex)

Both impl Trait and trait bounds <T: Trait> achieve polymorphism via static dispatch, which

is highly performant as the compiler optimizes the calls for each specific type at compile time.

Both fn notify(item: &impl Summarizable) and fn notify_generic<T: Summarizable>(item:

&T) achieve the same goal, but choosing one depends on context.

The impl Trait syntax is preferred for simplicity, enhancing readability. The more verbose generic

syntax, such as <T: Trait> or the where clause, is better in the following situations:

•	 Ensuring multiple parameters have the exact same type, as in notify_complex<T:

Summarizable>(item1: &T, item2: &T). The <T: ...> syntax enforces this, unlike

(item1: &impl Summarizable, item2: &impl Summarizable), which allows different

types.

Chapter 8 245

•	 When the generic type is used in the return type, requiring <T: Trait> syntax.

•	 For complex trait bounds involving multiple traits, where a where clause improves clarity

over inline bounds.

 A common pitfall: impl Trait versus “Any” Trait

It’s important to clarify a common point of confusion about impl Trait.

When you see fn notify(item: &impl Summarizable), it means the function can

be called with a reference to any single, concrete type that implements Summarizable.

For example, you can call it with &Tweet or call it with &NewsArticle.

However, it does not mean you can mix different concrete types within the same

data structure. The compiler resolves impl Trait to a specific, single type at com-

pile time for each use case. This means you cannot, for example, create a Vec that

holds both Tweets and NewsArticles and pass it to a function expecting Vec<impl

Summarizable>.

// This is fine:

// notify(&my_tweet);

// notify(&my_article);

// This will NOT compile:

// let items: Vec<&impl Summarizable> = vec![&my_tweet, &my_
article];

// error: `impl Trait` not allowed in path parameters

The compiler needs to know the exact size of the elements in the Vec at compile time,

and Tweet and NewsArticle are different types with different sizes. To handle col-

lections of different types that share a trait, you need dynamic dispatch using trait

objects (&dyn Summarizable), which we will cover in the next section.

Object-Oriented Programming in Rust246

Understanding static dispatch (monomorphization)
When you write a generic function with a trait bound in Rust, such as fn process<T:

MyTrait>(item: T), you’re essentially creating a template rather than just one function.

During compilation, the compiler produces specialized versions for each specific type you use, a

process known as monomorphization. In the end, only concrete functions are left, which makes

static dispatch fast: calls go directly, without any lookup delays, and this allows for optimizations

such as inlining.

Here’s a simple example to illustrate this:

use std::fmt::Debug;

use std::ops::Add;

// A generic function that takes any type `T` that can be added to itself

// and can be printed with the Debug trait.

// The `Copy` trait is needed so `value` can be used after being moved
into the `+` operation.

fn add_and_print<T>(value: T)

where

 T: Add<Output = T> + Copy + Debug,

{

 let result = value + value; // `value` must implement `Add` and `Copy`

 println!("[Generic Function] {:?} + {:?} = {:?}", value, value,
result);

}

fn main() {

 let my_integer: i32 = 10;

 let my_float: f64 = 5.5;

 // When the compiler sees this call, it generates a specialized
version of `add_and_print` for `i32`.

 // It's as if you had written a function `add_and_print_i32(value:
i32)`.

 add_and_print(my_integer);

Chapter 8 247

 // When the compiler sees this call, it generates another specialized
version for `f64`.

 // It's as if you had written a function `add_and_print_f64(value:
f64)`.

 add_and_print(my_float);

}

Behind the scenes, the compiler effectively generates something like this
for the main function:

// Conceptual code generated by the compiler (monomorphization)

fn add_and_print_i32(value: i32) {

 let result = value + value;

 println!("[Generic Function] {:?} + {:?} = {:?}", value, value,
result);

}

fn add_and_print_f64(value: f64) {

 let result = value + value;

 println!("[Generic Function] {:?} + {:?} = {:?}", value, value,
result);

}

fn main() {

 let my_integer: i32 = 10;

 let my_float: f64 = 5.5;

 // The call is replaced with a direct call to the specialized
function.

 add_and_print_i32(my_integer);

 // This call is also replaced with a direct call.

 add_and_print_f64(my_float);

}

Object-Oriented Programming in Rust248

This process of monomorphization is what allows Rust’s generics to have zero runtime cost

compared to non-generic code, making them a powerful tool for writing abstract code without

sacrificing performance.

The trade-off is a potentially larger binary size, as code is duplicated for each concrete type used.

Static dispatch is very efficient, but since it needs to know specific types at compile time, it can’t,

for example, allow you to have a collection with different types like Tweet and NewsArticle, even

if they both implement Summarizable.

To add more flexibility during runtime, Rust provides an alternative kind of polymorphism: dy-

namic dispatch.

Dynamic polymorphism with trait objects
When you’re managing a collection of items that are of different types but share the same behav-

ior, it’s helpful to defer the method call decision from compile time to runtime. Rust handles this

beautifully with trait objects: pointers that can hold any type implementing a trait.

This makes it possible to have diverse collections and creates more flexible, dynamic code that

adapts to various needs.

Introduction to trait objects
Static dispatch via generics (impl Trait or <T: Trait>) works when the compiler knows the

concrete types involved at compile time.

But what if you need a collection (like a Vec) that holds items of different concrete types, as long

as they all implement the same trait? Or, if you need to return different types implementing a

trait from a function? This requires dynamic dispatch, where the specific method to call is de-

termined at runtime.

Rust achieves this using trait objects.

Creating trait objects: dyn Trait
A trait object is created by taking a reference (or a smart pointer like Box or Rc) to an instance of a

type that implements a trait and specifying the type as &dyn Trait or Box<dyn Trait>. The dyn

keyword indicates that method calls on this object will use dynamic dispatch.

Chapter 8 249

When you want to create a collection that holds different types that all share the same trait, like

a Vec containing both NewsArticle and Tweet, you must use a smart pointer like Box. This is a

fundamental requirement of Rust’s memory model. Rust needs to know the exact size of every

element in a Vec at compile time to allocate memory for it on the stack. However, NewsArticle

and Tweet are different structs and have different sizes.

This is the problem that Box<dyn Trait> solves. Box is a smart pointer, and the pointer itself has

a known, fixed size, regardless of how big the data it points to is. By wrapping our differently

sized objects in Box, we place them on the heap and store the consistently sized Box pointers in

our Vec. This satisfies Rust’s size requirements and allows us to create a heterogeneous collection.

// Using the Summarizable trait and types from before

pub trait Summarizable { fn summary(&self) -> String; }

pub struct NewsArticle { pub headline: String, pub location: String, pub
author: String, pub content: String }

impl Summarizable for NewsArticle { fn summary(&self) -> String {
format!("{}, by {} ({})", self.headline, self.author, self.location) } }

pub struct Tweet { pub username: String, pub content: String, pub reply:
bool, pub retweet: bool }

impl Summarizable for Tweet { fn summary(&self) -> String { format!("{}:
{}", self.username, self.content) } }

fn main() {

 let article = NewsArticle {

 headline: String::from("New Rust Feature"),

 location: String::from("Blog"),

 author: String::from("Dev Team"),

 content: String::from("..."),

 };

 let tweet = Tweet {

 username: String::from("user123"),

 content: String::from("Learning Rust traits!"),

 reply: false,

 retweet: false,

 };

 // Create a vector that holds trait objects.

Object-Oriented Programming in Rust250

 // We use Box<dyn Summarizable> because the concrete types
(NewsArticle, Tweet)

 // have different sizes, so we need an indirection (Box puts them on
the heap).

 let items_to_summarize: Vec<Box<dyn Summarizable>> = vec![

 Box::new(article), // Box::new creates a Box<NewsArticle>, which
converts to Box<dyn Summarizable>

 Box::new(tweet), // Box::new creates a Box<Tweet>, which
converts to Box<dyn Summarizable>

];

 // We can iterate and call methods via the trait object

 for item in items_to_summarize {

 // item here is Box<dyn Summarizable>

 println!("Summary: {}", item.summary()); // Dynamic dispatch
happens here

 }

}

This code demonstrates dynamic polymorphism. It defines a Summarizable trait that two dif-

ferent structs, NewsArticle and Tweet, both implement. To store these different-sized structs in

the same Vec, each is wrapped in Box (a smart pointer), creating a Vec<Box<dyn Summarizable>>.

When the code iterates through this vector and calls .summary() on each item, Rust determines

the correct method to run at runtime, this is dynamic dispatch in action.

Dynamic versus static dispatch recap
Dynamic dispatch, achieved through trait objects, determines the method to call at runtime.

This is different from static dispatch, where the method to call is determined at compile time.

•	 Static dispatch (impl Trait, <T: Trait>):

•	 Compiler generates specific code for each concrete type.

•	 No runtime lookup cost; calls can often be inlined.

•	 Requires knowing concrete types at compile time. Cannot store different types in

the same homogeneous collection directly.

Chapter 8 251

•	 Dynamic dispatch (&dyn Trait, Box<dyn Trait>):

•	 Compiler uses a vtable (virtual method table) pointer stored alongside the data

pointer to find the correct method implementation at runtime.

•	 Incurs a small runtime lookup cost; prevents inlining.

•	 Allows storing different types implementing the same trait together (e.g., in

Vec<Box<dyn Trait>>).

Choose static dispatch when possible for performance. Use dynamic dispatch when you need the

flexibility to handle heterogeneous collections or return different implementing types.

Object safety
Not all traits can be made into trait objects. For a trait to be used with dyn Trait, it must be

object-safe. This is a set of rules that ensures the compiler can work with the trait when the

concrete type is unknown at compile time. The main rules for object safety are that all methods

in the trait must meet the following criteria:

1.	 Have a receiver (self, &self, or &mut self) as the first parameter.

2.	 Not use Self as a return type or in parameter types (except for the receiver).

3.	 Not have generic type parameters.

Most common traits are object-safe. However, let’s look at a simple example of a trait that is not

object-safe to understand why these rules exist. The Clone trait is a perfect example from the

standard library that is not object-safe because its clone method returns Self.

Let’s create our own version to see the problem:

// A trait that is NOT object-safe because its method returns `Self`.

pub trait Cloneable {

 fn clone_self(&self) -> Self;

}

// Let's implement it for our Tweet struct from earlier.

#[derive(Debug)] // Added for printing

pub struct Tweet {

 pub username: String,

 pub content: String,

}

Object-Oriented Programming in Rust252

impl Cloneable for Tweet {

 fn clone_self(&self) -> Self {

 Tweet {

 username: self.username.clone(),

 content: self.content.clone(),

 }

 }

}

fn main() {

 let tweet = Tweet {

 username: "rustacean".to_string(),

 content: "Object safety is important!".to_string(),

 };

 // This is fine, because the compiler knows the concrete type is
Tweet.

 let tweet_clone = tweet.clone_self();

 println!("Cloned tweet: {:?}", tweet_clone);

 // Now, let's try to create a trait object.

 // The line below will cause a compile-time error.

 // let cloneable_object: Box<dyn Cloneable> = Box::new(tweet);

 //

 // The compiler error would be something like:

 // error[E0038]: the trait `Cloneable` cannot be made into an object

 // --> src/main.rs:31:31

 // |

 // 31 | let cloneable_object: Box<dyn Cloneable> =
Box::new(tweet);

 // | ^^^^^^^^^^^^^ `Cloneable`
cannot be made into an object

 // |

 // note: for a trait to be "object-safe" it must not have any methods
that return `Self`

 // --> src/main.rs:5:28

 // |

Chapter 8 253

 // 5 | fn clone_self(&self) -> Self;

 // | ^^^^ ...because `Self` is treated
as a type parameter

}

The compiler will let you know if a trait isn’t object-safe when you try to create a trait object from it.

The reason that fn clone_self(&self) -> Self; breaks object safety is because of the way

trait objects work. When you have a trait object such as Box<dyn Cloneable>, Rust doesn’t know

the exact type inside Box at compile time, just that it’s some type that implements Cloneable.

If you call clone_self() on this trait object, Rust needs to create and return a new value of that

unknown specific type. But how much memory should it allocate for this return? It doesn’t know

the size of the concrete type (such as Tweet, but it could be something else!!).

Because the size of Self isn’t known at runtime in a trait object, the compiler can’t generate

the proper code to handle the return value, so it blocks creating the trait object in the first place.

Simulating inheritance patterns
Composition over inheritance
As emphasized before, Rust intentionally omits traditional class-based inheritance.

Instead, it warmly promotes the idea of composition, creating complex types by including other

types, such as structs and enums, as fields, and using traits to share behaviors.

This approach often results in more flexible and adaptable designs compared to deep inheritance

hierarchies.

This preference for composition is a deliberate design choice that Rust developers generally favor.

It is particularly effective for modeling “has-a” relationships, where one type contains another as

a component (for example, a car has an engine). Compared to inheritance (which models an “is-a”

relationship), composition often leads to designs with less tight coupling between components.

This modularity provides greater flexibility, as you can easily swap out different implementa-

tions of a component, and makes your code easier to test because each small, focused part can

be tested in isolation.

Object-Oriented Programming in Rust254

Sharing behavior via traits
The primary way to share behavior (methods) is by defining that behavior in a trait and having

multiple structs implement it.

We saw this with the Summarizable trait implemented by both NewsArticle and Tweet.

Each type provides its own data and its own implementation of the shared behavior.

Default implementations
Traits can offer default implementations for some or all of their methods, making code reuse

easier and more efficient. It’s helpful to see how this differs from traditional inheritance. In Rust,

default implementations let you reuse behavior, such as the logic inside methods, without sharing

data, such as struct fields. This is quite different from many object-oriented languages, where

subclasses typically inherit both methods and data from their parents.

By keeping data and behaviors separated, Rust promotes more flexible and loosely connected

designs. Types that implement a trait can simply use the default methods or choose to create

their own custom versions if needed.

trait Clickable {

 fn click(&self); // Required method

 // Method with a default implementation

 fn hover_text(&self) -> String {

 String::from("Click me!") // Default text

 }

}

struct Button {

 label: String,

}

impl Clickable for Button {

 fn click(&self) {

 println!("Button '{}' clicked!", self.label);

 }

 // Uses the default hover_text()

}

Chapter 8 255

struct ImageLink {

 src: String,

}

impl Clickable for ImageLink {

 fn click(&self) {

 println!("Navigating to image link '{}'...", self.src);

 }

 // Overrides the default hover_text()

 fn hover_text(&self) -> String {

 format!("View image: {}", self.src)

 }

}

fn main() {

 let button = Button { label: "Submit".into() };

 let image = ImageLink { src: "logo.png".into() };

 button.click();

 println!("Button hover: {}", button.hover_text()); // Uses default

 image.click();

 println!("Image hover: {}", image.hover_text()); // Uses override

}

Trait bounds as “subclassing” constraints: supertraits
You can require that a type implementing one trait must also implement another. This is done

by specifying a supertrait in the trait definition using the : Trait syntax.

This setup resembles an “is-a” relationship, similar to inheritance, and helps you build upon

existing trait agreements. While this is a powerful way to create layered abstractions, it’s usu-

ally best to keep these trait hierarchies simple and not too deep, as overly complex bounds can

sometimes make your code more difficult to understand and work with.

use std::fmt::Display; // Import the standard Display trait

// Define a trait that REQUIRES the implementing type to also implement
Display

Object-Oriented Programming in Rust256

trait PrintableSummary: Display { // PrintableSummary is a sub-trait of
Display

 fn print_summary(&self);

}

struct Report {

 title: String,

 content: String,

}

// To implement PrintableSummary, Report MUST first implement Display

impl Display for Report {

 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {

 write!(f, "Report: '{}'", self.title)

 }

}

// NOW we can implement PrintableSummary

impl PrintableSummary for Report {

 fn print_summary(&self) {

 println!("--- Summary ---");

 println!("{}", self); // We can use Display methods because of the
trait bound

 println!("Content length: {}", self.content.len());

 println!("---------------");

 }

}

fn main() {

 let report = Report {

 title: "Q1 Results".into(),

 content: "Sales were strong...".into(),

 };

 report.print_summary();

}

Chapter 8 257

Here, PrintableSummary: Display means any type implementing PrintableSummary must also

implement Display. This allows methods within PrintableSummary (such as print_summary)

to rely on the methods provided by Display (such as printing self directly).

Requiring multiple traits with +
In addition to specifying supertraits, you can also require a generic type to implement multiple

traits using the + syntax. This is very common in function signatures.

For example, if you wanted a function to take any item that is both printable for debugging (Debug)

and can be cloned (Clone), you would write the following:

use std::fmt::Debug;

// This function accepts any type `T` that implements both `Debug` and
`Clone`.

fn process_item<T: Debug + Clone>(item: T) {

 let item_clone = item.clone();

 println!("Processing item: {:?}", item);

 println!("And its clone: {:?}", item_clone);

}

T: Debug + Clone is a trait bound that enforces multiple requirements on the type T.

While not inheritance, traits, default methods, composition, and supertrait bounds provide pow-

erful tools for code reuse and structuring behavior in Rust.

Associated types
Sometimes, a trait needs to refer to a specific related type that isn’t chosen until the trait is actually

implemented. We achieve this using associated types.

While it’s possible to use generic type parameters on the trait for a similar purpose, like in

Iterator<T> { fn next(&mut self) -> Option<T>; }, associated types are often preferred,

especially for traits like Iterator. The main reason is that a type can only implement a trait with

a particular set of associated types once, which helps prevent confusion. For example, Vec<i32>

can only be an iterator over one kind of item, which is i32.

By using an associated type Item, we clarify this one-to-one relationship, making the type system

more intuitive and supporting both the compiler and programmers.

Object-Oriented Programming in Rust258

In fact, the standard Iterator trait also uses an associated type to indicate the kind of item it

produces!

// Simplified Iterator-like trait

pub trait SimpleIterator {

 // 'Item' is an associated type. Each implementor specifies what Item
is.

 type Item;

 // next() returns an Option of the associated Item type

 fn next(&mut self) -> Option<Self::Item>;

}

// Implement the trait for a simple counter

struct Counter {

 current: u32,

 max: u32,

}

impl SimpleIterator for Counter {

 // Specify that for Counter, the Item type is u32

 type Item = u32;

 fn next(&mut self) -> Option<Self::Item> { // Returns Option<u32>

 if self.current < self.max {

 let val = self.current;

 self.current += 1;

 Some(val)

 } else {

 None

 }

 }

}

fn main() {

 let mut counter = Counter { current: 0, max: 3 };

Chapter 8 259

 // We can call next() and get Option<u32>

 println!("{:?}", counter.next()); // Some(0)

 println!("{:?}", counter.next()); // Some(1)

 println!("{:?}", counter.next()); // Some(2)

 println!("{:?}", counter.next()); // None

}

In the SimpleIterator trait, type Item; declares an associated type.

When Counter implements SimpleIterator, it specifies type Item = u32;. This links the Item

placeholder to the concrete type u32 for that specific implementation.

The next method can then refer to Self::Item (which means u32 when implemented for Counter)

in its signature.

Associated types are crucial for defining generic abstractions such as iterators, futures, and col-

lections, where the trait needs to work with types determined by the implementor.

Now that we have our toolkit of structs, enums, and powerful traits, let’s explore how they can

come together to beautifully implement some of the most effective and commonly used ob-

ject-oriented design patterns in a genuinely idiomatic Rust style.

Object-oriented design patterns in Rust
Introduction to patterns in Rust
While Rust isn’t traditionally OOP, many common software design patterns can be effectively

implemented by leveraging traits, enums, and composition. What makes this particularly power-

ful is how Rust’s core features often lead to more robust and type-safe versions of these patterns

than in other languages.

For example, Rust’s expressive enums are perfect for creating compile-time verified state machines

(the State pattern), while the ownership system provides a natural and safe way to manage re-

source construction (the Builder pattern).

The borrow checker adds another layer of safety, preventing invalid state mutations at compile

time. This means you can implement familiar patterns with a higher degree of confidence in

their correctness.

Object-Oriented Programming in Rust260

Builder pattern
The Builder pattern is useful when constructing an object with many fields, especially if many

are optional or require complex setup.

For the reader and user of your code, this pattern dramatically improves API usability and read-

ability. Instead of confronting them with a single, complex constructor function with a long, con-

fusing list of parameters, the builder provides a clean, step-by-step, and self-documenting process.

Each optional parameter is set with a descriptive method call (e.g., .with_feature_x(), .set_

timeout()), making it immediately clear which specific options are being configured for the

new object.

#[derive(Debug)] // To allow printing the final struct

pub struct WindowConfig {

 title: String,

 width: u32,

 height: u32,

 is_resizable: bool,

 has_decorations: bool,

}

// The builder struct

pub struct WindowConfigBuilder {

 title: String, // Required field

 width: Option<u32>,

 height: Option<u32>,

 is_resizable: Option<bool>,

 has_decorations: Option<bool>,

}

impl WindowConfigBuilder {

 // Start building with the required field(s)

 pub fn new(title: String) -> Self {

 WindowConfigBuilder {

 title,

 width: None,

 height: None,

Chapter 8 261

 is_resizable: None,

 has_decorations: None,

 }

 }

 // Methods to set optional fields, consuming and returning self
(fluent interface)

 pub fn width(mut self, width: u32) -> Self {

 self.width = Some(width);

 self

 }

 pub fn height(mut self, height: u32) -> Self {

 self.height = Some(height);

 self

 }

 pub fn resizable(mut self, resizable: bool) -> Self {

 self.is_resizable = Some(resizable);

 self

 }

 pub fn decorations(mut self, decorations: bool) -> Self {

 self.has_decorations = Some(decorations);

 self

 }

 // Finalize the build, providing defaults for unset options

 pub fn build(self) -> WindowConfig {

 WindowConfig {

 title: self.title,

 width: self.width.unwrap_or(800), // Default width

 height: self.height.unwrap_or(600), // Default height

 is_resizable: self.is_resizable.unwrap_or(true), // Default
resizable

 has_decorations: self.has_decorations.unwrap_or(true), //
Default decorations

Object-Oriented Programming in Rust262

 }

 }

}

fn main() {

 let basic_window = WindowConfigBuilder::new("My App".to_string())

 .build(); // Uses all defaults

 let custom_window = WindowConfigBuilder::new("Game Window".to_
string())

 .width(1024)

 .height(768)

 .resizable(false)

 .build(); // Sets some fields, uses defaults for others

 let fullscreen_window = WindowConfigBuilder::new("Fullscreen".to_
string())

 .decorations(false) // Only set decorations

 .build();

 println!("Basic Window: {:?}", basic_window);

 println!("Custom Window: {:?}", custom_window);

 println!("Fullscreen Window: {:?}", fullscreen_window);

}

The WindowConfigBuilder provides a clear, step-by-step way to construct a WindowConfig, han-

dling optional fields and defaults cleanly.

State pattern/typed states
Another common pattern involves handling an object whose behavior depends on its internal

state. While many languages use flags or string fields (e.g., if post.status == "draft"), this

approach can be a bit fragile and might lead to runtime errors if the state isn’t checked before

calling a method.

Chapter 8 263

Rust’s enums and match system offer a wonderfully powerful and safe way to implement the

State pattern. Instead of relying on simple flags, you can encode the various states of an object

directly within the type system, making your code both robust and clear.

This enables the Rust compiler to double-check state changes and make sure that certain methods

are only called when the object is in the right state. It helps catch potential bugs early, during

compilation instead of at runtime.

// Define the states and the context

struct DraftPost { content: String }

struct PendingReviewPost { content: String }

struct PublishedPost { content: String }

// The main object holding the current state

enum PostState {

 Draft(DraftPost),

 PendingReview(PendingReviewPost),

 Published(PublishedPost),

}

pub struct Post {

 state: PostState,

}

impl Post {

 pub fn new() -> Post {

 Post { state: PostState::Draft(DraftPost { content: String::new()
}) }

 }

 pub fn add_text(&mut self, text: &str) {

 // Only allowed in Draft state

 if let PostState::Draft(ref mut draft) = self.state {

 draft.content.push_str(text);

 } else {

 println!("Cannot add text in current state.");

 // In a real app, might return Result<(), Error>

Object-Oriented Programming in Rust264

 }

 }

 pub fn request_review(&mut self) {

 // Transition from Draft to PendingReview

 if let PostState::Draft(draft) = std::mem::replace(&mut self.
state, PostState::Draft(DraftPost{content: String::new()})) { // Temporary
replace to take ownership

 self.state = PostState::PendingReview(PendingReviewPost {
content: draft.content });

 } else {

 println!("Post must be in Draft state to request review.");

 }

 }

 pub fn approve(&mut self) {

 // Transition from PendingReview to Published

 if let PostState::PendingReview(pending) = std::mem::replace(&mut
self.state, PostState::Draft(DraftPost{content: String::new()})) {

 self.state = PostState::Published(PublishedPost { content:
pending.content });

 } else {

 println!("Post must be Pending Review to approve.");

 }

 }

 pub fn content(&self) -> &str {

 // Access content based on current state

 match &self.state {

 PostState::Draft(s) => &s.content,

 PostState::PendingReview(s) => &s.content,

 PostState::Published(s) => &s.content,

 }

 }

}

fn main() {

Chapter 8 265

 let mut post = Post::new();

 post.add_text("Learning about state patterns in Rust. ");

 println!("Content (Draft): {}", post.content());

 post.request_review();

 post.add_text("This won't be added."); // Tries adding text in wrong
state

 post.approve();

 println!("Content (Published): {}", post.content());

 post.request_review(); // Tries invalid transition

}

This Post example uses an enum (PostState) to represent the possible states. The main Post

struct holds the current state. Methods on Post check the current state (using if let or match)

and only allow valid actions or transitions.

This enforces the state machine logic at compile time to a large degree, preventing invalid oper-

ations based on the current state.

You may have noticed the use of std::mem::replace in transition methods such as request_

review; this is a handy technique used to temporarily take ownership of the state from &mut

self.state. It allows us to move the Draft variant out so we can use its data to construct the

new PendingReview state, all while upholding Rust’s ownership rules.

This is often considered more robust than using simple boolean flags or string-based states.

Rust’s features enable implementing many design patterns effectively, often with enhanced type

safety compared to traditional OOP languages.

Observer pattern
The Observer pattern is a helpful way for objects to stay connected and communicate smoothly.

It creates a one-to-many relationship, so when the main object, called the subject, changes, all

the dependents, known as observers, are easily notified and updated.

Object-Oriented Programming in Rust266

This makes it perfect for building event-driven systems where different parts of an app can re-

spond to changes without being tightly tied to the object that changes. In Rust, this pattern is

often put into practice using traits and smart pointers.

The main idea is to define an Observer trait with a method such as update(). Then, the Subject

struct keeps a collection of objects that follow this trait. To manage shared ownership and al-

low observers to change their state after being notified, this collection is usually a Vec of smart

pointers, such as Vec<Rc<RefCell<dyn Observer>>> for single-threaded environments or

Vec<Arc<Mutex<dyn Observer>>> when working with multiple threads.

use std::rc::Rc;

use std::cell::RefCell;

// The trait that all observers must implement.

trait Observer {

 // The subject calls this method to notify the observer of a change.

 fn update(&self, new_state: &str);

}

// The subject holds the state and a list of observers.

struct Subject {

 state: String,

 // We use Rc<RefCell<...>> to allow shared ownership and interior
mutability of the observers list.

 observers: RefCell<Vec<Rc<dyn Observer>>>,

}

impl Subject {

 fn new(initial_state: &str) -> Self {

 Subject {

 state: initial_state.to_string(),

 observers: RefCell::new(Vec::new()),

 }

 }

 // Add a new observer to the list.

 fn attach(&self, observer: Rc<dyn Observer>) {

Chapter 8 267

 self.observers.borrow_mut().push(observer);

 }

 // Change the state and notify all observers.

 fn set_state(&mut self, new_state: &str) {

 self.state = new_state.to_string();

 println!("\nSubject: State changed to '{}'. Notifying
observers...", self.state);

 // We borrow the observers list immutably to iterate and notify.

 for observer in self.observers.borrow().iter() {

 observer.update(&self.state);

 }

 }

}

// A concrete observer that logs updates.

struct Logger {

 name: String,

}

impl Observer for Logger {

 fn update(&self, new_state: &str) {

 println!("[Logger {}]: Received update! New state is: '{}'", self.
name, new_state);

 }

}

// Another concrete observer that might perform a different action.

struct Notifier {

 email: String,

}

impl Observer for Notifier {

 fn update(&self, new_state: &str) {

 println!("[Notifier]: Sending email to {}. Subject: State changed
to '{}'", self.email, new_state);

 }

}

Object-Oriented Programming in Rust268

fn main() {

 let mut subject = Subject::new("Initial State");

 // Create observers. We wrap them in Rc to manage shared ownership.

 let logger = Rc::new(Logger { name: "FileLogger".to_string() });

 let notifier = Rc::new(Notifier { email: "admin@example.com".to_
string() });

 // Attach the observers to the subject.

 subject.attach(Rc::clone(&logger) as Rc<dyn Observer>);

 subject.attach(Rc::clone(¬ifier) as Rc<dyn Observer>);

 // Change the subject's state. This should trigger notifications.

 subject.set_state("State A");

 subject.set_state("State B");

}

•	 Observer trait: Defines the common interface with an update method that the subject

will call.

•	 Subject struct: Holds its own state and the list of observers.

•	 RefCell<Vec<Rc<dyn Observer>>>: This is the core data structure for the observers list:

•	 Rc: Enables shared ownership, allowing multiple parts of the application to hold

a reference to an observer.

•	 RefCell: Provides interior mutability, allowing the list of observers to be modified

(e.g., adding a new observer) even through an immutable reference to the Subject.

•	 dyn Observer: A trait object that allows the Vec to store different concrete types

of observers (such as Logger and Notifier) as long as they all implement the

Observer trait.

•	 Concrete observers: These are the specific structs (Logger, Notifier) that implement the

Observer trait, each providing its own unique logic for the update method.

Chapter 8 269

•	 Execution flow: The main function creates a Subject instance and one or more observer

instances (wrapped in Rc). It then attaches the observers to the subject. When the sub-

ject’s set_state() method is called, it iterates through its list of observers and calls the

update() method on each one.

Strategy pattern
The Strategy pattern is a helpful behavioral design pattern that allows you to pick an algorithm

while your program is running. It involves creating a set of interchangeable algorithms, each

housed in its own type, so you can easily swap them out.

This pattern is especially handy when you have a task that can be done in multiple ways, giving

you the flexibility to select or switch the specific method (the “strategy”) without changing the

rest of your code.

In Rust, this pattern is typically implemented with traits. You define a common Strategy trait

that all different algorithm types will share. The main object (the “context”) can then hold a

reference to any object that implements this trait, making it easy to switch strategies on the fly.

This is often done using a trait object (Box<dyn Strategy>).

// The trait that defines the common interface for all our strategies.

trait TextFormattingStrategy {

 fn format(&self, text: &str) -> String;

}

// A concrete strategy: formats text to all uppercase.

struct UpperCaseFormatter;

impl TextFormattingStrategy for UpperCaseFormatter {

 fn format(&self, text: &str) -> String {

 text.to_uppercase()

 }

}

// Another concrete strategy: formats text to all lowercase.

struct LowerCaseFormatter;

impl TextFormattingStrategy for LowerCaseFormatter {

Object-Oriented Programming in Rust270

 fn format(&self, text: &str) -> String {

 text.to_lowercase()

 }

}

// The "context" that uses a formatting strategy.

// It holds a trait object, allowing the strategy to be changed at
runtime.

struct TextProcessor {

 strategy: Box<dyn TextFormattingStrategy>,

}

impl TextProcessor {

 // Creates a new processor with an initial strategy.

 fn new(strategy: Box<dyn TextFormattingStrategy>) -> Self {

 TextProcessor { strategy }

 }

 // Allows swapping the strategy at runtime.

 fn set_strategy(&mut self, strategy: Box<dyn TextFormattingStrategy>)
{

 self.strategy = strategy;

 }

 // Executes the current strategy on the given text.

 fn process(&self, text: &str) -> String {

 self.strategy.format(text)

 }

}

fn main() {

 // Start with an uppercase formatting strategy.

 let mut processor = TextProcessor::new(Box::new(UpperCaseFormatter));

 let text = "Hello, Strategy Pattern!";

Chapter 8 271

 let uppercase_result = processor.process(text);

 println!("Using uppercase strategy: {}", uppercase_result);

 // Now, change the strategy to lowercase at runtime.

 processor.set_strategy(Box::new(LowerCaseFormatter));

 let lowercase_result = processor.process(text);

 println!("Using lowercase strategy: {}", lowercase_result);

}

•	 -TextFormattingStrategy Trait: This defines the common contract for all formatting al-

gorithms. Any strategy we create must provide a format method.

•	 Concrete strategies (UpperCaseFormatter, LowerCaseFormatter): These are the in-

dividual, interchangeable algorithms. Each is a simple struct that implements the

TextFormattingStrategy trait with its own specific logic.

•	 TextProcessor (The Context): This struct is the user of the strategy. It holds a strategy

field of type Box<dyn TextFormattingStrategy>.

•	 Box<dyn TextFormattingStrategy>: This is a trait object. It allows the

TextProcessor to hold any concrete type that implements TextFormattingStrategy,

without the TextProcessor needing to know which specific strategy it is. This is

what enables dynamic, runtime selection.

•	 Execution flow: In main, create a TextProcessor with an UpperCaseFormatter and call

.process() to see the result. Then, use .set_strategy() to switch to a LowerCaseFormatter

and call .process() again. The code remains unchanged; only its strategy object changes.

Summary
This chapter gently guided us through the fascinating ways Rust integrates core object-oriented

programming ideas.

We discovered that encapsulation is like wrapping data in structs or enums and connecting

behavior with impl blocks, making everything neat and organized. Rust’s module system and

privacy rules help us control access, adding a layer of security.

Object-Oriented Programming in Rust272

When it comes to abstraction and polymorphism, traits come into play as Rust’s way of defining

shared interfaces, enabling both static and dynamic dispatch, kind of like versatile tools for dif-

ferent tasks. Instead of relying on traditional inheritance, Rust embraces composition and uses

traits with default methods and supertrait bounds to promote code reuse and build hierarchical

relationships smoothly.

All these features work together beautifully, allowing us to implement popular OOP design pat-

terns, such as the Builder and State patterns, with perhaps even better type safety and confidence!

Now that we’ve seen how to define behavior on individual data structures, get ready to explore

Rust’s functional side, where we’ll learn how to process entire sequences of data with the power

and elegance of iterators and closures.

Questions and assignments
Questions

1.	 In Rust, what two fundamental components are used to achieve the OOP principle of

encapsulation by bundling data and associated methods?

2.	 If a function accepts a parameter using the syntax item: &impl Summarizable, what kind

of method dispatch (static or dynamic) will the compiler use for method calls on item?

3.	 What is the Box<dyn Trait> syntax necessary for when creating a Vec that needs to hold

different concrete types (e.g., NewsArticle and Tweet)?

4.	 Instead of traditional implementation inheritance, what two main mechanisms does Rust

favor for code reuse and sharing behavior?

5.	 What is the purpose of a supertrait (e.g., trait PrintableSummary: Display) in a trait defi-

nition?

6.	 The process where the compiler generates specialized, concrete versions of a generic

function for each type it is used with is known as what?

7.	 What kind of pointer-based mechanism does dynamic dispatch use at runtime to find

the correct method implementation?

8.	 If a trait method uses Self as a return type (like fn clone_self(&self) -> Self;), why does

this prevent the trait from being object-safe?

9.	 In the Builder pattern (e.g., WindowConfigBuilder), what technique is used for the meth-

ods that set optional fields (like .width()) to allow method chaining?

10.	 In the Observer pattern, the Subject holds its observer list using RefCell. What problem

in Rust’s ownership system does RefCell solve in this context?

Chapter 8 273

Assignments
Assignment 8.1: The private bank account (encapsulation)
Goal: Practice creating a struct with private data and a public method to modify it safely.

Define a module: Create a module named finance so you can test privacy rules (or just imagine

it’s in a separate file).

Create a struct: Inside the module, define a struct named BankAccount with one field:

balance: i32 .

Crucial step: Do not make the balance field public (do not put pub in front of balance). This

ensures external code cannot change it directly.

Add a method: Use an impl block to add a public method called deposit(&mut self,

amount: i32).

This method should add the amount to self.balance.

Add a constructor: Add a public new() function that returns a BankAccount starting with 0 balance.

Test in Main:

1.	 Create a new account using BankAccount::new().

2.	 Call .deposit(100).

Try (and fail): Attempt to print account.balance directly. It should fail to compile because the

field is private.

Fix: Add a public get_balance(&self) method to read the value safely, and print that instead.

Assignment 8.2: Animal sounds (basic traits)
Goal: Practice defining a shared behavior (trait) and implementing it for two different things.

Define a trait: Define a trait named Voice with one method signature: fn speak(&self);.

Create structs: Create two empty structs: Dog and Cat.

Implement the trait:

1.	 Implement Voice for Dog. Inside speak, print "Woof!".

2.	 Implement Voice for Cat. Inside speak, print "Meow!".

Object-Oriented Programming in Rust274

Test in Main:

1.	 Create an instance of Dog and Cat.

2.	 Call .speak() on both of them to see their different behaviors.

Subscribe to Deep Engineering
Join thousands of developers and architects who want to understand how software is changing,

deepen their expertise, and build systems that last.

Deep Engineering is a weekly expert-led newsletter for experienced practitioners, featuring

original analysis, technical interviews, and curated insights on architecture, system design, and

modern programming practice.

Scan the QR or visit the link to subscribe for free.

https://packt.link/deep-engineering-newsletter

https://packt.link/deep-engineering-newsletter

9
Thinking Functionally in Rust

Let’s take a moment to appreciate another wonderful aspect of Rust: its support for functional

programming ideas.

Functional programming is a style where we treat computation as we do evaluating mathematical

functions, often preferring immutable data and steering clear of side effects.

Even though Rust isn’t solely a functional language (it’s actually multi-paradigm), it adopts many

helpful concepts from this style because they bring so many benefits.

Using these functional techniques often makes your code cleaner, more declarative, and easier

to understand and debug.

And by reducing side effects, these patterns can make it simpler to develop correct and efficient

concurrent code, which is one of Rust’s key strengths. When you combine these ideas with Rust’s

other powerful features, you get the ability to write code that is not only concise and expressive

but also robust and reliable!

Let’s get started!

Rust and functional programming
You don’t need to go “all-in” on functional programming to enjoy these features in Rust. The

language smoothly combines functional ideas with its imperative and systems-level features,

making them useful tools for your development.

Thinking Functionally in Rust276

This multi-paradigm nature allows you to, for instance, use a concise iterator chain (a functional

style) to process data before applying a mutable state update within a loop (an imperative style),

giving you the best of both worlds.

In this chapter, we’ll focus on some of the most impactful functional features Rust offers:

•	 Iterators: For processing sequences of data lazily and efficiently

•	 Closures: For creating flexible, anonymous functions that can capture their environment

•	 Higher-order functions: How functions that take other functions as arguments, such as

iterator methods, enable expressive code

Let’s see how these can make your Rust code shine.

Iterators: Processing sequences lazily
At the core of functional-style data processing in Rust are iterators.

What is an iterator? It’s a tool that generates a sequence of values. What’s unique about Rust’s

iterators is that they are lazy. This means they don’t produce all values at once; instead, they gen-

erate them one by one, only when you ask for them. This laziness makes them extremely efficient.

For example, imagine you must find the first line containing an error in a huge, multi-gigabyte

log file that might not fit into memory. An iterator lets you process it line by line, stopping as soon

as you find what you’re looking for, without ever loading the entire file. This demonstrates the

power of doing work only when it’s needed.

Creating and consuming iterators with next()
Most collection types in Rust provide ways to create iterators. The most basic way to interact with

an iterator is by calling its next() method repeatedly. next() returns an Option<Item>, giving

Some(value) when the next item is available and None when the sequence is exhausted:

fn main() {

 let fruits = vec!["apple", "banana", "cherry"];

 // Create an iterator over references to the elements in the vector.

 // The iterator variable must be `mut` because calling `.next()`
advances

 // the iterator and changes its internal state.

 let mut fruit_iterator = fruits.iter();

Chapter 9 277

 // Call next() manually

 println!("First call: {:?}", fruit_iterator.next()); // Some("apple")

 println!("Second call: {:?}", fruit_iterator.next()); //
Some("banana")

 println!("Third call: {:?}", fruit_iterator.next()); // Some("cherry")

 println!("Fourth call: {:?}", fruit_iterator.next()); // None
(sequence finished)

 // Note: Once an iterator returns None, it will always return None
afterwards.

 println!("Fifth call: {:?}", fruit_iterator.next()); // None

}

In this example, fruits.iter() creates an iterator that yields immutable references (&str) to the

elements in the fruits vector. We store it in a mut variable because calling next() advances the

iterator’s internal state, thus modifying it. Each call to next() gives us the next fruit wrapped in

Some, until the vector runs out, at which point next() returns None.

Three ways to iterate
Before we explore methods that use iterators, let’s first get to know the three main ways to create

an iterator from a collection. Each method has its own way of handling ownership and mutability,

so understanding them will help you use iterators more effectively.

Three ways to iterate: iter(), iter_mut(), and into_iter()
Collections in Rust typically offer three main methods to create an iterator, distinguished by how

they handle the collection’s data:

•	 iter() (immutable borrowing):

•	 Signature: fn iter(&self).

•	 Behavior: This method borrows the collection immutably. The iterator it produces

yields immutable references (&T) to the items.

•	 Use case: This is the most common way to iterate. You use it when you only need

to read the elements without changing them. The original collection remains

untouched and can be used after the loop.

Thinking Functionally in Rust278

•	 iter_mut() (mutable borrowing):

•	 Signature: fn iter_mut(&mut self).

•	 Behavior: This method borrows the collection mutably. The iterator it produces

yields mutable references (&mut T), allowing you to modify the items in place.

•	 Use case: Use this when you need to iterate through a collection and change its

elements. The collection itself must be declared as mut.

•	 into_iter() (taking ownership):

•	 Signature: fn into_iter(self).

•	 Behavior: This method consumes the collection and takes ownership of it. The

iterator it produces yields the owned values (T) themselves.

•	 Use case: Use this when you want to move the elements out of the collection,

consuming it in the process. After using into_iter(), the original collection is

no longer valid.

Let’s see all three in action:

fn main() {

 // --- 1. iter() - Immutable Borrows ---

 let names = vec!["Alice", "Bob", "Charlie"];

 for name in names.iter() {

 // `name` here is of type `&&str` (a reference to a string slice)

 println!("Hello, {}!", name);

 }

 // `names` is still valid and can be used here.

 println!("The names vector is still available: {:?}\n", names);

 // --- 2. iter_mut() - Mutable Borrows ---

 let mut numbers = vec![10, 20, 30];

 for num in numbers.iter_mut() {

 // `num` here is of type `&mut i32` (a mutable reference)

 *num *= 2; // We dereference `num` to modify the value it points
to

 }

 // `numbers` has been modified in place.

Chapter 9 279

 println!("The numbers vector has been modified: {:?}\n", numbers);

 // --- 3. into_iter() - Taking Ownership ---

 let messages = vec![String::from("First"), String::from("Second")];

 for msg in messages.into_iter() {

 // `msg` here is of type `String` (the owned value)

 println!("Processing message: {}", msg);

 }

 // The `messages` vector has been moved and is no longer valid.

 // The line below would cause a compile-time error.

 // println!("Can we use messages again? No: {:?}", messages);

}

This example clearly shows the three different iteration methods and their effect on the original

data:

•	 The names.iter() loop borrows the data immutably, allowing you to read each name

while leaving the original names vector available for later use

•	 In contrast, the numbers.iter_mut() loop borrows the data mutably, giving you a mutable

reference (&mut i32) to each num so you can modify the numbers vector in place

•	 Finally, messages.into_iter() takes full ownership of the messages vector, moving each

string into the loop; after this, the messages vector can no longer be used

The role of consumers
I hope you are getting a clear idea of what iterators are.

So far, you’ve only used them inside for loops or called .next() manually. The true magic hap-

pens when you chain methods together. But remember, iterators are lazy; they don’t do any work

until you ask them to. That’s where consuming adaptors, or just called consumers, come into play.

Think of it like this: methods such as .map() and .filter() (which we’ll explore soon) are like

the different steps in a recipe.

The consumer is the final step, the “bake” or “serve,” that actually runs the recipe and gives you

the finished dish. These methods are what drive the iterator forward, pulling items through the

entire chain of your operations.

Thinking Functionally in Rust280

A fun thing to remember about a consumer is that it takes ownership of the iterator. That means

once you call a consuming method such as .collect() or .sum(), the iterator is considered “used

up,” and you can’t use it again. This aligns perfectly with Rust’s ownership model, making it clear

that producing a final value is the last step.

Common consumers: collect(), sum(), and fold()
While there are many consuming methods, a few stand out as everyday tools for working with

iterators. These methods provide powerful ways to transform your lazy iterator into a concrete,

final value:

•	 collect(): This versatile consumer gathers all items from an iterator into a new collection,

with the type annotation specifying the collection type you want to create.

•	 sum(): This is a simple consumer for iterators that generate numbers. It smoothly goes

through all the items and calculates their total sum, making it easy to get the combined

value.

•	 fold(): This is a flexible and versatile tool for gathering a single value, kind of like what’s

called “reduce” in many other programming languages. You start with an initial value,

known as the “accumulator,” and then use a closure that takes the current accumulator

and the next item to produce a new accumulator value. It’s especially useful for tasks such

as calculating a product or creating other custom aggregations.

Let’s see them in action with an example:

fn main() {

 let numbers = vec![1, 2, 3, 4, 5];

 // --- Using collect() ---

 // Here, we filter for numbers greater than 2 and collect them into a
new Vec.

 // We use a type annotation `Vec<_>` to tell collect what to build.

 let greater_than_two: Vec<_> = numbers

 .iter()

 .filter(|&&n| n > 2)

 .collect();

 println!("Numbers greater than 2: {:?}", greater_than_two); // Output:
[3, 4, 5]

Chapter 9 281

 // --- Using sum() ---

 // We can sum the numbers in a range.

 let total: i32 = (1..=10).sum(); // The iterator is the range (1..=10)

 println!("The sum of numbers from 1 to 10 is: {}", total); // Output:
55

 // --- Using fold() ---

 // Let's calculate the product of the numbers in our vector.

 // We start with an initial accumulator value of 1.

 let product = numbers

 .iter()

 .fold(1, |accumulator, &item| accumulator * item);

 println!("The product of the numbers is: {}", product); // Output: 120

}

Iterator adapters: Transforming sequences
The real power of iterators comes from iterator adapters. These are methods defined on the Iterator

trait that take an iterator and return a new, transformed iterator without consuming the original

one immediately. Because adapters return new iterators, you can chain multiple adapters together

to perform complex operations in a readable way. Since iterators are lazy, no actual computation

happens until you call a consuming method (such as collect() or sum()) at the end of the chain.

The map adapter
One of the most popular and handy adapters you might come across is .map(). It’s a really useful

tool for transforming data: it takes an iterator and creates a new one by applying a simple func-

tion to each item, turning each into something new. It’s great for converting data types, doing

calculations on every number in a sequence, or changing every string in a list.

The way you close the .map() function really shows how each item will be changed:

fn main() {

 let numbers = vec![1, 2, 3, 4];

 // Create an iterator, map a closure to square each number,

 // and then collect the results.

 let squares: Vec<i32> = numbers.iter() // Iterator yields &i32

 .map(|x| x * x) // Closure takes &i32,
squares it, returns i32

Thinking Functionally in Rust282

 .collect(); // Collects the i32 results

 println!("Original: {:?}", numbers); // Output: [1, 2, 3, 4]

 println!("Squares: {:?}", squares); // Output: [1, 4, 9, 16]

 // Example with Strings

 let names = vec!["alice", "bob", "charlie"];

 let upper_names: Vec<String> = names.iter() // Iterator yields &str

 .map(|name| name.to_uppercase())
// Closure returns String

 .collect(); // Collects the
Strings

 println!("Upper names: {:?}", upper_names); // Output: ["ALICE",
"BOB", "CHARLIE"]

}

The map adapter takes a closure (the part like |x| x * x). For each element, x, produced by the

original iterator (numbers.iter()), map calls the closure with that element and produces the clo-

sure’s return value in the new iterator it creates. Notice that the original numbers vector remains

unchanged. The computation (x * x or name.to_uppercase()) only happens when collect()

requests the values.

The filter adapter
Another essential adapter is filter. It takes a closure that returns a Boolean (true or false).

filter creates a new iterator that only yields elements from the original iterator for which the

closure returns true:

fn main() {

 let numbers = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 // Create an iterator, filter for even numbers, and collect.

 let evens: Vec<i32> = numbers.iter() // Iterator yields &i32

 // Closure takes &i32, returns true if
even.

 // We need *x because filter gets a
reference (&i32)

 .filter(|&&x| x % 2 == 0) // Note the
double reference `&&x`

Chapter 9 283

 .copied() // Convert the iterator of &i32
to i32

 .collect(); // Collects the i32 results

 println!("Original: {:?}", numbers); // Output: [1, 2, ..., 10]

 println!("Evens: {:?}", evens); // Output: [2, 4, 6, 8, 10]

 // Chaining map and filter

 let scores = vec![85, 42, 95, 60, 77];

 // Get scores above 70, and add a 5-point bonus

 let adjusted_high_scores: Vec<i32> = scores.iter()

 .filter(|&&score| score >
70) // Keep scores > 70

 .map(|&score| score + 5) //
Add 5 to the filtered scores

 .collect();

 println!("Adjusted high scores: {:?}", adjusted_high_scores); //
Output: [90, 100, 82]

}

The filter adapter takes a closure (e.g., |&&x| x % 2 == 0). For each element, x, from the orig-

inal iterator, it calls the closure. If the closure returns true, the element is included in the new

iterator produced by filter; otherwise, it’s skipped.

 Tip: What’s with all the &s? Understanding |&x| versus |&&x|

Ever wonder why you sometimes see |&x| and other times |&&x| in iterator closures?

Think of it like layers of wrapping:

1.	 When you call .iter() on a collection, it gives you an iterator of references

(&T), which is like one layer of wrapping around each item.

2.	 Methods such as .filter() often pass a reference to that item to your closure,

which can add a second layer of wrapping, resulting in &&T.

The |&&x| pattern provides a convenient way to destructure or “unwrap” both lay-

ers at once, so the x inside your closure is the actual value you want to work with.

Similarly, |&x| unwraps a single layer of reference. It’s just a quick pattern match

to access the data directly!

Thinking Functionally in Rust284

Other useful adapters and consumers
Rust provides a variety of helpful iterator adapters, such as take, skip, rev, zip, enumerate, and

flat_map, along with useful consumers such as position, any, and all. It’s a good idea to check

out the std::iter::Iterator trait documentation to discover all the available tools. Among

these, fold and find stand out as especially powerful options.

The fold method is a versatile tool that helps you combine all elements in a sequence into a single,

meaningful value, whether you’re calculating a product or creating other detailed summaries.

The find method is great for searching; it goes through each element and returns an option with

the first element that meets your specified condition:

fn main() {

 let numbers = [1, 2, 3, 4, 5];

 // Use fold to calculate the product

 // Starts with an initial accumulator value (1)

 // The closure takes the accumulator (acc) and the current element
(&x)

 let product = numbers.iter().fold(1, |acc, &x| acc * x);

 println!("Product: {}", product); // Output: 120

 // Use find to get the first element satisfying a condition

 // find returns an Option<&Item>

 let first_even = numbers.iter().find(|&&x| x % 2 == 0);

 match first_even {

 Some(n) => println!("First even number: {}", n), // Output: 2

 None => println!("No even numbers found."),

 }

 // find returns a reference; use copied() if you need the value

 let first_gt_3_value: Option<i32> = numbers.iter()

 .find(|&&x| x > 3) // Find
first > 3 (&i32)

 .copied(); //
Convert Option<&i32> to Option<i32>

 println!("First > 3 value: {:?}", first_gt_3_value); // Output:
Some(4)

}

Chapter 9 285

fold takes an initial accumulator value and a closure. The closure receives the current accumu-

lator and the next element, returning the new accumulator value. This repeats for all elements.

find takes a predicate closure and returns an option containing a reference to the first element for

which the predicate returns true, or None if no such element exists. Remember to use .copied()

or .cloned() after find if you need the value itself rather than a reference.

You may have noticed that all our powerful iterator methods, such as .map() and .filter(),

have one thing in common: that compact |parameter| expression syntax we’ve been passing to

them. These powerful, inline anonymous functions are called closures, a cornerstone of idiomatic

Rust. In the next section, we’ll take a much deeper look at what they are, how they work, and

why they are so flexible.

Closures: Capturing the environment
We’ve touched on closures briefly with iterator adapters such as map and filter before. Now,

let’s explore them in a more friendly way. Closures are simply anonymous functions that you

can define right where you’re using them. They’re perfect for quick, one-time logic without the

fuss of creating a full, named function with fn. What really makes closures special is their ability

to “pick up” variables from the surrounding scope, or their “environment.” This feature makes

them incredibly handy for crafting small, context-aware functions whenever you need them,

right on the spot!

Defining closures
Here’s a friendly explanation of closures: the basic syntax uses vertical bars, | |, for parameters,

followed by the body of the closure, which can be a single expression or a block in curly braces,

{}. One of the great things about closures is that the Rust compiler is really good at figuring out

types, so in many cases, you don’t need to explicitly specify the parameter or return types.

Of course, you can add type annotations for clarity, such as |a: i32, b: i32|, but it’s quite

common to leave out the return type. If your closure’s body is just a single expression, Rust will

automatically determine the return type based on that expression.

It’s still good practice to include a return type annotation, such as -> i32, especially in more

complex closures, but often, the compiler can handle it without:

fn main() {

 // Basic closure, type inference works

 let add_one = |x| x + 1;

 println!("5 + 1 = {}", add_one(5)); // Output: 6

Thinking Functionally in Rust286

 // Closure with explicit type annotations

 let multiply = |a: i32, b: i32| -> i32 {

 a * b // No semicolon needed if it's the return expression

 };

 println!("3 * 4 = {}", multiply(3, 4)); // Output: 12

 // Closure with a block body

 let complex_closure = |x: i32| {

 println!("Calculating for input: {}", x);

 let result = x * x + 2 * x + 1;

 // 'return' keyword is optional for the last expression in a block

 result

 };

 println!("Complex result for 3: {}", complex_closure(3)); // Output:
Calculating... 16

}

Closures are written as |param1, param2, ...| body. The compiler figures out the types of x in

add_one and the return type based on their first usage, which here is with an i32. For multiply

and complex_closure, we include explicit type annotations to make things clearer. Using a block,

{}, enables us to include multiple statements inside the closure.

Capturing the environment
This is the key feature! Closures can access variables from the scope they are defined in. How they

capture these variables (by immutable reference, by mutable reference, or by taking ownership)

determines which closure trait they implement:

fn main() {

 let factor = 10;

 let threshold = 50;

 // This closure captures 'factor' by immutable reference (&)

 // It implements the Fn trait

 let multiply_by_factor = |n| n * factor;

 println!("5 times factor: {}", multiply_by_factor(5)); // Output: 50

 // ---

Chapter 9 287

 let mut items_processed = 0;

 // This closure captures 'items_processed' by mutable reference (&mut)

 // because it modifies it. It implements the FnMut trait.

 let mut process_item = |item_id| {

 println!("Processing item {}", item_id);

 items_processed += 1; // Modifies captured variable

 };

 process_item(101);

 process_item(102);

 println!("Items processed: {}", items_processed); // Output: 2

 // ---

 let data_to_own = vec![1, 2, 3];

 // This closure takes ownership of 'data_to_own' because of the 'move'
keyword.

 // It implements the FnOnce trait (can only be called once).

 let consume_data = move || {

 println!("Consuming data: {:?}", data_to_own);

 // data_to_own is dropped when consume_data goes out of scope

 };

 consume_data();

 // println!("{:?}", data_to_own); // Error! data_to_own was moved

 // --- Using closures with iterators often involves capturing

 let numbers = vec![1, 2, 3, 4, 5, 6];

 let greater_than_threshold: Vec<i32> = numbers.into_iter() // into_
iter() takes ownership

 // Captures 'threshold'
by reference

 .filter(|&num| num >
threshold)

 .collect();

 // Note: threshold is still usable here because filter only needed a
reference.

 println!("Numbers > {}: {:?}", threshold, greater_than_threshold); //
Output: [] (if threshold=50)

}

Thinking Functionally in Rust288

•	 multiply_by_factor only reads factor, so it captures by immutable reference (&).

•	 process_item modifies items_processed, so it captures by mutable reference (&mut). We

needed mut process_item because calling it modifies its captured state.

•	 consume_data uses the move keyword, forcing it to take ownership of data_to_own. Without

move, it might try to borrow, but move is often used when the closure needs to outlive the

captured variable’s original scope (e.g., sending it to another thread).

•	 The filter closure captures the threshold by reference to perform the comparison.

A common pitfall: Using data after a move

Be mindful of Rust’s ownership rules when using move closures! Once a closure

takes ownership of a variable, that variable is no longer valid in its original scope.

The compiler will prevent you from using it, which is a key safety feature:

let data = vec![1, 2, 3];

// This closure takes ownership of `data`.

let consume_data = move || {

 println!("Closure has data: {:?}", data);

};

consume_data(); // `data` is moved here.

// The line below would cause a compile-time error because
`data`

// has been moved and is no longer owned by this scope.

// println!("Main scope can no longer access data: {:?}",
data);

// error[E0382]: borrow of moved value: `data`

This compile-time check is Rust’s way of ensuring you don’t accidentally use data

after it has been given away, preventing potential bugs.

Chapter 9 289

Closure traits: Fn, FnMut, and FnOnce
The way a closure captures its environment dictates which of three special traits it implements:

FnOnce, FnMut, or Fn. These traits define how the closure can be called. When you write a high-

er-order function that accepts a closure, you use these traits as bounds to specify what kind of

closure you need:

•	 FnOnce: This trait is for closures that can be called at least once. A closure that consumes

the variables it captures (by taking ownership) can only be called once, so it will only

implement FnOnce. The name signifies that the closure consumes itself when called.

•	 FnMut: This trait is for closures that might mutate the variables they capture. These clo-

sures can be called multiple times. Any closure that implements Fn also implements FnMut.

•	 Fn: This trait is for closures that only immutably borrow values from their environment.

These closures can also be called multiple times without changing their environment.

The compiler will always infer the most permissive trait that a closure can implement. For ex-

ample, a closure that only reads a variable will implement all three traits (Fn, FnMut, and FnOnce),

allowing it to be used in the widest range of situations.

Let’s see this in action with higher-order functions that accept different kinds of closures:

// This function accepts closures that only need immutable access (`Fn`).

fn call_reporter<F>(reporter: F)

where

 F: Fn() -> String, // Trait bound: must implement Fn

{

 println!("Report: {}", reporter());

}

// This function accepts closures that might mutate their environment
(`FnMut`).

fn call_mutator<F>(mut mutator: F) // Note the `mut` here

where

 F: FnMut(), // Trait bound: must implement FnMut

{

 // We can call it multiple times.

Thinking Functionally in Rust290

 mutator();

 mutator();

}

// This function accepts any closure but consumes it (`FnOnce`).

fn call_once<F>(consumer: F)

where

 F: FnOnce(), // Trait bound: must implement FnOnce

{

 consumer();

 // Calling `consumer()` again here would cause a compile error.

}

fn main() {

 let message = String::from("System status OK");

 // This closure captures `message` by reference, so it implements
`Fn`.

 let report_closure = || message.clone();

 call_reporter(report_closure);

 let mut counter = 0;

 // This closure captures `counter` by mutable reference, so it
implements `FnMut`.

 let mut increment_closure = || {

 counter += 1;

 println!("Counter is now: {}", counter);

 };

 // We pass ownership of the closure to `call_mutator`.

 call_mutator(increment_closure);

 let data = String::from("Consume me");

 // This closure moves `data`, so it implements `FnOnce`.

 let consume_closure = || {

 println!("Consumed: {}", data);

 };

 call_once(consume_closure);

}

Chapter 9 291

Let’s explain the FnMut case.

The call_mutator function is a great example of a common point of confusion. Let’s break it down:

•	 Why mut mutator: F? The FnMut trait’s call method takes &mut self, so calling an FnMut

closure mutably borrows the closure. This allows mutator() to change the closure’s in-

ternal state, including captured variables such as counter. Therefore, mutator must be

declared as mut inside call_mutator.

•	 Passing ownership: In our main function, we call call_mutator(increment_closure),

moving ownership of the closure into call_mutator, which is the most common way to

pass FnMut closures. The function now owns and can mutate the closure. If the signature

were fn call_mutator<F: FnMut()>(mutator: &mut F), you’d pass a mutable reference

(&mut increment_closure), but taking ownership with mut F is more common.

With a solid understanding of how to use closures to define behavior, let’s now turn to another

powerful feature that is often used alongside them, especially when working with enums and

iterators: pattern matching.

Pattern matching
Closures beautifully shape behavior in a clear way, especially when working with iterators. Rust’s

pattern matching adds even more expressive power to our code. Having already looked at the match

statement, let’s now take a dive into it from a functional perspective, seeing how it neatly destruc-

tures data and guides our control flow, perfectly complementing closure-based transformations.

Pattern matching in functional style
We saw match used extensively in error handling (Chapter 6) and with enums (Chapter 5). Pat-

tern matching is also a key feature often associated with functional programming languages,

and Rust’s implementation is particularly powerful. It allows you to destructure data types and

control program flow based on the shape of the data, not just its value.

Destructuring structs and enums
match arms can directly destructure structs and enums, binding parts of their data to variables

within the arm’s scope:

enum Message {

 Quit,

 Write(String),

 ChangeColor(u8, u8, u8),

Thinking Functionally in Rust292

 Move { x: i32, y: i32 },

}

struct User {

 id: u32,

 name: String,

 active: bool,

}

fn process_message(msg: Message) {

 match msg {

 Message::Quit => println!("Quitting."),

 // Bind the String inside Write to 'text'

 Message::Write(text) => println!("Message to write: {}", text),

 // Bind the RGB values

 Message::ChangeColor(r, g, b) => println!("Change color to R:{}
G:{} B:{}", r, g, b),

 // Destructure the struct variant, binding fields

 Message::Move { x, y } => println!("Move to ({}, {})", x, y),

 }

}

fn describe_user(user: User) {

 match user {

 // Match specific field values and bind others

 User { id: 1, name, active: true } => println!("Admin user '{}' is
active.", name),

 // Match based on a field value, ignore others with '..'

 User { active: false, .. } => println!("User {} is inactive.",
user.id), // Can still use 'user' here

 // Match any other user

 User { id, name, .. } => println!("Regular user #{} is '{}'.", id,
name),

 }

}

fn main() {

 process_message(Message::ChangeColor(255, 0, 128));

Chapter 9 293

 process_message(Message::Move { x: 10, y: -5 });

 let user1 = User { id: 1, name: "Alice".to_string(), active: true };

 let user2 = User { id: 2, name: "Bob".to_string(), active: false };

 let user3 = User { id: 3, name: "Charlie".to_string(), active: true };

 describe_user(user1);

 describe_user(user2);

 describe_user(user3);

}

The match arms directly mirror the structure of the enum variants or struct definition. You can

bind values within the variants/structs to new variables (such as text, r, g, b, x, y, name, or id).

You can also match specific literal values (such as id: 1, active: true). The .. syntax ignores

any fields not explicitly mentioned in the pattern for structs.

This same destructuring pattern is especially powerful when working with Rust’s standard Result

and Option enums, allowing you to handle success, failure, or absence while directly accessing

the contained values:

fn process_input(input: &str) {

 let result: Result<i32, _> = input.parse();

 match result {

 Ok(number) => {

 // Destructured `Ok`, binding the i32 to `number`.

 println!("Successfully parsed number: {}", number);

 }

 Err(error) => {

 // Destructured `Err`, binding the ParseIntError to `error`.

 println!("Failed to parse. Error: {}", error);

 }

 }

}

fn main() {

 let maybe_name: Option<String> = Some(String::from("Alice"));

Thinking Functionally in Rust294

 match maybe_name {

 Some(name) => {

 // Destructured `Some`, binding the String to `name`.

 println!("Found a name: {}", name);

 }

 None => {

 println!("No name was provided.");

 }

 }

 process_input("123");

 process_input("abc");

}

if let and while let
Sometimes, you’re only interested in matching a single specific pattern and prefer to overlook

all others. Using match for this can feel a bit lengthy because you’ll still need a catch-all _ => {}

arm. Rust offers more streamlined options, such as if let and while let, which are perfect for

these single-pattern situations.

if let is a shorter way to write a match that handles only one case.

while let is especially handy for looping as long as a pattern keeps matching. It’s commonly

paired with methods that return an option, such as an iterator’s .next() or a vector’s .pop(),

which are used to process items until a None is encountered, signaling a smooth ending. In ad-

vanced async programming, this pattern processes stream items or polls futures until ready:

fn main() {

 let maybe_value: Option<i32> = Some(10);

 // Instead of match maybe_value { Some(x) => ..., None => ... }

 if let Some(value) = maybe_value {

 println!("Got a value using if let: {}", value);

 } else {

 println!("No value found.");

 }

Chapter 9 295

 let mut data_stack = vec![Some(1), Some(2), None, Some(3)];

 // Instead of loop { match data_stack.pop() { Some(Some(x)) => ..., _
=> break } }

 // Process items from the stack as long as they are Some(Some(value))

 while let Some(Some(value)) = data_stack.pop() {

 // The outer `Some` matches the `Option` from `pop()`.

 // The inner `Some` matches the `Option<i32>` that was inside the
`Vec`.

 // The loop continues as long as we successfully pop a
`Some(value)`.

 println!("Processing value from stack: {}", value);

 }

 // Loop stops when pop() returns None or Some(None)

 println!("Stack processing finished. Remaining: {:?}", data_stack); //
Output: [Some(1), Some(2)] (or reversed depending on pop order)

}

if let provides a neat way to handle a single match arm, optionally with an else. while let is

perfect for loops that should continue as long as a certain pattern matches, often used for con-

suming iterators or processing collections until a specific condition (such as None or Err) is met.

They make code that only cares about one successful pattern much cleaner.

Summary
In this chapter, we explored the wonderful functional programming features that make Rust such

an expressive and powerful language.

We discovered that while Rust is a multi-paradigm language, it thoughtfully incorporates core

functional ideas such as immutability and treating functions as first-class values, which helps

us write cleaner and more reliable code. The heart of this functional style is Rust’s lazy iterators,

offering an efficient way to process sequences of data.

We learned how to create them in different ways (iter(), into_iter(), and iter_mut()), how

to transform them with powerful iterator adapters such as map() and filter(), and how to get

a final result using consumers such as collect() and fold().

Thinking Functionally in Rust296

These iterator methods are powered by closures, which are flexible anonymous functions that can

capture variables from their environment. We explored their syntax, how they handle ownership

through the Fn, FnMut, and FnOnce traits, and how they enable concise, inline logic.

Finally, we revisited pattern matching with match, if let, and while let, highlighting how

beautifully it can destructure data types, perfectly fitting into the functional style. By combining

iterators, closures, and pattern matching, you can approach many programming challenges in

Rust with remarkable elegance and safety.

Don’t hesitate to explore the wealth of methods available on the Iterator trait; they are truly

fundamental to idiomatic Rust!

Questions and assignments
Let’s put these functional concepts into practice! These questions and assignments will help you

get comfortable using iterators, closures, and pattern matching in Rust.

Questions
1.	 What does it mean for Rust’s iterators to be “lazy”? Briefly describe one advantage of this

laziness.

2.	 Explain the difference between the three main iterator creation methods: iter(), iter_

mut(), and into_iter(). Describe what kind of value each one yields (e.g., owned value,

mutable reference, or immutable reference).

3.	 What is the difference between an iterator adapter (such as .map() or .filter()) and a

consuming adaptor (such as .collect() or .sum())?

4.	 What is a closure in Rust? What is the key feature that makes them different from regular

functions defined with fn?

5.	 Briefly explain the purpose of the move keyword when used with a closure, especially in

the context of spawning a new thread.

6.	 What are the three Fn traits (Fn, FnMut, and FnOnce), and what do they represent about

how a closure interacts with its environment?

7.	 When would you choose to use if let instead of a full match statement?

8.	 Describe a common use case for the while let construct, particularly with a method

that returns an option.

Chapter 9 297

Assignments
Assignment 9.1 (easy): Simple data filtering and transformation
Goal: Practice using basic iterator adapters such as filter and map in a chain.

Task:

1.	 Create a function named process_names that takes a Vec<&str> as input.

2.	 Inside the function, use an iterator chain to perform the following transformations on

the input vector:

•	 Filter out any names that have five or fewer characters

•	 Convert the remaining names to uppercase strings

3.	 The function should return a Vec<String> containing the final, processed names.

4.	 In your main function, create a sample vector of names, call process_names, and print the

result to verify that it works correctly.

Example: If the input is vec!["Alice", "Bob", "Charlie", "David", "Eve"], the output

should be ["CHARLIE", "DAVID"].

Assignment 9.2 (advanced): Implementing a custom Fibonacci
iterator
Goal: Get a deeper understanding of how iterators work by implementing the Iterator trait for

a custom struct.

Task:

1.	 Create a struct named Fibonacci that holds the current state needed to generate the

sequence (e.g., curr: u32, next: u32).

2.	 Implement a new() associated function for Fibonacci that initializes it to the start of the

sequence (current value: 0, next value: 1).

Thinking Functionally in Rust298

3.	 Implement the Iterator trait for your Fibonacci struct:

•	 The type Item should be u32.

•	 In the next(&mut self) method, implement the logic to do the following:

•	 Return the current Fibonacci number

•	 Update the struct’s internal state to the next numbers in the sequence

•	 Return None if the next number would exceed a certain limit (e.g., if it would

overflow u32, or you can add a max field to your struct)

4.	 In your main function, create a new Fibonacci iterator. Use it in a for loop to print the first 10

Fibonacci numbers. Then, use iterator methods such as .take(5).collect::<Vec<_>>()

to demonstrate that your custom type works just like any other iterator.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

10
Testing in Rust

Welcome to Chapter 10!

After defining data, managing errors, and exploring functional concepts, we now arrive at a crucial

practice for any software developer: testing.

This chapter highlights how Rust makes it easy and enjoyable to write tests, helping you ensure

your code works correctly and the quality remains high over time. Rust doesn’t just support test-

ing; it actively encourages it with fantastic built-in tools, making testing a seamless and natural

part of your development journey.

Think of this chapter as learning how to build a robust safety net for all the awesome Rust code

you will write!

But before we proceed, let’s start with a question most of you might have now.

Why ever bother with testing?

Why bother with testing?
You might think, “Okay, testing sounds good, but is it necessary, especially when I’m just starting

or working on smaller projects?” That’s a fair question! Investing a bit of time in writing tests,

even for simpler projects, pays off handsomely. Here’s why it’s a big deal:

•	 Catching bugs early: It’s far less painful (and less expensive) to find and fix a bug when

you’ve just written the code than weeks or months later when it’s buried under layers of

new features. Tests act like an early warning system.

Testing in Rust300

•	 Confidence to refactor and change: Code evolves. When you need to refactor (restructure

existing code) or add new features, a good set of tests gives you the confidence that you

haven’t accidentally broken something else. You can make changes, run your tests, and

breathe a little easier if they pass!

•	 Documentation by example: Tests are, in a way, a form of living documentation. They

show exactly how a piece of code is intended to be used and its expected outputs for

given inputs. This is invaluable for yourself later, or for anyone else trying to understand

your code.

•	 Preventing regressions: A “regression” is when a previously fixed bug reappears or a

new change breaks existing functionality. Once you write a test for a bug, that test helps

ensure the bug stays fixed.

•	 Better code design: Often, thinking about how to test a piece of code encourages you to

write it in a more modular, decoupled, and, thus, better-designed way. If something is

hard to test, it might indicate that its design could be improved.

So, while it might seem like extra work upfront, testing is a fundamental practice that leads to

more reliable, maintainable, and, ultimately, more professional software.

 Note

All these benefits connect to an important idea called test coverage. Think of test

coverage as a way to see how much of your production code is actually run when you

execute your test suite. Even though reaching 100% coverage isn’t always realistic,

aiming for a high percentage helps you feel more confident that your code has been

carefully checked. It’s a helpful way to spot parts of your application that haven’t

been tested yet and might have bugs waiting to be found.

We won’t go into detail about specific coverage tools in this chapter, but the concept

is straightforward: the more of your code that your tests cover, the stronger and more

reliable your safety net becomes.

Chapter 10 301

Types of tests in Rust’s ecosystem
When we talk about testing in Rust, especially using its built-in capabilities, we’re generally

focusing on a few key categories. It’s good to know the lingo:

•	 Unit tests: These are the most detailed tests. They focus on checking small, individual parts

of your code in isolation, usually a single function, a method, or a very specific section of

a module. The goal is to make sure that each “unit” works correctly on its own. In Rust,

these are often located in a mod tests submodule within the same file as the code they test.

•	 Integration tests: These tests take a broader view. Instead of testing individual units in

isolation, they check how different parts of your library or application work together. They

typically test the public API of your crate, simulating how an external user or another part

of a larger system would interact with it. Rust has a special tests directory at the root of

your project for these.

•	 Documentation tests (doc tests): This is a rather neat feature in Rust! Code examples

that you write directly within your documentation comments (using /// or //!) can be

automatically compiled and run as tests. This is fantastic for ensuring that your examples

are always correct and up to date, providing reliable documentation for users of your code.

While other testing forms, such as end-to-end or performance testing, exist, this chapter mainly

focuses on Rust’s strong support for unit, integration, and documentation tests with cargo test.

These form the backbone of most Rust testing strategies!

Unit tests: The building blocks
Now that we understand why testing is essential, let’s get practical and explore unit tests.

These are the first line of defense in ensuring the quality of your code.

Think of them as small, focused checks for the individual components, the “units” of your program.

What are unit tests?
Unit tests are designed to verify the smallest testable parts of your application in isolation. Typi-

cally, this means testing a single function or a method on a struct or enum. The goal is to confirm

that a specific piece of logic behaves correctly given a known set of inputs, producing the expected

outputs or side effects (though pure functions with no side effects are often easiest to unit test!).

Testing in Rust302

Because they are isolated, unit tests have a few great characteristics:

•	 Fast: They usually run very quickly, allowing you to run them frequently during devel-

opment

•	 Precise: When a unit test fails, it generally points to a very specific area of your code,

making debugging much easier

•	 Independent: Ideally, unit tests don’t rely on external systems, such as databases, net-

works, or even other parts of your own application, being in a particular state

In Rust, the convention is to place unit tests in the same file as the code they are testing, grouped

within a submodule. Let’s see how.

Writing your first unit test
Rust makes writing unit tests quite straightforward.

You’ll typically create a submodule named tests within your source file, annotate it with

#[cfg(test)] so it’s only compiled during testing, and then write functions within that module

marked with the #[test] attribute.

Let’s imagine that we have a utility function that capitalizes the first letter of a string slice and

leaves the rest lowercase:

// In src/lib.rs or your relevant module file

pub fn capitalize_first_letter(s: &str) -> String {

 if s.is_empty() {

 return String::new();

 }

 let mut chars = s.chars();

 match chars.next() {

 None => String::new(), // Should be covered by is_empty, but good
for robustness

 Some(first_char) => {

 first_char.to_uppercase().to_string() + chars.as_str().to_
lowercase().as_str()

 }

 }

}

// This is where our tests will go

Chapter 10 303

#[cfg(test)] // Only compile this module when running tests

mod tests {

 // Import items from the parent module (where capitalize_first_letter
is)

 use super::*;

 #[test] // Marks this function as a test case

 fn test_capitalize_basic_string() {

 let input = "hello";

 let expected = "Hello";

 assert_eq!(capitalize_first_letter(input), expected);

 }

 #[test]

 fn test_capitalize_already_capitalized() {

 assert_eq!(capitalize_first_letter("World"), "World");

 }

 #[test]

 fn test_capitalize_mixed_case() {

 assert_eq!(capitalize_first_letter("rUsT"), "Rust");

 }

 #[test]

 fn test_capitalize_empty_string() {

 assert_eq!(capitalize_first_letter(""), "");

 }

 #[test]

 fn test_capitalize_single_char_string() {

 assert_eq!(capitalize_first_letter("a"), "A");

 assert_eq!(capitalize_first_letter("Z"), "Z");

 }

 #[test]

 fn test_capitalize_with_numbers_and_symbols() {

 assert_eq!(capitalize_first_letter("1st place!"), "1st place!");

Testing in Rust304

 assert_eq!(capitalize_first_letter("!leadingSymbol"),
"!leadingsymbol");

 }

}

Let’s break down the key parts of the test setup:

•	 pub fn capitalize_first_letter(...): This is the function we intend to test. Notice

it’s marked pub, so it can be accessed from other modules if this were part of a library.

•	 #[cfg(test)]: This attribute is a conditional compilation flag. It tells the Rust compiler,

“Only compile the following module (mod tests) if we are running tests (e.g., via cargo

test).” This ensures your test code doesn’t end up in your final release binary, keeping

it lean.

•	 mod tests { ... }: This declares a new submodule named tests. It’s a strong convention

in Rust to put unit tests for a module, foo, in a submodule, foo::tests.

•	 use super::*;: Inside the tests module, this line imports all items (functions, structs,

etc.) from its parent module (which is the module containing capitalize_first_letter).

The super keyword refers to the parent module. The * character is a glob import, bringing

everything in. This allows us to call capitalize_first_letter directly in our tests.

•	 #[test]: This attribute, placed above a function, signals to Rust’s test runner that this

particular function is a test case. Test functions are typically plain functions that don’t

take arguments and don’t return values.

•	 Assertion macros: Inside the test functions (such as test_capitalize_basic_string),

we use macros such as assert_eq!. These macros check whether a certain condition is

true. If the condition is false, the macro will cause the test function to panic, which the

test runner interprets as a test failure. We’ll look at common assertion macros next.

 Tip: Better test diffs with pretty_assertions

For much clearer test failures when comparing large structs or multi-line strings, the

popular pretty_assertions crate replaces the standard assert_eq! output with a

colorful, git-style “diff.” To use it, simply add it as a [dev-dependency] in your Cargo.

toml and then import its macro (e.g., use pretty_assertions::assert_eq;) in

your test module. It’s a drop-in replacement that can make debugging much faster.

Chapter 10 305

Running your tests with cargo test
Once you’ve written some tests, how do you run them? It’s remarkably simple with Cargo, Rust’s

build system and package manager. Just open your terminal in the root directory of your Rust

project and execute the following:

cargo test

Cargo will then do the following:

1.	 Compile your main code.

2.	 Compile your test code (including modules marked #[cfg(test)] and functions marked

#[test]).

3.	 Run each test function.

4.	 Report the results, telling you how many tests ran, how many passed, how many failed,

how many were ignored, and so on.

You’ll get a comforting green “ok” if all tests pass. If any test fails (due to a panicking assertion),

Cargo will print details about the failure, including the filepath, line number, and any message

provided to the assertion macro. This makes it easy to pinpoint what went wrong.

Go ahead and create a new library project using cargo new string_utils --lib, replace the

contents of src/lib.rs with the capitalize_first_letter function and its tests from previ-

ously, and then run cargo test. You should see all tests passing! For fun, try introducing a bug

in capitalize_first_letter (e.g., make it always return an empty string) and run cargo test

again to observe a test failure.

cargo test is great for running all tests, but flags give more control in larger projects

with multiple crates or binaries.

Common ones include cargo test --lib for library tests, cargo test --bin

for specific binaries, and cargo test --package for a single crate in a workspace.

These help focus testing efforts without running the entire suite!

Testing in Rust306

The test failure should look like this:

running 6 tests

test test_capitalize_already_capitalized ... ok

test test_capitalize_empty_string ... ok

test test_capitalize_mixed_case ... ok

test test_capitalize_single_char_string ... ok

test test_capitalize_with_numbers_and_symbols ... ok

test test_capitalize_basic_string ... FAILED

failures:

---- test_capitalize_basic_string stdout ----

thread 'main' panicked at src/lib.rs:21:9:

assertion failed: `left == right`

 left: `""`,

 right: `"Hello"`

note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

failures:

 test_capitalize_basic_string

test result: FAILED. 5 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

Common assertion macros
The core of most tests involves checking that some condition holds true or that an actual value

matches an expected value. Rust’s standard library provides a few essential macros for this, which

all cause a panic (and thus a test failure) if their condition isn’t met:

Chapter 10 307

•	 assert!(expression, ...optional_message_args...): This is the most basic asser-

tion. It checks whether the given Boolean expression evaluates to true. If it’s false, the

test panics:

#[test]

fn is_string_long_enough() {

 let my_string = "Rustacean";

 assert!(my_string.len() > 5, "String '{}' should be longer than
5 chars", my_string);

}

•	 assert_eq!(left, right, ...optional_message_args...): This macro checks whether

the left and right expressions are equal (using the == operator, so the types must imple-

ment PartialEq). If they are not equal, it panics, helpfully printing both the left and right

values. This is probably the most common assertion you’ll use:

#[test]

fn values_should_be_equal() {

 let calculated_value = 2 + 2;

 let expected_value = 4;

 assert_eq!(calculated_value, expected_value, "Checking simple
addition");

}

•	 assert_ne!(left, right, ...optional_message_args...): The opposite of assert_eq!.

It checks that left and right are not equal (using the != operator, requiring PartialEq).

It panics if they are equal:

#[test]

fn values_should_not_be_equal() {

 let value_a = "apple";

 let value_b = "orange";

 assert_ne!(value_a, value_b, "Different fruits should not be
equal");

}

All these assertion macros can take additional arguments after the main condition/values. These

extra arguments are passed to the format! macro to create a custom panic message if the asser-

tion fails.

Testing in Rust308

Providing clear, contextual failure messages can be a huge help when a test breaks, especially if

it’s not immediately obvious why from the code itself.

Testing Result and Option types
Many Rust functions, especially those performing operations that might fail or not find a value,

return Result<T, E> or Option<T>.

Testing these types involves checking for the correct variant (Ok, Err, Some, or None) and often

inspecting the contained value or error:

// A function that might fail if input is empty

fn create_greeting(name: &str) -> Result<String, String> {

 if name.trim().is_empty() {

 Err("Name cannot be empty".to_string())

 } else {

 Ok(format!("Hello, {}!", name))

 }

}

// A function that returns an Option

fn find_even_number(numbers: &[i32]) -> Option<i32> {

 for &num in numbers {

 if num % 2 == 0 {

 return Some(num); // Return the first even number found

 }

 }

 None // No even number found

}

#[cfg(test)]

mod tests {

 use super::*;

 #[test]

 fn test_create_greeting_success() {

 let result = create_greeting("Rustacean");

 assert!(result.is_ok(), "Greeting should be Ok for valid name");

Chapter 10 309

 // Once we know it's Ok, it's generally safe to unwrap in a test

 assert_eq!(result.unwrap(), "Hello, Rustacean!");

 }

 #[test]

 fn test_create_greeting_failure_empty_name() {

 let result = create_greeting("");

 assert!(result.is_err(), "Greeting should be Err for empty name");

 // We can also check the specific error message

 assert_eq!(result.unwrap_err(), "Name cannot be empty");

 }

 #[test]

 fn test_create_greeting_failure_whitespace_name() {

 let result = create_greeting(" ");

 assert!(result.is_err(), "Greeting should be Err for whitespace-
only name");

 }

 #[test]

 fn test_find_even_number_some_found() {

 let numbers = [1, 3, 4, 5, 7];

 let result = find_even_number(&numbers);

 assert!(result.is_some(), "Should find an even number");

 assert_eq!(result.unwrap(), 4);

 }

 #[test]

 fn test_find_even_number_none_found() {

 let numbers = [1, 3, 5, 7, 9];

 let result = find_even_number(&numbers);

 assert!(result.is_none(), "Should return None if no even number is
present");

 }

 #[test]

 fn test_find_even_number_empty_slice() {

 let numbers: [i32; 0] = []; // Empty slice

Testing in Rust310

 let result = find_even_number(&numbers);

 assert!(result.is_none(), "Should return None for an empty
slice");

 }

 // Using assert!(matches!(...)) for more precise checks (Rust 1.42+)

 #[test]

 fn test_greeting_with_matches_macro() {

 let result_ok = create_greeting("Pat");

 assert!(matches!(result_ok, Ok(ref s) if s == "Hello, Pat!"),
"Expected Ok(\"Hello, Pat!\"), got {:?}", result_ok);

 let result_err = create_greeting(" ");

 assert!(matches!(result_err, Err(ref s) if s == "Name cannot be
empty"), "Expected specific error, got {:?}", result_err);

 }

}

For Result<T, E>, the is_ok() and is_err() methods are very useful for asserting the outcome.

If you’ve checked that Result is Ok, it’s generally considered safe to call .unwrap() within a test

to get the value for further assertions. Similarly, .unwrap_err() can be used to get the error value

after checking is_err().

For Option<T>, is_some() and is_none() serve the same purpose, with .unwrap() being used

to get the value from a Some.

The matches!(expression, pattern) macro (stable since Rust 1.42) is a powerful tool. It allows

you to assert that an expression matches a given pattern without needing to unwrap or write a

full match statement. You can even include guards in the pattern (such as Ok(ref s) if s ==

"Hello, Pat!"). This is often cleaner than multiple is_ok/unwrap/assert_eq chains.

Testing for panics
Sometimes, the correct behavior of your code is to panic, for example, when an unrecoverable

error occurs due to invalid input that signifies a programming error, or an internal state becomes

inconsistent. Rust allows you to explicitly test for these panic conditions.

You do this by adding the #[should_panic] attribute to your test function:

pub struct ScoreKeeper {

 scores: Vec<u32>,

Chapter 10 311

 max_scores: usize,

}

impl ScoreKeeper {

 pub fn new(max_scores: usize) -> Self {

 if max_scores == 0 {

 panic!("Cannot create a ScoreKeeper with zero capacity!");

 }

 ScoreKeeper { scores: Vec::with_capacity(max_scores), max_scores }

 }

 pub fn add_score(&mut self, score: u32) {

 if self.scores.len() >= self.max_scores {

 panic!("Cannot add score: ScoreKeeper is full!");

 }

 self.scores.push(score);

 }

 pub fn get_scores(&self) -> &[u32] {

 &self.scores

 }

}

#[cfg(test)]

mod tests {

 use super::*;

 #[test]

 fn can_add_scores_within_limit() {

 let mut keeper = ScoreKeeper::new(2);

 keeper.add_score(100);

 keeper.add_score(95);

 assert_eq!(keeper.get_scores(), &[100, 95]);

 }

 #[test]

 #[should_panic] // This test will pass if the code inside it panics

Testing in Rust312

 fn adding_score_to_full_keeper_panics() {

 let mut keeper = ScoreKeeper::new(1);

 keeper.add_score(80);

 keeper.add_score(70); // This line should cause a panic

 }

 #[test]

 #[should_panic(expected = "ScoreKeeper is full")] // Checks if panic
message contains this text

 fn adding_to_full_keeper_panics_with_specific_message() {

 let mut keeper = ScoreKeeper::new(1);

 keeper.add_score(88);

 keeper.add_score(99); // Panics here

 }

 #[test]

 #[should_panic(expected = "zero capacity")] // Checks the constructor
panic

 fn new_score_keeper_with_zero_capacity_panics() {

 ScoreKeeper::new(0); // This should panic

 }

}

If you annotate a test function with #[should_panic], the test will pass if the code inside the

function panics. If the code doesn’t panic, the test will fail.

You can make this more precise by providing an expected string to the attribute: #[should_

panic(expected = "substring of the panic message")].

In this case, the test only passes if the code panics and the panic message produced by the panic!

macro contains the specified substring.

This is useful to ensure you’re panicking for the correct reason, not just random panic.

Controlling test execution
cargo test is quite versatile.

By default, it runs all your tests (unit, integration, and doc tests) in parallel to speed things up. It

also captures any output printed by passing tests, so you typically only see output from failing

tests, which helps keep the test results clean.

Chapter 10 313

Here are some common command-line options to customize test execution:

•	 Running specific tests:

•	 cargo test test_function_name: Runs only the test function with that exact

name.

•	 cargo test module_name: Runs all tests within a specific module (e.g., cargo test

tests would run all unit tests if your module is named tests).

•	 cargo test substring: Runs all tests whose names contain a substring. For

instance, cargo test capitalize would run all tests such as test_capitalize_

basic_string and test_capitalize_empty_string, from our earlier example.

•	 Showing output:

•	 cargo test -- --show-output: This will display the output (e.g., from println!)

for all tests, even passing ones. The -- characters are used to separate arguments

for cargo test itself from arguments for the test binary it compiles and runs.

•	 Running tests sequentially:

•	 cargo test -- --test-threads=1: This tells the test runner to use only one

thread, effectively running your tests one after another. This can be useful if your

tests might interfere with each other (though ideally they shouldn’t!) or if you’re

trying to debug an issue where parallel execution complicates things.

•	 Ignoring tests: Sometimes, you might have tests that are very slow or require a specific

setup that’s not always available. You can mark such tests with the #[ignore] attribute:

#[test]

#[ignore]

fn very_resource_intensive_and_slow_test() {

 // ... some very slow operations ...

 assert!(true);

}

By default, cargo test will skip ignored tests. To run only the ignored tests, you can use cargo

test -- --ignored.

To run all tests, including ignored ones, use cargo test -- --include-ignored.

These options give you fine-grained control over your testing workflow, allowing you to focus on

specific areas or manage different types of tests effectively.

Testing in Rust314

Integration tests: Checking how parts fit together
While unit tests are really great for making sure each part of your code works well on its own,

remember that software is often more than just separate pieces.

Components need to work together, modules need to communicate smoothly, and your library’s

public interface should do exactly what users expect. Everything should come together seamlessly

for the best experience.

This is where integration tests come into play. They verify that different parts of your project

correctly “integrate” and work together.

Purpose of integration tests
So, what is an integration test’s main job, and how does it differ from a unit test?

•	 Focus on interactions: Integration tests check the connections between components,

mostly testing the public API functions, structs, and methods marked pub for external use.

•	 External perspective: Unlike unit tests, which can access private functions and internal

details within a module, integration tests use your crate like any other external crate. They

can only call public API functions. This makes them excellent for ensuring your library’s

interface is correct and usable.

•	 Broader scope: They naturally cover more code than a single unit test. A successful inte-

gration test implies that several components are working together correctly.

•	 Catching different bugs: Integration tests can catch bugs that unit tests might miss, such

as issues arising from incorrect assumptions about how different modules interact, prob-

lems with data flow between components, or misunderstandings about how an API is

meant to be used.

You can think of it this way: unit tests ensure each actor knows their lines, while integration tests

ensure the actors perform the scene together correctly.

Setting up integration tests
Rust has a very clear convention for where integration tests live, and Cargo knows exactly how

to find and run them:

1.	 Create a tests directory: At the root of your project (alongside your src directory and

Cargo.toml file), create a new directory named tests.

Chapter 10 315

2.	 Add .rs files: Each Rust source file (e.g., my_feature_test.rs) you place directly inside

this tests directory will be compiled by Cargo as a separate, individual crate. This is a

key point: each test file is its own little program that links against your main library crate.

3.	 Import your crate: Because each test file is a separate crate, you need to import the library

you want to test using use your_crate_name;. The your_crate_name is the name specified

in your Cargo.toml file under [package].

4.	 Write test functions: Inside these files, you write functions annotated with #[test] just

like you do for unit tests. You don’t need an enclosing mod tests {} or #[cfg(test)]

because Cargo already knows these are tests due to their location.

Figure 10.1: Example of the directory structure and code for integration tests in VS Code

Let’s consider a small library that provides some simple text manipulation utilities.

Our library code (src/lib.rs)
Here is the library code:

// src/lib.rs

// Assume our crate name in Cargo.toml is "text_analyzer"

pub mod analysis {

Testing in Rust316

 pub fn count_words(text: &str) -> usize {

 if text.is_empty() {

 return 0;

 }

 text.split_whitespace().count()

 }

 pub fn contains_profanity(text: &str, banned_words: &[&str]) -> bool {

 let lower_text = text.to_lowercase();

 for word in banned_words {

 if lower_text.contains(word) {

 return true;

 }

 }

 false

 }

}

pub struct TextStats {

 pub word_count: usize,

 pub character_count: usize,

}

pub fn gather_stats(text: &str) -> TextStats {

 TextStats {

 word_count: analysis::count_words(text), // Uses the module

 character_count: text.chars().count(),

 }

}

Now, let’s write an integration test for this. First, create the tests directory:

mkdir tests

Then, create a file named tests/analyzer_integration.rs.

Chapter 10 317

Integration test file (tests/analyzer_integration.rs)
Here is the test code:

// tests/analyzer_integration.rs

// Import the crate we want to test.

// The name "text_analyzer" must match the `name` field in Cargo.toml

use text_analyzer;

#[test]

fn test_word_count_integration() {

 let sample_text = "This is a sample sentence.";

 // Call the public function from our library's public module

 let count = text_analyzer::analysis::count_words(sample_text);

 assert_eq!(count, 5, "Word count should be 5");

}

#[test]

fn test_profanity_checker_integration() {

 let sample_text_clean = "A lovely day for a walk.";

 let sample_text_profane = "This is a darn naughty sentence.";

 let banned = ["darn", "naughty"];

 assert!(!text_analyzer::analysis::contains_profanity(sample_text_
clean, &banned), "Clean text should not contain profanity");

 assert!(text_analyzer::analysis::contains_profanity(sample_text_
profane, &banned), "Profane text should be detected");

}

#[test]

fn test_gather_stats_integration() {

 let sample_text = "Hello world!"; // 2 words, 12 chars

 let stats = text_analyzer::gather_stats(sample_text);

 assert_eq!(stats.word_count, 2);

 assert_eq!(stats.character_count, 12);

 // We can also access public fields of structs returned by public
functions

Testing in Rust318

}

#[test]

fn test_empty_string_stats() {

 let stats = text_analyzer::gather_stats("");

 assert_eq!(stats.word_count, 0);

 assert_eq!(stats.character_count, 0);

}

Helper functions in integration tests
Sometimes, your integration tests might require common setup routines, data, or utility func-

tions that you want to share across multiple test functions or even multiple test files within the

tests directory.

If you have helper functions that are only used within a single integration test file (e.g., tests/

analyzer_integration.rs), you can simply define them as regular (non-#[test]) functions

within that same file.

However, if you want to share helper code between different integration test files (e.g., between

tests/analyzer_integration.rs and tests/advanced_analysis.rs), you can’t just put it in

another .rs file directly in the tests directory, because Cargo will try to compile that helper file

as a separate test crate.

The common way to handle this is to create a submodule within the tests directory, as follows:

1.	 Create a subdirectory: tests/common/.

2.	 Inside this subdirectory, create a mod.rs file: tests/common/mod.rs.

3.	 Put your shared helper functions (marked pub) inside tests/common/mod.rs.

Example shared helper (tests/common/mod.rs)
Code:

// tests/common/mod.rs

pub fn create_sample_long_text() -> String {

 "This is a very long string that we might want to use in multiple
integration tests for various analysis purposes. It contains several
words and punctuation marks like commas, and even exclamation points!".
to_string()

Chapter 10 319

}

pub fn common_banned_words_list() -> Vec<&'static str> {

 vec!["heck", "darn", "gosh"]

}

Now, you can use these helpers in your actual integration test files.

Using shared helpers (tests/analyzer_integration.rs)
// tests/analyzer_integration.rs

// Declare the 'common' module. Rust will look for tests/common.rs or
tests/common/mod.rs

mod common;

use text_analyzer; // Your main library crate

#[test]

fn test_long_text_word_count() {

 let long_text = common::create_sample_long_text();

 let count = text_analyzer::analysis::count_words(&long_text);

 // You'd assert a specific count here, e.g., based on manual counting

 assert!(count > 10, "Expected more than 10 words in the long sample
text");

}

#[test]

fn test_profanity_with_common_list() {

 let text_with_profanity = "Oh heck, this is not good.";

 let banned_list = common::common_banned_words_list();

 assert!(text_analyzer::analysis::contains_profanity(text_with_
profanity, &banned_list));

}

By placing shared code into tests/common/mod.rs (or tests/common.rs), you create a regular

module that other integration test files can then use via mod common; and common::your_helper_

function().

Testing in Rust320

This is an efficient way to prevent duplicating setup code or utility logic across your integration

tests. Remember that for functions in this common module to be accessible from other test files,

they must be made visible. You can do this by marking them as pub, which makes them fully public.

However, a more idiomatic and precise choice is often to use pub(crate).

This makes the helper functions visible to all other code within the same crate, and since Cargo

compiles all your integration tests as part of a single test crate, pub(crate) is enough to share

helpers among them while keeping them properly internal to your test suite.

Integration tests are a vital part of ensuring your library or application is robust and that its pub-

lic contract is upheld. They complement unit tests by verifying how the pieces work in concert.

Documentation tests: Keeping examples correct
One of Rust’s rather unique and incredibly useful features is its built-in support for documenta-

tion tests. These aren’t just about checking your code’s logic in isolation or how parts integrate;

they are about ensuring that the code examples you provide in your documentation are actually

correct and stay correct as your code evolves.

What are documentation tests?
Simply put, documentation tests (often called “doc tests”) are code examples embedded directly

within your comments (specifically, your documentation comments) that cargo test can auto-

matically extract, compile, and run.

Why is this so valuable?

•	 Accuracy: It guarantees that your documented examples actually work. There’s nothing

more frustrating for a user of your library than trying an example from the documentation

only to find that it’s outdated or incorrect. Doc tests prevent this.

•	 Living documentation: Because the examples are tested, they evolve with your code. If

you change a function in a way that breaks an example, the doc test will fail, prompting

you to update the documentation.

•	 Usability: They provide clear, runnable demonstrations of how to use your library’s API,

directly alongside the API’s description.

•	 Encourages good examples: Knowing your examples will be tested encourages you to

write clear, concise, and correct examples in the first place.

Chapter 10 321

Rust’s commitment to documentation tests reflects its broader philosophy of providing tools

that help developers write high-quality, reliable software. It’s a small feature with a big impact

on the ecosystem.

Writing documentation tests
Writing a documentation test is as simple as including a Rust code block within your doc com-

ments. Doc comments are those that start with /// (for items such as functions, structs, enums,

or modules) or //! (for documenting the enclosing item, often a module or crate itself).

Inside these comments, you create a fenced code block using triple backticks. If you specify rust

after the opening backticks (or leave it blank, as rust is the default), cargo test (or specifically

cargo test --doc) will treat it as a testable example.

Let’s create a small utility function and document it with a testable example:

// In src/lib.rs or your relevant module file

// Let's assume our crate name in Cargo.toml is "string_formatter"

/// Formats a name and an age into a greeting string.

///

/// This function takes a name (a string slice) and an age (an unsigned
32-bit integer)

/// and returns a nicely formatted greeting.

///

/// # Examples

///

/// ```

/// // This code block will be run as a test!

/// use string_formatter::format_greeting; // Assuming this is how users
would import

///

/// let name = "Alice";

/// let age = 30;

/// let greeting = format_greeting(name, age);

/// assert_eq!(greeting, "Hello, Alice! You are 30 years old.");

/// ```

///

/// You can have multiple examples:

/// ```

Testing in Rust322

/// use string_formatter::format_greeting;

///

/// let greeting_bob = format_greeting("Bob", 42);

/// assert!(greeting_bob.contains("Bob"));

/// assert!(greeting_bob.contains("42"));

/// ```

pub fn format_greeting(name: &str, age: u32) -> String {

 format!("Hello, {}! You are {} years old.", name, age)

}

// To make the `use string_formatter::format_greeting;` line in the doc
test work easily

// when `cargo test --doc` is run from the crate root, `format_greeting`
needs to be

// part of the public API accessible via `string_formatter::format_
greeting`.

// If this code IS `src/lib.rs` of a crate named `string_formatter`, it
should work.

// Alternatively, inside the doc test, you could use `crate::format_
greeting`

// if you don't want to simulate an external user's import path.

•	 The comments starting with /// are documentation comments for the format_greeting

function.

•	 The # Examples section is a common convention for showing usage.

•	 The code within the ``` (or ```rust) block is the actual documentation test.

•	 Inside this block, we can write any Rust code, including use statements (often needed to

bring the item being tested into scope, as a user would) and, crucially, assertion macros

such as assert_eq! or assert!.

•	 When you run cargo test (or cargo test --doc to run only doc tests), Cargo will extract

this code block, effectively wrap it in an fn main() { ... } function, compile it, and run

it. If any assertion fails, or if the code doesn’t compile, the doc test fails.

Chapter 10 323

Controlling doc test behavior
Just like regular tests, you can control how doc tests behave using annotations within the code

block’s opening fence:

Ignore:

/// ```ignore

/// // This example will be compiled but not run by `cargo test --doc`

/// // unless you use `cargo test --doc --ignored`

/// println!("This is an ignored example.");

/// ```

Useful for examples that might be slow or require specific external setup.

should_panic:

/// ```should_panic

/// // This test passes if the code inside panics.

/// // For example, documenting a function that should error on bad input.

/// // imagine_a_function_that_panics_on_zero(0);

/// panic!("This example is expected to panic");

/// ```

 Important note on paths in doc tests

The way you refer to items from your own crate within a doc test can sometimes

be a bit tricky:

•	 If you’re writing a doc test for a public item in your library’s root (src/lib.

rs), and you want to show how an external user would use it, you’d typically

write use your_crate_name::your_item;, as shown previously. cargo

test --doc is usually smart enough to make this work.

•	 If the example is very internal or you want to avoid ambiguity, you can

sometimes use use crate::your_item; to refer to items from the current

crate’s root.

•	 The test runner implicitly adds extern crate self as your_crate_name;,

which makes your_crate_name:: available.

Testing in Rust324

This works just like #[should_panic] on a regular test function. You can also add (expected =

"substring") if you want to check the panic message.

no_run:

/// ```no_run

/// // This code will be compiled to ensure it's valid Rust,

/// // but it will not be executed. Useful for examples that

/// // demonstrate something that shouldn't actually run in a test,

/// // like starting a web server or modifying files.

/// // start_web_server();

/// ```

This is great for illustrating APIs that have side effects that you don’t want to trigger during

routine testing.

Hiding lines from documentation output but not from the test
Sometimes you need setup code for an example that isn’t relevant to what you’re trying to show

the user. You can prefix such lines with #. These lines will be executed by the test runner but won’t

appear in the rendered HTML documentation:

/// ```

/// # fn get_important_config() -> String { "config_value".to_string() }

/// // Users will only see this part in the docs:

/// let config = get_important_config();

/// assert_eq!(config, "config_value");

/// ```

Documentation tests are a powerful way to ensure your examples remain accurate and serve as a

first line of defense against documentation rot. They are a strong encouragement to write helpful,

working examples for anyone using your code.

A brief look at Test-Driven Development (TDD)
So far, we’ve discussed writing tests for code that might already exist or that you’re designing

alongside the tests. There’s also a popular software development methodology called Test-Driven

Development (TDD), which flips this on its head: you write your tests before you write the actual

implementation code.

While a full exploration of TDD is extensive, it’s worth understanding its core principles as it

can be a very effective way to develop software, and Rust’s testing framework supports it well.

Chapter 10 325

TDD cycle
TDD operates on a short, iterative cycle, often referred to as red-green-refactor:

1.	 Red:

•	 Write a test: Before writing any implementation code for a new feature or piece

of functionality, you first write an automated test that defines what that new

functionality should do.

•	 Run all tests: At this point, the new test must fail (hence “red”) because the code

it’s trying to test doesn’t exist or isn’t implemented yet. If it passes, your test is

likely not testing what you think it is, or the functionality already exists!

2.	 Green:

•	 Write the code: Write the minimum amount of implementation code necessary to

make the failing test (and all other existing tests) pass. The goal here is just to get

to “green,” not to write perfect or highly optimized code.

•	 Run all tests: Verify that all tests now pass.

3.	 Refactor:

•	 Clean up the code: Now that you have passing tests acting as a safety net, you

can refactor the implementation code you just wrote. This is where you improve

its structure, remove duplication, enhance readability, or optimize performance,

all while ensuring the tests continue to pass.

•	 You might also refactor the test code itself if it can be made clearer or more efficient.

Once this cycle is complete for one small piece of functionality, you pick the next small piece and

start the cycle again: write a new failing test, make it pass, then refactor.

TDD benefits and a micro example
Adopting TDD can bring several benefits:

•	 Ensures test coverage: By writing tests first, you guarantee that every piece of new func-

tionality has corresponding tests.

•	 Drives design: Thinking about how to test a feature often forces you to design it in a more

modular, decoupled, and testable way from the outset. The tests define the “contract” the

code must fulfill.

Testing in Rust326

•	 Reduces bugs: Catching issues at the “red” stage or during the “green” stage is much

quicker than finding them later.

•	 Provides a safety net for refactoring: The comprehensive test suite built through TDD

gives you high confidence when making changes or improvements to the code base.

•	 Focuses on requirements: Writing a test first forces you to clearly define what the code

should accomplish before you dive into how it will accomplish it.

Let’s walk through a tiny TDD example. Suppose we want to implement a function, is_

palindrome(s: &str) -> bool, that checks whether a string is a palindrome (reads the same

forward and backward, ignoring case and non-alphanumeric characters for simplicity here, though

a real TDD cycle might add those requirements incrementally).

1. Red: Write a failing test
First, we add a test case to our #[cfg(test)] mod tests { ... }:

// In src/lib.rs or where our function will live

// We haven't written is_palindrome yet, so this will initially fail to
compile,

// or fail at runtime if we provide a stub like `fn is_palindrome(_s:
&str) -> bool { todo!() }`

#[cfg(test)]

mod tests {

 // Assuming is_palindrome will be in the parent module

 use super::is_palindrome; // This line might cause an error if is_
palindrome doesn't exist yet

 #[test]

 fn test_empty_string_is_palindrome() {

 assert!(is_palindrome(""));

 }

 #[test]

 fn test_single_char_is_palindrome() {

 assert!(is_palindrome("a"));

 }

Chapter 10 327

 #[test]

 fn test_simple_palindrome() {

 assert!(is_palindrome("madam"));

 }

 #[test]

 fn test_non_palindrome() {

 assert!(!is_palindrome("hello"));

 }

}

If is_palindrome doesn’t exist, this won’t even compile. Let’s add a minimal stub so it compiles

but fails the logic:

// In src/lib.rs

pub fn is_palindrome(_s: &str) -> bool {

 false // Simplest thing to make it compile; will fail most tests

}

Now, running cargo test should show test_empty_string_is_palindrome, test_single_char_

is_palindrome, and test_simple_palindrome failing (red).

2. Green: Write minimal code to make tests pass
Let’s implement is_palindrome to satisfy these tests:

// In src/lib.rs

pub fn is_palindrome(s: &str) -> bool {

 if s.is_empty() {

 return true; // Empty string is a palindrome

 }

 let forward_chars: Vec<char> = s.chars().collect();

 let reversed_chars: Vec<char> = s.chars().rev().collect();

 forward_chars == reversed_chars

}

Now, running cargo test should make all current tests pass (green).

Testing in Rust328

3. Refactor: Improve the code
Our current implementation creates two new Vec<char>, which might be a bit inefficient for

very long strings. We could refactor it to compare characters from both ends inward without

extra allocations:

// In src/lib.rs - Refactored version

pub fn is_palindrome(s: &str) -> bool {

 let mut fwd_iter = s.chars();

 let mut rev_iter = s.chars().rev();

 // Loop as long as both iterators can produce an item

 // and the items are equal

 while let (Some(f_char), Some(r_char)) = (fwd_iter.next(), rev_iter.
next()) {

 // We only need to compare up to the middle.

 // If fwd_iter's current position "crosses" rev_iter's, we're
done.

 // The `next_back()` method on DoubleEndedIterator would be more
efficient here,

 // but for a simple `chars().rev()` this approach is okay.

 // A more robust way is to compare iterators up to half the
length,

 // or check if fwd_iter.size_hint().0 <= rev_iter.size_hint().0

 if f_char != r_char {

 return false;

 }

 // For simplicity, let's just rely on the loop eventually
consuming one iterator

 // faster if length is odd, leading to one `next()` being None.

 // This simple loop only works if we consume from both ends until
they meet or cross.

 // A more correct iterative comparison for non-allocating:

 }

 // If the loop completed without returning false, it's a palindrome

 true

}

Chapter 10 329

The initial refactor attempt was a bit complex to explain simply. A more common and still efficient

refactor without extra allocation for simple palindromes (ignoring case/non-alphanumeric for

now, as per the TDD step) would be as follows:

// In src/lib.rs - A more common refactored version

pub fn is_palindrome(s: &str) -> bool {

 let s_cleaned: String = s.chars().collect(); // Simple case: works
with original string

 s_cleaned.chars().eq(s_cleaned.chars().rev())

}

This refactored version is concise and still passes all the original tests. We could then add new tests

for case-insensitivity or ignoring non-alphanumeric characters, starting the red-green-refactor

cycle again for those new requirements.

Next cycle: red (for case-insensitivity)
#[test]

 fn test_case_insensitive_palindrome() {

 assert!(is_palindrome("Madam"));

 }

This would fail. Then we’d go to green by modifying is_palindrome to handle casing, for example,

by converting to lowercase before comparison.

TDD is a discipline. While the micro example is very basic, the cycle helps maintain a focus on

requirements and ensures that code is always testable and tested as it’s being written. It might

feel slower initially, but many developers find that it leads to higher quality and more confidence

in the long run.

TDD for an API handler
The same TDD principles apply to more complex components, such as API handlers. You can write a

test that defines the expected response for a given request before implementing the handler’s logic.

Let’s imagine we need a handler that gsenerates a user profile as JSON.

Testing in Rust330

1. Red: Write the failing test
We’ll test the handler function directly. The test will check that for a valid user ID, we get the

correct JSON, and for an invalid one, we get an error:

// This code would go in your tests module, e.g., in `src/handlers.rs`

#[cfg(test)]

mod tests {

 use super::*; // Assuming handlers are in the parent module

 // The test needs the User struct to compare against.

 // In a real project, this would be in a shared `models` module.

 #[derive(serde::Serialize)] // Needed for serde_json::to_string

 struct User {

 id: u32,

 username: String,

 }

 // A stub for the handler we are about to write.

 // This allows the test code to compile but fail.

 fn get_user_handler(id: u32) -> Result<String, String> {

 // todo!() would also work here and cause a panic.

 Err("Not implemented yet".to_string())

 }

 #[test]

 fn test_get_user_success() {

 let expected_user = User { id: 1, username: "Alice".to_string() };

 let expected_json = serde_json::to_string(&expected_user).
unwrap();

 let result = get_user_handler(1);

 assert!(result.is_ok());

 assert_eq!(result.unwrap(), expected_json);

 }

Chapter 10 331

 #[test]

 fn test_get_user_not_found() {

 let result = get_user_handler(999); // An ID that doesn't exist

 assert!(result.is_err());

 assert_eq!(result.unwrap_err(), "User not found");

 }

}

Running cargo test now would show failures (red) because our stub always returns Not

implemented yet.

2. Green: Write minimal code to make the test pass
Now we implement the struct and the handler logic in our main source file (e.g., src/handlers.

rs) just to satisfy our test cases:

// This code would go in your main source, e.g., in `src/lib.rs` or `src/
handlers.rs`

// We need serde for this example. Add `serde = { version = "1.0",
features = ["derive"] }`

// and `serde_json = "1.0"` to your Cargo.toml.

use serde::Serialize;

#[derive(Serialize)]

pub struct User {

 id: u32,

 username: String,

}

/// A simple handler that simulates fetching a user.

pub fn get_user_handler(id: u32) -> Result<String, String> {

 // In a real app, this would be a database lookup.

 // Here, we hardcode the logic to make the tests pass.

 match id {

 1 => {

 let user = User { id: 1, username: "Alice".to_string() };

Testing in Rust332

 // serde_json::to_string also returns a Result, so we handle
it.

 serde_json::to_string(&user).map_err(|e| e.to_string())

 }

 _ => Err("User not found".to_string()),

 }

}

Now, if you update your tests module to import this real implementation, running cargo test

will show all tests passing (green).

3. Refactor
With the tests passing, we could now refactor get_user_handler. For instance, instead of hard-

coding users in a match statement, we could refactor it to fetch data from a database or another

data source, confident that our tests will catch any regressions in the expected output format.

This brief example shows how the TDD cycle can guide the development of API logic, ensuring

the contract with the client (the expected JSON response) is met from the very beginning.

Isolating tests with test doubles (mocks and stubs)
We’ve talked a lot about unit tests, focusing on small, isolated pieces of code. But what happens

when the function or module you want to test depends on something else, like another complex

part of your system, a database, a web service, or even the current time? If your unit test relies on

these external factors, it can become unreliable, slow, or difficult to set up.

This is where test doubles come in.

The need for isolation
For unit tests to be truly effective, they should ideally test only the logic of the unit in question,

without interference or variability from its dependencies. Here’s why isolation is so important:

•	 Reliability and determinism: Tests that interact with external systems (such as a network

service) can fail for reasons unrelated to your code (e.g., network outage). This makes tests

“flaky”—sometimes they pass, sometimes they fail, without any changes to your code.

Isolated tests are deterministic: given the same input, they always produce the same result.

•	 Speed: Real dependencies, especially those involving I/O (disk and network), are often

slow. Unit tests should run very quickly so you can run them often. Slow tests get skipped,

defeating their purpose.

Chapter 10 333

•	 Focus: If a test fails, you want to know immediately that the bug is in the unit being tested,

not in one of its dependencies. Isolation helps pinpoint failures.

•	 Setup simplicity: It can be complicated to set up real dependencies in a test environment

(e.g., initializing a database with specific test data for every test run).

To achieve this isolation, we replace real dependencies with controlled, predictable stand-ins

called test doubles during our unit tests.

What are test doubles? Stubs and mocks
A “test double” is a general term for any object or component that you use in a test to stand in

for a real production dependency. There are various kinds of test doubles, but two common ones

you’ll hear about are stubs and mocks:

•	 Stubs: These provide canned answers to calls made during the test. They usually don’t

have much logic beyond returning predefined values. For example, a stub for a weather

service might always return Sunny, 25°C regardless of the input, just to allow the code

that uses the weather data to be tested.

•	 Mocks: These are more sophisticated. Like stubs, they provide canned responses, but they

can also be programmed with expectations about how they will be used. For instance, a

mock object might verify that its methods are called a certain number of times, in a par-

ticular order, or with specific arguments. If these expectations aren’t met, the mock can

cause the test to fail.

Let’s see how we can create a simple stub manually in Rust.

Manual stubbing (with traits)
One common way to create a stub in Rust is to define a trait that represents the dependency, have

your production code depend on that trait (using generics or trait objects), and then, in your tests,

create a simple struct that implements the trait with stubbed behavior.

Imagine we have a service that sends notifications, and we want to test a piece of code that uses

this service without actually sending real notifications:

// src/lib.rs (or your module)

// The trait defining our dependency

pub trait Notifier {

 fn send_alert(&self, user_id: &str, message: &str) -> Result<(),
String>;

Testing in Rust334

}

// The component we want to test

pub struct EventProcessor<N: Notifier> {

 notifier_service: N, // Depends on the Notifier trait

 admin_user_id: String,

}

impl<N: Notifier> EventProcessor<N> {

 pub fn new(notifier_service: N, admin_user_id: String) -> Self {

 EventProcessor { notifier_service, admin_user_id }

 }

 pub fn process_critical_event(&self, event_details: &str) {

 println!("Processing critical event: {}", event_details);

 // Attempt to notify the admin

 let alert_message = format!("CRITICAL: {}", event_details);

 match self.notifier_service.send_alert(&self.admin_user_id,
&alert_message) {

 Ok(_) => println!("Admin notified successfully."),

 Err(e) => println!("Failed to notify admin: {}", e),

 }

 // ... other event processing logic ...

 }

}

#[cfg(test)]

mod tests {

 use super::*; // Import Notifier, EventProcessor

 // Our Stub implementation for the Notifier trait

 struct StubEmailNotifier {

 // We can add fields to control stub's behavior for different
tests

 should_succeed: bool,

 expected_user_id: String,

 expected_message_contains: String,

Chapter 10 335

 call_count: std::cell::Cell<usize>, // To track calls (simple
mock-like behavior)

 }

 impl Notifier for StubEmailNotifier {

 fn send_alert(&self, user_id: &str, message: &str) -> Result<(),
String> {

 self.call_count.set(self.call_count.get() + 1); // Increment
call count

 println!("STUB: Attempting to send alert to '{}' with message
'{}'", user_id, message);

 assert_eq!(user_id, self.expected_user_id, "Stub called with
wrong user_id");

 assert!(message.contains(&self.expected_message_contains),
"Stub message content mismatch");

 if self.should_succeed {

 Ok(())

 } else {

 Err("StubNotifier: Simulated failure.".to_string())

 }

 }

 }

 #[test]

 fn critical_event_notifies_admin_successfully() {

 let stub_notifier = StubEmailNotifier {

 should_succeed: true,

 expected_user_id: "admin_001".to_string(),

 expected_message_contains: "CRITICAL: System Overload".to_
string(),

 call_count: std::cell::Cell::new(0),

 };

 let event_processor = EventProcessor::new(stub_notifier,
"admin_001".to_string());

 event_processor.process_critical_event("System Overload");

Testing in Rust336

 // Check if the notifier was called (accessing our stub's field)

 // This makes our stub act a bit like a mock.

 assert_eq!(event_processor.notifier_service.call_count.get(), 1,
"Notifier should have been called once");

 }

 #[test]

 fn critical_event_handles_notification_failure() {

 let stub_notifier = StubEmailNotifier {

 should_succeed: false, // Simulate failure

 expected_user_id: "sys_alert_user".to_string(),

 expected_message_contains: "CRITICAL: Disk Full".to_string(),

 call_count: std::cell::Cell::new(0),

 };

 let event_processor = EventProcessor::new(stub_notifier, "sys_
alert_user".to_string());

 // We aren't asserting a panic here, just that the function runs

 // and internally would print the failure message.

 // A more robust test might have process_critical_event return a
Result.

 event_processor.process_critical_event("Disk Full");

 assert_eq!(event_processor.notifier_service.call_count.get(), 1,
"Notifier should have been called once, even on failure path");

 }

}

•	 We define a Notifier trait that abstracts the notification functionality.

•	 Our EventProcessor is generic over any type, N, that implements Notifier. This is key:

it allows us to substitute different implementations.

•	 In the tests module, StubEmailNotifier is a simple struct that implements Notifier. Its

send_alert method doesn’t actually send an email; it just prints a message and returns

a pre-programmed Ok(()) or Err(...) based on its should_succeed field.

Chapter 10 337

•	 We’ve also added expected_user_id, expected_message_contains, and call_count

(using std::cell::Cell for interior mutability since send_alert takes &self) to our stub.

This allows the stub to perform some basic checks on how it was called, blurring the lines

a bit toward mock behavior. Cell is used here because send_alert takes &self but we

want to modify call_count internally; for more complex scenarios, RefCell might be

used, or the method could take &mut self if appropriate for the trait.

•	 In the tests, we create an EventProcessor with an instance of our StubEmailNotifier.

This allows us to test the logic within process_critical_event (such as how it formats

messages or handles errors from the notifier) without any real notification system being

involved.

This manual approach is fine for simple cases. The “stub” here even has some light “mock” ca-

pabilities by checking arguments and counting calls.

Mocking libraries
For more complex scenarios where you need to verify intricate interactions, such as the order of

method calls, the number of times a method is called, or asserting specific arguments for multiple

calls, creating manual mocks can become quite cumbersome and error-prone.

This is where mocking libraries shine. Rust has a growing ecosystem of these, with mockall being

one of the most popular and powerful. These libraries typically provide macros or procedural

macros that can automatically generate mock implementations for your traits (or even structs,

in some cases).

With a library such as mockall, you could define expectations on your mock object in your test

setup:

•	 “I expect the send_alert method to be called exactly once”

•	 “I expect it to be called with user_id == "admin_001" and a message containing CRITICAL"

•	 “When it’s called under these conditions, it should return Ok(())"

If the code under test doesn’t meet these expectations, the mock object will cause the test to fail.

Our manual stub was handy but could get complicated if we needed to verify more, such as call-

ing send_alert exactly three times or not at all. Adding more fields would become cumbersome.

Mocking libraries such as mockall simplify this by generating mock objects based on traits, which

can be programmed with expectations.

Testing in Rust338

This allows testing of complex scenarios by replacing real dependencies with controlled substi-

tutes, keeping tests focused, fast, and reliable.

Best practices for writing good tests
Knowing how to write tests is a skill in itself, and while testing theory is a deep topic, a few key

practices will make your Rust tests much more effective and maintainable:

•	 Keep tests clear and focused: Each test should verify a single, specific behavior. Give it a

descriptive name (such as fails_when_input_is_empty), and use the optional message

in assertion macros (assert_eq!(a, b, "...")) to explain why a failure occurred. This

makes debugging much faster.

•	 Ensure tests are independent and fast: Tests should never depend on each other, as

cargo test runs them in parallel by default. Keep unit tests quick to encourage frequent

running; mark any slow, resource-intensive tests with the #[ignore] attribute and run

them separately.

•	 Test the edges, not just the “happy path”: The most valuable tests often check bound-

ary conditions and error paths. Always test for empty inputs, zero values, what happens

when a function should return None or Err, and conditions that should cause a panic!

(using #[should_panic]).

•	 Follow the “Arrange, Act, Assert” pattern: A great way to structure your tests is to first

Arrange any setup or data needed, then Act by calling the function or method you are

testing, and finally, Assert that the outcome is correct. This makes tests easy to read and

understand at a glance.

Adopting these habits will help you build a robust and valuable test suite that truly supports

your development process, giving you confidence and helping you catch bugs before they cause

bigger problems.

Summary
And that brings us to the end of Chapter 10!

We’ve explored the essential way of testing in Rust, a key part of creating software that is reliable,

correct, and easy to maintain!

Chapter 10 339

I hope you now see testing not as a chore but as a helpful partner in your development journey!

Here is a recap of what we’ve covered:

•	 The “why” of testing: We started by reinforcing the critical importance of testing: how it

boosts reliability, makes refactoring safer, acts as documentation, and helps catch bugs

when they are cheapest to fix.

•	 Types of tests in Rust: We identified the main types of tests directly supported by Rust’s

ecosystem:

•	 Unit tests: Small, focused tests for individual functions or modules, written within

mod tests {} in the same file as the code

•	 Integration tests: Tests that check how different parts of your library work together,

focusing on the public API, and residing in a separate tests directory

•	 Documentation tests: Runnable code examples embedded directly in your ///

doc comments, ensuring your examples stay correct

•	 Writing unit tests: We saw how to define test functions using the #[test] attribute,

use assertion macros (assert!, assert_eq!, and assert_ne!) to verify conditions, and

specifically test functions returning Result and Option. We also learned how to test for

expected panics using #[should_panic].

•	 Running and controlling tests: The cargo test command is your gateway to running

all these tests, and we looked at options for running specific tests, showing output, and

handling #[ignore]d tests.

•	 Broader concepts: We briefly touched upon TDD as a methodology where tests are written

before code, and the use of test doubles (stubs and mocks) to isolate the code under test

from its dependencies, often using traits for manual stubbing.

•	 Best practices: Finally, we summarized key best practices for writing effective tests, such

as keeping tests focused and independent, writing clear names and failure messages,

testing edge cases, and keeping tests fast.

By consistently applying these testing techniques, you’re not just finding bugs; you’re building a

safety net that allows you to develop and evolve your Rust projects with much greater confidence

and speed. As you write more Rust, make cargo test your frequent companion!

Testing in Rust340

Questions and assignment
Testing concepts are never easy, especially for beginners.

Let’s take a moment to review the key ideas from this chapter. The following questions are meant

to help you assess your understanding of the essential testing concepts we’ve discussed, from

the structure of different test types to the specific tools that Rust offers. If you can answer these

confidently, you’re well on your way to writing effective tests for your own Rust projects.

Questions
1.	 What are the three main types of tests that cargo test runs by default, and where are

unit tests and integration tests typically located in a Rust project?

2.	 Explain the purpose of the #[test] attribute and the #[cfg(test)] attribute when writ-

ing a unit test module.

3.	 What is the difference between assert! and assert_eq!? Provide a simple example of a

situation where you would use each.

4.	 You have a function that is designed to panic if given invalid input. How would you write

a test to verify this panic behavior, and how could you make the test even more specific

by checking the panic message?

5.	 What is the primary benefit of writing documentation tests in Rust?

Assignment
For this assignment, you’ll create a very simple command-line task manager library and test it

thoroughly.

1.	 Project setup:

•	 Create a new library crate: cargo new task_manager --lib

2.	 Define structs (src/lib.rs):

•	 pub struct Task { pub id: u32, pub description: String, pub completed:
bool }

•	 pub struct TaskManager { tasks: Vec<Task>, next_id: u32 }

Chapter 10 341

3.	 Implement methods for TaskManager (src/lib.rs):

•	 pub fn new() -> Self: Creates an empty TaskManager with next_id starting at 1.

•	 pub fn add_task(&mut self, description: String) -> u32: Adds a new

task with the given description (initially not completed), assigns it the next_id,

increments next_id, and returns the new task’s ID.

•	 pub fn mark_complete(&mut self, task_id: u32) -> Option<()>: Marks

the task with the given task_id as completed. Returns Some(()) if the task was

found and marked, and None otherwise.

•	 pub fn get_task(&self, task_id: u32) -> Option<&Task>: Returns an im-

mutable reference to the task with the given ID, or None if not found.

•	 pub fn list_pending_tasks(&self) -> Vec<&Task>: Returns a vector of im-

mutable references to all tasks that are not completed.

•	 pub fn remove_task(&mut self, task_id: u32) -> Option<Task>: Removes the

task with the given ID from the manager and returns it. If not found, returns None.

4.	 Testing requirements:

Unit tests (in mod tests {} within src/lib.rs):

•	 Test that TaskManager::new() ensures an empty task list and next_id is 1.

•	 Test that add_task() does the following:

•	 Adds a task correctly

•	 Assigns sequential IDs

•	 New tasks are initially not completed

•	 Test mark_complete() doing the following:

•	 Mark an existing pending task as complete

•	 Attempt to mark a non-existent task

•	 Attempt to mark an already completed task (should still be Some(()) if

found)

•	 Test get_task() doing the following:

•	 Get an existing task

•	 Get a non-existent task

Testing in Rust342

•	 Test list_pending_tasks():

•	 With no tasks

•	 With all tasks pending

•	 With some tasks completed and some pending

•	 With all tasks completed

•	 Test remove_task() doing the following:

•	 Removing an existing task

•	 Trying to remove a non-existent task

•	 Ensure next_id is not affected by removal (new tasks should still get

unique IDs)

Integration test (create tests/task_flow_tests.rs):

•	 Write a test function that simulates a user workflow:

•	 Create a new TaskManager

•	 Add a couple of tasks

•	 List pending tasks and verify them

•	 Mark one task as complete

•	 List pending tasks again and verify the change

•	 Get a specific task by ID and check its details

•	 Remove a task

•	 Try to get the removed task (should be None)

•	 Add another new task and verify its ID is what you expect

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

11
Smart Pointers and Memory
Management

Welcome to Chapter 11!

We are about to begin an exciting chapter: smart pointers!

If you’re familiar with pointers in languages such as C or C++, you may have a particular percep-

tion of them.

But Rust’s smart pointers are more than just memory addresses; they function like pointers but

have additional metadata and features. They are essential in ensuring Rust’s memory manage-

ment is both safe and efficient. By the end of this chapter, you will have a solid understanding of

smart pointers in general and how Rust utilizes them.

In simple terms, they can be described as granting you some “superpowers” when programming

in Rust.

To understand these powerful tools, our exploration in this chapter will cover several key areas:

•	 We’ll start by defining what smart pointers are and their crucial role in Rust’s memory

model

•	 We’ll look at the simplest smart pointer, Box<T>, for straightforward heap allocation

•	 Next, we’ll cover Rc<T> and Arc<T> for managing shared ownership of data in sin-

gle-threaded and multi-threaded contexts

•	 Then, we’ll dive into the interior mutability pattern with RefCell<T> and Mutex<T>

•	 Finally, we’ll see how to combine and use these pointers effectively in practical scenarios

Smart Pointers and Memory Management344

By the end, I hope you will have a solid understanding of smart pointers and how Rust utilizes

them to write powerful, safe, and efficient code.

Let’s dive in!

What are smart pointers, anyway?
Smart pointers are essentially structs that implement the Deref and Drop traits.

•	 The Deref trait lets a smart pointer struct act like a reference, enabling you to write code

compatible with both references and smart pointers

•	 The Drop trait enables you to define the code executed when a smart pointer instance

goes out of scope, which is vital for efficient resource management, such as memory

deallocation

Think of smart pointers as wrappers around raw pointers that add additional functionalities.

These functionalities may include automatic memory deallocation, reference counting for multiple

data owners, and mechanisms for safe data mutation, even with immutable references. They are

termed “smart” because they not only point to data but also manage it effectively.

The role of smart pointers in Rust’s memory model
Rust is well-known for ensuring memory safety. This is primarily accomplished through its own-

ership system, which includes stringent rules regarding borrowing and lifetimes, all enforced at

compile time.

Smart pointers help Rust go the extra mile by significantly enhancing the system’s flexibility and

extending its capabilities.

Enhancing safety beyond basic ownership
While the fundamental ownership rules are effective, they are built around a single-owner model,

which can sometimes feel limiting in more complex situations.

For instance, imagine you have a configuration object that many different parts of an application

need to share and access, or you’re working on a data structure such as a graph where multiple

nodes share ownership of another node. In such cases, you might also want to modify data that

is otherwise borrowed immutably.

Smart pointers offer helpful solutions for these scenarios, making it safe and easy to handle

shared ownership or runtime-checked borrowing, enhancing Rust’s robust ownership system.

Chapter 11 345

For example, you may need a single data element to be “owned” by several sections of your pro-

gram or to alter data that is otherwise borrowed immutably.

Smart pointers offer methods to manage these situations safely, either through Rust’s com-

pile-time assurances or by implementing clearly defined runtime checks.

Performance implications
Rust’s memory management approach plays a key role in delivering predictable and efficient

performance. Smart pointers, through using the Drop trait, make sure memory is freed in a reli-

able way: that is, exactly when the owner goes out of scope. This means your program can run

smoothly without unexpected pauses that might happen with a separate cleanup process, which

is especially important for tasks that need top-tier performance and operate at the system level.

Smart pointers improve this by allowing for deterministic deallocation: memory is typically freed

when the owning smart pointer goes out of scope, facilitated by the Drop trait.

This guarantees the absence of unpredictable GC pauses.

Enabling safe concurrency
Some smart pointers are tailored for concurrent programming.

They provide means to safely share data among threads or permit several threads to modify data,

thereby preventing data races. This offers a considerable benefit for developing high-performance,

concurrent applications with confidence.

Key ideas behind smart pointers
To appreciate how smart pointers provide these benefits, it’s useful to see how they are built upon

and interact with the core Rust concepts we’ve already learned about, such as ownership and traits.

Ownership and borrowing still apply
Smart pointers are values that conform to Rust’s ownership and borrowing principles. For in-

stance, a Box<T> (which we will explore shortly) owns the data it references on the heap. When

the Box<T> is transferred, the ownership of that heap data follows suit.

Also, when borrowed, the standard borrowing rules pertain to the Box<T> itself.

Smart Pointers and Memory Management346

Automatic cleanup
This is significant.

Most smart pointers implement the Drop trait. When a smart pointer instance goes out of scope,

its drop method is triggered automatically.

This method usually includes the logic to deallocate memory or release other resources managed

by the smart pointer. This automatic cleanup effectively prevents memory leaks in many scenarios

and is referred to as RAII.

What is RAII?
RAII stands for Resource Acquisition Is Initialization. While the name may sound complex, the

idea is simple and powerful: the lifetime of a resource (such as allocated memory, an open file, or

a network connection) is tied to the lifetime of the object that owns it.

•	 Acquisition: You acquire the resource when the object is created (e.g., File::open() re-

turns a File object)

•	 Initialization: The object is initialized, and it now owns the resource

•	 Release: When the object goes out of scope, its Drop implementation is automatically run,

which releases the resource (e.g., closes the file)

This pattern guarantees that resources are always cleaned up correctly, which is fundamental to

how Rust prevents resource leaks!

Reference counting for shared data
What if multiple parts of your program need to share ownership of the same data, which should

only be cleaned up once the last owner is done using it?

This is a common situation in many applications, such as when several services in your program

need to read from the same shared configuration object, or multiple parts of a UI need to display

data from a shared cache.

To manage this, Rust offers smart pointers that enable shared ownership through reference

counting. The main tools for this are Rc<T> (Reference Counted) for single-threaded cases, and

its thread-safe counterpart, Arc<T> (Atomic Reference Counted).

These pointers handle shared data by keeping track of the number of active references, ensuring

the data is only deallocated when the last reference is gone.

Chapter 11 347

Interior mutability: bending the rules safely
Rust’s borrowing rules generally indicate that a mutable reference cannot coexist with immutable

references.

Nonetheless, there are times when you need to modify data that appears immutable from an

external viewpoint.

The interior mutability pattern enables this functionality. Smart pointers such as RefCell<T>

and Mutex<T> facilitate data mutation even when accessed through an immutable reference, by

enforcing borrowing rules during runtime (in the case of RefCell) or by guaranteeing exclusive

access (for Mutex).

A quick tour of Rust’s smart pointer toolkit
Rust’s standard library includes several important smart pointers, each tailored for specific use

cases. We will look at them in detail, but here’s a brief and quick overview of some of them:

•	 Box<T>: This is the most basic smart pointer. It allocates memory on the heap and provides

a “box” containing a pointer to that memory. It’s ideal for situations where you want to

own data on the heap, transfer ownership of that data, or store a type with an unknown

size at compile time within a struct that requires a known size (such as in recursive types).

•	 Rc<T>: Short for “Reference Counted,” this permits multiple owners of the same heap data,

limited to a single thread. It tracks the number of references and frees the data when the

last reference is dropped.

•	 Arc<T>: Short for “Atomically Reference Counted,” this is the thread-safe counterpart of

Rc<T>, used when you need to share ownership of data across multiple threads.

•	 RefCell<T>: This offers interior mutability for single-threaded contexts. It allows mu-

table references to data to be borrowed even when RefCell<T> itself is immutable, by

upholding Rust’s borrowing rules at runtime (and will panic if those rules are broken).

It’s often used together with Rc<T>.

•	 Mutex<T>: This allows for interior mutability in a thread-safe manner (mutual exclusion).

It guarantees that only one thread can access the data at any moment. It’s typically used

alongside Arc<T>.

There are other smart pointers, such as Cell<T>, Weak<T>, and Cow<T>, but these are the primary

ones we will focus on. Grasping these will provide you with a robust toolkit for managing memory

and data ownership safely and flexibly.

Smart Pointers and Memory Management348

Box<T>: pointing to heap-allocated data
We’ve discussed smart pointers in general; now let’s dive deep into specifics. The most straight-

forward smart pointer in Rust’s standard library is Box<T>, commonly referred to as a “box.”

Its main purpose is to enable you to store data on the heap rather than the stack, ensuring clear

ownership and automatic deallocation.

Why use Box<T>?
To appreciate Box<T>, it’s helpful to quickly recall the difference between the stack and the heap:

•	 Stack: Memory allocation is extremely fast. Data stored on the stack must have a known,

fixed size at compile time. Local variables in functions usually reside on the stack. When

a function finishes, its stack frame is removed, and the memory is reclaimed immediately.

•	 Heap: Memory allocation here is more flexible but comes with additional overhead. You

request a certain amount of memory from the operating system, which finds a suitable

location. This is where you store data whose size might not be known at compile time or

data that needs to outlast the function that created it. Properly managing heap memory

is crucial to avoid memory leaks or accessing deallocated memory.

So, why would you explicitly want to use a Box<T> to allocate something on the heap? Here are

a few key reasons:

•	 Storing large amounts of data: When working with data on the stack, such as small structs

of primitive types, Rust copies it fully when passing to functions or assigning. This is fast

for small data but slow for large structures, such as those with massive arrays. Passing such

structs duplicates the entire array, causing delays. Using a Box<T> stores data on the heap,

with only a small pointer on the stack. Moving the Box<T> transfers just the pointer, not

the data, making large data ownership transfers quick because the data stays on the heap.

•	 Transferring ownership of data with unknown size at compile time: Sometimes, you

want a type to own some data, but the exact size of that data isn’t known at compile time

(e.g., when dealing with trait objects, which we’ll discuss later). Box<T> can own this

data on the heap, and the Box itself has a known size: it’s just a pointer.

•	 Recursive types: For types that may include themselves in their own definition (such as

nodes in a tree or a linked list), Rust needs a way to guarantee that the type has a finite

size. Box<T> is critical in this scenario, as we’ll see.

Chapter 11 349

Box<T> offers the simplest method for achieving heap allocation with clear, single ownership.

When the Box<T> goes out of scope, the memory it points to on the heap is automatically deal-

located: no manual free calls are necessary!

Creating and using a Box<T>
Creating a Box<T> is straightforward using Box::new(value):

// It's standard practice to define structs outside the main function.

#[derive(Debug)]

struct Point {

 x: f64,

 y: f64,

}

fn main() {

 // Create a Box<i32> to store an integer on the heap.

 let heap_int = Box::new(5);

 println!("Value in a Box: {}", heap_int);

 // Create a Box<Point> to store a struct on the heap.

 let heap_point = Box::new(Point { x: 10.0, y: 20.5 });

 println!("Struct in a Box: {:?}", heap_point);

 // Explicitly dereference the Box to access the value.

 let value_from_box = *heap_int;

 println!("Explicitly dereferenced value: {}", value_from_box);

 // Access a field directly thanks to automatic dereferencing (Deref
coercion).

 println!("Accessing field via deref coercion: heap_point.x = {}",
heap_point.x);

 // When `heap_int` and `heap_point` go out of scope here, the memory
they manage

 // on the heap is automatically freed via the Drop trait.

}

Smart Pointers and Memory Management350

•	 Box::new(value) takes a value, moves it to the heap, and returns a Box that “points” to

this heap-allocated data.

•	 The Box<T> itself (the pointer) resides on the stack (unless it’s part of another heap-al-

located structure).

•	 You can access the data “inside” the box using the dereference operator *, such as *heap_

int.

•	 Conveniently, Rust often performs automatic dereferencing (a feature called “Deref coer-

cion” that we’ll touch on more when we discuss the Deref trait). This is why you can call

methods or access fields directly on a Box<StructType> such as heap_point.x without

explicitly writing (*heap_point).x. println! also often handles dereferencing for you.

•	 It’s important to note that Box<T> follows Rust’s standard borrowing rules for mutability.

It does not provide “interior mutability” like other smart pointers we’ll see later. To get

mutable access to the data inside the box, the Box<T> variable itself must be declared as mut.

•	 Crucially, Box<T> implements the Drop trait. When a Box<T> instance goes out of scope

(e.g., at the end of the main function in the example), its drop method is called, which deal-

locates the heap memory it was managing. This ensures no memory leaks automatically.

Key use case: enabling recursive data structures
One of the key functions of Box<T> is facilitating the creation of recursive types. A recursive type is

one in which a value can include another value of the same type as part of its definition. Common

examples are linked lists and trees.

When attempting to define such a type directly in Rust, the compiler raises an error, as it cannot

determine the size of the type at compile time. If a node contains another node, which also con-

tains another node, this leads to an infinite size!

Box<T> addresses this by adding a layer of indirection. Rather than storing the recursive part

directly, you store a Box that references the recursive component. A Box<T>, which is the pointer

itself, always has a fixed size known at compile time, regardless of the size of T. This prevents

the cycle of infinite size.

Now, let’s create a simple recursive “expression” tree to represent basic arithmetic:

use std::fmt;

// A recursive enum representing a simple arithmetic expression.

// `Box<T>` is used to give the recursive variants a known size.

Chapter 11 351

#[derive(Debug)]

enum Expression {

 Value(i32),

 Add(Box<Expression>, Box<Expression>),

 Multiply(Box<Expression>, Box<Expression>),

 Negate(Box<Expression>),

}

// A custom error type for our evaluation function.

#[derive(Debug)]

pub enum EvaluationError {

 Overflow,

}

// Implement Display for user-friendly error messages.

impl fmt::Display for EvaluationError {

 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

 match self {

 EvaluationError::Overflow => write!(f, "Arithmetic overflow
occurred during evaluation"),

 }

 }

}

// Helper functions for building the expression tree ergonomically.

fn val(v: i32) -> Box<Expression> {

 Box::new(Expression::Value(v))

}

fn add(left: Box<Expression>, right: Box<Expression>) -> Box<Expression> {

 Box::new(Expression::Add(left, right))

}

fn multiply(left: Box<Expression>, right: Box<Expression>) ->
Box<Expression> {

 Box::new(Expression::Multiply(left, right))

}

fn negate(expr: Box<Expression>) -> Box<Expression> {

 Box::new(Expression::Negate(expr))

}

Smart Pointers and Memory Management352

// A robust, recursive function to evaluate the expression tree.

// It now returns a Result to handle potential overflows.

fn evaluate(expr: &Expression) -> Result<i32, EvaluationError> {

 match expr {

 Expression::Value(v) => Ok(*v),

 Expression::Add(left, right) => {

 // Recursively evaluate sub-expressions, propagating errors
with `?`.

 let left_val = evaluate(left)?;

 let right_val = evaluate(right)?;

 // Use checked_add, which returns an Option, then convert to
Result.

 left_val.checked_add(right_val).ok_
or(EvaluationError::Overflow)

 }

 Expression::Multiply(left, right) => {

 let left_val = evaluate(left)?;

 let right_val = evaluate(right)?;

 // Use checked_mul for safe multiplication.

 left_val.checked_mul(right_val).ok_
or(EvaluationError::Overflow)

 }

 Expression::Negate(inner_expr) => {

 let val = evaluate(inner_expr)?;

 // Use checked_neg for safe negation.

 val.checked_neg().ok_or(EvaluationError::Overflow)

 }

 }

}

fn main() {

 // Build an expression for: (5 + 10) * -2

 let expr = multiply(

 add(val(5), val(10)),

 negate(val(2)),

);

 println!("--- Expression 1: (5 + 10) * -2 ---");

Chapter 11 353

 match evaluate(&expr) {

 Ok(result) => println!("Evaluated: {}", result), // Expected: -30

 Err(e) => println!("Error: {}", e),

 }

 // Build an expression for: -(3 + (4 * 5))

 let expr2 = negate(

 add(

 val(3),

 multiply(val(4), val(5)),

)

);

 println!("\n--- Expression 2: -(3 + (4 * 5)) ---");

 match evaluate(&expr2) {

 Ok(result) => println!("Evaluated: {}", result), // Expected: -23

 Err(e) => println!("Error: {}", e),

 }

 // Build an expression designed to overflow an i32

 let overflow_expr = add(val(i32::MAX), val(1));

 println!("\n--- Expression 3: i32::MAX + 1 (Overflow Test) ---");

 match evaluate(&overflow_expr) {

 Ok(result) => println!("Evaluated: {}", result),

 Err(e) => println!("Correctly caught error: {}", e), // Expected:
Arithmetic overflow...

 }

}

This example showcases how Box<T> is essential for defining recursive data structures such as

our Expression enum.

•	 Breaking the infinite loop: Our Expression is recursive because variants such as

Add, Multiply, and Negate contain other expressions. If we had defined them as

Add(Expression, Expression), the compiler would be unable to determine the size of

an Expression at compile time, leading to an error. By using Box<Expression>, we are

instead storing a smart pointer on the stack, which has a known, fixed size. This pointer

points to the next Expression allocated on the heap, breaking the infinite sizing loop and

allowing Rust to compile the code.

Smart Pointers and Memory Management354

•	 Robust evaluation with Result: The evaluate function has been made more robust to

handle potential arithmetic overflows, which would cause a panic in a release build.

•	 It now returns Result<i32, EvaluationError>, explicitly stating that the op-

eration can fail.

•	 Instead of using standard operators such as + and *, it uses checked arithmetic

methods such as .checked_add(). These methods do not panic on overflow; they

return an Option (Some(value) on success or None on failure.

•	 The .ok_or(EvaluationError::Overflow)? pattern is used to bridge this. .ok_

or() converts the Option into a Result, turning None into the Err we specify. The

? operator then propagates this error up if it occurs.

•	 Handling in main: The main function now uses match to handle the Result returned by

evaluate, allowing it to gracefully print either the successful result or the specific overflow

error, as demonstrated by the overflow_expr test case.

Using Box<T> in this way is a basic building block for creating tree or list structures in Rust. Pair-

ing it with Result helps you write safer and more reliable code, making your programs stronger

and more dependable.

When to choose Box<T>: performance and ownership
So, when should Box<T> be your go-to smart pointer?

•	 Single ownership of the heap: Box<T> enforces a single owner for the heap-allocated

data it controls. The data is also deallocated when Box<T> is dropped. Moving the Box<T>

transfers ownership of the heap data accordingly. This aligns seamlessly with Rust’s

fundamental ownership principles.

•	 Known size indirection: As noted, this is crucial for recursive types. It also applies to trait

objects (such as Box<dyn MyTrait>) since the size of the specific type implementing the

trait is not determined at compile time, but Box provides a known size.

•	 Efficiently transferring large data: When dealing with a large struct and needing to trans-

fer ownership to another function or store it in a collection, boxing it (Box<MyLargeStruct>)

means that only the pointer is transferred, rather than the entire struct, enhancing effi-

ciency.

Chapter 11 355

Performance considerations:

•	 Box<T> entails a heap allocation, typically slower than stack allocation.

•	 Accessing data via Box<T> requires a single pointer dereference.

•	 Nonetheless, Box<T> does not introduce any additional runtime overhead aside from heap

allocation/deallocation and pointer indirection. With no reference counting or locking

mechanisms, it serves as a lightweight heap pointer when compared to Rc<T> or Arc<T>.

Box<T> serves as the essential tool for managing heap data with definitive ownership and auto-

matic deallocation.

It is straightforward and efficient, playing a crucial role in the implementation of certain data

structures in Rust.

Sharing data safely: Rc<T> and Arc<T>
With Box<T>, we handle heap data with a single owner that releases data when out of scope. But for

shared, long-term access, reference-counting smart pointers are used: Rc<T> for single-threaded,

and Arc<T> for multi-threaded environments.

The concept of shared ownership
In Rust, the main ownership rule is that each value can only have one owner. This helps us avoid

many bugs, but sometimes it can feel a bit restrictive. For instance, imagine multiple data struc-

tures need to access the same configuration, or several nodes in a graph want to reference a

common resource.

Using Box<T>, only one structure can own the data, which means others have to borrow it. This

might not work well if their lifetimes are complex or if they need to “co-own” the resource together.

That’s where reference counting comes in. It’s a helpful technique that lets a piece of data have

several “owners,” or more accurately, multiple references that keep it alive. A smart pointer keeps

track of how many references are pointing to the data. When a new reference is made, the count

goes up, and when a reference is dropped or goes out of scope, the count goes down. The data

is only cleaned up when the count hits zero. This approach makes it easier to share data widely

without putting all the responsibility on a single owner.

Smart Pointers and Memory Management356

Rc<T>: reference counting for single-threaded scenarios
The Rc<T> smart pointer, standing for Reference Counted, provides Rust with a mechanism for

shared ownership in single-threaded environments. It monitors the number of references to a

heap value, ensuring that the value is only deallocated when no references remain.

It’s helpful to keep in mind that Rc<T> is designed mainly for single-threaded situations. Since

it doesn’t use atomic operations for updating its reference count, it tends to be faster than its

thread-safe counterpart. But, it’s important to remember that sharing or sending Rc<T> between

threads isn’t safe.

Creating Rc<T> instances and cloning references
First, you instantiate an Rc<T> with Rc::new(value).

To generate more references that share ownership, invoke the clone() method on an existing

Rc<T>. Importantly, Rc::clone(&rc_instance) doesn’t execute a deep copy of the data T itself;

rather, it merely generates another pointer to the same heap-allocated data while increasing the

internal reference count.

use std::rc::Rc;

#[derive(Debug)]

struct SharedConfig {

 version: String,

 api_key: String,

}

struct ServiceA {

 id: u32,

 config: Rc<SharedConfig>,

}

struct ServiceB {

 name: String,

 config: Rc<SharedConfig>,

}

fn main() {

 // Create the shared configuration data wrapped in an Rc.

 let shared_config = Rc::new(SharedConfig {

 version: "v1.2.3".to_string(),

Chapter 11 357

 api_key: "ABC123XYZ789".to_string(),

 });

 println!("Initial strong count: {}", Rc::strong_count(&shared_
config));

 // Create clones of the Rc to share ownership.

 // This only increments the reference count; it does not deep copy the
data.

 let service_a = ServiceA {

 id: 101,

 config: Rc::clone(&shared_config),

 };

 println!("After ServiceA created: strong count = {}", Rc::strong_
count(&shared_config));

 let service_b = ServiceB {

 name: "LoggerService".to_string(),

 config: Rc::clone(&shared_config),

 };

 println!("After ServiceB created: strong count = {}", Rc::strong_
count(&shared_config));

 println!("---");

 println!("Service A accesses config version: {}", service_a.config.
version);

 println!("Service B accesses API key: {}", service_b.config.api_key);

 println!("---");

 // Explicitly drop service_a to see the reference count decrease.

 drop(service_a);

 println!("After ServiceA is dropped: strong count = {}", Rc::strong_
count(&shared_config)); // Output: 2

 // Explicitly drop service_b.

 drop(service_b);

 println!("After ServiceB is dropped: strong count = {}", Rc::strong_
count(&shared_config)); // Output: 1

 // The final Rc (`shared_config`) will be dropped at the end of main's
scope.

 // At that point, the count will become 0, and the SharedConfig data
will be deallocated.

}

Smart Pointers and Memory Management358

Figure 11.1: Output for the reference counting Smart pointer example

•	 We create a SharedConfig struct for use by various services.

•	 Rc::new() initializes our SharedConfig instance, placing it on the heap and setting its

reference count to 1.

•	 Rc::clone(&rc_pointer) is crucial. It does not duplicate the SharedConfig data; instead,

it produces a new Rc pointer to the same data while increasing the reference count. This

operation is inexpensive.

•	 Rc::strong_count(&rc_pointer) indicates how many Rc instances (strong references)

are currently referencing the data.

•	 When an Rc<SharedConfig> instance (such as service_a.config, service_b.config, or

shared_config_data itself) exits its scope, its destructor executes, reducing the reference

count.

•	 The SharedConfig data on the heap is deallocated only when the strong reference count

reaches zero.

Arc<T>: atomic reference counting for multithreading
For now, we will focus on smart pointers. If you need to know more about concurrency, go to the

next chapter and come back here later!

Rc<T> works well for single-threaded tasks, but if you’re thinking about sharing data across mul-

tiple threads, things get trickier. You can’t simply transfer an Rc<T> to another thread because

its internal count isn’t updated atomically, which can cause issues such as data races or memory

corruption if multiple threads attempt to clone it simultaneously.

That’s where Arc<T> comes in. It’s like Rc<T> but with a safety net.

Chapter 11 359

It utilizes atomic operations to maintain an accurate reference count, even when multiple threads

are involved, making it the ideal choice for safe, shared ownership in concurrent programs.

Using Arc<T> to share data across threads
The API for Arc<T> is virtually identical to Rc<T>: you use Arc::new(value) to create one and

Arc::clone(&arc_instance) to get another reference-counted pointer to the same data.

use std::sync::Arc;

use std::thread;

use std::time::Duration;

#[derive(Debug)]

struct SharedResource {

 id: u32,

 data: String,

}

fn main() {

 // Create shared data wrapped in an Arc

 let shared_resource_main = Arc::new(SharedResource {

 id: 1001,

 data: "This is some important data shared across threads.".to_
string(),

 });

 println!("Main thread: Initial strong count = {}", Arc::strong_
count(&shared_resource_main)); // Output: 1

 let mut thread_handles = vec![];

 for i in 0..3 { // Spawn 3 threads

 // Clone the Arc for each thread. This is crucial.

 // The cloned Arc is moved into the thread's closure.

 let shared_resource_for_thread = Arc::clone(&shared_resource_
main);

 println!("Main thread: Count before spawning thread {} = {}", i,
Arc::strong_count(&shared_resource_main));

 let handle = thread::spawn(move || {

Smart Pointers and Memory Management360

 // This thread now has its own Arc pointing to the shared data

 println!("Thread {}: Started. Accessing resource ID: {}, Data:
'{}'. Strong count here: {}",

 i,

 shared_resource_for_thread.id,

 shared_resource_for_thread.data,

 Arc::strong_count(&shared_resource_for_thread) //
Count might be higher due to other clones

);

 thread::sleep(Duration::from_millis(50)); // Simulate some
work

 println!("Thread {}: Finished.", i);

 // When shared_resource_for_thread goes out of scope here, the
count is decremented.

 });

 thread_handles.push(handle);

 }

 // The main thread still has its reference

 println!("Main thread: After spawning threads, strong count = {}",
Arc::strong_count(&shared_resource_main));

 println!("Main thread: Resource data: {}", shared_resource_main.data);

 // Wait for all threads to complete

 for handle in thread_handles {

 handle.join().unwrap();

 }

 println!("Main thread: All threads finished. Final strong count
(before shared_resource_main drops): {}", Arc::strong_count(&shared_
resource_main)); // Should be 1

 // When shared_resource_main drops, the count goes to 0, and
SharedResource is deallocated.

}

•	 We create a SharedResource wrapped in Arc::new().

Chapter 11 361

•	 For each new thread we spawn, we first call Arc::clone(&shared_resource_main). This

increments the atomic reference count and provides the new thread with its own Arc

pointer, which is then moved into the thread’s closure. This is the standard pattern for

sharing data with threads using Arc.

•	 Each thread can safely access the data through its Arc.

•	 When each thread finishes, its Arc instance is dropped, and the atomic reference count

is decremented.

•	 The SharedResource data is only deallocated when the last Arc pointing to it (including

the one in the main thread) is dropped.

The “atomic” in Arc<T>
The “atomic” aspect of Arc<T> pertains to atomic operations.

These are unique hardware instructions that ensure operations such as incrementing or decre-

menting the reference count are executed as a single, indivisible step, even when multiple CPUs

or cores are attempting to access it simultaneously.

This helps prevent race conditions with the reference count, making Arc<T> safe to use across

multiple threads, unlike Rc<T>. While this thread safety is a great feature, it does come with a

slight performance cost compared to Rc<T>, because atomic operations are a bit more complex.

So, the best approach is to use Rc<T> whenever possible and only choose Arc<T> when you need

to share ownership between different threads.

Reference counting, Drop, and potential cycles
Both Rc<T> and Arc<T> happily ensure that data gets cleaned up when their strong reference count

drops to zero. This smooth process, managed by the Drop trait for Rc<T> and Arc<T>, does a great

job at preventing memory leaks. However, sometimes reference counting can lead to memory

leaks when there’s a reference cycle. This occurs when two or more Rc<T> (or Arc<T>) instances

reference each other in a loop, causing their reference counts to stay high even when they’re no

longer needed from outside: for example:

•	 Object A holds an Rc to Object B (B’s count is at least 1)

•	 Object B holds an Rc to Object A (A’s count is at least 1)

So, even if all other references are gone, A and B keep each other’s counts at 1, which stops them

from being deallocated. This can, unfortunately, cause a memory leak.

Smart Pointers and Memory Management362

How Weak<T> can break cycles
Rust handles reference cycles using weak references through Weak<T>, sourced from std::rc::Weak

for Rc and std::sync::Weak for Arc. A Weak<T> serves as a non-owning reference that points to the

data without increasing the strong reference count, meaning it cannot keep the data alive by itself.

To access the data through a Weak<T>, you need to attempt to “upgrade” it to an Rc<T> (or Arc<T>).

This upgrade returns an Option<Rc<T>>: it yields Some(rc) if the data still exists (i.e., when its

strong count is greater than 0) or None if the data has already been deallocated.

In data structures where cycles can arise, such as graphs or doubly linked lists where a parent

references a child and the child references back to the parent, one of the references is typically

made “weak” (e.g., the child references the parent using Weak<T>) to break the cycle and facilitate

proper deallocation.

While we won’t explore Weak<T> in detail in this introductory chapter, it’s important to recognize

the potential for reference cycles with Rc<T> and Arc<T>, along with the fact that Weak<T> is the

main tool for addressing them. Rc<T> and Arc<T> are essential when data needs to be accessed

from multiple locations, with its lifetime linked to the existence of those access points rather than

being confined to a single lexical scope.

Interior mutability: modifying data through shared
references
So far, we’ve been following Rust’s fundamental borrowing rule: at compile time, you can either

have several immutable references (&T) to some data, or just one mutable reference (&mut T), but

never both at the same time.

However, in some cases, compile-time enforcement may seem too restrictive. What if you want to

change data accessed through an immutable reference or modify a value that has been immutably

borrowed? This is when the interior mutability pattern becomes useful.

This principle is validated during compile time and is essential for Rust’s memory safety.

Nonetheless, there are scenarios in which this compile-time enforcement can seem overly con-

straining. What if you have a seemingly immutable value externally (you only have an &T), but

you need to alter some internal component of it?

This is where the interior mutability pattern comes into play.

Chapter 11 363

What is interior mutability and why is it needed?
Interior mutability in Rust is a clever design pattern that lets you change data even when there

are only immutable references to it. It might seem like it’s breaking the rules, but that’s not quite

the case.

Instead of skipping Rust’s safety checks, it moves the enforcement of borrowing rules from com-

pile time to runtime for certain specific types. If these rules are broken at runtime, your program

will crash, ensuring safety is still maintained.

Why would you need such a thing? Consider these scenarios:

•	 Observer pattern or callbacks: You might have a list of observers that need to be notified

of an event. The list itself may be held within a structure that is otherwise immutable, but

the act of notification might involve changing some state within each observer.

•	 Caching: A struct might have a method that performs an expensive computation. You

could internally cache the result so that subsequent calls are faster. The method might

only take &self (an immutable reference), but it needs to write to the internal cache.

•	 Data structures with shared ownership: When using Rc<T> to share data, Rc<T> only

provides immutable access to T by default. If you need multiple owners and the ability

to mutate the shared data, you’ll need interior mutability.

Rust provides a few types in its standard library that enable interior mutability, primarily Cell<T>

and RefCell<T> for single-threaded scenarios, and Mutex<T> and RwLock<T> for multi-threaded

contexts. We’ll focus on RefCell<T> and Mutex<T> as they are commonly used with smart pointers.

RefCell<T>: enforcing borrowing rules at runtime (single-
threaded)
The RefCell<T> type is perfect for situations where you need to change data inside a single-thread-

ed context. It allows you to get mutable references (&mut T) to its data, even if the RefCell<T>

itself is immutable: for example, when you have an &RefCell<T>. Unlike compile-time checks,

RefCell<T> makes sure Rust’s borrowing rules (one mutable reference or multiple immutable

ones) are followed at runtime. This check occurs whenever you call the .borrow() or .borrow_

mut() methods, helping you use data safely and flexibly.

Smart Pointers and Memory Management364

If you attempt to borrow in a way that violates these rules, such as calling .borrow_mut() while

another borrow (mutable or immutable) is already active, the call will immediately cause your

program to panic.

•	 To acquire an immutable reference, use the borrow() method, which returns a smart

pointer, Ref<T>

•	 For a mutable reference, the borrow_mut() method is called, returning a smart pointer,
RefMut<T>

If you breach the borrowing rules (e.g., invoking borrow_mut() while a borrow() is active, or

calling borrow_mut() multiple times without the previous RefMut<T> going out of scope), your

program will panic at runtime. This mechanism ensures safety, albeit checked at a different time.

RefCell<T> is frequently paired with Rc<T> to allow multiple ownership of mutable data. A

common pattern is Rc<RefCell<T>>.

Using borrow() and borrow_mut()
Let’s see an example:

use std::cell::RefCell;

use std::rc::Rc;

// A logger that uses interior mutability to track its state.

struct MessageLogger {

 message_count: RefCell<usize>,

 history: RefCell<Vec<String>>,

}

impl MessageLogger {

 fn new() -> Self {

 MessageLogger {

 message_count: RefCell::new(0),

 history: RefCell::new(Vec::new()),

 }

 }

 // This method takes &self but can modify internal state via RefCell.

 fn log(&self, message: &str) {

 let mut count = self.message_count.borrow_mut();

Chapter 11 365

 *count += 1;

 self.history

 .borrow_mut()

 .push(format!("#{}: {}", *count, message));

 }

 fn get_count(&self) -> usize {

 *self.message_count.borrow()

 }

 fn print_history(&self) {

 println!("--- Log History ---");

 for entry in self.history.borrow().iter() {

 println!("{}", entry);

 }

 println!("-------------------");

 }

}

fn main() {

 // Wrap the MessageLogger in Rc to allow shared ownership.

 let shared_logger: Rc<MessageLogger> = Rc::new(MessageLogger::new());

 // Create multiple references to the same logger instance.

 let logger_clone1 = Rc::clone(&shared_logger);

 let logger_clone2 = Rc::clone(&shared_logger);

 // Log messages from different references.

 // Each call will mutate the same underlying MessageLogger instance.

 shared_logger.log("Main logger event.");

 logger_clone1.log("Event from clone 1.");

 logger_clone2.log("Event from clone 2.");

 // Check the final state from any of the references.

 println!("\nTotal messages logged: {}", shared_logger.get_count());

 shared_logger.print_history();

}

Smart Pointers and Memory Management366

Here’s the output:

Figure 11.2: Using borrow() and borrow_mut()

•	 The MessageLogger struct consists of two fields: message_count and history, with types

RefCell<usize> and RefCell<Vec<String>>, respectively. This indicates that the logger

owns these RefCell types.

•	 The log method takes an immutable reference to MessageLogger (&self). Despite this, it

can call self.message_count.borrow_mut() and self.history.borrow_mut(), which re-

turn RefMut, a smart pointer providing mutable access to the usize count and Vec<String>

history within the RefCell.

•	 Borrowing rules are enforced at runtime: If borrow_mut() is invoked while another RefMut

(mutable borrow) or Ref (immutable borrow) exists for the same RefCell, the program

will panic.

•	 If borrow() is attempted while a RefMut for the same RefCell exists, it will also panic.

•	 The RefMut (from borrow_mut()) and Ref (from borrow()) smart pointers automatically

release their borrow when they exit their scope. This is essential for permitting subse-

quent borrows.

•	 The example with Rc<MessageLogger> illustrates a typical use case: Rc<RefCell<T>>

enables multiple Rc pointers (shared ownership) to reference a RefCell, allowing for

interior mutability of the data T.

Runtime panics on borrow rule violations
It’s important to remember that RefCell<T> delays borrow checking until runtime. If used in-

correctly, your program won’t just fail to compile; it will panic when the problematic borrow()

or borrow_mut() call is executed.

This runtime check is the trade-off for the flexibility of RefCell<T>. Although it still maintains

safety by preventing data races in single-threaded code through panics, errors are caught later

than with compile-time checks.

Chapter 11 367

Mutex<T>: ensuring exclusive access in concurrent code
Imagine a Mutex<T> as a cozy public restroom with a single stall that has a lock on the door. The

data T is the restroom itself, and the different threads are the people waiting happily outside.

Before a thread can access the data, it simply needs to “acquire the lock” by calling .lock(),

just like locking the stall door for privacy. While the lock is held, everyone else who tries to get in

waits patiently in line. When the thread is done, the lock is released automatically as the “guard”

object goes out of scope, much like someone unlocking the door when they leave and giving the

next person a turn.

When you need interior mutability in a multi-threaded context, RefCell<T> is unsuitable because

its runtime checks are not thread-safe. For this purpose, Rust provides Mutex<T>, which stands

for Mutual Exclusion.

A Mutex<T> ensures that only one thread can access the data T at any given time.

Locking and unlocking with lock()
To access the data within a Mutex<T>, a thread must first “acquire the lock” by invoking the

lock() method.

•	 The lock() method attempts to obtain the lock. If no other thread currently holds it, the

current thread secures the lock and lock() returns a LockResult<MutexGuard<T>>.

•	 A MutexGuard<T> functions as a smart pointer that implements Deref and DerefMut, en-

abling mutable access to the data of type T.

•	 If another thread is already holding the lock, the lock() call will block the current thread

until the lock becomes free.

•	 Once the MutexGuard<T> goes out of scope, the lock is automatically released, allowing

other waiting threads to acquire it. This RAII pattern is quite handy and helps avoid dead-

locks that may occur from forgetting to release a lock.

The LockResult returned by lock() is a Result because acquiring a lock can fail if the mutex is

“poisoned.” A mutex is considered poisoned if a thread panics while it is holding the lock.

For simplicity, many examples often use unwrap() on the result of lock(), which causes the

current thread to panic if the mutex is poisoned. In more robust applications, you might want to

handle a poisoned mutex more gracefully.

Smart Pointers and Memory Management368

Combining Arc<T> and Mutex<T> for shared mutable state
Because Mutex<T> manages data access among multiple threads, it frequently needs to be shared

among them.

The typical approach is to encapsulate the Mutex<T> within an Arc<T>, resulting in an

Arc<Mutex<T>>.

The Arc facilitates the shared ownership of the mutex, while the mutex ensures synchronized

access to the underlying data.

use std::sync::{Arc, Mutex};

use std::thread;

use std::time::Duration;

struct GlobalCounter {

 count: Arc<Mutex<u32>>, // Shared, mutable counter

}

impl GlobalCounter {

 fn new() -> Self {

 GlobalCounter { count: Arc::new(Mutex::new(0)) }

 }

 fn increment(&self) {

 // Acquire the lock. This blocks if another thread has the lock.

 // unwrap() here will panic if the mutex is poisoned.

 let mut num_guard = self.count.lock().unwrap();

 *num_guard += 1; // Mutate the data through the MutexGuard

 // Lock is released when num_guard goes out of scope

 }

 fn get_value(&self) -> u32 {

 *self.count.lock().unwrap() // Lock, get value, unlock

 }

}

fn main() {

Chapter 11 369

 let global_counter = GlobalCounter::new();

 let mut handles = vec![];

 println!("Initial count: {}", global_counter.get_value()); // Output:
0

 // Spawn multiple threads that all increment the same counter

 for i in 0..5 {

 // Clone the Arc to give ownership to the new thread

 let counter_clone = Arc::clone(&global_counter.count);

 let handle = thread::spawn(move || {

 // This is a different way to use the Arc<Mutex<T>> directly

 // without the GlobalCounter struct, for illustration.

 for _ in 0..100 {

 let mut num = counter_clone.lock().unwrap();

 *num += 1;

 // Slight delay to make interleaving more likely

 thread::sleep(Duration::from_micros(1));

 }

 println!("Thread {} finished incrementing.", i);

 });

 handles.push(handle);

 }

 // Using the methods on our GlobalCounter struct from the main thread

 // (This is a bit contrived here as the struct methods would also
contend for the same lock

 // if called concurrently with the threads above, but demonstrates
method usage)

 global_counter.increment(); // Main thread also increments

 // Wait for all spawned threads to finish

 for handle in handles {

 handle.join().unwrap();

 }

Smart Pointers and Memory Management370

 println!("Final count: {}", global_counter.get_value()); // Expected:
5 * 100 + 1 = 501

}

Figure 11.3: Combining Arc<T> and Mutex<T> for shared mutable state

Arc::new(Mutex::new(0)) creates a counter secured by a mutex and encapsulates it in an Arc

for sharing across threads.

•	 Each thread uses Arc::clone(&global_counter.count) to generate a new Arc pointer

to the same mutex, which is then transferred into the thread.

•	 Inside each thread, counter_clone.lock().unwrap() attempts to lock the mutex. At any

time, only one thread can hold the lock. Once successful, the MutexGuard (referred to as

num) allows for mutable access (*num += 1).

•	 When num (MutexGuard) goes out of scope at the end of the critical section, the lock is

automatically released.

•	 This ensures that, although multiple threads are trying to increment count, these incre-

ments happen sequentially concerning the lock, thereby avoiding data races.

RefCell<T> and Mutex<T> (as well as RwLock<T>, which permits multiple readers or a single writer)

are effective resources when Rust’s compile-time borrow checking presents excessive limitations

on your design. However, they do come with their own challenges (such as the risk of runtime

panic in RefCell and the potential for blocking or deadlock in Mutex).

Use them judiciously where their unique functionalities are necessary.

RwLock for read-mostly data
While Mutex<T> is a great general-purpose tool for ensuring exclusive access, it can sometimes

be too restrictive.

Chapter 11 371

For data that is read very frequently by many threads but only written to occasionally (like a shared

configuration cache), Rust provides a more specialized smart pointer: RwLock<T> (Read-Write

Lock). Unlike a mutex, which always enforces a single lock, RwLock<T> allows for two kinds of

locks: a shared read lock via its .read() method, which multiple threads can hold simultaneously,

and an exclusive write lock via its .write() method, which only one thread can hold.

This “multiple readers or one writer” policy can significantly improve performance in read-heavy

concurrent scenarios by allowing readers to proceed in parallel.

Here is a short example:

use std::sync::{Arc, RwLock};

use std::thread;

fn main() {

 // A shared configuration that many threads will read, but one will
update.

 let config = Arc::new(RwLock::new("Initial Config".to_string()));

 let mut handles = vec![];

 // --- Spawn multiple READER threads ---

 for i in 0..5 {

 let config_clone = Arc::clone(&config);

 handles.push(thread::spawn(move || {

 // Acquire a read lock. Multiple threads can hold this at the
same time.

 let config_guard = config_clone.read().unwrap();

 println!("Reader {}: sees config: '{}'", i, *config_guard);

 }));

 }

 // --- Spawn one WRITER thread ---

 let config_clone = Arc::clone(&config);

 handles.push(thread::spawn(move || {

 // Simulate some work before writing

 thread::sleep(std::time::Duration::from_millis(10));

 // Acquire a write lock. This will wait until all readers are

Smart Pointers and Memory Management372

done.

 // Once held, no new readers or writers can get a lock.

 let mut config_guard = config_clone.write().unwrap();

 *config_guard = "Updated Config".to_string();

 println!("--- Writer: Updated config! ---");

 }));

 // Wait for all threads to finish

 for handle in handles {

 handle.join().unwrap();

 }

 println!("\nFinal config value: '{}'", *config.read().unwrap());

}

Figure 11.4: RwLock for read-mostly data

Working effectively with smart pointers
Alright, that was a solid introduction.

Now that we’ve become familiar with the key smart pointers Box<T>, Rc<T>, Arc<T>, RefCell<T>,

and Mutex<T>, let’s explore some common patterns and interactions.

Smart pointers and method calls (the Deref trait in action)
In earlier examples, you may have noticed that smart pointers allow you to call methods direct-

ly, similar to how you would on the contained value (e.g., my_box.some_method() rather than

(*my_box).some_method()).

Chapter 11 373

This is made possible by the Deref trait and a feature known as “Deref coercion.” The Deref trait

is defined in the standard library as follows (simplified):

trait Deref {

 type Target: ?Sized; // The type that this pointer dereferences to

 fn deref(&self) -> &Self::Target;

}

A type that implements the Deref trait can be dereferenced with the * operator (for example,

*my_box). More significantly for method invocations, if you possess a &MySmartPointer<T>,

and MySmartPointer<T> implements Deref<Target = T>, Rust can automatically convert

&MySmartPointer<T> to &T when attempting to invoke a method that exists solely on T.

This process is known as Deref coercion. This can occur multiple times if a type dereferences to

another type that also utilizes Deref.

Additionally, there’s a DerefMut trait for smart pointers that allow for mutable dereferencing

(such as Box<T> and RefMut<T> from RefCell):

trait DerefMut: Deref {

 fn deref_mut(&mut self) -> &mut Self::Target;

}

This enables &mut MySmartPointer<T> to convert to &mut T. Most smart pointers we have cov-

ered (Box, Rc, Arc, Ref, RefMut, MutexGuard) implement Deref (and DerefMut where applicable).

struct MyValue {

 data: i32,

}

impl MyValue {

 fn display(&self) {

 println!("MyValue data: {}", self.data);

 }

}

fn main() {

 let b = Box::new(MyValue { data: 42 });

 let rc_val = std::rc::Rc::new(MyValue { data: 100 });

Smart Pointers and Memory Management374

 // Calling display() on Box<MyValue>

 // 1. `b` is `Box<MyValue>`. `&b` is `&Box<MyValue>`.

 // 2. `Box<MyValue>` implements `Deref<Target = MyValue>`.

 // 3. So, `&Box<MyValue>` coerces to `&MyValue`.

 // 4. `display()` is called on `&MyValue`.

 b.display(); // Works due to deref coercion

 // Similarly for Rc<MyValue>

 rc_val.display(); // Works

 // Explicit dereference is also possible, but often not needed for
method calls

 (*b).display();

 (*rc_val).display();

 // With a String (which Box<String> and Rc<String> dereference to
&str)

 let name_box = Box::new("Rustacean".to_string());

 // String -> &str, so we can call &str methods

 println!("Is '{}' empty? {}", name_box, name_box.is_empty()); // .is_
empty() is a &str method

 // Deref coercion also works with function arguments

 fn print_str_slice(s: &str) {

 println!("Slice: {}", s);

 }

 print_str_slice(&name_box); // &Box<String> -> &String -> &str

}

Figure 11.5: The Deref trait in action

Chapter 11 375

Deref coercion significantly enhances the ergonomics of working with smart pointers. Typically,

you don’t have to explicitly dereference them (*smart_ptr) when invoking a method on the

underlying type. Rust automates this process for you if the smart pointer supports Deref (and

DerefMut for mutable methods).

This feature is applicable to Box<T>, Rc<T>, Arc<T>, and the guard types

obtained through RefCell::borrow(), RefCell::borrow_mut(), and Mutex::lock().

Implementing methods on structs that own smart pointers
It’s typical for your structs to manage data using smart pointers.

You can certainly create methods within these structs that work with the data contained in the

smart pointer.

#[derive(Debug)]

struct ImportantData {

 id: u32,

 payload: String,

}

// This struct owns an ImportantData instance on the heap

struct DataOwner {

 name: String,

 // Box<T> is good when the struct needs to own T and T is large,

 // or T's size is unknown (like a trait object).

 data_ptr: Option<Box<ImportantData>>,

}

impl DataOwner {

 fn new(name: &str) -> Self {

 DataOwner {

 name: name.to_string(),

 data_ptr: None,

 }

 }

 fn initialize_data(&mut self, id: u32, payload: &str) {

 self.data_ptr = Some(Box::new(ImportantData {

 id,

Smart Pointers and Memory Management376

 payload: payload.to_string(),

 }));

 println!("{} initialized data.", self.name);

 }

 fn update_payload(&mut self, new_payload: &str) {

 // self.data_ptr is an Option<Box<ImportantData>>

 // .as_mut() gives Option<&mut Box<ImportantData>>

 // .map() operates on the &mut Box if Some

 if let Some(boxed_data_mut_ref) = self.data_ptr.as_mut() {

 // boxed_data_mut_ref is &mut Box<ImportantData>

 // We can call methods on ImportantData thanks to DerefMut on
Box

 // or directly assign to fields if they are public.

 // Here, `payload` is public on `ImportantData`.

 boxed_data_mut_ref.payload = new_payload.to_string();

 println!("{} updated payload for ID {}.", self.name, boxed_
data_mut_ref.id);

 } else {

 println!("{} has no data to update.", self.name);

 }

 }

 fn display_data(&self) {

 // self.data_ptr is an Option<Box<ImportantData>>

 // .as_ref() gives Option<&Box<ImportantData>>

 if let Some(boxed_data_ref) = self.data_ptr.as_ref() {

 // boxed_data_ref is &Box<ImportantData>

 // We can access fields of ImportantData thanks to Deref on
Box

 println!("{}'s Data [ID: {}]: {}", self.name, boxed_data_ref.
id, boxed_data_ref.payload);

 } else {

Chapter 11 377

 println!("{} has no data to display.", self.name);

 }

 }

}

fn main() {

 let mut owner1 = DataOwner::new("OwnerAlpha");

 owner1.display_data(); // No data

 owner1.initialize_data(101, "Initial crucial data");

 owner1.display_data();

 owner1.update_payload("Updated important information");

 owner1.display_data();

}

Figure 11.6: Implementing methods on structs that own smart pointers

•	 The DataOwner struct contains ImportantData within an Option<Box>.

•	 The initialize_data function allocates ImportantData on the heap and assigns the

Box to data_ptr.

•	 The update_payload function requires mutable access. By using self.data_ptr.as_mut(),

we obtain Option<&mut Box>. When it is Some, we retrieve &mut Box, and thanks to

DerefMut, we can treat it as &mut ImportantData to update its payload.

•	 The display_data function needs immutable access. Utilizing self.data_ptr.as_ref()

provides Option<&Box>. If it is Some, we get &Box, which Deref enables us to treat as

&ImportantData to read its fields.

Smart Pointers and Memory Management378

Combining smart pointers for complex scenarios
Rust’s smart pointers can be combined to create complex ownership and mutability patterns.

Two of the most potent and commonly used combinations are as follows:

•	 Rc<RefCell<T>>: This combination enables multiple owners (through Rc<T>) and also

allows for interior mutability (using RefCell<T>) in a single-threaded environment

•	 Rc manages shared ownership and reference counting

•	 RefCell within Rc grants any Rc holder mutable access to T (with runtime borrow

checking)

•	 Arc<Mutex<T>> (or Arc<RwLock<T>>): This serves as the thread-safe counterpart for shared,

mutable data

•	 Arc ensures thread-safe shared ownership

•	 Mutex (or RwLock) within the Arc enables synchronized, mutable access to T across

multiple threads

Now, let’s examine an instance of Rc<RefCell<T>> in which multiple “observers” need to react

to updates in a common subject.

These notifications may also require the observers to modify their own internal states, thus pos-

sibly necessitating interior mutability for them as well.

use std::rc::Rc;

use std::cell::RefCell;

fn main() {

 // 1. Create a shared, mutable list.

 // RefCell allows mutation. Rc allows multiple owners.

 let shared_data = Rc::new(RefCell::new(Vec::new()));

 // 2. Create multiple owners (clones of the pointer, not the data).

 let owner1 = Rc::clone(&shared_data);

 let owner2 = Rc::clone(&shared_data);

 // 3. Mutate the data via the first owner.

 // We use .borrow_mut() to get write access.

 owner1.borrow_mut().push("Data from Owner 1".to_string());

Chapter 11 379

 // 4. Mutate the SAME data via the second owner.

 owner2.borrow_mut().push("Data from Owner 2".to_string());

 // 5. Read the data from the original owner.

 // We use .borrow() to get read access.

 println!("Final data: {:?}", shared_data.borrow());

 // Output: ["Data from Owner 1", "Data from Owner 2"]

}

Figure 11.7: Combining smart pointers for complex scenarios

•	 Creating an empty vector with Rc::new(RefCell::new(Vec::new())) gives ownership to

an Rc, allowing multiple owners, while being wrapped in a RefCell to enable mutation

through an immutable Rc path.

•	 Both list_user1 and list_user2 receive Rc clones that reference the same

RefCell<Vec<String>>.

•	 The list_user1.borrow_mut().push(...) expression acquires a mutable reference to

the Vec (through the RefCell runtime checking) and updates it.

•	 Similarly, list_user2.borrow_mut().push(...) performs the same action. Since both

Rc refer to the same RefCell, which in turn references the same Vec in heap memory,

changes made via one Rc are observable by the others. This approach is crucial for many

single-threaded situations requiring shared mutable state, such as GUI programming or

managing graph-like structures.

Smart pointers and ownership transfer
Let’s briefly summarize how various smart pointers function within Rust’s ownership system,

especially in relation to transfer.

•	 Box<T> implies unique ownership: When you have a Box<T>, it’s the sole owner of the

T on the heap.

let b1 = Box::new(5);

let b2 = b1; // Ownership of the Box (and the heap data 5) MOVES
from b1 to b2.

Smart Pointers and Memory Management380

// println!("{}", b1); // Error! b1 was moved.

println!("{}", b2); // Ok

•	 Rc<T> and Arc<T> enable shared ownership: Calling clone() on an Rc<T> or Arc<T>

does not move ownership of the underlying data. Instead, it creates a new pointer to the

same data and increments the reference count. The original Rc/Arc and the cloned one

now co-own the data.

use std::rc::Rc;

let rc1 = Rc::new("hello".to_string());

let rc2 = Rc::clone(&rc1); // rc1 and rc2 now both point to "hello"

 // Ownership of "hello" is shared.

println!("rc1: {}, rc2: {}", rc1, rc2); // Both are valid.

println!("Strong count: {}", Rc::strong_count(&rc1)); // Will be 2

It’s very important to grasp this difference here!

Box transfers and Rc/Arc sharing occur through cloning.

Practical application: a simple graph with shared nodes
(Rc<RefCell<Node>>)
A common data structure that requires shared ownership and potential mutability is a graph,

in which nodes can point to other nodes, and multiple nodes may point to the same successor.

Rc<RefCell<Node>> is often an appropriate choice here for single-threaded graphs.

Let’s see an example:

use std::rc::{Rc, Weak}; // Weak is included to hint at the solution for
cycles

use std::cell::RefCell;

#[derive(Debug)]

struct GraphNode {

 id: usize,

 name: String,

Chapter 11 381

 // Using Rc<RefCell<...>> allows shared ownership and interior
mutability of edges.

 edges: RefCell<Vec<Rc<GraphNode>>>,

}

impl GraphNode {

 fn new(id: usize, name: &str) -> Rc<Self> {

 Rc::new(GraphNode {

 id,

 name: name.to_string(),

 edges: RefCell::new(Vec::new()),

 })

 }

 // Adds a directed edge from one node to another.

 fn add_edge(from: &Rc<GraphNode>, to: &Rc<GraphNode>) {

 from.edges.borrow_mut().push(Rc::clone(to));

 }

 fn print_connections(&self) {

 print!("Node '{}' (ID {}) connects to: ", self.name, self.id);

 if self.edges.borrow().is_empty() {

 print!("(none)");

 } else {

 for (i, node) in self.edges.borrow().iter().enumerate() {

 if i > 0 { print!(", "); }

 print!("{}", node.name);

 }

 }

 println!();

 }

}

Smart Pointers and Memory Management382

fn main() {

 let node_a = GraphNode::new(1, "A");

 let node_b = GraphNode::new(2, "B");

 let node_c = GraphNode::new(3, "C");

 let node_d = GraphNode::new(4, "D");

 // Create connections for a directed acyclic graph:

 // A -> B

 // A -> C

 // B -> C

 // C -> D

 GraphNode::add_edge(&node_a, &node_b);

 GraphNode::add_edge(&node_a, &node_c);

 GraphNode::add_edge(&node_b, &node_c);

 GraphNode::add_edge(&node_c, &node_d);

 println!("--- Graph Connections ---");

 node_a.print_connections();

 node_b.print_connections();

 node_c.print_connections();

 node_d.print_connections();

 println!("-------------------------");

 println!("\n--- Reference Counts ---");

 // Each node starts with a count of 1 from `main`'s ownership.

 // The count is incremented for each incoming edge from another node.

 println!("Node A strong_count: {}", Rc::strong_count(&node_a)); //
Output: 1 (owned by main)

 println!("Node B strong_count: {}", Rc::strong_count(&node_b)); //
Output: 2 (owned by main + edge from A)

 println!("Node C strong_count: {}", Rc::strong_count(&node_c)); //
Output: 3 (owned by main + edge from A + edge from B)

 println!("Node D strong_count: {}", Rc::strong_count(&node_d)); //
Output: 2 (owned by main + edge from C)

}

Chapter 11 383

Figure 11.8: Output of a graph with shared nodes example

•	 Each GraphNode is wrapped in an Rc to enable multiple nodes to point to it (shared own-

ership).

•	 The edges field of a GraphNode, which stores its connections to other nodes, is a

RefCell<Vec<Rc<GraphNode>>>.

•	 Vec<Rc<GraphNode>>: The vector contains Rc pointers to the neighboring nodes, sharing

ownership of them.

•	 RefCell: This allows the edges vector to be modified (e.g., to add a new edge) even when

we only have an immutable reference (&Rc<GraphNode>) to the node itself. The add_edge

function takes &Rc<GraphNode> but can modify from_node.edges due to the RefCell.

This section has demonstrated how the Deref trait facilitates ergonomic method calls and how

combining smart pointers such as Rc and RefCell (or Arc and Mutex) unveils powerful patterns

for shared data and interior mutability, essential for many complex data structures and appli-

cation designs.

Important note on cycles

This simple graph example using only Rc for edges can easily lead to reference cycles

if, for instance, node D points back to node A with another Rc. Both A and D would

then keep each other’s reference count above zero indefinitely, causing a memory leak.

In real graph implementations, you would typically use Weak<GraphNode> for some

of the references (e.g., “back-edges” or parent pointers) to break these cycles and

allow for deallocation. We’re just showing the basic Rc<RefCell<T>> structure here.

Smart Pointers and Memory Management384

Important note on cycles and Weak
While Rc<T> is excellent for managing shared ownership, it has a potential pitfall: memory leaks

from reference cycles. A reference cycle occurs when two or more Rc<T> instances point to each

other in a loop. Because each object is holding a strong reference to the other, their reference

counts will never drop to zero, and their memory will never be deallocated, even if no other part

of the program can access them.

Summary
We’ve concluded our exploration of Rust’s smart pointers in this chapter! Understanding these

tools is important for writing effective and safe Rust code, especially in complex areas such as

memory management and concurrency. Smart pointers provide high-level conveniences while

upholding Rust’s core principles of safety and performance, connecting low-level control with

high-level abstraction.

Let’s recap what we’ve unpacked:

•	 The “why” of smart pointers: We began by recognizing that smart pointers are not merely

raw memory addresses; they are structures that function as pointers but also offer ad-

ditional features such as automatic resource management (through the Drop trait) and

pointer-like behavior (using the Deref trait). They assist in managing data in ways that

Rust’s fundamental ownership and borrowing rules might make cumbersome.

•	 Box<T>: Our first focus was Box<T>, the most straightforward smart pointer for allocating

heap data with clearly defined single ownership. We examined its use for placing large

data on the heap, for types with sizes unknown at compile time (such as trait objects,

which we only briefly covered), and, importantly, for enabling recursive data structures

by resolving infinite sizing loops.

•	 Rc<T> and Arc<T> for shared ownership: We then dived deep into how to maintain mul-

tiple “owners” or persistent references to the same piece of data using reference counting.

•	 Rc<T> (Reference Counted) is designed for single-threaded contexts. Cloning

an Rc<T> increases a reference count, and the data is deallocated only when the

count reaches zero.

•	 Arc<T> (Atomically Reference Counted) offers similar functionality but is thread-

safe due to atomic operations managing the reference count, making it suitable

for sharing data among threads.

•	 We also highlighted the risks of reference cycles with these types and briefly men-

tioned Weak<T> as a solution.

Chapter 11 385

•	 Interior mutability with RefCell<T> and Mutex<T>: Next, we explored the interior mu-

tability pattern, which permits data modification even through a seemingly immutable

reference.

•	 RefCell<T> applies Rust’s borrowing rules (one mutable reference or multiple

immutable ones) at runtime for single-threaded applications. It will panic if the

rules are violated.

•	 Mutex<T> (Mutual Exclusion) provides thread-safe interior mutability, ensuring

that only one thread can access the data at a time using a locking mechanism.

•	 Working effectively with smart pointers: We learned how the Deref trait and Deref coer-

cion make method calls on smart pointers more user-friendly. We also discussed patterns

such as combining smart pointers (for instance, Rc<RefCell<T>> for shared mutable

data in single-threaded contexts, or Arc<Mutex<T>> for multi-threaded scenarios) and

reviewed a practical example using Rc<RefCell<Node>> to represent a graph structure.

Mastering smart pointers unlocks much of Rust’s potential. While the core ownership system

addresses many scenarios, these tools offer the flexibility required for more complex data struc-

tures, shared state, and concurrent programming, all while adhering to Rust’s safety guarantees,

either at compile time or, in the case of types such as RefCell, with clear runtime checks. As you

continue to write Rust, you’ll frequently find yourself utilizing these smart pointers!

In the next chapter, we will extend Rust’s principles of safety and resource management beyond

internal memory to the world outside our program, covering the essential and error-prone tasks

of interacting with the file system and the network.

Questions and assignments
We’ve covered a lot of ground on smart pointers, from simple heap allocation with Box<T> to shared

ownership with Rc<T> and Arc<T>, and even interior mutability with RefCell<T> and Mutex<T>.

These questions and assignments will help you review the key concepts of smart pointers dis-

cussed in this chapter.

Questions
1.	 What is the main purpose of a Box<T> smart pointer?

2.	 Which smart pointer would you use to allow multiple owners of some data, but only

within a single thread?

Smart Pointers and Memory Management386

3.	 What does the Rc::clone(&my_rc) function do, and is it a “deep” or “shallow” copy of

the underlying data?

4.	 What is the thread-safe equivalent of Rc<T>?

5.	 Explain the concept of “interior mutability.” Why is it sometimes necessary in Rust?

6.	 What is the key difference between how RefCell<T> and Mutex<T> provide interior mu-

tability? When would you choose one over the other?

7.	 What does the Deref trait enable for smart pointers? Provide a simple example of where

it makes code more convenient.

8.	 Why is Box<T> essential for defining recursive data structures such as a linked list enum?

Assignment
Goal: Get comfortable with the Rc<T> smart pointer for managing shared, read-only data in a

single-threaded context.

Scenario: Imagine you are building a text editor application. Multiple parts of the application (e.g.,

the main text view, a word count panel, a spell checker) all need to access the same document’s

content without making expensive copies of it.

Task:

1.	 Define structs:

•	 Create a simple struct named Document that contains content: String.

•	 Create another struct named TextViewer that holds document: Rc<Document>.

•	 Create a third struct named WordCounter that also holds document: Rc<Document>.

2.	 Create and share the document:

•	 In your main function, create an instance of Document with some sample text.

•	 Wrap this Document instance in an Rc<Document>.

•	 Print the initial strong reference count (it should be 1).

3.	 Create “Viewers”:

•	 Create an instance of TextViewer and an instance of WordCounter.

•	 For each one, pass it a clone of the Rc<Document> using Rc::clone().

•	 After creating each viewer, print the strong_count of the Rc again to see it increase.

Chapter 11 387

4.	 Access the shared data:

•	 From both the TextViewer and the WordCounter instances, access and print some

information from the shared document (e.g., viewer.document.content, counter.

document.content.len()). This demonstrates that both structs are pointing to

the same data.

5.	 Observe cleanup (optional):

•	 Use drop() on one of the viewers and the original Rc in main, printing the strong_

count after each drop to see the count decrease.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

12
Managing System Resources

Welcome to Chapter 12!

Let’s look at another vital aspect of real-world applications: managing system resources. This

includes things such as files on your disk, network connections, memory, and processor time.

Engaging with these resources really helps your program run smoothly, reliably, and at its best

quality!

You might wonder, “Why is managing resources so important?” As applications become complex

or handle heavy workloads, efficient resource handling is very important.

Here are a few reasons why:

•	 Performance is key: Disk I/O and network communication are often much slower than

CPU operations. Inefficient handling can make your program sluggish. Efficient manage-

ment minimizes unnecessary operations.

•	 Stability and reliability: Applications can crash from resource leaks, such as when they

run out of file handles or consume all memory. Rust’s ownership and RAII patterns help,

but mindful design is essential.

•	 Scalability matters: Efficient resource management allows applications to support more

users or larger datasets without failures.

Managing System Resources390

•	 Good system citizenship: A well-behaved application limits its resource consumption

to maintain system stability.

•	 Cost considerations: In cloud deployments, inefficient resource use can lead to higher

operational costs. Using less CPU, memory, and bandwidth reduces bills.

Rust offers tools and a strong type system for safe resource management. However, you, the

developer, must grasp the core principles.

In this chapter, we’ll get practical with common system resources:

•	 File I/O: We’ll explore file operations, including reading, writing, and file manipulation,

focusing on efficiency and safety

•	 Network programming: You’ll learn how to create TCP servers and clients to handle

connections and data exchange while improving performance with buffered I/O

•	 Secure network communication: We’ll look at enhancing network security with TLS

using relevant Rust crates

•	 Best practices and performance: We’ll discuss resource management strategies, memory

efficiency, optimizing file/network performance, and security

•	 Real-world examples: We’ll review comprehensive examples simulating real-world ap-

plications, illustrating resource management techniques

By the end of this chapter, you’ll have a good understanding of how to manage system resources

in Rust, which will help you build apps that are not only functional and fast but also reliable.

We’re excited to see you grow your skills and create amazing projects!

Let’s dive into file I/O essentials!

Working with files in Rust (file I/O)
A program interacts with the system by reading and writing files, whether loading configuration,

processing datasets, saving user work, or writing logs. File I/O (Input/Output) is essential. Rust’s

standard library, especially the std::fs and std::io modules, offers safe tools for these operations.

We’ll explore common file tasks while emphasizing Rust’s focus on error handling and resource

management.

Chapter 12 391

Figure 12.1: Flowchart for selecting the appropriate file I/O strategy in Rust

Core concepts of file operations
Before we jump into code, let’s cover a few core ideas:

•	 Files and paths: Files are identified by paths. Rust’s std::path::Path and PathBuf types

help you work with file paths in a platform-independent way.

•	 Opening files: To read or write, you first need to “open” a file. This operation can fail (e.g.,

file doesn’t exist, no permissions), so Rust’s file opening functions typically return a result.

•	 Reading and writing: Once a file is open, you can read bytes from it or write bytes to it.

These operations can also fail (e.g., disk full, network error for a remote file system).

•	 Closing files: When you’re done with a file, it should be closed to free up system resources

and ensure any buffered data is written to disk. In Rust, files are often represented by types

such as std::fs::File, which implement the Drop trait. This means when an instance

of File goes out of scope, its drop method is automatically called, which handles closing

the file.

•	 This RAII (Resource Acquisition Is Initialization) pattern is a great way to help prevent

resource leaks by naturally tying a resource’s lifespan to the scope of its owning variable.

In practice, it means that once a variable that owns a resource (like a File handle) goes

out of scope, Rust ensures the resource is automatically cleaned up by calling its Drop

implementation. This makes closing files or freeing memory smooth and predictable, so

you don’t have to worry about writing manual cleanup code.

Managing System Resources392

•	 Buffering: I/O operations are often “buffered” for efficiency. Instead of processing one byte

at a time, data is read/written in larger chunks to an in-memory buffer. This is commonly

done using std::io::BufReader and std::io::BufWriter.

Reading from files
Depending on your needs, there are several ways to read data from a file in Rust. Let’s see them.

Reading an entire file into a string
If a file isn’t excessively large and you need all its content at once (perhaps it’s a configuration

file or a small text document), the simplest way is often to read it directly into a string. The

std::fs::read_to_string function is perfect for this.

use std::fs;

use std::path::Path;

use std::process;

fn main() {

 let sample_path = Path::new("my_sample_file.txt");

 // --- Success Case: Read an existing file ---

 // First, let's create a file to ensure it exists for our success
case.

 if let Err(e) = fs::write(sample_path, "Hello from a Rust test file!")
{

 eprintln!("Setup failed: Could not write to sample file: {}", e);

 process::exit(1);

 }

 println!("--- Attempting to read '{}' ---", sample_path.display());

 match fs::read_to_string(sample_path) {

 Ok(contents) => {

 println!("Success! File contents: '{}'", contents);

 }

 Err(e) => {

 // This part shouldn't run if the file was created
successfully.

 eprintln!("Unexpected error reading the file: {}", e);

Chapter 12 393

 }

 }

 // Clean up the created file.

 let _ = fs::remove_file(sample_path);

 println!("\n--------------------------------\n");

 // --- Failure Case: Try to read a non-existent file ---

 let non_existent_path = Path::new("no_such_file.txt");

 println!("--- Attempting to read '{}' ---", non_existent_path.
display());

 match fs::read_to_string(non_existent_path) {

 Ok(_) => {

 // This should not happen.

 println!("Unexpectedly found a file that should not exist!");

 }

 Err(e) => {

 // This is the expected outcome.

 eprintln!("Correctly failed to read non-existent file. Error:
{}", e);

 }

 }

}

use std::path::Path;

use std::fs;

fn safe_write(path: &Path, content: &str) {

 if path.exists() {

 A note on safe file writing: avoiding overwrites

The fs::write() function (and File::create()) is really handy to use. Howev-

er, it’s good to keep in mind that it will always overwrite the destination file if it

already exists. In real, everyday applications, especially command-line tools, this

might accidentally cause data loss if a user points it at an important file. To be safer,

consider checking if the file exists before writing. You can do this easily with the

Path::exists() method.

Managing System Resources394

 // The file already exists. Decide what to do:

 // 1. Return an error.

 // 2. Ask the user for confirmation.

 // 3. Do nothing.

 eprintln!("Error: File '{}' already exists. Aborting to prevent
overwrite.", path.display());

 } else {

 // The file doesn't exist, so it's safe to write.

 if let Err(e) = fs::write(path, content) {

 eprintln!("Error writing to new file: {}", e);

 } else {

 println!("Successfully wrote to new file '{}'", path.
display());

 }

 }

}

•	 Success case: We first use fs::write to ensure a sample file exists. Then, fs::read_to_

string(sample_path) is called. The match statement handles the Ok(contents) variant

by printing the file’s content.

•	 Failure case: We define a path to a file we know doesn’t exist. We then call fs::read_

to_string on this path. The match statement handles the expected Err(e) variant by

printing the I/O error message. This demonstrates the robust error handling required

when working with files.

Reading a file line by line
For larger files, or when you want to process data as it comes in without loading everything into

memory, reading line by line is more efficient.

This is typically done using std::fs::File to open the file, then wrapping it in a std::io::BufReader

for efficient buffered reading, and then using the .lines() method.

use std::fs::{self, File};

use std::io::{self, BufRead, BufReader};

use std::path::Path;

fn main() -> io::Result<()> {

 let log_file_path = Path::new("events.log");

Chapter 12 395

 // Setup: Create a dummy log file for the example.

 fs::write(log_file_path, "INFO: User logged in.\nWARN: Disk space is
low.\nERROR: Failed to fetch resource.")?;

 println!("--- Reading '{}' line by line ---", log_file_path.
display());

 // 1. Open the file. The '?' operator propagates errors.

 let file = File::open(log_file_path)?;

 // 2. Wrap the file in a BufReader for efficient, buffered reading.

 let reader = BufReader::new(file);

 // 3. Use the .lines() method to get an iterator over each line.

 for (index, line_result) in reader.lines().enumerate() {

 // Each line is a Result, as I/O can fail mid-read.

 // '?' will propagate the error if a line is malformed or read
fails.

 let line = line_result?;

 // Process the line.

 println!("[Line {}] Content: {}", index + 1, line);

 }

 // Cleanup: Remove the dummy file. .ok() ignores a potential error if
removal fails.

 fs::remove_file(log_file_path).ok();

 Ok(())

}

This memory-efficient approach is ideal for large files.

•	 File::open(path)?: First, we open the file, handling potential errors immediately with ?.

•	 BufReader::new(file): We wrap the file in a BufReader. This is a key performance op-

timization, as it reads the file in larger chunks into an internal buffer, minimizing slow

system calls.

Managing System Resources396

•	 reader.lines(): This method returns an iterator that yields each line from the buffer as

an io::Result<String>. The result is necessary because an I/O error could occur at any

point while reading.

•	 let line = line_result?;: Inside the loop, we use ? again to concisely get the string

content from the result for each line. This makes the loop body clean while still handling

potential errors correctly.

Writing to files
Just like reading, Rust provides several ways to write data to files for different needs.

Writing a string or bytes to a file
To write an entire string or a slice of bytes to a file, you can use std::fs::write. For more control,

such as ensuring a file is created or truncated, you can open a file with File::create and then

use its write_all method (from the std::io::Write trait).

use std::fs; // For fs::write and fs::read_to_string (for verification)
use std::fs::File; // For File::create
use std::io::{self, Write}; // For the Write trait and its methods like
write_all
use std::io::ErrorKind;
use std::path::Path;

fn save_report_to_file(report_path: &Path, report_content: &str) ->
io::Result<()> {
 // Method 1: Using fs::write (convenient for simple, complete writes)
 // This will create the file if it doesn't exist, or truncate and
overwrite it if it does.
 // fs::write(report_path, report_content)?;

 // Method 2: Using File::create and write_all for more explicit
control
 // File::create opens a file in write-only mode.
 // If the file already exists, its content is truncated (emptied).
 // If it does not exist, a new file is created.
 let mut output_file = File::create(report_path)?;

 // The write_all method takes a byte slice (&[u8]).
 // It will attempt to write the entire buffer to the file.

Chapter 12 397

 output_file.write_all(report_content.as_bytes())?;

 println!("Successfully wrote report to '{}'", report_path.display());
 Ok(())
}

fn main() {
 let my_report_path = Path::new("financial_report.txt");
 let report_data = "Q1 Report:\nSales: $1,000,000\nExpenses: $400,000\
nProfit: $600,000\n";

 if let Err(e) = save_report_to_file(my_report_path, report_data) {
 eprintln!("Error writing report to file: {}", e);
 } else {
 // Verify by reading it back
 match fs::read_to_string(my_report_path) {
 Ok(content_read) => {
 println!("\n--- Report Read Back for Verification ---");
 println!("{}", content_read);
 println!("--- End of Verification ---");
 }
 Err(e) => eprintln!("Error reading back report for
verification: {}", e),
 }
 }

 // Clean up the dummy file
 if let Err(e) = fs::remove_file(my_report_path) {
 eprintln!("Cleanup error: Failed to remove report file '{}': {}",
my_report_path.display(), e);
 }
}

•	 std::fs::write(path, content) is a quick and convenient function if you need to write

the entire contents of a string or byte slice to a file in one go. It handles opening (creating

or truncating) and closing the file for you.

•	 File::create(path)? explicitly opens a file for writing. If the file exists, it is truncated

(its current contents are erased). If it doesn’t exist, it’s created.

Managing System Resources398

•	 The Write trait (brought into scope by using std::io::Write;) must be imported to use

methods such as write_all on File instances.

•	 output_file.write_all(report_content.as_bytes())? takes the content (converted

to a byte slice via .as_bytes()) and attempts to write every byte to the file. The ? handles

any potential io::Error.

Appending content to an existing file
Often, you don’t want to overwrite a file but instead add new content to its end. You need to open

the file with specific options, typically using std::fs::OpenOptions.

use std::fs::{self, OpenOptions};

use std::io::{self, Write};

use std::path::Path;––

/// Opens a file in append mode and writes a new line to it.

/// Creates the file if it doesn't exist.

fn append_line_to_file(file_path: &Path, line_to_append: &str) ->
io::Result<()> {

 // Use OpenOptions to configure how the file is opened.

 let mut file = OpenOptions::new()

 .append(true) // Set to append mode.

 .create(true) // Create the file if it does not exist.

 .open(file_path)?;

 // writeln! is convenient for writing a string followed by a newline.

 writeln!(file, "{}", line_to_append)?;

 Ok(())

}

fn main() -> io::Result<()> {

 let log_path = Path::new("application.log");

 // Start with a clean slate for the example.

 // .ok() converts Result to Option, so we ignore errors if file
doesn't exist.

match std::fs::remove_file(system_activity_log) {

 Ok(_) => {

Chapter 12 399

 // Successfully removed the old file, we can optionally log this

 println!("Note: Removed old log file for a clean run.");

 }

 Err(e) if e.kind() == ErrorKind::NotFound => {

 // This is perfectly fine, the file just didn't exist.

 // We can do nothing and continue.

 }

 Err(e) => {

 // This is an unexpected error (like permission denied).

 // We'll print a warning but continue the program.

 eprintln!(

 "Warning: Could not remove old log file '{}': {}. Proceeding
anyway.",

 system_activity_log.display(), e

);

 }

}

 println!("Preparing to write to '{}'...", log_path.display());

 // Append several lines to the same file.

 append_line_to_file(log_path, "[INFO] Application started.")?;

 append_line_to_file(log_path, "[WARN] Low disk space detected.")?;

 append_line_to_file(log_path, "[INFO] User 'admin' logged in.")?;

 println!("Finished writing log entries.");

 // Verify the final contents of the file.

 let final_content = fs::read_to_string(log_path)?;

 println!("\n--- Final Contents of '{}' ---", log_path.display());

 println!("{}", final_content);

 println!("--------------------------------");

 // Clean up the created file.

 fs::remove_file(log_path)?;

 Ok(())

}

Managing System Resources400

•	 OpenOptions::new(): This builder creates a set of options for opening a file.

•	 create(true): This option will create the file if it does not already exist.

•	 .append(true): This is the key option. It ensures that when the file is opened for writing,

the “cursor” is placed at the end of the file, so any new writes add to the existing content

instead of overwriting it.

•	 writeln!(file, "...")?: This macro conveniently writes a formatted string, followed

by a newline, to the file. It returns an io::Result<()>, allowing the ? operator to be used

for concise error handling.

•	 The main function calls append_line_to_file multiple times, reads the file back to show

the aggregated result, and then cleans up.

Manipulating files and directories
The std::fs module provides functions for various file system operations beyond basic reading

and writing. Key functions include the following:

•	 fs::create_dir("path/to/new_dir"): Creates a directory, failing if it exists or a parent

doesn’t.

•	 fs::create_dir_all("path/to/possibly/nested/dirs"): Creates a directory and nec-

essary parents if they don’t exist.

•	 fs::remove_dir("path/to/empty_dir"): Removes an empty directory; fails if it’s not

empty or doesn’t exist.

•	 fs::remove_dir_all("path/to/dir_with_contents"): Removes a directory and all con-

tents; use with caution!

•	 fs::remove_file("path/to/file.txt"): Deletes a file.

•	 fs::rename("old/path/name.txt", "new/path/name.txt"): Renames or moves a file/

directory. Behavior may vary across platforms when moving between file systems.

•	 fs::copy("source_file.txt", "destination_file.txt"): Copies contents from one

file to another, failing if the destination exists unless using OpenOptions carefully.

•	 fs::read_dir("path/to/dir"): Returns an iterator of entries (DirEntry) in the directory,

with each item being a Result<DirEntry, io::Error>.

•	 fs::metadata("path/to/item"): Retrieves metadata about a file/directory, including

size, permissions, and modification times. Most functions return an io::Result to handle

potential errors such as “path not found,” “permission denied,” or “directory not empty.”

Chapter 12 401

use std::fs;

use std::path::{Path, PathBuf};

use std::io;

fn demonstrate_fs_operations() -> io::Result<()> {

 let playground_dir = PathBuf::from("my_temp_playground");

 // 1. Create a directory structure

 if playground_dir.exists() {

 // Clean up from previous run if necessary (use with
caution)

 fs::remove_dir_all(&playground_dir)?;

 println!("Cleaned up existing '{}'", playground_dir.
display());

 }

 fs::create_dir_all(&playground_dir)?;

 println!("Created directory: '{}'", playground_dir.display());

 let notes_subdir = playground_dir.join("notes");

 fs::create_dir(¬es_subdir)?;

 println!("Created subdirectory: '{}'", notes_subdir.display());

 // 2. Create and write to a file

 let important_file = notes_subdir.join("important.txt");

 fs::write(&important_file, "Initial notes for the project.")?;

 println!("Created and wrote to: '{}'", important_file.
display());

 let draft_file = notes_subdir.join("draft.md");

 fs::write(&draft_file, "# My Draft\n\nThis is a draft
document.")?;

 println!("Created and wrote to: '{}'", draft_file.display());

 // 3. List directory contents and get metadata

 println!("\nContents of '{}':", notes_subdir.display());

 for entry_result in fs::read_dir(¬es_subdir)? {

 let entry = entry_result?; // Each entry itself is a Result

 let path = entry.path();

Managing System Resources402

 let metadata = fs::metadata(&path)?;

 let entry_type = if metadata.is_dir() {

 "DIR"

 } else if metadata.is_file() {

 "FILE"

 } else {

 "OTHER"

 };

 let size = if metadata.is_file() { metadata.len() } else { 0
};

 println!(" - [{}] {} (Size: {} bytes)",

 entry_type,

 path.file_name().unwrap_or_default().to_string_
lossy(),

 size);

 }

 // 4. Copy and Rename a file

 let copied_file_path = playground_dir.join("important_backup.
txt");

 fs::copy(&important_file, &copied_file_path)?;

 println!("\nCopied '{}' to '{}'", important_file.display(),
copied_file_path.display());

 let renamed_draft_path = notes_subdir.join("final_ideas.md");

 fs::rename(&draft_file, &renamed_draft_path)?;

 println!("Renamed '{}' to '{}'", draft_file.display(), renamed_
draft_path.display());

 // 5. Clean up (remove the entire playground directory)

 // Use with caution in real applications!

 fs::remove_dir_all(&playground_dir)?;

 println!("\nSuccessfully cleaned up and removed directory:
'{}'", playground_dir.display());

 Ok(())

Chapter 12 403

}

fn main() {

 if let Err(e) = demonstrate_fs_operations() {

 eprintln!("A file system operation failed: {}", e);

 }

}

•	 We use PathBuf::from("...") to create an owned path, which is often more flexible than

Path::new("...") if you need to modify it (though Path::new is fine for fixed paths).

playground_dir.join("notes") is a convenient, platform-aware way to construct sub-

paths.

•	 fs::create_dir_all is generally safer than fs::create_dir for ensuring a directory

path exists, as it creates any necessary parent directories.

•	 fs::read_dir returns an iterator over io::Result<DirEntry>. You must handle the result

for the iteration itself and for each DirEntry obtained.

•	 fs::metadata retrieves information about a file system item, such as its type (file/direc-

tory) and size.

•	 The example demonstrates creating directories, writing files, listing contents, copying,

renaming, and finally, cleaning up by removing the top-level directory with fs::remove_

dir_all.

•	 Always remember that these operations can fail for many reasons (permissions, path not

found, disk issues), so robust error handling using the returned result is essential.

 Warning: Use fs::remove_dir_all with extreme caution!

The fs::remove_dir_all function is a very powerful tool, but it can also be quite

dangerous. Think of it like running rm -rf on the command line: it deletes a directory

and all its contents at once, and there’s no way to undo it.

In our example, we use it carefully to clean up a temporary directory we’ve just cre-

ated. However, it’s really important to never use this function on a path that comes

from a user input (such as from a command-line argument) unless you’ve added

some safety checks first. In real-world applications, it’s a good idea to include a

confirmation prompt (such as “Are you sure you want to delete this? [y/N]”) to help

prevent accidental data loss.

Managing System Resources404

Key takeaways for file I/O in Rust
Working with files in Rust is designed to be both safe and reasonably ergonomic:

•	 Error handling is explicit: Most file operations return Result, compelling you to address

potential errors. This is essential to Rust’s reliability approach.

•	 RAII for resource management: File objects (and BufReader/BufWriter wrapping them)

implement the Drop trait. This means their drop method is automatically called when

these objects go out of scope, which ensures the underlying file is closed. This reduces

the risk of resource leaks such as unclosed file handles.

•	 Buffering for efficiency: Use std::io::BufReader when reading files, especially line by

line or in small chunks, and std::io::BufWriter when writing multiple small pieces

of data. Buffering minimizes direct, costly system calls and can significantly improve

performance.

•	 Path types for portability: Utilize std::path::Path (a borrowed slice) and PathBuf (an

owned, string-like type) for working with file system paths. These types provide methods

for path manipulation (such as .join()) that are aware of platform-specific differenc-

es (such as the path separators / versus \), making your code more portable. It’s also

important to distinguish between absolute paths (which start from a root, such as /

home/user or C:\Users) and relative paths (such as my_file.txt), which are interpreted

relative to your program’s current working directory. Rust’s standard library provides

std::env::current_dir() to find this location, which is very helpful for resolving relative

paths into absolute ones.

File I/O is a common source of runtime issues in many applications (files not existing, permission

problems, disk full conditions, etc.).

Rust’s strong emphasis on handling Result and its RAII pattern for automatic resource cleanup

are significant aids in writing programs that can manage these situations gracefully and reliably.

Now that we have a solid understanding of how Rust interacts with local file system resources,

let’s explore how to manage another fundamental resource: communicating with other com-

puters over a network.

Chapter 12 405

Network programming essentials in Rust
Beyond manipulating files on a local disk, many applications require communication over a

network, whether fetching data from a web API, interacting with a database server, or building a

peer-to-peer application. Rust’s standard library offers solid primitives for network programming,

especially for working with TCP and UDP protocols.

In this section, we’ll focus on the fundamentals of TCP networking by building a simple client

and server to demonstrate these concepts in action.

The following one is not a detailed explanation, but more of a refresher (there are entire books

and materials about networking). Also, if you are already familiar with these concepts, feel free

to skip the following section.

Fundamentals of network communication
Before diving into Rust code, let’s briefly touch upon some core networking concepts.

If you are already familiar with them, you can skip this.

•	 IP addresses and ports: To communicate, computers on a network need addresses. The

IP address (such as 127.0.0.1 for your local machine, or 192.168.1.101 for a device

on your local network) identifies a specific machine. Once you’ve found the machine, a

port number (e.g., 80 for HTTP, 443 for HTTPS, or custom ports such as 7878) identifies a

specific application or service running on that machine. An IP address plus a port number

creates a unique endpoint for communication, often called a socket address.

•	 TCP (Transmission Control Protocol): This is one of the main protocols in the Internet

protocol suite. TCP provides reliable, ordered, and error-checked delivery of a stream of

bytes between applications running on hosts communicating via an IP network. It’s a

connection-oriented protocol, meaning a connection must be established between two

endpoints (e.g., a client and a server) before data can be exchanged. Think of it like a

phone call – you dial, the other person answers, and then you can talk. This is what we’ll

primarily use.

•	 UDP (User Datagram Protocol): Another core protocol, UDP is connectionless and pro-

vides a simpler, faster, but unreliable datagram (packet) service. It doesn’t guarantee

delivery, order, or error checking in the same way TCP does. It’s more like sending a post-

card – quick, but no guarantees. UDP is often used for applications where speed is critical

and some data loss is acceptable (e.g., streaming video, online games). We won’t focus

on UDP in this introductory section.

Managing System Resources406

•	 Sockets: A socket is an internal endpoint for sending or receiving data at a single node in a

computer network. Conceptually, it’s one end of a two-way communication link between

two programs running on the network. When you write network code, you’re typically

interacting with socket APIs provided by the operating system (which Rust’s standard

library wraps for you).

•	 Client-server model: This is a common architectural pattern. A server is a program that

waits for incoming connection requests from other programs, called clients. Once a con-

nection is established, the client can send requests to the server, and the server processes

these requests and sends back responses.

With these basics in mind, let’s see how to build a simple TCP server in Rust.

Building a basic TCP server
A TCP server’s primary job is to “listen” on a specific IP address and port for incoming client con-

nection attempts. When a client tries to connect, the server “accepts” the connection, creating a

new communication channel (another socket) specifically for that client.

Listening for connections with TcpListener
Rust’s std::net::TcpListener struct creates a TCP server socket that listens for incoming con-

nections. You “bind” a TcpListener to a socket address (IP address and port).

Handling incoming client connections
Once bound, you can call the incoming() method on the TcpListener.

This method returns an iterator that blocks until a new connection is established. Each item this

iterator produces is a Result<TcpStream, std::io::Error>. A TcpStream represents the estab-

lished connection with a client; you can use it to read and write data from that client.

Reading requests and sending responses
After accepting a connection and getting a TcpStream, you typically want to do the following:

1.	 Read the request sent by the client from the TcpStream

2.	 Process the request

3.	 Write a response back to the client via the same TcpStream

The Read and Write traits (from std::io) are implemented by TcpStream, so you can use methods

such as read() and write_all().

Chapter 12 407

Let’s build a very simple “echo server.” It will listen for connections, read whatever the client

sends, and then send the same data right back to the client.

use std::net::{TcpListener, TcpStream};

use std::io::{Read, Write};

/// Handles a single client connection by reading from the stream and
echoing back.

fn handle_client(mut stream: TcpStream) -> std::io::Result<()> {

 println!("Accepted connection from: {}", stream.peer_addr()?);

 // A buffer to hold incoming data.

 // 1024 bytes (1KB) is a common size for simple examples. In a real

 // application, buffer size is a trade-off:

 // - Too small (e.g., 64 bytes) can lead to many system calls, which
is inefficient.

 // - Too large (e.g., 1MB) wastes memory, especially if you have many

 // concurrent connections.

 // Common sizes for I/O buffers are often 4KB (4096) or 8KB (8192).

 let mut buffer = [0u8; 1024]; // A buffer to hold incoming data

 // Loop to read data and echo it back

 loop {

 // Read data from the client into the buffer

 let bytes_read = stream.read(&mut buffer)?;

 // If read() returns 0 bytes, the client has closed the connection

 if bytes_read == 0 {

 println!("Client disconnected.");

 return Ok(());

 }

 // Echo the received data back to the client

 stream.write_all(&buffer[..bytes_read])?;

 println!("Echoed {} bytes.", bytes_read);

 }

}

Managing System Resources408

fn main() -> std::io::Result<()> {

 let listener_address = "127.0.0.1:8080";

 let listener = TcpListener::bind(listener_address)?;

 println!("Simple Echo Server listening on {}", listener_address);

 println!("Waiting for connections...");

 // listener.incoming() is an iterator that blocks until a new
connection arrives.

 // This loop processes one client connection fully before accepting
the next.

 for stream_result in listener.incoming() {

 match stream_result {

 Ok(stream) => {

 // A new client has connected successfully.

 if let Err(e) = handle_client(stream) {

 eprintln!("Error handling client: {}", e);

 }

 }

 Err(e) => {

 // An error occurred while accepting a new connection.

 eprintln!("Failed to accept incoming connection: {}", e);

 }

 }

 }

 Ok(())

}

This server demonstrates the fundamental TCP server lifecycle:

•	 TcpListener::bind(address)?: This binds the server to a local IP address and port, mak-

ing it ready to accept connections.

•	 listener.incoming(): This method returns an iterator that blocks and waits for new

clients to connect. The for loop processes each incoming connection sequentially.

•	 handle_client(stream): This function contains the logic for a single client session.

Chapter 12 409

•	 stream.read(&mut buffer)?: This reads data from the client into a buffer. It’s a blocking

call that waits for data. If it returns Ok(0), the client has closed the connection.

•	 stream.write_all(&buffer[..bytes_read])?: This takes the data that was just read (a

slice of the buffer) and writes it back to the same client, effectively “echoing” it.

•	 Error handling: The ? operator is used for concise error handling. If any read or write

operation fails, the error is propagated up, and a message is printed in main.

•	 Limitation: This simple server handles clients one at a time. The main loop is blocked

until handle_client finishes, preventing other clients from connecting. We’ll address

this with threads in later examples.

Imagine the server is a bank with only one teller. The process looks like this:

Sequential (Our current server):

•	 Client 1 arrives --> [Teller serves Client 1... (takes 5 minutes)] --> Client 1 leaves

•	 Client 2 arrives --> (Waits in line) --> [Teller serves Client 2... (takes 2 minutes)] --> Client

2 leaves

The key problem, as the reviewer noted, is that Client 2 must wait for Client 1 to completely finish,

even if Client 2’s request is very fast. If Client 1 is slow, the entire server is blocked for everyone else.

The multi-threaded version we’ll build next is like opening more teller windows:

Concurrent (What we will build):

•	 Client 1 arrives --> [Teller 1 serves Client 1]

•	 Client 2 arrives --> [Teller 2 serves Client 2 (at the same time)]

•	 Client 3 arrives --> [Teller 3 serves Client 3 (at the same time)]

This concurrent approach is far more responsive and efficient. We will address this limitation in

the very next section by spawning a new thread for each connection.

Important: This server is sequential (one client at a time)

It’s important to understand the limitation of this simple server: it is sequential.

Because the for stream_result in listener.incoming() loop calls handle_

client(stream) directly and waits for that function to finish before it can loop again

to accept another connection, it can only handle one client at a time.

Managing System Resources410

Creating a basic TCP client
We now have a server that listens for connections, so we need a client program to initiate con-

nections and exchange data.

A TCP client actively connects to a TCP server at a specific address and port.

Once connected, it can send requests and receive responses based on the server’s expected protocol.

For our echo server, the “protocol” is simple: send some bytes and expect the same bytes back.

Connecting to a server with TcpStream::connect
The client also uses the std::net::TcpStream type used by the server to manage accepted con-

nections to initiate a connection. The TcpStream::connect(socket_address) method establishes

a TCP connection to the server at the specified socket_address (typically 127.0.0.1:8080).

This call is blocking by default: the client program pauses here until the connection is established

or an error occurs (e.g., the server isn’t running, the address is wrong, or a firewall blocks the

connection).

Like most I/O operations in Rust, TcpStream::connect returns a Result<TcpStream,

std::io::Error>. If successful, you get Ok(stream), where stream is the TcpStream for com-

munication. If it fails, you receive an Err with details about the connection failure.

Sending data and receiving responses
Once the TcpStream is established, the client can send data to the server and receive responses.

The TcpStream type implements the std::io::Write and std::io::Read traits, providing meth-

ods such as the following:

•	 write_all(&buf): Sends data (a byte slice &[u8]) to the server, attempting to send all bytes.

•	 read(&mut buf): Reads data from the server into a buffer and returns the number of

bytes read.

•	 flush(): It’s essential to flush() the stream to ensure all buffered data is sent. While

write_all often attempts this, explicit flushing can be necessary in some scenarios. The

client and server must agree on message structure or delimiters, whether messages are

a fixed size, terminated by a newline character, or prefixed by their length. In our echo

server example, if the server reads until a newline or echoes chunks, the client needs to

send data in a processable format and be ready to read the echoed responses similarly.

Let’s write a client that connects to our echo server on port 8080, sends a few lines of text,

and prints the echoed responses.

Chapter 12 411

use std::net::TcpStream;

use std::io::{self, Write, BufRead, BufReader};

fn main() -> io::Result<()> {

 let server_address = "127.0.0.1:8080";

 println!("Connecting to echo server at {}...", server_address);

 // 1. Connect to the server. The '?' operator handles connection
errors concisely.

 let mut stream = TcpStream::connect(server_address)?;

 println!("Connected! Type a message and press Enter. Type 'quit' to
exit.");

 // 2. Prepare for reading and writing.

 // We can clone the stream to have separate handles for reading and
writing.

 // This is a common pattern for more complex I/O.

 let mut reader = BufReader::new(stream.try_clone()?);

 loop {

 // Read a line of input from the user's keyboard.

 let mut input_line = String::new();

 io::stdin().read_line(&mut input_line)?;

 let message_to_send = input_line.trim(); // Trim whitespace and
newline

 if message_to_send == "quit" || message_to_send.is_empty() {

 break; // Exit loop if user types 'quit' or just presses Enter

 }

 // 3. Send the message to the server.

 // We add a newline so the server's `read_line` can process it.

 writeln!(stream, "{}", message_to_send)?;

 stream.flush()?; // Ensure the buffered data is sent immediately.

 // 4. Read the echo back from the server.

 let mut echoed_response = String::new();

 reader.read_line(&mut echoed_response)?

Managing System Resources412

 print!("Server echoed: {}", echoed_response); // `read_line`
includes the newline

 }

 println!("Disconnecting from server.");

 Ok(())

}

•	 Connection: TcpStream::connect(server_address)? establishes the connection, prop-

agating errors with ?.

•	 I/O setup: In this example, we use stream.try_clone()? to create a duplicate handle to

the TcpStream. This is a safe and efficient operation because TcpStream is designed to be

cloned, allowing both the original handle and the new one to refer to the same underly-

ing network connection (or socket). We then wrap this new read-handle in a BufReader,

which lets us use the original stream handle exclusively for writing. While this is a robust

pattern, it’s worth noting that for simpler, strictly sequential communication (where

you write a request, then read a response), you could often just reuse the same stream

handle for both operations, perhaps by wrapping it in a BufWriter first, flushing, and

then wrapping it in a BufReader.

•	 The loop: Inside the loop, the program reads a line of input from the user’s terminal using

io::stdin().read_line(), sends that message to the server using the writeln! macro,

ensures it’s sent immediately by calling stream.flush(), and then blocks until reader.

read_line() receives the echoed response back from the server.

•	 Termination: The loop ends when the user types “quit” or enters an empty line. The

TcpStream is automatically closed when stream and its clone go out of scope at the end

of main.

Chapter 12 413

For this chapter, we’re focusing on the std::net methods (blocking and thread-per-client). Async/

await is a more advanced topic we’ll explore later.

Ensuring robust and secure network applications
Building network applications that “work” on the happy path is one thing; creating robust appli-

cations against network glitches, server issues, and security threats is another challenge.

This section discusses handling network errors gracefully and securing communication with

Transport Layer Security (TLS).

Tip: Which I/O model should I use (blocking versus async)?

It can be confusing to know when to use timeouts, threads, or async. Here’s a simple

guide to the trade-offs:

1.	 Basic blocking (what we’re doing): Use this for simple clients or servers

that only need to handle one connection at a time. It’s easy to read but will

freeze if the network is slow or if a second client tries to connect.

2.	 Blocking with timeouts: This is a more robust version of the preceding. You

still handle one client at a time, but you add .set_read_timeout() and

.set_write_timeout() to your TcpStream. This prevents your program

from freezing indefinitely if the other end becomes unresponsive. This is a

good, simple default for basic clients.

3.	 Thread-per-client: This is what we did in our multi-threaded server exam-

ple. It’s great for handling a moderate number of concurrent connections

(e.g., 5-100) because it’s relatively simple to understand. Its main drawback

is that it can use a lot of memory and system resources, as each thread has

its own stack.

4.	 Asynchronous I/O (async/await): This is the most efficient and modern

solution for handling thousands of connections at once (e.g., a high-perfor-

mance web server or chat application). It uses a few threads to manage all

connections by never blocking on I/O. It has a steeper learning curve but is

the standard for high-performance I/O-bound applications.

Managing System Resources414

Graceful error handling in network code
As we’ve seen, almost every operation in std::net (such as TcpStream::connect, read, write,

TcpListener::bind, accept) returns a Result<T, std::io::Error>. This is Rust compelling

you to acknowledge that network operations are inherently fallible. Ignoring these results is a

shortcut to an unreliable application!

Handling Result from network operations
We’ve already been using ? and match to handle results in our examples. It’s important to continue

this practice diligently. Let’s look at a more focused example on handling connection errors and

preventing our program from hanging indefinitely.

use std::net::TcpStream;

use std::io::{self, Write, ErrorKind};

use std::time::Duration;

/// Attempts to connect to a server and returns a custom, more descriptive
error.

fn connect_to_server(server_addr: &str) -> Result<TcpStream, String> {

 // Set a timeout for the connection attempt itself.

 let timeout = Duration::from_secs(5);

 println!("Attempting to connect to {} (timeout: {:?})...", server_
addr, timeout);

 match TcpStream::connect_timeout(&server_addr.parse().unwrap(),
timeout) {

 Ok(stream) => {

 println!("Connection successful!");

 Ok(stream)

 }

 Err(e) => {

 // Match on the error kind to provide a better error message.

 let error_message = match e.kind() {

 ErrorKind::ConnectionRefused => {

 "Connection refused. Is the server running on that
port?".to_string()

 }

 ErrorKind::TimedOut => {

 "Connection timed out. Check network or firewall.".to_

Chapter 12 415

string()

 }

 _ => {

 format!("An unexpected error occurred: {}", e)

 }

 };

 Err(error_message)

 }

 }

}

fn main() {

 // This address is unlikely to have a server running, so it should
fail.

 let bad_address = "127.0.0.1:9999";

 println!("--- Testing connection to a non-existent server ---");

 if let Err(e) = connect_to_server(bad_address) {

 eprintln!("Operation failed as expected: {}", e);

 }

 // To test a success case, you would run one of the echo servers from

 // a previous example (e.g., on port 8080) and call:

 // connect_to_server("127.0.0.1:8080");

}

•	 TcpStream::connect_timeout: Instead of connect, which can block indefinitely, connect_

timeout is used. It attempts a connection for a specified duration and returns a timeout

error if it takes too long. This is a crucial technique for preventing your application from

freezing.

•	 Specific error handling: The match block on the Err case inspects e.kind(). This allows

us to provide more user-friendly and specific error messages for common problems, such

as ConnectionRefused (server isn’t running) or TimedOut.

•	 Clearer function signature: The connect_to_server function returns a Result<TcpStream,

String>, abstracting the io::Error into a more descriptive String error message for the

caller (main in this case) to use directly.

Managing System Resources416

Timeouts and non-blocking operations
Network operations can hang indefinitely if the remote side is unresponsive or the network is

down. Relying solely on blocking operations without any escape hatch can make your application

freeze and become unusable.

•	 Timeouts: As demonstrated in the preceding code example, TcpStream pro-

vides methods such as set_read_timeout(Option<Duration>) and set_write_

timeout(Option<Duration>). Setting a timeout is a fundamental technique for robust-

ness. It ensures that if a network read or write operation takes longer than the specified

duration, the operation will be interrupted and return an io::Error (usually with kind()

set to ErrorKind::TimedOut). This allows your program to regain control, log the issue,

retry, or inform the user, instead of waiting forever. Passing None as the Option<Duration>

will remove any previously set timeout, reverting to blocking behavior.

•	 Non-blocking I/O: A more advanced strategy for handling many network connections

concurrently without dedicating a thread to each one is to use non-blocking I/O. You can

configure a TcpStream to be non-blocking by calling stream.set_nonblocking(true). In

non-blocking mode:

•	 read() and write() calls (and connect() or accept() for listeners) will return

immediately.

•	 If the operation could be completed without waiting (e.g., data was available to

read, or there was space in the OS send buffer to write), they return Ok(...) with

the number of bytes processed.

•	 If the operation would have blocked, they instead return an io::Error with its

kind() set to ErrorKind::WouldBlock (sometimes seen as EAGAIN or EWOULD-

BLOCK at the operating system level). This allows a single thread to attempt

operations on many sockets, only processing those that are ready and skipping

those that would block. This is the foundation of event loops and asynchronous

programming frameworks (such as Tokio, async-std, or libraries such as mio for

lower-level polling). While std::net supports setting non-blocking mode, ef-

fectively managing many non-blocking sockets directly often requires an event

notification mechanism (such as epoll on Linux, kqueue on macOS, or IOCP on

Windows), which is what async runtimes provide.

Chapter 12 417

For now, the key takeaway is that using timeouts with your standard blocking TcpStream oper-

ations is a significant and relatively easy step towards making your network code more robust

against unresponsive peers or network issues. Full non-blocking I/O with an event loop is a more

advanced topic, often handled by dedicated async libraries.

Implementing secure connections with TLS
So far, our TCP client and server have been sending data “in the clear.” This means anyone who

can intercept the network traffic between them could potentially read or even modify the data. For

many applications, especially those handling sensitive information such as passwords, personal

details, or financial transactions, this is unacceptable. We need a way to make these connections

secure. The standard solution for this on the internet is Transport Layer Security (TLS).

Introduction to TLS for secure communication
Transport Layer Security (TLS), the successor to the now-deprecated Secure Sockets Layer

(SSL), is a cryptographic protocol designed to provide secure communication over a computer

network. When you see “HTTPS” in your web browser’s address bar, that “S” signifies that your

connection to the website is secured by TLS.

TLS provides three main security benefits:

•	 Encryption: Data exchanged between the client and server is encrypted, making it un-

readable to any third party who might intercept it. Only the client and server, with the

correct cryptographic keys, can decrypt and understand the information.

•	 Authentication: TLS allows the client to verify the identity of the server (and optionally,

for the server to verify the client’s identity). This is typically done using digital certificates

issued by trusted Certificate Authorities (CAs). When your browser connects to an HTTPS

site, it checks the site’s certificate to ensure it’s genuine and issued to the correct domain.

This prevents “man-in-the-middle” attacks, where an attacker might impersonate a le-

gitimate server.

•	 Integrity: TLS ensures that the data sent between the client and server has not been

tampered with or altered during transit. It uses message authentication codes (MACs)

to detect any modifications.

In short, if your application needs to send or receive data over a network securely, especially over

the public internet, using TLS is a must.

Managing System Resources418

How TLS works
To secure a connection, two main handshakes must occur. First, as shown at the top of the fol-

lowing diagram, a TCP handshake (the “three-way handshake” using SYN, SYN ACK, and ACK)

establishes a basic, raw connection. Think of this as simply getting a clear phone line. Second,

the TLS handshake happens immediately after, on top of that TCP connection, to encrypt the

line and verify who you’re talking to. The following diagram illustrates this two-phase process:

Figure 12.2: The TCP and TLS handshake sequence

Let’s break down the important TLS steps from the diagram, as this is what crates like native-tls

and rustls handle for you:

•	 ClientHello: This is the client’s first message in the secure handshake. It tells the server

what encryption methods it supports. Crucially, this message also contains the hostname

(such as www.rust-lang.org) that the client is trying to reach. This is a vital feature called

Server Name Indication (SNI), and it’s what allows a single server IP address to host

multiple secure websites.

•	 ServerHello, Certificate: The server replies. It agrees on an encryption method and

sends its Certificate. Think of the certificate as the server’s digital ID card, proving it is

who it claims to be (e.g., “I am genuinely www.rust-lang.org”).

Chapter 12 419

•	 Client-side verification (the most important step, not a packet): After receiving the

certificate, your client (or the TLS library) performs the most critical security check: it

verifies the certificate. It checks that the name on the certificate matches the SNI hostname

it requested and, most importantly, that the certificate was signed by a trusted Certificate

Authority (CA) (such as LetGood, Let’s Encrypt, or DigiCert). Your operating system main-

tains a list of these trusted CAs. If this verification fails (e.g., the certificate is expired, for

the wrong domain, or self-signed and untrusted), the connection is immediately aborted.

•	 ClientKeyExchange, ChangeCipherSpec, Finished: This is the final phase where the client

and server use the server’s public key (from the trusted certificate) to securely negotiate

a brand-new, secret session key. Once both sides send ChangeCipherSpec and Finished,

the handshake is complete.

From this point on, all application data (such as your HTTP requests and responses) sent over

this TcpStream is encrypted using the secret session key that only the client and server know.

Using crates for TLS
Rust’s standard library (std::net) provides the building blocks for TCP and UDP networking, but

it does not include a TLS implementation directly. This is because TLS is a complex protocol with

many cryptographic dependencies, and Rust prefers to keep its standard library lean, relying on

the rich ecosystem of crates for more specialized functionality.

To add TLS capabilities to your Rust network applications, you’ll use external crates. Two of the

most prominent choices are as follows:

•	 native-tls: This crate provides a high-level API that acts as a wrapper around the native

or OS-provided TLS library. For example, on Windows, it might use SChannel; on macOS,

Secure Transport; and on Linux, it often uses OpenSSL (though this can vary).

•	 Pros: Leverages well-vetted, platform-specific TLS implementations. Often easier

to set up for basic use cases.

•	 Cons: Introduces a dependency on system libraries (such as OpenSSL on Linux),

which can sometimes complicate cross-compilation or deployment if those li-

braries aren’t present or are the wrong version.

•	 rustls: This is a modern TLS library implemented entirely in Rust.

•	 Pros: Being pure Rust, it avoids dependencies on C-based libraries such as OpenS-

SL, which can simplify building and deployment, and offers the memory safety

benefits of Rust throughout the TLS stack. It’s gaining a lot of traction.

Managing System Resources420

•	 Cons: Might require a bit more configuration for certain advanced scenarios com-

pared to native-tls if you’re not using a higher-level library that integrates it

(such as hyper-rustls for HTTP clients).

For integrating with asynchronous frameworks such as Tokio or async-std, you’ll often find

adapter crates such as tokio-native-tls, tokio-rustls, or async-tls that make these TLS

libraries work smoothly in an async context.

For our first example of a blocking TLS client, native-tls can be quite straightforward to get

started with.

Example: Setting up a basic TLS client or server
Let’s write a simple client that connects to a public HTTPS server, such as www.rust-lang.org on

port 443 (the standard port for HTTPS), and attempts to send a basic HTTP GET request. This

will demonstrate how to layer TLS on top of a regular TCP connection.

First, you’ll need to add native-tls to your Cargo.toml dependencies (you need pkg-config

package for your OS):

[dependencies]

native-tls = "0.2" # Check crates.io for the latest version

std::net and std::io are part of the standard library, no need to add
them.

Now, for the Rust code:

use native_tls::{TlsConnector, TlsStream}; // Key types from native-tls

use std::net::TcpStream;

use std::io::{self, Read, Write};

fn main() -> Result<(), Box<dyn std::error::Error>> { // Using Box<dyn
Error> for simple error handling

 let domain = "www.rust-lang.org";

 let port = 443; // HTTPS port

 let server_address = format!("{}:{}", domain, port);

 // 1. Create a TlsConnector builder and build the connector.

 // TlsConnector::new() provides default settings which usually work
for

Chapter 12 421

 // connecting to public servers by using the system's certificate
trust store.

 let connector = TlsConnector::builder()

 // You could add custom configurations here if needed

 .build()

 .map_err(|e| format!("Failed to build TLS connector: {}", e))?;

 println!("Attempting TCP connection to {}...", server_address);

 // 2. Establish a regular TCP connection to the server.

 let tcp_stream = TcpStream::connect(&server_address)

 .map_err(|e| format!("TCP connect to '{}' failed: {}", server_
address, e))?;

 println!("TCP connection established.");

 println!("Attempting TLS handshake with domain '{}'...", domain);

 // 3. Wrap the TCP stream with the TlsConnector to perform the TLS
handshake.

 // The `connect` method on the connector takes the domain name (for
SNI and certificate validation)

 // and the existing TcpStream.

 let mut tls_stream: TlsStream<TcpStream> = connector.connect(domain,
tcp_stream)

 .map_err(|e| format!("TLS handshake with '{}' failed: {}", domain,
e))?;

 println!("TLS connection established successfully!");

 // 4. Now, the `tls_stream` can be used much like a regular TcpStream.

 // It implements the `Read` and `Write` traits. Data written to it
will be

 // encrypted, and data read from it will be decrypted.

 // Let's send a very basic HTTP/1.1 GET request.

 let http_request = format!(

 "GET / HTTP/1.1\r\nHost: {}\r\nConnection: close\r\nUser-Agent:
RustBookClient/0.1\r\n\r\n",

 domain

);

 println!("\nSending HTTP GET request...");

Managing System Resources422

 tls_stream.write_all(http_request.as_bytes())

 .map_err(|e| format!("Failed to write HTTP request: {}", e))?;

 tls_stream.flush() // Ensure all data in the writer's buffer is sent

 .map_err(|e| format!("Failed to flush stream after request: {}",
e))?;

 println!("HTTP GET request sent.");

 println!("\nReading HTTP response (first part):");

 let mut response_buffer = Vec::new(); // Use a Vec for dynamic sizing

 // Note: For this simple example, we only perform *one* read to get
the

 // first chunk. A real-world HTTP client would need to parse

 // the response headers (which are in this first chunk) to find the

 // 'Content-Length' header, or loop .read() until it returns Ok(0)

 // (EOF) to get the entire response body.	

 let mut temp_chunk = [0u8; 512]; // Read in chunks of 512 bytes

 // Read the server's response.

 // A real HTTP client would parse headers, status codes, content
length, etc.

 // This simple example just reads a chunk of the response.

 match tls_stream.read(&mut temp_chunk) {

 Ok(0) => {

 println!("Server closed connection without sending a response
after our request.");

 }

 Ok(bytes_read) => {

 response_buffer.extend_from_slice(&temp_chunk[..bytes_read]);

 println!("Read {} bytes from server.", bytes_read);

 // Attempt to print the received part as UTF-8.

 // HTTP responses usually start with text headers.

 match String::from_utf8(response_buffer) {

 Ok(response_str) => {

 println!("--- Response Snippet (first {} bytes) ---",
bytes_read);

 println!("{}", response_str.trim_end());

 if bytes_read == temp_chunk.len() {

Chapter 12 423

 println!("... (response might be longer)");

 }

 println!("--- End of Response Snippet ---");

 }

 Err(_) => {

 println!("Response data (first {} bytes) is not valid
UTF-8. Displaying as hex:", bytes_read);

 for byte_val in &temp_chunk[..bytes_read] {

 print!("{:02x} ", byte_val);

 }

 println!();

 }

 }

 }

 Err(e) => {

 eprintln!("Error reading HTTP response: {}", e);

 return Err(Box::new(e)); // Convert io::Error to Box<dyn
Error> for main

 }

 }

 // The TlsStream (and the underlying TcpStream) will be closed
automatically

 // when `tls_stream` goes out of scope due to the Drop trait.

 Ok(())

}

•	 Dependency: The example uses the native-tls crate, which you would add to your Cargo.

toml.

•	 TlsConnector: We create a TlsConnector::builder().build()?. This object is respon-

sible for setting up the parameters for a TLS connection, such as how to verify server

certificates. The default TlsConnector::new() or builder().build() typically uses the

operating system’s trusted root certificate store, which is usually what you want for con-

necting to public websites.

•	 Establish TCP connection: First, a standard, unencrypted TcpStream::connect() is made

to the server (e.g., www.rust-lang.org on port 443).

Managing System Resources424

•	 TLS handshake: The most important step is connector.connect(domain, tcp_stream)?.

This method takes the domain string (which is important for Server Name Indication

(SNI) – allowing a server hosting multiple HTTPS sites on one IP to know which site you

want – and for validating the server’s certificate against that domain) and the existing

tcp_stream. It performs the TLS handshake over the tcp_stream. This involves cryp-

tographic negotiations, exchanging certificates, and establishing a shared secret key. If

the handshake is successful, it returns a TlsStream<TcpStream>.

•	 Using TlsStream: The returned tls_stream now represents the secure, encrypted connec-

tion. It implements the Read and Write traits, just like a regular TcpStream. Any data you

write to this tls_stream will be automatically encrypted by native-tls before being sent

over the underlying TcpStream, and any data read from it will be automatically decrypted.

•	 Sending an HTTP request: We then craft a very basic HTTP/1.1 GET request as a string,

convert it to bytes, and send it using tls_stream.write_all() followed by tls_stream.

flush().

•	 Reading the response: We attempt to read a chunk of the server’s response using tls_

stream.read(). In a real HTTP client, this part would be much more sophisticated, in-

volving parsing HTTP headers, status codes, content length, and potentially handling

chunked transfer encoding. Our example just reads the first few hundred bytes and tries

to print them.

•	 Error handling: All network and TLS operations can fail, so they return Result. The ? op-

erator or map_err is used throughout to handle these potential errors. The main function

returns Result<(), Box<dyn std::error::Error>> as a common way to allow different

error types to be propagated up using ?.

This example demonstrates the fundamental layering: TCP provides the basic connection, and TLS

(via a crate such as native-tls) adds the security layer on top. For most practical HTTP/HTTPS

client needs, you would likely use a higher-level HTTP client library such as reqwest, ureq, or

hyper, which handle the complexities of HTTP and TLS (often offering choices between native-

tls and rustls backends) for you. However, understanding this underlying process is valuable.

We’ve now covered the mechanics of handling files and building secure network applications.

To tie all these concepts together, let’s explore some essential best practices that ensure your Rust

applications manage system resources not just correctly, but also efficiently, reliably, and securely!

Chapter 12 425

Best practices for system resource management
We’ve now covered the mechanics of file I/O and basic TCP networking in Rust. While Rust’s safety

features and Resource Acquisition Is Initialization (RAII) via the Drop trait save us from many

common pitfalls such as forgetting to close files, building truly robust and efficient applications

requires a bit more thought.

Let’s discuss some general best practices and performance considerations when your Rust pro-

grams interact with system resources.

Efficient memory usage with I/O operations
I/O operations, especially with files and networks, can often involve handling significant amounts

of data. Being mindful of memory here is key:

•	 Avoid reading entire large files into memory: While fs::read_to_string() is conve-

nient for small configuration files, using it for multi-gigabyte log files or datasets will

likely exhaust your system’s memory. Prefer line-by-line processing (with BufReader) or

chunk-based processing for large files.

•	 Stream when possible: If you’re reading data from one source (file/network) and writing

it to another, try to stream it in chunks rather than loading the whole thing into a single

large buffer in memory. This reduces your application’s peak memory footprint.

•	 Reuse buffers where appropriate: If your program, especially in a loop, needs to repeat-

edly read data (e.g., from a file or network), allocating a new Vec<u8> or String for each

read can be inefficient due to frequent memory allocations. A more performant pattern

is to allocate the buffer once outside the loop and pass a mutable reference to it on each

iteration. The read method will fill this existing buffer, and you can then process the valid

data within it. Let’s look at a practical example. We’ll write a function that reads a file in

8 KB (8,192 bytes) chunks and counts how many zero-bytes (0x00) it contains, all while

reusing the same buffer for every chunk.

use std::fs::{self, File};

use std::io::{self, Read, BufReader};

use std::path::Path;

// Define a standard chunk size for reading. 8KB is a common,
efficient size.

const CHUNK_SIZE: usize = 8 * 1024; // 8192 bytes

Managing System Resources426

/// Reads a file in chunks, reusing a buffer to count zero bytes.

fn count_zero_bytes(file_path: &Path) -> io::Result<u64> {

 let file = File::open(file_path)?;

 // Wrap in a BufReader for efficiency, even though we read in
chunks.

 let mut reader = BufReader::new(file);

 // 1. Allocate the buffer *once*, outside the loop.

 // We use a Vec, which is heap-allocated, as a very large

 // stack-allocated array could cause a stack overflow.

 let mut buffer = vec![0u8; CHUNK_SIZE];

 let mut total_zero_bytes = 0;

 loop {

 // 2. Pass a mutable reference to the *existing* buffer to
`read`.

 let bytes_read = match reader.read(&mut buffer) {

 Ok(0) => break, // Ok(0) means End of File (EOF). We're
done.

 Ok(n) => n, // `n` is the number of bytes actually
read.

 Err(ref e) if e.kind() == io::ErrorKind::Interrupted =>
continue, // Interrupted by a signal, retry.

 Err(e) => return Err(e), // A real I/O error occurred.

 };

 // 3. Process only the valid part of the buffer (`&buffer[..
bytes_read]`).

 // Our "processing" is just counting zero bytes.

 let count_in_chunk = buffer[..bytes_read]

 .iter()

 .filter(|&&b| b == 0x00)

 .count() as u64;

 total_zero_bytes += count_in_chunk;

 }

 Ok(total_zero_bytes)

Chapter 12 427

}

fn main() {

 let test_file = Path::new("chunk_test.dat");

 // --- Setup: Create a dummy file with some zero bytes ---

 let mut content = vec![1, 2, 3, 4, 5, 0, 6, 7, 0, 8];

 content.resize(10_000, 1); // Make it ~10KB with mostly 1s

 content[2000] = 0; // Add a few more zeros

 content[9000] = 0;

 fs::write(test_file, &content).expect("Failed to create dummy
file");

 // We now have a file with 4 zero bytes.

 // --- Act: Run our function ---

 match count_zero_bytes(test_file) {

 Ok(count) => {

 println!("Found {} zero bytes in '{}'.", count, test_
file.display());

 assert_eq!(count, 4); // Check our logic

 }

 Err(e) => {

 eprintln!("Error processing file '{}': {}", test_file.
display(), e);

 }

 }

 // --- Cleanup ---

 fs::remove_file(test_file).ok();

}

•	 This function allocates a single 8 KB buffer before the loop starts, which is a key perfor-

mance optimization. Inside the loop, reader.read() repeatedly fills this same buffer, and

we process only the slice of valid data (&buffer[..bytes_read]) each time, completely

avoiding the high cost of allocating new memory for every chunk.

Managing System Resources428

•	 Be mindful of string allocations: When processing text data, frequent creation of

new String objects (e.g., one for every line, one for every word) can lead to many

small heap allocations. If performance is critical, consider techniques such as

working with string slices (&str) as much as possible, or using specialized string

interning libraries if you have many duplicate strings.

Optimizing file I/O performance
Disk I/O is often a bottleneck. Here’s how to make it more efficient:

Buffering strategies recap
We’ve already emphasized this, but it bears repeating: always use BufReader when reading and

BufWriter when writing files, especially if you’re doing multiple small reads/writes or line-by-

line processing.

They significantly reduce the number of direct, costly system calls by interacting with an in-memo-

ry buffer. Remember to flush() your BufWriter when you need to ensure data is persisted to disk!

Processing large files in chunks
For very large binary files or structured data files where line-by-line processing isn’t appropriate,

reading the file in manageable chunks (e.g., a few kilobytes or megabytes at a time) into a buffer

is a common strategy. You process one chunk, then read the next, overwriting the buffer. This

keeps memory usage constant regardless of file size.

use std::fs::File;

use std::io::{self, Read, BufReader};

use std::path::Path;

const CHUNK_SIZE: usize = 8 * 1024; // 8KB chunks

fn process_large_file_in_chunks(file_path: \&Path) -\>
io::Result\<()\> {

 let file = File::open(file_path)?;

 let mut reader = BufReader::new(file); // Buffering is still good\!

 let mut chunk = vec\![0u8; CHUNK_SIZE];

 loop {

 // Attempt to fill the chunk buffer

 // reader.read() might not fill the whole buffer if EOF is
reached.

Chapter 12 429

 let bytes_read = match reader.read(&mut chunk) {

 Ok(0) => break, // End of file

 Ok(n) => n,

 Err(ref e) if e.kind() == io::ErrorKind::Interrupted =>
continue, // Retry on interrupt

 Err(e) => return Err(e), // Other error

 };

 // Process the data in `&chunk[..bytes_read]`

 // For example, count occurrences of a byte, hash the chunk, etc.

 println!("Processed a chunk of {} bytes", bytes_read);

 // In a real app, you'd do something more useful here.

 if bytes_read < CHUNK_SIZE {

 break; // Likely reached EOF or a partial last chunk

 }

 }

 Ok(())

}

fn main() {

 // You'd need a large_test_file.dat for this to be meaningful

 // For now, let's just show the function definition and conceptual
call

 // if let Err(e) = process_large_file_in_chunks(Path::new("large_
test_file.dat")) {

 // eprintln\!("Error processing large file: {}", e);

 // }

 println\!("Conceptual chunked file processing function defined.");

}

The process_large_file_in_chunks function demonstrates reading a file in fixed-size portions.

•	 A chunk buffer is allocated once.

•	 In a loop, reader.read(&mut chunk) attempts to fill this buffer; read() returns the number

of bytes actually read, which might be less than CHUNK_SIZE if the end of the file is reached.

•	 Ok(0) from read() signals that the end of the file has been definitively reached.

Managing System Resources430

•	 The &chunk[..bytes_read] slice contains the valid data for the current chunk to be pro-

cessed. This approach ensures that memory usage remains constant and low, irrespective

of the total file size.

Optimizing network I/O performance
Network latency and bandwidth are often critical performance factors.

Understanding asynchronous I/O for networking
While the thread-per-client model we just discussed works well, it’s good to keep in mind that

for applications handling many connections at once (such as large web servers or chat platforms),

a more sophisticated approach called asynchronous I/O is often a better fit. We’ll dive into this

topic more deeply in Chapter 13, Concurrency and Parallelism, as it offers an effective alternative

to assigning one OS thread per connection.

Async I/O allows a small number of threads to handle thousands of connections by not blocking

when waiting for network events. Libraries such as tokio and async-std provide the runtimes

and utilities for this in Rust.

While std::net provides blocking I/O, these async libraries build upon non-blocking primitives

to offer much greater scalability for I/O-bound network applications.

Managing network buffers and packet sizes
•	 Buffering (recap): Just like with files, BufReader and BufWriter are beneficial for

TcpStream to reduce system call overhead.

•	 TCP Nagle’s algorithm and TCP_NODELAY: By default, TCP often tries to bundle small

outgoing packets together to improve network efficiency (Nagle’s algorithm). This can

introduce latency for applications that need to send small messages quickly (e.g., re-

al-time games, some RPC protocols). TcpStream has a set_nodelay(true) method that

can disable Nagle’s algorithm, potentially reducing latency for small, frequent messages

at the cost of slightly increased network overhead. Use it judiciously.

•	 Application-level buffering: Sometimes your application protocol involves messages of

known or variable sizes. Managing your own buffers to assemble or parse these messages

before writing to/after reading from the TcpStream can be more efficient than many small

read()/write() calls on the stream itself.

Chapter 12 431

General security principles for resource handling
When your application interacts with system resources, especially those influenced by external

input (files from users, network data), security becomes a concern.

Validating inputs from external sources
•	 File paths: If your program takes file paths as input (e.g., from a user or a config file), be

extremely careful. Maliciously crafted paths (e.g., containing .. to traverse directories

or pointing to sensitive system files) can lead to security vulnerabilities (path traversal

attacks). Sanitize and validate any externally supplied paths before using them with

File::open or other fs operations. Consider restricting operations to a specific base

directory if possible.

•	 Network data: Data received over the network should never be trusted implicitly. Always

validate its format, size, and content before processing it. For example, if you expect a

number, parse it carefully and handle parsing errors. If you expect a certain message

structure, verify it. This helps prevent crashes, denial-of-service, and other attacks.

•	 Resource limits: Impose limits on resource usage. For example, limit the maximum size

of a file that can be uploaded or processed, the maximum number of concurrent network

connections, or the maximum amount of data read from a socket in one go. This prevents

a malicious client or a malformed file from exhausting system resources.

Principle of least privilege
When your application performs operations that require system privileges (such as writing to

certain file locations or binding to low-numbered network ports), it should ideally only hold

those privileges for the minimum time necessary. If possible, drop privileges after the privileged

operation is complete.

While Rust itself doesn’t manage OS-level user privileges directly in std, this is a good design

principle to keep in mind for the overall application architecture, especially for system daemons

or services.

Managing System Resources432

Minimizing resource contention in concurrent scenarios
This topic ties directly into the concepts we will explore in Chapter 13, Concurrency and Parallelism.

When multiple threads try to access shared system resources (such as a file or a network socket,

though direct sharing of such OS handles is often complex and better managed through high-

er-level abstractions), you can run into contention.

•	 Locking shared resources: If multiple threads must write to the same file or send data

over the same (non-thread-safe by default) network connection, you’d need to protect

access with a mutex or similar synchronization primitive. As always, keep the locked

sections short.

•	 Dedicated I/O threads with message passing: A common pattern is to dedicate one or

a few threads to handle specific I/O tasks (e.g., a logging thread that writes to a file, a

network thread that manages all socket communication) and have other worker threads

communicate with these I/O threads via message-passing channels. This can serialize

access to the resource and often simplifies reasoning about its state.

•	 Connection pooling: For resources such as database connections or outgoing network

connections that are expensive to establish, using a “pool” of pre-established connections

that threads can borrow from and return to can be much more efficient than each thread

creating and tearing down its own connection repeatedly. Crates exist to help manage

such pools.

By being mindful of these practices, you can build Rust applications that are correct and safe, and

efficient and well-behaved citizens of the systems they run on.

Real-world scenarios and examples
We’ve covered a fair bit of ground on file I/O, basic networking, security considerations, and best

practices for managing system resources.

Now, let’s try to bring some of these concepts together by looking at a few more practical, albeit

simplified, real-world-inspired scenarios.

Example 1: Building a more robust HTTP server
Earlier, we built a very basic TCP echo server and then a multi-threaded version. Let’s refine that

into a slightly more recognizable (though still very simple) multi-threaded HTTP server that

can serve a couple of static HTML files and return a 404 error. This will combine TCP listening,

multi-threading, file reading, and basic HTTP response formatting.

Chapter 12 433

(This example will be more conceptual in its HTTP handling for brevity, focusing on resource

management aspects such as concurrent connection handling and file reading per request.)

use std::fs;

use std::io::{Read, Write, BufReader, BufRead};

use std::net::{TcpListener, TcpStream};

/// Handles a single client connection, parses a simple GET request, and
serves a file.

/// This function will block until it is finished with the client.

fn handle_http_connection(mut stream: TcpStream) -> std::io::Result<()> {

 let client_addr = stream.peer_addr().unwrap_or_else(|_| "unknown".
parse().unwrap());

 println!("Handling connection from {}", client_addr);

 // Wrap the stream in a BufReader to read lines

 let mut reader = BufReader::new(&stream);

 // --- 1. Read the HTTP Request Line ---

 let mut request_line = String::new();

 if reader.read_line(&mut request_line).is_err() {

 eprintln!("Failed to read request line from {}", client_addr);

 return Ok(()); // Close connection on read error

 }

 println!("Request from {}: {}", client_addr, request_line.trim());

 // --- 2. Read (and ignore) HTTP Headers ---

 // A real HTTP request has headers after the request line,

 // ending in a blank line (e.g., "\r\n"). We must read them

 // to consume the full request, even if we don't use them.

 let mut header_line = String::new();

 loop {

 match reader.read_line(&mut header_line) {

 Ok(0) => { // Client disconnected prematurely

 eprintln!("Client disconnected during header read.");

 return Ok(());

Managing System Resources434

 }

 Ok(_) => {

 // If the line is just "\r\n" or "\n", it's the end of the
headers.

 if header_line.trim().is_empty() {

 break; // End of headers, break the loop

 }

 // We're just ignoring the header line in this simple
server.

 }

 Err(e) => {

 eprintln!("Error reading headers: {}", e);

 return Err(e);

 }

 }

 header_line.clear(); // Clear string for the next line

 }

 // At this point, we've consumed the headers.

 // --- 3. Very basic request routing ---

 let (status_line, filename) = if request_line.starts_with("GET /
HTTP/1.1") || request_line.starts_with("GET /index.html HTTP/1.1") {

 ("HTTP/1.1 200 OK", "index.html")

 } else if request_line.starts_with("GET /about.html HTTP/1.1") {

 ("HTTP/1.1 200 OK", "about.html")

 } else {

 ("HTTP/1.1 404 NOT FOUND", "404.html")

 };

 // --- 4. Read File Content and Send Response ---

 let file_contents = match fs::read_to_string(filename) {

 Ok(contents) => contents,

 Err(_) => {

 // If the specific file isn't found, try to send the generic
404 page

 println!("File '{}' not found for {}. Sending 404.", filename,
client_addr);

 let not_found_page = "404.html"; // Assume this one exists

Chapter 12 435

 let generic_404_content = fs::read_to_string(not_found_page)

 .unwrap_or_else(|_| "<h1>404 Not Found</h1><p>The
requested resource was not found.</p>".to_string());

 let response = format!(

 "HTTP/1.1 404 NOT FOUND\r\nContent-Length: {}\r\n\r\n{}",

 generic_404_content.len(),

 generic_404_content

);

 // Send 404 response

 if let Err(e) = stream.write_all(response.as_bytes()) {

 eprintln!("Error sending 404 response to {}: {}", client_
addr, e);

 }

 if let Err(e) = stream.flush() {

 eprintln!("Error flushing 404 response to {}: {}",
client_addr, e);

 }

 return Ok(());

 }

 };

 // --- 5. Construct and send the successful HTTP response ---

 let response = format!(

 "{}\r\nContent-Length: {}\r\n\r\n{}",

 status_line,

 file_contents.len(),

 file_contents

);

 if let Err(e) = stream.write_all(response.as_bytes()) {

 eprintln!("Error sending response to {}: {}", client_addr, e);

 }

 if let Err(e) = stream.flush() {

 eprintln!("Error flushing response to {}: {}", client_addr, e);

 }

Managing System Resources436

 println!("Response sent to {}. Closing connection.", client_addr);

 Ok(())

}

fn main() -> std::io::Result<()> {

 // --- Setup: Prepare dummy HTML files for the server to serve ---

 fs::write("index.html", "<h1>Welcome!</h1><p>This is the main page.</
p><p>About Us</p>")?;

 fs::write("about.html", "<h1>About Us</h1><p>We are a Rust learning
example!</p><p>Home</p>")?;

 fs::write("404.html", "<h1>404 - Page Not Found</h1><p>Sorry, the page
you are looking for does not exist.</p><p>Go Home</
p>")?;

 let listener_address = "127.0.0.1:7878";

 let listener = TcpListener::bind(listener_address)?;

 println!("Simple HTTP Server listening on http://{}", listener_
address);

 // Accept connections one at a time (sequentially)

 for stream_result in listener.incoming() {

 match stream_result {

 Ok(stream) => {

 println!("Main: Accepted new connection. Handling...");

 // Handle the connection directly in the main thread.

 // The loop will block here until this client is done.

 if let Err(e) = handle_http_connection(stream) {

 eprintln!("Connection error: {}", e);

 }

 }

 Err(e) => {

 eprintln!("Main: Failed to accept connection: {}", e);

 }

 }

 }

Chapter 12 437

 // --- Cleanup (in a real server, this part wouldn't be reached) ---

 fs::remove_file("index.html")?;

 fs::remove_file("about.html")?;

 fs::remove_file("404.html")?;

 Ok(())

}

•	 Setup: Before main runs the listener, we create three dummy HTML files (index.html,

about.html, 404.html) in the current directory so the server has something to serve.

•	 Listening and threading: main sets up a TcpListener and then, for each incoming con-

nection (stream), it spawns a new thread that calls handle_http_connection(stream).

This allows the server to handle multiple client requests concurrently.

•	 Reads headers: This server is more robust than our echo server because the handle_http_

connection function now includes a loop to read and consume the HTTP headers (the

lines after the first GET / line) until it finds the blank line (\r\n) that signifies the end of

the header block. This is important for properly handling HTTP requests.

•	 Basic routing: It performs simple routing by checking the request_line and serves dif-

ferent files based on the requested path.

•	 Serves files: It uses fs::read_to_string to read the contents of the requested HTML file

and sends it back to the client with the correct HTTP status line and Content-Length header.

Important limitation: sequential handling
Notice that in the main function, we call handle_http_connection(stream) directly inside the

for loop. This server is sequential (or single-threaded in its handling).

This means it can only handle one client at a time.

If Client A connects and handle_http_connection is busy processing their request (e.g., reading

a large file, or if the client is on a slow connection), Client B cannot connect. Client B’s connec-

tion attempt will sit in a queue, and the server’s main loop will be blocked until handle_http_

connection for Client A finally finishes.

This is a major bottleneck for any real-world server. To solve this and handle multiple clients

concurrently, we need to use the concurrency techniques we will explore in the next chapter, such

as spawning a new thread for each connection.

Managing System Resources438

Example 2: Command-line tool for file operations
Let’s build a very simplified version of the wc (word count) utility that takes a file path as a com-

mand-line argument and prints out the number of lines, words, characters (UTF-8), and the total

file size in bytes. This example combines argument parsing and file I/O in a practical CLI tool.

use std::env;

use std::fs::{self, File};

use std::io::{self, BufRead, BufReader};

use std::path::Path;

use std::process;

#[derive(Debug, Default)]

struct FileStats {

 lines: usize,

 words: usize,

 chars: usize,

}

fn main() -> io::Result<()> {

 // 1. Get file path from command-line arguments.

 let file_path_str = match env::args().nth(1) {

 Some(path) => path,

 None => {

 eprintln!("Usage: my_wc <file_path>");

 process::exit(1);

 }

 };

 let file_path = Path::new(&file_path_str);

 // 2. Open the file and prepare to read it line by line.

 let file = File::open(file_path)?;

 let reader = BufReader::new(file);

 // 3. Process the file to gather stats.

 let mut stats = FileStats::default();

Chapter 12 439

 for line_result in reader.lines() {

 let line = line_result?; // Propagate I/O error if reading a line
fails

 stats.lines += 1;

 stats.words += line.split_whitespace().count();

 stats.chars += line.chars().count();

 }

 // 4. Get total file size in bytes from metadata for accuracy.

 let file_size_bytes = fs::metadata(file_path)?.len();

 // 5. Print the results.

 println!("\n--- Statistics for '{}' ---", file_path.display());

 println!(" Lines: {}", stats.lines);

 println!(" Words: {}", stats.words);

 println!(" Characters: {}", stats.chars);

 println!(" Bytes: {}", file_size_bytes);

 Ok(())

}

•	 Argument parsing: env::args().nth(1) is used to directly get the first command-line

argument after the program name. If it’s None, we print a usage message and exit.

•	 Error handling with ?: The main function returns an io::Result<()>, allowing us

to use the ? operator for concise error handling on file operations such as File::open,

fs::metadata, and reading lines. If any of these fail, the program will exit, and the OS

will typically print the I/O error.

•	 Statistics calculation:

•	 A loop over reader.lines() efficiently processes the file line by line

•	 line.chars().count() accurately counts Unicode characters

•	 line.split_whitespace().count() gives a simple word count

•	 Accurate byte count: Instead of approximating the byte count from string lengths, this

version uses fs::metadata(file_path)?.len() to get the exact file size from the file

system, which is more reliable.

•	 Output: The final statistics are printed in a clean format.

Managing System Resources440

Next steps
The examples in this chapter, such as our simple HTTP server and my_wc tool, were intentionally

built using only Rust’s standard library. This was to help you understand the fundamentals of

how Rust handles system resources such as TcpStreams and Files directly.

However, for building real-world, production-ready applications, you will almost always want to

use the powerful, high-level crates that the Rust community has built. These frameworks handle

much of the complex, boilerplate logic for you, allowing you to focus on your application’s features.

•	 For a real HTTP server, you wouldn’t build one from raw TcpStreams. Instead, you would

use a mature web framework such as Actix Web, Axum, or Rocket.

•	 For a command-line tool, you wouldn’t parse arguments manually with std::env::args().

You’d use a powerful crate such as clap or argh to define arguments and get robust parsing

and help-message generation for free.

•	 For secure networking (TLS), you would typically use a high-level HTTP client such as

reqwest, which handles TLS internally, rather than using native-tls directly.

Frameworks and high-level libraries like these evolve much faster than the Rust standard library.

This book emphasizes the stable fundamentals that remain relevant.

With your solid understanding of file I/O and networking, you’re now ready to explore advanced

crates and read their documentation to create powerful applications.

Summary
We have reached the end of Chapter 12, which covered managing system resources in Rust. It

explored how Rust interacts with external resources, such as the file system and the network.

Resource management is essential for building functional, efficient, reliable, and secure appli-

cations. Rust’s design emphasizes safety through explicit error handling via the Result type and

automatic resource cleanup using the Drop trait (RAII).

Recap:

•	 Why resource management matters: We emphasized managing resources such as files

and network connections for performance, stability, scalability, and system health.

•	 File I/O in Rust:

•	 We learned how to read files, loading them into strings for smaller files or pro-

cessing line by line for larger files using BufReader

Chapter 12 441

•	 We explored writing data using File::create and fs::write for creating/over-

writing, or OpenOptions for appending

•	 We covered file system operations in std::fs, such as creating directories, renam-

ing files, and reading contents

•	 Network programming essentials (TCP):

•	 We discussed TCP basics, including IP addresses, ports, and the client-server model

•	 We used TcpListener to accept incoming connections and handled multiple cli-

ents by spawning threads for each TcpStream

•	 For clients, TcpStream::connect was used to establish connections with read and

write_all for communication

•	 The benefits of BufReader and BufWriter for network I/O performance were high-

lighted

•	 Ensuring robust and secure network applications:

•	 We emphasized careful error handling for all network operations returning Result

•	 The importance of set_read_timeout and set_write_timeout on TcpStream was

introduced to avoid indefinite blocking

•	 We discussed Transport Layer Security (TLS), introducing external crates such

as native-tls, rustls, and a basic TLS client example.

•	 Best practices for system resource management:

•	 We covered strategies for efficient memory usage during I/O, optimizing file and

network performance (e.g., buffering, chunking, and asynchronous I/O)

•	 Key security principles, such as validating external inputs, were highlighted

•	 We also briefly linked concurrency concepts to minimize resource contention

•	 Real-world examples: We provided real-world examples to better understand

how they are used

In this chapter, we looked at how to manage system resources such as files and network streams.

Our simple server examples showed a key limitation: they can only handle one client at a time.

To create more efficient applications that can manage several tasks simultaneously, we’ll move

on to the next chapter, Concurrency and Parallelism. There, we’ll explore how to use threads, share

data safely, and see why Rust’s compile-time guarantees make this exciting feature known as

“fearless concurrency” a term the Rust community often uses.

Managing System Resources442

Questions and assignments
Questions

1.	 What are the main differences between std::fs::read_to_string() and using

File::open() followed by BufReader::new().lines() for reading a text file? When

would you prefer one over the other?

2.	 Explain the purpose of File::create() versus using OpenOptions::new().append(true).

create(true).open(). What happens if the file already exists in each case?

3.	 What does TcpListener::bind() do, and what kind of errors might it return?

4.	 When handling a TcpStream on a server, why is it common to spawn a new thread for

each accepted connection? What problem does this solve?

5.	 What is the role of stream.flush() after a write_all() call on a TcpStream or BufWriter?

Why is it sometimes important?

6.	 Briefly explain why TLS is important for network communication and what main security

benefits it provides.

7.	 What is “buffering” in the context of I/O, and why are BufReader and BufWriter useful?

Assignments
Assignment 12.1: Simple file copy utility
Goal: Get comfortable with basic file I/O and error handling.

Task:

1.	 Create a Rust command-line program that takes two arguments: a source_file path and

a destination_file path.

2.	 The program should read the entire contents of the source_file.

3.	 It should then write those contents to the destination_file, creating it if it doesn’t exist

or overwriting it if it does.

4.	 Handle potential errors gracefully. If the source file cannot be read or the destination file

cannot be written, print a clear error message to standard error (eprintln!) and exit with

a non-zero status code (std::process::exit(1)).

Chapter 12 443

Steps and hints:

•	 Use std::env::args() to get the command-line arguments.

•	 std::fs::read() can read the entire file into a Vec<u8> (a vector of bytes), which is good

for handling any kind of file, not just text.

•	 std::fs::write() is a convenient way to write an entire byte slice (&[u8]) to a file.

Assignment 12.2: Simple key-value TCP server
Goal: Practice networking, basic protocol parsing, and in-memory state management.

Task: Implement a simple in-memory key-value store server that listens on a TCP port (e.g.,

127.0.0.1:8989). You do not need to build a separate client program; you can test your server

using a tool such as netcat (nc) or telnet.

•	 Server setup:

•	 The server should use a TcpListener to accept connections. For this assignment,

handling clients one at a time (sequentially) is fine.

•	 It should maintain an in-memory HashMap<String, String> to store the key-val-

ue pairs.

•	 Command handling:

•	 For each connected client, the server should read commands line by line.

•	 It must support two commands:

•	 SET <key> <value>: Stores the value associated with the key. The server

should respond with OK\n. If the key already exists, its value should be

updated.

•	 GET <key>: Retrieves the value for the key. If the key exists, the server

should respond with VALUE <value>\n. If the key does not exist, it should

respond with NOT_FOUND\n.

•	 Any other command can be considered invalid, and the server might respond with

INVALID_COMMAND\n.

•	 Error handling: The server should handle client disconnections gracefully without

crashing.

Managing System Resources444

Steps and hints:

•	 Use BufReader::read_line() to read commands from the TcpStream.

•	 Use split_whitespace() on the received line to parse the command and its arguments.

Be sure to handle cases where not enough arguments are provided.

•	 Use a HashMap owned by your main loop or handler function to store the data.

•	 Use writeln! or write_all on the TcpStream to send responses back to the client. Re-

member to flush()!

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

13
Concurrency and Parallelism

Welcome to Chapter 13!

We’ve just seen how smart pointers such as Arc<T> and Mutex<T> provide tools for managing data

in thread-safe ways. This was a deliberate setup for our next big topic: concurrency.

In this chapter, we’ll explore how Rust enables you to write programs that can perform multiple

tasks simultaneously.

This is a cornerstone of modern software development, allowing applications to be more respon-

sive, effectively utilize modern multi-core processors, and handle many operations in parallel.

Rust’s approach to concurrency is particularly noteworthy because of its strong emphasis on safety.

What are concurrency and parallelism?
Before discussing the “how,” let’s clarify two terms often used interchangeably but with distinct

meanings: concurrency and parallelism:

•	 Concurrency is about dealing with multiple tasks at once. It’s a way to structure a program

to switch between different tasks, making progress on each. These tasks might not all be

executing at the exact same instant, especially on a single-core processor, but they are

managed in a way that allows them to overlap in time. Think of a chef juggling multiple

orders in a kitchen: they switch between chopping vegetables for one order, checking

the oven for another, and plating a third. They are concurrently handling multiple orders.

•	 Parallelism is about doing multiple tasks at the exact same time. This requires hardware

with multiple processing units (such as multi-core CPUs). If our chef had two assistant

chefs, they could, in parallel, chop vegetables, stir a sauce, and bake a dish.

Concurrency and Parallelism446

A concurrent program can be parallel if you have the hardware to support it. Rust provides tools to

write concurrent programs, and if you run that code on a multi-core processor, those concurrent

tasks can often execute in parallel, leading to genuine performance gains.

Our main focus will be on writing concurrent code, which can then benefit from parallelism.

Figure 13.1: The difference between concurrency and parallelism

Why write concurrent programs?
Why go through the trouble of managing multiple tasks at once? There are several compelling

reasons:

•	 Performance through parallelism: Most modern computers have CPUs with multiple

cores. If your program only does one thing at a time, it’s only using one of those cores,

leaving a lot of processing power untapped. Concurrent programming allows you to break

down a large task into smaller pieces that can be executed in parallel on different cores,

significantly speeding up CPU-bound computations (such as complex calculations, image

processing, or data analysis).

Chapter 13 447

•	 Responsiveness: For applications with UIs (GUIs and web servers), concurrency is vital

for responsiveness. Imagine a desktop application that needs to perform a long calcu-

lation. If it does this on its main thread without concurrency, the entire UI will freeze

until the calculation is done. By running the calculation on a separate thread, the main

thread can remain free to respond to user input, keeping the application feeling smooth

and interactive. Similarly, a web server can handle multiple client requests concurrently,

rather than making each client wait in a long queue.

•	 Handling multiple I/O operations: Programs often wait for input/output (I/O) opera-

tions, such as reading from a file, writing to a network socket, or waiting for user input.

These operations can be slow. Concurrency allows a program to start an I/O operation

and then switch to another task while waiting for the I/O to complete, rather than just

sitting idle. This is key for efficient network services and applications dealing with many

external resources.

The classic challenges: Race conditions and deadlocks
While concurrency offers significant benefits, it also introduces new categories of challenging

bugs that are notoriously hard to find and fix. Two of the most infamous are the following:

•	 Race conditions: A race condition occurs when two or more threads access shared data

concurrently, and at least one of them modifies the data. The final outcome depends on

the unpredictable order in which the threads happen to execute their operations. This

can lead to corrupted data, incorrect results, or crashes. For example, if two threads try to

increment a shared counter (counter += 1) without proper synchronization, both might

read the same initial value, both increment it, and both write back the same new value,

effectively losing one of the increments.

•	 Deadlocks: A deadlock happens when two or more threads are blocked forever, each

waiting for the other to release a resource. Imagine Thread A has locked Resource X and is

waiting for Resource Y, while Thread B has locked Resource Y and is waiting for Resource

X. Neither can proceed, and the program grinds to a halt.

These issues arise because of the complexities of managing shared mutable state and synchro-

nizing access between threads. They are often difficult to reproduce because they depend on the

precise timing of thread execution.

Concurrency and Parallelism448

Rust’s promise: Compile-time safety for concurrency
This is where Rust truly shines and offers a compelling reason to use it for concurrent programming.

Rust’s ownership and borrowing system, which we’ve seen ensuring memory safety, also extends

to ensure thread safety at compile time for many common concurrency bugs, especially data races.

•	 Preventing data races: Rust’s type system and borrow checker ensure that you cannot

have a data race in safe Rust. A data race occurs when you have the following:

1.	 Two or more pointers/references accessing the same memory location concurrently.

2.	 At least one of them is for writing.

3.	 There’s no synchronization mechanism being used to control access. Rust’s rules

about mutable and immutable borrows (one &mut T XOR many &T) prevent this

scenario from happening across threads for most types unless you use special

synchronization primitives (such as mutex, which then enforces its own rules).

•	 Clearer shared state management: Types such as Arc<T> (for shared ownership across

threads) and Mutex<T> or RwLock<T> (for controlled mutation of shared data) make the

intent of sharing and mutation explicit in the type system.

While Rust can’t magically prevent all concurrency bugs (such as all types of deadlocks, which

are often a logic issue), it eliminates entire classes of very common and nasty bugs at compile

time. This is what’s often referred to as “fearless concurrency”, the ability to write concurrent

code with much greater confidence because the compiler is your ally in preventing many common

pitfalls. This makes Rust an incredibly powerful tool for building high-performance, concurrent

systems reliably.

Creating and managing threads
Now that we understand the “why” of concurrency, let’s get to the “how” in Rust. The most fun-

damental way to achieve concurrency is by creating and managing threads.

What is a thread?

A thread is an independent path of execution within your program. Your operating system can

schedule these threads to run, potentially in parallel on different CPU cores. Rust’s standard

library provides std::thread.

Chapter 13 449

Spawning new threads with std::thread::spawn
The primary way to create a new thread in Rust is by calling the std::thread::spawn function.

This function takes a closure (an anonymous function) as an argument, and this closure contains

the code that the new thread will execute.

Basic thread creation
When you call thread::spawn, it immediately returns a JoinHandle. The new thread starts ex-

ecuting its closure in the background, and your main thread (or the thread that called spawn)

continues its own execution without waiting:

use std::thread;

use std::time::Duration;

fn main() {

 println!("Main thread: Starting up!");

 // Spawn a new thread

 let handle = thread::spawn(|| {

 // This code runs in the new thread

 for i in 1..=5 {

 println!("New thread: count {}", i);

 thread::sleep(Duration::from_millis(500)); // Pause for 0.5
seconds

 }

 println!("New thread: I'm done!");

 });

 // The main thread continues its work immediately

 for i in 1..=3 {

 println!("Main thread: working... {}", i);

 thread::sleep(Duration::from_millis(300)); // Pause for 0.3
seconds

 }

 println!("Main thread: Waiting for the new thread to finish...");

 // We'll see how to properly wait for the handle next.

 // For now, if main exits, the spawned thread might be killed.

Concurrency and Parallelism450

 // To ensure the spawned thread finishes in this example, we can add a
longer sleep here,

 // but using join() is the correct way.

 // thread::sleep(Duration::from_secs(3)); // Temporary, to see spawned
thread output

 // The correct way to wait for the spawned thread:

 handle.join().unwrap(); // We'll explain join() shortly

 println!("Main thread: All done!");

}

The following is the output:

Figure 13.2: Output of thread creation

•	 We use std::thread to bring the spawn function and other thread-related items into scope.

•	 thread::spawn(|| { ... }) creates a new thread. The || { ... } part is a closure

containing the code for that new thread.

•	 Notice how the output from Main thread and New thread will likely be interleaved. This

is because both threads are running concurrently (and potentially in parallel if you have

multiple CPU cores).

•	 The thread::sleep() calls are just there to simulate work and make the interleaving

more obvious.

Chapter 13 451

•	 The handle returned by thread::spawn is a JoinHandle. We’ll use this to manage the

thread. The handle.join().unwrap() line at the end is crucial for ensuring the main

thread waits for the spawned thread to complete before exiting.

Moving data into threads with the move closure
Often, the closure you pass to thread::spawn will need to use data that’s defined in the scope

of the thread that creates it (the parent thread). Rust’s ownership rules are strict here to prevent

data races.

If a spawned thread’s closure tries to capture a variable from its environment by reference, the

compiler might complain because it can’t guarantee that the reference will remain valid for the

entire lifetime of the new thread (the new thread might outlive the parent function’s scope where

the variable was defined).

To solve this, you typically use the move keyword before the closure. A move || { ... } closure

takes ownership of the variables it captures from its environment:

use std::thread;

use std::time::Duration;

fn main() {

 let message = String::from("Hello from the main thread!");

 let important_number = 42;

 // The `move` keyword forces the closure to take ownership of
`message` and `important_number`.

 let handle = thread::spawn(move || {

 println!("Spawned thread received message: '{}'", message);

 println!("Spawned thread received number: {}", important_number);

 // `message` and `important_number` are now owned by this
closure's environment.

 // The original variables in main are no longer accessible if they
were moved (like String).

 // For Copy types like i32, a copy is moved.

 });

 // Attempting to use `message` here would cause a compile error:

 // println!("Main thread still has message: {}", message); // ERROR!
value borrowed here after move

Concurrency and Parallelism452

 // `important_number` was an i32, which is Copy, so a copy was moved.

 // The original `important_number` in main is still valid.

 println!("Main thread still has important_number: {}", important_
number);

 // Wait for the thread to finish

 handle.join().unwrap();

 println!("Main thread: Spawned thread finished.");

}

•	 The move keyword before the || { ... } closure tells Rust that any variables from the

outer scope used inside the closure should be transferred into the closure’s environment.

•	 For types that implement the Copy trait (such as i32, bool, etc.), moving means that a

copy of the value is created. The original variable in the parent thread remains usable.

•	 For types that do not implement Copy (such as String and Vec<T>), moving transfers

ownership. Consequently, the original variable in the parent thread becomes invalid and

cannot be used after the closure is created. This is why attempting to use message in main

after it has been moved to the spawned thread results in a compile error, as illustrated in

the commented-out line.

•	 This ownership transfer is crucial for safety, ensuring that the spawned thread has valid

ownership of the required data, even if the parent thread completes or the original vari-

ables go out of scope.

Waiting for threads to finish: JoinHandle and join()
When you spawn a new thread, it runs independently. Often, your main thread (or the spawning

thread) will need to wait for the newly created thread to complete its work before proceeding

or before the program exits. If the main thread exits while other threads are still running, those

other threads are typically shut down abruptly.

JoinHandle<T> returned by thread::spawn provides a join() method for this purpose:

•	 Calling handle.join() on JoinHandle will block the current thread’s execution until the

thread associated with handle terminates.

•	 join() also allows you to get a value back from the thread, as it returns a Result<T, E>:

Chapter 13 453

•	 If the spawned thread completes successfully, join() returns Ok(value), where

value is the value returned by the closure given to spawn. (Yes, spawned threads

can return values!)

•	 If the spawned thread panics, join() returns Err(error), where error contains

information about the panic.

Handling thread panics gracefully
A key part of Rust’s safety is that a panic in one thread does not crash the entire program (unless it’s

the main thread). The panic is isolated to that thread. The JoinHandle “catches” this panic, and

join() will return an Err variant. This allows the main thread to detect and handle worker failures

gracefully, instead of crashing along with them.

Let’s see an example that shows both a successful thread and a panicking thread, and how to

handle both outcomes with match:

use std::thread;

use std::time::Duration;

fn main() {

 println!("Main: Spawning a worker thread that will succeed...");

 let worker_handle = thread::spawn(|| {

 println!("Worker (Success): Starting computation...");

 thread::sleep(Duration::from_secs(1)); // Simulate work

 println!("Worker (Success): Computation finished.");

 42 // This is the return value

 });

 println!("Main: Spawning a worker thread that will panic...");

 let panicking_handle = thread::spawn(|| {

 println!("Worker (Panic): I'm about to panic!");

 panic!("The worker thread has panicked!");

 });

 // --- Wait for the successful worker ---

 println!("Main: Waiting for the successful worker...");

 match worker_handle.join() {

 Ok(result_from_worker) => {

 println!("Main: Successful worker joined and returned: {}",

Concurrency and Parallelism454

result_from_worker);

 }

 Err(e) => {

 // This case won't be hit for worker_handle

 eprintln!("Main: Successful worker panicked (unexpected!):
{:?}", e);

 }

 }

 // --- Wait for the panicking worker ---

 println!("\nMain: Waiting for the panicking worker...");

 match panicking_handle.join() {

 Ok(_) => {

 // This case won't be hit for panicking_handle

 println!("Main: Panicking worker... returned Ok?
(unexpected!)");

 }

 Err(e) => {

 // This is the expected outcome.

 // The 'e' here is an `Any + Send + 'static` object
representing the panic.

 eprintln!("Main: Caught panic from worker thread as
expected!");

 // We can't print the panic message directly in a simple way,

 // but we've confirmed it was an `Err`.

 }

 }

 println!("\nMain: Program finished gracefully, even after a worker
panic.");

}

This example clearly demonstrates the two possible outcomes of calling join():

•	 Ok(value): The worker_handle completes its closure normally and returns the value 42.

Our match statement catches this Ok variant and prints the successful result.

Chapter 13 455

•	 Err(e): The panicking_handle calls panic!. This terminates that specific worker thread,

but not the main thread. When the main thread calls .join() on panicking_handle, the

panic is “caught,” and join() returns an Err(e). Our match statement catches this Err

variant, allowing us to log the error and continue execution. This isolation of panics is a

key safety feature of Rust’s concurrency model.

This is why you should prefer using match to handle the Result from .join() in production code.

Using .unwrap() is just a shortcut that says, “If this thread panics, I want my main thread to panic

too,” which is often not the robust behavior you want for your application.

Thread panics and their effect
What happens if a spawned thread panics?

•	 By default, a panic in one thread does not bring down the entire program (unless it’s the

main thread). The panicking thread will unwind its stack and terminate.

•	 Other threads will continue running.

•	 As we saw, the JoinHandle::join() method will return an Err value if the thread it’s

waiting on has panicked. This allows the joining thread to detect and react to the panic

if necessary.

This isolation of panics (by default) contributes to the robustness of concurrent Rust programs.

You can configure the behavior on panic further, but the default is usually what you want, one

misbehaving thread shouldn’t necessarily crash everything.

Sharing data safely between threads
This is such an important aspect of concurrent programming! When you have multiple threads

running, they often need to access or change the same data.

Without proper safeguards, this can lead to serious issues and bugs that can be extremely difficult

to identify. Rust, with its strong focus on safety, offers great tools to help manage shared data

safely and effectively.

The perils of unsafe shared state
Why is sharing data between threads so tricky? The core issue is shared mutable state. If multiple

threads can read and write to the same memory location at the same time without any coordina-

tion, you can run into several problems, the most common being the following:

Concurrency and Parallelism456

•	 Data races: This happens in the following cases:

1.	 Two or more threads concurrently access a location in memory.

2.	 At least one of the accesses is a write.

3.	 The accesses are not synchronized. The result is unpredictable behavior because

the final value depends on the exact, non-deterministic order in which thread op-

erations interleave. Rust’s compiler, remarkably, prevents data races in safe code!

•	 Race conditions (broader term): This is a more general term for situations where the

behavior of a system depends on the sequence or timing of uncontrollable events (such

as thread scheduling). Data races are a specific type of race condition. Even without data

races in the Rust sense, you can have logical race conditions if operations aren’t ordered

correctly.

•	 Inconsistent state: If a thread reads data while another thread is in the middle of modi-

fying it (and the modification isn’t atomic or protected), the reading thread might see a

partially updated, inconsistent state.

Traditional approaches to these problems often involve manual locking, semaphores, and careful

programming, which are error-prone. Rust aims to make these patterns safer by integrating them

into the type system.

Arc<T>: Sharing ownership atomically across threads
In Chapter 11, we learned about smart pointers and Rc<T> for reference-counted shared ownership.

However, Rc<T> is not thread-safe.

Its internal reference count is not updated using atomic operations, so if multiple threads tried

to clone or drop an Rc<T> simultaneously, you could get a data race on the count itself.

Recap: Why Rc<T> isn’t enough
If you try to move an Rc<T> into a new thread using thread::spawn with a move closure, the Rust

compiler will stop you with an error.

This is Rust’s safety in action! It knows Rc<T> isn’t safe to share this way.

Using Arc::clone() for thread distribution
The solution for sharing ownership of data across threads is Arc<T>, which stands for Atomically

Reference Counted. It works conceptually just like Rc<T>:

•	 Arc::new(value) creates a new arc that owns value on the heap

Chapter 13 457

•	 Arc::clone(&my_arc) creates another arc pointer to the same data and increments the

reference count

•	 The data is dropped only when the last arc pointing to it is dropped

The key difference is that Arc<T> uses atomic operations to manage its reference count. Atomic

operations are special CPU instructions that guarantee that updates (such as incrementing or

decrementing the count) are indivisible and cannot be interrupted by other threads, thus pre-

venting data races on the count itself. This makes Arc<T> safe to send and share between threads:

use std::sync::Arc;

use std::thread;

use std::time::Duration;

struct ImportantConfig {

 api_url: String,

 max_retries: u32,

}

fn main() {

 // Data we want to share (read-only) across multiple threads

 let config = Arc::new(ImportantConfig {

 api_url: "https://api.example.com/data".to_string(),

 max_retries: 5,

 });

 let mut handles = vec![];

 println!("Main thread: Initial Arc strong count = {}", Arc::strong_
count(&config));

 for i in 0..3 { // Spawn 3 threads

 // Clone the Arc for each thread. The clone is moved into the
thread.

 let config_clone = Arc::clone(&config);

 println!("Main thread: Count before thread {} spawn: {}", i,
Arc::strong_count(&config));

 let handle = thread::spawn(move || {

Concurrency and Parallelism458

 // This thread now has its own Arc pointing to the same
ImportantConfig data

 println!("Thread {}: Started. Accessing resource API URL '{}'
with max_retries = {}. Current Arc count in this thread's scope (approx):
{}",

 i,

 config_clone.api_url, // Accessing data through Arc

 config_clone.max_retries,

 Arc::strong_count(&config_clone)

);

 // Simulate some work

 thread::sleep(Duration::from_millis(100));

 println!("Thread {}: Finished.", i);

 // When config_clone goes out of scope here, the count is
decremented.

 });

 handles.push(handle);

 }

 println!("Main thread: Count after all threads spawned: {}",
Arc::strong_count(&config));

 println!("Main thread: Resource API URL: {}", config.api_url);

 // Wait for all threads to complete

 for handle in handles {

 handle.join().unwrap();

 }

 println!("Main thread: All threads finished. Final Arc strong count
(before main's Arc drops): {}", Arc::strong_count(&config));

 // When 'config' in main goes out of scope, the count drops to 0, and
ImportantConfig is deallocated.

}

•	 Arc::new() wraps the ImportantConfig data, making it shareable.

Chapter 13 459

•	 Arc::clone() is called before spawning each thread. This is crucial. It creates a new

arc pointer that shares ownership of the same underlying ImportantConfig data and

atomically increments the reference count. This new arc is then moved into the closure

for the new thread.

•	 Each thread can safely read from the config_clone because Arc<T> ensures the data lives

as long as at least one arc points to it.

•	 The Arc::strong_count() method shows how many arc pointers are actively sharing

the data.

•	 Arc<T> is for sharing immutable data by default (or data that uses interior mutability,

which we’ll see next). If you try to get &mut T from an Arc<T>, the compiler won’t let

you, because that would break the safety guarantee if multiple threads tried to mutate it

simultaneously without further synchronization.

Arc<T> is your go-to when you need multiple threads to have shared, read-only access to some

data, or when you need to set up shared ownership for data that will be mutated using other

synchronization primitives, such as Mutex<T>.

Mutex<T>: Ensuring mutual exclusion for mutable data
Arc<T> solves shared ownership, but what if multiple threads need to mutate the shared data?

If multiple threads tried to write to the same data without coordination, you’d have a data race.

This is where Mutex<T> (which stands for mutual exclusion) comes in.

A Mutex<T> ensures that only one thread can access the data, T, it protects at any given time.

To access the data, a thread must first acquire the “lock” on the mutex.

A note on Arc::strong_count() and concurrency

You might notice that the exact reference counts printed from inside the threads vary

slightly each time you run the program. This is perfectly normal! It’s a result of the

operating system’s thread scheduler. For example, one thread might print a count

of 3 just an instant before the main thread spawns another thread, which would

immediately bump the count to 4.

Because the count can change at any moment, you should never use Arc::strong_

count() for any program logic (such as if Arc::strong_count(&my_arc) == 1

{ ... }). This would be a classic race condition. Think of strong_count() as a

helpful tool for debugging and learning (like we’re using it here), not as a reliable

mechanism for production code.

Concurrency and Parallelism460

Acquiring the lock with lock()
The primary method on a Mutex<T> is lock():

•	 When a thread calls data_mutex.lock(), one of two things happens:

•	 If the lock is not currently held by any other thread, the current thread acquires

the lock, and lock() returns successfully

•	 If the lock is held by another thread, the current thread will block (pause its exe-

cution) until the lock is released by the other thread

•	 lock() returns a LockResult<MutexGuard<T>> type. This is a Result because acquiring

a lock can fail if the mutex is “poisoned” (meaning a thread that previously held the lock

panicked). In many examples, you’ll see .unwrap() called on this result for simplicity.

The role of MutexGuard
If lock() succeeds (i.e., returns Ok(...)), the value inside the Ok is a MutexGuard<T>. This is a

smart pointer that does the following:

1.	 Implements Deref and DerefMut, so you can use it to get an &T or &mut T to the data

protected by the mutex.

2.	 Crucially, it implements the Drop trait. When the MutexGuard<T> goes out of scope, its

drop method is called, which automatically releases the lock. This RAII (which stands for

Resource Acquisition Is Initialization) pattern is extremely helpful in preventing deadlocks

caused by forgetting to release a lock.

Combining Arc<Mutex<T>> for shared mutable state
To allow multiple threads to access and potentially mutate the same piece of data protected by a

mutex, you need to share the mutex itself across threads.

You do this by wrapping the Mutex<T> in an Arc<T>, resulting in the common Arc<Mutex<T>>

pattern:

use std::sync::{Arc, Mutex};

use std::thread;

fn main() {

 // Create a counter, protected by a Mutex, and wrapped in an Arc for
sharing

 let counter = Arc::new(Mutex::new(0u32)); // Start with 0

Chapter 13 461

 let mut handles = vec![];

 println!("Main: Initial counter value = {}", *counter.lock().
unwrap());

 for i in 0..5 { // Spawn 5 threads

 let counter_clone_for_thread = Arc::clone(&counter); // Clone Arc
for the thread

 let handle = thread::spawn(move || {

 // Each thread will try to increment the counter 10 times

 for _ in 0..10 {

 // Acquire the lock. This blocks if another thread has it.

 let mut num_guard = counter_clone_for_thread.lock().
unwrap();

 // We now have exclusive mutable access to the u32 inside
the Mutex.

 *num_guard += 1;

 // The lock is released automatically when num_guard goes
out of scope here.

 }

 println!("Thread {}: Finished incrementing.", i);

 });

 handles.push(handle);

 }

 // Wait for all threads to complete their work

 for handle in handles {

 handle.join().unwrap();

 }

 // Lock the mutex in the main thread to read the final value

 let final_value = *counter.lock().unwrap();

 println!("Main: All threads finished. Final counter value = {}",
final_value); // Expected: 50

}

Concurrency and Parallelism462

•	 Arc::new(Mutex::new(0)) creates an initial counter value of 0, wraps it in a mutex to

control access, and then wraps the mutex in an arc so the mutex itself can be shared

across threads

•	 Each thread receives a clone of the arc, allowing them all to refer to the same mutex

•	 Inside each thread, counter_clone_for_thread.lock().unwrap() is called:

1.	 lock() attempts to acquire exclusive access. If another thread holds the lock, this

thread waits.

2.	 .unwrap() is used here for simplicity; it would panic if another thread panicked

while holding the lock (poisoning it).

3.	 If successful, it returns a MutexGuard (here, num_guard).

•	 *num_guard += 1; dereferences the MutexGuard to get a mutable reference to the u32 data

and increments it. This operation is safe because only one thread can hold the lock (and

thus have mutable access) at a time.

•	 When num_guard (the MutexGuard) goes out of scope at the end of the inner loop’s iteration

(or end of the block), the lock is automatically released.

•	 The final result should be 50 (5 threads each incrementing 10 times).

Figure 13.3: Shared ownership model using Arc<T>, allowing multiple threads to simultane-
ously hold references to the same data on the heap

Chapter 13 463

Figure 13.4: Mutual exclusion in action

Thinking about deadlocks
While Mutex<T> prevents data races, it introduces the possibility of deadlocks. A deadlock occurs

if threads try to acquire multiple locks in different orders, leading to a situation where each thread

is waiting for a lock held by another thread in the cycle. Take the following example:

•	 Thread A locks Mutex 1, then tries to lock Mutex 2.

•	 Thread B locks Mutex 2, then tries to lock Mutex 1. If both threads acquire their first lock

and then block waiting for the second, they will wait forever.

Preventing deadlocks involves careful design, often by ensuring that all threads acquire locks in

a consistent global order if they need multiple locks. Rust doesn’t prevent deadlocks at compile

time (it’s a complex runtime problem), but its ownership system and explicit locking help you

reason about them more clearly.

RwLock<T>: Allowing multiple readers or one writer
Sometimes, the “exclusive access” provided by a Mutex<T> is too restrictive. If you have data that

is read much more often than it is written, a mutex would still force readers to wait for each other

if only one reader can hold the lock at a time (which is true for a mutex).

Concurrency and Parallelism464

For these “read-mostly” scenarios, Rust provides RwLock<T> (read-write lock). RwLock<T> allows

the following:

•	 Any number of threads to acquire a read lock (.read().unwrap()) simultaneously, as

long as no thread holds a write lock. This gives them immutable access (&T).

•	 Exactly one thread to acquire a write lock (.write().unwrap()) exclusively, as long as

no other thread holds either a read or a write lock. This gives it mutable access (&mut T).

When to use RwLock<T> versus Mutex<T>
•	 Use Mutex<T> when you need simple exclusive access, or when writes are as common as

reads, or when the critical sections are very short. A mutex is generally simpler and can

sometimes be faster if contention is low.

•	 Use RwLock<T> in the following cases:

•	 You have data that is read very frequently by many threads

•	 Writes to the data are infrequent

•	 The read operations are non-trivial (i.e., holding the lock for a read actually pro-

vides a benefit over just rapidly acquiring and releasing a mutex)

RwLock<T> can offer better performance in read-heavy concurrent scenarios by allowing mul-

tiple readers to proceed in parallel. However, it’s slightly more complex than a mutex and has

its own potential issues, such as “writer starvation” (if there’s a constant stream of readers, a

writer might have to wait a long time). Like Mutex<T>, you’d typically share an RwLock<T> across

threads using Arc<RwLock<T>>:

use std::sync::{Arc, RwLock};

use std::thread;

use std::collections::HashMap;

use std::time::Duration;

fn main() {

 // A cache that is read often, written to occasionally

 let cache: Arc<RwLock<HashMap<String, String>>> =
Arc::new(RwLock::new(HashMap::new()));

 let mut handles = vec![];

Chapter 13 465

 // Writer thread to populate the cache

 let cache_writer_clone = Arc::clone(&cache);

 let writer_handle = thread::spawn(move || {

 let mut cache_guard = cache_writer_clone.write().unwrap(); //
Acquire write lock

 println!("Writer: Acquired write lock. Populating cache...");

 cache_guard.insert("url1".to_string(), "Data for URL1".to_
string());

 cache_guard.insert("url2".to_string(), "Data for URL2".to_
string());

 thread::sleep(Duration::from_millis(100));

 println!("Writer: Cache populated. Releasing write lock.");

 // Write lock released when cache_guard goes out of scope

 });

 handles.push(writer_handle);

 // Multiple reader threads

 for i in 0..3 {

 let cache_reader_clone = Arc::clone(&cache);

 let reader_handle = thread::spawn(move || {

 thread::sleep(Duration::from_millis(20 * i as u64)); //
Stagger readers slightly

 let cache_guard = cache_reader_clone.read().unwrap(); //
Acquire read lock

 println!("Reader {}: Acquired read lock. Reading cache...",
i);

 if let Some(data1) = cache_guard.get("url1") {

 println!("Reader {}: Found data for url1: '{}'", i,
data1);

 }

 if let Some(data2) = cache_guard.get("url2") {

 println!("Reader {}: Found data for url2: '{}'", i,
data2);

 }

 thread::sleep(Duration::from_millis(50));

Concurrency and Parallelism466

 println!("Reader {}: Releasing read lock.", i);

 // Read lock released when cache_guard goes out of scope

 });

 handles.push(reader_handle);

 }

 for handle in handles {

 handle.join().unwrap();

 }

 println!("Main: All threads finished.");

}

•	 We have a shared HashMap cache wrapped in Arc<RwLock<...>>.

•	 One thread acts as a “writer.” It acquires an exclusive write lock using cache.write().

unwrap(). While it holds this lock, no other thread (reader or writer) can access the cache.

•	 Multiple “reader” threads are spawned. Each attempts to acquire a shared read lock using

cache.read().unwrap(). Multiple readers can hold a read lock simultaneously, allowing

them to read the cache data in parallel, as long as no writer holds the write lock.

•	 If a writer tries to get a write lock while readers are active, it will wait. If readers try to get

a read lock while a writer is active, they will wait.

These synchronization primitives, Arc, Mutex, and RwLock, are the fundamental building blocks in

Rust for safely managing shared state in concurrent programs. They allow you to opt in to shared

mutability where needed, with Rust ensuring that the access patterns are sound.

Message passing: Communicating between threads
So far, we’ve seen how to share data between threads using Arc for shared ownership and Mutex

or RwLock for synchronizing access to mutable data. This is often called shared-state concurrency.

While powerful, managing locks and shared memory can sometimes be complex and prone to

issues such as deadlocks if not handled carefully.

Rust, like many modern languages, also offers another excellent model for concurrency: message

passing. The core idea here is: “Do not communicate by sharing memory; instead, share mem-

ory by communicating.” Threads send messages to each other over channels, transferring data

ownership without needing complex locking mechanisms on the data itself.

Chapter 13 467

An alternative to shared state: Channels
Instead of multiple threads trying to access and modify the same piece of memory (protected by

locks), message passing involves one thread sending a piece of data to another thread. Once the

data is sent, the sending thread often gives up ownership (or sends a copy), and the receiving

thread takes ownership. This can lead to simpler designs because you’re thinking about data flow

rather than shared access patterns.

Rust’s standard library provides channels as the primary mechanism for message passing. A

channel can be thought of as a one-way conduit: you have a transmitter (or sender) end and a

receiver end. You send messages in one end, and they pop out the other.

Introduction to std::sync::mpsc channels (multiple producer,
single consumer)
The main channel implementation in Rust’s standard library is found in the std::sync::mpsc

module. mpsc stands for multiple producer, single consumer. This is what that means:

•	 Many threads (multiple producers) can send messages

•	 Only one thread (a single consumer) can receive messages

This is a common and useful pattern, for example, when you have multiple worker threads gen-

erating results that are all collected and processed by a single main or aggregator thread.

Creating a channel: channel()
You create a channel using the mpsc::channel() function. This function returns a tuple contain-

ing the sender and receiver: (Sender<T>, Receiver<T>), where T is the type of data you want to

send through the channel:

use std::sync::mpsc; // Import the mpsc module

fn main() {

 // Create a new channel. The type of data sent will be i32.

 let (tx, rx): (mpsc::Sender<i32>, mpsc::Receiver<i32>) =
mpsc::channel();

 // tx is the Sender (transmitter)

 // rx is the Receiver

Concurrency and Parallelism468

 println!("Channel created successfully! Sender: {:?}, Receiver: {:?}",
tx, rx);

 // We'll see how to use tx and rx next.

}

The mpsc::channel() function is generic over the type of message T that will be sent. Here, we’ve

explicitly annotated that we want to send i32 values, so tx becomes an mpsc::Sender<i32> and

rx becomes an mpsc::Receiver<i32>. The println! shows their (opaque) debug representations.

Sending data with Sender<T>
The Sender<T> half of the channel has a send(value: T) method. This method takes ownership

of the value you’re sending and attempts to put it onto the channel. send() returns a Result<(),

SendError<T>>.

It will return Err if the receiver end of the channel has already been dropped (meaning no one

is listening anymore):

use std::sync::mpsc;

use std::thread;

use std::time::Duration;

fn main() {

 let (tx, rx): (mpsc::Sender<String>, mpsc::Receiver<String>) =
mpsc::channel();

 // Spawn a thread that will send messages

 let sender_thread_handle = thread::spawn(move || {

 let messages_to_send = vec![

 String::from("Greetings"),

 String::from("from"),

 String::from("the producer"),

 String::from("thread!"),

];

 for msg_content in messages_to_send {

 println!("Sender Thread: Preparing to send '{}'", msg_
content);

 // Send the message. send() takes ownership of msg_content.

 if tx.send(msg_content).is_err() {

Chapter 13 469

 // This error would occur if the receiver (rx) was
dropped.

 eprintln!("Sender Thread: Receiver has disconnected,
unable to send further messages.");

 break; // Exit the loop if we can't send

 }

 println!("Sender Thread: Message sent successfully.");

 thread::sleep(Duration::from_millis(200)); // Simulate some
work

 }

 println!("Sender Thread: All messages dispatched or receiver
gone.");

 });

 // Main thread will now try to receive.

 // The receiver (rx) is still in scope here.

 println!("Main Thread: Waiting for messages from sender thread...");

 for received_message in rx { // rx can be used as an iterator

 println!("Main Thread: Received: '{}'", received_message);

 }

 println!("Main Thread: Channel disconnected (all senders dropped).");

 // Wait for the sender thread to finish its execution completely

 sender_thread_handle.join().expect("Sender thread panicked!");

 println!("Main Thread: Sender thread has joined.");

}

•	 We establish a channel designed for String messages.

•	 The Sender end (tx) is moved into a newly spawned thread. This is a common pattern,

as you often want to send data from one thread to another.

•	 Inside the spawned thread, tx.send(msg_content) dispatches each String. Because send

consumes T by value, ownership of msg_content is transferred into the channel, making

it unavailable in the sending thread afterward.

•	 The if tx.send(...).is_err() check demonstrates how a sender can detect whether

the receiver is no longer available.

•	 In the main thread, we iterate over rx to receive messages. This loop will naturally end

when all senders (in this case, just tx in the spawned thread) are dropped.

Concurrency and Parallelism470

Receiving data with Receiver<T> (recv(), try_recv())
The Receiver<T> half has a couple of primary methods for getting messages:

•	 recv(): This method will block the current thread’s execution until a message becomes

available on the channel:

•	 It returns a Result<T, RecvError>

•	 Ok(value) means a message was successfully received

•	 Err(RecvError) means the channel has closed because all senders have been

dropped (so no more messages will ever arrive)

•	 try_recv(): This method is non-blocking. It attempts to receive a message immediately:

•	 It returns a Result<T, TryRecvError>

•	 Ok(value) if a message was available

•	 Err(TryRecvError::Empty) if the channel is currently empty but still open

•	 Err(TryRecvError::Disconnected) if the channel is empty and all senders have

been dropped

A Receiver<T> can also be used directly as an iterator, which will yield messages until the channel

is empty and disconnected. This is often the most idiomatic way to process all messages:

use std::sync::mpsc;

use std::thread;

use std::time::Duration;

fn main() {

 let (tx_main, rx_main): (mpsc::Sender<String>, mpsc::Receiver<String>)
= mpsc::channel();

 // Clone the sender to demonstrate multiple producers

 let tx_producer1 = tx_main.clone();

 // Producer thread 1

 let handle1 = thread::spawn(move || {

 tx_producer1.send("Message Alpha from Producer 1".to_string()).
unwrap();

 thread::sleep(Duration::from_millis(150));

 tx_producer1.send("Message Beta from Producer 1".to_string()).

Chapter 13 471

unwrap();

 println!("Producer 1: All messages sent.");

 // tx_producer1 is dropped here when the thread ends

 });

 // Producer thread 2 (using the original tx_main, which was moved)

 let handle2 = thread::spawn(move || {

 tx_main.send("Message Gamma from Producer 2".to_string()).
unwrap();

 thread::sleep(Duration::from_millis(80));

 tx_main.send("Message Delta from Producer 2".to_string()).
unwrap();

 println!("Producer 2: All messages sent.");

 // tx_main is dropped here when the thread ends

 });

 println!("Main Thread (Consumer): Waiting for messages from
producers...");

 /* Using rx_main as an iterator in a for loop is a very clean and
idiomatic way to receive all messages. However, it's important to
understand how this loop behaves, as it's different from iterating over
a Vec. This loop will block if the channel is temporarily empty and wait
for the next message to arrive. It does not stop just because the channel
is empty. The loop will only terminate and allow the program to continue
to the next line when all Senders (tx and tx1 in our example) have been
dropped, which signals that no more messages will ever be sent.

 */

 for received_message_content in rx_main {

 println!("Main Thread (Consumer): Received: '{}'", received_
message_content);

 }

 println!("Main Thread (Consumer): Channel disconnected, all producers
have finished.");

 // Ensure both producer threads have completed their execution

 handle1.join().expect("Producer 1 thread panicked!");

Concurrency and Parallelism472

 handle2.join().expect("Producer 2 thread panicked!");

 // Example demonstrating try_recv()

 let (tx_single_msg, rx_single_msg) = mpsc::channel::<i32>();

 // Attempt to receive when channel is empty

 match rx_single_msg.try_recv() {

 Ok(msg) => println!("try_recv (1): Unexpectedly got a message:
{}", msg),

 Err(mpsc::TryRecvError::Empty) => println!("try_recv (1): Channel
is confirmed empty."),

 Err(mpsc::TryRecvError::Disconnected) => println!("try_recv (1):
Channel is disconnected."),

 }

 // Send a message

 tx_single_msg.send(101).expect("Failed to send on single_msg
channel");

 // Attempt to receive again

 match rx_single_msg.try_recv() {

 Ok(msg) => println!("try_recv (2): Got the message: {}", msg), //
This will be executed

 Err(mpsc::TryRecvError::Empty) => println!("try_recv (2): Channel
is still empty (unexpected)."),

 Err(mpsc::TryRecvError::Disconnected) => println!("try_recv (2):
Channel is disconnected (unexpected)."),

 }

 // Drop the sender, then try_recv again

 drop(tx_single_msg);

 match rx_single_msg.try_recv() {

 Ok(msg) => println!("try_recv (3): Unexpectedly got a message
after drop: {}", msg),

 Err(mpsc::TryRecvError::Empty) => println!("try_recv (3): Channel
is empty after drop (unexpected)."),

Chapter 13 473

 Err(mpsc::TryRecvError::Disconnected) => println!("try_recv (3):
Channel correctly reported as disconnected."), // This

 }

}

•	 We create two producer threads. Note how tx_main.clone() is used to create tx_

producer1, allowing both threads to send to the same receiver (rx_main).

•	 In the main thread (the consumer), the line for received_message_content in rx_main

elegantly iterates through incoming messages. The rx_main receiver effectively acts as

an iterator in this context. It will block on each iteration until a new message arrives or

the channel is closed.

•	 This loop automatically terminates once all sender instances (tx_producer1 and tx_main

in their respective threads) have been dropped and no more messages can be sent.

•	 The try_recv() example demonstrates its non-blocking nature, return-

ing Err(TryRecvError::Empty) if no message is immediately available and

Err(TryRecvError::Disconnected) if the channel is closed.

Using channels for thread communication and
synchronization
Channels are not just for shuttling complex data around; they are also a powerful tool for basic

synchronization and coordinating the flow of work between threads:

•	 Ownership transfer: A beautiful aspect of Rust’s channels is that when you send data via

sender.send(data), ownership of data is transferred to the receiving end. This inherently

avoids many of the complexities and potential pitfalls of shared mutable state because

the data isn’t shared in the traditional sense; it’s moved.

•	 Signaling: You can send simple “signal” messages. For example, Sender<()>::send(())

(sending the unit type ()) can be used to indicate that a particular task is complete, an

event has occurred, or a thread is ready to proceed.

Concurrency and Parallelism474

•	 Backpressure (bounded channels): While mpsc::channel() creates an unbounded chan-

nel (it can theoretically queue an infinite number of messages, limited only by system

memory), the mpsc module also provides mpsc::sync_channel(bound_size). A sync_

channel is bounded; it can only hold up to bound_size messages. If a sender tries to send

a message to a full bounded channel, the send() call will block until the receiver makes

space by consuming messages. This naturally creates “backpressure,” preventing a fast

producer from overwhelming a slower consumer.

use std::sync::mpsc;

use std::thread;

use std::time::Duration;

fn main() {

 // Channel for the main thread to signal the worker to start

 let (start_tx, start_rx) = mpsc::channel::<()>(); // Using unit
type for a pure signal

 // Channel for the worker to send its result back to the main
thread

 let (result_tx, result_rx) = mpsc::channel::<String>();

 let worker_handle = thread::spawn(move || {

 println!("Worker Thread: Initialized and waiting for the
green light...");

 // Block until a () signal is received on start_rx

 start_rx.recv().expect("Failed to receive start signal from
main thread.");

 println!("Worker Thread: Green light received! Performing
complex task...");

 thread::sleep(Duration::from_secs(1)); // Simulate some work

 let computation_result = "Task completed successfully by
worker!".to_string();

 // Send the result back to the main thread

 result_tx.send(computation_result).expect("Failed to send
result to main thread.");

 println!("Worker Thread: Result sent, finishing up.");

 });

Chapter 13 475

 println!("Main Thread: Performing some setup before signaling
worker...");

 thread::sleep(Duration::from_millis(500)); // Simulate setup
work

 println!("Main Thread: Setup complete. Sending start signal to
worker...");

 start_tx.send(()).expect("Failed to send start signal to
worker."); // Send the () signal

 // Block and wait for the worker thread to send back its result

 println!("Main Thread: Waiting for result from worker...");

 let worker_output = result_rx.recv().expect("Failed to receive
result from worker.");

 println!("Main Thread: Received from worker: '{}'", worker_
output);

 // Ensure the worker thread has fully completed its execution

 worker_handle.join().expect("Worker thread panicked during
execution!");

 println!("Main Thread: Worker thread has joined. Program
exiting.");

}

•	 We employ two distinct channels: start_tx/start_rx enables the main thread to signal

the worker when it’s okay to commence its primary task. result_tx/result_rx allows

the worker thread to transmit its computational result back to the main thread.

•	 The worker thread’s call to start_rx.recv().expect(...) is a blocking operation. The

worker will pause at this line until the main thread dispatches a message (even an empty

() “unit type” message, which is perfect for pure signals) on start_tx.

•	 This mechanism allows the main thread to perform preliminary setup or wait for specific

conditions before “unleashing” the worker thread.

•	 Conversely, the result_rx.recv().expect(...) call in the main thread blocks it until

the worker thread completes its task and sends back the outcome via result_tx.

Concurrency and Parallelism476

Message passing via channels provides a structured and often easier-to-reason-about approach

to concurrency compared to direct shared-state synchronization, especially when you need a

clear transfer of data ownership or want to coordinate distinct phases of work between threads.

It aligns beautifully with Rust’s core ownership principles.

While operating system threads are a powerful tool for running code in parallel, they can be inef-

ficient for applications that manage thousands of tasks that are mostly waiting, such as network

connections. To handle these common I/O-bound scenarios, Rust provides another model for

concurrency: asynchronous programming with async/await.

A glimpse into asynchronous programming with
async/await
So far in this chapter, we’ve focused on concurrency using operating system threads. Threads

are a powerful way to run multiple pieces of code in parallel or manage blocking tasks. However,

operating system threads aren’t always the most efficient solution, especially when dealing with

a very large number of tasks that spend most of their time waiting for external events, such as

network I/O.

This is where asynchronous programming, often using Rust’s async/await syntax, offers an

alternative approach.

When threads aren’t always the best fit (I/O-bound tasks
versus CPU-bound tasks)
Operating system threads come with some overhead:

•	 Context switching: When the operating system switches execution from one thread to

another, there’s a cost involved in saving the state of the current thread and loading the

state of the next

•	 Memory: Each thread typically has its own stack, which consumes memory

For CPU-bound tasks (tasks that are busy doing computations, such as complex calculations or

data processing), using a number of threads roughly equal to the number of CPU cores is often

optimal. The overhead of threads is usually acceptable because the threads are doing significant

work.

Chapter 13 477

However, for I/O-bound tasks (tasks that spend most of their time waiting for external operations

such as network requests, database queries, or filesystem operations to complete), operating

system threads can be less efficient. If you have thousands of network connections to manage,

creating a separate operating system thread for each one could overwhelm your system due to

memory usage and context-switching overhead. Many of these threads would just be sitting idle,

waiting for data to arrive.

Asynchronous programming provides a way to handle many such I/O-bound tasks concurrently

on a smaller number of operating system threads (often just one per CPU core, or even a single

thread for the whole async part of an application). It does this by allowing tasks to “yield” control

when they encounter a blocking operation, letting other tasks run on the same thread until the

awaited operation is ready to proceed. This is a form of cooperative multitasking.

Brief overview of the async and await keywords
Rust provides the async and await keywords to make writing asynchronous code feel more like

writing regular synchronous code:

•	 async fn: When you declare a function with async fn, it doesn’t execute its body im-

mediately when called. Instead, it returns a value that implements the Future trait (e.g.,

Future<Output = T>). Future is a placeholder for a value that will be computed at some

point in the... well, future! It represents an operation that might not be complete yet.

•	 .await: Inside an async fn (or an async block), you can use the .await operator on a

Future. When execution reaches an .await, if the Future is not yet ready (e.g., the net-

work data hasn’t arrived), instead of blocking the entire operating system thread, the

async function pauses its execution at that point. Control is yielded back to an “executor”

or “runtime,” which can then run other async tasks that are ready. When the awaited

Future eventually completes, the runtime will schedule the paused async function to

resume from where it left off.

Let’s see a basic example.

First, update your Cargo.toml file, adding the dependency from future:

[dependencies] futures = "0.3"

use std::future::Future;

use std::time::Duration;

Concurrency and Parallelism478

use std::thread::sleep; // We'll use this for a simple blocking sleep

// We need an executor to run our async functions.

// `block_on` is a simple one from the `futures` crate.

use futures::executor::block_on;

/// This is an async function. It returns a `Future`.

async fn fetch_simulated_data(task_id: u32) -> String {

 println!("Task {}: Starting fetch...", task_id);

 // In a real async function, we would .await an async operation here.

 // Since we don't have a full async runtime, we can't use an async
sleep.

 // We'll just use a normal sleep to simulate work *within* this
Future.

 // This is NOT true async, but it shows the structure.

 sleep(Duration::from_secs(1));

 println!("Task {}: Finished fetch.", task_id);

 format!("Data from task {}", task_id)

}

/// This is our main async logic.

async fn process_tasks_sequentially() {

 println!("Starting sequential processing...");

 // We call and .await the first task.

 let data1 = fetch_simulated_data(1).await;

 println!("Main: Received first data: '{}'", data1);

 // Only *after* the first task is complete, we call and .await the
second.

 let data2 = fetch_simulated_data(2).await;

 println!("Main: Received second data: '{}'", data2);

 println!("Sequential processing finished.");

}

Chapter 13 479

/// We can't use `#[tokio::main]`, so we use a standard `fn main()`.

fn main() {

 // `process_tasks_sequentially()` creates a Future, but doesn't run
it.

 // `block_on` is an executor that takes a Future and blocks the

 // current thread until that Future (and any futures it .await's)
completes.

 block_on(process_tasks_sequentially());

}

The following is the output:

Figure 13.5: Sequential task output

•	 futures::executor::block_on: This is the key. It’s a simple function that acts as a mini-

mal executor. It takes one Future (the one returned by process_tasks_sequentially())

and blocks the main thread while it runs that Future to completion.

•	 async fn and .await: The syntax inside process_tasks_sequentially is the same. It

calls fetch_simulated_data(1) and gets a Future, and the .await keyword waits for

that Future to finish before moving on. block_on is what’s actually driving this process.

•	 A note on sleep: Notice that we’re still using std::thread::sleep. In this simple block_on

executor, this will block the single thread it’s running on. This example demonstrates the

async/await syntax and structure, but to get the real non-blocking behavior (where one

task pausing allows another to run), you need a more advanced, multi-threaded runtime,

such as tokio or async-std.

This example is the absolute simplest, runnable way to show async/await in action without

pulling in a large runtime.

Concurrency and Parallelism480

Async runtimes (such as tokio or async-std)
A very important point is that Rust’s async/await syntax itself only defines the structure of asyn-

chronous operations (the futures).

It doesn’t actually execute them or manage the switching between tasks.

To run async code, you need an asynchronous runtime (also called an “executor”).

The async runtime is a library that does the following:

•	 Takes top-level futures (such as the one returned by calling process_data() in our ex-

ample)

•	 Polls these futures to see whether they can make progress

•	 When a future is awaiting an operation and cannot proceed, the runtime suspends it and

runs other futures that are ready

•	 Manages waking up suspended futures when their awaited operations complete (e.g.,

network data arrives)

Popular async runtimes in the Rust ecosystem include the following:

•	 tokio: A widely used, powerful runtime focused on network applications and providing

a rich ecosystem of utilities for async I/O, timers, synchronization, and so on

•	 async-std: A runtime that aims to provide async equivalents of std library APIs, making

the transition to async feel familiar

•	 Others exist for specific use cases (e.g., embedded systems or WebAssembly)

You typically add one of these runtimes as a dependency to your Cargo.toml and use a macro

they provide (such as #[tokio::main] or #[async_std::main]) to set up your main function to

run async code.

Let’s see an example with tokio.

First, you add the dependency in the Cargo.toml file:

[dependencies]

tokio = { version = "1", features = ["full"] }

Here is the example:

use tokio::time::{sleep, Duration};

/// This is an async function. When called, it returns a `Future`

Chapter 13 481

/// that will resolve to a String.

async fn fetch_simulated_data(task_id: u32) -> String {

 println!("Task {}: Starting fetch...", task_id);

 // This is an async-aware sleep.

 // Unlike `std::thread::sleep`, this does NOT block the whole thread.

 // It yields control back to the tokio runtime,

 // allowing other async tasks to run.

 sleep(Duration::from_secs(1)).await;

 println!("Task {}: Finished fetch.", task_id);

 format!("Data from task {}", task_id)

}

/// This function contains our main async logic.

async fn process_tasks_sequentially() {

 println!("Starting sequential processing...");

 // We call and .await the first task.

 // Our function's execution pauses here (non-blockingly)

 // until `fetch_simulated_data(1)` completes.

 let data1 = fetch_simulated_data(1).await;

 println!("Main: Received first data: '{}'", data1);

 // Only *after* the first task is complete, we call and .await the
second.

 let data2 = fetch_simulated_data(2).await;

 println!("Main: Received second data: '{}'", data2);

 println!("Sequential processing finished.");

}

/// The #[tokio::main] macro automatically:

/// 1. Creates a new Tokio runtime instance.

/// 2. Runs the `async fn main` on that runtime.

#[tokio::main]

async fn main() {

Concurrency and Parallelism482

 // We .await the future returned by our main logic function.

 process_tasks_sequentially().await;

}

The following is the output:

Figure 13.6: Sequential task output using tokio

As you can probably tell, asynchronous programming is a substantial topic with its own set of

concepts (such as futures, pinning, executors, streams, and wakers) and best practices. What

we’ve covered here is truly just a “glimpse” to make you aware of its existence and purpose.

While async/await can offer significant benefits for I/O-bound workloads and highly concurrent

services, it also introduces a different way of thinking about program flow and can have its own

complexities. For many applications, especially those that are CPU-bound or have a manageable

number of concurrent tasks, traditional operating system threads, as discussed earlier in this

chapter, are perfectly adequate and often simpler to reason about.

Consider async/await as another powerful tool in Rust’s concurrency toolkit, particularly suited

for scenarios demanding high levels of I/O concurrency. It’s definitely an area for further learning

once you’re comfortable with the fundamentals of Rust, including the threading and shared-state

concurrency models we’ve covered.

We’ve covered tools for concurrent programming, such as threads, locks, message passing, and

async/await. Let’s review key best practices to write safe, efficient, and maintainable concurrent

code.

Best practices for concurrent Rust
Writing concurrent code can be incredibly powerful, but it also comes with its own set of chal-

lenges. While Rust’s compiler does an amazing job at preventing entire classes of concurrency

bugs (especially data races), good design and thoughtful practices are still crucial for writing

concurrent programs that are not only safe but also correct, efficient, and maintainable.

Chapter 13 483

Prefer message passing for simplicity where possible
We’ve seen two main models for concurrency: shared-state (using Arc, Mutex, and RwLock) and

message passing (using channels such as mpsc). While both are powerful, message passing often

leads to simpler and easier-to-reason-about code, especially for complex interactions:

•	 Clear ownership transfer: When data is sent over a channel, ownership transfers to avoid

shared mutable state complexities, so only one thread “owns” the data at a time, either

the sender before sending or the receiver after

•	 Reduced lock contention: Relying less on locks can reduce the chances of performance

bottlenecks due to lock contention (many threads waiting for the same lock) and can

make deadlocks less likely (though not impossible if multiple channels are involved in

complex ways)

•	 Easier to reason about: Thinking about data flowing through channels can often be more

intuitive than tracking which thread has locked which piece of shared memory

When should you consider message passing first?

•	 When tasks can be largely independent and only need to communicate results or signals

•	 When you want to clearly define the “owner” of data at each stage of a process

•	 When you want to avoid the complexities of fine-grained locking

Of course, shared state with locks is sometimes necessary or more efficient, especially for data

that truly needs to be accessed and modified by many threads frequently (such as a shared cache).

But as a general guideline, if you can model your concurrency with message passing without

significant contortions, it’s often a good path to explore first. “Share memory by communicating”

is a good mantra.

Keep critical sections (locks) short and sweet
When you do use locks (such as Mutex or RwLock), the section of code that executes while a lock is

held is often called a critical section. It’s vital to keep these critical sections as short as possible:

•	 Minimize contention: The longer a thread holds a lock, the longer other threads might

have to wait to acquire it. This waiting is called lock contention and can severely degrade

performance in a multithreaded application.

Concurrency and Parallelism484

•	 Reduce deadlock risk: Holding multiple locks simultaneously increases the risk of dead-

locks. If you can perform operations by acquiring only one lock at a time, or by ensuring

all threads acquire multiple locks in the exact same order, you reduce this risk. Holding

a lock for a very short duration means you’re less likely to be holding it while trying to

acquire another.

This is what to do inside a lock:

•	 Perform only the absolutely necessary operations on the shared data.

•	 Avoid long-running computations and, especially, any I/O operations (such as network

calls or file access) while holding a lock. These operations can block for an unpredictable

amount of time, starving other threads.

use std::sync::{Arc, Mutex};

use std::thread;

use std::time::Duration;

struct SharedData {

 value: i32,

 // some other complex data

}

fn main() {

 let shared_data = Arc::new(Mutex::new(SharedData { value: 0 }));

 let mut handles = vec![];

 for i in 0..2 {

 let data_clone = Arc::clone(&shared_data);

 let handle = thread::spawn(move || {

 // --- BAD: Long operation inside lock ---

 // let mut data_guard = data_clone.lock().unwrap();

 // data_guard.value += i + 1;

 // println!("Thread {}: Updated value to {}", i, data_
guard.value);

 // thread::sleep(Duration::from_secs(1)); // Simulate
long work WHILE HOLDING LOCK

 // println!("Thread {}: Releasing lock after long
work.", i);

 // Drop(data_guard) happens here

Chapter 13 485

 // --- GOOD: Prepare data, then short lock ---

 let value_to_add = i + 1; // Prepare computation outside
lock

 let mut data_guard = data_clone.lock().unwrap(); //
Acquire lock

 data_guard.value += value_to_add; // Quick update

 println!("Thread {}: Updated value to {}. Releasing
lock.", i, data_guard.value);

 // Lock released as data_guard goes out of scope
immediately

 // If more work needs to be done with the new value, but
doesn't need the lock:

 let current_value_snapshot = data_guard.value; // Copy
value out if needed

 drop(data_guard); // Explicitly drop guard to release
lock early if needed

 // Now do other work without holding the lock

 thread::sleep(Duration::from_secs(1));

 println!("Thread {}: Finished other work with snapshot
value {}", i, current_value_snapshot);

 });

 handles.push(handle);

 }

 for handle in handles {

 handle.join().unwrap();

 }

 println!("Final value: {}", shared_data.lock().unwrap().value);

}

The GOOD pattern in the example shows calculating value_to_add before acquiring the lock. The

lock is then held only for the brief period needed to update shared_data.value. If subsequent

operations don’t require the lock, the MutexGuard can be dropped (explicitly with drop() or im-

plicitly when it goes out of scope) to release the lock sooner.

This minimizes the time other threads might be blocked.

Concurrency and Parallelism486

Be mindful of lock ordering to avoid deadlocks
As briefly mentioned when discussing Mutex<T>, deadlocks are a serious concern when threads

need to acquire multiple locks. A deadlock occurs when two or more threads are each waiting for

a resource held by another thread in the group, forming a cycle of dependencies.

The most common way to prevent deadlocks is to establish a global, consistent order for acquir-

ing locks. If all threads that need to acquire, say, Lock A and Lock B always acquire Lock A before

attempting to acquire Lock B, a deadlock between A and B cannot occur.

•	 Identify all locks that might be acquired together

•	 Assign a unique order to these locks (e.g., based on memory address, a unique ID, or simply

an arbitrary but consistent convention)

•	 Enforce that all threads acquire these locks strictly in that predefined order

If you cannot guarantee a strict order, you might need to use more advanced techniques such

as try_lock() (which attempts to acquire a lock without blocking and returns immediately if it

can’t), timeouts on lock acquisition, or deadlock detection algorithms, but these are more com-

plex. Sticking to a consistent locking order is the simplest and often most effective prevention.

Trust the compiler: Leverage Rust’s safety guarantees
One of Rust’s biggest selling points for concurrency is its “fearless concurrency” promise, largely

delivered by the compiler. The ownership system, borrowing rules, and the Send and Sync marker

traits play a huge role here:

•	 Send trait: A type T is Send if it’s safe to transfer ownership of T to another thread. Most

common types are Send. Notable examples of types that are not Send are Rc<T> and

RefCell<T>.

•	 Sync trait: A type T is Sync if it’s safe to have an immutable reference, &T, shared across

multiple threads. Most types that are Send are also Sync. For example, RefCell<T> is

Send but not Sync (you can send it to another thread, but then only that thread can use

it; you can’t share &RefCell<T> across threads and have them all call borrow_mut() be-

cause its internal checks aren’t atomic). Mutex<T> is Sync because it internally handles

synchronized access.

Chapter 13 487

Figure 13.7: Summary of Send and Sync trait implementations for common Rust types

The compiler checks these traits automatically. If you try to send a non-Send type to another

thread, or share a non-Sync type via Arc<&T>, your code won’t compile. This is a good thing! The

compiler is preventing potential data races.

Listen to the compiler. When it gives you errors related to Send, Sync, or lifetimes in a concurrent

context, it’s usually pointing to a genuine safety issue. Don’t try to fight it with unsafe code un-

less you are an expert and know exactly what you’re doing. Instead, rethink your data sharing

or ownership strategy. Often, this means using Arc for shared ownership, Mutex or RwLock for

interior mutability of shared data, or switching to message passing.

Consider the granularity of your parallelism
When breaking down work for threads, think about the “granularity” of the tasks:

•	 Fine-grained parallelism: Breaking work into many very small tasks:

•	 Pros: Can potentially utilize cores very effectively if tasks are truly independent

•	 Cons: The overhead of creating threads, managing them, and synchronizing/com-

municating can outweigh the benefits if the tasks are too small

Concurrency and Parallelism488

•	 Coarse-grained parallelism: Breaking work into fewer, larger tasks:

•	 Pros: Less overhead from thread management and synchronization

•	 Cons: Might not utilize all cores effectively if one task is much longer than others,

or if there aren’t enough tasks to keep all cores busy

Finding the right balance depends on the nature of your problem. If tasks involve significant

computation, coarser grains might be fine. If tasks are short but numerous and can be done in-

dependently, a thread pool or an async approach might be better than spawning a new operating

system thread for each tiny task. Tools such as thread pools (from crates such as Rayon for data

parallelism, or manually managed pools) can help manage the overhead of many short-lived

tasks by reusing a fixed number of worker threads.

By keeping these practices in mind, you can write concurrent Rust code that is not only safe

(thanks to the compiler) but also efficient, maintainable, and less prone to common concurrency

pitfalls such as deadlocks and excessive contention.

Summary
Our exciting adventure into the world of concurrent programming with Rust! We’ve discov-

ered how Rust tackles the sometimes intimidating challenge of making programs do multiple

things at once, but with a confidence that sets it apart from many other languages. This idea of

“fearless concurrency” isn’t just a catchy phrase; it’s a wonderful result of Rust’s ownership and

type systems working harmoniously to prevent many common concurrency bugs right during

compilation. While concurrency can be tricky, Rust offers robust and surprisingly user-friendly

tools to help manage that complexity with ease.

Let’s briefly recap what we’ve explored:

•	 Fundamentals of concurrency: We started by distinguishing between concurrency (deal-

ing with multiple tasks) and parallelism (doing multiple tasks simultaneously), and

discussed the benefits such as improved performance and responsiveness, alongside the

classic challenges such as race conditions and deadlocks. We highlighted Rust’s core

promise: to help prevent many of these issues before your code even runs.

•	 Working with threads: We learned how to create new execution paths using

std::thread::spawn, how to safely move data into these threads with move closures,

and the importance of waiting for threads to complete their work using JoinHandle and

its join() method.

Chapter 13 489

•	 Safe data sharing: A major focus was on how to share data between threads without

inviting chaos:

•	 Arc<T> emerged as the way to enable multiple threads to share ownership of

read-only data (or data that will be mutated via interior mutability).

•	 Mutex<T> and its sibling RwLock<T> provide mechanisms to allow controlled, syn-

chronized mutable access to shared data, preventing data races by ensuring only

one writer (or multiple readers for RwLock) can access the data at any given time.

The common Arc<Mutex<T>> pattern became clear.

•	 Message passing with channels: We explored an alternative to shared-state concurrency:

message passing using std::sync::mpsc channels. This “share memory by communicat-

ing” approach involves sending data (transferring ownership) between threads via the

sender and receiver ends of a channel, often leading to simpler designs.

•	 A glimpse into async: We took a very brief peek at asynchronous programming with

async/await, understanding it as a powerful technique for handling many I/O-bound

tasks efficiently on a small number of threads, with the help of async runtimes such as

tokio and async-std.

•	 Best practices: Finally, we covered essential best practices for concurrent programming

in Rust, such as preferring message passing where it simplifies design, keeping locked

critical sections short, being mindful of lock ordering to avoid deadlocks, and trusting

Rust’s compiler to guide us toward safe patterns.

Mastering concurrency is a very important step in becoming a professional Rust developer.

The tools and guarantees Rust provides make it a uniquely suitable language for building high-per-

formance, concurrent systems with a degree of safety that is hard to match. As you build more

complex applications, these concepts will become increasingly valuable.

Questions and assignment
Questions

1.	 What is the main difference between concurrency and parallelism?

2.	 What function from std::thread do you call to create a new thread, and what keyword

must you use on its closure to pass owned data (such as a string) to it?

3.	 What is JoinHandle and what is the purpose of its .join() method?

4.	 If a spawned thread panics, does the main thread also panic? How does the .join() meth-

od inform you of a panic?

Concurrency and Parallelism490

5.	 Why is Arc<T> needed for sharing ownership across threads, while Rc<T> (from

Chapter 11) cannot be used?

6.	 What is the primary purpose of Mutex<T>? What does its .lock() method return, and

what happens automatically when that returned object goes out of scope?

7.	 What is the most common data type pattern (using two smart pointers) for safely sharing

a mutable value (such as a counter) across multiple threads?

8.	 Briefly, what is the main difference between Mutex<T> and RwLock<T>? In what scenario

would RwLock<T> be more performant?

9.	 What does mpsc stand for in std::sync::mpsc? What is the main difference between the

Sender<T> and Receiver<T> types?

10.	 What is a data race, and how does Rust’s compiler (specifically the Send and Sync traits)

prevent them in safe code?

Assignment: Concurrent file word counter
For this assignment, you’ll build a command-line application that takes one or more file paths as

arguments and counts the total occurrences of each word across all files, performing the counting

for each file in parallel.

1.	 Project setup:

•	 Create a new binary project: cargo new concurrent_word_counter

•	 Add the clap crate (or argh, or just use std::env::args()) for command-line

argument parsing to get file paths

2.	 Core logic:

•	 The main function will get a list of file paths from the command-line arguments.

•	 For each file path, do the following:

Note

To complete this assignment, you’ll need to combine concepts from sev-

eral chapters. You’ll need to read files (which we covered in Chapter 12 us-

ing std::fs and std::io::BufReader), and you’ll be using concurrency

tools from this chapter, such as std::thread::spawn for the workers and

std::sync::mpsc for sending results. You’ll also likely want to use a Hash-

Map (from std::collections::HashMap) to store the word counts.

Chapter 13 491

•	 Spawn a new thread dedicated to processing that file

•	 The thread should do the following:

•	 Read the content of the file (handle potential std::io::Errors).

•	 Convert the content to lowercase.

•	 Split the content into words (you can define what a “word” is: split_

whitespace is a good start, but you might want to filter out punctuation).

•	 Count the frequency of each word within that file, storing it in a local

HashMap<String, u32>.

•	 Send this local HashMap back to the main thread using an mpsc channel.

•	 The main thread should do the following:

•	 Create an mpsc channel before spawning threads. Sender clones will be

moved into each thread.

•	 Collect all the JoinHandles from the spawned threads.

•	 Collect all the partial HashMaps sent back by the worker threads via the

receiver end of the channel. (Remember to receive for each thread you

spawned.)

•	 Aggregate all the partial HashMaps into a single, final HashMap<String,

u32> that contains the total word counts across all files.

•	 Wait for all threads to complete using join().

•	 Print the top N (e.g., 10) most frequent words and their counts from the

final aggregated map.

3.	 Error handling:

•	 If a file cannot be read, the respective thread should send an error indication back

to the main thread (e.g., wrap the HashMap in a Result<HashMap<_,_>, String>),

or the main thread can log an error if recv() fails for a particular thread’s expected

result. For simplicity, you could have threads print an error message and send an

empty HashMap if they fail to read their file.

Concurrency and Parallelism492

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

14
Rust for Web Development:
Building Full-Stack Applications

Now, let’s dive into one of Rust’s most practical and exciting applications.

This chapter explains why the Rust Language is a great choice for building modern, fast, reliable

web applications. I believe it’s one of the best ways to learn Rust: web development!

We’ll take a full-stack approach, starting with a quick review of the fundamental web concepts,

then moving on to building a backend API with the Axum framework.

We’ll also connect this API to a PostgreSQL database using Docker (although we will introduce

Docker properly in Chapter 16) and sqlx, and conclude with a fun peek at how Rust can even power

frontend components using WebAssembly (Wasm).

Let’s start!

Core web concepts: a quick refresher
Before we begin creating our first Axum server, let’s take a moment to review some key technol-

ogies that form the foundation of the web.

This quick refresher on HTTP, JSON, and RESTful APIs will help ensure we’re all on the same page.

If you’re already familiar with these basics, you can proceed to the next section, Getting started

with Axum.

Rust for Web Development: Building Full-Stack Applications494

The HTTP protocol: requests, responses, and methods
At its core, the web is powered by the Hypertext Transfer Protocol (HTTP).

It’s a simple request-response system: a client, such as your browser or Rust application, makes

a request to a server, which then responds with the information you need.

This process happens seamlessly, making the browsing experience smooth and easy.

Requests and responses
What is an HTTP request?

At its core, an HTTP request consists of the following:

•	 A method (or “verb”) such as GET, POST, PUT, or DELETE, indicating the desired action.

•	 A path (or URL) identifying the resource on the server (e.g., /users/123).

•	 Headers, which are key-value pairs of metadata (e.g., Content-Type: application/json).

•	 An optional body, which contains data being sent to the server (e.g., a JSON payload).

An HTTP response consists of the following:

•	 A status code (e.g., 200 OK, 404 Not Found).

•	 Headers (e.g., Content-Length: 1234).

•	 An optional body, which contains the data being sent back to the client (e.g., an HTML

page or JSON data).

Common HTTP methods
In this book, we’ll focus on the four primary HTTP methods used for CRUD (Create, Read, Up-

date, Delete) operations:

•	 GET: Used to Read data from a resource. It should be safe and idempotent (calling it

multiple times has the same result as calling it once).

•	 POST: Used to Create a new resource. The data for the new resource is sent in the request

body.

•	 PUT or PATCH: Used to Update an existing resource. PUT typically replaces the entire

resource, while PATCH (which we’ll use) applies a partial update.

•	 DELETE: Used to Delete a resource.

Chapter 14 495

Status codes
The server’s response status code is important for the client to understand what happened. The

following list is not exhaustive, but the most important categories are as follows:

•	 2xx (Successful): The request was successful.

•	 200 OK: The standard response for a successful GET, PUT, or PATCH

•	 201 Created: The standard response for a successful POST that created a new

resource

•	 204 No Content: A successful response that has no body (often used for DELETE)

•	 4xx (Client Error): The client did something wrong.

•	 400 Bad Request: The request was malformed (e.g., invalid JSON)

•	 404 Not Found: The requested resource (e.g., /users/999) doesn’t exist

•	 5xx (Server Error): The server failed to fulfill a valid request.

•	 500 Internal Server Error: A generic “something went wrong” on the server (e.g.,

a database connection failed, or our code panicked)

Data formats: JSON and RESTful API design
When our client and server exchange data in the request and response bodies, they need to agree

on a format.

JSON for APIs
The most common data format for modern web APIs is JSON (JavaScript Object Notation). It’s

a lightweight, human-readable format that easily maps to Rust structs and enums.

We’re excited to use the serde crate, a powerful tool that helps us automatically convert our Rust

structs into JSON responses and turn JSON requests back into structs with ease.

Brief on RESTful API design principles
We will be building a RESTful API. This is an architectural style that uses these web fundamentals

in a predictable way.

Rust for Web Development: Building Full-Stack Applications496

Instead of creating custom function names in our URLs (such as /getUserById), we will identify

“resources” (such as /todos) and use standard HTTP methods to operate on them.

1.	 Resources and path parameters: We use the URL path to identify what we are interacting

with. If we need to target a specific item, we use a path parameter (usually an ID):

•	 GET /todos: Get a list of all todos

•	 POST /todos: Create a new todo

•	 GET /todos/1: Get the specific todo with ID 1

•	 PATCH /todos/1: Update the todo with ID 1

•	 DELETE /todos/1: Delete the todo with ID 1

2.	 Refining results with query parameters: Sometimes, we need to provide extra instruc-

tions to the server, such as filtering a list, searching, or pagination, without changing the

resource we are accessing. For this, we use query parameters (or “query strings”).

These appear at the end of the URL, following a ? symbol, and are formatted as key-value pairs:

•	 GET /todos?completed=true: Get a list of todos, but filter to show only the completed ones

•	 GET /todos?sort=title: Get all todos, sorted alphabetically by title

•	 GET /todos?page=2&limit=10: Get the second page of results, limiting the list to 10 items

This combined approach – using path parameters for identity and query parameters for filtering

– helps make our API predictable, standard, and easy for other developers to understand and use.

Getting started with Axum
With our web fundamentals refreshed, it’s time to build our first web server.

We’ll be using Axum, a modern, ergonomic web framework that’s part of the Tokio ecosystem.

Axum is known for its simplicity, powerful “extractor” system (how it gets data from requests),

and composable router.

This section guides you through setting up a new Rust project for Axum and getting a basic “Hello,

Web!” server up and running.

Project setup and dependencies
First, let’s create a new Rust binary project using Cargo.

Chapter 14 497

Open your terminal and run the following:

cargo new my_axum_server --bin

cd my_axum_server

Axum is built on top of Tokio, an asynchronous runtime. Async/await in Rust requires a runtime

to execute asynchronous code, and Axum is designed to work perfectly with Tokio.

We need to add both axum and tokio to our Cargo.toml dependencies.

We’ll enable the “full” feature for tokio for this chapter, which gives us the #[tokio::main]

macro and everything else we need.

Here’s the Cargo.toml snippet:

[dependencies]

axum = "0.8" # Check crates.io for the latest

tokio = { version = "1", features = ["full"] }

After saving Cargo.toml, run cargo build to download and compile these crates.

“Hello, Web!” – Your first Axum server (Getting started with
Axum)
Writing a “Hello, World!” server in Axum involves two main parts:

1.	 A handler function that defines what to do when a request is received.

2.	 A main function that sets up the router, binds to an address, and starts the server.

Let’s look at the minimal code to get this running.

src/main.rs snippet (handler):

// This is a "handler" function.

// It's an async function that returns something that can be

// converted into an HTTP response. A simple &str works!

async fn hello_world_handler() -> &'static str {

 "Hello, Web!"

}

Rust for Web Development: Building Full-Stack Applications498

Conceptual src/main.rs snippet (main function):

// We need the tokio::main macro to run our async main function

#[tokio::main]

async fn main() {

 // build our application with a single route

 let app = Router::new().route("/", get(hello_world_handler));

 // run it

 let listener = tokio::net::TcpListener::bind("127.0.0.1:8080")

 .await

 .expect("Failed to bind to address 127.0.0.1:8080");

 println!(" Server listening on http://{}", listener.local_addr().
unwrap());

 axum::serve(listener, app)

 .await

 .expect("Failed to start server");

}

Our project should look like this:

Figure 14.1: The complete src/main.rs file for the “Hello, Web!” server

Chapter 14 499

If you were to combine these snippets and run cargo run, you could visit http://127.0.0.1:8080

in your browser and see Hello, Web!.

Figure 14.2: Visiting http://127.0.0.1:8080 in the browser displays the response from our handler

Understanding handlers and the router
The preceding example introduced the two most important concepts in Axum: handlers and the

router.

Defining handler functions
A handler is simply an asynchronous function (async fn) that takes zero or more arguments

(called “extractors,” which we’ll look at soon) and returns a type that can be converted into an

HTTP response (a type that implements Axum’s IntoResponse trait).

The hello_world_handler handler is the simplest possible handler:

async fn hello_world_handler() -> &'static str {

 "Hello, Web!"

}

It doesn’t require any arguments and returns &'static str, which Axum conveniently converts

into a 200 OK response with your string as the body.

Handlers are the heart of your application, where all your main logic will be happily organized.

Registering routes with Router::route
Think of the router as the heart of your Axum app.

Its main role is to guide incoming HTTP requests, based on their path and method, to the right

handler functions.

http://127.0.0.1:8080

Rust for Web Development: Building Full-Stack Applications500

You can create a router easily by chaining together .route() methods, making your setup smooth

and straightforward.

use axum::{routing::get, Router};

// Assume we have these two handlers defined:

async fn root_handler() -> &'static str { "This is the root." }

async fn about_handler() -> &'static str { "This is the about page." }

// Create a router that maps paths to handlers

let app = Router::new()

 .route("/", get(root_handler)) // Handles GET /

 .route("/about", get(about_handler)); // Handles GET /about

Here, routing::get() is a function that creates a “method router” for the GET HTTP method.

Axum provides similar functions for other methods, such as POST, PUT, DELETE, and so on.

Here is the complete, runnable src/main.rs file that puts all these pieces together, including

multiple routes, so you have a fully functioning example to start with.

use axum::{

 routing::get, // Used to create a router for the GET method

 Router,

};

use std::net::SocketAddr;

/// This is our first handler function for the root path (`/`).

/// It's an async function that returns a type implementing
`IntoResponse`.

/// A static string slice (`&'static str`) is one of the simplest.

async fn root_handler() -> &'static str {

 "Welcome to our Axum server!"

}

/// This is a second handler function for the `/hello` path.

async fn hello_handler() -> &'static str {

Chapter 14 501

 "Hello, Web!"

}

...

let app = Router::new()

 .route("/", get(root_handler)) // Handle requests to root

 .route("/hello", get(hello_handler)); // Handle requests to /hello

...

/// Refer to the GitHub repository for the complete code!

Building a RESTful API: an in-memory todo list
Now that we have a basic Axum server up and running, let’s work on something more practical:

building a RESTful API.

This is the foundation of many of today’s web applications, making it easy for clients such as web

browsers or mobile apps to communicate and share data seamlessly.

To keep our focus on the API logic, we’ll create a simple “todo” list application that stores its

data in memory. This way, we can get comfortable with handling HTTP methods, JSON data, and

shared state before we move on to adding a database.

For this more advanced example, let’s start a new project from scratch to keep everything tidy

and easy to understand.

Project setup for the API
Open your terminal and create a new binary Rust project.

We’ll also cd into it and immediately create the module files we’ll need for organization:

•	 models.rs (for our data structs)

•	 handlers.rs (for our API logic)

 Don’t forget to stop your current server because the next project will also use port

8080!

Rust for Web Development: Building Full-Stack Applications502

Let’s initialize the project by running some commands on the terminal (the two files can also be

created manually or with the help of an IDE).

cargo new todo_api --bin

cd todo_api

touch src/models.rs

touch src/handlers.rs

Next, open your Cargo.toml file and add axum, tokio, and serde (for JSON).

[package]

name = "todo_api"

version = "0.1.0"

edition = "2021"

[dependencies]

axum = "0.8"

tokio = { version = "1", features = ["full"] }

serde = { version = "1.0", features = ["derive"] }

Now we’re ready to define our data structures.

Defining data models with serde for JSON
First, we need to define the shape of our data. We’ll use Rust structs and serde to automatically

handle conversions to and from JSON.

We’ll define two structs in the src/models.rs file we just created: Todo for an existing item (which

has an ID) and NewTodo for the data a client sends to create one (which doesn’t include an ID yet).

use serde::{Deserialize, Serialize};

/// Represents a Todo item in the system.

#[derive(Debug, Serialize, Deserialize, Clone)]

pub struct Todo {

 pub id: u32,

 pub title: String,

 pub completed: bool,

}

Chapter 14 503

/// Represents the payload for creating a new Todo.

#[derive(Debug, Deserialize)]

pub struct NewTodo {

 pub title: String,

}

Here’s an explanation of the code:

•	 #[derive(Serialize, Deserialize)]: These macros from serde are key. Serialize

allows us to convert our Todo struct into JSON to send as a response. Deserialize allows

us to parse incoming JSON data from a request into our NewTodo struct.

•	 Clone: We derive Clone on Todo to make it easy to return copies of items from our in-mem-

ory store.

•	 NewTodo: We use a separate struct for creating a new todo because the client won’t know

the ID (the server will assign it), and we’ll set completed to false by default.

Remember to declare this new module in your src/main.rs file by adding pub mod models; at

the top.

Managing shared state
Our API needs a place to keep all our todo items organized.

For now, a simple in-memory Vec<Todo> will do the trick, but in a real app, we’d use a proper

database (no worries – we will do it later!).

One thing to keep in mind is that Axum, like most high-performance Rust web frameworks, runs

on an asynchronous runtime (Tokio). This means it can handle multiple requests simultaneously,

even with just a few threads.

To keep everything running smoothly and avoid data races when multiple requests attempt

to update our Vec simultaneously, we’ll need to use synchronization techniques to protect our

shared data.

Rust for Web Development: Building Full-Stack Applications504

Using Arc<Mutex<...>> for in-memory state
We will use a standard Rust concurrency pattern:

1.	 std::sync::Mutex: This “mutual exclusion” lock will wrap our Vec<Todo>. It ensures that

only one thread can get mutable access to the vector at any given moment.

2.	 std::sync::Arc: This is an “atomic reference counted” smart pointer. This allows our

mutex-protected Vec to be safely shared (co-owned) by multiple threads (i.e., Axum’s

worker threads).

We’ll define an AppState struct to hold this shared data, along with an atomic counter for gen-

erating new todo IDs.

Sharing state with the state extractor
Axum makes it very easy to share this AppState struct with all our handlers. We wrap our state

in an Arc (Axum’s State extractor works with Arc-wrapped types) and then add it to our router

using the .with_state() method.

Any handler can then “extract” this shared state by simply adding State<AppState> as one of

its arguments.

Let’s set this up in src/main.rs.

use axum::{

 extract::State,

 response::Json,

 routing::get,

 Router,

};

 Note on performance

For read-heavy applications (such as an API where GET requests far outnum-

ber POST requests), you might often see std::sync::RwLock used instead.

While a mutex allows only one thread to access data at a time (whether

reading or writing), RwLock allows multiple readers to access the data si-

multaneously, blocking only when a writer needs exclusive access. We are

using Mutex here for simplicity, as RwLock introduces slightly more overhead

for writes, but it is a great alternative to keep in mind for production.

Chapter 14 505

use std::sync::{Arc, Mutex};

use std::sync::atomic::{AtomicU32, Ordering};

use tokio::net::TcpListener;

// Import our data models

pub mod models;

use models::Todo;

// --- 1. Define the AppState ---

// This struct will hold all shared state for our application.

// We use `Arc` to allow shared ownership across threads.

// We use `Mutex` for interior mutability for our in-memory `Vec`.

#[derive(Clone)]

struct AppState {

 db: Arc<Mutex<Vec<Todo>>>,

 next_id: Arc<AtomicU32>,

}

// Implement a simple constructor for our state

impl AppState {

 fn new() -> Self {

 Self {

 db: Arc::new(Mutex::new(Vec::new())), // Start with an empty Vec

 next_id: Arc::new(AtomicU32::new(1)), // Start IDs from 1

 }

 }

}

// A simple handler to show the state is working (we'll replace this soon)

async fn get_todos_placeholder(

 State(app_state): State<AppState>, // This is the `State` extractor

) -> Json<Vec<Todo>> {

 // Lock the mutex to get access to the inner Vec

 let todos = app_state.db.lock().unwrap();

 // Return a clone of the data as JSON

 Json(todos.clone())

Rust for Web Development: Building Full-Stack Applications506

}

#[tokio::main]

async fn main() {

 // --- 2. Create and initialize our AppState ---

 let app_state = AppState::new();

 // --- 3. Define the Router and add the state ---

 let app = Router::new()

 .route("/todos", get(get_todos_placeholder))

 // `.with_state()` makes the `app_state` available to all routes

 .with_state(app_state);

 // --- 4. Bind and Serve ---

 let listener = TcpListener::bind("127.0.0.1:8080")

 .await

 .expect("Failed to bind to address 127.0.0.1:8080");

 println!(" Server listening on http://{}", listener.local_addr().
unwrap());

 axum::serve(listener, app)

 .await

 .expect("Failed to start server");

}

Here’s an explanation of the code:

•	 AppState struct: This struct holds our shared data. db is an Arc<Mutex<Vec<Todo>>>

(a thread-safe, shared, mutable vector). next_id is an Arc<AtomicU32> (a thread-safe,

shared counter).

•	 State extractor: In our get_todos_placeholder handler, the State(app_state):

State<AppState> argument tells Axum to find the AppState we registered and inject it.

This is Axum’s built-in dependency injection for shared state.

•	 .with_state(app_state): In main, this method attaches our app_state instance to the

router, making it available to all handlers that ask for it via the State extractor.

•	 app.into_make_service(): This is needed when using .with_state() to convert the

router into a service that can be run by axum::serve.

Chapter 14 507

Handling requests and extracting data
An API handler is almost useless if it can’t receive data. A client might send data in several ways:

as part of the URL path (e.g., /todos/123), as query parameters (e.g., /search?completed=true),

or as a data payload in the request body (e.g., a JSON object).

Axum handles this using extractors.

Extracting path parameters with Path
An extractor is a type that you add as an argument to your handler function. Axum sees this ar-

gument and automatically tries to extract the corresponding data from the request. If it fails (e.g.,

the data is missing or in the wrong format), Axum will automatically return a 400 Bad Request

or 404 Not Found response, which saves you from writing a lot of boilerplate validation code.

Let’s look at the three most common extractors you’ll use.

We often put unique identifiers directly in the URL path. Axum lets you capture these dynamic

segments using the Path extractor.

1.	 In your router: You define a route with a placeholder, prefixed with a colon (:).

// In main.rs, inside the Router:

.route("/todos/{id}", get(get_todo_by_id))

// The `{id}` is the placeholder

2.	 In your handler: You add an argument of type Path<T>, where T is the type you want

Axum to parse the segment into (e.g., u32).

// The Path<u32> argument tells Axum to extract the corresponding

// segment from the URL (e.g., "1" from "/todos/1") and parse it as
a u32.

async fn get_todo_by_id(

 State(app_state): State<AppState>,

 Path(id): Path<u32>,

) -> Result<Json<Todo>, StatusCode> {

 // We can now use `id` directly in our logic

 let db = app_state.db.lock().unwrap();

 // ... logic to find todo by `id` ...

}

Rust for Web Development: Building Full-Stack Applications508

Extracting query parameters with Query
Query parameters are key-value pairs that come after a ? in the URL (e.g., /search?q=rust&lang=en).

They are often used for optional filters, sorting, or pagination. Axum uses the Query extractor,

which deserializes parameters into a struct you define.

1.	 Define a Query struct: The struct must derive serde::Deserialize.

use serde::Deserialize;

#[derive(Deserialize)]

pub struct Pagination {

 pub page: Option<u32>,

 pub per_page: Option<u32>,

}

2.	 In your handler: Add an argument of type Query<YourStruct>.

use axum::{extract::Query, ...}; // Add Query to imports

use serde::Deserialize;

#[derive(Deserialize)]

pub struct SearchParams {

 // We can use Option for parameters that are not required

 pub completed: Option<bool>,

}

// Handler for GET /todos/search?completed=true

pub async fn search_todos(

 State(app_state): State<AppState>,

 Query(params): Query<SearchParams>, // The Query extractor

) -> Json<Vec<Todo>> {

 let db = app_state.db.lock().expect("Mutex was poisoned");

 // Start with an iterator over the todos

 let mut results = db.clone();

 // If the `completed` query param was provided, filter the
results

Chapter 14 509

 if let Some(completed_status) = params.completed {

 results.retain(|todo| todo.completed == completed_status);

 }

 Json(results)

}

Extracting JSON bodies with JSON
For POST or PUT requests, data is usually sent in the request body, often as JSON. The Json ex-

tractor tells Axum to parse the request body as JSON and deserialize it into your chosen struct.

1.	 You already have a struct: We’ll use the NewTodo struct we defined earlier, in src/models.

rs, which derives Deserialize.

2.	 In your handler: Add an argument of type Json<YourStruct>.

Here’s the code snippet for src/handlers.rs:

use axum::{extract::Json, http::StatusCode, ...}; // Add Json to imports

use crate::models::NewTodo;

// ... other imports

// Handler for POST /todos

pub async fn create_todo(

 State(app_state): State<AppState>,

 Json(payload): Json<NewTodo>, // The Json extractor

) -> (StatusCode, Json<Todo>) {

let mut db = app_state.db.lock().expect("Mutex was poisoned");

 let id = app_state.next_id.fetch_add(1, Ordering::SeqCst);

 let new_todo = Todo {

 id,

 title: payload.title,

 completed: false,

 };

Rust for Web Development: Building Full-Stack Applications510

 db.push(new_todo.clone());

 // Return 201 Created and the new todo

 (StatusCode::CREATED, Json(new_todo))

}

Using these three extractors (Path, Query, and Json), you can manage most data inputs in a

typical RESTful API.

Axum’s extractor system effortlessly performs parsing, type validation, and error handling, so

you can concentrate on your application’s core logic.

Implementing the CRUD API endpoints
We’ve already outlined the handlers for Create (POST) and Read (GET). Now, let’s move on to

adding the handlers for Update and Delete.

A truly effective API doesn’t just perform the actions; it also makes sure to return the right data

and HTTP status codes to keep everyone on the same page.

Returning JSON and HTTP status codes
Axum handlers use their return type to build an HTTP response. This system is very flexible. A

handler can return the following:

•	 A simple &'static str (like our “Hello, Web!” example), which becomes a 200 OK re-

sponse with a plain text body.

•	 Json<T>: This serializes the value T into a JSON string and sends a 200 OK response with

the Content-Type: application/json header.

•	 StatusCode: You can return just a status code (e.g., StatusCode::NOT_FOUND for a 404).

•	 A tuple (StatusCode, Json<T>): This is a very common and powerful pattern. It allows

you to specify a custom status code (such as 201 CREATED) and a JSON body in one step.

•	 Result<impl IntoResponse, StatusCode>: This allows you to return Ok(Json(data))

on success and Err(StatusCode::NOT_FOUND) on failure, and Axum will automatically

turn them into the correct HTTP responses.

We’ll use these patterns to complete our API.

First, let’s create a new struct in src/models.rs to represent the payload for updating a todo.

This is good practice as it allows for partial updates (e.g., only changing the title or the completed

status).

Chapter 14 511

src/models.rs (add this struct):

// In src/models.rs

use serde::{Deserialize, Serialize};

// ... (Existing Todo and NewTodo structs) ...

/// Represents the payload for updating an existing Todo.

/// All fields are optional.

#[derive(Debug, Deserialize)]

pub struct UpdateTodo {

 pub title: Option<String>,

 pub completed: Option<bool>,

}

Now, let’s create the update and delete handlers in src/handlers.rs.

src/handlers.rs (add these functions):

use axum::{

 extract::{Path, State, Json as AxJson},

 http::StatusCode,

 response::IntoResponse,

 Json, // The response type for all successful bodies

};

use std::sync::atomic::Ordering;

use crate::models::{Todo, NewTodo, UpdateTodo};

use crate::AppState; // We assume AppState is defined in main.rs

// --- Create ---

/// Handler for POST /todos

/// Creates a new todo item.

pub async fn create_todo(

 State(state): State<AppState>,

 AxJson(payload): AxJson<NewTodo>, // The Json extractor (aliased for
clarity)

) -> (StatusCode, Json<Todo>) {

Rust for Web Development: Building Full-Stack Applications512

 // Lock the mutex safely

 let mut db = state.db.lock().expect("Mutex was poisoned");

 // Generate u32 ID from counter and cast it to i32 for the Todo
struct.

 let id_u32 = state.next_id.fetch_add(1, Ordering::SeqCst);

 let new_todo = Todo {

 id: id_u32 as i32, // FIX: Cast u32 to i32 to match Todo struct/
PostgreSQL

 title: payload.title,

 completed: false,

 };

 db.push(new_todo.clone());

 // Return 201 Created and the new todo as JSON

 (StatusCode::CREATED, Json(new_todo))

}

// --- Read All ---

/// Handler for GET /todos

/// Returns a list of all todo items.

pub async fn get_all_todos(

 State(state): State<AppState>

) -> Json<Vec<Todo>> {

 // Lock the mutex for reading and clone the vector safely

 let todos = state.db.lock().expect("Mutex was poisoned").clone();

 Json(todos) // Return 200 OK with JSON body

}

// --- Read Single ---

/// Handler for GET /todos/{id} (Axum 0.8 Syntax)

/// Returns a single todo by its ID.

pub async fn get_todo(

 State(state): State<AppState>,

Chapter 14 513

 Path(id): Path<i32>, // FIX: Change extractor type to i32

) -> Result<Json<Todo>, StatusCode> {

 let db = state.db.lock().expect("Mutex was poisoned");

 // Find the todo by its ID (i32 == i32 comparison is now valid)

 if let Some(todo) = db.iter().find(|t| t.id == id) {

 Ok(Json(todo.clone())) // Return 200 OK with the todo

 } else {

 Err(StatusCode::NOT_FOUND) // Return 404 Not Found

 }

}

// --- Update (Partial) ---

/// Handler for PATCH /todos/{id} (Axum 0.8 Syntax)

/// Updates a todo item (partial updates).

pub async fn update_todo(

 State(state): State<AppState>,

 Path(id): Path<i32>, // FIX: Change extractor type to i32

 AxJson(payload): AxJson<UpdateTodo>, // Use the UpdateTodo struct

) -> Result<Json<Todo>, StatusCode> {

 let mut db = state.db.lock().expect("Mutex was poisoned");

 // Find a mutable reference to the todo

 if let Some(todo) = db.iter_mut().find(|t| t.id == id) {

 // Update fields if they are provided in the JSON payload

 if let Some(title) = payload.title {

 todo.title = title;

 }

 if let Some(completed) = payload.completed {

 todo.completed = completed;

 }

 Ok(Json(todo.clone())) // Return 200 OK with the updated todo

 } else {

 Err(StatusCode::NOT_FOUND) // 404 Not Found

 }

Rust for Web Development: Building Full-Stack Applications514

}

// --- Delete ---

/// Handler for DELETE /todos/{id} (Axum 0.8 Syntax)

/// Deletes a todo item by its ID.

pub async fn delete_todo(

 State(state): State<AppState>,

 Path(id): Path<i32>, // FIX: Change extractor type to i32

) -> StatusCode {

 let mut db = state.db.lock().expect("Mutex was poisoned");

 let len_before = db.len();

 // Keep all todos *except* the one with the matching ID

 db.retain(|todo| todo.id != id);

 let len_after = db.len();

 if len_before > len_after {

 // We removed an item

 StatusCode::NO_CONTENT // 204 No Content (success, no body)

 } else {

 // No item was removed, so it wasn't found

 StatusCode::NOT_FOUND // 404 Not Found

 }

}

Here’s an explanation of the code:

•	 create_todo: Now returns a tuple (StatusCode, AxJson<Todo>) to explicitly send a 201

CREATED status along with the new Todo.

•	 get_todo: Returns Result<AxJson<Todo>, StatusCode>. This is a powerful pattern in

Axum. If we return Ok(Json(todo)), Axum sends 200 OK with the JSON. If we return

Err(StatusCode::NOT_FOUND), Axum automatically sends a 404 Not Found response.

•	 update_todo: We’ve changed this to use the PATCH method (which is more correct

for partial updates) and the UpdateTodo struct. It finds a mutable reference to the todo

(.iter_mut().find(...)) and updates only the fields that were provided (are Some) in

the JSON payload.

Chapter 14 515

•	 delete_todo: This handler uses db.retain(...) to efficiently remove the item. It returns

a StatusCode directly: 204 NO_CONTENT on a successful deletion, and 404 NOT_FOUND

if no item with that ID existed.

All the code for the RESTful API example
The following is all the code you need to make the preceding example work.

First, here are the dependencies you need in your Cargo.toml file:

File 1: Cargo.toml

[package]

name = "todo_api"

version = "0.1.0"

edition = "2024"

[dependencies]

axum = "0.8"

tokio = { version = "1", features = ["full"] }

serde = { version = "1.0", features = ["derive"] }

File 2: src/models.rs

Create this file to define your data structures.

use serde::{Deserialize, Serialize};

/// Represents a Todo item in the system.

/// We derive `FromRow` to allow sqlx to map database rows to this struct.

#[derive(Debug, Serialize, Deserialize, Clone)]

pub struct Todo {

 pub id: i32, // PostgreSQL SERIAL maps to i32

 pub title: String,

 pub completed: bool,

}

/// Represents the payload for creating a new Todo.

#[derive(Debug, Deserialize)]

pub struct NewTodo {

 pub title: String,

Rust for Web Development: Building Full-Stack Applications516

}

/// Represents the payload for updating an existing Todo.

/// All fields are optional to allow for partial updates.

#[derive(Debug, Deserialize)]

pub struct UpdateTodo {

 pub title: Option<String>,

 pub completed: Option<bool>,

}

File 3: src/handlers.rs

Create this file to hold all your API logic/handler functions.

use axum::{

 extract::{Path, State, Json as AxJson},

 http::StatusCode,

 response::IntoResponse,

 Json, // The response type for all successful bodies

};

use std::sync::atomic::Ordering;

use crate::models::{Todo, NewTodo, UpdateTodo};

use crate::AppState; // We assume AppState is defined in main.rs

// --- Create ---

/// Handler for POST /todos

/// Creates a new todo item.

pub async fn create_todo(

 State(state): State<AppState>,

 AxJson(payload): AxJson<NewTodo>, // The Json extractor (aliased for
clarity)

) -> (StatusCode, Json<Todo>) {

 // Lock the mutex safely

 let mut db = state.db.lock().expect("Mutex was poisoned");

 // Generate u32 ID from counter and cast it to i32 for the Todo struct.

 let id_u32 = state.next_id.fetch_add(1, Ordering::SeqCst);

Chapter 14 517

 let new_todo = Todo {

 id: id_u32 as i32, // FIX: Cast u32 to i32 to match Todo struct/
PostgreSQL

 title: payload.title,

 completed: false,

 };

 db.push(new_todo.clone());

 // Return 201 Created and the new todo as JSON

 (StatusCode::CREATED, Json(new_todo))

}

// --- Read All ---

/// Handler for GET /todos

/// Returns a list of all todo items.

pub async fn get_all_todos(

 State(state): State<AppState>

) -> Json<Vec<Todo>> {

 // Lock the mutex for reading and clone the vector safely

 let todos = state.db.lock().expect("Mutex was poisoned").clone();

 Json(todos) // Return 200 OK with JSON body

}

// --- Read Single ---

/// Handler for GET /todos/{id} (Axum 0.8 Syntax)

/// Returns a single todo by its ID.

pub async fn get_todo(

 State(state): State<AppState>,

 Path(id): Path<i32>, // FIX: Change extractor type to i32

) -> Result<Json<Todo>, StatusCode> {

 let db = state.db.lock().expect("Mutex was poisoned");

Rust for Web Development: Building Full-Stack Applications518

 // Find the todo by its ID (i32 == i32 comparison is now valid)

 if let Some(todo) = db.iter().find(|t| t.id == id) {

 Ok(Json(todo.clone())) // Return 200 OK with the todo

 } else {

 Err(StatusCode::NOT_FOUND) // Return 404 Not Found

 }

}

// --- Update (Partial) ---

/// Handler for PATCH /todos/{id} (Axum 0.8 Syntax)

/// Updates a todo item (partial updates).

pub async fn update_todo(

 State(state): State<AppState>,

 Path(id): Path<i32>, // FIX: Change extractor type to i32

 AxJson(payload): AxJson<UpdateTodo>, // Use the UpdateTodo struct

) -> Result<Json<Todo>, StatusCode> {

 let mut db = state.db.lock().expect("Mutex was poisoned");

 // Find a mutable reference to the todo

 if let Some(todo) = db.iter_mut().find(|t| t.id == id) {

 // Update fields if they are provided in the JSON payload

 if let Some(title) = payload.title {

 todo.title = title;

 }

 if let Some(completed) = payload.completed {

 todo.completed = completed;

 }

 Ok(Json(todo.clone())) // Return 200 OK with the updated todo

 } else {

 Err(StatusCode::NOT_FOUND) // 404 Not Found

 }

}

// --- Delete ---

/// Handler for DELETE /todos/{id} (Axum 0.8 Syntax)

/// Deletes a todo item by its ID.

Chapter 14 519

pub async fn delete_todo(

 State(state): State<AppState>,

 Path(id): Path<i32>, // FIX: Change extractor type to i32

) -> StatusCode {

 let mut db = state.db.lock().expect("Mutex was poisoned");

 let len_before = db.len();

 // Keep all todos *except* the one with the matching ID

 db.retain(|todo| todo.id != id);

 let len_after = db.len();

 if len_before > len_after {

 // We removed an item

 StatusCode::NO_CONTENT // 204 No Content (success, no body)

 } else {

 // No item was removed, so it wasn't found

 StatusCode::NOT_FOUND // 404 Not Found

 }

}

File 4: src/main.rs

Finally, this file ties everything together. It defines the modules, sets up the shared state, and

builds the router.

use axum::{

 extract::State,

 http::StatusCode,

 response::{IntoResponse, Json}, // Json is now used for the response
body

Note on JSON aliasing

We alias the inbound Json extractor as AxJson (Json as AxJson) to clearly distin-

guish it from the Json response type. This prevents confusion, as both are used in

the signature for handlers such as create_todo (i.e., receiving AxJson<NewTodo>

and returning Json<Todo>).

Rust for Web Development: Building Full-Stack Applications520

 routing::{get, post, patch, delete},

 Router,

};

use std::net::SocketAddr;

use std::sync::{Arc, Mutex};

use std::sync::atomic::{AtomicU32, Ordering};

use tokio::net::TcpListener;

use tokio::signal; // Required for graceful shutdown

// --- Modules ---

pub mod models;

pub mod handlers;

// --- Imports from our modules ---

use models::Todo;

use handlers::{

 create_todo,

 get_all_todos,

 get_todo,

 update_todo,

 delete_todo

};

// --- Application State ---

#[derive(Clone)]

pub struct AppState {

 db: Arc<Mutex<Vec<Todo>>>,

 next_id: Arc<AtomicU32>,

}

impl AppState {

 fn new() -> Self {

 Self {

 db: Arc::new(Mutex::new(Vec::new())),

 next_id: Arc::new(AtomicU32::new(1)),

 }

 }

}

Chapter 14 521

// Handler for the health check endpoint

async fn health_check() -> (StatusCode, &'static str) {

 (StatusCode::OK, "Service is healthy")

}

// --- Main Server Setup ---

#[tokio::main]

async fn main() {

 // Initialize our shared state

 let app_state = AppState::new();

 // Build our application router, registering all CRUD handlers

 let app = Router::new()

 .route("/health", get(health_check)) // Health check endpoint

 // Root resource CRUD methods

 .route("/todos",

 get(get_all_todos) // GET /todos

 .post(create_todo) // POST /todos

)

 // Individual resource CRUD methods using Axum 0.8 syntax: {id}

 .route("/todos/{id}",

 get(get_todo) // GET /todos/{id}

 .patch(update_todo) // PATCH /todos/{id}

 .delete(delete_todo) // DELETE /todos/{id}

)

 // Share the AppState with all handlers

 .with_state(app_state);

 // --- Bind and Serve ---

 // Use expect() for safer startup error handling

 let addr = SocketAddr::from(([127, 0, 0, 1], 8080));

 println!(" Server listening on http://{}", addr);

Rust for Web Development: Building Full-Stack Applications522

 let listener = TcpListener::bind(addr).await.expect("Failed to bind to
address");

 // Run the server and enable graceful shutdown

 axum::serve(listener, app)

 .with_graceful_shutdown(shutdown_signal())

 .await

 .expect("Server failed to run");

}

// --- Graceful Shutdown Handler ---

async fn shutdown_signal() {

 let ctrl_c = async {

 signal::ctrl_c()

 .await

 .expect("Failed to install Ctrl+C handler");

 };

 #[cfg(unix)]

 let terminate = async {

 signal::unix::signal(signal::unix::SignalKind::terminate())

 .expect("Failed to install signal handler")

 .recv()

 .await;

 };

 // Use a pending future for non-Unix systems (like Windows)

 #[cfg(not(unix))]

 let terminate = std::future::pending::<()>();

 tokio::select! {

 _ = ctrl_c => {},

 _ = terminate => {},

 }

 println!("Graceful shutdown initiated.");

}

Chapter 14 523

Testing our RESTful application
You can explore this application using various methods and tools, such as Postman, VS Code

extensions, and others.

However, the simplest and most universal way is to use curl commands.

Give it a try and see how smoothly it works!

Step 1: Run your Axum server
In your terminal, navigate to your todo_api project directory (where your Cargo.toml file is)

and run the server:

cargo run

You should see this output:

 Server listening on http://127.0.0.1:8080

Your server is now running and waiting for requests.

Step 2: Open a new terminal
Leave your server running in the first terminal. Open a second, separate terminal window. You

will use this new terminal to send commands to your server using curl, a common command-line

tool for making HTTP requests.

Ensure that 'curl' is a command available in this terminal.

Step 3: Test your API endpoints with curl
Run the following commands one by one in your new terminal to test each part of your CRUD API.

1.	 Create a new todo (POST /todos):

We send a POST request with a JSON body

curl -X POST http://127.0.0.1:8080/todos -H "Content-
Type:application/json" -d '{"title": "Learn Axum"}'

Expected output:

{"id":1,"title":"Learn Axum","completed":false} (with a 201 Created
status)

Rust for Web Development: Building Full-Stack Applications524

2.	 Create a second todo (POST /todos):

curl -X POST http://127.0.0.1:8080/todos -H "Content-Type:
application/json" -d '{"title": "Write database chapter"}'

Expected output:

{"id":2,"title":"Write database chapter","completed":false}

3.	 Get all todos (GET /todos):

curl http://127.0.0.1:8080/todos

Expected output:

[{"id":1,"title":"Learn
Axum","completed":false},{"id":2,"title":"Write database
chapter","completed":false}]

4.	 Get a single todo by ID (GET /todos/1):

curl http://127.0.0.1:8080/todos/1

Expected output:

{"id":1,"title":"Learn Axum","completed":false}

5.	 Get a non-existent todo (GET /todos/99):

curl -I http://127.0.0.1:8080/todos/99

Expected output:

Not Found (or similar, with a 404 status)

Chapter 14 525

6.	 Update a todo (PATCH /todos/1):

mark "Learn Axum" as completed

curl -X PATCH http://127.0.0.1:8080/todos/1 -H "Content-Type:
application/json" -d '{"completed": true}'

Expected output:

{"id":1,"title":"Learn Axum","completed":true}

7.	 Verify the update (GET /todos/1 again):

curl http://127.0.0.1:8080/todos/1

Expected output:

{"id":1,"title":"Learn Axum","completed":true} (Note completed is
now true)

8.	 Delete a todo (DELETE /todos/1):

-v shows verbose output, so we can see the 204 No Content status

curl -v -X DELETE http://127.0.0.1:8080/todos/1

Expected output: You won’t see a body, but in the verbose output (-v), you should see <

HTTP/1.1 204 No Content.

9.	 Verify the deletion (GET /todos):

curl http://127.0.0.1:8080/todos

Expected output:

[{"id":2,"title":"Write database chapter","completed":false}] (Item
1 is gone)

Rust for Web Development: Building Full-Stack Applications526

Following is a list of the commands I tried myself:

Figure 14.3: Testing the in-memory RESTful API endpoints using curl to confirm the function-
ality of all CRUD operations

Adding persistence with PostgreSQL
Storing data in an in-memory Arc<Mutex<Vec<Todo>>> is great for examples, but it has a major

drawback: all our data is lost when the server restarts.

For a real application, we need persistence.

Chapter 14 527

This means storing our data in a database. In this section, we’ll refactor our API to use PostgreSQL,

a powerful and popular open source relational database.

We’ll use sqlx, a modern, pure-Rust, and async-native SQL toolkit.

Database setup
Before our Rust app can connect with a database, it’s important to have a database server up

and running.

Although you can install PostgreSQL directly on your computer, using Docker to run it inside a

container is a much cleaner, more straightforward, and more consistent approach for development.

This method keeps the database isolated, avoids any conflicts, and makes cleanup a breeze. Just

stop the container when you’re done.

If you haven’t installed Docker yet, you can download it easily from the official website: https://

www.docker.com/get-started. (We’ll go into more detail about Docker in Chapter 16, but for now,

just ensure it’s installed and running.)

Once Docker is up and running, starting a new PostgreSQL server is as simple as running a single

command in your terminal.

docker run --name my_app_db_postgres -e POSTGRES_PASSWORD=password \

 -p 5432:5432 -d postgres:15-alpine

This command will download the lightweight postgres:15-alpine image, start a container, set

a password, and map the port so your Axum app (running on localhost) can communicate with it.

If you are curious about what the preceding command does exactly, here is a short explanation,

if you are quite familiar with Docker:

•	 docker run ... -d: Runs the container in detached (background) mode.

•	 --name my-todo-db: Gives your container a memorable name for easy stopping/starting.

•	 -e POSTGRES_PASSWORD=password: Sets the required password for the postgres superuser

inside the container.

 This should be obvious, but NEVER use password as a password for your production

database! This is just an example to make something easy to remember!

https://www.docker.com/get-started
https://www.docker.com/get-started

Rust for Web Development: Building Full-Stack Applications528

•	 -p 5432:5432: Maps port 5432 on your host machine (localhost) to port 5432 inside the

container. This is what allows your Axum app to connect to localhost:5432.

•	 postgres:15-alpine: The image to use: Postgres 15 on a minimal Alpine Linux base.

If you run the "docker ps -a" command on your terminal, you should see something like this:

Figure 14.4: Running the postgres container with Docker

This means that your database is up and running (in a Docker container).

Integrating sqlx into the Axum project
Since our PostgreSQL database is running smoothly inside a Docker container, let’s now move

forward and incorporate the sqlx toolkit into our Axum project.

This exciting step involves three essential and straightforward tasks: adding the needed sqlx

libraries to your Cargo.toml file, setting up your database connection URL in an .env file, and

installing the sqlx-cli command-line tool to help manage your database schema effortlessly.

Let’s proceed step by step.

Adding sqlx and dotenvy dependencies
Let’s start by adding the sqlx crate to our project.

sqlx is a wonderful, async-native Rust SQL toolkit that works seamlessly with our Tokio runtime.

We’ll enable features for Postgres, the Tokio runtime, rustls for secure connections, and macros

to ensure compile-time query checking.

Additionally, we’ll include dotenvy, a reliable fork of dotenv (since dotenv is no longer maintained),

to help us load our database connection string effortlessly from an .env file.

Open your Cargo.toml file and add these to your [dependencies] section:

[dependencies]

... (keep axum, tokio, serde)

sqlx = { version = "0.7", features = ["runtime-tokio-rustls", "postgres",
"macros", "chrono", "uuid"] }

dotenvy = "0.15"

Chapter 14 529

Configuring DATABASE_URL
Both our application and sqlx-cli (which we’ll install next) need to know how to connect to

the PostgreSQL database we started in Docker.

The standard way to provide this information is through an environment variable named

DATABASE_URL. We’ll use the dotenvy crate we added earlier to load this variable from an .env file.

VERY IMPORTANT: you must add this .env file to your .gitignore! This file contains sensitive

credentials (such as your database password) and should never be committed to source control.

.gitignore

..env

Create a new file named .env in the root directory of your todo_api project (the same directory

as Cargo.toml). Then, add the following line. This connection string must match the settings

(user postgres, password password, port 5432, and database postgres) we used in our docker

run command.

The .env file should look like this:

DATABASE_URL=postgres://postgres:password@localhost:5432/postgres

Installing and using sqlx-cli for migrations
To manage our database schema (such as creating tables), we’ll use sqlx-cli, a command-line

tool built by the sqlx team. Its most important feature is handling migrations.

You can install sqlx-cli using cargo install. A significant advantage of this tool is that it’s a

pure-Rust application and connects to the database in the same way as our app will.

cargo install sqlx-cli

 Note

We’ve added chrono and uuid as common features you might need for database

work, though for our simple todos table, they aren’t strictly required. The macros

feature is for the compile-time checked queries we’ll see later.

Rust for Web Development: Building Full-Stack Applications530

Once installed, sqlx-cli will automatically read your .env file to find the DATABASE_URL and

establish a connection to your database.

We’ll use it in the next section to create and run our migrations.

Schema management with sqlx migrations
Now that we have sqlx-cli installed and our .env file is ready, we can define our database’s

structure. sqlx-cli uses migrations to manage changes to your database schema in a version-con-

trolled way.

A migration is just a SQL file with a unique timestamped name.

This is a fantastic practice as it keeps a history of your schema and makes it easy to set up your

database in any environment.

Creating and running migrations
First, we need to tell sqlx-cli to create the migration files.

In your terminal, from your project’s root directory, run this:

sqlx migrate add create_todos_table

This command will do the following:

1.	 Connect to your database (using DATABASE_URL from .env) to ensure it’s reachable.

2.	 Create a migrations folder in your project root.

3.	 Inside migrations, it will create a new file with a timestamp and the name you provided,

such as YYYYMMDDHHMMSS_create_todos_table.sql.

Now, open that new .sql file. sqlx-cli migrations are simple: you write your “up” SQL (to cre-

ate or alter tables) directly in the file. To add a “down” migration (to revert the change), you add

-- Add down migration in a comment.

Let’s edit the newly created migrations/YYYY..._create_todos_table.sql file:

CREATE TABLE todos (

 id SERIAL PRIMARY KEY,

 title VARCHAR NOT NULL,

 completed BOOLEAN NOT NULL DEFAULT FALSE

);

DROP TABLE IF EXISTS todos;

Chapter 14 531

After saving this file, you can apply the migration to your database (which is running in Docker)

with this command:

sqlx migrate run

sqlx-cli will connect to the database, see that this migration has not been run yet, execute the

up.sql portion, and record the migration in a special _sqlx_migrations table it creates in your

database.

To test it out, go to the terminal where you are running Docker commands and type the following:

docker exec -it my_app_db_postgres psql -U postgres

Then, type this command:

\dt

You should be able to see the todos table:

Figure 14.5: Check the todos table with docker exec and psql

Amazing!

But, let’s say we type the following:

SELECT * FROM todos;

 Reversibility note

The DROP TABLE IF EXISTS todos; command is the DOWN migration. If you

ever need to completely undo this change, sqlx-cli will execute this command.

Rust for Web Development: Building Full-Stack Applications532

We can see that the table is empty.

Figure 14.6: The todos table is currently empty

Mapping Rust structs and using a connection pool
Now that our database has a todos table defined via migrations, we need to handle two important

tasks to make it usable in our Axum app.

First, we must “map” our Todo struct to the todos table; this involves telling sqlx how to convert

a database row into our struct.

Second, we need to create an efficient way to manage database connections (a “connection pool”)

and make it available to all our API handlers so they can actually run queries.

Using sqlx::PgPool for the connection pool
Creating a new database connection for every single incoming web request is extremely slow

and inefficient.

The correct solution is a connection pool, which is a cache of database connections that your

application maintains.

When a handler needs to talk to the database, it quickly “borrows” a connection from the pool,

uses it, and then returns it.

sqlx provides an excellent, async-native connection pool called sqlx::PgPool (for Postgres). We’ll

create this pool when our server first starts up in main.rs by reading the DATABASE_URL from our

.env file and using the PgPoolOptions builder.

src/main.rs (snippet for pool creation):

// Add these to your `use` statements at the top of src/main.rs

use dotenvy::dotenv;

use std::env;

use sqlx::postgres::PgPoolOptions;

use sqlx::PgPool; // Import the Pool type

Chapter 14 533

// ...

#[tokio::main]

async fn main() {

 // Load environment variables from .env file (DATABASE_URL)

 dotenv().ok(); // .ok() ignores errors if .env is not found

 // Get the database URL from the environment

 let database_url = env::var("DATABASE_URL")

 .expect("DATABASE_URL must be set in .env file");

 // --- Create the Database Connection Pool ---

 let pool = PgPoolOptions::new()

 .max_connections(5) // Set a max of 5 connections for our pool

 .connect(&database_url)

 .await

 .expect("Failed to create database connection pool");

 println!(" Database connection pool initialized.");

 // ... (rest of main function will go here) ...

}

Here’s an explanation of the code:

•	 dotenv().ok(): We call this at the start of main to load our .env file

•	 env::var("DATABASE_URL"): This reads the connection string from the environment

•	 PgPoolOptions::new(): This is the builder for our sqlx connection pool

•	 .connect(...).await: This asynchronously connects to the database (running in Docker)

and establishes the initial connections for the pool

Deriving FromRow for our Todo struct
Now that we have a pool, we need to tell sqlx how to map a row from our todos table into our

Todo struct. We do this by adding the sqlx::FromRow derive macro.

Rust for Web Development: Building Full-Stack Applications534

We also need to ensure the id type is i32, as PostgreSQL’s SERIAL type maps to a 32-bit signed

integer.

src/models.rs (updated for sqlx):

use serde::{Deserialize, Serialize};

use sqlx::FromRow; // Import the FromRow derive macro

/// Represents a Todo item in the system.

/// We derive `FromRow` to allow sqlx to map database rows to this struct.

#[derive(Debug, Serialize, Deserialize, Clone, FromRow)]

pub struct Todo {

 pub id: i32, // PostgreSQL SERIAL maps to i32

 pub title: String,

 pub completed: bool,

}

/// Represents the payload for creating a new Todo.

#[derive(Debug, Deserialize)]

pub struct NewTodo {

 pub title: String,

}

/// Represents the payload for updating an existing Todo.

#[derive(Debug, Deserialize)]

pub struct UpdateTodo {

 pub title: Option<String>,

 pub completed: Option<bool>,

}

Here’s an explanation of the code:

•	 use sqlx::FromRow: We import the necessary derive macro.

•	 #[derive(..., FromRow)]: By adding FromRow to Todo, sqlx can now automatically map

the columns id, title, and completed from a query result directly to the fields of our

Todo struct.

•	 id: i32: We’ve changed the id type from u32 to i32 to correctly match PostgreSQL’s

SERIAL type.

Chapter 14 535

•	 NewTodo and UpdateTodo: These structs don’t need FromRow because they are only dese-

rialized from the client’s JSON request body, not mapped from a database row.

Sharing the pool in Axum’s AppState
Finally, we need to make our connection pool available to all our Axum handlers. The idiomatic

way to do this is to store the pool in a shared AppState struct and use Axum’s .with_state()

method to “inject” it into our router.

src/main.rs (updated to share the pool):

use axum::{

 routing::get,

 Router,

 extract::State, // We'll need this in our handlers

};

use std::net::SocketAddr;

use tokio::net::TcpListener;

use dotenvy::dotenv;

use std::env;

use sqlx::postgres::PgPoolOptions;

use sqlx::PgPool; // Import the Pool type

// --- Modules ---

pub mod models;

pub mod handlers; // We'll create this in the next section

// pub mod schema; // NO LONGER NEEDED FOR SQLX

// --- Application State ---

// Define a struct to hold our shared state (the pool)

// We derive Clone so the state can be shared with all threads

#[derive(Clone)]

pub struct AppState {

 db_pool: PgPool,

}

#[tokio::main]

async fn main() {

 // Load environment variables from .env file (DATABASE_URL)

 dotenv().ok();

Rust for Web Development: Building Full-Stack Applications536

 let database_url = env::var("DATABASE_URL")

 .expect("DATABASE_URL must be set in .env file");

 // Create the Database Connection Pool

 let pool = PgPoolOptions::new()

 .max_connections(5)

 .connect(&database_url)

 .await

 .expect("Failed to create database connection pool");

 println!(" Database connection pool initialized.");

 // Run SQLx migrations

 sqlx::migrate!()

 .run(&pool)

 .await

 .expect("Failed to run database migrations.");

 println!(" Database migrations ran successfully.");

 // --- Create the AppState ---

 let app_state = AppState { db_pool: pool };

 // --- Build our application router ---

 let app = Router::new()

 .route("/", get(|| async { "Hello, World! (from database-backed
server)" }))

 // We will register our real CRUD handlers in the next section

 // .route("/todos", post(handlers::create_todo_db).
get(handlers::get_all_todos_db))

 // ... etc ...

 // Share the AppState with all handlers

 .with_state(app_state);

 // --- Bind and Serve ---

 let addr = SocketAddr::from(([127, 0, 0, 1], 8080));

Chapter 14 537

 println!(" Server listening on http://{}", addr);

 let listener = TcpListener::bind(addr).await.unwrap();

 // `.into_make_service()` is required when using `.with_state`

 axum::serve(listener, app.into_make_service()).await.unwrap();

}

•	 AppState struct: We’ve defined a simple AppState struct that holds our PgPool.

•	 #[derive(Clone)]: This is required by Axum’s with_state method. PgPool is already

cheap to clone (it’s an Arc internally).

•	 sqlx::migrate!(): This macro, needing the migrations folder, automatically runs pend-

ing database migrations at server start, ensuring your database schema stays current

with your code.

•	 .with_state(app_state): This method connects our state (which includes the pool) to

the router, making it accessible to all handlers.

•	 app.into_make_service(): When you use .with_state, you must call .into_make_

service() on your router before passing it to axum::serve.

Refactoring handlers for async database persistence
We will now refactor the functions in src/handlers.rs to use the DbPool from our AppState in-

stead of the in-memory Arc<Mutex<Vec<Todo>>>. A key advantage of sqlx is that it’s async-native,

designed to work perfectly with Tokio and Axum.

This means we do not need to use tokio::task::spawn_blocking. We can .await database

queries directly in our async handlers, leading to cleaner and more efficient code.

Writing raw SQL queries
One of the most powerful features of sqlx is its ability to check your SQL queries at compile time.

It does this by connecting to your database (using the DATABASE_URL in your .env file) during

the build process and verifying that your SQL is valid and that the columns you’re selecting can

be correctly mapped to the fields of your Rust struct. This catches typos in your SQL (SELECT

*...) or type mismatches (e.g., trying to map VARCHAR to i32) before your program even runs.

•	 sqlx::query_as!(Todo, "..."): We’ll use this macro when we want to run a query and

have sqlx automatically map the resulting rows into our Todo struct (which we’ve already

derived FromRow for).

•	 sqlx::query!("..."): We’ll use this simpler macro for queries where we want to execute a

command and don’t need to map the result to a full struct (such as our DELETE command).

Rust for Web Development: Building Full-Stack Applications538

Refactoring the CRUD endpoints to be fully async
We will now replace the entire contents of the src/handlers.rs file with this new, data-

base-backed logic. (Check the 11_db_handlers.rs file for the complete code)

// ... imports and helper functions ...

// --- Reading Data (SELECT) ---

pub async fn get_all_todos_db(State(state): State<AppState>) -> impl
IntoResponse {

 // query_as! macros check SQL validity at compile time

 let result = sqlx::query_as!(

 Todo,

 "SELECT id, title, completed FROM todos ORDER BY id"

)

 .fetch_all(&state.db_pool) // Returns Vec<Todo>

 .await;

 match result {

 Ok(todos) => (StatusCode::OK, Json(todos)).into_response(),

 Err(e) => internal_db_error(e).into_response(),

 }

}

// --- Writing Data (INSERT) ---

pub async fn create_todo_db(

 State(state): State<AppState>,

 AxJson(payload): AxJson<NewTodo>,

) -> impl IntoResponse {

 Important note on compile-time checking

For this powerful feature to work, your database must be running and accessible

when you run cargo build or cargo run. This is because the Rust compiler relies on

live schema information to validate the queries and type mappings. If the database

isn’t available during compilation, the build will fail. Alternatively, you can use the

sqlx prepare command to generate offline query metadata, allowing compilation

without a live database connection.

Chapter 14 539

 let result = sqlx::query_as!(

 Todo,

 "INSERT INTO todos (title) VALUES ($1) RETURNING *",

 payload.title

)

 .fetch_one(&state.db_pool) // Returns a single Todo

 .await;

 match result {

 Ok(todo) => (StatusCode::CREATED, Json(todo)).into_response(),

 Err(e) => internal_db_error(e).into_response(),

 }

}

// ... Additional handlers (update, delete, get_one) follow this same
pattern ...

Here’s an explanation of the code:

•	 Fully async: Notice that we do not use tokio::task::spawn_blocking anywhere! Because

sqlx is async-native, we can .await its methods (such as .fetch_one(), .fetch_all(), and

.execute()) directly within our async handlers. This is much cleaner and more efficient.

•	 State injection: All handlers receive the State<AppState> extractor to get access to the

db_pool.

•	 sqlx::query_as! Macro: This is the most powerful feature of sqlx. The query_as!(Todo,

"SELECT ...") macro does the following:

1.	 Checks your SQL query string at compile time.

2.	 Compares it against your database (using the DATABASE_URL at compile time)

to ensure the query is valid and that the columns (id, title, completed) can be

correctly mapped to the fields of your Todo struct.

3.	 This prevents a whole class of runtime errors, such as typos in your SQL (SELECT

*) or type mismatches.

•	 Error handling: We use a simple internal_db_error helper to map any sqlx::Error to

a 500 Internal Server Error response. For specific cases such as get_todo_db (where “not

found” is expected), we use .fetch_optional(), which returns an Option, allowing us

to send a 404 NOT FOUND status code.

Rust for Web Development: Building Full-Stack Applications540

Finally, you must update src/main.rs to import these new handlers and register them in your

router.

Complete project reference: Since the full code for a multi-file project structure (containing

Cargo.toml, src/models.rs, src/handlers.rs, and src/main.rs) can be quite long, we have

minimized it here.

For the entire, runnable project structure, including the graceful shutdown handler and module

definitions, please check the project repository on GitHub.

// src/main.rs

// ... imports and AppState definition ...

// ... imports from handlers module ...

#[tokio::main]

async fn main() {

 // 1. Create Connection Pool and Table

 // ... pool and table creation logic ...

 let app_state = AppState { db_pool: pool };

 // 2. Build our final RESTful router

 let app = Router::new()

 .route("/todos",

 get(handlers::get_all_todos_db)

 .post(handlers::create_todo_db)

)

 .route("/todos/:id",

 get(handlers::get_todo_db)

 .patch(handlers::update_todo_db)

 .delete(handlers::delete_todo_db)

)

 .with_state(app_state);

 // 3. Bind and Serve

 // ... server startup logic ...

}

Chapter 14 541

Testing the application
To test the new application, first run the following:

cargo run

The output should look like this:

Figure 14.7: Axum application up and running

Now let’s test the application using curl commands to keep it as universal as possible. But feel

free to use tools such as Postman or a VS Code extension to make proper HTTP calls – whichever

works best for you!

1.	 Get all todos (to verify it’s empty):

curl http://127.0.0.1:8080/todos

Expected output:

[] (An empty JSON array)

2.	 Create a new todo (POST /todos):

curl -X POST -H "Content-Type: application/json" -d '{"title":
"Learn sqlx"}' http://127.0.0.1:8080/todos

Expected output:

{"id":1,"title":"Learn sqlx","completed":false}

3.	 Create a second todo (POST /todos):

 curl -X POST -H "Content-Type: application/json" -d '{"title":
"Test the API"}' http://127.0.0.1:8080/todos

Expected output:

{"id":2,"title":"Test the API","completed":false}

Rust for Web Development: Building Full-Stack Applications542

4.	 Get all todos (to see the new items):

curl http://127.0.0.1:8080/todos

Expected output:

[{"id":1,"title":"Learn
sqlx","completed":false},{"id":2,"title":"Test the
API","completed":false}]

5.	 Get a single todo (GET /todos/1):

curl http://127.0.0.1:8080/todos/1

Expected output:

{"id":1,"title":"Learn sqlx","completed":false}

6.	 Get a non-existent todo (GET /todos/99):

curl http://127.0.0.1:8080/todos/99

Expected output:

Todo not found

7.	 Update a todo (PATCH /todos/1):

curl -X PATCH -H "Content-Type: application/json" -d '{"completed":
true}' http://127.0.0.1:8080/todos/1

Expected output:

{"id":1,"title":"Learn sqlx","completed":true}

8.	 Delete a todo (DELETE /todos/1):

curl -v -X DELETE http://127.0.0.1:8080/todos/1

Expected output:

You won't see a body, but in the verbose output (-v), you should see
< HTTP/1.1 204 No Content.

9.	 Verify the deletion (GET /todos):

curl http://127.0.0.1:8080/todos

Chapter 14 543

Expected output:

[{"id":2,"title":"Test the API","completed":true}]

Following is a recap of all the commands:

Figure 14.8: Testing endpoints with curl

Verifying with psql
You can also directly check the database. In your testing terminal, run the following:

docker exec -it my_app_db_postgres -U postgres

Replace my_app_db_postgres with the name of your container.

Rust for Web Development: Building Full-Stack Applications544

To verify the current status of the database, you can type this:

SELECT * FROM TODOS;

Figure 14.9: Verification with psql

You should see the current state of your todos table. Type \q to exit psql.

That’s it! Your API is now fully persistent and working.

A final backend step: enabling CORS
We’ve now updated all our handlers to be fully async and integrated the sqlx database.

Before we can connect our frontend JavaScript application to this API (which we’ll cover in the next

section), there’s just one more important step for our backend: setting up a CORS (Cross-Origin

Resource Sharing) policy. By default, web browsers adhere to a security principle known as the

same-origin policy.

This means that code running on one domain, such as our development frontend at http://

localhost:8001, would normally be blocked from making fetch requests to our API on another

domain, such as http://localhost:8080.

To make our full-stack example work smoothly, we need to allow these cross-origin requests on our

Axum server explicitly. We can do this easily by adding a “CORS layer” from the tower-http crate.

First, be sure to include tower-http in your Cargo.toml file.

[dependencies]

... (axum, tokio, serde, dotenvy, sqlx)

tower-http = { version = "0.5", features = ["cors"] }

The full, multi-file version is available on the GitHub repository.

http://localhost:8001
http://localhost:8001
http://localhost:8080

Chapter 14 545

We should highlight the CorsLayer setup and application:

// src/main.rs (CORS Setup Snippet)

use axum::{routing::get, Router};

use axum::http::Method;

use tower_http::cors::{Any, CorsLayer};

// ... other imports ...

#[tokio::main]

async fn main() {

 // ... Pool creation and AppState setup (Steps 1-3) ...

 // --- 4. Define CORS Policy ---

 let cors = CorsLayer::new()

 .allow_methods([Method::GET, Method::POST, Method::PATCH,
Method::DELETE])

 .allow_headers([axum::http::header::CONTENT_TYPE])

 .allow_origin(Any);

 // --- 5. Build our application router ---

 let app = Router::new()

 // ... route definitions ...

 .with_state(app_state)

 .layer(cors); // <-- Apply the CORS layer here!

 // ... Bind and Serve (Step 6) ...

}

Now, to test this, before we start creating any frontend code, we should use curl:

curl -v -X OPTIONS http://localhost:8080/todos \ -H "Origin: http://
localhost:8001" \ -H "Access-Control-Request-Method: POST" \ -H "Access-
Control-Request-Headers: content-type"

Rust for Web Development: Building Full-Stack Applications546

Because you used the -v (verbose) flag, curl will show you the headers in the server’s response. If

your CORS layer is working, you should see headers like this coming back from your Axum server:

Figure 14.10: Terminal output showing the successful CORS preflight check for the backend API

The most important line is access-control-allow-origin: * (or http://localhost:8001 if

you configured it to be specific).

•	 If you see access-control-allow-origin: *, congratulations, your CORS is working

perfectly! Your backend is telling the “browser” (simulated by curl) that it will accept

requests from any origin.

•	 If you do not see that header, it means your CORS layer isn’t configured correctly or isn’t

being applied to that route.

Chapter 14 547

Frontend: WebAssembly
So far, our Axum application is a powerful backend API, complete with a persistent sqlx database

connection. But the “full-stack” promise of Rust also extends to the client side.

This is possible through WebAssembly (Wasm), a high-performance binary format that runs in

modern web browsers, allowing you to execute Rust code directly on the client for computationally

intensive tasks or, as we’ll do here, to build a simple, interactive frontend.

Getting a full grasp of WASM could fill a book on its own! But basically, it’s a way to run non-Ja-

vaScript code in your browser very efficiently, almost at native speed.

This section provides a brief overview of this workflow to demonstrate how you can connect a

Rust-powered frontend to the Rust backend we have just built.

Building and using a simple Wasm module
To get started, we need to create a new, separate library crate for our Wasm code. This project

will be compiled into a Wasm module that our index.html file can load.

In your terminal, navigate outside of your todo_api project directory and run the following:

cargo new wasm_client --lib

cd wasm_client

Next, open the new wasm_client/Cargo.toml file. We need to tell Rust that this library is a “cdylib”

(which is what Wasm compiles to) and add the dependencies for Wasm:

•	 wasm-bindgen: The core library that handles communication between Rust and JavaScript.

•	 wasm-bindgen-futures: A helper to let us use Rust async/await with JavaScript’s Promises.

•	 reqwest: A popular HTTP client that can be compiled to Wasm (with its json feature) to

make requests to our backend.

•	 serde / serde_json: To create the JSON payloads to send to our API.

•	 web-sys: To let our Wasm code log messages to the browser’s console for debugging.

[package]

name = "wasm_client"

version = "0.1.0"

edition = "2024"

[lib]

Rust for Web Development: Building Full-Stack Applications548

crate-type = ["cdylib"] # Essential: specifies output as a dynamic
library for Wasm

[dependencies]

wasm-bindgen = "0.2"

wasm-bindgen-futures = "0.4" # For converting JS Futures to Rust
Futures

reqwest = { version = "0.12", features = ["json"] } # reqwest
supports Wasm!

serde = { version = "1.0", features = ["derive"] }

serde_json = "1.0"

We also add web-sys for logging to the browser console

[dependencies.web-sys]

version = "0.3"

features = [

 'console',

]

Now, we’ll write our Rust code in wasm_client/src/lib.rs. This code will define the functions

that our JavaScript will call.

Notice that we redefine the Todo structs here. In a large project, you might put these in a

shared “common” crate, but for our minimal example, redefining them is simpler.

Exposing Rust functions with #[wasm_bindgen]
Now, we’ll write our Rust code in wasm_client/src/lib.rs. This code will define the functions

that our JavaScript will call. Notice that we redefine the Todo structs here. In a large project, you

might put these in a shared “common” crate, but for our minimal example, redefining them is

simpler.

File: wasm_client/src/lib.rs

use wasm_bindgen::prelude::*;

use serde::{Deserialize, Serialize};

// --- We redefine our models here for the frontend ---

// (In a large project, this would be in a shared crate)

Chapter 14 549

#[derive(Debug, Serialize, Deserialize, Clone)]

pub struct Todo {

 pub id: i32,

 pub title: String,

 pub completed: bool,

}

#[derive(Debug, Serialize)]

pub struct NewTodo {

 pub title: String,

}

// A simple macro to log to the browser console

macro_rules! log {

 ($($t:tt)*) => {

 web_sys::console::log_1(&format!($($t)*).into());

 }

}

// Our backend API URL

const API_URL: &str = "http://localhost:8080/todos";

/// Fetches the current list of todos from the backend API.

/// Returns the JSON as a `JsValue` (which will be a string).

#[wasm_bindgen]

pub async fn fetch_todos() -> Result<JsValue, JsValue> {

 log!("Wasm: Fetching todos from {}", API_URL);

 let client = reqwest::Client::new();

 let resp = client

 .get(API_URL)

 .send()

 .await

 .map_err(|e| JsValue::from_str(&e.to_string()))?;

 // use .text() to get the raw JSON string

Rust for Web Development: Building Full-Stack Applications550

 let json_text = resp

 .text()

 .await

 .map_err(|e| JsValue::from_str(&e.to_string()))?;

 // Convert the Rust String into a JavaScript String (JsValue)

 Ok(JsValue::from_str(&json_text))

}

/// Adds a new todo item by POSTing to the backend API.

#[wasm_bindgen]

pub async fn add_todo(title: String) -> Result<JsValue, JsValue> {

 log!("Wasm: Adding todo: {}", &title);

 let new_todo = NewTodo { title };

 let client = reqwest::Client::new();

 let resp = client

 .post(API_URL)

 .json(&new_todo) // Send our NewTodo struct as a JSON body

 .send()

 .await

 .map_err(|e| JsValue::from_str(&e.to_string()))?;

 // Use .text() here as well

 let json_text = resp

 .text()

 .await

 .map_err(|e| JsValue::from_str(&e.to_string()))?;

 // Convert the Rust String into a JavaScript String (JsValue)

 Ok(JsValue::from_str(&json_text))

}

Chapter 14 551

Here’s an explanation of the code:

•	 Model redefinition: We redefine the Todo and NewTodo structs. In a large production

project, you would put these structs in a separate “common” crate that both your backend

and frontend could depend on to avoid duplication, but redefining them here is simpler

for our example.

•	 log! macro: This is a simple helper macro we’ve defined that uses web_sys::console::log_1

to print debug messages (such as Wasm: Fetching todos...) to the browser’s developer

console. This is very useful for debugging your Wasm code.

•	 #[wasm_bindgen]: This is the most important attribute. It “exposes” our pub async fn

functions (fetch_todos and add_todo) to JavaScript, allowing our index.html file to

call them by name.

•	 Async functions: Both fetch_todos and add_todo are async because they perform network

I/O (using reqwest). wasm-bindgen-futures helps convert these Rust async functions

into JavaScript Promises that our JavaScript code can await.

•	 reqwest::Client: We use the reqwest crate (which supports Wasm) to create an HTTP

client and make GET and POST requests to our Axum backend’s API_URL.

•	 Returning Result<JsValue, JsValue>:

•	 Success (Ok(JsValue)): Our functions don’t return Vec<Todo>. Instead, they use

resp.text().await to get the raw JSON string from the server’s response. They

then wrap this string in JsValue::from_str(...). This passes the JSON string

to JavaScript.

•	 Error (Err(JsValue)): If reqwest fails (e.g., a network error, or our backend is

down), .map_err(...) converts the Rust error into a simple JavaScript string

(JsValue), which will be thrown as a JavaScript exception.

•	 JavaScript’s job: Our index.html JavaScript will be responsible for calling these functions,

awaiting the Promise, and then using JSON.parse() on the string it receives to get the

actual JavaScript Todo objects.

Building the .wasm and JavaScript glue
We will use a handy command-line tool called wasm-pack to build our library.

It simplifies everything: compiling your Rust code into Wasm, generating the JavaScript “glue”

code with wasm-bindgen, and packaging everything nicely for you.

Rust for Web Development: Building Full-Stack Applications552

If you haven’t already, just install wasm-pack to get started:

cargo install wasm-pack

Then, from inside your wasm_client directory (the one with your Wasm code), run the build

command.

We use the --target web flag to tell wasm-pack to generate code that’s compatible with modern

browser ES modules.

wasm-pack build --target web

This command compiles your code and creates a new pkg directory. Inside this pkg directory,

you’ll find the following:

•	 wasm_client_bg.wasm: Your compiled Rust code in WebAssembly format.

•	 wasm_client.js: The JavaScript “glue” file. This file knows how to load the .wasm file

and provides the JavaScript fetch_todos() and add_todo() functions that call into your

Rust code.

•	 wasm_client.d.ts: A TypeScript definition file, which is great for code completion if you

use TypeScript.

•	 package.json: A file that describes this package to JavaScript build tools.

With this pkg directory generated, we now have everything we need to use our Rust code from

a web page.

Figure 14.11: The wasm-pack utility compiling Rust code, installing wasm-bindgen, and op-
timizing the Wasm binary for web consumption

Chapter 14 553

Using the Wasm module from a simple web page
This is the final step where we connect all the pieces.

We’ll create a minimal index.html file to be our user interface.

This file will contain a small amount of JavaScript to load our Wasm module and wire up the UI

elements to call our exported Rust functions (fetch_todos and add_todo).

Following our plan, you should do the following:

1.	 Create a www directory inside your wasm_client project folder.

2.	 Move the pkg directory (that wasm-pack just created) into this new www directory.

3.	 Create the index.html file inside the www directory.

Repository reference: The full HTML structure, CSS styling, and the complete JavaScript event

handlers are available in the GitHub repository file: wasm_client/www/index.html.

// The snippet focuses on the critical import and initialization logic.

<script type="module">

 // 1. Import Wasm functions from the generated 'pkg' directory

 import init, { fetch_todos, add_todo } from './pkg/wasm_client.js';

 // ... define DOM element references (todoList, titleInput, addButton)
...

 // --- Function to refresh the list of todos from the backend ---

 async function refreshTodos() {

 // ... UI update logic ...

 try {

 // Call our async Rust Wasm function!

 const todos_json_string = await fetch_todos();

 // Parse the JSON string received from Wasm

 const todos = JSON.parse(todos_json_string);

 // ... logic to render list items ...

 } catch (e) {

 console.error("Error fetching todos:", e);

Rust for Web Development: Building Full-Stack Applications554

 // ... error handling ...

 }

 }

 // --- Main function to run the app ---

 async function run() {

 // Initialize the Wasm module

 await init();

 // Load the initial list of todos

 await refreshTodos();

 // Wire up the "Add" button

 addButton.addEventListener('click', addNewTodo);

 }

 // Start the application

 run();

</script>

Here’s an explanation of the code:

•	 import init, { ... } from './pkg/wasm_client.js';: This line is the bridge to our

Rust code. It imports the default init function (which loads and initializes the .wasm file)

and our two exported functions, fetch_todos and add_todo, from the JavaScript “glue” file

created by wasm-pack. The ./pkg/wasm_client.js path is relative to this index.html file.

•	 async function run(): This is the main entry point for our frontend. It first calls await

init(). This is crucial; we must wait for the Wasm module to be fully loaded and initialized

before we can call any of its functions. After initialization, it calls refreshTodos() to get

the initial list and attaches the addNewTodo function to the button’s click event.

•	 async function refreshTodos(): This function shows the “Wasm-to-Rust” commu-

nication for getting data.

Chapter 14 555

1.	 It calls await fetch_todos(), which is our async Rust function running in Wasm.

2.	 This Rust function makes an HTTP GET request to our Axum backend (http://

localhost:8080/todos).

3.	 Our Rust function returns a JsValue (which we designed to be a JSON string).

4.	 The JavaScript code then uses JSON.parse() to convert this string into a JavaScript

array of objects.

5.	 Finally, it loops through the array to build and display the HTML elements

in the list.

•	 async function addNewTodo(): This function shows the “Wasm-to-Rust” communica-

tion for sending data.

1.	 It gets the title from the input box.

2.	 It calls await add_todo(title), passing the JavaScript string to our async Rust

function.

3.	 The Rust function creates a NewTodo struct, serializes it to JSON, and makes an

HTTP POST request to our Axum backend.

4.	 Once the Wasm function completes, the JavaScript code clears the input box and

calls refreshTodos() to show the updated list.

This simple HTML file, combined with our Wasm module, creates a complete client-side appli-

cation that is fully powered by Rust, from its internal logic to its communication with our Rust-

based backend.

Testing the frontend
1.	 To test the frontend, we need a simple static file server to serve the index.html file and

the generated Wasm module. We’ll use miniserve, a lightweight and easy-to-use utility

written in Rust:

Cargo install miniserve

Rust for Web Development: Building Full-Stack Applications556

2.	 Then, to run the wasm application, run this command from the wasm_client folder:

miniserve www/pkg/ --index index.html --port 8001

Figure 14.12: Running the miniserve static file server to host the Wasm frontend on
port 8001

 What is miniserve?

miniserve is a simple, command-line utility written in Rust, designed for

serving local files over HTTP quickly. It is perfect for local development be-

cause it’s fast, single-binary, and serves static content reliably.

Alternatives: You could achieve the same result using other static file servers,

such as the following:

Python: python3 -m http.server 8001

Node.js: npx serve -l 8001

Any other locally running static server.

Chapter 14 557

You should see something like this:

Figure 14.13: The Wasm frontend, served on port 8001, successfully loads the initial list item (ID 2: “Test the
API”) from the running Axum API on port 8080

3.	 Now you can try to add a new todo using the user interface:

1.	 Write some input text.

2.	 Click Add Todo.

The UI should update, showing the updated list!

Figure 14.14: The updated frontend display after successfully adding a new todo item through the user interface

Rust for Web Development: Building Full-Stack Applications558

You can also check this directly in the postgres container, running docker exec -it my_app_

db_postgres psql -U postgres and then select * from todos;.

Figure 14.15: The result of executing SELECT * FROM todos; in the PostgreSQL database, show-
ing the current persistent state of the Todo list

Summary
And with that, we’ve successfully built a complete full-stack application in Rust!

Let’s have a quick recap.

This chapter was an exciting, fast-paced adventure that brought everything we’ve learned together,

from the backend to the browser!

We started by creating a backend API from scratch with Axum, a modern and user-friendly web

framework. Along the way, we learned to define routes, write async handlers, and use extractors

to handle JSON and path parameters.

We initially crafted a simple in-memory todo list with Arc<Mutex<...>> to manage state, and

then enhanced it by making it persistent. To do this, we replaced the in-memory Vec with a real

PostgreSQL database.

We chose the sqlx crate, which allowed us to write pure-Rust, async database code without

complex C dependencies. We set up a connection pool, added a CREATE TABLE IF NOT EXISTS

query right in our main function to initialize the database, and refactored our handlers to utilize

compile-time checked sqlx::query_as! macros.

Finally, we linked everything to the frontend by building a small WebAssembly (Wasm) module.

We explored how to use wasm-pack and #[wasm_bindgen] to expose Rust functions that use

reqwest to call our own Axum API, and then ran that Wasm module from a simple index.html

file to create a fully functional, end-to-end application, all written in Rust.

That was a complete end-to-end full-stack application entirely written in Rust!

In the next chapter, we will dive deeper into the world of systems programming!

Chapter 14 559

Questions and assignment
Questions

1.	 What is the purpose of the #[tokio::main] macro in a Rust web server? Why is it essential

when working with Axum?

2.	 In Axum, what is a handler? How does a simple handler return a 200 OK response when

its return type is just a plain &'static str?

3.	 When defining a route for dynamic data (e.g., fetching a todo by ID), how does the Path<T>

extractor in the handler signature prevent the need for manual string parsing and error

checking?

4.	 When building the in-memory API, why did we have to wrap the Vec<Todo> in both Arc

and Mutex? Explain the distinct role of each smart pointer in this scenario.

5.	 What is the role of the State<T> extractor in Axum? How does it gain access to the shared

data (such as the AppState)?

6.	 Explain the primary purpose of the serde crate when building a REST API. How do the

Serialize and Deserialize traits apply to an HTTP POST request?

7.	 Why is using a connection pool (such as sqlx::PgPool) far more efficient than creating

a new connection with every incoming request?

8.	 When using sqlx, what is the purpose of deriving the FromRow trait on the Todo struct?

9.	 We opted to use sqlx instead of a synchronous ORM. What is the fundamental advantage

of using an async-native library such as sqlx when writing handlers for an asynchronous

framework such as Axum? (Hint: Think about blocking threads.)

10.	 Why was it necessary to add the CORS layer to our Axum backend before the Wasm fron-

tend could successfully communicate with it?

Assignment
Expanding the API and using basic extractors
Goal: Get hands-on with Axum’s core routing, handler definition, and the simple use of extractors

for shared state and path parameters.

Here’s the task:

1.	 Use your existing project: Continue with the todo_api project you just completed.

2.	 Add a new state check handler: Create a new asynchronous handler function named

get_server_status.

Rust for Web Development: Building Full-Stack Applications560

3.	 Implement logic: This handler should access the shared AppState and return a 200 OK

response with a plain text body that says: Server Status: OK. Database Pool Ready.

4.	 Add a dynamic route: Register this new handler to the /status path.

5.	 Add a Path parameter echo handler: Create a second handler function named echo_path

that takes a string path parameter (e.g., /echo/:message). This handler should extract

the message and return it as the response body (e.g., returning You sent: [message]).

6.	 Register routes: Update your router in main.rs to include the GET /status and GET /

echo/:message routes.

Here’s what you will learn how to do from this:

•	 Define simple, new async handlers

•	 Use the State<AppState> extractor

•	 Use the Path<String> extractor

•	 Register routes with different paths and parameters

Example usage (using curl):

curl http://127.0.0.1:8080/status

Expected: Server Status: OK. Database Pool Ready.

curl http://127.0.0.1:8080/echo/testing-123

Expected: You sent: testing-123

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

15
System Programming in Rust:
Concrete Examples

We’ve explored many of Rust’s high-level features, including its impressive error handling and

even its potential applications in web development and concurrency.

Now, let’s turn our attention to something more hands-on: system programming with Rust. This

is an area where Rust really shines, offering a powerful alternative to traditional languages such

as C and C++.

We’ll discover how Rust’s core design principles give you a special edge when building software

that works closely with the operating system and hardware.

Let’s start!

What defines system programming?
System programming is about writing software that manages and controls computer hardware

directly or provides a platform for other software to run.

Think of operating systems, device drivers, embedded systems, game engines, browsers, com-

mand-line utilities, network daemons, and even the core components of programming language

runtimes themselves.

These kinds of programs often have stringent requirements:

•	 Performance: They need to be fast and efficient, often with predictable latency.

•	 Control: Developers need fine-grained control over memory layout, resource allocation,

and hardware interaction.

System Programming in Rust: Concrete Examples562

•	 Reliability and security: System software forms the foundation for everything else. It

must be extremely robust and fault-tolerant, but this goes beyond just preventing crashes.

Mistakes in system-level code have severe security implications. A bug such as a buffer

overflow isn’t just an error; it’s a potential vulnerability that could lead to arbitrary code

execution, privilege escalation, and the complete compromise of the system.

•	 Resource constraints: Sometimes, system programs run in environments with limited

memory or processing power (such as embedded devices).

Traditionally, languages such as C and C++ have dominated this space due to their low-level con-

trol and performance. However, they also come with well-known challenges related to memory

safety (e.g., buffer overflows, dangling pointers, data races).

Why Rust is a strong candidate for systems work
Rust has emerged as a compelling language for system programming precisely because it offers

a unique combination of control, performance, and safety:

•	 Memory safety: This is Rust’s flagship feature. Its ownership and borrowing system, en-

forced at compile time, prevents common memory errors such as null pointer dereferences,

buffer overflows, and data races in concurrent code, all without the runtime overhead of a

garbage collector. This is huge for systems where predictable performance and reliability

are paramount.

•	 Performance on par with C/C++: Rust compiles to efficient machine code and gives

developers the control needed to optimize critical sections. It has no runtime or garbage

collector to introduce unpredictable pauses, making it suitable for performance-sensitive

applications.

•	 Fearless concurrency: As we saw in the previous chapter, Rust’s type system helps pre-

vent data races at compile time, making it much safer to write concurrent and parallel

programs that can fully utilize modern multi-core processors.

•	 Low-level control: Rust provides abstractions but also allows you to drop down to a

lower level when needed. Features such as raw pointers, unsafe blocks for operations

the compiler can’t guarantee, and control over memory layout (#[repr(C)]) give you the

power you need for system tasks.

•	 Excellent tooling: Cargo (Rust’s package manager and build system), rustup (for man-

aging Rust versions), and a supportive community make the development experience

pleasant and productive.

Chapter 15 563

•	 Foreign Function Interface (FFI): Rust has excellent support for interoperating with C

code, allowing you to leverage existing C libraries or integrate Rust components into C/

C++ projects.

These features make Rust an attractive choice for a new generation of system software that aims

to be both high-performance and highly reliable.

The core tension: control versus abstraction
Before we dive into the mechanics of unsafe Rust and FFI, it’s crucial to understand the central

philosophy that makes Rust a world-class systems language. Your work as a systems programmer

will always be defined by a fundamental tension: the trade-off between high-level abstraction

and low-level control.

The systems programmer’s dilemma
For decades, programming languages forced you to choose a side, each with a major compromise:

•	 Maximum control (e.g., C/C++): You get full control. You can manually manage memory,

lay out data structures precisely, and perform hyper-optimized operations.

•	 The cost: This power is dangerous. You are 100% responsible for memory safety.

A single mistake can lead to buffer overflows, dangling pointers, data races, or

segfaults, which are not just bugs but critical security vulnerabilities.

•	 Maximum abstraction (e.g., Python/Java/C#): You get a powerful, safe environment. A

garbage collector (GC) manages memory for you, preventing leaks and use-after-free

errors. Arrays are bounds-checked.

•	 The cost: You lose control. You cannot predict when the GC will run, causing

non-deterministic pauses (GC stutter). Abstractions have “hidden costs” in per-

formance and memory, making them unsuitable for time-critical or resource-con-

strained environments such as kernels, drivers, or game engines.

Historically, systems programming had no choice but to pick “maximum control” and accept

the danger.

Rust’s solution: control without compromise
Rust is designed to systematically eliminate this tension. Its core premise is that you should not

have to choose between safety and performance.

You get both by adhering to one central philosophy:

System Programming in Rust: Concrete Examples564

Zero-cost abstractions (ZCAs)

A zero-cost abstraction is a high-level feature (such as an iterator, an Option type, or a generic)

that is as safe and convenient as a high-level language but compiles down to the exact same (or

faster) machine code as the “manual control” version you would have written in C.

The “cost” (in CPU time or memory) is paid at compile time, not at runtime.

ZCA in practice: the iterator versus the for loop

Let’s look at a classic example. A C programmer needing performance would write a manual for

loop.

// The "Control" version: What you'd write in C/C++

let mut total = 0;

let my_vec = vec![1, 2, 3, 4, 5];

for i in 0..my_vec.len() {

 total += my_vec[i] * 2;

}

A Rust programmer can use a high-level, “abstracted” functional approach:

// The "Abstraction" version: Safe, clear, and high-level

let my_vec = vec![1, 2, 3, 4, 5];

let total: i32 = my_vec.iter()

 .map(|x| x * 2)

 .sum();

In a language such as Python, the abstracted version might run a lot slower, but in Rust, both

versions compile down to the same efficient machine code. The compiler employs the borrow

checker to verify the iterator’s safety during compilation, and then it completely optimizes the

high-level iterator chain, leaving behind only a quick and straightforward loop. This showcases

the real strength of a ZCA.

Chapter 15 565

The bridge to unsafe: when ZCAs aren’t enough
This brings us to the “why” of this chapter.

Rust’s philosophy is to make the safe, abstract way the default (such as Vec<T>, std::fs::File).

These ZCAs cover 99% of your needs.

But what happens when you need to do something that the Rust compiler cannot verify as safe?

•	 What if you must call a function in a C library? (The compiler can’t check C code.)

•	 What if you need to read from a specific memory address to control hardware? (The com-

piler can’t know what’s at that address.)

•	 What if you are implementing a new ZCA (such as Vec<T>) and need to manually manage

raw memory?

For these rare but critical “maximum control” scenarios, Rust provides a clearly marked escape

hatch: the unsafe keyword.

Using unsafe is a contract. You tell the compiler: “I am now stepping outside your verifiable

safety rules. I have read the documentation, and I am manually guaranteeing that I will uphold

the safety invariants for this specific operation.” The rest of this chapter explains how, why, and,

most importantly, when to use this escape hatch. We will learn the unsafe mechanics, use them

to interface with C code, and see how to wrap this danger in our own new, safe abstractions.

Chapter roadmap: from low-level mechanics to practical
builds
In this chapter, we’ll put these ideas into practice. Our journey will include the following:

•	 Revisiting low-level foundations: We’ll start by briefly recapping Rust’s memory model

and then take a closer look at unsafe Rust, understanding why it exists and how to work

with raw pointers

•	 Building command-line utilities: We’ll apply our knowledge to create practical com-

mand-line tools, a common system programming task

•	 Interfacing with C code (FFI): You’ll learn how to call C libraries from Rust and under-

stand the basics of data marshalling between the two languages

•	 A glimpse into kernel modules (optional): For the more adventurous, we’ll offer a

high-level look at what it takes to write a very simple kernel module in Rust, highlight-

ing the unique challenges.

System Programming in Rust: Concrete Examples566

Through concrete examples, you’ll gain a better appreciation for how Rust’s features translate

into building efficient and reliable system-level software.

Let’s get started!

Low-level programming foundations in Rust
To write system-level software in Rust successfully, it’s helpful to have a good understanding

of how Rust handles memory management and how it enables you to perform more advanced

operations, sometimes even by carefully stepping outside its usual safety features.

This section goes over some key memory concepts and then introduces unsafe Rust, an important

tool for specific system programming tasks.

Rust’s memory safety model: a systems perspective
We’ve touched upon Rust’s memory management throughout this book, especially its ownership

and borrowing system.

For system programming, a clear understanding of these mechanics, along with where your data

lives (stack or heap), is doubly important.

Ownership and borrowing recap for control and safety
Here’s a quick refresher:

•	 Ownership: Every value in Rust has a variable that’s its “owner.” There can only be one

owner at a time. When the owner goes out of scope, the value is dropped (and its memory

is deallocated if it was on the heap). This prevents “dangling pointers” (pointing to the

freed memory) and “double free” errors.

•	 Borrowing: You can create references to data:

•	 Multiple immutable references (&T) allow read-only access.

•	 Only one mutable reference (&mut T) is allowed at any given time, preventing

data races at compile time.

•	 Lifetimes: The compiler uses lifetimes to ensure that references are always valid and never

outlive the data they point to.

This system is the bedrock of Rust’s memory safety. For system programmers who might be used to

manual memory management (such as malloc/free in C), Rust’s approach takes some getting used

to, but it automates many safety checks that would otherwise require meticulous manual effort.

Chapter 15 567

Stack versus heap: managing memory explicitly
Understanding where your data is stored is crucial for performance and control:

•	 Stack: This is a region of memory used for static memory allocation. It’s very fast because

it’s a simple LIFO (Last-In, First-Out) structure. Local variables, function arguments,

and return addresses are typically stored on the stack. Data on the stack must have a size

known at compile time. When a function returns, its stack frame (containing its local

variables) is popped off, instantly reclaiming the memory.

fn stack_example() {
 let x = 10; // x (an i32) is on the stack
 let y = true; // y (a bool) is on the stack
 // When stack_example returns, x and y are gone
}

•	 Heap: This is a region of memory used for dynamic memory allocation, where data can be

allocated and deallocated at runtime. It’s more flexible than the stack because the size of

data doesn’t need to be known at compile time, and data can live longer than the function

that created it. However, heap allocation is generally slower than stack allocation due to

the overhead of finding a suitable block of memory and managing its lifecycle.

fn heap_example() {
 let s1 = String::from("hello"); // String data ("hello") is on
the heap, s1 (ptr, len, cap) is on stack
 let v1 = vec![1, 2, 3]; // Vector data ([1,2,3]) is on the
heap, v1 (ptr, len, cap) is on stack
 // When s1 and v1 go out of scope, their Drop implementations
free the heap memory
}

Tip: need a deeper refresher?

The concepts of ownership, borrowing, and lifetimes are the most fundamental

(and challenging!) parts of Rust. We are only summarizing them here. If any of these

rules feel a bit fuzzy, we highly recommend flipping back to Chapter 4, Ownership,

Borrowing, and References, for a full, in-depth explanation before you dive into the

low-level topics ahead.

System Programming in Rust: Concrete Examples568

In system programming, you often need to make conscious decisions about whether to use the

stack for speed and simplicity or the heap for flexibility and larger data.

The role of smart pointers in memory management
As we explored in detail in Chapter 11, Smart Pointers and Memory Management, Rust provides smart

pointers such as Box<T>, Rc<T>, and Arc<T> to manage heap-allocated data with clear ownership

semantics and automatic deallocation.

•	 Box<T> is the most straightforward way to allocate a value on the heap and have a single

owner. It’s crucial for creating recursive data structures or owning data whose size isn’t

known at compile time (such as trait objects).

•	 Rc<T> and Arc<T> allow for shared ownership of heap-allocated data via reference count-

ing, in single-threaded and multi-threaded contexts, respectively.

These smart pointers abstract away manual malloc and free (or new and delete) operations,

integrating heap memory management directly into Rust’s ownership and Drop system.

This significantly reduces the risk of memory leaks or use-after-free errors compared to manual

management in languages such as C.

While you can do manual memory allocation in unsafe Rust (which we’ll touch on), for most heap

allocation needs in safe Rust, smart pointers are the idiomatic solution.

Venturing into unsafe Rust
One of Rust’s primary goals is to provide strong memory safety guarantees, most of which are

enforced by the compiler at compile time. However, certain operations are inherently “unsafe” in

the sense that the compiler cannot statically verify their safety. For these situations, Rust provides

the unsafe keyword.

This doesn’t turn off all of Rust’s safety checks (such as the borrow checker, which still operates),

but it allows you to perform a few specific operations that are otherwise disallowed in safe Rust.

Using unsafe is a contract: you, the programmer, are telling the compiler, “I know what I’m doing

here, and I’ve manually verified that this code is safe under these specific conditions.”

When and why unsafe is necessary
You might wonder, if Rust is all about safety, why have an unsafe escape hatch at all? There are

legitimate reasons:

Chapter 15 569

•	 Interfacing with other languages or hardware (FFI): When calling functions written in

C (or other languages via a C ABI) through the FFI, Rust cannot guarantee the safety of

the external code. Dereferencing raw pointers received from C, for instance, is an unsafe

operation.

•	 Low-level hardware interaction: Writing device drivers or interacting directly with hard-

ware registers often requires direct memory manipulation via raw pointers.

•	 Implementing low-level data structures or abstractions: Sometimes, to create safe,

high-level abstractions, their internal implementation must use unsafe code. This applies

to standard collection types such as Vec<T> and String, which manage raw, uninitialized

memory, as well as many of the smart pointers we’ve discussed. Types such as Rc<T>,

RefCell<T>, and Mutex<T> rely on unsafe code internally to perform their functions, such

as manipulating reference counts or implementing runtime borrow checks in ways the

compiler can’t verify. In all these situations, the goal is the same: to wrap this complex,

unsafe core in a public API that is entirely safe for the end user.

•	 Performance-critical code: In very rare, performance-critical sections, unsafe might

be used to bypass certain checks if they are proven bottlenecks and the programmer can

guarantee safety manually. This is rare and should be a last resort.

The key idea is that unsafe doesn’t mean “this code is buggy”; it means “the compiler cannot

verify the safety of these specific operations, so the programmer must.”

The five superpowers of unsafe Rust
The unsafe keyword allows you to perform five main categories of operations that are usually

forbidden in safe Rust.

These are often referred to as the “unsafe superpowers”:

1.	 Dereferencing a raw pointer: Accessing the data pointed to by *const T or *mut T.

2.	 Calling an unsafe function or method: Functions or methods marked unsafe can only

be called from within an unsafe block or another unsafe function.

3.	 Accessing or modifying a mutable static variable: Global mutable state is inherently

risky for concurrency, so modifying it requires unsafe.

4.	 Implementing an unsafe trait: Some traits are marked unsafe to indicate that imple-

menting them requires upholding certain invariants that the compiler can’t check.

5.	 Accessing fields of unions: Unions allow multiple types to share the same memory loca-

tion; accessing which field is active is unsafe, as Rust doesn’t track it. (Unions are a more

advanced topic, less common than the others.)

System Programming in Rust: Concrete Examples570

We’ll focus primarily on the first three in our examples.

Working with raw pointers (*const T and *mut T)
Unlike Rust’s references (&T and &mut T), which come with strong compile-time guarantees

about validity and aliasing, raw pointers are a more primitive concept. Rust provides two types

of raw pointers:

•	 *const T: An immutable raw pointer, meaning the data it points to should not be changed

through this pointer

•	 *mut T: A mutable raw pointer, meaning the data it points to can be changed through

this pointer

Here are the key characteristics of raw pointers that differentiate them from references:

•	 Allowed to be dangling: They can point to invalid memory or memory that has been

deallocated

•	 Allowed to be null: They can explicitly point to no valid location

•	 Do not have automatic cleanup: They don’t implement Drop in a way that cleans up the

pointed-to memory when the pointer itself goes out of scope (unlike Box<T>)

•	 Bypass borrowing rules: You can have multiple mutable raw pointers to the same lo-

cation, or mutable and immutable raw pointers simultaneously, without the compiler

stopping you

Creating raw pointers is generally safe. For example, you can cast a reference to a raw pointer:

let my_num = 10;

let raw_ptr_const: *const i32 = &my_num;

let mut my_mut_num = 20;

let raw_ptr_mut: *mut i32 = &mut my_mut_num;

You can also create them from integer addresses, though this is highly platform-specific and

usually only done for interacting with hardware or known memory layouts.

The critical part is that dereferencing a raw pointer (using the * operator to access the data it

points to) is an unsafe operation. This is because the compiler cannot guarantee the pointer is

valid. Therefore, any dereference must occur within an unsafe block, where you, the programmer,

assert that the operation is safe under the current circumstances.

Chapter 15 571

fn main() {

 let mut num = 5;

 // Create raw pointers from references. This part is safe.

 // r1 is an immutable raw pointer to num.

 let r1: *const i32 = &num as *const i32;

 // r2 is a mutable raw pointer to num.

 let r2: *mut i32 = &mut num as *mut i32;

 // --- WARNING: DANGEROUS OPERATION ---

 // The following code creates a raw pointer from an arbitrary memory
address.

 // This is NOT something you should do in normal application code.

 // Accessing random memory addresses is undefined behavior and will

 // almost certainly crash your program with a segmentation fault.

 // This is only done in very specific low-level programming, like

 // interacting with known, fixed hardware addresses.

 let arbitrary_address = 0x012345usize;

 let r3_arbitrary_ptr = arbitrary_address as *const i32;

 // --- END WARNING ---

 // To dereference raw pointers and access the data they point to,

 // we MUST use an `unsafe` block. We are telling the compiler

 // that we take responsibility for the pointer's validity at this

 // moment.

 unsafe {

 // Dereferencing r1 to read the value of num

 // This is safe because we know r1 was created from a valid
reference.

 println!("Value via r1 (immutable raw pointer): {}", *r1); //
Output: 5

 // Dereferencing r2 to write a new value to the memory location of
num.

 // This is safe because r2 was also created from a valid
reference.

 *r2 = 10; // Modifies `num` through the raw pointer

System Programming in Rust: Concrete Examples572

 println!("`num` has been changed via r2 to: {}", num); // Output:
10

 // r1 still points to `num`, so it will now see the new value.

 println!("Value via r1 after change via r2: {}", *r1); // Output:
10

 // --- DANGER: DO NOT DO THIS ---

 // Uncommenting the line below would attempt to dereference r3_
arbitrary_ptr.

 // This is EXTREMELY DANGEROUS because r3_arbitrary_ptr points to
an arbitrary,

 // likely invalid, memory location. It would almost certainly
crash your program.

 // println!("Attempting to read from arbitrary address r3: {}",
*r3_arbitrary_ptr);

 // --- END DANGER ---

 }

 // Creating a null pointer.

 let null_pointer: *const i32 = std::ptr::null();

 let mut_null_pointer: *mut i32 = std::ptr::null_mut();

 // It's crucial to check if a raw pointer is null before attempting to
dereference it.

 if !null_pointer.is_null() {

 // This block will not execute because null_pointer is indeed
null.

 unsafe {

 println!("This line should not be reached: {}", *null_
pointer);

 }

 } else {

 println!("null_pointer is confirmed to be null, not
dereferencing.");

 }

}

Chapter 15 573

•	 Creation: Raw pointers (*const T for immutable, *mut T for mutable) can be creat-

ed by casting references (e.g., &num as *const i32). This process is safe. They can also

be formed from integer addresses, which is inherently unsafe unless you know exactly

what that address represents (e.g., memory-mapped hardware). std::ptr::null() and

std::ptr::null_mut() create null raw pointers.

•	 Dereferencing (*): The act of accessing the data that a raw pointer points to (using the *

operator, for either reading or writing) is always an unsafe operation. This is because the

compiler cannot make any guarantees about the validity of the raw pointer (it could be null,

dangling, or point to uninitialized/incorrectly typed memory). Therefore, dereferencing

must occur within an unsafe { ... } block. By using this block, you are asserting to the

compiler that you have ensured the pointer is valid at that point.

•	 Mutability: *r1 reads the value pointed to by r1. *r2 = 10; writes 10 to the memory

location pointed to by r2, thereby modifying the original num.

•	 Null pointers: Raw pointers can be null, so use .is_null() to check for nulls before

dereferencing, particularly when the source is uncertain. Dereferencing a null pointer

often leads to program crashes, which is undefined behavior.

•	 Responsibility: The unsafe block signifies that the programmer takes full responsibility for

upholding memory safety for the operations contained within it. The usual compile-time

guarantees are relaxed for these specific operations.

Best practices for encapsulating unsafe code
While unsafe provides necessary power for low-level programming, its use should be approached

with caution and discipline. The primary goal when you must use unsafe is to minimize its scope

and encapsulate it within a safe abstraction. This means that while the internals of a particular

function or module might use unsafe operations, the interface it presents to the rest of your Rust

code (and to other developers) should ideally be entirely safe.

Here are key practices for doing this effectively:

•	 Keep unsafe blocks as small as possible: The unsafe { ... } block should only con-

tain the absolute minimum lines of code that require the unsafe superpowers. If you can

perform setup, teardown, or checks outside the unsafe block, do so. This makes it easier

to review and reason about the specific unsafe operations.

System Programming in Rust: Concrete Examples574

Bad: large unsafe block:

// unsafe fn some_complex_operation(ptr: *mut u32, len: usize,
value: u32) {

// // ... lots of safe logic ...

// unsafe {

// // ... more safe logic ...

// // The actual unsafe part:

// for i in 0..len {

// *ptr.add(i) = value + i as u32;

// }

// // ... even more safe logic ...

// }

// // ...

// }

Good: minimal unsafe block:

// fn some_complex_operation_safer(ptr: *mut u32, len: usize, value:
u32) {

// // ... lots of safe logic to validate ptr, len, value ...

// // The actual unsafe part, tightly scoped:

// unsafe {

// for i in 0..len {

// *ptr.add(i) = value + i as u32;

// }

// }

// // ... more safe logic using results ...

// }

•	 Create safe abstractions around unsafe code: This is the most important principle. If you

use unsafe code to implement a data structure (such as Vec<T> or String in the standard

library), a system call wrapper, or an FFI binding, strive to provide a public API for it that

is entirely safe to use. The internal unsafe details are your responsibility to get absolutely

right, verifying all preconditions and maintaining invariants, but users of your safe API

shouldn’t need to write unsafe code themselves or worry about the low-level details. The

increment_global_counter() and read_global_counter() functions from our static mut

example (in ch15_mutable_static_vars_v3) are small examples of this: they perform

unsafe operations internally but present a safe interface.

Chapter 15 575

•	 Clearly document invariants and safety conditions: If your unsafe code relies on certain

conditions (invariants) being true for it to be safe, these conditions must be thoroughly

documented.

•	 If you expose an unsafe fn to users of your library, its documentation must clearly

state the contract the caller must uphold to use it safely.

•	 If you have an internal unsafe block, comments explaining why it’s safe in that

context (what conditions are being met) are crucial for maintainability and for

other developers (including your future self).

•	 Use debug_assert! for internal invariants (in unsafe blocks): While debug_assert!

doesn’t make unsafe code safe, it can help catch violations of your assumed invariants

during development and testing. These assertions are compiled only in debug builds

(cargo build) and are completely removed in release builds (cargo build --release),

so they have zero performance cost in your production code. This makes them the perfect

tool for checking preconditions inside an unsafe block. For example, if you’re writing

an unsafe function that assumes a pointer is non-null, you can add a debug_assert! to

catch errors during testing.

/// # Safety

///

/// The caller *must* ensure that the pointer `ptr` is valid, non-
null,

/// and points to a valid `i32`.

pub unsafe fn do_something_with_ptr(ptr: *mut i32) {

 // This check runs only in debug builds. It helps catch

 // incorrect usage of this unsafe function during development.

 // In a release build, this check disappears, and passing a null

 // pointer would lead to undefined behavior.

 debug_assert!(!ptr.is_null(), "do_something_with_ptr called with
a null pointer!");

 // The actual unsafe operation

 *ptr += 1;

}

fn main() {

 let mut x = 5;

System Programming in Rust: Concrete Examples576

 let ptr = &mut x as *mut i32;

 unsafe {

 do_something_with_ptr(ptr);

 }

 println!("x is now: {}", x); // Output: x is now: 6

 // If you were to run this in a debug build:

 // unsafe {

 // do_something_with_ptr(std::ptr::null_mut()); // This
would panic!

 // }

}

In this example, if someone (including yourself) accidentally calls do_something_with_ptr

with a null pointer during a cargo test or cargo run (debug build), the debug_assert!

will panic, immediately identifying the bug. In a release build, the check is removed, and

the unsafe code runs at full speed.

•	 Minimize the use of raw pointers when safe alternatives exist: Don’t reach for raw

pointers and unsafe if a problem can be solved using safe Rust abstractions such as ref-

erences, slices, Box<T>, Vec<T>, Cell<T>, RefCell<T>, Mutex<T>, and so on. unsafe is for

when those abstractions are insufficient or when you are building those very abstractions.

•	 Meticulously review unsafe code: Code within unsafe blocks deserves the highest level

of scrutiny during code reviews. Since the compiler’s safety guarantees are partially lift-

ed, the responsibility for correctness falls entirely on the developer. Consider edge cases,

potential null pointers, dangling pointers, buffer overflows, data races (if static mut or

shared raw pointers are involved), and alignment issues.

By following these practices, you can harness the power of unsafe Rust when needed, while still

ensuring a high level of safety and reliability in your code base. The aim is to create robust, safe

layers over any unavoidable unsafe foundations.

In the next section, we’ll explore some real-world examples to show you how to build effective

command-line interfaces.

Chapter 15 577

Building practical command-line utilities
One of the most common and immediately rewarding applications of system programming is

the creation of command-line utilities (CLI tools).

These are programs that users interact with through a text-based interface in their terminal or

console. You use them every day: ls to list files, grep to search for text, find to locate files, curl

to transfer data, or even git and cargo themselves! Rust’s strengths in performance, safety, and

memory management, and its excellent handling of strings and I/O make it a superb choice for

crafting efficient, reliable, and powerful CLI applications.

In this section, we’ll walk through the common steps and considerations involved in designing

and implementing a simple but useful command-line tool.

Designing a useful CLI tool
Before a single line of code is written, it’s good practice to clearly define what your CLI tool should

accomplish and how users will interact with it. A little bit of design upfront can save a lot of time

and effort later.

For our primary example in this section, let’s decide to build a utility that searches for a specific

text pattern within a given file. This will be a very simplified version of the popular grep command.

Let’s call our tool mini_grep.

Here’s a breakdown of the desired functionality and user interaction for mini_grep:

•	 Core functionality:

•	 Search for a given text query (a string) within the lines of a specified text file

•	 Print every line from the file that contains the query

•	 Command-line arguments:

•	 The tool should accept two mandatory arguments:

•	 The query: The string pattern to search for

•	 The file_path: The path to the file that needs to be searched

•	 The expected usage from the command line would look something like this:

mini_grep "search_term" path/to/my/file.txt

System Programming in Rust: Concrete Examples578

•	 Output:

•	 If the query is found in a line, that entire line should be printed to the standard

output

•	 If the query is not found in any line, the program should produce no output (or

perhaps a message indicating “no matches found”; we can decide this)

•	 Error messages (e.g., if the file doesn’t exist or arguments are incorrect) should

be printed to the standard error stream

•	 Error handling:

•	 The tool must handle cases where the file specified by file_path cannot be opened

(e.g., it doesn’t exist, or the program lacks permission to read it)

•	 It should handle cases where an incorrect number of command-line arguments

is provided

•	 In case of an error, it should print an informative message to standard error and exit

with a non-zero status code (which is a convention for CLI tools to indicate failure)

•	 Optional enhancements (to consider, maybe not for the first version):

•	 A command-line flag to make the search case-insensitive (e.g., -i or --ignore-

case)

•	 Printing line numbers alongside matching lines

•	 Searching in multiple files or standard input if no file is specified

For our initial implementation, we’ll focus on the core functionality. Having this clear set of

requirements helps guide the implementation process. We know we’ll need to do the following:

•	 Parse command-line arguments

•	 Read a file line by line

•	 Perform string searching

•	 Print to standard output and standard error

•	 Manage potential errors from file operations and argument parsing

This design phase, even for a small tool, is crucial. It clarifies the “what” before you dive into

the “how.”

Chapter 15 579

Parsing command-line arguments
When a user runs your CLI tool, they often provide input directly on the command line after the

program’s name, for example, mini_grep "search_pattern" input.txt.

Here, “search_pattern” and input.txt are command-line arguments. Your Rust program needs a

way to access these values. Rust’s standard library offers a basic mechanism for this, and for more

complex needs, the ecosystem provides robust third-party crates like clap. For this example, we

will stick to the standard library to understand the fundamentals.

Using std::env::args() for basic arguments
The simplest way to get command-line arguments in Rust is using the std::env::args() function.

This function returns an iterator that yields the arguments as String values.

The first argument (at index 0) is traditionally the program’s name or path, and subsequent

elements are the user’s arguments.

use std::env; // Required to use args()

fn main() {

 // env::args() returns an iterator over the command-line arguments.

 // We can collect these into a Vec<String>.

 let arguments: Vec<String> = env::args().collect();

 println!("Total arguments passed: {}", arguments.len());

 // Print each argument along with its index.

 // args[0] is typically the path used to execute the program.

 for (index, argument) in arguments.iter().enumerate() {

 println!("Argument [{}]: {}", index, argument);

 }

 // For our mini_grep, we expect at least two arguments after the
program name.

 // So, arguments.len() should ideally be 3 or more.

 if arguments.len() < 3 {

 if arguments.len() > 0 { // Check if program name itself is
available

System Programming in Rust: Concrete Examples580

 eprintln!("\nUsage: {} <query> <file_path>", arguments[0]);

 } else {

 eprintln!("\nUsage: <program_name> <query> <file_path>");

 }

 eprintln!("Error: Not enough arguments provided.");

 std::process::exit(1); // Exit with an error code

 }

 // If we reach here, we assume we have at least the query and file_
path.

 // Note: arguments[0] is the program name.

 // So, arguments[1] would be the query, and arguments[2] the file_
path.

 if arguments.len() >= 3 {

 let query_arg = &arguments[1];

 let file_path_arg = &arguments[2];

 println!("\nIntended query: {}", query_arg);

 println!("Intended file path: {}", file_path_arg);

 }

}

•	 use std::env;: You need to import the env module to use args().

•	 env::args(): This function returns an std::env::Args iterator, which yields String values.

•	 .collect(): We typically call <<>> .collect::<Vec<String>>() on the iterator to get all

arguments into a vector for easier access by index.

•	 Argument indexing:

•	 arguments[0] is usually the path that was used to run your program (e.g., target/

debug/my_cli_app or just my_cli_app if it’s in the PATH).

•	 arguments[1] is the first actual argument provided by the user.

•	 arguments[2] is the second, and so on.

•	 Error handling: The example includes a basic check for the number of arguments. If in-

sufficient arguments are provided, it prints a usage message to standard error (eprintln!)

and exits with a non-zero status code (std::process::exit(1)), which is a common

convention for CLI tools to indicate an error.

Chapter 15 581

•	 Accessing arguments: If enough arguments are present, arguments[1] and arguments[2]

can be accessed. They are strings, so you might need to parse them further (e.g., if an

argument is expected to be a number).

While std::env::args() is fine for very simple tools with a fixed number of positional arguments,

it quickly becomes cumbersome for more complex scenarios involving optional arguments, named

flags (such as -i or --ignore-case), subcommands, or automatic help message generation.

That’s where dedicated argument parsing crates come in.

Introduction to argument parsing
Crates using clapFor any CLI tool that needs more than one or two simple positional arguments,

using a dedicated argument parsing crate is highly recommended. These crates handle much of

the boilerplate and provide a more robust and user-friendly experience.

clap (Command Line Argument Parser) is one of the most popular and powerful argument pars-

ing libraries in the Rust ecosystem. It allows you to define your command-line interface using a

declarative style (often by deriving a struct) and handles:

•	 Parsing arguments, flags (e.g., -v, --verbose), and options (e.g., --output <file>)

•	 Type conversion (e.g., parsing a string argument into a number)

•	 Generating help messages (--help or -h)

•	 Generating version information (--version or -V)

•	 Handling subcommands (such as git add ... or git commit ...)

•	 Validating arguments

While a full tutorial on clap is beyond the scope of this immediate section (it’s a feature-rich

library!), let’s see a conceptual glimpse of how it simplifies things compared to manual parsing

with std::env::args().

You can learn more about the clap crate here:

https://docs.rs/clap/latest/clap/

First, you’d add clap to your Cargo.toml file, usually with the “derive” feature:

[dependencies]

clap = { version = "4.5", features = ["derive"] } # Check crates.io for
the latest version

https://docs.rs/clap/latest/clap/

System Programming in Rust: Concrete Examples582

Then, you could define your arguments as fields in a struct and derive clap::Parser:

use clap::Parser; // Import the Parser trait

/// A simple program to greet a person, demonstrating clap.

#[derive(Parser, Debug)]

#[command(author = "Your Name", version = "0.1.0", about = "Greets a
person - clap example", long_about = None)]

struct CliArgs {

 /// The name of the person to greet

 #[arg(short, long)] // Allows -n <NAME> or --name <NAME>

 name: String,

 /// Number of times to greet

 #[arg(short, long, default_value_t = 1)] // Allows -c <COUNT> or
--count <COUNT>, defaults to 1

 count: u8,

 /// Optional message to include in the greeting

 #[arg(long)] // Allows --message <MESSAGE>

 message: Option<String>,

 // For our mini_grep example, it might look more like:

 // query: String,

 // file_path: std::path::PathBuf,

 // #[arg(short, long, action = clap::ArgAction::SetTrue)] // for a
flag like -i

 // ignore_case: bool,

}

fn main() {

 // CliArgs::parse() will parse arguments from std::env::args(),

 // handle errors, and provide help/version messages automatically.

 let args = CliArgs::parse();

 for _ in 0..args.count {

 if let Some(ref msg) = args.message {

 println!("Hello, {}! Here's your message: {}", args.name,

Chapter 15 583

msg);

 } else {

 println!("Hello, {}!", args.name);

 }

 }

 // If --help or --version was passed, clap handles it and exits before
this point.

 // If parsing failed, clap prints an error and exits.

}

To test the code:

cargo run -- --name Alice --count 3 --message "Welcome to Rust!"

•	 #[derive(Parser)]: This derive macro from clap automatically generates all the parsing

logic for the CliArgs struct.

•	 Struct-level attributes (#[command(...)]): These configure the overall help message,

author, version, and so on.

•	 Field-level attributes (#[arg(...)]): These configure how each field is parsed from the

command line:

•	 name: String: A required positional argument (by default, or you’d specify how

it’s named).

•	 count: u8: #[arg(short, long, default_value_t = 1)] makes it an option

that can be specified with -c <<value>> or --count <<value>>, automatically

parses it as a u8, and provides a default value if not given.

•	 message: Option<<String>>: An optional argument. If --message “text” is pro-

vided, message will be Some("text"). Otherwise, it’s None.

•	 CliArgs::parse(): This single line does all the work: it fetches arguments, parses them

according to your struct definition, performs type conversions, handles errors (printing

user-friendly messages), and populates an instance of CliArgs. If the user passes --help

or --version, clap handles that and exits.

This is significantly more robust and user-friendly than manual parsing with std::env::args()

for anything beyond the simplest cases. For our mini_grep tool, we’ll stick with std::env::args()

for now to focus on standard library features, but keep clap in mind for your real-world CLI

projects!

System Programming in Rust: Concrete Examples584

With a way to get input from the user via command-line arguments, the next step for our mini_

grep tool will be to interact with the file system to read the specified file.

Interacting with the file system
Most command-line tools, at some point, need to read from or write to files, or even interact

with the directory structure. Our mini_grep tool, for example, needs to read the contents of a

user-specified file. Rust’s standard library, primarily through the std::fs and std::io modules,

provides a comprehensive and safe way to perform these operations. We touched upon these

in Chapter 12, Managing System Resources, but let’s revisit them with a specific focus on their use

within CLI applications.

Reading and writing files in a CLI context
When building a CLI tool that operates on files, robust error handling is paramount. The file

specified by the user might not exist, your program might not have permission to access it, or

other I/O errors could occur. Rust’s Result type is central to managing these situations gracefully.

Reading files: For our mini_grep tool, we’ll need to read the content of the target file. As discussed

in Chapter 12, if we expect to process the file line by line (which is typical for a grep-like tool),

using File::open() followed by BufReader::new().lines() is a good approach.

use std::fs::File;

use std::io::{self, BufRead, BufReader};

use std::path::Path;

use std::process; // For process::exit

// This function attempts to read and print lines from a file.

// It's similar to what our mini_grep will need to do before searching.

fn read_and_print_file_lines(file_path_str: &str) {

 let path = Path::new(file_path_str);

 // Attempt to open the file

 let file = match File::open(&path) {

 Ok(f) => f,

 Err(e) => {

 eprintln!("Error: Could not open file '{}': {}", path.
display(), e);

 process::exit(1); // Exit with error code

 }

Chapter 15 585

 };

 // Use BufReader for efficient line-by-line reading

 let reader = BufReader::new(file);

 println!("--- Contents of '{}' ---", path.display());

 for (index, line_result) in reader.lines().enumerate() {

 match line_result {

 Ok(line_content) => {

 println!("Line {}: {}", index + 1, line_content);

 }

 Err(e) => {

 // Log error for a specific line but continue if possible,

 // or decide to exit if line read errors are critical.

 eprintln!("Error reading line {} from '{}': {}", index +
1, path.display(), e);

 // For a grep tool, we might want to skip unreadable lines

 // or halt. For now, we'll just report and continue.

 }

 }

 }

 println!("--- End of '{}' ---", path.display());

}

fn main() {

 // Simulate getting a file path from command-line arguments

 // In a real CLI, this would come from std::env::args() or a parsing
crate.

 let args: Vec<String> = std::env::args().collect();

 if args.len() < 2 {

 eprintln!("Usage: {} <file_path>", args.get(0).unwrap_
or(&"program_name".into()));

 process::exit(1);

 }

 let file_to_read = &args[1];

System Programming in Rust: Concrete Examples586

 // Create a dummy file for testing if it doesn't exist

 if !Path::new(file_to_read).exists() {

 if file_to_read == "sample_cli_read.txt" { // Only create if it's
our expected test file

 std::fs::write(file_to_read, "First line for CLI test.\nSecond
line, with a keyword.\nThird and final line.").expect("Failed to create
sample file.");

 println!("Created sample file: {}", file_to_read);

 } else {

 eprintln!("Specified file '{}' does not exist and won't be
auto-created for this generic example.", file_to_read);

 process::exit(1);

 }

 }

 read_and_print_file_lines(file_to_read);

 // Clean up the dummy file if we created it for the test

 if file_to_read == "sample_cli_read.txt" {

 std::fs::remove_file(file_to_read).ok();

 }

}

To test the code:

•	 Built-in test: ‘cargo run -- sample_cli_read.txt'

•	 Read specific file: ‘cargo run -- my_notes.txt'

•	 Test missing file: ‘cargo run -- non_existent_file.txt'

•	 Usage help: ‘cargo run'

Explanation:

•	 Argument handling (simplified): std::env::args().collect() gets command-line

arguments. We expect the file path as the first argument after the program name.

•	 Error handling for File::open: We use a match statement to handle the Result from

File::open(). If an error occurs (e.g., file not found, no permissions), we print a mes-

sage to standard error (eprintln!) and exit the program with a non-zero status code

using std::process::exit(1). This is standard practice for CLI tools to indicate failure.

Chapter 15 587

•	 BufReader and lines(): As before, BufReader provides efficient line-by-line reading.

reader.lines() returns an iterator over io::Result<<String>>;.

•	 Line-specific errors: Inside the loop, we again match on line_result. If an individual line

cannot be read (perhaps due to encoding issues or an unexpected I/O error mid-file), we

print an error for that line but allow the loop to continue to try and process subsequent

lines. For a tool such as grep, this behavior (skipping unreadable lines or parts) might be

desirable.

•	 Dummy file: The main function includes logic to create a sample_cli_read.txt file if

it’s specified and doesn’t exist, just to make the example runnable. It also cleans it up.

Writing files: While our mini_grep primarily reads files, other CLI tools might need to write

output to files (e.g., a log file, a processed data file, or if mini_grep had an option to save results).

The principles are the same as discussed in Chapter 12:

•	 File::create("path") to create a new file (or truncate an existing one)

•	 OpenOptions::new().append(true).open("path") to append to a file

•	 std::fs::write("path", content) for simple, complete writes

•	 Always use BufWriter for buffered writing to improve performance if making multiple

small writes

•	 Crucially, handle the Result returned by all write operations and inform the user (via

eprintln!) if something goes wrong.

Directory traversal and manipulation
Some CLI tools need to work with directories – listing their contents, creating new ones, or even

recursively processing a directory tree (such as grep -r or find). The std::fs module provides

functions for these tasks.

Key functions we saw earlier include the following:

•	 fs::read_dir("path"): Returns an iterator over the entries in a directory

•	 fs::create_dir("path") / fs::create_dir_all("path"): Create directories

•	 fs::remove_dir("path") / fs::remove_dir_all("path"): Remove directories

•	 entry.path(): For a DirEntry from read_dir, this gives its full path

•	 metadata.is_dir() / metadata.is_file(): From fs::metadata("path"), tells you

whether a path is a directory or a file

System Programming in Rust: Concrete Examples588

Let’s write a small example that lists the contents of a directory specified on the command line,

indicating whether each entry is a file or a directory.

use std::env;

use std::fs;

use std::path::Path;

use std::process;

use std::io;

fn list_directory_contents(dir_path_str: &str) -> io::Result<()> {

 let path = Path::new(dir_path_str);

 if !path.is_dir() {

 // Using eprintln! for error messages is good practice in CLI
tools

 eprintln!("Error: '{}' is not a directory or does not exist.",
path.display());

 // Return an error that can be handled by the caller if needed

 return Err(io::Error::new(io::ErrorKind::NotFound, "Path is not a
directory"));

 }

 println!("Contents of directory '{}':", path.display());

 // fs::read_dir returns a Result containing an iterator over DirEntry
results

 for entry_result in fs::read_dir(path)? { // '?' propagates I/O errors
from read_dir itself

 let entry = match entry_result {

 Ok(e) => e,

 Err(e) => {

 // Error accessing a specific entry, log it and continue

 eprintln!("Warning: Could not access an entry in '{}':
{}", path.display(), e);

 continue;

 }

 };

Chapter 15 589

 let entry_path = entry.path();

 let entry_name = entry_path.file_name().unwrap_or_default().to_
string_lossy(); // Get just the name part

 // Get metadata to determine if it's a file or directory

 // This can also fail (e.g., permissions)

 match fs::metadata(&entry_path) {

 Ok(metadata) => {

 if metadata.is_dir() {

 println!(" [DIR] {}", entry_name);

 } else if metadata.is_file() {

 println!(" [FILE] {} ({} bytes)", entry_name,
metadata.len());

 } else {

 println!(" [OTHER] {}", entry_name); // Symlinks,
etc.

 }

 }

 Err(e) => {

 eprintln!("Warning: Could not get metadata for '{}': {}",
entry_path.display(), e);

 }

 }

 }

 Ok(())

}

fn main() {

 let args: Vec<String> = env::args().collect();

 let dir_to_list = if args.len() > 1 {

 args[1].clone() // Use the provided argument

 } else {

 // Default to the current directory if no argument is given

 String::from(".")

 };

 println!("Attempting to list contents of '{}'...", dir_to_list);

 if let Err(e) = list_directory_contents(&dir_to_list) {

System Programming in Rust: Concrete Examples590

 // Error was already printed in list_directory_contents if it was
path not being a dir.

 // This catches other potential errors from the function
signature.

 if e.kind() != io::ErrorKind::NotFound { // Avoid double printing
for "not a directory"

 eprintln!("An error occurred: {}", e);

 }

 process::exit(1);

 }

}

•	 Argument or default: The main function now defaults to listing the current directory (.)

if no argument is provided.

•	 path.is_dir(): Before attempting to read a directory, it’s good practice to check if the

given path actually is a directory.

•	 fs::read_dir(path)?: This attempts to read the directory entries. The ? handles errors

such as “path not found” or “permission denied” for the directory itself.

•	 Iterating entries: fs::read_dir returns an iterator where each item is itself a

Result<<DirEntry, io::Error>>. This is because even if you can open the directory,

you might not have permission to access individual entries within it. Our loop uses match

entry_result to handle such cases for each entry.

•	 entry.path() and entry_path.file_name(): DirEntry provides a path() method to

get the full PathBuf of the entry. file_name() then extracts just the name component.

.to_string_lossy() is useful as file names might not always be valid UTF-8.

•	 fs::metadata(&entry_path)?: For each entry, we fetch its metadata to determine whether

it’s a file (metadata.is_file()) or a directory (metadata.is_dir()) and to get its size

(metadata.len() for files).

•	 Error handling for entries: If metadata for a specific entry cannot be retrieved, a warning

is printed, but the program continues to list other entries.

This example demonstrates how a CLI tool might inspect directory structures.

For recursive operations (such as find or grep -r), you would combine read_dir with checks

for metadata.is_dir() and then recursively call your processing function on subdirectories.

Interacting with the file system is a core part of many system utilities, and Rust provides the tools to

do it safely and efficiently, provided you handle the results that these operations invariably return!

Chapter 15 591

Handling standard input, output, and error streams
Command-line utilities don’t just read from and write to files specified by path; they also fre-

quently interact with three standard I/O streams provided by the operating system for every

running process:

•	 Standard input (stdin): This is the default input channel for a program. By default, it’s

usually connected to the keyboard in a terminal, but it can be redirected to read from a

file or the output of another program using pipes (|).

•	 Standard output (stdout): This is the default output channel for a program’s normal

results or data. By default, it’s usually connected to the terminal display, but it can be redi-

rected to a file or piped as input to another program. The println! macro writes to stdout.

•	 Standard error (stderr): This is a separate output channel specifically intended for error

messages and diagnostics. By default, it’s also usually connected to the terminal display,

but it can be redirected independently of stdout. This is useful because it allows users

to redirect a program’s normal output to a file while still seeing error messages on their

screen. The eprintln! macro writes to stderr.

Effectively using these standard streams is key to making your CLI tools behave like good “Unix

citizens”, programs that can be easily composed with other tools in a command-line environment.

Writing to standard output and standard error:

We’ve already been using println! and eprintln! throughout our examples:

•	 println!(...): Writes formatted text, followed by a newline, to standard output (stdout).

Use this for the normal, successful output of your program.

// println!("Processing complete. Found 10 matches.");

•	 eprintln!(...): Writes formatted text, followed by a newline, to standard error (stderr).

Use this for error messages, warnings, or diagnostic information that isn’t part of the

primary program output.

// eprintln!("Error: Input file not found at path '{}'", file_path);

// eprintln!("Warning: Configuration value 'timeout' not set, using
default.");

System Programming in Rust: Concrete Examples592

By directing errors and diagnostics to stderr, users can still redirect the useful output of your

program to a file without cluttering it with error messages:

my_tool --input data.txt > results.txt # errors still go to screen

or

my_tool --input data.txt > results.txt 2> errors.log # redirect errors to
a log file

Reading from standard input (stdin):

If your CLI tool is designed to process data piped to it or typed directly by the user (when no file

argument is given), you’ll need to read from standard input. You can get a handle to stdin using

std::io::stdin().

This handle implements the Read trait, so you can use it with BufReader to read lines or chunks.

use std::io::{self, BufRead, BufReader};

fn main() -> io::Result<()> {

 println!("Please enter some lines of text. Press Ctrl+D (Unix) or
Ctrl+Z then Enter (Windows) to end input:");

 let stdin = io::stdin(); // Get a handle to standard input

 let reader = BufReader::new(stdin.lock()); // stdin() returns a Stdin,
lock() it for BufReader

 let mut line_count = 0;

 for line_result in reader.lines() {

 let line = line_result?; // Handle potential I/O errors from
reading stdin

 if line.trim().is_empty() && line.is_empty() { // Check if it was
just an empty line due to Ctrl+Z/D

 // Some terminals might send an empty line before EOF signal.

 // Depending on behavior, you might want to break or continue.

 }

 println!("You entered: {}", line);

 line_count += 1;

 }

Chapter 15 593

 if line_count > 0 {

 println!("\nFinished reading from stdin. Total lines processed:
{}", line_count);

 } else {

 println!("\nNo input received from stdin, or input stream ended
immediately.");

 }

 Ok(())

}

•	 io::stdin(): This function returns a handle to the standard input stream of the current

process (std::io::Stdin).

•	 stdin.lock(): stdin is globally synchronized. To use it with BufReader (which re-

quires Read), you typically need to acquire a lock on it first using .lock(). This returns a

stdinLock, which implements Read and BufRead. The lock is released when stdinLock

goes out of scope.

•	 BufReader::new(stdin.lock()): We wrap the locked stdin in a BufReader for efficient

line-by-line reading.

•	 reader.lines(): This works just like it did for files, returning an iterator over

io::Result<<;String>;.

•	 Ending input: Users typically signal the end of input from the keyboard by pressing Ctrl

+ D on Unix-like systems (Linux, macOS) or Ctrl + Z followed by Enter on Windows. This

sends an EOF (End-of-File) signal, which will cause reader.lines() to stop producing

items (or read() to return Ok(0)).

Here’s how to test this:

1.	 Compile the code: cargo build

2.	 Run it: target/debug/your_program_name

•	 Type some lines and press Enter after each.

•	 When done, press Ctrl + D (or Ctrl + Z then Enter).

3.	 You can also pipe input from another command:

ls -l | target/debug/your_program_name

echo -e "First line\nSecond line" | target/debug/your_program_name

System Programming in Rust: Concrete Examples594

Replace your_program_name with the actual name of your project! You will find it in the cargo.toml

file at the key name. Many standard CLI tools (such as grep, cat, sort) are designed to read from

stdin if no file arguments are provided, allowing them to be easily used in command pipelines.

This is a powerful pattern in Unix-like environments. For our mini_grep tool, we could extend it

to read from stdin if no file path is given.

Understanding and correctly using stdin, stdout, and stderr makes your CLI tools more versatile,

conventional, and easier for users to integrate into their workflows.

Interfacing with C code: the Foreign Function
Interface (FFI)
Rust is a powerful language for building new systems, but the reality of software development is

that a vast amount of existing code, especially at the system level, is written in C (and C++, which

often exposes a C-compatible interface).

Rewriting everything from scratch in Rust is often impractical or undesirable. This is where Rust’s

Foreign Function Interface (FFI) capabilities become incredibly important.

The FFI allows your Rust code to call functions written in other languages (primarily C, or lan-

guages that can export a C Application Binary Interface (ABI)) and, conversely, allows code

written in those languages to call your Rust functions.

The “why” of FFI: leveraging existing C libraries
Why would you need to interface with C code from Rust??

There are several compelling reasons:

•	 Reusing existing code: There are countless mature, well-tested, and highly optimized C

libraries available for virtually every imaginable task, from mathematical computations

(such as BLAS, LAPACK) and image processing (libjpeg, libpng) to GUI toolkits (GTK,

though Rust has its own GUI ecosystem emerging), operating system APIs (most OS ker-

nels expose C APIs), and specialized hardware drivers. The FFI allows you to tap into this

wealth of existing code without reinventing the wheel.

•	 Performance-critical code: While Rust is very fast, sometimes there are highly optimized

C libraries for specific numerical or signal processing tasks that have been tuned over de-

cades. Calling into these can be a pragmatic way to achieve peak performance for certain

components of your application.

Chapter 15 595

•	 Interoperability with legacy systems: You might be working on a project that involves

integrating new Rust components into an existing C or C++ code base. The FFI provides

the bridge to make these different parts of the system communicate.

•	 Accessing hardware or OS features: Many operating system functionalities and hardware

interfaces are exposed via C APIs. The FFI is essential for writing Rust code that needs to

interact at this low level (e.g., for device drivers or certain system utilities).

Rust’s FFI is designed to be relatively straightforward. Still, it comes with a significant caveat:

when you call into C code (or any external, non-Rust code), you are stepping outside the safety

guarantees that the Rust compiler typically provides for your Rust code. The C code you call might

have memory safety bugs, or you might misuse the C API in a way that leads to undefined be-

havior (such as passing invalid pointers). Therefore, FFI calls in Rust are almost always wrapped

in unsafe blocks, signifying that you, the programmer, are responsible for upholding the safety

contract of the C API you are calling.

Despite the unsafe aspect, FFI is a powerful and necessary feature that allows Rust to be a practi-

cal choice for a wide range of system programming tasks where interaction with existing C code

bases is a reality.

The goal is usually to create safe Rust wrappers around the unsafe FFI calls, so the rest of your

Rust application can interact with the C library through a safe and idiomatic Rust API.

Declaring and linking external C functions
To call a function written in C (or any language that exposes a C-compatible ABI), your Rust code

needs two main things:

1.	 A declaration of that external function, telling the Rust compiler its name, arguments,

and return type, and that it uses the C calling convention

2.	 A way to link against the compiled C library that actually contains the implementation

of that function, so the linker can resolve the function call at compile time or runtime

Using extern “C” blocks
Rust uses extern "C" { ... } blocks to declare functions that are defined in external C librar-

ies. The "C" part specifies the ABI to use, in this case, the C ABI. This is crucial because different

languages (and even different C compilers on different platforms) might have different conven-

tions for how function arguments are passed, how return values are handled, and how function

names are represented (name mangling). Using "C" ensures Rust and the C library are speaking

the same low-level language.

System Programming in Rust: Concrete Examples596

Inside an extern "C" block, you list the function signatures as they appear in the C header file,

but translated into Rust types. Calling these declared functions is an unsafe operation because

Rust cannot verify the safety of the external C code.

// Suppose a C library 'libmath_utils.so' (or .dylib or .dll) has these
functions:

// In C (e.g., math_utils.h):

// int add_integers(int a, int b);

// double get_pi();

// In your Rust code (e.g., src/main.rs or src/lib.rs):

// This block declares functions that Rust expects to find in an external
C library.

// We are telling Rust about their existence and their signatures.

extern "C" {

 // Maps to: int add_integers(int a, int b);

 fn add_integers(a: i32, b: i32) -> i32;

 // Maps to: double get_pi();

 fn get_pi() -> f64;

 // Example of a C function that takes a C string (const char*)

 // and doesn't return anything (void).

 // In C: void print_c_string(const char* s);

 fn print_c_string(s: *const std::os::raw::c_char);

}

fn main() {

 // Calling these external C functions is unsafe because Rust can't
guarantee

 // their safety or that they even exist at link/runtime if not linked
properly.

 unsafe {

 let sum = add_integers(5, 10);

 println!("Sum from C library (add_integers(5, 10)): {}", sum); //
Expected: 15

Chapter 15 597

 let pi_val = get_pi();

 println!("Value of PI from C library (get_pi()): {}", pi_val); //
Expected: ~3.14159...

 // For print_c_string, we need to create a C-compatible string.

 let rust_str = "Hello from Rust to C!";

 // CString ensures null termination and gives us a pointer.

 match std::ffi::CString::new(rust_str) {

 Ok(c_str) => {

 print_c_string(c_str.as_ptr()); // as_ptr() gives *const
c_char

 // Output from C would depend on the C implementation of
print_c_string

 }

 Err(e) => {

 eprintln!("Error creating CString: {}", e);

 }

 }

 }

 println!("\nReminder: This code declares C functions. To run it
successfully,");

 println!("you would need an actual C library defining these
functions,");

 println!("and your Rust project would need to be configured to link
against it.");

}

•	 extern "tC" { ... }: This tells Rust that the functions declared inside follow the C ABI.

•	 Function signatures: Inside the block, you declare functions with Rust syntax, but their

types must correspond to the C types. For example, C int usually maps to Rust i32, C

double to Rust f64, and C const char* to Rust *const std::os::raw::c_char (a raw

pointer to a C character). std::os::raw provides type aliases such as c_char, c_int, and

so on, for platform-independent C type representation.

System Programming in Rust: Concrete Examples598

•	 Unsafe calls: Calling any function declared in an extern "C" block is an unsafe operation.

You must wrap the call in an unsafe { ... } block. This is because Rust cannot verify

the correctness or memory safety of the external C code. You are responsible for ensuring

that you call the C function with valid arguments and handle its return values correctly

according to its contract.

•	 std::ffi::CString: As seen in the print_c_string example, when passing strings

from Rust to C functions expecting null-terminated const char*, you should use

std::ffi::CString. CString::new() creates an owned, null-terminated byte string

suitable for C. c_string.as_ptr() provides the *const c_char pointer.

The #[link] attribute and build scripts
Declaring extern "C" functions only tells the Rust compiler about their existence and signature.

It doesn’t tell the linker where to find their actual implementations. For that, you need to instruct

Rust to link against the compiled C library (e.g., a .so file on Linux, .dylib on macOS, or .dll on

Windows, or a static library such as .a or .lib).

There are two main ways to do this:

1.	 Using the #[link] attribute (simpler, for common system libraries): For libraries that

the linker already knows how to find (such as standard system libraries, e.g., libc’s math

library m on Linux), you can use the #[link] attribute directly above the extern "C" block.

 // This tells the linker to link against the system's math
library (libm)

 #[link(name = "m")] // On Linux; might be different or not
needed on other OS for basic math

 extern "C" {

 // double sin(double x);

 fn sin(x: f64) -> f64;

 // double sqrt(double x);

 fn sqrt(x: f64) -> f64;

 }

 fn main() {

 unsafe {

 let angle = std::f64::consts::PI / 2.0; // 90 degrees

 println!("sin(PI/2) from C libm: {}", sin(angle)); //
Expected: 1.0

Chapter 15 599

 println!("sqrt(16.0) from C libm: {}", sqrt(16.0)); //
Expected: 4.0

 }

 }

`#[link(name = "m")]` instructs the linker to link with the library named `m` (which

corresponds to `libm.so` or `libm.dylib`).

This method is often used for well-known system libraries.

You’ll likely need a build script for custom C libraries or libraries in non-standard locations.

2.	 Using a build script (build.rs) (more flexible and powerful): For more complex linking

scenarios, especially with your own C libraries or third-party C libraries that aren’t in

standard system paths, the idiomatic Rust way is to use a build script.

•	 Create a file named build.rs in the root of your Rust project (alongside Cargo.

toml).

•	 Cargo will compile and run build.rs before compiling your main crate.

•	 Inside build.rs, you can write Rust code to do the following:

•	 Compile C/C++ source files into a static library using crates such as cc.

•	 Print special instructions to Cargo to tell it how to link against pre-com-

piled libraries (e.g., specifying library search paths and library names).

An example of Cargo.toml enabling a build script:

Cargo.toml

...

[build-dependencies]

cc = "1.0" # For compiling C code, check latest version

Example build.rs to compile and link a local C file: Let’s say you have a C file, src/my_c_code.c:

// src/my_c_code.c

int multiply_by_two(int x) {

 return x * 2;

}

System Programming in Rust: Concrete Examples600

Your build.rs could look like this:

 // build.rs

 extern crate cc; // Not needed for Rust 2018+ edition if listed in
[build-dependencies]

 fn main() {

 // Compile my_c_code.c and link it into our Rust executable/
library.

 // This will create a static library (e.g., libmy_c_code.a) and
link it.

 cc::Build::new()

 .file("src/my_c_code.c") // Path to your C source file

 .compile("my_c_code"); // Output library name will be libmy_c_
code.a (or .lib)

 // If you were linking against a pre-compiled library, you'd print
instructions:

 // For example, if libcustom.so is in /opt/custom_lib/lib:

 // println!("cargo:rustc-link-search=native=/opt/custom_lib/lib");
// Add search path

 // println!("cargo:rustc-link-lib=static=custom"); // Link against
libcustom.a

 // Or for a dynamic library:

 // println!("cargo:rustc-link-lib=dylib=custom"); // Link against
libcustom.so/dylib/dll

 }

Then, in your src/main.rs (or src/lib.rs if you are creating a library),
you would declare the external function and call it.

// src/main.rs

extern "C" {

 fn multiply_by_two(x: i32) -> i32;

}

fn main() {

 // Calling an external function is an unsafe operation

 // because the Rust compiler cannot guarantee its safety.

 unsafe {

Chapter 15 601

 let number = 21;

 let result = multiply_by_two(number);

 println!("{} * 2 from C (via build.rs) = {}", number, result); //
Expected: 42

 }

}

Build scripts are a powerful feature of Cargo that allow you to run custom code before your crate

is compiled. They are conventionally placed in a file named build.rs at the root of your crate.

Here’s a breakdown of the elements often used when interfacing with C/C++ code:

•	 [build-dependencies] in Cargo.toml: Dependencies listed under this section are only

compiled and made available to the build.rs script itself, not to your main crate. A com-

mon example is the cc crate, which helps in compiling C/C++ code.

Cargo.toml

[package]

name = "my_rust_project"

A note on real-world build.rs scripts

The cc crate we used in our build.rs example is perfect for compiling simple C files

that you’ve written as part of your Rust crate.

However, as your reviewer noted, build.rs scripts for the FFI in the real world can

be much more complex. When you need to link against a C library that is already

installed on the user’s system (such as OpenSSL or a database driver), your build

script is responsible for finding it.

This often involves the following:

•	 Using other build-time crates, such as pkg-config, to query the system for

the library’s location and linker flags.

•	 Checking environment variables to let users specify custom paths.

•	 Handling platform-specific logic (e.g., different library names for Windows,

macOS, and Linux).

While these advanced scripts are beyond the scope of this introduction, it’s important

to know that build.rs is the fundamental tool Rust provides for handling all this

complexity, making FFI possible in a robust, cross-platform way.

System Programming in Rust: Concrete Examples602

version = "0.1.0"

edition = "2021"

build = "build.rs" # Specifies the build script

[dependencies]

Normal dependencies for your crate

[build-dependencies]

cc = "1.0" # Or the latest version

•	 Using the cc crate: The cc crate provides a convenient, cross-platform way to compile C,

C++, or assembly code from your build.rs script.

•	 cc::Build::new(): Creates a new build configuration.

•	 .file("src/c_code/multiply.c"): Adds a C source file to the compilation. You

can call this multiple times for multiple files.

•	 .compile("multiply_lib"): Compiles the specified source files into a static library

(e.g., libmultiply_lib.a on Linux/macOS, multiply_lib.lib on Windows). It

also instructs Cargo to link this library into your Rust crate.

•	 println!("cargo:...") instructions: The build.rs script can communicate instructions

to Cargo by printing specific commands to standard output, prefixed with cargo:. Some

common instructions include the following:

•	 cargo:rustc-link-search=[KIND=]PATH: Tells rustc to add PATH to the library

search path. KIND can be dependency, crate, native, framework, or all. If omitted,

all is assumed. For native libraries compiled by the build script, native=path/

to/your/lib is common if you aren’t using cc’s automatic linking.

•	 cargo:rustc-link-lib=[KIND=]NAME: Instructs rustc to link against the library

named NAME. KIND can be dylib (for dynamic libraries) or static (for static li-

braries). If using the cc crate’s .compile() method, it often handles these linking

instructions for you.

•	 cargo:rerun-if-changed=PATH: Tells Cargo to rerun the build script if the file

or directory at PATH changes. This is crucial for ensuring that changes to your C

code trigger a recompile.

•	 cargo:rerun-if-env-changed=VAR: Tells Cargo to rerun the build script if the

environment variable VAR changes.

Chapter 15 603

Build scripts are incredibly versatile. Beyond the FFI, they can be used for tasks such as code

generation, embedding resources, or any other pre-compilation setup your crate might require.

Using extern "C" blocks along with either #[link] or, more commonly for non-system libraries,

a build.rs script, allows Rust to find and call functions from external C libraries successfully. The

next step is understanding how to pass different types of data between Rust and C.

Passing data between Rust and C
Successfully calling C functions from Rust (and vice versa, though we’re focusing on the former

here) requires more than just declaring function signatures. You also need to ensure that the data

types you’re passing back and forth are compatible and understood by both languages.

Rust and C have different memory models, string representations, and struct layouts by default,

so careful handling is essential.

Primitive types and their equivalents
For many basic numeric types, the mapping between Rust and C is quite direct, especially on

common platforms. However, the exact size of C types such as int, long, and so on, can vary

by platform and compiler. To ensure portability and correctness, Rust’s std::os::raw module

provides type aliases for C types. It’s best practice to use these when defining your extern "C"

function signatures.

Here’s a common mapping:

C Type Rust std::os::raw type Typical Rust Equivalent (often the same size)

char c_char i8 (signed) or u8 (unsigned, depends on C char)

signed char c_schar i8

unsigned char c_uchar u8

short c_short i16

unsigned short c_ushort u16

int c_int i32

unsigned int c_uint u32

long c_long i32 or i64 (platform-dependent)

unsigned long c_ulong u32 or u64 (platform-dependent)

System Programming in Rust: Concrete Examples604

C Type Rust std::os::raw type Typical Rust Equivalent (often the same size)

long long c_longlong i64

unsigned long

long
c_ulonglong u64

float c_float f32

double c_double f64

size_t usize (Rust equivalent) usize

void*
*mut c_void or *const

c_void

*mut () or *const () (or more specific raw

pointers)

Example declaration:

use std::os::raw::{c_int, c_double, c_char};

extern "C" {

 fn process_data(input_val: c_int, scale_factor: c_double) -> c_int;

 fn get_version_char() -> c_char; // C char, might be signed or
unsigned

}

Tip: verify FFI type mappings across platforms

The sizes of C types (such as int, long, or size_t) can vary significantly across dif-

ferent architectures (e.g., 32-bit versus 64-bit) and operating systems (e.g., Windows

versus Linux). Don’t assume a C long is always a Rust i64!

•	 Verify sizes: Always check the actual byte size of types on your target plat-

form. You can do this in your build script or tests using std::mem::size_

of::<T>().

•	 Compile conditionally: For robust code, use platform-specific conditional

compilation (e.g., #[cfg(target_arch = "x86_64")] or #[cfg(target_os

= "windows")]) to provide the correct type mappings for each target.

Chapter 15 605

When calling C functions that take or return primitive types, if you use these std::os::raw types

in your Rust extern "C" block, the Rust compiler will generally handle the conversions correctly

for numeric types that have a direct size equivalent (such as i32 for c_int on most platforms).

Working with C strings
Strings are a common source of complexity in the FFI because Rust strings and C strings are

fundamentally different:

•	 Rust String / &str are UTF-8 encoded, store their length, and are not null-terminated

•	 C strings (char* / const char*) are typically sequences of bytes (often interpreted as

ASCII or some locale-specific encoding), are null-terminated (a \0 byte marks the end),

and do not store their length explicitly.

The std::ffi module in Rust provides two key types for safely working with C strings: CString

and CStr.

Passing strings from Rust to C (using CString): If a C function expects a const char* (a null-ter-

minated string), you cannot pass a Rust String or &str directly.

You need to convert it to a CString. CString::new() takes a Rust string or byte slice and creates

an owned, C-compatible, null-terminated byte string. It will return an error if the Rust string

contains interior null bytes, as that’s invalid for a C string.

use std::ffi::CString;

use std::os::raw::c_char;

// Assume this C function exists and prints a null-terminated string:

// extern "C" { fn c_puts(s: *const c_char); }

// For this example, let's simulate it in Rust to make it runnable.

#[cfg(target_os = "linux")] // Example for a system with puts from libc

#[link(name = "c")]

extern "C" {

 fn puts(s: *const c_char) -> std::os::raw::c_int;

}

// Fallback for other systems or if direct linking is complex for an
example

#[cfg(not(target_os = "linux"))]

unsafe extern "C" fn puts(s: *const c_char) -> std::os::raw::c_int {

System Programming in Rust: Concrete Examples606

 // This is a Rust reimplementation for example purposes

 // It's unsafe because we dereference a raw pointer.

 // A real FFI call wouldn't reimplement it.

 if s.is_null() { return -1; }

 let mut len = 0;

 while *s.add(len) != 0 { // Find null terminator

 len += 1;

 }

 let slice = std::slice::from_raw_parts(s as *const u8, len);

 match std::str::from_utf8(slice) {

 Ok(str_slice) => println!("{}", str_slice),

 Err(_) => eprintln!("[Simulated C puts] Invalid UTF-8 received"),

 }

 0 // Typically returns non-negative on success

}

fn main() {

 let rust_message = "Hello from Rust, C world!";

 // Convert the Rust string to a CString (null-terminated)

 match CString::new(rust_message) {

 Ok(c_message) => {

 // Call the C function, passing a pointer to the CString's
internal buffer.

 // c_message.as_ptr() returns a *const c_char.

 // This call must be in an unsafe block.

 unsafe {

 puts(c_message.as_ptr());

 }

 // c_message owns the C-compatible string data.

 // It will be freed when c_message goes out of scope.

 }

 Err(e) => {

 eprintln!("Error creating CString: {} (Likely an interior null
byte)", e);

 }

 }

Chapter 15 607

 // Example of an interior null byte causing an error:

 let invalid_rust_str = "Hello\0World";

 if CString::new(invalid_rust_str).is_err() {

 println!("Correctly failed to create CString from: '{}' due to
interior null byte.", invalid_rust_str);

 }

}

•	 CString::new(rust_string) attempts to create a new C-compatible string. It allocates

memory, copies the Rust string’s content, and appends a null terminator (\0). It returns

Result<;CString, NulError>; because Rust strings can contain interior null bytes, which

are invalid in C strings.

•	 c_message.as_ptr() returns a *const c_char raw pointer to the null-terminated byte

sequence owned by the CString. This pointer can be safely passed to C functions.

•	 The CString instance owns the memory for the C-compatible string. When c_message

goes out of scope, its Drop implementation frees this memory, preventing leaks. This is

a key safety feature.

Receiving strings in Rust from C (using CStr): If a C function returns a const char* (or passes

one to Rust via a callback), you get a raw pointer. Rust cannot assume this pointer is valid, cor-

rectly null-terminated, or that its contents are valid UTF-8. The std::ffi::CStr type is used to

wrap such a raw pointer safely.

CStr::from_ptr(raw_pointer) creates a &CStr slice from a *const c_char. This operation is

unsafe because CStr trusts that the provided pointer is valid and points to a null-terminated

sequence of bytes. Once you have a &CStr, you can try converting it to a Rust &str or String.

use std::ffi::{CStr, CString};

use std::os::raw::c_char;

use std::str;

// Imagine this C function exists:

// const char* get_c_greeting();

// For this example, we'll simulate it by creating a CString in Rust

// and returning its raw pointer (which is what a C function might do).

fn simulate_get_c_greeting() -> *const c_char {

 // In a real scenario, this CString would live as long as C needs it,

 // or its ownership would be managed carefully.

System Programming in Rust: Concrete Examples608

 // For a simple return from a C function that allocates and returns a
string,

 // there would need to be a corresponding C function to free it.

 // Here, we leak it for simplicity of example, which is bad practice
in real code!

 // A better simulation would involve a static C string or careful
memory management.

 let c_string = CString::new("Hello from C!").unwrap();

 let ptr = c_string.as_ptr();

 std::mem::forget(c_string); // Intentionally leak for this example, DO
NOT DO THIS IN REAL CODE

 // without a corresponding C-side free
mechanism.

 ptr

}

// A safer simulation of a C function returning a string literal

fn simulate_get_c_static_greeting() -> *const c_char {

 static GREETING: &str = "Static C Greeting!\0"; // Ensure null
termination

 GREETING.as_ptr() as *const c_char

}

fn main() {

 let c_char_ptr_leaked = simulate_get_c_greeting();

 let c_char_ptr_static = simulate_get_c_static_greeting();

 // Process the (conceptually) leaked C string

 // This is unsafe because we are trusting c_char_ptr_leaked is valid.

 unsafe {

 // Create a CStr slice from the raw pointer.

 let c_str_slice = CStr::from_ptr(c_char_ptr_leaked);

 // Attempt to convert the CStr to a Rust &str (UTF-8 validated)

 match c_str_slice.to_str() {

 Ok(rust_str) => println!("Received from (simulated) C
(leaked): '{}'", rust_str),

Chapter 15 609

 Err(e) => eprintln!("CString from C was not valid UTF-8: {}",
e),

 }

 // In real FFI, if this memory was allocated by C, Rust should not
free it

 // unless C provides a specific free function. If we used our
simulated leak,

 // this memory is now leaked.

 }

 // Process the static C string

 unsafe {

 let c_str_slice = CStr::from_ptr(c_char_ptr_static);

 match c_str_slice.to_str() {

 Ok(rust_str) => println!("Received from (simulated) C
(static): '{}'", rust_str),

 Err(e) => eprintln!("CString from C was not valid UTF-8: {}",
e),

 }

 }

}

•	 Simulating C Return: The simulate_get_c_greeting and simulate_get_c_static_

greeting functions mimic a C function returning a const char*. The std::mem::forget

in the first simulation is a dangerous hack to prevent Rust from deallocating the CString’s

memory when it goes out of scope, which is not how you’d typically handle strings re-

turned from real C functions (they usually return pointers to static memory, or memory

you then own and must free with a C-provided deallocator). The static version is safer.

•	 unsafe { CStr::from_ptr(c_char_ptr) }: This is the crucial unsafe step. You are as-

serting that c_char_ptr is a valid, null-terminated C string whose memory will remain

valid for the lifetime of the CStr.

•	 c_str_slice.to_str(): This attempts to convert &;CStr (which is a byte slice) into a

Rust &str. It returns Result<<&;str, Utf8Error>>; because the C string might not be

valid UTF-8.

•	 c_str_slice.to_string_lossy(): An alternative that converts to a <>Cow<'_, str>,

replacing invalid UTF-8 sequences with U+FFFD. This is useful if you need a Rust string

even if the C string isn’t perfect UTF-8.

System Programming in Rust: Concrete Examples610

•	 Memory management: If the C string was allocated by C code (e.g., via malloc or returned

from a C library function that allocates), Rust must not deallocate that memory using

Rust’s deallocators. The C library typically must provide a corresponding function to free

that string (e.g., free_c_string(ptr)), which you would then call from Rust via the FFI.

CStr itself does not manage the memory it points to; it’s just a view.

Working with C strings requires careful attention to null termination, character encoding (UTF-8

versus others), and memory ownership.

CString and CStr provide the necessary tools to bridge these differences as safely as possible.

Representing C structs in Rust
When passing structs between Rust and C, you need to ensure that both languages agree on the

memory layout of the struct (i.e., how its fields are ordered and padded in memory). By default,

Rust does not guarantee a specific layout for structs; it might reorder fields for optimization.

To ensure C compatibility, you must annotate your Rust struct definition with #[repr(C)].

// Suppose you have a C struct like this:

// typedef struct {

// int id;

// double value;

// char active; // Assuming char is used as a boolean (0 or 1)

// } CItem;

// The equivalent Rust struct with #[repr(C)]

#[repr(C)] // Ensure C-compatible memory layout

#[derive(Debug, Copy, Clone)] // Optional, for convenience

pub struct RustItemEquivalent {

 id: std::os::raw::c_int, // Use c_int for C int

 value: std::os::raw::c_double, // Use c_double for C double

 active: std::os::raw::c_char, // Use c_char for C char

}

// Assume a C function:

// void process_c_item(const CItem* item_ptr);

// For this example, let's simulate it in Rust to make it runnable.

#[cfg(not(target_os = "some_os_where_this_is_real"))] // Avoid real link
errors

Chapter 15 611

unsafe extern "C" fn process_c_item(item_ptr: *const RustItemEquivalent) {

 if item_ptr.is_null() {

 println!("[Simulated C] Received a null item_ptr!");

 return;

 }

 // In unsafe block because we dereference a raw pointer.

 let item_ref = &*item_ptr; // Dereference to get a Rust reference

 println!("[Simulated C] Processing item - ID: {}, Value: {}, Active:
{}",

 item_ref.id, item_ref.value, if item_ref.active != 0 { "yes"
} else { "no" });

}

fn main() {

 let my_item = RustItemEquivalent {

 id: 101,

 value: 3.14159,

 active: 1, // Representing true for C char

 };

 let my_item_inactive = RustItemEquivalent {

 id: 102,

 value: 2.718,

 active: 0, // Representing false

 };

 // Pass a pointer to our Rust struct to the (simulated) C function.

 // This must be in an unsafe block because process_c_item is extern
"C".

 unsafe {

 println!("Calling C function with my_item:");

 process_c_item(&my_item as *const RustItemEquivalent);

 println!("\nCalling C function with my_item_inactive:");

 process_c_item(&my_item_inactive as *const RustItemEquivalent);

 }

}

System Programming in Rust: Concrete Examples612

•	 #[repr(C)]: This attribute tells the Rust compiler to lay out the fields of RustItemEquivalent

in memory in the same order and with the same padding rules that a C compiler would

typically use for an equivalent C struct. This is essential for structs that will be passed to

or received from C functions by value or by pointer.

•	 Field types: When defining the Rust struct, use the std::os::raw::c_* types (such as

c_int, c_double, c_char) for fields that directly map to C primitive types to ensure size

and signedness compatibility across platforms.

•	 Passing by pointer: In the main function, &my_item as *const RustItemEquivalent takes

a reference to our Rust struct and casts it to a raw pointer (*const RustItemEquivalent),

which is then passed to the (simulated) C function process_c_item. The C function would

receive this as const CItem*.

•	 Safety: Because process_c_item is an extern "C" function, calling it requires an unsafe

block. Inside the (simulated) C function (if it were real C, or if it’s a Rust unsafe extern

"C" function), dereferencing item_ptr also requires unsafe.

Using #[repr(C)] is fundamental when defining Rust structs that need to match the memory

layout of C structs for the FFI.

Handling pointers and callbacks
Two more advanced FFI topics are handling arbitrary pointers and dealing with callbacks (where

C code calls back into Rust functions).

Pointers to data:

•	 Rust owning, C borrowing: If Rust allocates data (e.g., with String, Vec, or Box) and

passes a pointer to C, Rust is responsible for ensuring the data lives as long as C might

use it. C should generally treat this pointer as borrowed and not try to free it. For Box<T>,

you can use Box::into_raw(b) to get a raw pointer, *mut T, and transfer ownership re-

sponsibility (often to C, which must then have a way to give it back to Rust to be freed via

Box::from_raw). This is advanced and requires careful lifetime management.

•	 C owning, Rust borrowing: If C allocates data and passes a pointer to Rust, Rust should

treat this pointer as borrowed. Rust must not deallocate this memory. The C side is re-

sponsible for freeing it. If Rust needs to hold onto such a pointer, it must ensure the C data

outlives the Rust pointer. The CStr type is an example of Rust borrowing a C-owned string.

Chapter 15 613

•	 Opaque pointers: C APIs often use void* or pointers to incomplete types as “opaque

handles” to resources managed by the C library. In Rust, these can be represented as

*mut std::os::raw::c_void or a newtype struct wrapping such a pointer (e.g., struct

MyCHandle(*mut std::os::raw::c_void);).

Callbacks (C calling Rust): It’s possible for C code to call back into Rust functions. This typically

involves the following:

•	 Defining a Rust function with the extern "C" ABI

•	 Getting a function pointer to this Rust function

Passing this function pointer to a C function that expects a callback. This is an advanced FFI topic

because you must ensure the following:

•	 Safety: The Rust callback must be safe to call from C (e.g., it shouldn’t panic across the FFI

boundary without a catch mechanism, as panics unwinding into C are undefined behavior)

•	 Lifetimes: Any data the Rust callback accesses must be valid when C calls it

•	 Data marshaling: Data passed from C to the Rust callback, and vice versa, must be cor-

rectly converted

•	 Thread safety: If the C library might call the callback from a different thread, your Rust

callback and any data it accesses must be thread-safe

// Rust function to be called by C

// It must have the C calling convention and be `unsafe` if it does unsafe
things,

// or be safe if its operations are all safe.

// For C to call it, it needs to be `extern "C"`.

#[no_mangle] // Prevents Rust from mangling the name, so C can find it

pub extern "C" fn rust_callback_function(value: i32) {

 println!("[Rust Callback] Called from C with value: {}", value);

}

// Assume a C function like this exists:

// typedef void (*rust_callback_t)(int);

// void register_and_call_rust_callback(rust_callback_t cb, int data_for_
cb);

System Programming in Rust: Concrete Examples614

extern "C" {

 // For this example, we'll only declare it conceptually.

 // fn register_and_call_rust_callback(

 // callback: extern "C" fn(i32), // Type for a function pointer

 // data: i32

 //);

}

fn main() {

 println!("Conceptual example of providing a Rust callback to C.");

 println!("To run this, you'd need a C side that calls 'register_and_
call_rust_callback'");

 println!("and links with this Rust code compiled as a library.");

 // unsafe {

 // // This would pass our Rust function to the C function.

 // // register_and_call_rust_callback(rust_callback_function, 42);

 // }

}

•	 extern "C" fn rust_callback_function(...): This defines a Rust function that uses

the C ABI, making it callable from C.

•	 #[no_mangle]: This attribute tells the Rust compiler not to change the name of the function

during compilation, so the C linker can find it by the exact name, rust_callback_function.

•	 Function pointer type extern "C" fn(i32): When passing a Rust callback to C, or receiv-

ing one from C, this is the type of the function pointer in Rust.

•	 Real implementation: Actually making C call this Rust function involves compiling the

Rust code as a library, linking it with the C code, and having the C code get a pointer to

rust_callback_function to call it. This is a more involved build setup.

Handling arbitrary pointers and callbacks correctly is one of the most complex parts of the FFI and

requires a deep understanding of memory management and safety on both the Rust and C sides.

Chapter 15 615

Creating safe Rust wrappers around unsafe C APIs
We’ve established that calling C functions via the FFI is an unsafe operation in Rust. This is because

the Rust compiler cannot verify the memory safety or correctness of the external C code, nor can

it ensure that you are upholding all the contracts (preconditions and postconditions) of the C API.

While using unsafe blocks is necessary to make the FFI calls, littering your entire Rust code base

with unsafe blocks whenever you interact with a C library is undesirable. It reduces the areas

where Rust’s safety guarantees apply and makes the code harder to reason about.

The idiomatic and highly recommended approach is to create safe Rust wrappers around the

unsafe FFI calls. The idea is to build a higher-level Rust API (functions, structs, methods) that

internally handles the unsafe interactions with the C library but exposes a completely safe inter-

face to the rest of your Rust application.

Here are the goals of a safe wrapper:

•	 Encapsulate unsafety: All unsafe blocks related to calling C functions and handling raw

pointers should be contained within the wrapper module.

•	 Uphold C API contracts: The wrapper’s internal unsafe code is responsible for ensuring

that all preconditions of the C functions are met (e.g., pointers are not null if the C function

doesn’t expect them, string lengths are correct, resource handles are valid).

•	 Manage resources: If the C library allocates resources that need to be freed (e.g., memory

allocated by malloc, file handles), the Rust wrapper should manage these resources, of-

ten by implementing the Drop trait on a Rust struct that represents the C resource. This

ensures RAII (Resource Acquisition Is Initialization) and prevents leaks.

•	 Convert data types: The wrapper should handle conversions between Rust types and

C-compatible types (e.g., Rust String to CString for C const char*, Rust Result for C

error codes).

•	 Provide an idiomatic Rust API: The wrapper should feel natural to use for Rust developers.

This might mean using Rust error handling (returning Result), using Rust strings and

collections, and following Rust naming conventions.

System Programming in Rust: Concrete Examples616

Let’s consider our conceptual C library from before with add_integers and print_c_string, and

build a slightly more structured safe wrapper.

use std::ffi::{CString, CStr};

use std::os::raw::c_char;

use std::fmt;

// --- Declarations for the conceptual C library ---

// Assume these functions are defined in an external C library

// and linked appropriately (e.g., via build.rs or #[link]).

//

A note on debugging across the FFI boundary

When bugs do occur, they can be much harder to diagnose than in pure Rust code.

You are operating at the seam between two different languages, memory models,

and calling conventions.

Because your safe wrapper contains an unsafe block, a bug might be in your C code,

your Rust code, or (most commonly) in the interaction between them. A segmenta-

tion fault, for example, might be triggered by Rust passing a bad pointer, which only

crashes deep inside the C library.

Standard Rust tools such as cargo test and println! debugging may not be enough.

To be effective, you often need to use C-level tools:

•	 gdb (GNU Debugger) or lldb: These allow you to set breakpoints, step

through the compiled C code, inspect C-level memory, and (most impor-

tantly) examine the full stack trace as it crosses from Rust into C and back.

•	 valgrind (on Linux): A powerful tool for detecting C-level memory errors.

If your C library has a memory leak, reads from an invalid pointer, or has a

use-after-free bug, valgrind can often pinpoint it.

•	 strace (on Linux) or dtruss (on macOS): Lets you trace the system calls your

C library is making. This is invaluable if the bug involves file I/O, networking,

or other OS interactions.

Debugging effectively at this level requires a deeper understanding of platform spe-

cifics, especially the ABI and calling conventions, the rules for how arguments are

passed (e.g., on the stack or in registers) and how values are returned.

Chapter 15 617

// In C:

// int c_add(int a, int b);

// const char* c_get_static_message();

// void c_free_string(char* s); // If C library allocates strings that
Rust needs to free

// char* c_duplicate_string(const char* s); // C func that allocates &
returns a string

extern "C" {

 fn c_add(a: std::os::raw::c_int, b: std::os::raw::c_int) ->
std::os::raw::c_int;

 fn c_get_static_message() -> *const c_char; // Returns a pointer to a
C static string

 // For this example, we'll simulate c_duplicate_string and c_free_
string in Rust

 // to avoid needing an actual C library for this specific
demonstration.

 // In a real scenario, these would be true external C functions.

}

// --- Simulated C functions (for this example to be self-contained and
runnable) ---

// In a real FFI scenario, these would be in your C library.

#[no_mangle]

unsafe extern "C" fn simulated_c_add(a: i32, b: i32) -> i32 {

 a + b

}

#[no_mangle]

unsafe extern "C" fn simulated_c_get_static_message() -> *const c_char {

 static MESSAGE: &[u8] = b"Hello from simulated C!\0"; // Null-
terminated byte string

 MESSAGE.as_ptr() as *const c_char

}

// --- Safe Rust Wrapper Module ---

pub mod c_math_utils {

System Programming in Rust: Concrete Examples618

 use super::*; // To access CString, CStr, c_char, and the extern "C"
block if it were separate

 // Define a custom error type for our wrapper

 #[derive(Debug)]

 pub enum WrapperError {

 StringConversion(std::ffi::NulError), // For CString::new failures

 Utf8Conversion(std::str::Utf8Error), // For CStr::to_str failures

 // Add other error types as needed

 }

 impl fmt::Display for WrapperError {

 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

 match self {

 WrapperError::StringConversion(e) => write!(f, "CString
conversion error: {}", e),

 WrapperError::Utf8Conversion(e) => write!(f, "CStr to &str
UTF-8 conversion error: {}", e),

 }

 }

 }

 impl std::error::Error for WrapperError {

 fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {

 match self {

 WrapperError::StringConversion(e) => Some(e),

 WrapperError::Utf8Conversion(e) => Some(e),

 }

 }

 }

 /// Safely adds two integers using the external C function.

 pub fn add_via_c(a: i32, b: i32) -> i32 {

 // The unsafe block is contained within this safe function.

 // The caller of add_via_c doesn't need to use unsafe.

 unsafe {

 // If we were using the real extern "C" c_add:

 // c_add(a as std::os::raw::c_int, b as std::os::raw::c_int)
as i32

Chapter 15 619

 simulated_c_add(a,b) // Using our simulated version for this
example

 }

 }

 /// Safely gets a static message from the C library and converts it to
a Rust String.

 pub fn get_message_from_c() -> Result<String, WrapperError> {

 // Unsafe block to call the C function and handle the raw pointer.

 unsafe {

 let c_char_ptr = simulated_c_get_static_message(); // Or real
`c_get_static_message()`

 if c_char_ptr.is_null() {

 // C function might return NULL to indicate an error or no
message.

 // Decide how your wrapper should handle this.

 return Ok(String::from("<No message from C>")); // Or an
Err

 }

 // Create a CStr from the raw pointer. This itself is unsafe.

 let c_str_slice = CStr::from_ptr(c_char_ptr);

 // Attempt to convert the CStr (byte slice) to a Rust &str.

 // This can fail if the C string is not valid UTF-8.

 match c_str_slice.to_str() {

 Ok(rust_str_slice) => Ok(rust_str_slice.to_owned()), //
Convert &str to owned String

 Err(e) => Err(WrapperError::Utf8Conversion(e)),

 }

 }

 }

} // end of c_math_utils module

fn main() {

 // Users of our c_math_utils module call safe functions.

 let sum = c_math_utils::add_via_c(15, 27);

 println!("Safe wrapper call to add_via_c(15, 27) = {}", sum); //
Expected: 42

System Programming in Rust: Concrete Examples620

 match c_math_utils::get_message_from_c() {

 Ok(message) => println!("Safe wrapper call to get_message_
from_c(): '{}'", message),

 Err(e) => eprintln!("Error getting message from C via wrapper:
{}", e),

 }

}

•	 Module encapsulation: We create a module, c_math_utils, to house our safe Rust API.

The unsafe FFI calls are hidden inside this module’s implementation.

•	 add_via_c function:

•	 This function is safe (fn not unsafe fn)

•	 Internally, it has an unsafe block to call the (simulated) c_add function

•	 It handles any necessary type conversions (such as i32 to c_int if they were dif-

ferent, though often they are the same).

•	 get_message_from_c function:

•	 This function is also safe and returns a Result<String, WrapperError> to handle

potential errors idiomatically in Rust.

•	 Inside its unsafe block, it does the following:

•	 It calls the (simulated) simulated_c_get_static_message() C function,

which returns a *const c_char.

•	 It checks if the returned pointer is null, a common C pattern for indicating

errors or no data.

•	 CStr::from_ptr(c_char_ptr) creates a &CStr from the raw pointer. This

step is unsafe because it relies on the promise that the pointer is valid and

points to a null-terminated C string.

•	 c_str_slice.to_str() attempts to convert the byte slice represented by

&CStr into a UTF-8 Rust string slice (&str). This can fail if the C string is

not valid UTF-8, so it returns a Result.

•	 If successful, to_owned() creates a Rust string from the &str.

Chapter 15 621

•	 Custom WrapperError enum: We define a simple error enum for our wrapper to represent

different kinds of failures that can occur when interacting with the C library (e.g., string

conversion issues). This enum implements Debug, Display, and std::error::Error for

good error reporting.

•	 Using the wrapper: In main, we call c_math_utils::add_via_c and c_math_utils::get_

message_from_c without needing any unsafe blocks. The complexity and unsafety of the

FFI calls are hidden by the wrapper.

This pattern of creating safe Rust abstractions over unsafe FFI calls is fundamental to using C

libraries in Rust effectively and safely.

It allows the majority of your Rust code base to remain within Rust’s safety guarantees, while

concentrating the unsafe responsibilities in a well-defined and well-documented wrapper layer.

Practical example: using a simple custom C library from Rust
Let’s consolidate what we’ve learned about FFI by creating a very small C library, compiling it,

and then writing a Rust program that calls functions from this C library using safe wrappers.

Our C library will provide two simple functions:

1.	 int multiply(int a, int b);

2.	 void greet_person(const char* name);

Prerequisite: installing a C compiler
Before cargo build can succeed, you must have a compatible C compiler (such as GCC, Clang,

or MSVC) already installed on your system. The cc crate is smart and will automatically detect

the one that’s available.

Here’s how to quickly get a C compiler on most systems:

•	 On Linux (Debian/Ubuntu): The build-essential package includes gcc, make, and other

core build tools.

sudo apt install build-essential

•	 On macOS: Apple’s command-line tools provide clang. This is the easiest way to get it:

xcode-select --install

System Programming in Rust: Concrete Examples622

•	 On Windows: The most common approach is to install the Visual Studio Build Tools.

1.	 Go to the Visual Studio downloads page.

2.	 Run the installer.

3.	 Select the Desktop development with C++ workload. This will install the MSVC

compiler, which cc will find.

Once you have one of these installed, cargo build will be able to find and use it to compile your

C code.

Step 1: Create the C library
Create a file named my_c_lib.c:

// my_c_lib.c

#include <stdio.h> // For printf

int multiply(int a, int b) {

 return a * b;

}

void greet_person(const char* name) {

 if (name != NULL) {

 printf("[C Library] Hello, %s!\n", name);

 } else {

 printf("[C Library] Hello, (null name provided)!\n");

 }

}

Create a header file named my_c_lib.h (optional for this simple case, if we compile directly, but

good practice):

// my_c_lib.h

#ifndef MY_C_LIB_H

#define MY_C_LIB_H

int multiply(int a, int b);

void greet_person(const char* name);

#endif // MY_C_LIB_H

Chapter 15 623

Step 2: Compile the C library
You’ll need a C compiler (such as GCC or Clang). Open your terminal in the directory where you

saved my_c_lib.c.

•	 On Linux or macOS (creating a static library, libmy_c_lib.a):

gcc -c my_c_lib.c -o my_c_lib.o

ar rcs libmy_c_lib.a my_c_lib.o

•	 On Windows (creating a static library, my_c_lib.lib, with MinGW GCC):

gcc -c my_c_lib.c -o my_c_lib.o

ar rcs my_c_lib.lib my_c_lib.o

(If using MSVC, the commands would be cl /c my_c_lib.c and lib my_c_
lib.obj /OUT:my_c_lib.lib).

This creates a static library (libmy_c_lib.a or my_c_lib.lib) in the current directory.

Step 3: Create the Rust project and build.rs
Now, create a new Rust project:

cargo new rust_ffi_example --bin

cd rust_ffi_example

Copy the compiled C library (e.g., libmy_c_lib.a) into the root of your rust_ffi_example project

(or a subdirectory such as clib).

Create a build.rs file in the root of your rust_ffi_example project:

// rust_ffi_example/build.rs

fn main() {

 // Get the current directory (where Cargo.toml and build.rs are)

 let project_dir = std::env::var("CARGO_MANIFEST_DIR").unwrap();

 // Tell Cargo to link against our C library.

 // Assumes libmy_c_lib.a (or .lib) is in the project root or a known
path.

 // For simplicity, let's assume it's in the project root.

 // If it's in a subdirectory like "clib", use:

 // println!("cargo:rustc-link-search=native={}/clib", project_dir);

 println!("cargo:rustc-link-search=native={}", project_dir); // Search
in project root

System Programming in Rust: Concrete Examples624

 // Link against the static library "my_c_lib"

 // Cargo will look for libmy_c_lib.a on Unix-like systems

 // or my_c_lib.lib on Windows.

 println!("cargo:rustc-link-lib=static=my_c_lib");

 // If your C library had other dependencies, you'd link them here too.

 // e.g., println!("cargo:rustc-link-lib=dylib=some_other_system_lib");

 // Tell Cargo to rerun this build script if build.rs changes

 println!("cargo:rerun-if-changed=build.rs");

 // Also, if your C library source changes, you might want to recompile
it here

 // using the `cc` crate if you weren't pre-compiling it manually.

}

You don’t need [build-dependencies] in Cargo.toml for this simple build.rs that only prints

linker flags.

If build.rs were compiling C code using the cc crate, then cc would be a build dependency.

Step 4: Write the Rust code with FFI declarations and safe wrappers
Now, edit src/main.rs:

use std::ffi::{CString, NulError};

use std::os::raw::{c_char, c_int};

use std::fmt;

// Declare the C functions we want to call

extern "C" {

 fn multiply(a: c_int, b: c_int) -> c_int;

 fn greet_person(name: *const c_char);

}

// Define a custom error type for our safe wrapper module

#[derive(Debug)]

pub enum CLibError {

 StringConversion(NulError), // Error from CString::new if string has
interior nulls

Chapter 15 625

 // Add other potential C library error
types if needed

}

impl fmt::Display for CLibError {

 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

 match self {

 CLibError::StringConversion(e) => write!(f, "Failed to convert
Rust string to C string: {}", e),

 }

 }

}

impl std::error::Error for CLibError {

 fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {

 match self {

 CLibError::StringConversion(e) => Some(e),

 }

 }

}

// Safe Rust wrapper functions

mod my_c_lib_wrapper {

 use super::*; // To access extern "C" block, CString, CLibError

 pub fn safe_multiply(a: i32, b: i32) -> i32 {

 // The call to the extern "C" function must be in an unsafe block.

 // We assume that passing i32s (which usually match c_int) is
safe.

 unsafe {

 multiply(a as c_int, b as c_int) as i32

 }

 }

 pub fn safe_greet(name: &str) -> Result<(), CLibError> {

 // Convert Rust &str to CString (null-terminated)

 match CString::new(name) {

 Ok(c_name) => {

System Programming in Rust: Concrete Examples626

 // Call the C function within an unsafe block.

 // We are responsible for ensuring c_name.as_ptr() is
valid.

 unsafe {

 greet_person(c_name.as_ptr());

 }

 Ok(())

 }

 Err(e) => Err(CLibError::StringConversion(e)),

 }

 }

}

fn main() {

 println!("--- Testing FFI with Custom C Library ---");

 let num1 = 12;

 let num2 = 7;

 let product = my_c_lib_wrapper::safe_multiply(num1, num2);

 println!("Rust calling C multiply({}, {}): {}", num1, num2, product);
// Expected: 84

 let name_to_greet = "Rustacean via FFI";

 match my_c_lib_wrapper::safe_greet(name_to_greet) {

 Ok(_) => println!("Greeting sent to C library successfully."),

 Err(e) => eprintln!("Error sending greeting: {}", e),

 }

 // Test with a name that would cause CString::new to fail (if it had
interior null)

 // let problematic_name = "Rust\0FFI";

 // if let Err(e) = my_c_lib_wrapper::safe_greet(problematic_name) {

 // eprintln!("Correctly handled error for problematic name: {}",
e);

 // }

}

Chapter 15 627

•	 C library (my_c_lib.c, my_c_lib.h): Contains the simple multiply and greet_person

C functions.

•	 Compiling C library: We compile my_c_lib.c into a static library (libmy_c_lib.a or

my_c_lib.lib). This library needs to be accessible to the Rust linker.

•	 build.rs: This script tells Cargo the following:

•	 println!("cargo:rustc-link-search=native={}", project_dir);: Look for

native libraries in the project’s root directory (where we copied libmy_c_lib.a).

•	 println!("cargo:rustc-link-lib=static=my_c_lib");: Link against the static

library named my_c_lib. Cargo will automatically look for libmy_c_lib.a (Unix)

or my_c_lib.lib (Windows).

•	 src/main.rs:

•	 extern "C" { ... }: Declares the signatures of the multiply and greet_person

C functions so Rust knows how to call them.

•	 CLibError: A custom error type for our wrapper, specifically to handle potential

errors from CString::new.

•	 my_c_lib_wrapper module: This module provides safe Rust functions (safe_

multiply, safe_greet) that internally call the unsafe C functions.

•	 safe_multiply directly calls multiply within an unsafe block, casting

Rust i32 to c_int (often the same, but explicit casting is good practice

for the FFI).

•	 safe_greet converts the Rust &str to a CString (which can fail if the string

contains interior null bytes, hence the Result), then calls greet_person

with a pointer to the C-string’s data.

•	 main(): Calls the safe wrapper functions. No unsafe blocks are needed in main

itself because the unsafety is encapsulated within the wrapper module.

•	 Compilation and linking: When you run cargo build or cargo run, the following hap-

pens:

1.	 build.rs is compiled and run first. It prints the cargo:rustc-link-search and

cargo:rustc-link-lib directives.

2.	 Cargo then compiles src/main.rs.

3.	 During the linking phase, Cargo uses the directives from build.rs to find and link

libmy_c_lib.a with the compiled Rust code.

System Programming in Rust: Concrete Examples628

To run this example, do the following:

1.	 Save my_c_lib.c and my_c_lib.h.

2.	 Compile them into libmy_c_lib.a (or .lib) and place it in the root of your rust_ffi_

example project.

3.	 Create build.rs and src/main.rs as shown.

4.	 Run cargo run from the rust_ffi_example directory.

You should see output from both Rust’s println! and the C library’s printf (via greet_person),

demonstrating successful FFI calls. This example, while simple, covers the essential steps of

declaring, linking, and safely wrapping calls to a custom C library.

Having covered user-space, we’ll now see how Rust is used at a much deeper level: the OS kernel

itself!

A glimpse into kernel module development with Rust
So far in our exploration of system programming, we’ve primarily dealt with user-space appli-

cations – programs that run under the supervision and protection of the operating system. Now,

we’re going to take a conceptual peek into a much deeper layer: kernel module development.

This involves writing code that runs directly within the operating system kernel itself. Rust, with

its focus on safety and performance, is an increasingly interesting candidate for this demanding

domain, traditionally dominated by C.

The unique environment of kernel space
Writing code for the kernel is fundamentally different from writing user-space applications. The

kernel operates with the highest privileges and has direct access to hardware. This power comes

with immense responsibility:

•	 No safety net (almost): Unlike user-space programs, where the OS can often isolate and

terminate a misbehaving process, a bug in a kernel module (such as a null pointer deref-

erence or a buffer overflow) can crash the entire system. This is why memory safety is

paramount.

•	 Limited standard library: Your typical std library, with its convenient abstractions for

things such as strings, vectors, file I/O, and networking, is generally not available in the

kernel. These features rely on OS services that the kernel provides, not consumes. Kernel

code must often be written using #![no_std], relying only on the Rust core library (core)

and potentially a minimal allocation library (alloc).

Chapter 15 629

•	 Direct hardware interaction: Kernel modules often need to interact directly with hard-

ware registers, manage memory explicitly, and handle interrupts.

•	 Concurrency is intrinsic: The kernel is inherently concurrent. Multiple parts of the kernel

can be executing simultaneously, and interrupt handlers can preempt regular kernel code.

Synchronization primitives are even more critical here.

•	 Different error handling: Panicking in a kernel module is usually catastrophic. Error

handling often involves returning error codes or using specific kernel mechanisms.

•	 Resource management is manual and critical: Memory allocation, if needed, is done via

kernel-specific allocators, and all resources must be meticulously managed and released.

Despite these challenges, the desire to use Rust for kernel development is driven by its potential

to bring greater memory safety to this critical layer of software, reducing the likelihood of com-

mon C vulnerabilities.

Essential setup for Rust kernel development
Developing kernel modules in Rust requires a more specialized setup than typical user-space

applications. The exact steps can vary depending on the target operating system (Linux, macOS,

Windows, though Linux is currently the most common target for Rust kernel experiments).

no_std and target specifications
As mentioned, kernel modules are typically built as #![no_std] crates. This means you don’t

have access to the Rust standard library, which depends on OS abstractions. You’ll primarily use

the following:

•	 core: The Rust core library, providing fundamental types (such as Option, Result, prim-

itive types, and iterators) and macros that don’t require an underlying OS.

•	 alloc (optional): If you need dynamic memory allocation (e.g., for Box, Vec, String), you

can enable the alloc crate, but you’ll also need to provide or link against a kernel-com-

patible memory allocator.

You’ll also need to compile your Rust code for a specific target triple that matches the kernel’s

architecture and environment (e.g., x86_64-unknown-linux-gnu for a 64-bit Linux kernel, but

often a custom target specification is needed for #![no_std] freestanding environments). This

might involve using rustup target add or even creating a custom target JSON file.

System Programming in Rust: Concrete Examples630

Cross-compilation is common, meaning you compile the kernel module on your development

machine (e.g., an x86_64 Linux desktop) for a different target architecture if necessary (e.g., an

ARM-based embedded device).

Basic module structure (init/exit functions, logging)
Most operating systems (like Linux) expect kernel modules to have a specific structure, typically

including the following:

•	 Initialization function: A function that is called when the module is loaded into the

kernel. This function registers the module’s functionality, allocates resources, and so on.

In Linux, this is often equivalent to a function marked with module_init(). In Rust FFI

terms, this might be an extern “C” fn init_module() -> c_int.

•	 Exit (or Cleanup) Function: A function that is called when the module is unloaded. This

function unregisters functionality and frees any resources acquired by the init_module

function. In Linux, this is often a function marked with module_exit(). In Rust FFI, this

might be extern "C" fn cleanup_module().

•	 Licensing and metadata: Information about the module’s license (e.g., GPL), author,

and description.

Kernel-level logging: Standard println! doesn’t work in the kernel. Instead, you need to use the

kernel’s specific logging mechanism. For Linux, this is printk. To call printk from Rust, you’d

typically declare it as an extern "C" function and call it within an unsafe block, often wrapping

it in a safe Rust macro or function for convenience.

// --- STEP-BY-STEP: HOW TO RUN THIS KERNEL MODULE ---

//

// Since this is a specialized "no_std" library, you cannot just run it in
an existing bin crate.

// Follow these exact steps:

//

// 1. CREATE NEW CRATE:

// Open your terminal and run:

// $ cargo new --lib my_kernel_module

// $ cd my_kernel_module

//

// 2. UPDATE Cargo.toml:

// Open `Cargo.toml` and append these lines to handle panic/crate-type:

//

Chapter 15 631

// [lib]

// crate-type = ["staticlib"]

//

// [profile.dev]

// panic = "abort"

//

// [profile.release]

// panic = "abort"

//

// 3. REPLACE CODE:

// Replace the contents of `src/lib.rs` with the code below.

//

// 4. BUILD:

// Run:

// $ cargo build

//

// (Success is seeing "Finished dev target(s)")

// We don't have the standard library in the kernel

#![no_std]

// Example feature for more detailed panics (requires nightly Rust)

// #![feature(panic_info_message)]

use core::ffi::{c_char, c_int}; // For C types

use core::panic::PanicInfo;

// --- Simulate printk via FFI ---

// FIXED: `extern` blocks must be marked `unsafe` in newer Rust versions
(Edition 2024+).

unsafe extern "C" {

 fn printk(fmt: *const c_char, ...) -> c_int;

}

// A safe wrapper for our simplified printk

fn kprint(message: &str) {

 // Create a fixed-size buffer for the message.

System Programming in Rust: Concrete Examples632

 let mut buffer = [0u8; 256];

 let mut len = 0;

 for (i, byte) in message.bytes().enumerate() {

 if i < buffer.len() - 1 { // Leave space for null terminator

 buffer[i] = byte;

 len = i + 1;

 } else {

 break; // Message too long for buffer

 }

 }

 buffer[len] = 0; // Null terminate

 unsafe {

 printk(buffer.as_ptr() as *const c_char);

 }

}

// --- Module Initialization and Exit ---

// FIXED: `#[no_mangle]` is unsafe in newer Rust. We use `#[unsafe(no_
mangle)]`.

#[unsafe(no_mangle)]

pub extern "C" fn my_rust_module_init() -> c_int {

 kprint("Hello from Rust Kernel Module! Init function called.\n");

 0

}

#[unsafe(no_mangle)]

pub extern "C" fn my_rust_module_exit() {

 kprint("Goodbye from Rust Kernel Module! Exit function called.\n");

}

// --- Panic Handler ---

#[panic_handler]

Chapter 15 633

fn panic(info: &PanicInfo) -> ! {

 kprint("KERNEL PANIC in Rust module: ");

 if let Some(location) = info.location() {

 kprint("at file '");

 kprint(location.file());

 kprint("' line '...' ");

 }

 kprint("\n");

 loop {}

}

To test this code:

1.	 Create a new library: $ cargo new --lib my_kernel_module $ cd my_kernel_module

2.	 Configure Cargo.toml: Add these lines to Cargo.toml to support no_std (abort on panic):

[lib] crate-type = ["staticlib"]

[profile.dev] panic = "abort"

[profile.release] panic = "abort"

3.	 Add the Code: Replace src/lib.rs with the provided code.

4.	 Build: Run $ cargo build. (You cannot use cargo run because this is a kernel library, not

an executable).

•	 #![no_std]: Indicates that we are not linking against the Rust standard library.

•	 extern crate alloc; (Optional): If you needed dynamic memory allocation (e.g., for

Box, Vec, String), you’d include this and also need to provide a global memory allocator

that is compatible with the kernel environment. For very simple modules, you might

avoid alloc.

•	 extern "C" { fn printk(...); }: This is an FFI declaration for the kernel’s printk func-

tion (or a similar logging function). The actual signature of printk is variadic and more

complex; this is a simplification. In practice, you’d use a crate that provides safe bindings.

System Programming in Rust: Concrete Examples634

•	 kprint function: A simple safe wrapper around our FFI printk declaration. It attempts

to convert a Rust &str to a null-terminated byte sequence suitable for printk. This is

non-trivial without alloc for CString; the example uses a fixed-size buffer.

•	 #[no_mangle] pub extern "C" fn my_rust_module_init() -> c_int: This defines

our module initialization function.

•	 #[no_mangle]: Prevents the Rust compiler from changing the function’s name, so

it can be found by the kernel’s module loader if it expects a C-style symbol name.

•	 extern "C": Specifies that this function should use the C calling convention.

•	 It returns a c_int (typically 0 for success, non-zero for failure on Linux).

•	 #[no_mangle] pub extern "C" fn my_rust_module_exit(): This defines the module

cleanup function.

•	 #[panic_handler]: A #![no_std] application (such as a kernel module) must define

what happens when a Rust panic! occurs. This function is called by the Rust runtime

when a panic is triggered. In a real module, you’d log detailed information using printk

and then likely trigger a kernel oops or a safe halt. Looping indefinitely is a minimal “do

nothing more” strategy.

Building, loading, and further considerations
Having sketched out the basic Rust code structure for a kernel module, the next steps involve ac-

tually compiling this Rust code into a loadable kernel object, getting it into the kernel, and being

aware of the significant complexities and responsibilities that come with kernel development.

Compilation and loading process
Compiling Rust code into a format that a specific operating system kernel (such as Linux) can load

as a module is more involved than a typical cargo build. It requires a specialized build process:

1.	 cargo build with a kernel target: You’d compile your Rust #![no_std] crate using

cargo build, but you’d specify a target triple appropriate for the kernel environment

(e.g., x86_64-unknown-linux-gnu with specific features disabled, or a custom bare-metal

target). This produces an object file (e.g., .o or .rlib).

2.	 Kernel build system integration (e.g., Makefile/Kbuild for Linux): The object file pro-

duced by Cargo usually isn’t directly loadable as a kernel module. You typically need to

integrate with the kernel’s own build system. For Linux, this means creating a Makefile

and a Kbuild file.

Chapter 15 635

•	 The Makefile would invoke the kernel’s build process, pointing it to your Rust

object file(s).

•	 The Kbuild file tells the kernel build system which object files comprise your mod-

ule. The kernel’s build system then takes your Rust object file, links it against

necessary kernel symbols, and produces the final loadable kernel module (e.g.,

a .ko file on Linux).

Conceptual Makefile (for Linux):

Makefile (Simplified)

Assumes your Rust crate compiles to librust_kernel_module.a or
similar

Or directly uses object files if configured properly

Name of your kernel module object

obj-m += my_rust_module.o

Specify the source files for your module object

This might point to the .o file generated from your Rust lib.rs

my_rust_module-objs := path/to/your/rust_compiled_object.o

Or, if linking a static library from Rust:

my_rust_module-objs := main_loader.o # A small C stub

EXTRA_LDFLAGS += path/to/your/librust_kernel_module.a

all:

 make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

 make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

A Makefile is a classic build automation file used heavily in C and C++ projects.

It’s a text file (simply named Makefile) that tells the make command how

to compile and link a program. You can think of it as a “recipe”: it defines

“targets” (like your final executable) and their “dependencies” (the source

files). make then runs the specified commands (such as gcc) and is smart

enough to only rebuild the parts of your program that have actually changed,

saving a lot of time

System Programming in Rust: Concrete Examples636

This is highly simplified; real kernel Makefiles for Rust modules often involve more steps

to correctly invoke Cargo and link the resulting static library or object files. Crates such

as kernel_module_builder or established Rust-for-Linux project templates aim to sim-

plify this.

3.	 Loading the module: Once you have a .ko file (on Linux), you load it into the running

kernel, typically using the insmod command (as superuser):

sudo insmod ./my_rust_module.ko

If successful, your module’s init function (e.g., my_rust_module_init) is called.

4.	 Verifying and unloading:

•	 You can check if the module is loaded using lsmod | grep my_rust_module.

•	 You can view kernel messages (including those from your module’s kprint or

printk calls) using dmesg.

•	 To unload the module, you use rmmod (as superuser), which will call your module’s

exit function (e.g., my_rust_module_exit):

sudo rmmod my_rust_module

This process requires correctly installed kernel headers for your running kernel version and often

involves a bit of trial and error to get the build system and linker flags right.

Important caveats and next steps for exploration
Kernel module development, especially in a language newer to the space, like Rust, is an advanced

topic with significant considerations:

•	 Take extreme caution with unsafe: While much of your Rust module logic can be safe,

interactions with kernel APIs, direct memory manipulation, and hardware access will

inevitably require unsafe blocks. These must be handled with extreme care, as errors

can crash the entire system.

•	 Kernel API stability: Kernel internal APIs can change between versions, potentially break-

ing your module. Writing modules that rely only on stable kernel ABIs is preferred, but

not always possible for deep integration.

•	 Error handling: Panicking in a kernel module is generally fatal to the system or at least

the current operation. Errors must be handled gracefully, often by returning error codes

understood by the kernel.

Chapter 15 637

•	 Concurrency: The kernel is highly concurrent. Any shared data within your module must

be protected by appropriate kernel synchronization primitives (spinlocks, mutexes, etc.),

which you’d access via the FFI or Rust wrappers.

•	 Memory allocation: If you need dynamic memory, you must use kernel-specific allocators

(e.g., kmalloc). The alloc crate in Rust can be used if a global allocator compatible with

the kernel’s mechanisms is provided.

•	 Tooling and ecosystem: While efforts such as Rust for Linux are rapidly maturing the

ecosystem for kernel development in Rust, it’s still a newer area compared to C. Tooling

for debugging Rust kernel modules (beyond printk) might also be less mature than for C.

•	 Specific OS: The details provided here are heavily influenced by Linux kernel module

development. Other operating systems (Windows, macOS) have different mechanisms

and levels of support for kernel modules written in languages other than C/C++.

Further exploration: If you’re serious about Rust kernel development, you should look into the

following:

•	 The “Rust for Linux” project and its documentation

•	 Crates providing safe bindings to kernel APIs

•	 Examples of existing Rust kernel modules

•	 Detailed guides on setting up the build environment for your specific target kernel and

architecture

This “glimpse” is intended to show that it’s possible and increasingly practical to write kernel-level

code in Rust, leveraging its safety features to reduce common bugs. However, it remains a chal-

lenging and advanced area of system programming requiring deep knowledge of both Rust and

operating system internals.

Summary
And with that, we’ve reached the end of Chapter 15, our exploration into the world of system pro-

gramming with Rust! We’ve seen how Rust’s core features, designed for safety and performance,

make it a strong contender for tasks that require low-level control and direct interaction with

the operating system and even other programming languages. While system programming can

be intricate, Rust provides tools that help manage this complexity with a degree of safety that is

often hard to achieve elsewhere.

System Programming in Rust: Concrete Examples638

Let’s recap what we’ve journeyed through in this chapter:

•	 Rust for system-level tasks: We began by defining system programming and highlighting

why Rust’s unique combination of memory safety without a garbage collector, C-level

performance, fearless concurrency (though not the focus of this chapter), and low-level

control makes it an excellent choice for this domain.

•	 Low-level programming foundations: We revisited Rust’s memory model, emphasizing

the importance of understanding ownership, borrowing, and the distinction between

stack and heap allocation from a systems perspective. A crucial part of this was venturing

into unsafe Rust. We discussed when and why unsafe is necessary, the “superpowers” it

grants (such as dereferencing raw pointers and calling unsafe functions), and the added

responsibility it places on the developer. We also touched upon best practices for encap-

sulating unsafe code to maintain overall program safety.

•	 Building practical command-line utilities: We then applied these concepts to a common

system programming task: creating CLI tools. We covered designing a simple utility, pars-

ing command-line arguments (using both the standard library’s std::env::args() for

basic needs and acknowledging powerful crates such as clap for more complex scenarios),

interacting with the file system (std::fs for reading, writing, and directory operations),

and handling standard input, output, and error streams.

•	 Interfacing with C code (FFI): A significant portion of the chapter was dedicated to Rust’s

Foreign Function Interface (FFI). We learned why FFI is vital for leveraging existing C

libraries and for interoperability. This included the following:

•	 Declaring external C functions using extern "C" blocks

•	 Linking against C libraries, either via the #[link] attribute or, more commonly

for custom libraries, using build.rs scripts

•	 The intricacies of passing data between Rust and C, covering primitive types,

C-compatible strings (CString, CStr), and ensuring Rust structs match C struct

layouts with #[repr(C)]

•	 The importance of creating safe Rust wrappers around unsafe FFI calls to provide

an idiomatic and secure interface for the rest of your Rust code

•	 We walked through a practical example of building and using a simple custom C

library from Rust

Chapter 15 639

By working through these areas, you gained insight into how Rust enables you to write code that

can operate close to the system, interact with existing C code bases, and build useful command-line

tools, all while benefiting from Rust’s modern features and safety emphasis. These are valuable

skills for any developer looking to expand their capabilities beyond application-level programming.

We’ve now built powerful, low-level Rust applications; in the next chapter, we’ll learn how to

package and deploy them reliably to any machine using Docker.

Questions and assignments
Questions

1.	 What are the primary reasons a Rust programmer might need to use an unsafe block or

an unsafe fn? Give two distinct scenarios.

2.	 List three key differences between Rust’s safe references (&T, &mut T) and raw pointers

(*const T, *mut T).

3.	 When you declare an external C function using extern "C" { ... }, why is calling that

function from Rust considered an unsafe operation?

4.	 What is the purpose of the #[repr(C)] attribute when defining a Rust struct that needs

to be passed to or received from C code?

5.	 Describe the basic mechanism for reading command-line arguments in Rust using the

standard library. What are some limitations of this basic approach for more complex CLI

tools?

6.	 Why is it a good practice for CLI tools to print error messages to standard error (stderr)

and normal output to standard output (stdout)?

7.	 What is a build.rs script, and what role does it typically play when working with FFI to

link against C libraries?

8.	 What is the main principle behind creating “safe Rust wrappers” around unsafe FFI calls?

System Programming in Rust: Concrete Examples640

Assignment
Enhanced command-line file analyzer
Goal: Extend a basic file analysis tool with more features, focusing on argument parsing and file

system interaction.

Task: Building on the concepts of a mini_grep-like tool or the wc-like tool we discussed:

1.	 Create a new binary Rust project (e.g., cargo new file_inspector --bin).

2.	 Your tool should accept the following command-line arguments:

•	 A mandatory file path.

•	 An optional flag, say -c or --chars, to count only characters.

•	 An optional flag, say -w or --words, to count only words.

•	 An optional flag, say -l or --lines, to count only lines.

•	 If no flags (-c, -w, -l) are provided, it should print all three counts (lines, words,

characters). If one or more flags are provided, it should only print the counts cor-

responding to those flags.

3.	 Argument parsing:

•	 For a basic implementation, try to parse these arguments using only

std::env::args(). This will be a good exercise in manual parsing. You’ll need

to iterate through the arguments, check for your flags, and identify the file path.

•	 (Optional challenge): If you’re feeling adventurous, try using a crate such as clap

to define and parse these arguments more robustly.

4.	 File processing:

•	 Read the specified file line by line.

•	 Implement the logic to count lines, words (simply split by whitespace), and char-

acters (UTF-8 aware).

5.	 Output:

•	 Print the requested counts to standard output.

•	 Handle errors (e.g., file not found, invalid arguments) by printing messages to

standard error and exiting with a non-zero status code.

Chapter 15 641

Example usage:

./file_inspector my_document.txt # Prints lines, words, and chars

./file_inspector --lines my_document.txt # Prints only line count

./file_inspector -w -c my_document.txt # Prints word and char counts

What this practices: Manual command-line argument parsing (or using a crate), file reading,

string manipulation, and standard CLI output/error handling.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

16
Dockerization and Deployment
of Rust Applications

We’re now at the stage where you’ve likely built some impressive Rust applications, whether they

are command-line tools, web servers, or system utilities. The next crucial step in the software life

cycle is figuring out how to package, distribute, and run these applications reliably in different

environments – from your development machine to testing servers and ultimately to production.

This is where Docker and the concept of containerization come into play, and they’ve become

indispensable tools in modern software deployment.

What is Docker? An overview
At its core, Docker is an open source platform that automates the deployment, scaling, and man-

agement of applications by using containers. Think of a container as a standardized, lightweight,

standalone, executable package of software that includes everything needed to run an application:

the code, runtime, system tools, system libraries, and settings. It’s like a neatly packed box where

your application lives, isolated from the outside world.

Docker provides the ability to do the following:

•	 Build container images from a specification called a Dockerfile

•	 Share these images via registries such as Docker Hub

•	 Run these images as containers on any system that has Docker installed

This approach solves many common problems in software deployment and has revolutionized

how developers build and ship applications.

Dockerization and Deployment of Rust Applications644

Key benefits of using Docker
So, why has Docker become so popular, and what are its main advantages, especially when we

think about our Rust applications?

•	 Consistency across environments: This is a huge one. Docker containers ensure that

your application runs in the exact same environment regardless of where it’s deployed:

be it your local development machine, a colleague’s machine, a staging server, or the

production cloud. The container packages all dependencies, so you can say goodbye to

the classic “but it works on my machine!” problem.

 A quick clarification: Do I need Docker for every project?

Before we dive in, it’s important to set expectations. As a beginner, you might wonder

whether you need to use Docker for every Rust program you write, even a simple

cargo run application.

The short answer is: absolutely not!

Docker is a tool for deployment and environment management. It’s incredibly pow-

erful, but it does add a layer of complexity. You now have to think about images, con-

tainers, volumes, and networking, which isn’t necessary when you’re just learning

or building a simple local tool.

So, when should you use it?

For learning: In this chapter, when you want to learn the process of shipping an

application.

For complex setups: When your Rust app needs other services to run, such as the

PostgreSQL database from our last chapter. Docker Compose makes this kind of

setup easier.

For deployment: When you are ready to ship your application to a server, Docker is

one of the best ways to ensure it runs the same way on the server as it did on your

machine.

For all the simple CLI tools and basic examples in this book, just using cargo run

is the perfect and correct way to build and run your code. Think of this chapter as

the next step: preparing your application to be shared and run in the real world.

Chapter 16 645

•	 Isolation and dependency management: Each Docker container runs in its own isolated

environment, with its own filesystem, processes, and network interface (if configured).

This means your Rust application inside a container won’t conflict with other applications

or system libraries on the host machine, and its dependencies are self-contained. This

makes managing complex dependency trees much simpler.

•	 Resource efficiency and scalability: Containers are much more lightweight than tradi-

tional virtual machines (VMs) because they share the host system’s operating system

kernel instead of emulating a full one. This efficiency means they consume fewer resources

(CPU and memory) and generally start up significantly faster. It’s important to remember,

however, that startup time is not instant. The final “cold start” performance will still

depend on the size of your container image and the time your Rust application needs to

initialize; a large application with extensive setup will still take time to become ready. This

overall efficiency makes it easier to scale your application up or down by simply starting

or stopping container instances, allowing you to run a higher density of applications on

the same hardware.

•	 Portability and simplified deployment: Once you’ve built a Docker image for your Rust

application, that image can run on any system that has Docker installed – Windows, ma-

cOS, Linux, cloud servers, and so on. This “build once, run anywhere” capability greatly

simplifies the deployment process. You’re no longer deploying your application and its

myriad dependencies; you’re deploying a self-contained container.

•	 Version control and rollback for images: Docker images are typically built in layers and

can be versioned using tags. This allows you to easily track changes to your application

environment and, if something goes wrong with a new deployment, quickly roll back to

a previous, stable version of your container image.

Why Dockerize Rust applications specifically?
While the general benefits of Docker apply to most languages, there are specific advantages when

it comes to Rust:

•	 Simplified deployment of compiled binaries: Rust compiles to a native binary. Docker

allows you to package this binary along with only the necessary runtime dependencies

(which for Rust can be very minimal, especially with musl or static linking) into a small,

efficient container. This avoids needing to install Rust toolchains or specific library ver-

sions on every server you deploy to.

Dockerization and Deployment of Rust Applications646

•	 Consistent build environment: You can use Docker to create a consistent build environ-

ment for your Rust application itself. This ensures that your application is always compiled

with the correct Rust version and build tools, regardless of the developer’s local setup or

the CI/CD server’s configuration. We’ll see this with multi-stage Dockerfiles.

•	 Leveraging Rust’s performance: Rust’s efficiency means your Docker containers can be

very lean and performant. A well-optimized Rust application in a minimal Docker con-

tainer can handle significant load with a small resource footprint.

•	 Cross-compilation and targeting: While Rust has good cross-compilation capabilities,

Docker can sometimes simplify building for different target architectures (such as ARM

for Raspberry Pi or cloud instances) by using base images or build tools specific to that

architecture within the Docker build process.

Chapter objectives: What you’ll learn
In this chapter, our goal is to get you comfortable with the fundamentals of Docker and how to

apply it to your Rust projects. We will cover the following topics:

•	 Setting up Docker on your development machine

•	 Understanding basic Docker concepts such as images and containers, and common com-

mands

•	 Writing a Dockerfile to package a Rust application into a Docker image

•	 Optimizing your Rust Docker images for size and build speed using techniques such as

multi-stage builds

•	 Briefly looking at Docker Compose for managing multi-container applications (e.g., your

Rust app and a database)

•	 An overview of deploying your Dockerized Rust applications, including using container

registries and conceptual deployment to cloud platforms

•	 Key best practices for Dockerization and production deployments

By the end of this chapter, you should be able to take a Rust application you’ve built, package it

into an efficient Docker container, and have a good understanding of how to get it running in

various environments. Let’s containerize!

Chapter 16 647

Getting started with Docker
Before we can package our Rust applications into containers, we first need Docker installed and

running on our system. We also need to understand a few fundamental Docker concepts and

commands.

This section will guide you through the initial setup and introduce you to the basics of interacting

with Docker.

Setting up your Docker environment
The first step is to get Docker onto your machine. The installation process varies slightly depending

on your operating system, but it’s generally quite straightforward.

Installing Docker Desktop (Windows, macOS, and Linux)
The most common way to use Docker on a personal computer is via Docker Desktop. It’s an

easy-to-install application that provides Docker Engine (the core runtime), the Docker com-

mand-line interface (CLI) tool, Docker Compose (for multi-container applications), and other

helpful utilities:

1.	 Visit the official Docker website: Go to www.docker.com and navigate to the Get Started

or Downloads section.

2.	 Download Docker Desktop: The website should automatically detect your operating

system and offer the appropriate download for the following:

•	 Windows: Docker Desktop for Windows.

•	 macOS: Docker Desktop for Mac (available for both Intel and Apple Silicon chips).

•	 Linux: Docker Desktop for Linux is available, but many Linux users opt to install

Docker Engine and the Docker CLI directly using their distribution’s package

manager (e.g., apt for Debian/Ubuntu or yum/dnf for Fedora/CentOS). Detailed

instructions for this are also available on the Docker website. If you choose Docker

Desktop for Linux, it provides a nice GUI and integrates well.

3.	 Follow installation instructions: Once downloaded, run the installer and follow the

on-screen prompts provided by Docker for your specific operating system. This usually

involves a few clicks and potentially a system restart:

•	 On Windows, Docker Desktop often uses Windows Subsystem for Linux 2 (WSL

2) as its backend, which might require you to enable WSL 2 if you haven’t already.

The Docker installer usually guides you through this.

http://www.docker.com

Dockerization and Deployment of Rust Applications648

•	 On macOS, it’s a standard application installation.

•	 On Linux, if using Docker Desktop, follow their specific instructions. If installing

Docker Engine directly, consult the Docker documentation for your Linux distri-

bution (e.g., Install Docker Engine on Ubuntu).

It’s a good idea to ensure your system meets the minimum requirements listed on the Docker

website before installation.

Verifying your Docker installation
After the installation is complete (and Docker Desktop is running, if applicable), you can verify

that Docker is installed correctly and accessible from your command line.

Open your terminal or command prompt and type the following:

docker --version

If Docker is installed properly, this command should output the Docker version information,

something like this (your version number will likely be different):

Docker version 26.x.x., build 123456

You can also check the Docker daemon (the background service) status with the following:

docker info

This command provides a lot of information about your Docker installation, including the number

of containers and images, the storage driver, and the kernel version. If it runs without error, your

Docker environment is likely ready to go!

If you encounter issues, the Docker documentation and community forums are excellent resources

for troubleshooting installation problems. With Docker installed, we can now explore some of

its essential concepts.

Essential Docker concepts
Docker is a powerful and extensive platform, and entire books and comprehensive courses are

dedicated to mastering its intricacies. Its ecosystem covers everything from simple container

execution to complex orchestration of microservices. For the purpose of this chapter, we’re going

to focus on just the very basics you need to get your Rust applications containerized and running.

Chapter 16 649

This section will be a quick overview. If you’re already quite familiar with Docker concepts such

as images, containers, and registries, you might find this to be a review and could skim or skip

ahead to the parts about Dockerizing Rust applications specifically. For everyone else, these are

the core ideas we’ll build upon.

Images and containers: The core building blocks
The two most fundamental concepts in the Docker world are images and containers:

•	 Docker image: Think of an image as a blueprint or a template. It’s a lightweight, stand-

alone, executable package that includes everything needed to run a piece of software,

including the code (or compiled binary), a runtime, system tools, system libraries, and

settings. Images are read-only. When you want to run your application, you use its image.

You create images by writing a Dockerfile (which we’ll do soon for our Rust app), or you

can pull pre-built images from a registry such as Docker Hub (e.g., an image for a database

such as PostgreSQL, or an image containing the Rust toolchain). Images are built in layers,

which makes them efficient to store and share.

•	 Docker container: A container is a runnable instance of an image. If an image is the

blueprint, a container is the actual house built from that blueprint. You can create many

containers from the same image. Each container runs as an isolated process on your host

machine’s kernel, but it has its own filesystem, network interface, and process space, all

derived from the image. It’s important to remember that while containers are far more

lightweight than full VMs, they are not free; each running container still consumes a

portion of the host’s memory and CPU. This means your system’s available resources will

ultimately limit how many containers you can run. Containers are where your application

actually lives and executes, and they can be started, stopped, moved, and deleted. The

relationship is often described as: an image is a class, and a container is an instance of

that class.

Dockerization and Deployment of Rust Applications650

Docker Hub and container registries
Once you’ve built a Docker image, you often need a place to store it and share it, especially if you

want to deploy your application on other machines or collaborate with a team. This is where

container registries come in:

•	 Docker Hub: This is the largest and most well-known public container registry, operated by

Docker, Inc. It hosts a vast number of official images for popular software (e.g., operating

systems such as Ubuntu, databases such as MySQL and PostgreSQL, and programming

language runtimes such as Rust, Python, and Node). You can also create an account and

push your own public or private images to Docker Hub.

•	 Other registries: Besides Docker Hub, many other container registries exist, both public

and private. Cloud providers such as Amazon Web Services Elastic Container Registry

(AWS ECR), Google Container Registry (GCR) and Artifact Registry, and Microsoft Azure

Container Registry (ACR) offer their own managed registries. Companies often host

private registries for their internal images.

When you run a command such as docker run rust, Docker first checks whether you have the

Rust image locally. If not, it automatically tries to pull it from Docker Hub (by default). When we

build our own Rust application image, we’ll be able to “push” it to a registry to make it available

for deployment.

Basic Docker commands for interaction
The Docker CLI is your primary way of managing Docker images, containers, volumes, and net-

works. Most commands start with docker followed by a subcommand (such as run, ps, and

images). You can always run docker --help or docker <subcommand> --help for more details.

Running a container: docker run
The docker run command is used to create and start a new container from a specified image. It’s

one of the most versatile Docker commands with many options.

Its basic usage looks as follows: docker run <image_name_or_id>.

This will download the image if it’s not already local (usually from Docker Hub by default) and

then start a new container based on it.

Chapter 16 651

The following are other common options:

•	 -it (or -i -t): Often used together:

•	 -i (--interactive): Keeps STDIN open even if not attached.

•	 -t (--tty): Allocates a pseudo-TTY (which stands for teletype), which gives you

an interactive terminal session inside the container. This is essential if you want

to run a shell or an interactive program inside the container.

•	 -d (--detach): Runs the container in the background (detached mode) and prints the new

container ID. The container will keep running until its main process exits or it’s stopped.

•	 --name <container_name>: Assigns a custom name to your container, making it easier to

refer to later. If you don’t provide a name, Docker assigns a random one.

•	 -p <host_port>:<container_port> (or --publish <host_port>:<container_port>):

Publishes a container’s port(s) to the host. This maps a port on your host machine to a

port inside the container, allowing you to access services running in the container from

your host (e.g., a web server).

•	 -v <host_path>:<container_path> (or --volume <host_path>:<container_path>):

Mounts a volume from the host machine into the container. This is useful for persisting

data or providing configuration files to the container.

•	 --rm: Automatically removes the container when it exits. Very handy for short-lived tasks

or testing to avoid cluttering your system with stopped containers.

•	 -e <VAR_NAME>=<value> (or --env <VAR_NAME>=<value>): Sets environment variables

inside the container.

For example, let’s run a simple hello-world container (a very small image designed to test Docker

installations) and then an interactive Ubuntu shell:

1. Run the basic "hello-world" container.

It prints a message and exits.

docker run hello-world

2\. Run an interactive Ubuntu shell, assign a name, and automatically
remove it when done.

This will pull the 'ubuntu:latest' image if you don't have it.

You'll be dropped into a bash shell inside the Ubuntu container.

Dockerization and Deployment of Rust Applications652

Type 'exit' to leave the shell and stop/remove the container.

docker run -it --rm --name my_ubuntu_shell ubuntu:latest bash

3\. Run a detached Nginx web server, mapping port 8080 on your host

to port 80 inside the container.

docker run -d --name my_nginx_server -p 8080:80 nginx:latest

After this, you should be able to open http://localhost:8080 in your
browser

to see the Nginx welcome page. We'll stop and remove this later.

•	 The first command runs hello-world. Docker downloads it (if needed) and runs it, then

it prints a message and the container exits.

•	 The second command starts an Ubuntu container. -it gives you an interactive shell (Bash).

--rm means when you type exit in the container’s shell, the container is automatically

removed. --name gives it a friendly name.

•	 The third command starts an Nginx web server in detached mode (-d), names it my_nginx_

server, and maps port 8080 on your host machine to port 80 inside the Nginx container

(which is Nginx’s default port).

Listing containers: docker ps
The docker ps command is used to list containers:

•	 docker ps: Shows only currently running containers

•	 docker ps -a (or --all): Shows all containers, including stopped ones

List currently running containers

docker ps

List all containers (running and stopped)

docker ps -a

Chapter 16 653

The output will show information such as container ID, image used, command being run, when

it was created, its status (e.g., Up 5 minutes or Exited (0) 2 hours ago), ports mapped, and

names. This is your go-to command for seeing what’s happening with your containers.

Managing images: docker images, docker pull, and docker rmi
You’ll also need to use commands to manage the Docker images stored on your local machine:

•	 docker images: Lists all Docker images you have locally.

•	 docker pull <image_name>:<tag>: Downloads an image (or a specific version/tag of

an image) from a registry (Docker Hub by default) to your local machine. Examples are

docker pull rust:latest or docker pull postgres:15.

•	 docker rmi <image_name_or_id> (remove image): Deletes one or more images from

your local machine. You usually can’t remove an image if it’s being used by any existing

container (even a stopped one). You might need to remove the containers first.

•	 docker rmi -f <image_name_or_id>: Forces removal (use with caution).

List local images

docker images

Pull the latest Alpine Linux image

docker pull alpine:latest

List images again to see alpine

docker images

Remove the alpine image (assuming no containers are using it)

You might need its ID if just 'alpine:latest' refers to multiple
things.

docker rmi alpine:latest

These commands help you manage the storage used by Docker images and ensure you have the

images you need for running containers.

Dockerization and Deployment of Rust Applications654

Stopping and removing containers: docker stop and docker rm
When you’re done with a container, you might want to stop it (if it’s running) and then remove

it (to free up resources):

•	 docker stop <container_name_or_id>: Stops one or more running containers gracefully

(by sending a SIGTERM signal, then SIGKILL after a timeout)

•	 docker start <container_name_or_id>: Starts one or more stopped containers

•	 docker rm <container_name_or_id>: Removes one or more stopped containers

•	 docker rm -f <container_name_or_id>: Forces removal of a container (even if running,

though it’s better to stop it first)

Let's assume our 'my_nginx_server' from the 'docker run' example
is still running.

If not, you can start one: docker run -d --name my_nginx_server -p
8080:80 nginx:latest

List running containers to find its name/ID

docker ps

Stop the Nginx server container

Replace 'my_nginx_server' with the actual name or ID if
different

docker stop my_nginx_server

Verify it's stopped (it should now appear in 'docker ps -a' but
not 'docker ps')

docker ps

docker ps -a

Remove the stopped container

docker rm my_nginx_server

Chapter 16 655

Verify it's removed

docker ps -a

It’s good practice to clean up containers you no longer need to free up system resources and keep

your Docker environment tidy. Remember, running docker run --rm ... is often useful for

temporary containers as it handles removal automatically when the container exits.

These basic commands (run, ps, images, stop, rm, and pull) form the foundation of daily Docker

interaction. As we move to Dockerizing our Rust application, we’ll primarily focus on docker

build (to create an image from a Dockerfile) and docker run (to run it).

Dockerizing your Rust application
We’ve set up Docker and learned some basic commands. Now, the core task is to create a Dockerfile.

This special file is the recipe Docker uses to build an image containing your Rust application. It

specifies everything from the base operating system and Rust toolchain to how your code should

be compiled and how the final application should be run.

Once you have a Dockerfile, you can build a portable image that can be run consistently anywhere

Docker is installed.

Understanding the Dockerfile
A Dockerfile (note the capitalization, with no file extension) is a simple text file that contains a

sequence of instructions. Each instruction tells Docker how to build a layer of your image. When

you run docker build, Docker reads these instructions, executes them one by one, and creates

an image.

Think of a Dockerfile like a script for setting up an environment and installing/running your

application, but in a standardized, reproducible way.

Core instructions: FROM, WORKDIR, COPY, RUN, CMD, and
EXPOSE
While Dockerfiles can have many instructions, a few are fundamental and appear in almost every

Dockerfile:

•	 FROM <base_image>:<tag>:

•	 This must be the first instruction in a Dockerfile (unless preceded by ARG).

Dockerization and Deployment of Rust Applications656

•	 It specifies the base image upon which your image will be built. A base image could

be a minimal operating system (such as debian:buster-slim or alpine:latest),

an image with a specific programming language runtime pre-installed (such as

rust:latest or node:18), or even another image you’ve built previously.

•	 For example, FROM rust:1.78 (uses a specific version of the official Rust image).

•	 WORKDIR /path/to/workdir:

•	 Sets the working directory for any subsequent RUN, CMD, ENTRYPOINT, COPY, and

ADD instructions. If the directory doesn’t exist, Docker will create it.

•	 It’s good practice to set a WORKDIR early on.

•	 For example, WORKDIR /app.

•	 COPY <src_on_host> <dest_in_container>:

•	 Copies files or directories from your host machine (the build context, usually your

project directory) into the filesystem of the Docker image

•	 For example, COPY . . (copies everything from the current build context on the

host to the current WORKDIR in the image)

•	 For example, COPY ./target/release/my_app /usr/local/bin/my_app

•	 RUN <command>:

•	 Executes any command in a new layer on top of the current image. This is typi-

cally used for installing software packages, compiling your application, creating

directories, or setting up permissions. Each RUN instruction creates a new image

layer, so it’s often good to chain related shell commands together using && to

reduce the number of layers.

•	 For example, RUN apt-get update && apt-get install -y libssl-dev pkg-

config.

•	 For example, RUN cargo build --release.

•	 CMD ["executable", "param1", "param2"] (exec form, preferred) or CMD command

param1 param2 (shell form):

•	 Specifies the default command to run when a container is started from this image.

•	 There can only be one CMD instruction in a Dockerfile. If you list more than one

CMD instruction, only the last one will take effect.

Chapter 16 657

•	 The CMD instruction can be overridden when you run a container using docker

run <image> <new_command>.

•	 The “exec form” (CMD ["/usr/local/bin/my_app", "--port", "8080"]) is gen-

erally preferred because it doesn’t run in a shell, which avoids potential issues

with signal handling or shell string processing.

•	 For example, CMD ["./target/release/my_rust_app"].

•	 EXPOSE <port>/<protocol>:

•	 Informs Docker that the container listens on the specified network ports at run-

time. This instruction does not actually publish the port; it functions as a type of

documentation between the person who builds the image and the person who

runs the container about which ports are intended to be published.

•	 To actually make the port accessible from the host, you use the -p or -P flag with

docker run.

•	 For example, EXPOSE 8080/tcp.

•	 ENV <key>=<value>:

•	 Sets an environment variable within the image. This variable will be available

to subsequent RUN instructions and to the application when the container runs.

•	 For example, ENV APP_PORT=8080.

These are some of the most common instructions you’ll encounter. Understanding them is key

to writing effective Dockerfiles for your Rust (or any other) applications. Next, we’ll put them

together to create a Dockerfile for a simple Rust program.

Creating a basic Dockerfile for a Rust application
The goal here is to create a Docker image that contains our compiled Rust application, ready to

run. For this first pass, we’ll focus on a simple, single-stage Dockerfile. We’ll look at optimizations

like multi-stage builds later.

Let’s assume you have a simple Rust binary project. For instance, you might have created one with

cargo new my_rust_cli --bin and have some code in src/main.rs. The Dockerfile will live in

the root of this my_rust_cli project, alongside Cargo.toml and the src directory.

Dockerization and Deployment of Rust Applications658

Choosing a base Rust image
The FROM instruction is the first thing in our Dockerfile. We need a base image that provides the

Rust toolchain (the rustc compiler and the cargo build tool) so we can compile our Rust code

inside the Docker image during the build process.

The official Rust images on Docker Hub are excellent for this. You can choose a specific version

(e.g., rust:1.78.0) or use a tag such as rust:latest (for the latest stable version) or rust:slim

(which might be a smaller variant of the Rust image). For reproducibility, specifying a version is

often better than using latest.

So, our Dockerfile will start with the following:

FROM rust:1.78 # Or your preferred stable Rust version

This tells Docker to use an image that already has Rust 1.78 (or your chosen version) installed.

Copying your project and building
Next, we need to get our Rust project’s source code into the image and then compile it:

1.	 Set a working directory: It’s good practice to set a working directory inside the image

for our application:

WORKDIR /usr/src/app

Subsequent commands will run relative to this directory.

2.	 Copy project files: We’ll copy our Cargo.toml and Cargo.lock files first, then our src

directory. Copying Cargo.toml and Cargo.lock first and running a command to down-

load dependencies can leverage Docker’s layer caching effectively (we’ll refine this in the

optimization section, but for a basic file, just copying everything is simpler to start). For

now, let’s keep it super simple and copy everything:

COPY . .

This copies all files and directories from the build context (your project root on the host)

into the /usr/src/app directory inside the image.

3.	 Build the application: Now that our source code is in the image, we can use cargo (which

is available from our Rust base image) to compile it. We’ll build in release mode for a

production-ready binary:

RUN cargo build --release

Chapter 16 659

This command runs cargo build --release inside the container.

The compiled binary will typically be placed in /usr/src/app/target/release/your_

app_name (where your_app_name is the name of your crate from Cargo.toml).

Setting the CMD to run your compiled binary
Finally, we need to tell Docker what command to run when a container is started from our built

image. This is done with the CMD instruction. We want to run our compiled Rust application:

Assume your crate name is "my_rust_cli"

CMD ["./target/release/my_rust_cli"]

Note: The path is relative to the WORKDIR we set earlier (/usr/src/app).

Final Dockerfile
Create a file named Dockerfile (no extension) in the root of your my_rust_cli project with the

following content:

Stage 1: Use an official Rust image as a builder.

Using a specific version is good for reproducibility.

FROM rust:1.78 AS builder

You can replace 1.78 with the latest stable version or your project's
specific version.

Set the working directory in the container.

WORKDIR /usr/src/app

Copy the Cargo.toml and Cargo.lock files.

This is done separately to leverage Docker's layer caching for
dependencies.

COPY Cargo.toml Cargo.lock ./

Build dependencies. This will only rebuild if Cargo.toml or Cargo.lock
changes.

Create a dummy src/main.rs or src/lib.rs if your project structure needs
it for this step.

For a binary, we might need a minimal main.rs, or just build everything
after copying all src.

For simplicity in this first pass, let's just build the target,

a more optimized caching approach would involve building deps first.

Dockerization and Deployment of Rust Applications660

RUN cargo build --release --target-dir /usr/src/app/target_deps_only
--bin your_crate_name # (This is more advanced for caching)

For a basic file, we'll copy all and build.

Copy all your source code into the working directory.

COPY src ./src

Build your application in release mode.

The output will be in /usr/src/app/target/release/your_app_name

RUN cargo build --release

(This basic Dockerfile is single-stage. Multi-stage for optimization
comes later)

For a single-stage build like this, the final image will contain the
entire Rust toolchain,

which makes it quite large. The CMD will run from this image.

Set the command to run your application.

Replace "my_rust_cli" with the actual name of your binary (usually your
crate name).

CMD ["./target/release/my_rust_cli"]

(Optional) If your application is a web server, you might expose a port.

EXPOSE 8080

•	 FROM rust:1.78 AS builder: We start with an official Rust image and name this build

stage builder. Using a specific version (such as 1.78) is better for reproducible builds

than latest.

•	 WORKDIR /usr/src/app: Sets the current directory inside the image for subsequent com-

mands.

•	 COPY Cargo.toml Cargo.lock ./: Copies your dependency manifests. A more optimized

Dockerfile would run RUN cargo build --release (perhaps with a dummy main.rs)

after this step to cache dependencies separately from source code changes. For this first

basic example, we’ll simplify things.

•	 COPY src ./src: Copies your source code.

Chapter 16 661

•	 RUN cargo build --release: This is the key step that compiles your Rust application.

The --release flag ensures it’s optimized for production. The output binary will be in

target/release/your_crate_name.

•	 CMD [""./target/release/my_rust_cli""]: This specifies the command that will be

run when a container starts from this image. Replace my_rust_cli with the actual name

of your executable (which usually matches the name field in your Cargo.toml).

•	 Image size note: This basic, single-stage Dockerfile will result in a rather large image

because the final image contains the entire Rust toolchain (compiler, cargo, source code,

and build artifacts). In the Optimizing Docker images for Rust section, we’ll use a multi-

stage build to create a much smaller final image containing only the compiled binary and

necessary runtime dependencies.

•	 EXPOSE (optional): If your Rust application were a web server listening on a port (e.g.,

8080), you would add EXPOSE 8080 to document this. It doesn’t actually publish the port;

that’s done with docker run -p.

This simple Dockerfile provides a complete recipe for Docker to build an image containing your

compiled Rust application.

Next, we’ll see how to actually build the image and run it.

Building Your Docker Image
You’ve written your Dockerfile, which is the recipe for your application’s container image. Now,

you need to tell Docker to follow that recipe and create the actual image. This is done using the

docker build command.

You run this command from your terminal, in the root directory of your Rust project (the same

directory where your Dockerfile and Cargo.toml are located).

The basic syntax is docker build -t <image_name>:<tag>.

Let’s break that down:

•	 docker build: The command to start the image-building process.

•	 -t <image_name>:<tag> (or --tag <image_name>:<tag>): This is very important. It as-

signs a tag to your image, which is a human-readable name, and optionally a version tag:

•	 <image_name>: Usually, this is something such as your_username/your_app_name

(if you plan to push it to Docker Hub), or just your_app_name for local use. Image

names are typically lowercase.

Dockerization and Deployment of Rust Applications662

•	 :<tag>: This specifies a version or variant. Common tags are latest, v1.0, and

stable. If you omit the tag, Docker defaults to latest.

•	 For example, -t my_rust_cli:0.1.0 or -t myusername/my_rust_cli:latest.

•	 . (a single dot at the end): This is crucial. It specifies the build context. The build context

is the set of files and directories at the specified path that Docker can access during the

image build process (e.g., for COPY instructions). The . character means “use the current

directory as the build context.” Docker will send the contents of this directory (respecting

.dockerignore if present) to the Docker daemon to build the image.

Assuming your Dockerfile (like the one in the Canvas “Basic Dockerfile for a Rust Application”) is

in the current directory and your Rust project is named my_rust_cli, you would run the following:

Navigate to the root of your Rust project (where Dockerfile and Cargo.
toml are)

cd /path/to/your/my_rust_cli_project

Build the Docker image and tag it as "my_rust_cli_app" with the tag
"latest"

docker build -t my_rust_cli_app:latest .

When you run docker build, you’ll see Docker step through each instruction in your Dockerfile:

1.	 It will pull the base image (FROM rust:1.78 AS builder in our example) if it’s not already

on your system.

2.	 It will execute each subsequent instruction (WORKDIR, COPY, and RUN) in order, creating a

new image layer for each one (or reusing cached layers if possible).

3.	 The RUN cargo build --release step will take the longest, as it involves compiling your

entire Rust application. You’ll see the cargo build output in your terminal.

4.	 Finally, if all steps succeed, Docker will report that the image was built successfully and

tag it with the name you provided (e.g., my_rust_cli_app:latest).

After the build completes, you can verify that your image was created by running the following:

docker images

You should see my_rust_cli_app (with the latest tag) in the list of your local Docker images.

Chapter 16 663

Docker is smart about caching. If you build an image and then make a small change to your source

code (e.g., in src/main.rs) but not to Cargo.toml or Cargo.lock, and then run docker build

again, Docker will reuse the cached layers for the steps that haven’t changed (such as downloading

the base image and potentially building dependencies if your COPY instructions were structured

to enable that). This can significantly speed up subsequent builds. The order of instructions in

your Dockerfile matters a lot for effective caching.

Running your Rust application inside a Docker container
You’ve created a Dockerfile and used docker build to produce a Docker image (e.g., my_rust_

cli_app:latest) that packages your Rust application. Now, it’s time to bring it to life by running

it as a Docker container! The command for this is docker run.

The basic syntax to run a container from an image is docker run <options> <image_name>:<tag>

<optional_command_and_args_for_container>.

Let’s break down the key parts for running our Rust application:

•	 docker run: The command to create and start a new container.

•	 <image_name>:<tag>: You specify the image you want to run, using the name and tag you

assigned during the docker build step (e.g., my_rust_cli_app:latest).

•	 <options>: docker run has many options. Some common ones for simple applications

are as follows:

•	 --rm: Automatically removes the container when it exits. This is very useful for CLI

tools or tests to prevent cluttering your system with stopped containers.

•	 -it: If your Rust application is interactive (e.g., reads from standard input or needs

a TTY), you’d use -i (interactive, keep STDIN open) and -t (allocate a pseudo-TTY).

For a non-interactive CLI that just prints output, these might not be strictly nec-

essary, but often don’t hurt.

•	 If your Rust application were a web server and your Dockerfile included an EXPOSE

8080 instruction, you would use -p <host_port>:8080 (e.g., -p 8000:8080) to

map a port on your host machine to the container’s exposed port.

Assuming your Dockerfile (like the one in the Creating a basic Dockerfile for a Rust application sec-

tion) has a CMD instruction pointing to your compiled Rust binary (e.g., CMD ["./target/release/

my_rust_cli"]), running the container is straightforward.

Dockerization and Deployment of Rust Applications664

If your my_rust_cli application simply prints "Hello from Rust!" to standard output, you

could run it like this:

Run a container from the image we built earlier (e.g., my_rust_cli_
app:latest)

The --rm flag will automatically remove the container once the
application inside it finishes.

docker run --rm my_rust_cli_app:latest

If your Rust CLI application expects command-line arguments,

you can pass them after the image name. These will override the
Dockerfile's CMD

if CMD was in shell form, or be passed as arguments to the CMD if it's
in exec form.

For example, if your CMD was ["./target/release/my_rust_cli"]

and your Rust app processed arguments:

docker run --rm my_rust_cli_app:latest arg1 "another argument"

•	 docker run --rm my_rust_cli_app:latest:

•	 Docker finds the my_rust_cli_app:latest image

•	 It creates a new container based on this image

•	 It executes the command specified by the CMD instruction in the Dockerfile (e.g.,

./target/release/my_rust_cli)

•	 Any output from your Rust application (e.g., from println!) will be displayed in

your terminal

•	 Once your Rust application finishes (exits), the container will stop

•	 Because of the --rm flag, Docker will then automatically remove the stopped con-

tainer

•	 Passing arguments: If your Rust application (the binary defined in CMD) is designed to ac-

cept command-line arguments, you can provide them after the image name in the docker

run command. For example, if your Dockerfile has CMD [""./target/release/my_grep"]

and your my_grep Rust program expects a pattern and a file, you could run docker run

--rm my_grep_image:latest "search_pattern" /path/inside/container/file.txt

(note: /path/inside/container/file.txt would need to exist inside the container, per-

haps copied in via the Dockerfile or mounted as a volume).

Chapter 16 665

When you execute docker run, Docker creates an isolated environment based on your image.

The CMD instruction from your Dockerfile is executed as the main process within this isolated en-

vironment. Standard output and standard error from your Rust application inside the container

are, by default, connected to your terminal.

You’ve now successfully Dockerized a Rust application: you’ve written a Dockerfile, built an image

from it, and run that image as a container! This is the fundamental workflow. The next step is to

look at how to make these images more efficient, especially for production.

Optimizing Docker images for Rust
The basic Dockerfile we created in the previous section works, but it produces a rather large

Docker image.

This is because it includes the entire Rust toolchain (compiler, cargo, source code, and inter-

mediate build artifacts) in the final image, which isn’t needed just to run our compiled binary.

Large images take longer to build, push to registries, and pull onto servers, and they consume

more disk space.

In this section, we’ll explore several key techniques to significantly reduce the size of your Rust

Docker images and improve build times.

The importance of small and efficient images
Why all the fuss about small Docker images?

•	 Faster deployment: Smaller images are quicker to upload to container registries (such

as Docker Hub) and faster for your servers or CI/CD systems to download and start. This

speeds up your entire deployment pipeline.

•	 Reduced storage costs: Less disk space is used on your development machine, CI server,

container registry, and production hosts. This can translate to real cost savings.

•	 Improved security (reduced attack surface): Minimal images contain fewer packages

and libraries. Fewer components mean fewer potential vulnerabilities and a smaller attack

surface for your application.

•	 Faster startup times (potentially): While the application binary size itself is a factor,

smaller images generally mean less data for Docker to handle when starting a container.

•	 Better resource utilization: Especially in orchestrated environments such as Kubernetes,

leaner images contribute to overall system efficiency.

Dockerization and Deployment of Rust Applications666

For Rust applications, which compile to native binaries, we have a great opportunity to create

very minimal runtime images.

Using multi-stage builds
This is perhaps the single most effective technique for reducing the size of Docker images for

compiled languages such as Rust.

A multi-stage build allows you to use multiple FROM statements in a single Dockerfile. Each FROM

instruction can use a different base image and starts a new “stage” of the build. You can selectively

copy artifacts (such as your compiled binary) from one stage to another, discarding everything

else from the earlier stages.

Separating the build environment from the runtime environment
The core idea is to have the following:

1.	 A builder stage: This stage uses a base image that contains the full Rust toolchain (e.g.,

rust:1.78). Its job is to compile your Rust application. It will be relatively large because

it has all the build tools and source code.

2.	 A runtime stage: This stage uses a very minimal base image (e.g., debian:buster-slim,

alpine:latest, or even scratch for truly minimal static binaries). Its only job is to run

the compiled binary produced by the builder stage. It does not contain the Rust compiler,

cargo, or your source code.

Copying artifacts
The COPY --from=<stage_name_or_index> <src> <dest> instruction is key to multi-stage builds.

It lets you copy files from a previous stage (identified by its name given in FROM ... AS <name>

or by its numerical index starting from 0) into the current stage.

Let’s rewrite our basic Dockerfile for my_rust_cli using a multi-stage build:

----- Stage 1: Builder -----

Use an official Rust image. We name this stage "builder".

FROM rust:1.78 AS builder

(Using a specific version like 1.78 is good for reproducibility)

Set the working directory for the build

WORKDIR /usr/src/app

Chapter 16 667

Copy Cargo.toml and Cargo.lock to leverage Docker cache for dependencies

COPY Cargo.toml Cargo.lock ./

Build dependencies first. This layer is cached if manifests don't
change.

Create a dummy main.rs or lib.rs to make `cargo build` work here if
needed,

or just build the project target if your source is small.

For a binary project, let's ensure we have a src directory for the next
step.

If your project is simple, you might just run `cargo fetch` here,

or build a dummy target.

Let's assume a common pattern:

RUN mkdir src && echo "fn main() {println!(\"dummy main for dep build\")}"
> src/main.rs

RUN cargo build --release --bin my_rust_cli # Replace my_rust_cli with
your binary name

Clean up the dummy main if you used one

RUN rm -f src/main.rs

Now copy the actual source code

COPY src ./src

Build the application, using cached dependencies if possible

Ensure this matches the binary name in your Cargo.toml

RUN cargo build --release --bin my_rust_cli

----- Stage 2: Runtime -----

Use a minimal base image for the final runtime environment.

`debian:buster-slim` is a good small, general-purpose base.

`alpine` is even smaller but uses musl libc, which might require changes

to your Rust build if you have C dependencies.

FROM debian:buster-slim AS runtime

Or: FROM alpine:latest AS runtime

Set a working directory (optional, but good practice)

WORKDIR /app

Dockerization and Deployment of Rust Applications668

Copy *only* the compiled binary from the "builder" stage.

The path in the builder stage is /usr/src/app/target/release/your_
binary_name

COPY --from=builder /usr/src/app/target/release/my_rust_cli /usr/local/
bin/my_rust_cli

Replace "my_rust_cli" with your actual binary name.

(Optional) If your Rust app needs system libraries like OpenSSL or libpq
at runtime,

you would install them here using the OS package manager (e.g., apt-get
install ... for debian)

RUN apt-get update && apt-get install -y libssl1.1 ca-certificates && rm
-rf /var/lib/apt/lists/*

Set the command to run your application

CMD ["my_rust_cli"]

Since it's in /usr/local/bin, it should be in the PATH.

(Optional) If it's a web server

EXPOSE 8080

•	 Stage 1 (named builder):

•	 FROM rust:1.78 AS builder: Starts with the Rust toolchain image and names

this stage builder.

•	 WORKDIR /usr/src/app: Sets the working directory.

•	 COPY Cargo.toml Cargo.lock ./: Copies manifest files.

•	 RUN mkdir src ... cargo build ...: This sequence is an attempt to cache

dependencies. First, it builds with minimal/dummy source. Then, COPY src ./

src copies the actual source, and RUN cargo build --release ... rebuilds using

already-downloaded/compiled dependencies if possible. (A more refined depen-

dency caching strategy might involve cargo fetch or creating a dummy binary.)

•	 The result of this stage is a compiled binary at /usr/src/app/target/release/

my_rust_cli. This stage also contains all the source code, intermediate build files,

and the Rust toolchain, making it large.

Chapter 16 669

•	 Stage 2 (named runtime):

•	 FROM debian:buster-slim AS runtime: Starts fresh with a very small Debian

base image. This image does not have Rust or Cargo installed.

•	 WORKDIR /app: Sets a working directory.

•	 COPY --from=builder /usr/src/app/target/release/my_rust_cli /usr/

local/bin/my_rust_cli: This is the magic! It copies only the compiled binary

from the target/release directory of the builder stage into /usr/local/bin/ in

our new, minimal runtime stage. /usr/local/bin/ is typically in the system’s PATH.

•	 Runtime dependencies: The commented-out RUN apt-get install ... line

is crucial if your Rust binary dynamically links against system libraries (such as

OpenSSL for HTTPS, or libpq for PostgreSQL) that are not present in the minimal

base image. You must install them in this runtime stage.

•	 CMD ["my_rust_cli"]: Sets the command to run your application.

The final image produced by this Dockerfile will only contain the layers from the last stage (the

runtime stage). All the build tools, source code, and intermediate artifacts from the builder stage

are discarded. This results in a dramatically smaller final image.

Choosing minimal base images for runtime
The choice of base image for your final runtime stage in a multi-stage build significantly impacts

the final image size and its contents:

•	 debian:<version>-slim (e.g., debian:buster-slim, debian:bullseye-slim): These are

official Debian images that are significantly smaller than the full Debian images because

they omit many common packages and documentation. They are based on glibc (the

GNU C Library), which is what Rust binaries dynamically link against by default on most

Linux systems. This often makes them a good balance of small size and compatibility.

•	 alpine:latest (or specific versions): Alpine Linux is a distribution known for its extreme-

ly small size (the base image can be around 5 MB!). It uses musl libc instead of glibc.

•	 scratch: This is an empty image. It’s the absolute smallest base possible. You can use

scratch if your Rust binary is fully statically linked and has no external runtime depen-

dencies at all. This is often achievable by compiling with a *-unknown-linux-musl target.

Dockerization and Deployment of Rust Applications670

•	 Distroless images (from Google): These images (e.g., gcr.io/distroless/static-

debian11 or gcr.io/distroless/base-debian11) contain only your application and its

runtime dependencies, without package managers, shells, or other standard utilities. This

further reduces the image size and attack surface. You’d copy your binary from a builder

stage into a distroless base.

Considerations for Alpine and musl versus glibc
•	 glibc (used by Debian, Ubuntu, Fedora, etc.): This is the standard C library on most Linux

distributions. Rust binaries built with the default Linux targets (e.g., x86_64-unknown-

linux-gnu) will dynamically link against glibc unless you specify otherwise. Using a

glibc-based slim image (such as debian:slim) is often the easiest path for compatibility.

•	 musl libc (used by Alpine): musl is an alternative, lightweight C library. To create Rust

binaries that work well on Alpine, you typically need to compile your Rust code with a

musl-based target, as follows:

cargo build --release --target x86_64-unknown-linux-musl

This creates a more statically linked binary (or one that links against musl).

The following are the pros and cons of musl/Alpine:

•	 Pros: Significantly smaller image sizes.

•	 Cons:

•	 Some Rust crates with C dependencies might have trouble compiling

against musl or require extra configuration

•	 DNS resolution can sometimes behave differently or require specific setup

in Alpine

•	 Performance characteristics can occasionally differ from glibc-based sys-

tems for certain workloads

If you can easily compile your Rust app with a musl target and all your dependencies

are compatible, Alpine can give you very small images. If you encounter issues or want

broader compatibility with C dependencies that expect glibc, a debian:slim base is a

good, still reasonably small, alternative.

Chapter 16 671

Leveraging Docker build cache and cargo’s build caching
Docker builds images in layers, and it caches these layers. If a Dockerfile instruction and the files

it depends on haven’t changed since the last build, Docker will reuse the cached layer instead of

re-executing the instruction.

Similarly, cargo has its own build cache for dependencies.

Efficiently using these caches can drastically reduce your build times.

Structuring COPY and RUN commands effectively
The key to leveraging Docker’s layer cache is to order your Dockerfile instructions so that the

ones that change most frequently come last, and the ones that change infrequently come first.

For a Rust project, your Cargo.toml and Cargo.lock files (which define dependencies) usually

change less often than your src/ directory (your actual source code).

Here is an example of an optimized COPY and RUN sequence for dependency caching in the builder

stage:

----- Stage 1: Builder -----

FROM rust:1.78 AS builder

WORKDIR /usr/src/app

1. Copy only the manifest files

COPY Cargo.toml Cargo.lock ./

2. Build dependencies.

This step creates a dummy lib.rs or main.rs just to build dependencies.

If Cargo.toml/Cargo.lock haven't changed, this layer will be cached.

RUN mkdir src && In less than 1 hour, starting from scratch and explaining
line by line what I am doing?``

 echo "fn main() {println!(\"Building dependencies...\");}" > src/main.
rs && \

 cargo build --release --bin my_rust_cli && \

 rm -rf src # Remove dummy src

Dockerization and Deployment of Rust Applications672

3. Copy your actual source code

COPY src ./src

4. Build your application.

This will now use the cached dependencies from the previous RUN step

if only src code changed.

RUN cargo build --release --bin my_rust_cli

----- Stage 2: Runtime -----

FROM debian:buster-slim AS runtime

WORKDIR /app

COPY --from=builder /usr/src/app/target/release/my_rust_cli /usr/local/
bin/my_rust_cli

(Potentially install runtime dependencies like libssl if needed)

RUN apt-get update && apt-get install -y libssl1.1 ca-certificates && rm
-rf /var/lib/apt/lists/*

CMD ["my_rust_cli"]

•	 Steps 1 and 2 (dependency caching):

•	 COPY Cargo.toml Cargo.lock ./: We copy only these files first.

•	 RUN mkdir src ... cargo build --release ... rm -rf src: This is a common

trick. We create a minimal src/main.rs (or src/lib.rs for a library) just so cargo

build has something to compile. The key is that cargo build will resolve and

compile all dependencies listed in Cargo.toml. This entire layer (including the

compiled dependencies in target/) will be cached by Docker. If Cargo.toml and

Cargo.lock don’t change in subsequent builds, Docker reuses this layer, saving a

lot of time. After dependencies are built, the dummy src is removed.

•	 Step 3 (copy source):

•	 COPY src ./src: Now we copy our actual application source code. If only the

source code changes (but not Cargo.toml/Cargo.lock), the previous dependency

layer is reused, and only this COPY and the subsequent build need to run.

•	 Step 4 (build application):

•	 RUN cargo build --release --bin my_rust_cli: This builds the final appli-

cation. cargo itself will also try to reuse its own build cache for unchanged parts

of your source code.

Chapter 16 673

This layering strategy means that if you only change your application logic in src/ and not your

dependencies in Cargo.toml, Docker can skip the potentially lengthy dependency compilation

step on subsequent docker build runs.

Stripping debug symbols and binary compression
For even smaller binaries, especially for production, you can consider two more steps, usually

performed in the builder stage just before copying the artifact to the runtime stage.

Using strip
When you compile with cargo build --release, the resulting binary still contains some de-

bugging symbols and other information not strictly necessary for execution. The strip utility

(common on Linux/macOS) can remove this information, reducing the binary size.

You can add this to your builder stage in the Dockerfile after cargo build --release:

In the builder stage, after cargo build --release

RUN strip ./target/release/my_rust_cli

A quick note on Docker build efficiency

This RUN cargo build step is a simple, direct way to build your application, which

is perfect for getting started.

Be aware that this single-step approach is not very efficient for development. Be-

cause all our source code was copied in one layer, any change to any .rs file will

bust Docker’s cache and force cargo to re-compile your entire project from scratch.

More advanced Dockerfiles use techniques such as multi-stage builds to first build

dependencies (which rarely change) in a separate layer, and then build your appli-

cation code (which changes often) in a later layer. This significantly speeds up day-

to-day builds. Other tools, such as sccache, can also be integrated for even faster,

shared compilation caching.

For our goal of getting a container running quickly, this simple method is perfectly

fine.

Dockerization and Deployment of Rust Applications674

This can often shave off a noticeable percentage of the binary’s size.

Using tools such as UPX
Ultimate Packer for eXecutables (UPX) is a tool that can compress executables. The compressed

executable then decompresses itself into memory when run:

•	 Pros: Can dramatically reduce the on-disk size of your binary, leading to even smaller

Docker images.

•	 Cons:

•	 Slightly slower startup: There’s a small runtime cost for the initial decompression.

•	 Memory usage: The decompressed program still takes up the same amount of

memory when running.

•	 Antivirus issues: Compressed executables are sometimes flagged by antivirus

software (though this is less common for server-side deployments).

•	 Not always beneficial: For very small binaries, the UPX overhead might not be

worth it, or it might even make the file slightly larger. It’s most effective on larger

binaries.

If you choose to use UPX, you’d install it in your builder stage and run it on

In the builder stage, after strip (if used)

First, install upx (example for Debian/Ubuntu based builder like
'rust:latest')

RUN apt-get update && apt-get install -y upx-ucl && rm -rf /var/lib/apt/
lists/*

RUN upx --best --lzma ./target/release/my_rust_cli

 A quick note on the trade-off

Be aware that this is a trade-off. Stripping the binary makes debugging production

crashes (such as analyzing a core dump) extremely difficult, as you are removing the

very symbols the debugger needs to map memory addresses back to your function

names and line numbers.

For simple projects or for achieving the absolute smallest image, strip is a quick win.

For critical production applications, a more advanced approach is to keep these debug

symbols in a separate file, giving you both a small binary and the ability to debug it.

Chapter 16 675

By applying these optimization techniques, especially multi-stage builds and careful layer caching,

you can create Docker images for your Rust applications that are lean, efficient, and fast to deploy.

In the next section, we will introduce a very important tool for running multiple services (con-

tainers): Docker Compose.

Managing multi-container apps with Docker
Compose
So far, we’ve focused on Dockerizing a single Rust application. However, many real-world ap-

plications are more complex, consisting of multiple interconnected services. For example, your

Rust web application might need a database (such as PostgreSQL), a caching service (such as

Redis), or other backend microservices. Managing each of these as separate Docker containers

with individual docker run commands, along with their networking and data persistence, can

quickly become cumbersome and error-prone.

It’s important to understand, however, that Compose is fundamentally a single-host tool. It is designed

for managing multiple containers on one machine, which is perfect for development, testing, and

simple production environments.

It does not handle multi-host deployments, automatic scaling across servers, or self-healing (e.g.,

restarting a container on a different machine if one server fails). For those more complex, distrib-

uted system challenges, you would need to move beyond Compose to a full-blown orchestration

platform such as Kubernetes.

 Note

Always test the performance and behavior of UPX-compressed binaries carefully

for your specific application. For many Rust applications where the binary size after

stripping is already quite reasonable, UPX might be an unnecessary step unless an

absolutely minimal image size is paramount.

Dockerization and Deployment of Rust Applications676

A quick note on commands: Historically, Docker Compose was a separate tool invoked with

docker-compose (with a hyphen). Modern Docker versions (especially with Docker Desktop or

when the Compose plugin is installed for Docker Engine) integrate Compose directly, and the

command is now docker compose (with a space). We will be using this modern docker compose

syntax. Similarly, while docker-compose.yml is still widely recognized, compose.yml or compose.

yaml are now common default filenames for the configuration.

Introduction to Docker Compose: Why you need it
Imagine our Rust web application from Chapter 14, which we planned to connect to a PostgreSQL

database. If we were to manage these two components (the Rust app and the Postgres database)

using only basic Docker commands, we’d have to do the following:

1.	 Manually start a PostgreSQL container, ensuring we configure its ports, environment

variables (for user, password, and database name), and set up a volume so its data persists

if the container is removed.

2.	 Build the Docker image for our Rust application.

3.	 Manually run the Rust application container, making sure to do the following:

•	 Link it to the same Docker network as the PostgreSQL container

•	 Pass the correct database connection string (with the right hostname for the da-

tabase container) as an environment variable

•	 Map any necessary ports

If you add more services (a Redis cache or another microservice), this manual process becomes

increasingly complex and error-prone. Docker Compose automates and simplifies all of this. By

defining your entire application stack in a compose.yml file, you gain several key benefits:

•	 Simplified multi-service management: You can start, stop, and rebuild all your appli-

cation’s services with single, straightforward commands (e.g., docker compose up or

docker compose down).

•	 Isolated and connected environments: By default, Compose sets up a dedicated network

for your application’s services. Services on this network can easily discover and commu-

nicate with each other using their service names as hostnames (e.g., your Rust app can

connect to a database service named db using the db hostname).

Chapter 16 677

•	 Reproducibility and consistency: Your entire multi-service application environment is

defined declaratively in one file. This makes it easy to share your setup with team mem-

bers or to replicate the environment consistently across different machines (development,

testing, and staging).

•	 Orchestration of startup order (basic): You can use the depends_on directive to specify

basic startup dependencies between services (e.g., ensure a database container is started

before your application container attempts to connect to it). For more robust readiness

checks, health checks are often used in conjunction.

•	 Configuration management: Environment variables, port mappings, volume mounts,

and network configurations for all services are centralized in the Compose file.

Docker Compose is an incredibly valuable tool for local development and testing of multi-con-

tainer applications. It’s also suitable for simpler production deployments, although for large-scale,

complex production environments, more comprehensive orchestration tools such as Kubernetes

are typically used (though Kubernetes can sometimes ingest Compose file definitions as a starting

point).

Writing a compose.yml file
The heart of Docker Compose is its configuration file, typically named compose.yml (or compose.

yaml; the older docker-compose.yml is also still common). This file is written in YAML (which

stands for YAML Ain’t Markup Language), a human-readable data serialization language. It’s

all about defining the structure and configuration of your application’s services, networks, and

volumes.

A quick note on the version string at the top of older docker-compose.yml files (e.g., version:

'3.8'): this was used to specify the Compose file format version. With modern Docker Compose

implementations that adhere to the Compose Specification, this top-level version property is gen-

erally deprecated or considered optional for most use cases. We’ll omit it in our examples, which

is common practice now, as features are generally tied to your Docker Engine version.

Let’s break down the key parts of a compose.yml file.

Defining services
The most important top-level key in a compose.yml file is services. Under services, you list

each component or microservice of your application. Each service will typically run in its own

Docker container.

Dockerization and Deployment of Rust Applications678

For each service, you can specify various configuration options, including the following:

•	 image: <image_name>:<tag>: If you’re using a pre-built image from a registry such as

Docker Hub (e.g., postgres:15-alpine or redis:latest).

•	 build: <path_to_dockerfile_directory_or_context>: If Docker Compose should

build the image for this service from a local Dockerfile. You can provide a path to the di-

rectory containing the Dockerfile (e.g., build: . for the current directory, or build: ./

my_rust_app_service). You can also provide more detailed build options here.

•	 ports: ["<host_port>:<container_port>"]: Maps ports from your host machine to

ports inside the container. For example, ports: ["8080:3000"] would map port 8080

on your host to port 3000 in the container.

•	 volumes: ["<host_path_or_named_volume>:<container_path>"]: Mounts volumes for

data persistence or for sharing files between the host and container.

•	 environment: ["VAR_NAME=value", "ANOTHER_VAR=${HOST_VAR}"] or a map: Sets en-

vironment variables inside the container.

•	 depends_on: [<service_name>]: Specifies other services that this service depends on.

Compose will attempt to start dependent services in order.

•	 command: ["executable", "param1"]: Overrides the default command (from the Docker

image’s CMD instruction).

•	 restart: <policy>: Defines the restart policy (e.g., no, always, on-failure, unless-

stopped).

The following is an example snippet:

compose.yml

services:

 my_rust_backend:

 build: ./backend_app # Path to Dockerfile for the Rust backend

 ports:

 - "8000:8000" # Map host 8000 to container 8000

 environment:

 - RUST_LOG=info

 - DATABASE_HOST=db_service # Service name for the database

 db_service:

 image: postgres:15

 environment:

Chapter 16 679

 POSTGRES_USER: myuser

 POSTGRES_PASSWORD: mypassword

 # ... other db configurations ...

Here, my_rust_backend and db_service are two distinct services defined in our application stack.

Linking services and managing networks
One of the most convenient features of Docker Compose is its automatic network setup:

•	 Default network: When you run docker compose up, Compose creates a default bridge

network for your application stack. All services defined in your compose.yml file are au-

tomatically added to this network.

•	 Service discovery via hostnames: Crucially, services on this default network can discover

and communicate with each other using their service names as hostnames. For example, if

you have a service named db (for your database) and another service named webapp (for

your Rust application) in the same compose.yml, your webapp container can connect to

the db container using the db hostname. So, a database connection string within webapp

might look like postgres://user:pass@db:5432/dbname. Compose handles the DNS

resolution within this private network.

•	 Custom networks: For more complex scenarios, you can define your own custom networks

under a top-level networks: key and then assign services to these networks. This gives

you more control over network topology and isolation.

The following is an example snippet demonstrating implicit networking:

compose.yml

services:

 api:

 build: ./api_service

 ports:

 - "3000:3000"

 environment:

 # The 'api' service can reach the 'database' service using hostname
'database'

 DATABASE_CONNECTION_STRING: "user:pass@database:5432/appdb"

 depends_on:

 - database

Dockerization and Deployment of Rust Applications680

 database:

 image: some_database_image:latest

 # No 'ports' exposed to host here means database is only accessible

 # by other services on the same Docker Compose network (like 'api').

In this case, api can connect to database:5432 because they are on the same Compose-managed

network.

Using environment variables for configuration
Environment variables are a standard way to pass configuration to your containerized applica-

tions. Docker Compose provides several ways to set them for your services:

They can be set as a list:

services:

 myapp:

 image: myapp_image

 environment:

 - DEBUG_MODE=true

 - API_KEY=abcdef12345

They can be set as a dictionary:

services:

 myapp:

 image: myapp_image

 environment:

 DEBUG_MODE: "true"

 API_KEY: "abcdef12345"

 MAX_CONNECTIONS: "100" # Will be converted to string if not quoted

They can also be set from a .env file.

Docker Compose automatically looks for a file named .env in the same directory as your compose.

yml file. Variables defined in this .env file are available for substitution in the compose.yml file

(e.g., POSTGRES_USER=${DB_USER_FROM_ENV}) and can also be passed directly to containers if not

explicitly overridden in the environment section of a service.

It’s common practice to define default or development-specific environment variables in .env

and keep this file out of version control if it contains secrets.

Chapter 16 681

The following is an example .env file:

POSTGRES_USER=dev_user

POSTGRES_PASSWORD=dev_secret

RUST_APP_PORT=8080

The following is an example compose.yml file using these:

services:

 rust_app:

 build: .

 ports:

 - "${RUST_APP_PORT}:8080" # Variable substitution from .env

 environment:

 # These would be picked up by the rust_app if not defined here

 # but you can also explicitly pass them or override them.

 APP_DB_USER: ${POSTGRES_USER}

 APP_DB_PASS: ${POSTGRES_PASSWORD}

 db:

 image: postgres:15

 environment:

 # These are directly used by the postgres image

 POSTGRES_USER: ${POSTGRES_USER}

 POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}

Managing persistent data with volumes
Containers are designed to be ephemeral. If a container is stopped and removed, any data written

inside its filesystem (that wasn’t part of the original image) is lost. For services such as databases,

this is obviously not desirable! You need the data to persist. Docker volumes are the preferred

mechanism for persisting data generated and used by Docker containers.

There are two main types of mounts for persisting data:

•	 Named volumes:

•	 Docker manages the storage location on the host machine. You just give the vol-

ume a name.

•	 They are the preferred way to persist data for production services such as databases.

Dockerization and Deployment of Rust Applications682

•	 They persist even if the container or the Compose stack is removed (unless explicit-

ly removed with docker compose down -v or docker volume rm <volume_name>).

•	 You define them under a top-level volumes: key in your compose.yml and then

mount them into your services.

services:

 database:

 image: postgres:15

 volumes:

 - my_db_data:/var/lib/postgresql/data

 # Mount named volume 'my_db_data'

 # into the container's PG data directory.

volumes:

 my_db_data: {} # Declares the named volume (empty {} means
use default driver)

•	 Bind mounts:

•	 Mounts a file or directory from your host machine’s filesystem directly into a

container. The path on the host is specified.

•	 Useful for development, for example, mounting your source code into a container

so changes are reflected live without rebuilding the image (though for compiled

languages such as Rust, you’d still need to recompile inside the container or use

a development server that watches for changes).

•	 Less portable than named volumes, as they depend on the host’s directory struc-

ture and can have permission issues.

services:

 webapp:

 build: .

 volumes:

 # Mount local ./src into /usr/src/app/src in the
container

 - ./src:/usr/src/app/src # Example for development
live-reloading (if app supports it)

For our Rust application with a PostgreSQL database, we’ll definitely want to use a named volume

for the PostgreSQL data.

Chapter 16 683

Example: A Rust application with a PostgreSQL database
Let’s define a compose.yml file for a common scenario: a Rust web application that needs to con-

nect to a PostgreSQL database. We’ll assume our Rust application will be built from a Dockerfile

located in the current directory (or a specified subdirectory) and will be configured to connect

to the database using an environment variable.

The following are assumptions for the Rust application (rust_app service):

•	 It’s built using a Dockerfile in the current directory (or a path such as ./my_rust_app)

•	 It listens for HTTP requests on port 8080 inside the container

•	 It expects a DATABASE_URL environment variable to know how to connect to PostgreSQL

•	 It will need Diesel CLI’s migrations to be run against the database before it can fully op-

erate (though Compose primarily starts services; migrations are often a separate step or

an entrypoint script in more advanced setups)

The following are assumptions for the PostgreSQL database (db service):

•	 We’ll use an official Postgres image

•	 We need to configure a user, password, and database name for our application to use

•	 Its data should be persisted using a named volume

Here’s how the compose.yml file might look:

compose.yml (or compose.yaml)

services:

 # Service for our Rust Web Application

 rust_app:

 build:

 context: . # Assumes Dockerfile is in the current directory along
with compose.yml

 # For a Rust project in a subdirectory, e.g., ./my_web_app:

 # context: ./my_web_app

 ports:

 - "8080:8080" # Map port 8080 on the host to port 8080 in the
container

 environment:

 # DATABASE_URL for the Rust app to connect to the 'db' service.

Dockerization and Deployment of Rust Applications684

 # 'db' is the hostname of the postgres service on the Docker Compose
network.

 # The user, password, and db_name must match what's set for the 'db'
service.

 DATABASE_URL: "postgres://app_user:app_password@db:5432/app_db"

 RUST_LOG: "info,my_rust_app=debug" # Example app-specific logging
config

 # Other environment variables your Rust app might need

 # APP_SECRET_KEY: "${APP_SECRET_FROM_ENV_FILE}"

 depends_on:

 db: # Tells Compose to start the 'db' service before 'rust_app'.

 # For production, a healthcheck on 'db' is better for readiness.

 condition: service_started

 # For example, if db service had a healthcheck:

 # condition: service_healthy

 restart: unless-stopped # Optional: Restart policy for the container

 # Service for the PostgreSQL Database

 db:

 image: postgres:15-alpine # Using a specific version and a smaller
alpine variant

 ports:

 # Optionally expose the PostgreSQL port to the host for direct
access

 # with tools like psql or pgAdmin during development.

 # For security, you might not expose this in production directly.

 - "54321:5432" # Map host port 54321 to container's default
PostgreSQL port 5432

 environment:

 POSTGRES_USER: "app_user"

 POSTGRES_PASSWORD: "app_password" # Use strong passwords, preferably
from .env or secrets

 POSTGRES_DB: "app_db"

 volumes:

 # Mount a named volume to persist PostgreSQL data across container
restarts/recreations.

 # 'postgres_app_data' is the name of the volume (defined below).

Chapter 16 685

 # '/var/lib/postgresql/data' is the standard directory where
PostgreSQL stores its data.

 - postgres_app_data:/var/lib/postgresql/data

 restart: always # Optional: Ensure database always tries to restart

 # healthcheck: # Example of a healthcheck for PostgreSQL

 # test: ["CMD-SHELL", "pg_isready -U app_user -d app_db"]

 # interval: 10s

 # timeout: 5s

 # retries: 5

Named volume definition for PostgreSQL data persistence

volumes:

 postgres_app_data:

 driver: local # Specifies the local volume driver (usually default)

•	 services:: This is the top-level key where we define each independent part of our ap-

plication stack.

•	 rust_app: service:

•	 build: context: .: This tells Docker Compose to build an image for this service

using the Dockerfile found in the current directory (where compose.yml resides).

If your Rust app’s Dockerfile is in a subdirectory, you’d change the context (e.g.,

context: ./my_web_application).

•	 ports: - "8080:8080": This maps port 8080 on your host machine to port 8080

inside the rust_app container. If your Rust application listens on a different port

internally, adjust the container port accordingly (the second number).

•	 environment: DATABASE_URL: "...": This sets the DATABASE_URL environment

variable inside the rust_app container:

•	 Notice the db hostname: Docker Compose creates a network for these

services, and services can reach each other using their service names as

hostnames. So, db resolves to the IP address of the db service container.

•	 The user (app_user), password (app_password), and database name

(app_db) must match the POSTGRES_* environment variables set for the

db service. In a real setup, passwords should come from a .env file or secrets

management, not hardcoded here.

Dockerization and Deployment of Rust Applications686

•	 depends_on: db: condition: service_started: This tells Compose that the

rust_app service depends on the db service. Compose will attempt to start db be-

fore rust_app. The service_started part means it waits until the db container has

started. A more robust approach is condition: service_healthy, which requires

the db service to have a health check defined (as shown in the commented-out

example for the db service) that passes.

•	 restart: unless-stopped: This is an optional policy that tells Docker to restart

this container if it stops for any reason, unless it was explicitly stopped by an

operator.

•	 db: service:

•	 image: postgres:15-alpine: We use a pre-built official PostgreSQL image from

Docker Hub, specifically version 15 based on Alpine Linux (which is smaller than

full Debian-based images).

•	 ports: - "54321:5432": This optionally maps port 54321 on your host machine

to the default PostgreSQL port 5432 inside the container. This is useful during

development if you want to connect to the database directly from your host using

tools such as psql or a database GUI (you’d connect to localhost:54321). For se-

curity, you might not expose the database port directly to the host in a production

environment unless necessary and properly firewalled.

•	 environment: POSTGRES_USER...: These environment variables are used by the

official PostgreSQL image to initialize the database when it first starts: it creates

the specified user, sets their password, and creates the specified database.

•	 volumes: - postgres_app_data:/var/lib/postgresql/data: This is crucial

for data persistence. It mounts a named volume called postgres_app_data into

the /var/lib/postgresql/data directory inside the container (which is where

PostgreSQL stores its data files).

•	 healthcheck: ... (commented out): This shows an example of how you could

define a health check for PostgreSQL. The pg_isready command is a utility that

checks whether a PostgreSQL server is ready to accept connections. Using this

with depends_on: service_healthy in rust_app would make rust_app wait

until the database is truly ready.

Chapter 16 687

•	 volumes: (top level):

•	 postgres_app_data: driver: local: This declares the named volume postgres_

app_data. Docker will manage its storage on your host system. The data in this

volume will persist even if you remove and recreate the db container.

This compose.yml file now defines a complete, isolated environment for your Rust application

and its PostgreSQL database. In the next part, we’ll see the commands to bring this stack to life.

Running and managing your application stack
Once you have your compose.yml file (like the one in the Canvas defining your Rust app and

PostgreSQL database) in the root of your project, you use docker compose commands from that

same directory to manage your entire application stack. This makes controlling your multi-con-

tainer setup much simpler than dealing with individual docker run commands for each service.

Here’s an overview of the most common docker compose commands you’ll use:

•	 Building and starting your application stack: The primary command to bring everything

up is docker compose up.

This command reads your compose.yml file. For any service with a build: instruction

(such as our rust_app), it will build the Docker image if it doesn’t exist or if the Dockerfile

or source files have changed. It then creates and starts all the services defined, respecting

any depends_on directives for startup order. By default, docker compose up attaches to

the logs of all services and streams them to your terminal. Pressing Ctrl + C in the terminal

will stop the services.

•	 To force a rebuild of images before starting: docker compose up –build

•	 To start services in detached (background) mode without attaching to logs: docker
compose up -d

•	 Stopping and removing your application stack: When you’re done, docker compose down

is used to stop and remove the containers and networks created by your Compose project:

•	 By default, named volumes (such as our postgres_app_data) are not removed

by docker compose down. This is a safety feature to prevent accidental data loss.

•	 If you want to remove the named volumes along with everything else, you must

use the -v flag: docker compose down -v. Use this with caution!

Dockerization and Deployment of Rust Applications688

•	 Viewing the status of services: To see which containers are running as part of your Com-

pose project and their status: docker compose ps.

•	 Viewing logs: To view the aggregated logs from all services (if running detached) or logs

for specific services:

•	 docker compose logs (shows current logs from all services)

•	 docker compose logs -f (follows new log output from all services)

•	 docker compose logs <service_name> (e.g., docker compose logs rust_app

or docker compose logs db)

•	 docker compose logs -f <service_name> (follows logs for a specific service)

•	 Building or rebuilding images: If you’ve made changes to your Dockerfile or application

source code for a service that’s built by Compose and want to rebuild the image without

necessarily starting the services:

•	 docker compose build (builds images for all services with a build instruction)

•	 docker compose build <service_name> (builds the image for a specific service,

e.g., docker compose build rust_app)

•	 Executing commands in a running service container: To run a command inside an al-

ready-running container of a service (e.g., to open a shell or run a database CLI): docker

compose exec <service_name> <command_to_run_in_container>.

•	 Example for our database: docker compose exec db psql -U app_user -d
app_db

•	 Example for a shell in the app (if it has one): docker compose exec rust_app /
bin/sh

•	 Stopping, starting, and restarting services: You can manage individual services without

bringing down the entire stack:

•	 docker compose stop <service_name> (stops a specific service, or all services

if no name is specified)

•	 docker compose start <service_name> (starts a previously stopped service)

•	 docker compose restart <service_name> (restarts a service)

These commands provide a straightforward way to manage the life cycle of your multi-container

application defined in compose.yml. For local development, docker compose up --build (to

ensure your Rust app is rebuilt) and docker compose down will be your most frequent companions.

Chapter 16 689

Deploying Dockerized Rust applications
Deployment is the process of taking your packaged application (in our case, a Docker image) and

making it run on a server or platform where it can serve its purpose. Docker greatly simplifies

deployment because your image already contains the application and its necessary runtime envi-

ronment. This means you don’t have to worry (as much) about whether the production server has

the right version of Rust, system libraries, or other dependencies – they’re all in your container!

This section will provide an overview of common strategies and platforms for deploying your

Dockerized Rust applications.

Overview of deployment strategies
There’s a wide spectrum of ways to deploy Docker containers, ranging from simple to highly

complex, depending on your application’s scale, availability requirements, and your team’s op-

erational capacity. Here are some general approaches:

•	 Single-server deployment:

•	 Concept: The simplest approach. You have a single server (a virtual private server

(VPS), a dedicated server, or even a machine in your office), install Docker Engine

on it, and then pull and run your Docker image(s) directly using docker run or

docker compose up.

•	 Pros: Easy to understand and set up, good for small projects, internal tools, or

initial learning.

•	 Cons: Single point of failure (if the server goes down, your app goes down), man-

ual scaling (you have to provision a bigger server or more servers manually), and

updates might involve some downtime unless carefully managed.

•	 Managed container platforms (PaaS-like):

•	 Concept: Cloud providers offer services that abstract away much of the underlying

server management. You provide your Docker image, and the platform handles

running it, scaling it (often automatically), and sometimes even load balancing

and SSL termination.

•	 Examples: AWS App Runner, Google Cloud Run, Azure Container Apps, and Her-

oku (with Docker deploys).

Dockerization and Deployment of Rust Applications690

•	 Pros: Greatly simplified operations. Often has built-in auto-scaling. Easy inte-

gration with other cloud services. Good for developers who want to focus on code,

not infrastructure.

•	 Cons: Can be more expensive than managing your own VMs at a very large scale.

Might have some limitations or vendor lock-in depending on the platform.

•	 Container orchestration platforms (e.g., Kubernetes or Docker Swarm):

•	 Concept: For complex, large-scale applications with many microservices,

high-availability needs, and sophisticated deployment requirements (such as

rolling updates, canary releases, and self-healing), container orchestrators are

the standard. Kubernetes is the dominant player here. Docker Swarm is simpler

but less feature-rich.

•	 Pros: Powerful control over scaling, deployment strategies, service discovery, load

balancing, fault tolerance, and resource management for complex applications.

•	 Cons: Significant learning curve and operational complexity. Kubernetes, in par-

ticular, is a very large system. Often overkill for simpler applications.

•	 Serverless functions (with containers):

•	 Concept: Some serverless platforms (such as AWS Lambda, Google Cloud Func-

tions, and Azure Functions) now support deploying custom Docker container

images as the runtime for your functions. Your code only runs when triggered by

an event, and you pay only for execution time.

•	 Pros: Extreme scalability (scales to zero when not in use). Pay-per-use model.

•	 Cons: Execution time limits. Statelessness requirements. Can be more complex

for long-running tasks or applications with persistent connections.

The choice of deployment strategy depends heavily on your application’s needs, your budget, your

team’s expertise, and your scalability requirements. For many Rust web applications or services,

starting with a managed container platform or a simple server deployment can be a good entry

point, with the option to move to orchestration platforms such as Kubernetes as your needs grow.

Regardless of the platform, a crucial first step after building your Docker image locally is making

it accessible to your deployment environment. This usually involves a container registry.

Chapter 16 691

Using container registries
Once you’ve built a Docker image for your Rust application using docker build, that image exists

on your local machine. To deploy it to another server, a cloud platform, or share it with your team,

you need to push it to a container registry. A container registry is a storage system for Docker

images, acting like a central library from which images can be pulled.

Docker Hub is the most well-known public registry, and it’s the default one Docker uses when you

try to docker pull an image that isn’t found locally (e.g., docker pull rust:latest). However,

there are many other registries:

•	 Cloud provider registries: AWS has ECR, Google Cloud has GCR and Artifact Registry, and

Azure has ACR. These integrate well with their respective cloud ecosystems.

•	 Private registries: Companies often host their own private registries (using tools such as

Harbor, GitLab container registry, or JFrog Artifactory) for internal images.

•	 GitHub Container Registry (GHCR): Allows you to host Docker images directly within

your GitHub repositories.

For our examples, we’ll focus on Docker Hub as it’s easily accessible for personal projects. The

general workflow of tagging, pushing, and pulling is similar across most registries.

If you don’t have one already, you’ll want to create a free account on Docker Hub. You’ll get a

Docker ID (your username), which will be part of your image names when you push to Docker Hub.

Tagging your Docker images for versioning
Before you can push an image to a registry such as Docker Hub, you need to tag it appropriately.

A tag typically follows the format <registry_hostname_if_not_docker_hub>/<your_username_

or_org>/<image_name>:<version_tag>.

•	 If you’re using Docker Hub, the <registry_hostname_if_not_docker_hub>/ part is usu-

ally omitted

•	 <your_username_or_org> is your Docker Hub ID or organization name

•	 <image_name> is the name you want for your application’s image

•	 :<version_tag> is crucial for versioning (e.g., 0.1.0, latest, stable, dev)

Dockerization and Deployment of Rust Applications692

Let’s say you built your Rust application image locally and named it my_rust_cli_app:latest

(as in our previous docker build -t my_rust_cli_app:latest . example). If your Docker Hub

username is myrustdev, you would re-tag this image for pushing:

First, list your local images to find the one you want to tag

docker images

Assume your locally built image is named 'my_rust_cli_app' and has tag
'latest'

And your Docker Hub username is 'myrustdev'

Tag the local image 'my_rust_cli_app:latest' with a new name suitable
for Docker Hub

Format: docker tag <local_image_name>:<local_tag> <dockerhub_
username>/<repo_name>:<new_tag>

docker tag my_rust_cli_app:latest myrustdev/my_rust_cli_app:0.1.0

You can also tag it as 'latest' for Docker Hub

docker tag my_rust_cli_app:latest myrustdev/my_rust_cli_app:latest

Now if you run 'docker images', you'll see these new tags pointing to
the same image ID

as your original 'my_rust_cli_app:latest'.

•	 The docker tag SOURCE_IMAGE[:TAG] TARGET_IMAGE[:TAG] command creates an alias

(another name or tag) for an existing image. It doesn’t create a new copy of the image

layers; it just adds another pointer to them.

•	 To push to Docker Hub, your image name must be prefixed with your Docker Hub username

(or organization name if you’re pushing to an organization’s repository).

•	 It’s good practice to use specific version tags (such as 0.1.0) for your releases, in addition

to potentially having a latest tag that points to your most recent stable build.

Pushing images to a registry
Once your image is correctly tagged (e.g., myrustdev/my_rust_cli_app:0.1.0), you can push it

to Docker Hub. First, you’ll need to log in to Docker Hub from your terminal:

Log in to Docker Hub (it will prompt for your username and password/
access token)

docker login

Chapter 16 693

Enter your Docker Hub username and password (or an access token) when
prompted.

Push the specifically versioned image

Replace 'myrustdev' with your Docker Hub username and 'my_rust_cli_app'
with your image name.

docker push myrustdev/my_rust_cli_app:0.1.0

Optionally, push the 'latest' tag as well

docker push myrustdev/my_rust_cli_app:latest

•	 docker login: This command authenticates you with Docker Hub (or another specified

registry). You’ll need to provide your Docker ID and password (or, preferably, an access

token generated from the Docker Hub website for better security, especially in CI/CD

environments).

•	 docker push <image_name_with_username_and_tag>: This command uploads your

tagged image and its layers to the specified repository on Docker Hub. If you have a free

Docker Hub account, the repository will be public by default (meaning anyone can pull

your image). Docker Hub also offers private repositories.

The push process might take some time, especially for larger images or on slower con-

nections, as it uploads all the layers that make up your image.

Once pushed, your image (myrustdev/my_rust_cli_app:0.1.0) is now available on Docker Hub

for others (or your deployment servers) to use.

Pulling images in a deployment environment
On the server or platform where you want to deploy your application, you (or your deployment

scripts/orchestrator) will need to pull the image from the registry before it can be run:

On your deployment server (or any machine with Docker)

Pull the image from Docker Hub

Replace 'myrustdev' with the actual username and 'my_rust_cli_app' with
the image name.

docker pull myrustdev/my_rust_cli_app:0.1.0

After pulling, you can run it:

docker run --rm myrustdev/my_rust_cli_app:0.1.0

Dockerization and Deployment of Rust Applications694

•	 docker pull <image_name_with_username_and_tag> downloads the specified image

and its layers from Docker Hub (or another configured registry) to the local machine

•	 If the image (or specific layers) already exists locally, Docker will only download the

missing or updated parts

•	 Once pulled, the image is available in the local image cache, and you can use docker run

to start containers from it, just like you did with locally built images

This tag-push-pull workflow is fundamental to distributing Dockerized applications. Your con-

tinuous integration/continuous deployment (CI/CD) pipeline, which we’ll touch on next, would

typically automate the build, tag, push, and sometimes even the pull and deploy steps.

Summary
We’ve reached the end of Chapter 16, and with it, our journey into Dockerizing and deploying

Rust applications!

This chapter aimed to take you from the fundamental concepts of containerization to the practical

steps of packaging your Rust code into Docker images, optimizing them, and understanding how

they can be run and managed, whether as single containers or as part of a multi-service application.

Docker is a transformative technology in modern software development, and being able to lever-

age it effectively with Rust can greatly enhance your development and deployment workflows.

Let’s recap what we’ve covered in this chapter:

•	 Introduction to Docker and containerization: We started by defining Docker and its

core benefits, such as providing consistent environments, isolating dependencies, en-

abling portability, and improving resource efficiency. We also specifically discussed why

Dockerizing Rust applications is particularly advantageous, highlighting the simplified

deployment of compiled binaries and consistent build environments.

•	 Getting started with Docker: We walked through setting up your Docker environment

(installing Docker Desktop) and introduced essential Docker concepts such as images

(the blueprints) and containers (the runnable instances). We also covered basic Docker

commands for interacting with images and containers (docker run, docker ps, docker

images, docker stop, and docker rm).

•	 Dockerizing your Rust application: The core of the chapter focused on creating a Docker-

file – the recipe for building your Rust application’s image. We learned about fundamental

Dockerfile instructions (FROM, WORKDIR, COPY, RUN, CMD, and EXPOSE) and constructed a

basic Dockerfile to compile a Rust application and prepare it to run.

Chapter 16 695

•	 Optimizing Docker images for Rust: We then explored crucial techniques to make our

Rust Docker images smaller and more efficient, with a strong emphasis on multi-stage

builds. This allows us to separate the build environment (with the Rust toolchain and

source code) from the final runtime environment (which might only contain the compiled

binary and minimal operating system dependencies). We also discussed choosing min-

imal base images (such as debian:slim or alpine) and leveraging Docker’s build cache.

•	 Managing multi-container applications with Docker Compose: For applications con-

sisting of multiple services (such as a Rust backend and a database), we introduced Docker

Compose. We learned how to write a compose.yml file to define services, networks, en-

vironment variables, and volumes, and how to use docker compose commands (such as

up, down, logs, and exec) to manage the entire application stack.

•	 Deploying Dockerized Rust applications: Finally, we provided an overview of how to

get your Docker images out into the world. This included tagging images for versioning

and pushing them to and pulling them from container registries (such as Docker Hub).

By now, you should have a solid understanding of how to package your Rust applications into

Docker containers, making them portable, efficient, and easier to deploy across different environ-

ments. While we’ve covered a lot, the world of Docker and container orchestration is vast. This

chapter provides a strong foundation for exploring more advanced topics, such as Kubernetes,

detailed security hardening, and sophisticated CI/CD strategies, as your needs evolve.

The ability to containerize your applications is a valuable skill in today’s software landscape!

Congratulations!
Congratulations! You’ve reached the end of this journey, and you’ve come a very long way.

You started with the basics of Rust’s syntax and its unique ownership system, and you’ve since

built concurrent programs, command-line utilities, and even a complete, database-backed web

application with a WebAssembly frontend.

You now have a strong and practical set of skills for writing the safe, fast, and reliable software

that Rust is known for.

This is a significant achievement, and you are now well equipped to explore the vibrant Rust

ecosystem and create impressive projects. Well done, and happy coding!

Dockerization and Deployment of Rust Applications696

Questions and assignments
This chapter has taken you through the essentials of Docker, from basic concepts to Dockerizing

your Rust applications, optimizing images, managing multi-container setups with Docker Com-

pose, and understanding deployment.

Now it’s time to roll up your sleeves and apply what you’ve learned! These questions and assign-

ments are designed to solidify your understanding and give you practical experience.

Questions
1.	 What is a Docker image, and how does it differ from a Docker container?

2.	 Explain the main purpose of a Dockerfile. List and briefly describe five common instruc-

tions you might find in one.

3.	 What is a multi-stage Docker build, and what is its primary benefit when Dockerizing

compiled applications such as those written in Rust?

4.	 Why is it generally better to use COPY Cargo.toml Cargo.lock ./ and run a dependen-

cy-focused cargo build step before copying the src directory in a Dockerfile for a Rust

project?

5.	 What is Docker Compose used for? Describe a scenario where it would be more beneficial

than just using docker run commands.

6.	 When would you use a named volume versus a bind mount in Docker Compose for per-

sisting data?

7.	 What is a container registry (such as Docker Hub), and why is it important in the deploy-

ment workflow?

Assignments
Assignment 16.1: Dockerize an existing Rust CLI or web application
Goal: Get hands-on experience in writing an optimized Dockerfile for a Rust application.

Task:

1.	 Choose a Rust project: Pick a Rust project you’ve worked on previously in this book (such

as the CLI tool from Chapter 14, or the Actix Web API from Chapter 13 if you haven’t done

the database part yet, or even a simple new cargo new my_app --bin with a basic “Hello,

World!” or a small calculation).

Chapter 16 697

2.	 Write a Dockerfile:

•	 Create a Dockerfile in the root of that project.

•	 Implement a multi-stage build.

•	 The first stage (the “builder” stage) should use a Rust base image (e.g., rust:1.78

or your preferred version), copy your source code, and compile your application

in release mode (cargo build --release).

•	 The second stage (the “runtime” stage) should start from a minimal base image

(e.g., debian:buster-slim or alpine:latest).

•	 Copy only the compiled binary from the builder stage into the runtime stage.

•	 If using Alpine, remember you might need to compile your Rust binary with a musl

target (e.g., cargo build --release --target x86_64-unknown-linux-musl)

in the builder stage for it to run correctly on Alpine. If using debian:slim, the

default gnu target usually works.

•	 Set the appropriate CMD to run your application.

3.	 Build the image: Use docker build -t yourname/my_rust_app:0.1.0 . to build your

image.

4.	 Run the container: Run your application using docker run --rm yourname/my_rust_

app:0.1.0. If it’s a web application, remember to map ports using -p.

5.	 Check image size: Use docker images to see the size of your final image. Compare it to

what it might have been with a single-stage build (if you want to experiment).

Deliverables (conceptual):

•	 Your Dockerfile

•	 A brief note on the base image you chose for the runtime stage and why

•	 The approximate size of your final Docker image

Dockerization and Deployment of Rust Applications698

Assignment 16.2: Create a multi-container application with
Docker Compose
Goal: Practice defining and running a multi-service application using Docker Compose.

Task:

1.	 Choose or create a Rust web application: You can use the Actix Web API project from

Chapter 13 (especially if you implemented the in-memory version or a version that can

be configured to use a database via environment variables). If you don’t have one, cre-

ate a very simple Actix Web app with one or two endpoints (e.g., a /ping endpoint that

returns "pong").

2.	 Dockerfile for the Rust app: Ensure your Rust web app has a Dockerfile (preferably a

multi-stage one from the previous exercise).

3.	 Choose a database: Select a simple database to run alongside your app, for example,

PostgreSQL or Redis (if your app was designed for caching, or just as a second service

example). For this exercise, let’s assume PostgreSQL.

4.	 Write a compose.yml file:

Define two services:

•	 One for your Rust web application (let’s call it webapp):

•	 It should build from your Rust project’s directory

•	 Map the necessary port (e.g., 8080:8080)

•	 Set up any environment variables your app needs (e.g., DATABASE_URL

pointing to the db service, RUST_LOG)

•	 Make it depend on the db service

•	 One for the PostgreSQL database (let’s call it db):

•	 Use an official Postgres image (e.g., postgres:15-alpine)

•	 Set the required POSTGRES_USER, POSTGRES_PASSWORD, and POSTGRES_DB

environment variables

•	 Define a named volume to persist the PostgreSQL data

•	 Declare the named volume at the top level of the compose.yml file.

Chapter 16 699

5.	 Run with Docker Compose:

•	 Use docker compose up --build to build your Rust app image and start both

services

•	 Test whether your Rust application can connect to the database (if you imple-

mented that part) or at least that both services start up correctly

•	 Use docker compose logs webapp and docker compose logs db to view their

outputs

•	 Use docker compose down (and docker compose down -v if you want to clear

the database data) to stop and remove the application stack

Deliverables (conceptual):

•	 Your Dockerfile for the Rust web application

•	 Your compose.yml file

•	 A brief description of how you tested that the services were running and (if applicable)

communicating

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

17
Unlock Your Exclusive Benefits

Your copy of this book includes the following exclusive benefits:

•	 Next-gen Packt Reader

•	 DRM-free PDF/ePub downloads

Follow the guide below to unlock them. The process takes only a few minutes and needs to be

completed once.

Unlock this Book’s Free Benefits in 3 Easy Steps
Step 1
Keep your purchase invoice ready for Step 3. If you have a physical copy, scan it using your phone

and save it as a PDF, JPG, or PNG.

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help.

Note: If you bought this book directly from Packt, no invoice is required. After Step 2,

you can access your exclusive content right away.

https://www.packtpub.com/unlock-benefits/help

Unlock Your Exclusive Benefits702

On the page that opens (similar to Figure 17.1 on desktop), search for this book by name and select

the correct edition.

Figure 17.1: Packt unlock landing page on desktop

Step 2
Scan the QR code or go to packtpub.com/unlock.

http://packtpub.com/unlock

Chapter 17 703

Step 3
After selecting your book, sign in to your Packt account or create one for free. Then upload your

invoice (PDF, PNG, or JPG, up to 10 MB). Follow the on-screen instructions to finish the process.

Need help?
If you get stuck and need help, visit https://www.packtpub.com/

unlock-benefits/help for a detailed FAQ on how to find your

invoices and more. This QR code will take you to the help page.

Note: If you are still facing issues, reach out to customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://www.packtpub.com/unlock-benefits/help
customercare@packt.com

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packtpub.com

www.packtpub.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Asynchronous Programming in Rust

Carl Fredrik Samson

ISBN: 978-1-80512-662-1

•	 Explore the essence of asynchronous program flow and its significance

•	 Understand the difference between concurrency and parallelism

•	 Gain insights into how computers and operating systems handle concurrent tasks

•	 Uncover the mechanics of async/await

•	 Understand Rust’s futures by implementing them yourself

•	 Implement green threads from scratch to thoroughly understand them

https://www.packtpub.com/en-us/product/asynchronous-programming-in-rust-9781805126621

Other Books You May Enjoy708

Rust Web Programming

Maxwell Flitton

ISBN: 978-1-83588-777-6

•	 Build scalable Rust web applications as monoliths or microservices

•	 Develop a deeper understanding of async Rust

•	 Get to grips with Rust language features like traits and the borrow checker

•	 Manage authentication and databases in Rust web apps

•	 Build app infrastructure on AWS using Terraform

•	 Learn how to package and deploy Rust servers

•	 Build unit tests and end-to-end tests for your Rust web apps with Python

https://www.packtpub.com/en-us/product/rust-web-programming-9781835887776

Other Books You May Enjoy 709

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packt.com and apply

today. We have worked with thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You can make a general applica-

tion, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished The Rust Programming Handbook, we’d love to hear your thoughts! If you

purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

authors.packt.com
https://packt.link/r/1836208871
https://packt.link/r/1836208871

Index

Symbols
<T> type parameter 218
4xx (Client Error) 495
5xx (Server Error) 495
#[link] attribute 598, 599
? operator 186

for Option 185
for Result 182

&str 35, 36

A
absolute path 161, 404
abstraction 236

control without compromise 563, 564
versus control 563

ad hoc polymorphism 209
abstracting behavior 211
custom types, implementing 212
method signatures, versus default

implementations 210
orphan rule 213
trait, defining 209, 210
trait, implementing 212
trait objects 214

advanced function features 75
closure 75

Amazon Web Services Elastic Container
Registry (AWS ECR) 650

and_then method 179

anonymous functions 80
anyhow crate 195-197

features 197
Application Binary Interface (ABI) 594
applied polymorphism 229

zero-copy configuration parser, building 229
AppState, Axum

pool, sharing 535-537
Arc<Mutex<T>>

combining, for shared
mutable state 460-462

Arc<T> smart pointer 355
atomic 361
atomic reference counting, for

multithreading 358
shared ownership 355
using, to share data across threads 359-361

Arc::clone()
using, for thread distribution 457-459

Arc::strong_count() 459
arrays 34
arrow functions 80
assertion macros 306, 307
associated functions 127
associated types 257-259
async/await

async runtimes 480-482
used, for asynchronous

programming 476-479

Index712

async database persistence
CRUD endpoints, refactoring 538, 539
handlers, refactoring 537
SQL queries, writing 537

async fn 477
asynchronous programming

with async/await 476-479
asynchronous runtime (executor) 480
async Rust function 555
Atomically Reference Counted 456
atomic operations 457
automatic referencing

and dereferencing 126
AveragedCollection example 240
await 477
Axum 496

handlers 499
project setup and dependencies 496
routes, registering with Router::route 499

Axum project
DATABASE_URL, configuring 529
sqlx and dotenvy dependencies, adding 528
sqlx-cli, using for migrations 529

Axum server
handler function 497
main function 497-499

Azure Container Registry (ACR) 650

B
behavior encapsulation 236
binary crate 159
boolean type 32
borrow()

using 364-366

borrow checker
used, for scope validation 223, 224

borrowing 45, 85, 100
in functions 103, 104
rules 102, 103

borrow_mut()
using 364-366

borrow rule violations
runtime panics 366

bounded parametric polymorphism
limited generics, with traits 219
returning types 220
where clause, for complex constraints 220

Box<T>
creating 349
performance and ownership

consideration 354, 355
recursive data structures, enabling 350, 353
toolkit 348
using 348-350

Brew trait 210
build context 662
Builder pattern 260-262
build script 599

C
Cargo 13-15

features 15, 16
installation, verifying 14
project, running 18

cargo init
Rust project, initializing 18, 19

cargo init --lib
library, creating 19, 20

Cargo.lock 17

Index 713

cargo new 18
Cargo.toml

dependencies, managing 16, 17
C code

interfacing with 594
C compiler

installing 621
Certificate Authority (CA) 417-419
channels 467

using, for thread communication and
synchronization 473-476

CI/CD pipeline 694
CLI calculator 20

calculator logic, writing 20, 23
program, running 23
project setup 20

clients 406
closure 75, 276, 285

anonymous functions 80, 81
defining 285, 286
environment, capturing 76, 286-288
Fn 78
FnMut 78
FnOnce 78
higher-order functions 78, 79
iterator methods 80
move keyword 77

closure traits 289, 291
Fn 289
FnMut 289
FnOnce 289

combinators 179
and_then 179
map() 179
or_else 180

Command Line Argument Parser (clap) 581
command-line arguments

argument parsing 581-583
parsing 579
std::env::args(), using 579, 580

command-line utilities (CLI tools)
building 577
command-line arguments, parsing 579
designing 577, 578
file system, interacting with 584
for file operations 438-440
reading, from standard output and

standard error 592, 593
standard error (stderr), handling 591
standard input, handling 591
standard output (stdout), handling 591
writing, to standard output and

standard error 591
compose.yml file

environment variables, using for
configuration 680

networks, managing 679, 680
persistent data, managing

with volumes 681, 682
services, defining 677-679
services, linking 679, 680
writing 677

composite types
combining 157, 158

composition 236, 253
compound types 32

arrays 34
slices 34, 35
&str 35, 36
strings 35
tuples 32, 33

Index714

concurrency 445
compile-time safety 448
deadlocks 447
race conditions 447

concurrent programs
writing, need for 446, 447

concurrent Rust
best practices 482-488

connection pool
sqlx::PgPool, using for 532, 533
using 532

consumers 279, 284
collect() 280
example 280
fold() 280
sum() 280

container registries 650
Docker images, tagging

for versioning 691, 692
images, pulling in deployment

environment 693, 694
images, pushing to 692, 693
using 691

containers 643
listing, with docker ps command 652
removing, with docker

rm command 654, 655
running, with docker

run command 650-652
stopping, with docker

stop command 654, 655
Context

errors logging 201
control

versus abstraction 563
control flow constructs 48

for keyword 51

if and else statements 49
loop constructs 49
loop keyword 49, 50
loops, nesting 52
pattern, matching with

match statement 52-57
while keyword 50

Copy trait 92, 93
used, for automatic copying 90-92

CPU-bound tasks 476
crate 159
Crates.io 13

dependencies, installing from 17
Create, Read, Update, Delete (CRUD) 494
critical section 483
Cross-Origin Resource Sharing (CORS)

enabling 544-546
CRUD API endpoints

HTTP status codes 510, 514
implementing 510
JSON, returning 510, 514

CString
using 607-609
working with 605-607

C structs 610-612
custom C library

compiling 623
creating 622
prerequisites, C compiler

installation 621, 622
Rust code, writing with FFI declarations

and safe wrappers 624, 627
Rust project and build.rs, creating 623, 624
using, from Rust 621

custom errors
using, in functions 190, 191

Index 715

custom error types 187
defining, with enum 187, 188

D
dangling references issue 223
data encapsulation 236
data, passing between Rust and C

C strings, working with 605-610
C structs 610-612
pointers and callbacks, handling 612-614
primitive types 603, 604
safe Rust wrappers, creating around

unsafe C APIs 615, 616, 620, 621
data types and structures, in Rust 31

compound types 32-36
enumerations 40-43
scalar types 31, 32
structs 36-40

deadlocks 447, 463
avoiding, with lock ordering 486

debugging, with structs 135
debug output, customizing 136, 137
Debug trait, implementing 135, 136

declaration 595
defaults

for safe unwrapping 178
dependencies

installing, from Crates.io 17
managing, with Cargo.toml 16, 17

Deref coercion 350, 373
dereferencing 570
Deref trait 372-375
Docker

benefits 644, 645
benefits, to Rust applications 645, 646

essential concepts 648
overview 643
working with 647

Docker command-line
interface (CLI) tool 647

Docker commands 650
docker images 653
docker ps 652
docker pull 653
docker rm 654
docker rmi 653
docker run 650-652
docker start 654
docker stop 654

Docker Compose 676, 677
Docker container 649
Docker Desktop 647
Docker environment

Docker Desktop installation, verifying 648
setting up 647

Dockerfile 655
Dockerfile, for Rust application

base Rust image, selecting 658
CMD, setting 659
creating 657
final Dockerfile 659-661
project, building 658
project, copying 658

Dockerfile instructions
CMD 656
COPY 656
ENV 657
EXPOSE 657
FROM 655
RUN 656
WORKDIR 656

Index716

Docker Hub 650, 691
Docker image 649

managing, with docker
images command 653

managing, with docker pull command 653
managing, with docker rmi

pull command 653
Docker images, for Rust

considerations, for glibc 670
considerations, for musl libc 670
COPY and RUN commands,

structuring 671- 673
debug symbols and binary compression,

stripping 673
Docker build cache, leveraging 671
minimal base images, selecting

for runtime 669
multi-stage builds, using 666, 669
optimizing 665
small and efficient images 665
strip, using 673
UPX, using 674

Dockerized Rust applications
container registries, using 691
deploying 689
deployment strategies 689, 690

Docker volumes 681
documentation tests 301, 320

behavior, controlling 323, 324
characteristics 320
lines, hiding from

documentation output 324
writing 321, 322

Don’t Repeat Yourself (DRY) 210
DOWN migration 531
dropping 223

duplication issue, parametric polymorphism
<T> type parameter 218
same function, writing

for different types 217
dynamic dispatch 216, 248

versus static dispatch 250
dynamic polymorphism 250

with trait objects 248
dyn Trait 248

E
elision rules 228
else statement 49
encapsulation 235, 237
End-of-File (EOF)

reading from 593
enumerations (enums) 40, 41, 139

custom error types, defining 187, 188
destructuring 291-293
exercises and assignments 147
matching with 41
methods 42, 43
methods example 143-145
structs, defining with 145-147
summary 147
using 140, 141
using, with structs 145
variants 141, 143

env_logger 200
using 198

error handling 169
reasons 169

error handling, in network code
non-blocking operations 416

Index 717

result, handling from
network operations 414, 415

timeouts 416
errors 170

logging, with Context 201
recoverable errors 170
unrecoverable errors 170, 175, 176

Even Better TOML
URL 11

expect method 177
external C functions

#[link] attribute 598-602
build scripts 598-602
extern C blocks 595-598
linking 595

extern C blocks
linking 595-598

F
Foreign Function Interface (FFI) 563, 594

existing C libraries, leveraging 594
FFI type mappings

verifying 604
field init shorthand 118
file data processing

example 202, 205
file I/O (Input/Output) 390

advantages 404
file I/O performance optimization

buffering strategies 428
large files, processing in chunks 428, 429

file operations
buffering 392
file and paths 391
files, closing 391
files, opening 391

RAII 391
reading and writing 391

files
content, appending 398-400
data, reading from 392
entire file, reading into string 392-394
manipulating 400, 403
reading, line by line 394-396
string or bytes, writing to 396-398
writing 396

file system
directory traversal and

manipulation 587-590
files, reading and writing

in CLI context 584-590
filter adapter 282
for keyword 51
for loops 52
functional features, Rust

closures 276
higher-order functions 276
iterators 276

functional programming 275
function borrowing 72

immutable borrowing 73
mutable borrowing 73, 74

function definition 25
function ownership 72

values, returning 74, 75
functions 24, 25, 65

best practices 70
calling 66
custom errors, using 190, 191
defining 66
example 24
need for 66

Index718

parameters 67
return values 67
syntax 66-71
unit type 68
with no parameters 69
with no return values 69

functions, in Rust 44
ownership 47, 48
parameter, passing 45-47
syntax 44

G
garbage collector (GC) 563
generic lifetime annotations 224

<’a> syntax 225
functions holding references,

annotating 225
impl block, for lifetime-bound structs 227
input and output lifetimes relationship 226
structs, with references 226
using, in data structures 226

generic type parameters 171
Google Container Registry (GCR) 650

H
handler functions 499
has-a relationship 253
Heap 567, 568
Hello World 11

compiling 12
running 12

higher-order functions 78, 276
HTTP methods

DELETE 494
GET 494
POST 494

PUT or PATCH 494
HTTP request xxxvii, 494

headers 494
method 494
optional body 494
path 494

HTTP response 494
headers 494
optional body 494
status code 494

Hypertext Transfer Protocol (HTTP) 494
status codes 495

I
idiomatic use paths 163
if let 294, 295
if statement 49
immutable borrowing 73, 101
immutable by default 28
immutable variables 28, 29
impl Trait 243
inheritance 253
in-memory todo list

building 501
code, for RESTful API example 515, 516
CRUD API endpoints, implementing 510
data, extracting 507
project setup, for API 501, 502
request, handling 507
shared state, managing 503

input/output (I/O) 447
integers 31
integrated development

environment (IDE) 10

Index 719

integration tests 301, 314
example shared helper 319
helper functions 318
integration test file 317
library code 315, 316
purpose 314
setting up 314, 315
shared helpers, using 319

interior mutability
data modification, through shared

references 362
need for 363

into_iter() method 278
I/O-bound tasks 477
IP address 405
iterator adapters 281, 284

filter 282
map 281

iterators 78, 276
consuming, with next() 276, 277
creating 276
methods 277-279

iter() method 277
iter_mut() method 278

J
JavaScript Object Notation (JSON)

data models, defining with serde 502, 503
JSON bodies, extracting with 509
using for APIs 495

JoinHandle<T> 452, 453
join() method 452, 453
JSON aliasing 519

K
kernel-level logging 630-633
kernel module development

building 634
loading 634
setup 629
with Rust 628

kernel module development, setup
basic module structure 630-634
caveats 636, 637
code compilation 634-636
no_std and target specifications 629, 630

kernel space
unique environment 628

L
lambda expressions 80
Last-In, First-Out (LIFO) 567
library

creating, with cargo init --lib 19, 20
library crate 159
lifetimes 222

advanced concepts 228
elision rules 228
generic annotations 224
importance 222
static lifetime (‘static) 228

local type 213
lock() 460
lock contention 483
log crate 198
logging 198

configuration 200, 201

Index720

implementations 198
levels 200, 201

loop keyword 49, 50
low-level programming foundations

memory safety model 566
unsafe Rust 568

M
Makefile 635
manual propagation

issue 181, 182
map adapter 281
map method 179
match guards

used, for adding conditional logic 54-56
match statement 52

conditional logic, adding
with match guards 54-56

enums, destructuring 53, 54
literals, matching 52
matching, with variables 53
patterns, combining 54

memory leaks
from reference cycles 384

memory safety model 566
borrowing 566
lifetimes 566
ownership 566

message authentication codes (MACs) 417

message passing 466
channels 467
std::sync::mpsc channels 467

methods 237
method signatures

versus default implementations 210

migrations 529, 530
creating 530, 531
running 530, 531

miniserve 556
mocking libraries 337
mocks 333
module system

binary crates, versus library crates 159
filesystem mapping 164
items, referring via paths 161
Package, layout 159
scope and privacy, controlling with 159
scope, simplifying with use keyword 162
separating, into files 164
used, for managing complexity 158

Module Tree
defining 160

monomorphization 221, 246
zero-cost abstraction 222

move 45
multi-container apps

compose.yml file, writing 677
managing, with Docker Compose 675
stack, running and managing 687, 688

multi-stage build 666
artifacts, copying 666-669
build environment, separating from runtime

environment 666
mutable borrowing 73, 74, 101
mutable variables 29
Mutex<T>

Arc<T>, combining with 368, 370
exclusive access, ensuring in

concurrent code 367
lock, acquiring, with lock() 460
locking and unlocking with lock() 367

Index 721

MutexGuard 460
RwLock, for read-mostly data 370
versus RwLock<T> 464-466

MutexGuard 460

N
naming conflicts

handling 163
Neovim 10
network I/O performance optimization

asynchronous I/O, for networking 430
network buffers, managing 430
packet sizes 430

network programming essentials 405
network communication, fundamentals 405
TCP client, creating 410
TCP server, building 406

Newtype pattern 213
Nightly Rust

versus Stable Rust 16
no class inheritance 236
non-blocking I/O 416

O
Object-Oriented Programming (OOP) 235
object safety 251-253
Observer pattern 265, 269
OOP principles 235

encapsulation 235
no class inheritance 236
polymorphism 236

Option<T> 170
Option type 59, 60, 170-173

example 173, 174

pattern matching with 56, 57
versus Result type 174, 175

or_else method 180
orphan rule 213
ownership 85, 86

Clone trait 92, 93
exception 90-92
fundamental 87, 88
moving 89, 90, 95, 96
moving, advantages 98
moving, in function calls 97
moving, significance 96, 97
returning 99, 100
rules 93-95
transfering, in function calls 99

ownership rules 288

P
panic 57
panic! macro 61, 62
parallelism 445, 446

coarse-grained parallelism 488
fine-grained parallelism 487
granularity 487, 488

parametric polymorphism 217
bounded 219
duplication issue 217
monomorphization 221

Parse trait 230

Path
path parameters, extracting with 507

path parameters 496
extracting, with Path 507

pattern matching 291
in functional style 291

Index722

patterns 259
Builder pattern 260-262
Observer pattern 265, 269
State pattern 262, 265
Strategy pattern 269, 271

patterns and idioms, in Rust 105
borrowing, for read-only access 106
example 107
mutable borrowing, for modification 106
references, returning

with borrowing 107, 108
persistence, adding with PostgreSQL

application, testing 541-543
connection pool, using 532
CORS, enabling 544-546
database setup 527, 528
handlers, refactoring for async database

persistence 537
psql 543
Rust structs, mapping 532
schema management,

with sqlx migrations 530
sqlx, integrating into Axum project 528

Polars 6
reference link 6

polymorphism 236
port number 405
PostgreSQL

used, for adding persistence 526, 527
verifying 543, 544

privacy 237
project

building 18
running, with Cargo 18

pub keyword 160

Q
query parameters 496

extracting, with Query 508

R
race condition 447
raw pointers 570

features 570
Rc<T> 456

Arc::clone(), using
for thread distribution 456, 459

Rc<T> smart pointer 355
cloning references 356-358
instances, creating 356
shared ownership 355
used, for reference counting

for single-threaded scenarios 356
read lock 464
real-world build.rs scripts 601
Receiver<T>

used, for receiving data 470-473
recoverable errors 170
RefCell<T>

browsing rules, enforcing at runtime 363
reference counting

atomic 361
references 85, 100
relative paths 161, 162, 404
Resource Acquisition Is

Initialization (RAII) 346, 391, 425, 615
resource handling, security principles

input validation, for external sources 431
principle of least privilege 431

RESTful API
design principles 495, 496

Index 723

RESTful application
API endpoints, testing with curl 523-525
Axum server, running 523
terminal, opening 523
testing 523

Result<T, E> 170
Result type 58, 59, 170-173

versus Option type 174, 175
robust and secure network applications

ensuring 413
error handling, in network code 414
secure connections,

implementing with TLS 417
robust HTTP server

building 432, 437
sequential handling 437

Router::route
used, for routes registration 499

Rust 2
advantages 7, 8
and C, data passing between 603
benefits 4
development environment, setting up 10
ecosystem 6
features 3-5, 562
functional features 276
installation options,

for different platforms 9
installation, verifying 10
installing 8
low-level programming foundations 566
URL 8
VS Code, setting up for 10, 11

Rust Analyzer
URL 11

Rust application
Dockerfile, creating 657

Docker Image, building 661-663
dockerizing 655
running, in Docker container 663-665
with PostgreSQL database 683- 687

Rust programs
pitfalls, preventing 109-112

Rust project
creating 16
initializing, with cargo init 18, 19

RustRover by IntelliJ IDEA 10
Rust’s approach, to error handling 57

destructuring 61
fundamentals 57, 58
Option type 59, 60
panic! macro 61, 62
Result type 58, 59

Rust’s Ecosystem
tests types 301

Rust’s ownership model
borrowing, in functions 103, 104
borrowing, practical example 104, 105
borrowing rules 102, 103
immutable borrowing 101
mutable borrowing 101

Rust structs
FromRow, deriving for Todo struct 533-535
mapping 532

RwLock<T>
multiple readers or one writer,

allowing 463, 464
versus Mutex<T> 464-466

S
scalar types 31

boolean type 32
character type 32

Index724

floating-point numbers 31
integers 31

scope 223
secure connections, with TLS 417
Secure Sockets Layer (SSL) 417
Sender<T>

used, for sending data 468, 469
send trait 486
server 406
Server Name Indication (SNI) 418, 424
shadowing 29, 30
shared mutable state 455
shared state

Arc<Mutex<...>>, using for
in-memory state 504

managing 503
sharing, with state extractor 504-506

shared-state concurrency 466
slices 34, 35
smart pointers 344, 568

and ownership transfer 379, 380
automatic cleanup 346
combining, for complex scenarios 378, 379
Deref trait, using 372, 375
interior mutability 347
method implementation, on structs 375-377
ownership 345
reference counting, for shared data 346
reference cycle 384
role, in Rust memory model 344
simple graph, with shared nodes 380, 383
toolkit 347
working with 372

smart pointers, role in Rust’s memory model
performance implications 345
safe concurrency, enabling 345

safety, enhancing beyond ownership 344
socket address 405
sockets 406
sqlx

adding 528
integrating, into Axum project 528

sqlx migrations
using, for schema management 530

Stable Rust
versus Nightly Rust 16

Stack 567
standard error (stderr) 591

traits 188-190
writing to 591, 592

standard input (stdin) 591
reading from 592-594

standard output (stdout) 591
writing to 591, 592

state extractor 506
state, sharing with 504-506

State pattern 262, 265
static dispatch 216, 243, 246, 248

versus dynamic dispatch 250
static file server 555
status codes

2xx (Successful) 495
std::env::args()

using, for basic arguments 579, 580
std::sync::mpsc channels 467

creating, with channel() 467
data, sending with Receiver<T> 470, 473
data, sending with Sender<T> 468, 469

std::thread::spawn
used, for spawning threads 449

Strategy pattern 269, 271

Index 725

string 35
strings 35
strip utility 673
struct fields

borrowing 134
mutable borrowing 134, 135
ownership 133

structs 36, 116, 117, 237, 344
associated functions 40, 127, 128
classic structs 36
destructuring 291-293
enums, using with 145
exercises and assignments 139
field initialization shorthand 118, 119
fields, accessing 119
fields, modifying 119-121
field values, reading 119
initialization and update syntax 37, 38
initializing 117, 118
instances, cloning 122-124
instances, creating 117
instances, updating 121
methods 38, 39, 124-126
methods, calling 126
summary 139
tuple structs 37
unit structs 37
update syntax 121, 122

stubs 333
creating 333

super keyword 161, 162
supertraits 255-257
sync trait 486
system programming 561, 562

requisites 561, 562
system resource management,

best practices

file I/O performance, optimizing 428
memory usage, with I/O operations 425-428
network I/O performance, optimizing 430
resource contention, minimizing 432
security principles,

for resource handling 431

T
tag-push-pull workflow 694
TCP client

creating 410
data, sending 410-413
responses, receiving 410-413
server, connecting with

TcpStream::connect 410
TCP handshake 418
TCP server

building 406
incoming client connections, handling 406
request, reading 406-409
responses, sending 406, 409
TcpListener, used for

listening connections 406
TcpStream::connect

used, for connecting to server 410
TDD, for API handler 329

code refactoring 332
failing test, writing 330
minimal code, writing 331

test doubles 333

Test-Driven Development (TDD) 324
benefits 325, 326
code, improving 328, 329
cycle 325
failing test, writing 326, 327
minimal code, writing 327

Index726

testing
importance 299, 300

test isolation, with test doubles 332
manual stubbing (with traits) 333, 336, 337
mocking libraries 337
need for 332

tests, in Rust
best practices 338
documentation tests 301
integration tests 301
unit tests 301

thiserror crate 192-197
thread panics

effects 455
handling 453, 454

threads
creating 448
data safely, sharing 455
spawning, with std::thread::spawn 449
waiting, for completion 452, 453

thread safety 448
threads, data safety

mutual exclusion, for mutable data 459
ownership, sharing 456
unsafe shared state, perils 455

thread spawning
basic creation 449, 450
data, moving with move closure 451, 452
with std::thread::spawn 449

timeouts 417
TLS handshake 418
TOML (Tom’s Obvious, Minimal Language)

URL 16
trait-based code reuse 236
trait bounds 219, 243-245, 257

trait objects 214, 248
creating 248-250
dynamic polymorphism 248
static, versus dynamic dispatch 216

traits 236, 240
behavior, sharing 254
default implementations 254
defining 240
for polymorphism 243-245
implementing 212, 240
multiple traits, with + 257
supertraits 255-257

Transmission Control Protocol (TCP) 405
transmitter 467
Transport Layer Security (TLS)

client or server, setting up 420-424
crates, using 419
for secure communication 417
secure connections, implementing 417
security benefits 417
working 418, 419

tuples 32, 147-149
accessing, by index 150
destructuring 151, 152
destructuring, in loop 153
elements 32
elements, accessing 150
employee record 151
exercises and assignments 156
function return values,

destructuring 152-154
multiple values, returning 153
practical example 154-156
returning, from functions 153
using 149

tuple structs 130, 131
empty tuples 132

Index 727

fields, accessing 131
instances, creating 131
practical example 131

U
Ultimate Packer for eXecutables (UPX) 674
unit-like structs 128, 129

use cases 129
unit tests 301

assertion macros 306-308
characteristics 302
execution, controlling 312, 313
result and option types, testing 308-310
running, with cargo tests 305
testing, for panic conditions 310-312
writing 302-304

unit type 68
unrecoverable errors 170, 175, 176
unsafe Rust 568

features 569
importance 568
raw pointers, working with 570, 573

unwrap method 176
unwrapping 176

safe unwrapping, with defaults 178
use keyword

scope, simplifying with 162
User Datagram Protocol (UDP) 405
UserProfile struct 137

methods, adding 137, 138
using 138, 139

V
variable declarations and mutability,

Rust 28
immutable variable 28, 29

mutable variables 29
shadowing 29, 30

virtual method table (vtable) 216
Visual Studio Code (VS Code) 10

setting up, for Rust 10, 11
URL 10

W
Weak<T>

used, for breaking cycles 362
WebAssembly (Wasm) 3, 547

.wasm, building 551
frontend, testing 555-557
JavaScript glue 551
module, building 547, 548
module, using from

simple web page 553, 554
Rust functions, exposing

with #[wasm_bindgen] 548, 551
while keyword 50
while let 294, 295
write lock 464

Y
YAML 677

Z
zero-copy configuration parser, building

input abstraction, using generics 230
Parse trait 230
references, validating 231
safety guarantee 231

zero-copy parsing 231
Zero-cost abstractions (ZCAs) 222 564, 565

	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Free Benefits with Your Book

	Chapter 1: Getting Started with Rust
	Free Benefits with Your Book
	Technical requirements
	What is Rust?
	What is Rust good for?
	Key features of Rust
	The Rust ecosystem
	Why learn Rust?

	Installation and Hello World
	Installing Rust
	Verifying the installation
	Setting up your development environment
	Setting up VS Code for Rust (recommended)
	Hello World
	Compiling and running your Hello World

	Using Cargo and Crates.io
	Verifying Cargo installation
	What is Cargo?
	Cargo’s main features
	Stable versus Nightly Rust

	Creating a new Rust project
	Managing dependencies with Cargo.toml
	Installing dependencies from Crates.io
	Cargo.lock: keeping dependencies consistent

	Building your project
	Running your project with Cargo
	Initializing a new Rust project with cargo init
	Creating a library with cargo init --lib

	Your first real Rust program: a CLI calculator
	Step 1: Setting up your project
	Step 2: Writing the calculator logic
	Step 3: Running the program
	What you learned

	Functions
	Functions example

	Summary
	Questions

	Chapter 2: Rust Syntax and Functions
	Variable declarations and mutability
	Immutable variables
	Mutable variables
	Shadowing

	Data types and structures
	Scalar types
	Integers
	Floating-point numbers
	Booleans
	Characters

	Compound types
	Tuples
	Arrays
	Slices
	Strings

	Structs
	Classic structs
	Tuple structs
	Unit structs
	Struct initialization and update syntax
	Methods and associated functions

	Enums
	Defining enums
	Matching with enums
	Enum methods

	Functions in Rust
	Function syntax
	Parameter passing
	Passing by value
	Passing by reference
	Passing by mutable reference
	Return values

	Ownership and functions

	Control flow constructs
	if and else statements
	Loop constructs
	The loop keyword
	The while keyword
	The for keyword
	Using ranges with the for loop

	Nesting loops
	Pattern matching with match
	Matching literals
	Matching with variables
	Destructuring enums
	Combining patterns
	Adding conditional logic with match guards
	Matching ranges
	Pattern matching with Option

	Understanding Rust’s approach to error handling
	Fundamentals of error handling
	The Result type
	The Option type
	Error destructuring
	The panic! macro

	Summary
	Questions and assignments
	Questions
	Variable declarations and mutability
	Data types and structures
	Control flow constructs
	Functions in Rust

	Assignments
	Assignment 2.1: Variable declarations and mutability

	Assignment 2.2: Data types and structures

	Chapter 3: Functions in Rust
	Importance of understanding functions
	Defining and calling functions
	Basic function syntax
	Parameters and return values
	Functions that don’t return a value
	Functions with no parameters and no return values

	Function syntax and best practices
	Function ownership and borrowing
	Ownership in functions
	Borrowing in functions
	Immutable borrowing
	Mutable borrowing

	Returning values and ownership

	Advanced function features
	Closures
	Capturing the environment
	The move keyword
	The closure traits: Fn, FnMut, and FnOnce
	Closures in action: Higher-order functions and iterators
	Anonymous functions and iterator methods

	Summary
	Questions and assignments
	Questions
	Defining functions
	Function ownership and borrowing
	Advanced function features

	Assignments
	Assignment 3.1: basic function implementation
	Assignment 3.2: ownership and borrowing in functions
	Assignment 3.3: using closures

	Chapter 4: Ownership, Borrowing, and References
	Objective
	What is ownership?
	Understanding ownership
	Ways variables interact: Move, copy, and clone
	The default behavior: Moving ownership
	The exception: Automatic copying with the Copy trait
	Explicit duplication: The Clone trait

	Key rules of ownership in Rust
	Each value has a single owner
	Ownership can be transferred (moved)
	The owner is responsible for cleaning up the value

	Moving ownership
	Why move ownership?
	Moving in function calls
	Advantages of moving ownership

	Ownership and functions
	Ownership transfer in function calls
	Returning ownership

	Borrowing and references
	Immutable borrowing
	Mutable borrowing
	Borrowing rules
	Borrowing in functions
	Practical example: Managing a library

	Common patterns and idioms in Rust: Ownership, borrowing, and references
	Borrowing for read-only access
	Mutable borrowing for modification
	Example: Mutable borrowing in a function
	Returning references with borrowing
	Example: Returning a reference to the longest string

	Pitfalls and how to avoid them
	Forgetting ownership has moved
	Multiple mutable references
	Dangling references
	Unnecessary clones

	Summary
	Questions and assignments
	Questions
	Assignments
	Assignment 4.1: ownership in action
	Assignment 4.2: playing with borrowing

	Chapter 5: Composite Types in Rust and the Module System
	Structs: Named-field collections
	Defining structs
	Creating instances of structs
	Initializing structs

	Field initialization shorthand
	Accessing struct fields
	Reading field values

	Modifying struct fields
	Updating struct instances
	Struct update syntax
	Cloning struct instances

	Methods for structs
	Defining methods

	Calling methods
	Associated functions intro
	Unit-like structs
	Defining unit-like structs
	Use cases for unit-like structs

	Tuple structs
	Defining tuple structs
	Creating instances of tuple structs
	Accessing tuple struct fields
	Practical example: Using tuple structs in a function
	Empty tuples

	Structs and ownership
	Ownership of struct fields

	Borrowing struct fields
	Mutable borrowing
	Debugging with structs
	Implementing the Debug trait
	Customizing debug output

	Practical example: User profile
	Defining the UserProfile struct
	Adding methods to UserProfile
	Using the UserProfile struct

	Structs: Exercises and assignments
	Structs: Summary

	Enums: One of several possibilities
	Defining and using enums
	Enum variants can hold data
	Enum methods/functions intro
	Enum methods example
	Using enums with structs
	Defining structs with enum fields

	Enums: exercises and assignments
	Enums: summary

	Tuples: simple ordered groups
	Using tuples
	Accessing tuple elements
	Accessing elements by index
	Practical example: employee record

	Destructuring tuples
	Destructuring tuples
	Practical example: destructuring function return values
	Destructuring in a loop

	Returning tuples from functions
	Returning multiple values
	Destructuring function return values
	Practical example: splitting a full name

	Practical example: point in 3D space
	Calculating the distance between points
	Practical usage

	Tuples: exercises and assignments

	Tuples: summary
	Using structs, enums, and tuples together
	Practical example: modeling a user profile

	Managing complexity with the module system
	Packages and crates
	The Package layout
	Binary crates vs. library crates

	Controlling scope and privacy with modules
	Defining the module tree
	The rules of privacy (the pub keyword)

	Referring to items via paths
	Absolute paths
	Relative paths and the super keyword

	Simplifying scope with the use keyword
	Idiomatic use paths
	Handling naming conflicts with “as”

	Physical organization: separating modules into files
	The module filesystem mapping

	Summary
	Questions and assignments
	Questions
	Assignments
	Assignment 5.1: order system
	Assignment 5.2: geometric shapes enhanced

	Chapter 6: Introduction to Error Handling
	Why error handling matters
	Rust’s approach to errors
	Core tools: Result and Option
	Introduction to Result and Option
	The Result type
	The Option type
	Option example
	When to use Result versus Option

	Handling Result and Option (unwrapping and alternatives)
	Unrecoverable errors: Understanding panic!
	Introduction to unwrapping
	Using unwrap and expect
	Safe unwrapping with defaults
	Using combinators

	Propagating errors with ?
	The problem of manual propagation
	The ? operator for Result
	Example: the ? operator for Result with Result
	The ? operator for Option
	When to use the ? operator

	Custom error types
	Defining custom error types with an enum
	Implementing standard error traits
	Using custom errors in functions

	Simplifying custom errors with thiserror and anyhow
	The thiserror crate
	The anyhow crate
	When to use thiserror versus anyhow

	Logging errors
	Importance of logging
	The log crate and implementations
	Basic setup with env_logger
	Logging levels and configuration
	Logging errors with Context

	Practical examples and error handling best practices
	Practical example: File data processing

	Summary
	Questions and assignments
	Questions
	Assignments
	Assignment 6.1: File reading with detailed error handling
	Assignment 6.2: Division function with custom errors (using thiserror)
	Assignment 6.3: Finding elements with Option and ?

	Chapter 7: Polymorphism and Lifetimes
	Ad hoc polymorphism: defining behavior with traits
	Defining a trait
	Method signatures versus default implementations
	Abstracting behavior
	Implementing traits
	Implementing custom types
	The orphan rule (where implementation is allowed)

	Trait objects
	Static versus dynamic dispatch

	Parametric polymorphism: abstracting with generics
	The problem of duplication
	Writing the same function for different types
	The <T> type parameter

	Bounded parametric polymorphism (trait bounds)
	Limiting generics with traits (T: Trait)
	The where clause for complex constraints
	Returning types that implement traits

	Monomorphization
	How Rust optimizes polymorphism (zero-cost)

	Lifetimes: polymorphism for scope
	The necessity of lifetimes
	The dangling reference problem
	How the borrow checker validates scopes

	Generic lifetime annotations
	The <’a> syntax
	Annotating functions holding references
	The relationship between input and output lifetimes
	Lifetimes in data structures
	Structs with references
	The impl block for lifetime-bound structs

	Advanced lifetime concepts
	Lifetime elision rules
	The static lifetime (‘static)

	Applied polymorphism: a project
	Building a zero-copy configuration parser
	Defining the capability (the Parse trait)
	Abstracting the input (using generics)
	The safety guarantee
	Validating references (integrating lifetimes)

	Summary
	Questions and assignment
	Questions
	Assignment
	The universal media player

	Chapter 8: Object-Oriented Programming in Rust
	Understanding OOP principles
	How Rust approaches OOP differently
	Encapsulation: structs, methods, and privacy
	Shared behavior with traits
	Defining and implementing traits
	Traits for polymorphism: impl Trait
	Traits for polymorphism: trait bounds
	Understanding static dispatch (monomorphization)
	Dynamic polymorphism with trait objects
	Introduction to trait objects
	Creating trait objects: dyn Trait
	Dynamic versus static dispatch recap
	Object safety

	Simulating inheritance patterns
	Composition over inheritance
	Sharing behavior via traits
	Default implementations
	Trait bounds as “subclassing” constraints: supertraits
	Requiring multiple traits with +

	Associated types

	Object-oriented design patterns in Rust
	Introduction to patterns in Rust
	Builder pattern
	State pattern/typed states
	Observer pattern
	Strategy pattern

	Summary
	Questions and assignments
	Questions
	Assignments
	Assignment 8.1: The private bank account (encapsulation)
	Assignment 8.2: Animal sounds (basic traits)

	Chapter 9: Thinking Functionally in Rust
	Rust and functional programming
	Iterators: Processing sequences lazily
	Creating and consuming iterators with next()
	Three ways to iterate
	Three ways to iterate: iter(), iter_mut(), and into_iter()

	The role of consumers
	Common consumers: collect(), sum(), and fold()

	Iterator adapters: Transforming sequences
	The map adapter
	The filter adapter
	Other useful adapters and consumers

	Closures: Capturing the environment
	Defining closures
	Capturing the environment
	Closure traits: Fn, FnMut, and FnOnce

	Pattern matching
	Pattern matching in functional style
	Destructuring structs and enums
	if let and while let

	Summary
	Questions and assignments
	Questions
	Assignments
	Assignment 9.1 (easy): Simple data filtering and transformation
	Assignment 9.2 (advanced): Implementing a custom Fibonacci iterator

	Chapter 10: Testing in Rust
	Why bother with testing?
	Types of tests in Rust’s ecosystem
	Unit tests: The building blocks
	What are unit tests?
	Writing your first unit test
	Running your tests with cargo test
	Common assertion macros
	Testing Result and Option types
	Testing for panics
	Controlling test execution

	Integration tests: Checking how parts fit together
	Purpose of integration tests
	Setting up integration tests
	Our library code (src/lib.rs)
	Integration test file (tests/analyzer_integration.rs)

	Helper functions in integration tests
	Example shared helper (tests/common/mod.rs)
	Using shared helpers (tests/analyzer_integration.rs)

	Documentation tests: Keeping examples correct
	What are documentation tests?
	Writing documentation tests
	Controlling doc test behavior
	Hiding lines from documentation output but not from the test

	A brief look at Test-Driven Development (TDD)
	TDD cycle
	TDD benefits and a micro example
	1. Red: Write a failing test
	2. Green: Write minimal code to make tests pass
	3. Refactor: Improve the code
	Next cycle: red (for case-insensitivity)

	TDD for an API handler
	1. Red: Write the failing test
	2. Green: Write minimal code to make the test pass
	3. Refactor

	Isolating tests with test doubles (mocks and stubs)
	The need for isolation
	What are test doubles? Stubs and mocks
	Manual stubbing (with traits)
	Mocking libraries

	Best practices for writing good tests
	Summary
	Questions and assignment
	Questions
	Assignment

	Chapter 11: Smart Pointers and Memory Management
	What are smart pointers, anyway?
	The role of smart pointers in Rust’s memory model
	Enhancing safety beyond basic ownership
	Performance implications
	Enabling safe concurrency

	Key ideas behind smart pointers
	Ownership and borrowing still apply
	Automatic cleanup
	Reference counting for shared data
	Interior mutability: bending the rules safely

	A quick tour of Rust’s smart pointer toolkit

	Box<T>: pointing to heap-allocated data
	Why use Box<T>?
	Creating and using a Box<T>
	Key use case: enabling recursive data structures
	When to choose Box<T>: performance and ownership

	Sharing data safely: Rc<T> and Arc<T>
	The concept of shared ownership
	Rc<T>: reference counting for single-threaded scenarios
	Creating Rc<T> instances and cloning references

	Arc<T>: atomic reference counting for multithreading
	Using Arc<T> to share data across threads
	The “atomic” in Arc<T>

	Reference counting, Drop, and potential cycles
	How Weak<T> can break cycles

	Interior mutability: modifying data through shared references
	What is interior mutability and why is it needed?
	RefCell<T>: enforcing borrowing rules at runtime (single-threaded)
	Using borrow() and borrow_mut()
	Runtime panics on borrow rule violations

	Mutex<T>: ensuring exclusive access in concurrent code
	Locking and unlocking with lock()
	Combining Arc<T> and Mutex<T> for shared mutable state
	RwLock for read-mostly data

	Working effectively with smart pointers
	Smart pointers and method calls (the Deref trait in action)
	Implementing methods on structs that own smart pointers
	Combining smart pointers for complex scenarios
	Smart pointers and ownership transfer
	Practical application: a simple graph with shared nodes (Rc<RefCell<Node>>)
	Important note on cycles and Weak

	Summary
	Questions and assignments
	Questions
	Assignment

	Chapter 12: Managing System Resources
	Working with files in Rust (file I/O)
	Core concepts of file operations
	Reading from files
	Reading an entire file into a string
	Reading a file line by line

	Writing to files
	Writing a string or bytes to a file
	Appending content to an existing file

	Manipulating files and directories
	Key takeaways for file I/O in Rust

	Network programming essentials in Rust
	Fundamentals of network communication
	Building a basic TCP server
	Listening for connections with TcpListener
	Handling incoming client connections
	Reading requests and sending responses

	Creating a basic TCP client
	Connecting to a server with TcpStream::connect
	Sending data and receiving responses

	Ensuring robust and secure network applications
	Graceful error handling in network code
	Handling Result from network operations
	Timeouts and non-blocking operations

	Implementing secure connections with TLS
	Introduction to TLS for secure communication
	How TLS works
	Using crates for TLS
	Example: Setting up a basic TLS client or server

	Best practices for system resource management
	Efficient memory usage with I/O operations
	Optimizing file I/O performance
	Buffering strategies recap
	Processing large files in chunks

	Optimizing network I/O performance
	Understanding asynchronous I/O for networking
	Managing network buffers and packet sizes

	General security principles for resource handling
	Validating inputs from external sources
	Principle of least privilege

	Minimizing resource contention in concurrent scenarios

	Real-world scenarios and examples
	Example 1: Building a more robust HTTP server
	Important limitation: sequential handling

	Example 2: Command-line tool for file operations
	Next steps

	Summary
	Questions and assignments
	Questions
	Assignments
	Assignment 12.1: Simple file copy utility
	Assignment 12.2: Simple key-value TCP server

	Chapter 13: Concurrency and Parallelism
	What are concurrency and parallelism?
	Why write concurrent programs?
	The classic challenges: Race conditions and deadlocks
	Rust’s promise: Compile-time safety for concurrency

	Creating and managing threads
	Spawning new threads with std::thread::spawn
	Basic thread creation
	Moving data into threads with the move closure

	Waiting for threads to finish: JoinHandle and join()
	Handling thread panics gracefully
	Thread panics and their effect

	Sharing data safely between threads
	The perils of unsafe shared state
	Arc<T>: Sharing ownership atomically across threads
	Recap: Why Rc<T> isn’t enough
	Using Arc::clone() for thread distribution

	Mutex<T>: Ensuring mutual exclusion for mutable data
	Acquiring the lock with lock()
	The role of MutexGuard
	Combining Arc<Mutex<T>> for shared mutable state
	Thinking about deadlocks
	RwLock<T>: Allowing multiple readers or one writer
	When to use RwLock<T> versus Mutex<T>

	Message passing: Communicating between threads
	An alternative to shared state: Channels
	Introduction to std::sync::mpsc channels (multiple producer, single consumer)
	Creating a channel: channel()
	Sending data with Sender<T>
	Receiving data with Receiver<T> (recv(), try_recv())

	Using channels for thread communication and synchronization

	A glimpse into asynchronous programming with async/await
	When threads aren’t always the best fit (I/O-bound tasks versus CPU-bound tasks)
	Brief overview of the async and await keywords
	Async runtimes (such as tokio or async-std)

	Best practices for concurrent Rust
	Prefer message passing for simplicity where possible
	Keep critical sections (locks) short and sweet
	Be mindful of lock ordering to avoid deadlocks
	Trust the compiler: Leverage Rust’s safety guarantees
	Consider the granularity of your parallelism

	Summary
	Questions and assignment
	Questions
	Assignment: Concurrent file word counter

	Chapter 14: Rust for Web Development: Building Full-Stack Applications
	Core web concepts: a quick refresher
	The HTTP protocol: requests, responses, and methods
	Requests and responses
	Common HTTP methods
	Status codes

	Data formats: JSON and RESTful API design
	JSON for APIs
	Brief on RESTful API design principles

	Getting started with Axum
	Project setup and dependencies
	“Hello, Web!” – Your first Axum server (Getting started with Axum)
	Understanding handlers and the router
	Defining handler functions
	Registering routes with Router::route

	Building a RESTful API: an in-memory todo list
	Project setup for the API
	Managing shared state
	Handling requests and extracting data
	Implementing the CRUD API endpoints
	All the code for the RESTful API example

	Testing our RESTful application
	Step 1: Run your Axum server
	Step 2: Open a new terminal
	Step 3: Test your API endpoints with curl

	Adding persistence with PostgreSQL
	Database setup
	Integrating sqlx into the Axum project
	Adding sqlx and dotenvy dependencies
	Configuring DATABASE_URL
	Installing and using sqlx-cli for migrations

	Schema management with sqlx migrations
	Creating and running migrations

	Mapping Rust structs and using a connection pool
	Using sqlx::PgPool for the connection pool
	Deriving FromRow for our Todo struct
	Sharing the pool in Axum’s AppState

	Refactoring handlers for async database persistence
	Writing raw SQL queries
	Refactoring the CRUD endpoints to be fully async

	Testing the application
	Verifying with psql

	A final backend step: enabling CORS

	Frontend: WebAssembly
	Building and using a simple Wasm module
	Exposing Rust functions with #[wasm_bindgen]
	Building the .wasm and JavaScript glue
	Using the Wasm module from a simple web page
	Testing the frontend

	Summary
	Questions and assignment
	Questions
	Assignment
	Expanding the API and using basic extractors

	Chapter 15: System Programming in Rust: Concrete Examples
	What defines system programming?
	Why Rust is a strong candidate for systems work
	The core tension: control versus abstraction
	The systems programmer’s dilemma
	Rust’s solution: control without compromise
	The bridge to unsafe: when ZCAs aren’t enough

	Chapter roadmap: from low-level mechanics to practical builds

	Low-level programming foundations in Rust
	Rust’s memory safety model: a systems perspective
	Ownership and borrowing recap for control and safety
	Stack versus heap: managing memory explicitly
	The role of smart pointers in memory management

	Venturing into unsafe Rust
	When and why unsafe is necessary
	The five superpowers of unsafe Rust
	Working with raw pointers (*const T and *mut T)

	Best practices for encapsulating unsafe code

	Building practical command-line utilities
	Designing a useful CLI tool
	Parsing command-line arguments
	Using std::env::args() for basic arguments
	Introduction to argument parsing

	Interacting with the file system
	Reading and writing files in a CLI context
	Directory traversal and manipulation

	Handling standard input, output, and error streams

	Interfacing with C code: the Foreign Function Interface (FFI)
	The “why” of FFI: leveraging existing C libraries
	Declaring and linking external C functions
	Using extern “C” blocks
	The #[link] attribute and build scripts

	Passing data between Rust and C
	Primitive types and their equivalents
	Working with C strings
	Representing C structs in Rust
	Handling pointers and callbacks

	Creating safe Rust wrappers around unsafe C APIs
	Practical example: using a simple custom C library from Rust
	Prerequisite: installing a C compiler

	A glimpse into kernel module development with Rust
	The unique environment of kernel space
	Essential setup for Rust kernel development
	no_std and target specifications
	Basic module structure (init/exit functions, logging)

	Building, loading, and further considerations
	Compilation and loading process
	Important caveats and next steps for exploration

	Summary
	Questions and assignments
	Questions
	Assignment
	Enhanced command-line file analyzer

	Chapter 16: Dockerization and Deployment of Rust Applications
	What is Docker? An overview
	Key benefits of using Docker
	Why Dockerize Rust applications specifically?
	Chapter objectives: What you’ll learn

	Getting started with Docker
	Setting up your Docker environment
	Installing Docker Desktop (Windows, macOS, and Linux)
	Verifying your Docker installation

	Essential Docker concepts
	Images and containers: The core building blocks
	Docker Hub and container registries

	Basic Docker commands for interaction
	Running a container: docker run
	Listing containers: docker ps
	Managing images: docker images, docker pull, and docker rmi
	Stopping and removing containers: docker stop and docker rm

	Dockerizing your Rust application
	Understanding the Dockerfile
	Core instructions: FROM, WORKDIR, COPY, RUN, CMD, and EXPOSE

	Creating a basic Dockerfile for a Rust application
	Choosing a base Rust image
	Copying your project and building
	Setting the CMD to run your compiled binary
	Final Dockerfile

	Building Your Docker Image
	Running your Rust application inside a Docker container

	Optimizing Docker images for Rust
	The importance of small and efficient images
	Using multi-stage builds
	Separating the build environment from the runtime environment
	Copying artifacts

	Choosing minimal base images for runtime
	Considerations for Alpine and musl versus glibc

	Leveraging Docker build cache and cargo’s build caching
	Structuring COPY and RUN commands effectively

	Stripping debug symbols and binary compression
	Using strip
	Using tools such as UPX

	Managing multi-container apps with Docker Compose
	Introduction to Docker Compose: Why you need it
	Writing a compose.yml file
	Defining services
	Linking services and managing networks
	Using environment variables for configuration
	Managing persistent data with volumes

	Example: A Rust application with a PostgreSQL database
	Running and managing your application stack

	Deploying Dockerized Rust applications
	Overview of deployment strategies
	Using container registries
	Tagging your Docker images for versioning
	Pushing images to a registry
	Pulling images in a deployment environment

	Summary
	Congratulations!
	Questions and assignments
	Questions
	Assignments
	Assignment 16.1: Dockerize an existing Rust CLI or web application
	Assignment 16.2: Create a multi-container application with Docker Compose

	Chapter 17: Unlock Your Exclusive Benefits
	Other Books You May Enjoy
	Index

