

9 7 8 1 0 9 8 1 6 4 4 1 6

5 5 9 9 9
ISBN: 978-1-098-16441-6
US $59.99	 CAN $74.99

DATA / DATA SCIENCE

 Hands-On APIs for AI and Data Science

“Hands-On APIs for AI and Data Science is an awesome contribution to the
data science community. Do yourself a favor—add this book to your data
science library for your continued professional development and become
a better, more effective data scientist!”
Alex Gutman
Author of Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning

“With the growing importance of APIs in data science and AI, this book is
an essential resource for gaining practical insights. It is an invaluable read
for anyone looking to create impactful APIs.”
James Gough, distinguished engineer at Morgan Stanley and author of Mastering API Architecture

“This is essential reading for anyone looking to round out their data science
capabilities as an individual or to better serve their customers as a company.”
Eric Eager, vice president of football analytics, Carolina Panthers, and author of Football Analytics with Python and R

API skills are essential for AI and data science success and learning them is valuable for both new learners
and experienced professionals. With this practical book, data scientists and software developers will gain
hands-on experience developing and using APIs with the Python programming language and popular
frameworks like FastAPI and Streamlit.

Divided into three parts, this book helps you build APIs from scratch, integrate them into data science
workflows, and leverage AI tools like ChatGPT and LangChain to interact with APIs using large language
models (LLMs). By the end, you’ll have a portfolio of API-powered projects showcasing your skills in AI,
machine learning, and data science.

•	 Learn to design APIs tailored for data science applications

•	 Discover how to build and deploy APIs using Python
and FastAPI

•	 See how to integrate APIs into data science workflows
for data access and visualization

•	 Train machine learning models and deploy as APIs

•	 Use generative AI and LLMs to interact with APIs effectively

Ryan Day is an advanced
data scientist at CSBS and
an open source developer
participating in FastAPI,
and has a background
in cloud computing and
API development in the
federal sector.

Praise for Hands-On APIs for AI and Data Science

Hands-On APIs for AI and Data Science is an awesome contribution to
the data science community. Day provides a structured guide to a core topic data

scientists often learn too late: delivering solutions to users. You’ll master APIs, but along
the way, you’ll also add a dozen more tools to your data science toolbox.

Do yourself a favor—add this book to your data science library for your continued
professional development and become a better, more effective data scientist!

—Alex Gutman, author of Becoming a Data Head: How to
Think, Speak, and Understand Data Science, Statistics, and Machine Learning

Day takes the reader through a thorough, yet clear, roadmap of building APIs,
using an extremely topical industry (fantasy football) as the example. This is essential

reading for anyone looking to round out their data science capabilities as an individual or
better serve their customers as a company.

—Eric Eager, vice president of football analytics,
Carolina Panthers

With the growing importance of APIs in data science and AI, this book is an
essential resource for gaining practical insights. It prioritizes understanding your

consumers, which is essential for designing and building great APIs. This book
is filled with actionable examples and expert guidance. It is an invaluable read for anyone

looking to create impactful APIs.
—James Gough, author of Mastering API Architecture

This book is a fantastic resource for data scientists who need to use APIs,
whether you’re building them or accessing data through them. It’s very practical,

it’s fun to read, and it’ll be extremely useful to any data scientist
who wants to improve their software engineering skills.

—Catherine Nelson, author of
Software Engineering for Data Scientists

Ryan offers a comprehensive guide for data scientists at all levels that blends deep
technical expertise with practical strategies on mastering API usage.

—Kris Rowley, CSBS chief data officer and
Data Foundation board member

Hands-On APIs for AI and Data Science avoids the biggest mistake I see in technical
books: it provides practical lessons grounded in how technology is actually used.

With fun examples from sports data, author Ryan Day walks through multiple angles
of a single API project. Anyone in data science would be wise to build their career on the

foundations Ryan has laid out in this book.
—Adam DuVander, EveryDeveloper

Ryan does a great job teaching you how to both be a better API user
and creator using engaging examples from fantasy sports.

—Richard Erickson, data scientist and O’Reilly author of
Football Analytics with Python and R

Ryan Day’s book is an essential resource for football analytics professionals, from
newcomers to seasoned experts. This book equips readers with the tools to build and

deploy APIs that power advanced data workflows, from player performance modeling to
real-time fantasy football applications. With Ryan’s guidance, you’ll learn to integrate APIs

into your analytics toolbox and take your insights to the next level.
—Amelia Probst, data scientist, Pro Football Focus

If you’re looking to skill up on APIs and understand how important they are
to building effective AI applications, this book delivers a mix of theory and

hands-on exercise to get you there.
—Jeff Frederickson, software engineer

This book is a must-have for Python developers seeking to build powerful and efficient
APIs, utilizing the latest FastAPI technology. With clear explanations and practical

examples, it guides readers through every step of API creation and deployment, making
complex topics approachable and actionable.

—Megan Silvey, founder and data science consultant,
Silvey Solutions

Hands-On APIs for AI and Data Science is an essential read for today’s data and IT
professionals aiming to keep pace in our ever-evolving data-driven world.

Ryan’s ability to present complex concepts through hands-on application makes it
easy for readers to apply what they’ve learned in practice, in real-world scenarios,

or even on the job. Highly recommended for beginners and seasoned professionals, and
you may even learn a little fantasy football along the way!

—Richard Bright, enterprise data architect

Ryan Day

Hands-On APIs for AI
and Data Science

Python Development with FastAPI

978-1-098-16441-6

[LSI]

Hands-On APIs for AI and Data Science
by Ryan Day

Copyright © 2025 Ryan Day. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Michelle Smith
Development Editor: Corbin Collins
Production Editor: Aleeya Rahman
Copyeditor: Tove Innis
Proofreader: Audrey Doyle

Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

March 2025: First Edition

Revision History for the First Edition
2025-03-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098164416 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hands-On APIs for AI and Data Sci‐
ence, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098164416

For Allison

Table of Contents

Preface. xvii

Part I. Building APIs for Data Science

1. Creating APIs That Data Scientists Will Love. 3
How Do Data Scientists Use APIs? 3
What Tools Do Data Scientists Use? 4
Designing APIs for Data Scientists 5
Introducing Your Part I Portfolio Project 6
Every API Has a Story 6

Meeting Your Company: SportsWorldCentral 7
SWC Needs an API 9

Selecting the First API Products 10
Identifying Potential Users 10
Creating User Stories 11

Additional Resources 13
Summary 13

2. Selecting Your API Architecture. 15
API Architectural Styles 15

Representational State Transfer (REST) 16
Graph Query Language (GraphQL) 17
gRPC 17
Your Choice: REST 18

ix

Technology Architecture 19
Software Used in This Chapter 21

Python 21
GitHub 21

Getting Started with Your GitHub Codespace 22
Creating Your GitHub Account 22
Cloning the Part I Repository 22
Launching Your GitHub Codespace 23
Touring Your New Codespace 24
Making Your First Commit 25

Additional Resources 27
Summary 28

3. Creating Your Database. 29
Components of Your API 29
Software Used in This Chapter 30

SQLite 30
SQLAlchemy 31
pytest 31

Creating Your SQLite Database 32
Creating Database Tables 32
Understanding Table Structure 35
Loading Your Data 36

Accessing Your Data Using Python 37
Installing SQLAlchemy in Your Environment 37
Creating Python Files for Database Access 39
Creating the Database Configuration File 44
Creating SQLAlchemy Helper Functions 45
Installing pytest in Your Environment 49
Testing Your SQLAchemy Code 49

Additional Resources 52
Summary 53

4. Developing the FastAPI Code. 55
Continuing Your Portfolio Project 55
Software Used in This Chapter 56

FastAPI 56
HTTPX 57
Pydantic 57

x | Table of Contents

Uvicorn 58
Copying Files from Chapter 3 58
Installing the New Libraries in Your Codespace 59
Creating Python Files for Your API 59

Creating Pydantic Schemas 59
Creating Your FastAPI Controller 64

Testing Your API 70
Launching Your API 73
Additional Resources 75
Summary 76

5. Documenting Your API. 77
Sending a Signal of Trust 77
Making Great API Docs 78

Core Features 78
Extra Features 79

Reviewing Examples of API Documentation 80
Sleeper App 80
MyFantasyLeague 81
Yahoo! Fantasy Football 83

Viewing Your API’s Built-in Documentation 83
Copying Files from Chapter 4 84
Documentation Option 1: Swagger UI 85
Documentation Option 2: Redoc 91

Working with Your OpenAPI Specification File 92
Continuing Your Portfolio Project 95

Adding Details to the OAS info Object 96
Adding Tags to Categorize Your Paths 97
Adding More Details to Individual Endpoints 97
Adding Parameter Descriptions 98
Viewing the Changes in Swagger UI 99
Regression-Testing Your API 100

Updating Your README.md 101
Additional Resources 103
Summary 104

6. Deploying Your API to the Cloud. 105
Benefits and Responsibilities of Cloud Deployment 105

Benefits 106

Table of Contents | xi

Responsibilities 106
Choosing a Cloud Host for Your Project 107
Setting Up Your Project Directory 108
Using GitHub Codespaces as a Cloud Host 108
Deploying to Render 109

Signing Up for Render 110
Creating a New Web Service 110
Auto-Deploying a Change to Your API 112

Shipping Your Application in a Docker Container 113
Verifying Docker Installation 114
Creating a Dockerfile 114
Creating a .dockerignore File 115
Building a Container Image 116
Running Your Container Image Locally 116

Deploying to AWS 117
Creating a Lightsail Container Service 117
Installing the AWS CLI 119
Installing the Amazon Lightsail Container Services Plug-in 119
Configuring Your Login Credentials 119
Pushing Your Container Image to Lightsail 119
Creating a Lightsail Deployment 121

Updating Your API Documentation 125
Additional Resources 125
Summary 126

7. Batteries Included: Creating a Python SDK. 127
SDKs Bridge the Gap 128
Picking a Language for Your SDK 131
Starting with a Minimum Viable SDK 132

Expert Tip: Making Your SDK Easy to Install 132
Expert Tip: Making the SDK Consistent and Idiomatic 134

Building a Feature-Rich SDK 136
Expert Tip: Using Sane Defaults 137
Expert Tip: Providing Rich Functionality 139
Expert Tip: Performing Logging 144
Expert Tip: Hiding Your API’s Complicated Details 146
Expert Tip: Supporting Bulk Downloads 148
Expert Tip: Documenting Your SDK 151
Testing Your SDK 153

xii | Table of Contents

Expert Tip: Supporting Every Task the API Supports 157
Completing Your Part I Portfolio Project 158
Additional Resources 160
Summary 161

Part II. Using APIs in Your Data Science Project

8. What Data Scientists Should Know About APIs. 165
Using a Variety of API Styles 165
HTTP Basics 167
How to Consume APIs Responsibly 169
Separation of Concerns: Using SDKs or Creating API Clients 170
How to Build APIs 172
How to Test APIs 172
API Deployment and Containerization 173
Using Version Control 173
Introducing Your Part II Portfolio Project 174
Getting Started with Your GitHub Codespace 174

Cloning the Part II Repository 174
Launching Your GitHub Codespace 175

Running the SportsWorldCentral (SWC) API Locally 176
Additional Resources 177
Summary 178

9. Using APIs for Data Analytics. 179
Custom Metrics for Sports Analytics 179
Using APIs as Data Sources for Fantasy Custom Metrics 180
Creating a Custom Metric: The Shark League Score 182
Software Used in This Chapter 183

httpx 183
Jupyter Notebooks 183
pandas 184

Installing the New Libraries in Your Codespace 184
Launching Your API in Codespaces 184
Creating an API Client File 185
Creating Your Jupyter Notebook 186
Adding General Configuration to Your Notebook 188
Working with Your API Data 189

Table of Contents | xiii

Calculating the League Balance Score 192
Calculating the League Juice Score 193
Creating the Shark League Score 195
Additional Resources 196
Summary 196

10. Using APIs in Data Pipelines. 197
Types of Data Sources for Data Pipelines 198
Planning Your Data Pipeline 198
Orchestrating the Data Pipeline with Apache Airflow 199
Installing Apache Airflow in GitHub Codespaces 200
Creating Your Local Analytics Database 204
Launching Your API in Codespaces 205
Configuring Airflow Connections 205
Creating Your First DAG 206
Coding a Shared Function 209
Running Your DAG 211
Summary 213

11. Using APIs in Streamlit Data Apps. 215
Engaging Users with Interactive Visualizations 215
Software Used in This Chapter 216

nfl_data_py 217
Streamlit 217

Installing Streamlit and nfl_data_py 217
Launching Your API in Codespaces 217
Reusing the Chapter 9 API Client File 218
Creating Your Streamlit App 218
Updating the Entrypoint File 219
Running Your Streamlit App 220
Creating the Team Rosters Page 221
Creating the Team Stats Page 224
Deploying Your Streamlit App 228
Completing Your Part II Portfolio Project 228
Additional Resources 229
Summary 230

xiv | Table of Contents

Part III. Using APIs with Artificial Intelligence

12. Using APIs with Artificial Intelligence. 233
The Overlap of AI and APIs 233
Designing APIs to Use with Generative AI and LLMs 235
Defining Artificial Intelligence 237
Generative AI and Large Language Models (LLMs) 238
Creating Agentic AI Applications 238
Introducing Your Part III Portfolio Project 240
Getting Started with Your GitHub Codespace 240

Cloning the Part III Repository 240
Launching Your GitHub Codespace 241

Additional Resources 242
Summary 242

13. Deploying a Machine Learning API. 243
Training Machine Learning Models 244
New Software Used in This Chapter 246

ONNX Runtime 246
scikit-learn 246
sklearn-onnx 246

Installing the New Libraries in Your Codespace 247
Using the CRISP-DM Process 247
Business Understanding 248
Data Understanding 249
Data Preparation 251
Modeling 251
Evaluation 254
Deployment 254
Additional Resources 263
Summary 263

14. Using APIs with LangChain. 265
Calling AI Using APIs (via LangChain) 266
Creating a LangGraph Agent 267

Signing Up for Anthropic 268
Launching Your GitHub Codespace 269

Installing the New Libraries in Your Codespace 270
Creating Your Jupyter Notebook 270

Table of Contents | xv

Chatting with the LangGraph Agent 273
Running the SportsWorldCentral (SWC) API Locally 275
Installing the swcpy Software Development Kit (SDK) 276
Creating a LangChain Toolkit 276
Calling APIs Using AI (with LangGraph) 280
Chatting with Your Agent (with Tools) 282
Additional Resources 283
Summary 284

15. Using ChatGPT to Call Your API. 285
Architecture of Your Application 285
Getting Started with ChatGPT 286
Creating a Custom GPT 287
Launching Your GitHub Codespace 290
Running the SportsWorldCentral (SWC) API in GitHub Codespaces 291
Adding the Servers Section to Your OAS File 292
Creating a GPT Action 293
Testing the APIs in Your GPT 295
Chatting with Your Custom GPT 296
Completing Your Part III Portfolio Project 298
Summary 300

Index. 301

xvi | Table of Contents

Preface

To succeed in AI, first master APIs. Becoming skilled at APIs is more valuable than
ever, thanks largely to the growth of artificial intelligence, machine learning, and data
science.

But learning a such wide-ranging skill is intimidating. How is it to be done? You can
take comfort in the fact that you don’t have to learn every skill, and certainly not all at
once. Pick up one skill at a time through hands-on practice. Each skill you learn
makes the next one easier, like building blocks.

Why Should You Read This Book?
If you’re reading this book, you want to build your skills. I have found that the best
way to do that is through hands-on coding. If you do your coding in the open by
publishing your code in a public repository and blogging and sharing what you cre‐
ate, you can pass along your knowledge to help others. You’ll also build a solid portfo‐
lio of work that provides a concrete demonstration of your expertise to employers.

Who This Book Is For
Since this book sits at the intersection of APIs, AI, and data science, it will be valuable
to several types of readers.

Data Scientists
Data scientists use APIs all the time, so there’s a temptation to think there’s nothing
new to learn about using APIs. Isn’t calling an API just a few lines of code? It’s true
that making one call to a REST API is a simple task, which is certainly a reason they
have become so prevalent. But using an API in a way that is robust and resilient—and
that doesn’t cause problems for the provider—requires more care.

xvii

This book will teach some techniques you may not have learned yet, such as:

• Developing and deploying APIs
• Creating software development kits (SDKs) and API clients
• Creating and publishing Python packages to PyPI
• Publishing machine learning models as APIs
• Creating Streamlit data apps
• Creating Airflow data pipelines
• Creating generative AI applications using LangChain and ChatGPT

API Developers and Designers
API developers and designers can learn how to enhance their APIs for important new
audiences. They’ll learn about data scientists: the jobs they do, the tasks they perform,
and the API features they love. They’ll also learn about generative AI applications:
how they call APIs and what features they need in an API.

And the hands-on examples will teach a variety of new skills:

• Creating Python APIs with FastAPI, SQLAlchemy, and Pydantic
• Containerizing APIs with Docker
• Deploying APIs to cloud hosts
• Creating Python SDKs and publishing to PyPI
• Creating generative AI applications using LangChain and ChatGPT

Job Seekers and Role Changers
The skills above are valuable in the marketplace, so learning them can help you find
your first role or a new role in data science or software development. This book is
arranged around building portfolio projects, which will give you specific goals to
accomplish, and tangible evidence of your work.

Creating Portfolio Projects
While completing the book, you’ll create three portfolio projects that you can publish
in GitHub repositories to show the work you’ve done. Table P-1 explains the purpose
and source repository you will use as a basis for your project.

xviii | Preface

Table P-1. New tools or services used in this chapter

Project Purpose
Part I portfolio project Creating a Python API and SDK

Part II portfolio project Creating data science apps using Streamlit, Airflow, and Jupyter Notebooks

Part III portfolio project Creating a machine learning API and generative AI application using scikit-learn, ONNX, LangChain,
and ChatGPT

When you complete your projects, please reach out and let me
know at ryan@handsonapibook.com or on LinkedIn so I can cele‐
brate your accomplishment with you. I look forward to seeing what
you build.

Using This Book
Instead of reading this book from beginning to end, I recommend that you pick the
skill you want to learn and start working through the chapter that teaches it. You can
do this quickly in the following way:

1. Decide whether you want to start by creating an API (Part I), using APIs with
data science (Part II), or using APIs with AI (Part III).

2. Follow the instructions in the introductory chapter of that part to clone the Git‐
Hub repository and launch a Codespace.

3. Follow the instructions in the relevant chapter and run the code.

If I’ve done my job properly, each chapter can stand on its own. After you’ve learned
one skill, look around and find another skill you want to learn, and do the same. The
skills in this book are like building blocks: each piece you learn prepares you to
understand the other parts more deeply. All of them together give you quite a sub‐
stantial understanding of APIs in data science and AI.

What This Book Is Not
This book doesn’t teach Python syntax to beginners. You will get the most from the
coding examples if you have a foundational knowledge of Python. Although you can
probably get the code to work by following the steps in each chapter, I suggest you
begin with one of the excellent introductory Python books that O’Reilly publishes,
such as Introducing Python, 3rd Edition, by Bill Lubanovic.

Preface | xix

mailto:ryan@handsonapibook.com
https://www.linkedin.com/in/ryanday1

This book also assumes a basic understanding of using the command-line terminal in
Linux or Unix. You don’t need to be a Linux administrator, but you should be familiar
with running commands in the terminal as a developer. (All the steps are explained,
but when you run into an issue, you might get frustrated without some background
in that environment.)

The book introduces several useful Python frameworks such as FastAPI, Pydantic,
Streamlit, Airflow, and LangChain. However, it does not address detailed topics nec‐
essary to run them in a production environment, such as security, performance, and
infrastructure. I hope that you’ll enjoy the projects in this book enough that you’ll
continue your learning using the references that I mention at the end of each chapter.

Keep in mind that the services and tools in this book are changing rapidly, so depend‐
ing on when you are reading this, some of the steps and figures may look a bit
different.

Why Fantasy Football?
If you were to sit down and rank hobbies that people obsess over the details of, fantasy
sports and software development would both be near the top of that list. When you
combine these hobbies, the possibilities are endless!

—Joey Greco, creator of the Leeger stats application

The portfolio projects in the book follow the story of an imaginary fantasy sports
league host website: SportsWorldCentral.com. Through your projects, you will design
and build APIs for data-focused users, then switch roles and build data science and
generative AI applications using the APIs you created.

As Joey Greco says so eloquently, fantasy sports was the natural choice for the sce‐
nario. (You’ll hear more from him later in the book.) Fantasy sports is a natural play‐
ground for data scientists, and fantasy websites use plenty of APIs. I’ve spent many
hours over the years wading into both of those as a devoted (or addicted) fantasy
manager. Fantasy managers are also fast adopters of any predictive or prescriptive
analytics feature the fantasy websites give them. (If you doubt it, you haven’t watched
a manager pick up two free agents and make three lineup changes to push their win
probability from 45% to 53%.)

Fantasy sports are a fun way to geek out on the overlap between AI, data science, and
APIs. As you code your way through the book, I hope you have as much fun as I did
writing it.

xx | Preface

Get More Tips on APIs, AI, and Data Science
The content in this book will be a really solid foundation for these topics, and I hope
it raises your interest in learning more. To get more tips in this subject, you can sub‐
scribe to my newsletter by visiting https://handsonapibook.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xxi

https://handsonapibook.com

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download in
three repositories, one for each part:

• Part I: https://github.com/handsonapibook/api-book-part-one
• Part II: https://github.com/handsonapibook/api-book-part-two
• Part III: https://github.com/handsonapibook/api-book-part-three

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. If example code is offered with this
book, you may use it in your programs and documentation. You do not need to con‐
tact us for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing examples from O’Reilly books does require
permission. Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Hands-On APIs for AI
and Data Science by Ryan Day (O’Reilly). Copyright 2025 Ryan Day,
978-1-098-16441-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

xxii | Preface

https://github.com/handsonapibook/api-book-part-one
https://github.com/handsonapibook/api-book-part-two
https://github.com/handsonapibook/api-book-part-three
mailto:support@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/hands-on-api.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
I’m sure I’ll miss a few people, but thank you so much to everyone who has interacted
with this content in the past year in articles, newsletters, and presentations. Your
feedback has made the content better, and your encouragement and interest have
kept me going. Extra-special thanks to the Data Science KC and Data Community
DC for all of your feedback.

I’m so grateful to the O’Reilly team who guided me through the process of writing
this book. Thank you so much to the entire editorial staff. Special thanks to Michelle
Smith, the acquisitions editor, and Corbin Collins, the development editor, for believ‐
ing in the book and getting me to the finish line. Thank you, Chris Faucher, Aleeya
Rahman, and Tove Innis, for your professional handling of the authoring process.

I had so much fun interviewing experts for this book, and many of their stories are
included in the chapters. Thanks to Joey Greco, Kyle Borgognoni, Zan Markhan,
Alexandre Airvault, Francisco Goitia, Simon Yu, Robin Linacre, Bill Doerrfield,
Samuel Colvin, Frank Kilcommins, Kade Halabuza, and Jim Higginbotham for shar‐
ing your expertise and enthusiasm for the technology and data. Thanks to Keith
McCormick, who showed me the opportunities available in data science.

Thank you so much to my technical reviewers: Richard Bright, Richard Erickson, Jeff
Fredrickson, Amelia Probst, and Megan Silvey. You saved me from many embarrass‐
ing mistakes, and your technical expertise helped make the book much more accurate

Preface | xxiii

mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/hands-on-api
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

and valuable. Extra thanks to Richard Erickson, who guided me through the book
proposal process and publishing process, in addition to being an active technical
reviewer.

Thanks to Kris Rowley, Ngoc Vu, and all the staff at CSBS who were excited for me
and encouraged me to write the book.

Most of all, I thank God for the blessings and opportunities given to me, beginning
with a mom and dad who taught me to think clearly. Thank you to my wife, Allison,
who was my constant encourager from beginning to end. Thank you to all my family
for their love and support. Ethan, Myles, Sam, Cara, Gabby, and Gabe, I love you all.

xxiv | Preface

PART I

Building APIs for Data Science

Part I of this book walks you step by step through example projects to build APIs
using Python and FastAPI and deploy them to the cloud:

• In Chapter 1, you will begin your portfolio project by understanding the user
needs and selecting use cases to fulfill.

• In Chapter 2, you will select an API architecture and start creating an API to ful‐
fill the needs of data scientists.

• In Chapter 3, you will create your database using SQLite, create Python code to
read the database with SQLAlchemy, and perform unit testing with Pytest.

• In Chapter 4, you will create the FastAPI code to use this data and publish it as a
REST API.

• In Chapter 5, you will document your API using FastAPI’s built-in capabilities.
• In Chapter 6, you will deploy your API to the cloud using Render and Amazon

Web Services (AWS).
• In Chapter 7, you will create a software development kit (SDK) to make your API

easier for Python developers to use.

CHAPTER 1

Creating APIs That Data Scientists Will Love

Application programming interfaces (APIs) are important to data scientists. But how
often are data scientists considered by API designers and developers? Data scientists
frequently use APIs as data sources for their work. They have some needs that are dif‐
ferent than those of software developers or other consumers. If API producers want
to make data scientists happy, they will do well to serve these needs.

How Do Data Scientists Use APIs?
The Anaconda State of Data Science Report found that data scientists spend the bulk
of their time performing three main activities: preparing or cleansing data (38%); cre‐
ating reports, presentations, or data visualizations (29%); and selecting, training, and
deploying models (27%). This book demonstrates how data scientists use APIs for
these tasks.

Preparing or cleansing data often occurs when data scientists perform exploratory data
analysis (EDA) on a new dataset by analyzing its contents, formats, and patterns.
Other times, this work is part of a scheduled data pipeline, which is a sequence of
software tasks that pull from multiple data sources and reformat or remove errors
from the data so that it can be used downstream in visualizations, reports, or models.
Data engineer is a another job title for people who specialize in these tasks. Chapter 9
will demonstrate using APIs in exploratory data analysis. Chapter 10 will demon‐
strate using APIs in data pipelines.

Creating reports and visualizations are important activities to demonstrate insights
gleaned from data and present the data in a way that enables an organization to mon‐
itor its operations or make better decisions. These are also referred to as analytics.
Data scientists make calls to APIs to provide data for a variety of analytics products.
Data analyst is another job title for people who specialize in these tasks. Chapter 9

3

https://oreil.ly/anaconda

will show how data scientists create visualizations using Python in Jupyter Note‐
books, and Chapter 11 will show how interactive visualizations can be deployed in
applications using Python and Streamlit.

Training and deploying data science models are activities that use machine learning or
other mathematical techniques to make predictions, cluster data into groups, perform
natural language processing, and accomplish a variety of other tasks. The use of APIs
here can be divided into two buckets: API consumers and API producers. As con‐
sumers, data scientists use APIs as input sources to their models and call machine
learning APIs to perform tasks. As producers, they deploy their own models as APIs
for others to use. Machine learning engineer is another job title for people who spe‐
cialize in deploying models, and Chapter 13 will demonstrate how to deploy a
machine learning model using FastAPI and Python.

Application programming interface (API) is a term that has a vari‐
ety of meanings in computer programming. This book will focus
on web APIs, which are software programs that you call using
HTTP to retrieve data or execute commands. API producers
develop and host an API for internal consumers inside their net‐
work or for external consumers on the internet. API consumers
send a request to an API. The API receives this request and sends
back a response. This is API communication.

What Tools Do Data Scientists Use?
Data scientists use a range of commercial and open source software tools to perform
their work, along with commercial cloud platforms. According to the State of Data
Science report, the most common programming languages that data scientists use are
Python (58% always or frequently use it) and SQL (42% always or frequently use it).
The R language did not rank highly in this survey, but in my experience it is used by
many data scientists. R is popular in football analytics thanks to the nflverse collec‐
tion of data and R packages. The program code in this book will use both Python and
SQL.

For a development environment, data scientists typically are comfortable using
command-line tools (such as the Bash shell for Linux or PowerShell for Windows).
They use IDEs such as Visual Studio Code (VS Code), PyCharm, or RStudio. Data
scientists also use notebook environments, which are unique interactive program‐
ming environments that allow Markdown descriptions to be interlaced with program
code and output of commands.

Data scientists use a variety of tools to maintain standalone development environ‐
ments, such as the venv and conda libraries. Docker in an important tool for packag‐
ing environments and deploying applications. Dev containers build on Docker to

4 | Chapter 1: Creating APIs That Data Scientists Will Love

https://github.com/nflverse

provide full-featured virtual environments with an embedded IDE—GitHub
Codespaces is an example that you will use in this book.

Designing APIs for Data Scientists
Now that you know a little bit about the tasks data scientists perform and the tools
they like to use, here are some tips for designing APIs they will love. This section will
focus on Python, but many of the tips are also appropriate for the R language:

Your API should always return data in JSON format.
Your API endpoints should return data in JSON format, rather than XML. The
Python ecosystem has strong support for JSON, which is a lightweight data for‐
mat that supports hierarchies and is human-readable. JSON can be converted
into lists and dictionaries, which are fundamental Python data structures. Most
web APIs return JSON as a standard already, so this isn’t much of a stretch.

You should provide an SDK to consume the API.
While Python can call APIs directly from within the code, data scientists are
accustomed to installing Python libraries using commands such as pip and
conda. Publishing a Python library will make life easier for the data scientists and
allow you to enforce good coding practices in the way your API is called.

You should provide standard external identifiers in your data.
Data scientists often combine data from multiple sources in their visualizations
and data pipelines. If you provide industry-standard identifiers, it will allow the
data scientist to more easily join data sources.

Your data should conform to data type definitions.
Data scientists use API data for performing calculations and creating models, so
data type validity is important. Where an invalid character in an API can proba‐
bly display fine on a web page, an invalid number in a numeric field could make a
record unusable for data science tasks. So, data returned from APIs must con‐
form to its definition, such as an OpenAPI Specification (OAS) file.

You should provide a method for bulk downloads.
When data scientists are analyzing a new dataset or training a machine learning
model, they often examine the full contents. Because a full dataset may be quite
large, making an API call may strain the resources of the API as well as the data
scientist’s local environment. Timeouts and memory overflows can cause frustra‐
tion and delays. If the API provider provides a bulk download capability, this
streamlines this analysis. The bulk download is also useful when a data scientist is
performing the initial full load of a new data pipeline. Useful data formats for
data scientists include comma-separated values (CSV) and Apache Parquet.

Designing APIs for Data Scientists | 5

https://oreil.ly/UYELV

Your API should support querying by last changed date.
After data scientists have performed the initial full load of a data pipeline, they
want to process regular updates. A typical data pipeline schedule would be to run
a recurring job daily to process the deltas, or records that have changed. If the
API provides a last changed date query parameter, this allows the data pipeline to
retrieve any new records or updated records.

Introducing Your Part I Portfolio Project
You will address all of these design tips as you build your Part I portfolio project,
which demonstrates your ability to develop an API and an SDK. Many of these are
automatically addressed for you by the tools you have chosen, and a few you will
custom-code yourself.

Here is an overview of the work ahead of you:

• Chapter 1: Understanding your users and selecting the right API
• Chapter 2: Selecting your API architecture and setting up your development

environment
• Chapter 3: Creating your database
• Chapter 4: Developing the FastAPI code
• Chapter 5: Documenting your API
• Chapter 6: Deploying your API to the cloud
• Chapter 7: Creating an SDK for your API

You will follow a realistic scenario in each chapter, with each step building on the pre‐
vious steps. It’s time to dive into that scenario now, from an industry that is close to
my heart: fantasy sports.

Every API Has a Story
Every API has a story and a reason it gets built. The story of some APIs is straight out
of the movie Field of Dreams: “If you build it, they will come.” A company builds an
API without performing any research on the potential users—sometimes customers
come, and other times an API languishes unused and unremembered. In contrast,
successful APIs fulfill the needs of real consumers. That’s the case with the API you
will build in this book.

6 | Chapter 1: Creating APIs That Data Scientists Will Love

Meeting Your Company: SportsWorldCentral
You are a software developer working for a website named SportsWorldCentral, SWC
for short. SWC provides sports news and also hosts fantasy games such as fantasy
football and fantasy soccer. SWC’s customers are sports fans who join up in a league
with friends and draft real-world players onto their teams. They watch real-world
games or matches, and when the players on their teams do well, they score points for
their fantasy team. SWC helps all those owners keep track of their teams and gives
live scoring updates each week as fantasy managers win or lose.

SWC’s fantasy football website contains information about an entire fantasy football
league, such as shown in Figure 1-1.

Figure 1-1. SWC League home page

The website also has a large amount of detail about individual fantasy teams, as
shown in Figure 1-2.

Every API Has a Story | 7

Figure 1-2. SWC My Team page

SWC is an imaginary company, but fantasy sports is a very real and thriving enter‐
tainment industry. There are around 40 million fantasy football managers, according
to fantasy industry estimates, making fantasy football the largest US fantasy sport.
Fantasy soccer is popular worldwide. For example, more than 10 million active man‐
agers compete on the Fantasy Premier League website, which follows just one of the
major international soccer leagues. Real-world examples of fantasy league host web‐
sites include Yahoo.com, Sleeper, MyFantasyLeague.com, and many others.

In addition to fantasy league web hosts, fantasy managers pay for subscriptions to
fantasy advice websites such as The Fantasy Footballers, PFF, and FantasyPros. These
websites provide highly customized analytical products such as dashboards, charts,
predictive models, and recommendation engines to help fantasy managers run their
teams. To customize this content to a fantasy manager’s team, the fantasy league host
needs to provide an API that the fantasy advice websites can consume.

8 | Chapter 1: Creating APIs That Data Scientists Will Love

https://fantasy.premierleague.com
https://oreil.ly/Hu6Pn
https://oreil.ly/qEVlz
https://oreil.ly/-9x4F

API Perspectives: Kyle Borgognoni on Fantasy Football APIs
Kyle Borgognoni is the editor-in-chief of The Fantasy Footballers fantasy advice web‐
site and podcast, which has won multiple fantasy industry awards for popularity and
accuracy. Kyle is also host of the Fantasy Footballers Dynasty podcast and a writer for
the website.

What type of advice content do you provide on your website?

We provide general fantasy statistics like fantasy points, targets, yards, and red zone
numbers; advanced fantasy stats like routes, targets per route run, and efficiency met‐
rics; and performance-based stats like consistency scores, career performance, and
strength of schedule. We also provide the Ultimate Draft Kit, which has projections
and stat lines for every player in the NFL; the Dynasty Pass that has college produc‐
tion profiles and metrics from the NFL combine; and the Daily Fantasy Pass.

How do you gather all of the data for the products you provide?

We get a lot of information from data brokers and partners like SportsData. We also
use APIs from websites like Sleeper and Yahoo!. For the podcast, it is a combination
of data scraping and endless worksheets that I have built.

How does it benefit a league host website to provide APIs for advice websites to use?

To use Sleeper as an example, they are providing an API because it helps their plat‐
form. With their data, folks can build useful tools and create an ecosystem around
their service that provides additional value to their users for free. If users come to our
platform, and they can easily import their Sleeper teams, see Sleeper ADP, or what‐
ever, they are more likely to use Sleeper to host their fantasy leagues. This is why they
provide their proprietary data for free in an easy-to-use API. This is valuable to us
because our business is selling these tools to users.

SWC Needs an API
The web team that manages the SWC website has seen a rising amount of traffic on
the Fantasy Football web pages from web scrapers, which are computer programs that
read websites and extract the data from them. Instead of seeing this as a problem, the
savvy SWC product owner realizes this is an indicator of a potential market: people
want to use the SWC Fantasy Football data.

The product owner reaches out across the company to identify any other requests
received for data access or data sharing. The help desk finds dozens of customer sup‐
port tickets asking why many of the advice websites can’t import their league data
from SWC—indicating a need to share data with those sites. Additional customer
tickets are from data scientists and other data-savvy users requesting direct access to
the football data from the website so they can create custom dashboards and metrics.

Every API Has a Story | 9

https://www.thefantasyfootballers.com
https://www.thefantasyfootballers.com
https://oreil.ly/FFDP

Independent mobile app developers have also offered to develop mobile apps to serve
SWC users on the mobile app stores if APIs were made available. The product owner
decides APIs show the potential to increase the company’s reach and grow the busi‐
ness. The question is: what type of APIs should SWC create?

Signs You Need an API
Here are some reasons that an organization may decide to create an API:

• It would like to extend the reach of a core product or service to a broader audi‐
ence, such as value-add products or onto additional platforms.

• It has have an existing application or system to provide partner access to. For
example, a company with a medical billing platform may create APIs to allow
medical offices and hospitals to submit invoices.

• People are accessing its website via web scraping or reverse engineering website
APIs, which indicates a demand for an API.

• It has valuable data, analytics, or metrics to provide to the public or partners.
• It has created statistical or machine learning models to share.
• It has developed generative AI models to share with application builders.

Selecting the First API Products
The SportsWorldCentral product team performs additional user research by contact‐
ing the individuals who have placed help desk tickets and requested features. They
also send a survey to their fantasy customers and reach out to the top five fantasy
advice websites. They review online message boards and scour social media to find
complaints or comments related to their website. And then they conduct some com‐
petitive analyses of other fantasy league hosts to see what APIs they provide.

Identifying Potential Users
Based on your research, you narrow your focus down to a few users. Your fantasy
manager customers haven’t asked for APIs, but they want the things that APIs will
bring. They want to import their teams into the fantasy advice websites so that they
can get advice on managing their teams. The advice website providers want to import
SWC leagues into their websites so that SWC managers will subscribe to their service.
Data science users would like to create analytics dashboards, charts, and models using
the data from the website, combined with other public sources. Mobile app develop‐
ers would like to create apps in the mobile app stores to help SWC managers run
their teams. Generative AI developers would also like to create chatbots and other
applications that can read current SWC data and give advice to managers.

10 | Chapter 1: Creating APIs That Data Scientists Will Love

Table 1-1 summarizes these users with the tasks they are trying to perform and their
pain points, which are problems they face when trying to perform that task.

Table 1-1. Potential consumers for your APIs

User type Primary tasks Pain points
Current SWC team
managers

Viewing teams and leagues in fantasy advice
sites

SWC league host is not supported by advice sites,
and no mobile apps are available.

Advice website
provider

Giving advice and creating analytics products
that support as many league hosts as possible.
APIs are the preferred method.

SWC data is not accessible through APIs or any
other method.

Data science users Creating analytics products They can’t access SWC data reliably.

Mobile app developers Creating third-party apps using SWC data SWC is not available for use by mobile apps.

Generative AI
developers

Creating chat agents and LLM apps using SWC
data

No easy access to current SWC data.

Although it is exciting to see so many potential users of APIs, the SWC product man‐
ager needs to select the first APIs to create. You work with the product managers to
identify the APIs that would satisfy these users, what data would be required to sup‐
port them, and any changes that would need to be made to the existing website. With
that information, the product managers apply a method from design thinking, which
is to evaluate the potential products using these three criteria:

• User desirability: Your users want the product.
• Technical feasibility: Your technical environment and team can create it.
• Economic viability: You expect it to be worth the investment.

Creating User Stories
After applying these criteria, they identify user needs that can be fulfilled with exist‐
ing data without any major changes to the website. To make sure they understand
what they’ll be building, they create user stories, which are informal descriptions of a
feature or product that are written from the end user’s perspective. A common tem‐
plate for user stories is the following:

• As a (user type)
• I want to (goal or intent)
• So that (motivation or benefits)

The SWC product managers create the following user stories to document the needs
they learned their users have:

Selecting the First API Products | 11

1. As an SWC team manager, I want to view my fantasy league and team on advice
websites so that I can win my league and beat my friends.

2. As an advice website provider, I want to create analytics products such as roster
advice, league analysis, and playoff predictions using current-season SWC data so
that I can increase the number of customers who use my website and increase ad or
subscription revenue.

3. As a data science user, I want to create analytics products such as dashboards,
charts, models, and metrics using SWC data so that I can demonstrate and grow my
data science skills, explore hypotheses and hunches about fantasy data, and build
my reputation in both fields.

4. As a generative AI developer, I want to create AI applications such as chatbots using
generative AI and LLMs so that I can provide fantasy management advice to SWC
fantasy managers.

Congratulations! The user research you conducted has proven very valuable. You
identified several users who need your data and identified ways to serve them that
should generate new business for your company. The user stories you captured make
an excellent starting point for your API development, which will begin in Chapter 2.

Extending Your Portfolio Project
In addition to the SportsWorldCentral portfolio project, you may want to use similar
techniques to build a custom portfolio project in another business domain as you
proceed through the book. This is a great way to apply your learning to a data source
that you are familiar with or interested in learning. In each chapter, I will suggest
some ways that you can apply the techniques you have learned for another portfolio
project that is uniquely yours.

Here is how you can extend your project based on this chapter:

• Identify an additional business or market that would benefit from APIs. Perform
online research you can use to learn about potential API consumers. Document
the user types, primary tasks, and pain points of the users using the user story
template.

• Alternative: Research and use the tools from another formal technique such as
Design Thinking, Lean Startup, or APIOps Cycles to document your users.

As you continue through the rest of Part I, you can use the techniques you learn
about API development to create custom APIs based on these user stories.

12 | Chapter 1: Creating APIs That Data Scientists Will Love

https://oreil.ly/GABFo
https://oreil.ly/w7Alm
https://oreil.ly/apio

Additional Resources
To learn more about API product management, I recommend APIs: A Strategy Guide
by Daniel Jacobson, Greg Brail, and Dan Woods (O’Reilly, 2011) and Continuous API
Management, 2nd Edition, by Mehdi Medjaoui, Erik Wilde, Ronnie Mitra, and Mike
Amundsen (O’Reilly, 2021).

For more details about design thinking and human-centered design, read the IDEO
Field Guide to Human-Centered Design.

Summary
You accomplished a lot in this first chapter, and the fun is just starting. Let’s review
what you have learned so far:

• You learned the tasks that data scientists perform and the tools they use.
• You learned how to design an API that data scientists will love.
• You identified several potential consumers and found two that you could help

now: data science users and advice websites.
• You focused on user desirability, technical feasibility, and economic viability to

select three user stories to begin your API development.

In Chapter 2, you will start creating an API to fulfill the needs you identified in this
chapter. It will, of course, be an API that data scientists and AI will love.

Summary | 13

https://oreil.ly/GZW5E
https://oreil.ly/GZW5E

CHAPTER 2

Selecting Your API Architecture

The happy towns are those that have an architecture.
—Le Corbusier, Towards a New Architecture (Dover Publications, 1965)

In Chapter 1, you began your portfolio project by understanding user needs and
selecting use cases to fulfill. That initial work is critical to make sure you build the
right products to fulfill real customer needs. In this chapter, you will begin developing
the architecture you will use to build your first APIs.

API Architectural Styles
One of the most significant decisions to make is selecting the API architectural style
you will be using. Since you are using a consumer-centric design process, it follows
that one of your first goals would be to use a style that is widely supported and under‐
stood by potential consumers. The Postman 2023 State of the API Report found these
were the top six API architectural styles:

• REST: 86%
• Webhooks: 36%
• GraphQL: 29%
• Simple Object Access Protocol (SOAP): 26%
• WebSockets: 25%
• gRPC: 11%

15

https://oreil.ly/x25Zw

The overwhelming popularity of REST found in the survey is consistent with what
you will experience if you explore most public APIs. REST is currently the typical
style used for APIs. For an example relevant to your project, all of the APIs that I have
found for real-world fantasy football league hosts use REST.

There are a couple of other API architectural styles that are worth reviewing because
they also make sense in data science and AI-related situations. Let’s take a closer look
at REST, GraphQL, and gRPC.

Representational State Transfer (REST)
REST was formally defined by Roy Fielding’s doctoral dissertation, “Architectural
Styles and the Design of Network-Based Software Architectures”. In practice, you will
find that not all of the REST-style APIs conform completely to this format definition.

A useful implementation of this architectural style is sometimes referred to as Prag‐
matic REST or RESTful. The following is a mix of formal definitions and some prag‐
matic practices:

• API providers make resources available at individual addresses (e.g., /customers, /
products, etc.). Consumers make requests to these resources using standard
HTTP verbs. Producers provide a response. This is the client/server model.

• The response is defined by the producer. The standard structure of the response
is the same for each consumer.

• The REST response is typically in JSON or, sometimes, XML format, both of
which are standard text-based data transfer formats.

• The interaction is stateless, which means that each message back and forth stands
on its own. So, in a conversation of multiple requests and responses, each request
has to provide information or context from previous responses. For example, a
consumer might retrieve a list of players and then provide one player’s ID to
request additional details.

• Increasingly, REST APIs are defined by an OpenAPI Specification file, although a
variety of other options have been used over the years.

• It is a best practice to use API versions to protect existing consumers from
changes.

16 | Chapter 2: Selecting Your API Architecture

https://oreil.ly/cLpNu
https://oreil.ly/cLpNu
https://oreil.ly/d7xYG

Graph Query Language (GraphQL)
GraphQL is both a query language for APIs and a query runtime engine. GraphQL
was developed by Facebook and was made open source in 2015. Here are some
attributes of GraphQL APIs, with comparisons to REST:

• Communication uses the client/server model (like RESTful APIs).
• Communication is stateless (like RESTful APIs).
• The response is usually in JSON (like RESTful APIs).
• Instead of only using HTTP verbs, the consumer uses the GraphQL query

language.
• The consumer can specify the contents of the response, along with the query

options. (In REST, the producer defines the response contents.)
• The producer makes the API available at a single address (e.g., /graphql), and the

consumer passes queries to it via the HTTP POST verb.
• Versioning is not recommended, because the consumer defines the contents they

are requesting.

A big advantage of GraphQL over RESTful APIs is that fewer API calls are needed for
the consumer to get the information they need. This requires less network traffic.

gRPC
Like GraphQL, gRPC was developed by a commercial company (Google) and was
made open source in 2015. gRPC was developed for very fast, efficient communica‐
tion between microservices. gRPC is usually used for a different set of problems than
REST, and it has many differences:

• Instead of sharing resources, gRPC provides remote procedure calls, which are
more like traditional code functions.

• Instead of being limited to stateless request-response patterns, gRPC can be used
for continuous streaming.

• Instead of returning data in a text-based format like JSON, it uses protocol buf‐
fers, which is a format for serializing data that is smaller and faster than JSON or
XML.

• Instead of using an OpenAPI specification file, it uses protocol buffers as the
specification in a .proto file.

gRPC is not a likely candidate for the APIs that you will be creating in your portfolio
project. However, it’s worth mentioning in this discussion of API architectural styles
related to data science for one big reason: large language models (LLMs). These

API Architectural Styles | 17

https://oreil.ly/gphql
https://oreil.ly/iJFdv
https://protobuf.dev
https://protobuf.dev

machine learning models are the engines behind generative AI services such as Gem‐
ini and ChatGPT. These are very big models that need all the performance they can
get, and they are using gRPC in some cases to achieve this.

Your Choice: REST
For your company’s needs, REST is the appropriate choice. It is the industry standard,
and it is appropriate for providing resource-based APIs for the user stories you iden‐
tified. It is also supported by a broad range of technologies, so your customers should
have no problem using a RESTful API.

GraphQL is also a good choice for a user querying your football data, and you should
keep an eye on it in the future. But you are safe to wait until your users request it.

Before diving into the Python coding for your API, let’s discuss how this book will
use a couple of key terms. For this book, we will consider a RESTful API to be a set of
endpoints that are all related to the same data source. From this perspective, your
SWC website will start with a single API: the SWC Fantasy Football API.

An API version is a group of endpoints that are consistent for some time so that con‐
sumers can count on them.

An API endpoint (also referred to as an operation) is a combination of two fundamen‐
tal building blocks: an HTTP verb and a URL path.

The overall structure of these terms is:

api
└── version
 └── endpoint

Let’s look at a few examples using a general Acme widget company (Table 2-1). We’ll
assume that the company’s APIs reside under the https://api.acme.com subdomain.

Table 2-1. Example endpoints in Acme API version 1

Endpoint description HTTP verb URL Message body
Read product list GET api.acme.com/v1/products/ Empty

Read individual product GET api.acme.com/v1/products/{product_id}/ Empty

Create new product POST api.acme.com/v1/products/ Contains new product

Update existing product PUT api.acme.com/v1/products/{product_id}/ Contains updated product

Delete existing product DELETE api.acme.com/v1/products/{product_id}/ Varies

You can see that the URL is reused for several of the endpoints. For example, the read
product list endpoint uses a URL of api.acme.com/v1/products with a GET verb. The
GET verb reads the product records. The create new product endpoint uses the same
URL but with a POST verb. The POST creates a new record.

18 | Chapter 2: Selecting Your API Architecture

https://api.acme.com

But by combining the HTTP verb with the URL, a specific action is taken when this
resource is called. This HTTP verb plus URL combination can only be used once. For
your portfolio project, you will develop a set of endpoints to fulfill the user cases you
selected.

For more information about all the HTTP verbs, see “HTTP
Basics” on page 167.

Technology Architecture
The SWC league host website is a web application that uses a relational database. Fan‐
tasy managers access the website through their web browsers. Although a large
amount of technology is necessary to host this large website, Figure 2-1 is a high-level
view of the current state application architecture.

Figure 2-1. Current state application architecture

The following components are in this architecture:

Fantasy managers
Current web users of Sportsworldcentral.com

Web application
The existing league host website (assume it already exists for your project)

Website database
The relational database that is used for the web application (assume it already
exists and contains data for your project)

When deciding on the architecture for an API, many choices are available. When a
web application already exists, one option is to create the API as part of the web
application. Many web applications use APIs as part of their design, so this may be
the simplest route in those cases. Another option is to create the API as a separate
application but allow the API to read directly from the website database. This has the
advantage that the API’s data will always be up-to-date with the web application, but

Technology Architecture | 19

it could potentially slow down the web application if a large number of requests are
being made to the API.

You will create the API as a separate application and pull the API’s data from a read
replica database. This is a read-only copy of the website database that receives quick
updates from the website database but is physically separate so that the API traffic
doesn’t impact the website’s performance. Since your API will be read-only, the read
replica is a good choice.

Figure 2-2 shows the future state application architecture that you will implement.

Figure 2-2. Future state application architecture

These are the new components for your project:

Fantasy advice websites
Will be importing your league data to their advice website.

Data science users
Will be calling your APIs to create their analytics products.

Read replica database
A separate read-only copy of the website database you will create.

API
The new API application you will create. Notice that it will use the base web
address api.sportsworldcentral.com to keep it separate from the main website.

The technology architecture of APIs is a deep and very interesting topic, and the
potential variations of components are nearly endless. One thing to remember is that

20 | Chapter 2: Selecting Your API Architecture

a software architecture changes over time, so decisions that you make are not perma‐
nent. I highly recommend the book Mastering API Architecture: Design, Operate, and
Evolve API-Based Systems by James Gough, Daniel Bryant, and Matthew Auburn
(O’Reilly, 2022) to build foundational knowledge of this subject.

Software Used in This Chapter
Since you will be creating a new API application and standalone database, take a look
at the tools and services you will use, as shown in Table 2-2.

Table 2-2. New tools or services used in this chapter

Software name Version Purpose
Python 3.10 Programming language

GitHub NA Source control, development environment

Python
Python is the programming language you will use for all of the API code in Part I.
You will also use it in Part II to create analytics products, data pipelines, and interac‐
tive data applications. You will use it in Part III to build a generative AI application.
It’s possible to use Python for almost any job in data science, and it is the language
most frequently used by data scientists, according to the Anaconda 2022 State of Data
Science Report.

The Python open source ecosystem is very strong and deep, with high-quality frame‐
works and libraries available for almost any task you want to perform. You will work
with a variety of popular Python libraries throughout this book, such as those that
follow.

Python adoption has accelerated in recent years for a variety of software development
tasks. The 2023 Stack Overflow Developer Survey found that Python was in a dead
heat for first as the language most developers wanted to use, and it ranked as the third
most used at the time. Python is very flexible and is used in a variety of situations. It
is a great tool for any developer to have in their toolbox.

For this book, you will be using Python 3.10 or higher.

GitHub
GitHub is a website that plays a major role in software development. At its core, Git‐
Hub is a cloud host of source control software, but it has added additional features
over the years. These capabilities are generally free or low cost. Many prominent open
source projects use GitHub to host their source code and allow developers to contrib‐
ute to the project.

Software Used in This Chapter | 21

https://oreil.ly/fD4u7
https://oreil.ly/fD4u7
https://oreil.ly/pvfEB

You will use GitHub in several ways in this book. You will store all of your program
code in repositories while you develop it. You will use GitHub Codespaces as your
Python development environment. You will use GitHub Pages to publish your devel‐
oper portal.

This book uses many of GitHub’s tools because they simplify environment manage‐
ment and work together well. The result will be a professional-looking API and data
science portfolio that demonstrates what you have accomplished. Most of the work
can also be performed on your local machine or another virtual environment instead
of using GitHub. However, the instructions will assume you are using GitHub.

Getting Started with Your GitHub Codespace
GitHub Codespaces will be the development environment for all of the API code you
develop in Part I of this book. You can think of a Codespace as a development envi‐
ronment running VS Code in the browser. Working with Codespaces will allow you
to run the code from the GitHub repository that I share with you, with a minimum of
distractions.

Creating Your GitHub Account
Before getting started with Codespaces, you need a GitHub account. Follow the
instructions to create a GitHub free personal account. The free account will give you
plenty of Codespace storage and core hours to work through this book. During the
writing of this book, I often exceeded the free allocation by running multiple Codes‐
paces, but the charge was generally a few dollars. Be sure to enable two-factor authen‐
tication to protect your account.

Cloning the Part I Repository
When you use another repository and make edits that you want to keep, there are two
ways to accomplish this: forking or cloning. When you fork the repository, you create
a copy in your account that remains linked to the original repository. This is useful
when you will be submitting changes back to the original repository for updates.
Cloning the repository creates a standalone copy in your GitHub account. For this
book, I recommend that you clone the repository so that your portfolio project stands
alone and shows the work you have completed.

To clone the repository, log in to GitHub and go to the GitHub Import Repository
page. Enter the following information in the fields on this page:

• The URL for your source repository: https://github.com/handsonapibook/api-
book-part-one

• Your username for your source code repository: Leave this blank.

22 | Chapter 2: Selecting Your API Architecture

https://oreil.ly/7j595
https://oreil.ly/7j595
https://github.com/new/import
https://github.com/new/import
https://github.com/handsonapibook/api-book-part-one
https://github.com/handsonapibook/api-book-part-one

• Your access token or password for your source code repository: Leave this blank.
• Repository name: portfolio-project
• Public: Select this so that you can share the results of the work you are doing.

Click Begin Import. The import process will begin and the message “Preparing your
new repository” will be displayed. After several minutes, you will receive an email
notifying you that your import has finished. Follow the link to your new cloned
repository.

I will tell you more about the contents of this repository after you launch a GitHub
Codespace.

Launching Your GitHub Codespace
Launching a Codespace to work with this repository is simple. On this repository,
click the Code button and select the Codespaces tab. Click “Create Codespace on
main.” You should see a page with the status “Setting up your Codespace.” Your Code‐
space window will open as the setup continues. When the setup completes, your dis‐
play will look similar to Figure 2-3.

Figure 2-3. New GitHub Codespace

Your Codespace is now created with the cloned repository. This is the environment
you will be using for the rest of Part I of this book. Before looking around, take a
minute to open the GitHub Codespaces page and make a couple of updates. Scroll

Getting Started with Your GitHub Codespace | 23

https://github.com/codespaces

down the page to find this new Codespace, click the ellipsis to the right of the name,
and select Rename. Enter the name Portfolio project codespace and click Save.
You should see the message “Your codespace Portfolio project codespace has been
updated.” Click the ellipsis again, and then click the ribbon next to “Auto-delete
Codespace” to turn off autodeletion.

Touring Your New Codespace
Go back to the tab that has your Codespace open, which looks like Figure 2-3. The
URL of this page is an auto-generated address such as happy-circus-1234.github.dev.
This will be the URL you will use to come back to this Codespace. You could book‐
mark it if you like. I typically go to the GitHub Codespaces page and launch my
Codespace from there.

The display that you see for Codespaces is VS Code, which is a popular open source
IDE. Working in Codespaces will be like using VS Code through the browser.
Remember that all of the work you do is being executed in a remote container that is
running on the cloud. If you would like to know more about how this works, take a
look at the GitHub Codespaces overview.

On the left side of the screen is the Explorer, which shows the directory structure of
your Codespace. This structure begins with the structure from the cloned repository.
There is a separate subfolder for each chapter in the book that has code. For example,
the chapter2 folder is where you will do your coding for this chapter. Inside each
chapter folder is a \complete subfolder that contains a working copy of the completed
code from this chapter.

I suggest that you follow along with the chapter and type the files
yourself. You will learn the purpose of the files as you perform the
work. If you run into any trouble, the files in \complete are available
to check your work. If you would like to complete the chapters out
of order, you can also use the completed files from the previous
chapters as the starting point.

At the bottom of the window, you will see the Terminal window selected. This is an
interface to the command line of the Linux container that is running your Code
spaces. Throughout Part I, you will enter commands in the terminal window.

Your Codespace has been preloaded with the version of Python that you need. Verify
this by entering python3 --version in the terminal command line. You should see
Python version 3.10 or later, as shown here:

$ python3 --version
Python 3.10.13

24 | Chapter 2: Selecting Your API Architecture

https://github.com/codespaces
https://oreil.ly/cdesps

Stop the Codespace by clicking in the bottom left of the window and entering Stop
current codespace from the dialog window. This will reduce the number of free
hours you use working in Codespaces.

Congratulations! This is the repository and Codespace you will use for your Part I
portfolio project.

Making Your First Commit
Restart your Codespace from the GitHub Codespaces page. There is one item to
notice as you work in this environment. Your new Codespace begins with the same
directory structure as your repository on GitHub.com. However, files you add or
make in your Codespace are initially stored only on the Codespace—they are not
updated in your repository automatically. As you complete the code in this book and
develop your project, you should periodically commit your changes to GitHub, which
saves your changes and adds a message about the purpose of the change. Frequent
commits ensure that you don’t lose changes if something happens to your Codespace
and allow you to go back to a working copy if you break something. Consistent com‐
mits over time demonstrate activity in your GitHub profile, which is a sign of credi‐
bility for those viewing your GitHub history.

You do not want to commit everything in your Codespace to your repository. There
will be some files that get generated that you don’t need to save in GitHub. This is
where the .gitignore file comes in. Open this file and take a look at it now.

The .gitignore file contains file patterns or specific names of all the files in your local
Codespace that should be excluded from your repository. Many of these are local
config files generated by the libraries you use. Some are sensitive files that should not
be published in your repository.

At a minimum, you should always commit your work when you
complete a working session. I commit code several times an hour,
when I have completed a chunk of work that is related. For exam‐
ple, if I am modifying multiple files to add a new scoring field to an
API, I modify each file and then make a commit with the comment
“Added scoring field.” (It is not necessary to state the files you
changed in the comment, because GitHub tracks that.)

Next, you will update the README.md file in the root directory. Each GitHub reposi‐
tory has a README file that provides information about the purpose and contents of
the repository. It is written in Markdown, which is a lightweight formatting language.
In your Codespace, click on the README.md file in the Explorer. Modify the text of
this file as shown here, and then save it:

Getting Started with Your GitHub Codespace | 25

https://github.com/codespaces

API Portfolio Project
This project demonstrates API coding best practices using Python and FastAPI.

This project was built from examples from the book
[Hands-On APIs For API and Data Science](https://hands-on-api-book.com).

To preview what this file will look like on GitHub, right-click the README.md file
and select Open Preview. You will see the updates you made. From the burger menu
on the upper left of the window, select File, then Save. Now that you have saved this
file, the built-in version control has flagged this. First, you see that the README.md
file in the Explorer has changed color. Beside that file you see an M, which stands for
modified. In the left sidebar, the source control icon has a colored circle with the
numeral 1. This means that one change is available to commit to source control. Click
on that source control icon, and you will see the Source Control tab, as shown in
Figure 2-4.

Figure 2-4. Source control with change flagged

Updating your repository requires several steps:

1. Add commit message: The message you add will be the subject of the commit in
GitHub.

2. Stage your changes: Identify the changed files to be included in the commit.
3. Commit the changes to your local repository: Your Codespace comes preloaded

with a Git repository, and your changes get committed there first.
4. Sync the changes from your local repo to GitHub: Push your changes up to the

repository at the GitHub.com website, and pull down any changes that occurred
directly on the website.

26 | Chapter 2: Selecting Your API Architecture

To save time from here going forward, I’m going to walk you through a shortcut that
will save a few steps as you commit in the future. For step 1, add this message in the
box: Personalize title of project. Next, click the Commit button. A dialog will
be displayed that says, “There are no staged changes to commit. Would you like to
stage all your changes and commit them directly?” Click Always.

By choosing to always stage all changes and commit them, you are combining steps 2
and 3. For step 4, click Sync Changes to send the updates to the repository at GitHub,
which is the origin or source of the files. When the dialog is displayed that says “This
action will pull and push commits from and to origin/main,” click OK, Don’t Show
Again. One last dialog will be displayed that says “Would you like Visual Studio Code
to periodically run git fetch?” Click Yes.

In another tab, go to GitHub.com and open the portfolio-project repository, which
should look like Figure 2-5.

Figure 2-5. Repository showing first commit

Above the directories, click the linked text “Personalize title of your project.” This is
the record of the commit that you just sent. You can see the files that you changed.
When you want to commit changes going forward, you only need to add a title and
click Commit, then click Sync Changes to commit your code to GitHub.

This is excellent progress. You have made your first commit, and you are working in
your Codespace environment. It’s time to get started with your source data.

Additional Resources
To learn about the technical architecture of APIs, I recommend Mastering API Archi‐
tecture: Design, Operate, and Evolve API-Based Systems, by James Gough, Daniel Bry‐
ant, and Matthew Auburn (O’Reilly, 2022).

For some tips about RESTful API design, read “The Ten REST Commandments” by
Steve McDougall.

Additional Resources | 27

https://oreil.ly/_97zo
https://oreil.ly/_97zo

Summary
In this chapter, you started creating an API to fill the user needs you identified in
Chapter 1. Here is what you have accomplished so far:

• You defined the API endpoints needed to complete the user stories.
• You set up your development environment using GitHub Codespaces.

In Chapter 3, you will create the website database using SQLite, create Python code to
read the database with SQLAlchemy, and perform unit testing with pytest.

28 | Chapter 2: Selecting Your API Architecture

CHAPTER 3

Creating Your Database

“You don’t seem to give much thought to the matter in hand,” I said at last, interrupting
Holmes’ musical disquisition.
“No data yet,” he answered. “It is a capital mistake to theorize before you have all the evi‐
dence. It biases the judgement.”
“You will have your data soon,” I remarked.

—Sir Arthur Conan Doyle, A Study in Scarlet (Ward Lock & Co., 1887)

In Chapter 2, you designed the API architecture and set up your GitHub Codespace
environment. In this chapter, you will create the database and the Python code to
read from it.

Since you are creating a data API, this chapter is important. It will walk you through
the process of designing your database structures, creating them in the SQLite data‐
base, creating Python code to read the database, and creating unit tests to verify all of
these pieces work together.

If you are in a rush to see how this code works, you can use the files in the chapter3/
complete folder, and come back later to follow the instructions step by step.

Components of Your API
In the previous chapter, Figure 2-2 showed the application architecture you are
implementing. The API in that diagram is made up of several components. Figure 3-1
shows these components and the software you will use to implement them.

29

Figure 3-1. API components

There are four major subcomponents of the API. The data transfer and validation
components are used to ensure that the API requests and responses have valid data
and conform to their definitions. You will create these with Pydantic. You will create
the API controller with FastAPI. It handles all of the processing of the API along with
other functions you will learn. You will create the database classes using SQLAlchemy.
These classes handle querying the database and storing the data in Python classes.
Since SQLite is a file-based database and you’ll deploy it along with your API code,
the diagram shows it as a fourth component of the API.

Software Used in This Chapter
The software introduced in this chapter will focus on databases: creating them, read‐
ing data from them, and testing them (see Table 3-1).

Table 3-1. New tools or services used in this chapter

Software name Version Purpose
pytest 8 Unit-testing library

SQLAlchemy 2 Object-Relational Mapping (ORM) library to connect Python to SQLite

SQLite 3 Stores the data used by the APIs

SQLite
As shown in Figure 3-1, the API uses the read replica database, which is a read-only
copy of the website database that receives quick updates from the website database.
The SWC website contains large amounts of data about fantasy teams, NFL players,
managers, scoring, and numerous other data points that used by a fantasy football
league host.

For your project, you will simulate this with a condensed database using SQLite.
SQLite is well suited for learning projects because it is file based and the entire data‐
base can easily be stored in a Git repository like the one you’ll be using.

30 | Chapter 3: Creating Your Database

Although considered a lightweight database, SQLite supports all the SQL commands
that you will use and is fully supported by SQLAlchemy, which you’ll use for Python
database work. It is a great choice to begin the prototyping of a project. You might
replace it with a traditional database such as PostgreSQL or MySQL as the application
or API develops. But it is used in many production applications as well.

You will use SQLite 3 for your project.

SQLAlchemy
SQLAlchemy is a popular Python database toolkit and ORM. It works nicely with
FastAPI, which will be introduced in Chapter 3. Here are a few of the jobs that SQL‐
Alchemy does for Python developers:

• It provides query access to databases using Python, without using SQL.
• It populates Python objects with the data from the source database without

requiring any conversion of data types.
• It supports a variety of databases.
• It allows the same Python code to be used with different underlying databases.
• It creates queries as prepared statements, which combat SQL injection attacks.

SQL injection is a serious vulnerability in any software that accepts
input from users and queries a database with it, including web
applications and APIs. It occurs when bad actors insert malicious
code into inputs that are intended for data values.
Using prepared statements (also known as parameterized state‐
ments) instead of raw SQL queries is one technique to reduce the
risk of SQL injection. For more information, reference OWASP’s
article on SQL injection.

You will be using SQLAlchemy 2 for your project.

pytest
You will be using pytest, a Python testing library, throughout Part I to create tests for
the Python code you write. You will create unit tests to verify that individual parts of
your code work as intended. You will also use it to regression-test your code as you
make changes or update libraries.

You will be using pytest 8 for your project.

Software Used in This Chapter | 31

https://oreil.ly/24SAy
https://oreil.ly/24SAy

You Can Start from Here
The instructions in this chapter assume that you completed Chapter 2 already. If
you’re starting your coding in this chapter, you will need to create a GitHub Code‐
space from the book’s GitHub repository. Full instructions are available in “Getting
Started with Your GitHub Codespace” on page 22.

Creating Your SQLite Database
Change to chapter3 and open SQLite with a new database:

.../portfolio-project (main) $ cd chapter3

.../chapter3 (main) $ sqlite3 fantasy_data.db
SQLite version 3.45.3 2024-04-15 13:34:05
Enter ".help" for usage hints.
sqlite>

The version of SQLite may differ from what is shown, because it is automatically
included in your Codespace.

To save screen real estate, I have trimmed the directory listing in
the terminal prompt of my Codespace. You can configure this by
editing the /home/codespace/.bashrc file in VS Code. Find the
export PROMPT_DIRTRIM statement and set it to export

PROMPT_DIRTRIM=1. Then, execute this terminal command: source
~/.bashrc.

Creating Database Tables
For this project, you will create several tables and load them with data. Figure 3-2
displays the structure of the tables you will create.

You will create these tables by executing Structured Query Language (SQL) state‐
ments. As mentioned previously, SQL is a language used frequently by data scientists.
This book does not teach the syntax of SQL, but the scripts used are fairly basic. To
learn more about SQL, I recommend Learning SQL: Generate, Manipulate, and
Retrieve Data, 3rd Edition, by Alan Beaulieu (O’Reilly, 2020).

32 | Chapter 3: Creating Your Database

Figure 3-2. Database table structure

Be sure you are still at the sqlite prompt, and one-by-one execute the following SQL
statements, one by one:

CREATE TABLE player (
 player_id INTEGER NOT NULL,
 gsis_id VARCHAR,
 first_name VARCHAR NOT NULL,
 last_name VARCHAR NOT NULL,
 position VARCHAR NOT NULL,
 last_changed_date DATE NOT NULL,
 PRIMARY KEY (player_id)
);

CREATE TABLE performance (
 performance_id INTEGER NOT NULL,
 week_number VARCHAR NOT NULL,
 fantasy_points FLOAT NOT NULL,
 player_id INTEGER NOT NULL,
 last_changed_date DATE NOT NULL,
 PRIMARY KEY (performance_id),
 FOREIGN KEY(player_id) REFERENCES player (player_id)
);

CREATE TABLE league (
 league_id INTEGER NOT NULL,
 league_name VARCHAR NOT NULL,
 scoring_type VARCHAR NOT NULL,
 last_changed_date DATE NOT NULL,
 PRIMARY KEY (league_id)
);

Creating Your SQLite Database | 33

CREATE TABLE team (
 team_id INTEGER NOT NULL,
 team_name VARCHAR NOT NULL,
 league_id INTEGER NOT NULL,
 last_changed_date DATE NOT NULL,
 PRIMARY KEY (team_id),
 FOREIGN KEY(league_id) REFERENCES league (league_id)
);

CREATE TABLE team_player (
 team_id INTEGER NOT NULL,
 player_id INTEGER NOT NULL,
 last_changed_date DATE NOT NULL,
 PRIMARY KEY (team_id, player_id),
 FOREIGN KEY(team_id) REFERENCES team (team_id),
 FOREIGN KEY(player_id) REFERENCES player (player_id)
);

Here is a breakdown of one of the statements:

CREATE TABLE player (
 player_id INTEGER NOT NULL,
 gsis_id VARCHAR,
 first_name VARCHAR NOT NULL,
 last_name VARCHAR NOT NULL,
 position VARCHAR NOT NULL,
 last_changed_date DATE NOT NULL,
 PRIMARY KEY (player_id)
);

CREATE TABLE is standard SQL syntax, and player is the name for this table.

The player_id is the name of a single column with a data type of INTEGER that is
a required field. If you insert a row in this table with this value, an error will
occur.

After all the columns are defined, the player_id value is defined as the primary
key, which is the value in this table that will always be unique and can be used to
join to other tables.

To verify that all five tables were created, enter .tables, resulting in the following:

sqlite> .tables
league performance player team team_player
sqlite>

34 | Chapter 3: Creating Your Database

Including an External Identifier in Your API
When data scientists use your API, they would like to combine your data with other
sources for richer analytics products and models. To accomplish this, you need to
provide them a standard external identifier that will be present in other data sources.
For NFL player data, each data provider and fantasy website uses a different identifier.
The most comprehensive identifier is generated by the NFL’s Game Statistics and
Information System (GSIS). You will include the GSIS ID in your API to meet the
needs of data scientists. Not every player has a GSID ID assigned, so it will allow
nulls.

Understanding Table Structure
The first thing to notice about the tables is that each column has a data type defined.
The data types used are INTEGER for identifier values, VARCHAR for names and text
fields, DATE for date fields, and FLOAT for scoring value fields that have a decimal. All
fields have a NOT NULL statement because they are required. Each table has a PRIMARY
KEY() constraint on the table’s identifier field. This ensures that these values are
unique in each table.

In “Designing APIs for Data Scientists” on page 5, I recommended that APIs support
querying by the last changed date. This allows them to use APIs in data pipelines and
only retrieve records that have changed since a point in time. (This is a major time-
saver.) You will enable this by populating the last_changed_date column in each
table.

As shown in Figure 3-2, each table is related to at least one other table. This is accom‐
plished using FOREIGN KEY statements in the child table, which references the pri‐
mary key in the parent table. For an example, look at the definition of the team table:

CREATE TABLE team (
 team_id INTEGER NOT NULL,
 team_name VARCHAR NOT NULL,
 league_id INTEGER NOT NULL,
 last_changed_date DATE NOT NULL,
 PRIMARY KEY (team_id),
 FOREIGN KEY(league_id) REFERENCES league (league_id)
);

The FOREIGN KEY statement inserts a column named league_id into the child table
(team), which links it to a matching record in the parent table (league).

The team_player is the only table that has two foreign keys, as shown:

CREATE TABLE team_player (
 team_id INTEGER NOT NULL,
 player_id INTEGER NOT NULL,

Creating Your SQLite Database | 35

 last_changed_date DATE NOT NULL,
 PRIMARY KEY (team_id, player_id),
 FOREIGN KEY(team_id) REFERENCES team (team_id),
 FOREIGN KEY(player_id) REFERENCES player (player_id)
);

It has two foreign keys because it is an association table, which serves as a child that
associates two separate parent tables. In your database, a player can be on many fan‐
tasy teams and a team can have many fantasy players. The team_player table enables
this many-to-many relationship. Later, this relationship will be reflected in the Python
classes that are mapped to these tables.

The rest of the tables follow a similar design, with data fields that serve the purpose of
the data they are storing. You are ready to load data into the tables.

Loading Your Data
Now that the tables are created, you will populate them with football data. You will
use SQLite’s .import tool to load data files that are in CSV format. You will find data
files in this chapter’s /data directory.

Before you execute the import, you need to configure SQLite to enforce foreign keys.
This means that if you try to insert a record into a child table (a table containing the
FOREIGN KEY statement) that doesn’t match a record in the parent table (the table
named in the REFERENCES of a foreign key), an error will occur and the record won’t
be imported. For example, when foreign keys are enforced, you can’t insert a record
in the performance table that uses a player_id value that isn’t in the player table.

Turn on foreign key enforcement with the following statement:

sqlite> PRAGMA foreign_keys = ON;

Prepare the import statement to recognize CSV format with the following command:

sqlite> .mode csv

Run the following commands from the sqlite prompt to load the data. Run them in
the order shown here:

sqlite> PRAGMA foreign_keys = ON;
sqlite> .mode csv
sqlite> .import --skip 1 data/player_data.csv player
sqlite> .import --skip 1 data/performance_data.csv performance
sqlite> .import --skip 1 data/league_data.csv league
sqlite> .import --skip 1 data/team_data.csv team
sqlite> .import --skip 1 data/team_player_data.csv team_player
sqlite>

36 | Chapter 3: Creating Your Database

Use the following commands to verify that the correct number of records was loaded
into each table. The performance table has been loaded with records using two
different last_changed_date values so that you can verify date searching functions
are working correctly:

sqlite> select count(*) from player;
1018
sqlite> select count(*) from performance;
17306
sqlite> select count(*) from performance where last_changed_date > '2024-04-01';
2711
sqlite> select count(*) from league;
5
sqlite> select count(*) from team;
20
sqlite> select count(*) from team_player;
140

To exit the SQLite application, type .exit:

sqlite> .exit
$

You have loaded sample data in your database, which represents the data from the
SWC website data. Now you’ll start using it with Python.

Accessing Your Data Using Python
There are several ways to access this data in Python. For example, you could create a
connection to the database and execute SQL queries directly. This sounds simple, but
you would quickly run into several issues, such as mapping the SQLite data types into
Python objects. You would also need to take steps to avoid SQL injection attacks
when you accept input from your API users.

To avoid this manual work, you will use an ORM, which handles the process of read‐
ing database tables and creating Python objects from them. You will be using a very
common Python ORM: SQLAlchemy.

Installing SQLAlchemy in Your Environment
SQLAlchemy is the first Python library that you will need to install directly in your
Codespace. You want to be certain of the version of SQLAlchemy installed, so first
create a pip requirements file in the directory with your Python code.

In your editor, create a file named requirements.txt with the following contents, and
save the file:

SQLAlchemy>=2.0.0

Accessing Your Data Using Python | 37

This file will be used to install libraries from the pip Python package manager. These
libraries are stored on the internet, and pip will automatically download them to your
Codespace.

Throughout the book, you will add additional Python libraries to your Codespace.
Using the requirements file is a convenient way to install multiple libraries and make
sure the versions of the libraries are all compatible with one another.

To install the library, execute the following command:

pip3 install -r requirements.txt

You should see a message that says SQLAlchemy 2.0 or higher has been successfully
installed or was “already satisfied.” To verify the installation, type pip3 show SQL
Alchemy and you will receive a confirmation similar to the following:

Name: SQLAlchemy
Version: 2.0.29
Summary: Database Abstraction Library
Home-page: https://www.sqlalchemy.org
Author: Mike Bayer
Author-email: mike_mp@zzzcomputing.com
License: MIT

Selecting and Updating Open Source Library Versions
When you use open source libraries, you need to plan and test which versions of each
library to use. Because many libraries have dependencies on each other, it can be
tricky at times to find library versions that all work together. In addition, you have to
frequently review the versions of each library when patches are needed or versions
stop being maintained. How can you verify your code will still work if you update a
library? Two key items will help: virtual environments and regression tests.

Codespaces are an ideal virtual environment for testing. You can create a new Code‐
space from your code repository, uninstall the existing libraries, and reinstall the new
ones using the requirements.txt file.

You will create basic unit tests in this chapter and Chapter 4 to verify your database
and API code. Run these tests in the new virtual environment with the new libraries
and see if any errors or warnings occur that require coding changes. This is regression
testing: finding what you broke when updating your code or libraries. The more code
you cover with tests, the more confident you can be when updating libraries.

In general, using a library with a major version of 1 or higher indicates the library will
be maintained and patched for a while when a newer version is released. Keep in
mind that open source libraries generally are provided without any warranty from the
volunteer maintainers.

38 | Chapter 3: Creating Your Database

Creating Python Files for Database Access
You will now create the files that are required to query the database using Python.
Table 3-2 explains the purpose of all the files you will have when this chapter is
complete.

Table 3-2. Purpose of the Chapter 3 files

Filename Purpose
crud.py Helper function to query the database

database.py Configures SQLAlchemy to use the SQLite database

models.py Defines the SQLAlchemy classes related to the database tables

requirements.txt Used to install specific versions of libraries with the pip package manager

test_crud.py The pytest file to unit-test your SQLAlchemy files

The file named models.py will contain the Python representation of the data. The
classes in this file will be used when you query databases in Python.

Here are the two tasks that you need to perform in this file:

• Define the SQLAlchemy classes to store information from database tables.
• Describe the relationship between these tables so that the Python code can access

the related tables.

The term model is used in a lot of different ways in this book,
which is unavoidable but confusing. In this instance, the SQL‐
Alchemy model is a Python representation of the data from the
SQLite database.

Create a file with the following contents, and name it models.py:

"""SQLAlchemy models"""
from sqlalchemy import Column, ForeignKey, Integer, String, Float, Date
from sqlalchemy.orm import relationship

from database import Base

class Player(Base):
 __tablename__ = "player"

 player_id = Column(Integer, primary_key=True, index=True)
 gsis_id = Column(String, nullable=True)
 first_name = Column(String, nullable=False)
 last_name = Column(String, nullable=False)

Accessing Your Data Using Python | 39

 position = Column(String, nullable=False)
 last_changed_date = Column(Date, nullable=False)

 performances = relationship("Performance", back_populates="player")

 # Many-to-many relationship between Player and Team tables
 teams = relationship("Team", secondary="team_player",
 back_populates="players")

class Performance(Base):
 __tablename__ = "performance"

 performance_id = Column(Integer, primary_key=True, index=True)
 week_number = Column(String, nullable=False)
 fantasy_points = Column(Float, nullable=False)
 last_changed_date = Column(Date, nullable=False)

 player_id = Column(Integer, ForeignKey("player.player_id"))

 player = relationship("Player", back_populates="performances")

class League(Base):
 __tablename__ = "league"

 league_id = Column(Integer, primary_key=True, index=True)
 league_name = Column(String, nullable=False)
 scoring_type = Column(String, nullable=False)
 last_changed_date = Column(Date, nullable=False)

 teams = relationship("Team", back_populates="league")

class Team(Base):
 __tablename__ = "team"

 team_id = Column(Integer, primary_key=True, index=True)
 team_name = Column(String, nullable=False)
 last_changed_date = Column(Date, nullable=False)

 league_id = Column(Integer, ForeignKey("league.league_id"))

 league = relationship("League", back_populates="teams")

 players = relationship("Player", secondary="team_player",
 back_populates="teams")

class TeamPlayer(Base):
 __tablename__ = "team_player"

40 | Chapter 3: Creating Your Database

 team_id = Column(Integer, ForeignKey("team.team_id"),
 primary_key=True, index=True)
 player_id = Column(Integer, ForeignKey("player.player_id"),
 primary_key=True, index=True)
last_changed_date = Column(Date, nullable=False)

Take a look at models.py piece by piece. At the top of most Python files, you will find
import statements. The power of the Python ecosystem comes from the variety of
external libraries you can use. The process you will use in this book is to install the
libraries using the pip package manager, and then reference them in your code using
import statements:

from sqlalchemy import Column, ForeignKey, Integer, String, Float, Date
from sqlalchemy.orm import relationship

from database import Base

Because this file will create Python representations of the database tables, you
first import the data types that SQLAlchemy will use for the database fields. For
more information about SQLAlchemy data types, reference the SQLAlchemy
Type Hierarchy.

Next, you import SQLAlchemy’s relationship functionality, which enables foreign
key relationships between tables.

The database import refers to the database.py file with the SQLAlchemy config‐
uration. You are using the Base class, which is a standard template you’ll use for
the classes in the models.py file.

Now it’s time to begin the definition of the Player class, which is the Python class
you’ll use to store data from the SQLite player table. You do this using the class
statement, stating the name of the class and specifying that it will be a subclass of the
Base template imported from the database.py file. Use the magic command table
name to tell SQLAlchemy to reference the player table. Because of this statement,
when you ask SQLAlchemy to query Player, it will know behind the scenes to access
the player table in the database. This is one of the key benefits of an ORM—mapping
the Python code automatically to the underlying database:

class Player(Base):
 __tablename__ = "player"

The rest of the Player class definition maps additional details about the database
table. Each statement defines one attribute in the class using the Column method pro‐
vided by SQLAlchemy:

 player_id = Column(Integer, primary_key=True, index=True)
 gsis_id = Column(String, nullable=True)
 first_name = Column(String, nullable=False)

Accessing Your Data Using Python | 41

https://oreil.ly/Z1jfo
https://oreil.ly/Z1jfo

 last_name = Column(String, nullable=False)
 position = Column(String, nullable=False)
 last_changed_date = Column(Date, nullable=False)

Here are a few things to notice about the definitions:

• The attribute names are automatically matched to the column names in the
database.

• The data types used (e.g., String, Integer) are SQLAlchemy data types that you
specified in your import statement at the beginning of the file.

• The primary_key definition provides several benefits from SQLAlchemy, such as
query optimization, enforcing uniqueness, and enabling relationships between
classes.

Along with the definition of the tables, you define the foreign key relationship
between the tables using the relationship() function. This results in a Player
.performances attribute that will return all the related rows from the performance
table for each row in the player table:

 performances = relationship("Performance", back_populates="player")

There is another kind of relationship, which uses the team_player association table
to connect player to team. By defining secondary="team_player", this relationship
allows a Player record to have an attribute named Player.teams. This is the many-
to-many relationship that was discussed when creating the database tables:

 players = relationship("Player", secondary="team_player",
 back_populates="teams")

Next is the definition for the Performance class:

class Performance(Base):
 __tablename__ = "performance"

 performance_id = Column(Integer, primary_key=True, index=True)
 week_number = Column(String, nullable=False)
 fantasy_points = Column(Float, nullable=False)
 last_changed_date = Column(Date, nullable=False)

 player_id = Column(Integer, ForeignKey("player.player_id"))

 player = relationship("Player", back_populates="performances")

This class has a player relationship that is the mirror image of the performances
relationship in the player table. When you look at these two relationships together,
you can see that the back_populates statement in one refers to the variable assigned
in the other. Together these allow a two-way relationship between the parent (player)
and child (performance).

42 | Chapter 3: Creating Your Database

Next up is the League class:

class League(Base):
 __tablename__ = "league"

 league_id = Column(Integer, primary_key=True, index=True)
 league_name = Column(String, nullable=False)
 scoring_type = Column(String, nullable=False)
 last_changed_date = Column(Date, nullable=False)

 teams = relationship("Team", back_populates="league")

League is going to be the topmost parent class in your code, as was reflected in
Figure 3-2. The teams relationship will be used to enable League.teams in this class
and has a matching relationship in the Team class.

Look at the next block of code, which defines the Team class:

class Team(Base):
 __tablename__ = "team"

 team_id = Column(Integer, primary_key=True, index=True)
 team_name = Column(String, nullable=False)

 league_id = Column(Integer, ForeignKey("league.league_id"))

 league = relationship("League", back_populates="teams")

 players = relationship("Player", secondary="team_player",
 back_populates="teams")

Notice that this file has matching relationships to connect with the league table and
indirectly to the player table.

The last class definition is for the team-player table:

class TeamPlayer(Base):
 __tablename__ = "team_player"

 team_id = Column(Integer, ForeignKey("team.team_id"),
 primary_key=True, index=True)
 player_id = Column(Integer, ForeignKey("player.player_id"),
 primary_key=True, index=True

The TeamPlayer class is created without any relationships, because those are defined
on the Team and Player classes. You have now defined all of the SQLAlchemy models
needed for the new database tables and the necessary database configuration file.
Excellent progress!

Accessing Your Data Using Python | 43

Creating the Database Configuration File
Next, a file named database.py will set up the SQLAlchemy configuration to connect
to the SQLite database, along with some other Python objects that you’ll use for data‐
base work. The tasks that you need to accomplish in this file are the following:

• Create a database connection that points to the SQLite database and has the cor‐
rect settings.

• Create a parent class that you’ll use to define the Python table classes:

Create a file with the following contents, and name it database.py:

"""Database configuration"""
from sqlalchemy import create_engine
from sqlalchemy.orm import declarative_base
from sqlalchemy.orm import sessionmaker

SQLALCHEMY_DATABASE_URL = "sqlite:///./fantasy_data.db"

engine = create_engine(
 SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False}
)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

Base = declarative_base()

Take a look at this file piece by piece. Three specific functions are imported from the
SQLAlchemy libraries. Although it would be possible to import the entire SQL‐
Alchemy library all at once, it is better to import specific functions to limit possible
conflicts between duplicate functions in multiple libraries:

from sqlalchemy import create_engine
from sqlalchemy.orm import declarative_base
from sqlalchemy.orm import sessionmaker

The next three steps work together to get the session, which is a SQLAlchemy object
that manages the conversation with the database. Create a database URL that tells
SQLAlchemy what type of database you’ll be using (SQLite) and where to find the file
(in the same folder as this file, with the name fantasy_data.db):

SQLALCHEMY_DATABASE_URL = "sqlite:///./fantasy_data.db"

Using this database URL, create an engine object, with one configuration setting that
allows multiple connections to this database without an error being thrown:

engine = create_engine(
 SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False}
)

44 | Chapter 3: Creating Your Database

Then, use the engine object to create a session named SessionLocal that points to
that engine and adds a couple of more configuration settings:

SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

The last command in this file creates a Base class. This is a standard template SQL‐
Alchemy provides for the models you will create in the models.py file:

Base = declarative_base()

Creating SQLAlchemy Helper Functions
The files created so far give you a connection to the database and classes that repre‐
sent database tables. Next, you will create the file crud.py that contains query func‐
tions. This strange-sounding name stands for Create, Read, Update, Delete (CRUD).

Create a file with the following contents, and name it crud.py:

"""SQLAlchemy Query Functions"""
from sqlalchemy.orm import Session
from sqlalchemy.orm import joinedload
from datetime import date

import models

def get_player(db: Session, player_id: int):
 return db.query(models.Player).filter(
 models.Player.player_id == player_id).first()

def get_players(db: Session, skip: int = 0, limit: int = 100,
 min_last_changed_date: date = None,
 last_name : str = None, first_name : str = None,):
 query = db.query(models.Player)
 if min_last_changed_date:
 query = query.filter(
 models.Player.last_changed_date >= min_last_changed_date)
 if first_name:
 query = query.filter(models.Player.first_name == first_name)
 if last_name:
 query = query.filter(models.Player.last_name == last_name)
 return query.offset(skip).limit(limit).all()

def get_performances(db: Session, skip: int = 0, limit: int = 100,
 min_last_changed_date: date = None):
 query = db.query(models.Performance)
 if min_last_changed_date:
 query = query.filter(
 models.Performance.last_changed_date >= min_last_changed_date)

Accessing Your Data Using Python | 45

 return query.offset(skip).limit(limit).all()

def get_league(db: Session, league_id: int = None):
 return db.query(models.League).filter(
 models.League.league_id == league_id).first()

def get_leagues(db: Session, skip: int = 0, limit: int = 100,
 min_last_changed_date: date = None,league_name: str = None):
 query = db.query(models.League
).options(joinedload(models.League.teams))
 if min_last_changed_date:
 query = query.filter(
 models.League.last_changed_date >= min_last_changed_date)
 if league_name:
 query = query.filter(models.League.league_name == league_name)
 return query.offset(skip).limit(limit).all()

def get_teams(db: Session, skip: int = 0, limit: int = 100,
 min_last_changed_date: date = None,
 team_name: str = None, league_id: int = None):
 query = db.query(models.Team)
 if min_last_changed_date:
 query = query.filter(
 models.Team.last_changed_date >= min_last_changed_date)
 if team_name:
 query = query.filter(models.Team.team_name == team_name)
 if league_id:
 query = query.filter(models.Team.league_id == league_id)
 return query.offset(skip).limit(limit).all()

#analytics queries
def get_player_count(db: Session):
 query = db.query(models.Player)
 return query.count()

def get_team_count(db: Session):
 query = db.query(models.Team)
 return query.count()

def get_league_count(db: Session):
 query = db.query(models.League)
 return query.count()

46 | Chapter 3: Creating Your Database

Let’s look at the import statements in crud.py:

from sqlalchemy.orm import Session
from sqlalchemy.orm import joinedload
from datetime import date

import models

Session and joinedload are used by the query functions.

The date will be an important data type to allow you to filter by date.

This import lets you reference the model file that you created. These functions
reference the classes that you created in models.py and use SQLAlchemy built-in
functions to retrieve data using prepared SQL statements.

Take a look at the first query:

def get_player(db: Session, player_id: int):
 return db.query(models.Player).filter(
 models.Player.player_id == player_id).first()

The parameters in this function include a database session, which the function will
use to connect to the database, and a specific player_id value. By using
filter(models.Player.player_id == player_id).first(), this function looks up
a specific Player.player_id value and returns the first matching instance. Because
you have defined player_id as a primary key in the models.py file and the SQLite
database, this query will return a single result.

The signature of the next function adds several new parameters to the .query()
statement:

def get_players(db: Session, skip: int = 0, limit: int = 100,
 min_last_changed_date: date = None,
 last_name : str = None, first_name : str = None,):

The skip and limit parameters will be used for pagination, which allows the user to
specify a set of records in chunks rather than a full list. The min_last_changed_date
parameter will be used to exclude records older than a specified date.

The int = 0 on the skip parameter sets a default value of zero. If this parameter isn’t
sent in a call to this function, skip will default to zero. The limit has a default of 100.
There is no default given for min_last_changed_date, first_name, and last_name,
so those default to null.

Accessing Your Data Using Python | 47

The body of the function uses the queries to filter the results:

query = db.query(models.Player)
 if min_last_changed_date:
 query = query.filter(
 models.Player.last_changed_date >= min_last_changed_date)
 if first_name:
 query = query.filter(models.Player.first_name == first_name)
 if last_name:
 query = query.filter(models.Player.last_name == last_name)

The last statement applies the skip and limit parameters:

 return query.offset(skip).limit(limit).all()

This statement applies the skip and limit parameters to grab a specific chunk of
records from the query results. The skip instructs the query to skip a number of
records from the beginning of the results, and limit instructs the query to return
only a certain number of records. For instance, a user might begin by skipping zero
and limiting 20. This would return the first 20 records. They could call it again, this
time skipping 20 and limiting 20. This would grab the next 20.

The get_leagues function uses a new statement, so it is worth a closer look:

def get_leagues(db: Session, skip: int = 0, limit: int = 100,
 min_last_changed_date: date = None,league_name: str = None):
 query = db.query(models.League
).options(joinedload(models.League.teams))
 if min_last_changed_date:
 query = query.filter(
 models.League.last_changed_date >= min_last_changed_date)
 if league_name:
 query = query.filter(models.League.league_name == league_name)
 return query.offset(skip).limit(limit).all()

This function uses the .options(joinedload(models.League.teams)) statement.
This is a type of eager loading, which causes SQLAlchemy to retrieve the joined team
data when it retrieves the league data.

The final set of queries are designed to support AI and large language models, based
on the recommendation to provide a separate endpoint for analytics questions. You
will create endpoints that provide counts for users, leagues, and teams. This will help
the AI use the pagination functions, and it will answer questions about the number of
records without making large API calls:

#analytics queries
def get_player_count(db: Session):
 query = db.query(models.Player)
 return query.count()

def get_team_count(db: Session):
 query = db.query(models.Team)

48 | Chapter 3: Creating Your Database

 return query.count()

def get_league_count(db: Session):
 query = db.query(models.League)
 return query.count()

You have created all the SQLAlchemy classes and helper functions. Since all of the
functions in crud.py are reading (querying) data, you have only implemented the “r”
in CRUD. That is appropriate, because all of your user stories require read-only func‐
tionality. If you were developing an API that allowed creating, updating, or deleting
records, this file could be extended with additional functions. Now it is time to unit-
test these queries with pytest.

Installing pytest in Your Environment
Now that all the database code is written, you are ready to test it. You will use the
pytest library for this task. First, add an entry to the requirements.txt file for pytest.
The updated file should look like the following:

SQLAlchemy>=2.0.0
Pytest>=8.1.0

To install pytest, execute the following command again:

pip3 install -r requirements.txt

You should see a message that says pytest 8.1.0 or higher has been successfully
installed or was “already satisfied.” To verify the installation, type pip3 show Pytest
and you will receive a confirmation similar to the following:

$ pip3 show Pytest
Name: pytest
Version: 8.1.1
Summary: pytest: simple powerful testing with Python
Home-page:
Author: Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe,
Brianna Laugher, Florian Bruhin, Others (See AUTHORS)
Author-email:
License: MIT

Testing Your SQLAchemy Code
As the library’s summary says, pytest is simple to use. There are a couple of naming
conventions that pytest expects. Any file that contains tests will have a filename
beginning with test followed by an underscore or ending with an underscore followed
by test. Inside the test file, pytest will execute any function name beginning with test.

Inside the test functions, you will include an assert statement. If it returns true, the
flow continues. If all assertions evaluate as true in the test, the test returns with a

Accessing Your Data Using Python | 49

success status. If an assertion evaluates as false, the code raises an AssertionError
and the test evaluates as false.

Your unit tests will be very basic: they will check that the row counts returned from
your SQLAlchemy classes match the values you checked in the previous SQL query.

Create a file named test_crud.py with the following contents:

"""Testing SQLAlchemy Helper Functions"""
import pytest
from datetime import date

import crud
from database import SessionLocal

use a test date of 4/1/2024 to test the min_last_changed_date.
test_date = date(2024,4,1)

@pytest.fixture(scope="function")
def db_session():
 """This starts a database session and closes it when done"""
 session = SessionLocal()
 yield session
 session.close()

def test_get_player(db_session):
 """Tests you can get the first player"""
 player = crud.get_player(db_session, player_id = 1001)
 assert player.player_id == 1001

def test_get_players(db_session):
 """Tests that the count of players in the database is what is expected"""
 players = crud.get_players(db_session, skip=0, limit=10000,
 min_last_changed_date=test_date)
 assert len(players) == 1018

def test_get_players_by_name(db_session):
 """Tests that the count of players in the database is what is expected"""
 players = crud.get_players(db_session, first_name="Bryce", last_name="Young")
 assert len(players) == 1
 assert players[0].player_id == 2009

def test_get_all_performances(db_session):
 """Tests that the count of performances in the database is
 what is expected - all the performances"""
 performances = crud.get_performances(db_session, skip=0, limit=18000)
 assert len(performances) == 17306

def test_get_new_performances(db_session):
"""Tests that the count of performances in the database is
 what is expected"""

50 | Chapter 3: Creating Your Database

 performances = crud.get_performances(db_session, skip=0, limit=18000,
 min_last_changed_date=test_date)

#test the count functions
def test_get_player_count(db_session):
 player_count = crud.get_player_count(db_session)
 assert player_count == 1018

First, look at how this file follows the conventions expected by pytest. The file is
named test_crud.py, so it will be recognized as a test file automatically. The file con‐
tains six function names beginning with test_. These will be executed when the file
runs. Each of these test functions ends with an assert statement.

The first function needs a bit of explanation. On top of the function is the decorator
@pytest.fixture(scope="function"). A fixture is used during the arrange phase,
which prepares the testing setup. This fixture uses session scope, which means it will
run once for each function:

@pytest.fixture(scope="function")

The body of the db_session() function creates a database session, pauses while the
test function uses the session (through the yield statement), and then closes the ses‐
sion when the test completes:

def db_session():
 """This starts a database session and closes it when done"""
 session = SessionLocal()
 yield session
 session.close()

To verify the date-based queries are working correctly, the queries for performance
check the full results and then results that are limited using last_changed_date. First
remember that in the SQL queries earlier you got the following results for the perfor
mance table:

sqlite> select count(*) from performance;
17306
sqlite> select count(*) from performance where last_changed_date > '2024-04-01';
2711

To verify the first result using pytest, this function does not include a data parameter:

def test_get_all_performances(db_session):
 """Tests that the count of performances in the database is
 what is expected - all the performances"""
 performances = crud.get_performances(db_session, skip=0, limit=18000)
 assert len(performances) == 17306

Accessing Your Data Using Python | 51

To verify the second result, the next function uses a last_changed_date value of
2024_04_01, set in the test_date variable at the top of the testing code. That date is
earlier that all by 2,711 records:

 """Tests that the count of performances in the database is
 what is expected"""
 performances = crud.get_performances(db_session, skip=0, limit=10000,
 min_last_changed_date=test_date)
 assert len(performances) == 2711

The last test verifies one of the analytics queries:

def test_get_player_count(db_session):
 player_count = crud.get_player_count(db_session)
 assert player_count == 1018

To execute the tests, enter the pytest test_crud.py command and you should see
an output that looks similar to this:

$ pytest test_crud.py
================== test session starts ===========================
platform linux -- Python 3.10.13, pytest-8.1.2, pluggy-1.5.0
rootdir: /workspaces/adding-more-data/chapter3
plugins: anyio-4.4.0
collected 5 items

test_crud.py [100%]

=================== 5 passed in 0.22s ============================

You have verified that your SQLAlchemy classes and a few helper functions work
correctly—way to go! The database work is done.

Additional Resources
SQL is one of the essential skills for data professionals. The number of resources
available is limitless, but here are a couple to start:

• Learning SQL, 3rd Edition, by Alan Beaulieu (O’Reilly, 2020)
• SQL Pocket Guide, 4th Edition, by Alice Zhao (O’Reilly, 2021)

To learn more about SQLAlchemy, check out the official SQLAlchemy 2 documenta‐
tion.

52 | Chapter 3: Creating Your Database

https://oreil.ly/PhsUf
https://oreil.ly/PhsUf

Extending Your Portfolio Project
This script tested several of the database helper functions. Create more scripts to get
full test coverage, which means each part of the program’s code has been tested. (You
never know where a typo is going to occur.) You can see additional tests in the chap‐
ter3/complete/test_crud.py file.

If you identified a different portfolio project in Chapter 2, use the following tech‐
niques to continue it:

• Select a primary user, and extend your database to add necessary tables to sup‐
port the tasks they want to perform or resolve their pain points.

• Model a parent–child relationship of two or more tables that would store data
related to your idea.

• Create a new GitHub repository for this project and launch a new Codespace.
• Create a SQLite database using DDL scripts and data loading scripts to populate

it with sample data.
• Using this chapter’s code as a template, create Python code to represent your

database using SQLAlchemy, and retrieve data from your database tables.

Summary
In this chapter, you created your database and the SQLAlchemy code to read it. Here
is what you accomplished in this chapter:

• You designed your database tables and their relationships.
• You created a database using SQLite and created all of your tables using SQL

commands.
• You imported data from CSV files to load your tables.
• You created the Python model files and database configuration files.
• You created helper functions to query your database.
• You unit-tested the end-to-end database functionality using pytest.

In Chapter 4, you will create the FastAPI code to use this data and publish it as a
REST API.

Summary | 53

CHAPTER 4

Developing the FastAPI Code

In Chapter 3, you created your database and the Python code to access the database.
In this chapter, you will build on this foundation code to create a working API.
Table 4-1 lists the endpoints that you will create to fulfill these user stories.

Table 4-1. Endpoints for the SWC Fantasy Football API

Endpoint description HTTP verb URL
API health check GET /

Read player list GET /v0/players/

Read individual player GET /v0/players/{player_id}/

Read performance list GET /v0/performances/

Read league list GET /v0/leagues/

Read individual league GET /v0/leagues/{league_id}/

Read team list GET /v0/teams/

Read counts GET /v0/counts/

You are using version 0 for your API. This will notify API consumers that the prod‐
uct is changing rapidly and they should be aware of potential breaking changes—
changes that cause functionality to stop working and may require consumers to make
changes in their program code.

Continuing Your Portfolio Project
Figure 4-1 shows the same API components you saw previously, with one addition:
the Uvicorn web server. Uvicorn will execute your API code and interact with API
requests.

55

Figure 4-1. API components with Uvicorn

In Chapter 3, you completed two very important parts of the API: the SQLite data‐
base and the SQLAlchemy classes that enable Python to interact with the data. In this
chapter, you will finish the rest of the components. You will create Pydantic schemas
that define the structure of request and response messages. Then, you will create the
controlling FastAPI application that stitches all the other components together to fin‐
ish the API.

Software Used in This Chapter
The software introduced in this chapter will focus on handling API requests from
your consumers. Table 4-2 lists the new tools you will use.

Table 4-2. New tools used in this chapter

Software name Version Purpose
FastAPI 0 Web framework to build the API

FastAPI CLI 0 Command-line interface for FastAPI

HTTPX 0 HTTP client for Python

Pydantic 2 Validation library

Uvicorn 0 Web server to run the API

FastAPI
FastAPI is a Python web framework that is designed for building APIs. A web frame‐
work is a set of libraries that simplify common tasks for web applications. Other com‐
mon web frameworks include Express, Flask, Django, and Ruby on Rails.

FastAPI is built to be fast in both application performance and developer productiv‐
ity. Because FastAPI focuses on API development, it simplifies several tasks related to
API building and publishing:

• It handles HTTP traffic, requests/responses, and other “plumbing” jobs with a
few lines of code.

56 | Chapter 4: Developing the FastAPI Code

• It automatically generates an OpenAPI specification file for your API, which is
useful for integrating with other products.

• It includes interactive documentation for your API.
• It supports API versioning, security, and many other capabilities.

As you will see as you work through the portfolio project, all of these capabilities pro‐
vide benefits to the users of your APIs.

Compared to the other frameworks I mentioned, FastAPI is a relative newcomer. It is
an open source project created by Sebastián Ramírez Montaño in 2018.

FastAPI also includes the FastAPI CLI. This is a separate Python library that is used
to run FastAPI from the command line.

As of this writing, the latest version of FastAPI is a 0.x version (e.g., 0.115). That ver‐
sion number is important because, according to semantic versioning, 0.x indicates
that breaking changes may occur with the software.

HTTPX
HTTPX is a Python HTTP client. It is similar to the very popular requests library, but
it supports asynchronous calls, which allows some tasks to finish while others process.
The requests library only supports synchronous calls, which wait until they receive a
response before continuing. HTTPX is used by pytest to test FastAPI programs. You
will also use this library in Chapter 7 to create your Python SDK.

Pydantic
Pydantic is a data validation library, which will play a key part in the APIs that you
build. Because APIs are used to communicate between systems, a critical piece of
their functionality is the validation of inputs and outputs. API developers and data
scientists typically spend a significant amount of time writing the code to check the
data types and validate values that go into and out of the API endpoints.

Pydantic is purpose-built to address this important task. Pydantic is fast in two ways:
it saves the developer time that would be spent to write custom Python validation
code, and Pydantic validation code runs much faster because it is implemented in the
Rust programming language.

In addition to these benefits, objects defined in Pydantic automatically support tool‐
tips and hints in IDEs such as VS Code. FastAPI uses Pydantic to generate JSON
Schema representations from Python code. JSON Schema is a standard that ensures
consistency in JSON data structures. This Pydantic feature enables FastAPI to auto‐
matically generate the OpenAPI specification, which is an industry-standard file
describing APIs.

Software Used in This Chapter | 57

For your project, you will use Pydantic version 2.

Uvicorn
All web applications, including APIs, rely on a web server to handle the various
administrative tasks related to handling requests and responses. You will be using the
open source Uvicorn web server. Uvicorn is based on the ASGI specification, which
provides support for both synchronous processes (which block the process while wait‐
ing for a task to be performed) and asychronous processes (which can allow another
process to continue while they are waiting).

For your project, you will be using Uvicorn 0.x.

You Can Start from Here
The instructions in this chapter assume that you completed Chapters 2 and 3 already.
If you’re starting your coding in this chapter, you will need to perform a couple of
steps to catch up. First, you need to create a GitHub Codespace from the book’s Git‐
Hub repository. Full instructions are available in “Getting Started with Your GitHub
Codespace” on page 22.

To catch up on the coding from Chapter 3, you can use the completed set of files that
is in chapter3/complete of your Codespace. If you are using these, use the directory
chapter3/complete instead of chapter3 in the setup commands that follow.

If you run into trouble with any of the steps in this chapter, there are a few trouble‐
shooting tips at the end.

Copying Files from Chapter 3
To continue your portfolio project where you left it in the previous chapter, change
the directory to chapter4 and then copy the previous chapter’s files over to it. The fol‐
lowing shows the commands and expected output:

.../portfolio-project (main) $ cd chapter4

.../chapter4 (main) $ cp ../chapter3/*.py .

.../chapter4 (main) $ cp ../chapter3/fantasy_data.db .

.../chapter4 (main) $ cp ../chapter3/requirements.txt .

.../chapter4 (main) $ ls *.*
crud.py database.py fantasy_data.db models.py readme.md requirements.txt
test_crud.py

58 | Chapter 4: Developing the FastAPI Code

Installing the New Libraries in Your Codespace
In the previous chapter, you created the requirements.txt file and specified libraries to
install using the pip3 package manager in Python. You will now use this process to
install Pydantic, FastAPI, and Uvicorn.

Update requirements.txt to match the following:

#Chapter 4 pip requirements
SQLAlchemy>=2.0.0
pydantic>=2.4.0
fastapi[standard]>=0.115.0
uvicorn>=0.23.0
Pytest>=8.1.0
httpx>=0.27.0

Execute the following command to install the new libraries in your Codespace and
verify that the libraries installed in the previous chapter still exist:

pip3 install -r requirements.txt

You should see a message that states that these libraries were successfully installed,
such as the following:

Installing collected packages: uvicorn, pydantic, httpx, fastapi
Successfully installed fastapi-0.115.4 httpx-0.26.0 pydantic-2.4.2 uvicorn-0.23.2

Creating Python Files for Your API
You will be creating two new Python files, which are detailed in Table 4-3.

Table 4-3. Purpose of the Chapter 4 files

Filename Purpose
main.py FastAPI file that defines routes and controls API

schemas.py Defines the Pydantic classes that validate data sent to the API

test_main.py The pytest file for the FastAPI program

Creating Pydantic Schemas
The Pydantic classes define the structure of the data that the consumer will receive in
their API responses. This uses a software design pattern called data transfer objects
(DTO), in which you define a format for transferring data between a producer and
consumer, without the consumer needing to know the backend format. In your port‐
folio project, the backend and frontend classes won’t look significantly different, but
using DTOs allows complete flexibility on this point.

Creating Python Files for Your API | 59

Although you define the classes using Python code and your code interacts with them
as fully formed Python objects, the consumer will receive them in an HTTP request
as a JSON object. FastAPI uses Pydantic to perform the serialization process, which is
converting the Python objects into JSON for the API response. This means you do
not need to manage serialization in your Python code, which simplifies your pro‐
gram. Pydantic 2 is written in Rust and performs this task much faster than Python
could. In addition to performing this de-serialization task, Python also defines the
response format in the openapi.json file. This is a standard contract that uses Open‐
API and JSON Schema. This will provide multiple benefits for the consumer, as you
will see in subsequent chapters. Pydantic will take data from SQLAlchemy classes and
provide it to the API users.

Both SQLAlchemy and Pydantic documentation refer to their
classes as models, which may be confusing at times. This is extra
confusing for data science work, where models have additional
meanings. For clarity, this book will refer to Pydantic schemas and
SQLAlchemy models.

Create a file with the following contents, and name it schemas.py:

"""Pydantic schemas"""
from pydantic import BaseModel, ConfigDict
from typing import List
from datetime import date

class Performance(BaseModel):
 model_config = ConfigDict(from_attributes = True)
 performance_id : int
 player_id : int
 week_number : str
 fantasy_points : float
 last_changed_date : date

class PlayerBase(BaseModel):
 model_config = ConfigDict(from_attributes = True)
 player_id : int
 gsis_id: str
 first_name : str
 last_name : str
 position : str
 last_changed_date : date

class Player(PlayerBase):
 model_config = ConfigDict(from_attributes = True)
 performances: List[Performance] = []

class TeamBase(BaseModel):

60 | Chapter 4: Developing the FastAPI Code

 model_config = ConfigDict(from_attributes = True)
 league_id : int
 team_id : int
 team_name : str
 last_changed_date : date

class Team(TeamBase):
 model_config = ConfigDict(from_attributes = True)
 players: List[PlayerBase] = []

class League(BaseModel):
 model_config = ConfigDict(from_attributes = True)
 league_id : int
 league_name : str
 scoring_type : str
 last_changed_date : date
 teams: List[TeamBase] = []

class Counts(BaseModel):
 league_count : int
 team_count : int
 player_count : int

The schemas in this file will be used to form the responses to the API endpoints that
you will define next. The primary schemas are directly returned to the endpoints and
the secondary schemas are returned as an attribute of the primary schema. For exam‐
ple, the /v0/players/ endpoint URL returns a list of Player objects (primary), which
has the attribute Player.performances (secondary). Table 4-4 shows the mapping
between API endpoints and schemas.

Table 4-4. Mapping of schemas to endpoints

Endpoint URL Primary schema Secondary schema
/ None None

/v0/players/ Player Performance

/v0/players/{player_id}/ Player Performance

/v0/performances/ Performance None

/v0/leagues/ League TeamBase

/v0/leagues/{league_id} League TeamBase

/v0/teams/ Team PlayerBase

/v0/counts/ Counts None

The Performance class is the first and simplest schema:

class Performance(BaseModel):
 model_config = ConfigDict(from_attributes = True)
 performance_id : int
 player_id : int

Creating Python Files for Your API | 61

 week_number : str
 fantasy_points : float
 last_changed_date : date

This class represents the scoring data that the consumer will receive. From their per‐
spective, a performance is what happens when a player plays in a single week. If you
compare the elements of this class to the SQLAlchemy models, you will see that it
contains all of the elements that the Performance model contains.

Performance is a subclass of the Pydantic BaseModel class, which provides a lot of
built-in capabilities, including validating the data types, converting the Python object
to JSON (serializing), raising intelligent errors, and connecting automatically to the
SQLAlchemy models.

Notice that the Pydantic data types of individual class elements are
assigned with a colon, and not an equals sign which is what SQL‐
Alchemy uses. (This will trip you up if you’re not careful.)

The player data is represented in two schemas: PlayerBase and Player. Breaking the
data into two classes allows you to share a limited version of the data in some situa‐
tions and a full version in others. Here are those two schemas:

class PlayerBase(BaseModel):
 model_config = ConfigDict(from_attributes = True)
 player_id : int
 gsis_id: str
 first_name : str
 last_name : str
 position : str
 last_changed_date : date

class Player(PlayerBase):
 model_config = ConfigDict(from_attributes = True)
 performances: List[Performance] = []

The performance data had a single Performance schema, but the player data has two
schemas. PlayerBase is a subclass of BaseModel, and it has all the player fields except
one: the Performance list. Table 4-4 shows that PlayerBase will be used as a secon‐
dary schema for the /v0/teams/ endpoint. The reason is simple: to reduce the amount
of data transmitted in the API call. When the API user retries a list of Team schemas,
they want to see all the players on that team without also getting a list of all the scor‐
ing performances for all the players.

62 | Chapter 4: Developing the FastAPI Code

The full Player schema is a subclass of PlayerBase and adds the list of Performance
objects. This schema is used directly in the /v0/players/ and /v0/players/{player_id}/
endpoints. In those situations, the API user wants a list of scoring performances with
the players.

To see the secondary use of PlayerBase, examine the next two schemas:

class TeamBase(BaseModel):
 model_config = ConfigDict(from_attributes = True)
 league_id : int
 team_id : int
 team_name : str
 last_changed_date : date

class Team(TeamBase):
 model_config = ConfigDict(from_attributes = True)
 players: List[PlayerBase] = []

The Team object contains the statement players: List[PlayerBase] = []. As men‐
tioned previously, this means the items in Team.players are of the more limited Play
erBase schema. This is the secondary usage of PlayerBase shown in Table 4-4 in
the /v0/teams/ endpoint.

The next class is the League schema:

class League(BaseModel):
 model_config = ConfigDict(from_attributes = True)
 league_id : int
 league_name : str
 scoring_type : str
 last_changed_date : date
 teams: List[TeamBase] = []

By now you probably noticed that League.teams contains TeamBase objects. This is
the secondary use of TeamBase used in the /v0/leagues/ endpoint.

Finally, you will create a special-purpose schema to support the analytics provided by
the v0/counts/ endpoint. This schema does not directly map to a database table, so it
does not include the model_config element. The name of the schema is Counts, and
it includes the number of league, team, and player records in the API:

class Counts(BaseModel):
 league_count : int
 team_count : int
 player_count : int

At this point, you have designed the DTOs that will be used to send data to the API
consumer. You are ready for the final piece: the FastAPI controller class.

Creating Python Files for Your API | 63

Creating Your FastAPI Controller
Now that all of the pieces are in place in the other Python files, you can tie them
together with the FastAPI functionality in main.py. You can accomplish a lot with
only a few lines of FastAPI code.

Create the file with the following contents, and name it main.py:

"""FastAPI program - Chapter 4"""
from fastapi import Depends, FastAPI, HTTPException
from sqlalchemy.orm import Session
from datetime import date

import crud, schemas
from database import SessionLocal

app = FastAPI()

Dependency
def get_db():
 db = SessionLocal()
 try:
 yield db
 finally:
 db.close()

@app.get("/")
async def root():
 return {"message": "API health check successful"}

@app.get("/v0/players/", response_model=list[schemas.Player])
def read_players(skip: int = 0,
 limit: int = 100,
 minimum_last_changed_date: date = None,
 first_name: str = None,
 last_name: str = None,
 db: Session = Depends(get_db)
):
 players = crud.get_players(db,
 skip=skip,
 limit=limit,
 min_last_changed_date=minimum_last_changed_date,
 first_name=first_name,
 last_name=last_name)
 return players

@app.get("/v0/players/{player_id}", response_model=schemas.Player)
def read_player(player_id: int,
 db: Session = Depends(get_db)):
 player = crud.get_player(db,

64 | Chapter 4: Developing the FastAPI Code

 player_id=player_id)
 if player is None:
 raise HTTPException(status_code=404,
 detail="Player not found")
 return player

@app.get("/v0/performances/",
 response_model=list[schemas.Performance])
def read_performances(skip: int = 0,
 limit: int = 100,
 minimum_last_changed_date: date = None,
 db: Session = Depends(get_db)):
 performances = crud.get_performances(db,
 skip=skip,
 limit=limit,
 min_last_changed_date=minimum_last_changed_date)
 return performances

@app.get("/v0/leagues/{league_id}", response_model=schemas.League)
def read_league(league_id: int,db: Session = Depends(get_db)):
 league = crud.get_league(db, league_id = league_id)
 if league is None:
 raise HTTPException(status_code=404, detail="League not found")
 return league

@app.get("/v0/leagues/", response_model=list[schemas.League])
def read_leagues(skip: int = 0,
 limit: int = 100,
 minimum_last_changed_date: date = None,
 league_name: str = None,
 db: Session = Depends(get_db)):
 leagues = crud.get_leagues(db,
 skip=skip,
 limit=limit,
 min_last_changed_date=minimum_last_changed_date,
 league_name=league_name)
 return leagues

@app.get("/v0/teams/", response_model=list[schemas.Team])
def read_teams(skip: int = 0,
 limit: int = 100,
 minimum_last_changed_date: date = None,
 team_name: str = None,
 league_id: int = None,
 db: Session = Depends(get_db)):
 teams = crud.get_teams(db,
 skip=skip,
 limit=limit,
 min_last_changed_date=minimum_last_changed_date,
 team_name=team_name,
 league_id=league_id)

Creating Python Files for Your API | 65

 return teams

@app.get("/v0/counts/", response_model=schemas.Counts)
def get_count(db: Session = Depends(get_db)):
 counts = schemas.Counts(
 league_count = crud.get_league_count(db),
 team_count = crud.get_team_count(db),
 player_count = crud.get_player_count(db))
 return counts

Let’s walk through the code in your FastAPI file. We’ll begin with the imports:

from fastapi import Depends, FastAPI, HTTPException
from sqlalchemy.orm import Session
from datetime import date

import crud, schemas
from database import SessionLocal

These are methods from the FastAPI library. You will use these to identify this
program as a FastAPI application.

The SQLAlchemy Session will be used when this program calls crud.py.

You will use the date type to query by last changed date.

These imports allow the FastAPI application to reference the SQLAlchemy and
Pydantic classes.

This retrieves the shared SessionLocal class that is used to connect to your
SQLite database.

Continue reviewing the code:

app = FastAPI()

Dependency
def get_db():
 db = SessionLocal()
 try:
 yield db
 finally:
 db.close()

In FastAPI, the primary class you will work with is a FastAPI class. This class by
default includes the functionality to handle much of the work that an API needs to
perform, without requiring you to specify every detail. You create a FastAPI instance
and name it app. This will be used in the rest of main.py. When you execute your API

66 | Chapter 4: Developing the FastAPI Code

from the command line using Uvicorn, you will reference main:app, referring to the
app object in main.py.

You define the get_db() function to create a database session and close the session
when you are done with it. This function is used as a dependency in the API routes
within main.py:

@app.get("/")
async def root():
 return {"message": "API health check successful"}

The next command is @app.get("/"), which is a decorator. A decorator is a state‐
ment that is added above a function definition, to give special attributes to it. In this
case, the decorator defines that the async def root() function definition will be a
FastAPI request handler.

This function will be called when a consumer accesses the root URL of the API,
which is equivalent to /. It will serve as a health check for the entire API by returning
a simple message to the consumer. The next statement defines the first endpoint that
we have created for your user stories:

@app.get("/v0/players/", response_model=list[schemas.Player])
def read_players(skip: int = 0,
 limit: int = 100,
 minimum_last_changed_date: date = None,
 first_name: str = None,
 last_name: str = None,
 db: Session = Depends(get_db)
):
 players = crud.get_players(db,
 skip=skip,
 limit=limit,
 min_last_changed_date=minimum_last_changed_date,
 first_name=first_name,
 last_name=last_name)
 return players

Remember that Table 4-1 defined the endpoints that we planned to create as a combi‐
nation of HTTP verb and URL. With FastAPI these endpoints (also called routes) are
defined with the decorators above each function.

The following explains how the HTTP verb and URL are specified in the decorator:

• HTTP verb: All of these endpoints use the GET verb, which is defined by the
@app.get() decorator function.

• URL: The first parameter of the get() function is the relative URL. For this first
endpoint, the URL is /v0/players/.

Creating Python Files for Your API | 67

The second parameter of the decorator is response_model=list[schemas.Player]).
This informs FastAPI that the data returned from this endpoint will be a list of
Pydantic Player objects, as defined in the schemas.py file. This information will be
included in the OpenAPI specification that FastAPI automatically creates for this
API. Consumers can count on the returned data being valid according to this
definition.

Let’s look at the function signature that you decorated:

def read_players(skip: int = 0,
 limit: int = 100,
 minimum_last_changed_date: date = None,
 first_name: str = None,
 last_name: str = None,
 db: Session = Depends(get_db)
):

Several things are going on in this function. Starting at the end, the db object is a ses‐
sion that is created by the get_db() function defined at the top of this file. By wrap‐
ping the function in Depends(), FastAPI handles the call for and gives the Session to
your function.

The next two parameters are optional integers with a default value: skip: int = 0,
limit: int = 100, last_name. These are followed by two optional string parame‐
ters that default to None. These are all named parameters that have a defined data type
and a default value. FastAPI will automatically include these parameters as query
parameters in the API definition. Query parameters are included in the URL path
with a question mark in front and an ampersand between.

For instance, to call this query method, the API consumer could use this request:

• HTTP verb: GET
• URL: {base URL}/v0/players/?first_name=Bryce&last_name=Young

Within the body of the read_players() function, FastAPI is calling the get_play
ers() function that you defined in crud.py. It is performing a database query. The
players object receives the result of that function call. FastAPI validates that this
object matches the definition list[schemas.Player]. If it does, FastAPI uses Pydan‐
tic to serialize the Python objects into a text JSON string and sends the response to
the consumer.

The next endpoint adds two additional FastAPI features:

@app.get("/v0/players/{player_id}", response_model=schemas.Player)
def read_player(player_id: int,
 db: Session = Depends(get_db)):
 player = crud.get_player(db,
 player_id=player_id)

68 | Chapter 4: Developing the FastAPI Code

 if player is None:
 raise HTTPException(status_code=404,
 detail="Player not found")
 return player

First, the URL path includes {player_id}. This is a path parameter, which is an API
request parameter that is included in the URL path instead of being separated by
question marks and ampersands, like the query parameters. Here is an example of
how the API consumer might call this endpoint:

• HTTP verb: GET
• URL: {base URL}/v0/players/12345?skip=10&limit=50

The function checks to see if any records were returned from the helper function, and
if not, it raises an HTTPException. This is a standard method that web applications
use to communicate status. It is good RESTful API design to use the standard HTTP
status codes to communicate with consumers. This makes the operation more pre‐
dictable and reliable. This endpoint returns an HTTP status code of 404, which is the
not found code. It adds the additional message that the item not found was the player
being searched for.

The next four endpoints do not use any new features. But together they complete all
of the user stories that we have included for your first API:

@app.get("/v0/performances/",
 response_model=list[schemas.Performance])
def read_performances(skip: int = 0,
 limit: int = 100,
 minimum_last_changed_date: date = None,
 db: Session = Depends(get_db)):
 performances = crud.get_performances(db,
 skip=skip,
 limit=limit,
 min_last_changed_date=minimum_last_changed_date)
 return performances

@app.get("/v0/leagues/{league_id}", response_model=schemas.League)
def read_league(league_id: int,db: Session = Depends(get_db)):
 league = crud.get_league(db, league_id = league_id)
 if league is None:
 raise HTTPException(status_code=404, detail="League not found")
 return league

@app.get("/v0/leagues/", response_model=list[schemas.League])
def read_leagues(skip: int = 0,
 limit: int = 100,
 minimum_last_changed_date: date = None,
 league_name: str = None,
 db: Session = Depends(get_db)):

Creating Python Files for Your API | 69

https://oreil.ly/cTnfI
https://oreil.ly/cTnfI

 leagues = crud.get_leagues(db,
 skip=skip,
 limit=limit,
 min_last_changed_date=minimum_last_changed_date,
 league_name=league_name)
 return leagues

@app.get("/v0/teams/", response_model=list[schemas.Team])
def read_teams(skip: int = 0,
 limit: int = 100,
 minimum_last_changed_date: date = None,
 team_name: str = None,
 league_id: int = None,
 db: Session = Depends(get_db)):
 teams = crud.get_teams(db,
 skip=skip,
 limit=limit,
 min_last_changed_date=minimum_last_changed_date,
 team_name=team_name,
 league_id=league_id)
 return teams

The final endpoint provides counts of leagues, teams, and players:

@app.get("/v0/counts/", response_model=schemas.Counts)
def get_count(db: Session = Depends(get_db)):
 counts = schemas.Counts(
 league_count = crud.get_league_count(db),
 team_count = crud.get_team_count(db),
 player_count = crud.get_player_count(db))
 return counts

It is worth noting that, in addition to the basic options of FastAPI and Pydantic that
you are using, many other validations and features are available. As you can see, these
libraries accomplish a lot with only a few lines of code from you.

Testing Your API
You will use pytest to test your main.py file. As with the crud.py file in the previous
chapter, you will be testing that the correct number of records are returned by each
API endpoint. The counts of records can be verified by the SQL queries in “Loading
Your Data” on page 36.

To implement the tests for your API, create a file with the following contents, and
name it test_main.py:

from fastapi.testclient import TestClient
from main import app

client = TestClient(app)

70 | Chapter 4: Developing the FastAPI Code

test the health check endpoint
def test_read_main():
 response = client.get("/")
 assert response.status_code == 200
 assert response.json() == {"message": "API health check successful"}

test /v0/players/
def test_read_players():
 response = client.get("/v0/players/?skip=0&limit=10000")
 assert response.status_code == 200
 assert len(response.json()) == 1018

def test_read_players_by_name():
 response = client.get("/v0/players/?first_name=Bryce&last_name=Young")
 assert response.status_code == 200
 assert len(response.json()) == 1
 assert response.json()[0].get("player_id") == 2009

test /v0/players/{player_id}/
def test_read_players_with_id():
 response = client.get("/v0/players/1001/")
 assert response.status_code == 200
 assert response.json().get("player_id") == 1001

test /v0/performances/
def test_read_performances():
 response = client.get("/v0/performances/?skip=0&limit=20000")
 assert response.status_code == 200
 assert len(response.json()) == 17306

test /v0/performances/ with changed date
def test_read_performances_by_date():
 response = client.get(
 "/v0/performances/?skip=0&limit=20000&minimum_last_changed_date=
 2024-04-01"
)
 assert response.status_code == 200
 assert len(response.json()) == 2711

test /v0/leagues/{league_id}/
def test_read_leagues_with_id():
 response = client.get("/v0/leagues/5002/")
 assert response.status_code == 200
 assert len(response.json()["teams"]) == 8

test /v0/leagues/
def test_read_leagues():
 response = client.get("/v0/leagues/?skip=0&limit=500")
 assert response.status_code == 200
 assert len(response.json()) == 5

test /v0/teams/

Testing Your API | 71

def test_read_teams():
 response = client.get("/v0/teams/?skip=0&limit=500")
 assert response.status_code == 200
 assert len(response.json()) == 20

test /v0/teams/
def test_read_teams_for_one_league():
 response = client.get("/v0/teams/?skip=0&limit=500&league_id=5001")
 assert response.status_code == 200
 assert len(response.json()) == 12

test the count functions
def test_counts():
 response = client.get("/v0/counts/")
 response_data = response.json()
 assert response.status_code == 200
 assert response_data["league_count"] == 5
 assert response_data["team_count"] == 20
 assert response_data["player_count"] == 1018

The file begins with import statements and creation of the TestClient class:

from fastapi.testclient import TestClient
from main import app

client = TestClient(app)

TestClient is a special class that allows the FastAPI program to be tested
without running it on a web server.

This references the FastAPI object you created in main.py.

This statement creates a TestClient that will test your application.

Take a look at a few of the test functions:

#test the health check endpoint
def test_read_main():
 response = client.get("/")
 assert response.status_code == 200
 assert response.json() == {"message": "API health check successful"}

This function uses the TestClient to simulate an API call to the root path. Then, it
checks the HTTP status code for a value of 200, which means a successful request.
Next, it looks at the JSON value returned by the API and checks that it matches the
JSON value provided.

72 | Chapter 4: Developing the FastAPI Code

The next test function adds more functionality:

#test /v0/players/
def test_read_players():
 response = client.get("/v0/players/?skip=0&limit=10000")
 assert response.status_code == 200
 assert len(response.json()) == 1018

Notice that the URL passed in the get() statement uses the skip and limit parame‐
ters. The second assert statement checks the length of the list of players returned by
the API to make sure it is exactly 1018.

Another test function tests the search of players by name. Although the database does
not enforce uniqueness on player names, duplicate player names are rare, and names
are commonly used to identify players.

This search without a key supports the design recommended in Chapter 1 for AI:

def test_read_players_by_name():
 response = client.get("/v0/players/?first_name=Bryce&last_name=Young")
 assert response.status_code == 200
 assert len(response.json()) == 1
 assert response.json()[0].get("player_id") == 2009

This adds two assert statements: one to make sure only one record was returned
from this query (after all, there is only one Bryce Young) and another to make sure
the player_id is correct.

The complete file contains 11 tests in all. To execute the tests, enter the following
command:

.../chapter4 (main) $ pytest test_main.py
================== test session starts ===========================
platform linux -- Python 3.10.14, pytest-8.1.2, pluggy-1.4.0
rootdir: /workspaces/portfolio-project/chapter4
plugins: anyio-3.4.4.0

collected 11 items

test_main.py [100%]

=================== 11 passed in 1.01s ============================

You have verified that your FastAPI program works with pytest. Now it’s time to try it
with a web server.

Launching Your API
This is the moment you have been waiting for: it’s time to run your API. Enter the
following command from the command line:

.../chapter4 (main) $ fastapi run main.py

Launching Your API | 73

You will see the application startup occur as shown in Figure 4-2.

Figure 4-2. FastAPI running from the command line

In Codespaces, you will also see a dialog stating “Your application running on port
8000 is available,” as shown in Figure 4-3.

Figure 4-3. Codespaces browser window pop-up

Click “Open in Browser” to open a browser tab outside your Codespaces. This
browser will show a base URL ending in app.github.dev that contains the response
from your API running on Codespaces. You should see the following health check
message in your web browser:

{"message":"API health check successful"}

This confirms your API is running, which is a great start.

The next test is to call an endpoint that retrieves data. Give that a try by copying and
pasting the following onto the end of the base URL in your browser: /v0/performan‐
ces/?skip=0&limit=1. For example, the full URL might be https://happy-pine-
tree-1234-8000.app.github.dev/v0/performances/?skip=0&limit=1.

If everything is working correctly, you should see the following data in your browser:

[{"performance_id":2501,"player_id":1001,"week_number":"202301",
"fantasy_points":20.0,"last_changed_date":"2024-03-01"}]

74 | Chapter 4: Developing the FastAPI Code

https://happy-pine-tree-1234-8000.app.github.dev/v0/performances/?skip=0&limit=1
https://happy-pine-tree-1234-8000.app.github.dev/v0/performances/?skip=0&limit=1

This chapter covered a lot, so it’s possible that an error occurred or
you are not getting a successful result. Don’t worry, this happens to
all of us. Here are a few suggestions for how to troubleshoot any
problems you are running into:

• Run the pip3 install -r requirements.txt command
again to make sure you have all the updated software.

• Take a minute to verify the path in the URL bar of your
browser. Minor things matter, such as slashes and question
marks.

• Look at the command line to see any errors that are being
thrown by FastAPI.

• To verify your environment with FastAPI and Uvicorn, try
creating a simple API, such as one from the official FastAPI
tutorial.

• If a formatting error occurs due to text wrapping, check
against the files in the GitHub repository.

If this first API endpoint is working for you, try out some more of the URLs from
Table 4-1 in your browser to verify that you have completed all of your user stories.
Congratulations, you are an API developer!

Additional Resources
To explore FastAPI beyond this book, the official FastAPI tutorial and FastAPI refer‐
ence documentation are both very useful.

To learn the ins and outs of building a project with FastAPI, I recommend FastAPI:
Modern Python Web Development by Bill Lubanovic (O’Reilly, 2023).

For a growing list of practical tips from an official FastAPI Expert, check out Marcelo
Trylesinski’s FastAPI Tips.

The official Pydantic 2.4 documentation provides information for the specific version
of Pydantic used in this chapter.

The official Uvicorn documentation has much more information about the capabili‐
ties of this software.

Additional Resources | 75

https://oreil.ly/L7QWz
https://oreil.ly/L7QWz
https://oreil.ly/SFN3w
https://oreil.ly/MVgVk
https://oreil.ly/MVgVk
https://oreil.ly/kludex
https://oreil.ly/kludex
https://oreil.ly/2OE-8
https://oreil.ly/uvicorn

Extending Your Portfolio Project
There are several ways you could build on what you have learned in this chapter:

• Learn more about pytest by creating new tests. Adding tests to verify that secon‐
dary classes retrieve data correctly would be a good place to start.

• Identify additional parameters that users may want to use. Implement them in
the FastAPI program, schemas, and helper functions.

• If you have been developing your own API project in previous chapters, imple‐
ment the Pydantic and FastAPI code for it.

Summary
In this chapter, you completed the API functionality for the SWC Fantasy Football
API. You accomplished the following:

• You installed FastAPI, SQLAlchemy, Pydantic, and Uvicorn, along with several
supporting libraries.

• You defined Pydantic schemas to represent the data that your API consumers
wanted to receive.

• You created a FastAPI program to process consumer requests and return data
responses, tying everything together.

• You tested the API with pytest and then ran it successfully on the web server.

In Chapter 5, you will document your API using FastAPI’s built-in capabilities.

76 | Chapter 4: Developing the FastAPI Code

CHAPTER 5

Documenting Your API

Documentation is where developers come to learn about your API. Whether you’re providing
a simple README file or developing a full website for your developers, it is critical to clearly
document how they can most effectively use your API.

—Brenda Jin, Saurabh Sahni, and Amir Shevat, Designing Web APIs (O’Reilly, 2018)

In Chapter 4, you created your first API to fulfill the user stories identified in Chap‐
ter 1. The primary users you developed these for are data science users and advice
website providers. The API will enable them to create analytics products such as
dashboards, charts, and models using the SportsWorldCentral (SWC) fantasy data.
Now you will create documentation to help them use your API. Documentation and
features such as software development kits (SDKs) improve the developer experience
(DX) for your technical users.

Sending a Signal of Trust
An important job of your API docs is to signal trust to potential API consumers. If
they don’t trust you, they won’t use your API. If API consumers are going to call your
API multiple times, they will build an integration, which is basically code that calls
your code repeatedly. For the SWC API, this might be a fantasy advice website that
will be adding SWC to its list of supported websites. Another example would be a
data science user who is going to schedule an Extract, Transform, Load (ETL) process
to get the latest stats every week.

These repeat users are asking the following when they consider using your API: Can I
count on you? Will your API be available for me a month from now? A year from
now?

77

Many public API websites have a dusty, neglected feel. They have blog posts that are a
few years old, message boards where posts get no response, or feature road maps that
are out of date. If your docs are a ghost town, potential users will go elsewhere.

You can signal trust to these users by ensuring that your feedback mechanism is up to
date and any questions are responded to quickly. A current release history and a clear
versioning strategy are also good signs of life.

Data science users may be looking for one-time data loads and have less interest in
long-term support. They may be asking different questions: Can I trust your data? Do
the definitions match the contents? What level of quality is your data? Signal trust to
these users by stating information about the quality of your data, and giving specific
commitments on update frequency.

Making Great API Docs
When you begin the documentation for a new API, you can start with the core fea‐
tures discussed in this section. These give users what they need to get the job done.
As your API matures, continue to improve the documentation and add features that
set yours apart from competitors’.

Core Features
All API documentation should include a few core features. Without these basics, it is
unlikely that an API will be used by many consumers. They allow a user to under‐
stand the value of the API, get the address and any necessary authorization informa‐
tion, and easily test the API. Terms of service and a feedback mechanism ensure that
users use the API appropriately and know where to go for help. Following are the
core feature that are expected for someone to use the API:

Getting started
This is an overview or introduction that explains the purpose of the API and how
consumers can interact with it. It also provides the address of the API, security
requirements, and instructions for requesting user IDs or API keys.

Endpoint definitions
These explain the purpose of each endpoint, along with the format of requests,
responses, and any errors. An endpoint is the full address and resource name that
API users will make a call to. For example, https://api.sportsworldcentral.com/v0/
players is an endpoint that returns a list of players.

OAS file
The OpenAPI Specification (OAS) file is a machine-readable file that defines the
connection instructions and endpoint definitions.

78 | Chapter 5: Documenting Your API

https://api.sportsworldcentral.com/v0/players
https://api.sportsworldcentral.com/v0/players

Terms of service
These explain the allowed usage of the API and any rate limits or restrictions that
apply.

Feedback mechanism
For people to use your API, they need to have a method to reach out and ask
questions. Some common methods include support email addresses, contact
forms, and GitHub issue trackers.

SDKs
By creating SDKs in popular programming languages, an API provider can make
the process of using the API much easier for consumers. These can help enforce
responsible usage of the API, reducing some common problems such as overuse.
If an API’s primary users are data scientists, this will greatly smooth the process
of using your API. You will create an SDK for your API in Chapter 7.

Extra Features
In addition to the basics, several other items improve the DX of the API by simplify‐
ing the process of using the API or making it easier to try it out:

Sample program code
These are example snippets of code in popular software languages that demon‐
strate how to properly use the API.

Interactive documentation
Interactive documentation allows users to submit sample API calls to a develop‐
ment environment to get hands-on experience using the API. Swagger UI is used
to generate interactive documentation for FastAPI projects.

Sandbox environment
Going beyond interactive documentation, a full-featured sandbox environment
will enable developers to submit multiple API calls in an environment that saves
the sample data. For example, they might create an order with one API call and
then retrieve the results of the order in another API call.

Additional features
There are a variety of other extras that API providers provide. One that has been
increasing in popularity is creating a Postman collection, which includes example
requests and tests that can be run with the Postman API testing tool.

Making Great API Docs | 79

Some of these require a commitment of time and resources to create, and also to keep
current as the APIs change. This is often the role of dedicated developer relations
(devrel) staff. API providers must consider the business proposition of the API before
investing the resources in these.

Advanced features can significantly reduce the friction a consumer
faces to use the API, and get them up and running quickly. Some‐
times this is referred to as reducing the time to hello world
(TTHW). The quicker a potential consumer can make a basic pro‐
totype with your API, the more likely they are to use it.

Reviewing Examples of API Documentation
A tour of some real-world API documentation will demonstrate the features men‐
tioned previously. These examples illustrate some core features and extra features.

Sleeper App
The Sleeper app is a real-life fantasy football league host, like your imaginary Sports‐
WorldCentral. Its API documentation demonstrates several of the basic features of
documentation (Figure 5-1).

Figure 5-1. Core feature: Getting started page

80 | Chapter 5: Documenting Your API

https://docs.sleeper.com

The landing page gives some basic information about using the API, including
authentication requirements (no authentication) and general usage limits (under
1,000 API calls per minute). The documentation provides a search function and navi‐
gation bar showing the major endpoints and errors. Figure 5-2 shows the more
detailed information available for the Drafts endpoint.

Figure 5-2. Core feature: Endpoint definitions

This page includes the production API URL along with the HTTP verb and required
parameters. The righthand column demonstrates an example API call and the output
of the API call in JSON format.

MyFantasyLeague
MyFantasyLeague is a fantasy league host that provides a full-featured developer por‐
tal and is known for providing quality support to developers.

The welcome page begins with a focus on release notes of API versions (Figure 5-3).
It provides links to a request reference page and sample code, and then prominently
features the terms of service for using the API.

Reviewing Examples of API Documentation | 81

https://oreil.ly/t7tSf
https://oreil.ly/t7tSf

Figure 5-3. MyFantasyLeague welcome page

Following the “test the requests” link from the welcome page brings you to the inter‐
active API documentation (Figure 5-4). What is the difference between interactive
API documentation and a sandbox environment? Interactive documentation sup‐
ports test API calls, but it doesn’t store the results between test calls. A sandbox envi‐
ronment keeps track of previous API calls to allow you to test multiple tasks together.

Figure 5-4. Extra feature: Interactive documentation

82 | Chapter 5: Documenting Your API

Yahoo! Fantasy Football
Yahoo! is another fantasy football league host that provides detailed API documenta‐
tion. Yahoo! provides sample PHP code for accessing its APIs. This sample code pro‐
vides detailed instructions on authentication, which can be especially tricky
(Figure 5-5).

Figure 5-5. Extra feature: Sample program code

Viewing Your API’s Built-in Documentation
In Chapter 4, you built an API with the endpoints to fulfill your top-priority use
cases. In this chapter, you will view the built-in documentation for the API. You will
also make a few updates to the API code to improve the documentation.

Viewing Your API’s Built-in Documentation | 83

https://oreil.ly/4YIxy
https://oreil.ly/4YIxy

You Can Start from Here
The instructions in this chapter assume that you completed Chapters 2, 3 and 4. If
you’re starting your coding in this chapter, you will need to perform a couple of steps
to catch up. First, you need to create a GitHub Codespace from the book’s GitHub
repository. Full instructions are available in “Getting Started with Your GitHub Code‐
space” on page 22.

To catch up on the coding from previous chapters, you can use the completed set of
files in the chapter4/complete directory of your Codespace. If you are using these, use
the directory chapter4/complete in the setup commands that follow.

Copying Files from Chapter 4
To continue your portfolio project where you left it in the previous chapter, change
the directory to chapter5 and then copy the previous chapter’s files into it. The follow‐
ing shows the commands and expected output:

.../portfolio-project (main) $ cd chapter5

.../chapter5 (main) $ cp ../chapter4/*.py .

.../chapter5 (main) $../chapter4/fantasy_data.db

.../chapter5 (main) $ cp ../chapter4/requirements.txt .

.../chapter5 (main) $ ls *.*
crud.py database.py fantasy_data.db main.py models.py readme.md
requirements.txt schemas.py test_crud.py test_main.py

Now launch your API using fastapi dev instead of fastapi run, as you did in the
previous chapter. This tells FastAPI to automatically reload the application each time
you make any changes to the program code:

.../chapter5 (main) $ fastapi dev main.py
INFO: Will watch for changes in these directories:
 ['/workspaces/portfolio-project/chapter5']
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [9999] using WatchFiles
INFO: Started server process [9999]
INFO: Waiting for application startup.
INFO: Application startup complete.

84 | Chapter 5: Documenting Your API

You will see a dialog stating “Your application running on port 8000 is available,” as
shown in Figure 5-6.

Figure 5-6. Codespaces browser window pop-up

Click “Open in Browser” to open a browser tab outside your Codespaces. This
browser will show a base URL that ends in app.github.dev that contains the response
from your API running on Codespaces. You should see the following health check
message in your web browser:

{"message":"API health check successful"}

Documentation Option 1: Swagger UI
I will go into more detail on the Swagger UI documentation than the Redoc docu‐
mentation, because the former allows you to test your API. To view the Swagger UI
interactive API documentation for your API, copy and paste the following onto the
end of the base URL in your browser: /docs. For example, the full URL in the browser
might be https://happy-pine-tree-1234-8000.app.github.dev/docs. You should see docu‐
mentation as shown in Figure 5-7.

You may recognize this list of endpoints from Table 4-1 in the last chapter. You can
see that all the endpoints you implemented in your API are listed here. You can click
on any of these endpoints to expand the section that is specific to that endpoint and
interact with it.

Viewing Your API’s Built-in Documentation | 85

https://happy-pine-tree-1234-8000.app.github.dev/docs

Figure 5-7. Initial Swagger UI interactive documentation

Click on the bar that says “Get /v0/players/{player_id}” and then click the “Try it out”
button. This button changes to Cancel, as seen in Figure 5-8.

Figure 5-8. Expanded endpoint section, top half

86 | Chapter 5: Documenting Your API

The Parameters section includes the player_id parameter that is defined for this
endpoint. This parameter is required, it has a data type of integer, and it is a path
parameter, which means that when this API is called, the URL path includes the
player_id value, as shown in the endpoint definition. Figure 5-9 displays the bottom
half of this endpoint section.

Figure 5-9. Expanded endpoint section, bottom half

This section describes two expected responses that consumers should plan for. If a
request to this endpoint is successful, an HTTP status code 200 (successful response)
will be returned, and the response body will be in this format:

{
 "player_id": 0,
 "gsis_id": "string",
 "first_name": "string",
 "last_name": "string",
 "position": "string",
 "last_changed_date": "2024-04-27",

Viewing Your API’s Built-in Documentation | 87

 "performances": []
}

However, if the request is invalid, the consumer will receive a response with an HTTP
status code 422 (unprocessable content) and an error message in this format:

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

To interact with the interactive documentation, click the Execute button. You should
see the error result displayed in Figure 5-10, or something similar.

Figure 5-10. Player endpoint error message

88 | Chapter 5: Documenting Your API

The documentation has enforced the required player_id parameter and displayed
the message “Required field is not provided.” Enter a value of 1385 in the player_id
field, and click Execute again. This request should be successful, and the Responses
section of the web page should look similar to Figure 5-11.

Figure 5-11. Successful player response

This part of the page shows useful information about the HTTP request that is con‐
structed by the documentation and the HTTP response that is sent back by your API.

First, look at the response. In the curl section, the documentation displays the
command-line statement that could be used to call this API. This is helpful to under‐
stand the exact HTTP request that is constructed by the parameters you entered ear‐
lier. (cURL is a common command-line utility used to make HTTP requests to web
applications and APIs.) You could copy that URL into your browser bar and make the
same API call directly.

Viewing Your API’s Built-in Documentation | 89

Remember, the endpoint is a combination of an HTTP verb and a URL. In
Figure 5-11, the HTTP verb is GET, as displayed in the documentation. The URL
points to the address that Codespaces generates.

In the Request URL section, you see the URL without the HTTP verb. Note that the
end of the URL is v0/players/1385. This matches the expected /v0/players/{player_id}
from our program code and the earlier documentation. Since player_id is a path
parameter, it is added to the end of the URL.

Now let’s look at the response. Under “Server response,” you see that the response
received was an HTTP 200, which is a successful response. The “Response body”
shows the JSON data that was returned by the API. It matches the format of the
Player object, and it contains the data for player_id 1385, which is what you entered
in the path parameter. It also includes the Performance records that are associated
with this Player.

The “Response headers” section displays the HTTP headers, which are additional
metadata the API sent along with the response body. This is information you would
not see if you were calling the API directly in your browser.

As you have seen, this interactive API documentation is very powerful. It compares
well to the features of any of the API documentation demonstrated on the real-world
fantasy league hosts in this chapter. Since you did not create this code yourself, where
is it coming from? This documentation is generated by Swagger UI, which is an open
source project led by SmartBear software. The Swagger UI has been heavily used in
API documentation for many years. Many times when people use the term API docu‐
mentation, Swagger UI is what they mean. It is not an exaggeration to say that this
open source project deserves a lot of credit for expanding the popularity of REST
APIs as a core technology across the IT industry.

Swagger UI is included in the FastAPI code. It generates this documentation auto‐
matically from the OpenAPI Specification (OAS) file that is named openapi.json and
is linked under the title of this page. FastAPI generates this OAS file automatically
from the main.py code.

If you look at this endpoint definition in main.py that you developed in Chapter 4,
you will see the following:

@app.get("/v0/players/{player_id}", response_model=schemas.Player)

Looking again at Figure 5-8, you can see that the HTTP verb, URL, and path parame‐
ter are generated from @app.get("/v0/players/{player_id}".

Looking at Figure 5-9, you can see that the Successful Response definition is gener‐
ated from the Pydantic schema Player, which you defined in schemas.py. The time
you spent defining each piece of the Python code continues to pay off in this well-
crafted API.

90 | Chapter 5: Documenting Your API

https://oreil.ly/r6P--

Documentation Option 2: Redoc
In addition to Swagger UI, FastAPI includes a second API documentation option:
Redoc. Redoc is an open source API documentation product that is led by Redocly.

To view the Redoc API documentation for your API, copy and paste the following
onto the end of the base URL in your browser: /redoc. For example, the full URL
might be https://happy-pine-tree-1234-8000.app.github.dev/redoc in the browser. Click
Read Player in the navigation pane on the left. You should see documentation as
shown in Figure 5-12.

Figure 5-12. Redoc documentation page

As you can see, the Redoc documentation has an attractive three-column layout with
the API endpoints in the navigation bar on the left, along with a search function. The
center column has the bulk of the information about the endpoint, including parame‐
ters, responses, and errors. The righthand column displays example response bodies
for successful (200) and error (422) responses.

In general, the contents of the documentation are quite similar to Swagger UI,
because both are generated from the same OAS file. The biggest difference in func‐
tionality between the two included documentation options is that the Redoc library
included in FastAPI doesn’t provide a method for submitting API requests. So it is
not an interactive option.

Viewing Your API’s Built-in Documentation | 91

https://oreil.ly/redoc
https://happy-pine-tree-1234-8000.app.github.dev/redoc

What advantages does Redoc have over Swagger UI? In my opinion, the mobile
browser layout of Redoc is more attractive than that of Swagger UI. While I generally
don’t consider mobile functionality important for a technical reference page like API
docs, this might be important to some organizations. In addition, the Redoc layout
and appearance might be preferred.

Working with Your OpenAPI Specification File
Although these documentation pages are quite impressive, they are nothing without
the OAS file. This is literally true, since FastAPI and Pydantic generate the OAS file at
the /openapi.json path, and Redoc and Swagger UI generate their documentation
from this file.

But the OAS file is more than simply a way to generate documentation: it is a power‐
ful API definition standard that allows many other tools to interact with your API.
One quick example is that in Part III you will create a custom action that enables
ChatGPT to answer questions using the data from your API. What information does
it need for this? Your OAS file. This is just a drop in the bucket of what the OAS file is
used for. The OpenApi.Tools website lists code generators, data validators, SDK gen‐
erators, mock servers, and a dozen other categories of tools that use the OAS file.

For many years, the software development industry was divided between competing
vendor-specific API specifications and response formats. The Swagger specification
was made open source in 2015 by Swagger, and in 2017 several companies and
groups presented a united front at the API Strategy and Practice Conference promot‐
ing OAS as the de facto standard for REST API specifications. (Coincidentally, I was a
speaker at that conference and got to witness the events unfold.) At the time, Bill
Doerrfield summarized the events by saying that the data format wars are over. You’ll
read more from Doerrfield in Chapter 13.

The OAS format is quite extensive, so this chapter will focus on the items that are
implemented in FastAPI. To view the raw OAS file for your API, copy and paste the
following onto the end of the base URL in your browser: /openapi.json. For example,
the full URL might be https://happy-pine-tree-1234-8000.app.github.dev/openapi.json
in the browser. You should see the raw JSON file, which begins with {"open
api":"3.1.0","info":{"title":"FastAPI","version":"0.1.0"},"paths":.

92 | Chapter 5: Documenting Your API

https://openapi.tools
https://oreil.ly/m6XNK
https://oreil.ly/m6XNK
https://oreil.ly/J9v0i
https://happy-pine-tree-1234-8000.app.github.dev/openapi.json

The OAS file defines a single API, but the OpenAPI Initiative is
working on a new specification called Arazzo that will define work‐
flows involving sequences of API calls. One of the potential use
cases for this specification is to assist generative AI applications
that are based on large language models (LLMs). For more informa‐
tion about these applications, read Part III of this book.

To understand the structure of this file, you will need to view the file somewhere that
formats JSON in an easier-to-read format. Two convenient approaches to this would
be installing a JSON formatter browser extension or opening the file in your IDE. If
you save the file and open it in VS Code, you can choose “Format document” from
the context menu to see the formatted JSON. Using a browser extension to format
JSON has one advantage: as you make changes to the API that modify the JSON file,
they can be refreshed and viewed instead of requiring you to download the file
repeatedly. I typically install a browser extension for the convenience of viewing API
responses. Take a look at the top two levels of the openapi.json file hierarchy:

{
 "openapi": "3.1.0",
 "info": {
 "title": "FastAPI",
 "version": "0.1.0"
 },
 "paths": {
 "/": {},
 "/v0/players/": {},
 "/v0/players/{player_id}": {},
 "/v0/performances/": {},
 "/v0/leagues/{league_id}": {},
 "/v0/leagues/": {},
 "/v0/teams/": {},
 "/v0/counts/": {}
 },
 "components": {
 "schemas": {
 "Counts": {},
 "HTTPValidationError": {},
 "League": {},
 "Performance": {},
 "Player": {},
 "PlayerBase": {},
 "Team": {},
 "TeamBase": {},
 "ValidationError": {}
 }
 }
}

Working with Your OpenAPI Specification File | 93

https://oreil.ly/arazzo

This is a string that contains the OpenAPI specification version. For your API,
the version is 3.1.0, which was published in 2021.

This field is an Info object, which provides metadata about the API. The API’s
title and version are the required fields, and they are populated in this exam‐
ple. Optional fields include _summary+, description, termsOfService, con
tact, and license.

This field contains the list of paths, which are relative URLs for API endpoints.
You may notice that this list does not contain the HTTP verbs, which make up
the other half of an API endpoint. The verbs and additional details are contained
one level down inside the path objects.

This field can contain a wide range of reusable items that can be referenced in
other parts of the OAS. In this example, it contains schemas, which are data
structures used by the API.

To see the details of one path, expand the /v0/players/{player_id} item. This path
object has only one field: get, which is an operation object. Expand get, and you
should see the following:

"/v0/players/{player_id}": {
 "get": {
 "summary": "Read Player",
 "operationId": "read_player_v0_players__player_id__get",
 "parameters": [
 {
 "name": "player_id",
 "in": "path",
 "required": true,
 "schema": {
 "type": "integer",
 "title": "Player Id"
 }
 }
],
 "responses": {
 "200": {
 "description": "Successful Response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Player"
 }
 }
 }
 },
 "422": {

94 | Chapter 5: Documenting Your API

 "description": "Validation Error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/HTTPValidationError"
 }
 }
 }
 }
 }
 }
},

You will recognize that this section contains the information that was displayed
in Swagger UI in Figure 5-9. Swagger UI generated it from this section of the
OAS file.

This is an operation identifier. This was not displayed in Swagger UI, but some
tools use it when processing the OAS. This is also useful to generative AI applica‐
tions that will process the file.

This is a reference to the Player schema that is defined in the Components sec‐
tion. These references allow for data structures to be defined a single time in the
OAS and referenced in other parts of the file.

Continuing Your Portfolio Project
Although the default information generated in the OAS file is very powerful, you can
make it more complete by updating the FastAPI code that generates it.

Table 5-1 summarizes the enhancements you will make to the OAS file by modifying
the main.py file in your project.

Table 5-1. Updates to the OAS file

Update made Change in main.py OAS field affected
Add API title, version, description Add elements to FastAPI() constructor info

Add path summaries Add parameters to path function decorator paths

Add detailed path descriptions Add parameters to path function decorator paths

Add path tags to group endpoints in Swagger UI Add parameters to path function decorator paths

Add unique path operation IDs Update the built-in operation IDs paths

Add description to query parameters Update the parameters in the FastAPI functions parameters

Continuing Your Portfolio Project | 95

Adding Details to the OAS info Object
The OAS info field contains information about the entire API. The default informa‐
tion in the current OAS file is very generic. You will add content that helps consumers
of the API understand its purpose. This involves changes to the FastAPI() construc‐
tor function.

Open the main.py file and make the following updates to the initial application
constructor:

api_description = """
This API provides read-only access to info from the SportsWorldCentral
(SWC) Fantasy Football API.
The endpoints are grouped into the following categories:

Analytics
Get information about the health of the API and counts of leagues, teams,
and players.

Player
You can get a list of NFL players, or search for an individual player by
player_id.

Scoring
You can get a list of NFL player performances, including the fantasy points
they scored using SWC league scoring.

Membership
Get information about all the SWC fantasy football leagues and the teams in them.
"""

#FastAPI constructor with additional details added for OpenAPI Specification
app = FastAPI(
 description=api_description,
 title="Sports World Central (SWC) Fantasy Football API",
 version="0.1"
)

Notice the following items that you changed:

The first new statement is the creation of the api_description variable with a
description of the API. The three quotation marks are used to include a multiline
string.

You are passing that api_description to the application constructor.

You also give the app a title.

96 | Chapter 5: Documenting Your API

And you give the app a version. Notice that you are using a version of 0.1. The
major version of 0 communicates that breaking changes can still occur, and it is
consistent with the V0 in the API’s URL. I typically start all new API projects
with a zero version. The minor version of 1 communicates that this is the first
published iteration of this API.

Adding Tags to Categorize Your Paths
Now you move to changes to each individual endpoint, which are described by the
path object in the OAS file. The first change to the paths is the addition of tags, which
are general-purpose attributes that can be used for a variety of purposes. In this case,
the reason to add them is that Swagger UI uses them to group API paths together.
This is extremely helpful to consumers when an API has several dozen endpoints. To
make this change, you will add another element to the path function decorator.

Here is what the changes will look like for the @app.get("/v0/players/

{player_id}") decorator in main.py. Make these changes to this decorator:

@app.get("/v0/players/{player_id}",
 response_model=schemas.Player,
 tags=["player"])

This tag will be used to group endpoints into categories.

You have updated one endpoint. Now use the tag values in Table 5-2 to update the
endpoints in main.py.

Table 5-2. Tags for endpoints in main.py

Endpoint tag
/ analytics

/v0/players/ player

/v0/players/{player_id} player

/v0/performances/ scoring

/v0/leagues/ membership

/v0/leagues/{league_id} membership

/v0/teams/ membership

/v0/counts/ analytics

Adding More Details to Individual Endpoints
Next, you will add information about individual endpoints. In the OAS file, these are
contained in the paths field. To make updates, you will modify each path function
decorator. Here are the changes that will be made for each of the paths:

Continuing Your Portfolio Project | 97

Add a summary
This summarizes the path and will be displayed on the operation title by Swagger
UI.

Add a description
This gives any additional details about the path and will be displayed below the
title by Swagger UI.

Add a description to the 200 response
This replaces the default “Successful response” with a clearer description. It will
be used when the HTTP 200 successful message occurs.

Modify the operationID
This standardizes the operationID value, which will be used by a variety of tools
that are using the OAS file.

Here is what the changes will look like for the @app.get("/v0/players/

{player_id}" decorator in main.py:

@app.get("/v0/players/{player_id}",
 response_model=schemas.Player,
 summary="Get one player using the Player ID, which is internal to SWC",
 description="If you have an SWC Player ID of a player from another API
 call such as v0_get_players, you can call this API
 using the player ID",
 response_description="One NFL player",
 operation_id="v0_get_players_by_player_id",
 tags=["player"])

Improved summary of the endpoint.

Very detailed description, to help developers and AI use it correctly.

Improved description of the response. Keep this under 300 characters to make
ChatGPT happy.

Custom operation ID to replace the auto-generated one.

Apply these changes to the rest of the endpoints in main.py.

Adding Parameter Descriptions
Another recommendation for AI to use the API is to add descriptions to parameters
used to call the APIs. You will replace the default values of the parameters with the
Query() statement and a description.

98 | Chapter 5: Documenting Your API

The read_players function is beneath the decorator you updated. To add descrip‐
tions for the parameters, update that function now:

def read_players(skip: int = Query(0, description="The number of items to
skip at the beginning of API call."),
 limit: int = Query(100, description="The number of records to return
 after the skipped records."),
 minimum_last_changed_date: date = Query(None, description="The minimum date of
 change that you want to return records. Exclude any records changed before
 this."),
 first_name: str = Query(None, description="The first name of the players
 to return"),
 last_name: str = Query(None, description="The last name of the players
 to return"),
 db: Session = Depends(get_db)):

You have modified the read_players function. Update the rest of the API endpoints
to add descriptions to all the query parameters.

Viewing the Changes in Swagger UI
With all of these changes made to the OAS file, Swagger UI has much more informa‐
tion than it did previously. Open the /docs endpoint and you will first notice that the
details added to the info field are displayed prominently at the top of the documenta‐
tion, as shown in Figure 5-13.

Figure 5-13. Updated Swagger UI information section

Scrolling down, you will see the effect that the tags attributes and the endpoint
summary values have on Swagger UI, as shown in Figure 5-14. The endpoints are now
arranged in categories, and their summaries are displayed to explain their purpose.

Continuing Your Portfolio Project | 99

Figure 5-14. Tags used to group endpoints

With all of the changes you made in this chapter, main.py is too
long to show here. You can view the updated main.py file in the
chapter5/complete folder.

Regression-Testing Your API
With all the changes you made to your API code, you should regression-test your
code, which is running your existing tests to make sure you didn’t break anything.
Regression testing is helpful for coding changes that you make and updates to soft‐
ware libraries that you use in your code.

100 | Chapter 5: Documenting Your API

In the terminal window, press Ctrl-C to stop the API and display the command
prompt. Enter the pytest test_main.py command and you should see an output
that looks similar to this:

$ pytest test_main.py
================== test session starts ===========================
platform linux -- Python 3.10.13, pytest-8.1.2, pluggy-1.5.0
rootdir: /workspaces/portfolio-project/chapter5
plugins: anyio-4.4.0
collected 11 items

collected 11 items

test_main.py [100%]

=================== 11 passed in 1.01s ============================

Updating Your README.md
With the updates you made to your built-in Swagger documentation, you are well on
your way to providing a good developer experience. But there are a few API docu‐
mentation features that you have not provided yet, including getting started, terms of
service, and example code. You will update your README.md file to fill in the gaps of
your documentation.

Update README.md with the following contents:

SportsWorldCentral (SWC) Fantasy Football API Documentation

Thanks for using the SportsWorldCentral API. This is your one-stop shop for
accessing data from our fantasy football website, www.sportsworldcentral.com.

Table of Contents

- [Public API](#public-api)
- [Getting Started](#getting-started)
 - [Analytics](#analytics)
 - [Player](#player)
 - [Scoring](#scoring)
 - [Membership](#membership)
- [Terms of Service](#terms-of-service)
- [Example Code](#example-code)
- [Software Development Kit (SDK)](#software-development-kit-sdk)

Public API
Coming Soon

We'll be deploying our application soon. Check back for the public API address.

Getting Started

Updating Your README.md | 101

Since all of the data is public, the SWC API doesn't require any authentication.
All of the the following data is available using GET endpoints that return
JSON data.

Analytics

Get information about the health of the API and counts of leagues, teams,
and players.

Player
You can get a list of all NFL players, or search for an individual player
by player_id.

Scoring

You can get a list of NFL player performances, including the fantasy points they
scored using SWC league scoring.

Membership
Get information about all the SWC fantasy football leagues and the teams in them.

Terms of Service

By using the API, you agree to the following terms of service:

- **Usage Limits**: You are allowed up to 2000 requests per day. Exceeding this
 limit may result in your API key being suspended.
- **No Warranty**: We don't provide any warranty of the API or its operation.

Example Code

Here is some Python example code for accessing the health check endpoint:

```
import httpx

HEALTH_CHECK_ENDPOINT = "/"
    
with httpx.Client(base_url=self.swc_base_url) as client:
    response = client.get(self.HEALTH_CHECK_ENDPOINT)
    print(response.json())
```

Software Development Kit (SDK)
Coming Soon

Check back for the Python SDK for our API.

102 | Chapter 5: Documenting Your API

Additional Resources
For a comprehensive discussion of the role that API documentation and developer
portals play in an API effort, read Chapter 7 of James Higginbotham’s Principles of
Web API Design: Delivering Value with APIs and Microservices (Addison-Wesley,
2021).

For a great short overview of API design concepts, I recommend Designing Web APIs
by Brenda Jin, Saurabh Sahni, and Amir Shevat (O’Reilly, 2018).

The NordicAPIs.com blog publishes articles about developer experience and API
documentation that have a lot of useful information.

For more information about DX metrics, read “Developer Experience: The Metrics
That Matter Most”.

To see examples of individuals publishing tips or tools for consuming undocumented
APIs, check out Steven Morse’s blog and Joey Greco’s Leeger app.

For more information about using Swagger UI websites, view the Swagger UI instal‐
lation instructions.

For advice about working with your OAS, read Speakeasy’s OpenAPI Guide.

Extending Your Portfolio Project
You provided several of the core and extra features of API documentation in this
chapter. To provide a full-featured developer experience, you can create a standalone
developer portal website. Use a template like LaunchAny’s LaunchAny Minimum via‐
ble portal (MVP) template for APIs to create a developer portal for your API:

• Add a Getting Started page with the steps to quickly help consumers make their
first API call. (Remember that TTHW metric!)

• Add a Workflows page to explain how consumers can execute multiple related
calls to your API to gather information about leagues, teams, and players.

• Add code samples on a Code Samples page.

If you created an alternate API in previous chapters, follow the steps in this chapter to
add additional information to the openapi.json file for that API.

Additional Resources | 103

https://oreil.ly/pyatT
https://oreil.ly/YGseq
https://oreil.ly/xpcUd
https://oreil.ly/xpcUd
https://oreil.ly/id-00
https://oreil.ly/id-00
https://oreil.ly/stmorse
https://oreil.ly/leeger
https://oreil.ly/cSPsX
https://oreil.ly/cSPsX
https://oreil.ly/beRNI
https://oreil.ly/nhw1K
https://oreil.ly/nhw1K

Summary
In this chapter, you focused on your consumers by providing API documentation:

• You learned about the built-in API documentation that FastAPI provides using
both Swagger UI and Redoc.

• You learned about the OpenAPI specification that FastAPI generates and the
value of this specification for users.

• You learned about the components of great API documentation.

In Chapter 6, you will focus on deploying your application to the cloud, where real-
world consumers can use it.

104 | Chapter 5: Documenting Your API

CHAPTER 6

Deploying Your API to the Cloud

It sounds a little extreme, but in this day and age, if your work isn’t online, it doesn’t exist.
—Austin Kleon, Show Your Work! 10 Ways to Share Your Creativity and Get Discovered
(Workman, 2014)

You have made great progress with your first API. You have selected the most impor‐
tant qualities for your users, developed multiple API endpoints, and created user-
friendly documentation. In this chapter, you will publish your API to the cloud,
where consumers can access it. This is another chance to share what you have been
working on.

Benefits and Responsibilities of Cloud Deployment
The cloud is an informal term to refer to the collection of computer servers and con‐
necting infrastructure that make the public internet. For a developer or data scientist,
a great way to deploy prototypes and personal projects is through public cloud hosts.
Before these became available, the process of running side projects was laborious and
the capabilities were pretty limited. As a simple example, before cloud hosts became
available to developers, hosting your software on a server required purchasing the
physical server. When you finished with your project, you still had that server sitting
around. With the cloud you can spin up a virtual server with a few commands, and
when you are finished you can delete it. Now you have a great opportunity to deploy
your work to a public cloud host with all of the networking and application hosting
power that you can imagine (or at least afford).

105

Benefits
Cloud platforms allow you several great opportunities for the project in this book:

• You can learn the end-to-end process of cloud development, deployment, and
operations with the project that you developed.

• You can share it with others as part of your portfolio project. This fast feedback
loop allows you to learn and improve much more quickly.

• With the published API, you can use internet-facing tools and products to
explore from the user’s perspective. This is the focus of Part II of this book.

• You can use generative AI services to consume the API. This is the focus of
Part III of this book.

I have found that deploying an application to the web makes the project real in a way
that isn’t possible when it is only running in a development environment.

Responsibilities
You should be aware that deploying to the internet comes with a few responsibilities
as well, the first of which is cost. Cloud providers offer paid services, and they gener‐
ally charge a variable amount based on the amount of usage of the applications that
are hosted. Although some of the cloud providers used in this chapter have a free tier
of services or starter credits, they will require a debit or credit card to be added to the
account. When you are developing projects on a cloud host, it’s not uncommon to
have a surprise bill at the end of the month for several dollars. There are also horror
stories of people who ended up with unexpected bills costing hundreds or thousands
of dollars. I will share some tips about cost management, but you should take care not
to sign up for any services that you can’t afford. (When deploying the example appli‐
cations in this chapter, I spent less than $1 USD to host them for several weeks on all
the services combined. But your costs could be greater.)

Another responsibility is security. Using the phrase expose your API
endpoint gives you a hint of this responsibility—when you make
your work available to the world, bad actors can access it. If your
portfolio project contains fantasy sports data, you won’t be putting
any personal data at risk. However, if you are careless with the cre‐
dentials you use to connect to the cloud services, you could expose
usernames, passwords, and API keys publicly. This could allow a
fraudster to use your accounts to run up large bills mining crypto
or creating bot armies to attack websites.

106 | Chapter 6: Deploying Your API to the Cloud

There are several ways to control costs when using cloud hosts:

• Review the costs of services before using them. There are usually several services
involved in a coding project. Use cost calculators if available.

• Use services with free tiers and free trial periods.
• Create monthly budgets and set up email notifications to notify you when you

are approaching budgeted amounts.
• Shut down or delete resources after use.
• When you have finished working with a cloud host, clean up resources and

remove your payment method.
• Keep tight control of your login credentials.
• Use short-lived access keys.
• Only activate the permissions for specific services you are using, and disable

them after you are done.
• Do not commit any credentials into source control repositories.
• If any credentials do become exposed, deactivate or delete them. Contact support

of the cloud host if necessary.

Choosing a Cloud Host for Your Project
I have used a variety of cloud hosts to deploy prototypes and portfolio projects, and
their capabilities and pricing models change over time. When I am deciding what
host to use, I first decide what my primary focus is at the time. If I am just focused on
getting my app out into the world, I choose the host that is simplest to deploy. If I
want to learn about a specific cloud host or some of its underlying technical services,
I am more willing to put in the time (and often pay a bit in hosting fees) to learn the
deployment process for that host. When I am trying to practice some deployment or
operational technique such as continuous integration (CI) or containerization, I
select a host that supports that particular method and use it to deploy my app.

This chapter includes instructions for deploying to two cloud hosts, and I would
encourage you to try out both of them to see the advantages and disadvantages of
each. You will begin by using Render, which is fairly simple to deploy. Then, you will
install and configure the Docker containerization tool, which you will use to deploy
to Amazon Web Services (AWS).

Table 6-1 displays the new tools or services you will use in this chapter.

Choosing a Cloud Host for Your Project | 107

Table 6-1. New tools or services used in this chapter

Software or service name Version Purpose
Amazon Lightsail NA AWS virtual cloud server

AWS CLI 2.15 Command-line interface for AWS services

Docker 24.0 Pack and run your application in a container

Render NA Cloud hosting provider

Setting Up Your Project Directory

You Can Start from Here
The instructions in this chapter assume that you completed Chapters 2, 3, 4, and 5. If
you’re starting your coding in this chapter, you will need to perform a couple of steps
to catch up. First, you need to create a GitHub Codespace from the book’s GitHub
repository. Full instructions are available in “Getting Started with Your GitHub Code‐
space” on page 22.

To catch up on the coding from previous chapters, you can use the completed set of
files in the chapter5/complete directory of your Codespace. If you are using these, use
the directory chapter5/complete in the setup commands that follow.

To continue your portfolio project where you left it in the previous chapter, change
the directory to chapter6 and then copy the previous chapter’s files into it. The follow‐
ing shows the commands and expected output:

.../portfolio-project (main) $ cd chapter6

.../chapter6 (main) $ cp ../chapter5/*.py .

.../chapter6 (main) $ cp ../chapter5/fantasy_data.db .

.../chapter6 (main) $ cp ../chapter5/requirements.txt .

.../chapter6 (main) $ cp ../chapter5/readme.md .

.../chapter6 (main) $ ls *.*
crud.py database.py fantasy_data.db main.py models.py readme.md
requirements.txt schemas.py test_crud.py test_main.py

Using GitHub Codespaces as a Cloud Host
For intermittent cloud hosting, GitHub Codespaces may be sufficient. It will only be
available while your Codespace is running, but this can be useful for testing with an
external tool or sharing it with someone else to review.

108 | Chapter 6: Deploying Your API to the Cloud

When you first run the API in your Codespace, you will see a dialog stating “Your
application running on port 8000 is available,” as shown in Figure 6-1. Click Make
Public.

Figure 6-1. Making the API public

The API is now running in Codespaces with a public port. To view the API in the
browser, click Ports in the terminal and hover over Port 8000 as shown in Figure 6-2.

Figure 6-2. Open API on a public address

Click the globe icon, and the web browser should be opened to the health check end‐
point of your API. If you look at the address in your browser, you should see a base
URL that ends in app.github.dev. The browser page should show the response from
your API running on Codespaces. You should see the following health check message
in your web browser:

{"message":"API health check successful"}

Your API is running publicly in the cloud.

Deploying to Render
Render calls itself “a unified cloud to build and run all your apps and websites.” At the
time of this writing, Render has a pricing plan that includes Python hosting for free,
except for a small cost for monthly storage. You will be generally following the
instructions from Deploy a FastAPI App.

The process of deploying to Render only involves a few steps, as shown in Figure 6-3.

Deploying to Render | 109

https://oreil.ly/nmdaK

Figure 6-3. Deploying your API to Render

Signing Up for Render
The first step is to sign up for a Render account. You can create a new account or use
one of the existing services, such as GitHub or Google. It should work the same either
way. When you have created your account and provided the information requested,
you should see the Render dashboard with no services.

Creating a New Web Service
From the New menu, select Web Service.

On the New Web Service page, select Public Git Repository, enter the URL of your
GitHub repo, as shown in Figure 6-4, and click Connect.

Figure 6-4. Choosing how to deploy a web service

110 | Chapter 6: Deploying Your API to the Cloud

https://oreil.ly/rend

The next page should say “You are deploying a Web Service,” as shown in Figure 6-5.

Figure 6-5. Render web service settings

Enter the settings on this page as follows:

• Name: Enter an available unique name.
• Project: Do not create a project.
• Language: Python 3
• Branch: main
• Region: Select the region nearest you.
• Root directory: chapter6
• Build command: pip install -r requirements.txt
• Start command: uvicorn main:app --host 0.0.0.0 --port $PORT
• Instance type: Free

Notice that the start command did not use fastapi run as you used on the com‐
mand line. For the web deployments, you are directly using the Uvicorn web server to
run the API without using the fastapi-cli library.

Scroll to the bottom of the page, and select Deploy Web Service. A page should be
displayed with a deployment log. As you watch, you should see the cloud host instal‐
ling the software from your requirements.txt file and starting an instance of your
application. When the process completes successfully, you should see the statement
“Your service is live,” as shown in Figure 6-6.

Deploying to Render | 111

Figure 6-6. Successful deployment on Render

Copy the URL of your web service that is displayed near the top of the window. (In
this example, the address is https://football-api-service.onrender.com). Paste this URL
into another browser window. You should see the health check message of your API.
If you access the /docs endpoint, you can use Swagger UI to check that the rest of the
endpoints are returning data. Congratulations! You have deployed your API to the
first cloud host!

If you receive an error in the deployment, verify that you commit‐
ted the Chapter 6 code to your repository prior to deploying.

Auto-Deploying a Change to Your API
By default, Render is set to auto-deploy any changes you make to files in your reposi‐
tory’s chapter6 folder. Test this by modifying the health-check endpoint in main.py
with the following message:

async def root():
 return {"message": "This is an API health check: status successful"}

Commit these changes to your GitHub repository.

112 | Chapter 6: Deploying Your API to the Cloud

https://football-api-service.onrender.com

Open your web service from the Render dashboard and select Events. The most
recent event should be a new deployment. After a few minutes, you should see the
updated health check text when you access the web service in your browser.

In the next section, you will configure your application to run on Docker, which will
be used by AWS Lightsail.

Shipping Your Application in a Docker Container
Whereas Render deployed your application from a source code repository (GitHub),
AWS will use an application named Docker. Docker is a very useful tool for shipping
applications in containers. Just as cargo is shipped in a shipping container, applica‐
tions are shipped in a software container.

The Docker glossary explains a few key terms that you will use. A Dockerfile is “a text
document that contains all the commands you would normally execute manually to
build a Docker image.” The container image, or Docker image, is “an ordered collec‐
tion of root filesystem changes and the corresponding execution parameters for use
within a container runtime.” A repository is a set of Docker images. A container run‐
time is software that uses the image to create a container, which is a runtime instance
of a container image. You will use Docker as your container runtime.

You will first learn the process of using Docker to run your application locally, and
then build on that knowledge to deploy to AWS Lightsail.

Don’t worry if all of this information does not make sense yet. As you go through the
process of deploying the application in the three different environments, you will
begin to see the purpose of the tasks.

Table 6-2 has a summary of Docker commands you will use in this chapter. A full list
of commands is available on the Docker cheat sheet.

Table 6-2. Docker commands

Command Purpose

docker --version Verify what version of the library is installed.

docker build -t Build an image from a Dockerfile.

docker images List local images in your environment.

docker run Run a container from a local image.

Shipping Your Application in a Docker Container | 113

https://dashboard.render.com
https://oreil.ly/TyStu
https://oreil.ly/Prc1P

Verifying Docker Installation
If you are using GitHub Codespaces, Docker should come preloaded for you. Other‐
wise, follow the instructions on the Get Docker page to install the appropriate version
for your development environment.

Verify that Docker is installed by executing the command docker --version, which
should return the version and build number, such as the following:

$ docker --version
$ Docker version 24.0.9-1, build 1234

You will perform a couple of fairly simple steps:

• Create a Dockerfile.
• Build a container image from this Dockerfile.
• Run a container based on this image.

Let’s get started.

Creating a Dockerfile
A Dockerfile contains the instructions that Docker will use to create a container
image. Keep in mind that the statements will be executed in the docker build step
that you will initiate. Create a file named chapter6/Dockerfile:

.../chapter6 (main) $ touch Dockerfile

Update chapter6/Dockerfile with the following contents:

Dockerfile for Chapter 6
Start with the slim parent image
FROM python:3.10-slim

set the Docker working directory
WORKDIR /code

copy from the build context directory to the Docker working directory
COPY requirements.txt /code/

Install the Python libraries listed in the requirements file
RUN pip3 install --no-cache-dir --upgrade -r requirements.txt

Copy the code files and database from the build context directory
COPY *.py /code/
COPY *.db /code/

Launch the Uvicorn web server and run the application
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "80"]

114 | Chapter 6: Deploying Your API to the Cloud

https://oreil.ly/jUGKm

This chooses the parent image, which is the official Python 3.10 slim Docker
image in this case. This image already contains most of the items you will need to
run your application. That allows you to focus on adding your code and any cus‐
tom libraries.

This statement sets a working directory inside the container image. This working
directory is where the remaining commands will be executed unless otherwise
specified.

This copies the requirements.txt file from context, which is a set of files in a loca‐
tion that you will specify when you execute the build statement. (Spoiler alert: in
this chapter, you will be using the chapter6 directory as the context, so the con‐
text includes all the files in this folder.)

This uses pip to install the specified libraries in your requirements.txt file into a
new layer in the Docker image. A Docker container image is like a brand-new
virtual server: you have complete control of the libraries and versions that are
contained in it so that your application works correctly.

These two statements copy your Python program files and SQLite database from
the context directory to your Docker working directory.

After steps 1 through 5 have built the container image, this step sets the default
command that will be executed each time a container is launched from that
image using the docker run command. As you did with the Render deployment,
you are directly calling Uvicorn to run the API.

These are all the instructions you need to define your container image. The next step
will be to build the container image in your local repository.

Creating a .dockerignore File
Just like .gitignore excludes files from version control, you want to exclude some files
in your directory from the Docker image. Create a file named .dockerignore with the
following contents:

This is the .dockerignore file for Chapter 6
.gitignore

README.md

*.DS_Store/

**/__pycache__

Shipping Your Application in a Docker Container | 115

Building a Container Image
To put this Dockerfile to use, enter the following command at the command line:

.../chapter6 (main) $ docker build -t apicontainerimage .

This tells Docker to build an image (apicontainerimage) using the Dockerfile in the
current directory. The container image will be stored in your local Docker repository.

You should see multiple steps being executed. The first time you run this command,
this may take several minutes. Future builds will take less time because Docker can
cache items that do not change. You should see something similar to the following
when it is completed:

[+] Building 12.2s (11/11) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 670B
 => [internal] load .dockerignore
 => => transferring context: 92B
 => [internal] load metadata for docker.io/library/python:3.10-slim
 => [1/6] FROM docker.io/library/python:3.10-slim@sha256:xxxx
 => [internal] load build context
 => => transferring context: 217B
 => CACHED [2/6] WORKDIR /code
 => [3/6] COPY requirements.txt .
 => [4/6] RUN pip install --no-cache-dir --upgrade -r requirements.txt
 => [5/6] COPY *.py .
 => [6/6] COPY *.db .
 => exporting to image
 => => exporting layers
 => => writing image sha256:xxxx
 => => naming to docker.io/library/apicontainerimage

To verify that the image was created successfully, enter the command docker images
to view the images in your repository. You should see something like the following:

.../chapter6 (main) $ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
apicontainerimage latest x9999 1 minute ago 159MB

Running Your Container Image Locally
You use the docker run command to run a container based on this image. There are
just a couple of options to notice here. The statement --publish 80:80 maps port 80
inside the Docker container (the second 80) to port 80 on your local environment
(the first 80). The statement --name apicontainer1 sets the name of the container
that you will be using. This is a convenient way to reference the running container
(Docker will also assign an image ID). Finally, apicontainerimage passes the image
name that you built in the previous step. Remember, the image is used to run a
container.

116 | Chapter 6: Deploying Your API to the Cloud

Execute the following command:

.../chapter6 (main) $ docker run --publish 80:80 --name apicontainer1
apicontainerimage+

You should see the following:

INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:80 (Press CTRL+C to quit)

You will see the message “Your application running on port 80 is available.” Select
“Open in Browser” to run the API in the web browser. You should see the health
check message in the window, exactly like when you ran the API from the command
line.

Now if you go back to the terminal window, you will see a log message for the first
request to the API:

INFO: 1.1.0.1:12345 - "GET / HTTP/1.1" 200 OK

Congratulations! Your application is being run by Docker in a container that you
defined. To stop the application, press Ctrl-C.

Deploying to AWS
The AWS deployment will take advantage of the Docker container that you created.
You will run your application using the Amazon Lightsail service, which is one of the
simpler AWS services to get started with.

To begin, create a new AWS account and store your login credentials securely. For
this project, it will be acceptable to use the root user account, which is the full owner
of the account identified by the email address. However, you should enable multifac‐
tor authentication (MFA), following the directions in the AWS Identity and Access
Management User Guide.

If you continue using AWS, a best practice is to create a separate administration
account and use it for normal work instead of the root user.

Creating a Lightsail Container Service
When you have logged in to the AWS console, select Lightsail from the search bar
and then select Containers from the lefthand menu. You should see a page that looks
like Figure 6-7. Click “Create container service.”

Deploying to AWS | 117

https://oreil.ly/09mZ7
https://oreil.ly/N5Q7e
https://oreil.ly/N5Q7e

Figure 6-7. Starter page for Lightsail

You will be asked to complete the information for your first Lightsail service:

• Region: Select a region that is nearest to you for best performance.
• Power: Choose Nano or Micro.
• Scale: Choose 1.
• Identify your service: Choose a name for your container. This example uses aws-
api-container.

Click “Create container service”. It will take several minutes for the container to be
created. When it finishes, you should see a status page like the one in Figure 6-8.

Figure 6-8. Lightsail container service creation completed

118 | Chapter 6: Deploying Your API to the Cloud

Installing the AWS CLI
To interact with AWS, you will use the AWS CLI. Follow the instructions from AWS
to install or update the latest version of the AWS CLI.

Run the following command to verify the installation:

.../chapter6 (main) $ aws --version
aws-cli/2.15.8 Python/3.11.6 Linux/6.2.0-1018-azure exe/x86_64.ubuntu.20
prompt/off

Installing the Amazon Lightsail Container Services Plug-in
For Lightsail, an additional installation is required. Follow the instructions on instal‐
ling the Amazon Lightsail container services plug-in.

Configuring Your Login Credentials
To connect the AWS CLI to your AWS account, you will need to configure your
authentication and access credentials. There are multiple ways to do this, and it can
take a bit of time to set up correctly. As mentioned multiple times in this chapter, you
should be extremely careful in the handling of your credentials by cloud services.
This includes taking care that they are never committed to a source code repository.
Follow the instructions from “Authentication and access credentials for the AWS CLI”
to configure your AWS CLI.

Once you have followed the instructions for configuring your credentials, verify them
by entering this command:

.../chapter6 (main) $ aws sts get-caller-identity

You should receive a response in the following format:

{
 "UserId": "99999",
 "Account": "999",
 "Arn": "arn:aws:iam::1234:user/username"
}

Pushing Your Container Image to Lightsail
Next, you will use the AWS CLI to push a container image to Lightsail. If you run into
any issues during these instructions, additional information is available on the “Push,
view, and delete container images for a Lightsail container service” page.

Deploying to AWS | 119

https://oreil.ly/r8tTp
https://oreil.ly/xMzkI
https://oreil.ly/xMzkI
https://oreil.ly/HAXYD
https://oreil.ly/lJ0wX
https://oreil.ly/lJ0wX

To verify that your Docker images are still in your local repository where you built
them in the previous sections of this chapter, enter the following:

.../chapter6 (main) $ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
apicontainerimage latest aa0366008bec 2 hours ago 159MB

You will push an image from this local Docker repository to Lightsail. Take a moment
to understand some of the values you will populate:

Region

This is the AWS region where you set up the Lightsail service.

ContainerServiceName

This should be aws-api-container if you set up the Lightsail service correctly in
the previous steps.

LocalContainerImageName:ImageTag

This is the name and tag from your local repository. In the preceding example,
the value would be apicontainerimage:latest.

Enter the following command in the terminal, replacing the values in brackets with
your information:

lightsail push-container-image --region <Region>
--service-name <ContainerServiceName> --label aws-api --image
<LocalContainerImageName>:<ImageTag>

These commands may wrap in this book, but you will enter them
on a single line in the terminal.

Here is an example of the command filled out completely:

.../chapter6 (main) $ aws lightsail push-container-image --region us-west-2
--service-name aws-api-container --label aws-api --image apicontainerimage:latest

120 | Chapter 6: Deploying Your API to the Cloud

After a couple of minutes, you should see the following:

1234: Pushed
12345: Pushed
Digest: sha256:xxxxx
Image "apicontainerimage:latest" registered.
Refer to this image as ":aws-api-container.aws-api.1" in deployments.

Go back to the Lightsail console login and view the Images tab on your aws-api-
container. You should see something like Figure 6-9.

Figure 6-9. Lightsail stored images page

Creating a Lightsail Deployment
On the Deployments tab of the aws-api-container service, select “Create your first
deployment.” Enter the following values, as shown in Figure 6-10:

• Container name: Choose a unique container name. This example uses aws-api-
container-1.

• Image: Choose the stored image that was pushed in the previous steps.

Deploying to AWS | 121

Figure 6-10. Deployment options (top of page)

Click “+ Add open ports” and enter a value of 80 in the port. In the Public Endpoint
section, click the drop-down box and select the container you created.

After these steps, the completed options should appear as shown in Figure 6-11.

122 | Chapter 6: Deploying Your API to the Cloud

Figure 6-11. Deployment options (bottom of page)

Click “Save and deploy.” Lightsail will begin deploying. After a few minutes, you
should see a status of Active, as shown in Figure 6-12.

Deploying to AWS | 123

Figure 6-12. Lightsail deployment success

Your container will have a Status of Running, and a “Public domain” will be generated
(not shown in Figure 6-12). This is the base URL for the API. To verify that your API
is running, copy the value from the “Public domain” and paste it into a browser bar.
You should see your API’s health check page. Congratulations, you’ve deployed your
API using AWS Lightsail!

124 | Chapter 6: Deploying Your API to the Cloud

Updating Your API Documentation
In Chapter 5, you created the README.md file as API’s documentation, but you
didn’t have an API address yet. Update the Public API Address section of the
README.md file as follows, replacing [API URL] with your deployed application’s
address, wherever you find it:

Public API

Our API is hosted at [API URL]/([API URL]/).

You can access the interactive documentation at [[API URL]/docs]([API URL]/docs).

You can view the OpenAPI Specification (OAS) file at
[[API URL]/openapi.json]([API URL]/openapi.json).

Extending Your Portfolio Project
Here are a few ways to use what you’ve learned in this chapter to extend your portfo‐
lio project:

• If you have been creating additional APIs in previous chapters, select one of the
cloud hosts from this chapter and deploy those APIs.

• Identify another cloud host from the “Deploy FastAPI on Cloud Providers” page,
and deploy your API to one of them.

• After deploying your project to one of the cloud hosts, research and configure a
deployment pipeline. Each uses different techniques, but they generally involve
creating tasks to redeploy your application each time a change is made to the
source code repository.

Additional Resources
The Docker website provides a deep dive into the concepts around Docker contain‐
ers.

For best practices on containerizing Python, take a look at “Best practices for contain‐
erizing Python applications with Docker” from Snyk.io.

Additional Resources | 125

https://oreil.ly/PsEGM
https://oreil.ly/6AyzJ
https://oreil.ly/1SYWr
https://oreil.ly/1SYWr

Summary
In this chapter, you learned the benefits and responsibilities of using cloud hosting
platforms to deploy your API. You now have experience in deploying your applica‐
tion in several different ways:

• In a local development environment or GitHub Codespaces environment
• In a Docker container in a local development environment or GitHub Codespa‐

ces environment
• On the Render cloud host
• On AWS using Amazon Lightsail and Docker

In Chapter 7, you will create an SDK to make your API easier to use for Python
developers.

126 | Chapter 6: Deploying Your API to the Cloud

CHAPTER 7

Batteries Included: Creating a Python SDK

Make the right things easy and the wrong things hard.
—Kathy Sierra

To create an API data scientists will love, you should give them a software develop‐
ment kit (SDK) to call the API with. This is an extra step that most API producers do
not take, but it makes life much easier for your users. In this chapter, you will learn
the value of SDKs and benefit from practical tips from several experts, and then you
will create a Python SDK for the SWC Fantasy Football API. Building an SDK is the
capstone of your Part I portfolio project.

SDKs can include code examples, debuggers, and documentation, but the term com‐
monly refers to a custom software library that acts as a wrapper for your API. It
allows developers and data scientists to interact with your API directly in their pro‐
gramming language, without requiring extra code to handle API communication.

Figure 7-1 shows how your users will employ an SDK to call your API, instead of call‐
ing it directly.

Figure 7-1. SDK interacting with the API

127

SDK Perspectives: Zan Markan on SDK Fundamentals
Zan Markan is an experienced software engineer and developer advocate from the
United Kingdom. Zan has developed SDKs and other tools in his developer relations
role. I talked to Zan about SDKs and followed up with additional questions.

What exactly is an SDK?

An SDK is a programming language–native means of exposing an API that would
otherwise only be accessible as a REST endpoint. They usually bundle the common
REST API calls in functions or classes that you can use directly in code by importing
a library.

Can you share an example?

Let’s say you have your Premier League SDK. You just want to import your Premier
League SDK. There would be a way to add an API key so that every subsequent call
would be authenticated easily. Then, the developer can just use the SDK to get a list of
fixtures for a day. Or get the scoreboard with a single function call. It takes a lot of
complexity away to make building something faster.

How common is it for companies to provide an SDK?

It’s more common to provide SDKs if the core audience of your product is someone
who codes, such as a developer or data scientist.

SDKs Bridge the Gap
To learn the benefits of SDKs and tips for implementing them, I spoke to several
experienced SDK developers and followed up with written questions.

Joey Greco is a software engineer who has created open source SDKs for several fan‐
tasy football league hosts, including Sleeper and MyFantasyLeague. He explains how
SDKs help users: “A well-built SDK takes care of all the nitty-gritty for you,” he said.
“A well-built SDK gives me a few lines of code I can copy/paste on my machine along
with a few examples of how to access and manipulate various data. It tells me what I
need to do to authenticate (pass your API token into this function, etc.). It’s a great
way to bridge the gap from an external service to the code that you’re writing.”

It’s useful to remember that developers and data scientists aren’t using your API out
of an interest in APIs—they have a job to do, and the API helps do the job. Wrapping
the API in prebuilt program code makes that even simpler. I once conducted a usabil‐
ity session with a data-focused user of an API developer portal. I was surprised (and
maybe slightly insulted) when she told me she didn’t care about my APIs—she just
wanted the data. For a user like that who just wants the data, an SDK will be a
time-saver.

128 | Chapter 7: Batteries Included: Creating a Python SDK

https://oreil.ly/8dXo_
https://oreil.ly/SIPsV

Also, consider that your users may use multiple APIs and data sources from different
providers. The time they spend learning how each API works and configuring their
code for it is a diversion from their end goal. And not every developer or data scien‐
tist has experience in using APIs in a resilient and secure manner. A mature SDK can
provide good software development practices to these users with a minimum of
trouble.

Simon Yu, cofounder of the SDK generation platform Speakeasy, shares additional
benefits: “All the boilerplate code that API consumers needed to write before is
already taken care of by the SDK library itself. Instead of every consumer re-
inventing the wheel themselves (frustrating, time-consuming, error-prone), they sim‐
ply import the SDK, call the correct method, and go.”

There’s another benefit too. When developers use an SDK in their IDE, they will get
auto-complete and type hints while they code. This makes their development quicker
and also enables generative AI tools such as GitHub CoPilot or AWS CodeWhisperer
to generate accurate code for them.

Producers benefit from anything that makes it easier to use their APIs. Like good API
docs, SDKs reduce the friction for new consumers, which reduces the time-to-hello-
world metric discussed in Chapter 5. Simon Yu said SDKs can be a profitable invest‐
ment for API producers: “An API consumer (who might also be another large
enterprise!) often won’t want to pay for a service until they are up and running in
production. For many API providers, therefore, unblocking API consumers also
unblocks revenue.”

Yu said SDKs can also reduce API support expenses: “Since SDKs provide a ready-
made way to integrate with the API and eliminate the need to write custom integra‐
tion code from scratch, they dramatically reduce the support burden required of API
producers.” He added, “Without SDKs, if an integration doesn’t work, API producers
often get pulled into 1:1 support, which is extremely costly.”

An SDK is a good way to encourage users to use your APIs responsibly by conform‐
ing to call limits and sending correctly formatted requests. SDKs make doing the
right thing the easy thing.

SDKs can be part of an overall API product strategy. One of the best examples I have
seen is by StatsBomb (now Hudl StatsBomb), a sports data and analytics provider.
StatsBomb provides football and soccer data with a strong emphasis on supporting
research and education in the sports field. StatsBomb hosts a sports analytics plat‐
form that provides in-depth analysis and visualizations about players and teams from
around the world. StatsBomb also provides data through a subscription-based API
that allows its customers to pull data into their own analytics software. To support
researchers and students, it also provides some of its data for free download on its
open data GitHub repository.

SDKs Bridge the Gap | 129

https://statsbomb.com
https://oreil.ly/Orp-g
https://oreil.ly/Orp-g
https://oreil.ly/CzhyS
https://oreil.ly/LPGZM

For StatsBomb, SDKs tie the paid and free services together. The company maintains
two SDKs for its APIs: statsbombr and statsbombpy. As shown in Figure 7-2, paid
subscribers can use the SDK to get live data, while nonsubscribers can use the SDK to
access static data for free. Internally, the SDK gets the paid data from an API and the
free data from a file download. But this complexity is shielded from the SDK users:
they just know they get the data they want.

Figure 7-2. The statsbombpy SDK documentation

SDK Perspectives: Francisco Goitia on Implementing SDKs
I talked to Francisco Goitia, lead machine learning engineer at StatsBomb and the
developer of the statsbombpy SDK.

What motivated StatsBomb to create SDKs for your APIs?

Our philosophy is to understand the end user of our products. Our user might be a
football analyst who doesn’t know how to query APIs. They just want to do a plot of
the data to get their job done. So, if they can install a Python library with pip
install and start using the data, it makes their life easier.

For the users of your APIs, why do you think SDKs make their life easier?

If I was writing client code to use our APIs, I would need to write something like the
SDK to decouple the API from my software. That’s using good software practices. So,
by using the SDK, they don’t have to do that extra work.

130 | Chapter 7: Batteries Included: Creating a Python SDK

https://oreil.ly/IQO_f
https://oreil.ly/0VOdS

Why did you decide to use R and Python for your SDKs?

Those are the languages that the football analyst community uses, with Python
becoming more common recently. When I started in 2020, we already had
statsbombr. In the first week I was here, I started creating statsbombpy and our cus‐
tomers started using it.

Picking a Language for Your SDK
Your SDK journey starts by knowing your developer audience and how they will utilize your
APIs.

—SDKs.io

The first decision that you will make when developing an SDK is which program‐
ming languages you will support. The SDK does not need to be written in the same
language that the API is developed in. Instead, it needs to be written in the language
that the API’s consumers use. They will import the SDK in their code, and use it to
interact with your API, instead of calling the API directly.

API producers sometimes provide SDKs in multiple languages for different consum‐
ers. Zan Markan summarized this approach as “Go where the users are.” For data sci‐
entists, he said, “it’s going to be Python, and there might be some R. Python is so
heavily used in that community that you want to focus on that.” His view is consistent
with the “State of Data Science” survey discussed in Chapter 1, which listed Python as
the most common language used by data scientists. To get started with a Python SDK,
an open source tool like the OpenAPI Python client could be used to generate stubs
that you could add more functionality to.

The more languages you create SDKs in, the more maintenance they require. Compa‐
nies like Speakeasy, APIMatic (publisher of SDKs.io), and Fern provide commercial
tools that generate SDKs in multiple languages directly from the OpenAPI Specifica‐
tion (OAS) and keep them updated over time.

Simon Yu explained the benefits of auto-generation services: “Getting the SDK design
and implementation right is difficult. Maintaining and supporting them is even
harder. What happens if the team member responsible for updating the SDK leaves?
Now multiply this problem across all the languages you want to offer the SDK in,” he
said. “This is where Speakeasy and other SDK generators come in.”

Picking a Language for Your SDK | 131

https://oreil.ly/cnR-u
https://oreil.ly/speasy
https://oreil.ly/bpMKs
https://oreil.ly/fern

You Can Start from Here
The SDK code for your project is separate from the API that you created in earlier
chapters. You can start here even if you have not completed earlier chapters in this
book. Later in this chapter, you will execute the API code so that you can verify the
SDK works with your API. Even if you have not completed the earlier chapters, the
working API code is available in the chapter6/complete folder.

Starting with a Minimum Viable SDK
The last piece of your Part I portfolio project is to create a Python SDK. Throughout
this chapter, you will learn tips and tricks from API experts and implement Python
features inspired by them: Francisco Goitia’s statsbompy, SDKs from Simon Yu’s
company Speakeasy, and Joey Greco’s pymfl, along with additional reference docu‐
mentation.

You will start with a very simple working SDK to make sure the project packaging is
working. I’ll call this your minimum viable SDK. After you verify the package works
and can be installed, you will add additional features.

Expert Tip: Making Your SDK Easy to Install
...if they can install a Python library with pip install and start using the data, it makes their
life easier.

—Francisco Goitia, StatsBomb

Many programming languages have a standard method of downloading and instal‐
ling libraries from an external repository, such as npm for Node.js and Maven for
Java. Python SDKs are commonly published on the Python Package Index (PyPI).
Hosting an SDK on PyPI enables Python developers to install the SDK into their
environment using the pip3 tool, as you have done in earlier chapters with libraries
such as FastAPI and SQLAlchemy. The pip3 tool can also install packages directly
from a GitHub repository, if the project is structured correctly. This is how you will
structure your SDK project and give instructions to users. As a bonus, this structure
is what is needed to publish to PyPI if you choose to.

Change the directory to chapter7 and create the sdk folder. Then, change to the sdk
directory and create a file named pyproject.toml:

.../portfolio-project (main) $ cd chapter7

.../chapter7 (main) $ mkdir sdk

.../chapter7 (main) $ cd sdk

.../sdk (main) $ touch pyproject.toml

132 | Chapter 7: Batteries Included: Creating a Python SDK

https://oreil.ly/LUiJd
https://oreil.ly/ut2nK
https://pypi.org

The pyproject.toml file provides all the settings that tools like pip3 need to package
your code and install it correctly in Python environments. Add all of the following
text to your pyproject.toml file:

[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"

[project]
name = "swcpy"
version = "0.0.1"
authors = [
 { name="[enter your name]" },
]
description = "Example SDK from Hands-On API Book for AI and Data Science"
requires-python = ">=3.10"
classifiers = [
 "Development Status :: 3 - Alpha",
 "Programming Language :: Python :: 3",
 "License :: OSI Approved :: MIT License",
 "Operating System :: OS Independent",
]
dependencies = [
 'pytest>=8.1',
 'httpx>=0.27.0',
]

This section selects setuptools as the build backend for your project. The Python
Packaging Guide lists several other choices for the build backend, including
Hatchling, Flit, and PDM. I have chosen setuptools because all of the example
SDKs referenced in this chapter use it, and it is simple to use.

This section gives the basics about the package, including name, version, descrip‐
tion, and author. (You should put your name there—it’s your portfolio project,
after all.)

The version should be updated each time major changes are applied.

This communicates the minimum Python version your package supports.

The development status Alpha shows that this SDK is in the early stages of
development.

This section lists the Python libraries that are required for your package to work.
This is the only section in this chapter that will list dependencies—there is no
requirements.txt file used for the SDK.

Starting with a Minimum Viable SDK | 133

https://setuptools.pypa.io/en/latest/setuptools.html

Expert Tip: Making the SDK Consistent and Idiomatic
Simon Yu said, “The SDK should be consistent and predictable. Naming conventions,
error handling, and response format should be the same throughout the SDK to
avoid unnecessary confusion to users.” For example, your SDK functions returning a
single item will begin with get_ and functions returning lists will begin with list_.

Sdks.io says you should make your SDK idiomatic, following the norms used by other
programmers of that language. For a Python SDK, this means that your code should
be Pythonic. This is a broad term, but it means that Python code should follow the
conventions that other Python programmers and tools use. Python is a living lan‐
guage, with new features being added all the time, so the coding conventions try to
keep up. Conventions are established in the Python community through Python
Enhancement Proposals or PEPs. If you’d like to understand the process, check out
PEP 1 – PEP Purpose and Guidelines.

For the overall style of your SDK, you will be using PEP 8 – Style Guide for Python
Code. The official Python docs provide a good summary of PEP 8 style: use 4-space
indentations, keep lines to 79 characters or less, and use UpperCamelCase for classes
and lowercase_with_underscores for functions and methods.

A few additional Pythonic conventions you will use in your SDK include PEP 202 –
List Comprehensions, PEP 343 – Context Managers, PEP 257 – Docstrings, PEP 518
– Build System Requirements, and PEP 484 – Type Hints. These items will be
explained as they are added to the code in your SDK.

The swc_client.py file is the primary client that will interact with your API. You will
start with a very basic client. Create the directory structure, the package initialization
file, and the starter Python client:

.../sdk (main) $ mkdir src

.../sdk (main) $ mkdir src/swcpy

.../sdk (main) $ touch src/swcpy/__init__.py

.../sdk (main) $ touch src/swcpy/swc_client.py

Because your SDK will be a Python package, each directory that contains code
will contain a file named __init__.py. An empty file can do this job for now.

To begin creating the minimal SDK, give the swc_client.py file just enough functional‐
ity to call the health check of the SWC API:

import httpx

class SWCClient:

 def __init__(self, swc_base_url: str):
 self.swc_base_url = swc_base_url

134 | Chapter 7: Batteries Included: Creating a Python SDK

https://oreil.ly/dgQ79
https://oreil.ly/oersV
https://oreil.ly/oersV
https://oreil.ly/csNt5
https://oreil.ly/7rivi
https://oreil.ly/7rivi
https://oreil.ly/bgVdx
https://oreil.ly/q5zA2
https://oreil.ly/WLYFx
https://oreil.ly/WLYFx
https://oreil.ly/RkeOY

 def get_health_check(self):
 # make the API call
 with httpx.Client(base_url=self.swc_base_url) as client:
 return client.get("/")

For now, your import statement only contains httpx, which is the core Python
library you will use to interact with the API. The rest of this file defines the
SWCClient class. Users of the SDK will create an instance of the class when they
call the SDK, by executing the SWCClient() method.

This is the class constructor, which is executed one time when a client instance is
created. The method can be used to initiate methods and variables that are
unique to an individual instance of the class, in contrast to the constant variable
defined earlier. The self parameter is passed as the first parameter to every class
method in Python, including the constructor.

The constructor also receives the string parameter swc_base_url, which is the
base address of the API to call. You set the class variable self.swc_base_url so
that this value can be used in the get_health_check() method.

This function calls the API’s health check endpoint.

The httpx.Client has quite a few features available, but for now you are setting
the base URL and using it to call the "/" endpoint, which is your API’s health
check.

To ensure that you have configured your SDK package correctly, it’s time to install it
in your Codespace with pip3. This will use the new source code and configuration
files you created and install it as a library that you can access in Python files. It will
also install the dependencies from the pyproject.toml file’s dependencies section.

Now install your package locally with the -e option, which ensures that the package is
updated locally as your code changes:

.../sdk (main) $ pip3 install -e .
Processing /workspaces/portfolio-project/chapter7/sdk
 Installing build dependencies ... done
 Getting requirements to build wheel ... done
 Preparing metadata (pyproject.toml) ... done
...
Successfully built swcpy
Installing collected packages: pluggy, iniconfig, pytest, swcpy
Successfully installed iniconfig-2.0.0 pluggy-1.5.0 pytest-8.2.2 swcpy-0.0.1

The pip package adds the version number on your Python package from the py
project.toml file.

Starting with a Minimum Viable SDK | 135

Congratulations, you have created and installed a Python package! Take a look at the
files you have created for this minimal SDK. Use the tree command, with a few
options to filter out temporary files created by the build process:

.../sdk (main) $ tree --prune -I 'build|*.egg-info|__pycache__'

.
├── pyproject.toml
├── src
 └── swcpy
 ├── __init__.py
 └── swc_client.py

2 directories, 3 files

Minimum Viable SDK as a Building-Block Skill
The code you have created at this point in the chapter is deceptively simple, only
requiring two directories and three files. But as basic as this appears, consider that
you have now learned the basics required to:

• Create a simple SDK wrapper for any API that is available on the internet.
• Make a package from any Python library and install it using pip3. This will work

for any Python code that you think is useful to share.

As you will see later in the chapter, this package structure will allow you to share these
files with other users on GitHub and install it in their environments using pip3. With
a bit more effort, you can also publish this package on PyPI.

You have picked up a key building-block skill that you can use as a foundation to
share your work with the community of data scientists and developers around the
world.

Building a Feature-Rich SDK
Now it’s time to turn the minimum viable SDK into one that is robust and feature
rich. As you learn expert tips, you can implement them in your code. The goal is to
make your SDK batteries included, which means it comes with all the functionality
that users need for interacting with your API. This is where an SDK becomes a major
selling point to your users, and it gives them the ability to get the most from your
API.

136 | Chapter 7: Batteries Included: Creating a Python SDK

Expert Tip: Using Sane Defaults
A key to hiding complicated details is to implement sane defaults. This means that a
user can use your SDK without specifying any parameters and it will work out of the
box. One important default is that the SDK should know the base URL of the API
without being told. This allows the user to pip3 install it and use it without reading
the documentation to know this address. If the SDK is a read-only wrapper for a pub‐
lic API, you’ll likely default the production API address. If the API requires authenti‐
cation or is a read/write API, you may want to default to a sandbox environment to
prevent accidents. The sane defaults will handle the happy path, the standard usage
that 80% of your users will need. The remaining 20% can be handled by allowing the
user to change the configuration to override the defaults for special situations they
have.

You will add sane defaults that the user can override by creating a configuration class.
Create a file named swc_config.py as shown:

.../sdk (main) $ touch src/swcpy/swc_config.py

This file defines the SWCConfig class. The user will instantiate an instance of this class
with their configuration settings, and then pass it to the SWCClient constructor.
Then, they will use the SWCClient to call the API.

Update swc_config.py with the following content:

import os
from dotenv import load_dotenv

load_dotenv()

class SWCConfig:
 """Configuration class containing arguments for the SDK client.

 Contains configuration for the base URL and progressive backoff.
 """

 swc_base_url: str
 swc_backoff: bool
 swc_backoff_max_time: int
 swc_bulk_file_format: str

 def __init__(
 self,
 swc_base_url: str = None,
 backoff: bool = True,
 backoff_max_time: int = 30,
 bulk_file_format: str = "csv",
):
 """Constructor for configuration class.

Building a Feature-Rich SDK | 137

 Contains initialization values to overwrite defaults.

 Args:
 swc_base_url (optional):
 The base URL to use for all the API calls. Pass this in or set
 in environment variable.
 swc_backoff:
 A boolean that determines if the SDK should
 retry the call using backoff when errors occur.
 swc_backoff_max_time:
 The max number of seconds the SDK should keep
 trying an API call before stopping.
 swc_bulk_file_format:
 If bulk files should be in csv or parquet format.
 """

 self.swc_base_url = swc_base_url or os.getenv("SWC_API_BASE_URL")
 print(f"SWC_API_BASE_URL in SWCConfig init: {self.swc_base_url}")

 if not self.swc_base_url:
 raise ValueError("Base URL is required. Set SWC_API_BASE_URL
 environment variable.")

 self.swc_backoff = backoff
 self.swc_backoff_max_time = backoff_max_time
 self.swc_bulk_file_format = bulk_file_format

 def __str__(self):
 """Stringify function to return contents of config object for logging"""
 return f"{self.swc_base_url} {self.swc_backoff}
 {self.swc_backoff_max_time} {self.swc_bulk_file_format}"

This import will be used to get environment variables from the Python
environment.

This statement loads external variables from a .env file or the operating systems
environment.

The swc_base_url will be used to access the API.

The swc_backoff determines if the SDK should retry the call using backoff when
errors occur.

The swc_backoff_max_time The max number of seconds the SDK should keep
trying an API call before stopping.

The swc_bulk_file_format sets the format for bulk files.

138 | Chapter 7: Batteries Included: Creating a Python SDK

The __init__ method is executed onced when this class is created. It is used to
set the class variables from the parameters the user passes in. Default values are
set in this method.

This line sets the internal URL from a parameter that passed in the constructor,
or from the environment if there is no parameter in the constructor.

This statement checks if a URL has been provided through one of the methods
described previously. If none is present, this raises an exception and the loading
stops. This class can’t be used without a URL to access the API.

The __str__ method is used by external programs to log the contents of this
class. If you don’t provide a custom method like this, a default method would be
created, but it might have less useful information.

Next, modify the __init__.py file in the chapter7/sdk/src/swcpy directory so that it
looks like the following:

from .swc_client import SWCClient
from .swc_config import SWCConfig

These imports simplify the process of importing the classes in a user’s code.

Expert Tip: Providing Rich Functionality
Simon Yu suggested that an SDK should be rich with features that save a significant
amount of coding for developers. A survey of the SDKs I reviewed in this chapter
found features such as handling versions, handling pagination, client-side caching,
and authentication. You will include two advanced features: data type validation and
retry/backoff logic.

It is time-consuming for end users to add data validation in their code. They have to
read the API documentation to determine valid data types and values, and then add a
lot of code that checks values and throws errors. When SDK developers add data vali‐
dation, this is a big benefit to users. The original API developers have detailed knowl‐
edge of the workings of the API, which makes it easier for them to add validations to
the SDK. You have an additional advantage for this Python SDK: access to the origi‐
nal Pydantic classes the API was built with. You can reuse the Chapter 7 schemas.py
file in your SDK, giving your SDK powerful data validation at a minimal effort.

Create a schemas folder and __init__.pyfile as follows:

.../sdk (main) $ mkdir src/swcpy/schemas

.../sdk (main) $ echo "from .schemas import *" > src/swcpy/schemas/__init__.py

Building a Feature-Rich SDK | 139

Copy the schemas file from the chapter6 directory (or chapter6/complete if you haven’t
finished Chapter 6) into this chapter’s directories as follows:

.../sdk (main) $ cp ../../chapter6/complete/schemas.py src/swcpy/schemas

Now you will rebuild the client from scratch, step by step. First, you will add the
imports and the class constructor. Replace the entire swc_client.py file with the fol‐
lowing content:

import httpx
import swcpy.swc_config as config
from .schemas import League, Team, Player, Performance
from typing import List
import backoff
import logging
logger = logging.getLogger(__name__)

class SWCClient:
 """Interacts with the SportsWorldCentral API.

 This SDK class simplifies the process of using the SWC Fantasy
 Football API. It supports all the functions of the SWC API and returns
 validated data types.

 Typical usage example:

 client = SWCClient()
 response = client.get_health_check()

 """

 HEALTH_CHECK_ENDPOINT = "/"
 LIST_LEAGUES_ENDPOINT = "/v0/leagues/"
 LIST_PLAYERS_ENDPOINT = "/v0/players/"
 LIST_PERFORMANCES_ENDPOINT = "/v0/performances/"
 LIST_TEAMS_ENDPOINT = "/v0/teams/"
 GET_COUNTS_ENDPOINT = "/v0/counts/"

 BULK_FILE_BASE_URL = (
 "https://raw.githubusercontent.com/[github ID]"
 + "/portfolio-project/main/bulk/"
)

 def __init__(self, input_config: config.SWCConfig):
 """Class constructor that sets variables from configuration object."""

 logger.debug(f"Bulk file base URL: {self.BULK_FILE_BASE_URL}")

 logger.debug(f"Input config: {input_config}")

 self.swc_base_url = input_config.swc_base_url
 self.backoff = input_config.swc_backoff

140 | Chapter 7: Batteries Included: Creating a Python SDK

 self.backoff_max_time = input_config.swc_backoff_max_time
 self.bulk_file_format = input_config.swc_bulk_file_format

 self.BULK_FILE_NAMES = {
 "players": "player_data",
 "leagues": "league_data",
 "performances": "performance_data",
 "teams": "team_data",
 "team_players": "team_player_data",
 }

 if self.backoff:
 self.call_api = backoff.on_exception(
 wait_gen=backoff.expo,
 exception=(httpx.RequestError, httpx.HTTPStatusError),
 max_time=self.backoff_max_time,
 jitter=backoff.random_jitter,
)(self.call_api)

 if self.bulk_file_format.lower() == "parquet":
 self.BULK_FILE_NAMES = {
 key: value + ".parquet" for key, value in
 self.BULK_FILE_NAMES.items()
 }
 else:
 self.BULK_FILE_NAMES = {
 key: value + ".csv" for key, value in
 self.BULK_FILE_NAMES.items()
 }

 logger.debug(f"Bulk file dictionary: {self.BULK_FILE_NAMES}")

This imports the swc_config.py file you created.

This is used to import the Pydantic schemas.

This is used for additional type hints for the Pydantic classes.

This is used to implement exponential backoff.

This import statement and the following line of code are used to log debug and
error messages.

This adds class constants for all the API’s endpoints.

You need to replace the [github ID] with your GitHub ID so that the path to the
bulk files works correctly.

Building a Feature-Rich SDK | 141

The SWCClient class constructor accepts an instance of SWCConfig now. The user
puts all of their configuration in this object and passes it to the client.

This creates a dictionary of bulk filenames without a file extension.

This is a conditional decorator, which will update the call_api() method to
have backoff functionality if the user configures it. The backoff will be explained
further later.

This code appends a file extension of .csv or .parquet to the filenames dictionary.
It uses a dictionary comprehension, which is an efficient and Pythonic way to
update all the elements in a dictionary.

The retry and backoff functionality you added in the client has a few unexpected
twists and turns. When you make an API call from your SDK, sometimes it may fail
due to a temporary network hiccup or slowdown in the API. It might be due to a
load-balancing issue or a service that is in the middle of bringing more servers online
to handle increased load. If you are running a process that uses the API, you can
make it more resilient by retrying a few times before giving up.

However, the way you retry may cause some unexpected consequences on the API
provider. For example, you could decide that if an API call fails, you will continually
retry every microsecond until it succeeds. This would be the equivalent of a web user
clicking Refresh continually until the web page is back up. One user doing that might
not cause that much of a headache. But what about when hundreds or thousands of
users are retrying the API continually in the middle of a network outage, or when an
API provider is trying to bring more resources online? These users will be hitting it
with a massive load at a time when it’s least able to respond. This is like an accidental
distributed denial-of-service (DDOS) attack from your own users.

API consumers and SDK developers can implement exponential backoff instead of
simple retries. With this method, the time between retries gets exponentially longer
with each failed attempt. This method recognizes that a service that is failing needs a
break, and the more failures that happen, the more of a break it needs. For example, a
client might double the time between retries each time it fails. Using this method, it
would retry at 1 second, 2 seconds, 4 seconds, 8 seconds, and so on until it reached a
preset stopping point.

This is an improvement, but can you see any issue with everyone using this method?
The problem is explained very clearly on AWS’s Architecture blog in “Exponential
Backoff And Jitter”, and Figure 7-3 gives a simplified visualization. The numbers
across the bottom are seconds after an outage, and the vertical bars are the number of
retry attempts occurring in that second.

142 | Chapter 7: Batteries Included: Creating a Python SDK

https://oreil.ly/tSRCm
https://oreil.ly/tSRCm

Figure 7-3. The problem with exponential backoff

As you can see from the image, if multiple people are using the same settings for
exponential backoff (as they would be if they’re all using your SDK with defaults),
they are likely to still cluster around the same intervals to retry. This is because, when
an outage occurs, it will probably hit many users at the same time, starting their retry
clock. This is not what you want. The solution is to introduce jitter, which is a some‐
what random element that is combined with the backoff. Using this method, you get
the benefit of backing off retries without the clustering of retries in the same inter‐
vals. The best of both worlds is exponential backoff with jitter.

The code you added to swc_client.py implemented exponential backoff with random
jitter using the backoff Python library. To use this library, you added the decorator
backoff.on_exception onto the call_api() function. This wraps the function call
with backoff, without having to make any changes to the function itself. If the SDK
user uses backoff, the call_api() function will be wrapped with this additional func‐
tionality.

Take another look at the decorator you added to your code:

 if self.backoff:
 self.get_url = backoff.on_exception(
 wait_gen=backoff.expo,
 exception=(httpx.RequestError, httpx.HTTPStatusError),
 max_time=self.backoff_max_time,
 jitter=backoff.random_jitter,
)(self.call_api)

If an exception occurs, retry starting at 1 second, then doubling every retry.

Look for RequestError and HTTPStatusError exceptions from the call_api
function.

Building a Feature-Rich SDK | 143

https://oreil.ly/PUZbE

Stop retrying after the backoff_max_time parameter (which defaults to 30
seconds).

Apply random jitter so that it varies slightly from the exact second.

Expert Tip: Performing Logging
You don’t want your SDK to be a black box—you want users to understand what’s
occurring under the hood. One way to do this is by publishing the source code on a
public repository. The other is by providing meaningful logging, which helps when
the user is encountering errors or isn’t returning the results expected.

To be Pythonic, your SDK will use Python’s built-in logging library, and allow the
users to configure what level of logging they want to print. For example, they may
only want to log serious errors in production logs while logging debug messages dur‐
ing development. Table 7-1 shows the logging levels available, according to the offi‐
cial Python docs.

Table 7-1. Python logging levels

Level What it means/when to use it

logging.DEBUG Detailed information, typically only of interest to a developer trying to diagnose a problem.

logging.INFO Confirmation that things are working as expected.

logging.WARNING An indication that something unexpected happened, or that a problem might occur in the near
future (e.g., disk space low). The software is still working as expected.

logging.ERROR Indicates that, due to a more serious problem, the software has not been able to perform some
function.

logging.CRITICAL A serious error, indicating that the program itself may be unable to continue running.

In this chapter, you will see logging messages in the terminal when
you run pytest if an error occurs. By default, any messages with a
log level of WARNING or more severe will be displayed. If you want to
see INFO or DEBUG messages, you can use the --log-level

command-line option.

You added the import statements and created a logger object earlier in this chapter.
You will see this functionality in action in a new method that you will create, named
call_api(). Add the following code at the bottom of swc_client.py:

 def call_api(self,
 api_endpoint: str,
 api_params: dict = None
) -> httpx.Response:
 """Makes API call and logs errors."""

144 | Chapter 7: Batteries Included: Creating a Python SDK

https://oreil.ly/CmUps
https://oreil.ly/CmUps

 if api_params:
 api_params = {key: val for key, val in api_params.items() if val
 is not None}

 try:
 with httpx.Client(base_url=self.swc_base_url) as client:
 logger.debug(f"base_url: {self.swc_base_url}, api_endpoint:
 {api_endpoint}, api_params: {api_params}")
 response = client.get(api_endpoint, params=api_params)
 logger.debug(f"Response JSON: {response.json()}")
 return response
 except httpx.HTTPStatusError as e:
 logger.error(
 f"HTTP status error occurred: {e.response.status_code}
 {e.response.text}"
)
 raise
 except httpx.RequestError as e:
 logger.error(f"Request error occurred: {str(e)}")
 raise

Because this is a class method, the first parameter is always self, which repre‐
sents the instance of this class.

The second parameter to this method is the individual endpoint you are calling.

The query string parameters for the API call are passed in as an optional
dictionary.

This is a type hint that the method should return an httpx.Response object.

This dictionary comprehension removes any empty parameters before calling the
API with them.

This is a context manager that uses httpx.Client for the steps that follow.

This is logging at the logging.DEBUG level. The parameters are formatted with an
F-string, which is a Pythonic way of formatting variable values.

The call_api function is used to make the API calls for each SDK function. By cen‐
tralizing this work, you can apply additional error handling and logging without
making your code too long. It adds try…except logic around the API call. If the API
call works, this function logs a logging.DEBUG level message with the data from the
response.

Let’s take a closer look at a key line of code in this method:

 with httpx.Client(base_url=self.swc_base_url) as client:

Building a Feature-Rich SDK | 145

When a statement uses the with…as format like this, it is using a Python object as a
context manager, so that the object is initialized, then the statements inside it run, and
then it is cleaned up along with any resources it used. Here, the httpx.Client is the
context manager.

According to the HTTPX documentation, the httpx.Client is an efficient way to
make API calls using httpx because it pools resources between API calls. The Client
constructor accepts the parameter base_url and will use it for all of the API calls it is
used for.

This code is contained inside at try…except block, so if the API call doesn’t work, the
except first handles httpx.HTTPStatusError, which is a type of error that will have
an HTTP status code. For this type of exception, it logs a logging.ERROR level mes‐
sage and then re-raises the exception. If it’s not that type of exception, it handles
httpx.RequestError next. This type of exception doesn’t have an HTTP status code,
so it just puts the body of the exception in the log message. Then it re-raises the
exception. Re-raising the exception is important because you will be adding retry and
backoff logic later in this chapter, and it will be looking for those exceptions.

Expert Tip: Hiding Your API’s Complicated Details
Joey Greco likes SDKs to handle some of the complexities of the underlying API. “As
a data consumer, I don’t want to have to worry about API versioning, headers,
authentication, rate-limiting, or hunting down the correct endpoints to use,” he said.
“I just want to call some function and be able to do things that are meaningful to me.”

Now add the get_health_check and list_leagues methods to the bottom of the file.
Endpoint methods like get_health_check and list_leagues wrap the API calls and
shield users from complicated details such as endpoint names and return types. It’s
not an exaggeration to say that methods like these are the reason that SDKs exist.

These both use the call_api function that you created. The list_leagues method
also uses Pydantic to validate the data returned from the API. If the data from the
API does not match the Pydantic class definition, the client will throw an error that
can be logged. Add the following code to the bottom of the swc_client.py file:

 def get_health_check(self) -> httpx.Response:
 """Checks if API is running and healthy.

 Calls the API health check endpoint and returns a standard
 message if the API is running normally. Can be used to check
 status of API before making more complicated API calls.

 Returns:
 An httpx.Response object that contains the HTTP status,
 JSON response and other information received from the API.

146 | Chapter 7: Batteries Included: Creating a Python SDK

https://oreil.ly/I-xln

 """
 logger.debug("Entered health check")
 endpoint_url = self.HEALTH_CHECK_ENDPOINT
 return self.call_api(endpoint_url)

 def list_leagues(
 self,
 skip: int = 0,
 limit: int = 100,
 minimum_last_changed_date: str = None,
 league_name: str = None,
) -> List[League]:
 """Returns a List of Leagues filtered by parameters.

 Calls the API v0/leagues endpoint and returns a list of
 League objects.

 Returns:
 A List of schemas.League objects. Each represents one
 SportsWorldCentral fantasy league.

 """
 logger.debug("Entered list leagues")

 params = {
 "skip": skip,
 "limit": limit,
 "minimum_last_changed_date": minimum_last_changed_date,
 "league_name": league_name,
 }

 response = self.call_api(self.LIST_LEAGUES_ENDPOINT, params)
 return [League(**league) for league in response.json()]

The new get_health_check() method uses the call_api() method, instead of
calling the API directly as it did in the minimal SDK.

The type hint shows that the method should return a List of League objects.
League is a Pydantic class defined in the schemas.py file.

The parameters will be passed in when users call this SDK method. This line of
code builds a dictionary containing the parameters.

This method also calls the call_api method and passes in the query string
parameters as a dictionary.

This looks through the list of dictionaries returned in the API response and pop‐
ulates a List of League objects.

Building a Feature-Rich SDK | 147

Take a look at the final line of code in list_leagues(), which packs a lot into a short
syntax:

 return [League(**league) for league in response.json()]

Your goal in this statement is to iterate through the list of dictionaries returned from
the API and create a list of Pydantic League objects. You use a list comprehension,
which is a Pythonic way to build lists without using a recursive loop. Using the gen‐
eral syntax list = [expression for item in iterable], you can create lists from
other lists very easily.

As you iterate through, you want to create a Pydantic League object from each dictio‐
nary in the original list. You can do this with Python’s unpacking operator. The state‐
ment League(**league) uses two asterisks to unpack the original dictionary into
key-value pairs that are passed to the League() constructor. Pydantic performs data
validation during the process of creating these objects, so if any invalid data is in the
API response, it will error out in this step. With this combination of list comprehen‐
sion and the unpacking operator, you return a list of League objects that have been
validated from the original list of dictionaries.

Expert Tip: Supporting Bulk Downloads
As a data scientist, I find the complexity of many open data services frustrating. I don’t
want to have to learn how to query an endpoint, think about data types, or read
through API documentation. Just give me the data!

—Robin Linacre

Bulk downloads are valuable for many API users, but data scientists especially like
this feature. Data scientists often use full datasets for analysis and loading data, and
they find it frustrating to call multiple endpoints to get subsets of the data. You could
serve bulk downloads from an endpoint in your API using FastAPI’s Static Files.

Instead, you will be serving bulk downloads from SDK methods. Your SDK will
access the files from their web-hosted location in your GitHub repository. The URL
for each file will be built using the BULK_FILE_BASE_URL and the BULK_FILE_NAMES
dictionaries. Your repository contains two bulk files for each table you loaded in your
SQLite database: one in .csv format and one in .parquet format. By providing these
two options, your SDK serves a wide range of bulk data needs.

148 | Chapter 7: Batteries Included: Creating a Python SDK

https://oreil.ly/Fpgem
https://oreil.ly/58q0a

The bulk files are in the bulk folder of your repository. View the list of these files with
the following commands:

.../sdk (main) $ ls /workspaces/portfolio-project/bulk
csv_to_parquet.py performance_data.parquet team_data.csv
league_data.csv player_data.csv team_data.parquet
league_data.parquet player_data.parquet team_player_data.csv
performance_data.csv readme.md team_player_data.parquet

The files with the .csv extension are comma-separated values files. The following
shows the first two rows of the player_data.csv file:

player_id,gsis_id,first_name,last_name,position,last_changed_date
1001,00-0023459,Aaron,Rodgers,QB,2024-04-18

These are plain-text files with no compression of any kind. The first row contains the
column names separated by commas. The remaining rows contain one row for each
data record and the data values are separated by commas. CSV files are easily pro‐
cessed in Python libraries such as pandas or in software such as Microsoft Excel.

Parquet files use an open source data format that is popular for a variety of data analy‐
sis tasks. Here is the official definition from the Apache Parquet project page: “Apache
Parquet is an open source, column-oriented data file format designed for efficient
data storage and retrieval. It provides high performance compression and encoding
schemes to handle complex data in bulk and is supported in many programming lan‐
guage and analytics tools.”

You will create a separate method to retrieve each file, but the method will retrieve
either .csv or .parquet format files based upon the options provided in the
bulk_file_format parameter the user selects in the SWCConfig class. The default
value is .csv if the user does not provide this parameter.

Add the following method at the bottom of swc_client.py:

 def get_bulk_player_file(self) -> bytes:
 """Returns a bulk file with player data"""

 logger.debug("Entered get bulk player file")

 player_file_path = self.BULK_FILE_BASE_URL + self.BULK_FILE_NAMES
 ["players"]

 response = httpx.get(player_file_path, follow_redirects=True)

 if response.status_code == 200:
 logger.debug("File downloaded successfully")
 return response.content

Building a Feature-Rich SDK | 149

https://oreil.ly/K4_0_

The type hint for this method is bytes because the Parquet file is a binary file,
not text.

This statement builds the URL to an individual file from the web-hosted location
in your GitHub repository using the BULK_FILE_BASE_URL and BULK_FILE_NAMES
dictionaries.

Instead of using the call_api method, like the other methods do, this method
uses the httpx.get() method. The follow_redirects parameter handles any
web redirects that occur when retrieving the file.

The method returns response.content, which will contain the binary file.

You have created methods that implement all the major functionality of your SDK,
although you haven’t created methods for all the endpoints or bulk files yet. Update
your pyproject.toml file to contain all the new libraries you’ve added, and increment
your version number:

[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"

[project]
name = "swcpy"
version = "0.0.2"
authors = [
 { name="[enter your name]" },
]
description = "Example Software Development Kit (SDK) from Hands-On API Book
for AI and Data Science"
requires-python = ">=3.10"
classifiers = [
 "Development Status :: 3 - Alpha",
 "Programming Language :: Python :: 3",
 "License :: OSI Approved :: MIT License",
 "Operating System :: OS Independent",
]
dependencies = [
 'pytest>=8.1',
 'httpx>=0.27.0',
 'pydantic>=2.4.0',
 'backoff>=2.2.1',
 'pyarrow>=16.0',
]

Increment the version number of the library to reflect all the new functionality.

Import the Pydantic library for your data validation.

150 | Chapter 7: Batteries Included: Creating a Python SDK

Import the backoff library for your backoff and retry functionality.

Import the PyArrow library for handling Parquet files.

Expert Tip: Documenting Your SDK
Just as APIs need documentation, so does your SDK. Since your SDK will be used
directly in program code, the first step to documenting your SDK is to add compre‐
hensive docstrings to the methods that will be used by programmers. This is an
important part of writing Pythonic code, and it helps data scientists using your SDK
in an IDE like VS Code to get hints and code completion that make their work faster
and more accurate. As more data scientists use generative AI in their development
process, it allows AI assistants and copilots to infer accurate coding suggestions. You
provided extensive docstrings in the swc_client.py and swc_config.py files.

You also need to include a well-written README.md file that explains how to install
the SDK and provides examples of using it. This file will be displayed by default in the
GitHub repository for your SDK, and it will be the home page for your SDK if you
publish it to PyPI.

Create the README.md file as follows:

.../sdk (main) $ touch README.md

Add the following contents to this file:

swcpy software development kit (SDK)
This is the Python SDK to interact with the SportsWorldCentral Football API,
which was created for the book [Hands-On APIs for AI and Data Science]
(https://handsonapibook.com).

Installing swcpy

To install this SDK in your environment, execute the following command:

`pip install swcpy@git+https://github.com/{owner of repo}/
 portfolio-project#subdirectory=sdk`

Example usage

This SDK implements all the endpoints in the SWC API, in addition to providing
bulk downloads of the SWC fantasy data in CSV format.

Setting base URL for the API
The SDK looks for a value of `SWC_API_BASE_URL` in the environment. The preferred
method for setting the base URL for the SWC API is by creating a Python
`.env` file in your project directory with the following value:

```
SWC_API_BASE_URL={URL of your API}

Building a Feature-Rich SDK | 151



```

You may also set this value as an environment variable in the environment you
are using the SDK, or pass it as a parameter to the `SWCConfig()` method.

Example of normal API functions

To call the SDK functions for normal API endpoints, here is an example:

```python
from swcpy import SWCClient
from swcpy import SWCConfig

config = SWCConfig(swc_base_url="http://0.0.0.0:8000",backoff=False)
client = SWCClient(config)    
leagues_response = client.list_leagues()
print(leagues_response)
```

Example of bulk data functions

The build data endpoint returns a bytes object. Here is an example of saving
a file locally from a bulk file endpoint:

```python
import csv
import os
from io import StringIO

config = SWCConfig()
    client = SWCClient(config)    

    """Tests bulk player download through SDK"""
    player_file = client.get_bulk_player_file()

    # Write the file to disk to verify file download
    output_file_path = data_dir + 'players_file.csv'
    with open(output_file_path, 'wb') as f:
        f.write(player_file)
```

One key section to notice in this file is that it explains to users how they can install
your SDK from your GitHub repository. Here is that section:

Installing swcpy

To install this SDK in your environment, execute the following command:

`pip install swcpy@git+https://github.com/{owner of repo}
/portfolio-project#subdirectory=sdk`

152 | Chapter 7: Batteries Included: Creating a Python SDK

You have now created all the files you need and completed all of the coding for the
first few endpoints. To see the new structure of your project, run the tree command:

.../sdk (main) $ tree --prune -I 'build|*.egg-info|__pycache__'

.
├── README.md
├── pyproject.toml
└── src
 └── swcpy
 ├── __init__.py
 ├── schemas
 │ ├── __init__.py
 │ └── schemas.py
 ├── swc_client.py
 └── swc_config.py

3 directories, 7 files

To update your local system with the new version of the SDK using pip, you will use
the --upgrade option:

.../sdk (main) $ pip3 install --upgrade .
Processing /workspaces/portfolio-project/chapter7/sdk
 Installing build dependencies ... done
 Getting requirements to build wheel ... done
 Preparing metadata (pyproject.toml) ... done
...
Successfully built swcpy
Installing collected packages: pydantic-core, backoff, annotated-types, pydantic,
swcpy
 Attempting uninstall: swcpy
 Found existing installation: swcpy 0.0.1
 Uninstalling swcpy-0.0.1:
 Successfully uninstalled swcpy-0.0.1
Successfully installed annotated-types-0.7.0 backoff-2.2.1 pyarrow-16.1.0
pydantic-2.4.2 pydantic-core-2.10.1 swcpy-0.0.2

Testing Your SDK
Now you will test the SDK with pytest. Create a new directory and file with the fol‐
lowing commands:

.../sdk (main) $ mkdir tests

.../sdk (main) $ touch tests/test_swcpy.py

There are different pytest layouts you can use to include the tests in
your package. In this case, you are using the pytest layout style
named “tests outside application” that is described in pytest’s Good
Integration Practices. This means that when you run your tests,
you are testing against the installed module instead of code in your
local path.

Building a Feature-Rich SDK | 153

https://oreil.ly/GM3HU
https://oreil.ly/GM3HU

Update test_swcpy.py with the following contents:

import pytest
from swcpy import SWCClient
from swcpy import SWCConfig
from swcpy.schemas import League, Team, Player, Performance
from io import BytesIO
import pyarrow.parquet as pq
import pandas as pd

def test_health_check():
 """Tests health check from SDK"""
 config = SWCConfig(swc_base_url="http://0.0.0.0:8000",backoff=False)
 client = SWCClient(config)
 response = client.get_health_check()
 assert response.status_code == 200
 assert response.json() == {"message": "API health check successful"}

def test_list_leagues():
 """Tests get leagues from SDK"""
 config = SWCConfig(swc_base_url="http://0.0.0.0:8000",backoff=False)
 client = SWCClient(config)
 leagues_response = client.list_leagues()
 # Assert the endpoint returned a list object
 assert isinstance(leagues_response, list)
 # Assert each item in the list is an instance of a Pydantic League object
 for league in leagues_response:
 assert isinstance(league, League)
 # Asset that 5 League objects are returned
 assert len(leagues_response) == 5

def test_bulk_player_file_parquet():
 """Tests bulk player download through SDK - Parquet"""

 config = SWCConfig(bulk_file_format = "parquet")
 client = SWCClient(config)

 player_file_parquet = client.get_bulk_player_file()

 # Assert the file has the correct number of records (including header)
 player_table = pq.read_table(BytesIO(player_file_parquet))
 player_df = player_table.to_pandas()
 assert len(player_df) == 1018

The import statement is referencing the package that you installed locally in your
environment.

This library is used for handling binary files like the Parquet file.

This library is specifically used to process Parquet files.

154 | Chapter 7: Batteries Included: Creating a Python SDK

You will use the pandas library to read the length of the Parquet files.

This test method tests health check endpoints.

This test method tests the method calling your API.

This test method tests the Parquet bulk file download.

This sets the configuration option for Parquet files.

These lines of code use PyArrow and pandas to read the Parquet file and count
the records.

Now you will run your API in another terminal session so that your SDK can call it.
Open a second terminal session in Codespaces using the split terminal command, as
shown in Figure 7-4.

Figure 7-4. Opening a second terminal session

When you have added the second terminal, you should see it in the split screen, as
shown in Figure 7-5.

Figure 7-5. The split terminal session

If you haven’t installed the API in your Codespace previously, you
will need to run the command pip3 install -r requirements
.txt in the chapter6/complete directory before running the API.

Building a Feature-Rich SDK | 155

In the second window, change directories to chapter6/complete to use the completed
API from the repository. Launch the API as shown:

.../sdk (main) $ cd ../../chapter6/complete

.../chapter6 (main) $ fastapi run main.py

...
INFO: Started server process [9999]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

The test_swcpy.py file should use this address in the swc_base_url= parameter. If
it doesn’t have that address, update test_swcpy.py to match the address here.

You don’t need to click “Open in Browser” as in previous chapters, because you will
be testing the API from the terminal using your SDK.

In the left terminal window, enter the pytest tests/test_swcpy.py command and
you should see an output that looks similar to this:

.../sdk (main) $ pytest tests/test_swcpy.py
=========== test session starts ===========
platform linux -- Python 3.10.13, pytest-8.1.2, pluggy-1.5.0
rootdir: /workspaces/portfolio-project/chapter7/sdk
configfile: pyproject.toml
plugins: anyio-4.4.0
collected 3 items

tests/test_swcpy.py ... [100%]

============ 3 passed in 0.68s ============

You have added a lot of great functionality to your SDK. Way to go! Take a moment
to consider expert tips and features that you have implemented for your SDK:

Make your SDK easy to install.
You configured your project so that it can be installed using pip3 directly from
GitHub. You could also publish it to PyPI if you choose.

Be consistent and idiomatic.
You used PEP 8 style and consistent function naming. You used Pythonic tech‐
niques like list comprehensions, dictionary comprehensions, and context manag‐
ers. And you used the Python standard logging function.

Use sane defaults.
You implemented the SWCConfig that will work out of the box with default values
but can be customized with URL and other settings.

156 | Chapter 7: Batteries Included: Creating a Python SDK

Provide extra functionality.
You provided data validation, exponential backoff with jitter, and bulk down‐
loads.

Perform logging.
You implemented logging with multiple levels using Python’s built-in logging
library.

Hide your API’s complicated details.
You implemented methods that allow users to call the API endpoints without
reading the API documentation.

Provide bulk downloads.
You made bulk files available for all your database tables in both .csv and .parquet
formats.

Document your SDK.
You provided a README.md file that explains how to install and use the SDK.

Only one expert tip remains for your SDK, but it’s a big one. You will tackle it next.

Expert Tip: Supporting Every Task the API Supports
Ideally, users should be able to accomplish any task with the SDK that they could
accomplish by directly using the API. This means every API endpoint and parameter
should be supported by the SDK. You’ve probably noticed at this point that you’ve
only implemented SDK functions for a couple of the API endpoints and one bulk file
download. Unfortunately, there’s no room in this chapter to walk you through the
remaining code. However, you are prepared to code the rest of the endpoints using
the helper functions and naming standards I have demonstrated so far.

I don’t want to leave you hanging completely, so here is some additional information
you can use to continue building your SDK. To start with, here are the functions you
need to create to cover all the API endpoints:

• get_health_check (completed)
• list_leagues (completed)
• get_league_by_id

• get_counts

• list_teams

• list_players

• get_player_by_id

• list_performances

Building a Feature-Rich SDK | 157

Here are the bulk download functions you need to create:

• get_bulk_player_file (completed)
• get_bulk_league_file

• get_bulk_performance_file

• get_bulk_team_file

• get_bulk_team_player_file

I encourage you to take a shot at creating these endpoints following the examples I
have given you. Be consistent and idiomatic. As with earlier chapters, the full comple‐
ted code is available in the chapter7/complete directory if you would like to check
your work.

Completing Your Part I Portfolio Project
With the creation of your SDK, you have finished all the coding you need for your
portfolio project. Congratulations! Hopefully, you have been committing your code
with frequent small commits, but be sure to commit any remaining changes you have.

To get your project repository ready to share, you are going to be moving the Chap‐
ters 6 and 7 content to the root folder of your repository, and then removing all the
previous chapters.

Before you make these changes, you’ll save a copy of your files to a separate GitHub
branch, which is an isolated area in your repository. This will keep the original direc‐
tory structure you used while working through your code. (You have been doing all
your coding in the main branch so far.) Create the new branch from the command
line as follows:

.../sdk (main) $ cd ../..

.../portfolio-project/ (main) $ git checkout -b learning-branch
Switched to a new branch 'learning-branch'
.../portfolio-project/ (main) $ git push -u origin learning-branch
 * [new branch] learning-branch -> learning-branch
branch 'learning-branch' set up to track 'origin/learning-branch'.

Change to the root directory.

Create a new branch named learning-branch locally based on the main branch.

Push this new branch to your remote repository on GitHub.com.

To verify that the branch was created on GitHub, go to your GitHub repository and
click main. You should see a new branch, as shown in Figure 7-6.

158 | Chapter 7: Batteries Included: Creating a Python SDK

Figure 7-6. Newly created branch

Back in Codespaces, you will move the Chapters 6 and 7 files to the root of your
repository. Chapter 6 contains the final API files and Chapter 7 has the SDK files.
Enter the following commands:

.../portfolio-project/ (learning-branch) $ git checkout main
Switched to branch 'main'
Your branch is up to date with 'origin/main'.
.../portfolio-project/ (main) $ rm -rf chapter6/complete
.../portfolio-project/ (main) $ rm -rf chapter7/complete
.../portfolio-project/ (main) $ rm
.../portfolio-project/ (main) $ mv chapter6/* .
.../portfolio-project/ (main) $ mv chapter7/sdk .
.../portfolio-project/ (main) $ rm -rf chapter3
.../portfolio-project/ (main) $ rm -rf chapter4
.../portfolio-project/ (main) $ rm -rf chapter5
.../portfolio-project/ (main) $ rm -rf chapter6
.../portfolio-project/ (main) $ rm -rf chapter7

Switch your Codespace back to the main branch of your repository.

Move the API files into your root directory.

Move the SDK files into your sdk directory.

Remove all the subdirectories and their files.

Completing Your Part I Portfolio Project | 159

To see the directory structure of the completed project, run the following command:

.../portfolio-project (main) $ tree -d --prune -I 'build|*.egg-info|__pycache__'

.
├── bulk
└── sdk
 ├── src
 │ └── swcpy
 │ └── schemas
 └── tests
6 directories

To update your API documentation to mention your SDK, replace the bottom “Soft‐
ware Development Kit (SDK)” section of README.md with the following:

Software Development Kit (SDK)

If you are a Python user, you can use the swcpy SDK to interact with our API.
Full information is available [here](sdk/README.md).

You’ve performed some serious surgery to your main branch. Make one last commit
to GitHub, and you’re all done. Congratulations on completing your Part I capstone!

Additional Resources
For advice on creating an SDK, see the SDKs.io website by APIMatic.

For more advice from Speakeasy on creating a Python SDK, read “How to Build a
Best in Class Python SDK” by Tristan Cartledge.

For more advice on writing Pythonic code, check out The Hitchhiker’s Guide to
Python.

To review the benefits of Parquet files for bulk data, read “Why parquet files are my
preferred API for bulk open data” by Robin Linacre.

Extending Your Portfolio Project
Here are a few ideas to extend your SDK project:

• Finish all the endpoint functions remaining. (You didn’t think I forgot, did you?)
• Publish your SDK on the PyPI Test Repository to learn the process of deploying

packages. You’re more than halfway there—continue from the “Generating distri‐
bution archives” section on the Python packaging tutorial.

• If you are creating your own portfolio project, create a minimum viable SDK for
it using this chapter as a guide.

160 | Chapter 7: Batteries Included: Creating a Python SDK

https://sdks.io
https://oreil.ly/B-vKL
https://oreil.ly/B-vKL
https://oreil.ly/ddReB
https://oreil.ly/ddReB
https://oreil.ly/OmtmF
https://oreil.ly/OmtmF
https://test.pypi.org
https://oreil.ly/IaQad
https://oreil.ly/IaQad

Summary
In this chapter, you learned from experts in SDK development to identify the features
that make a great Python SDK. Then, you went out and coded it! SDKs like the one
you developed make life much easier for data scientists and other Python-centric
users of your API. While coding the SDK, you applied PEP 8 code style and used a
variety of Pythonic techniques such as list comprehensions and context managers.

In Chapter 8, you will start looking at APIs from the perspective of the consumer
instead of the producer. You will start by learning the skills that data scientists should
know about APIs.

Summary | 161

PART II

Using APIs in Your Data Science Project

In Part II, you will consume the APIs you built in your data science project using
industry-standard libraries and specifications:

• Chapter 8 covers some topics that data scientists need to know about APIs and
introduces your second portfolio project.

• In Chapter 9, you will learn to use APIs for data analytics with Jupyter Note‐
books.

• In Chapter 10, you will build your API and data science skills by calling APIs in a
data pipeline built with Apache Airflow.

• In Chapter 11, you will build a Streamlit data app using data from an API.

CHAPTER 8

What Data Scientists
Should Know About APIs

Working with APIs for data science is a necessary skill set for all data scientists.
—Nate Rosidi, KDnuggets

API expertise is critical to being an effective data scientist. But a data scientist can’t
become an expert in every API specialty—the field of APIs is nearly as wide as the
field of data science. Thankfully, you don’t need to master every API specialty if you
use the building-block approach: mastering one or two API-related skills at a time, and
stacking additional skills on top of those as your skills grow. In my experience, the
best way to acquire these building blocks is through hands-on coding projects that
you share with the world for fast feedback. (That’s where the hands-on part of this
book’s title comes from.)

The following are some of the most useful building-block skills for data scientists.

Using a Variety of API Styles
Out in the wild, there are a few major API architectural styles that you may come
across. Chapter 2 discussed why an API provider might create a REST, GraphQL, or
gRPC API. As an API consumer, you need to be flexible. This section explains how
you can use whatever API style is available.

The most common API style is REST or RESTful. (For simplicity, I will use the terms
interchangeably in this chapter.) A REST API has multiple endpoints, which are com‐
binations of HTTP verbs and URLs. For example, to read league information from a
football API, you might use an HTTP GET verb and the URL https://api.sportsworld
central.com/v0/leagues. To create a new league, you might use a POST verb with the
same URL, and pass along information to it in the HTTP body.

165

https://api.sportsworldcentral.com/v0/leagues
https://api.sportsworldcentral.com/v0/leagues

A web browser is an easy way to send a GET request to an API. For example, to query
a fantasy football API for a specific football player record with a player_id of 1491,
you could open your web browser to a fantasy sports API at https://api.sportsworldcen
tral.com/v0/players/1491 and get a result like Figure 8-1. This is an HTTP GET.

Figure 8-1. GET request of a REST API

To make the same request with Python, you can use the httpx library as follows:

import httpx

rest_url = "https://api.sportsworldcentral.com/v0/players/1491"

api_response = httpx.get(rest_url)
print(api_response.json())

This API returns data in JSON format, and it contains the standard fields that are
available for this API endpoint.

Whether you called this API from the web browser or from Python, you executed an
HTTP GET verb, which is used for reading information from an API. If you wanted
to call a REST API to take other actions, you might use HTTP verbs such as POST,
PUT, or DELETE. You will notice that REST APIs have separate endpoints for each
action. For instance, this API would have separate endpoints to get a list of players or
teams. The API defines the fields in the response, and they are the same for each
request.

Another architectural style that is useful for data science is GraphQL, which has sev‐
eral differences from REST. Where REST APIs have multiple endpoints, a GraphQL
API has only one. Where REST APIs return the same fields each time an endpoint is
called, GraphQL allows the consumer to define what fields they want. Where REST
uses an HTTP GET when reading data, GraphQL uses an HTTP POST. Since a web
browser by default sends an HTTP GET, you can’t directly call a GraphQL API in the
browser. However, some GraphQL APIs provide a web interface that allows you to
query the API.

To make a request to a GraphQL API in Python, you can send a query in a POST
command using the httpx library as follows:

import httpx

graphql_url = "https://countries.trevorblades.com"

166 | Chapter 8: What Data Scientists Should Know About APIs

https://api.sportsworldcentral.com/v0/players/1491
https://api.sportsworldcentral.com/v0/players/1491

json_query = {'query': '''
{
 country(code: "US") {
 name
 native
 currency
 languages {
 code
 name
 }
 }
}
'''}

api_response = httpx.post(graphql_url, json=json_query)
print(api_response.json())

The data is returned in JSON format and contains only the fields that you requested
as follows:

{'data': {'country': {'name': 'United States', 'native': 'United States',
'currency': 'USD,USN,USS', 'languages': [{'code': 'en', 'name': 'English'}]}}}

(Thanks to Trevor Blades for his sample GraphQL API and the example code.)

The last API architectural style that I will mention is gRPC, and it is quite a bit differ‐
ent from REST or GraphQL. gRPC enables cross-language remote procedure calls,
which means that your program code can call an external gRPC service like a local
one. Data scientists are most likely to use gRPC when calling a machine learning
model, such as a large language model.

gRPC uses a data format called protocol buffers instead of JSON, and it uses HTTP/2,
which is a different communications protocol from the HTTP/1 protocol that is typi‐
cally used by GraphQL and REST. These two differences allow gRPC to have very fast
communication and support two-way data streaming instead of the request/response
communication that the other two APIs use.

The Python code examples for calling a gRPC API are a bit too complicated to show
in this introductory section, but a Python quickstart is available if you would like to
learn more about this.

HTTP Basics
Most APIs use HTTP, so it helps to learn more about it. The first tip is pretty simple:
only use APIs with HTTPS in the URL—this means that all the API traffic will be
encrypted in transit.

HTTP Basics | 167

https://github.com/trevorblades/countries
https://oreil.ly/nhwZ1

Two more HTTP items to understand are HTTP verbs and HTTP status codes.
HTTP verbs are called methods by the official HTTP standards document, which says
a method “indicates the purpose for which the client has made this request and what
is expected by the client as a successful result.”

When you call an API in a web browser, you are using a GET method, which asks for
a read-only copy of a resource or list of resources. Table 8-1 lists common HTTP
verbs that are used for REST APIs.

Table 8-1. HTTP verbs and REST API usage

HTTP verb (method) Use with APIs Example
GET Read a resource or list of resources. GET api.sportsworldcentral.com.com/players/

POST Create a new resource. PUT api.sportsworldcentral.com.com/team/

PUT Update an existing resource. PUT api.sportsworldcentral.com.com/players/1234

DELETE Remove an existing resource. DELETE api.sportsworldcentral.com.com/players/1234

With the GET and DELETE requests in Table 8-1, the information in the URL is suf‐
ficient to perform the command, but POST and PUT would need information for
creating or updating the player. This is the purpose of the HTTP message body. For
APIs, the body contains JSON or XML data that the API uses to perform the action.
As mentioned earlier, for GraphQL APIs, you always send a POST request, and the
body of the message contains the query that you are sending to the API.

When the request is processed by the API’s server, it returns an HTTP response,
which has a status code, a numeric code that tells you if it was able to process your
request. If all goes well, the response will have a status code of 200—meaning success
—and the data you asked for if you were expecting any. Success doesn’t always occur,
and Table 8-2 lists some other status codes you may encounter when calling APIs.

Table 8-2. HTTP status codes

Status code Typical meaning for API calls
2XX Status codes beginning with 2 indicate success.

200 OK The request was successful.

201 Created A POST method successfully created a resource.

3XX Status codes beginning with 3 indicate redirection.

301 or 308 Moved Permanently The API address has moved permanently, so you should change your API call.

302 Moved Found The API address redirected temporarily. Keep using the address you used.

4XX Status codes beginning with 4 indicate client error.

400 Bad Request Your request has an error or invalid request.

401 Unauthorized Invalid credentials to make the API call.

404 Not Found The resource doesn’t exist or the address is wrong.

168 | Chapter 8: What Data Scientists Should Know About APIs

https://oreil.ly/m5TTp

Status code Typical meaning for API calls
5XX Status codes beginning with 5 indicate server error.

500 Internal Server Error Something failed unexpectedly on the server.

503 Service Unavailable Temporary issue with service. Retry may be appropriate.

The official HTTP standards document gives more detailed information about the
status codes.

How to Consume APIs Responsibly
The code samples earlier in this chapter show that APIs can be called easily with a few
lines of code. This ease of use is probably one of the reasons that APIs have become
so widespread in software development and data science.

But when using APIs for real-world analysis and applications, there are additional
items you need to consider, including the following:

Follow the terms of service.
When using a new API, start by reading the terms of service. This will tell you up
front what expectations and requirements the API providers have for you to use
their API. For example, the MyFantasyLeague API terms of service state that the
APIs are free to use, but they can’t be used to cheat in your fantasy league or har‐
vest user data. Terms of service often list the default rate limiting that is in place,
for example, saying that no user should make more than 1,000 API requests per
hour. This prevents one user from swamping the service, or even the API provid‐
er’s website if they are hosted on the same infrastructure. MyFantasyLeague
doesn’t list specific rate limits but forbids users from overloading the service
(even by accident) and requests that users cache slow-changing data locally to
reduce network traffic.

Handle retries gently.
You may want to enable an automated retry process in cases of temporary errors
that may occur on the server side. To avoid overwhelming the service (and possi‐
bly getting your access disabled), consider implementing a backoff and retry pro‐
cess, as discussed in Chapter 7.

Handle credentials safely.
Most API publishers have some method of registering users for their APIs, even
if access is free. This allows them to monitor how you are using their APIs and
contact you about upcoming changes to their APIs. There are a variety of API
authentication methods used by API providers, such as usernames, passwords,
API keys, secret keys, tokens, and others. All API credentials should be stored
securely and implemented in your code using a secrets manager or environment
variables. Credentials should never be stored in program code or in files that will

How to Consume APIs Responsibly | 169

https://oreil.ly/rfc_1
https://oreil.ly/X3Jcf

be included in a code repository. If credentials get exposed somehow, deactivate
them immediately and get new ones. Google includes additional tips in “Best
practices for securely using API keys”.

Validate inputs and outputs.
As an API consumer, you should handle data you receive from APIs carefully,
and consider risks such as SQL injection, which is when bad actors try to send
destructive SQL commands in fields where data is expected. You should also
ensure that the data you send to APIs fits data types they expect.

Log and diagnose errors.
If you consume an API in a recurring data pipeline, you need to handle and log
errors. Your code should handle logging in an organized fashion, to track error
messages and informational messages. This will be useful to debug any issues that
you encounter and be able to verify previous executions of your code.

Separation of Concerns: Using SDKs or Creating API Clients
An important principle in software development is separation of concerns (SoC),
which means that a computer program should be broken up into chunks that per‐
form a specific task. Consuming APIs responsibly may involve some fairly compli‐
cated logic, and code calling APIs should be separated from the rest of your code. For
data scientists who like to build large projects in a single Jupyter Notebook, this may
be a hard habit to adjust to. But the time it takes to implement will save you head‐
aches in operation.

If the API provider publishes an SDK, you should use that. SDKs can provide
advanced features that are created to work with a specific API. Many times, they are
published on the PyPI package repository and can be installed using pip.

For example, the Python SDK created in Chapter 7 for the SportsWorldCentral API
could be published on PyPI. Figure 8-2 shows how this SDK would look on the PyPI
repository.

170 | Chapter 8: What Data Scientists Should Know About APIs

https://oreil.ly/E_WRf
https://oreil.ly/E_WRf
https://pypi.org

Figure 8-2. Example SDK on PyPI

To use this SDK to call the API, the following Python code would be used:

from pyswc import SWCClient
from pyswc import SWCConfig

config = SWCConfig()
client = SWCClient(config)
player_response = client.get_player_by_id(352)

The SDK is simple to call, but it includes advanced features such as backoff and retry,
data validation, error handling, and logging. This is an example of the benefits that
come from using an SDK when one is available.

If no SDK is available, you can separate your own API-calling code into a standalone
client. You can implement the same type of functionality that an API provider’s SDK
would contain, but it is code you will need to maintain. In Chapter 9, you will create a
Python client for the SWC API and use it in a Jupyter Notebook. You will reuse this
client in Chapter 11 to call the SWC API in a Streamlit data app. This demonstrates
how separating your API-calling code into a client file saves time and effort.

Separation of Concerns: Using SDKs or Creating API Clients | 171

How to Build APIs
Data scientists increasingly need to build APIs to share the work they are doing. For
instance, you may have custom metrics you have created and you would like to make
them available for other data scientists to use in their work. An API is an efficient and
useful way to share this data. In addition to sharing data, you may have a statistical
model or machine learning model that you would like to make available. You can cre‐
ate an API as an inference endpoint, which allows users to use the model to predict
outcomes based on data they submit. You will learn this in Chapter 12. Even if you
are primarily a user of APIs rather than a builder, you can benefit by building a few
APIs yourself to view from the other side of the desk. Part I of this book is entirely
focused on building APIs—check it out if you haven’t already!

How to Test APIs
Testing APIs is critical for API producers and consumers. API producers will per‐
form testing throughout their development, deployment, and maintenance phases of
hosting an API. They are responsible for ensuring that an API is reliable and that it
lives up to customer expectations and any service level agreements (SLAs), which are
formal agreements that producers make with consumers about uptime, performance,
or other aspects of API service. API consumers will need to test APIs before using
them in their systems to ensure that they work as intended.

Postman recommends four major types of API testing:

Contract testing
Verifies the format and behavior of each endpoint

Unit testing
Confirms the behavior of an individual endpoint

End-to-end testing
Tests workflows that use multiple endpoints

Load testing
Verifies performance items such as the number of concurrent requests that can
be processed at peak times and the response time for individual requests

The pytest library is a Python testing library that is straightforward to use. Chapters 3
and 4 show how to use it to test SQLAlchemy database code and FastAPI APIs. One
Python load-testing library is Locust. Figure 8-3 shows an example Locust load test
measuring the number of requests per second that an API can process with multiple
concurrent users.

172 | Chapter 8: What Data Scientists Should Know About APIs

https://oreil.ly/aET_m
https://locust.io

Figure 8-3. Example Locust load test report

There are additional types of testing beyond these four. The agile testing quadrants
from Janet Gregory and Lisa Crispin provide a big-picture view of testing. Compre‐
hensive testing includes technology-facing tests such as unit testing and performance
testing and business-facing tests such as prototyping and usability tests. Don’t forget
to include your API documentation and SDKs in your testing. To learn more about
the four quadrants, read “Quick Tools for Agile Testing”.

API Deployment and Containerization
To share an API, you have to deploy it. The typical deployment model for APIs is
using a cloud host, although if your users are strictly internal, you may be deploying
to an on-premises server. Many cloud hosts support containerization, which is pack‐
aging your program code into a reusable package that can be run locally or on
another server or cloud provider. Docker is the most prevalent containerization soft‐
ware. Chapter 6 demonstrates deploying your API to two different clouds and con‐
tainerizing your API with Docker.

Using Version Control
Version control is a way of tracking what changes have been made to a codebase, and it
allows multiple people to work on the same code easily.

—Catherine Nelson, Software Engineering for Data Scientists (O’Reilly, 2024)

This item isn’t limited to working with APIs—it is a foundational skill that all data
scientists will benefit from. Managing your code with version control will save hours
of frustration when you’re working alone and really makes things easier when you’re
working as a team. This part of the book continues the use of GitHub as the version
control repository for your code and a place to showcase your work. You will also
perform all of your development in GitHub Codespaces.

Using Version Control | 173

https://oreil.ly/j1ihN

Introducing Your Part II Portfolio Project
In this part of the book, you will create a portfolio project that demonstrates your
ability to create analytics and other data science products that use APIs as a source.
Here is an overview of the work ahead of you:

• Chapter 9: Using APIs in data analytics products using Jupyter Notebooks
• Chapter 10: Using APIs in data pipelines using Apache Airflow
• Chapter 11: Using APIs in a Streamlit data application

Each of these tasks will enable you to showcase your API and data science skills
differently.

As you go through each chapter in this part, follow the instructions
and create the code yourself. You’ll learn much more by doing this
than reading alone. If you run into any trouble, the files in the
\complete folder are available to check your work. If you would like
to complete the chapters out of order, you can also use the
completed files from the previous chapters as the starting point.

Getting Started with Your GitHub Codespace
As you did in Part I, you will use GitHub Codespaces for all the code you develop. If
you didn’t create a GitHub account yet, do that now.

Cloning the Part II Repository
All of the Part II code examples are contained in this book’s GitHub repository.

To clone the repository, log in to GitHub and go to the Import Repository page. Enter
the following information:

• The URL for your source repository: https://github.com/handsonapibook/api-
book-part-two

• Your username for your source code repository: Leave blank.
• Your access token or password for your source code repository: Leave blank.
• Repository name: analytics-project
• Public: Select this so that you can share the results of the work you are doing.

174 | Chapter 8: What Data Scientists Should Know About APIs

https://github.com/handsonapibook/api-book-part-two
https://github.com/new/import
https://github.com/handsonapibook/api-book-part-two
https://github.com/handsonapibook/api-book-part-two

Click Begin Import. The import process will begin and the message “Preparing your
new repository” will be displayed. After several minutes, you will receive an email
notifying you that your import has finished. Follow the link to your new cloned
repository.

Launching Your GitHub Codespace
In your new repository, click the Code button and select the Codespaces tab. Click
“Create codespace on main.” You should see a page with the status “Setting up your
codespace.” Your Codespace window will be opened as the setup continues. When the
setup completes, your display will look similar to Figure 8-4.

Figure 8-4. GitHub Codespace for Part II

Your Codespace is now created with the cloned repository. This is the environment
you will be using for this part of the book. Open the GitHub Codespaces page to
make a couple of updates. Scroll down the page to find this new Codespace, click the
ellipsis to the right of the name, and select Rename. Enter the name Part II Portfolio
project codespace and click Save. You should see the message “Your codespace Part
II Portfolio project codespace has been updated.” Click the ellipsis again and then click
the ribbon next to “Auto-delete codespace” to turn off auto-deletion.

To save screen real estate, I have trimmed the directory listing in
the terminal prompt of the Codespace used in the examples. You
can do this in your Codespace by editing the /home/code‐
space/.bashrc file in VS Code. Find the export PROMPT_DIRTRIM
statement and set it to export PROMPT_DIRTRIM=1. To load the val‐
ues the first time, execute this terminal command: source

~/.bashrc.

Getting Started with Your GitHub Codespace | 175

https://github.com/codespaces

Running the SportsWorldCentral (SWC) API Locally
As you work through the projects in Part II, you will be calling version 0.2 of the
SportsWorldCentral (SWC) API, which is in the /api folder. Version 0.2 has a few
endpoints that you did not create in Part I of the book. These were created to demon‐
strate additional functionality in data science and AI projects. It also has additional
sample data added. You will run the API in your Codespace and then call it from
projects that you create in Jupyter, Airflow, and Streamlit.

Table 8-3. Updated endpoints for the SWC Fantasy Football API v0.2

Endpoint description HTTP verb URL Update made
Read week list GET /v0/weeks/ New endpoint with max potential scoring

Read counts GET /v0/counts/ Added week count

Read team list GET /v0/teams/ Added weekly_scores for each team

Read league list GET /v0/leagues/ Added league size to calculate max scoring

Read individual league GET /v0/leagues/{league_id} Added league size

In the terminal, install the required libraries in your Codespace as shown, using the
requirements.txt file that is provided:

.../analytics-project (main) $ cd api

.../api (main) $ pip3 install -r requirements.txt

Verify that the FastAPI CLI was loaded so that you can run your API from the com‐
mand line as shown:

.../api (main) $ pip3 show fastapi-cli
Name: fastapi-cli
Version: 0.0.4
Summary: Run and manage FastAPI apps from the command line with FastAPI CLI.
[results truncated for space]

Now launch the API from the command line as shown:

.../api (main) $ fastapi run main.py

You will see several messages from the FastAPI CLI, ending with the following:

INFO: Started server process [19192]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

You will see a dialog stating “Your application running on port 8000 is available,” as
shown in Figure 8-5. Click Make Public.

176 | Chapter 8: What Data Scientists Should Know About APIs

Figure 8-5. Makeing the API public

The API is now running in Codespaces with a public port. To view the API in the
browser, click Ports in the terminal and hover your cursor over Port 8000, as shown
in Figure 8-6.

Figure 8-6. Open API on a public address

Click the globe icon. The browser will show a base URL that ends in app.github.dev
that contains the response from your API running on Codespaces. You should see the
following health check message in your web browser:

{"message":"API health check successful"}

Your API is running publicly in the cloud. Copy this base URL. You will use it in later
chapters to connect to your API.

Later chapters in Part II will instruct you to launch your API in
Codespaces. Follow these instructions to run the API. The API will
need to be restarted each time you reconnect to Codespaces.

Additional Resources
To learn more about the features of REST, GraphQL, and gRPC, read Chapter 2.

To learn about creating data APIs, read Part I (and create a portfolio project).

To learn how to package API client code and create SDKs, read Chapter 7.

Additional Resources | 177

Summary
This chapter covered some of the basic topics that data scientists need to know about
APIs. You learned about major API architectural styles, including REST, GraphQL,
and gRPC. You learned the basics of HTTP verbs and status codes. You learned about
using APIs responsibly and the benefits of an SDK. Finally, you saw the value of
learning to build, test, and deploy your APIs.

In Chapter 9, you will start to dig into the details of these topics as you use APIs in
data analytics.

178 | Chapter 8: What Data Scientists Should Know About APIs

CHAPTER 9

Using APIs for Data Analytics

Your eyes see the game much better than the numbers. But the numbers see all the games.
—Dean Oliver, sports statistician

The sports world loves all forms of data analytics—charts, graphs, and statistics that
describe the results of events or predict what will happen next. When a sports fan
views those data analytics, they probably never consider what data source was used to
create them. In many cases, the data source is an API. In this chapter, you will learn
best practices for consuming APIs and creating data analytics products using Jupyter
Notebooks, a popular tool used by data scientists.

Custom Metrics for Sports Analytics
One of the most celebrated forms of analytics is the custom metric, a calculation that
summarizes complicated behavior, ability, and outcomes as a number. Every sport has
metrics that players, coaches, managers, and fans pay attention to. Baseball has the
longest history with metrics, from the historical earned run average (ERA) to the
modern weighted runs created plus (wRC+) and wins against replacement (WAR). Soc‐
cer fans and professionals alike focus on the expected goals (xG), a method of defining
quality shots that has motivated a variety of secret-sauce models. The NBA uses the
player efficiency rating (PER) to measure a basketball player’s all-around value.

Some of the most interesting work in custom metrics is happening in football, where
the NFL has sponsored an annual analytics contest called the Big Data Bowl, where
data students and professionals research and propose new metrics for prizes, job
prospects, and the excitement of seeing their work included in TV broadcasts. It has a
special track devoted to creating new custom metrics, such as converted tackle oppor‐
tunity and path analysis via swarm-tackle accuracy (PASTA). Some have made their
way into the broadcast booth, and more are on the way.

179

https://oreil.ly/HHSL0
https://oreil.ly/5h1RE

Every custom metric requires a few components to succeed:

Question
What question is it trying to solve? It should be general enough to have broad
application but specific enough to add new knowledge to the sport. For example,
the KenPom ranking answers the question: which college basketball teams
deserve to make the NCAA tournament field?

Theory
By choosing specific numbers to measure and weighing them against each other,
you make a value judgment. You are proposing subcomponents that matter to
answer a question.

Valid approach
Do the underlying calculations support the purpose of the metric?

Data source
Can you get data to calculate the metric at a reasonable frequency? If data isn’t
available, your approach and the supporting theory may have to be adjusted out
of practicality.

Name
This is the fun part. The more interesting the name, the more impact it can have.

Using APIs as Data Sources for Fantasy Custom Metrics
Fantasy sports enthusiasts love analytics and metrics too. Fantasy league websites pro‐
vide a lot of stats and charts, but commissioners and managers sometimes want to
create their own. Since the fantasy league data is updated frequently, an automated
process is key to making the calculations repeatable and consistent. To gather this
data in software code, two primary choices are available: APIs or web scraping. Web
scraping involves using program code to read the HTML from a website page and
extract the data. The technique is powerful but brittle: every time the website struc‐
ture changes, the web scraper code stops working and has to be modified and tested
again. But if the league website maintains an API, the data is available even when
changes to the layout or structure of the web page occur.

A web search turns up various examples of fantasy managers who share their custom
metrics for others to use. The most feature-rich metric I have found is the Leeger
Python library, which is maintained by software engineer Joey Greco. It is an open
source project that generates custom metrics from six fantasy football websites.
Appropriate for this chapter, Leeger uses APIs heavily.

You read some of Joey’s advice about SDKs in Chapter 7. I talked to him about how
he uses APIs to create metrics with Leeger.

180 | Chapter 9: Using APIs for Data Analytics

https://oreil.ly/2MIk3
https://oreil.ly/leegpy
https://oreil.ly/leegpy

API Perspectives: Joey Greco on APIs and Custom Metrics
When did you first start using APIs from the fantasy websites?

Early in 2022, I realized that copying the fantasy scores for my leagues each week into
my own database was tedious and prone to error. One particularly frustrating evening
(the Tuesday after I went 0-4 in my fantasy leagues), I had reached my limit, and I
looked into what APIs were available for the fantasy sites I was using at that time
(ESPN and MyFantasyLeague).

What motivated you to create the Leeger app and the fantasy SDKs for the league host
websites?

I really like keeping stats for all of my fantasy leagues. Over the years, I slowly evolved
from calculating stats in a paper notebook, to using Excel, to manually entering them
in a database, to writing code that can retrieve data from my fantasy sites and calcu‐
late them for me. This led me to create a Python SDK that anyone could use to do the
same thing (pull data automatically from their fantasy site and have stats calculated
for them each week). While developing Leeger, I realized that some fantasy sites
either didn’t have a Python SDK or had one that was old/not maintained. I figured
while I’m at it I might as well make them myself, so that’s what I did!

What are some of your favorite custom metrics that you have developed for your
leagues?

I think my favorite to date is AWAL, which stands for “Adjusted Wins Against the
League.” It’s a simple metric that shows how many wins a team should have had if
schedule was not a factor. It looks at any given week and assigns each team a score
based on how they ranked in that week’s scoring. You can look at this AWAL over the
course of the season and see clear trends of over- and underperformance. Other met‐
rics I’ve created, like Team Score, Team Success, and Team Luck, are a lot of fun. I’m
always thinking about new ways to look at fantasy statistics and extract more meaning
from them. It’s part of what makes it so much fun for me!

The Leeger app that Joey created contains dozens of custom metrics that are calcula‐
ted from data extracted from league website APIs. They have entertaining names,
such as Adjusted Team Luck and Smart Wins. Here is the calculation behind the
AWAL stat that Greco mentioned:

AWAL = (teams_outscored_in_week * (1/possible_opponents_in_week)) +
(teams_tied_in_week * (0.5/L))

Using APIs as Data Sources for Fantasy Custom Metrics | 181

Creating a Custom Metric: The Shark League Score
Now it’s your turn to create a custom metric: the Shark League Score. Figure 9-1
shows the high-level architecture of the project you will create in this chapter.

Figure 9-1. High-level architecture

The question it seeks to answer is: “How tough is our fantasy league?” A real fantasy
shark is a manager who knows their stuff: they are prepared for the draft, they scour
the waiver wire for the best players, and they always seem to start the right lineup. A
league filled with owners like this is a Shark League, and making the playoffs in this
type of league is a badge of honor. Winning a title in a Shark League—that is a victory
to savor for a lifetime.

The theory of the Shark League Score is based on a few attributes of efficient manag‐
ers. First, Shark Leagues should be balanced from top to bottom—there should be no
easy weeks on the schedule. Second, the league as a whole should be picking up the
best players and getting them in rosters to score points. One supporting theory is that
fantasy regular season stats (usually weeks 1 through 14) are more appropriate than
fantasy playoffs (week 15 and beyond) because all teams are playing.

There are a few additional items that could arguably be included but are not sup‐
ported by the SportsWorldCentral API. For instance, a Shark League should rarely or
never have an empty roster spot in the weekly starters. Another sign of efficient own‐
ers is picking up the “hot free agents” before they have their big weeks—that would be
especially tricky to measure.

As you go through the examples in this chapter, you will develop the Shark League
Score, as well as two supporting metrics: the League Balance Score and League Juice
Score. It’s time to get started!

182 | Chapter 9: Using APIs for Data Analytics

Software Used in This Chapter
Table 9-1 lists a few of the software components you will begin using in this chapter.

Table 9-1. Key tools or services used in this chapter

Software name Purpose
backoff Python library for adding backoff and retry to web calls

httpx Python library for making web calls

Jupyter Notebooks Interactive data science environment

pandas Data analysis and formatting library

httpx
The Python library you will use for calling APIs is httpx. This library is very similar
to the popular requests library but also supports asynchronous API calls. For more
information about httpx, read Chapter 4.

You will use version 27.x of httpx to stay consistent with the version used in Part I.

Jupyter Notebooks
Jupyter Notebooks support a unique way to perform data science. This mode is called
interactive computing, and it allows you to mix code cells, Markdown comment cells,
and results. Cells flow from the top of a notebook to the bottom, and variables and
libraries that have been run previously are available to cells that run later. (If you run
cells only sequentially, that would mean the cells below, but you can run cells out of
order.) In addition to this interactive mode, Jupyter Notebooks also provide Mark‐
down cells that run between code cells, which allows you to create richly formatted
documents that interweave code, results, and documentation. The notebook style of
programming is heavily used by data scientists, who value its ability to store the
results of prior work along with the code that went into creating it.

Jupyter Notebooks are supported out of the box with the default VS Code installation
in your GitHub Codespace. You will run notebooks directly in VS Code by creating a
file with the .ipynb extension. Project Jupyter has many more options and features
beyond what you will learn in this chapter; you can learn more about them at the
Jupyter project home page.

You will use the default version of Jupyter that comes installed in Codespaces.

Software Used in This Chapter | 183

https://jupyter.org

pandas
For data scientists using Python, one of the most trusted libraries is pandas. For data
scientists, it is one of the first imports you include in almost any Python program.
The pandas library provides Python a data type called a DataFrame, which is a two-
dimensional structure with rows and columns. This spreadsheet-like format is a natu‐
ral way of viewing data in rows and columns.

The library also provides many methods for data manipulation, filtering, and format‐
ting. As mentioned in Chapter 1 of this book, data scientists spend more than one-
third of their time preparing and cleansing data. The pandas library is a powerful tool
for this type of work. The official pandas user guide is a great reference for this
library.

You will use the default version of pandas that comes installed in GitHub Codespaces.

Installing the New Libraries in Your Codespace
To install the libraries you need for this chapter, create a file named chapter9/require‐
ments.txt:

.../analytics-project (main) $ cd chapter9

.../chapter9 (main) $ touch requirements.txt

Update chapter9/requirements.txt with the following contents:

logging
httpx>=0.27.0
backoff>=2.2.1

This is the standard Python logging module.

This library provides backoff and retry functionality for API calls. See Chapter 7
for more details.

Execute the following command to install the new libraries in your Codespace:

.../chapter9 (main) $ pip3 install -r requirements.txt

You should see a message that states that these libraries were successfully installed.

Launching Your API in Codespaces
To access your API data, you will need to launch v0.2 of your API in the terminal. For
instructions, read “Running the SportsWorldCentral (SWC) API Locally” on page
176. Copy the URL of your API from the browser address bar to use as the base URL
in this chapter.

184 | Chapter 9: Using APIs for Data Analytics

https://oreil.ly/X4vXa

Creating an API Client File
You will create a standalone Python file to make all calls to your API. By maintaining
this file separate from the Jupyter Notebook, you keep special API-related logic in
one place and make it available to multiple notebooks.

You will use the backoff library to implement exponential backoff and retry with jit‐
ter, which makes your API calls more reliable without overwhelming the source API.
You use the HTTPX client in a context manager style. Chapter 7 uses these tech‐
niques and a few more to create a full-featured Python SDK. Using SDKs when avail‐
able is also helpful for Jupyter Notebooks, but for this chapter, you will add most of
the features yourself.

Version 0.2 of the API has several new endpoints that you didn’t
create in Part I. To explore the format of the new endpoints, access
the interactive API docs using Swagger UI at the /docs endpoint on
your API.

Create a new Python file in the terminal as shown:

.../analytics-project (main) $ cd chapter9

.../chapter9 (main) $ mkdir notebooks

.../chapter9 (main) $ touch notebooks/swc_simple_client.py

Update swc_simple_client.py with the following code:

import backoff
import logging
import httpx

HEALTH_CHECK_ENDPOINT = "/"
LIST_LEAGUES_ENDPOINT = "/v0/leagues/"
LIST_PLAYERS_ENDPOINT = "/v0/players/"
LIST_PERFORMANCES_ENDPOINT = "/v0/performances/"
LIST_TEAMS_ENDPOINT = "/v0/teams/"
LIST_WEEKS_ENDPOINT = "/v0/weeks/"
GET_COUNTS_ENDPOINT = "/v0/counts/"

logger = logging.getLogger(__name__)

@backoff.on_exception(
 wait_gen=backoff.expo,
 exception=(httpx.RequestError, httpx.HTTPStatusError),
 max_time=5,
 jitter=backoff.random_jitter
)
def call_api_endpoint(
 base_url: str,
 api_endpoint: str,

Creating an API Client File | 185

 api_params: dict = None
) -> httpx.Response:

 try:
 with httpx.Client(base_url=base_url) as client:
 logger.debug(f"base_url: {base_url}, api_endpoint: {api_endpoint}")
 response = client.get(api_endpoint, params=api_params)
 response.raise_for_status()
 logger.debug(f"Response JSON: {response.json()}")
 return response
 except httpx.HTTPStatusError as e:
 logger.error(f"HTTP status error occurred: {e.response.text}")
return httpx.Response(status_code=e.response.status_code,
 content=b"API error")
 except httpx.RequestError as e:
 logger.error(f"Request error occurred: {str(e)}")
 return httpx.Response(status_code=500, content=b"Network error")
 except Exception as e:
 logger.error(f"Unexpected error occurred: {str(e)}")
 return httpx.Response(status_code=500, content=b"Unexpected error")

The URL endpoints are set as variables that can be used when calling the client.

This statement gets a reference to the log file.

This decorator adds backoff and retry functionality to the call_api_endpoint
function. For more information about the settings, see the backoff documenta‐
tion.

This allows you to pass in parameters to the API.

This statement uses the HTTPX client in a resource manager style, which makes
the API call and then cleans up resources when it finishes.

This statement logs the data in the API response for debugging.

If errors occur, they are logged with an ERROR type.

In case of error, the client returns an httpx.response object with the error code
and message.

Creating Your Jupyter Notebook
To get started, run the following commands in the Terminal window at the bottom of
the screen to create the new directory and the Jupyter Notebook you will be using in
this chapter:

186 | Chapter 9: Using APIs for Data Analytics

https://oreil.ly/c_4yV
https://oreil.ly/c_4yV

.../analytics-project (main) $ cd chapter9

.../chapter9 (main) $ mkdir notebooks

.../notebooks (main) $ touch notebooks/shark_league_notebook.ipynb

If you open the chapter9/notebooks folder in the Explorer on the left, you should see
shark_league_notebook.ipynb. Click to open it. As shown in Figure 9-2, you will see a
blank cell. A Jupyter Notebook is made up of cells like these that you can fill with
software code to run commands or Markdown-formatted text to provide context and
explanation for the code.

In the top-right of the file you will see Select Kernel, as shown in Figure 9-2.

Figure 9-2. New notebook file

Click Select Kernel. Codespaces should prompt you to “Install/Enable suggested
extensions Python + Jupyter” as shown in Figure 9-3. Select “Install/Enable suggested
extensions Python + Jupyter.” Click Install in the additional pop-up window, if
prompted.

Figure 9-3. Install/enable extensions

After the installation completes, the title of the window will change to Select
Another Kernel and you will see the choice Python Environments. Select Python
Environments.

The title of the window will change to “Select a Python Environment.” One Python
version should be listed with a star next to it and the label Recommended—select this
Python version.

Creating Your Jupyter Notebook | 187

Adding General Configuration to Your Notebook
The beginning of your notebook will contain general configuration and setup. Hover
your cursor above the empty Python cell and click +Markdown to create a new Mark‐
down cell. Enter the following title in the Markdown cell:

Shark League Score
Import Python libraries

Run this cell by clicking the play icon on the left of the cell or by pressing Shift-Enter.
You should see your message formatted as a title.

Hover your cursor below this cell and click “+Code” to create a new Python cell.
Enter the following code in the Python cell:

import pandas as pd
import logging
import swc_simple_client as swc

This references the Python file you created named swc_simple_client.py.

Placing all the imports at the top of your notebook helps keep track of the libraries
you are using. These imports will work for all the cells in this Jupyter Notebook.

Jupyter Notebooks are executed top to bottom. Although the out‐
put of Jupyter Notebooks is saved between sessions, the variables
and imported libraries are not. When you start a coding session,
select Execute Above Cells to rerun all the cells above the one you
are using.

As mentioned in Chapter 8, logging is an important component of working with
APIs. You will configure a log file named shark_notebook.log to store the logging mes‐
sages that are generated in your notebook. These log files are excluded by your repo‐
sitory’s .gitignore file, so they will not be committed to your repository, which is a
good practice.

Add another Markdown cell with the following text:

Configure logging

Add and run a Python code cell with the following:

for handler in logging.root.handlers[:]:
 logging.root.removeHandler(handler)

logging.basicConfig(
 filename='shark_notebook.log',
 level=logging.INFO,
)

188 | Chapter 9: Using APIs for Data Analytics

This statement removes any existing logging handlers configured by Codespaces.

This sets the logging level to record in the log. Review Table 7-1 for more details
about Python logging.

The next code cell will contain shared variables, which are good to add after the
import statements. In this notebook, you set a reusable variable for the base URL
of the API and created string constants with the API endpoints. These two steps
make the purpose of API calls clearer and help avoid manual typing errors. These will
be available to all the cells in the notebook. Add another Markdown cell with the fol‐
lowing text:

Setup notebook variables

Add and run a Python code cell with the following:

base_url = "[insert your API base URL]"

Inside the quotations, you should put the base URL of the API running locally on
Codespaces, without the backslash, for example, https://fluffy-lemur-12345-
8000.app.github.dev.

Working with Your API Data
The next several cells use the imported call_api_endpoint() function to call the
API and get an httpx.Response object. Then, they extract the API data using
Response.json() and store it in a pandas DataFrame.

Add a Markdown cell with the following text:

Get Max Scores
Use endpoint: LIST_WEEKS_ENDPOINT

This code retrieves the maximum scores for SportsWorldCentral leagues based on
custom scoring types, which will be used for the League Juice Score. Highly custom
values like these are examples of data that is best retrieved from the website’s API.
Although you could potentially estimate the total possible points using public NFL
scoring data, it would take a lot of effort and would likely be slightly different from
the final totals the website calculates. Since the website makes this available, you can
easily get an exact match to the league totals.

From this point, the contents of the code cell and the output will be
displayed together. The code will be on top and the output will fol‐
low the OUTPUT statement.

Working with Your API Data | 189

Add and run a Python code cell with the following:

week_api_response = swc.call_api_endpoint(base_url,swc.LIST_WEEKS_ENDPOINT)
weeks_df = pd.DataFrame(week_api_response.json())
weeks_df['year'] = weeks_df['week_number'].str.slice(0, 4).astype(int)

max_totals_grouped_df = weeks_df.groupby('year').agg(
 ppr_12_max_points=('ppr_12_max_points', 'sum'),
 half_ppr_8_max_points=('half_ppr_8_max_points', 'sum'))

display(max_totals_grouped_df)

OUTPUT:
year ppr_12_max_points half_ppr_8_max_points
2023 21048.0 14800.0

This extracts the data in a dictionary format and creates a DataFrame.

This uses the pandas str.slice method to get the year substring from the
week_number.

This uses the pandas groupby().agg() method to group the data by year and
calculate the maximum points for two of the league types.

Next, you’ll retrieve the league information. Add a Markdown cell with this text:

Get League Scoring Type
Use Endpoint: LIST_LEAGUES_ENDPOINT

Add and run a Python code cell with the following:

league_api_response = swc.call_api_endpoint(base_url,swc.LIST_LEAGUES_ENDPOINT)
leagues_df = pd.DataFrame(league_api_response.json())
leagues_df = leagues_df.drop(columns=['teams','last_changed_date'])
display(leagues_df)

OUTPUT:
 league_id league_name scoring_type league_size
0 5001 Pigskin Prodigal Fantasy League PPR 12
1 5002 Recurring Champions League Half-PPR 8
2 5003 AHAHFZZFFFL Half-PPR 8
3 5004 Gridiron Gurus Fantasy League PPR 12
4 5005 Best League Ever PPR 12
...

This statement uses the pandas drop method to exclude columns from the Data‐
Frame.

190 | Chapter 9: Using APIs for Data Analytics

Next, you will retrieve the total scoring for each league to compare to the max poten‐
tial. Add a Markdown cell with the following text:

Get Regular Season Scoring Totals - By Team
Use Endpoint: LIST_TEAMS_ENDPOINT

This section of code includes two techniques that are useful when using pandas to
process API data. The SportsWorldCentral API returns JSON data with several nested
dictionaries in the weekly_scores element, but you want to have one row per week.
You also want to get multiple columns out of the nested column. You will use the
pandas json_normalize() function to accomplish these tasks.

This section also introduces the pandas groupby().sum() method, which is similar to
the SQL GROUP BY statement. You will use this to total up all of the weekly scoring
values and give a total for the entire fantasy regular season. (The NFL plays 18 weeks,
but SportsWorldCentral considers weeks 1 through 14 the fantasy regular season, and
the rest are the playoffs.)

Add and run a Python code cell with the following:

team_api_response = swc.call_api_endpoint(base_url,swc.LIST_TEAMS_ENDPOINT)

teams_parsed_df = pd.json_normalize(team_api_response.json(), 'weekly_scores',
 ['league_id', 'team_id', 'team_name'])

teams_parsed_df['year'] = (teams_parsed_df['week_number']
 .str.slice(0, 4).astype(int))
teams_parsed_df['week'] = (teams_parsed_df['week_number']
 .str.slice(4, 6).astype(int))

#get only regular season teams
teams_regular_season_df = teams_parsed_df.query('week <= 14')

#get team season totals
team_totals_df = teams_regular_season_df.groupby(
 ['league_id', 'team_id', 'year'], as_index = False
)['fantasy_points'].sum()

team_totals_df.head()

The pandas json_normalize() function breaks the nested JSON data into multi‐
ple rows and extracts new columns.

The pandas str.slice() method is used to extract the year and week values
from the week_number field.

This groupby statement sums the fantasy points by league, team, and year.

Working with Your API Data | 191

Calculating the League Balance Score
With the data loading and formatting out of the way, you can calculate your first met‐
ric: the League Balance Score. The intuition behind this metric is that a high-quality
league is a balanced league. Instead of being dominated by one or two top teams, the
league has a balance of teams that are all competitive.

A balanced league has less variability among the team’s regular season totals. One way
to measure for variability is to calculate the standard deviation of the values. However,
leagues with high scoring systems tend to have a higher variability, making it difficult
to compare leagues with different scoring systems. To adjust for this, you’ll use the
coefficient of variation (CV) of each league’s regular season total scores. This takes the
standard deviation of the league’s totals and divides it by the mean of the totals.

This gives you a measure of relative variability between the values that adjusts for the
overall scoring system. The reason CV works for this situation is that it is dimension‐
less, which means it can be compared across values of difference sizes—scoring sys‐
tems in this case. Here is the exact formula you will use:

LeagueBalanceScore = 100 − stdev LeagueRegularSeasonTotal /mean
LeagueRegularSeasonTotal * 100

A CV is lower if it varies less, but you want a metric where a higher number is better.
You also want it to be comparable to the League Juice Score, which has a max value of
100. To accomplish this, you multiply it by 100 and subtract it from 100 to give a
number similar in scale to the League Juice Score, and so that a larger number is bet‐
ter, also matching the League Juice Score.

Add another Markdown cell, with the following text:

League Balance Score
Using the Coefficient of Variation (CV) of league regular season totals

This section also uses a lambda command to execute Python code during the aggrega‐
tion. You will use this in several other locations.

Add and run a Python code cell with the following:

league_stats_df = team_totals_df.groupby(['league_id','year']).agg(
 league_points_sum=('fantasy_points', 'sum'),
 league_points_mean=('fantasy_points', 'mean'),
 league_points_stdev=('fantasy_points', 'std'),
 league_balance_score=('fantasy_points',
 lambda x: (100 -(x.std() / x.mean()) * 100))
).reset_index()

display(league_stats_df.sort_values(by='league_balance_score',
 ascending=False))

192 | Chapter 9: Using APIs for Data Analytics

This sum value will be used in the next metric, but this is a convenient place to
calculate it.

This uses the pandas built-in GroupBy.std calculation for the standard deviation
of the league totals.

This uses lambda to execute a calculation on the aggregated values to calculate
the league score and scale it to match the League Juice Score.

The pandas sort_values method does not change the underlying structure; it
only sorts during the display.

The output of this cell is shown in Figure 9-4.

Figure 9-4. League Balance Score

Calculating the League Juice Score
The second metric you will calculate is the League Juice Score, which is the percent‐
age of potential points that the league scored for the season. This represents how
much juice the league owners squeezed out of the orange, that is, how many potential
points were in the starting lineups. In fantasy football, it doesn’t do much good for the
week’s top scorers to be sitting on someone’s bench. In a high-quality league, manag‐
ers are setting starting lineups that get the most from their teams.

One wrinkle to the calculation is that max points differ by the size of the league and
the scoring type. Before you can calculate the score, you need to merge three Data‐
Frames that you already prepared into a single DataFrame:

league_stats_df

Contains the total points scored by each team and year

max_totals_grouped_df

Contains the custom max point totals for the regular season

leagues_df

Contains the scoring type and league size of each league, to match against custom
max points

Calculating the League Juice Score | 193

The exact formula you will use is the following:

LeagueJuiceScore = 100 * LeagueTotalPoints /MaxPotentialPoints

Add another Markdown cell with the following text:

League Juice Score
Compare league scoring to max potential scoring

Add and run a Python code cell with the following:

league_stats_with_league_max_df = (league_stats_df[
 ['league_id','year', 'league_points_sum','league_balance_score']]
 .merge(max_totals_grouped_df,left_on = 'year', right_on='year'))

combined_metrics_df = (leagues_df[
 ['league_id','league_name','scoring_type', 'league_size']]
 .merge(league_stats_with_league_max_df,
 left_on = 'league_id', right_on = 'league_id'))

combined_metrics_df['league_juice_score'] = combined_metrics_df.apply(
 lambda row: (
 100 * (row['league_points_sum'] / row['ppr_12_max_points'])
 if (row['scoring_type'] == 'PPR' and row['league_size'] == 12)
 else (
 100 * (row['league_points_sum'] / row['half_ppr_8_max_points'])
 if (row['scoring_type'] == 'Half-PPR' and row['league_size'] == 8)
 else None
)
),
 axis=1
)

combined_metrics_df = (combined_metrics_df.drop(
 columns=['scoring_type','league_size','league_points_sum'
 ,'ppr_12_max_points','half_ppr_8_max_points',])
)
display(combined_metrics_df)

The first step is to combine league_stats_df with max_totals_grouped_df.

Next, you combine leagues_df with the output of the previous step.

This section uses the apply() method to execute a lambda function against each
row to calculate the custom league_juice+score value.

You multiply the ratio by 100 to make it a percentage, and scale it to match the
League Balance Score.

The output of this cell is shown in Figure 9-5.

194 | Chapter 9: Using APIs for Data Analytics

Figure 9-5. League Juice Score

Creating the Shark League Score
After your API data has been manipulated, munged, and merged, you are ready for
the payoff: building your Shark League Score. Based on your decision to weight the
League Juice Score double, the final formula you will use is:

SharkLeagueScore = 2 * LeagueJuiceScore + LeagueBalanceScore

Add another Markdown cell, with the following text:

Create Shark League Score
Shark League Score = (2 * League Juice Score) + League Balance Score

Add and run a Python code cell with the following:

combined_metrics_df['shark_league_score'] = combined_metrics_df.apply(
 lambda league: (2 * league['league_juice_score']) +
 league['league_balance_score'],
 axis=1
)
display(combined_metrics_df.sort_values(by='shark_league_score',
ascending=False))

The output of this cell is shown in Figure 9-6.

Figure 9-6. Shark League Score

Congratulations, you have calculated the Shark League Score based on customized
data from the SportsWorldCentral API.

Creating the Shark League Score | 195

Additional Resources
For a discussion of the value of statistics in basketball, read “NBA Insider: Is It Num‐
bers or Talent? Sorting Fact, Fiction in NBA Stats Wave”.

To continue building your knowledge of pandas, I recommend Python for Data Anal‐
ysis: Data Wrangling with pandas, NumPy, and Jupyter (O’Reilly, 2022). It was written
by Wes McKinney, the creator of pandas.

To learn more detailed charts that can be created with football data from nfl_data_py,
I recommend the book Football Analytics with Python & R: Learning Data Science
Through the Lens of Sports Eager and Erickson (O’Reilly, 2023).

For more tips on formatting Markdown for your notebook, read the Markdown
Guide.

To learn more about the coefficient of variation in other domains, read “Coefficient of
Variation: Meaning and How to Use It”.

If you’d like to explore more uses of data analytics in fantasy football using Python,
Nathan Braun has courses and books available at https://fantasycoding.com.

Summary
In this chapter, you learned about creating custom metrics using API data. You calcu‐
lated the Shark League Score and learned how to use pandas and Jupyter Notebooks
along the way.

In Chapter 10, you will build your API and data science skills by calling APIs in a data
pipeline built with Apache Airflow.

196 | Chapter 9: Using APIs for Data Analytics

https://oreil.ly/DqSG-
https://oreil.ly/DqSG-
https://oreil.ly/_7OgB
https://oreil.ly/_7OgB
https://oreil.ly/yO4zn
https://oreil.ly/yO4zn
https://fantasycoding.com

CHAPTER 10

Using APIs in Data Pipelines

In their simplest form, pipelines may extract only data from one source such as a REST API
and load to a destination such as a SQL table in a data warehouse. In practice, however,
pipelines typically consist of multiple steps ... before delivering data to its final destination.

—James Densmore Data Pipelines Pocket Reference (O’Reilly, 2021)

In Chapter 9, you used a Jupyter Notebook to query APIs and create data analytics.
Querying directly in a notebook is useful for exploratory data analysis, but it requires
you to keep querying the API over and over again. When data teams create analytics
products for production, they implement scheduled processes to keep an up-to-date
copy of source data in the format they need. These structured processes are called
data pipelines because source data flows into the pipeline and is prepared and stored
to create data products. Other common terms for these processes are Extract, Trans‐
form, Load (ETL) or Extract, Load, Transform (ELT), depending on the technical
details of how they are implemented. Data engineer is the specialized role that focuses
on the development and operation of data pipelines, but in many organizations, data
scientists, data analysts, and infrastructure engineers also perform this work.

In this chapter, you will create a data pipeline to read SportsWorldCentral fantasy
football player data using Apache Airflow, a popular open source tool for managing
data pipelines using Python.

197

Types of Data Sources for Data Pipelines
The potential data sources for data pipelines are almost endless. Here are a few
examples:

APIs
REST APIs are the focus of this book, and they are an important data source for
data pipelines. They are better suited for incremental updates than full loads,
because sending the full contents of a data source may require many network
calls. Other API styles such as GraphQL and SOAP are also common.

Bulk files
Large datasets are often shared in some type of bulk file that can be downloaded
and processed. This is an efficient way to process a very large data source. The
file format of these may vary, but CSV and Parquet are popular formats for data
science applications.

Streaming data and message queues
For near-real-time updates of data, streaming sources such as Apache Kafka or
AWS Kinesis provide continuous feeds of updates.

Message queues
Message queue software such as RabbitMQ or AWS SQS provides asynchronous
messaging, which allows transactions to be published in a holding location and
picked up later by a subscriber.

Direct database connections
A connection to the source database allows a consumer to get data in its original
format. These are more common for sharing data inside organizations than to
outside consumers.

You will be creating a pipeline that uses REST APIs and bulk files in this chapter.

Planning Your Data Pipeline
Your goal is to read SportsWorldCentral data and store it in a local database that you
can keep up to date. This allows you to create analytics products such as reports and
dashboards. For this scenario, you’ll assume that the API does not allow full down‐
loads of the data, so you will need to use a bulk file for the initial load.

After that initial load, you want to get a daily update of any new records or records
that have been updated. These changed records are commonly referred to as delta or
deltas, using the mathematical term for “change.” By processing only the changed
records, the update process will run more quickly and use fewer resources (and spend
less money).

198 | Chapter 10: Using APIs in Data Pipelines

Figure 10-1 displays the data pipeline you are planning.

Figure 10-1. Plan for your data pipeline

The pipeline includes two sources: bulk data files and an API. The rounded boxes
represent two ETL processes and they both will update the analytics database, a local
database that is used to create analytics products like dashboards and reports.

Orchestrating the Data Pipeline with Apache Airflow
Airflow is best thought of as a spider in a web: it sits in the middle of your data processes and
coordinates work happening across the different (distributed) systems.

—Julian de Ruiter and Bas Harenslak, Data Pipelines with Apache Airflow (Manning,
2021)

Running multiple data processing work streams in production gets complicated
quickly. Scheduling, error handling, and restarting failed processes require significant
planning and design. These tasks are called orchestration, and this is what Apache
Airflow is used for. As the number of data pipelines grows, you will benefit from
using orchestration software instead of coding all of these tasks yourself. Airflow is a
full-featured open source engine that uses Python for its configuration, and it handles
many of the recurring tasks involved in data pipelines.

Airflow has some specialized terminology that is not used in other data science pro‐
gramming. Astronomer’s Airflow glossary is a complete source for these, but I will
share some of the most important ones with you.

Airflow uses terminology from mathematical graph theory. In graph theory, a node is
a process and an edge is a flow between nodes. Using this terminology, a directed acy‐
clic graph (DAG) is a top-level process that contains steps proceeding in one direction
without any loops or recursive logic.

Figure 10-2 shows how nodes and edges relate to each other in a DAG.

Orchestrating the Data Pipeline with Apache Airflow | 199

https://oreil.ly/IjTM4

Figure 10-2. Directed acyclic graph

You will create one Python file for each DAG. Each of the steps in a DAG is called a
task, the basic unit of execution in Airflow. Each task will be displayed as a single box
on the graph diagram of a DAG.

An operator is a predefined template for a task. In this chapter, you will use an Http
Operator to call your API and a PythonOperator to update your analytics database.
Airflow has built-in operators to interact with databases, S3 buckets, and several
other functions. Dozens more are available from the community and are listed in the
Airflow Operators and Hooks Reference.

The last thing you will learn to use is an XCom, which stands for cross-
communications. XComs are used to pass information and data between tasks.

Installing Apache Airflow in GitHub Codespaces
Figure 10-3 shows the high-level architecture of the project you will create in this
chapter.

Figure 10-3. Architecture of the Airflow project

200 | Chapter 10: Using APIs in Data Pipelines

https://oreil.ly/8k6mr

You will be working with the Part II GitHub Codespace that you created in “Getting
Started with Your GitHub Codespace” on page 174. If you haven’t created your Part II
Codespace yet, you can complete that section now.

Before launching the Codespace, change the machine type to a four-core machine by
clicking the ellipsis next to the Codespace and then clicking “Change machine type.”
This is necessary because Airflow runs multiple services at once.

You will be installing Airflow in the Codespace and performing that basic configura‐
tion that allows you to create the data pipeline from the diagram. (This will be a non-
production setup for demonstration purposes. Before using Airflow in production,
additional setup would be required.)

Airflow can be installed using Docker or pip. You will be using the Docker version.
You will follow the instructions from “Running Airflow in Docker”, with a few cus‐
tomizations.

To begin, create an airflow directory in the chapter10 folder of your Codespace and
change to that directory:

.../chapter10 (main) $ mkdir airflow

.../chapter10 (main) $ cd airflow

.../airflow (main) $

Next, use the curl command to retrieve a copy of the docker-compose.yaml file that is
used to run the Docker version of Airflow. Get this from the official Airflow website,
and specify the version. This chapter demonstrates with version 2.9.3, but you can
follow the latest stable version listed in the Airflow documentation:

.../airflow (main) $ curl -LfO \
'https://airflow.apache.org/docs/apache-airflow/2.10.0/docker-compose.yaml'
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 11342 100 11342 0 0 410k 0 --:--:-- --:--:-- --:--:-- 410k

The file docker-compose.yaml contains instructions for the images to download from
Docker Hub along with environment options for configuring the software in your
environment.

Open docker_compose.yaml and take a look at the volumes: section:

 volumes:
 - ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags
 - ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs
 - ${AIRFLOW_PROJ_DIR:-.}/config:/opt/airflow/config
 - ${AIRFLOW_PROJ_DIR:-.}/plugins:/opt/airflow/plugins

This section creates Docker volumes, which are virtual drives available inside the
Docker containers that are mapped to files in your Codespace storage. They are
relative to the Airflow project directory, which will be airflow in your Codespace. For

Installing Apache Airflow in GitHub Codespaces | 201

https://oreil.ly/ORZKy
https://airflow.apache.org
https://oreil.ly/QTlk_
https://oreil.ly/q7y53

example, airflow/dags in your Codespace will be referenced as /opt/airflow/dags to the
Airflow application running in Docker. (This will be important when you create con‐
nections later in this chapter.)

Create the directories that are mapped to those volumes and then configure an envi‐
ronment variable for the Airflow user ID:

.../airflow (main) $ mkdir -p ./dags ./logs ./plugins ./config

.../airflow (main) $ echo -e "AIRFLOW_UID=$(id -u)" > .env

Create docker-compose.override.yaml:
.../airflow (main) $ touch docker-compose.override.yaml

You will use this file to override some of the standard configuration settings from the
docker-compose.yaml file you downloaded. Using an override file allows you to keep
the docker-compose.yaml file exactly like you downloaded it and put all of your cus‐
tomizations together, which makes troubleshooting easier. It also allows you to
update docker-compose.yaml with a new version when Airflow is upgraded. Update
docker-compose.override.yaml with the following contents:

#these are overrides to the default docker compose
x-airflow-common:
 &airflow-common
 environment:
 &airflow-common-env
 AIRFLOW__CORE__LOAD_EXAMPLES: 'false'

services:
 airflow-webserver:
 <<: *airflow-common
 command: webserver
 environment:
 <<: *airflow-common-env
 AIRFLOW__WEBSERVER__ENABLE_PROXY_FIX: 'True'
 airflow-scheduler:
 <<: *airflow-common
 command: scheduler
 environment:
 <<: *airflow-common-env
 AIRFLOW__SCHEDULER__MIN_FILE_PROCESS_INTERVAL: '30'

This setting will hide the built-in Airflow examples so that they are not distract‐
ing in this chapter.

This setting will allow you to use the Airflow web interface in Codespaces.

This setting tells Airflow to look for changes to your code more frequently while
you are developing.

202 | Chapter 10: Using APIs in Data Pipelines

Now you are ready to initialize the Docker environment using docker-compose.yaml
and docker-compose.override.yaml with the docker compose up airflow-init com‐
mand. This command will download the Airflow software and provision user IDs
and other configuration details. Execute the following command:

.../airflow (main) $ docker compose up airflow-init
[+] Running 44/3
 redis Pulled
 postgres Pulled
 airflow-init Pulled
...
airflow-init-1 | 2.10.0
airflow-init-1 exited with code 0

This command will run for several minutes, with many commands executed. If the
output ends with “exited with code 0” it was successful. Your environment has been
initialized, and you don’t need to execute this command again.

You are ready to run Airflow. To launch the Airflow web interface, execute the follow‐
ing command:

.../airflow (main) $ docker compose up -d
+] Running 7/7
 ✔ Container airflow-postgres-1 Healthy
 ✔ Container airflow-redis-1 Healthy
 ✔ Container airflow-airflow-init-1 Exited
 ✔ Container airflow-airflow-webserver-1 Started
 ✔ Container airflow-airflow-triggerer-1 Started
 ✔ Container airflow-airflow-scheduler-1 Started
 ✔ Container airflow-airflow-worker-1 Started

Although you will see a pop-up window to launch the web UI, I have found that
sometimes the web UI takes a few minutes to prepare, so don’t click OK. Instead, wait
a couple of minutes and then select the Ports tab in your Codespace. You will see the
forwarded address of the web interface. Click the globe icon to open the UI in the
browser, as shown in Figure 10-4.

Figure 10-4. Open Airflow web interface

You will see the login page. Enter a username of airflow and password of airflow
and click “Sign in.” (These starter credentials are used for demonstration only.) You
will see the web interface of the Airflow application running in your Codespace, as
shown in Figure 10-5. When you begin, there are no DAGs listed. You will learn more

Installing Apache Airflow in GitHub Codespaces | 203

about the capabilities of Airflow as you create DAGs to complete your data pipeline
requirements.

Figure 10-5. Airflow home page

Creating Your Local Analytics Database
Your data pipeline will be used to insert and update player records into a local data‐
base. This is a common data science pattern: updating a database from source data
and then creating models, metrics, and reports from the database. Change the direc‐
tory to dags and create a database and the player table as follows:

.../airflow (main) $ cd dags

.../dags (main) $ sqlite3 analytics_database.db
SQLite version 3.45.3 2024-04-15 13:34:05
Enter ".help" for usage hints.
sqlite> CREATE TABLE player (
 player_id INTEGER PRIMARY KEY,
 gsis_id TEXT,
 first_name TEXT,
 last_name TEXT,
 position TEXT,
 last_changed_date DATE
);
sqlite> .exit

204 | Chapter 10: Using APIs in Data Pipelines

Launching Your API in Codespaces
Your Airflow pipeline needs a running copy of the SportsWorldCentral API to gather
updates. Follow the directions in “Running the SportsWorldCentral (SWC) API
Locally” on page 176 to get your API running in a separate terminal window of
Codespaces, and copy the base URL from the browser bar. You will configure Airflow
to reference the base URL from that API in the next section.

Configuring Airflow Connections
Airflow connections allow you to store information about data sources and targets in
the server instead of in your code. This is useful for maintaining separate Airflow
environments for development, testing, and production. You will create connections
for your API and your analytics database.

In the Airflow UI, select Admin > Connections. Click the plus sign to add a new con‐
nection record. Now you will use the volume mappings that you viewed earlier in the
docker-compose.yaml file. Use the following values:

• Connection ID: analytics_database
• Connection Type: Sqlite
• Description: Database to store local analytics data.
• Schema: /opt/airflow/dags/analytics_database.db

Leave the rest of the values empty, and click Save.

Next, add the connection for the API connection:

• Connection ID: sportsworldcentral_url
• Connection Type: HTTP
• Description: URL for calling the SportsWorldCentral API.
• Host: Enter the base URL of the API running in Codespaces.

Leave the rest of the values empty, and click Save. You should see two connections
listed, as shown in Figure 10-6.

Configuring Airflow Connections | 205

Figure 10-6. Configured Airflow connections

Creating Your First DAG
Figure 10-7 displays an implementation of your pipeline with Airflow, using two
DAGs. The bulk_player_file_load.py DAG would perform an initial load of the ana‐
lytics database from a bulk file, which was provided in Part I of this book. That file is
available in the chapter10/complete folder of your repository, but this chapter does not
walk through it due to space constraints.

Figure 10-7. Airflow components of your data pipeline

206 | Chapter 10: Using APIs in Data Pipelines

Create the DAG that uses API data, recurring_player_api_insert_update_dag.py.
This DAG performs incremental updates of your database, using the
SportsWorldCentral API. Change the directory to dags and create the recur‐
ring_player_api_insert_update_dag.py file:

.../airflow (main) $ cd dags

.../dags (main) $ touch recurring_player_api_insert_update_dag.py

Add the following contents to the recurring_player_api_insert_update_dag.py file:

import datetime
import logging
from airflow.decorators import dag
from airflow.providers.http.operators.http import HttpOperator
from airflow.operators.python import PythonOperator
from shared_functions import upsert_player_data

def health_check_response(response):
 logging.info(f"Response status code: {response.status_code}")
 logging.info(f"Response body: {response.text}")
 return response.status_code == 200 and response.json() == {
 "message": "API health check successful"
 }

def insert_update_player_data(**context):

 player_json = context["ti"].xcom_pull(task_ids="api_player_query")

 if player_json:
 upsert_player_data(player_json)
 else:
 logging.warning("No player data found.")

@dag(schedule_interval=None)
def recurring_player_api_insert_update_dag():

 api_health_check_task = HttpOperator(
 task_id="check_api_health_check_endpoint",
 http_conn_id="sportsworldcentral_url",
 endpoint="/",
 method="GET",
 headers={"Content-Type": "application/json"},
 response_check=health_check_response,
)

 temp_min_last_change_date = "2024-04-01"

 api_player_query_task = HttpOperator(
 task_id="api_player_query",
 http_conn_id="sportsworldcentral_url",
 endpoint=(
 f"/v0/players/?skip=0&limit=100000&minimum_last_changed_date="

Creating Your First DAG | 207

 f"{temp_min_last_change_date}"
),
 method="GET",
 headers={"Content-Type": "application/json"},
)

 player_sqlite_upsert_task = PythonOperator(
 task_id="player_sqlite_upsert",
 python_callable=insert_update_player_data,
 provide_context=True,
)

 # Run order of tasks
 api_health_check_task >> api_player_query_task >> player_sqlite_upsert_task

Instantiate the DAG
dag_instance = recurring_player_api_insert_update_dag()

This import allows you to define the DAG using a @dag decorator.

These two imports allow you to use predefined operators in your tasks.

This is an import of a separate Python file with a function that is shared between
two DAGs.

This is the code to verify the response of api_health_check_task defined below.
This is the first task, and it allows the DAG to verify the status of the API before
proceeding with other tasks.

This defines a function that will be called by a task.

This line of code uses XCom to retrieve data from the second task.

Here it passes the data from XCom to the shared upsert_player_data function,
which is defined in a separate file.

This is the main DAG definition. It uses the @dag decorator to define the Python
function as a DAG. The tasks are defined within this method.

The first task uses an HttpOperator template to call the API’s health check
endpoint. It adds a response_check method to check the API’s status before
continuing.

The minimum last changed date is hardcoded in this example. In production, an
Airflow template variable could be used to get the last day’s updates.

208 | Chapter 10: Using APIs in Data Pipelines

https://oreil.ly/pFHaG

The second task uses an HttpOperator to call the API’s player endpoint with a
query parameter to restrict the records that are returned.

The third task is a PythonOperator that calls the insert_update_player_data
function.

This statement sets the dependency of the tasks using bitshift operators.

The final statement is required to instantiate the DAG that is defined by the @dag
decorator.

Take a moment to compare this code to Figure 10-7. The key parts of the DAG file are
toward the bottom of this file: the @dag decorator defines the main DAG wrapper.
Inside the DAG are three tasks: two that use HttpOperators to connect to the API
and one that uses a PythonOperator to connect to the SQLite database.

The statement api_health_check_task >> api_player_query_task >>

player_sqlite_upsert_task sets the dependency between the tasks using a right-
shift operator, >>. These tasks have a very simple sequential dependency, but Airflow
is capable of implementing very intricate dependencies between tasks. For more
information about this capability, read Astronomer’s “Manage task and task group
dependencies in Airflow”.

Coding a Shared Function
Although the sources of the two DAGs are different, they both perform an upsert on
the analytics database, which means that if a source record already exists in the data‐
base, the code updates it, otherwise it inserts a new record. Because this task is shared
between the two DAGs, you will create a separate Python file with a shared function.
Create the shared_functions.py file:

.../dags (main) $ touch shared_functions.py

Add the following contents to the shared_functions.py file:

import logging
import json
from airflow.hooks.base import BaseHook

def upsert_player_data(player_json):
 import sqlite3
 import pandas as pd

Fetch the connection object
 database_conn_id = 'analytics_database'
 connection = BaseHook.get_connection(database_conn_id)

Coding a Shared Function | 209

https://oreil.ly/PTa4M
https://oreil.ly/PTa4M

 sqlite_db_path = connection.schema

 if player_json:

 player_data = json.loads(player_json)

 # Use a context manager for the SQLite connection
 with sqlite3.connect(sqlite_db_path) as conn:
 cursor = conn.cursor()

 # Insert each player record into the 'player' table
 for player in player_data:
 try:
 cursor.execute("""
 INSERT INTO player (
 player_id, gsis_id, first_name, last_name,
 position, last_changed_date
)
 VALUES (?, ?, ?, ?, ?, ?)
 ON CONFLICT(player_id) DO UPDATE
 SET
 gsis_id = excluded.gsis_id,
 first_name = excluded.first_name,
 last_name = excluded.last_name,
 position = excluded.position,
 last_changed_date = excluded.last_changed_date
 """, (
 player['player_id'], player['gsis_id'],
 player['first_name'],
 player['last_name'],
 player['position'],
 player['last_changed_date']
))
 except Exception as e:
 logging.error(
 f"Failed to insert player {player['player_id']}: {e}")
 raise

 else:
 logging.warning("No player data found.")
 raise ValueError(
 "No player data found. Task failed due to missing data.")

These two import statements are placed inside the Python method. This is
because Airflow frequently parses DAG code and will reload imported libraries
that are at the top of the Python file.

This statement uses an Airflow hook to retrieve the connection that you defined
in the Airflow user interface.

This uses a database cursor to execute SQL queries on your analytics database.

210 | Chapter 10: Using APIs in Data Pipelines

This statement uses the database cursor to execute a parameterized SQL query.

This SQL statement provides the upsert capability, which updates a record if it
already exists or inserts it if not.

This function receives the data from the API as a parameter and then loads data into
the SQLite database using the Airflow connection that you defined in the user inter‐
face. This is a parameterized SQL query, in which the input data is referenced with
VALUES (?, ?, ?, ?, ?, ?). This is an important measure to protect against SQL
injection attacks, which could occur if a malicious actor inserted code into the source
data’s fields, where your process was expecting data.

Running Your DAG
Before you run the DAG, check that your API is up and running. Navigate back to the
Airflow UI and you will see your DAG listed, as shown in Figure 10-8. The user inter‐
face has too many features to cover in this chapter, but you can read about the user
interface at “UI / Screenshots”.

Figure 10-8. DAG listed on the Airflow home page

Click recurring_player_api_insert_update_dag, and then Graph. You will see the
sequence of Airflow tasks using the task_id names that you assigned in your code, as
shown in Figure 10-9.

Running Your DAG | 211

https://oreil.ly/DfOSC

Figure 10-9. Graph view of the first DAG

Click the Trigger DAG button, which has a triangle icon to your DAG. If everything
is configured correctly with your code and connections, each of the tasks in your
DAG should complete with a green box in a minute or so. Click the first box, labeled
check_api_health_check_endpoint. Your view should look similar to Figure 10-10.
If you encounter an error, click the task that has the error, and click Logs to diagnose
the issue.

Figure 10-10. Successful DAG run

212 | Chapter 10: Using APIs in Data Pipelines

To confirm that your analytics database was successfully upserted, go back to the ter‐
minal and open the database with SQLite. Query the Player table, to confirm that
1,018 player records are present in the table. These are the records retrieved from
your API:

.../dags (main) $ sqlite3 analytics_database.db
SQLite version 3.45.3 2024-04-15 13:34:05
Enter ".help" for usage hints.
sqlite> select count(*) from player;
1018

Congratulations! You created a data pipeline that updates your database with records
from an API!

Extending Your Portfolio Project
Here are a few ways to extend the project you created in this chapter:

• Update recurring_player_api_insert_update_dag.py to pass the minimum last
changed date using the scheduling variables built into Airflow.

• The bulk_player_file_load_dag.py DAG is in the chapter10/complete directory.
Create the Airflow HTTP connection mentioned in the code, and get this DAG
to work.

• Add DAGs to process all of the other API endpoints.

Summary
In this chapter, you learned how to create a data pipeline calling APIs to maintain
current data for analytics products. You installed and configured Apache Airflow, and
you created a DAG with multiple tasks to update your database from an API.

In Chapter 11, you will create a Streamlit data app using data from an API.

Summary | 213

https://oreil.ly/YViYQ

CHAPTER 11

Using APIs in Streamlit Data Apps

A simple app today is better than an over-designed app three months late.
—Thiago Teixeira, cofounder of Streamlit

If you want to demonstrate your data science skills to other people, it’s hard to beat a
data app—a web application displaying your data science models, graphs, charts, and
spreadsheets. Sending a recruiter or potential client a link to a data app you created is
a sure way to get their attention.

In this chapter, you will build a data app with Streamlit, an open source library that
helps you create colorful and interactive web apps using Python. Streamlit handles all
the complexity of the web interface so that you can focus on the data backend code,
such as data files, pandas DataFrames, and APIs.

Streamlit apps can be deployed in a limited fashion for free on the Streamlit Commu‐
nity Cloud or paid web hosting platforms.

Engaging Users with Interactive Visualizations
Two main types of analytics products are tabular reports and visualizations. Tabular
reports present rows and columns of data in a spreadsheet format, which provides a
detailed view of data. Visualizations replace tabular data with charts, graphs, maps,
and other images that give context and color to the data. Visualizations can commu‐
nicate ideas that are hard to see in a spreadsheet.

Streamlit supports both tabular data and visualizations in a very interactive way. It
provides built-in widgets, which are application controls such as sliders and select
boxes that allow the user to filter and interact with the data in real time. For a fun
example, take a look at Figure 11-1, which shows a data app I built to track the cham‐
pionship titles in one of my long-running fantasy leagues.

215

Figure 11-1. Fantasy league data app

The built-in widgets allow a data scientist to focus on providing accurate and useful
data, while Streamlit components make a great-looking app. Streamlit designs its
product to have simple defaults that get users up and running quickly; this is Stream‐
lit’s design principle of promoting forward progress.

Software Used in This Chapter
This chapter builds on the tools you have learned in previous chapters, especially
pandas. Table 11-1 displays the new tools you will use.

Table 11-1. Key tools or services used in this chapter

Software name Purpose
nfl_data_py NFL data library

Streamlit Web-based analytics software

216 | Chapter 11: Using APIs in Streamlit Data Apps

https://oreil.ly/strlit

nfl_data_py
To perform data analytics, you often want to add data from multiple sources to make
your analytics products more informative or give them wider context. For football
data, nflverse is a rich set of open source libraries and data files containing NFL data.
The Python library for interacting with the data is nfl_data_py.

You will use the most current version of nfl_data_py that is available.

Streamlit
Streamlit is an open source Python library that you can download using pip3. By
including the library, a single Python file can generate an app using the command
streamlit run your_script.py. The library is easy to learn using the Streamlit get‐
ting started guide.

Installing Streamlit and nfl_data_py
To install the libraries you need for this chapter, create a file named chapter11/require‐
ments.txt:

.../analytics-project (main) $ cd chapter11

.../chapter11 (main) $ touch requirements.txt

Update chapter11/requirements.txt with the following contents:

streamlit>=1.38.0
httpx>=0.27.0
nfl_data_py
matplotlib
backoff>=2.2.1

Execute the following command to install the new libraries in your Codespace:

.../chapter11 (main) $ pip3 install -r requirements.txt

You should see a message that states that these libraries were successfully installed.

Launching Your API in Codespaces
Figure 11-2 shows the high-level architecture of the project you will create in this
chapter.

Launching Your API in Codespaces | 217

https://oreil.ly/nfLV
https://oreil.ly/2U7P8
https://oreil.ly/-qxBe
https://oreil.ly/-qxBe

Figure 11-2. Architecture of the Streamlit project

To access your API data, you will need to launch v0.2 of your API in the terminal. For
instructions, follow “Running the SportsWorldCentral (SWC) API Locally” on page
176. When the API is running, copy the URL of your API from the browser address
bar to use as the base URL in this chapter.

When your API or Streamlit app is running in the terminal and
you want to stop it, press Ctrl-C.

Reusing the Chapter 9 API Client File
In Chapter 9, you created a standalone Python client file to make the calls to your
API, while adding logging, error handling, and backoff-retry functionality. You will
reuse this file in your Streamlit app. Maintaining your API client outside your
Streamlit app gives you reusability.

Copy the client file from the chapter9/notebooks directory (or the chapter9/complete/
notebooks directory if you haven’t completed Chapter 9 yet) into the chapter11/
streamlit directory:

.../chapter11 (main) $ mkdir streamlit

.../chapter11 (main) $ cp ../chapter9/notebooks/swc_simple_client.py streamlit

Creating Your Streamlit App
Your Streamlit app will include an entrypoint file, which is the file that Streamlit loads
first. In this app, you will use the entrypoint file to set the initial configuration and
create the page navigation. Your app will also include individual page files that per‐
form the work.

218 | Chapter 11: Using APIs in Streamlit Data Apps

Since your API is running in the terminal window, you will need to open a second
terminal window and execute the following command:

.../chapter11 (main) $ mkdir streamlit

.../chapter11 (main) $ cd streamlit

.../streamlit (main) $ touch streamlit_football_app.py

.../streamlit (main) $ touch page1.py

.../streamlit (main) $ touch page2.py

Updating the Entrypoint File
The entrypoint file contains a couple of items that are fundamental to a Streamlit app.
The first is st.session_state, which is the mechanism to share information between
pages in the application. The next is st.navigation, which is how you make a multi-
page app with a shared navigation bar.

Add the following code to streamlit_football_app.py, and replace the statement
[insert your API base URL] with the base API URL from the API running locally:

import streamlit as st
import logging
import pandas as pd

if 'base_url' not in st.session_state:
 st.session_state['base_url'] = "[insert your API base URL]"

logging.basicConfig(
 filename='football_app.log',
 level=logging.INFO,
)

st.set_page_config(page_title="Football App",
 page_icon=":material/sports_football:")

page_1 = st.Page("page1.py", title="Team Rosters", icon=":material/trophy:")

page_2 = st.Page("page2.py", title="Team Stats", icon=":material/star_border:")

pg = st.navigation([page_1, page_2])
pg.run()

Replace the statement [insert your API base URL] with the base API URL
from the API running locally.

This sets up the logging configuration for the application. All logging messages at
INFO level or more severe will be saved in this file.

This sets the configuration for the entire application, including the title and icon
to display in the browser tab.

Updating the Entrypoint File | 219

This command defines the settings for the first subpage, along with the title and
icon to display in the navigation bar.

This creates the navigation bar and orders the subpages.

This statement executes the current page.

Running Your Streamlit App
To run your app, execute the following command in the terminal:

.../streamlit (main) $ streamlit run streamlit_football_app.py

You will see the display shown in Figure 11-3.

Figure 11-3. Launching your Streamlit app

Click “Open in Browser.” You will see a blank browser window with a vertical ellipsis
in the top right. Select the ellipsis and choose Settings. On the Settings screen select
“Run on save,” then close the Settings window to save.

If you are prompted with “Source code changed,” select “Always
rerun.” This ensures that coding changes are applied to the running
app immediately.

You will see the blank app with a navigation bar, as shown in Figure 11-4.

Figure 11-4. Initial blank data app

220 | Chapter 11: Using APIs in Streamlit Data Apps

You can open the VS Code Simple Browser and have it running
next to your code window. Open the VS Code Command Palette by
clicking Ctrl-Shift-P. Enter Simple Browser:Show, then enter the
address of the application (the one that ends with app.github.dev).

Creating the Team Rosters Page
The Team Rosters subpage will be displayed when your application executes. It will
call the SportsWorldCentral API, manipulate the data using pandas, and then display
the pandas DataFrame.

The first half of this file performs some library imports and sets up the logging. Then,
it calls the API to retrieve all the data that will be used on the page for both filtering
and display. The data is used to create a pandas DataFrame, which is a handy way of
processing data in Python. The pandas library supports many powerful data manipu‐
lation functions, which you will see in the next section.

Add the following code to page1.py:

import streamlit as st
import swc_simple_client as swc
import pandas as pd
import logging

logger = logging.getLogger(__name__)

st.header("SportsWorldCentral Data App")
st.subheader("Team Rosters Page")

base_url = st.session_state['base_url']

try:
 team_api_response = swc.call_api_endpoint(base_url,swc.LIST_TEAMS_ENDPOINT)

 if team_api_response.status_code == 200:

 team_data = team_api_response.json()

 teams_df = pd.DataFrame.from_dict(team_data)

 unique_leagues = teams_df['league_id'].unique()
 unique_leagues = sorted(unique_leagues.astype(str))

 if 'unique_leagues' not in st.session_state:
 st.session_state['unique_leagues'] = unique_leagues

Creating the Team Rosters Page | 221

This statement creates a reference to the logging file that was configured in the
entrypoint file.

These headings will be printed at the top of the page.

This retrieves the base_url variable from the session state.

All of the page’s code is wrapped in a try…except structure. If any unhandled
exception occurs, it logs the error and writes an error message to the screen.

This uses swc_simple_client.py to call the API and stores the httpx.response in a
variable.

A 200 value in the status_code indicates a successful API call. It proceeds to
populate the page.

This converts the JSON data from the API to a Python representation of the data.
The .json() name is a bit confusing since it doesn’t return JSON data. It might
help to think of this as the “converting from JSON” method.

This uses pandas to create a DataFrame using the from_dict method. pandas
DataFrames are convenient data structures for manipulating data.

These two lines get a list of unique league_id values, convert them to a string,
and sort them.

This command stores the unique list of leagues in the session_state object so
that all pages in the app can use them.

This page contains a navigation bar with a select box titled “Pick league ID.” When
users select a league that has rosters, the team rosters page will be filtered with teams
that match that league_id value. This filtering is accomplished by filtering the Data‐
Frame and by Streamlit updating the display to match.

The remaining code creates the navigation bar, then uses pandas to format the data
and display it on the page. It also contains matching error handling and exception
handling statements from the previous code.

222 | Chapter 11: Using APIs in Streamlit Data Apps

Add the following code to page1.py:

 selected_league = st.sidebar.selectbox('Pick league ID',unique_leagues)

 st.sidebar.divider()
 st.sidebar.subheader(":blue[Data sources]")
 st.sidebar.text("SportsWorldCentral")

 flat_team_df = pd.json_normalize(
 team_data, 'players', ['team_id', 'team_name','league_id'])
 column_order = ['league_id','team_id','team_name','position',
 'player_id', 'gsis_id', 'first_name', 'last_name']
 flat_team_df_ordered = flat_team_df[column_order]

 if 'flat_team_df_ordered' not in st.session_state:
 st.session_state['flat_team_df_ordered'] = flat_team_df_ordered

 display_df = flat_team_df_ordered.drop(columns=['team_id','player_id'])

 display_df['league_id'] = display_df['league_id'].astype(str)
 display_df = display_df[display_df['league_id'] == selected_league]

 st.dataframe(display_df,hide_index=True)

 else:
 logger.error(f"Error encountered: {team_api_response.status_code}
 {team_api_response.text}")
 st.write("Error encountered while accessing data source.")

except Exception as e:
 logger.error(f"Exception encountered: {str(e)}")
 st.write(f"An unexpected error occurred.")

Create a select box in the navigation bar to select a league_id value.

Use the pandas json_normalize() function to reformat the nested JSON data
into rows and columns. Then create a new variable with a different column order.

Create a filter DataFrame that contains only the values matching selected_
league, which the user chose in the select box.

Use Streamlit’s built-in DataFrame() function to display the filtered DataFrame
on the page.

This will display an error if the API call is not successful and returns an HTTP
status code other than 200.

This is a general exception handling block that will be entered if anything goes
wrong in the main processing of the page.

Creating the Team Rosters Page | 223

As you rerun the code on this page, you will see the display of the Team Rosters page,
as shown in Figure 11-5.

Figure 11-5. Team Rosters page

Creating the Team Stats Page
The Team Stats page will be displayed when users select Team Stats in the navigation
bar. Instead of calling the SportsWorldCentral API, it reuses the data that was stored
in SessionState as a pandas DataFrame.

The first portion of this file imports libraries and sets up the logging. Next, it creates
items for the sidebar and filters the dataset to match the selected entry in the select
box.

Add the following code to page2.py:

import streamlit as st
import pandas as pd
import logging
import nfl_data_py as nfl
import matplotlib.pyplot as plt

logger = logging.getLogger(__name__)

st.header("SportsWorldCentral Data App")
st.subheader("Team Touchdown Totals")

try:

224 | Chapter 11: Using APIs in Streamlit Data Apps

 flat_team_df_ordered = st.session_state['flat_team_df_ordered']

 unique_leagues = st.session_state['unique_leagues']
 selected_league = st.sidebar.selectbox('Pick league ID',unique_leagues)

 st.sidebar.divider()
 st.sidebar.subheader(":blue[Data sources]")
 st.sidebar.text("SportsWorldCentral")
 st.sidebar.text("NFLDataPy")

 flat_team_df_ordered['league_id'] = flat_team_df_ordered[
 'league_id'].astype(str)
 flat_team_df_ordered = flat_team_df_ordered[
 flat_team_df_ordered['league_id'] == selected_league]

This library will be used to format a bar chart on this page.

This retrieves the API data that was created in the Team Rosters page.

This retrieves the unique_leagues that was created on the Team Rosters page
and adds a select box to the sidebar.

These filter the DataFrame to match the league_id from the select box in the
navigation bar.

You are not limited to the data available in the SportsWorldCentral API— you can
combine it with external sources. For the Team Stats page, you will enrich your data
from the nfl_data_py library by joining on the GSIS_ID value. This allows your app to
build a bar chart with touchdown data, which was not available in the API.

In Part I of this book, you chose to include the gsis_id in your
API, which comes from the NFL’s Game Statistics and Information
System. You didn’t need it for your internal operations, but you
decided it would benefit data science users who wanted to join
your data to external sources. That extra thought is going to pay off
now for your users, because it allows you to join your API data to
data from nfl_data_py.

The remaining code in this page first loads the data from nfl_data_py into a pandas
DataFrame, selects four columns, then creates a new total_tds column. Next, the
code uses the merge command to join the API data to the nfl_data_py data, aggre‐
gates it, and displays a chart.

Creating the Team Stats Page | 225

Add the following code to page2.py:

nfl_data_2023_df = nfl.import_seasonal_data([2023], 'REG')

 columns_to_select = [
 'player_id', 'passing_tds', 'rushing_tds', 'receiving_tds']
 nfl_data_2023_subset_df = nfl_data_2023_df[columns_to_select].copy()

 nfl_data_2023_subset_df['total_tds'] = (
 nfl_data_2023_subset_df['passing_tds'] +
 nfl_data_2023_subset_df['rushing_tds'] +
 nfl_data_2023_subset_df['receiving_tds']
)

 merged_df = pd.merge(
 flat_team_df_ordered,
 nfl_data_2023_subset_df,
 how='left',
 left_on='gsis_id',
 right_on='player_id'
)

 grouped_df = merged_df.groupby('team_name')['total_tds'].sum()

 fig, ax = plt.subplots()
 grouped_df.plot(kind="barh", xlabel='Total TDs',
 ylabel="Team Name", title="Total TDs - 2023", ax=ax)

 st.pyplot(fig)

except Exception as e:
 st.write(f"An unexpected error occurred: {str(e)}")

This command calls the import_seasonal_data method from nfl_data_py and
requests 2023 regular season data.

The next two lines build a list with the column names you want and create a
DataFrame with the columns identified in the previous step.

These add a new calculated field to the DataFrame with the combined touch‐
downs for the team.

This statement uses the pandas.merge() function, which allows you to join two
DataFrames. You are merging the API DataFrame and the nfl_data_py
DataFrame.

The pandas groupby statement combines all the players for each team and sums
the value in the total_tds column.

226 | Chapter 11: Using APIs in Streamlit Data Apps

The next two statements build a bar chart using pandas and the matplotlib
library.

This uses Streamlit’s pyplot() function to display the plot created in the previous
steps.

You will see the display of the Team Rosters page, as shown in Figure 11-6.

Figure 11-6. Team Stats page

To see the final structure of your Streamlit app, execute the tree command as
follows:

.../streamlit (main) $ tree --prune -I 'build|*.egg-info|__pycache__'

.
├── football_app.log
├── page1.py
├── page2.py
├── streamlit_football_app.py
└── swc_simple_client.py

1 directory, 5 files

Congratulations, you’ve created a data app using Streamlit that calls the SportsWorld‐
Central API and combines it with NFL data from the nfl_data_py library.

Creating the Team Stats Page | 227

Deploying Your Streamlit App
If you are going to show off your data science apps, you need to have them on the
web. Streamlit Community Cloud is a free hosting option that allows you to deploy
your app from your GitHub repository. One downside is that the app does not run
continually—it periodically goes to sleep and the user has to wake it up. To deploy to
Streamlit Community Cloud, follow the instructions from the Streamlit documenta‐
tion.

In addition to these two hosts, Streamlit links to other deployment tutorials that you
can follow. For the most part, these charge for hosting.

Completing Your Part II Portfolio Project
You have reached the end of Part II, congratulations! As you did with Part I, you will
perform some housekeeping to get the portfolio project cleaned up and ready to
share. You’ll move the code out of the chapter folders into functional folders.

Before you make these changes, you’ll save a copy of your files to a separate GitHub
branch, named learning-branch, so that the files are still available if you want to con‐
tinue working through the code.

Create the new branch from the command line as follows:

.../analytics-project/ (main) $ git checkout -b learning-branch
Switched to a new branch 'learning-branch'
.../analytics-project/ (main) $ git push -u origin learning-branch
 * [new branch] learning-branch -> learning-branch
branch 'learning-branch' set up to track 'origin/learning-branch'.

Create a new branch named learning-branch locally based on the main branch.

Push this new branch to your remote repository on GitHub.com.

Next, you will make some changes to the directory structure. Enter these commands:

.../analytics-project/ (learning-branch) $ git checkout main
Switched to branch 'main'
Your branch is up to date with 'origin/main'.
.../analytics-project/ (main) $ rm -rf chapter9/complete
.../analytics-project/ (main) $ rm -rf chapter10/complete
.../analytics-project/ (main) $ rm -rf chapter11/complete
.../analytics-project/ (main) $ mv chapter9/notebooks .
.../analytics-project/ (main) $ mkdir airflow
.../analytics-project/ (main) $ mv chapter10/* airflow
.../analytics-project/ (main) $ mv chapter11/streamlit .
.../analytics-project/ (main) $ rm -rf chapter9
.../analytics-project/ (main) $ rm -rf chapter10
.../analytics-project/ (main) $ rm -rf chapter11

228 | Chapter 11: Using APIs in Streamlit Data Apps

https://oreil.ly/rJgTG
https://oreil.ly/rJgTG
https://oreil.ly/ZQXl4

Switch your Codespace back to the main branch of your repository.

Make a new directory for the files from Chapter 10.

Move Chapter 10’s airflow files to the new folder.

Move Chapter 11’s streamlit folder to the root directory.

Remove all the subdirectories and their files.

To see the directory structure of the completed project, run the following command:

.../portfolio-project (main) $ tree -d --prune -I 'build|*.egg-info|__pycache__'

.
├── airflow
├── api
├── notebooks
└── streamlit

4 directories

Update the README.md file with the following at a minimum, then add your own
thoughts about what you’ve learned in your project and how you’ve customized it:

Analytics Portfolio Project
This repository contains programs using industry-standard Python frameworks,
based on projects from the book _Hands-on APIs for AI and Data Science_
written by Ryan Day.

Now commit these changes to GitHub, and your Part II portfolio project is ready to
share with the world. Congratulations on completing your Part II capstone!

Extending Your Portfolio Project
Here are a few ideas to extend your Streamlit project:

• Implement Streamlit caching in your API calls to improve performance in your
application.

• Create additional visualizations with the built-in Streamlit chart elements.

Additional Resources
If you’d like to learn more about the components of Streamlit, the Streamlit docu‐
mentation is well written and easy to use.

Tyler Richards’ Streamlit for Data Science, 2nd Edition (Packt Publishing, 2023), is a
thorough reference for using Streamlit in data science applications.

Additional Resources | 229

https://oreil.ly/_CVQ6
https://oreil.ly/SdstJ
https://docs.streamlit.io
https://docs.streamlit.io

For a quick reference on Streamlit commands, view the official Streamlit Cheat Sheet.

Summary
In this chapter, you built an interactive data app with Streamlit. You consumed data
from your SportsWorldCentral API and displayed that data in your app. Then, you
combined it with NFL data from a Python library and created a chart with the data.

In Chapter 12, you will start learning how to use APIs with artificial intelligence.

230 | Chapter 11: Using APIs in Streamlit Data Apps

https://oreil.ly/RirMd

PART III

Using APIs with Artificial Intelligence

In Part III, you will learn how APIs are used in artificial intelligence, including
machine learning, the LangChain framework, and ChatGPT:

• Chapter 12 explores the relationship of AI and APIs and introduces your third
portfolio project.

• In Chapter 13, you will create a machine learning model and deploy it as an API.
• Chapter 14 demonstrates calling an API using the LangChain and LangGraph

frameworks.
• In Chapter 15, you will use OpenAI’s ChatGPT to create a custom GPT and cus‐

tom actions to interact with data from your API.

CHAPTER 12

Using APIs with Artificial Intelligence

More AI means more APIs.
—Frank Kilcommins, SmartBear

In technology circles, AI and APIs are sometimes treated as separate specialties. But
they are closely related, and getting closer all the time. In this chapter, you will learn
about the ways that AI and APIs overlap, some of the skills you should develop, and
how to build APIs that are compatible with AI. Then, you will set up your Part III
portfolio project, which you will use in the remaining chapters.

The Overlap of AI and APIs
To begin with, APIs are important data sources—along with databases and files—for
training AI models. Once a model is trained, a REST API is a common method to
make it available for users. You will train a machine learning model in Chapter 13,
and deploy it with a REST API.

In the same way, cloud-based AI tools are advanced machine learning models that are
deployed using APIs. AI tools such as generative AI, natural language processing, and
others are often cloud hosted and made available as APIs. You will call an Anthropic
large language model (LLM) through a REST API in Chapter 14.

An emerging area of overlap between AI and APIs is calling APIs directly from gener‐
ative AI applications, which are built using LLMs and interact with users via natural
language. One type of these applications is called retrieval augmented generation
(RAG). In a RAG application, the program calls APIs and other data sources and then
feeds the retrieved information to the LLM along with the user prompt. This helps
overcome the knowledge gap, in which an LLM only has information that it was
trained upon.

233

Another type of generative AI application uses LLMs to determine what API end‐
points to use, which we will call agentic applications in this book. The LLMs make
this decision by interpreting definitions from OAS files, Python code, or API docu‐
mentation. You will create agentic AI applications that call APIs in Chapter 14 with
LangChain and in Chapter 15 with ChatGPT.

API Perspectives: Bill Doerrfield on the Overlap of AI and APIs
Bill Doerrfield is the editor-in-chief at Nordic APIs, an international community of
API practitioners and enthusiasts. Bill has been covering the API economy for more
than a decade and therefore has a good perspective on how AI is impacting APIs.

How has AI affected the field of APIs in recent years?

I see the rise of AI and APIs as intrinsically tied. And this isn’t just new to the era of
ChatGPT and LLMs. We’ve seen APIs powering software-as-a-service products
related to image recognition, object classification, natural language processing,
speech-to-text, text-to-speech, chatbot frameworks, and more for years now. But
more recently, as APIs have become the lingua franca for new AI services, we’re see‐
ing an interest in APIs as well.

What future trends do you see with the intersection of APIs and AI?

AI agents are progressively becoming more aware of APIs, and I see APIs as eventu‐
ally connecting the dots behind the scenes of many complicated user-facing work‐
flows. The next hurdle after that will be giving AI agents the power to not only
integrate with data and make POST calls, but also access proprietary data and func‐
tionality that is typically monetized and perform transactions on behalf of the user.

Based on the rising importance of AI, what skills should API developers and designers be
looking to develop?

API developers and designers should assume that anything that is publicly accessible
will be tapped by an AI. RAG-based AI agents could also circumvent the need for
APIs entirely, essentially like robotic process automation using screen scraping. So, we
need to make APIs more accessible and defined for an LLM to research and learn
about and for an agent to actually integrate with. Otherwise, developers will utilize
these other means.

Developers should stay up-to-date with evolving trends in the API space, such as the
OpenAPI Specification and its Arazzo Specification. They should consider using AI
to enhance the API consumer’s experience when possible. And API designers should
also consider ensuring that their services are accessible where developers are already
working, such as within their IDEs or AI assistants.

234 | Chapter 12: Using APIs with Artificial Intelligence

https://nordicapis.com

Designing APIs to Use with Generative AI and LLMs
So, how should you design an API so that a generative AI application can use it, as
Doerrfield recommends? This field is changing rapidly, but here are some initial tips
that apply to LangChain (Chapter 14) and ChatGPT (Chapter 15).

First, you need to consider whether an API or endpoint is appropriate to use with an
agentic generative AI application without additional safeguards in place. The provid‐
ers of LLMs provide warnings such as that LLMs should not be used “on their own in
high-risk situations” (Anthropic Claude 3) and that they “may sometimes provide
inaccurate information” (Google NotebookLM). ChatGPT’s documentation simply
admonishes the user to “check important info.”

Researchers and machine learning engineers are exploring addi‐
tional methods to address risks of using LLMs for API calls and
performing other business tasks. Some potential safeguards include
requiring a human to approve tasks recommended by LLMs before
executing, combining multiple AI agents to review tasks before
executing, reviewing and filtering inputs and outputs to the mod‐
els, and reviewing logs of the functioning of the system. In addi‐
tion, foundational practices of API management and security are
required when LLMs use APIs—just as they are when conventional
software uses APIs. A key security practice is to restrict the permis‐
sions provided to systems that include LLMs.

For APIs that are appropriate, here are some design tips based on my own experience
and on Blobr’s “Is Your API AI-ready? Our Guidelines and Best Practices”:

Limit the size of the data results.
This is important for cost and accuracy. From a cost perspective, model providers
charge for processing tokens, which are chunks of text. The size of these tokens
differs, but the bottom line is the same: the more data a model processes, the
greater the cost. In addition to the cost, developers using ChatGPT have found
that it struggles to perform calculations from very large datasets returned by
APIs. If you are using a model to perform calculations, limiting the size of the
data results improves its accuracy.

There are a few ways to accomplish this. Rather than returning all fields related
to an entity, return only the critical fields. If an API returns child records in a
collection (e.g., product.orders), exclude these from the results and make them
available in a separate endpoint. Add parameters, filters, and pagination to nar‐
row down the specific records in the API call.

Designing APIs to Use with Generative AI and LLMs | 235

https://oreil.ly/jxllA

Make data structures consistent throughout the API.
The more predictable the API is, the more accurately an AI can use it. By re-
using schemas inside your APIs and defining them in your OAS file, you will
help the LLM know what to expect in the results. You used Pydantic in the API
you created in Part I, which enforced standard schemas and published them in
your OAS file.

Provide a software development kit (SDK).
Providing an SDK is a way to provide a subset of endpoints and customized API
calls that are appropriate for an AI application. The SDK can also include
detailed explanations of the API calls and parameters that assist an LLM in
understanding its usage. In Chapter 14, you’ll use the swcpy SDK with Lang‐
Chain and LangGraph.

Customize your OpenAPI Specification (OAS).
Some methods of using generative AI support reading the OAS file to infer API
endpoints to call. You can create a customized OAS file with AI-appropriate end‐
points and detailed descriptions of each endpoint and parameter that assist the
LLM in inferring their meaning. Endpoints in the OAS file should have unique
and clear operation IDs.

Provide a separate endpoint for summary statistics.
If users ask the AI questions about summary information and counts, the LLM’s
behavior can be erratic. It may try to perform a scan of every record in the API, it
may just look at the record identifiers and infer this is the count, or it may try
something completely different. Providing dedicated endpoints takes some of the
guesswork out.

Provide a search endpoint that doesn’t rely on a record identifier.
LLMs are more comfortable using language than numbers. They like to search
based on the information that users are likely to ask them.

Arazzo to Define Multistep Processes
Because AI agents are nondeterministic, it can be difficult to ensure that they use
APIs correctly, especially when multiple API calls are required to complete a business
process. One current method of encouraging AI applications to use multiple API calls
together is to add information to the descriptions of each API endpoint in the OAS
file or tool functions. These descriptions can explain to AI models how one endpoint
relates to another. But it is still up to the model to use them correctly.

An emerging trend that Doerrfield mentioned that may help with this challenge is the
Arazzo Specification. Arazzo defines “sequences of calls and their dependencies” so
that multiple API endpoints can be used together to complete a business outcome. If
a set of related calls is defined in Arazzo, it could be a deterministic building block

236 | Chapter 12: Using APIs with Artificial Intelligence

https://oreil.ly/qXKCU

that could be used by AI applications, adding reliability to API usage. Arazzo works
with OpenAPI, so it is a natural fit for applications and tools that use OAS today.

Keep an eye on Arazzo to see how AI frameworks add formal support for it in the
future. And it may be worth experimenting with LLMs today to see how they can use
it today.

Defining Artificial Intelligence
Artificial Intelligence is technology that enables computers and machines to simulate
human learning, comprehension, problem solving, decision making, creativity and
autonomy.

—“What Is Artificial Intelligence (AI)?”, Cole Stryker and Eda Kavlakoglu, IBM
Corporation, 2024

Aside from that formal definition of AI, an informal definition today is that AI is a
computer program that can have humanlike conversations and complete humanlike
tasks. AI includes expert systems, which have been around for decades. These are
complicated rules-based systems that can perform humanlike tasks. Modern AI focu‐
ses on machine learning, in which researchers direct the training of models but don’t
explicitly program them. Generative AI using LLMs is one major application of
machine learning.

Figure 12-1 demonstrates how these terms relate to one another.

Figure 12-1. Diagram of AI terminology

Defining Artificial Intelligence | 237

Generative AI and Large Language Models (LLMs)
Although machine learning is used in many different applications, most of the atten‐
tion from the general public in recent years has been given to generative AI. The abil‐
ity of these applications to generate text, music, and videos based on text prompts has
led to rapid adoption in applications such as OpenAI’s ChatGPT, Microsoft’s Copilot,
Google’s Gemini, and many additions to other software applications.

Despite the impressive capabilities of these applications, generative AI also has many
risks and limitations associated with it. Providers of some popular models include
warnings about bias, hallucinations, mistakes, and harmful content. These are major
risks that should be taken seriously by developers who use them. Chapters 14 and 15
have more details on the risks and limitations of the models demonstrated in those
chapters.

Creating Agentic AI Applications
As Doerrfield mentions, AI agents are at the forefront of AI research and develop‐
ment. An agent is software that controls application flow using an LLM. The more
autonomously the LLM controls the system, the more agentic the system is.

Creating AI agents using LLMs is a new field, and a variety of different tools have
been released to create agents or orchestrate multiple agents to perform tasks.
Table 12-1 lists several open source frameworks for developing agents and LLM-
based applications.

Table 12-1. AI agent frameworks

Software Programming languages supported
Autogen Python, dotnet

CrewAI Python

LangChain/LangGraph Python

LlamaIndex Python, Typescript

PydanticAI Python

Vercel AI SDK Typescript

You will use LangChain and LangGraph in Chapter 14 to call APIs.

238 | Chapter 12: Using APIs with Artificial Intelligence

AI Perspectives: Samuel Colvin on Agentic AI
Samuel Colvin is the founder of Pydantic, the open source Python library that you
have been using throughout this book for data validation and serialization. Pydantic
is used in many of the model providers’ SDKs and Python-based AI agent frame‐
works. I talked to Colvin about agents and Pydantic’s own agent framework,
PydanticAI.

What is the importance of AI agents and agent frameworks in the next few years of AI
development?

I’m confident that in time, people won’t be using the AI providers’ SDKs directly.
There will be some libraries on top that make opinionated decisions about what peo‐
ple want to do. If you look at web frameworks as a parallel, technically they are con‐
straints on what you can do [to create web applications], but they are constraints that
everyone is happy with because you get to write much more high-level code. I’m
hopeful that PydanticAI is a big part of that.

What role do you see PydanticAI playing in creating AI applications?

My hope is that PydanticAI can become the default in terms of how you actually take
GenAI and put it into production, because we have had more Python experience but
also just work harder on the high-level developer experience and the kinds of checks
you need when you’re trying to put that stuff into production. For example, for
PydanticAI we have put enormous effort into making it type safe, including the
dependency system.

With the AI era that we’re moving into, what are the skills or tools or frameworks you
think developers should be learning right now?

I think that there are bits of intuition about how LLMs work, nuances of the peculiar‐
ities of how they behave, that are worth getting to grips with. And good fundamental
Python programming techniques: there is a temptation to think I can skip learning
the fundamentals of good programming techniques because I’m doing GenAI. If any‐
thing, some of those things are even more important. The fact that you have a non-
deterministic system that you’re interacting with means you need to be even more
sure that your fundamental unit tests for the bits that should be deterministic are rock
solid.

Two more standards that Colvin recommends developers becoming familiar with are
OpenTelemetry for observability and logging of AI applications, and Model Context
Protocol (MCP) for providing context to LLMs.

Creating Agentic AI Applications | 239

https://oreil.ly/OTEL
https://oreil.ly/mcptL
https://oreil.ly/mcptL

Introducing Your Part III Portfolio Project
You will create a portfolio project that demonstrates your ability to work with API
and AI. Here is an overview of the work ahead of you:

• Chapter 13: Deploying a machine learning API
• Chapter 14: Using APIs with LangChain
• Chapter 15: Using ChatGPT to call your API

Each of these tasks will enable you to showcase your API and AI skills in a unique
way.

Getting Started with Your GitHub Codespace
You will continue to use GitHub Codespaces for all the code you develop in Part III.
If you didn’t create a GitHub account yet, do that now.

Cloning the Part III Repository
All of the Part III code examples are contained in this book’s GitHub repository.

To clone the repository, log in to GitHub and go the GitHub Import Repository page.
Enter the following information in the fields on this page:

• The URL for your source repository: https://github.com/handsonapibook/
api-book-part-three

• Your username for your source code repository: Leave blank.
• Your access token or password for your source code repository: Leave blank.
• Repository name: ai-project
• Public: Select this so that you can share the results of the work you are doing.

Click Begin Import. The import process will begin, and the message “Preparing your
new repository” will be displayed. After several minutes, you will receive an email
notifying you that your import has finished. Follow the link to your new cloned
repository.

240 | Chapter 12: Using APIs with Artificial Intelligence

https://github.com/handsonapibook/api-book-part-three
https://github.com/new/import

Launching Your GitHub Codespace
In your new repository, click the Code button and select the Codespaces tab. Click
“Create codespace on main.” You should see a page with the status “Setting up your
codespace”. Your Codespace window will be opened as the setup continues. When the
setup completes, your display will look similar to Figure 12-2.

Figure 12-2. GitHub Codespace for Part III

Your Codespace is now created with the cloned repository. This is the environment
you will be using for Part III of this book. Open the GitHub Codespaces page and
scroll down the page to find this new Codespace, click the ellipsis to the right of the
name, and select Rename. Enter the name Part 3 Portfolio project codespace
and click Save. You should see the message “Your codespace Part 3 Portfolio project
codespace has been updated.” Click the ellipsis again and then click the ribbon next to
“Auto-delete codespace” to turn off auto-deletion.

To save space on the page, I have trimmed the directory listing in
the terminal prompt of my Codespace. You can do this in your
Codespace by editing the /home/codespace/.bashrc file in VS Code.
Find the export PROMPT_DIRTRIM statement and set it to export
PROMPT_DIRTRIM=1. To load the values the first time, execute this
terminal command: source ~/.bashrc.

Getting Started with Your GitHub Codespace | 241

https://oreil.ly/nLbqH

Additional Resources
To view a 100-point scorecard for AI compatibility of APIs, read Blobr’s “Is Your API
AI-ready? Our Guidelines and Best Practices”.

To see an example of working around the limitations of a GPT, read “Syntax Sunday:
Custom API Wrapper for GPTs” by Kade Halabuza.

To learn more about possible futures of AI and APIs, read “AI + APIs — What 12
Experts Think The Future Holds” by Peter Schroeder.

Summary
This chapter introduced the basics of AI and explained how it relates to APIs.

In Chapter 13, you will create a machine learning model and deploy it using FastAPI.

242 | Chapter 12: Using APIs with Artificial Intelligence

https://oreil.ly/JLaK1
https://oreil.ly/JLaK1
https://oreil.ly/khh0J
https://oreil.ly/khh0J
https://oreil.ly/t2lxH
https://oreil.ly/t2lxH

CHAPTER 13

Deploying a Machine Learning API

Always in motion is the future.
—Yoda, The Empire Strikes Back

Fantasy football managers spend most of their time attempting to predict the future
and plotting strategies based on those predictions. Before the season begins, manag‐
ers want to know how NFL players will perform in the upcoming season so that they
can build the best team. During their fantasy drafts, managers want to know where a
player would be picked by other managers so that they can outmaneuver their com‐
petition. Each week, managers want to know which of their players are going to score
the most so that they can set their lineups accordingly.

Many fantasy websites and platforms provide predictions to these managers. One of
the tools available to the platforms is a machine learning (ML) model, which you
learned about in Chapter 12. The platforms train various models and use them to
make predictions, or inferences, to managers. If a model processes an entire group of
predictions at once, it is called batch inference. Some fantasy questions are appropriate
for batch inference, such as making a week’s worth of player predictions all at once.
Batch inference may be done by a scheduled script or job. But if the predictions are
changing minute by minute—like in the case of a live score prediction for a game—
then real-time inference is needed. Real-time inference is calling a model to get a sin‐
gle prediction immediately. This is where deploying the model as an API is most
valuable.

243

In this chapter, you will create an ML model and deploy it with an API to make real-
time inference. As you proceed through the chapter, here are a few terms that you will
come across:

Classification
A type of model that predicts what category a value will fall into. For example, a
classification model might predict if a player will be drafted or undrafted. Models
that perform classification are called classifiers.

Decision trees
A type of ML algorithm that creates a recursive tree structure to perform classifi‐
cation or regression.

Evaluating a model
Comparing the model’s predictions to test data to see how well it would have pre‐
dicted past events.

Gradient boosting
An ML technique that combines multiple models to create a model that is more
effective than the individual models.

Regression
A type of model that predicts a continuous numeric value. For example, a regres‐
sion model might predict how many points a player will score. Models that per‐
form regression are called regressors.

Training a model
Using the training portion of historical data to create a model that can make
inferences based on new data.

Training Machine Learning Models
Supervised learning is a method of creating models by processing existing data where
the expected values are known. For example, a financial fraud detection model might
be trained by processing a large number of bank transactions that have been labeled
or categorized as either fraud or nonfraud. Through this process, the model recog‐
nizes future records that are potentially fraudulent. Through this type of supervised
learning, ML models can be created that create predictions on various data formats
including tabular data, images, audio files, and others.

Figure 13-1 shows this type of training.

244 | Chapter 13: Deploying a Machine Learning API

Figure 13-1. ML training model

The diagram shows a set of historical rows of data. The goal of the ML model in this
case would be to predict future values of the output column. The training process
would involve using software to read the input columns from historical data and look
for patterns in how they are related to the output column.

When the model has been trained, it can be used to read the input columns from new
rows of data and predict what the values will be for the output columns. This is the
inference process, shown in Figure 13-2.

Figure 13-2. ML inference model

The model you will create in this chapter is a supervised ML model.

Training Machine Learning Models | 245

New Software Used in This Chapter
Table 13-1 lists a few of the new software components you will begin using in this
chapter.

Table 13-1. Software used in this chapter

Software name Purpose
ONNX Runtime A cross-platform tool for using models from a variety of different frameworks.

scikit-learn An ML framework for training models. You will use the GradientBoostingRegressor from this
library.

sklearn-onnx A library that converts scikit-learn models to ONNX format.

ONNX Runtime
The Open Neural Network Exchange (ONNX) is an open standard for ML models.
Because such a variety of programming languages and libraries are used to make ML
models, it can be complicated to deploy and run multiple different models. ONNX is
a standard format that models from different programming languages and different
frameworks can be converted to and run in a standard way.

This allows greater interoperability, because when models from different program‐
ming languages and frameworks are converted to ONNX format, they can be more
easily deployed using the standard ONNX Runtime. The ONNX Runtime also
includes acceleration that can improve model inference performance.

After you have developed your model in scikit-learn, you will convert it to ONNX
format, and then use the ONNX Runtime in your API to make predictions (inferen‐
ces).

scikit-learn
The scikit-learn library is a Python framework that allows you to create models for
classification, regression, clustering, and a variety of other tasks. This is one of the
more popular ML libraries in Python, along with PyTorch, TensorFlow, and
XGBoost.

sklearn-onnx
Since you are using scikit-learn to create your model, you will use the sklearn-onnx
library to convert your model into ONNX format. This will be the final step of the
model training process.

246 | Chapter 13: Deploying a Machine Learning API

https://oreil.ly/IGEBD

Installing the New Libraries in Your Codespace
Open the Part III GitHub Codespace that you created in Chapter 12. To install the
libraries you need for this chapter, create a file named chapter13/requirements.txt:

.../ai-project (main) $ cd chapter13

.../chapter13 (main) $ touch requirements.txt

Update chapter13/requirements.txt with the following contents:

#model training
scikit-learn
numpy
pandas
skl2onnx
pydantic>=2.4.0
fastapi[standard]>=0.115.0
uvicorn>=0.23.0
onnxruntime

The scikit-learn library will be used to create the ML model.

The numpy library will be used to format numbers.

The pandas library will be used to process the input data file.

The skl2onnx library will be used to save the scikit-learn model into ONNX
format.

Uvicorn is the web server used to host FastAPI.

The onnxruntime library is used to perform inference with a saved ONNX model
file.

Execute the following command to install the new libraries in your Codespace:

.../chapter13 (main) $ pip3 install -r requirements.txt

You should see a message that states that these libraries were successfully installed.

Using the CRISP-DM Process
ML projects have many steps requiring people with a lot of specialized skills. A useful
method of organizing an ML modeling project is the Cross-Industry Standard Pro‐
cess for Data Mining (Shearer, 2000). This model is widely used in the data science
community.

Using the CRISP-DM Process | 247

The following are definitions of the stages in CRISP-DM:

Business understanding
During the this stage, the team identifies business objectives and assesses tools
and techniques available.

Data understanding
Collecting data that is available to solve the problem, explore it, and verify the
data quality.

Data preparation
During this stage, data scientists select specific data elements to be used, format
them, and merge with any additional sources needed.

Modeling
Selecting a modeling technique and building a model that answers your business
question.

Evaluation
Review the model for its ability to solve the question and its readiness for pro‐
duction.

Deployment
Models are deployed in an environment where they can be consumed by the cus‐
tomer. Monitor and maintain the model.

You will follow this process as you proceed with the chapter. The primary focus is on
the deployment stage, so I will only touch lightly on some of the other stages.

Business Understanding
The first stage of the process is to establish a business understanding of the problem
you are trying to solve. You are creating a model to serve fantasy football managers
who are running their own team in a league with other owners. The question they
need to answer each week of the season is “How much will it cost to acquire this
player on waivers?”

Fantasy managers can add new players to their rosters through a waiver request. In
many leagues, a blind bidding auction is performed to decide who gets the best avail‐
able players. Managers decide which players they want to bid for and put in the dollar
amount they want to spend, which is hidden from other managers. When the bidding
is processed on Tuesday or Wednesday of each week, the highest bidder gets the
player at full price. Lower bidders miss out (but also don’t lose their money).

Each manager has a set amount of money they can use for the season, such as $100.
(These aren’t real-world dollars, these are fantasy dollars.) This is sometimes called
the free agent acquisition budget (FAAB). A manager wants to bid high enough to win

248 | Chapter 13: Deploying a Machine Learning API

the bid, but not overspend. The best-case scenario would be to win the bid at a lower
dollar amount—getting a bargain.

To help the manager bid enough to win the player they want without overspending,
you will give the manager a range of predictions: the low-end cost (10th percentile),
the median cost (50th percentile), and the high-end cost (90th percentile).

Data Understanding
In this stage, you will collect and explore the data that is available for your project. In
the project repository, you’ll find the file player_training_data_full.csv. It contains his‐
torical fantasy football transaction data with the following columns:

Fantasy regular season weeks remaining
How many weeks are left in the regular season. For example, in week 2 of a sea‐
son with 14 weeks, this would be 12.

League budget percentage remaining
The percent of total dollars available in the league. For example, if $900 remain in
the league’s original $1,200, this would be 75.

Player season number
The number of seasons this player has been in the league. Rookies have a value
of 1.

Position
The fantasy football position of the players that was acquired.

Waiver value tier
A qualitative measure of how valuable an individual player is. Each week, some
players are “top tier” pickup targets, and they would get a 1. Players who are
nothing special would get a 5. This is a categorical feature because putting players
into the tiers is a qualitative judgment. (You may get these from a fantasy website
or assign them yourself.)

To begin reviewing the data and selecting fields you want to use in your model, create
a Jupyter Notebook by running the following commands in the Terminal window:

.../ai-project (main) $ cd chapter13

.../chapter13 (main) $ touch player_acquisition_model.ipynb

Open the player_acquisition_model.ipynb file. As you did in Chapter 9, select the
Python kernel and enable the Python and Jupyter extensions, then select the recom‐
mended Python environment.

Data Understanding | 249

Enter the following title in the Markdown cell and run it:

Player Acquisition Models
*This notebook is used to train a machine learning model using scikit-learn
and save it in ONNX format.*

Now you will import the Python libraries you need. Create and run the following
Markdown cell:

Library imports

Add and run a new Python cell with the following code:

import logging
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingRegressor

from skl2onnx import to_onnx
import onnxruntime as rt

This function is used to split data files into train and test sets.

Your model will use the GradientBoostingRegressor algorithm.

Add another Markdown cell with the following text:

Configure logging

Add and run a Python code cell with the following:

for handler in logging.root.handlers[:]:
 logging.root.removeHandler(handler)

logging.basicConfig(
 filename='player_acquisition_notebook.log',
 level=logging.INFO,
)

This statement removes any existing logging handlers configured by CodeSpaces.

This sets the logging level to record in the log.

To begin loading your training data, add another Markdown cell with the following
text:

Load data

Add and run a Python code cell with the following:

dataset=pd.read_csv("player_training_data_full.csv")

250 | Chapter 13: Deploying a Machine Learning API

Data Preparation
Next you will select the data to be included in the model. Rather than simply trying
out all possible variables, you should consider the reason or theory that each would
make a contribution to your model. Here are the three columns you’ll include, and
the theory behind each:

League budget percentage remaining
Your intuition is that a higher budget remaining leads to higher bids. This would
make this a linear feature, in which the output variable goes up or down at a con‐
sistent rate as this value changes.

Fantasy regular season weeks remaining
The theory here is that players cost more at different points of the season. This
probably isn’t a strictly linear value. History suggests some of the highest bids
come in at the beginning of the season when the starting lineups are revealed, but
other peak bids occur from injured players during the season and when manag‐
ers have “use it or lose it” at the end of the season.

Waiver value tier
At a high level this is straightforward: higher-value players will cost more. But
how much more? And how is each tier affected? These are more nuanced ques‐
tions that you hope the model will be able to detect in the training data.

Modeling
Now you will begin the modeling stage, first by selecting the algorithm and ML
framework to use for your model. This decision is a combination of technical limita‐
tions and modeling factors.

Your technical limitations are that you want to use a Python framework and you want
to convert the model to the ONNX format for inference. You also want to make pre‐
dictions for the 10th, 50th, and 90th percentiles, so you need to use an algorithm that
meets these technical criteria.

Two modeling factors to consider are the type of output and the features you’ve
selected. Your output will be numerical dollar values, so you will use a regression
model (regressor). If your input features were all linear (as your input goes up or
down, your prediction goes up or down), you could use a linear regressor. But your
selected features are budget remaining (a linear feature), value tier (a categorical fea‐
ture), and weeks remaining (a slightly more complicated feature). Because of the
complexity of these features, some type of decision tree regressor is more appropriate.

Modeling | 251

Based on these technical and modeling factors, you will use the GradientBoostingRe
gressor algorithm from scikit-learn. The gradient boosting algorithm is way of com‐
bining multiple decision trees into an ensemble model that is more predictive than
using the individual decision trees by themselves. It also supports the multiple predic‐
tions by percentile that you want to use. This algorithm is also supported by the
ONNX format you will be saving the model in.

To get started with the modeling process, you will first split your data into multiple
variables for the training (80% of the rows) and testing (20% of the rows). There are
conventions for naming of variables, and you will follow those so that your code is
understandable by other data scientists. Table 13-2 explains the purpose of these vari‐
able names.

Table 13-2. Conventional variable names for training models

Variable name Purpose Columns included Data included
X (uppercase) Input columns for full data Input All

y (lowercase) Output columns for full data Output All

X_train Input columns of training data Input Training data (80%)

y_train Output columns of training data Output Training data (80%)

X_test Input columns of test data Input Test data (20%)

y_test Output columns of test data Output Test data (20%)

Add another Markdown cell with the following text:

Prepare and split data

Add and run a Python code cell with the following:

X = dataset[['waiver_value_tier','fantasy_regular_season_weeks_remaining',
 'league_budget_pct_remaining']]
y = dataset['winning_bid_dollars']
X_train, X_test, y_train, y_test = train_test_split(X,
 y,
 test_size = 0.20,
 random_state = 0)

You are selecting three of the input columns for X.

You only include the output column when creating y.

The train_test_split function reads the X and y variables and then outputs the
variables explained in Table 13-2.

This parameter determines that 20% of the data will be in the test set and 80%
will be in the training set.

252 | Chapter 13: Deploying a Machine Learning API

https://oreil.ly/_gqSO
https://oreil.ly/_gqSO

If you use the same random_state value each time you call this method, you will
get the same rows in the train and test variables.

Now that you split the data, you are ready to build a model. Because you want to give
a range of predictions, you will create three separate models. When you create the
API, you will combine the results of these models into a single API call.

The process of training your model is called fitting, where the library takes a general
algorithm and fits it or applies it to your training data to make a specialized model.

Add another Markdown cell with the following text:

Creating and fitting models

Add and run a Python code cell with the following:

model_10th_percentile = GradientBoostingRegressor(loss="quantile", alpha=0.1)
model_50th_percentile = GradientBoostingRegressor(loss="quantile", alpha=0.5)
model_90th_percentile = GradientBoostingRegressor(loss="quantile", alpha=0.9)

model_10th_percentile.fit(X_train, y_train)
model_50th_percentile.fit(X_train, y_train)
model_90th_percentile.fit(X_train, y_train)

This command creates a GradientBoostingRegressor model that will try to pre‐
dict the 10th percentile values. In this case, this means a dollar amount that will
be less than 90% of the bids. The next two statements are similar except with dif‐
ferent percentiles.

This statement uses the fit() method to prepare this model to make predictions
based on the training data you provided. The next two lines do the same for the
other two models.

At this point, your models are in scikit_learn format and are only available in this
Jupyter Notebook. To prepare these models for deployment and make them more
cross-platform compatible, you will save your models in the ONNX format. Before
doing this, you’ll need to combine the features from the X variable into the two-
dimensional array format required by the converter. Add another Markdown cell
with the following text:

Convert and save these models in ONNX format

Add and run a Python code cell with the following:

X_array = np.column_stack((X['waiver_value_tier'],
 X['fantasy_regular_season_weeks_remaining'],
 X['league_budget_pct_remaining']))

onx = to_onnx(model_10th_percentile, X_array[:1])
with open("acquisition_model_10.onnx", "wb") as f:

Modeling | 253

 f.write(onx.SerializeToString())

onx = to_onnx(model_50th_percentile, X_array[:1])
with open("acquisition_model_50.onnx", "wb") as f:
 f.write(onx.SerializeToString())

onx = to_onnx(model_90th_percentile, X_array[:1])
with open("acquisition_model_90.onnx", "wb") as f:
 f.write(onx.SerializeToString())

This statement combines the features from the X variable into the two-
dimensional array format required by the convertor.

This statement converts the first model to ONNX format. It sets the names of the
input and output attributes in the model by reading the first row of the X_array,
which contains the element names.

This statement creates a file in the local filesystem and saves the model in ONNX
format.

Evaluation
Planning and training models is an iterative process, so the model at this point likely
needs improving. In a full project, you would iteratively evaluate the model with for‐
mal metrics for accuracy, fairness, and other qualities that make a model appropriate
for production. At that point, you might decide to try a different combination of fea‐
tures and tune your model in different ways.

Since this chapter is focused on deploying models, you will not be performing those
steps. For more information about model evaluation, read Designing Machine Learn‐
ing Sytems by Chip Huyen (O’Reilly, 2022).

Deployment
You are are ready to deploy the model for real-time inference, with one API call
returning a prediction that combines all three models.

Figure 13-3 demonstrates the components used to create this API. If you compare
this to the components of the API created in Part I of this book, you will see many
similarities. FastAPI is still used as the controller, and Pydantic is still used for data
transfer and data validation. However, instead of retrieving data from a database like
the Part I API did, this API will use the ONNX Runtime to perform inference from
the models that you trained and saved.

254 | Chapter 13: Deploying a Machine Learning API

Figure 13-3. Model-serving API components

Begin by creating a Pydantic file named schemas.py to define the inputs and outputs
to the API. FastAPI will use these schemas to generate the OAS file:

.../chapter13 (main) $ touch schemas.py

Add the following to this file:

"""Pydantic schemas"""
from pydantic import BaseModel

class FantasyAcquisitionFeatures(BaseModel):
 waiver_value_tier: int
 fantasy_regular_season_weeks_remaining: int
 league_budget_pct_remaining: int

class PredictionOutput(BaseModel):
 winning_bid_10th_percentile: float
 winning_bid_50th_percentile: float
 winning_bid_90th_percentile: float

The Pydantic library includes a BaseModel object that contains the validation
logic.

This class defines the input values that users will send to get a prediction from
the model.

This class defines the output that will be returned from the model. It contains
three values—one from each model that you trained in the previous section.

Next, create the main.py file, which will contain the rest of the code for your API:

.../chapter13 (main) $ touch main.py

At the top of this file, add the imports and an API description. These will be used in
the OAS file and then displayed on the Swagger UI documentation that FastAPI pro‐
duces. Add this Python code:

"""Fantasy acquisition API"""

from fastapi import FastAPI
import onnxruntime as rt

Deployment | 255

import numpy as np
from schemas import FantasyAcquisitionFeatures, PredictionOutput

api_description = """
This API predicts the range of costs to acquire a player in fantasy football

The endpoints are grouped into the following categories:

Analytics
Get information about health of the API.

Prediction
Get predictions of player acquisition cost.
"""

This library is used to load the models from their files and serve inferences in the
API.

This imports the Pydantic schemas, which will be used to define the inputs and
outputs of the API.

Next, you will add the code that uses the ONNX Runtime to load an inference session
object for each of the three models. Then, these sessions are used to get labels for the
input and output expected for this model. You defined the three inputs expected and
the one output when you created the model in scikit-learn and then converted it to
ONNX format.

Add the following code to the bottom of main.py:

Load the ONNX model
sess_10 = rt.InferenceSession("acquisition_model_10.onnx",
 providers=["CPUExecutionProvider"])
sess_50 = rt.InferenceSession("acquisition_model_50.onnx",
 providers=["CPUExecutionProvider"])
sess_90 = rt.InferenceSession("acquisition_model_90.onnx",
 providers=["CPUExecutionProvider"])

Get the input and output names of the model
input_name_10 = sess_10.get_inputs()[0].name
label_name_10 = sess_10.get_outputs()[0].name
input_name_50 = sess_50.get_inputs()[0].name
label_name_50 = sess_50.get_outputs()[0].name
input_name_90 = sess_90.get_inputs()[0].name
label_name_90 = sess_90.get_outputs()[0].name

This loads the first ONNX model from the file and creates a session object that
can be used to make inferences. The next two lines do the same for the other
model files.

256 | Chapter 13: Deploying a Machine Learning API

This statement gets the name of the input features from the session object. These
will be used when making inferences.

This statement gets the name of the output features from the session object.
These will be used when making inferences.

Because you have placed this code outside any function definitions, it will run once at
startup of the API.

The next section of FastAPI code will be familiar to you if you created the API in Part
I. The first statement creates the FastAPI app object using the API description you
added previously. Then, the @app.get() method creates the health check. This is a
useful best practice that allows users to check the status of the API before making
other API calls.

Add the following code to the bottom of main.py:

app = FastAPI(
 description=api_description,
 title="Fantasy acquisition API",
 version="0.1",
)

@app.get(
 "/",
 summary="Check to see if the Fantasy acquisition API is running",
 description="""Use this endpoint to check if the API is running. You can
 also check it first before making other calls to be sure it's running.""",
 response_description="A JSON record with a message in it. If the API is
 running the message will say successful.",
 operation_id="v0_health_check",
 tags=["analytics"],
)
def root():
 return {"message": "API health check successful"}

This creates the main FastAPI app object using the api_description defined
previously.

This is the FastAPI decorator that defines a GET endpoint at the root address.

This is the function that will be excecuted when this endpoint is called. It returns
a single Python statement to show that the API is running.

The remaining code defines the API endpoint that provides the prediction capabili‐
ties for users. It begins with a Python decorator that provides information that will
end up in the OAS file (and documentation). Then, it has the predict() method that

Deployment | 257

uses the ONNX Runtime to call each model and put their outputs in the API
response.

Add the following code to the bottom of main.py:

Define the prediction route
@app.post("/predict/",
 response_model=PredictionOutput,
 summary="Predict the cost of acquiring a player",
 description="""Use this endpoint to predict the range of cost to
 acquire a player in fantasy football.""",
 response_description="""A JSON record three predicted amounts.
 Together they give a possible range of acquisition costs for a
 player.""",
 operation_id="v0_predict",
 tags=["prediction"],
)
def predict(features: FantasyAcquisitionFeatures):
 # Convert Pydantic model to NumPy array
 input_data = np.array([[features.waiver_value_tier,
 features.fantasy_regular_season_weeks_remaining,
 features.league_budget_pct_remaining]],
 dtype=np.int64)

 pred_onx_10 = sess_10.run([label_name_10], {input_name_10: input_data})[0]
 pred_onx_50 = sess_50.run([label_name_50], {input_name_50: input_data})[0]
 pred_onx_90 = sess_90.run([label_name_90], {input_name_90: input_data})[0]

 # Return prediction as a Pydantic response model
 return PredictionOutput(winning_bid_10th_percentile=round(
 float(pred_onx_10[0]),2),
 winning_bid_50th_percentile=round(
 float(pred_onx_50[0]),2),
 winning_bid_90th_percentile=round(
 float(pred_onx_90[0]), 2))

This decorator creates a POST endpoint at the /predict address. It will be used to
perform inferences.

The ResponseModel statement is used by FastAPI to define the return type of this
endpoint. This will be used to generate the OAS file.

This is the function that will be called at this endpoint.

This statement reformats the input variables into a NumPy array, which is
expected by the ONNX Runtime to call the model.

258 | Chapter 13: Deploying a Machine Learning API

This statement calls the ONNX Runtime and gets an inference for the 10th per‐
centile model using the input from the API call. The next two statements use the
same input to call the other two models.

This statement creates a PredictionOutput object with the inference values,
and returns it in the API call. It rounds the values to two decimal places for
presentation.

With all of the API code completed, you are ready to run the API and test out the ML
model. Enter the following command from the command line:

.../chapter13 (main) $ fastapi run main.py

You will see the application startup occur as shown in Figure 13-4.

Figure 13-4. ML Model API running

In Codespaces, you will also see a pop-up as shown in Figure 13-5.

Figure 13-5. Codespaces browser window pop-up

Click “Open in Browser” to open a browser tab outside your Codespaces. This
browser will show a base URL ending in app.github.dev that contains the response
from your API running on Codespaces. You should see the following health check
message in your web browser:

{"message":"API health check successful"}

Deployment | 259

This confirms your API is running. To view the interactive API documentation for
your API, copy and paste the following onto the end of the base URL in your
browser: /docs. For example, the full URL might be https://happy-pine-
tree-1234-8000.app.github.dev/docs in the browser. You should see documentation, as
shown in Figure 13-6.

Figure 13-6. Documentation for the ML API

To call the ML API, select the POST /predict/ endpoint to open up that section, and
then select “Try it out,” after which you should see a display as shown in Figure 13-7.

260 | Chapter 13: Deploying a Machine Learning API

https://happy-pine-tree-1234-8000.app.github.dev/docs
https://happy-pine-tree-1234-8000.app.github.dev/docs

Figure 13-7. Trying it out for /predict

Here is one big difference from the API you created in Part I: you are using a POST
endpoint instead of GET. To make a call to a POST endpoint, you provide an HTTP
request body in JSON format. This is where users will provide the input values to
send to the API. These were automatically generated based on the FantasyAcquisi
tionFeatures Pydantic class you defined in the previous section. Update the request
body with the following values:

{
 "waiver_value_tier": 1,
 "fantasy_regular_season_weeks_remaining": 12,
 "league_budget_pct_remaining": 88
}

Deployment | 261

Click Execute to send these values to the API. Scroll down and you should see a
server response with a Code value of 200, which indicates success. The predicted val‐
ues will be returned in the HTTP response body, which matches the definition of the
PredictionOutput Pydantic class. You should see an output similar to Figure 13-8,
although the predicted values may differ.

Figure 13-8. API response with prediction

To see the final structure of your project, execute the tree command as follows:

.../chapter13 (main) $ tree --prune -I 'build|*.egg-info|__pycache__'

.
├── acquisition_model_10.onnx
├── acquisition_model_50.onnx
├── acquisition_model_90.onnx
├── main.py
├── player_acquisition_model.ipynb
├── player_acquisition_notebook.log
├── player_training_data_full.csv
├── requirements.txt
└── schemas.py

0 directories, 9 files

Congratulations! You have created the first draft of an ML model and served it with a
REST API.

Documenting Machine Learning Models
Because ML models are not explicitly programmed, the full details of how they oper‐
ate are not always understood, even by the people who train them. Due to the way the
models operate, it is not usually possible to determine why a model makes an individ‐
ual prediction or generates specific content.

Model providers typically provide documentation on the model to explain its
intended purpose, along with known issues and limitations. The techniques for docu‐
menting ML models and applications are quickly evolving. Two methods I have come
across are model cards and system cards.

262 | Chapter 13: Deploying a Machine Learning API

Model cards were proposed by Google to be transparent about an ML model’s opera‐
tions, risks and biases. Google’s proposal for model cards gives more information
about this method, and a few examples.

Meta proposed system cards to document a broader AI system that may contain mul‐
tiple models. Meta’s description says system cards look “holistically across an AI sys‐
tem, versus one-off models.”

Additional Resources
To learn more about data science projects, read Practical Data Science with Python by
Nathan George (Packt Publishing, 2021).

To get more experience using scikit-learn and other ML libraries, read Hands-On
Machine Learning with Scikit-Learn, Keras, and Tensorflow by Aurélien Géron
(O’Reilly, 2022).

To learn more about deploying models for prediction, read Designing Machine Learn‐
ing Systems by Chip Huyen (O’Reilly, 2022).

Extending Your Portfolio Project
Now that you have an API template for serving ML models, there are many ways you
can extend this project:

• Perform evaluation of this model to determine how effective it is at predictions.
Explore tuning parameters and change the features to see if you can improve its
effectiveness.

• Create other types of models using scikit-learn and convert them to ONNX for‐
mat. Use the API to deploy these new models.

• ONNX format also supports libraries other than scikit-learn. Explore creating
models with libraries such as PyTorch or XGBoost, convert them to ONNX for‐
mat, and use the API to deploy these models.

Summary
In this chapter, you learned about the ML lifecycle and created an ML model using
scikit-learn. Then, you converted the model to ONNX format to make it compatible
with more frameworks. Finally, you deployed your model using FastAPI and used it
for real-time inference.

In Chapter 14, you will use generative AI to call an API using LangChain.

Summary | 263

https://oreil.ly/PDB6C
https://oreil.ly/Lx2md

CHAPTER 14

Using APIs with LangChain

A system is more “agentic” the more an LLM decides how the system can behave.
—Harrison Chase, LangChain creator

AI applications use LLMs as a natural language interface with users, and researchers
are exploring ways to use the LLMs to perform multistep tasks. This chapter exam‐
ines two important ways that APIs and LLMs are used together to create AI applica‐
tions. First, you will look at calling LLMs using APIs, and then you will reverse the
roles and call APIs with LLMs. You will use LangChain for both of these tasks.

LangChain and its related project, LangGraph, are open source frameworks for creat‐
ing agentic applications—applications that use LLMs to control the system behavior.
Although many developers build these applications by calling the LLM APIs directly
and performing custom coding to interact with them, LangChain and LangGraph
standardize many of the tasks required. You can think of them as frameworks that sit
on top of the APIs or models.

Here are a few new terms:

Agent
Harrison Chase defines an agent as “a system that uses an LLM to decide the con‐
trol flow of an application.” Agents are not preprogrammed, like traditional soft‐
ware—they use a model to reason and decide the flow of a conversation. They
can execute tool calls that are suggested by function-calling models.

Function-calling model
This is a specialized type of model that considers available functions or tools and
suggests when they should be used. Despite the name, the models don’t call the
tool directly; they give that suggestion to agents, who do the calling.

265

Models
These are the AI models that LangChain users call. LangChain can use models
that are downloaded locally or called via web APIs provided by model providers.

Model families
These are multiple models that share a name and architecture.

Toolkit
This is a collection of multiple tools that an agent will use to perform tasks.

Tools or functions
This is code that provides extra skills to an agent. A simple Python function
might perform mathematical operations. You will create a tool that calls the SWC
API.

The software introduced in this chapter will focus on using the LangChain ecosystem
with APIs. Table 14-1 displays the new tools you will use.

Table 14-1. Tools used in this chapter

Software name Version Purpose
LangChain 0.3 Python library used to create tools and toolkits that allow agents to use your API

LangGraph 0.2 Python library used to create an agent

Anthropic Claude 3.5 Sonnet Model used to provide reasoning to the LangGraph agent

Pydantic 2 Python library used to perform validation in your toolkit

swcpy NA SDK created in Chapter 7 for your API

Calling AI Using APIs (via LangChain)
Figure 14-1 shows the high-level architecture of the project you will create in this
chapter.

To understand the capabilities that LangChain is harnessing, it is helpful to look at
the APIs that LangChain interacts with. The LangChain “Chat Models” page lists
more than 60 providers of chat models. The list also displays which models are
function-calling, which will be important in this chapter because they are capable of
using tools to call APIs.

266 | Chapter 14: Using APIs with LangChain

https://oreil.ly/2elFn

Figure 14-1. High-level architecture

If you look at the documentation for these model providers, they typically provide
documentation for their APIs and allow you to register for an API key (for a fee).
These companies follow many of the best practices from Chapter 6: interactive API
documentation, SDKs in Python and other languages, methods of contacting sup‐
port, and many other features. For these providers, APIs are not a side business—they
are the business.

While it’s tempting to focus only on the potential of LLMs, the
model providers also publish some sobering warnings. The provid‐
ers often provide a model card or system card that describes the
intended use and limitations of their models. At the time of this
writing, these cards of major LLMs list risks such as bias, hallucina‐
tions, mistakes, and harmful content. For example, Anthropic
states in their article, “The Claude 3 Model Family: Opus, Sonnet,
Haiku”: “The models should not be used on their own in high-
stakes situations”.
In this chapter, you will be using a read-only fantasy football API,
which is low risk.

Creating a LangGraph Agent
Letting an LLM decide the control flow of an application (i.e. what we call agents) is attrac‐
tive, as they can unlock a variety of tasks that couldn’t previously be automated. In practice,
however, it is incredibly difficult to build systems that reliably execute on these tasks.

—LangChain blog post, “Announcing LangGraph v0.1 & LangGraph Cloud: Running
agents at scale, reliably”, June 2024

Creating a LangGraph Agent | 267

https://oreil.ly/vq7FK
https://oreil.ly/vq7FK
https://oreil.ly/vq7FK
https://oreil.ly/KoxAw
https://oreil.ly/KoxAw

LangGraph is a LangChain-related project focused on creating applications that have
one or more agents working together. LangChain has methods for using agents,
which have recently been labeled as legacy methods, at the time of this writing. Lang‐
Graph is intended to be an improvement on these methods by allowing more devel‐
oper control and supporting multiagent applications.

LangGraph uses some terminology from mathematical graph theory (see “Orches‐
trating the Data Pipeline with Apache Airflow” on page 199). The logical flow of
LangGraph agents is represented by nodes, which are processes that update the state
of the application. The nodes are connected by edges, which are one-way flows
between one node and another. Where Airflow had acyclic graphs that begin at a start
node and go in one direction to an end node, LangGraph allows cyclical graphs,
where nodes and edges can loop multiple times. For example, a loop may allow a user
to ask multiple questions to a model before getting the final answer.

Figure 14-2 shows how nodes and edges relate to each other in a directed cyclic graph
that contains loops.

Figure 14-2. Directed cyclic graph

You will be creating an agent in this chapter that can be represented by a directed
cyclic graph.

Signing Up for Anthropic
You will be using a model from Anthropic, so you need to sign up for an Anthropic
account at the “Build with Claude” web page.

To use the Anthropic API, you will need to upgrade your initial account to a Build
Plan and add funds to your account. To limit potential overspending, I suggest ini‐
tially adding $5 and disabling auto-reload. This means the maximum amount you
can spend is $5, even if your API key is misused.

268 | Chapter 14: Using APIs with LangChain

https://console.anthropic.com/login

Next, navigate to the Anthropic API keys page and select Create Key. Give the key a
name such as secret-api-key and select the Default workspace. Your display should
look like Figure 14-3.

Figure 14-3. Creating an Anthropic API key

Click Add. You will be prompted to “Save Your API key.” This is the only time the key
will be displayed. Store this key in a secure location.

If you lose your Anthropic API key or think it may have been
exposed, delete it from the keys page and create a new one. This is
called rotating a credential, and it is a convenient way to lower the
risk of your API key being abused.

Launching Your GitHub Codespace
Before you launch the GitHub Codespace for this chapter, you want to add the
Anthropic API key as a secret in your Codespace. This will allow you to use the
Anthropic models with LangGraph.

Follow the instructions for “Adding a secret” and create a new secret with the follow‐
ing information:

• Name: ANTHROPIC_API_KEY
• Value: Use the value of the Anthropic API key you created in the previous sec‐

tion.
• Repository access: Select the ai-project repository.

When completed, you should see the key saved as shown in Figure 14-4.

Creating a LangGraph Agent | 269

https://oreil.ly/fcaYA
https://oreil.ly/VGSJ3

Figure 14-4. Codespaces secrets

Installing the New Libraries in Your Codespace
Now launch your Codespace. You will be working with the Part III GitHub Code‐
space that you created in “Cloning the Part III Repository” on page 240. If you haven’t
created your Part III Codespace yet, you can complete that section now. To install the
libraries you need for this chapter, create a file named chapter14/requirements.txt:

.../analytics-project (main) $ cd chapter14

.../chapter14 (main) $ touch requirements.txt

Update chapter14/requirements.txt with the following contents:

langchain_core>=0.3.0,<0.4.0
langchain_anthropic>=0.2.0,<0.3.0
langgraph>=0.2.0,<0.3.0

This installs the base LangChain library and its dependencies.

This library is used for the specific model you use in this chapter.

This is the LangGraph library used to define your agent.

Execute the following command to install the new libraries in your Codespace, and
make sure to upgrade to the latest version available:

.../chapter14 (main) $ pip3 install --upgrade -r requirements.txt

You should see a message that states that these libraries were successfully installed.

Creating Your Jupyter Notebook
You will be using a Jupyter Notebook to implement a conversational chat agent, based
on an example from the LangChain GitHub repository.

270 | Chapter 14: Using APIs with LangChain

https://oreil.ly/U-TJF

To get started, run the following commands in the Terminal window to create the
new directory and the Jupyter Notebook you will be using in this chapter:

.../chapter14 (main) $ touch langgraph_notebook.ipynb

Click the langgraph_notebook.ipynb file to open it. In the top-right of the file, click
Select Kernel. Codespaces should prompt you to “Install/Enable suggested extensions
Python + Jupyter”—select this. Click Install in the additional pop-up window, if
prompted. This will install some extensions to VS Code.

After the installation completes, the title of the window will change to Select Another
Kernel. Select Python Environments. The title of the window will change to Select a
Python Environment. One Python version should be listed with a star next to it—
select this Python version.

Click “+ Markdown” to create a new Markdown cell. Enter the following title in the
Markdown cell:

LangGraph Agent
Without tools

Run this cell by clicking the play icon on the left of the cell or by pressing Shift-Enter.
You should see your message formatted as a title.

Create another Markdown cell and run it with the following:

Library Imports

Hover your cursor below this cell and click “+ Code” to create a new Python cell.
Enter the following code in the Python cell:

from langchain_core.messages import HumanMessage
from langchain_anthropic import ChatAnthropic
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, START, StateGraph, MessagesState
import logging
from IPython.display import Image, Markdown, display
from langchain_core.runnables.graph import CurveStyle,
MermaidDrawMethod, NodeStyles

This import defines the messages you’ll use to communicate with the agent.

This is the library for using the Anthropic model.

The following libraries enable different parts of the LangGraph framework.

This will be used for the formatting of the messages returned by the agent.

This will be used to display a visual view of the graph.

Creating Your Jupyter Notebook | 271

Placing all the imports at the top of your notebook helps keep track of the libraries
you are using. These imports will work for all the cells in this Jupyter Notebook.

Add another Markdown cell with the following text:

Configure logging

Add and run a Python code cell with the following:

for handler in logging.root.handlers[:]:
 logging.root.removeHandler(handler)

logging.basicConfig(
 filename='langgraph_notebook.log',
 level=logging.INFO,
)

This statement removes any existing logging handlers configured by Codespaces.

This sets the logging level to record in the log. Review Table 7-1 for more details
about Python logging.

Add another Markdown cell with the following text:

Configure Agent and Model

Add and run a Python code cell with the following:

model = ChatAnthropic(model="claude-3-5-sonnet-20240620", temperature=0)

def call_model(state: MessagesState):
 messages = state['messages']
 response = model.invoke(messages)
 return {"messages": [response]}

workflow = StateGraph(MessagesState)

workflow.add_node("agent", call_model)

workflow.add_edge(START, "agent")

checkpointer = MemorySaver()

app = workflow.compile(checkpointer=checkpointer)

This initializes the Anthropic model. The temperature sets how creative the
responses are. Lower is less creative and more predictable.

This function is used to send messages to the model using the state object.

The workflow is used to define the tasks available to the agent.

272 | Chapter 14: Using APIs with LangChain

The agent node will use the call_model function defined above.

This defines the start of the graph, which will directly call the agent node.

This statement compiles the graph into a LangChain Runnable object named app.
(For more information, see the documentation for the Runnable interface.) The
app object will act as the agent.

Viewing a visual representation of the graph will help you see the nodes and edges
that were created in this code, and the flow of the agent you created. Add another
Markdown cell with the following text:

Visualize the Graph

Add and run a Python code cell with the following:

display(
 Image(
 app.get_graph().draw_mermaid_png(
 draw_method=MermaidDrawMethod.API,
)
)
)

Displaying an image of the graph demonstrates the flow of your agent. You should see
an image that matches Figure 14-5. This shows that the graph will start and a message
will be sent to the agent without referencing any other nodes.

Figure 14-5. Graph of the basic agent

Chatting with the LangGraph Agent
You are ready to have a conversation with the agent you have created. You will
accomplish this by using the app.invoke() method along with a messages object.
The call to the invoke() method also includes a config object with a thread_id
value. The thread_id allows the agent to remember previous messages in the
conversation.

Add another Markdown cell with the following text:

Chat with the Agent

Chatting with the LangGraph Agent | 273

https://oreil.ly/UJJzq

Add and run a Python code cell with the following:

final_state = app.invoke(
 {"messages": [HumanMessage(content="What teams did Joe Montana play for?")]},
 config={"configurable": {"thread_id": 99}}
)
display(Markdown(final_state["messages"][-1].content))

This is how you will chat with your agent. The app.invoke command sends the
messages object and adds a question as a HumanMessage. The config object passes a
thread_id so that the agent knows you are in the same conversation. While you are
using this thread_id, the agent will remember the previous messages in the same
conversation. After each invoke() statement, the final_state object contains a list
of messages between the model and the human.

To get the most recent message in the conversation, you will display
final_state["messages"][-1].content. The messages will have Markdown for‐
matting, so you can use the display(Markdown()) statement to format them
correctly.

Remember that models are nondeterministic, even with a temperature setting of zero.
This means that each interaction may be slightly different. But if your call to the
graph is successful, you should see a message similar to this:

Joe Montana played for two NFL teams during his professional career:

1. San Francisco 49ers (1979-1992)
2. Kansas City Chiefs (1993-1994)
He spent the majority of his career with the 49ers, where he achieved his
greatest success, before finishing his career with two seasons in Kansas City.

If you receive an error at this step related to the API key, check to
make sure that you have added funds to your Anthropic account,
created an API key, and set it in your Codespaces secrets. If any of
these steps were skipped, you won’t be able to use the Anthropic
model in this example.

It appears that the Anthropic model has been trained with historical information
about the NFL. Let’s see how it does when we ask questions about the SportsWorld‐
Central app. Add and run a Python code cell with the following:

final_state = app.invoke(
 {"messages": [HumanMessage(content="What are the leagues in the
 SportsWorldCentral fantasy football platform?")]},
 config={"configurable": {"thread_id": 99}}
)
display(Markdown(final_state["messages"][-1].content))

274 | Chapter 14: Using APIs with LangChain

You will receive a message similar to the following:

I apologize, but I don't have any specific information about leagues in a
platform called "SportsWorldCentral" for fantasy football. Fantasy football
platforms can vary widely in their league structures and offerings, and I'm not
familiar with this particular one. If this is a real platform, you might
need to check their website or contact their customer support
for accurate information about their league types and structures.
If you have more general questions about fantasy football leagues,
I'd be happy to help with those.

The model apparently suspects that SportsWorldCentral may not be “a real platform,”
but even for real-world platforms like Sleeper or MyFantasyLeague.com, the model
doesn’t contain information about specific leagues and teams.

To solve this knowledge gap, you will create a toolkit that provides access to the
SportsWorldCentral API.

Running the SportsWorldCentral (SWC) API Locally
The code and database files for the SWC API are in the /api folder of your Codespace.
Start a second session in the Terminal and install the required libraries for the API in
your Codespace as shown, using the requirements.txt file that is provided:

.../ai-project (main) $ cd api

.../api (main) $ pip3 install -r requirements.txt

Now launch the API from the command line as shown:

.../api (main) $ fastapi run main.py

You will see several messages from the FastAPI CLI, ending with the following:

INFO: Started server process [19192]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

The API is now running in Codespaces. Copy the URL shown in the Terminal (in this
example it is http://0.0.0.0:8000, and it may be in yours too).

In the primary Terminal session, create a file named .env in the base project directory
as shown:

chapter14 (main) $ touch ../.env

Update this file with the following contents:

SWC_API_BASE_URL=[URL from previous step]

This will be used in the Jupyter Notebook you create later.

Running the SportsWorldCentral (SWC) API Locally | 275

http://0.0.0.0:8000

Installing the swcpy Software Development Kit (SDK)
To build the toolkit for using your API, you will first install the swcpy SDK that you
created in Chapter 7. If you completed that project already, you can copy that code to
this repository and install it locally using pip3 install -e in the /sdk directory. If
you have not completed that yet, execute the following command to install the SDK
from the Part I GitHub repository:

.../api (main) $ pip install swcpy@git+https://github.com/handsonapibook/
api-book-part-one#subdirectory=chapter7/complete/sdk

If the installation is successful, you should see the following:

Successfully built swcpy
Installing collected packages: pyarrow, backoff, swcpy
Successfully installed backoff-2.2.1 pyarrow-16.1.0 swcpy-0.0.2

You will be creating a tool that uses the swcpy SDK, which gives the
most robust way to interact with your API. There are other meth‐
ods you could use to interact with your API. For example, you
could also build a tool that is based on the simple API client that
you created in Chapter 9. Or you could create a tool that directly
calls individual API endpoints using httpx or requests. You may
want to experiment with different methods to see which you prefer.

Creating a LangChain Toolkit
A LangChain toolkit contains multiple tools. LangChain provides multiple ways to
create tools, as shown in “How to Create Tools”. You will create tools by subclassing
the BaseTool class. According to the documentation, this method “provides maximal
control over the tool definition.”

Create a Python file named swc_toolkit.py as shown:

chapter14 (main) $ touch swc_toolkit.py

At the top of your toolkit file, you will add your imports and load the Codespace
secret. Add the following contents to swc_toolkit.py:

import os
from typing import Optional, Type, List

from pydantic import BaseModel, Field

from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.tools import BaseTool, BaseToolkit

try:
 from swcpy import SWCClient

276 | Chapter 14: Using APIs with LangChain

https://oreil.ly/V8tBi

 from swcpy import SWCConfig
 from swcpy.swc_client import League, Team
except ImportError:
 raise ImportError(
 "swcpy is not installed. Please install it."
)

config = SWCConfig(backoff=False)
local_swc_client = SWCClient(config)

These imports use the LangChain libraries for defining tools and toolkits.

This statement checks to see if the swcpy SDK has been installed in the environ‐
ment. If not, an error is generated.

This instantiates the SDK. For more information about how this works, see
Chapter 7.

The swcpy SDK has multiple functions, which call API endpoints in different ways.
For each of the SDK functions you make available to the agent, create an instance of
the Pydantic BasesModel class for input values and an instance of the LangChain
BaseTool class to call the SDK. You will create the following tools:

• HealthCheckTool: Allows the agent to check if the API is up and running
• ListLeaguesTool: Allows the agent to get a list of leagues
• ListTeamsTool: Allows the agent to get a list of teams

Add the following contents to the bottom of swc_toolkit.py, which add the Health
CheckTool and ListLeaguesTool:

class HealthCheckInput(BaseModel):
 pass

class HealthCheckTool(BaseTool):
 name: str = "HealthCheck"
 description: str = (
 "useful to check if the API is running before you make other calls"
 args_schema: Type[HealthCheckInput] = HealthCheckInput
 return_direct: bool = False

 def _run(
 self, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
 """Use the tool to check if the API is running."""
 health_check_response = local_swc_client.get_health_check()
 return health_check_response.text

Creating a LangChain Toolkit | 277

class LeaguesInput(BaseModel):
 league_name: Optional[str] = Field(
 default=None,
 description="league name. Leave blank or None to get all leagues.")

class ListLeaguesTool(BaseTool):
 name: str = "ListLeagues"
 description: str = (
 "get a list of leagues from SportsWorldCentral. "
 "Leagues contain teams if they are present."
 args_schema: Type[LeaguesInput] = LeaguesInput
 return_direct: bool = False

 def _run(
 self, league_name: Optional[str] = None,
 run_manager: Optional[CallbackManagerForToolRun] = None
) -> List[League]:
 """Use the tool to get a list of leagues from SportsWorldCentral."""
 # Call the API with league_name, which could be None
 list_leagues_response = local_swc_client.list_leagues(
 league_name=league_name)
 return list_leagues_response

For each tool, you will define an input object, which is a subclass of the Pydantic
BaseModel. This tool does not accept parameters, so you are creating an empty
object.

This is the definition of the tool for the health check, and it is a subclass of the
LangChain BaseTool. The information you provide in this section will be used by
the model to decide how and when to use this tool.

The args_schema defines what inputs are expected, and the model will use this to
send input to the tool.

This is where the action occurs. It is calling the get_health_check() method
from the SDK.

This is the input defined for the ListLeaguesTool. It contains parameters used
by that tool.

This is the tool that will call the SDK’s list_leagues() function.

Now you will add the ListTeamsTool and create a BaseToolkit object that represents
all of the tools that you will be providing to an agent. Add the following contents to
the bottom of swc_toolkit.py:

class TeamsInput(BaseModel):
 team_name: Optional[str] = Field(

278 | Chapter 14: Using APIs with LangChain

 default=None,
 description="Name of the team to search for.
 Leave blank or None to get all teams.")
 league_id: Optional[int] = Field(
 default=None,
 description=(
 "League ID from a league. You must provide a numerical League ID. "
 "Leave blank or None to get teams from all leagues."
))

class ListTeamsTool(BaseTool):
 name: str = "ListTeams"
 description: str = (
 "Get a list of teams from SportsWorldCentral. Teams contain players "
 "if they are present. Optionally provide a numerical League ID to "
 "filter teams from a specific league.")
 args_schema: Type[TeamsInput] = TeamsInput
 return_direct: bool = False

 def _run(
 self, team_name: Optional[str] = None,
 league_id: Optional[int] = None,
 run_manager: Optional[CallbackManagerForToolRun] = None
) -> List[Team]:
 """Use the tool to get a list of teams from SportsWorldCentral."""
 list_teams_response = local_swc_client.list_teams(
 team_name=team_name, league_id= league_id)
 return list_teams_response

class SportsWorldCentralToolkit(BaseToolkit):
 def get_tools(self) -> List[BaseTool]:
 """Return the list of tools in the toolkit."""
 return [HealthCheckTool(), ListLeaguesTool(), ListTeamsTool()]

This is the input defined for the ListTeamsTool. It contains parameters used by
that tool.

This is the tool that will call the SDK’s list_teams() function.

The toolkit is subclassed from the LangChain BaseToolkit class.

The get_tools() method returns a list of the tools in the toolkit.

This statement instantiates the tools and returns them in a list.

Creating a LangChain Toolkit | 279

Calling APIs Using AI (with LangGraph)
In the langgraph_notebook.ipynb notebook, you created an agent that could chat, but
the agent was unable to answer questions from the SWC API. Now you will make an
improved version that can use tools to call the SWC API. First, make a copy of the
Jupyter Notebook with the following commands:

.../chapter14 (main) $ cp langgraph_notebook.ipynb \
langgraph_notebook_with_toolkit.ipynb

Open langgraph_notebook_with_toolkit.ipynb and select the Python kernel as you did
previously. Update the first Markdown cell with the following text for clarity:

LangGraph Agent
With tools

Add the following to the first Python cell that contains the import statements and re-
run it:

from swc_toolkit import SportsWorldCentralToolkit
from langchain_core.tools import tool
from langgraph.prebuilt import ToolNode
from typing import Literal

This is the import statement for the toolkit that you created.

This import provides the LangChain tool functionality.

This import adds LangGraph support for toolkits.

Find the Python cell that is used to configure logging. Beneath that cell, add the fol‐
lowing Markdown cell:

Create toolkit

Now you will reference the toolkit you created and imported earlier. To instantiate
your toolkit, add the following Python cell and run it:

swc_toolkit = SportsWorldCentralToolkit()
tools = swc_toolkit.get_tools()

These statements create an instance of your toolkit class, then retrieve all of the tools
from it and put those into the tools object.

For the main body of your agent, there will be many changes. You will be binding the
tools to your model, which means making the model aware of the tools it has access
to. Then, you will create a node for the tools and update the flow of the agent to use
tools when needed to answer questions.

280 | Chapter 14: Using APIs with LangChain

Locate the Python cell following the title “Configure Agent and Model.” Replace the
entire contents with the following, and run it:

tool_node = ToolNode(tools)

model = ChatAnthropic(model="claude-3-5-sonnet-20240620",
 temperature=0).bind_tools(tools)

def should_continue(state: MessagesState) -> Literal["tools", END]:
 messages = state['messages']
 last_message = messages[-1]
 if last_message.tool_calls:
 return "tools"
 return END

def call_model(state: MessagesState):
 messages = state['messages']
 response = model.invoke(messages)
 return {"messages": [response]}

workflow = StateGraph(MessagesState)

workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)

workflow.add_edge(START, "agent")

workflow.add_conditional_edges(
 "agent",
 should_continue,
)

workflow.add_edge("tools", 'agent')

checkpointer = MemorySaver()

app = workflow.compile(checkpointer=checkpointer)

This adds the bind_tools() function to the model initialization so that the
model can use the toolkit you created.

This will be used as a conditional edge, which is a workflow that decides how to
proceed based on the results. If the model suggests a tool call, this returns the lit‐
eral “tools.”

This adds a new node in the graph to perform tool calls using the new toolkit.

This adds the conditional edge that uses the should_continue function defined
earlier.

Calling APIs Using AI (with LangGraph) | 281

To see how the flow has been updated to add a tool node, rerun the Python cell under
the “Visualize the Graph” heading.

You should see an image that matches Figure 14-6. This shows a loop between the
agent and the available tools.

Figure 14-6. Graph of the agent with tools

The agent will decide how many times it needs to use the tools to answer the ques‐
tion. Depending on the question asked and the reasoning of the agent, this may
involve one API call, multiple API calls, or no API calls.

Chatting with Your Agent (with Tools)
Now it’s time to see if your effort to provide tools to the agent has improved its ability
to answer questions about SportsWorldCentral. Let’s start with the question that
stumped it before. Enter the following in a new Python cell and run it:

final_state = app.invoke(
 {"messages": [HumanMessage(content="What are the leagues in the
 SportsWorldCentral fantasy football platform? Keep the response simple.")]},
 config={"configurable": {"thread_id": 99}}
)
display(Markdown(final_state["messages"][-1].content))

You will receive a message similar to the following:

Here's a simple list of the leagues in the SportsWorldCentral fantasy
football platform:

1. Pigskin Prodigal Fantasy League
2. Recurring Champions League
3. AHAHFZZFFFL
4. Gridiron Gurus Fantasy League
5. Best League Ever

These are the five leagues currently available in the platform.

282 | Chapter 14: Using APIs with LangChain

If you look at the Terminal window, you should see the following, which indicates
that the agent used the ListLeaguesTool from the toolkit:

INFO: 0.0.0.0:8000 - "GET /v0/leagues/?skip=0&limit=100 HTTP/1.1" 200 OK

Congratulations! You have created a LangGraph agent and provided it a toolkit to call
your custom API.

Take time and experiment with questions that will encourage the agent to use the
HealthCheckTool and the ListTeamsTool. Look at the Terminal output or log file to
see the API calls that are generated. How can you influence its tool use? How can you
guide it to answer more difficult questions using the tools? How can you stump it?

Extending Your Portfolio Project
You have learned to create AI agents using LangGraph and LangChain. Here are a few
ideas to continue your learning:

• If you deployed your API in Chapter 6, modify the code in this chapter to use the
cloud-hosted API instead of running the API in your Codespace.

• Continue adding more tools from your API to the toolkit. Explore how the defi‐
nition of the tools and the prompts you provide influence the behavior of the
agent.

• You used models from Anthropic in this chapter. Experiment using other
function-calling models that LangChain supports, as shown in the LangChain
“Chat Models” page.

• Provide your agent with additional tools and ask it to use these tools in combina‐
tion. A first suggestion: create a toolkit for the nfl_data_py library you used in
“Installing Streamlit and nfl_data_py” on page 217.

Additional Resources
LangChain is a recent framework, so published resources are having a hard time
keeping up. As you look at online resources and demos, check the versions of libra‐
ries that are being discussed, because at the time of this writing, some of the resources
contained deprecated code.

With that caveat, the most up-to-date resource is the official LangChain docs page.

LangGraph is even newer than LangChain; the LangGraph documentation has the
most detailed information.

To see Anthropic’s advice on agents, including several recommended workflows, read
“Building Effective Agents”.

Additional Resources | 283

https://oreil.ly/w8YWi
https://oreil.ly/w8YWi
https://oreil.ly/jyC-I
https://oreil.ly/WBOXF
https://oreil.ly/QvAKC

Google produced an Agents Whitepaper that explains the key components in a fully
functional agent. It has a strong emphasis on how agents can use tools, which
includes APIs.

Summary
In this chapter, you used the LangChain and LangGraph frameworks to create an
intelligent agent that interacted with an AI model and your SWC API. This allowed
you to ask questions about SWC data with natural language in a Jupyter Notebook.
These are the beginning steps to using APIs with AI applications.

In Chapter 15, you will use ChatGPT, which is a full-featured application that uses
LLMs and can call APIs like you did in this chapter. You will create a custom action
and custom GPT that can interact with the SWC API.

284 | Chapter 14: Using APIs with LangChain

https://oreil.ly/M5hV_

CHAPTER 15

Using ChatGPT to Call Your API

In the previous chapter, you built a basic generative AI application that could chat
with a model in natural language and retrieve data from the SportsWorldCentral API.
You created quite a bit of Python code to accomplish that.

In this chapter, you will use custom GPTs from OpenAI to accomplish this task
without creating any Python code other than the SportsWorldCentral API. You can
think of a custom GPT as a low-code method for creating a generative AI application
that connects to your API.

Architecture of Your Application
Figure 15-1 shows the high-level architecture of the project you will create in this
chapter.

If you compare this diagram to Figure 14-1, you will see a few similarities. In both
cases, a user is using natural language chat to retrieve data from the SportsWorldCen‐
tral API. In both cases, a function-calling LLM is used to chat with the user and
decide when to call the API for additional information. Although you used an
Anthropic model in Chapter 14, you could have used the same OpenAI GPT-4o
model that you will use in this chapter.

However, there are also large differences from Chapter 14’s architecture. Where
Chapter 14 required many different Python components to be developed and run on
GitHub Codespaces, in this chapter, only the SportsWorldCentral API will be running
there. As you continue through this chapter, I will share more contrasts with
Chapter 14.

285

Figure 15-1. High-level architecture

As with the model used in Chapter 14, you should be aware of the
limitations and risks of the model you are using. The GPT-4o Sys‐
tem Card states risks that include misinformation, violent speech,
and others.

Getting Started with ChatGPT
The first step is to sign up for a ChatGPT user account, from the OpenAI home page.
You need to select a plan that includes the Create GPTs capability. At the time of this
writing, the ChatGPT pricing page shows that Plus, Team, and Enterprise accounts
have that option. Follow the sign-up instructions to activate your account. Once you
have signed up, log in and navigate back to the ChatGPT home page.

If you would like to prevent OpenAI from using your chats to train
its models, you can request this through the OpenAI privacy por‐
tal. Doing so reduces the possibility that information you enter in
ChatGPT or custom GPTs will be shown to other users acciden‐
tally.

286 | Chapter 15: Using ChatGPT to Call Your API

https://oreil.ly/v8SNX
https://oreil.ly/v8SNX
https://chat.openai.com
https://oreil.ly/gptpri
https://chat.openai.com
https://oreil.ly/2qLwN
https://oreil.ly/2qLwN

Creating a Custom GPT
To create your first GPT, click your profile photo and select My GPTs. You will see the
My GPTs page, as shown in Figure 15-2.

Figure 15-2. My GPTs page

Click Create a GPT. The New GPT page will be displayed with the Configure option
selected, as shown in Figure 15-3.

Figure 15-3. Creating a new GPT

Creating a Custom GPT | 287

The large button with the plus sign on it is used to select an image for your custom
GPT. Download a public-domain image to your computer, then click that button.
Select Upload Photo and upload the local file. You can view an example of a public
domain image of a football and helmet at https://oreil.ly/dItdO.

To configure the GPT, fill out the options on the New GPT page as shown in
Figure 15-4.

Figure 15-4. New GPT information, part 1

Scroll down the page to see additional options. Leave the conversation starters empty
at this time. Under the Capabilities section, do not select any capabilities. The display
should look like Figure 15-5.

288 | Chapter 15: Using ChatGPT to Call Your API

https://oreil.ly/dItdO

Figure 15-5. New GPT information, part 2

Take a minute to see what your custom GPT can do with what you have given it
so far. In the Preview pane, enter the following prompt: What are the specific
league names from the SportsWorldCentral fantasy football platform?

The response you get when you perform this task may be different from what another
user would receive. That is because generative AI responses are nondeterministic. (If
you make your query too broad, your GPT may hallucinate and provide information
that isn’t valid.) Figure 15-6 displays an example where the GPT states that it doesn’t
have specific information about team names, because they are not publicly available.
That is correct; to get the team names, it will need to call an API.

Creating a Custom GPT | 289

Figure 15-6. Prompt and response from custom GPT

This reflects a knowledge gap, which means that the model has not been trained on
the information it needs to answer your prompt. To overcome this knowledge gap,
you will create a custom action that enables your GPT to call the SWC API.

First, you need to launch your API in GitHub Codespaces with a public endpoint and
update it to include the server URL in the OAS file.

Launching Your GitHub Codespace
You will be working with the Part III GitHub Codespace that you created in “Cloning
the Part III Repository” on page 240. If you haven’t created your Part III Codespace
yet, you can complete that section now.

290 | Chapter 15: Using ChatGPT to Call Your API

Running the SportsWorldCentral (SWC) API in GitHub
Codespaces
In the Terminal of your Codespace, install the required libraries using the provided
requirements.txt file as follows:

.../ai-project (main) $ cd api

.../api (main) $ pip3 install -r requirements.txt

Launch the API from the command line as shown:

.../api (main) $ fastapi run main.py

You will see several messages, ending with the following:

INFO: Started server process [19192]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

You will see a dialog stating “Your application running on port 8000 is available” as
shown in Figure 15-7. Click Make Public.

Figure 15-7. Making the API public

The API is now running in Codespaces with a public port. To view the API in the
browser, click Ports in the terminal and hover over Port 8000 (see Figure 15-8).

Figure 15-8. API on a public address

Click the globe icon to open in the browser. If you receive the message “You are about
to access a development port served by someone’s codespace,” click Continue.

The browser will open to a URL that ends in app.github.dev, and you should see the
following health check message in your web browser:

{"message":"API health check successful"}

Running the SportsWorldCentral (SWC) API in GitHub Codespaces | 291

Your API is running publicly in the cloud.

Next, you need to capture the public URL of your API so that you can use it in the
next section. Copy the URL in the address bar and save that value.

Stop the API by pressing Ctrl-C at the terminal.

Adding the Servers Section to Your OAS File
To update your OAS file, you need to update your FastAPI code. Open the main.py
file and update the constructor so that it matches the following:

app = FastAPI(
 description=api_description,
 title="Sports World Central (SWC) Fantasy Football API",
 version="0.2",
 servers=[
 {"url": "[your base URL from previous step]",
 "description": "Main server"}
]

)

The value inside the quote marks should be the full public URL you copied in the
previous step.

Adding this section in the code makes two changes that you can verify:

• The Servers section will be added to the OAS file.
• The Servers section will be added to the API documentation (which is auto-

generated from the OAS file).

To verify these, start your API again from the Terminal:

.../api (main) $ fastapi run main.py

Navigate to the API documentation by adding /docs to the URL. Below the General
section, you should see a Servers select box as shown in Figure 15-9.

Figure 15-9. Servers section added to API documentation

292 | Chapter 15: Using ChatGPT to Call Your API

To view the OAS file, click the openapi.json link at the top of the documentation page.
(You may need to add a browser extension to format the JSON for readability.) Below
the info section of the OAS file, you should see a new servers section that looks like
the following:

"servers": [
 {
 "url": "[your base URL]",
 "description": "Main server"
 }
]

Copy the full path of the OAS file from the browser, including openapi.json. You will
use it in the next step.

Creating a GPT Action
As shown in Figure 15-1, your custom GPT will contain a custom action inside it.
This is the component that calls your API.

At the bottom of the Configure tab, click the “Create new action” button. The Add
Actions page will be displayed. Leave the Authentication entry as None, because your
API does not require authentication.

Click Import URL, and then paste the full address of your OAS file from the previous
step. Your display should look like Figure 15-10 at this point.

Figure 15-10. Importing the OAS file

Creating a GPT Action | 293

Click Import. The Schema section will be populated with the contents of your OAS
file, as shown in Figure 15-11.

Figure 15-11. OAS file populated

Scroll down below the text of the OAS file and you will see a list of available actions.
Figure 15-12 shows the top of this list.

294 | Chapter 15: Using ChatGPT to Call Your API

Figure 15-12. Available actions list

Testing the APIs in Your GPT
You will notice that the “Available actions” section lists all of the endpoints in your
OAS file. If you wanted to restrict the GPT to a subset of the endpoints in your API,
you could manually edit this schema to remove any endpoints you did not want it to
use. All of these endpoints are public read-only, so you will leave them in the schema.

Contrasting ChatGPT with LangGraph
This is a good time to contrast the process of providing APIs to a custom GPT in this
chapter and “Creating a LangGraph Agent” on page 267. Using LangGraph, you pro‐
vided tools to the AI application by creating a toolkit with Python Code. Then, you
gave that toolkit to a function-calling model to decide which functions to call. The
model decided which function to use based on the description in the Python toolkit.

With the custom GPT in this chapter, you provided the OAS file, and the user inter‐
face added all of the path entries as possible tools. You have the option of removing
any of those items that you did not want the custom GPT to use. Then the custom
GPT decided which item to use based on the description in the OAS path object.

Testing the APIs in Your GPT | 295

To verify that the connection to your API is set up properly, click the Test button next
to v0_health_check. Your GPT will call the API’s health check endpoint and give a sta‐
tus of the API, as shown in Figure 15-13.

Figure 15-13. GPT calling health check endpoint

You are ready to add this action to your GPT. Click the Save button. The Share GPT
dialog will be displayed as shown in Figure 15-14.

Figure 15-14. Share GPT dialog

Select “Only me” to keep this GPT private. Click Save.

The Settings Saved dialog will be displayed with a direct link to the GPT. You do not
need to use the link at this time. Click View GPT.

Chatting with Your Custom GPT
Now that you have created a custom GPT, you will see it displayed in the navigation
sidebar beneath ChatGPT. As shown in Figure 15-1, your GPT is a separate applica‐
tion from ChatGPT. Now your GPT has the ability to access the SWC Fantasy Foot‐
ball API to get information.

Select the SWC Fantasy Football Advisor in the navigation. The display should look
like Figure 15-15.

296 | Chapter 15: Using ChatGPT to Call Your API

Figure 15-15. Fantasy Football advisor ready to chat

Don’t miss the note at the bottom of this page: “ChatGPT can make
mistakes. Check important info.” It bears repeating that conversa‐
tions with GPTs are impressive and quite convincing, but OpenAI
is transparent that LLMs can provide unreliable information and
hallucinate in their responses.
Some developers have found that GPTs struggle to process statistics
accurately for APIs that return large amounts of data. For fantasy
sports, the stakes are fairly low. But if your usage expands to tasks
where accuracy is more important, don’t overlook the warnings
that OpenAI is clearly publishing.

Start your conversation by repeating the question you asked before: What are the
specific league names from the SportsWorldCentral Fantasy Football

platform?

The GPT will state that it wants permission to call your API. Click Always Allow.

The GPT will state that it talked to your API. It also will show that it found the limit
parameter and used a value of 10 to limit the number of results.

Then, it will answer the questions using the information returned from your API, as
shown in Figure 15-16. It has overcome the knowledge gap by accessing data from
your API.

Chatting with Your Custom GPT | 297

https://oreil.ly/Pncx5
https://oreil.ly/Pncx5

Figure 15-16. Results from API call

To see the API calls that the GPT made, look at the Terminal output in your Code‐
space. You will see the API calls made:

INFO: 10.240.2.131:0 - "GET / HTTP/1.1" 200 OK
INFO: 10.240.4.161:0 - "GET /v0/leagues/?skip=0&limit=100 HTTP/1.1" 200 OK

This is a call to the health check endpoint.

This is a call to the get leagues endpoint.

In this case, the custom GPT made the right choices: it used the health check end‐
point to make sure the API was available, and it used the get leagues endpoint to see
available SWC leagues.

Congratulations! You have created a custom GPT and provided it access to your API
through a custom action.

Take time and experiment with questions that will encourage the agent to use more of
your API endpoints. Look at the Terminal output to see the API calls that are gener‐
ated. How can you influence which API it calls? How can you guide it to answer more
difficult questions using the tools? How can you stump it?

Completing Your Part III Portfolio Project
You have reached the end of Part III, congratulations! As with Parts I and II, there is
some housekeeping required to get the portfolio project ready to share. You’ll move

298 | Chapter 15: Using ChatGPT to Call Your API

the code out of the chapter folders and into functional folders, then update
README.md.

Before you make these changes, you’ll save a copy of your files to a separate GitHub
branch, named learning-branch, so that it’s still available if you want to continue
working through the code.

Create the new branch from the command line as follows:

.../ai-project/ (main) $ git checkout -b learning-branch
Switched to a new branch 'learning-branch'
.../ai-project/ (main) $ git push -u origin learning-branch
 * [new branch] learning-branch -> learning-branch
branch 'learning-branch' set up to track 'origin/learning-branch'.

Create a new branch named learning-branch locally based on the main branch.

Push this new branch to your remote repository on GitHub.com.

Next, you will make some changes to the directory structure. Enter the following
commands:

.../ai-project/ (learning-branch) $ git checkout main
Switched to branch 'main'
Your branch is up to date with 'origin/main'.
.../ai-project/ (main) $ rm -rf chapter13/complete
.../ai-project/ (main) $ rm -rf chapter14/complete
.../ai-project/ (main) $ mkdir model-training
.../ai-project/ (main) $ mv chapter13/* model-training
.../ai-project/ (main) $ mkdir langchain
.../ai-project/ (main) $ mv chapter14/* langchain
.../ai-project/ (main) $ rm -rf chapter13
.../ai-project/ (main) $ rm -rf chapter14

Switch your Codespace back to the main branch of your repository.

Make a new directory for the files from Chapter 13.

Move Chapter 13’s files to the new folder.

Make a new directory for the files from Chapter 14.

Move Chapter 14’s files to the new folder.

Remove all the subdirectories and their files.

To see the directory structure of the completed project, run the following command:

.../ai-project (main) $ tree -d --prune -I 'build|*.egg-info|__pycache__'

.

Completing Your Part III Portfolio Project | 299

├── api
├── langchain
└── model-training

3 directories

Now update the README.md file to showcase your work. Here is a start, and then
you can add your own thoughts:

AI Portfolio Project
This repository contains program using industry-standard Python frameworks,
based on projects from the book _Hands-on APIs for AI and Data Science_
written by Ryan Day.

Now commit these changes to GitHub, and your Part III portfolio project is ready to
share with the world. Congratulations on completing your Part III capstone!

Extending Your Portfolio Project
Here are a few ways to continue to expand your knowledge of ChatGPT actions:

• Use the GPT to call APIs with larger and more complicated datasets. Find instan‐
ces where it fails or makes mistakes, to explore its limitations.

• Use the GPT Builder to make updates to your custom GPT by asking it in
advance and telling it to apply the recommended changes directly.

• If you developed an alternative API in Part I of this book, you can follow the
steps in this chapter to explore the data as you did for the SWC Fantasy Football
API.

• Create a model card or system card for your custom GPT and post in your proj‐
ect’s repository.

• Find more ways to demonstrate your learning in this chapter and publish them
on your portfolio site, such as capturing a video or writing a blog post.

Summary
In this chapter, you used OpenAI’s ChatGPT to interact with your API:

• You created a custom GPT.
• You created a custom action to give your GPT access to the SWC API.
• You updated the contents of your Part III portfolio project.

300 | Chapter 15: Using ChatGPT to Call Your API

Index

Symbols
>> (dependency between Apache Airflow

tasks), 209

A
advice websites for fantasy managers, 8
agents in AI

about, 238, 265
agentic AI apps, 238

AI agent frameworks, 238, 265
determining API endpoints to use, 234
software used, 266
terminology, 265

chatting with LangGraph agent, 273-275
error with API key, 274
SWC API incorporated, 282

creating a LangGraph agent, 268-273
agent calling SWC API, 280-282
Anthropic account, 268
Anthropic API key created, 269
configuring agent and model, 272
installing new libraries, 270
Jupyter Notebook code, 271-273
Jupyter Notebook created, 270
LangChain runnable object, 273
terminology, 268
visualizing the graph, 273, 282

function-calling models, 265
LangChain chat models list online, 266

information online, 283
Samuel Colvin on agents and agent frame‐

works, 239
toolkit for SWC API, 275-279

agent calling SWC API, 280-282

creating a LangChain toolkit, 276-279
.env file, 275
installing swcpy SDK, 276
running SWC API locally, 275

Agents Whitepaper (Google), 284
AI (artificial intelligence)

agents, 238, 265
(see also agents in AI)

APIs and
AI calling APIs via LangGraph, 280-282
API compatibility scorecard online, 242
Arazzo Specification, 236
ensuring AI using APIs correctly, 236
future of AI and APIs, 242
overlap of AI and APIs, 233-237
overlap of AI and APIs per Bill Doerr‐

field, 234
definition, 237
human approval of LLM recommendations,

235
knowledge gap, 290
LLMs for natural language interface, 265

(see also LLMs (large language models))
machine learning, 243

(see also machine learning (ML))
models non-deterministic, 274, 289
OpenAPI Specification (see OpenAPI Speci‐

fication (OAS) file)
portfolio project introduction, 240
queries in crud.py, 48
searching without a key, 73, 236

“AI + APIs — What 12 Experts Think The
Future Holds” (Schroeder), 242

Airflow (see Apache Airflow)

301

Amazon Lightsail (see AWS deployment)
Amundsen, Mike, 13
analytics database

coding a shared function, 209-211
creating, 204
creating first DAG, 206-209

running your DAG, 211
DAG initial bulk file load, 206
gsis_id, 204
planning data pipeline, 198
upserts, 209

Anthropic
account created, 268

API requiring Build Plan, 268
API keys page, 269

adding secret to Codespace, 269
create key, 269
error with API key during chat, 274

Building Effective Agents online, 283
chatting with LangGraph agent, 273-275

error with API key, 274
SWC API incorporated, 282

Claude, 266
warning about model risks, 267

creating a LangGraph agent, 268-273
Anthropic account, 268
Anthropic API key created, 269
configuring agent and model, 272
installing new libraries, 270
Jupyter Notebook code, 271-273
Jupyter Notebook created, 270
LangChain runnable object, 273
terminology, 268
visualizing the graph, 273, 282

library import on Jupyter Notebook, 271
Apache Airflow

about, 199
orchestration of data pipeline, 199

connections configured, 205
about connections, 205

creating first DAG, 206-209
coding a shared function, 209-211
running your DAG, 211

installing, 200-204
Operators and Hooks Reference online, 200
scheduling variables, 213
tasks as basic units of execution, 200

>> setting dependency between, 209
operators, 200

task dependencies document online, 209
terminology, 199

glossary online, 199
Apache Parquet data format, 5

bulk download advantages online, 160
definition of, 149
project page online, 149
SDK data for bulk download, 148

API development (see building APIs)
API endpoints, 18

bulk downloads via FastAPI StaticFiles, 148
cloud deployment check via Swagger UI,

112
data validation via Pydantic, 57
documentation of, 78

Redoc, 91
Swagger UI, 85

ensuring AI using APIs correctly, 236
generative AI calling APIs

agentic applications, 234
design tips, 236
separate endpoint for analytics ques‐

tions, 48
separate endpoint for summary statis‐

tics, 236
GPT restricted to subset, 295
GraphQL APIs, 166
mapping schemas to endpoints, 61, 67-70
OAS file modifications

details added about endpoints, 97
tags to categorize, 97

Part II version of API, 185
queries in crud.py, 48
REST APIs, 18, 165
SDK supporting every endpoint, 157, 160
SWC Fantasy Football API, 55

API version, 18
APIMatic, 131
APIs

about, 4
as application programming interfaces, 4

AI and
AI calling APIs via LangGraph, 280-282
API compatibility scorecard online, 242
Arazzo Specification, 236
ensuring AI using APIs correctly, 236
future of AI and APIs, 242
overlap of AI and APIs, 233-237

302 | Index

overlap of AI and APIs per Bill Doerr‐
field, 234

architecture of
architectural styles, 15-19, 165-167
book for learning, 27
components of API, 20, 29, 55
components of API and software imple‐

menting, 29
REST, 16
REST chosen for project, 18
REST design tips article online, 27
REST terminology, 18
technology architecture, 19, 29

building (see building APIs)
data pipeline source of data, 198
data scientists using, 3

(see also using APIs)
fantasy league websites, 8

host websites providing APIs, 9
Kyle Borgognoni on, 9
SWC needs API, 9

(see also SportsWorldCentral (SWC))
HTTP protocol used by most, 167

(see also HTTP)
SDK interacting with, 127

(see also SDK (software development
kit))

signs you need an API, 10
URL with HTTPS, 167

(see also URL of API)
APIs: A Strategy Guide (Jacobson, Brail, and

Woods), 13
application programming interface, 4

(see also APIs)
Arazzo Specification, 93, 236
architecture of APIs

architectural styles, 15-19, 165-167
about, 15
GraphQL, 17, 166
gRPC, 17, 167
REST, 16, 165
REST chosen for project, 18, 20, 27
REST popularity, 16
REST versus GraphQL, 166

book for learning, 27
REST chosen for project, 18

design tips article online, 27
separate application, 20
terminology, 18

website architecture and, 19
components of API, 19, 29
software implementing API compo‐

nents, 29
architecture of SWC website, 19

API technology architecture, 19, 29
software implementing API components, 29

artificial intelligence (see AI (artificial intelli‐
gence))

ASGI specification, 58
association tables, 36

many-to-many relationships, 36, 42
asynchronous calls via HTTPX, 57
asynchronous processes via Uvicorn, 58
Auburn, Matthew, 21, 27
Autogen, 238
AWS CLI

about, 107, 119
connecting to AWS account, 119
container image pushed to Lightsail, 119
installing, 119

AWS deployment, 117-124
about, 117
about Amazon Lightsail, 107
account creation, 117
AWS CLI installation, 119

connecting AWS CLI to AWS account,
119

credential verification, 119
container image pushed to Lightsail, 119
Docker container used, 113, 117
Lightsail container service created, 117

plugin installation instructions online,
119

Lightsail deployment, 121-124

B
backoff and retry process

avoiding overwhelming the service, 169
exponential backoff instead of simple

retries, 142
article online, 142
with jitters, 143, 185-186

backoff Python library, 143
about, 183
custom metric creation, 185-186

batch inferences from ML models, 243
Beaulieu, Alan, 32, 52
Beck, Howard, 196

Index | 303

“Best practices for containerizing Python appli‐
cations with Docker” (Snyk.io), 125

“Best practices for securely using API keys”
(Google), 170

Big Data Bowl (NFL), 179
Blades, Trevor, 167
Blobr, 235, 242
book supplemental material online, xxii
book web page, xxiii
Borgognoni, Kyle, 9

on fantasy football APIs, 9
Brail, Greg, 13
Braun, Nathan, 196
Bryant, Daniel, 21, 27
building APIs

architecture of APIs, 15-19
(see also architecture of APIs)

design tips, 5
generative AI and LLM use, 235-236

documentation building trust, 77
(see also documentation)

external identifiers provided, 5, 35
standardized, 5, 35

FastAPI, 56
CLI, 57
creating FastAPI controller, 64-70
FastAPI class, 66
HTTPX for asynchronous calls, 57
installation of FastAPI, 59
main.py, 59, 64-70
main.py for ML API, 255-259
Pydantic for data validation, 57
Pydantic schemas, 56, 59-63
Pydantic schemas mapped to endpoints,

61, 67-70
Python files, 59-70
Redoc included in code, 91
requirements.txt file for library installa‐

tions, 59
schemas.py, 59-63
schemas.py for ML API, 255
schemas.py Successful Response defini‐

tion, 90
serialization via Pydantic, 60, 68
Swagger UI included in code, 90
TestClient class, 72
test_main.py, 59, 70-73
tutorial creating simple API, 75
Uvicorn web server, 58

version 0 for FastAPI, 57
health check

endpoint for SWC, 55
launching API, 74, 85
main.py, 67
main.py for ML API, 259
test_main.py, 72

Kyle Borgognoni on fantasy football APIs, 9
launching your API, 73

errors logged, 170
ML API development, 259-262
port 8000 for application, 74, 85, 176
port 8000 made public, 109, 176
running in Codespace, 176
Swagger UI presenting command line

statement, 89
ML API development

about, 243
business needs and resources, 248
business understanding, 248
calling API via POST, 260
CRISP-DM process, 247-262
data preparation, 248, 251
data understanding, 248, 249
deployment, 248, 254-262
evaluation of model, 248, 254
installing new libraries, 247
launching API, 259-262
model saved to ONNX, 253
model training, 253
modeling, 248, 251-254
player_acquisition_model.ipynb, 249
player_training_data_full.csv, 249, 250
real-time inference model, 244
software used, 246

portfolio project extended, 12, 76
portfolio project introduction, 6
selecting API products, 10-12

creating user stories, 11
potential users identified, 10
three criteria for evaluating, 11
user tasks and pain points, 11

SWC
about, 6-9
API needed, 9
API product selection, 10-12
Python for coding, 21
REST architecture, 16
REST chosen for project, 18

304 | Index

REST terminology, 18
testing your API, 70-73
troubleshooting, 75
version 0 for your API, 55, 97

building block approach to learning APIs, 165
bulk downloads

API capability, 5
data pipeline plan, 198
parquet file advantages online, 160
SDK capability, 148-151

bulk files, 198
planning data pipeline, 198

bulk_player_file_load.py DAG, 206

C
Chase, Harrison, 265
ChatGPT calling SWC API

account setup, 286
ChatGPT pricing page online, 286
OpenAI privacy portal, 286

architecture of application, 285
chatting with custom GPT, 296-298
custom GPT created, 287-290

checking SWC knowledge, 289
configuring, 288

GPT action created, 293
GPT-4o System Card online, 286
LangGraph versus, 295
mistakes by ChatGPT, 297
Part III portfolio project extended, 300
Part III project completion, 298
running SWC API in Codespace, 291
servers section of OAS file added, 292
testing APIs in GPT, 295-296

chatting with custom GPT, 296-298
chatting with LangGraph agent, 273-275

error with API key, 274
SWC API incorporated, 282

classification ML models, 244
client-server model, 16
cloning a GitHub repository, 22
the cloud, 105

cloud deployment (see deploying to the
cloud)

host selection, 107
cloud providers listing online, 125

Codespaces (GitHub)
about Python development, 22

getting started, 22-27

Apache Airflow installation, 200-204
auto-deletion turned off, 24, 175
cloud host, 108
committing changes to GitHub, 25-27

.gitignore file, 25
how often, 25

Jupyter Notebooks, 183
launching your API, 74

port 8000 for application, 74, 85, 176,
291

port 8000 made public, 109, 176, 291
running in Codespace, 176, 184, 275, 291

launching your Codespace
Part I, 23, 24
Part II, 175
Part III, 241

machine type setting, 201
open source library version testing, 38
overview URL, 24
Part I project ready to share, 158-160

creating new branch, 158
moving files, 159
updating README.md, 160

Part II project ready to share, 228
creating new branch, 228
moving files, 228
updating README.md, 229

Part III project ready to share
creating new branch, 299
moving files, 299
updating readme.md, 300

Python version check, 24
renaming your Codespace, 23, 175
secret added, 269
SWC API run locally, 176, 184, 291
terminal window, 24

Ctrl-C to stop API, 101, 218, 292
Jupyter Notebook created, 186, 270
SWC API run locally, 176, 184, 275, 291
trimming prompt directory listing, 32,

175, 241
touring, 24
URL of

Part I, 24
Part II, 174
Part III, 240

“Coefficient of Variation: Meaning and How to
Use It” (Hayes), 196

Colvin, Samuel, 239

Index | 305

comma-separated values (CSV), 5
loading data into tables, 36
SDK data for bulk download, 148

committing Codespace changes to GitHub,
25-27
always stage all changes and commit, 27
.gitignore file, 25

container image or Docker image, 113
container runtime as Docker, 113
containerization, 173

Docker, 113
(see also Docker container deployment)

Python app containerization article online,
125

context for LLMs, 239
context manager, 145
Continuous API Management, 2nd Edition

(Medjaoui, Wilde, Mitra, and Amundsen),
13

costs for Anthropic Build Plan, 268
costs for ChatGPT, 286
costs per token for AI services, 235
CREATE TABLE (SQL)

database tables created, 32-34
primary key, 34

credentials handled safely, 169
Anthropic API key, 269
best practices article online, 170

CrewAI, 238
CRISP-DM process, 247-262

about, 247
business understanding, 248
calling API via POST, 260
data preparation, 248, 251
data understanding, 248, 249

player_training_data_full.csv, 249, 250
deployment, 248, 254-262

launching API, 259-262
evaluation of model, 248, 254
modeling, 248, 251-254

saving model to ONNX format, 253
training the model, 253

Crispin, Lisa, 173
crud.py for database access, 45-49

about, 39
.csv format (see comma-separated values

(CSV))
Ctrl-C

to stop API in terminal, 101, 218, 292

to stop Docker application, 117
cURL, 89

Apache Airflow installation in Docker, 201
Swagger UI output, 89

custom metrics, 179
APIs as data sources, 180

Joey Greco on, 181
creating the Shark League Score, 182-195

about, 182
API client file created, 185-186
building the Shark League Score, 195
calculating League Balance Score, 192
calculating League Juice Score, 193
installing new libraries, 184
Jupyter Notebook code, 188-189
Jupyter Notebook created, 186
logging, 188
running API in Codespace, 176, 184
software used, 183
swc_simple_client.py file, 185, 188
working with your API data, 189-191

Leeger Python library, 180
cyclical graphs of LangGraph, 268

D
DAGs (directed acyclic graphs), 199

API health check, 208, 212
bulk_player_file_load.py, 206
coding a shared function, 209-211
creating first DAG, 206-209
recur‐

ring_player_api_insert_update_dag.py,
207

running your DAG, 211
shared_functions.py file, 209
tasks, 200

data acquisition
APIs as data sources

AI, 233
custom metrics, 180

data pipeline sources of data, 198
(see also data pipelines)

databases (see database creation and access)
Kyle Borgognoni on data gathering, 9
read replica database, 20
web scrapers, 9, 180

data analyst, 3
data analytics

about, 3

306 | Index

analytics database
creating, 204
planning data pipeline, 198

(see also data pipelines)
creating the Shark League Score, 182-195

about, 182
API client file created, 185-186
building the Shark League Score, 195
calculating League Balance Score, 192
calculating League Juice Score, 193
installing new libraries, 184
Jupyter Notebook code, 188-189
Jupyter Notebook created, 186
logging, 188
running API in Codespace, 176, 184
software used, 183
swc_simple_client.py file, 185, 188
working with your API data, 189-191

custom metrics, 179
APIs as data sources, 180
creating the Shark League Score, 182-195
Joey Greco on APIs and, 181
Leeger Python library, 180

tabular report products versus visualiza‐
tions, 215

data apps
about, 215
about Streamlit, 215-216, 217
software used, 216

installing, 217
Streamlit, 216, 217

tabular reports versus visualizations, 215
(see also Streamlit)

data engineer, 3, 197
“The Data Format Wars Are Over” (Doerr‐

field), 92
data pipelines, 3, 197

analytics database
creating, 204
DAG initial bulk file load, 206

Apache Airflow orchestrating, 199
coding a shared function, 209-211
configuring Airflow connections, 205
creating first DAG, 206-209
installing in Codespaces, 200-204
running your DAG, 211
scheduling variables, 213

API launched in Codespaces, 176, 205
bulk downloads

API capability, 5
data pipeline plan, 198
parquet file advantages online, 160
SDK capability, 148-151

data sources for, 198
deltas, 6
extending portfolio project, 213
last changed date query parameter, 6

date object for, 66
enabling in table data, 35

planning, 198
Data Pipelines Pocket Reference (Densmore),

197
Data Pipelines with Apache Airflow (de Ruiter

and Harenslak), 199
data scientists

API use, 3
(see also using APIs)

building APIs for (see building APIs)
CRISP-DM process, 247-262
Python most commonly used language, 131
SDK importance, 79

(see also SDK (software development
kit))

tools used, 4
trusting your API and data, 77

(see also documentation)
data transfer objects (DTOs), 59
data type assignment in Pydantic versus SQL‐

Alchemy, 62
data types of returned data conforming, 5
data validation

inputs and outputs, 170
Pydantic for, 57

SDK, 139, 146, 148
database creation and access

accessing data via Python, 37-52
about, 37
creating Python files for, 39-49
crud.py, 39, 45-49
database configuration file, 44
database.py, 39, 41, 44
models.py, 39-43
pytest installation, 49
query functions, 45-49
SQLAlchemy classes in models.py, 39-43
SQLAlchemy installation, 37
testing SQLAlchemy code, 49-52
test_crud.py, 39, 49-52

Index | 307

analytics database
creating, 204
DAG initial bulk file load, 206
gsis_id, 204
planning data pipeline, 198
table created, 204

API components, 19, 29
software implementing, 29-31

code online, 29, 58
creating SQLite database, 32-37

about, 32
foreign key enforcement enabled, 36
gsis_id, 33, 34
listing tables, 34
loading data, 36
table structure explained, 35
tables created, 32-34

data pipeline plan, 198
portfolio project extended, 53
pytest, 31

about, 30
fixtures, 51
installation, 49
testing SQLAlchemy code, 49-52

SQLAlchemy, 31
about, 30
classes defined in models.py, 39-43
database configuration file, 44
datatypes, 41, 42
documentation online, 52
foreign key relationship, 42
installation, 37
session object, 44, 66, 68

SQLite, 30
about, 30
creating database, 32-37
exiting the application, 37

database.py for database access
about, 39
creating, 44
models.py referencing, 41

datasets
bulk download capability, 5
data returned from API conforming, 5, 236
external identifiers provided, 5, 35

standardized, 5, 35
size limited for APIs feeding LLMs, 235

datatypes
SQLAlchemy, 41, 42

structure of tables explained, 35
de Ruiter, Julian, 199
decision trees, 244
decorators, 67
DELETE HTTP verb, 168
deltas, 6, 198
Densmore, James, 197
dependency between Apache Airflow tasks

(>>), 209
deploying to the cloud

about the cloud, 105
AI models, 254-262

APIs used for deployment, 233
AWS deployment, 117-124

about, 117
account creation, 117
AWS CLI installation, 119
connecting AWS CLI to AWS account,

119
container image pushed to Lightsail, 119
credential verification, 119
Docker container used, 113, 117
Lightsail container service created, 117
Lightsail container service plugin

instructions online, 119
Lightsail deployment, 121-124

benefits, 106
ChatGPT calling SWC API, 292
cloud host selection, 107

cloud providers listing online, 125
costs, 106
deployment pipeline, 125
Docker containers, 113-117

about, 107, 113
command cheatsheet online, 113
commands commonly used, 113
container image built, 116
container image defined, 113
container image run locally, 116
container runtime, 113
Ctrl-C to stop application, 117
Dockerfile created, 114
Dockerfile defined, 113, 114
.dockerignore file, 115
glossary online, 113
installation, 114
repository, 113

GitHub Codespaces deployment, 108
Part I portfolio project extended, 125

308 | Index

README.md updated with API URL, 125
Render deployment, 109-113

about Render, 107, 109
auto-deploying a change to your API,

112
creating an account, 110
deployment instructions online, 109
health check message, 112
new Web Service, 110-112
troubleshooting, 112
Uvicorn running API, 111

security, 106
Streamlit Community Cloud, 228

designing APIs for data scientists, 5
generative AI and LLM use, 235-236

Designing Machine Learning Systems (Huyen),
263

Designing Web APIs (Jin, Sahni, and Shevat),
77, 103

“Developer Experience: The Metrics That Mat‐
ter Most” (Moesif), 103

directed acyclic graphs (see DAGs (directed
acyclic graphs))

directed cyclic graphs of LangGraph, 268
docker commands

docker --version, 113
docker build -t, 113, 116
docker compose up airflow-init, 203
docker images, 113, 116
docker run, 113, 116

Docker container deployment, 113-117
about, 107, 113
Apache Airflow in Docker, 201

instructions online, 201
commands commonly used, 113

cheatsheet online, 113
container image built, 116
container image run locally, 116

Ctrl-C to stop, 117
.dockerignore file, 115
installation, 114
terms

container image, 113
container runtime, 113
Dockerfile, 113, 114
glossary online, 113
repository, 113

website for more information, 125
Docker Hub, 201

docker-compose.override.yaml file, 202
docker-compose.yaml file, 201
documentation

API built-in documentation, 83-92
Redoc, 91
Swagger UI, 85-90

API documentation
about, 77
core features, 78
data quality information, 78
extra features, 79
machine learning models, 262
README.md updated, 101, 125
tips for undocumented APIs, 103
trust built by, 77

API documentation examples
MyFantasyLeague, 81
Sleeper app, 80
Yahoo! Fantasy Football, 83

interactive documentation, 79
FastAPI interactive documentation, 57
ML API, 260
MyFantasyLeague API documentation,

81
sandbox environment versus, 82
Swagger UI, 85-90

machine learning models, 262
model and system cards from model

providers, 267
model cards, 263
system cards, 263

readme.md (see readme.md file)
SDK, 151-153
user stories for API design, 11

Doerrfield, Bill, 92
on overlap of AI and APIs, 234

downloading data
bulk download, 5
data pipelines, 198

(see also data pipelines)
deltas, 6

DTO (see data transfer objects (DTOs))

E
Eager, Eric A., 196
EDA (exploratory data analysis), 3
edges (Airflow), 199
edges (LangGraph), 268

directed cyclic graph, 268

Index | 309

displaying an image of, 273
ELT (Extract, Load, Transform), 197
endpoints of APIs, 18

bulk downloads via FastAPI StaticFiles, 148
cloud deployment check via Swagger UI,

112
data validation via Pydantic, 57
documentation of, 78

Redoc, 91
Swagger UI, 85

ensuring AI using APIs correctly, 236
generative AI calling APIs

agentic applications, 234
design tips, 236
separate endpoint for analytics ques‐

tions, 48
separate endpoint for summary statis‐

tics, 236
GPT restricted to subset, 295
GraphQL APIs, 166
mapping schemas to endpoints, 61, 67-70
OAS file modifications

details added about endpoints, 97
tags to categorize, 97

Part II version of API, 185
queries in crud.py, 48
REST APIs, 18, 165
SDK supporting every endpoint, 157, 160
SWC Fantasy Football API, 55

.env file for SWC API toolkit, 275
Erickson, Richard A., 196
errors in your API logged, 170
ETL (Extract, Transform, Load), 197
evaluating a machine learning model, 254

about, 244
information online, 254

expert systems as AI, 237
exploratory data analysis (EDA), 3
exponential backoff instead of retries

article online, 142
with jitters, 143

exponential backoff instead of simple retries,
142

external identifiers provided, 5, 35
standardized, 5, 35

external libraries via pip and import, 38, 41
Extract, Load, Transform (ELT), 197
Extract, Transform, Load (ETL), 197

F
FAAB (free agent acquisition budget), 248
fantasy football

about, xx, 8
APIs for websites, 8

Kyle Borgognoni on, 9
fantasy managers, xx, 8

advice websites for, 8
hosts for fantasy league websites, 8

APIs provided by, 9
nflverse data and R packages, 4
SWC introduction, 6-9

(see also SportsWorldCentral (SWC))
Fantasy Footballers Dynasty Podcast (Borgog‐

noni), 9
The Fantasy Footballers website, 8

Editor-In-Chief Kyle Borgognoni interview,
9

Fantasy Premier League website, 8
fantasycoding.com for data analytics, 196
FantasyPros website, 8
FastAPI, 56

CLI, 57
fastapi dev, 84
fastapi run, 73, 156, 176, 259, 275, 291
Part II SWC API run locally, 176
Uvicorn instead, 111

documentation online, 75
FastAPI class, 66
FastAPI controller created, 64-70
health check

endpoint for SWC, 55
launching API, 74, 85
main.py, 67
main.py for ML API, 259
test_main.py, 72

HTTPX for asynchronous calls, 57
installing, 59
launching your API, 73

running locally, 176
Swagger UI presenting command line

statement, 89
ML API development, 254, 257
OAS file generated via Pydantic, 57, 92
OAS file portfolio project extended, 95-101

details added about endpoints, 97
details added to info object, 96
parameter descriptions added, 98
regression testing your API, 100

310 | Index

tags added to categorize paths, 97
viewing changes in Swagger UI, 99-100

Pydantic for data validation, 57
Pydantic schemas, 56

creating, 59
mapped to endpoints, 61, 67-70

Python files, 59-70
main.py, 59, 64-70
main.py for ML API, 255-259
schemas.py, 59-63
schemas.py for ML API, 255
schemas.py Successful Response defini‐

tion, 90
test_main.py, 59, 70-73

Redoc included in code, 91
requirements.txt file for library installations,

59
serialization via Pydantic, 60, 68
StaticFiles for bulk downloads, 148
Swagger UI included in code, 90
testing your API, 70-73

TestClient class, 72
troubleshooting, 75
tutorial creating simple API, 75
Uvicorn web server, 58
version 0 for FastAPI, 57

FastAPI Tips (Trylesinski) online, 75
FastAPI: Modern Python Web Development

(Lubanovic), 75
feedback mechanism in documentation, 79

importance of responding to feedback, 78
Fern, 131
Fielding, Roy, 16
fitting a model, 253

fit() method, 253
football (see fantasy football)
Football Analytics with Python & R by Erik A.

Eager and Richard A. Erickson), 196
FOREIGN KEY (SQL), 35

association tables with two, 36
many-to-many relationships, 36

foreign key enforcement enabled, 36
foreign key relationship in SQLAlchemy, 42
forking a GitHub repository, 22

cloning a repository versus, 22
free agent acquisition budget (FAAB), 248
function-calling models, 265

LangChain chat models list online, 266
future state architecture of SWC website, 20

software implementing API components, 29

G
generative AI

about, 238
AI agents, 238

(see also agents in AI)
API design tips, 236
apps calling APIs, 233
Arazzo Specification, 93
human approval of LLM recommendations,

235
separate endpoint for analytics questions, 48
separate endpoint for summary statistics,

236
George, Nathan, 263
Géron, Aurélien, 263
GET HTTP verb, 165, 168

calling SWC API, 55, 64
GitHub

about, 21
account creation, 22
book supplemental material, xxii
cloning the repository

cloning Part I, 22
cloning Part II, 174
cloning Part III, 240
launching your Part I Codespace, 23, 24
launching your Part II Codespace, 175
launching your Part III Codespace, 241

Codespaces
about Python development, 22
Apache Airflow installation, 200-204
auto-deletion turned off, 24, 175
cloud host, 108
commit frequency, 25
committing changes to GitHub, 25-27
getting started, 22-27
Jupyter Notebooks, 183
launching your API, 74
launching your API to port 8000, 74, 85,

176, 291
launching your API to port 8000 made

public, 109, 176, 291
launching your API to run in Codespace,

176, 184, 275, 291
launching your Codespace, 23, 24, 175,

241
machine type setting, 201

Index | 311

open source library version testing, 38
overview URL, 24
Python version check, 24
renaming your Codespace, 23, 175
secret added, 269
SWC API run locally, 176, 184, 291
terminal window, 24
terminal window Ctrl-C to stop API,

101, 218, 292
terminal window for creating Jupyter

Notebook, 186, 270
terminal window prompt trimmed, 32,

175, 241
terminal window SWC API run locally,

176, 184, 275, 291
touring, 24
URL of, 24, 174, 240

forking versus cloning a repository, 22
nflverse data and R packages, 4
Part I project ready to share, 158-160

creating new branch, 158
moving files, 159
updating README.md, 160

Part II project ready to share, 228
creating new branch, 228
moving files, 228
updating README.md, 229

Part III project ready to share
creating new branch, 299
moving files, 299
updating readme.md, 300

pip3, 132
portfolio projects, xviii, 22
README.md file, 25

modifying, 25
Render new Web Service, 110-112
SDK bulk downloads, 148-151
StatsBomb repository, 129
version control, 173

.gitignore file, 25
shark_notebook.log file, 188

Goitia, Francisco, 130, 132
Google

Agents Whitepaper, 284
article on API key security, 170

Gough, James, 21, 27
GPT limitation workaround online, 242
GPT-4o (OpenAI)

System Card online, 286

risks of model, 286
using for Part III portfolio project, 285

gradient boosting, 244
GradientBoostingRegressor algorithm, 246,

250, 252
GraphQL (Graph Query Language) APIs, 17,

166
REST versus, 166

Greco, Joey, xx, 103, 128, 132, 146
APIs and custom metrics, 181
Leeger Python library, 180

Gregory, Janet, 173
gRPC APIs, 17, 167

large language models and, 17
protocol buffers data format, 167
Python quickstart guide online, 167

gsis_id
analytics database, 204
creating SQLite database, 33, 34
models.py, 39, 41
schemas.py, 60, 62
Streamlit team rosters page, 223
Streamlit team stats page joining

nfl_data_py library, 225

H
Halabuza, Kade, 242
Hands-On Machine Learning with Scikit-

Learn, Keras, and Tensorflow (Géron), 263
Harenslak, Bas, 199
Hayes, Adam, 196
health check

AWS deployment, 124
ChatGPT calling SWC API, 291, 296, 298
checking auto-deployment on change to

API, 112
DAG verifying API status, 208, 212
endpoint for SWC, 55
HealthCheckTool for SWC toolkit, 277
launching API, 74, 85, 177, 291

public port, 109, 176, 291
main.py, 67
main.py for ML API, 259
README.md updated, 101
Render cloud deployment, 112
SDK with minimal functionality, 134
SDK with robust functionality, 146
test_main.py, 72

Higginbotham, James, 103

312 | Index

The Hitchhiker’s Guide to Python online, 160
hosts for fantasy league websites, 8

APIs provided by, 9
“How to Build a Best in Class Python SDK”

(Speakeasy), 160
HTTP

basics, 167
standards document online, 169

status codes, 168
200 as successful response, 72, 87, 91,

168, 222
404 as not found, 69, 168
422 as unprocessable content, 88, 91
more status codes online, 169
RESTful APIs using standard codes, 69
table of status codes, 168

verbs, 168
decorator specifying, 67
GraphQL versus REST APIs, 166
Python, 166
REST APIs, 16, 165, 166, 168
REST APIs and endpoints, 18, 165
web browser sending, 166

HttpOperator (Apache Airflow), 200, 208
httpx Python library

about, 56, 57, 183
asynchronous calls, 57, 183
exceptions from call_api function, 143, 146
httpx.Client

API calls via, 144, 146
context manager, 145, 185-186
documentation online, 146
setting base URL to call health check,

135
httpx.get() method, 150, 166
httpx.post() method for GraphQL, 166
httpx.Response

error code and message, 186
httpx.Response.json() to extract data,

189, 222
object returned from call_api_end‐

point(), 189
installation, 59
SDK core library, 135

human approval of LLM recommendations,
235

Huyen, Chip, 263

I
identifiers (see external identifiers provided)
IDEO Field Guide to Human-Centered Design,

13
import statement (Python), 41

functions versus entire libraries, 44
placing at top of files, 41, 188, 272
SDK from PyPI repository calling API, 171

inference endpoint, 172
inferences from ML models, 243

batch inferences, 243
example, 245
real-time inference, 243

interactive computing, 183
interactive documentation, 79

FastAPI interactive documentation, 57
ML API, 260
MyFantasyLeague API documentation, 81
sandbox environment versus, 82
Swagger UI, 85-90

Introducing Python, 3rd Edition (Lubanovic),
xix

.ipynb file extension, 183
langgraph_notebook.ipynb, 271, 280
langgraph_notebook_with_toolkit.ipynb

file, 280
player_acquisition_model.ipynb, 249
shark_league_notebook.ipynb, 186

“Is It Numbers or Talent? Sorting Fact, Fiction
in NBA Stats Wave” (Beck), 196

“Is Your API AI-ready? Our Guidelines and
Best Practices” (Blobr), 235, 242

J
Jacobson, Daniel, 13
Jin, Brenda, 77, 103
JSON

API data returned, 5
FastAPI serialization via Pydantic, 60, 68
httpx.get() method data returned, 166
httpx.post() method for GraphQL data

returned, 167
JSON Schema, 57
openapi.json file, 60
viewing, 93

Jupyter Notebooks, 183
about, 183

website for more information, 183
adding code

Index | 313

LangGraph agent, 271-273
LangGraph agent calling SWC API,

280-282
Shark League Score custom metric,

188-189
creating a Jupyter Notebook

LangGraph agent, 270
Shark League Score custom metric, 186

execution from top to bottom, 188
import statements placed at top, 188, 272
logging, 188

CRISP-DM process, 250
LangGraph agent, 272
shark_notebook.log, 188

ML API development, 249
player_acquisition_model.ipynb, 249

K
KenPom ranking, 180
Kilcommins, Frank, 233
knowledge gap of AI models, 290

retrieval augmented generation helping
overcome, 233

L
lambda command (Python), 192
LangChain

about, 238, 265, 266
agent legacy methods, 268

(see also LangGraph)
agentic applications terminology, 265
APIs calling AI via, 266
chat models list online, 266, 283
documentation online, 283
runnable object from LangGraph, 273
software in ecosystem, 266
toolkit for SWC API, 275-279

agent calling SWC API, 280-282
creating a LangChain toolkit, 276-279
.env file, 275
installing swcpy SDK, 276
running SWC API locally, 275

toolkits, 276
creating tools document online, 276

LangGraph
about, 238, 265, 266, 268
AI calling APIs via, 280-282
ChatGPT versus, 295
chatting with LangGraph agent, 273-275

error with API key, 274
SWC API incorporated, 282

creating an agent, 268-273
agent calling SWC API, 280-282
Anthropic account, 268
Anthropic API key created, 269
Codespace secret for Anthropic API key,

269
configuring agent and model, 272
installing new libraries, 270
Jupyter Notebook code, 271-273
Jupyter Notebook created, 270
LangChain runnable object, 273
terminology, 268
visualizing the graph, 273, 282

documentation online, 283
langgraph_notebook.ipynb, 271, 280
langgraph_notebook_with_toolkit.ipynb file,

280
large language models (see LLMs (large lan‐

guage models))
last changed date query parameter, 6

date object for, 66
enabling in table data, 35

LaunchAny Minimum viable portal (MVP)
template for APIs, 103

launching your API, 73
errors logged, 170
ML API development, 259-262
port 8000 for application, 74, 85, 176, 291

making public, 109, 176, 291
running in Codespace, 176, 184, 275, 291
Swagger UI presenting command line state‐

ment, 89
League Balance Score calculation, 192
Learning SQL, 3rd Edition (Beaulieu), 32, 52
Leeger app (Greco), 103, 181

Leeger Python library for custom metrics,
180

libraries via pip and import, 38, 41
library version testing, 38
Lightsail container service (see AWS deploy‐

ment)
Linacre, Robin, 148, 160
list comprehension (Python), 148
LlamaIndex, 238
LLMs (large language models)

about, 238

314 | Index

natural language interface for AI apps,
265

AI agents, 238
(see also agents in AI)

API design tips, 236
apps calling APIs, 233
separate endpoint for analytics ques‐

tions, 48
separate endpoint for summary statis‐

tics, 236
Arazzo Specification, 93
context for, 239
gRPC APIs, 17
human approval of LLM recommendations,

235
model providers supplying model or system

cards, 267
queries in crud.py, 48

Locust load-testing library, 172
logging

AI applications via OpenTelemetry, 239
Jupyter Notebook, 188

CRISP-DM process, 250
LangGraph agent, 272
shark_notebook.log, 188

ML API development, 250
SDK logging, 144-146

API errors and error messages, 170
levels of, 144

Streamlit app, 219
team rosters page, 222

Lubanovic, Bill, xix, 75

M
machine learning (ML)

about, 243
terminology, 244

about AI, 237
about training and deploying models, 4
API development

about, 243
business needs and resources, 248
business understanding, 248
calling API via POST, 260
CRISP-DM process, 247-262
data preparation, 248, 251
data understanding, 248, 249
deployment, 248, 254-262
documentation, 262

evaluation of model, 248, 254
extending portfolio project, 263
installing new libraries, 247
model saved to ONNX, 253
model training, 253
modeling, 248, 251-254
player_acquisition_model.ipynb, 249
player_training_data_full.csv, 249, 250
real-time inference model, 244
software used, 246

evaluating a model
about, 244
information online, 254

inferences from ML models, 243
batch inferences, 243
example, 245
real-time inference, 243

large language models and gRPC APIs, 17
portfolio project introduction, 240
training models, 244

supervised learning, 244
machine learning engineer, 4
main.py, 64-70

about, 59
FastAPI class, 66
health check, 67

ML API, 259
launching your API, 73

ML API, 259-262
main.py for ML API, 255-259

launching, 259-262
OAS file project extended, 95-101

details added about endpoints, 97
details added to info object, 96
parameter descriptions added, 98
regression testing your API, 100
tags added to categorize paths, 97
updated main.py online, 100
viewing changes in Swagger UI, 99-100

servers section added to OAS file, 292
“Manage task and task group dependencies in

Airflow” (Astronomer), 209
many-to-many relationships, 36, 42
Markan, Zan, 128, 131
markdown, 25
Markdown formatting guide online, 196
Mastering API Architecture (Gough, Bryant,

and Auburn), 21, 27
McDougall, Steve, 27

Index | 315

McKinney, Wes, 196
MCP (Model Context Protocol), 239
Medjaoui, Mehdi, 13
Mitra, Ronnie, 13
ML (see machine learning (ML))
model as term, 39

classes as models in SQLAlchemy and
Pydantic, 60

models in LangChain, 266
model families, 266

model cards for documentation, 263
information online, 263
model providers supplying, 267

Model Context Protocol (MCP), 239
modeling per CRISP-DM process, 248, 251-254

saving model to ONNX format, 253
training the model, 253

models.py for database access, 39-43
about, 39

Moesif blog, 103
Morse, Steven, 103
MyFantasyLeague API documentation, 81

terms of service, 169

N
Nelson, Catherine, 173
newsletter by author subscription link, xxi
nflverse open source libraries, 4, 217

nfl_data_py data library, 216
gsis_id to join Streamlit stats page, 225

nfl_data_py NFL data library, 216
nodes (Airflow), 199
nodes (LangGraph), 268

agent node, 273
directed cyclic graph, 268
displaying an image of, 273

Nordic APIs community, 234
NordicAPIs.com blog, 103

O
OAS file in documentation, 78

(see also OpenAPI Specification (OAS))
object-relational mapping (ORM), 37

SQLAlchemy, 31
observability in AI via OpenTelemetry, 239
Open Neural Network Exchange (ONNX), 246

ONNX runtime, 246
main.py, 256, 258
ML API development, 254

predict() method using, 257
saving model to ONNX format, 253

open source library versions, 38
OpenAI (see ChatGPT calling SWC API)
OpenAPI Specification (OAS) file

Arazzo Specification
sequences of API calls, 93, 236
working with OpenAI, 237

customizing for generative AI and LLMs,
236

explanation of, 92-95
FastAPI generating via Pydantic, 57, 92
guide to OpenAPI online, 103
OAS file in documentation, 78
openapi.json file, 60, 90, 92

operation identifier, 95
viewing, 92-95

openapi.tools listing tools that use, 92
Part I portfolio project extended, 95-101

details added about endpoints, 97
details added to info object, 96
parameter descriptions added, 98
regression testing your API, 100
tags added to categorize paths, 97
viewing changes in Swagger UI, 99-100

Redoc contents, 91
servers section added, 292
specification online, 16, 92
Swagger UI contents, 90, 95

openapi.json file, 60, 90, 92
operation identifier, 95
viewing, 92-95

openapi.tools website, 92
OpenTelemetry, 239
operators of Apache Airflow, 200
orchestration of data pipeline with Apache Air‐

flow, 199
(see also Apache Airflow)

ORM (see object-relational mapping (ORM))
OWASP article on SQL injection online, 31

P
pandas library, 183

book on data wrangling by creator, 196
DataFrame storage of data, 189-191

DataFrame.from_dict() method, 222
filtering data, 223
merging DataFrames into single, 193,

226

316 | Index

Streamlit DataFrame() to display, 223
groupby statement, 226
json_normalize() function, 223
pandas.merge() function to join Data‐

Frames, 193, 226
parameterized statements in SQL, 31
Parquet (see Apache Parquet)
.parquet format (see Apache Parquet)
patch versions of semantic versioning

open source library versions, 38
path parameters, 69
permissions for systems with LLMs, 235
pip3 package manager

Dockerfile created, 115
installing external libraries, 38, 41
pyproject.toml to package and install,

133-136
requirements.txt file, 37

(see also requirements.txt file for pip)
SDK installation, 132, 135

pipelines (see data pipelines)
player_acquisition_model.ipynb file, 249
player_training_data_full.csv file, 249, 250
podcast on fantasy footballers (Borgognoni), 9
port 8000 for application, 74, 85, 176, 291

making public, 109, 176, 291
portal for developers as portfolio project, 103
portfolio projects

about, xviii
author contact information, xix
fantasy football, xx
using this book, xix

AI project introduction, 240
extending portfolio project, 263

analytics project introduction, 174
building an API

components of API, 55
extending portfolio project, 12, 76
introduction, 6

ChatGPT project extended, 300
copying files from previous chapters

from chapter 3, 58
from chapter 4, 84
from chapter 5, 108

data pipeline project extended, 213
database portfolio project extended, 53
deployment project extended, 125
GitHub uses, 22

getting started with Codespace, 22-27

machine learning project introduction, 240
OAS file project extended, 95-101, 103

details added about endpoints, 97
details added to info object, 96
parameter descriptions added, 98
regression testing your API, 100
tags added to categorize paths, 97
viewing changes in Swagger UI, 99-100

Part I project introduction, 6
Part I project ready to share, 158-160
Part II project introduction, 174
Part II project ready to share, 228
Part III project introduction, 240
Python for coding, 21
SDK

extending portfolio project, 160
minimal version showing skills, 136

Streamlit project extended, 229
POST HTTP verb, 165, 168

calling ML API, 260
Postman collection in documentation, 79
Practical Data Science with Python (George),

263
Pragmatic REST, 16
prepared statements in SQL, 31
primary key, 34

SQLAlchemy, 42
Principles of Web API Design (Higginbotham),

103
projects (see portfolio projects)
protocol buffers data format, 167
publishing

Part I project ready to share, 158-160
Part II project ready to share, 228
SDK on PyPI Test Repository, 170

extending portfolio project, 160
publishing SDK PyPI Test Repository, 170
PUT HTTP verb, 168
Pydantic, 57

about, 56, 266
data transfer objects, 59
data types of class elements assigned with

colon, 62
data validation, 57

SDK, 139, 146, 148
documentation online, 75
founder Samuel Colvin, 239
installation, 59
ML API development, 254

Index | 317

OAS file generated in FastAPI, 57, 92
schemas, 56

creating, 59-63
ML API development, 255

PydanticAI
Python support, 238
Samuel Colvin on agents and agent frame‐

works, 239
Pymfl, 132
PyPI Test Repository

publishing SDK, 170
extending portfolio project, 160

source for SDKs, 170
code for using SDK to call API, 170

pyproject.toml file, 132, 150
pytest, 31

about, 30, 172
fixtures, 51
Good Integration Practices online, 153
installation, 49
logging messages in terminal, 144
regression testing your API, 100
testing main.py code, 70-73
testing SDK, 153-157
testing SQLAlchemy code, 49-52

Python
about, 21
advice on writing Pythonic code, 160
API files, 59-70

launching your API, 73
launching your API to run in Codespace,

176, 184, 275, 291
main.py, 59, 64-70

(see also main.py)
main.py for ML API, 255-259
schemas.py, 59-63

(see also schemas.py)
schemas.py for ML API, 255
schemas.py Successful Response defini‐

tion, 90
swc_simple_client.py, 185, 188
swc_simple_client.py via Streamlit, 222
test_main.py, 59, 70-73

book for learning about, xix
containerization best practices online, 125
context manager via Python object, 145
DAGs

bulk_player_file_load.py, 206

recur‐
ring_player_api_insert_update_dag.py,
207

shared_functions.py, 209
database access files, 39-49

about, 39
crud.py, 39, 45-49
database configuration file, 44
database.py, 39, 41, 44
models.py, 39-43
pytest installation, 49
query functions, 45-49
testing SQLAlchemy code, 49-52
test_crud.py, 39, 49-52

decorators, 67
GitHub Codespaces

about Python development, 22
getting started, 22-27

HTTP verbs, 166
import statement, 41

functions versus entire libraries, 44
placing at top of files, 41, 188, 272
SDK from PyPI repository calling API,

171
JSON data format, 5
lambda command, 192
language used for projects, 21

version of Python, 21
Python Enhancement Proposals, 134
SDKs, 5

API product strategy, 129
benefits of providing, 128-130
OpenAPI Python Client, 131
Python Package Index, 132
Python used by data scientists, 131
swcpy SDK (see SDK (software develop‐

ment kit); swcpy SDK)
Streamlit files

page1.py, 223
page2.py, 224
streamlit_football_app.py, 219

toolkit file swc_toolkit.py, 276, 277, 278
version used for projects, 21

checking Codespace version, 24
Python Enhancement Proposals (PEPs), 134
Python for Data Analysis (McKinney), 196
PythonOperator (Apache Airflow), 200, 209

318 | Index

Q
query parameters

FastAPI including in URL via main.py, 68
path parameters, 69

last changed date, 6
date object for, 66
enabling in table data, 35

querying the database via Python, 37-52
about, 37
creating Python files for, 39-49
crud.py, 39, 45-49
database configuration file, 44
database.py, 39, 41, 44
models.py, 39-43
pytest installation, 49
query functions, 45-49
SQLAlchemy classes in models.py, 39-43
SQLAlchemy installation, 37
testing SQLAlchemy code, 49-52
test_crud.py, 39, 49-52

“Quick Tools for Agile Testing” online, 173

R
R (programming language), 131
RAG (retrieval augmented generation), 233
Ramírez Montaño, Sebastián, 57
read replica database, 20
readme.md file

GitHub repository, 25
modifying, 25

updated for AI project, 300
README.md file

SDK, 151-153
updated for built-in documentation, 101
updated with API URL, 125

real-time inference from ML models, 243
recurring_player_api_insert_update_dag.py,

207
updating via Airflow scheduling variables,

213
Redoc (Redocly), 91
regression ML models, 244

GradientBoostingRegressor algorithm, 246,
250, 252

regression testing, 38
open source library version testing, 38
your API, 100

Render deployment, 109-113
about Render, 107, 109

auto-deploying a change to your API, 112
creating an account, 110
deployment instructions online, 109
health check message, 112
new Web Service, 110-112
troubleshooting, 112

repository of Docker images, 113
requests library with only synchronous calls,

57, 183
requirements.txt file for pip, 37

about, 39
Dockerfile created, 115
installing LangChain, LangGraph, 270
installing ML API development libraries,

247
installing Pydantic, FastAPI, Uvicorn,

HTTPX, 59
installing Streamlit and nfl_data_py, 217
open source library version testing, 38
Part II running SWC API locally, 176
pytest installation, 49
Render deployment, 111
Shark League Score new libraries, 184
SWC API toolkit libraries, 275

resources online
advice websites for fantasy managers, 8
Anthropic

API keys page, 269
Building Effective Agents, 283

Apache Airflow
glossary, 199
Operators and Hooks Reference, 200
running in Docker, 201
task dependencies document, 209

Apache Parquet
parquet files advantages for bulk down‐

load, 160
project page, 149

AWS Lightsail container service plugin
instructions, 119

book supplemental material, xxii
book technical questions or problems, xxii
book web page, xxiii
chapter code

chapter 3 complete, 29, 58
chapter 4 complete, 84
chapter 5 complete, 100, 108
chapter 6 complete, 132
chapter 7 complete, 158

Index | 319

chapter 9 complete, 218
chapter 10 complete, 206
Part I code, 22
Part II code, 174
Part III code, 240

cloud providers listing, 125
Docker

command cheatsheet, 113
Docker Hub, 201
glossary, 113
install files, 114
running Apache Airflow, 201
website for more information, 125

exponential backoff article, 142
Fantasy Premier League website, 8
fantasycoding.com for data analytics, 196
FastAPI

documentation, 75
FastAPI Tips (Trylesinski), 75
tutorial creating simple API, 75

GitHub Codespaces
overview, 24
secret added, 269

Google article on API key security, 170
GradientBoostingRegressor algorithm, 252
gRPC Python quickstart guide, 167
HTTP standards document, 169
httpx.Client documentation, 146
IDEO Field Guide to Human-Centered

Design, 13
Jupyter Notebooks website, 183
LangChain

chat models list, 266, 283
creating tools document, 276
documentation, 283

LangGraph documentation, 283
Leeger Python library for custom metrics,

180
Markdown formatting guide, 196
model cards information, 263
model evaluation information, 254
newsletter by author, xxi
nflverse open source libraries, 4, 217
NordicAPIs.com blog, 103
OpenAI

ChatGPT pricing page, 286
GPT-4o System Card, 286
home page, 286
privacy portal, 286

OpenAPI Specification, 92
guide to OpenAPI, 103

openapi.tools, 92
podcast on fantasy footballers (Borgog‐

noni), 9
Pydantic documentation, 75
pytest Good Integration Practices, 153
Python

containerization best practices, 125
The Hitchhiker’s Guide to Python, 160
logging levels documentation, 144

Render deployment instructions, 109
REST article, 27
SDKs.io, 160
SportsWorldCentral website, 7
SQL injection article by OWASP, 31
SQLAlchemy

datatypes, 41
documentation, 52

Streamlit
command cheat sheet, 230
deploying to Community Cloud, 228
deployment tutorials, 228
documentation, 229

Swagger UI installation instructions, 103
system cards description, 263
testing the four quadrants article, 173
Uvicorn documentation, 75

REST (Representational State Transfer) APIs,
16, 165
AI model deployment, 233

ML AI, 262
architecture chosen for project, 18

separate application, 20
terminology, 18

data pipeline source for data, 198
design tips article online, 27
GET request, 165
GraphQL versus, 166
OpenAPI Specifications as standard, 92
popularity of, 16, 90, 165

RESTful, 16, 165
design tips article online, 27
HTTP status codes, 69

retrieval augmented generation (RAG), 233
Richards, Tyler, 229
rotating a credential, 269

320 | Index

S
Sahni, Saurabh, 77, 103
sample program code in documentation, 79
sandbox environment for API, 79

interactive documentation versus, 82
schemas.py, 59-63

about, 59
mapping schemas to endpoints, 61

main.py defining endpoints, 67-70
schemas.py for ML API, 255
Successful Response definition, 90

Schroeder, Peter, 242
scikit-learn, 246

book for hands-on learning, 263
GradientBoostingRegressor algorithm, 252

SDK (software development kit)
about, 127, 128
API design tip, 5

for generative AI and LLMs, 236
auto-generation services, 131
benefits of providing, 128-130

API product strategy, 129
building minimal SDK, 132-136

building-block skill, 136
consistent and predictable, 134-136
easy installation, 132, 135
pyproject.toml file, 132
Python Package Index, 132
swc_client.py file, 134

building robust and feature-rich SDK,
136-158
bulk download support, 148-151
configuration class, 137
data validation, 139, 146, 148
default values, 137-139
documenting, 151-153
exponential backoff instead of retries,

142
exponential backoff with jitters, 143
hiding complicated details, 146
logging, 144-146
pyproject.toml file, 150
rich functionality, 139-144
supporting every API task, 157
swc_client.py file, 140, 144, 149
swc_config.py file, 137
testing, 153-157
test_swcpy.py, 153-157

documentation component, 79

Francisco Goitia on implementation, 130
language for

OpenAPI Python Client, 131
picking a language, 131
Python most commonly used, 131
Python Package Index, 132
StatsBomb using R and Python, 131
tools generating SDKs in multiple lan‐

guages, 131
Leeger app Python SDK, 181
portfolio project extended, 160
publishing on PyPI Test Repository, 160,

170
source code published, 144
toolkit for SWC API

creating a LangChain toolkit, 276-279
installing swcpy SDK, 276
multiple functions and endpoints in

swcpy SDK, 277
use an SDK when available, 170

PyPI package repository as source, 170
Zan Markan on fundamentals, 128

SDKs.io
idiomatic SDK that follows norms, 134
information source, 160
publisher APIMatic, 131, 160

secret added to Codespace, 269
security

Anthropic API key, 269
deploying to the cloud, 106
permissions for systems with LLMs, 235
rotating a credential, 269

semantic versioning
version 0 for FastAPI, 57
version 0 for your API, 55, 97

separation of concerns (SoC), 170
serialization of Python objects by Pydantic, 60,

68
service level agreements (SLAs), 172
session object of SQLAlchemy, 44, 66, 68
shared_functions.py file, 209
Shark League Score custom metric, 182-195

about, 182
API client file created, 185-186
building the Shark League Score, 195
calculating League Balance Score, 192
calculating League Juice Score, 193
installing new libraries, 184
Jupyter Notebook created, 186

Index | 321

adding code, 188-189
logging, 188
running API in Codespace, 176, 184
software used, 183
swc_simple_client.py file, 185, 188
working with your API data, 189-191

shark_notebook.log file, 188
Shevat, Amir, 77, 103
sklearn-onnx library, 246
SLAs (service level agreements), 172
Sleeper

API documentation, 80
open source SDK for, 128

Snyk.io article on Python containerization best
practices, 125

software development kit (see SDK (software
development kit))

Software Engineering for Data Scientists (Nel‐
son), 173

Speakeasy, 129, 131, 132
“How to Build a Best in Class Python SDK”

online, 160
OpenAPI Guide, 103

SportsWorldCentral (SWC)
about fantasy football, xx, 8

advice websites for fantasy managers, 8
APIs for websites, 8, 9
fantasy managers, xx, 8
hosts for fantasy league websites, 8
hosts providing APIs, 9
Kyle Borgognoni on APIs for websites, 9
nflverse data and R packages, 4

health check as endpoint, 55
(see also health check)

introduction, 6-9
introduction to Part II, 176
introduction to Part III, 275
README.md updated

API URL, 125
documentation, 101
SDK, 151-153

website API
AI calling SWC API, 280-282
API needed, 9

(see also building APIs; using APIs)
API product selection, 10-12
API running in Codespace, 176, 184,

275, 291
data pipeline goal, 198

endpoints of API, 55
(see also endpoints of APIs)

potential users identified, 10
Python for coding, 21
technology architecture, 19, 29
user stories, 11
user tasks and pain points, 11
website, 7

SQL
books for learning, 32, 52
database tables created, 32-34

SQL injection, 31
handling input data, 170
OWASP article online, 31
prepared statements reducing risk, 31

SQL Pocket Guide, 4th Edition (Zhao), 52
SQLAlchemy, 31

about, 30
classes defined in models.py, 39-43
data types of class elements assigned with

equals sign, 62
database configuration file, 44
datatypes, 41, 42
documentation online, 52
foreign key relationship, 42
installation, 37
session object, 44, 66, 68

SQLite, 30
about, 30
creating database, 32-37

about, 32
analytics database, 204
foreign key enforcement enabled, 36
listing tables, 34
loading data, 36
table structure explained, 35
tables created, 32-34

exiting the application, 37
state of the application (LangGraph), 268
StaticFiles (FastAPI), 148
StatsBomb, 129

Francisco Goitia on SDK implementation,
130

statsbompy, 132
Streamlit

about data apps, 215
about Streamlit, 215-216, 217

Streamlit Community Cloud, 215
API launched in Codespaces, 176, 217

322 | Index

Ctrl-C to stop API, 218
co-founder Thiago Teixeira, 215
command cheat sheet online, 230
creating Streamlit app, 218

entrypoint file, 218-220
st.navigation, 219
st.session_state, 219

DataFrame() function to display pandas
DataFrame, 223

deploying Streamlit app, 228
Streamlit Community Cloud, 228
Streamlit Community Cloud instruc‐

tions online, 228
tutorials on deployment online, 228

documentation online, 229
page1.py, 223

gsis_id, 223
page2.py, 224
portfolio project extended, 229
pyplot() function, 227
running Streamlit app, 220
software used, 216

installing, 217
nfl_data_py, 216
Streamlit, 216, 217

streamlit_football_app.py, 219
team rosters page created, 221-224

gsis_id, 223
team stats page created, 224-227

joining nfl_data_py library on gsis_id,
225

Streamlit for Data Science, 2nd Edition
(Richards), 229

subscription-based API for StatsBomb, 129
summary information from generative AI and

LLMs, 236
supervised learning, 244

labeled data, 244
Swagger UI, 85-90

cloud deployment endpoint check, 112
command line statement calling API, 89
FastAPI code containing, 90
installation instructions online, 103
interactive documentation, 85
OAS file determining contents, 90, 95

tags to categorize paths, 97
viewing changes in Swagger UI, 99-100

Part II API endpoints, 185
SWC (see SportsWorldCentral (SWC))

swcpy SDK
about, 266

(see also SDK (software development
kit))

toolkit for SWC API
creating a LangChain toolkit, 276-279
installing swcpy SDK, 276
multiple functions and endpoints in

swcpy SDK, 277
swc_simple_client.py file, 185, 188

calling API in Streamlit app, 222
swc_toolkit.py file, 276, 277, 278
“Syntax Sunday: Custom API Wrapper for

GPTs” (Halabuza), 242
system cards for documentation, 263

GPT-4o System Card online, 286
Meta description of online, 263
model providers supplying, 267

T
tables in SQLite database

association tables, 36
FOREIGN KEY statements, 35
many-to-many relationships, 36, 42

creating tables, 32-34
foreign key enforcement enabled, 36
loading data, 36
SQLAlchemy foreign key relationship, 42
structure of tables explained, 35

datatypes, 35
FOREIGN KEY statements, 35
last changed date queries enabled, 35
many-to-many relationships, 36

tabular report analytics products, 215
(see also Streamlit)

tags added to OAS file, 97
about tags, 97

tasks of Apache Airflow, 200
>> setting dependency between, 209
operators, 200

technology architecture of SWC, 19
Teixeira, Thiago, 215
temperature

Anthropic model, 272
models non-deterministic, 274

“The Ten REST Commandments” (McDou‐
gall), 27

terminal window of GitHub Codespace, 24
Ctrl-C to stop API, 101, 218, 292

Index | 323

Jupyter Notebook created, 186
split terminal for second session, 155
SWC API run locally, 176, 184, 275, 291
trimming prompt directory listing, 32, 175,

241
terms of service

documenting your API, 79
following others’, 169

testing APIs, 172
four quadrants article online, 173
pytest, 172

(see also pytest)
test_crud.py, 49-52

about, 39
test_main.py, 70-73

about, 59
health check, 72
regression testing, 100

test_swcpy.py, 153-157
time to hello world (TTHW), 80
tokens as unit of charge for services, 235
toolkits used by agents

about, 266, 276
LangChain toolkits, 276

creating tools document online, 276
SWC API toolkit, 275-279

agent calling SWC API, 280-282
creating a LangChain toolkit, 276-279
.env file, 275
installing swcpy SDK, 276
running SWC API locally, 275

tools used by AI agents, 266
tools used by data scientists, 4
tooltips and hints via Pydantic, 57
training ML models, 244

ML API development, 253
supervised learning, 244

troubleshooting API build, 75
Trylesinski, Marcelo, 75
try…except (Python), 145
TTHW (time to hello world), 80
tutorial creating simple API with FastAPI, 75

U
unpacking operator (Python), 148
upserts, 209
URL of API

ChatGPT calling SWC API, 292
httpx.Client setting base URL, 135

Jupyter Notebook base_url, 189
ML API, 260
Part II locally running API, 177
Part III locally running API, 275
query parameters included in, 68

path parameters, 69
README.md updated with, 125

user stories in API design, 11
users (see data scientists)
using APIs

data analytics (see data analytics)
errors logged, 170
SWC API running in Codespace, 176, 184,

275, 291
what data scientists should know, 165-177

API deployment and containerization,
173

building block approach, 165
how to build APIs, 172

(see also building APIs)
how to test APIs, 172

(see also testing APIs)
HTTP basics, 167
responsibilities of API use, 169
SDKs, 170

(see also SDK (software development
kit))

SDKs not available, build client, 171
separation of concerns, 170
variety of API styles used, 165-167
version control, 173

Uvicorn web server, 58
about, 55
API run without FastAPI CLI, 111
documentation online, 75
installation, 59

V
validation of data (see data validation)
Vercel AI SDK, 238
version control, 173
version of Python used for projects, 21

checking Codespace version, 24
versions of open source libraries, 38
visualization analytics products, 215

(see also LangGraph; Streamlit)
VS Code Simple Browser, 221

324 | Index

W
waiver requests, 248
web scrapers, 9, 180
website for book, xxiii
website for SWC, 7

API needed, 9
(see also building APIs; using APIs)

technology architecture of API, 19
website portal for developers as portfolio

project, 103
websites for fantasy leagues

advice websites for managers, 8
Fantasy Premier League, 8
fantasycoding.com for data analytics, 196
FantasyPros, 8

“Why parquet files are my preferred API for
bulk open data” (Linacre), 160

Wilde, Erik, 13
with…as (Python), 145
Woods, Dan, 13

X
XCom (Apache Airflow), 200, 208

Y
Yahoo! Fantasy Football API documentation, 83

PHP code for accessing APIs, 83
Yu, Simon, 129, 132, 134, 139

Z
Zhao, Alice, 52

Index | 325

About the Author
Ryan Day is an advanced data scientist at the Conference of State Bank Supervisors
(CSBS). He previously led the digital services division for a federal agency, where he
advanced cloud computing, data science, and API development initiatives. He is an
experienced open source developer who participates in the FastAPI project by per‐
forming code reviews and answering questions.

He holds an AWS Solutions Architect certification and is a member of the National
Association of Business Economics. He likes to use fantasy football for his data sci‐
ence and coding projects, because it generates reams of interesting data and is a topic
that he’s been semi-obsessed with for more seasons than he can count.

Colophon
The animal on the cover of Hands-On APIs for AI and Data Science is a greater dwarf
lemur (Cheirogaleus major). Found in the eastern and northern regions of Madagas‐
car, these nocturnal creatures play a vital role in their ecosystems.

Greater dwarf lemurs are smaller than most other lemurs, weighing between 5 and 21
ounces. The average size of their stout bodies is 9.5 inches; their bushy tails are much
longer, measuring between 19 to 21.7 inches. Their short, dense fur ranges from gray
to warm reddish-brown, and dark rings line their large orb-like eyes, which contain a
reflective layer of tissue that helps them see in the dark. They have small, sharp claws
on their hands and feet, which allows them to traverse branches.

Greater dwarf lemurs dwell mainly in forests; they sleep during the day in nests that
are built out of leaves, twigs, and grass, or in hollowed sections of trees. Their diet
consists of fruits, flowers, vine leaves, nectar, and sometimes insects. Because of their
diet, these lemurs are considered pollinators and their fruit consumption aids in seed
dispersal.

Unfortunately, greater dwarf lemurs are a vulnerable species; deforestation and slash-
and-burn agriculture threaten their habitat, and they are often hunted or captured to
be kept as pets locally. Habitat restoration and anti-poaching efforts have been made
to protect these creatures from harm.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by José Marzan Jr., based on an antique line engraving from
English Cyclopedia. The series design is by Edie Freedman, Ellie Volckhausen, and
Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O’Reilly learning platform free for 10 days.

©2025 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. 718900_7x9.1875

	Cover
	Copyright
	Table of Contents
	Preface
	Why Should You Read This Book?
	Who This Book Is For
	Data Scientists
	API Developers and Designers
	Job Seekers and Role Changers

	Creating Portfolio Projects
	Using This Book
	What This Book Is Not
	Why Fantasy Football?
	Get More Tips on APIs, AI, and Data Science
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Building APIs for Data Science
	Chapter 1. Creating APIs That Data Scientists Will Love
	How Do Data Scientists Use APIs?
	What Tools Do Data Scientists Use?
	Designing APIs for Data Scientists
	Introducing Your Part I Portfolio Project
	Every API Has a Story
	Meeting Your Company: SportsWorldCentral
	SWC Needs an API

	Selecting the First API Products
	Identifying Potential Users
	Creating User Stories

	Additional Resources
	Summary

	Chapter 2. Selecting Your API Architecture
	API Architectural Styles
	Representational State Transfer (REST)
	Graph Query Language (GraphQL)
	gRPC
	Your Choice: REST

	Technology Architecture
	Software Used in This Chapter
	Python
	GitHub

	Getting Started with Your GitHub Codespace
	Creating Your GitHub Account
	Cloning the Part I Repository
	Launching Your GitHub Codespace
	Touring Your New Codespace
	Making Your First Commit

	Additional Resources
	Summary

	Chapter 3. Creating Your Database
	Components of Your API
	Software Used in This Chapter
	SQLite
	SQLAlchemy
	pytest

	Creating Your SQLite Database
	Creating Database Tables
	Understanding Table Structure
	Loading Your Data

	Accessing Your Data Using Python
	Installing SQLAlchemy in Your Environment
	Creating Python Files for Database Access
	Creating the Database Configuration File
	Creating SQLAlchemy Helper Functions
	Installing pytest in Your Environment
	Testing Your SQLAchemy Code

	Additional Resources
	Summary

	Chapter 4. Developing the FastAPI Code
	Continuing Your Portfolio Project
	Software Used in This Chapter
	FastAPI
	HTTPX
	Pydantic
	Uvicorn

	Copying Files from Chapter 3
	Installing the New Libraries in Your Codespace
	Creating Python Files for Your API
	Creating Pydantic Schemas
	Creating Your FastAPI Controller

	Testing Your API
	Launching Your API
	Additional Resources
	Summary

	Chapter 5. Documenting Your API
	Sending a Signal of Trust
	Making Great API Docs
	Core Features
	Extra Features

	Reviewing Examples of API Documentation
	Sleeper App
	MyFantasyLeague
	Yahoo! Fantasy Football

	Viewing Your API’s Built-in Documentation
	Copying Files from Chapter 4
	Documentation Option 1: Swagger UI
	Documentation Option 2: Redoc

	Working with Your OpenAPI Specification File
	Continuing Your Portfolio Project
	Adding Details to the OAS info Object
	Adding Tags to Categorize Your Paths
	Adding More Details to Individual Endpoints
	Adding Parameter Descriptions
	Viewing the Changes in Swagger UI
	Regression-Testing Your API

	Updating Your README.md
	Additional Resources
	Summary

	Chapter 6. Deploying Your API to the Cloud
	Benefits and Responsibilities of Cloud Deployment
	Benefits
	Responsibilities

	Choosing a Cloud Host for Your Project
	Setting Up Your Project Directory
	Using GitHub Codespaces as a Cloud Host
	Deploying to Render
	Signing Up for Render
	Creating a New Web Service
	Auto-Deploying a Change to Your API

	Shipping Your Application in a Docker Container
	Verifying Docker Installation
	Creating a Dockerfile
	Creating a .dockerignore File
	Building a Container Image
	Running Your Container Image Locally

	Deploying to AWS
	Creating a Lightsail Container Service
	Installing the AWS CLI
	Installing the Amazon Lightsail Container Services Plug-in
	Configuring Your Login Credentials
	Pushing Your Container Image to Lightsail
	Creating a Lightsail Deployment

	Updating Your API Documentation
	Additional Resources
	Summary

	Chapter 7. Batteries Included: Creating a Python SDK
	SDKs Bridge the Gap
	Picking a Language for Your SDK
	Starting with a Minimum Viable SDK
	Expert Tip: Making Your SDK Easy to Install
	Expert Tip: Making the SDK Consistent and Idiomatic

	Building a Feature-Rich SDK
	Expert Tip: Using Sane Defaults
	Expert Tip: Providing Rich Functionality
	Expert Tip: Performing Logging
	Expert Tip: Hiding Your API’s Complicated Details
	Expert Tip: Supporting Bulk Downloads
	Expert Tip: Documenting Your SDK
	Testing Your SDK
	Expert Tip: Supporting Every Task the API Supports

	Completing Your Part I Portfolio Project
	Additional Resources
	Summary

	Part II. Using APIs in Your Data Science Project
	Chapter 8. What Data Scientists Should Know About APIs
	Using a Variety of API Styles
	HTTP Basics
	How to Consume APIs Responsibly
	Separation of Concerns: Using SDKs or Creating API Clients
	How to Build APIs
	How to Test APIs
	API Deployment and Containerization
	Using Version Control
	Introducing Your Part II Portfolio Project
	Getting Started with Your GitHub Codespace
	Cloning the Part II Repository
	Launching Your GitHub Codespace

	Running the SportsWorldCentral (SWC) API Locally
	Additional Resources
	Summary

	Chapter 9. Using APIs for Data Analytics
	Custom Metrics for Sports Analytics
	Using APIs as Data Sources for Fantasy Custom Metrics
	Creating a Custom Metric: The Shark League Score
	Software Used in This Chapter
	httpx
	Jupyter Notebooks
	pandas

	Installing the New Libraries in Your Codespace
	Launching Your API in Codespaces
	Creating an API Client File
	Creating Your Jupyter Notebook
	Adding General Configuration to Your Notebook
	Working with Your API Data
	Calculating the League Balance Score
	Calculating the League Juice Score
	Creating the Shark League Score
	Additional Resources
	Summary

	Chapter 10. Using APIs in Data Pipelines
	Types of Data Sources for Data Pipelines
	Planning Your Data Pipeline
	Orchestrating the Data Pipeline with Apache Airflow
	Installing Apache Airflow in GitHub Codespaces
	Creating Your Local Analytics Database
	Launching Your API in Codespaces
	Configuring Airflow Connections
	Creating Your First DAG
	Coding a Shared Function
	Running Your DAG
	Summary

	Chapter 11. Using APIs in Streamlit Data Apps
	Engaging Users with Interactive Visualizations
	Software Used in This Chapter
	nfl_data_py
	Streamlit

	Installing Streamlit and nfl_data_py
	Launching Your API in Codespaces
	Reusing the Chapter 9 API Client File
	Creating Your Streamlit App
	Updating the Entrypoint File
	Running Your Streamlit App
	Creating the Team Rosters Page
	Creating the Team Stats Page
	Deploying Your Streamlit App
	Completing Your Part II Portfolio Project
	Additional Resources
	Summary

	Part III. Using APIs with Artificial Intelligence
	Chapter 12. Using APIs with Artificial Intelligence
	The Overlap of AI and APIs
	Designing APIs to Use with Generative AI and LLMs
	Defining Artificial Intelligence
	Generative AI and Large Language Models (LLMs)
	Creating Agentic AI Applications
	Introducing Your Part III Portfolio Project
	Getting Started with Your GitHub Codespace
	Cloning the Part III Repository
	Launching Your GitHub Codespace

	Additional Resources
	Summary

	Chapter 13. Deploying a Machine Learning API
	Training Machine Learning Models
	New Software Used in This Chapter
	ONNX Runtime
	scikit-learn
	sklearn-onnx

	Installing the New Libraries in Your Codespace
	Using the CRISP-DM Process
	Business Understanding
	Data Understanding
	Data Preparation
	Modeling
	Evaluation
	Deployment
	Additional Resources
	Summary

	Chapter 14. Using APIs with LangChain
	Calling AI Using APIs (via LangChain)
	Creating a LangGraph Agent
	Signing Up for Anthropic
	Launching Your GitHub Codespace

	Installing the New Libraries in Your Codespace
	Creating Your Jupyter Notebook
	Chatting with the LangGraph Agent
	Running the SportsWorldCentral (SWC) API Locally
	Installing the swcpy Software Development Kit (SDK)
	Creating a LangChain Toolkit
	Calling APIs Using AI (with LangGraph)
	Chatting with Your Agent (with Tools)
	Additional Resources
	Summary

	Chapter 15. Using ChatGPT to Call Your API
	Architecture of Your Application
	Getting Started with ChatGPT
	Creating a Custom GPT
	Launching Your GitHub Codespace
	Running the SportsWorldCentral (SWC) API in GitHub Codespaces
	Adding the Servers Section to Your OAS File
	Creating a GPT Action
	Testing the APIs in Your GPT
	Chatting with Your Custom GPT
	Completing Your Part III Portfolio Project
	Summary

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

